C. E. Shannon

Channels with Side Information at the Transmitter

Abstract: In certain communication systems where information is to be transmitted from one point to another,

additional side information is available at the transmitting point. This side information relates to the state of

the transmission channel and can be used to aid in the coding and transmission of information. In this paper a

type of channel with side information is studied and its capacity determined.

Introduction

Channels with feedback® from the receiving to the trans-
mitting point are a special case of a situation in which
there is additional information available at the transmitter
which may be used as an aid in the forward transmission
system. In Fig. 1 the channel has an input x and an out-
puty.

There is a second output from the channel, u, available
at the transmitting point, which may be used in the coding
process. Thus the encoder has as inputs the message to be
transmitted, m, and the side information u. The sequence
of input letters x to the channel will be a function of the
available part (that is, the past up to the current time) of
these signals.

The signal u might be the received signal y, it might be
a noisy version of this signal, or it might not relate to y
but be statistically correlated with the general state of the
channel. As a practical example, a transmitting station
might have available a receiver for testing the current
noise conditions at different frequencies. These results
would be used to choose the frequency for transmission.

A simple discrete channel with side information is
shown in Fig. 2. In this channel, x, y and u are all binary
variables; they can be either zero or one. The channel can
be used once each second. Immediately after it is used the
random device chooses a zero or one independently of
previous choices and with probabilities 1/2, 1/2. This
value of u then appears at the transmitting point. The
next x that is sent is added in the channel modulo 2 to this
value of « to give the received y. If the side information u
were not available at the transmitter, the channel would
be that of Fig. 3, a channel in which input 0 has proba-
bilities 1/2 of being received as 0 and 1/2 as 1 and
similarly for input 1.

Such a channel has capacity zero. However, with the
side information available, it is possible to send one bit per
second through the channel. The u information is used to
compensate for the noise inside by a preliminary reversal
of zero and one, as in Fig. 4.
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Without studying the problem of side information in its
fullest generality, which would involve possible historical
effects in the channel, possibly infinite input and output
alphabets, et cetera, we shall consider a moderately gen-
eral case for which a simple solution has been found.

The memoryless discrete channel with
side state information

Consider a channel which has a finite number of possible
states, §1, S2, ..., Sn At each use of the channel a new
state is chosen, probability g; for state s;. This choice is
statistically independent of previous states and previous
input or output letters in the channel. The state is avail-
able as side information u at the transmitting point. When
in state s, the channel acts like a particular discrete chan-
nel K. Thus, its operation is defined by a set of transition
probabilities Py (j), t=1, 2,...,h, i=1, 2,...,a, j=1, 2,
..., b, where a is the number of input letters and b the
number of output letters. Thus, abstractly, the channel is
described by the set of state probabilities g; and transition
probabilities p;(j), with g, the probability of state ¢ and
pu(j) the conditional probability, if in state ¢ and i is
transmitted, that j will be received.

A block code with M messages (the integers 1, 2, ...,
M) may be defined as follows for such a channel with
side information. This definition, incidentally, is analo-
gous to that for a channel with feedback given previ-
ously.! If n is the block length of the code, there are n
functions fi(m;u1), f2(m;u1, u2), fa(m;uy, uz, us),. ..,
fa(mjuy, uz, . .. ,u,). In these functions m ranges over
the set of possible messages. Thus m=1, 2, ..., M. The
u; all range over the possible side information alphabet.
In the particular case here each u; can take values from
1 to g. Each function f; takes values in the alphabet of
input letters x of the channel. The value f;(m; s, us, . . . ,
u;) is the input x; to be used in the code if the message is
m and the side information up to the time corresponding
to i consisted of uy, us, ..., u;. This is the mathematical
equivalent of saying that a code consists of a way of deter-
mining, for each message m and each history of side in-
formation from the beginning of the block up to the
present, the next transmitted letter. The important feature
here is that only the data available at the time i, namely
m; U1, Uz, . . ., 4;, may be used in deciding the next trans-
mitted letter x;, not the side information w1, . . . , U, yet
to appear.

A decoding system for such a code consists of a map-
ping or function A(yy, ¥s, ..., y,) of received blocks of
length » into messages m; thus / takes values from 1 to
M. 1t is a way of deciding on a transmitted message given
a complete received block y4, y, . . . , ¥n.

For a given set of probabilities of the messages, and for
a given channel and coding and decoding system, there
will exist a calculable probability of error P.; the proba-
bility of a message being encoded and received in such a
way that the function h leads to deciding on a different
message. We shall be concerned particularly with cases
where the messages are equiprobable, each having proba-
bility 1/M. The rate for such a code is (1/n) log M. We
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are interested in the channel capacity C, that is, the
largest rate R such that it is possible to construct codes
arbitrarily close to rate R and with probability of error
P, arbitrarily small.

It may be noted that if the state information were not
available at the transmitting point, the channel would act
like a memoryless channel with transition probabilities
given by

pi(j) = §gtpn~<f).

Thus, the capacity Cy under this condition could be cal-
culated by the ordinary means for memoryless channels.
On the other hand, if the state information were available
both at transmitting and receiving points, it is easily shown

that the capacity is then given by Cy = EtgtCt, where C, is

the capacity of the memoryless channel with transmission
probabilities p.;(j). The situation we are interested in here
is intermediate—the state information is available at the
transmitting point but not at the receiving point.

Theorem: The capacity of a memoryless discrete channel
K with side state information, defined by g, and p.(j), is
equal to the capacity of the memoryless channel K' (with-
out side information) with the same output alphabet and
an input alphabet with a® input letters X = (x4, X2,...,%s)
where each x,—1,2,...,a. The transition probabilities
rx(y) for the channel K’ are given by

rx(¥)=re) ey, ..., 5,() = 28z, ().

Any code and decoding system for K’ can be translated
into an equivalent code and decoding system for K with
the same probability of error. Any code for K has an
equivocation of message (conditional entropy per letter of
the message given the received sequence) at least R—C,
where C is the capacity of K'. Any code with rate R>C
has a probability of error bounded away from zero (what-
ever the block length n)

R-C

6 (R + iln—R—)
n R—-C

It may be noted that this theorem reduces the analysis
of the given channel K wirh side information to that for a
memoryless channel K’ with more input letters but with-
out side information. One uses known methods to deter-
mine the capacity of this derived channel K’ and this
gives the capacity of the original channel. Furthermore,
codes for the derived channel may be translated into
codes for the original channel with identical probability
of error. (Indeed, all statistical properties of the codes are
identical.)

We first show how codes for K’ may be translated into
codes for K. A code word for the derived channel K’
consists of a sequence of n letters X from the X input
alphabet of K’. A particular input letter X of this channel
may be recognized as a particular function from the state
alphabet to the input alphabet x of channel K. The full

P, >




possible alphabet of X consists of the full set of 4" differ-
ent possible functions from the state alphabet with 4
values to the input value with a values. Thus, each letter
X =(x1, X2, ..., xn) of a code word for K’ may be inter-
preted as a function from state u to input alphabet x. The
translation of codes consists merely of using the input x
given by this function of the state variable. Thus if the
state variable u has the value 1, then x; is used in channel
K; if it were state k, then x;. In other words, the transla-
tion is a simple letter-by-letter translation without memory
effects depending on previous states.

The codes for K’ are really just another way of describ-
ing certain of the codes for K—namely those where the
next input letter x is a function only of the message m and
the current state u, and does not depend on the previous
states.

It might be pointed out also that a simple physical
device could be constructed which, placed ahead of the
channel K, makes it look like K'. This device would have
the X alphabet for one input and the state alphabet for
another (this input connected to the « line of Fig. 1). Its
output would range over the x alphabet and be connected
to the x line of Fig. 1. Its operation would be to give an x
output corresponding to the X function of the state u. Itis
clear that the statistical sitvations for K and K’ with the
translated code are identical. The probability of an input
word for K’ being received as a particular output word is
the same as that for the corresponding operation with X.
This gives the first part of the theorem.

To prove the second part of the theorem, we will show
that in the original channel K, the change in conditional
entropy (equivocation) of the message  at the receiving
point when a letter is received cannot exceed C (the ca-
pacity of the derived channel K'). In Fig. 1, we let m be
the message; x, y, u be the next input letter, output letter
and state letter. Let U be the past sequence of u states
from the beginning of the block code to the present (just
before u), and Y the past sequence of output letters up to
the current y. We are assuming here a given block code
for encoding messages. The messages are chosen from a
set with certain probabilities (not necessarily equal).
Given the statistics of the message source, the coding sys-
tem, and the statistics of the channel, these various entities
m, x, y, U, Y all belong to a probability space and the
various probabilities involved in the following calculation
are meaningful. Thus the equivocation of message when
Y has been received, H(m|Y), is given by

H(m|Y) = — EyP(m, Y) log P(m|Y)

=—E(logP(m|Y)) .

(The symbol E(G) here and later means the expectation
or average of G over the probability space.) The change
in equivocation when the next letter y is received is

H(m|Y)-H(m|Y,y)=—E (log P(mIY))

+ E (log P(m|Y, y))

E (10 P(m|Y,y)
P(m|Y)

£ (1 P(m,Y,y)P(Y)
( P(Y,y)P(m, Y)

_E (log P(y|m, Y)P(Y) )

P(Y,y)
P(y|m, Y) P(Y,y)

= ATy E(log —

£ (log PG) (‘og PNIPG)
H(m|Y)—H(m|Y,y)<E (logfﬂ’_n’_y_)) . €Y

P(y)

The last reduction is true since the term E <log ___—P(Y’ Y)
P(Y)P(y)

is an average mutual information and therefore non-
negative. Now note that by the independence require-
ments of our original system

P(y|x)=P(y|x,m,u, U)=P(y|x,m,u,U,Y).

Now since x is a strict function of m, u, and U (by the
coding system function) we may omit this in the condi-
tioning variables
P(y|m,u, Uy=P(y|m,u, U, Y),
P(y, myu, Uy  P(y,m,u,UY)

P(m, u, U) P(m,u,U,Y)
Since the new state u is independent of the past P(m,u, U)
=P(u)P(m,U) and P(m,u, U, Y) =P(u)P(m, U, Y).
Substituting and simplifying,

P(y, ulm, Uy=P(y,ulm, U, Y).

Summing on u gives
P(yim,U)=P(y|m,U,Y).
Hence:

H(y|m,U)=H(y|m, U,Y)<H(y|m, Y)

—~E (log P(y|m, U)) S—-E(Iog P(y|m, Y)) .

Using this in (1),
P(y|m, U)
P(y)

We now wish to show that P(y|m, U) =P(y|X). Here
X is a random variable specifying the function from u to x
imposed by the encoding operation for the next input x to
the channel. Equivalently, X corresponds to an input let-
ter in the derived channel K. We have P(y|x, u)=
P(y|x, u, m, U). Furthermore, the coding system used
implies a functional relation for determining the next
input letter x, given m, U and u. Thus x=f(m, U, u). If
f(m, U, u)=f(m', U', u) for two particular pairs (m, U)
and (m',U’) but for all u, then it follows that
P(y|m, U, u) =P(y|m’, U', u) for all u and y; since m, U
and u lead to the same x as m’, U’, and u. From this we

H(m]Y)—H(m]Y,y)SE(Iog (2)
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obtain P(y|m, U) = 2P(u)P(y|m, U, u) =
EP(u)P(ylm’, U,u) = P(y|m',U"). In other words,
w

(m, U) pairs which give the same function f(m, U, u)
give the same value of P(y|m, U) or, said another way,
P(y|m,U)=P(y|X).

Returning now to our inequality (2), we have

H(m|Y)—H(m|Y,y)<E (log M)
P(y)

< max E(log M—
P P(y)

H(m|Y)—-H(m|Y,y)<C.

This is the desired inequality on the equivocation. The
equivocation cannot be reduced by more than C, the ca-
pacity of the derived channel K', for each received letter.
In particular in a block code with M equiprobable mes-
sages, R=1/nlog M. If R>C, then at the end of the block
the equivocation must still be at least nR—nC, since it
starts at #R and can only reduce at most C for each of
the n letters.

It is shown in the Appendix that if the equivocation per
letter is at least R—C then the probability of error in
decoding is bounded by

R .
R-C

Thus the probability of error is bounded away from zero
regardless of the block length n, if the code attempts to
send at a rate R>C. This concludes the proof of the
theorem.

As an example of this theorem, consider a channel with
two output letters, any number a of input letters and any
number % of states. Then the derived channel K’ has two
output letters and @* input letters. However, in a channel
with just two output letters, only two of the input letters
need be used to achieve channel capacity, as shown in
(2). Namely, we should use in K’ only the two letters
with maximum and minimum transition probabilities to
one of the output letters. These two may be found as fol-
lows. The transition probabilities for a particular letter of
K’ are averages of the corresponding transitions for a set
of letters for K, one for each state. To maximize the tran-
sition probability to one of the output letters, it is clear
that we should choose in each state the letter with the
maximum transition to that output letter. Similarly, to
minimize, one chooses in each state the letter with the
minimum transition probability to that letter. These two
resulting letters in K’ are the only ones used, and the
corresponding channel gives the desired channel capacity.
Formally, then, if the given channel has probabilities
pii(1) in state ¢ for input letter i to output letter 1, and
pu(2) =1—py(1) to the other output letter 2, we cal-
culate:

R-C

P, >

1
6(R + —In
o

p1 = 28 max pu(1),
]
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pe = 28 min pu(1).

The channel X' with two input letters having transition
probabilities p; and 1— p; and ps, 1— p, to the two output
letters respectively, has the channel capacity of the orig-
inal channel K.

Another example, with three output letters, two input
letters and three states, is the following. With the states
assumed to each have probability 1/3, the probability
matrices for the three states are:

State 1 State 2 State 3
1 0 0 o 1 0 0 0 1
0 1/2 1/2 1/2 0 1/2 172 1/2 0

In this case there are 23=8 input letters in the derived
channel K’. The matrix of these is as follows:

172 172 0

0 1/2 1/2
1/2 0 1/2
2/3 176 1/6
1/6 2/3 1/6
1/6 1/6 2/3
1/3 1/3 1/3
1/3 1/3 1/3

If there are only three output letters, one need use only
three input letters to achieve channel capacity, and in this
case it is readily shown that the first three can (and in fact
must) be used. Because of the symmetry, these three let-
ters must be used with equal probability and the resulting
channel capacity is log (3/2).

In the original channel, it is easily seen that, if the state
information were not available, the channel would act like
one with the transition matrix

1/3 1/3 1/3
1/3 1/3 1/3

This channel clearly has zero capacity. On the other hand,
if the state information were available at the receiving
point or at botk the receiving point and the transmitting
point, the two input letters can be perfectly distinguished
and the channel capacity is log 2.

Appendix

Lemma: Suppose there are M possible events with proba-
bilities p;(i=1,2,...,M). Given that the entropy H
satisfies

H=— Epilnpi>A s

then the total probability P, for all possibilities except the
most probable satisfies

P>_ A
o ( MinM )
A

Proof: For a given H, the minimum P, will occur if all
the probabilities except the largest one are equal. This
follows from the convexity properties of entropy; equaliz-
ing two probabilities increases the entropy. Consequently,




we may assume as the worst case a situation where there
are M —1 possibilities, each with probability g, and one
possibility with probability 1 —(M —1)¢q. Our given con-
dition is then

—(M—1)glng—[1—-(M—1)glln[1l — (M —1)q]>A.

Since f(x) =— (1—x)In(1—x) is concave downward with

slope 1 at x=0, (f'(x) =1+In(l—x); f"(x) = — : ! <0
—x

for 0<x< 1), it follows that f(x) <x and the second term
above is dominated by (M —1)q. The given condition
then implies

—(M—-1)glng+(M—1)g>A

6e(M—1) (lnM-Hn lnM)

or
(M—1)gin < >A.
q

Now assume in contradiction to the conclusion of the
lemma that

A

6 (lnM—Hn InM )
A

e . . . . .
Since gln —is monotone increasing in g, this would imply
q

P.=(M-1)qg <

that

A
(M—1)gln = < - log i
7 (1nM+1n 1“M)
A
M1 InM
1 n { ImM+1
A nA In6e n(n+nA)
6 InM
1M +In — InM+1n 1nM +1n 1M

The first dominating constant is obtained by writing the cor-
responding term as (InlnM—InA+In(M—1) —InlnM)/
(InInM —1nA+1nM). Since InM > A, this is easily seen to
be dominated by 1 for M>2. (For M =1, the lemma is
trivially true since then A=0.) The term dominated by 3
is obvious. The last term is of the form InZ/ Z. By differ-
entiation we find this takes its maximum at Z=e¢ and the
maximum is 1/e. Since our conclusion contradicts the
hypothesis of the lemma, we have proved the desired
result.

The chief application of this lemma is in placing a

A
A
<?|:1+3+L:I<A (M>1).
e

ZPFAD >H{2ZP:A) =f(A) and we conclude that the
bound of the lemma remains valid even in this more gen-
eral case by merely substituting the averaged value of A.

A common situation for use of this result is in signaling
with a code at a rate R greater than channel capacity C.
In many types of situation this results in an equivocation
of A=n(R—C) after n letters have been sent. In this case
we may say that the probability of error for the block sent
is bounded by (substituting these values in the lemma)

R-C R-C

lower bound on probability of error in coding systems. If P> 1 R - c '
it is known that in a certain situation the “equivocation,” 6 (R + T In (T:C—)) 6 (R—ln (1 — ——))
that is, the conditional entropy of the message given a R
received signal, exceeds A, the lemma leads to a lower
bound on the probability of error. Actually, the equivo-
cation is an average over a set of received signals. Thus,
the A = 2P;A; where P; is the probability of receiving
signal / and A; is the corresponding entropy of message.
If f(A) is the lower bound in the lemma, that is,

This then is a lower bound on probability of error for
rates greater than capacity under these conditions.
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