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The Physical Interpretation 

of Mean Free  Path and the  Integral Method 

Abstract: In previous papers, general expressions for the linear electronic transport constants of solids 
were obtained in terms of a conjugate function #t related, by a  linear inhomogeneous integral equation, 
to the function (of electron state) # measured by the “flux.” It i s  now shown that 

~ # t = l > l t )  dt , 
where the integrand i s  the expectation of # for an electron which  at  time t earlier was in the specified 
state (of which #t is a function) and i s  the collision frequency. In particular, the vector mean free 
path 7vt is: “the limit,  after  a  virtually  infinite time, of the mean displacement, in Brownian motion, of 
the position of an electron initially  in the specified state.” If there is a force (e.g. that due to  a magnetic 
field) accelerating the electrons between collisions, then a  linear transport constant i s  the same functional 
of an “extended conjugate” 97” as it i s  of #t in the absence of the force. It is shown that 7#te i s  ob- 
tained (instead of 7#tl when the integrand in the integral  above is replaced by the “expectation after 
time t” as modified by the accelerations between collisions. The relation of the present formalism to the 
Shockley-Chambers theory i s  discussed. 

In previous papers’, a mathematical  procedure  (the “in- 
tegral method”)  for  handling the Boltzmann equation for 
electrons  in solids was introduced and applied to  the theory 
of electronic thermal  conduction1 and  to  the theory of the 
galvanomagnetic effects? It sometimes happens  in statistical 
physics that  an idea which was introduced as  formal 
mathematics turns  out  to be  interpretable by a simple 
physical concept. The purpose of the present note is to ex- 
plain such a physical interpretation of the integral method 
and, specifically,  of the “vector mean free path”2 construct 
to which it led. 

The Boltzmann equation for electrons in a crystal solid 
may be written for present purposes as 

a)relh=g , (1) 

where h is a component of the distribution  function, f(r), 
with which we are dealing, g is a “generator”  function 
treated  as known, and Drel is the integral operator giving 
the  rate of change of h due  to  the relaxation processes:3 

As in references 1 and 2, r stands  for the variables speci- 
fying the electron state, crystal momentum p together with 
the discrete variables (spin and  band index), I ( r )  stands 
for integration id’ p . . . . . . over the Brillouin zone and 
summation over the discrete variables, and we define the 
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relaxation  time 7(r) by the equation 

i = z ( r f ) q r ; r / )  . (3) 

Let #(I?) be any electron variable satisfying the condition 

Z#fO=O , (4) 

wherefo(r) is the “equilibrium” function satisfying 

9,,1fO=O . (5)  

[Where Boltzmann statistics applies, f o  is just  the Maxwell- 
Boltzmann distribution  function for thermal equilibrium. 
In general, however, when Fermi statistics applies, f ”  = 
f i  (1 -f i )  where f o ( F )  is the Fermi  distribution function.] 

The conjugate, #t, of# is given  byz8 

+t ( r )  -z(ry-(r ;r / )T(r / )+t(r / )  =+(r) . (6) 

It has  the  property 

z#h = -z#tTa)relh . (7) 

BY (1) and (71, 

Z#h= -zT#tg . (8) 

Thus  the expectation of some  magnitude of interest, #(I’), 
for  the distribution represented by h is known in  terms of 



a sum-integral over g if the conjugate of $ is known. The 
vector mean free path is 

I EZ T V t  (9) 

where v=&/ap is the electron velocity, e(lJ the electron 
energy according to  the single-electron model. Then (8) 
gives for  the electron current density associated with h 

J =  -~ Zvh= -“-Zlg . (10) 
e  e 

( 2 a ~ y {  ( 2 a w  

The conductivity in the absence of a magnetic field  is  hence2 

d(O)=- ZlVfO . e2 
(2aA)“kT (1 1) 

It is convenient to introduce the integral operator 6, de- 
fined as follows: 

~+=~(r)z(r’)~(r ;rw(r’) . (1 2) 

Since T(r;r’) expresses the differential rate,  corresponding 
to (2), of scattering’  from state I’ to  the neighborhood of 
state I”, C$ is the expectation of $ for  an electron which 
has been scattered once from the specified initial state. 
(The  factor T provides for normalization.) Eq. (6) may be 
written 

(1-6)+t=T$ . (1 3 )  

The interpretation  put  forward here of the relation be- 
tween $ and its conjugate $t is as follows: For  an electron 
in a given state I’ at time t, there will  be a normalized 
probability function P(r,tII”,t’) for  the possible states I” 
reached by the  electron,  as  a result of scattering, at a time 
t‘. (That is to say, P as a function of F‘J’ is the solution 
of the  equation aP/at’=DrCIP for a “delta function” at 
time t as  boundary  condition. It represents the ensemble 
of possible “histories,” r’(t’), of the electron.) Then it is 
asserted that 

nC.t=(w 9 (14) 

where 

@,$=Lim(t”-+w) Z(r’)P(r,tIr’,t’)$(r’)dt’ . 

This relation (14)  is  easily p r ~ v e d . ~  The probability that the 
electron will not have been scattered out of the  state r by 
time t‘ is exp( ( t  -t’)/T(F)}. Therefore the  contribution to 
al$ from the interval before the electron is first scattered 
(after time t )  is 

s” (15) 

c $(r)expi (t-t’)/T(r)}dt’= T$ . 
The contribution  from all times after the first scattering is 
obviously C((RJ/). Therefore 

W=nC.+.e@,$, (16) 

(1 -C)(R$=nC. . (1 7) 

or 

Eqs. (13) and (17) are consistent with the proposed rela- 
tion (14). 

As was shown in reference 2, the solution of (1 3) is 
unique except that addition of any invariant of scattering 
(a function, a(r), which has the same value for any two 
states between  which scattering occurs) to T $ t  yields 
another solution. (But any two  solutions differing by a/r 
give the same value for a transport  constant4.g.  for (1 I ) . )  
On  the other  hand  the  function @,IC. given by (1  5 )  is unique. 
If we  wish a unique specification, therefore, we  may prefer 
to choose as our standard  solution of (13) the one equal to 

It is proposed to call a$ the “relaxation integral” of $. 
The vector mean free path (9) has a simple physical inter- 
pretation  as the relaxation integral CRv: The  vector mean 
free path is the limit, after a virtually infinite time, of the 
mean displacement, in  Brownian motion, of the position of an 
electron initially in the specified state. 

The extended theory 

Frequently in practice one wishes to deal with the Boltz- 
mann  equation given by adding to the left-hand side of ( I )  
the  rate of change of h due to various fields (not expressed 
by their influence on g), such as  a magnetic field H, “bias- 
ing” electric field E,“ or  the field expressing the electron 
acceleration due to a  strain gradient.7 In these cases there 
is an acceleration, ’ 

dp/dt=F(r) , (18) 

of the electron between collisions. A function $(r) changes 
between collisions at  the  rate 

(1/.)W .5 

(a/at)fielcl$= G$ (1 9) 

where 

GEF(I’).d/dp . (20) 

Eq. ( I )  should be replaced by 

D h = g  , (le) 

where 

a,=Dr,,-G . (21) 

The integral method generalizes as follows:* In place of 
$t we have an “extended conjugate” $te satisfying the 
equation8 

(I -.$-TG)7J/te=T$ , (1 3 4  

and instead of (8) the  relation 

Z+h = - ZnC.trg . (84  

In formulas such as (1  I ) ,  for example, we have to replace 
1 by an “extended mean free path” 

1“ FE TVt“ (94  

*It  should be understood  that  the  function  ++‘defined  by  eqs.  (13e)  and  (l4e) as 
given  in the  text  exists  only if the  extension of (4)  holds for + (i.e. i f  I+f” =0 
where Jn is the  steady-state  distribution  function,  satisfying , j o -0 ) .  The  
appropriate  extension  of  the  theory is obtained  by  replacing + on x e  right  hand 
FicIPq of i l l p i  and  (14e)  hv & - ( l & f o / l f o ) .  (The definition  (15e)  of Me, and  the - -  \ - ~  ~, ~ 

proof  which  follows,  are siili valid; a n d  apply to any  magnitude-denoted  there 
by + “satisfying  the  extension  of  (4). We are  extending  the definition  of +t‘ 

given  in  the  text  then  continues t o  hold,  Thus  the  more  general  form  of  (9e) 
here, and  leaving  the  definition of (Re unchanged.) I t  can  be shown that  (8e) as 

(needed  when an  electric  field contributes  to G, for  example)  may be written 

l e =  M”(v-u) 
where u is the  average of v over the  steady  state,  IvJOlIf ”. 20 1 
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(22) Now, Q(t’)+ is a path variable, and therefore differentia- 
tion with respect to t‘ is, by  (19), equivalent to operating 
on Q+ with G. Hence, finally, 

give the general results obtained in Section 2 of reference 2 
for  the galvanomagnetic effects. 

It is an obvious question for investigation whether the 
generalization of  (14) holds for $7”. The relaxation proc- 
esses and  the acceleration (18) will together generate, from 
an initial electron state I’ at time t ,  an ensemble of pos- 
sible states represented by F(r,rlI”,r’), the generalization 
of P(F,tlT”,t’). The “extended relaxation integral” 

( W  

where +(tJ and Q(t,)+ are regarded as  functions of rl gen- 
erated by varying the initial state r while holding t and t l  
fixed. The second required formula is obtained by substi- 

tuting Jtk(t&it2 for + in (26), integrating by parts on the 

right-hand side, and making use of (28). Then 

Q(t){ 4) . 
By substituting (30) into (27)  we obtain 

is the corresponding generalization of the function defined 
by  (15). The relation we are conjecturing is then From (29) and (31)  we have 

Re$= Q(t){r$+.C(Re#) . 

This conjecture turns out to be correct. The proof is as 
follows : 

The probabilities of scattering to  the neighborhoods of 
given final states now vary  with time  as  the electron is ac- 
celerated. The probability that  an electron will not have 
been scattered by time t“ if it was certainly in state I” at 
time t’ is now 

Again, (13e) and (17e) are consistent with the proposed 
relation (14e). Provided (le)  has a  unique solution,1° all the 
solutions of (13e) for $te should give the same value for 
the right-hand side of (8e) and hence for  the derived trans- 
port constants. The function (Re$ will  be one of these solu- 
tions,” the  one satisfying (14e), and might as well  be taken 
as the solution. 

The results (8e),  (14e) lead directly to auto-correlation 
theorems such as  appear in the general theory of transport 
processes.I2 For example the (ohmic) conductivity in  the 
presence of a magnetic field (with G given by (23)) is 

where 7(tl) means the value of T for  the state, Fl, which m 

the unscattered electron has reached by time t l .  Suppose d(H)=- dr{ I f 0  v(t>”v)  
q5(tl) is some  magnitude varying along the unscattered 
path. We define an operation Q(t’) as follows: where 

(271-$.~kTJ 

Q(t’)+- ,+(tl>{ -as(t’(tl>/at,]dfl . Jrn (26) 

Thus,  for initial state  at time t ,  Q(f)q5 is the expectation 
of the value of + at  the instant before the first subsequent 
scattering. Then the generalization of (16) is 

= Q(O( ~ k t W 2 +  { CW$ i (t  ,) ) . (27) 

We now have to  obtain two auxiliary formulas involving 
Q. For the first, we rewrite (26) as 

Q(t’)+= , + ( ~ ~ ) ( ~ ( ~ ’ I ~ ~ ) / ~ ( ~ ~ ) ) ~ ~ ~  

by making use of (25) to express the derivative of S. Hence, 

lrn (28) 

$lr~~I(r’)~e(r,olr’,t)$(r’) . (33) 

In more conventional notation,  this  formula may be 
written‘:’ 

d=(l/nkT) dt<J(t)J(O)> , Lm (34) 

where J is the electric current density and n is the electron 
density ( I / ~ T A ) ~ I J ; I  . 

The theory of the Boltzmann equation developed here is 
a mirror image-so to speak-of the Shockley-Chambers 
theory.’? In the  latter the solution of  (1) or (le) is obtained, 
essentially, by applying the adjoint* of the 01, or W, oper- 
ator  to  the right-hand side. The two theories join together 
in the results of the type of  (32) to which they both lead. 
The scopes of the two theories, as presented here and as 
presented in Heine’s paper,j4 are somewhat different. The 
assumption of isotropic scattering in Shockley-Chambers 
(which is concerned with the case +=v)  is equivalent to 
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omitting  the  term  in d: from (16) and (27). On the  other 
hand  the  present  paper  does  not  treat  the  situation  where 
g in (1) and  (le)  is a function  of time.’; A more  funda- 
mental  limitation  in  the  present  paper is the  restriction t o  
Markoffian  relaxation processes. This  restriction  excludes 
transport  phenomena  in  thin  bodies,  and  the  anomalous 
skin effects, where  scattering of the  electrons  from  the  sur- 
faces is significant. This  surface  scattering  appears  as a 
correlation between the  times of successive scatterings, if 
the  position of the  electron is suppressed as  a variable  in 
the  Boltzmann  equation.  The  Chambers  theory  applies to 
(and was developed  in  connection  with)  this  situa- 
tion.l4, 16* l7  The  definitions (15), (15e) of  the  relaxation 
integral  obviously  may  be directly extended t o  include non- 
Markoffian  relaxation;  but  the  analysis  in  the  present  paper 
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