Short Communication
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The Bipolar Righi-Leduc Effect

Recent measurements of the thermal conductivity of semi-
conductors have disclosed that, for PbTe,! InSb,? 3 * Bi,
Tes, > ¢ and Germanium,! 7-® among others, an anomalous
component, rapidly increasing with temperature, appears at
the higher temperatures. Such an effect might be accounted
for by the predicted bipolar contribution!®*%to thermal con-
ductivity; but there is only limited agreement between the
theoretical formula for the latter and the experimental re-
sults so far available.? It appears, however, that the disagree-
ments are such that the experimental values are in general
the higher, and therefore consistent with the possibility of
additional “‘anomalous” thermal conduction by other mech-
anisms, such as transport of energy by excitons.!» 1

A closer comparison of experiment and theory clearly
depends on improvement of the measurements and on the
reliability of the extrapolation, to the temperature range of
the anomaly, of the lattice contribution to the thermal con-
ductivity. In addition, the evaluation of the theoretical
formula®”

kio=(k/e)*Toposc® (1

for the bipolar contribution .. is limited in accuracy, at pres-
ent for cases of interest, by uncertainties in the values of
the component factors. In principle at least, these factors
might be determined empirically, at each temperature, by
measurements on a set of crystals spanning a sufficient
range of doping for the position of the Fermi level to vary
by an appreciable amount relative to the energy gap: the
factor ¢; posis known if the maximum resistivity, supposed
determined in this way, is known; and similarly measure-
ments of thermoelectric power,'® or of Hall constant and
Nernst coefficient,'? will fix .2 Likewise, the variation of
the total thermal conductivity « with electrical conduc-
tivity o, for a range of dopings at a fixed temperature,
should determine «,» (as well as the “extrinsic” contribu-
tions, «; and k., proportional to o; and o.) empirically.
However, apart from the practical appeal of simpler and
more economical procedures, at the temperatures of inter-
est the required impurity concentrations might be so large
that the phenomenological formulas would be subject to
large corrections.*

Thus the present situation is that, while the existence of
the bipolar contribution to « “cannot be denied,””* the ex-
tent of its contribution to the observed anomalies is not
very well known or readily determined. On the other hand,
little can be predicted, in practice, about the exciton con-
tribution. There is, however, a transport effect connected
with electronic thermal conduction, the Righi-Leduc Effect,

for which it can be foreseen that there will be a bipolar
contribution closely related to the bipolar contribution to
thermal conduction. Furthermore, neither the lattice con-
tribution nor an exciton contribution to « should give cor-
responding components of the Righi-Leduc coefficient.? It
appears possible, accordingly, that an estimate of «i»
might be obtainable from measurements of the latter.

The main purpose of this note is to derive the generaliza-
tion of the theory of the bipolar contribution to k so as to
include the rotation of the energy-flux vector, relative to the
temperature gradient, caused by a magnetic field: that is,
the Righi-Leduc effect. It is useful, however, to go a little
further in practice by extending the theory, of the bipolar
contribution to «, to the case where all the transport coeffi-
cients are dyadics of general form. The total energy flux
may be written

W =w;+w,—x,grad7 , )

where w, and w. are respectively the electron and hole con-
tributions. These in turn are given by

w,=n,]*T e+ AT u,—x,gradT , 3)

where ¢ is the unit dyadic, #,, eo. and u, are respectively the
carrier concentrations, band-edge energies and carrier drift
velocities (s = 1 for electrons, 2 for holes), and where the
upper sign is for electrons and the lower sign is for holes.
The corresponding equation for the drift velocity is

U;=uy I:x (E‘}‘é’l'i,(ﬂ)s — i+ TL%,) gradT)

— (f) 9~ gradT] , 4

where { is the chemical potential of the electrons and E
is the electric field. The significance of the ™ notation intro-
duced in (4) is:

i) =7(—H) ®)

for any dyadic =(H), where H is the magnetic field. The
connection between the coefficients in (4) and those in (3)
results from the Onsager reciprocal relations.': 2 The ther-
mal conductivity is given by

W= —x-grad7T+(const.)J

where J = e (nan: — my) is the electric current density.
On solving (4) for E as a function of J and grad 7, and
(2), (3) and (4) for W as a function of E and grad T, and
combining the two solutions, one finds:

K=K0+K1+K2+(k/€)2T‘Y'(Gr9' 62)'012 > (6)
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where

. =ennm, , @
p=6"'=(6,46)" , ®)
o=[(eo1—€02)/kTe+8:+5: . ©)

(From the definition (8) of p follows an algebraic identity
61:0-6:=38xp 61 .)

In the absence of a magnetic field the dyadics summed
on the right of (6) are all symmetric. To examine the Righi-
Leduc effect for a cubic crystal, we expand the transport
coefficients in powers of H up to the first power. For the
thermal conductivity we have

k=«(e+SH X¢), (10)

S being the Righi-Leduc coefficient. The corresponding
expansions of the band coefficients are

we=po(e= (T JOHXe) | (1D
9. =0(e=(eB.Jl)H X ¢) | (12)
x, =k (e +SHX¢e) . (13)

Here u.” and w.” are the band Hall mobilities, B, and
B. the extrinsic Nernst coefficients. Then

P N CR R L) S (14)
where

w*=(owp —ous)la a5
and

0| =enu1, etc.;

a=o"=aet+eT(B—B)H Xz , (16)
where
a=[(eo—€o)/kT]+61+02 . a7

Finally, on substituting (14) and (16) into (6), we have, for
the coefficients in (10),

K=Ko+K1+KeFK12 (18)
(where k., is given by (1)) and
Sk =S K14+ S+ S1aK12 (19)
where
H*
I 2e
S12=E + o }(31“32) . (20)

The contribution Sk, + S in (19) introduces band
phenomenological constants peculiar to the Righi-Leduc
effect. However, this contribution may be expected to be
negligible compared with the final term .S1.«,2, for the con-
ditions in which we are interested, since .S;; should be of

the same order of magnitude as .S; and S,. Furthermore the
second term on the right of (20) should be of order of mag-
nitude 1/« times the first term; and so it should usually be
legitimate to retain only the first term,within the accuracy
that we may hope for.

Then

Skptl*e e @n

Thus p/'* is effectively the “Righi-Leduc mobility,” giving
the angle between the vectors (W + &, grad 7) and
grad T. The Hall mobility,*

p =(oos! —ouM]feo , 22)
is simply related to u**:
pl — = g — p H (23)

The right-hand side of (23) is equal to twice the Hall
mobility for the state of maximum resistivity, at the tempera-
ture in question, provided the u.” are the same for this state
as for the material to which the left-hand side refers (and pro-
vided the u, do not vary with doping near maximum re-
sistivity). Where u/* may be determined, by the foregoing
result, from a Dunlap ellipse, and where (21) applies, it is
thus possible in principle to deduce x,» from measurements
of the total conductivity « and of the angle between W
and grad 7. For temperatures where the doping required
to shift the Fermi level appreciably (from its position for
the intrinsic state) is too heavy for it to be possible to
determine wf* directly from *‘Dunlap ellipse” data, one
might perhaps, by extrapolation of mobility ratios from
lower temperatures, still get estimates of u#* which are of
tolerable accuracy for useful estimates of k».
For the intrinsic state, u* is proportional to

wlt !

M1 M

According to the standard model of the bands, for which
each of the two ratios of Hall to drift mobility is equal to
37/8, the first term of (20) therefore vanishes, and Si»
should be small compared with u/c. One should not ex-
pect the two ratios to be equal in practice, however, From
experimental values of the mobilities for germanium,? we
estimate pf* >~ — 1000 cm’/volt sec. at 300°K. Linear
extrapolations of the mobility data give u7* ~ — 200
cm’/volt sec. at 1000°K, but the extrapolation of u.f/u,
especially seems dubious. (If u.’/u. does not increase
much more above 300°, the true value of u#* at 1000°
should be nearer —100.) It appears that, to obtain appre-
ciable Righi-Leduc angles in the temperature range of the
observed anomaly for germanium, very strong magnetic
fields should be required.
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