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Channels  with Side  Information at the  Transmitter 

Abstract: In certain communication systems where information i s  to be transmitted from one point to another, 

additional side information i s  available  at the transmitting point. This side information relates to the state of 

the transmission channel and can be used to aid in the coding and transmission of  information. In this paper a 

type of channel with side information is studied and its capacity determined. 

Introduction 

Channels  with  feedback1 from  the receiving to  the trans- 
mitting  point are a  special case of a  situation in which 
there is additional information available  at  the  transmitter 
which  may be used as an aid in the  forward transmission 
system. In Fig. 1 the channel  has an  input x and  an  out- 
put Y .  

There is a  second output  from the channel, u,  available 
at the  transmitting  point, which may be used in the coding 
process. Thus  the  encoder has  as inputs  the message to be 
transmitted, r n ,  and the  side information u. The sequence 
of input letters x to  the channel will be a function of the 
available part  (that is, the past up to  the  current  time) of 
these signals. 

The signal u might be the received signal y ,  it might be 
a noisy version of this signal, or it might not relate to y 
but be statistically correlated  with the general state of the 
channel. As a  practical  example,  a  transmitting  station 
might have available a receiver for testing the  current 
noise conditions at different  frequencies. These results 
would be used to choose the  frequency  for transmission. 

A simple  discrete  channel  with side information is 
shown  in Fig. 2 .  In this  channel, x, y and u are all binary 
variables;  they can be either  zero or one. The channel can 
be used once  each second.  Immediately after it is used the 
random device chooses  a  zero or  one independently of 
previous choices and with probabilities 1/2,  1/2. This 
value of u then appears  at  the transmitting  point. The 
next x that is sent is added in the  channel modulo 2 to this 
value of u to give the received y .  If the side information u 
were not available at  the  transmitter,  the  channel would 
be that of Fig. 3, a channel in which input 0 has  proba- 
bilities 1 /  2 of being received as 0 and 1/ 2 as 1 and 
similarly for  input 1.  

Such  a  channel has capacity  zero.  However,  with the 
side information available, it is possible to send one bit per 
second through  the  channel.  The u information is used to 
compensate for  the noise inside by a  preliminary  reversal 
of zero  and  one, as in Fig. 4. 

Figure I 

I I 
m 

e ENCODER 
I C H A N N E L  

Figure 2 

M O D U L O  2 
I""""""""""""""- 

1 

Y i  

I 
4-1 

I 

I 
I 
I 
I 

I 
I 
I 
I 

Figure 3 

Figure 4 
r"""""""- 
I 

1 

+ ~ X I  I ,  
- 1  I- 

I 
U 

I 
I 
I 

289 

IBM JOURNAL - OCTOBER 1958 



Without studying the problem of side information in its 
fullest  generality,  which would involve possible historical 
effects in  the channel, possibly infinite input  and  output 
alphabets,  et  cetera, we shall  consider  a  moderately gen- 
eral case for which a simple  solution has been found. 

The memoryless discrete channel with 
side state information 

Consider a channel which has a finite number of possible 
states, SI, SZ, . . . , sh. At  each use of the channel  a new 
state is chosen,  probability gt for  state st. This choice is 
statistically independent of previous  states and previous 
input or output letters  in the channel. The  state is avail- 
able as side information u at  the transmitting  point. When 
in state st the  channel  acts like  a particular discrete chan- 
nel Kt. Thus, its operation is defined by a set of transition 
probabilities Pti( j )  , t= 1, 2,. . . , h, i= 1, 2 , .  . . ,a, j =  1, 2, 
. . . , 6,  where a is the  number of input letters and b the 
number of output letters. Thus, abstractly, the  channel is 
described by the set of state probabilities gt and transition 
probabilities pt i (  j )  , with gt the probability of state t and 
p t i ( j )  the conditional  probability, if in state t and i is 
transmitted,  that j will be received. 

A block code with M messages (the integers 1, 2, . . . , 
M )  may be defined as follows for  such a channel with 
side information. This definition, incidentally, is analo- 
gous to  that  for a  channel  with feedback given previ- 
ous1y.l If n is the block length of the code, there  are n 
functions f l ( m ; u l > ,  f2(m;u1, UZ), f3(m;ul, u2, ~ 3 1 , .  . . , 
f ,(m; u1, UZ, . . . ,u,). In these functions m ranges over 
the set of possible messages. Thus m= 1, 2, . . . , M .  The 
ui all range over the possible side information alphabet. 
In  the  particular case here  each ui can take values from 
1 to g .  Each  function fi takes values in the  alphabet of 
input letters x of the channel. The value fi( m; ul, u2, . . . , 
u t )  is the  input xi to be used in the  code if the message is 
rn and  the side information  up  to  the time  corresponding 
to i consisted of ul, u2, . . . , ui. This is the  mathematical 
equivalent of saying that a code consists of a way of deter- 
mining, for  each message m and each  history of side in- 
formation  from  the beginning of the block up  to  the 
present, the next transmitted letter. The  important  feature 
here is that only the  data available at  the time i, namely 
m; u1, UZ, . . . , ui, may be used in  deciding the next  trans- 
mitted  letter xi, not  the side information ~ i + ~ ,  . . . , u, yet 
to  appear. 

A  decoding system for  such a  code consists of a map- 
ping or  function h(y l ,   y2 ,  . . . , y,) of received blocks of 
length n into messages m; thus h takes values from 1 to 
M .  It is a way of deciding on a transmitted message given 
a complete received block yl ,   y2,  . . . , yn. 

For a given set of probabilities of the messages, and  for 
a given channel  and coding and decoding system, there 
will exist a  calculable  probability of error P,; the  proba- 
bility of a message being encoded and received in such a 
way that  the  function h leads to deciding on a different 
message. We shall be concerned  particularly  with cases 
where the messages are equiprobable. each having  uroba- 
bility 1/M. The rate for  such a code'  is ( l / n )  
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log M .  We 

are interested  in the channel  capacity C ,  that is, the 
largest rate R such  that  it is possible to  construct codes 
arbitrarily close to  rate R and with  probability of error 
P, arbitrarily  small. 

It may  be  noted that if the  state  information were not 
available at  the transmitting point,  the  channel would act 
like  a memoryless channel  with  transition  probabilities 
given by 

Thus,  the capacity C1 under this  condition  could  be  cal- 
culated by the  ordinary means for memoryless  channels. 
On  the  other  hand, if the  state  information were available 
both at transmitting and receiving points, it is easily shown 
that  the capacity is then given by C2 = x g t C t ,  where Ct is 

the capacity of the memoryless channel with  transmission 
probabilities p t i ( j ) .  The situation we are interested  in here 
is intermediate-the state  information is available at  the 
transmitting  point  but not  at the receiving point. 

Theorem: The capacity o f  a memoryless discrete  channel 
K with side  state information,  defined  by gt and ptl(j), is 
equal to  the capacity of the  memoryless  channel K (with- 
out side information)  with  the  same  output  alphabet and 
an  input alphabet with ah input letters X =  (XI, x2,. . . ,xh) 
where  each xi= 1, 2 ,  . . . , a.  The transition  probabilities 
r x ( y )  for  the channel K are given  by 

Any  code and decoding  system  for K' can be translated 
into  an  equivalent  code and decoding  system for  K with 
the  same probability of error. A n y  code  for K has an 
equivocation of message (conditional  entropy  per letter of 
the message given  the received sequence) at least R - C, 
where C is  the capacity of K .  Any  code  with rate R>C 
has  a  probability of error bounded  away  from  zero  (what- 
ever the block length n) 

PC 2 
R-C 

It  may be noted  that this theorem reduces the analysis 
of the given channel K with side information  to  that  for a 
memoryless  channel K' with more  input letters but with- 
out side information.  One uses known  methods to  deter- 
mine the capacity of this derived channel K and this 
gives the capacity of the original  channel. Furthermore, 
codes for  the derived  channel may be translated into 
codes for  the original channel with  identical  probability 
of error.  (Indeed, all statistical  properties of the codes are 
identical.) 

We first show  how  codes for K' may be translated into 
codes for K. A code word for  the derived channel K 
consists of a  sequence of n letters X from  the X input 
alphabet of K'. A particular  input letter X of this  channel 
may be recognized as a particular function from  the state 
alphabet  to  the  input alphabet x of channel K .  The full 



possible alphabet of X consists of the full  set of ah differ- 
ent possible functions  from  the  state  alphabet with h 
values to  the  input value with a values. Thus, each  letter 
X =  (x1,  xz, . . . , xh) of a code  word  for K' may  be inter- 
preted as a function  from  state u to  input  alphabet x. The 
translation of codes consists merely of using the  input x 
given by this function of the  state variable. Thus if the 
state variable u has  the value 1, then x1 is used in  channel 
K ;  if it were state k,  then xk. In  other words, the transla- 
tion is a  simple  letter-by-letter  translation without memory 
effects depending on previous  states. 

The codes for K' are really just another way of describ- 
ing certain of the codes for K-namely those where  the 
next input letter x is a  function  only of the message m and 
the  current  state u, and does not depend on the previous 
states. 

It might be pointed out also that a  simple physical 
device could be constructed  which, placed ahead of the 
channel K ,  makes it  look like K .  This device would have 
the X alphabet  for  one  input  and  the  state  alphabet  for 
another  (this  input connected to  the u line of Fig. 1). Its 
output would range over the x alphabet  and be  connected 
to  the x line of Fig. 1. Its  operation would be to give an x 
output corresponding to  the X function of the  state u. It is 
clear that  the statistical  situations for K and K' with the 
translated  code are identical. The probability of an  input 
word for K' being received as  a particular  output word is 
the  same as that  for  the corresponding operation with K .  
This gives the first part of the theorem. 

To prove the  second part of the theorem, we  will show 
that in the original channel K ,  the  change in  conditional 
entropy  (equivocation)  of  the message m at  the receiving 
point  when  a  letter is received cannot exceed C (the ca- 
pacity of the derived channel IC). In  Fig. 1, we let m be 
the message; x, y ,  u be the next input letter, output letter 
and  state letter. Let U be the past  sequence of u states 
from  the beginning of the block code  to  the present (just 
before u )  , and Y the past  sequence of output letters up to 
the current y .  We are assuming here a given block code 
for encoding messages. The messages are chosen from a 
set  with certain probabilities (not necessarily equal). 
Given  the statistics of the message source, the coding sys- 
tem,  and  the statistics of the channel, these various  entities 
m, x ,  y ,  U ,  Y all belong to a  probability  space and  the 
various  probabilities involved in the following calculation 
are meaningful. Thus  the equivocation of message when 
Y has been received, H ( m  I Y ) ,  is given by 

~ ( m l  Y )  = - I: P ( m ,  Y )  log ~ ( m l  Y )  
m, Y 

= - E  logP(mlY) . ( ) 
(The symbol E ( G )  here  and  later means  the  expectation 
or average of G over the probability space.)  The change 
in  equivocation when the next letter y is received is 

H ( m l Y ) - H ( m l Y , y ) = - E  logP(m1Y) 0 

The last  reduction is true since the  term E log ( ;z3 
is an average mutual  information  and  therefore  non- 
negative. Now  note  that by the independence  require- 
ments of our original system 

P ( y ( x ) = P ( y ( x ,  m, u, U )  = P ( y l x ,  m,u,  U,  Y ) .  

Now since x is a  strict function of m, u, and U (by  the 
coding system function) we may omit  this  in the condi- 
tioning  variables 

P ( y l m ,  u, U ) = P ( y I m ,  u, u, Y ) ,  

P ( Y ,  m, u, U >  - P ( Y ,  m, u, U, Y >  
P ( m ,  u, U )  P ( m ,  u, u, Y )  

- 

Since the new state u is independent of the past P ( m ,  u, U )  
= P ( u ) P ( m ,  U )  and P ( m ,  u, U ,  Y )  = P ( u ) P ( m ,  U,  Y). 
Substituting and simplifying, 

P(Y,  ulm, U ) = P ( y ,  ulm, u, Y ) .  

Summing  on u gives 

P ( y I m ,   U ) = P ( y l m ,  u, Y ) .  

Hence : 

H(Y I m, U )  = H ( y  I m, u, Y )  I H ( Y  I m, Y )  

-E logP(yIm, U )  ( 
Using this in ( 1 ) , 

We  now wish to  show  that P ( y  I m, U )  = P ( y  I X ) .  Here 
X is a random variable  specifying the function from u to x 
imposed by the encoding operation  for  the next input x to 
the channel.  Equivalently, X corresponds to  an  input let- 
ter in the derived channel K'. We  have P ( y l x ,  u )  = 

P ( y  I x, u, m, U )  . Furthermore,  the coding system used 
implies a functional relation for determining the next 
input  letter x, given m, U and u. Thus x = f ( m ,  U,  u )  . If 
f ( m ,  U ,  u )  = f ( m ' ,  U', u )  for two particular pairs (m, U )  
a n d  (m', U') b u t   f o r   a l l  u ,  t h e n   i t   f o l l o w s   t h a t  
P ( y l m ,  U , u ) = P ( y l r n ' ,  U , u )  foralluandy;sincem, U 
and u lead to  the  same x as m', U', and u. From this we 291 
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( m ,  U )  pairs  which give the  same  function f ( m ,  U ,  u )  probabilities p1 and 1 -pl and pz, 1 -p2 to  the two output 
give the  same value of P ( y l m ,  U )  or, said another way,  letters respectively, has  the  channel capacity of the orig- 

Returning now to our inequality (2), we have  Another example,  with three  output letters,  two input 
letters and  three states, is the following. With  the states 

matrices for  the  three states are: 

P ( y l m ,   U ) = P ( y l X ) .  inal channel K .  

H ( m l  Y )  - H ( m l  Y, y )  < E  assumed to each  have  probability 11'3, the probability 

H(mlY)- -H(mlY,y)<C.  

This is the desired inequality on  the equivocation. The 
equivocation cannot be reduced by more  than C, the ca- 
pacity of the derived  channel K' ,  for  each received letter. 
In particular  in a block code with M equiprobable mes- 
sages, R=   l / n  log M .  If R>C, then at  the end of the block 
the equivocation  must still be at least nR-nC, since it 
starts  at nR and can  only  reduce  at  most C for each of 
the n letters. 

It is shown  in the Appendix that if the equivocation per 
letter is at least R-C then  the probability of error in 
decoding is bounded by 

Po 2 R-C 

Thus  the probability of error is bounded  away from  zero 
regardless of the block  length n,  if the  code  attempts  to 
send at a rate R>C. This concludes the proof of the 
theorem. 

As  an example of this theorem, consider  a channel with 
two  output letters,  any number a of input letters and any 
number h of states. Then  the derived channel K' has two 
output letters and ah input letters.  However,  in  a  channel 
with just  two  output letters,  only two of the  input letters 
need be used to achieve channel capacity, as shown  in 
(2). Namely, we should  use  in K' only the two letters 
with  maximum and  minimum transition  probabilities to 
one of the  output letters. These two  may  be found as  fol- 
lows. The transition  probabilities for a particular letter of 
K' are averages of the corresponding  transitions for a  set 
of letters for K ,  one  for  each state. To maximize the  tran- 
sition  probability to one of the  output letters, it is clear 
that we should  choose  in each  state  the  letter with the 

State I State 2 State 3 
1 0  0 0 1 0  0 0 1  
0 1/2 1/2  1/2 0 1/2 1/2  1/2 0 

In this  case there  are 23=8 input letters  in the derived 
channel K'. The  matrix of these is as follows: 

1/2 1/ 2 0 
0 1/2 1/2 

1/2 0 1/2 
2 /  3 1/6 1/6 
1 /6  2/ 3 1/6 
1/6 1 /6  2/ 3 
I /  3 1/ 3 1/3 
1/3 1/3 1/3 

If there  are only three  output letters, one need use only 
three  input letters to achieve channel capacity, and in  this 
case it is readily  shown that  the first three  can  (and in fact 
must) be used. Because of the  symmetry, these three let- 
ters  must  be used with equal  probability and  the resulting 
channel capacity is log (3/2). 

In  the original  channel, it is easily seen that, if the  state 
information were not available, the channel would act like 
one with the transition matrix 

1/3 1/3 1/3 
1/3 1/3 1/3 

This  channel clearly has  zero  capacity. On  the  other  hand, 
if the  state  information were available at  the receiving 
point or at both the receiving point and  the transmitting 
point, the two input letters can be  perfectly distinguished 
and  the channel  capacity is log 2.  

Appendix 

Lemma: Suppose there  are M possible events with  proba- 
bilities pi( i= 1, 2, . . . , M )  . Given  that  the  entropy H 
satisfies 

H = - &;lnpi>A. 
maximum  transition to  that  output letter. Similarly, to 
minimize, one chooses in each state the letter with the  then  the  total probability P ,  for all possibilities except the 

minimum  transition  probability to  that letter. These two most probable satisfies 

. -  - 

resulting  letters in K' are  the only  ones  used, and  the A 
corresponding channel gives the desired channel capacity. 
Formally,  then, if the given channel  has probabilities 61n (F) 
pti(  1) in state t for  input  letter i to  output letter 1, and 
pti(2) = l-pti( 1) to the  other  output letter 2, we tal- Proof: For a given H ,  the minimum p e  will Occur if all 
culate:  the probabilities  except the largest one  are equal.  This 

follows from  the convexity properties of entropy; equaliz- 
292 = Zgt maxpt i ( l ) ,  a ing two probabilities increases the  entropy. Consequently, 

P ,  > 
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possibility with  probability 1 - ( M -  1)  q. Our given con- ( M -  1)  qln - >A. e 

dition is then  4 
Now assume in contradiction  to  the conclusion of the 

lemma  that 
Since f ( x )  = - (1  -x)ln( 1 -x) is concave  downward with 

slope 1 a tx=O,   ( f ’ (x)=l+ln( l -x) ;  f”(x)=--<O 

for O<x< l ) ,  it follows that f(x)  <x  and  the second term 
above is dominated by ( M  - 1)q.  The given condition 
then implies Since qln “is monotone increasing in q, this would imply 

1 P,= (” I ) q  < A 

1-x 6 lnM+ln - ( lnM A ) 
9 

- ( M -  1)qlnqf ( M -  l ) q > A  that 

A a 
( M - l ) q l n e  < 

I 

A 

a 

The first dominating  constant is obtained by writing the  cor- 
responding term as ( InlnM- InA + In ( M -  1 ) - InlnM) / 
(InlnM-InA+InM). Since lnM>A, this is easily seen to 
be dominated by 1 for M > 2 .  (For M =  1,  the  lemma is 
trivially true since then A=O.) The  term dominated by 3 
is obvious. The last term is of the  form  InZ/Z. By differ- 
entiation we find this takes its maximum  at Z = e  and  the 
maximum is l / e .  Since our conclusion  contradicts the 
hypothesis of the  lemma, we have proved the desired 

InM+ In - 1nM + In - 1nM ’ 

a A 

( M > l ) .  

XPi f  (Ai)  2 f ( Z P i A i )  = f (A)  and we conclude that the 
bound of the  lemma  remains  valid  even in this  more  gen- 
eral case  by  merely  substituting  the  averaged  value of A. 

A common situation for use of this result is in signaling 
with a  code at a rate R greater than channel  capacity C .  
In  many types of situation  this  results in an equivocation 
of A = n ( R - C )  after n letters have been sent.  In this  case 
we may say that  the probability of error  for  the block sent 
is bounded by (substituting  these values in  the  lemma) 

” R - C  R-C  
result. 

The chief application of this lemma is in placing  a 
lower bound on probability of error  in coding  systems. If 
it is known that in  a certain situation the “equivocation,” that is, the conditional entropy of the message given a n ( R - C )  ) 6 ( R - I n ( l - g ) )  

P,  B - - 
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