320

Allen Newell
J. C. Shaw
H. A. Simon

Chess-Playing Programs and the

Problem of Complexity

Man can solve problems without knowing how he solves
them. This simple fact sets the conditions for all attempts
to rationalize and understand human decision making
and problem solving. Let us simply assume that it is good
to know how to do mechanically what man can do natu-
rally—both to add to man’s knowledge of man, and to
add to his kit of tools for controlling and manipulating
his environment. We shall try to assess recent progress in
understanding and mechanizing man’s intellectual attain-
ments by considering a single line of attack——the attempts
to construct digital computer programs that play chess.

Chess is the intellectual game par excellence. Without
a chance device to obscure the contest, it pits two intel-
lects against each other in a situation so complex that
neither can hope to understand it completely, but suffi-
ciently amenable to analysis that each can hope to out-
think his opponent. The game is sufficiently deep and
subtle in its implications to have supported the rise of
professional players, and to have allowed a deepening
analysis through 200 years of intensive study and play
without becoming exhausted or barren. Such character-
istics mark chess as a natural arena for attempts at
mechanization. If one could devise a successful chess
machine, one would seem to have penetrated to the core
of human intellectual endeavor.

The history of chess programs is an example of the
attempt to conceive and cope with complex mechanisms.
Now there might have been a trick — one might have
discovered something that was as the wheel to the human

IBM JOURNAL * OCTOBER 1958

Abstract: This paper traces the development of
digital computer programs that play chess. The
work of Shannon, Turing, the Los Alamos group,
Bernstein, and the authors is treated in turn. The
efforts to program chess provide an indication of
current progress in understanding and constructing

complex and intelligent mechanisms,

leg: a device quite different from humans in its methods,
but supremely effective in its way, and perhaps very
simple. Such a device might play excellent chess, but
would fail to further our understanding of human intel-
lectual processes. Such a prize, of course, would be
worthy of discovery in its own right, but there appears
to be nothing of this sort in sight.

We return to the original orientation: Humans play
chess, and when they do they engage in behavior that
seems extremely complex, intricate, and successful. Con-
sider, for example, a scrap of a player’s (White’s) run-
ning comment as he analyzes the position in Fig. 1:

“...Are there any other threats? Black also has a threat of
Knight to Bishop 5 threatening the Queen, and also putting
more pressure on the King's side because his Queen’s Bishop
can come over after he moves his Knight at Queen 2; how-
ever, that is not the immediate threat. Otherwise, his Pawn
at King 4 is threatening my Pawn ...”
Notice that his analysis is qualitative and functional. He
wanders from one feature to another, accumulating vari-
ous bits of information that will be available from time
to time throughout the rest of the analysis. He makes
evaluations in terms of pressures and immediacies of
threat, and gradually creates order out of the situation.
How can we construct mechanisms that will show
comparable complexity in their behavior? They need not
play in exactly the same way; close simulation of the
human is not the immediate issue. But we do assert that
complexity of behavior is essential to an intelligent per-

formance—that the complexity of a successful chess
program will approach the complexity of the thought
processes of a successful human chess player. Complexity
of response is dictated by the task, not by idiosyncrasies
of the human response mechanism.

There is a close and reciprocal relation between com-
plexity and communication. On the one hand, the com-
plexity of the systems we can specify depends on the
language in which we must specify them. Being human,
we have only limited capacities for processing informa-
tion. Given a more powerful language, we can specify
greater complexity with limited processing powers.

Figure 1

Let us illustrate this side of the relation between com-
plexity and communication. No one considers building
chess machines in the literal sense—fashioning pieces of
electronic gear into automatons that will play chess. We
think instead of chess programs: specifications written in
a language, called machine code, that will instruct a
digital computer of standard design how to play chess.
There is a reason for choosing this latter course — in
addition to any aversion we may have to constructing a
large piece of special-purpose machinery. Machine code
is a more powerful language than the block diagrams of
the electronics engineer. Each symbol in machine code

321

IBM JOURNAL * OCTOBER 1958

322

specifies a larger unit of processing than a symbol in the
block diagram. Even a moderately complicated program
becomes hopelessly complex if thought of in terms of
gates and pulses.

But there is another side to the relation between com-
munication and complexity. We cannot use any old lan-
guage we please. We must be understood by the person
or machine to whom we are communicating. English will
not do to specify chess programs because there are no
English-understanding computers. A specification in Eng-
lish is a specification to another human who then has the
task of creating the machine. Machine code is an advance
precisely because there are machines that understand it—
because a chess program in machine code is operation-
ally equivalent to a machine that plays chess.

If the machine could understand even more powerful
languages, we could use these to write chess programs—
and thus get more complex and intelligent programs from
our limited human processing capacity. But communica-
tion is limited by the intelligence of the least participant,
and at present a computer has only passive capability.
The language it understands is one of simple commands
—it must be told very much about what to do.

Thus it seems that the rise of effective communication
between man and computer will coincide with the rise
in the intelligence of the computer—so that the human
can say more while thinking less. But at this point in
history, the only way we can obtain more intelligent
machines is to design them—we cannot yet grow them,
or breed them, or train them by the blind procedures that
work with humans. We are caught at the wrong equilib-
rium of a bistable system: we could design more intelli-
gent machines if we could communicate to them better;
we could communicate to them better if they were more
intelligent. Limited both in our capabilities for design
and communication, every advance in either separately
requires a momentous effort. Each success, however,
allows a corresponding effort on the other side to reach
a little further. At some point the reaction will “go,” and
we will find ourselves at the favorable equilibrium point
of the system, possessing mechanisms that are both
highly intelligent and communicative.

With this view of the task and its setting, we can turn
to the substance of the paper: the development of chess
programs. We will proceed historically, since this arrange-
ment of the material will show most clearly what progress
is being made in obtaining systems of increasing com-
plexity and intelligence.

Shannon’s Proposal

The relevant history begins with a paper by Claude
Shannon in 1949.1t He did not present a particular chess
program, but discussed many of the basic problems in-
volved. The framework he introduced has guided most
of the subsequent analysis of the problem.

As Shannon observed, chess is a finite game. There is
only a finite number of positions, each of which admits
a finite number of alternative moves. The rules of chess
assure that any play will terminate: that eventually a

IBM JOURNAL * OCTOBER 1958

Figure 2 The game tree and minimaxing.

position will be reached that is a win, loss, or draw. Thus
chess can be completely described as a branching tree (as
in Fig. 2), the nodes corresponding to positions and the
branches corresponding to the alternative moves from
each position. It is intuitively clear, and easily proved,
that for a player who can view the entire tree and see
all the ultimate consequences of each alternative, chess
becomes a simple game. Starting with the terminal posi-
tions, which have determinate payoffs, he can work back-
wards, determining at each node which branch is best for
him or his opponent as the case may be, until he arrives
at the alternative for his next move.

This inferential procedure—called minimaxing in the
theory of games—is basic to all the attempts so far to
program computers for chess. Let us be sure we under-
stand it. Figure 2 shows a situation where White is to
move and has three choices, (1), (2), and (3). White’s
move will be followed by Black’s: (a) or (b) in case
move (1) is made; (¢) or (d) if move (2) is made; and
(e) or (f) if move (3) is made. To keep the example
simple, we have assumed that all of Black’s moves lead
to positions with known payoffs: (4) meaning a win
for White, (0) meaning a draw, and (—) meaning a loss
for White. How should White decide what to do—what
inference procedure allows him to determine which of
the three moves is to be preferred? Clearly, no matter
what Black does, move (1) leads to a draw. Similarly, no
matter what Black does, move (2) leads to a loss for
White. White should clearly prefer move (1) to move
(2). But what about move (3)? It offers the possibility
of a win, but also contains the possibility of a loss; and
furthermore, the outcome is in Black’s control. If White
is willing to impute any analytic ability to his opponent,
he must conclude that move (3) will end as a loss for
White, and hence that move (1) is the preferred move.
The win from move (3) is completely insubstantial,
since it can never be realized. Thus White can impute a
value to a position—in this case draw—by reasoning
backwards from known values.

To repeat: If the entire tree can be scanned, the best
move can be determined simply by the minimaxing pro-

cedure. Now minimaxing might have been the “wheel”
of chess—with the adventure ended almost before it had
started—if the tree were not so large that even current
computers can discover only the minutest fraction of it
in years of computing. Shannon’s estimate, for instance,
is that there are something like 10'2° continuations to be
explored, with less than 10'® microseconds available in a
century to explore them.

Shannon then suggested the following framework.
Playing chess consists of considering the alternative
moves, obtaining some effective evaluation of them by
means of analysis, and choosing the preferred alternative
on the basis of the evaluation. The analysis—which is the
hard part—could be factored into three parts. First, one
would explore the continuations to a certain depth. Sec-
ond, since it is clear that the explorations cannot be deep
enough to reach terminal positions, one would evaluate
the positions reached at the end of each exploration in
terms of the pattern of men on the chess board. These
static evaluations would then be combined by means of
the minimaxing procedure to form the effective value of
the alternative. One would then choose the move with the
highest effective value. The rationale behind this factor-
ization was the reasonableness that, for a given evaluation
function, the greater the depth of analysis, the better the
chess that would be played. In the limit, of course, such
a process would play perfect chess by finding terminal
positions for all continuations. Thus a metric was pro-
vided that measured all programs along the single dimen-
sion of their depth of analysis.

To complete the scheme, a procedure was needed to
evaluate positions statically — that is, without making
further moves. Shannon proposed a numerical measure
formed by summing, with weights, a number of factors
or scores that could be computed for any position. These
scores would correspond to the various features that
chess experts assert are important. This approach gains
plausibility from the existence of a few natural quantities
in chess, such as the values of pieces, and the mobility of
men. It also gains plausibility, of course, from the general
use in science and engineering of linearizing assumptions
as first approximations. ‘

To summarize: the basic framework introduced by
Shannon for thinking about chess programs consists of
a series of questions:

1. Alternatives
Which alternative moves are to be considered?
2. Analysis
a) Which continuations are to be explored and to
what depth?

b) How are positions to be evaluated statically—in

terms of their patterns?

¢) How are the static evaluations to be integrated

into a single value for an alternative?
3. Final choice procedure

What procedure is to be used to select the final pre-

ferred move?

We would hazard that Shannon’s paper is chiefly remem-
bered for the specific answers he proposed to these ques-

tions: consider all alternatives; search all continuations to
fixed depth, n; evaluate with a numerical sum; minimax
to get the effective value for an alternative; and then pick
the best one. His article goes beyond these specifics, how-
ever, and discusses the possibility of selecting only a small
number of alternatives and continuations. It also dis-
cusses the possibility of analysis in terms of the functions
that chess men perform—blocking, attacking, defending.
At this stage, however, it was possible to think of chess
programs only in terms of extremely systematic pro-
cedures. Shannon’s specific proposals have gradually been
realized in actual programs, whereas the rest of his dis-
cussion has been largely ignored. And when proposals for
more complex computations enter the research picture
again, it is through a different route.

Turing’'s Program

Shannon did not present a particular program. His speci-
fications still require large amounts of computing for
even such modest depths of analysis as two or three
moves. It remained for A. M. Turing® to describe a pro-
gram along these lines that was sufficiently simple to be
simulated by hand, without the aid of a digital computer.

In Table 1 we have characterized Turing’s program in
terms of the framework just defined. There are some
additional categories which will become clear as we pro-
ceed. The Table also provides similar information for
each of the other three programs we will consider.

Turing’s program considered all alternatives—that is,
all legal moves. In order to limit computation, however,
he was very circumspect about the continuations the
program considered. Turing introduced the notion of a
“dead” position: one that in some sense was stable, hence
could be evaluated. For example, there is no sense in
counting material on the board in the middle of an ex-
change of Queens: one should explore the continuations
until the exchange has been carried through — to the
point where the material is not going to change with the
next move. So Turing’s program evaluated material at
dead positions only. He made the value of material domi-
nant in his static evaluation, so that a decision problem
remained only if minimaxing revealed several alternatives
that were equal in material. In these cases, he applied a
supplementary additive evaluation to the positions
reached by making the alternative moves. This evalua-
tion included a large number of factors—mobility, back-
ward pawns, defense of men, and so on—points being
assigned for each.

Thus Turing’s program is a good instance of a chess-
playing system as envisaged by Shannon, although a
small-scale one in terms of computational requirements.
Only one published game, as far as we know, was played
with the program. It proved to be rather weak, for it lost
against a weak human player (who did not know the
program, by the way), although it was not entirely a
pushover. In general its play was rather aimless, and it
was capable of gross blunders, one of which cost it the
game. As one might have expected, the subtleties of the
evaluation function were lost upon it. Most of the numer-

323

IBM JOURNAL * OCTOBER 1958

324

ous factors included in the function rarely had any influ-
ence on the move chosen. In summary: Turing’s program
was not a very good chess player, but it reached the bot-
tom rung of the human ladder.

There is no a priori objection to hand simulation of a
program, although experience has shown that it is almost
always inexact for programs of this complexity. For
example, there is an error in Turing’s play of his pro-
gram, because he—the human simulator—was unwilling
to consider all the alternatives. He failed to explore the
ones he “knew” would be eliminated anyway, and was
wrong once. The main objection to hand simulation is the
amount of effort required to do it. The computer is really
the enabling condition for exploring the behavior of a
complex program. One cannot even realize the poten-
tialities of the Shannon scheme without programming it
for a computer.

The Los Alamos Program

In 1956 a group at Los Alamos programmed MANIAC
to play chess.” The Los Alamos program is an almost
perfect example of the type of system specified by Shan-
non. As shown in the Table, all alternatives were con-
sidered; all continuations were explored to a depth of two
moves (i.e., two moves for Black and two for White);
the static evaluation function consisted of a sum of
material and mobility measures; the values were inte-
grated by a minimax procedure,* and the best alternative
in terms of the effective value was chosen for the move.

In order to carry out the computation within reason-
able time limits, a major concession was required. Instead
of the normal chess board of eight squares by eight
squares, they used a reduced board, six squares by six
squares. They eliminated the Bishops and all special chess
moves: castling, two-square Pawn moves in the opening,
and en passant captures.

The result? Again the program is a weak player, but
now one that is capable of beating a weak human player,
as the machine demonstrated in one of its three games.
It is capable of serious blunders, a common character-
istic, also, of weak human play.

Since this is our first example of actual play on a com-
puter, it is worth looking a bit at the programming and
machine problems. In a normal 8 X 8 game of chess
there are about 30 legal alternatives at each move, on the
average, thus looking two moves ahead brings 30* con-
tinuations, about 800,000, into consideration. In the
reduced 6 x 6 game, the designers estimate the average
number of alternatives at about 20, giving a total of about
160,000 continuations per move. Even with this reduc-
tion of five to one, there are still a lot of positions to be
looked at. By comparison, the best evidence suggests that
a human player considers considerably less than 100
positions in the analysis of a move.* The Los Alamos
program was able to make a move in about 12 minutes on
the average. To do this the code had to be very simple

*The minimax procedure was a slight modification of the one described
earlier, in that the mobility score for each of the intermediate positions was

added in.

[BM JOURNAL * OCTOBER 1958

and straightforward. This can be seen by the size of the
program-—only 600 words. In a sense, the machine barely
glanced at each position it evaluated. The two measures
in the evaluation function are obtained directly from the
process of looking at continuations: changes in material
are noticed if the moves are captures, and the mobility
score for a position is equal to the number of new posi-
tions to which it leads—hence is computed almost with-
out effort when exploring all continuations.

The Los Alamos program tests the limits of simplifica-
tion in the direction of minimizing the amount of infor-
mation required for each position evaluated, just as
Turing’s program tests the limits in the direction of
minimizing the amount of exploration of continuations.
These programs, especially the Los Alamos one, provide
real anchor points. They show that, with very little in
the way of complexity, we have at least entered the arena
of human play—we can beat a beginner.

Bernstein‘s Program

Over the last two years Alex Bernstein, a chess player and
programmer at IBM, has constructed a chess-playing
program for the IBM 704 (for the full 8 X 8 board).%:2
This program has been in partial operation for the last six
months, and has now played one full game plus a number
of shorter sequences. It, too, is in the Shannon tradition,
but it takes an extremely important step in the direction
of greater sophistication: only a fraction of the legal
alternatives and continuations are considered. There is a
series of subroutines, which we can call plausible move
generators, that propose the moves to be considered.
Each of these generators is related to some feature of the
game: King safety, development, defending own men,
attacking opponent’s men, and so on. The program con-
siders at most seven alternatives, which are obtained by
operating the generators in priority order, the most im-
portant first, until the seven are accumulated.

The program explores continuations two moves ahead,
just as the Los Alamos program did. However, it uses the
plausible move generators at each stage, so that, at most,
7 direct continuations are considered from any given
position. For its evaluation function it uses the ratio of
two sums, one for White and one for Black. Each sum
consists of four weighted factors: material, King defense,
area control, and mobility. The program minimaxes and
chooses the alternative with the greatest effective value.

The program’s play is uneven. Blind spots occur that
are very striking; on the other hand it sometimes plays
very well for a series of moves. It has never beaten any-
one, as far as we know; in the one full game it played
it was beaten by a good player,! and it has never been
pitted against weak players to establish how good it is.

Bernstein’s program gives us our first information
about radical selectivity, in move generation and analysis.
At 7 moves per position, it examines only 2,500 final
positions two moves deep, out of about 800,000 legal
continuations. That it still plays at all tolerably with a
reduction in search by a factor of 300 implies that the
selection mechanism is fairly effective. Of course, the

Table 1

Comparison of current chess programs.

TURING LOS ALAMOS BERNSTEIN NSS
Kister, Stein, Ulam, Roberts, Arbuckle, | Newell, Shaw, Simon
Walden, Wells Belsky
+ Vital statistics
Date 1951 1956 1957 1958
Board 8 X 8 6 X6 8 x 8 8 x 8
Computer Hand simulation MANIAC-I IBM 704 RAND JOHNNIAC
11,000 ops/sec 42,000 ops/sec 20,000 ops/sec
 Chess program
Alternatives All moves All moves 7 plausible moves | Variable
Sequence of move | Sequence of move
generators generators
Depth of analysis | Until dead All moves 7 plausible moves | Until dead

Static evaluation

Integration of
values

Final choice

(exchanges only)

Numerical
Many factors

Minimax

Material dominates
Otherwise, best value

2 moves deep

Numerical
Material, Mobility

Minimax (modified)

Best value

2 moves deep

Numerical
Material, Mobility,
Area control,

King defense

Minimax

Best value

Each goal generates moves

Non-numerical
Vector of values
Acceptance by goals

Minimax

1. First acceptable
2. Double function

* Programming

Language Machine code Machine code IPL-1V, interpretive
Data scheme Single board Single board Single board

No records Centralized tables | Decentralized

Recompute List structure
Recompute
Time Minutes 12 min/move 8 min/ move 1-10 hrs/move (est.)
Space 600 words 7000 words Now 6000 words, est. 16,000
* Results

Experience 1 game 3 games 2 games 0 games

(no longer exists) Some hand simulation
Description Loses to weak player | Beats weak player Passable amateur | Good in spots (opening)

Aimless
Subtleties of evalua-
tion lost

Equivalent to human
with 20 games experience

Blind spots
Positional

No aggressive goals yet

325

IBM JOURNAL ¢ OCTOBER 1958

326

selections follow the common and tested lore of the chess
world; so that the significance of the reduction les in
showing that this lore is being successfully captured in
mechanism. On the other hand, such radical selection
should give the program a strong proclivity to overlook
moves and consequences. The selective mechanisms in
Bernstein’s program have none of the checks and bal-
ances that exist in human selection on the chess board.
And this is what we find. For example, in one situation a
Bishop was successively attacked by three Pawns, each
time retreating one square to a post where the next Pawn
could attack it. The program remained oblivious to this
possibility since the successive Pawn pushes that attacked
the Bishop were never proposed as plausible moves by
the generators. But this is nothing to be unhappy about.
Any particular difficulty is removable: in the case of the
Bishop, by adding another move generator responsive to
another feature of the board. This kind of error correc-
tion is precisely how the body of practical knowledge
about chess programs and chess play will accumulate,
gradually teaching us the right kinds of selectivity.

Every increase in sophistication of performance is
paid for by an increase in the complexity of the program.
The move generators and the components of the static
evaluation require varied and diverse information about
each position. This implies both more program and more
computing time per position than with the Los Alamos
program. From Table 1, we observe that Bernstein’s pro-
gram takes 7,000 words, the Los Alamos program only
600 words: a factor of about 10. As for time per position,
both programs take about the same time to produce a
move—~8 and 12 minutes respectively. Since the increase
in problem size of the 8 x 8 board over the 6 x 6 board
(about 5 to 1) is approximately canceled by the increase
in speed of the IBM 704 over the MANIAC (also about
5 to 1, counting the increased power of the 704 order
code), we can say they would both produce moves in the
same 8 X 8 game in the same time. Hence the increase
in amount of processing per move in Bernstein’s program
approximately cancels the gain of 300 to 1 in selectivity
that this more complex processing achieves. This is so,
even though Bernstein’s program is coded to attain maxi-
mum speed by the use of fixed tables, direct machine
coding, and so on.

We have introduced the comparison in order to focus
on computing speed versus selectivity as sources of im-
provement in complex programs. It is not possible, un-
fortunately, to compare the two programs in performance
level except very crudely. We should compare an 8 X 8
version of the Los Alamos program with the Bernstein
program, and we also need more games with each to
provide reliable estimates of performance. Since the
8 x 8 version of the Los Alamos program will be better
than the 6 X 6, compared to human play, let us assume
for purposes of argument that the Los Alamos and Bern-
stein programs are roughly comparable in performance.
To a rough approximation, then, we have two programs
that achieve the same quality of performance with the
same total effort by two different routes: the Los Alamos

IBM JOURNAL * OCTOBER 1958

program by using no selectivity and being very fast, and
the Bernstein program by using a large amount of selec-
tivity and taking much more effort per position examined
in order to make the selection.

The point we wish to make is that this equality is an
accident: that selectivity is a very powerful device and
speed a very weak device for improving the performance
of complex programs. For instance, suppose both the Los
Alamos and the Bernstein programs were to explore three
moves deep instead of two as they now do. Then the Los
Alamos program would take about 1,000 times (30?) as
long as now to make a move, whereas Bernstein’s pro-
gram would take about 50 times as long (72), the latter
gaining a factor of 20 in the total computing effort re-
quired per move. The significant feature of chess is the
exponential growth of positions to be considered with
depth of analysis. As analysis deepens, greater computing
effort per position soon pays for itself, since it slows the
growth in number of positions to be considered. The
comparison of the two programs at a greater depth is
relevant since the natural mode of improvement of the
Los Alamos program is to increase the speed enough to
allow explorations three moves deep. Furthermore, at-
tempts to introduce selectivity in the Los Alamos pro-
gram will be extremely costly relative to the cost of
additional selectivity in the Bernstein program.

One more calculation might be useful to emphasize the
value of heuristics that eliminate branches to be explored.
Suppose we had a branching tree in which our program
was exploring n moves deep, and let this tree have four
branches at each node. If we could double the speed of
the program—that is, consider twice as many positions
for the same total effort—then this improvement would
let us look half a move deeper (n+14). If, on the other
hand, we could double the selectivity—that is, only con-
sider two of the four branches at each node, then we
could look twice as deep (2n). It is clear that we could
afford to pay an apparently high computing cost per
position to achieve this selectivity.

To summarize, Bernstein’s program introduces both
sophistication and complication to the chess program.
Although in some respects—e.g., depth of analysis—it
still uses simple uniform rules, in selecting moves to be
considered it introduces a set of powerful heuristics which
are taken from successful chess practice, and drastically
reduce the number of moves considered at each position.

Newell, Shaw, and Simon Program

Although our own work on chess started in 1955, it
took a prolonged vacation during a period in which we
were developing programs that discover proofs for the-
orems in symbolic logic.®1® In a fundamental sense,
proving theorems and playing chess involve the same
problem: reasoning with heuristics that select fruitful
paths of exploration in a space of possibilities that grows
exponentially. The same dilemmas of speed versus selec-
tion and uniformity versus sophistication exist in both
problem domains. Likewise, the programming costs at-
tendant upon complexity seem similar for both. So we

GOAL MOVE
GENERATOR

SPECIFICATION

KING SAFETY

MATERIAL BALAN

CENTER CONTRO

DEVELOPMENT

KING-SIDE ATTA

PROMOTION

Figure 3 Basic organization of NSS chess program,

have recently returned to the chess programming prob-
lem equipped with ideas derived from the work on logic.
The historical antecedents of our own work are some-
what different from those of the other investigators we
have mentioned. We have been primarily concerned with
describing and understanding human thinking and deci-
sion processes.? However, both for chess players and for
chess programmers, the structure of the task dictates in
considerable part the approach taken, and our current
program can be described in the same terms we have
used for the others. Most of the positive features of the
earlier programs are clearly discernible: The basic fac-
torization introduced by Shannon; Turing’s concept of a
dead position; and the move generators, associated with
features of the chess situation, used by Bernstein. Per-
haps the only common characteristic of the other pro-
grams that is strikingly absent from ours — and from
human thinking also, we believe—is the use of numerical
additive evaluation functions to compare alternatives.

® Basic organization

Figure 3 shows the two-way classification in terms of
which the program is organized. There is a set of goals,
each of which corresponds to some feature of the chess
situation—XKing safety, material balance, center control.
and so on. Each goal has associated with it a collection of
processes, corresponding to the categories outlined by
Shannon: a move generator, a static evaluation routine,
and a move generator for analysis. The routine for inte-
grating the static evaluations into an effective value for a
proposed move, and the final choice procedure are both
common routines for the whole program, and therefore
are not present in each separate component.

® Goals

The goals form a basic set of modules out of which the
program is constructed. The goals are independent: any
of them can be added to the program or removed without
affecting the feasibility of the remaining goals. At the
beginning of each move a preliminary analysis estab-
lishes that a given chess situation (a ‘“‘state”) obtains, and
this chess situation evokes a set of goals appropriate to it.
The goal specification routines shown for each goal in
Fig. 3 provide information that is used in this initial
selection of goals. The goals are put on a list with the
most crucial enes first. This goal list then controls the

ANALYSIS
GENERATOR

STATIC
EVALUATION

remainder of the processing: the selection of alternatives,
the continuations to be explored, the static evaluation,
and the final choice procedure.

What kind of game the program will play clearly de-
pends on what goals are available to it and chosen by it
for any particular move. One purpose of this modular
construction is to provide flexibility over the course of
the game in the kinds of considerations the program
spends its effort upon. For example, the goal of denying
stalemate to the opponent is relevant only in certain end-
game situations where the opponent is on the defensive
and the King is in a constrained position. Another pur-
pose of the modular construction is to give us a flexible
tool for investigating chess programs—so that entirely
new considerations can be added to an already complex
but operational program.

® Move generation

The move generator associated with each goal proposes
alternative moves relevant to that goal. These move gen-
erators carry the burden of finding positive reasons for
doing things. Thus, only the center-control generator will
propose P-Q4 as a good move in the opening; only the
material-balance generator will propose moving out of
danger a piece that is en prise. These move generators
correspond to the move generators in Bernstein’s pro-
gram, except that here they are used exclusively to gener-
ate alternative moves and are not used to generate the
continuations that are explored in the course of analyzing
a move. In Bernstein’s program—and a fortiori in the
Los Alamos program-——identical generators are used both
to find a set of alternative moves from which the final
choice of next move is made, and also to find the contin-
uations that must be explored to assess the consequences
of reaching a given position. In our program the latter
function is performed by a separate set of analysis
generators.

e Evaluation

Each move proposed by a move generator is assigned a
value by an analysis procedure. We said above that the
move generators have the responsibility for finding posi-
tive reasons for making moves. Correspondingly, the
analysis procedure is concerned only with the accepta-
bility of a move once it has been generated. A generator
proposes; the analysis procedure disposes.

327

IBM JOURNAL * OCTOBER 1958

328

The value assigned to a move is obtained from a series
of evaluations, one for each goal. The value is a vector,
if you like to think of it that way, except that it does not
necessarily have the same components throughout the
chess game, since the components derive from the basic
list of goals that is constructed from the position at the
beginning of each move. Each component expresses ac-
ceptability or unacceptability of a position from the
viewpoint of the goal corresponding to that component.
Thus, the material-balance goal would assess only the
loss or gain of material; the development goal, the rela-
tive gain or loss of tempi; the Pawn structure goal, the
doubling and isolation of Pawns; and so on. The value for
a component is in some cases a number—e.g., in the
material-balance goal where we use conventional piece
values: 9 for a Queen, 5 for a Rook, and so on. In other
cases the component value is dichotomous, simply desig-
nating the presence or absence of some property, like the
blocking of a move or the doubling of a Pawn.

As in the other chess programs, our analysis procedure
consists of three parts: exploring continuations to some
depth, forming static evaluations, and integrating these to
establish an effective value for the move. By a process
that we will describe later, the analysis move generators
associated with the goals determine what branches will
be explored from each position reached. At the final
position of each continuation, a value is assigned using
the static evaluation routines of each goal to provide the
component values. The effective value for a proposed
move is obtained by minimaxing on these final static
values. Minimaxing seems especially appropriate for an
analysis procedure that is inherently conservative, such
as an acceptance test.

To be able to minimax, it must be possible to compare
any two values and decide which is preferable, or whether
they are equal in value. For values of the kind we are
using, there must be a complete ordering on the vectors
that determine them. Further, this ordering must allow
variation in the size and composition of the goal list. We
use a lexicographic ordering: Each component value is
completely ordered within itself; and higher priority
values completely dominate lower priority values, as de-
termined by the order of goals on the goal list. To com-
pare two values, then, the first components are compared.
If one of these is preferable to the other, this determines
the preference for the entire value. If the two components
are equal, then the second pair of components is com-
pared. If these are unequal in value, they determine the
preference for the entire value, otherwise the next com-
ponents are compared, and so on.

® Final choice

It is still necessary to select the move to be played from
the alternative moves, given the values assigned to them
by the analysis procedure. In the other programs the final
choice procedure was simply an extension of the mini-
max: choose the one with highest value. Its obviousness
rests on the assumption that the set of alternatives to be
considered is a fixed set. If this assumption is relaxed, by

IBM JOURNAL ~ OCTOBER 1958

generating alternatives sequentially, then other proce-
dures are possible. The simplest, and the one we are
currently using, is to set an acceptance level as final
criterion and simply take the first acceptable move. The
executive routine proceeds down the goal list, activating
the move generators of the goals in order of priority, so
that important moves are considered first. The executive
saves the best move that has been found up to any given
moment, and if no moves reach the specified level of
acceptability, it makes the best move that was found.

Another possible final choice procedure is to search for
an acceptable move that has a double function—that is,
a move that is proposed by more than one generator as
having a positive effect. With this plan, the executive
proceeds down the list of goals in order of priority. After
finding an acceptable move, it activates the rest of the
generators to see if the move will be proposed a second
time. If not, it works from the list of unevaluated moves
just obtained to see if any move proposed twice is accept-
able. If not, it takes the first acceptable move or the best
if none has proved acceptable. This type of executive has
considerable plausibility, since the concept of multiple-
function plays an important role in the chess literature.

Yet a third variation in the final choice procedure is
to divide the goals into two lists. The first list contains all
the features that should normally be attended to; the
second list contains features that are rare in occurrence
but either very good or very bad if they do occur. On
this second list would be goals that relate to sacrificial
combinations, hidden forks or pins that are two moves
away, and so on. The executive finds an acceptable move
with the first, normal list. Then the rest of the available
time is spent looking for various rare consequences de-
rived from the second list.

® Analysis

In describing the basic organization of the program we
skipped over the detailed mechanism for exploring con-
tinuations, simply assuming that certain continuations
were explored, the static values computed, and the effec-
tive value obtained by minimaxing. But it is clear that the
exact mechanisms are very important. The analysis move
generators are the main agents of selectivity in the pro-
gram: They determine for each position arrived at in the
analysis just which further branches must be explored,
hence the average number of branches in the exploration
tree and its average depth. The move generators for the
alternatives and the final choice procedure also affect the
amount of exploration by determining what moves are
considered. But their selection operates only once per
move, whereas the selectivity of the analysis generators
operates at each step (half-move) of the exploration.
Hence the selectivity of the analysis generators varies
geometrically with the average depth of analysis.

The exploration of continuations is based on a generali-
zation of Turing’s concept of a dead position. Recall that
Turing applied this notion to exchanges, arguing that it
made no sense to count material on the board until all
exchanges that were to take place had been carried out.

a WHITE

Blceo

[5) U BLACK

Bloco -fQ\

Blooo Booo

Figure 4 Analysis.

We apply the same notion to each feature of the board:
The static evaluation of a goal is meaningful only if the
position being evaluated is “dead” with respect to the
feature associated with that goal — that is, only if no
moves are likely to be made that could radically alter that
component static value. The analysis-move generators
for each goal determine for any position they are applied
to whether the position is dead with respect to their goal;
if not, they generate the moves that are both plausible
and might seriously affect the static value of the goal.
Thus the selection of continuations to be explored is dic-
tated by the search for a position that is dead with respect
to all the goals, so that, finally, a static evaluation can be
made. Both the number of branches from each position
and the depth of the exploration are controlled in this
way. Placid situations will produce search trees contain-
ing only a handful of positions; complicated middle game
situations will produce much larger ones.

To make the mechanics of the analysis clearer, Fig. 4
gives a schematic example of a situation. P, is the initial
position from which White, the machine, must make a
move. The arrow, a, leading to P, represents an alterna-
tive proposed by some move generator. The move is made
internally (i.e., “considered™), yielding position P, and
the analysis procedure must then obtain the value of Py,
which will become the value imputed to the proposed
alternative, «. Taking each goal from the goal list in turn,
an attempt is made to produce a static evaluation. For
P4 this attempt is successful for the first and second com-
ponents, yielding values of 5 and 3 respectively. (Num-
bers are used for values throughout this example to keep
the picture simple; in reality, various sets of ordered sym-
bols are used, their exact structure depending on the
nature of the computation.) However, the third compo-
nent does not find the position dead, and generates two
moves, 8 and y. The first, 3, is considered, leading to P,
and an attempt is made to produce a static evaluation of
it. This proceeds just as with Py, except that this time all
components find the position dead and the static value

(4, 3, 1) is obtained. Then the second move, y, from Py
is considered, leading to P;. The attempt to produce a
static value for P; runs into difficulties with the first com-
ponent, which generates one move, §, to resolve the in-
stability of Py with respect to its feature. This move leads
to P, which is evaluable, having the value (2, 8, 1). How-
ever, the second component also finds P; not dead and
generates a single move, ¢, leading to Ps. This is also
evaluable, having the value (4, 7, 3). The third compo-
nent finds P; dead and therefore contributes no additional
moves. Thus the exploration comes to an end with all
terminal positions yielding complete static values. Since
it is White’s move at P3;, White will choose the move with
the highest value. This is ¢, the move to Ps, with a value
of (4,7, 3) (the first component dominates). The value
of this move is the effective value assigned to Ps. Black
now has a choice between the move, B, to P», yielding
(4, 3, 1) and the move, v, to P3, yielding (4, 7, 3). Since
Black is minimizing, he will choose 8. This yields (4, 3,
1) as the effective value of the alternative, «, that leads to
P4, and the end of the analysis.

The minimaxing operation is conducted concurrently
with the generation of branches. Thus if Ps, which has a
value of (4, 7, 3), had been generated prior to P4 no
further moves would have been generated from Ps, since
it is already apparent that Black will prefer P» to Ps. The
value of Py is at least as great as the value of Ps, since it
is White’s move and he will maximize.

This analysis procedure is not a simple one, either con-
ceptually or technically. There are a number of possible
ways to terminate search and reach an effective evalua-
tion. There is no built-in rule that guarantees that the
search will converge; the success depends heavily on
the ability to evaluate statically. The more numerous the
situations that can be recognized as having a certain value
without having to generate continuations, the more rap-
idly the search will terminate. The number of plausible
moves that affect the value is also of consequence, as we
discussed in connection with Bernstein’s program, but
there are limits beyond which this cannot be reduced. For
example, suppose that a position is not dead with respect
to Material Balance and that one of the machine’s pieces
is attacked. Then it can try to (a) take the attacker,
(b) add a defender, (¢) move the attacked piece, (d) pin
the defender, (e) interpose a man between the attacker
and the attacked, or (f) launch a counter-attack. Alterna-
tives of each of these types must be sought and tried—
they are all plausible and may radically affect the mate-
rial balance.

As an example of the heuristics involved in achieving
a static evaluation, imagine that the above situation oc-
curred after several moves of an exploration, and that
the machine was already a Pawn down from the early
part of the continuation. Then, being on the defensive
implies a very remote chance of recovering the Pawn.
Consequently, a negative value of at least a Pawn can be
assigned to the position statically. This is usually enough
in connection with concurrent minimaxing to eliminate
the continuation from further consideration.

1BM JOURNAL * OCTOBER 1958

329

330

® Summary

Let us summarize our entire program. It is organized in
terms of a set of goals: these are conceptual units of chess
—King safety, passed Pawns, and so on. Each goal has
several routines associated with it:

1. A routine that specifies the goal in terms of the given
position;

2. A move generator that finds moves positively related
to carrying out the goal;

3. A procedure for making a static evaluation of any
position with respect to the goal, which essentially
measures acceptability; ,

4. An analysis move generator that finds the continua-
tions required to resolve a situation into dead positions.

The alternative moves come from the move generators,
considered in the order of priority of their respective
goals. Each move, when it is generated, is subjected to
an analysis. This analysis generates an exploration of the
continuations following from the move until dead posi-
tions are reached and static evaluations computed for
them. The static evaluations are compared, using mini-
max as an inference procedure, so that an effective value
is eventually produced for each alternative. The final
choice procedure can rest on any of several criteria: for
instance, choosing the first move generated that has an
effective value greater than a given norm.

o Examples of goals

In this section we will give two examples of goals and
their various components to illustrate the type of program
we are constructing. The first example is the center-con-
trol goal:

Center control
Specification

Goal is always operative unless there are no more center
Pawns to be moved to the fourth rank.

Move generator

1. Move P-Q4, P-K4 (primary moves).
2. Prevent the opponent from making his primary moves.
3. Prepare your own primary moves:

a) Add a defender to Q4 or K4 square.

b) Eliminate a block to moving QP or KP.

Static evaluation

Count the number of blocks to making the primary moves.

Analysis move generators

None; static evaluation is always possible,

To interpret this a little: Goals are proposed in terms of
the general situation—e.g., for the opening game. The
list of goals is made up for a position by applying, in turn,
the specification of each of the potential goals. Whether
any particular goal is declared relevant or irrelevant to
the position depends on whether or not the position meets
its specification. For Center Control, no special informa-
tion need be gathered, but the goal is declared irrelevant
if the center Pawns have already been moved to the
fourth rank or beyond.

IBM JOURNAL * OCTOBER 1958

The most important part of the center-control program
is its move generator. The generator is concerned with
two primary moves: P-Q4 and P-K4. It will propose these
moves, if they are legal, and it is the responsibility of the
analysis procedures (for all the goals) to reject the moves
if there is anything wrong with them—e.g., if the Pawns
will be taken when moved. So, after 1. P-Q4, P-Q4, the
center-control move generator will propose 2. P-K4, but
(as we shall see) the evaluation routine of the material
balance goal will reject this move because of the loss of
material that would result from 2. ..., PxP. The center-
control generator will have nothing to do with tracing out
these consequences.

If the primary moves cannot be made, the center-con-
trol move generator has two choices: to prepare them, or
to prevent the opponent from making his primary moves.
The program’s style of play will depend very much on
whether prevention has priority over preparation (as it
does in our description of the generator above), or vice
versa. The ordering we have proposed, which puts pre-
vention first, probably produces more aggressive and
slightly better opening play than the reverse ordering.
Similarly, the style of play depends on whether the
Queen’s Pawn or the King’s Pawn is considered first.

The move generator approaches the subgoal of pre-
venting the opponent’s primary moves (whenever this
subgoal is evoked) in the following way. It first deter-
mines whether the opponent can make one of these moves
by trying the move and then obtaining an evaluation of
it from the opponent’s viewpoint. If one or both of the
primary moves are not rejected, preventive moves will
serve some purpose. Under these conditions, the center-
control move generator will generate them by finding
moves that bring another attacker to bear on the oppo-
nent’s K4 and Q4 squares or that pin a defender of one
of these squares. Among the moves this generator will
normally propose are N-B3 and BP-B4.

The move generator approaches the subgoal of pre-
paring its own primary moves by first determining why
the moves cannot be made without preparation—that is,
whether the Pawn is blocked from moving by a friendly
piece, or whether the fourth rank square is unsafe for
the Pawn. In the former case, the generator proposes
moves for the blocking piece; in the latter case, it finds
moves that will add defenders to the fourth rank square,
drive away or pin attackers, and so on.

So much for the center-control move generators. The
task of the evaluation routine for the center-control goal
is essentially negative—to assure that moves, proposed
by some other goal, will not be made that jeopardize
control of the center. The possibility is simply ignored
that a move generator for some other goal will inadvert-
ently provide a move that contributes to center control.
Hence, the static evaluation for Center Control is only
concerned that moves not be made that interfere with
P-K4 and P-Q4. A typical example of a move that the
center-control evaluation routine is prepared to reject is
B-Q3 or B-K3 before the respective center Pawns have
been moved.

The second example of a goal is Material Balance. This
is a much more extensive and complicated goal than Cen-
ter Control, and handles all questions about gain and loss
of material in the immediate situation. It does not con-
sider threats like pins and forks, where the actual ex-
change is still a move away; other goals must take care
of these. Both the negative and positive aspects of mate-
rial must be included in a single goal, since they com-
pensate directly for each other, and material must often
be spent to gain material.

Material balance
Specification

A list of exchanges on squares occupied by own men, and a
list of exchanges on squares occupied by opponent’s men. For
each exchange square there is listed the target man, the list of
attackers, and the list of defenders (including, e.g., both Rooks
if they are doubled on the appropriate rank or file). For each
exchange square a static exchange value is computed by play-
ing out the exchange with all the attackers and defenders
assuming no indirect consequences like pins, discovered at-
tacks, etc. Exchange squares are listed in order of static
exchange value, largest negative value first. Squares with posi-
tive values for the defender are dropped from the list. At the
same time a list of all pinned men is generated.

Move generator

Starting with the exchange squares at the top of the list, appro-
priate moves are generated. If the most important exchange
square is occupied by the opponent, captures by attacking
pieces are proposed, the least valuable attacker being tried
first. If the move is rejected because the attacker is pinned,
the next attacker is tried. If the move is rejected for another
reason, the possibility of exchange on this square is aban-
doned, and the next exchange square examined.

If the exchange square under examination is occupied by
the program’s own piece, a whole series of possible moves is
generated:

a) Try “no move” to see if attack is damaging.

b) Capture the attacker.

¢) Add a defender not employed in another defense.

d) Move the attacked piece.

e) Interpose a man between the attacker and the target;
but not a man employed elsewhere, and not if the inter-
poser will be captured.

f) Pin the attacker with a man not employed elsewhere
and not capturable by the attacker.

Static evaluation

For each exchange square, add the values of own men and
subtract the values of opponent’s men. Use conventional
values: -9, R-5, B-N-3, P-1.

Move generators toward dead positions

A position is dead for this goal only if there are no exchanges
—that is, if the specification list defined above is empty. Then
a static evaluation can be made. Otherwise, the various kinds
of moves defined under the move generator are made to re-
solve the exchanges. However, various additional qualifica-
tions are introduced to reduce the number of continuations
examined. For example, if in a particular exchange material
has already been lost and a man is still under attack, the
position is treated as dead, since it is unlikely that the loss
will be recovered. When a dead position is reached, the static
evaluation is used to find a value for the position.

It is impossible to provide here more than a sketchy pic-
ture of the heuristics contained in this one goal. It should

be obvious from this brief description that there are a
lot of them, and that they incorporate a number of im-
plicit assumptions about what is important, and what
isn’t, on the chess board.

® Performance of the program

We cannot say very much about the behavior of the pro-
gram. It was coded this spring and is not yet fully
debugged. Only two goals have been coded: Material
Balance and Center Control. Development is fully de-
fined as well as a Pawn structure goal sufficient for the
opening, where its role is primarily to prevent undesirable
structures like doubled Pawns. These four goals—Mate-
rial Balance, Center Control, Development and Pawn
Structure—in this order seem an appropriate set for the
first phase of the opening game. Several others—King
safety, Serious Threats, and Gambits—need to be added
for full opening play. The serious threats goal could be
limited initially to forks and pins.

We have done considerable hand simulation with the
program in typical positions. Two examples will show
how the goals interact. In Fig. 5 the machine is White
and the play has been 1. P-K4, P-K4. Assuming the goal
list mentioned above, the material balance move gener-
ator will not propose any moves since there are no ex-
changes on the board. The center-control generator will
propose P-Q4, which is the circled move in the figure.
(In the illustration, we assume the center-control move
generator has the order of the primary moves reversed
from the order described earlier.) This move is rejected
—as it should be—and it is instructive to see why. The
move is proposed for analysis. Material Balance does not
find the position dead, since there is an exchange, and
generates Black’s move, 2. , PxP. The resulting posi-
tion is still not dead, and 3. QxP, is generated. The posi-
tion is now dead for Material Balance, with no gain or
loss in material. The first component of the static evalua-
tion is “‘even.” There are obviously no blocks to Pawn
moves, so that the center control static value is accept-
able. However, the third component, Development, finds
the position not dead because there is now an exposed
piece, the Queen. It generates replies that both attack the
piece and develop—i.e., add a tempo. The move 3. ,
N-QB3 is generated. This forces a Queen move, resulting
in loss of a tempo for White. Hence Development rejects
the move, 2. P-Q4. (The move 3. , B-B4 would not
have sufficed for rejection by Development, since the
Bishop could be taken.)

The second example, shown in Fig. 6, is from a famous
game of Morphy against Duke Karl of Brunswick and
Count Isouard. Play had proceeded 1. P-K4, P-K4;
2. N-KB3, P-Q3; 3. P-Q4. Suppose the machine is Black
in this position. The move 3...., B-N5 is proposed by
Material Balance to deal with the exchange that threatens
Black with the loss of a Pawn. This is the move made by
the Duke and Count. The analysis proceeds by 4. PxP,
PxP. This opens up a new exchange possibility with the
Queens, which is tried: 5. QxQ, KxQ; 6. NxP. Thus the
Pawn is lost in this continuation. Hence, alternative moves

331

IBM JOURNAL * OCTOBER 1958

332

are considered at Black’s nearest option, which is move 4,
since there are no alternative ways of recapturing the
Queen at move 5. The capture of White’s Knight is pos-
sible, so we get: 4'. ..., BxN; 5. PxB, PxP; 6. QxQ,
KxQ. This position is rejected by Development since the
forced King move loses Black his castling privilege, and
this loss affects the tempo count. This is a sufficient reason
to reject the move 3. ..., B-NS5, without even examining
the stronger continuation, 5”. QxB, that Morphy as White
chose. In our program, 5. PxB is generated before
5. QxB. Either reply shows that 3. ..., B-NS5 is unsound.

Figure 5

One purpose of these examples is to illustrate a heu-
ristic for constructing chess programs that we incline to
rather strongly. We wish not only to have the program
make good moves, but to do so for the right reasons. The
chess commentary above is not untypical of human analy-
sis. It also represents rather closely the analysis made by
the program. We think this is sound design philosophy in
constructing complex programs. To take another exam-
ple: the four-goal opening program will not make sacri-
fices, and conversely, will always accept gambits. The
existing program is unable to balance material against

IBM JOURNAL s OCTOBER 1958

positional advantage. The way to make the program take
account of sacrifices is to introduce an additional goal
having to do with them explicitly. The corresponding
heuristic for a human chess player is: don’t make sacri-
fices until you understand what a sacrifice is. Stated in
still another way, part of the success of human play de-
pends on the emergence of appropriate concepts. One
major theme in chess history, for example, is the emer-
gence of the concept of the center and the notion of what
it means to control the center. One should not expect the
equivalent of such a concept simply to emerge from

Figure 6

computation based on quite other features of the position.

® Programming

The program we have been describing is extremely com-
plicated. Almost all elements of the original framework
put forward by Shannon, which were handled initially by
simply uniform rules, have been made variable, and de-
pendent on rather complicated considerations. Many spe-
cial and highly particular heuristics are used to select
moves and decide on evaluations. The program can be
expected to be much larger, more intricate, and to require

333

IBM JOURNAL * OCTOBER 1958

334

much more processing per position considered than even
the Bernstein program.

In the introduction to this paper we remarked on the
close connection between complexity and communica-
tion. Processes as complex as the L.os Alamos program
are unthinkable without languages like current machine
codes in which to specify them. The Bernstein program is
already a very complicated program in machine code;
it involved a great deal of coding effort and parts of it
required very sophisticated coding techniques. Our own
program is already beyond the reach of direct machine
coding: It requires a more powerful language.

In connection with the work on theorem-proving pro-
grams we have been developing a series of languages,
called information processing languages (IPL’s).” The
current chess program is coded in one of them, IPL-IV.
An information processing language is an interpretive
pseudo-code—-that is, there exists a program in JOHN-
NIAC machine code that is capable of interpreting a
program in IPL and executing it. When operating,
JOHNNIAC contains both the machine code and the
IPL code.

It is not possible to give in this paper a description of
IPL-IV or of the programming techniques involved in
constructing the chess program. Basically IPL is designed
to manipulate lists, and to allow extremely complicated
structures of lists to be built up during the execution of
a program without incurring intolerable problems of
memory assignment and program planning. It allows un-
limited hierarchies of sub-routines to be easily defined,
and permits recursive definition of routines. As it stands
—that is, prior to coding a particular problem—it is inde-
pendent of subject matter (although biased towards list
manipulation in the same sense that algebraic compilers
are biased towards numerical evaluation of algebraic ex-
pressions). To code chess, a complete “chess vocabulary”
is built up from definitions in IPL. This vocabulary con-
sists of a set of processes for expressing basic concepts
in chess: tests of whether a man bears on another man,
or whether two men are on the same diagonal; processes
for finding the direction between two men, or the first man
in a given direction from another; and processes that ex-
press iterations over all men of a given type, or over all
squares of a given rank. There are about 100 terms in this
basic process vocabulary. The final chess program, as we
have been describing it in this paper, is largely coded in
terms of the chess vocabulary. Thus there are four lan-
guage “levels” in the chess program: JOHNNIAC ma-
chine code, general IPL, basic chess vocabulary, and
finally the chess program itself.

We can now make a rough assessment of the size and
complexity of this program in comparison with the other
programs. The table indicates that the program now con-
sists of 6000 words and will probably increase to 16,000.
The upper bound is dictated by the size of the JOHN-
NIAC drum and the fact that JOHNNIAC has no tapes.
In terms of the pyramiding structure described above,
this program is already much larger than Bernstein’s,
although it is difficult to estimate the “expansion” factor

IBM JOURNAL S OCTOBER 1958

involved in converting IPL to machine code. (For one
thing, it is not clear how an “equivalent” machine coded
program would be organized.) However, only about 1000
words of our program are in machine code, and 3000
words are IPL programs, some of which are as many as
ten definitional steps removed from machine code. Fur-
ther, all 12,000 words on the drum will be IPL program;
no additional data or machine code are planned.

The estimated time per move, as shown in Table 1,
is from one to ten hours, although moves in very placid
situations like the opening will take only a few minutes.
Even taking into account the difference in speed between
the 704 and JOHNNIAC, our program still appears to be
at least ten times slower than Bernstein’s. This gap reflects
partly the mismatch between current computers and com-
puters constructed to do efficiently the kind of informa-
tion processing required in chess.’2 To use an interpretive
code, such as IPL, is in essence to simulate an “IPL com-
puter” with a current computer. A large price has to be
paid in computing effort for this simulation over and
above the computing effort for the chess program itself.
However, this gap also reflects the difficulty of specifying
complex processes; we have not been able to write these
programs and attend closely to the efficiency issue at the
same time.

On both counts we have felt it important to explore the
kind of languages and programming techniques appro-
priate to the task of specifying complex programs, and
to ignore for the time being the costs we were incurring.

Conclusion

We have now completed our survey of attempts to pro-
gram computers to play chess. There is clearly evident in
this succession of efforts a steady development toward the
use of more and more complex programs and more and
more selective heuristics; and toward the use of princi-
ples of play similar to those used by human players.
Partly, this trend represents—at least in our case—a
deliberate attempt to simulate human thought processes.
In even larger part, however, it reflects the constraints
that the task itself imposes upon any information process-
ing system that undertakes to perform it. We believe that
any information processing system—a human, a com-
puter, or any other—that plays chess successfully will use
heuristics generically similar to those used by humans.
We are not unmindful of the radical differences be-
tween men and machines at the level of componentry.
Rather, we are arguing that for tasks that could not be
performed at all without very great selectivity—and chess
is certainly one of these—the main goal of the program
must be to achieve this selection. The higher-level pro-
grams involved in accomplishing this will look very much
the same whatever processes are going on at more micro-
scopic levels. Nor are we saying that programs will not be
adapted to the powerful features of the computing sys-
tems that are used—e.g., the high speed and precision of
current digital computers, which seems to favor exploring
substantial numbers of continuations. However, none of
the differences known to us—in speed, memory, and so

on—affect the essential nature of the task: search in a
space of exponentially growing possibilities. Hence the
adaptations to the idiosyncrasies of particular computers
will all be secondary in importance, although they will
certainly exist and may be worth while.

The complexity of heuristic programs requires a more
powerful language for communicating with the computer
than the language of elementary machine instructions.
We have seen that this necessity has already mothered
the creation of new information processing languages.
But even with these powerful interpretive languages,
communication with the machine is difficult and cumber-
some. The next step that must be taken is to write pro-
grams that will give computers a problem-solving ability

in understanding and interpreting instructions that is
commensurable with their problem-solving ability in
playing chess and proving theorems.

The interpreter that will transform the machine into an
adequate student for a human instructor will not be a
passive, algorithmic translator — as even the most ad-
vanced interpreters and compilers are today — but an
active, complex, heuristic problem-solving program. As
our explorations of heuristic programs for chess playing
and other tasks teach us how to build such an interpreter,
they will at last enable us to make the transition from the
low-level equilibrium at which man-machine communi-
cation now rests to the high-level equilibrium that is cer-
tainly attainable.

References and footnotes

1. A. Bernstein and M. deV. Roberts, “Computer vs. Chess-
player,” Scientific American, 198, 6, June 1958.

2. A. Bernstein, et al., “A Chess-Playing Program for the
IBM 704,” Proceedings of the 1958 Western Joint Com-
puter Conference, May 1958.

3. B. V. Bowden, Faster Than Thought, Chapter 25, Pit-
man, 1953.

4. A. D. De Groot, Het Denken van den Schaker, Amster-
dam, 1946.

5. J. Kister, et al., “Experiments in Chess,” J. Assoc. for

Computing Machinery, 4,2, April 1957.
There are two other explorations between 1951 and 1956
of which we are aware—a hand simulation by F. Mostel-
ler and a Russian program for BESM. Unfortunately, not
enough information is available on either to talk about
them, so we must leave a gap in the history between 1951
and 1956.

6. A. Newell, “The Chess Machine,” Proceedings of the
1955 Western Joint Computer Conference, March 1955,

7. A. Newell and J. C. Shaw, “Programming the Logic
Theory Machine,” Proceedings of the 1957 Western Joint
Computer Conference, February 1957.

8. A, Newell, J. C. Shaw, and H. A. Simon, “Empirical
Explorations of the Logic Theory Machine, Proceedings
of the 1957 Western Joint Computer Conference, Febru-
ary 1957.

9. A. Newell, J. C. Shaw, and H. A. Simon, “Elements of a
Theory of Human Problem Solving,” Psych. Rev., 65,
May 1958.

10. A. Newell and H. A. Simon, “The Logic Theory Ma-
chine,” Transactions on Information Theory, IT-2, No. 3,
September 1956.

11. C. E. Shannon, “Programming a Computer for Playing
Chess,” Phil. Mag., 41, March 1950.

12. J. C. Shaw, et al., “A Command Structure for Complex
Information Processing,” Proceedings of the 1958 West-
ern Joint Computer Conference, May 1958.

Received May 27, 1958

335

IBM JOURNAL ® OCTOBER 1958

