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E. G. Kogbetliantz

Computation of Arcsin N for O<N<1
Using an Electronic Computer

Abstract: All known subroutines for Arcsine are based on the relation Arcsin N — Arctan [N/(1—N2)}}.

Therefore, Arcsine is not computed as such but as an Arctangent.

To avoid the loss of machine time caused by the computation of N/{1—N2)}, a direct computation of

Arcsine is proposed. A subroutine yielding the first six correct significant digits in only five multiplica-

tions and divisions is described in detail to illustrate the new method’s rapidity. The same number of

five operations is necessary to compute, knowing N, the number N/(1—N2)},

Introduction

Our results are based on a new rational approximation to
Arcsin N deduced with the aid of Dr. H. Maehly’s method!
from the Chebyshev expansion of Arcsin (xSin 26), where
N=x8Sin20,0<x<1:

Arcsin (xSin20) = i':;o O T o (x).  (0<0<T/) (1)

Since N=1 is a singular point for Arcsin N, the rational
approximation yields the required accuracy only for N< N,

= Sin 26, where 8 <w/4.In the sequel we take 8 =/8, and
in the remaining part of the range use the relations

Arcsin N = 7Zr+ % Arcsin 2N?2—1) (¢))
Arcsin N = ’21 — 2 Arcsin [(1 —N)/21. 3

If Sin /4 <N < Sin 3 7/8, then 2N?—1< Sin /4 so that
our rational approximation can be used again to compute
Arcsin (2N?—1). However, for N> Sin 3n/8, we are so
near the singular point that another approximation will be
used.

It was important to find an easy way for a precise com-
putation of coefficients ¢.(f) in (1). They are functions of 6,
and although in our example we take 6 =7/8, our method
holds for any #in (0, 7/4) except 6§ ==/4. But if 8==/4,
then wc.(w/4)=m+1) 2

The expansion (1) is deduced and the method for com-
puting its coefficients is described in the first part of this
paper. The second part contains a definition of Maehly’s
method and its application to Arcsine. The particular case
of a subroutine giving the first six correct significant digits
is studied in the last part. It is hoped that this example is

IBM JOURNAL « JULY 1958

sufficient to permit the construction of subroutines giving
more than six correct digits. When the computation of
Arcsine is to be repeated many thousands of times, as often
happens, the saving of machine time due to the use of a
shorter and faster subroutine becomes important.
Chebyshev expansion

Let F,(z) denote the hypergeometric function F(m-+1%, m+
1; 2m--2; z2), that is

m+-1HF.(2) =Q2m-+1)! g}u T(m+-3+s)z/s! Cm+1+s5)!.

Then, as we will prove,
(m+4-3)m! c,,I'(3) =(Sin 6Cos )21 (m+-DF,.(Sin?20). (4)

It is possible to deduce (4) from the expression of c,, as a
Fourier coefficient, namely

+1

Tem=2 f Arcsin (xSin 20) Tomy (x) (1 —x2)~2dx, &)
-1

but the transformation of Maclaurin’s series

Arcsin (xSin20)= £ (=1 (‘) (x Sin 20)>+/(2n-+1)

into (1) with the aid of substitutions

@ @nFD!=2 3 Tonps(f(r—m)! (1+m-1)!

is a much easier way to prove (4).




Denoting the general term of a double series thus ob-
tained by #._m, n, We have

Arcsin (x Sin 28)= § § Un—mm = § § Upm

n=0 m=0 m=0 =0
where

U =An(Sin 8 Cos) 027 Ty 1 () Up(6)

with

Am =D(m+H/m(m+HIE)

and

(m+3)2m~+n+1)1n1U,.(0) =(2m+-1)! Sin*20

(m4n+).

Summing up with respect to n, we obtain
3 Upl(8) = F.u(Sin226)
n=0

and this proves (4).

Hypergeometric functions satisfy recurrence relations and
therefore we should expect that our c¢,’s satisfy one also.
They do:

m(2m+-3)2Cpp1=02m+1) [2m(m-+1)(tan’*64-cotan?6)+1]c.
—m+D2m—1)%n.  (6)

To prove (6) we first express F,(z) in terms of f,.(z) =
F(m+1%, m+1%; 2m+1; 2) as follows

Am~+1)Fo(2) =4m~+Dfn(2) — (m+1)2f01(2). )

The identity (7) is easy to check comparing the coefficients
of z” in both members. Using now the classical relation?

(14 T=2pmHf(2) =227 F(%, m+-%; m+1; ), ®

where { =(1 —+/1—2)%/(1+~/1 —2)% and taking z=_Sin? 20,
we transform f.(Sin? 26) as follows

£.(Sin? 20) = (142 H,,(¢). ®

Here t=tan # and
Hm(t)=Hm=F(%'y m+%; m+1; t4)°

Combining (7) and (9), we obtain

(2m+2)F,(Sin? 260) =1+ [2m+2)H,,
—2m+1)PH, 1]

and this gives

(m4+-D(m+D! c,.I'@) =T(m+Herh
[+ 1) H,—(m+HEH,.]. (10)

Now the functions H,, satisfy the recurrence relation
Cm+1)¢Hpp=4m(im+1) [+t H— H, 1] an

which is easy to check by replacing the hypergeometric
functions by their Maclaurin’s series in *.

Consider now four functions H._1, H,, H.1 and H.
They satisfy five linear equations: three of type (10) for
m=s—1, s, s+1; and two of type (11) for m=s, s+1.
Therefore, the determinant of this system of five homoge-
neous equations with five unknowns H, ., H,, H. .\, H,\»,
and p=1 vanishes identically. Expanding it we obtain (6).

Using (6), we need the values of the first two coefficients
¢y and c;, the other ¢,’s for n>2 being computed by (6).
On the other hand, (5) proves that ¢, is a linear combina-
tion of complete elliptic integrals K=K(k) and E=E(k)
with k=Sin 26

cn=a E—f,K, (n>0) 12)
o, and B, being rational functions of &.

Integrating by parts the integral in (5) and applying the
relation T2m+1(x)+ TZm—l(x) =2x T2m(x), W€ prove that

Cm+1c,—QRm—1)cn_1=2kG (k) (m>1) (13)
where G, (k) = f (1 — %) To(x)dx/(1 —k2xD?,

while
co=4kGo(k)=4E—k"K)/km. (k?=1—k% (14)

Expressing G(k) in terms of E and K and applying (13)
with m=1, we have also

=4 +TkHE—k'*(54+3k')K]/9%r. (15)

Thus, comparing (12) for n=0, 1 with (14) and (15):
ao=4/km; Bo=4k"lkw; a1=41+7k")/9k*r and B,=4k"
(5+43k"%)/9k*w. But an, B verify the same recurrence rela-
tion (6) which holds for c,, and they now can be computed
recursively.

We see that the computation of ¢,’s is reduced to that
of K and E, once k=Sin 20 is known. In the last section
of this paper we compute ¢,’s for 6 =m/8, k=23,

Macehly’s method

In this method the rational approximation R(x) to f(x) is
deduced from the Chebyshev expansion of f(x) as follows.
Denoting the Fourier coefficients of f(x) by f. and intro-
ducing M+ N+1 unknown parameters a,, 0 <m<M, and
b, 1<m<N, with by=1, we form the function H(x) and
expand it into its Chebyshev series:

= 2 baTo) || SAT ]|~ 2 auTut)=

3 B Trl().
0

m=

Then, the choice of a., b. is fixed by letting %, =0 for
0<m<M-+N. These M+ N+1 conditions 4, =0 form a
system of linear equations satisfied by M- /N--1 unknowns
anm, bn. The explicit expressions of %, in terms of an, bn
and f,. are obtained by performing the multiplications and
replacing the products 27, T, by the sums T in+ Trs.
Thus, the expansion of H(x) begins with the term
Ao Tary v41(x), where Ao=huix11, and the rational function

R(x) = % [ Tm(x) / éobm Tm(x) (bo = 1)

is the desired approximation to f(x). Its accuracy depends
on the choice of M and N. More economical (in the sense
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of number of operations for the same accuracy) are the
cases with M=N—1 and M=N. The range of x is (—1,
—+1) and it is possible to choose any range for the argu-
ment of f(z), letting z=kx and expanding f(kx) as a func-
tion of x.

Applying this idea to an odd function
ftkx)= 20 (k) Topy1(x),
we form an odd function H(x) also:
H@=[ % 5T | [ S ey —%am Tonsa().
Now the system 4,,=0 is as follows:

§ (Cm—s+cm+s)bs+2cm =0 (M+1 Sm_<_ M"—N) (16)
=1

an=Cntd S Cntenpdbe (0<mM<M) a7
s=1

Here by definition ¢_,=c,_1, if s >1. The absolute error
R(x)—f(kx) of the approximation

SUx)~R(x) = % amrgm+l(x>/% b Ton()

is of the order of the first neglected term AoT e ania(X)
and, letting M+N-+1=y,

N
A0=% E (cﬂ»—s+cu+s)bs+cy-

s=1

(p=M+N+1) (18)

The c¢,’s decrease when »n increases and the rate of de-
crease depends on the choice of k: the smaller the %, the
faster the c¢.’s decrease. For a given k and for a prescribed
accuracy, the order of magnitude of A, should be studied
for various choices of M and N. In general, 4, decreases
when these parameters increase, and it is desirable to
choose the least values of N and M=N—1 (or M=N)
compatible with the required accuracy. To know the value
of A, for given values of M and N, it is not necessary to
solve (16) and use (18). Eliminating b,,’s from (16) and (18),
we can express A, as a ratio D/A of two determinants, A
being the principal minor of D. Their elements, except
those in the last column of D, are the sums ¢, i+ Cmys-
Since the c¢,’s decrease very rapidly, omitting the second
terms c....; in these sums, a good approximation D*/A* to
A, is easily computed. Denoting the elements of D* by d;;*,
we have d;;* =cip ;i m-noa. (1L, j<N+1D

In the case M=N=2 studied in the last section, we have

for instance
€1 €2 C3
€1 C2 —
Ay s Cs = C2 C3 Ca . (19)
€3 C4 C;

Given M and N, b,.’s are computed solving (16), and
then (17) gives the a..’s. Replacing T:n and T,y by their
explicit expressions, the rational function R(x) is then ex-
panded into a continued fraction of the type

_ Y ml
220 R =x(aot 3 | ﬁm-i—x?) ,
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where v=N, if M=N—1 or M=N, and a,=0for M=N
—1, but >0, if M= N. Finally, replacing x by N/k, the
approximation is as follows

_ Y Al
SN)~RWNIK)=N| 4o+ = W] )

Computing the upper bound B of relative error

Ao| Tompongs(x)|[flkx), where fkx) vanishes for x=0, we
use the inequality | T(x)|<n|x| .

Thus the upper bound B is as follows
B=Q2M+2N+3) Aolx/fkx)| .

Subroutine for Arcsin N, 0SN<1

If 0=n/8, k=2"t=k’, (6), (14) and (15) are as follows

mQ2m+3)cppa = Q2m+1)(12m+12m+1)c,,
—(m+D2m—1Yca  (6)*

meo=2+/2QE~K) (14)*

me1=2+/2QE—13K/9) . as*
The classical Legendre’s relation?

KE'+EK —KK' =7/2

yields in our case 2E— K =7/2K, so that

co=~/2/K; cx=co—8K~/2[97 .

To find K=1*%%)/4I'(}), we will use the Gaussian form
of Landen’s Transformation?:

/2
K.= ﬁa,ﬁ Cosiy+62, Sin%)2dy =
]

/2
f(aﬁ,,+1 Cos?+8%1 Sin)dy =K,

with dny1=3(an+Bs) and Bry:=(cnBn)}.
In our case K=K, with ao=1 and 8, =+/2/2. Tabulating
the results of computation, we find that

|Ba—a| <5X107% for n=4 :

10%a,

853 553 390 593 274
847 224 902 923 494
847 213 084 835 193
847 213 084 793 980

10%8,

840 896 415 253 714
847 201 266 746 892
847 213 084 752 766
847 213 084 793 980

-hwto-—-l:

Approximating li=rg an=1i=rg 8. by a=a4=0,, we have

K=m/2a, so that co=2a+/2/m and ¢,=c,—4+/2[9; that is,
¢c0=0.762 759 763 501 814; ¢,=0.000 018 691 074 973
¢1=0.020 869 237 569 305; ¢;=0.000 002 354 064 470 (20)
¢2=0.001 586 931 627 771; ¢;=0.000 000 312 577 010
¢3=0.000 160 822 752 706; ¢,=0.000 000 043 092 937

the last six ¢,’s being obtained by (6)*.




Another way to compute these numbers would be to use
(12), starting with values of o, ai, 80, 81, K and E. Here
ay=a1=2, Bo=1, B,=13/9 as well as

K=1.85407 46772 99357
E=1.35064 38810 46669,

E being computed with the aid of Legendre’s relation. With
the aid of (6)* we obtained «;=5.84; a3=21.2; y=2,326
127; a5=1,126/3; as=2869,148.4/507; a;=947,825.68/117;
B:=12.76/3; 8:=2,270.2/147; 3,=11,861/189; 8;=231,587
/847; 8:=16,250,885.8/13,013 and ,=17,721,952.76/3,003.

The values of ¢,, 0<n<7, recomputed by (12) agree com-
pletely with (20). This check was necessary because even
small errors in the values of ¢, can spoil the final results
completely.

In our case M=N=2, and solving (16), that is

(c2Fcobi4-(c14c5)by4-2¢c3=0
(Cs+cs)b1+(cz+ce)bz+2c4 =0,

we obtain b,= —0.31460 68409 and b5.=0.00879 15854.

Now (17) gives the values of a;=0.69359 09539,
a,=—0.09601 14713 and a,=0.00163 18472.

Replacing in R(x) the polynomials T, by their expressions,
we have

R(x) = x(ctot01x*+aaxY/(Bo+B1x* +B>x*)

Wlth ao=a0—3a1+5a2=0.93578 46039, a1=4(a1—5a2)= bl
0.41668 28293, a2 =16a,=0.02610 95550, Bo=1—b1+b.=
1.32339 84263, 8:=2b,—8b,= —0.69954 63652 and B;=
8b,=0.07033 26834.

Substituting N+/2 for x, we find the following form f(N)
of our approximation to Arcsin N in the interval 0< N< 2%
Arcsin N~f(N)=N(mN*4+nN*+p)/(gN*+rN?*+s) with

m = as/2=0.03692 45063, =[£,=0.07033 26834

n = aif+/2=—0.29463 92542, r=0,/2=—0.34977 31826

P = aof2+/2=0.33084 98196, s = B./4=0.33084 96066.
Since %\i’rino(N“Arcsin N)=1, the ratio p/s is a check.

Here p/s=1.000 000 64. . . . The maximum of relative error

is at N=0 and it is equal to 6.4X1077:

g\i,r:r}][f(N)/Arcsin N—11=p/s—1=64X10"7,

Transforming our rational function into a continued
fraction we obtain the final formula

i — Ay
AN = N(A°+|B N2+[‘—BZ_N2). @1)

The five constants to store are
Ao=m[q=0.52499 78317; A,=(rAv—n)/q=1.57834 2904;
=(p—s5A)/qA1=1.41569 02913; B,=—(Bstr/q)=
3.55743 40883; A= BB,—s/q=0.33215 85891.

Thus, Arcsin N is computed in only four operations, two
multiplications and two divisions, the number of correct
significant digits being equal to six. Example: Arcsin (%) =
w/4=0.785398 16 . .. and f(2%)=0.785 398 04 . . ., so that
the relative error is less in absolute value than 21077,

Another equivalent form of f(N) would be

where £;=1 .270451499, £,=3.702672882,
71=0.09425018578, n.=1.484093006.

The detailed study of relative error reveals that it de-
creases from 6.4 X107 to 3.8 X 10~7 when N increases from
0 to 0.1. For 0.1<N<2% the relative error remains in
absolute value less than 3.8 X10~7. Thus, for some excep-
tional values of N in the range (0; 0.1), the sixth significant
digit in f(N) may exceed the corresponding digit in the
exact value of Arcsin N by one unit. In our opinion, it is
not worthwhile to complicate the subroutine to avoid these
few exceptional cases. If it is to be done, however, approxi-
mation (21) could be replaced in the range 0<N<O0.1 by
the sum of the first three terms of Maclaurin’s series, that
is by N4+ N?3/6+3N*/40, which yields the first seven correct
significant digits, if N<0.1.

The same approximation (21) is used in the interval 2%
<N<Q4+V2)H2=8in (37/8). To compute Arcsin N in
this range, we first form N*=2N?—1 and then compute
S(N™) using (21). Using (2), we find that

Arcsin N=n/4+3f(N*). (N*=2N*—1) (23)

In the range Sin (37/8)<N<1, the value of Arcsin N
exceeds 37/8=1.178...s0 that the first six significant
digits are correct if the absolute error is less than 5X107%,
In this last interval we use relation (3), approximating
Arcsin [(1—N)/2Jt by the sum of the first two terms of the
Chebyshev expansion (1) with Sin 20 > max. [(1 —-N)/2f=
Sin 11°15, that is, with §>5°37".5 and tan 6>0.0985.

Computing the coefficients ¢, in (1), we take t=tan §=
0.1. Rounding off increases slightly the range of validity of
(1), simplifying considerably the numerical computations.
Using (10) for m=0, 1 and 2, we need the values of H,,=
H,,(0.1) for m<3. They are as follows:

Hy=1. 000 025 001 406; H,=1. 000 037 502 344;
H,=1.000 041 669 401; H;=1. 000 043 752 953.

Therefore co=0. 199 004 962 779, c¢,=0. 000 330 845 730
and c»=0. 000 001 487 562

and in general 0 <c¢, 1 <cm/100. Now
S el Tonsi(¥)] < 3 € <€2/99=1.5X107".
m=2 m=2

Since Sin 20=2¢/(14)=2/10.1, we have
Arcsin (2x/10.1)= ¢y T1(x)+c1Ts(x) (24)

with an absolute error less than 2X10~% The right-hand
member of (24) can be written as x(co—3c¢,+4c1x?) =x(a+-
bx?) with a=0.198 012 4256 and 5=0.001 323 3829. Sub-
stituting x=5.05[(1 —N)/2)}, equation (24) takes the form
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$(N)=[(1—N)/2}(A—BN) 25
where 4=1.085 180 421, B=0.085 217 6716.

The approximation ¢(N) to Arcsin [(1 — N)/2[ is not very
accurate in itself, but it is sufficiently correct to insure the
required accuracy of the first six digits of Arcsin N as
given by relation (3)

Arcsin N=7/2—2¢(N). (3%

Computation of ¢(IN) with the aid of (25) is now reduced
to the extraction of a square root. It can be performed in
two divisions and one multiplication as follows. Taking R,
defined by

R1=a(ﬁ+f—5—jr—f) (26)

as a first approximation to V'f, 0.25<f<1, and then ap-~
plying the so-called Newton’s method® only once, we ob-
tain an approximation

Ry= %(Rl'i_ﬂR‘) (27)

to +/f. This yields an approximation to [(1—N)/2]} with
the first eight correct significant digits, if the numerical co-
efficients in (26) are:

a=0.3343 1261,
6=0.5316 4106.

B=2.7691 3454, v=1.1903 1245;

Using the foregoing values of «, 8, v and §, the absolute
error e=e(f)=|f*—R,| of the first approximation does not
exceed 3X107*: e(f)<3X10% Then, by a well-known
property of Heron’s method, the absolute error E(f)=
|R;—f*| of the last approximation R, is equal at most to
e2/2R, so that E<e*<9X107¢, because R,~f1>0.5.

Here f is defined by (1—N)/2=2"2f with 0.25< f<1.

Since (1—N)/2< Sin? 11°15°=0.03806 ..., the positive
integer # is equal at least to 2: A>2. But [(1 -N)/2}=
2f% so that the absolute error of the approximation
2R, to [(1—N)/2F is at least four times less than E,
that is, less than 2.25X10~® which proves our statement.

The choice of the range (0.25; 1) for f presupposes that
a binary machine is used. For a decimal machine which
cannot perform the extraction of square roots directly (as
can the IBM 610) we let (1 —N)/2=(10)"fwith 0.01 <f<1;
h>0. Here two sets of constants «, 3, v and § are needed
to insure the required accuracy: one for the interval 0.01 <
f<0.1; another for 0.1<f<1. Using formula (26) again
where

0.01</<0.1 0.1<f<1

1.248 114 30 o 0.394 688 40
0.194 941 49 B 1.949 414 90
0.005 523 71 v 0.552 371 19
0.034 278 20 0 0.342 782 00

the relative error in both subintervals is less than 3 X107,
Applying (27), we reduce the relative error to no more than
4.5X107% and this is also the upper bound for the relative
error in computing [(1 —N)/2}f=10""f%, Multiplying 4.5X
10—¢ by the upper bound Sin 11°152=0.195 . . . of

[(1—N)/2T, we have the desired result
[10~Ry —[(1—N)/2}| <107,

Five multiplications and divisions are performed using
expression (25); six constants are needed for a binary and
eleven for a decimal machine. The total number of stored
constants is therefore thirteen for a binary machine and
eighteen for a decimal machine, the additional constants
being necessary to locate .
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