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Artificial Auditory Recognition in Telephony 

Abstract: Machines which  automatically recognize patterns from  a stream of acoustic  events, for  example  a 

spoken command, would have great utility  in both communications and  data processing. This paper reviews 

two applications of an elementary recognizer to the problem of actuating certain logical functions, and  indi- 

cates how more ambitious recognizers might be utilized. In this regard, the automatic measurement of a 

talker’s  voice pitch and voicing dynamics appears fundamental  to speech analysis, and hence to  many recog- 

nition schemes. Visual inspection of spectral data  taken from different speakers supports this contention. 

Segmentation of speech into discrete units suitable for recognition, including the possibility of overlapping 

elements, i s  discussed.  There i s  reason to expect that such  segments wil l  span several elementary speech 

sounds  (phonemes). To illustrate this approach, a set of rules i s  presented for associating visual spectral 

displays (sound spectrograms) with the perception evoked by the corresponding utterances. These rules are 

specifically tailored  for  a  limited  vocabulary consisting of ten spoken numbers, and were validated  by naive 

subjects who used them to identify the Utterances of 33 people. In a further experiment, spectrograms  of 

the same material from 14 talkers were simplified  by reducing them to  binary elements. It was  found  that 

master patterns for each  number, compiled from the ensemble of talkers, could identify the utterances with 

over 99% success.  These results emphasize a  ”diversity” approach to speech recognition which operates on 

relations between gross spectral features and does not depend exclusively on any one property. 
I 

I 

The difficulty of achieving efficient communication be- 
tween man  and his  machines has become  almost legend- 
ary  among communication scientists. The  root of the 
problem lies, in all  probability,  in the diverse nature of 
the sensory  mechanisms and logical organizations  in- 
volved. Human beings are  thought  to perceive informa- 
tion at a maximum  rate of about 40 bitdsecond, while 
machines can  take  in  data thousands of times faster. On 
the  other  hand,  the  human  memory is apparently  many 
times  larger than present machine memories. And  it 
appears  to be  organized in associative units, thereby re- 
lieving the access and indexing  problems. Even  more 
important is the ability of the  human observer to make 
meaningful  interpretations of patterns of events. Men 
are  adept  at  reading handwriting, understanding speech, 
identifying  musical instruments by their  sound, associat- 
ing two-dimensional  pictures  with their three-dimensional 
counterparts, tasks at which  machines are notoriously 
inept. Such abilities are  commonly described by the  term 
pattern  recognition or sensory Gestalt. It seems quite 
clear that  if machines  could perform like functions, man- 
machine communication would be  considerably aided. 

A corollary is that efficient man-machine coupling can 
lead to methods  for efficient vocal communication be- 
tween people. 

I will not attempt a definition of recognition. As a  poet 
once said when asked the “meaning” of one of his  poems, 
“A poem shouldn’t mean,  it should be.” Nonetheless, 
recognition  tasks have several  characteristics in common. 
Probably  the most  obvious is our colossal ignorance of 
how  recognition is performed  in  the nervous system. An- 
other  common  feature is that somehow both  human 
beings and  many animals are  able  to classify many di- 
verse  physical  stimuli into  the  same category, each cate- 
gory  probably  being  characterized not by fixed physical 
properties of stimuli but  rather by certain relations be- 
tween their parts. This  property  is certainly  manifest  in 
the case of auditory recognition,  which is my principal 
topic  in this  paper. The  same words  spoken  by a man 
and a woman differ drastically in  their acoustic content, 
but  the listener has little difficulty in establishing that they 
are  the  same words.  Clearly, there is some sort of per- 
ceptual  transformation taking  place. At the  periphery of 
the  nervous system, namely at  the  auditory nerve  endings 
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Figure I Echo production on a telephone circuit. 

in the  ear, these two disparate acoustic  disturbances  must 
excite different patterns of nervous activity. Somehow, 
farther along  in the  chain of events,  in the  brain, these 
patterns assume  some form of equivalence. In  fact,  once 
the two sets of words are recognized as being the same, 
there  must be a  similar close neural correspondence. In 
any case, the essence of recognition lies in  the perceptual 
realm. 

We  might  expect  problems of auditory recognition to 
crop  up  often in  telephony.  Speech is the  major traffic 
through  the telephone system - a system which has a 
logical as well as  a  transmission function  to  perform. 
In  the  early days of telephony,  people had to deal  only 
with other people. Switching and accounting  functions 
were accomplished  manually after voice or written in- 
structions. When  automatic switching was introduced, 
the customer was fortunately already  supplied  with  a 
finger which was pressed into use for signalling to  the 
deaf central office. Automatic message accounting,  as it 
exists in  today's  telephone  plant,  takes  advantage of the 
anatomy of the telephone  network  as well as the dialed 
information. But to  handle  the diversity of requirements 
inherent in today's communications business, people are 
still distributed throughout  the network.  Whenever one 
of these  people must  interact with the system, inefficiency 
and  errors  often result. These points of friction would be 
relieved by devices which could read  characters  or recog- 
nize the sounds of speech. 

In this context, it is not surprising that  some of the 
first modern  attempts  to  automatize speech  recognition 
were made in  conjunction  with  telephone  research.  I 
would like to  recount  for you two applications of a  very 
simple artificial recognizer and review the  rather  star- 
tling  results it has spawned. The implication is that 
machine recognition can  contribute  importantly  to effi- 
cient  vocal  communication  between people. Indeed  the 
so-called vocoder  principle,  as I will relate,  forms a ready 
vehicle for  the application of recognizers,  be  they ele- 
mentary  or sophisticated,  in voice communication. On 
the  elementary side, there  are  functions  such as the detec- 
tion of vocal  pitch and inflection. I will try  to  point  out 
the relevance of the pitch  detection  problem for com- 
munication. Automatic word recognition typifies a more 
ambitious class of problems. I will present the results of 

E R  

the two  studies in word  recognition which, though they 
were done some  years  ago, have never  been reported  in 
the literature. The philosophy guiding these  studies is 
illustrative of what we feel is a fruitful  approach to 
speech  recognition.  Finally, I will return to the pitch 
detection problem  and indicate why I believe it is funda- 
mental  to speech analysis and speech  recognition. 

The telephone subscriber's interaction with the tele- 
phone system is not limited to dialing his connection, 
speaking  occasionally to  an  operator,  and paying his bill. 
When he talks  over  a  long two-way circuit, often his 
voice is called upon  to  perform a  switching function. 
This  requirement arises because of an  unfavorable  inter- 
action  between the talker and  the circuit,  Fig. 1. A  long 
telephone  line,  comprising  a pair of wires in  each direc- 
tion and  terminated by a  hybrid or bridge,  tends to  pro- 
duce  an  echo when  a  person  speaks over it. The hybrid 
is intended to  couple  the directional  pairs to a  bilateral 
single pair,  at  the  same  time preventing any interaction 
between the directional  pairs. The hybrid  balance is not 
perfect, so for instance,  when the talker at  the right 
speaks  over the East-West pair,  the hybrid on  the left, 
in  addition to passing the direct  signal to  the listener, 
produces an  echo  on  the West-East  pair.  This echo 
appears  at  the talker's  own earphone.  The hybrid on  the 
right produces a  similar effect and eventually  a  second 
echo results. This effect might appear  not to be  a major 
one  from  the  standpoint of communication.  However, 
laboratory experiments have shown that if a person's 
voice is reproduced in his own ears  at a normal  hearing 
level and with a delay of a  few tens of milliseconds, his 
vocal  mechanics can be seriously interrupted. He tends to 
stutter  and becomes hesitant  in  speaking; some speakers 
are unable to  produce  any connected utterance  at all. 
The effect increases, up  to a  point,  with both time lag 
and  echo strength.  While  in  commercial service the  echo 
is always  greatly attenuated  in level, it  can still be annoy- 
ing if its  delay  time is long. One remedy for this  situation 
is merely to disconnect the  return line when the speaker 
is talking. This task can be carried  out by voice-operated 
switches known  as echo-suppressors.l These switches are 
arranged as  shown in Fig. 2.  When  the  party  at  the left 
talks, his receiving line is disconnected, and similarly for 
the  other  party. If both parties  talk, one of them "cap- 295 
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Figure 2 Voice-operated echo  suppressor  on a  telephone circuit. 

tures" the circuit,  locking the  other out.*  Which one 
depends upon  the time  sequence and strength of the two 
talk spurts. 

It is necessary for  an echo-suppressor to recognize 
when speech is being transmitted. It must  be  able to dis- 
criminate between  speech and  the variety of other noises 
which  might appear  on  the transmitting line. These in- 
clude electrical  disturbances picked up in the line or 
generated  in the system, as well as  environmental noise 
at  the speaker's  location. This  rather primitive  recogni- 
tion function requires that ail signals be classified into 
one of two  categories,  speech and nonspeech. Tradition- 
ally this discrimination has been accomplished on  the 
basis of power spectrum alone. Fortunately, electrical 
interference  and  room noises tend to be  either predom- 

*In modern  practice,  echo-suppressors  are  designed so that  an  absolute 
lockout is  never possible.  Rather  than  breaking  the  receiving  line com- 
pletely,  the available  gain  is apportioned  between  the  two  lines so as to 
give  one preference  over  the  other. 

Figure 3 Automatic threshold-controlled speech detectors. 

inantly low frequency or impulsive, and  can be suppressed 
to some  degree, at least, by filtering and smoothing. The 
echo-suppressor  recognizer therefore is merely a .thresh- 
old-operated detector preceded  by an  appropriate filter, as 
shown in  the  upper  part  of Fig. 3. The relative  frequency 
distribution of speech and noise dictates  a  pass-band of 
about 800-1600 cps  for  the filter. 

Of course, if the noise level on  the transmitting line 
is high, then  the switch  may err  and disconnect the lis- 
tener  from  an incoming message. Obviously, this is more 
likely to  occur if he is listening from a boiler factory  than 
from a  sound-treated office. The threshold-adjusting 
mechanism  shown  in the lower part of Fig. 3 can help 
this problem. This circuit derives the speech  volume 
envelope and examines its average decay rate. Typically 
the speech  envelope shows sharp peaks and valleys as the 
various sounds succeed one  another. By using the rapid 
decays  as  a  cue, the speech-detector can discriminate 
against any noise not showing  these "syllabic" envelope 
fluctuations. 
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Just  this same characteristic  has been used to realize a 
commercial-suppressor for use by classical-music fans.? 
This device discriminates between speech and music, 
allowing only the  latter access to  the listener’s loud- 
speaker.  Music  has  fast  attacks  but slow decays. 

The second  application of this rudimentary recognizer 
is in a switching system to take advantage of the one-way 
characteristic of conversations. Most people, especially 
men, are satisfied to listen while the other fellow is talk- 
ing, and we expect him to listen when we talk.  Indeed if 
there is a  switch-type  echo-suppressor on  the line, voice 
signals can travel  only one way at a  time even in the case 
of female conversationalists, and  the  other circuit is idle 
during half the conversation. In  modern communication 
systems there  are  often many  circuits in both directions, 
while the system as a whole  handles  many  conversations. 
Now clearly the probability of all the talkers at  one end 
speaking  simultaneously is quite  small. Thus,  there  are on 
the average free circuits  in both directions all the time. 
A sufficiently intelligent switching system at each termi- 
nal  might make use of these idle pairs for  further con- 
versations,  thereby  increasing the traffic capacity of the 
system. This  method of increasing  circuit  occupancy is 
known  as Time Assignment Speech Interpolation or 
simply TASI. Just how many additional  talkers can be 
accommodated  depends  upon several factors; (1) the 
number of independent circuits available in  each  direc- 
tion, (2) the  fraction of time that  each person is speaking 
(the speech activity),  and (3) the allowable “freeze-out” 
probability (the probability that a  talker will find all 
circuits  occupied when he starts  to  talk), which  in turn 
is related to the fraction of all talkers’ speech which will 
be frozen out. For instance, in the theoretical  limit of a 
large number of conventional  circuits  between  two  ter- 
minals, the  TASI gain is the reciprocal of the average 
talker  activity while the freeze-out  probability  approaches 
zero. 

Speech  detectors, one  on each input line, can provide 
the sensory input  to  TASI as indicated  in  Fig. 4. They  are 
able to sense who among  the potential  talkers is “active” 
and needs a circuit, and also when a  talker is inactive and 
can be disconnected. The  output of the speech-detector 
can be an on-off signal to  operate suitable logic in the 
switch  control. 

One possible logic provides that when a particular 
speech-detector  indicates the presence of speech on its 
line, the  programmed  TASI switch connects the line to a 
transmitting  circuit,  continuing to  operate  on incoming 
voices until all circuits have been filled, at which  time  a 
freeze-out occurs if another voice comes  in.  When  a  talk 
spurt terminates, the corresponding  line becomes available 
for another talker. At  the receiving terminal, the  auto- 
matic switching device  must  know  who is talking over 
which circuit, so as to connect each talker to  the  correct 
listener. These data might be passed as a  very short 
identification signal before  each  talk spurt, or alterna- 
tively over an auxiliary  channel  which  would  serve the 
entire bank of circuits. These signals can be generated 
automatically by the switch  control. 

Figure 4 Voice-operated logic. 

As you  can see, the speech-detector is the  heart of 
TASI; which, according to calculations,  might  multiply 
the  number of available  circuits by two or three times. 
This,  indeed,  represents  a rather substantial  dividend in 
efficient  communication  from a simple  device,  the 
threshold-operated  speech-detector. Thus, in  concept  at 
least, the utility of devices to  emulate  human sensory 
functions  seems firmly established. In  fact,  many of us 
feel that  one link in an ultimate  human-communication 
channel must be such a  recognizer. For example,  com- 
munication  between  people at a distance  might ideally be 
performed by a  man-recognizer  link at  the transmitter 
followed by a  functionally  inverse  link at  the receiver. 
The voice-coding philosophy  originated by H. W. Dudley 
incorporates just such  feature^.^ 

Dudley proposed  several devices, known  as  vocoders, 
whose recognizer-analyzers  might be likened  crudely to 
the  ear  and  brain of a  listener, and whose receiver-syn- 
thesizers might  be thought of as analog  vocal  tracts.  This 
thought is illustrated in Fig. 5. 

Ideally, such a  system  analyzes the talker’s voice, 
selecting from  it  certain perceptually important  features, 
transmitting a coded  description of these features  to  the 
receiver,  which then  reproduces  the talker’s utterance. It 
is as though a man were separated  from his vocal tract by 
some  advanced  medical  technique, and  the nerves  con- 
trolling the  tract elongated into a cable. The  ear  and brain 
reside at  the receiving point while the vocal tract is trans- 
ported to  the message destination. To transmit a message 
over  this  system, we talk to this man  and  he repeats  what 
he hears. 

In  an elementary  vocoder, the  features  to be described 
by the transmitted signals might be perceptually impor- 
tant components of the speech frequency  spectrum.  In a 
more ambitious  vocoder, the signals might  denote the 
sounds of speech or the words from a specified vocabu- 
lary, these  having been recognized at the analyzer or 
coder. In this case, of course, the signals could be made 
to  actuate a voice typewriter. We might  picture this 
function  as being accomplished by a pair of hands con- 
trolled by the  “motor”  output of the coder.  A less 297 
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Figure 5 Representation of efficient speech transmission. 

demanding task  might require  certain actions to be taken 
on voice command. Again, these actions  could be carried 
out by appropriate effectors. 

The utility of vocoder arrangement lies in the  fact  that 
an analog  vocal tract,  or a typewriter, or the  other effec- 
tors  require relatively little  direction. The necessary con- 
trol  information  for speech production,  for instance, can 
in theory be  packaged into something less than 50 bits/ 
second.  Speech production with such a low rate  input  has 
been demonstrated  many times, and indeed is probably 
demonstrated  each time a human being speaks. Thus, 
such a coding of speech information leads to a highly 
efficient use of transmission channel space in a com- 
munication system. 

The simplest vocoder is the so-called channel vocoder. 
Its analyzer is shown in Fig. 6. The vocal tract  control 
data  are derived  by passing the speech through a bank 

of band-pass filters, and by measuring at each filter output 
the energy of a succession of suitable  time  intervals. At 
any  one time, then,  the  spectrum is represented by N 
numbers, if there  are N filters, each approximately  repre- 
senting a sample  point on  the  spectrum as  indicated in 
the lower part of the figure. The succession in time of 
such  number sets reveals the  dynamic progression of the 
short-time  power  spectrum. 

These  data  can be displayed for visual inspection by 
the so-called visible speech technique.4 Here, in effect, a 
large number  of overlapping filters provide the spectral 
numbers which are projected into a density display on a 
frequency-time  plane.  Such a display is shown  in  Fig. 7. 
At  any frequency-time  intercept, the density of the dis- 
play  depicts a spectrum sample  number. A phonetic 
transcription is shown along the  time axis. The vocoder, 
in effect, transmits an  approximate description of such a 

Figure 6 Spectral analysis in a vocoder. 
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Figure 7 Sound spectrogram of male speech. 

sound spectrogram. Thus  you  are looking at  the  informa- 
tion  available to  the vocoder  speech synthesizer. In re- 
producing the  input speech, the vocoder must regenerate 
a  signal with a spectrum  to  match  the succession of 
numbers measured by the analyzer. The  method  com- 
monly  used for this is merely to superimpose  this char- 
acteristic on a flat spectrum generated at  the vocoder 
synthesizer. Figure 8 shows this process. The energy from 
the generator is divided into narrow frequency  bands, 
and  the  amount of energy in each is adjusted  dynamically 
by a modulator in accordance with the analyzer  measure- 
ments. The  sum of all these channels has approximately 
the  same spectral  density as the  input  to  the analyzer. 

As I have described it,  the vocoder performs  no recog- 
nition function-the spectral data have no  unique  per- 
ceptual correspondence.  Many different distributions  can 
give rise to the same percept.  Yet  recognition  does play 
a  vital role in the vocoder, as can be seen in the following 
discussion. 

The energy  produced by a  talker in generating his 
speech can arise from two distinct  sources,  namely the 
vocal cords and turbulent airflow at a  constriction  in  the 
vocal tract.  The  cords  produce  an approximately  periodic 
excitation  commonly found  in voiced sounds such as the 
vowels. The  fundamental frequency of the  excitation  cor- 
responds to  and determines the pitch of the voice. Turbu- 
lent airflow in the vocal tract produces  a noise-like 
disturbance such as is found in the s and sh sounds. 
These unvoiced, or voiceless sounds have  no pitch. Thus 
if the synthesized speech is to assume the talker’s voice 
pitch and express his individuality,  a flat spectrum of 
either noise or periodic pulses, whichever is appropriate 

1 3  9 drs t a n  s 

at  the time, is required. In addition, the repetition rate of 
the pulses must  be the  same as that of his  vocal cord 
pulses. Thus,  the  microstructure of the flat spectrum  onto 
which the general  spectral features  are superimposed  must 
be predetermined at  the analyzer, and this information 
transmitted to  the synthesizer to  control  an artificial vocal 
source. 

Figure 9 shows the vocoder analysis and synthesis in 
outline  form while the voicing circuit is detailed. The 
vocal cord  or voiced energy is provided  by  a harmonic 
tone  generator of the  appropriate  fundamental  frequency, 
sometimes called the buzz oscillator, and  the unvoiced 
energy  comes from a noise source which  generates the 
so-called hiss sound. Switching between these  sources is 
done by a relay. The analysis function  to  control this 
arrangement is shown on  the left and requires  recognition 
of the talker’s voicing dynamics.  Present methods  for 
identifying voicing intervals  in speech depend upon  the 
over-all  distribution of speech energy. During voiced 
periods,  energy  tends to be  concentrated in  the 200-800- 
cps band, while for unvoiced sounds  the principal  energy 
resides usually above 1500 cps. This differential is utilized 
by the threshold detector whose output causes the synthe- 
sizer relay to connect the buzz source. The hiss source 
is connected  when the buzz source is not. To control the 
fundamental buzz frequency  during voiced sounds, the 
lowest component of these sounds, the voice fundamental, 
is selected by a filter and its zero crossings counted. Such 
devices are  quite vulnerable to predistortion of the spec- 
trum  or  to  added noise. Furthermore, these  disturbances 
often occur  in reverberant  or noisy environments  and  in 
microphones and transmission  circuits  which  precede the 299 
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Figure 8 Speech  synthesis in a vocoder. 

Figure 9 Voicing and pitch detection in a vocoder. 
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vocoder  analyzer. The  human analyzer on  the  other  hand 
is more resistant to  the adverse effects of these distortions, 
as has been shown by speech intelligibility tests. For 
instance, if white noise is added to speech  only,  say, 10 
decibels below the speech level, listeners can still discrim- 
inate vat from’fat  and bit from pit. These  discriminations 
require  the voiced-voiceless distinction.5 Needless to say, 
present voiced-unvoiced recognizers cannot  emulate this 
feat. 

A basic solution to  the voicing recognition  problem 
would be  a  real contribution  to  the speech-recognition 
field generally. For, as I will point  out,  it seems to be a 
prerequisite to speech analysis. From  the  practical point 
of view, it is this  problem, in large  measure,  which has 
retarded  the application of vocoders in  the communica- 
tion field, an application which would save a factor be- 
tween 10 and 30 in  the channel  capacity necessary to 
transmit articulate  speech.  Quantitatively a reduction 
from 60,000 to  about 2,000 bitdsecond would be well 
within reason. 

Even greater  economies  could be achieved if recogni- 
tion  principles  could  be  applied to  the representation of 
the general  spectral  features of speech.  Such features  are 
displayed  prominently on sound  spectrograms of speech 
as shown  in  Fig. 7. The sentence  pictured here says  “Call 
mother long  distance,”  as is indicated  beneath it in pho- 
netic  script. Notice  that  during  the voiced sections, for 
instance  just after  the k ,  the  speech  energy  tends to be 
concentrated  into  three or four bands,  usually called 
formants. Other sections can be  characterized by a  time 
sequence of events such as around  the s-t in distance and 
still others by specifying  crudely  a  spectral  envelope such 
as the final s in distance. If the vocoder  analyzer  could 
recognize such  features, it could  derive an extremely 
compact spectral  representation, one  that could  be passed 
over a  channel of the  order of 150 bitdsecond capacity.6 
Just how each of these features contributes to  the per- 
ceptual value of an  utterance is not completely  under- 
stood.  However,  people  can learn  to  interpret spectro- 
grams in  terms of sounds  and words. The learning  process 
is long and laborious, for,  after all, the subject is learning 
to  “hear”  through  another sense, namely vision. 

A set of instructions for spectrogram reading were 
formulated  during  the early and middle 1940’s by a group 
of phoneticians and engineers. The rules  were  published 
in  the  book Visible Speech.7 The phoneticians’ point of 
view prevailed in this  coalition, and  the rules  were based 
primarily upon what was known at  that  time  about  the 
physics of speech  production. The cues that they specify 
might  be thought of as sufficient to define a sound, but 
whose presence is not necessary to the perception of that 
sound. Indeed  there  are  many psychologically based 
factors which affect speech  perception in a major way. 
For instance, a person  often  hears what  he expects to 
hear.  Furthermore,  the Visible  Speech rules concern  the 
individual  sounds of speech or, as linguists and phoneti- 
cians would call  them, the phonemes. The concept of a 
few  building blocks from which speech is put together is 
an extremely attractive one. It reduces the vocabulary 

size drastically-all the words of English can be synthe- 
sized from just 40 basic phonemes. It is quite  another 
thing,  however, to  think of perceiving speech  in terms  of 
these elements. One might make analogy here between 
speech and literal  text. The letters  correspond to  the 
phonemes in this  analogy. I have  often  had  the experi- 
ence of not being able to spell  a  word  which I have read 
many times. Too, when I misspell a  word, I often recog- 
nize it as being wrong  just  because it doesn’t “look  right.” 
What I am saying is that in  reading,  words are  often  per- 
ceived as a unit,  not  as a  collection of individual  letters. 
There  are  some interesting psychological data available 
on this  point  in a study by Postman  and Adis-Castro.8 
They  found  that when familiar words  were flashed briefly 
on a  screen the minimum  recognition time  for  an observer 
was nearly  independent of word  length. With less familiar 
words the perceived units are evidently shorter  than 
words, and recognition time does  not  depend  upon  length. 
Although I know of no experimental data,  the perceptual 
units of speech are  under most  circumstances  longer than 
a single phoneme. Indeed interactions  between  adjacent 
phonemes was a recognized fact, stated  in the Visible 
Speech book and confirmed many times since. In  one 
recent demonstration,  a  phoneme-length section of con- 
nected  speech  was selected and embedded  in  several  dif- 
ferent speech samples. It was found  that this same section 
in various  contexts  could give rise to several different 
perceptions. What people heard depended not only on  the 
acoustical  properties of the section, but  on its surround- 
ings as well. Prof. G. E. Peterson of the University of 
Michigan has recently  begun  speech synthesis experi- 
ments  using  elements consisting of two connected  speech 
sounds.9 He calls these elements dyads. The transition 
between the  two  sounds is in the middle of each  dyad. 
The beginning of the first sound and  the  end of the second 
sound lie at  the phonetically  most  stable  position of each 
sound.  It  may  be  that  the  normal  perceptual units of 
speech are  more nearly  akin to dyads than  to  the indi- 
vidual  speech sounds themselves. Peterson and  one of 
his students  found  that  about 8,000 dyads are needed to 
synthesize the midwestern  dialect of American Speech.lo 
This  number is certainly not  too large for a human lis- 
tener  to  cope with. Indeed it is entirely  conceivable that 
the  normal listener’s perceptual vocabulary is many times 
larger than this. Thus,  it  may  be  that  the  making of a 
phonetic  transcription,  which involves resolution of a 
continuous utterance  into a  small number of discrete 
characters,  must be  preceded by an identification of 
longer  speech segments. 

R. H. Galtll  in 1951 decided to  draw  up a  set of rules 
for recognition of ten spoken numbers  from spectro- 
grams. Such rules  might more nearly  correspond to  the 
perception of spectrographic patterns  and might prove 
more easily applied to a  variety of speakers. Galt obtained 
the services of two  “experts”  who had long  experience  in 
relating the visual spectrographic features  to  the percep- 
tual  features of the corresponding  utterances. After a few 
trial sessions, Galt  had his experts  try to write down  the 
rules  they had used. After  further refining, these rules 
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A P A T T E R N   W H I C H   H A S   I R R E G U L A R L Y  
S P A C E D   V E R T I C A L   M A R K I N G S  I N  THE 

O F   T H I S   I R R E G U L A R  REGION W I L L  B E  
F O U N D  A R E G I O N   H A V I N G   R E G U L A R L Y  
S P A C E D   V E R T I C A L   " S T R I A T I O N S "  I N  
W H I C H   R E G I O N   O C C U R S  THE  CHIEF 
SLOPE OF BAR 2 .  

L E F T - H A N D   R E G I O N .  TO THE R I G H T  

A R E G U L A R L Y   S T R I A T E D   R E G I O N   O T H E R  

CHIEF  SLOPE OF BAR 2 .  
T H A N  THE R E G I O N   C O N T A I N I N G  THE 

-0BER 1958 

A PATTERN I N  W H I C H ,   G O I N G   F R O M  

T E N D  TO C O M E   T O G E T H E R .   O F T E N  
LEFT TO R I G H T ,  BAR 2 A N D  BAR 3 

THESE  BARS M E E T  AT OR NEAR  THE 
R I G H T - H A N D   E N D  OF THE  REGULARLY 

C H I E F   S L O P E   O F  BAR 2 .  
STRIATED REGION C O N T A I N I N G  THE 

A G A P  OR B L A N K   S P A C E   E X T E N D I N G  

PATTERN.  
FROM TOP TO BOTTOM ACROSS  THE 



SHAPE OF BAR 1 N E A R L Y   P A R A L L E L  TO BASE LINE A N D   N E A R L Y   U N I F O R M .  BAR 1 
U S U A L L Y   T O U C H I N G  OR N E A R L Y   T O U C H I N G  THE  BASE L I N E .  

SHAPE OF BAR 1 N E A R L Y   P A R A L L E L  TO B A S E   L I N E   A N D   N E A R L Y   U N I F O R M .  BAR 1 
S H O R T   A N D   L I F T E D   A B O V E   B A S E   L I N E   A N D   M A Y  B E  S L I G H T L Y   A R C H E D .  

S H A P E   O F  BAR 1 NOT PARALLEL TO BASE L I N E   A N D / O R   N O T   U N I F O R M .  BAR 1 
A P P R O A C H E S   B A S E   L I N E   A T   M I D D L E  OR R I G H T   E N D   B Y  A SLOPE OR BY S T E P S .  

S H A P E  O F  B A R  1 N O T  P A R A L L E L  T O  B A S E  L INE A N D / O R  N O T  U N I F O R M .  B A R  1 H A S  
ABRUPT  BREAKS G I V I N G  THE S E Q U E N C E   L O W - H I G H - L O W  OR H I G H - L O W - H I G H - L O W  

Figure 10 Scheme for  classifying patterns of digits. 

were then tested on 330 utterances of the spoken digits 
from  thirteen men, seven women, and ten  children. Galt 
found  that naive  subjects  could  identify the corresponding 
spectrograms  with well over 90% success. Some of the 
rules are illustrated in Fig. 10, adapted from  one of Galt’s 
original figures. Six of them  concern  the  frequency loca- 
tions, slopes, and continuity of the first three  formants. 
For instance, notice the up-ended  descriptions;  they sort 
the digits into categories  according to  the principal  slope 
of the second formant. Digits “2,” “7” and “Oh” show 
a  down-slope, the others an up-slope. Another  rule con- 
cerns the presence of an initial unvoiced section in  the 
digits marked with A’s, namely “2,” “7,” “3,” “6,” “4,” 
and “5.” Still another  rule concerns  the  presence of voiced 
sections  with formants fixed in frequency-the digit “9” 
has two such sections, one at each  end. Finally, one  rule 
notes the presence of a silent gap, marked D, bisecting the 
digits “6” and “8.” 

For convenience, I have  arranged Galt’s rules in 
matrix  form, as shown in Fig. 11. Along the  top  are listed 
the digits, along the side the rules,  stating  the features  to 
be noted.  A plus or minus in the matrix  indicates the 
presence or absence of a particular  feature in that digit. 
A zero indicates that a particular  rule is not applicable 
to  the digit. In identifying  a  spectrogram, the rules are 
applied, and a  corresponding list of +’s and -’s prepared 

for  that  spectrogram. This list is then compared  to each 
column in  the  matrix  and a  “score”  derived for  each 
column.  A  coincidence of either +’s or -’s counts + 1 
in  scoring the  column, a  mismatch counts - 1, and a zero 
nothing. The maximum score identifies the utterance. 

Note  that these  rules concern  rather gross properties 
of the patterns, and  require  no very precise  measure- 
ments. Rather it is the relations between the  features  that 
are  important.  Further,  the identity of each word  does not 
depend exclusively on any one of its properties. To con- 
fuse  one word  with another requires the simultaneous 
confusion of several  features. This “diversity” property 
is fundamental  to  the success of the rules  since  a particu- 
lar  utterance may  exhibit  some but  not  others of the 
features. The  number of confusions separating  each of 
the digits can  be calculated simply by noting the  number 
of differences between the columns. Counting  each + - 
pair as 1 and  each + O  or - 0 as 1/2, I have  prepared 
such a table as  shown  in Fig. 12. Here  each  entry gives 
the  number of distinctions  separating the digits labeling 
the corresponding  row and  column. If Galt’s rules  accu- 
rately reflected the perceptual  components of the spoken 
digits, then these numbers should specify how different 
each digit would sound. Of these,  according to  the table, 
“one”  and  “nine” are most  alike, being only 2 distinctions 
apart. 303 
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Figure I I  Tabulation of recognition rules. 

There  are two significant facets of speech  recognition 
which can be discussed in the context of Galt’s rules. The 
first involves what is commonly called the vocabulary, 
the second,  population. Vocabulary size refers to  the 
number of categories  in the classification matrix. In gen- 
eral, the larger the vocabulary, the  more rules  needed, 
but  there is a more  important aspect.  Galt’s  rules  as  they 
were  used in his experiment  concerned  only ten spoken 
digits. Any  utterance presented had  to fall in  one of the 
ten categories. Furthermore,  the  utterances presented for 
classification were  guaranteed by the experimenter to fall 
in one of the  ten categories. There were no “elevens” or 
“ninetys”  presented to  the subjects for classification. This 

is what I would like to call a selected vocabulary. TO 
make Galt’s vocabulary  what  might be called complete, 
would require  the addition of only one  other category, 
namely one called not one of the digits. All of the  other 
words of English would fall into this latter category. This 
addition would undoubtedly  multiply the  number, sub- 
tlety, and complexity of the necessary rules  many-fold, 
if the  same level of performance were  maintained. This 
is another way of saying that recognition success on a 
limited, but complete, vocabulary stands a better  chance 
of uncovering pattern properties which can be generalized 
efficiently to higher orders of discriminability than sim- 
ilar success on a  limited, selected vocabulary. Thus a 

Figure 12 Tabulation of digit separations. 
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Figure 13 Simplified spectrograms and master  patterns. 

limitation on  the size of a complete  vocabulary, while it 
represents  a  simplification,  might be thought of as  a rather 
realistic constraint. After all, the vocabulary size in every- 
day  communication is restricted more  than  one might 
think by environment,  subject matter,  and  grammatical 
and linguistic structure. 

Population size refers  to  the  number of subjects from 
whom  speech  samples will be accepted for recognition. 
Of course,  the  complexity of a  recognition  task increases, 
within both selected and complete  vocabularies, with 
population size. In addition, there  are probably  some 
members of society whose pronunciation is so unortho- 
dox  that  their  utterances  out of context would not be 
recognized correctly by most listeners. These people are 
probably not desirable  members to include  in the recog- 
nition  population. The  performance criterion for a recog- 
nition scheme should  be based on perceptual  experiments. 

Other  facets of Galt’s rules are significant. The rules, 
as  they are written,  presuppose  a single word whose 
beginning and  end  are closely defined. What additional 
problems does  a  connected utterance pose? Certainly, the 
perceptual speech  units to be recognized will not in 
general  be words, but will be some  other  perhaps as yet 
unnamed entity. One of the entities will undoubtedly be 
silence. Others  may be similar to Peterson’s dyads. In 
any case there will be many  more  than  the 40 English 
phonemes. Furthermore, they will not be of uniform 
length. Thus, a set of recognition  rules will have  to in- 
clude a  criterion for selecting the  proper units for identi- 
fication. 

Note also that Galt’s  rules are written  in terms of 
spectrographic features which themselves must be recog- 
nized if the rules are  to aid machine  recognition. Finding 
a formant or a silent gap in an acoustic  complex is a 

recognition problem just  as is the identification of a 
spoken number.  In this respect the rules remind  one  of 
the ancient  explanation of the cosmos  in  which the  earth 
is supported by four elephants  which stand  on  the back 
of a tortoise-a legitimate  question is, what does the 
tortoise stand  on?  The rules are not  really so unsupport- 
able, however. After all, they  reduce the recognition 
problem by one level of complexity. 

I know of no totally  successful  work on spectrographic 
feature recognition.  However, L. G. Kersta** in  1947 did 
an interesting piece of work  in  which he got at this prob- 
lem in a sense. In retrospect, it  can be said that Kersta’s 
approach  took  advantage of the  same  sort of relations 
incorporated  in Galt’s rules. His results demonstrate how 
great  a simplification of spectrographic information can 
suffice for identification. He again  assumed  a selected 
vocabulary consisting of ten spoken  numbers, and took 
spectrograms of them  from  each of nine  men and five 
women. He divided each spectrogram into a  mosaic of 
square elements  each of which  measured 200 cps by 67 
milliseconds. If the integrated  density  in  a particular ele- 
ment were 1/2 or greater than  the integrated density in 
the darkest  element, then it was represented as being 
entirely black. If the integrated density were less than 
1 / 2 then it was represifited  as being entirely white. Thus, 
Kersta achieved  a highlydsimplified spectrogram,  as is 
indicated for  three digits in the  top  row of Fig. 13. For 
each digit he  then compiled  two  master  patterns. One 
consisted of all black elements common  to  the utterances 
of the  fourteen speakers. These  are shown  in the second 
row of Fig. 13 for  the digits “one,”  “two,” and “three.” 
The second  master pattern consisted of all common white 
elements as shown by the blank  elements  in the bottom 
row of Fig. 13. When the  original  patterns were compared 305 
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Figure 14 Tabulation of recognition performance. 

with each master, it was found  that  quite often  a single 
original pattern contained  elements  in common with the 
masters from several  numbers. This situation  resulted in 
a single spectrogram being classified into several  cate- 
gories. Just how often this occurred  for  both  the black 
and white  masters  can  be seen in Fig. 14. The  percent 
probability that a particular digit will match a  master 
other  than  the  correct  one is marked x, and  the probabil- 
ity that  other digits will match a particular  master is 
marked y .  For instance, for  the black masters,  spoken 
“twos” were  never identified as  any other  number while 
other  numbers were called “two”  with  a  probability of 
15%. Now if the black and white  masters are applied in 
tandem with a logical “and”  requirement;  that is, both 
black and white  elements must  match,  the  error  proba- 
bility falls  startlingly. The maximum error probability for 
any digit is less than  one  percent, while the average  over 
all digits is about 0.2%. In  other words, the  number  utter- 
ances  were identified with  over 99.5% success. Clearly, 
Kersta  has extracted some  common elements from  the 
utterances of 14 people. 

To digress for a moment, I particularly  wanted to 
mention Kersta’s experiment  because it was done by digi- 
tal  simulation. The simplified spectrographic data  from 
the 140 utterances were punched  onto  IBM cards,  as 
were the master  patterns. An  IBM  card  sorter  then carried 
out  the  matching  procedure  and compiled the results. It 
might well be that this was the first use of digital equip- 
ment in speech-processing research. It presaged  a  tech- 
nique  which  promises to catalyze  research  in efficient 
voice and visual communication. Needless to say, IBM 
research and  IBM  equipment  are playing a  major  role 
in  this area. 

Kersta’s master  patterns might be thought of as tem- 
plates, and  the identification procedure as a  matching 
process. In thinking of broader apfilication of the scheme, 
it is natural  to ask  what wadd happen  to  the master 
patterns  as the  population were  expanded from 14 peo- 
ple. Certainly  as all personal  variations, such as duration 
and dialect, are absorbed all the patterns will contain null 
elements exclusively; there will be no elements in com- 
mon  among  the simplified spectrograms. The scheme 
might  be  stretched  in this direction by using a proba- 
bilistic principle among  the spectrograms, rather  than 
requiring  absolute  coincidence among them all. This 

modification might  be  applied both  for  determination of 
the master patterns  and  for  the matching procedure. 
Nonetheless, the  template  approach seems limited  by the 
gross variability among talkers.  However, it does illus- 
trate  the degree of success that  can  at present be attained 
with the limited-selected vocabulary, and a  limited pop- 
ulation. More  than this, it again affirms the principle of 
using many gross features  or decisions rather  than a few 
precise ones  in  speech  recognition. 

Thus, while there  have been several more  or less suc- 
cessful but limited demonstrations of speech  recognition, 
many of the  fundamental questions remain  to be resolved. 
As I have  pointed out earlier, one of the most central of 
these is the recognition of formants, silence, and  the  other 
important  features.  Importance  here implies perceptual 
importance. There may well be features visible on spec- 
trograms which have  no  auditory consequence.  These 
should be ignored  in the recognition  process. In examin- 
ing spectrograms of the  same words  spoken by several 
talkers, one  cannot fail to be  impressed by the gross 
differences in the spectral  patterns. You will agree, I think, 
after  comparing spectrograms of the  same words  spoken 
by a man  in Fig. 7 and by a woman in  Fig. 15. Some of 
these differences at least are not real in the sense that they 
reflect true differences in the acoustic character  of the 
utterances.  Consider, for instance, the vowel produced 
by the usual  model,  namely  a  linear, passive network 
excited by repetitive,  periodic  impulses  as  shown in  the 
upper line of Fig. 16. The phonetic  value of the vowel is 
determined by the  network response, the voice pitch by 
the impulse  repetition rate.  Two voice pitches are illus- 
trated,  one high and  one low. The vowel sound will then 
consist of repeated  transients at  the  same repetition rate. 
As  indicated  in  Fig. 16, its spectrum will be  composed of 
harmonically  related  tones whose amplitudes  depend 
upon  the response of the network at  the frequencies of 
the tones. One can look upon  the  harmonic magnitudes as 
“samples” of the  network  amplitude response, close to- 
gether for a low pitch, further  apart  for a high pitch. If 
the vowel is then passed repeatedly through a slowly 
scanning  filter,  a  reduced  resolution  “spectrogram”  re- 
sults. The degree of resolution  depends upon  the relation 
between the filter width and  the  harmonic spacing. If the 
voice pitch is low, and  the filter is broad  enough to en- 
compass two  or  three  harmonics, a  reasonably good 



approximation  to  the network amplitude response will 
result,  as  shown on  the left in Fig. 16. This is not true 
when the voice pitch is high, and  the filter width is such 
that  it includes  only one  harmonic  at a  time, as shown on 
the right. The spectrograms in these two instances will 
appear  to  the eye, and  to any instrument observing the 
spectral analysis, as being quite different. In  the  former 
case, the  formants would tend to be clearly evident;  in 
the  latter,  harmonic maxima  could  be easily confused 
with formant maxima. Thus a  confusing structure  can be 
superimposed on a spectral analysis by the discrete and 
variable nature of voiced sounds. Of course, if the pitch 
frequency is known, then  the effect can be removed 
subsequent to  the analysis. A better  method,  shown at  the 
bottom, is to segment the speech into pitch  period  length 
segments  before analysis. The  spectrum of each  period is 
the same  as  the  response of the  network at a finite number 
of points; these points lying at the positions of the vowel’s 
harmonic tones. An estimate of the network  response 
can then  be had  from these  points,  which  in the case of 
the  period-by-period analysis are guaranteed to fall on 
the response  curve. Thus,  the  parameters of speech 
analysis should be a  function of the voice pitch itself. 
Seen from this viewpoint, pitch  detection is fundamental 
to  the whole  problem of speech analysis, and  quite likely 
to speech  recognition  as well, for a  variety of talkers 
and pitches. 

While a  pitch-synchronous analysis will be helpful, it 
will not, of course, be an “open  sesame” to  the promised 

Figure 15 Sound spectrogram of female speech. 

land of recognition. Rather, basic studies  in at least three 
fields are called for.  First, we should pursue  further study 
of human  anatomy  and physiological processes. I don’t 
want to imply that a  speech recognizer must follow 
human methods exclusively. However, the close relation 
between speaking and hearing would argue  for this view. 
The  argument becomes more valid as  recognition  aims 
encompass  a  larger  population of talkers and a  larger 
vocabulary.  Second, physiological research must be sup- 
plemented  by  measurements of human ability and be- 
havior  in the process of recognition.  Such psychological 
work  should not be merely a  tabulation of the properties 
of human behavior, but should  be guided by underlying 
models, perhaps  incorporating a  considerable amount of 
mathematical  and logical  formalism. One  problem  that 
deserves attention is that of establishing the relative per- 
ceptual  importance of various  acoustic features.  The 
more  important should  be weighted more heavily in a 
recognition  scheme. Thus,  for instance, in scoring  a 
spoken digit against  Galt’s  rules,  some  coincidences and 
anti-coincidences  should  be  counted more heavily than 
others.  Which  ones, we do  not  know  at present, although 
we might guess. One way to investigate this matter is 
through psychoacoustic  experiments  in  auditory  percep- 
tion. 

Another possibility in finding perceptual correlates is 
to  have a computer  act  as a  naive  subject in Galt’s ex- 
periment. By observing its own errors, it might  over  a 
period of time  compile  a successful set of rules. Identifi- 
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cation of spectrographic  features  might  be  accomplished 
similarly. 

Finally,  the  problem of recognition  must  be  attacked 
by  considering  logically  and  mathematically  how a human 
being or  a machine  could  recognize  speech  patterns,  and 
by  tes t ing  experimental ly   the  val idi ty  of proposed 
schemes.  Here  the  use of digital  computers to simulate 
the  necessary  experimental  equipment will yield  very 

considerable  economies of time  and  effort,  while  retaining 
the  necessary flexibility. 

Work  in  each of these  fields is progressing,  and  com- 
munication  across  their  boundaries is providing a good 
deal of stimulation. As this  research  proceeds,  the  limita- 
tion on recognizers will come  to  rest  upon  how  much 
human  time,  effort,  and  money  we  are willing to  expend 
in  simulating  human  functions. 
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