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Computation of Arcsin N for O < N 4  
Using  an  Electronic  Computer 

Abstract: All  known subroutines for Arcsine are based on the relation Arcsin N = Arctan [N/I1 -N2)t 1. 
Therefore, Arcsine is not computed a s  such but a s  an Arctangent. 

To avoid the loss of machine time caused by the computation of N/(1-N2)i, a direct computation of 

Arcsine i s  proposed. A subroutine yielding the first  six  correct significant digits in only five multiplica- 

tions and divisions i s  described in  detail to illustrate the new method's rapidity. The same number of 

five operations is  necessary  to  compute, knowing N, the number N/(1-N2)*. 

Introduction 

Our results are based on a new rational approximation to 
Arcsin N deduced with the aid of Dr. H. Maehly's method' 
from  the Chebyshev expansion of Arcsin (xSin 20), where 
N=xSin20,O<x51: 

Arcsin (xSin20) = 5 c,(0)T2,+l(x). ( 0 < 0 < ~ / 4 )  (1) 

Since N= 1 is a singular point  for Arcsin N, the  rational 
approximation yields the required accuracy only for N I  No 
= Sin  20, where 0<a/4. In  the sequel we take 0 =7r/8, and 
in the remaining part of the range use the relations 

Arcsin N = - + - Arcsin (2N2- 1) 

Arcsin N = - - 2 Arcsin [(l - N)/2It. 

n=o 

a 1  
4 2  

2 

(2) 

(3) 
lr 

If Sin n/45 N I  Sin 3 ~ / 8 ,  then 2N2- 1 5 Sin a14 so that 
our  rational approximation can  be used again to compute 
Arcsin (2N2-1). However, for N> Sin 3a/8, we are so 
near the singular point that another approximation will be 
used. 

It was important to find an easy way for a precise com- 
putation of  coefficients cn(0) in (1). They are functions of 0, 
and although in our example we take 0 = 7r/8, our method 
holds for  any 0 in (0, 7r/4) except 0 =7r/4. But if 0 =7r/4, 
then 7rcn(7r/4) = (n++)-z. 

The expansion (1) is deduced and the method for com- 
puting its coefficients  is described in the first part of this 
paper. The second part contains a definition of Maehly's 
method and its application to Arcsine. The particular case 
of a subroutine giving the first six correct significant digits 
is studied in the last part.  It is hoped that this example is 

sufficient to permit the construction of subroutines giving 
more than six correct digits. When the computation of 
Arcsine is to be repeated many thousands of  times, as often 
happens, the saving of machine time due to the use of a 
shorter and faster subroutine becomes important. 

Chebyshev expansion 

Let F,(z) denote the hypergeometric function F(m+f, m+ 
+; 2m+2; z), that is 

rym++)F,(z) = (2m+ I)! 2 r*(m+++~)z3/s! (2m+ 1 +SI !. 
m 

s=o 

Then, as we  will prove, 

(m++)m! c,r(+) =(Sin CCos 0)2~+1r(m+))F,(Sin220). (4) 

It is possible to deduce (4) from the expression of c, as a 
Fourier coefficient, namely 

ac,=2 Arcsin (xSin 20)T2m+l (x) (1 -x2)4dx, ( 5 )  

but  the transformation of Maclaurin's series 

Arcsin (x Sin 20) = (- 1)" (+) (x Sin 2e)2nf1/(2n+ 1) 

into (1) with the  aid of substitutions 

s:' 
n=n 

n (2x)'n+l /(2n+l)!=2 2 T2,+1(x)/(n-m)! (n+m+l)! 
m=O 

is a much easier way to prove (4). 
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Denoting the general term of a double series thus  ob- 
tained by u ~ ~ ~ ,  *, we have 

Arcsin ( x  Sin 20)= L:  L: u ~ ~ ~ . ~  = 5 2 unn, 

where 

m m  

n=O m-0 nz-o n=n 

u,, =X,(Sin 0 Cos) OZm+l Z2,+,(x)U,,(0) 

with 

x, = r ( m + w m + w w  

and 

~~(m+3)(2m+n+1)!n!Un,,(0)=(2m+1)! Sit1~~120 
I"(m+n+f). 

Summing up with respect to n, we obtain 

5 u,,,,(e) = F,(s~~w) 

and this proves (4). 

n=0 

Hypergeometric functions satisfy recurrence relations and 
therefore we should expect that  our c,)s satisfy one also. 
They do: 

m(2m+3)2c,+l  =(2m+1)  [2m(m+ l)(tanz0+cotan20)+llc,,~ 

To prove (6) we first express F , ( z )  in terms off&) = 

-(m+1)(2m- I)"c-~. (6)  

F(m++, m++; 2m+l;  z) as follows 

4(m+l)F,(Z)=4(m+llf,(z)-(m+:)~f;,+l(~). (7) 

The identity (7)  is easy to check comparing the coefficients 
of zn in both members. Using now the classical relation' 

( l + d ~ ) 2 m + ' f m ( z ) = 2 2 m + l F ( : ,  m+:; m + l ;  i-1, (8) 

where < = (1 - d=)'/( 1 + dG)z, and taking z = Sin' 20, 
we transformfm(Sin2 20) as follows 

f,,(SinY 20) = (1 +t2)2"+'Hm(t). (9) 

Here t = tan 0 and 
ff , , , ( t)  = H,, = F(+, m+9; m+ 1 ; t3 .  

Combining (7)  and (9), we obtain 
(2m+2)Fm(Sin* 20)=(l+t2)2m+1[(2m+2)H, 

and this gives 
-(2m+1)t2H+11 

( m + + ) ( m + ~ ) !  Cmrw = r(m+wm+' 
[(m+I)Hm-((m+3)t2H,~,+~I. (10) 

Now the functions H ,  satisfy the recurrence relation 

(2m+l)V4H,+1=4m(m+l)  [(1+t4)Hm-Hm-11 ( 1  1 )  

which is easy to check by replacing the hypergeometric 
functions by their Maclaurin's series in t'. 

Consider now four functions Hsp1,  H,,  Hs+l and H3+2. 
They satisfy five linear  equations:  three of type (10) for 
m=s-1 ,  s, s+l; and two of type ( 1 1 )  for m=s, s+l. 
Therefore, the determinant of this system of five homoge- 
neous equations with five unknowns H+,, H,, Ha+,, Hv+2, 
and p = 1 vanishes identically. Expanding it we obtain (6). 

Using (6),  we need the values of the first two coefficients 
co and cl, the  other cn's for n 2 2  being computed by (6). 
On the  other  hand, ( 5 )  proves that cn is a linear combina- 
tion of complete elliptic integrals K=K(k)  and E=  E(k) 
with k = Sin 20 

c~=cY,E-&K, (n 2 0)  (12) 

an and fin being rational functions of k.  

Integrating by parts  the integral in (5) and applying the 
relation T'2r,L+j(x)+ T2m-l(x) = 2xT2,(x), we prove that 

(2m+l)~ , - (2m-l )~ , ,~-1=2kG,(k)  ( m 2  1) (1 3 )  

where *G,(k) = ( 1  -x'!)tTz,(x)dx/(l --k"x*)+, 

while 
s.' 

co=4kGo(k)=4(E-k"K)/k~. (k" = 1 - k2) (14) 

Expressing Gl(k)  in  terms of E and K and applying (13)  
with m = 1, we have also 

~1=4[(1+7k")E-k'"(5+3k'')K]/9k:'a. ( 1  5 )  

Thus,  comparing (12) for n =0, 1 with (14) and ( 1 5 ) :  
a0=4/k?r;  fi0=4k'~/k?r;  c~~=4(1+7k'~)/9k%r and fi1=4k" 
(5+3k")/9k37r. But am, p, verify the same recurrence rela- 
tion (6) which holds for c, and they now can be computed 
recursively. 

We see that  the computation of en's is reduced to  that 
of K and E, once k =  Sin 20 is known. In  the last section 
of this paper we compute c,'s for 0 =n/8, k=2-:. 

Maehly's method 

In this method the rational  approximation R(x)  tof(x) is 
deduced from the Chebyshev expansion of.f(x) as follows. 
Denoting the Fourier coefficients of f(x) by f n  and intro- 
ducing M+N+I unknown parameters a,, OSmLM,  and 
b,, 1 S m S N ,  with bo = 1, we form the function H(x) and 
expand it into its Chebyshev series: 

M 
H(x)= [ WL=O 2 bmTm(x)] [ 2 f n T n ( x ) ] -  t n = O  Z a m  Tm(x)= 

Then, the choice of a,,, b, is  fixed  by letting h,=O for 
O<mSM+N.  These M+N+I conditions h, = O  form a 
system of linear  equations satisfied by M+N+ 1 unknowns 
a,, 6,. The explicit expressions of h, in terms of a,, 6, 
and f m  are obtained by performing the multiplications and 
replacing the products 2 T ,   T ,  by the sums T,+,+  Tri+". 

Thus, the expansion of H(x) begins with the term 
AoTM+y+l(x), where A.  =hM+.v+l, and  the rational  function 

M N 

0 ,=O 
R(x) = L: a,, T,,(x) / Z b,T,(x)  (bc=1) 

is the desired approximation to f(x). Its accuracy depends 
on  the choice of M and N. More economical (in the sense 219 
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of number of operations for the same  accuracy) are the where v =  N, if M =  N- 1 or M =  N, and an=O for M =  N 
cases  with M=N-1 and M =  N. The range of x is (-1, -1, but ao#O,  if M =  N. Finally,  replacing x by Nlk, the 
+1) and it is  possible to choose  any  range for the argu-  approximation  is as follows 
ment of f(z), letting z= kx and expandingf(kx) as a func- 
tion of x. f(N)-R(Nlk) =N[Ao+ F ' -1 A,] . 

Applying  this  idea to an odd  function 

f(kx) = t: cn(k)7'2n+l(x), 
m 

n=n 

we form an odd function H(x) also: 

Computing the upper  bound B of relative error 

AoJ.27,,+Zn+,(x)llf(kx), where f(kx) vanishes for x=O, we 
use the inequality I T,,(x)l <nlxl . 

Here by definition C - , = C ~ ~ , ,  if s 2 1. The absolute error ?rcQ=2-\/q2E") 
R(x) -f(kx) of the approximation ?TC~ =2-\/2(2E- 13K/9) . 

M 

f(kx)-R(x)= 2 ~rnTzm+dx)/t: b m T z m ( x )  
N The classical  Legendre's  relation3 

KE+EK"KK'=r/2 
is of the order of the first neglected  term AOTZM+ZN+~(X)  

and, letting M+N+ 1 = p, yields  in our case 2E--K=.rr/2K, so that 

Ao=.3~l(c,,+c,,)b,+c,. 
N 

(p=M+N+1) (18) 

The C ~ S  decrease when It increases and the rate of de- 
crease  depends on the choice of k: the smaller the k, the 
faster the C ~ S  decrease. For a given k and for a prescribed 
accuracy, the order of  magnitude  of AO should  be  studied 
for various  choices of M and N. In general, A. decreases 
when these  parameters  increase, and it is  desirable to 
choose the least values of N and M=N- 1 (or M=N) 
compatible with the required  accuracy. To know the value 
of A. for given  values  of M and N, it is not necessary to 
solve (1 6) and use (1  8). Eliminating b,'s from (1  6) and (18), 
we can  express AO as a ratio D / A  of two  determinants, A 
being the principal  minor of D. Their  elements,  except 
those  in the last column of D, are the sums c-h+cWwk. 
Since the en's decrease very rapidly,  omitting the second 
terms cm+k in  these  sums, a good  approximation D*/A* to 
A. is  easily computed.  Denoting the elements of D* by di,*, 
we have dif* =c++~-N-l. ( l i i , ~ l i v + l )  

In the case M =  N= 2 studied in the last section, we have 
for instance 

co=.\/2/K; cl=co-8Kd\/2/9r . 
To find K=rZ(+)/4I'(.h), we  will use  the  Gaussian  form 

of Landen's Transformation4: 

K, =h::z CosY.+p*, Sinz$)-$d$ = 

J*: a n+l COSY.+/?~~.I SinY.)-fd$=K& 

with aq.l=3(an+Pn) and &.I =(anPn)'. 

In our case K =  KO with a. = 1 andPo = 4 3 2 .  Tabulating 
the results of computation, we find that 

1@n-anl<5X10-16 for n=4 : 

n 1 0 1 5 ~ ~  1015~~ 

1 853  553  390  593  274 840 896  415  253  714 
2 847  224  902  923  494 847  201  266  746  892 
3  847  213  084  835  193 847  213  084  752  766 
4 847  213  084  793  980 847  213  084  793 980 

- 

Given M and N, bm's are computed  solving (16), and c0=0.762 759  763  501  814; c4=0.000 018  691  074  973 
then ( I  7) gives the am's. Replacing Tz, and Tz,+l by their 
explicit  expressions, the rational function R(x)  is  then ex- C1=0.020  869  237  569  305; C6 =0.000 002  354 064  470  (20) 

panded into a continued fraction of the type 
. .  

cz=O.OOl 586  931  627  771; CS=O.OOO 000 312  577  010 

R(x)=x(f fo+ t: ' ") f f m I  
220 1 I P m + x 2  

C3=0.000 160  822  752  706; ~7 =O.OOO 000 043 092 937 

the last six c,'s being  obtained by (6)*. 
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Another way to compute these numbers would be to use 
(12), starting with values of ao, al, PO, pl, K and E. Here 
an=al=2,po=1,~1=13/9aswel las  

K =  1.85407  46772  99357 

E= 1.35064  38810  46669, 

E being computed with the aid of Legendre's relation. With 
the aid of (6)* we obtained a2=5.84;  a3=21.2; a4=2,326 
/27; aui,=1,126/3; (~g=869,148.4/507; 0~7=947,825.68/117; 
/32=12.76/3; p3=2,270.2/147; /34=11,861/189; @5=231,587 
/847; p6=16,250,885.8/13,013 and@7= 17,721,952.76/3,003. 

The values of c,, 0 5  n< 7, recomputed by (12) agree com- 
pletely  with (20). This check was necessary because even 
small errors in the values of C, can spoil the final results 
completely. 

In  our case M =  N= 2, and solving (16), that is 

(cz+c,)b,+(cl+c3b%+2~3=0 
( C ~ + C ~ ) ~ I + ( C Z + C ~ ) ~ ~ + ~ C , = O ,  

we obtain bl= -0.31460  68409 and b2=0.00879 15854. 

Now (17) gives the values of a0=0.69359 09539, 
a l =  -0.09601  14713 and az=0.00163 18472. 

Replacing in R(x) the polynomials T, by their expressions, 
we have 

R(x) =x(ao+a1xz+a2x")/(Po+Plx"+pzx"> 

withao=ao-3a,+5a2=0.93578 46039, a1=4(al-5a2)=- 

1.32339  84263, pl=2bl-8b?= -0.69954  63652 and pz= 
0.41668  28293, O L ~ =  16~z=O.02610 95550, po=1 -bl+bz= 

8bz=0.07033 26834. 

Substituting N 4 2  for x, we find the following formf(N) 
of our approximation to Arcsin N in the interval 0 < N< 2 4  
Arcsin N"f(N) =N(mN4+nN2+p)/(qN4+rN2+s) with 

m = a24T=O.03692 45063, q=p2=0.07033 26834 

n = a1/4F= -0.29463  92542, r=R1/2= -0.34977  31826 

p = ao/24?=0.33084 98196, s = po/4=0.33084 96066. 

Since lim(N"Arcsin N)= 1, the  ratio p / s  is a check. 

Herepls = 1 .OOO 000 64. . . . The maximum of relative error 
is at N=O and  it is equal  to 6.4X1C7: 

limlf(N)/Arcsin N- 11 =p/s- 1 = 6.4X lW7. 

N = o  

N=O 

Transforming our rational  function into a continued 
fraction we obtain  the final formula 

The five constants to store are 

Ao=m/g=0.52499 78317; Al=(rAo-n)/q=1.57834 2904; 

B%=(P--SAo)/qA1=1.41569 02913; Bl=--(Bz+r/q)= 

3.55743  40883; Az=BlB2-~/q=0.33215 85891. 

significant digits being equal to six. Example: Arcsin (2-4 = 
a/4=0.785 398 16 . .  . andf(2-&)=0.785 398 0 4 . .  .,so that 
the relative error is less in  absolute value than 2 x l e 7 .  

Another equivalent form of f ( N )  would be 

where .$ = 1.270451499,  &=3.702672882, 
vl=0.09425018578, v2=1.484093006. 

The detailed study of relative error reveals that it de- 
creases from 6.4 X to 3.8 X when N increases from 
0 to 0.1. For 0.1 5N52-4 the relative error remains in 
absolute value less than 3.8 X Thus, for some excep- 
tional values of N in the range (0; O.l), the sixth significant 
digit in f ( N )  may exceed the corresponding digit in  the 
exact value of Arcsin N by one unit. In  our opinion, it is 
not worthwhile to complicate the subroutine to avoid these 
few exceptional cases. If it is to be  done, however, approxi- 
mation (21) could be replaced in the range 0 <N<0.1 by 
the sum of the first three  terms of Maclaurin's series, that 
is by N+N</6+3Ns/40, which yields the first seven correct 
significant digits, if NI0.1.  

The same  approximation (21) is used in  the interval 2 4  
- < N I  (2+4\/2))/2 =Sin (3a/8). To compute Arcsin N in 
this range, we first form N* = 2N2 - 1 and then  compute 
f (N*)  using (21). Using (2), we find that 

Arcsin N= n/4++f(N*). (N* =2N2 - 1) (23) 

In  the range Sin ( 3 ~ / 8 ) < N < l ,  the value of Arcsin N 
exceeds 3a/8 = 1.178 . . . so that  the first six significant 
digits are correct if the  absolute  error is  less than 5 X 10-6. 
In this  last  interval we use relation (3), approximating 
Arcsin [(I -N)/2]+ by the  sum of the first two terms of the 
Chebyshev expansion (1) with Sin 20 2 max. [(l -N)/2]$= 
Sin 11"15', that is, with 0>5"37'.5 and  tan 020.0985. 

Computing the coefficients C, in (l), we take t = tan 0 = 
0.1. Rounding off increases slightly the range of validity of 
(l), simplifying considerably the numerical computations. 
Using (10) for m=O, 1 and 2, we need the values of Hm= 
H,(O.l) for m< 3. They are  as follows: 
Ho=l. 000 025  001 406; H]=l. 000 037  502  344; 
Hz=l.  000 041 669 401; H3=l. 000 043  752  953. 

Therefore co=O. 199 004  962  779, c1 =O. 000 330  845  730 
and c2=0. 000 001 487  562 

and  in general 0 < c,* < c,/lOO. Now 

Since Sin 28 = 2t/( 1 + P) = 2/ 10.1, we have 

Arcsin (2x/10.1)=c0T1(x)+clT3(x) (24) 

with an absolute error less than 2x10". The right-hand 
member of (24) can  be written as X ( C O - ~ C ~ + ~ C ~ X ~ ) = ~ ( ~ +  
bx2) with a=0.198 012  4256 and b=0.001 323  3829. Sub- 
stituting x=5.05[(1 -N)/2]$, equation (24) takes the  form 22 1 
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+(N) = [( 1 - N)/2]$(A -BN) (25) 

where A=1.085 180  421, B=0.085 217  6716. 

The approximation q5(N) to Arcsin [(l - N)/2]$ is not very 
accurate in itself, but  it is  sufficiently correct to insure the 
required accuracy of the first six digits of Arcsin N as 
given  by relation (3) 

Arcsin N=.lr/2-2+(N). (3*) 

Computation of 4(N) with the aid of (25) is now reduced 
to  the extraction of a  square root.  It can  be performed in 
two divisions and one multiplication as follows. Taking R, 
defined by 

R,=a(P+f-&) (26) 

as a first approximation to dx 0.25<f<1, and then ap- 
plying the so-called Newton’s method5 only once, we ob- 
tain an approximation 

R2=3(Rl+fiR.) (27) 

to dx This yields an approximation to [(l -N)/2]* with 
the first eight correct significant digits, if the numerical co- 
efficients  in (26) are: 

a=0.3343 1261; p=2.7691 3454; y=1.1903 1245; 
6=0.53164106. 

Using the foregoing values of a, p, y and 6, the absolute 
error e = ecf) = If* - R1 I of the first approximation does not 
exceed 3X e( f )<3XIe4 .  Then, by a well-known 
property of Heron’s method, the absolute error E ( f ) =  
IRP-fiI of the last  approximation Rz is equal at  most to 
e2/2RI so that  E<e2s9X10-8, because R1-fi>0.5. 

Here f is  defined  by (1 - N)/2 = 2 P h j  with 0.25 5 f < 1. 
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