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Chess-Playing Programs and the 

Problem of Complexity 

Man  can solve problems  without knowing how he solves 
them.  This  simple fact sets the conditions for all attempts 
to rationalize and  understand  human decision making 
and problem solving. Let us simply  assume that  it is good 
to know  how to  do mechanically what  man  can  do  natu- 
rally-both to  add  to man’s knowledge of man,  and  to 
add  to his kit of tools for controlling and manipulating 
his environment. We shall  try to assess recent progress  in 
understanding and mechanizing man’s intellectual attain- 
ments  by  considering  a single line of attack-the attempts 
to  construct digital computer  programs  that play chess. 

Chess is the intellectual  game pur excellence. Without 
a chance device to  obscure  the contest, it pits two intel- 
lects  against each  other in a situation so complex that 
neither can  hope  to  understand it completely, but suffi- 
ciently amenable to analysis that  each  can  hope  to  out- 
think his opponent.  The  game is sufficiently deep and 
subtle in its  implications to  have  supported  the rise of 
professional  players, and  to  have allowed a deepening 
analysis through 200 years of intensive  study and play 
without  becoming  exhausted or barren.  Such  character- 
istics mark chess as  a natural  arena for attempts  at 
mechanization. If one could devise a successful chess 
machine, one would seem to  have  penetrated  to  the  core 
of human intellectual  endeavor. 

The history of chess programs is an  example of the 
attempt  to conceive and  cope with  complex  mechanisms. 
Now there might have been a trick - one might  have 
discovered something that was as the wheel to  the  human 
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leg:  a device quite different from  humans in its methods, 
but  supremely effective in  its way, and  perhaps very 
simple. Such a device might  play excellent chess, but 
would fail to  further  our understanding of human intel- 
lectual processes. Such  a  prize, of course, would be 
worthy of discovery  in its own  right, but there  appears 
to be nothing of this sort in  sight. 

We  return  to  the original orientation:  Humans play 
chess, and when  they do they  engage  in  behavior that 
seems extremely  complex,  intricate, and successful. Con- 
sider, for example, a scrap of a player’s (White’s) run- 
ning comment as he analyzes the position in Fig. 1: 

“. . . Are  there  any other threats? Black  also has a threat of 
Knight to Bishop 5 threatening  the  Queen, and also putting 
more  pressure on the  King’s side  because  his  Queen’s  Bishop 
can  come  over after he moves  his Knight at Queen 2; how- 
ever,  that is not the immediate  threat.  Otherwise, his  Pawn 
at King 4 is threatening my Pawn . . .” 
Notice that his analysis is qualitative and  functional. He  
wanders from  one  feature  to  another, accumulating vari- 
ous bits of information that will be available from time 
to time throughout  the rest of the analysis. He makes 
evaluations in terms of pressures and immediacies of 
threat,  and gradually  creates order  out of the situation. 

How  can we construct mechanisms that will show 
comparable complexity  in  their  behavior? They need  not 
play in exactly the  same way; close simulation of the 
human is not  the immediate issue. But we do assert that 
complexity of behavior is essential to  an intelligent per- 
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formance-that the complexity of a successful  chess 
program will approach  the  complexity of the  thought 
processes of a successful human chess  player. Complexity 
of response is dictated by the  task,  not by idiosyncrasies 
of the  human  response  mechanism. 

There is a close and  reciprocal  relation between com- 
plexity and  communication.  On  the  one  hand,  the  com- 
plexity of the systems we can specify depends  on  the 
language in  which  we must specify them. Being human, 
we have  only limited  capacities for processing informa- 
tion. Given a more  powerful  language, we can specify 
greater complexity  with  limited  processing  powers. 

Let  us  illustrate this  side of the  relation between corn- 
plexity and  communication. No one  considers building 
chess machines  in  the  literal sense-fashioning pieces of 
electronic  gear  into  automatons  that will play chess. We 
think instead of chess programs: specifications written in 
a language, called machine  code,  that will instruct a 
digital computer of standard design how  to play  chess. 
There is a reason  for  choosing this latter  course - in 
addition  to  any aversion  we may  have to constructing a 
large piece of special-purpose  machinery.  Machine  code 
is a more  powerful  language  than  the block diagrams of 
the  electronics engineer. Each  symbol in machine  code 
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specifies a  larger  unit of processing than a symbol  in the 
block  diagram. Even a  moderately  complicated program 
becomes hopelessly complex if thought of in  terms of 
gates and pulses. 

But there is another side to  the relation  between com- 
munication and complexity.  We cannot use any old Ian- 
guage we please. We  must  be understood by the person 
or machine  to whom we are communicating.  English will 
not  do to specify chess programs because there  are  no 
English-understanding computers. A specification in  Eng- 
lish is a specification to  another  human who then  has  the 
task of creating  the machine. Machine  code is an advance 
precisely because there  are machines that  understand it- 
because a chess program  in  machine code is operation- 
ally equivalent to a machine  that plays chess. 

If the  machine could  understand even more powerful 
languages, we could use these to write chess programs- 
and  thus get more complex and intelligent programs  from 
our limited human processing capacity. But communica- 
tion is limited by the intelligence of the least participant, 
and  at present a computer  has only passive capability. 
The language it understands is one of simple commands 
-it must  be  told  very much  about  what  to do. 

Thus  it seems that  the rise of effective communication 
between man  and  computer will coincide with the rise 
in the intelligence of the computer-so that  the  human 
can say more while thinking less. But at this  point  in 
history, the only way we can  obtain  more intelligent 
machines is to design them-we cannot yet grow  them, 
or breed them,  or  train  them by the blind  procedures that 
work  with humans. We are  caught  at  the wrong equilib- 
rium of a  bistable  system: we could design more intelli- 
gent  machines if we could communicate  to  them  better; 
we could communicate  to  them better if they  were more 
intelligent. Limited both  in  our capabilities for design 
and communication,  every  advance in either  separately 
requires a momentous effort. Each success, however, 
allows a corresponding effort on  the  other side to  reach 
a  little further. At some point  the reaction will “go,” and 
we will find ourselves at  the  favorable equilibrium  point 
of the system, possessing mechanisms that  are  both 
highly intelligent and communicative. 

With this view of the task and its  setting, we can  turn 
to  the  substance of the  paper:  the development of chess 
programs. We will proceed historically, since this arrange- 
ment of the  material will show  most  clearly what progress 
is being made in  obtaining systems of increasing com- 
plexity and intelligence. 

Shannon’s Proposal 

The relevant  history begins with a paper by Claude 
Shannon  in 1949.11 He did not present  a particular chess 
program,  but discussed many of the basic problems in- 
volved. The  framework  he  introduced  has guided most 
of the subsequent analysis of the problem. 

As Shannon observed, chess is a finite game. There is 
only a finite number of positions, each of which  admits 
a finite number of alternative moves. The rules of chess 
assure that any play will terminate:  that eventually a 

Figure 2 The game tree and minimaxing. 

position will be reached that is a win, loss, or draw. Thus 
chess can be  completely described as  a branching  tree (as 
in  Fig. 21, the nodes  corresponding to positions and  the 
branches  corresponding to  the alternative  moves from 
each position. It is intuitively clear,  and easily proved, 
that  for a player who can view the  entire  tree  and see 
all the ultimate  consequences of each alternative, chess 
becomes a  simple game. Starting  with the  terminal posi- 
tions, which  have determinate payoffs, he  can  work back- 
wards, determining at  each  node which branch is best for 
him  or his opponent as the case may be,  until he arrives 
at  the alternative for his next move. 

This inferential procedure-called minimaxing in the 
theory of games-is basic to all the  attempts so far  to 
program  computers  for chess. Let us be sure we under- 
stand  it. Figure 2 shows  a situation where White is to 
move and  has  three choices, ( 1) , ( 2 ) ,  and ( 3 ) .  White’s 
move will be followed by Black‘s: (a) or (b)  in case 
move ( 1) is made; (c)  or  (d) if move ( 2 )  is made;  and 
( e )  or (f) if move (3) is made. To keep the example 
simple, we have assumed that all of Black‘s moves  lead 
to positions  with  known payoffs: ( + ) meaning a win 
for White, (0) meaning  a  draw, and ( - ) meaning  a loss 
for White. How shouId  White  decide  what to do-what 
inference  procedure allows him  to  determine which of 
the three moves is to  be  preferred? Clearly, no  matter 
what Black does,  move (1) leads to a draw. Similarly, no 
matter  what Black does,  move ( 2 )  leads to a loss for 
White. White  should  clearly prefer move ( 1  ) to move 
(2). But  what  about move ( 3 )  ? It offers the possibility 
of a win, but also contains the possibility of a loss; and 
furthermore,  the  outcome is in Black’s control. If White 
is willing to  impute any  analytic ability to his opponent, 
he must  conclude that move (3) will end as a loss for 
White, and  hence  that move (1) is the preferred move. 
The win from move (3) is completely  insubstantial, 
since it can never be realized. Thus  White  can  impute a 
value to a position-in this  case draw-by reasoning 
backwards from known values. 

To repeat: If the  entire tree can be scanned,  the best 
move can  be  determined simply by the minimaxing  pro- 



cedure. Now minimaxing  might have been the “wheel” 
of  chess-with the  adventure ended  almost before it had 
started-if the  tree were  not so large that even current 
computers  can discover  only the minutest fraction of it 
in  years of computing. Shannon’s estimate, for instance, 
is that  there  are something like continuations to be 
explored,  with less than  10lG microseconds  available  in  a 
century  to explore  them. 

Shannon then suggested the following framework. 
Playing chess consists of considering the alternative 
moves, obtaining  some effective evaluation of them by 
means of analysis, and choosing the  preferred alternative 
on  the basis of the evaluation. The analysis-which is the 
hard  part-could be factored  into  three parts. First,  one 
would explore the continuations to a certain depth. Sec- 
ond, since it is clear that  the explorations cannot be deep 
enough to  reach  terminal positions, one would evaluate 
the positions  reached at  the end of each exploration  in 
terms of the  pattern of men on  the chess board. These 
static evaluations  would  then  be  combined  by  means of 
the  minimaxing procedure  to  form  the effective value of 
the alternative. One would then  choose the move  with the 
highest effective value. The rationale  behind  this factor- 
ization was the reasonableness that,  for a given evaluation 
function,  the greater the  depth of analysis, the  better  the 
chess that would be  played. In  the limit, of course, such 
a process would play  perfect chess by finding terminal 
positions for all continuations. Thus a metric was pro- 
vided that measured all programs  along  the single  dimen- 
sion of their  depth of analysis. 

To complete the scheme,  a procedure was needed to 
evaluate positions statically - that is, without  making 
further moves. Shannon proposed  a  numerical measure 
formed by summing,  with weights, a number of factors 
or scores that could be computed  for  any position. These 
scores would correspond to  the various features  that 
chess experts  assert are  important.  This  approach gains 
plausibility from  the existence of a  few natural quantities 
in chess, such as the values of pieces, and  the mobility of 
men. It also gains plausibility, of course, from  the general 
use in  science and engineering of linearizing  assumptions 
as first approximations. 

To summarize:  the basic framework introduced by 
Shannon for thinking  about chess programs consists of 
a series of questions: 
1. Alternatives 

2. Analysis 
Which  alternative moves are  to be considered? 

a )  Which continuations are  to be  explored and  to 

b)  How  are positions to be  evaluated statically-in 

c)  How  are  the  static evaluations to be integrated 

what  depth? 

terms of their  patterns? 

into a single value for  an alternative? 
3. Final choice procedure 

What  procedure is to be used to select the final pre- 
ferred move? 

We would hazard  that Shannon’s paper is chiefly remem- 
bered for  the specific answers he proposed to these  ques- 

tions:  consider all alternatives;  search all continuations to 
fixed depth, n; evaluate  with a numerical sum; minimax 
to get  the effective value for  an alternative; and then  pick 
the best one. His article goes beyond  these specifics, how- 
ever, and discusses the possibility of selecting only a small 
number of alternatives and Continuations. I t  also dis- 
cusses the possibility of analysis in  terms of the  functions 
that chess men perform-blocking, attacking,  defending. 
At this stage, however, it was possible to  think of chess 
programs  only in terms of extremely  systematic pro- 
cedures. Shannon’s specific proposals have gradually been 
realized in  actual  programs, whereas the rest of his dis- 
cussion has been largely ignored. And when  proposals for 
more complex computations  enter  the research picture 
again, it is through a different  route. 

Turing’s Program 

Shannon did not present  a particular  program.  His speci- 
fications still require large amounts of computing  for 
even such modest depths of analysis as two or three 
moves. It remained for A. M. Turing3  to describe a pro- 
gram along  these lines that was sufficiently simple to be 
simulated by hand, without the  aid of a digital  computer. 

In  Table 1 we have characterized Turing’s program  in 
terms  of  the  framework just defined. There  are some 
additional  categories  which will become  clear  as we pro- 
ceed. The  Table also provides  similar information  for 
each  of  the  other  three programs we will consider. 

Turing’s program considered  all alternatives-that is, 
all legal moves. In  order  to limit computation, however, 
he was very  circumspect about  the continuations the 
program considered. Turing  introduced  the notion of a 
“dead” position: one  that in some sense was stable, hence 
could be evaluated. For example, there is no sense in 
counting material  on  the  board in the  middle of an ex- 
change of Queens: one should  explore the continuations 
until  the  exchange has been carried  through - to  the 
point where the material is not going to  change with the 
next move. So Turing’s program evaluated material at 
dead positions only. He made  the value of material domi- 
nant in his static evaluation, so that a decision problem 
remained  only if minimaxing revealed several  alternatives 
that were equal in  material. In these cases, he applied  a 
supplementary  additive  evaluation  to  the  positions 
reached by making  the alternative moves. This evalua- 
tion included a large number of factors-mobility, back- 
ward  pawns,  defense of men, and so on-points being 
assigned for each. 

Thus Turing’s program is a good instance of a chess- 
playing system as envisaged by Shannon, although a 
small-scale one in terms of computational requirements. 
Only one published  game, as far as we know, was played 
with  the program.  It proved to be rather weak, for it lost 
against a weak human player (who did not know the 
program, by the  way),  although  it was not entirely  a 
pushover. In general its play was rather aimless, and it 
was capable of gross blunders, one of which  cost it  the 
game.  As one might have  expected, the subtleties of the 
evaluation  function were lost upon it. Most of the  numer- 
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ous factors  included  in the  function rarely had any influ- 
ence on  the move  chosen. In  summary: Turing’s program 
was not a  very good chess player, but it reached the bot- 
tom rung of the  human ladder. 

There is no a priori objection to  hand simulation of a 
program, although experience has shown that  it is almost 
always inexact for programs of this complexity. For 
example, there is an error in  Turing’s  play of his pro- 
gram, because he-the human simulator-was unwilling 
to consider all the alternatives. He failed to explore the 
ones he “knew” would be eliminated  anyway, and was 
wrong  once. The main  objection to  hand simulation is the 
amount of effort required to  do it. The  computer is really 
the enabling  condition for exploring the behavior of a 
complex program.  One  cannot even realize the  poten- 
tialities of the  Shannon scheme  without programming  it 
for a  computer. 

The 10s Alamos Program 

In 1956 a group  at Los Alamos programmed  MANIAC I 
to play The Los Alamos  program is an almost 
perfect  example of the type of system specified by Shan- 
non. As  shown  in the Table, all alternatives  were  con- 
sidered; all continuations were explored to a depth of two 
moves (i.e., two moves for Black and two for  White); 
the  static  evaluation function consisted of a sum of 
material and mobility measures; the values were  inte- 
grated by a  minimax procedure,*  and  the best alternative 
in  terms of the effective value was chosen for  the move. 

In  order  to  carry  out  the  computation within reason- 
able time  limits, a major concession was required.  Instead 
of the normal chess board of eight squares by eight 
squares,  they used a reduced board, six squares by six 
squares. They eliminated the Bishops and all special chess 
moves:  castling,  two-square Pawn moves in the opening, 
and en passant captures. 

The result?  Again the  program is a weak player,  but 
now one  that is capable of beating a weak human player, 
as the machine demonstrated  in one of its three games. 
It is capable of serious  blunders, a common  character- 
istic, also, of weak human play. 

Since this is our first example of actual play on a  com- 
puter, it is worth looking a bit at  the programming  and 
machine  problems. In a normal 8 x 8 game of chess 
there  are  about 30 legal alternatives at each  move, on  the 
average, thus looking two  moves ahead brings 30% con- 
tinuations, about 800,000, into consideration. In  the 
reduced 6 X 6 game, the designers estimate the average 
number of alternatives at  about 20, giving a total of about 
160,000 continuations  per move. Even  with  this  reduc- 
tion of five to  one,  there  are still a lot of positions to be 
looked  at. By comparison, the best evidence suggests that 
a human player  considers  considerably less than 100 
positions in the analysis of a move.4 The Los Alamos 
program was able to  make a  move in about 12 minutes on 
the average. To  do this the code  had to be very simple 

T h e  minimax  procedure  was  a  slight  modification of the  one  drscribed 
earlier,  in  that  the  mobility  score for each of the intrrmrdiate positions was 
added  in. 324 
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and  straightforward.  This  can be seen by the size of the 
program-only 600 words. In a sense, the  machine barely 
glanced at each  position it evaluated. The two measures 
in the evaluation function  are obtained  directly from  the 
process of looking at continuations:  changes in material 
are noticed if the moves are captures, and  the mobility 
score for a position is equal  to  the  number of new posi- 
tions to which it leads-hence is computed almost with- 
out effort when  exploring all continuations. 

The Los Alamos program tests the limits of simplifica- 
tion in  the direction of minimizing the  amount of infor- 
mation  required for  each position  evaluated,  just as 
Turing’s program tests the limits in the direction of 
minimizing the amount of exploration of continuations. 
These  programs, especially the Los Alamos one, provide 
real anchor points. They show that, with very little in 
the way of complexity, we have at least  entered the arena 
of human play-we can  beat  a beginner. 

Bernstein‘s Program 

Over the last two years Alex Bernstein, a chess player  and 
programmer  at  IBM,  has constructed  a chess-playing 
program for  the  IBM 704 (for  the full 8 X 8 board).lZ2 
This  program  has been in partial  operation  for  the last six 
months,  and has  now played one  full  game plus  a number 
of shorter sequences. It, too, is in the  Shannon  tradition, 
but it takes an extremely important step  in the direction 
of greater  sophistication:  only a fraction of the legal 
alternatives and continuations are considered. There is a 
series of subroutines,  which we can  call plausible move 
generators, that propose the moves to be considered. 
Each of these generators is related to some feature of the 
game: King  safety,  development,  defending  own  men, 
attacking opponent’s men,  and so on. The program  con- 
siders at most seven alternatives, which are obtained by 
operating the generators  in  priority order,  the most im- 
portant first, until the seven are accumulated. 

The program  explores  continuations two moves ahead, 
just  as the Los Alamos program did.  However, it uses the 
plausible  move  generators at each  stage, so that,  at most, 
7 direct  continuations are considered from  any given 
position. For its evaluation function  it uses the  ratio of 
two sums, one  for  White  and  one  for Black. Each sum 
consists of four weighted factors: material,  King  defense, 
area control, and mobility. The  program minimaxes and 
chooses the alternative  with the greatest effective value. 

The program’s play is uneven. Blind spots occur  that 
are very  striking; on  the  other  hand it sometimes plays 
very well for a series of moves. It  has never  beaten  any- 
one,  as far as we know; in the  one full  game it played 
it was beaten by a good player,l and it has never been 
pitted against weak players to establish how good it is. 

Bernstein’s program gives us our first information 
about  radical selectivity, in move  generation and analysis. 
At 7 moves per  position, it examines  only 2,500 final 
positions two moves deep, out of about 800,000 legal 
continuations. That  it still plays at all tolerably with a 
reduction  in  search by a factor of 300 implies that  the 
selection mechanism is fairly effective. Of course, the 



Table I Comparison of current chess programs. 

Vital  statistics 

Date 

Board 

Computer 

Chess program 

Alternatives 

Depth of analysis 

Static evaluation 

Integration of 
values 

Final choice 

Programming 

Language 

Data scheme 

Time 

Space 

Results 

Experience 

Description 

TURING 

195 1 

8 x 8  

Hand simulation 

All moves 

Until dead 
(exchanges only) 

Numerical 
Many factors 

Minimax 

Material  dominates 
Otherwise, best value 

Minutes 

1 game 

Loses to weak player 
Aimless 
Subtleties of evalua- 
tion lost 

LOS ALAMOS 

Kister,  Stein, Ulam, 
Walden, Wells 

1956 

6 x 6  

MANIAC-I 
11,000 ops/sec 

All moves 

All moves 
2 moves  deep 

Numerical 
Material, Mobility 

Minimax (modified) 

Best value 

Machine code 

Single board 
No records 

12 min/ move 

600 words 

3 games 
(no longer exists) 

Beats weak player 
Equivalent to  human 
with 20 games  experience 

BERNSTEIN 

Roberts,  Arbuckle, 
Belsky 

1957 

8 x 8  

IBM 704 
42,000 ops/ sec 

7 plausible moves 
Sequence of move 
generators 

7 plausibIe moves 
2 moves deep 

Numerical 
Material,  Mobility, 
Area control, 
King  defense 

Minimax 

Best value 

Machine code 

Single board 
Centralized tables 
Recompute 

8 midmove 

7000 words 

2 games 

Passable amateur 
Blind spots 
Positional 

NSS 

Newell, Shaw,  Simon 

1958 

8 x 8  

RAND JOHNNIAC 
20,000 ops/ sec 

Variable 
Sequence of move 
generators 

Until  dead 
Each goal  generates moves 

Non-numerical 
Vector of values 
Acceptance by goals 

Minimax 

1. First acceptable 
2. Double  function 

IPL-IV,  interpretive 

Single board 
Decentralized 
List structure 
Recompute 

1-10 hrs/move  (est.) 

Now 6000 words, est. 16,000 

D games 
Some hand simulation 

Good  in  spots (opening) 
No aggressive goals yet 
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selections follow the common and tested lore of the chess 
world; so that  the significance of the reduction lies in 
showing that this lore is being successfully captured  in 
mechanism. On  the  other  hand,  such radical selection 
should give the  program a strong proclivity to overlook 
moves and consequences. The selective mechanisms  in 
Bernstein’s program  have  none of the checks and bal- 
ances that exist in human selection on  the chess board. 
And this is what we find. For example,  in one situation  a 
Bishop was successively attacked by three Pawns, each 
time  retreating  one  square  to a post where the next Pawn 
could attack it. The  program remained oblivious to this 
possibility since the successive Pawn pushes that attacked 
the Bishop were never proposed  as  plausible moves by 
the generators. But this is nothing to be unhappy  about. 
Any  particular difficulty is removable:  in the case of the 
Bishop, by adding  another move  generator responsive to 
another  feature of the  board.  This  kind of error correc- 
tion is precisely how the body of practical knowledge 
about chess programs and chess play will accumulate, 
gradually  teaching us the right  kinds of selectivity. 

Every increase in sophistication of performance is 
paid for by an increase in the complexity of the program. 
The move  generators and  the components of the  static 
evaluation require varied and diverse information  about 
each position. This implies both more  program  and  more 
computing  time  per  position than with the  Los  Alamos 
program. From  Table 1, we observe that Bernstein’s pro- 
gram takes 7,000 words, the  Los  Alamos  program only 
600 words:  a factor of about 10.  As for time per position, 
both  programs  take  about  the  same time to  produce a 
move-8 and  12 minutes respectively. Since the increase 
in  problem size of the 8 X 8 board over the 6 X 6 board 
(about 5 to  1) is approximately  canceled by the increase 
in  speed of the  IBM 704 over the  MANIAC (also about 
5 to 1, counting the increased  power of the 704 order 
code), we can say they would both  produce moves in  the 
same 8 X 8 game in the  same time. Hence  the increase 
in amount of processing per move  in Bernstein’s program 
approximately  cancels the gain of 300 to 1 in selectivity 
that this more complex  processing achieves. This is so, 
even though Bernstein’s program is coded to  attain maxi- 
mum speed by the use of fixed tables,  direct  machine 
coding, and so on. 

We have  introduced the comparison  in order  to focus 
on computing speed versus selectivity as  sources of im- 
provement  in  complex  programs. It is not possible, un- 
fortunately,  to  compare  the two programs  in  performance 
level except  very  crudely. We should compare  an 8 x 8 
version of the Los Alamos  program with the Bernstein 
program,  and we also need more games  with each to 
provide reliable  estimates of performance. Since the 
8 X 8 version of the Los Alamos  program will be better 
than  the 6 X 6, compared  to  human play,  let us assume 
for purposes of argument  that  the Los Alamos and Bern- 
stein programs are roughly comparable in performance. 
To a rough approximation,  then, we have two programs 
that achieve the  same quality of  performance with the 
same total effort by two different routes:  the Los Alamos 

program by using no selectivity and being very fast,  and 
the Bernstein program by using a  large amount of selec- 
tivity and taking much  more effort per  position  examined 
in order  to  make  the selection. 

The point we wish to  make is that this equality is an 
accident: that selectivity is a very  powerful  device  and 
speed a very weak device for improving the  performance 
of complex  programs. For instance,  suppose both  the LOS 
Alamos  and  the Bernstein programs were to explore  three 
moves  deep  instead of two as they  now do. Then  the Los 
Alamos program would take about 1,000 times (309 as 
long  as  now to  make a move,  whereas Bernstein’s pro- 
gram would take about 50 times as  long ( 7 ? ) ,  the  latter 
gaining  a factor of 20  in  the  total computing effort re- 
quired  per move. The significant feature of chess is the 
exponential  growth of positions to be  considered with 
depth of analysis. As analysis deepens,  greater  computing 
effort per  position  soon  pays for itself,  since it slows the 
growth in number of positions to be  considered. The 
comparison of the two programs  at a  greater depth is 
relevant  since the  natural mode of improvement of the 
Los Alamos  program is to increase the speed enough to 
allow explorations three moves deep.  Furthermore,  at- 
tempts to  introduce selectivity in the Los Alamos pro- 
gram will be extremely costly relative to  the cost of 
additional selectivity in the Bernstein  program. 

One  more calculation  might be useful to emphasize  the 
value of heuristics that eliminate  branches to be  explored. 
Suppose we had a branching tree in which our program 
was exploring n moves deep, and let this tree have  four 
branches at each  node. If we could  double the speed of 
the program-that is,  consider twice as many positions 
for  the  same  total effort-then this  improvement would 
let us look half a move  deeper (nf ?h ) . If, on  the  other 
hand, we could double  the selectivity-that is, only  con- 
sider two of the  four branches at  each  node,  then we 
could look twice as  deep ( 2 n ) .  It is clear that we could 
afford to  pay  an  apparently  high computing cost per 
position to achieve this selectivity. 

To summarize, Bernstein’s program introduces both 
sophistication and complication to  the chess program. 
Although  in some respects-e.g., depth of  analysis-it 
still uses simple uniform rules, in selecting moves to be 
considered it introduces a set of powerful heuristics which 
are  taken  from successful chess practice, and drastically 
reduce the  number of moves considered  at  each position. 

Newell, Shaw, and Simon Program 

Although  our own work  on chess started in 1955,6 it 
took a  prolonged  vacation during a  period in which we 
were developing programs  that discover proofs for the- 
orems  in  symbolic logic.8,10 In a fundamental sense, 
proving theorems and playing chess involve the  same 
problem: reasoning  with  heuristics that select fruitful 
paths of exploration  in  a  space of possibilities that grows 
exponentially. The  same dilemmas of speed versus selec- 
tion and uniformity versus sophistication exist in both 
problem  domains. Likewise, the programming costs at- 
tendant  upon complexity seem similar for  both. So we 
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Figure 3 Basic organization of NSS chess program. 

have  recently returned  to  the chess programming  prob- 
lem equipped with ideas derived from  the work on logic. 

The historical  antecedents of our own work  are sorne- 
what different from those of the  other investigators we 
have  mentioned.  We  have been primarily  concerned with 
describing and understanding human thinking and deci- 
sion proces~es .~  However, both  for chess players and  for 
chess programmers,  the  structure of the task dictates in 
considerable part  the  approach taken, and  our  current 
program can be described in the  same terms we have 
used for  the others.  Most of the positive features of the 
earlier  programs are clearly  discernible: The basic fac- 
torization  introduced by Shannon; Turing’s concept of a 
dead position; and  the move generators, associated with 
features of the chess situation, used by Bernstein. Per- 
haps the only common characteristic of the  other  pro- 
grams  that is strikingly  absent from  ours - and  from 
human thinking also, we believe-is the use of numerical 
additive  evaluation  functions to  compare alternatives. 

Basic  organization 

Figure 3 shows the two-way classification in terms of 
which the program is organized. There is a  set of goals. 
each of which corresponds to some feature of the chess 
situation-King safety,  material  balance,  center control. 
and so on.  Each goal has associated with it a  collection of 
processes, corresponding to  the categories  outlined by 
Shannon: a move generator, a  static  evaluation  routine. 
and a  move  generator for analysis. The  routine for inte- 
grating  the  static  evaluations  into an effective value for a 
proposed move, and  the final choice  procedure arc both 
common  routines for the whole program,  and  therefore 
are not  present  in each  separate component. 

Goals 

The goals form a basic set of modules  out of which the 
program is constructed. The goals are  independent: any 
of them  can be added  to  the  program  or removed  without 
affecting the feasibility of the  remaining goals. At the 
beginning of each  move  a  preliminary analysis estab- 
lishes that a given chess situation (a  “state”)  obtains,  and 
this chess situation evokes a  set of goals appropriate  to it. 
The goal specification routines  shown for each goal in 
Fig. 3 provide  information  that is used in this initial 
selection of goals. The goals are put on a list with the 
most crucial  ones first. This goal list then  controls the 

remainder of the processing: the selection of alternatives, 
the continuations to be explored, the  static evaluation, 
and  the final choice  procedure. 

What kind of game  the program will play clearly de- 
pends on what goals are available to it and chosen by it 
for  any  particular move. One purpose of this modular 
construction is to provide flexibility over the course of 
the  game  in the kinds of considerations the program 
spends its effort upon. For example, the goal of denying 
stalemate to the opponent is relevant  only in  certain  end- 
game  situations  where the  opponent is on  the defensive 
and  the King is in a constrained position. Another  pur- 
pose of the modular construction is to give us a flexible 
tool for investigating chess programs-so that entirely 
new considerations  can be added  to  an already  complex 
but operational  program. 

0 Move generation 

The move  generator associated with each goal proposes 
alternative moves relevant to  that goal. These move gen- 
erators  carry  the burden of finding positive reasons for 
doing  things. Thus, only the center-control  generator will 
propose P-Q4 as a good move  in  the  opening;  only the 
material-balance generator will propose moving out of 
danger  a piece that is en prise. These  move  generators 
correspond  to  the move  generators in Bernstein’s pro- 
gram, except that  here they are used exclusively to gener- 
ate  alternative moves and  are  not used to generate the 
continuations that  arc explored in the course of analyzing 
a move. In Bernstein’s program-and a fortiori in the 
Los Alamos program-identical generators arc used both 
to find a  set of alternative moves from which  the final 
choice of next move is made,  and also to find the contin- 
uations that must be explored to assess the consequences 
of reaching  a given position. In  our  program  the  latter 
function is performed by a separate set of analysis 
generators. 

0 Evaluation 

Each move  proposed by a move  generator is assigned a 
value by an analysis procedure. We  said  above that  the 
move generators  have the responsibility for finding posi- 
tive reasons for making moves. Correspondingly, the 
analysis procedure is concerned  only  with the accepta- 
bility of a  move once it has been generated. A generator 
proposes; the analysis procedure disposes. 327 
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The value assigned to a  move is obtained from a series 
of evaluations, one  for  each goal. The value is a  vector, 
if you like to think of it that way,  except that  it does not 
necessarily have the same  components throughout  the 
chess game, since the components  derive from  the basic 
list of goals that is constructed  from  the position at  the 
beginning of each move. Each  component expresses ac- 
ceptability or unacceptability of a  position from  the 
viewpoint of the goal corresponding to  that component. 
Thus,  the material-balance  goal would assess only the 
loss or gain of material; the development goal, the rela- 
tive  gain or loss of tempi; the  Pawn  structure goal, the 
doubling and isolation of Pawns; and so on. The value for 
a component is in  some cases a number-e.g., in the 
material-balance goal where we use conventional piece 
values: 9 for a  Queen, 5 for a Rook,  and so on.  In  other 
cases the  component value is dichotomous, simply desig- 
nating the presence or absence of some property, like the 
blocking of a  move or  the doubling of a Pawn. 

As in the  other chess programs, our analysis procedure 
consists of three  parts: exploring  continuations to  some 
depth,  forming static  evaluations, and integrating  these to 
establish an effective value for  the move. By a process 
that we will describe  later, the analysis move  generators 
associated with the goals determine what  branches will 
be explored from  each position  reached. At  the final 
position of each  continuation, a  value is assigned using 
the static  evaluation  routines of each goal to provide the 
component values. The effective value for a  proposed 
move is obtained by minimaxing on these final static 
values. Minimaxing seems especially appropriate  for  an 
analysis procedure  that is inherently  conservative, such 
as an acceptance test. 

To be able  to minimax, it must be possible to  compare 
any two values and decide  which is preferable, or whether 
they are equal  in value. For values of the kind we are 
using, there must be a  complete  ordering on  the vectors 
that determine  them. Further, this ordering  must allow 
variation in  the size and composition of the goal list. We 
use a  lexicographic ordering:  Each  component value is 
completely ordered within itself; and higher  priority 
values completely dominate lower priority values, as  de- 
termined by the  order of goals on  the goal list. To com- 
pare two values, then,  the first components are  compared. 
If one of these is preferable to  the  other, this  determines 
the preference for  the  entire value. If the two  components 
are equal,  then the second pair of components is com- 
pared. If these are  unequal in value,  they  determine the 
preference for  the  entire value,  otherwise the next com- 
ponents are  compared,  and so on. 

Final choice 
It is still necessary to select the move to be  played from 
the alternative moves, given the values assigned to them 
by the analysis procedure. In  the  other programs the final 
choice procedure was simply an extension of the mini- 
max: choose the  one with highest value. Its obviousness 
rests on  the assumption that  the set of alternatives to be 
considered is a fixed set. If this assumption is relaxed, by 
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generating  alternatives  sequentially, then  other proce- 
dures  are possible. The simplest, and  the  one we are 
currently using, is to set an acceptance level as final 
criterion and simply take  the first acceptable move. The 
executive routine proceeds  down the goal list, activating 
the move  generators of the goals in order of priority, SO 

that  important moves are considered first. The executive 
saves the best move that  has been found up to  any given 
moment,  and if no moves reach  the specified level of 
acceptability, it makes the best move that was found. 

Another possible final choice procedure is to  search  for 
an acceptable  move that  has a  double function-that is, 
a  move that is proposed by more  than  one  generator as 
having  a positive effect. With this  plan, the executive 
proceeds  down the list of goals in  order of priority. After 
finding an acceptable  move, it activates the rest of the 
generators to see if the move will be proposed  a  second 
time. If not,  it works from  the list of unevaluated moves 
just obtained to see if any  move  proposed twice is accept- 
able. If not,  it takes the first acceptable  move or  the best 
if none  has proved  acceptable. This type of executive  has 
considerable plausibility, since the concept of multiple- 
function plays an  important role in the chess literature. 

Yet a third variation  in the final choice procedure is 
to divide the goals into two lists. The first list contains all 
the  features  that should  normally  be attended to; the 
second list contains features  that  are  rare  in  occurrence 
but  either very good or very  bad if they do occur. On 
this  second list would  be goals that relate to sacrificial 
combinations,  hidden forks or pins that  are two moves 
away, and so on.  The executive finds an acceptable move 
with the first, normal list. Then  the rest of the available 
time is spent  looking for various rare consequences de- 
rived from  the second list. 

Analysis 

In describing the basic organization of  the  program we 
skipped  over the detailed  mechanism for exploring  con- 
tinuations, simply assuming that certain  continuations 
were  explored, the static values computed,  and the effec- 
tive  value  obtained by minimaxing. But it is clear that  the 
exact  mechanisms are very important.  The analysis move 
generators are  the main  agents of selectivity in the  pro- 
gram:  They  determine  for  each position arrived at in the 
analysis just which further branches  must  be  explored, 
hence the average number of branches in the exploration 
tree  and its average  depth. The move  generators for  the 
alternatives and  the final choice procedure also affect the 
amount of exploration by determining what moves are 
considered. But their selection operates  only once per 
move,  whereas the selectivity of the analysis generators 
operates at  each step (half-move) of the exploration. 
Hence  the selectivity of the analysis generators varies 
geometrically  with the average depth of analysis. 

The exploration of continuations is based on a  generali- 
zation of Turing’s concept of a  dead position. Recall that 
Turing applied this  notion to exchanges,  arguing that it 
made  no sense to count material on  the board  until all 
exchanges that were to  take place  had been carried out. 
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Figure 4 Analysis. 

We apply the  same notion to  each  feature of the  board: 
The  static evaluation of a goal is meaningful  only if the 
position being evaluated is “dead” with  respect to the 
feature associated with that goal - that is, only if no 
moves are likely to be made  that could  radically  alter that 
component static  value. The analysis-move generators 
for  each goal determine for any  position they are applied 
to whether the position is dead  with  respect to their goal; 
if  not, they  generate the moves that  are  both plausible 
and might seriously affect the static  value of the goal. 
Thus  the selection of continuations to be explored is dic- 
tated by the  search  for a position that is dead  with  respect 
to all the goals, so that, finally, a  static  evaluation can be 
made. Both the  number of branches  from  each position 
and  the  depth of the exploration are controlled in this 
way. Placid  situations will produce  search trees  contain- 
ing only  a handful of positions;  complicated  middle  game 
situations will produce  much larger  ones. 

To make  the mechanics of the analysis clearer, Fig. 4 
gives a  schematic  example of a  situation. PO is the initial 
position from which  White, the machine, must  make a 
move. The  arrow, N, leading to P I  represents an alterna- 
tive  proposed by some  move  generator. The move is made 
internally (i.e., “considered”), yielding position PI, and 
the analysis procedure must then  obtain  the value of PI, 
which will become the value imputed to  the proposed 
alternative, a. Taking  each goal from  the goal list in turn, 
an  attempt  is  made  to  produce a  static  evaluation. For 
PI this attempt is successful for  the first and second  com- 
ponents, yielding values of 5 and 3 respectively. (Num- 
bers are used for values throughout this  example to keep 
the  picture simple;  in  reality,  various sets of ordered sym- 
bols are used, their exact structure depending on  the 
nature of the  computation.) However, the  third  compo- 
nent does  not find the position dead,  and generates two 
moves, p and y. The first, p, is considered,  leading to P2,  
and  an  attempt is made  to  produce a static evaluation of 
it. This proceeds  just as with PI, except that this  time all 
components find the position dead and  the static value 

static value for p:i runs into difficulties with the first com- 
ponent, which  generates one move, 8, to resolve the in- 
stability of P:j with  respect to its feature.  This move  leads 
to P4 which is evaluable,  having the value ( 2 ,  8, 1) .  How- 
ever, the second component also finds P? not dead and 
generates  a single move, E ,  leading to P g .  This is also 
evaluable,  having the value (4, 7, 3 ) .  The  third  compo- 
nent finds Ps dead and  therefore contributes no additional 
moves. Thus  the exploration  comes to  an  end with all 
terminal positions yielding complete  static values. Since 
it is White’s move at P3, White will choose the move with 
the highest value. This is E ,  the move to Pg, with a value 
of (4, 7, 3) (the first component  dominates).  The value 
of this move is the effective value assigned to P:+ Black 
now has a  choice between the move, p, to Par yielding 
(4, 3, 1) and  the move, 7, to P3, yielding (4, 7, 3).  Since 
Black is minimizing, he will choose /3. This yields (4, 3, 
1) as  the effective value of the alternative, 01, that leads to 
PI, and  the end of the analysis. 

The minimaxing operation  is conducted  concurrently 
with the generation of branches. Thus if Pg, which has a 
value of (4, 7, 3) ,  had been generated prior  to PS no 
further moves would have  been  generated from Pa, since 
it is already apparent  that Black will prefer P2 to Ps. The 
value of P y  is at least  as great as the value of Pj ,  since it 
is White’s move and  he will maximize. 

This analysis procedure is not a simple one,  either  con- 
ceptually or technically. There  are a number of possible 
ways to  terminate  search  and  reach  an effective evalua- 
tion. There is no built-in rule  that guarantees that  the 
search will converge; the success depends heavily on 
the ability to evaluate  statically. The  more  numerous  the 
situations that can  be  recognized as having  a  certain  value 
without  having to generate  continuations, the  more  rap- 
idly the search will terminate. The  number of plausible 
moves that affect the value is also of consequence,  as we 
discussed in connection with Bernstein’s program, but 
there  are limits  beyond  which  this cannot be  reduced. For 
example,  suppose that a  position is not  dead with respect 
to  Material Balance and  that  one of the machine’s pieces 
is attacked. Then  it  can  try  to  (a) take the  attacker, 
(b) add a  defender, (c) move the  attacked piece, (d) pin 
the  defender,  (e) interpose  a man between the  attacker 
and  the  attacked,  or  (f)  launch a  counter-attack.  Alterna- 
tives of each of these  types must be  sought  and tried- 
they are all plausible and may  radically affect the  mate- 
rial  balance. 

As an example of the heuristics involved in achieving 
a  static  evaluation,  imagine that  the  above situation  oc- 
curred  after several  moves of an exploration, and  that 
the  machine was already  a Pawn  down  from  the early 
part of the continuation. Then, being on  the defensive 
implies a very remote  chance of recovering the  Pawn. 
Consequently,  a  negative  value of at least a Pawn  can be 
assigned to  the position  statically. This is usually enough 
in  connection  with concurrent minimaxing to eliminate 
the continuation from  further consideration. 329 
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0 Summary 

Let us summarize  our  entire  program.  It is organized  in 
terms of a  set of goals: these are conceptual  units of chess 
-King safety, passed Pawns, and so on.  Each goal has 
several  routines  associated  with it: 
1. A routine  that specifies the goal in terms of the given 

position; 
2. A  move  generator that finds moves positively related 

to carrying  out  the goal; 
3. A  procedure for making a static evaluation of any 

position  with  respect to the goal, which essentially 
measures  acceptability; 

4. An analysis move  generator that finds the continua- 
tions required  to resolve a  situation into dead positions. 

The alternative  moves come  from  the move  generators, 
considered in  the  order of priority of their respective 
goals. Each move,  when it is generated, is subjected to 
an analysis. This analysis generates an exploration of the 
continuations following from  the move  until  dead posi- 
tions are reached and  static evaluations computed  for 
them. The static  evaluations are  compared, using mini- 
max  as  an inference procedure, so that  an effective value 
is eventually produced  for  each alternative. The final 
choice procedure  can  rest  on any of several  criteria: for 
instance,  choosing the first move  generated that  has  an 
effective value  greater than a given norm. 

Examples of goals 

In  this  section we will give two  examples of goals and 
their various  components to illustrate the type of program 
we are constructing. The first example is the center-con- 
trol goal: 

Center control 

Specification 
Goal is always  operative  unless  there are no  more  center 
Pawns to be  moved to the fourth rank. 

Move generator 
1. Move P-Q4, P-K4 (primary moves). 
2. Prevent the opponent from making  his primary moves. 
3. Prepare your own primary  moves: 

a)  Add a defender  to Q4 or K4 square. 
b) Eliminate a block to moving  QP or KP. 

Static  evaluation 
Count the  number of blocks  to  making  the  primary  moves. 
Analysis move generators 
None; static evaluation is always  possible. 

To interpret this a  little: Goals  are proposed in  terms of 
the general situation-e.g., for  the opening game. The 
list of goals is made  up  for a  position  by  applying, in turn, 
the specification of each of the potential goals. Whether 
any particular goal is declared  relevant or irrelevant to 
the position  depends on whether or not  the position  meets 
its specification. For  Center  Control,  no special informa- 
tion need be gathered, but  the goal is declared  irrelevant 
if the center Pawns  have already  been  moved to  the 
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The most important  part of the center-control program 
is its move  generator. The  generator is concerned  with 
two primary moves:  P-Q4 and  P-K4.  It will propose these 
moves, if they are legal, and  it is the responsibility of the 
analysis procedures (for all the goals) to reject the moves 
if there is anything  wrong  with them-e.g.,  if the  Pawns 
will be  taken when moved. So, after 1. P-Q4, P-Q4, the 
center-control  move  generator will propose 2.  P-K4, but 
(as we shall  see)  the evaluation routine of the material 
balance  goal will reject  this  move  because of the loss of 
material  that would result from 2. . . . , PxP.  The center- 
control generator will have nothing to  do with tracing  out 
these  consequences. 

If the primary  moves cannot be made,  the center-con- 
trol move generator  has two choices: to  prepare  them,  or 
to prevent the  opponent  from  making his primary moves. 
The program’s  style of play will depend  very much  on 
whether  prevention has priority  over preparation  (as it 
does  in our description of the  generator  above),  or vice 
versa. The  ordering we have proposed, which puts  pre- 
vention first, probably  produces more aggressive and 
slightly better  opening  play than  the reverse ordering. 
Similarly,  the  style of play  depends  on  whether  the 
Queen’s Pawn  or  the King’s Pawn is considered first. 

The move generator  approaches  the subgoal of pre- 
venting the opponent’s primary moves (whenever this 
subgoal is evoked) in the following way. It first deter- 
mines whether the  opponent  can  make  one of these moves 
by trying the move and  then obtaining an evaluation of 
it  from  the opponent’s viewpoint. If one or both of the 
primary moves are  not rejected,  preventive  moves will 
serve  some  purpose. Under these  conditions, the center- 
control move  generator will generate them by finding 
moves that bring another  attacker  to bear on  the  oppo- 
nent’s K4  and  Q4 squares or that pin a defender of one 
of these squares. Among  the moves  this generator will 
normally  propose are N-B3 and BP-B4. 

The move generator  approaches  the subgoal of pre- 
paring  its  own primary moves by first determining why 
the moves cannot be made without preparation-that is, 
whether the Pawn is blocked from moving by a  friendly 
piece, or whether the  fourth  rank  square is unsafe  for 
the  Pawn.  In  the  former case, the generator  proposes 
moves for  the blocking piece; in the  latter case, it finds 
moves that will add defenders to  the  fourth  rank  square, 
drive  away or pin attackers,  and so on. 

So much  for  the center-control  move  generators. The 
task of the evaluation routine  for  the center-control goal 
is essentially negative-to assure that moves, proposed 
by some other goal, will not be made  that jeopardize 
control of the  center.  The possibility is simply ignored 
that a  move generator  for some other goal will inadvert- 
ently  provide  a  move that contributes to  center control. 
Hence,  the  static evaluation for  Center  Control is only 
concerned that moves not be made  that  interfere with 
P-K4  and P-Q4. A  typical  example of a move that  the 
center-control  evaluation routine is prepared  to reject is 
B-Q3 or B-K3 before  the respective center Pawns  have 
been moved. 



The second  example of a goal is Material Balance. This 
is a much  more extensive and complicated goal than Cen- 
ter  Control, and  handles all questions  about gain and loss 
of material in the immediate  situation. It does not con- 
sider threats like pins and  forks, where the  actual ex- 
change is still a move  away; other goals must  take care 
of these. Both the negative and positive aspects of mate- 
rial must be included  in  a single goal, since they com- 
pensate directly for  each  other,  and material  must often 
be spent to gain material. 

Material balance 

Specification 
A list of exchanges  on  squares  occupied  by  own men, and a 
list of exchanges  on  squares  occupied by opponent’s  men. For 
each  exchange  square  there is  listed  the target  man,  the  list of 
attackers, and the  list of defenders (including, e.g.,  both  Rooks 
if they are doubled  on  the appropriate rank or file). For each 
exchange  square a static exchange  value  is  computed by play- 
ing  out  the  exchange  with  all the attackers and  defenders 
assuming  no  indirect  consequences  like  pins,  discovered at- 
tacks,  etc.  Exchange  squares are listed  in order of static 
exchange  value,  largest  negative  value  first.  Squares  with  posi- 
tive  values for the  defender  are  dropped  from  the  list.  At  the 
same  time a list of all pinned men  is generated. 

Move generator 

Starting with  the  exchange squares  at the top of the  list, appro- 
priate moves are generated. If the  most important exchange 
square is occupied  by the opponent,  captures by attacking 
pieces are proposed, the least  valuable attacker being  tried 
first. If the move  is rejected  because  the attacker is pinned, 
the next attacker is tried. If  the  move  is  rejected for another 
reason, the  possibility of exchange  on  this  square  is aban- 
doned,  and  the  next  exchange  square  examined. 

If the  exchange square under  examination is occupied  by 
the  program’s own  piece, a whole  series  of  possible  moves  is 
generated: 

a)  Try “no move”  to  see if attack is damaging. 
b)  Capture the attacker. 
c) Add a defender  not  employed  in another defense. 
d )  Move the  attacked  piece. 
e )  Interpose a man  between  the attacker and the target; 

but  not a man  employed  elsewhere,  and  not if the inter- 
poser will be captured. 

f )  Pin the attacker with a man  not  employed  elsewhere 
and not capturable by the attacker. 

Static  evaluation 
For each  exchange square, add the values of  own  men  and 
subtract the values of opponent’s  men.  Use  conventional 
values: Q-9, R-5, B-N-3, P-1. 

Move generators  toward  dead  positions 
A position is dead for this  goal only if there are no  exchanges 
-that  is, if the  specification  list  defined  above  is  empty.  Then 
a static evaluation  can be made.  Otherwise, the various  kinds 
of moves  defined  under  the  move generator are made  to  re- 
solve  the  exchanges.  However,  various  additional  qualifica- 
tions are introduced to reduce the number of continuations 
examined. For example, if in a particular exchange  material 
has  already been lost  and a man  is  still  under attack, the 
position is treated as dead, since  it  is unlikely that the loss 
will  be recovered. When a dead  position is reached,  the static 
evaluation is  used to find a value for the  position. 

It is impossible to provide  here more  than a  sketchy pic- 
ture of the heuristics  contained in this one goal. It should 

be obvious from this brief description that  there  are a 
lot of them, and  that they incorporate a number of im- 
plicit assumptions about  what is important,  and  what 
isn’t, on  the chess board. 

a Performance of the  program 

We cannot say very much  about  the behavior of the  pro- 
gram.  It was coded  this spring  and is not yet  fully 
debugged. Only  two goals have been coded: Material 
Balance and  Center  Control. Development is fully  de- 
fined as well as a Pawn  structure goal sufficient for  the 
opening, where its role is primarily to prevent  undesirable 
structures like doubled  Pawns.  These four goals-Mate- 
rial  Balance, Center  Control, Development and Pawn 
Structure-in this order seem an  appropriate set for  the 
first phase of the opening game. Several others-King 
safety,  Serious Threats,  and Gambits-need to be  added 
for full  opening play. The serious threats goal could be 
limited initially to  forks  and pins. 

We  have  done considerable hand simulation  with the 
program  in  typical positions. Two examples will show 
how the goals interact. In  Fig. 5 the  machine is White 
and  the play has been 1. P-K4, P-K4.  Assuming the goal 
list mentioned  above, the  material  balance move  gener- 
ator will not propose any moves  since there  are  no ex- 
changes on  the  board.  The center-control  generator will 
propose  P-Q4,  which is the circled move  in the figure. 
(In  the illustration, we assume the center-control  move 
generator has  the  order of the  primary moves reversed 
from  the  order described earlier.)  This move is rejected 
-as it should be-and it is instructive to see why. The 
move is proposed for analysis. Material Balance  does not 
find the position dead, since there is an exchange, and 
generates Black‘s move, 2.  . . . . , PxP. The resulting posi- 
tion is still not  dead,  and 3. QxP, is generated. The posi- 
tion is now dead for  Material Balance,  with no gain or 
loss in  material. The first component of the  static evalua- 
tion is “even.” There  are obviously no blocks to  Pawn 
moves, so that  the  center  control  static value is accept- 
able.  However, the  third  component, Development, finds 
the position not dead  because there is now an exposed 
piece, the Queen. It generates replies that  both  attack  the 
piece and develop-i.e., add a  tempo. The move 3. . . . . , 
N-QB3 is generated. This forces a Queen move,  resulting 
in loss of a tempo  for White. Hence Development  rejects 
the move, 2. P-Q4. (The move 3. . . . . , B-B4 would not 
have sufficed for rejection by Development,  since the 
Bishop could  be taken.) 

The second  example,  shown  in Fig. 6, is from a famous 
game of Morphy against Duke  Karl of Brunswick and 
Count  Isouard. Play had proceeded 1. P-K4,  P-K4; 
2. N-KB3, P-Q3; 3. P-Q4.  Suppose the  machine is Black 
in this position. The move 3. . . . , B-N5 is proposed by 
Material Balance to deal  with the exchange that threatens 
Black with the loss of a Pawn.  This is the move made by 
the  Duke  and  Count.  The analysis proceeds by 4. PxP, 
PxP.  This opens up a new exchange possibility with the 
Queens,  which is tried: 5. QxQ,  KxQ; 6. NxP.  Thus  the 
Pawn is lost in this continuation. Hence, alternative moves 33 1 
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are considered at Black's nearest option, which is move 4, 
since there  are  no alternative ways of recapturing  the 
Queen at move 5. The  capture of White's Knight is pos- 
sible, so we get: 4'. . . . , BxN; 5'. PxB, PxP; 6 .  QxQ, 
KxQ. This position is rejected by Development since the 
forced  King move loses Black his castling privilege, and 
this loss affects the tempo count. This is a sufficient reason 
to reject the move 3. . . . , B-N5,  without even examining 
the stronger continuation, 5". QxB, that  Morphy as White 
chose.  In  our  program, 5 .  PxB  is  generated  before 
5. QxB. Either reply shows that 3. . . . , B-N5 is unsound. 

Figure 5 

One purpose of these examples is to illustrate  a  heu- 
ristic for constructing chess programs  that we incline to 
rather strongly. We wish not  only to  have  the program 
make good moves, but  to  do so for  the right  reasons. The 
chess commentary above is not untypical of human analy- 
sis. It also represents rather closely the analysis made by 
the  program. We think this is sound design philosophy in 
constructing  complex programs. To take another exam- 
ple: the four-goal  opening program will not make sacri- 
fices, and conversely, will always accept gambits. The 
existing program is unable to  balance material against 
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positional  advantage. The way to  make the  program  take 
account of sacrifices is to introduce an additional goal 
having to  do with them explicitly. The corresponding 
heuristic for a human chess player  is: don’t make sacri- 
fices until  you understand what a sacrifice is. Stated  in 
still another way, part of the success of human play  de- 
pends on  the emergence of appropriate concepts.  One 
major  theme in chess history, for example, is the  emer- 
gence of the concept of the center  and the notion of what 
it means  to  control  the center.  One  should not expect the 
equivalent of such a  concept simply to emerge from 

Figure 6 

computation based on quite other  features of the position. 

Programming 

The  program we have been describing is extremely com- 
plicated.  Almost all elements of the original framework 
put forward by Shannon, which were handled initially by 
simply uniform  rules, have been made variable,  and  de- 
pendent on  rather complicated  considerations.  Many  spe- 
cial and highly particular heuristics are used to select 
moves and decide on evaluations. The  program  can be 
expected to be much  larger,  more intricate, and  to require 
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much  more processing  per  position  considered than even 
the Bernstein program. 

In  the  introduction  to this paper we remarked  on the 
close connection  between  complexity and  communica- 
tion.  Processes as complex as the  Los Alamos program 
are  unthinkable without  languages like current machine 
codes in which to specify them. The Bernstein program is 
already  a  very  complicated program in machine  code; 
it involved a great  deal of coding effort and  parts of it 
required very  sophisticated  coding  techniques. Our own 
program is already  beyond the  reach of direct  machine 
coding: It requires  a more powerful  language. 

In connection  with the  work  on theorem-proving pro- 
grams we have been  developing a series of languages, 
called information processing  languages (IPL’s) .? The 
current chess program is coded  in one of them,  IPL-IV. 
An  information processing  language is an interpretive 
pseudo-code-that is, there exists a program in JOHN- 
NIAC  machine  code  that is capable of interpreting a 
program  in  IPL  and  executing  it.   When  operating, 
JOHNNIAC contains both  the machine  code and  the 
IPL code. 

It is not possible to give in  this paper a description of 
IPL-IV  or of the  programming techniques involved in 
constructing the chess program. Basically IPL is designed 
to  manipulate lists, and  to allow  extremely  complicated 
structures of lists to be  built up  during  the execution of 
a program  without  incurring intolerable  problems of 
memory assignment and  program planning. It allows un- 
limited  hierarchies of sub-routines to be easily defined, 
and permits  recursive definition of routines. As it stands 
-that is, prior  to coding a particular problem-it  is inde- 
pendent of subject matter  (although biased towards list 
manipulation in the  same sense that algebraic  compilers 
are biased towards  numerical  evaluation of algebraic ex- 
pressions). To code chess, a  complete “chess vocabulary” 
is built up  from definitions in IPL. This  vocabulary  con- 
sists of a  set of processes for expressing basic concepts 
in chess: tests of whether a man bears on  another  man, 
or whether two  men  are  on  the  same diagonal; processes 
for finding the direction  between two men, or  the first man 
in  a given direction from  another;  and processes that ex- 
press iterations  over  all  men of a given type, or over all 
squares of a given rank.  There  are  about  100 terms  in this 
basic process  vocabulary. The final chess program, as we 
have been  describing it in  this paper, is largely coded  in 
terms of the chess vocabulary. Thus there are  four lan- 
guage “levels” in  the chess program:  JOHNNIAC ma- 
chine  code,  general IPL, basic chess vocabulary, and 
finally the chess program itself. 

We  can now make a rough assessment of the size and 
complexity of this program  in comparison  with the  other 
programs. The table  indicates that  the  program now con- 
sists of 6000 words and will probably  increase to 16,000. 
The  upper  bound is dictated by the size of the  JOHN- 
NIAC  drum  and the fact  that  JOHNNIAC  has  no tapes. 
In  terms of the pyramiding structure described  above, 
this program is already much larger than Bernstein’s, 
although it is difficult to estimate the “expansion” factor 
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involved in  converting IPL  to  machine code. (For  one 
thing, it is not clear how an “equivalent” machine coded 
program would be  organized.)  However,  only about  1000 
words of our  program  are in machine code, and 3000 
words are  IPL programs,  some of which are as many as 
ten definitional steps  removed from machine  code. Fur- 
ther, all 12,000 words on  the  drum will be IPL  program; 
no  additional  data  or  machine  code  are planned. 

The estimated  time per move, as shown in  Table 1, 
is from  one  to  ten  hours,  although moves in  very placid 
situations like the opening will take only  a  few  minutes. 
Even taking into  account  the difference in  speed between 
the  704  and  JOHNNIAC,  our  program still appears  to be 
at least ten times slower than Bernstein’s. This  gap reflects 
partly  the mismatch between current  computers  and  com- 
puters constructed  to  do efficiently the kind of informa- 
tion processing required in chess.12 To use an interpretive 
code,  such as IPL, is in essence to simulate an  “IPL com- 
puter” with  a current  computer. A  large  price has  to be 
paid in computing effort for this  simulation  over and 
above the computing effort for  the chess program itself. 
However,  this  gap also reflects the difficulty of specifying 
complex processes; we have  not been  able to write these 
programs  and  attend closely to  the efficiency issue at  the 
same time. 

On  both  counts we have  felt  it  important  to explore the 
kind of languages and  programming techniques appro- 
priate  to  the task of specifying complex  programs, and 
to ignore for  the time being the costs we were incurring. 

Conclusion 

We  have now completed our survey of attempts  to  pro- 
gram  computers  to play chess. There is clearly evident  in 
this succession of efforts a steady  development toward  the 
use of more  and  more complex programs  and  more and 
more selective heuristics; and  toward  the use of princi- 
ples of play  similar to those used by human players. 
Partly, this trend represents-at least in our case-a 
deliberate attempt  to simulate human  thought processes. 
In even larger part, however, it reflects the constraints 
that  the task itself imposes upon any information process- 
ing  system that  undertakes  to  perform it. We believe that 
any information processing system-a human, a com- 
puter,  or  any other-that plays chess successfully will use 
heuristics generically similar to those used by humans. 

We are  not  unmindful of the radical differences be- 
tween  men and machines at  the level of componentry. 
Rather, we are  arguing  that  for tasks that could  not be 
performed  at all without very  great selectivity-and chess 
is certainly one of these-the main goal of the  program 
must  be to achieve  this selection. The higher-level pro- 
grams involved in  accomplishing this will look very much 
the  same whatever processes are going on  at  more micro- 
scopic levels. Nor  are we saying that programs will not be 
adapted  to  the powerful features of the computing sys- 
tems that  are used-e.g., the high speed and precision of 
current digital computers, which seems to  favor exploring 
substantial numbers of continuations.  However,  none of 
the differences known  to us-in speed, memory,  and so 



on-affect the essential nature of the task: search in a 
space of exponentially growing possibilities. Hence  the 
adaptations  to  the idiosyncrasies of particular  computers 
will all be  secondary  in importance,  although they will 
certainly exist and  may be worth while. 

The complexity of heuristic programs requires  a more 
powerful  language for communicating with the  computer 
than  the language of elementary  machine  instructions. 
We  have seen that this necessity has already mothered 
the creation of new information processing languages. 
But even with  these  powerful  interpretive  languages, 
communication  with the  machine is difficult and  cumber- 
some. The next  step that must  be taken is to write pro- 
grams  that will give computers a problem-solving ability 

in understanding  and interpreting  instructions that is 
commensurable  with  their  problem-solving ability in 
playing chess and proving  theorems. 

The  interpreter  that will transform  the  machine  into  an 
adequate  student  for a human  instructor will not be  a 
passive, algorithmic  translator - as even the most  ad- 
vanced interpreters  and compilers are  today - but  an 
active, complex,  heuristic  problem-solving program. As 
our explorations of heuristic programs  for chess playing 
and  other tasks teach us how to build such  an  interpreter, 
they will at last  enable us to  make  the transition from  the 
low-level equilibrium at which man-machine  communi- 
cation now rests to  the high-level equilibrium that is cer- 
tainly  attainable. 
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