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E. E. David, Jr.

Artificial Auditory Recognition in Telephony

Abstract: Machines which automatically recognize patterns from a stream of acoustic events, for example a
spoken command, would have great utility in both communications and data processing. This paper reviews
two applications of an elementary recognizer to the problem of actuating certain logical functions, and indi-
cates how more ambitious recognizers might be utilized. In this regard, the avtomatic measurement of a
talker’s voice pitch and voicing dynamics appears fundamental to speech analysis, and hence to many recog-
nition schemes. Visual inspection of spectral data taken from different speakers supports this contention.

Segmentation of speech into discrete units suitable for recognition, including the possibility of overlapping
elements, is discussed. There is reason to expect that such segments will span several elementary speech
sounds (phonemes). To illusirate this approach, a set of rules is presented for associating visual spectral
displays (sound specirograms) with the perception evoked by the corresponding utterances. These rules are
specifically tailored for a limited vocabulary consisting of ten spoken numbers, and were validated by naive
subjects who used them to identify the utterances of 33 people. In a further experiment, spectrograms of
the same material from 14 talkers were simplified by reducing them to binary elements. It was found that
master patterns for each number, compiled from the ensemble of talkers, could identify the utterances with
over 99% success. These results emphasize a “diversity” approach to speech recognition which operates on

relations between gross spectral features and does not depend exclusively on any one property.

The difficulty of achieving efficient communication be-
tween man and his machines has become almost legend-
ary among communication scientists. The root of the
problem lies, in all probability, in the diverse nature of
the sensory mechanisms and logical organizations in-
volved. Human beings are thought to perceive informa-
tion at a maximum rate of about 40 bits/second, while
machines can take in data thousands of times faster. On
the other hand, the human memory is apparently many
times larger than present machine memories. And it
appears to be organized in associative units, thereby re-
lieving the access and indexing problems. Even more
important is the ability of the human observer to make
meaningful interpretations of patterns of events. Men
are adept at reading handwriting, understanding speech,
identifying musical instruments by their sound, associat-
ing two-dimensional pictures with their three-dimensional
counterparts, tasks at which machines are notoriously
inept. Such abilities are commonly described by the term
pattern recognition or sensory Gestalt. It seems quite
clear that if machines could perform like functions, man-
machine communication would be considerably aided.
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A corollary is that efficient man-machine coupling can
lead to methods for efficient vocal communication be-
tween people.

I will not attempt a definition of recognition. As a poet
once said when asked the “meaning” of one of his poems,
“A poem shouldn’t mean, it should be.” Nonetheless,
recognition tasks have several characteristics in common.
Probably the most obvious is our colossal ignorance of
how recognition is performed in the nervous system. An-
other common feature is that somehow both human
beings and many animals are able to classify many di-
verse physical stimuli into the same category, each cate-
gory probably being characterized not by fixed physical
properties of stimuli but rather by certain relations be-
tween their parts. This property is certainly manifest in
the case of auditory recognition, which is my principal
topic in this paper. The same words spoken by a man
and a woman differ drastically in their acoustic content,
but the listener has little difficulty in establishing that they
are the same words. Clearly, there is some sort of per-
ceptual transformation taking place. At the periphery of
the nervous system, namely at the auditory nerve endings
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Figure 1 Echo production on a telephone circuit.

in the ear, these two disparate acoustic disturbances must
excite different patterns of nervous. activity. Somehow,
farther along in the chain of events, in the brain, these
patterns assume some form of equivalence. In fact, once
the two sets of words are recognized as being the same,
there must be a similar close neural correspondence. In
any case, the essence of recognition lies in the perceptual
realm.

We might expect problems of auditory recognition to
crop up often in telephony. Speech is the major traffic
through the telephone system -— a system which has a
logical as well as a transmission function to perform.
In the early days of telephony, people had to deal only
with other people. Switching and accounting functions
were accomplished manually after voice or written in-
structions. When automatic switching was introduced,
the customer was fortunately already supplied with a
finger which was pressed into use for signalling to the
deaf central office. Automatic message accounting, as it
exists in today’s telephone plant, takes advantage of the
anatomy of the telephone network as well as the dialed
information. But to handle the diversity of requirements
inherent in today’s communications business, people are
still distributed throughout the network. Whenever one
of these people must interact with the system, inefficiency
and errors often result. These points of friction would be
relieved by devices which could read characters or recog-
nize the sounds of speech.

In this context, it is not surprising that some of the
first modern attempts to automatize speech recognition
were made in conjunction with telephone research. I
would like to recount for you two applications of a very
simple artificial recognizer and review the rather star-
tling results it has spawned. The implication is that
machine recognition can contribute importantly to effi-
cient vocal communication between people. Indeed the
so-called vocoder principle, as I will relate, forms a ready
vehicle for the application of recognizers, be they ele-
mentary or sophisticated, in voice communication. On
the elementary side, there are functions such as the detec-
tion of vocal pitch and inflection. I will try to point out
the relevance of the pitch detection problem for com-
munication. Automatic word recognition typifies a more
ambitious class of problems. I will present the results of

the two studies in word recognition which, though they
were done some years ago, have never been reported in
the literature. The philosophy guiding these studies is
illustrative of what we feel is a fruitful approach to
speech recognition. Finally, I will return to the pitch
detection problem and indicate why I believe it is funda-
mental to speech analysis and speech recognition.

The telephone subscriber’s interaction with the tele-
phone system is not limited to dialing his connection,
speaking occasionally to an operator, and paying his bill.
When he talks over a long two-way circuit, often his
voice is called upon to perform a switching function.
This requirement arises because of an unfavorable inter-
action between the talker and the circuit, Fig. 1. A long
telephone line, comprising a pair of wires in each direc-
tion and terminated by a hybrid or bridge, tends to pro-
duce an echo when a person speaks over it. The hybrid
is intended to couple the directional pairs to a bilateral
single pair, at the same time preventing any interaction
between the directional pairs. The hybrid balance is not
perfect, so for instance, when the talker at the right
speaks over the East-West pair, the hybrid on the left,
in addition to passing the direct signal to the listener,
produces an echo on the West-East pair. This echo
appears at the talker’s own earphone. The hybrid on the
right produces a similar effect and eventually a second
echo results. This effect might appear not to be a major
one from the standpoint of communication. However,
laboratory experiments have shown that if a person’s
voice is reproduced in his own ears at a normal hearing
level and with a delay of a few tens of milliseconds, his
vocal mechanics can be seriously interrupted. He tends to
stutter and becomes hesitant in speaking; some speakers
are unable to produce any connected utterance at all.
The effect increases, up to a point, with both time lag
and echo strength. While in commercial service the echo
is always greatly attenuated in level, it can still be annoy-
ing if its delay time is long. One remedy for this situation
is merely to disconnect the return line when the speaker
is talking. This task can be carried out by voice-operated
switches known as echo-suppressors.* These switches are
arranged as shown in Fig. 2. When the party at the left
talks, his receiving line is disconnected, and similarly for
the other party. If both parties talk, one of them “cap-
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Figure 2 Voice-operated echo suppressor on a telephone circuit.

tures” the circuit, locking the other out.* Which one
depends upon the time sequence and strength of the two
talk spurts.

It is necessary for an echo-suppressor to recognize
when speech is being transmitted. It must be able to dis-
criminate between speech and the variety of other noises
which might appear on the transmitting line. These in-
clude electrical disturbances picked up in the line or
generated in the system, as well as environmental noise
at the speaker’s location. This rather primitive recogni-
tion function requires that all signals be classified into
one of two categories, speech and nonspeech. Tradition-
ally this discrimination has been accomplished on the
basis of power spectrum alone. Fortunately, electrical
interference and room noises tend to be either predom-

*In modern practice, echo-suppressors are designed so that an absolute
lockout is never possible, Rather than breaking the receiving line com-
pletely, the available gain is apportioned between the two lines so as to
give one preference over the other.

inantly low frequency or impulsive, and can be suppressed
to some degree, at least, by filtering and smoothing. The
echo-suppressor recognizer therefore is merely a thresh-
old-operated detector preceded by an appropriate filter, as
shown in the upper part of Fig. 3. The relative frequency
distribution of speech and noise dictates a pass-band of
about 800-1600 cps for the filter.

Of course, if the noise level on the transmitting line
is high, then the switch may err and disconnect the lis-
tener from an incoming message. Obviously, this is more
likely to occur if he is listening from a boiler factory than
from a sound-treated office. The threshold-adjusting
mechanism shown in the lower part of Fig. 3 can help
this problem. This circuit derives the speech volume
envelope and examines its average decay rate. Typically
the speech envelope shows sharp peaks and valleys as the
various sounds succeed one another. By using the rapid
decays as a cue, the speech-detector can discriminate
against any noise not showing these “syllabic” envelope
fluctuations.

Figure 3 Automatic threshold-controlled speech detectors.
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Just this same characteristic has been used to realize a
commercial-suppressor for use by classical-music fans.?
This device discriminates between speech and music,
allowing only the latter access to the listener’s loud-
speaker. Music has fast attacks but slow decays.

The second application of this rudimentary recognizer
is in a switching system to take advantage of the one-way
characteristic of conversations. Most people, especially
men, are satisfied to listen while the other fellow is talk-
ing, and we expect him to listen when we talk. Indeed if
there is a switch-type echo-suppressor on the line, voice
signals can travel only one way at a time even in the case
of female conversationalists, and the other circuit is idle
during half the conversation. In modern communication
systems there are often many circuits in both directions,
while the system as a whole handles many conversations.
Now clearly the probability of all the talkers at one end
speaking simultaneously is quite small. Thus, there are on
the average free circuits in both directions all the time.
A sufficiently intelligent switching system at each termi-
nal might make use of these idle pairs for further con-
versations, thereby increasing the traffic capacity of the
system. This method of increasing circuit occupancy is
known as Time Assignment Speech Interpolation or
simply TASI. Just how many additional talkers can be
accommodated depends upon several factors; (1) the
number of independent circuits available in each direc-
tion, (2) the fraction of time that each person is speaking
(the speech activity), and (3) the allowable “freeze-out”
probability (the probability that a talker will find all
circuits occupied when he starts to talk), which in turn
is related to the fraction of all talkers’ speech which will
be frozen out. For instance, in the theoretical limit of a
large number of conventional circuits between two ter-
minals, the TASI gain is the reciprocal of the average
talker activity while the freeze-out probability approaches
zero.

Speech detectors, one on each input line, can provide
the sensory input to TASI as indicated in Fig. 4. They are
able to sense who among the potential talkers is “active”
and needs a circuit, and also when a talker is inactive and
can be disconnected. The output of the speech-detector
can be an on-off signal to operate suitable logic in the
switch control.

One possible logic provides that when a particular
speech-detector indicates the presence of speech on its
line, the programmed TASI switch connects the line to a
transmitting circuit, continuing to operate on incoming
voices until all circuits have been filled, at which time a
freeze-out occurs if another voice comes in. When a talk
spurt terminates, the corresponding line becomes available
for another talker. At the receiving terminal, the auto-
matic switching device must know who is talking over
which circuit, so as to connect each talker to the correct
listener. These data might be passed as a very short
identification signal before each talk spurt, or alterna-
tively over an auxiliary channel which would serve the
entire bank of circuits. These signals can be generated
automatically by the switch control.

SWITCH
CONTROL

SPEECH
DETECTOR

Figure 4 Voice-operated logic.

As you can see, the speech-detector is the heart of
TASI; which, according to calculations, might multiply
the number of available circuits by two or three times.
This, indeed, represents a rather substantial dividend in
efficient communication from a simple device, the
threshold-operated speech-detector. Thus, in concept at
least, the utility of devices to emulate human sensory
functions seems firmly established. In fact, many of us
feel that one link in an ultimate human-communication
channel must be such a recognizer. For example, com-
munication between people at a distance might ideally be
performed by a man-recognizer link at the transmitter
followed by a functionally inverse link at the receiver.
The voice-coding philosophy originated by H. W. Dudley
incorporates just such features.?

Dudley proposed several devices, known as vocoders,
whose recognizer-analyzers might be likened crudely to
the ear and brain of a listener, and whose receiver-syn-
thesizers might be thought of as analog vocal tracts. This
thought is illustrated in Fig. 5.

Ideally, such a system analyzes the talker’s voice,
selecting from it certain perceptually important features,
transmitting a coded description of these features to the
receiver, which then reproduces the talker’s utterance. It
is as though a man were separated from his vocal tract by
some advanced medical technique, and the nerves con-
trolling the tract elongated into a cable. The ear and brain
reside at the receiving point while the vocal tract is trans-
ported to the message destination. To transmit a message
over this system, we talk to this man and he repeats what
he hears.

In an elementary vocoder, the features to be described
by the transmitted signals might be perceptually impor-
tant components of the speech frequency spectrum. In a
more ambitious vocoder, the signals might denote the
sounds of speech or the words from a specified vocabu-
lary, these having been recognized at the analyzer or
coder. In this case, of course, the signals could be made
to actuate a voice typewriter. We might picture this
function as being accomplished by a pair of hands con-
trolled by the “motor” output of the coder. A less
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Figure 5 Representation of efficient speech transmission.

demanding task might require certain actions to be taken
on voice command. Again, these actions could be carried
out by appropriate effectors.

The utility of vocoder arrangement lies in the fact that
an analog vocal tract, or a typewriter, or the other effec-
tors require relatively little direction. The necessary con-
trol information for speech production, for instance, can
in theory be packaged into something less than 50 bits/
second. Speech production with such a low rate input has
been demonstrated many times, and indeed is probably
demonstrated each time a human being speaks. Thus,
such a coding of speech information leads to a highly
efficient use of transmission channel space in a com-
munication system.

The simplest vocoder is the so-called channel vocoder.
Its analyzer is shown in Fig. 6. The vocal tract control
data are derived by passing the speech through a bank

Figure 6 Spectral analysis in a vocoder.

of band-pass filters, and by measuring at each filter output
the energy of a succession of suitable time intervals. At
any one time, then, the spectrum is represented by N
numbers, if there are N filters, each approximately repre-
senting a sample point on the spectrum as indicated in
the lower part of the figure. The succession in time of
such number sets reveals the dynamic progression of the
short-time power spectrum.

These data can be displayed for visual inspection by
the so-called visible speech technique.* Here, in effect, a
large number of overlapping filters provide the spectral
numbers which are projected into a density display on a
frequency-time plane. Such a display is shown in Fig. 7.
At any frequency-time intercept, the density of the dis-
play depicts a spectrum sample number. A phonetic
transcription is shown along the time axis. The vocoder,
in effect, transmits an approximate description of such a
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Figure7 Sound spectrogram of male speech.

sound spectrogram. Thus you are looking at the informa-
tion available to the vocoder speech synthesizer. In re-
producing the input speech, the vocoder must regenerate
a signal with a spectrum to match the succession of
numbers measured by the analyzer. The method com-
monly used for this is merely to superimpose this char-
acteristic on a flat spectrum generated at the vocoder
synthesizer. Figure 8 shows this process. The energy from
the generator is divided into narrow frequency bands,
and the amount of energy in each is adjusted dynamically
by a modulator in accordance with the analyzer measure-
ments. The sum of all these channels has approximately
the same spectral density as the input to the analyzer.

As I have described it, the vocoder performs no recog-
nition function—the spectral data have no unique per-
ceptual correspondence. Many different distributions can
give rise to the same percept. Yet recognition does play
a vital role in the vocoder, as can be seen in the following
discussion.

The energy produced by a talker in generating his
speech can arise from two distinct sources, namely the
vocal cords and turbulent airflow at a constriction in the
vocal tract. The cords produce an approximately periodic
excitation commonly found in voiced sounds such as the
vowels. The fundamental frequency of the excitation cor-
responds to and determines the pitch of the voice. Turbu-
lent airflow in the vocal tract produces a noise-like
disturbance such as is found in the s and sk sounds.
These unvoiced, or voiceless sounds have no pitch. Thus
if the synthesized speech is to assume the talker’s voice
pitch and express his individuality, a flat spectrum of
either noise or periodic pulses, whichever is appropriate

1

d n dis tea n s

at the time, is required. In addition, the repetition rate of
the pulses must be the same as that of his vocal cord
pulses. Thus, the microstructure of the flat spectrum onto
which the general spectral features are superimposed must
be predetermined at the analyzer, and this information
transmitted to the synthesizer to control an artificial vocal
source.

Figure 9 shows the vocoder analysis and synthesis in
outline form while the voicing circuit is detailed. The
vocal cord or voiced energy is provided by a harmonic
tone generator of the appropriate fundamental frequency,
sometimes called the buzz oscillator, and the unvoiced
energy comes from a noise source which generates the
so-called hiss sound. Switching between these sources is
done by a relay. The analysis function to control this
arrangement is shown on the left and requires recognition
of the talker’s voicing dynamics. Present methods for
identifying voicing intervals in speech depend upon the
over-all distribution of speech energy. During voiced
periods, energy tends to be concentrated in the 200-800-
cps band, while for unvoiced sounds the principal energy
resides usually above 1500 cps. This differential is utilized
by the threshold detector whose output causes the synthe-
sizer relay to connect the buzz source. The hiss source
is connected when the buzz source is not. To control the
fundamental buzz frequency during voiced sounds, the
lowest component of these sounds, the voice fundamental,
is selected by a filter and its zero crossings counted. Such
devices are quite vulnerable to predistortion of the spec-
trum or to added noise. Furthermore, these disturbances
often occur in reverberant or noisy environments and in
microphones and transmission circuits which precede the
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vocoder analyzer. The human analyzer on the other hand
is more resistant to the adverse effects of these distortions,
as has been shown by speech intelligibility tests. For
instange,. if white noise is added to speech only, say, 10
decibels below the speech level, listeners can still discrim-
inate vat from’ fat and bit from pit. These discriminations
require the voiced-voiceless distinction.” Needless to say,
present voiced-unvoiced recognizers cannot emulate this
feat.

A basic solution to the voicing recognition problem
would be a real contribution to the speech-recognition
field generally. For, as I will point out, it seems to be a
prerequisite to speech analysis. From the practical point
of view, it is this problem, in large measure, which has
retarded the application of vocoders in the communica-
tion field, an application which would save a factor be-
tween 10 and 30 in the channel capacity necessary to
transmit articulate speech. Quantitatively a reduction
from 60,000 to about 2,000 bits/second would be well
within reason.

Even greater economies could be achieved if recogni-
tion principles could be applied to the representation of
the general spectral features of speech. Such features are
displayed prominently on sound spectrograms of speech
as shown in Fig. 7. The sentence pictured here says “Call
mother long distance,” as is indicated beneath it in pho-
netic script. Notice that during the voiced sections, for
instance just after the k, the speech energy tends to be
concentrated into three or four bands, usually called
formants. Other sections can be characterized by a time
sequence of events such as around the s-t in distance and
still others by specifying crudely a spectral envelope such
as the final s in distance. If the vocoder analyzer could
recognize such features, it could derive an extremely
compact spectral representation, one that could be passed
over a channel of the order of 150 bits/second capacity.®
Just how each of these features contributes to the per-
ceptual value of an utterance is not completely under-
stood. However, people can learn to interpret spectro-
grams in terms of sounds and words. The learning process
is long and laborious, for, after all, the subject is learning
to “hear” through another sense, namely vision.

A set of instructions for spectrogram reading were
formulated during the early and middle 1940’s by a group
of phoneticians and engineers. The rules were published
in the book Visible Speech.” The phoneticians’ point of
view prevailed in this coalition, and the rules were based
primarily upon what was known at that time about the
physics of speech production. The cues that they specify
might be thought of as sufficient to define a sound, but
whose presence is not necessary to the perception of that
sound. Indeed there are many psychologically based
factors which affect speech perception in a major way.
For instance, a person often hears what he expects to
hear. Furthermore, the Visible Speech rules concern the
individual sounds of speech or, as linguists and phoneti-
cians would call them, the phonemes. The concept of a
few building blocks from which speech is put together is
an extremely attractive one. It reduces the vocabulary

size drastically—all the words of English can be synthe-
sized from just 40 basic phonemes. It is quite another
thing, however, to think of perceiving speech in terms of
these elements. One might make analogy here between
speech and literal text. The letters correspond to the
phonemes in this analogy. I have often had the experi-
ence of not being able to spell a word which I have read
many times. Too, when I misspell a word, I often recog-
nize it as being wrong just because it doesn’t “look right.”
What I am saying is that in reading, words are often per-
ceived as a unit, not as a collection of individual letters.
There are some interesting psychological data available
on this point in a study by Postman and Adis-Castro.?
They found that when familiar words were flashed briefly
on a screen the minimum recognition time for an observer
was nearly independent of word length. With less familiar
words the perceived units are evidently shorter than
words, and recognition time does not depend upon length.
Although I know of no experimental data, the perceptual
units of speech are under most circumstances longer than
a single phoneme. Indeed interactions between adjacent
phonemes was a recognized fact, stated in the Visible
Speech book and confirmed many times since. In one
recent demonstration, a phoneme-length section of con-
nected speech was selected and embedded in several dif-
ferent speech samples. It was found that this same section
in various contexts could give rise to several different
perceptions. What people heard depended not only on the
acoustical properties of the section, but on its surround-
ings as well. Prof. G. E. Peterson of the University of
Michigan has recently begun speech synthesis experi-
ments using elements consisting of two connected speech
sounds.® He calls these elements dyads. The transition
between the two sounds is in the middle of each dyad.
The beginning of the first sound and the end of the second
sound lie at the phonetically most stable position of each
sound. It may be that the normal perceptual units of
speech are more nearly akin to dyads than to the indi-
vidual speech sounds themselves. Peterson and one of
his students found that about 8,000 dyads are needed to
synthesize the midwestern dialect of American Speech.1?
This number is certainly not too large for a human lis-
tener to cope with. Indeed it is entirely conceivable that
the normal listener’s perceptual vocabulary is many times
larger than this. Thus, it may be that the making of a
phonetic transcription, which involves resolution of a
continuous utterance into a small number of discrete
characters, must be preceded by an identification of
longer speech segments.

R. H. Galt!! in 1951 decided to draw up a set of rules
for recognition of ten spoken numbers from spectro-
grams. Such rules might more nearly correspond to the
perception of spectrographic patterns and might prove
more easily applied to a variety of speakers. Galt obtained
the services of two “experts” who had long experience in
relating the visual spectrographic features to the percep-
tual features of the corresponding utterances. After a few
trial sessions, Galt had his experts try to write down the
rules they had used. After further refining, these rules
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SHAPE OF BAR 1 NEARLY PARALLEL TO BASE LINE AND NEARLY UNIFORM. BAR ]
USUALLY TOUCHING OR NEARLY TOUCHING THE BASE LINE.

SHAPE OF BAR 1 NEARLY PARALLEL TO BASE LINE AND NEARLY UNIFORM. BAR 1
SHORT AND LIFTED ABOVE BASE LINE AND MAY BE SLIGHTLY ARCHED.

SHAPE OF BAR 1 NOT PARALLEL TO BASE LINE AND/OR NOT UNIFORM. BAR )
APPROACHES BASE LINE AT MIDDLE OR RIGHT END BY A SLOPE OR BY STEPS.

SHAPE OF BAR 1 NOT PARALLEL TO BASE LINE AND/OR NOT UNIFORM. BAR 1 HAS
ABRUPT BREAKS GIVING THE SEQUENCE LOW-HIGH-LOW OR HIGH-LOW-HIGH-LOW.

Figure 10 Scheme for classifying patterns of digits.

were then tested on 330 utterances of the spoken digits
from thirteen men, seven women, and ten children. Galt
found that naive subjects could identify the corresponding
spectrograms with well over 90% success. Some of the
rules are illustrated in Fig. 10, adapted from one of Galt’s
original figures. Six of them concern the frequency loca-
tions, slopes, and continuity of the first three formants.
For instance, notice the up-ended descriptions; they sort
the digits into categories according to the principal slope
of the second formant. Digits “2,” “7” and “Oh” show
a down-slope, the others an up-slope. Another rule con-
cerns the presence of an initial unvoiced section in the
digits marked with A’s, namely “2,” “7,” “3,” “6,” “4,”
and “5.” Still another rule concerns the presence of voiced
sections with formants fixed in frequency—the digit “9”
has two such sections, one at each end. Finally, one rule
notes the presence of a silent gap, marked D, bisecting the
digits “6” and “8.”

For convenience, 1 have arranged Galt’s rules in
matrix form, as shown in Fig. 11. Along the top are listed
the digits, along the side the rules, stating the features to
be noted. A plus or minus in the matrix indicates the
presence or absence of a particular feature in that digit.
A zero indicates that a particular rule is not applicable
to the digit. In identifying a spectrogram, the rules are
applied, and a corresponding list of +’s and —’s prepared

for that spectrogram. This list is then compared to each
column in the matrix and a “score” derived for each
column. A coincidence of either +’s or —’s counts +1
in scoring the column, a mismatch counts — 1, and a zero
nothing. The maximum score identifies the utterance.

Note that these rules concern rather gross properties
of the patterns, and require no very precise measure-
ments. Rather it is the relations between the features that
are important. Further, the identity of each word does not
depend exclusively on any one of its properties. To con-
fuse one word with another requires the simultaneous
confusion of several features. This “diversity” property
is fundamental to the success of the rules since a particu-
lar utterance may exhibit some but not others of the
features. The number of confusions separating each of
the digits can be calculated simply by noting the number
of differences between the columns. Counting each + —
pair as 1 and each +0 or —0 as 1/2, I have prepared
such a table as shown in Fig. 12. Here each entry gives
the number of distinctions separating the digits labeling
the corresponding row and column. If Galt’s rules accu-
rately reflected the perceptual components of the spoken
digits, then these numbers should specify how different
each digit would sound. Of these, according to the table,
“one” and “nine” are most alike, being only 2 distinctions
apart.
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RULE

FORMANT ONE

NEARLY PARALLEL TO BASELINE AND CONTINUOUS

TOUCHING BASELINE IN MOST PLACES

SLOPES DOWNWARD AND HAS NO ABRUPT BREAKS

FORMANT TWO

PRINCIPAL SLOPE DOWNWARD FROM LEFT TO RIGHT

LEFT END LOW, TOUCHING FORMANT ONE

FORMANTS TWO AND THREE

FORMANTS TEND TO COME TOGETHER FROM LEFT TO RIGHT

FORMANTS PROCEED UPWARD TOGETHER FROM LEFT

OTHER

WORD BEGINS WITH UNVOICED SECTION

PRESENCE OF VOICED REGIONS WITH FIXED FORMANTS

PRESENCE OF GAP

Figure 11 Tabulation of recognition rules.

There are two significant facets of speech recognition
which can be discussed in the context of Galt’s rules. The
first involves what is commonly called the vocabulary,
the second, population. Vocabulary size refers to the
number of categories in the classification matrix. In gen-
eral, the larger the vocabulary, the more rules needed,
but there is a more important aspect. Galt’s rules as they
were used in his experiment concerned only ten spoken
digits. Any utterance presented had to fall in one of the
ten categories. Furthermore, the utterances presented for
classification were guaranteed by the experimenter to fall
in one of the ten categories. There were no “clevens” or
“ninetys” presented to the subjects for classification. This

Figure 12 Tabulation of digit separations.

is what I would like to call a selected vocabulary. To
make Galt’s vocabulary what might be called complete,
would require the addition of only one other category,
namely one called not one of the digits. All of the other
words of English would fall into this latter category. This
addition would undoubtedly multiply the number, sub-
tlety, and complexity of the necessary rules many-fold,
if the same level of performance were maintained. This
is another way of saying that recognition success on a
limited, but complete, vocabulary stands a better chance
of uncovering pattern properties which can be generalized
efficiently to higher orders of discriminability than sim-
ilar success on a limited, selected vocabulary. Thus a
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Figure 13 Simplified spectrograms and master patterns.

limitation on the size of a complete vocabulary, while it
represents a simplification, might be thought of as a rather
realistic constraint. After all, the vocabulary size in every-
day communication is restricted more than one might
think by environment, subject matter, and grammatical
and linguistic structure.

Population size refers to the number of subjects from
whom speech samples will be accepted for recognition.
Of course, the complexity of a recognition task increases,
within both selected and complete vocabularies, with
population size. In addition, there are probably some
members of society whose pronunciation is so unortho-
dox that their utterances out of context would not be
recognized correctly by most listeners. These people are
probably not desirable members to include in the recog-
nition population. The performance criterion for a recog-
nition scheme should be based on perceptual experiments.

Other facets of Galt’s rules are significant. The rules,
as they are written, presuppose a single word whose
beginning and end are closely defined. What additional
problems does a connected utterance pose? Certainly, the
perceptual speech units to be recognized will not in
general be words, but will be some other perhaps as yet
unnamed entity. One of the entities will undoubtedly be
silence. Others may be similar to Peterson’s dyads. In
any case there will be many more than the 40 English
phonemes. Furthermore, they will not be of uniform
length. Thus, a set of recognition rules will have to in-
clude a criterion for selecting the proper units for identi-
fication.

Note also that Galt’s rules are written in terms of
spectrographic features which themselves must be recog-
nized if the rules are to aid machine recognition. Finding
a formant or a silent gap in an acoustic complex is a

“THREE"

E. ,

recognition problem just as is the identification of a
spoken number. In this respect the rules remind one of
the ancient explanation of the cosmos in which the earth
is supported by four elephants which stand on the back
of a tortoise—a legitimate question is, what does the
tortoise stand on? The rules are not really so unsupport-
able, however. After all, they reduce the recognition
problem by one level of complexity.

I know of no totally successful work on spectrographic
feature recognition. However, L. G. Kersta®? in 1947 did
an interesting piece of work in which he got at this prob-
lem in a sense. In retrospect, it can be said that Kersta’s
approach took advantage of the same sort of relations
incorporated in Galt’s rules. His results demonstrate how
great a simplification of spectrographic information can
suffice for identification. He again assumed a selected
vocabulary consisting of ten spoken numbers, and took
spectrograms of them from each of nine men and five
women. He divided each spectrogram into a mosaic of
square elements each of which measured 200 cps by 67
milliseconds. If the integrated density in a particular ele-
ment were 1/2 or greater than the integrated density in
the darkest element, then it was represented as being
entirely black. If the integrated density were less than
1/2 then it was represétited as being entirely white. Thus,
Kersta achieved a highly#simplified spectrogram, as is
indicated for three digits in the top row of Fig. 13. For
each digit he then compiled two master patterns. One
consisted of all black elements common to the utterances
of the fourteen speakers. These are shown in the second
row of Fig. 13 for the digits “one,” “two,” and “three.”
The second master pattern consisted of all common white
elements as shown by the blank elements in the bottom
row of Fig. 13. When the original patterns were compared
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BLACK
MASTER

WHITE
MASTER

I IIAND "
| ERROR PROB. %

0.21% AVERAGE

Figure 14 Tabulation of recognition performance.

with each master, it was found that quite often a single
original pattern contained elements in common with the
masters from several numbers. This situation resulted in
a single spectrogram being classified into several cate-
gories. Just how often this occurred for both the black
and white masters can be seen in Fig. 14. The percent
probability that a particular digit will match a master
other than the correct one is marked x, and the probabil-
ity that other digits will match a particular master is
marked y. For instance, for the black masters, spoken
“twos” were never identified as any other number while
other numbers were called “two” with a probability of
15% . Now if the black and white masters are applied in
tandem with a logical “and” requirement; that is, both
black and white elements must match, the error proba-
bility falls startlingly. The maximum error probability for
any digit is less than one percent, while the average over
all digits is about 0.2% . In other words, the number utter-
ances were identified with over 99.5% success. Clearly,
Kersta has extracted some common elements from the
utterances of 14 people.

To digress for a moment, I particularly wanted to
mention Kersta’s experiment because it was done by digi-
tal simulation. The simplified spectrographic data from
the 140 utterances were punched onto IBM cards, as
were the master patterns. An IBM card sorter then carried
out the matching procedure and compiled the results. It
might well be that this was the first use of digital equip-
ment in speech-processing research. It presaged a tech-
nique which promises to catalyze research in efficient
voice and visual communication. Needless to say, IBM
research and IBM equipment are playing a major role
in this area.

Kersta’s master patterns might be thought of as tem-
plates, and the identification procedure as a matching
process. In thinking of broader aswplication of the scheme,
it is natural to ask what wewld happen to the master
patterns as the population were expanded from 14 peo-
ple. Certainly as all personal variations, such as duration
and dialect, are absorbed all the patterns will contain null
elements exclusively; there will be no elements in com-
mon among the simplified spectrograms. The scheme
might be stretched in this direction by using a proba-
bilistic principle among the spectrograms, rather than
requiring absolute coincidence among them all. This
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modification might be applied both for determination of
the master patterns and for the matching procedure.
Nonetheless, the template approach seems limited by the
gross variability among talkers. However, it does illus-
trate the degree of success that can at present be attained
with the limited-selected vocabulary, and a limited pop-
ulation. More than this, it again affirms the principle of
using many gross features or decisions rather than a few
precise ones in speech recognition.

Thus, while there have been several more or less suc-
cessful but limited demonstrations of speech recognition,
many of the fundamental questions remain to be resolved.
As I have pointed out earlier, one of the most central of
these is the recognition of formants, silence, and the other
important features. Importance here implies perceptual
importance. There may well be features visible on spec-
trograms which have no auditory consequence. These
should be ignored in the recognition process. In examin-
ing spectrograms of the same words spoken by several
talkers, one cannot fail to be impressed by the gross
differences in the spectral patterns. You will agree, I think,
after comparing spectrograms of the same words spoken
by a man in Fig. 7 and by a woman in Fig. 15. Some of
these differences at least are not real in the sense that they
reflect true differences in the acoustic character of the
utterances. Consider, for instance, the vowel produced
by the usual model, namely a linear, passive network
excited by repetitive, periodic impulses as shown in the
upper line of Fig. 16. The phonetic value of the vowel is
determined by the network response, the voice pitch by
the impulse repetition rate. Two voice pitches are illus-
trated, one high and one low. The vowel sound will then
consist of repeated transients at the same repetition rate.
As indicated in Fig. 16, its spectrum will be composed of
harmonically related tones whose amplitudes depend
upon the response of the network at the frequencies of
the tones. One can look upon the harmonic magnitudes as
“samples” of the network amplitude response, close to-
gether for a low pitch, further apart for a high pitch. If
the vowel is then passed repeatedly through a slowly
scanning filter, a reduced resolution “spectrogram” re-
sults. The degree of resolution depends upon the relation
between the filter width and the harmonic spacing. If the
voice pitch is low, and the filter is broad enough to en-
compass two or three harmonics, a reasonably good




approximation to the network amplitude response will
result, as shown on the left in Fig. 16. This is not true
when the voice pitch is high, and the filter width is such
that it includes only one harmonic at a time, as shown on
the right. The spectrograms in these two instances will
appear to the eye, and to any instrument observing the
spectral analysis, as being quite different. In the former
case, the formants would tend to be clearly evident; in
the latter, harmonic maxima could be easily confused
with formant maxima. Thus a confusing structure can be
superimposed on a spectral analysis by the discrete and
variable nature of voiced sounds. Of course, if the pitch
frequency is known, then the effect can be removed
subsequent to the analysis. A better method, shown at the
bottom, is to segment the speech into pitch period length
segments before analysis. The spectrum of each period is
the same as the response of the network at a finite number
of points; these points lying at the positions of the vowel’s
harmonic tones. An estimate of the network response
can then be had from these points, which in the case of
the period-by-period analysis are guaranteed to fall on
the response curve. Thus, the parameters of speech
analysis should be a function of the voice pitch itself.
Seen from this viewpoint, pitch detection is fundamental
to the whole problem of speech analysis, and quite likely
to speech recognition as well, for a variety of talkers
and pitches.

While a pitch-synchronous analysis will be helpful, it
will not, of course, be an “open sesame” to the promised

Figure 15 Sound spectrogram of female speech.
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land of recognition. Rather, basic studies in at least three
fields are called for. First, we should pursue further study
of human anatomy and physiological processes. I don’t
want to imply that a speech recognizer must follow
human methods exclusively. However, the close relation
between speaking and hearing would argue for this view.
The argument becomes more valid as recognition aims
encompass a larger population of talkers and a larger
vocabulary. Second, physiological research must be sup-
plemented by measurements of human ability and be-
havior in the process of recognition. Such psychological
work should not be merely a tabulation of the properties
of human behavior, but should be guided by underlying
models, perhaps incorporating a considerable amount of
mathematical and logical formalism. One problem that
deserves attention is that of establishing the relative per-
ceptual importance of various acoustic features. The
more important should be weighted more heavily in a
recognition scheme. Thus, for instance, in scoring a
spoken digit against Galt’s rules, some coincidences and
anti-coincidences should be counted more heavily than
others. Which ones, we do not know at present, although
we might guess. One way to investigate this matter is
through psychoacoustic experiments in auditory percep-
tion.

Another possibility in finding perceptual correlates is
to have a computer act as a naive subject in Galt’s ex-
periment. By observing its own errors, it might over a
period of time compile a successful set of rules. Identifi-
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cation of spectrographic features might be accomplished
similarly.

Finally, the problem of recognition must be attacked
by considering logically and mathematically how a human
being or a machine could recognize speech patterns, and
by testing experimentally the validity of proposed
schemes. Here the use of digital computers to simulate
the necessary experimental equipment will yield very

considerable economies of time and effort, while retaining
the necessary flexibility.

Work in each of these fields is progressing, and com-
munication across their boundaries is providing a good
deal of stimulation. As this research proceeds, the limita-
tion on recognizers will come to rest upon how much
human time, effort, and money we are willing to expend
in simulating human functions.
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