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P. J. Price

The Physical Interpretation
of Mean Free Path and the Integral Method

Abstract: In previous papers, general expressions for the linear electronic transport constants of solids
were obtained in terms of a conjugate function Y7 related, by a linear inhomogeneous integral equation,
to the function (of electron state) ¥ measured by the “flux.” It is now shown that

= [y ae,

where the integrand is the expectation of ¥ for an electron which at time ¢ earlier was in the specified
state (of which V1 is a function) and 1/7 is the collision frequency. In particular, the vector mean free
path vt is: “the limit, after a virtually infinite time, of the mean displacement, in Brownian motion, of
the position of an electron initially in the specified state.” If there is a force {e.g. that due to a magnetic
field) accelerating the electrons between collisions, then a linear transport constant is the same functional
of an “extended conjugate” ¥1° as it is of ¥t in the absence of the force. It is shown that 7¢1° is ob-
tained (instead of 7¢7) when the integrand in the integral above is replaced by the “expectation after
time 1’ as modified by the accelerations between collisions. The relation of the present formalism to the
Shockley-Chambers theory is discussed.

In previous papers' 2 a mathematical procedure (the “in- relaxation time 7(I') by the equation

tegral method”) for handling the Boltzmann equation for 1

electrons in solids was introduced and applied to the theory -=IT")T(I;17) . 3)
of electronic thermal conduction' and to the theory of the ’

galvanomagnetic effects.? It sometimes happens in statistical Let Y(T') be any electron variable satisfying the condition

physics that an idea which was introduced as formal Tfo—
. : X Yfo=0 , C))

mathematics turns out to be interpretable by a simple
physical concept. The purpose of the present note is to ex- where (') is the “equilibrium” function satisfying
plain such a physical interpretation of the integral method Dl 020 ©)
and, specifically, of the “vector mean free path’? construct rel/ T
to which it led.

The Boltzmann equation for electrons in a crystal solid
may be written for present purposes as

[Where Boltzmann statistics applies, f° is just the Maxwell-
Boltzmann distribution function for thermal equilibrium.
In general, however, when Fermi statistics applies, f°=

Dyeth=g ) fo (1 —f5) where f(I') is the Fermi distribution function.]
where % is a component of the distribution function, AT"), The conjugate, ¥, of ¥ is given by*

with which we are deahng,. gisa generator fun(':tl‘on YD) — I T ;D) AT ) = (D) . ®)
treated as known, and D, is the integral operator giving

the rate of change of /& due to the relaxation processes:? It has the property
{S)mh}(F)=I(F’)(h(F’)T(I";P)—-h(I‘)T(I‘;I")). [0)) Ih=—I11Daih . @)
As in references 1 and 2, T' stands for the variables speci- By (1) and (7),

fying 'the electrqn state, 01tysta1 moment}lm p together with Ih=—Irjtg . (8)
the discrete variables (spin and band index), I(T) stands

for integration [d*p...... over the Brillouin zone and Thus the expectation of some magnitude of interest, Y(T),
summation over the discrete variables, and we define the for the distribution represented by 4 is known in terms of
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a sum-integral over g if the conjugate of y is known. The
vector mean free path is

=7vt )

where v=279¢/dp is the electron velocity, «(T") the electron
energy according to the single-electron model. Then (8)
gives for the electron current density associated with &

e
T @Ry

The conductivity in the absence of a magnetic field is hence?

J= Ivh= (10)

e
émllg .

e’ 0
6(0)=W11Vf . (1 1)

It is convenient to introduce the integral operator £, de-
fined as follows:

LY =r(DU)HTT; W) (12)

Since T(I';I"") expresses the differential rate, corresponding
to (2), of scattering® from state I" to the neighborhood of
state I, £y is the expectation of ¢ for an electron which
has been scattered once from the specified initial state.
(The factor 7 provides for normalization.) Eq. (6) may be
written

(1—E)yrpt=1y . (13)

The interpretation put forward here of the relation be-
tween ¢ and its conjugate ¥t is as follows: For an electron
in a given state I' at time ¢, there will be a normalized
probability function P(T",7|I",r') for the possible states I"
reached by the electron, as a result of scattering, at a time
t’. (That is to say, P as a function of I,#’ is the solution
of the equation 9P/3t' =D..P for a “delta function” at
time ¢ as boundary condition. It represents the ensemble
of possible “histories,” I'’(¢'), of the electron.) Then it is
asserted that

Wwi=Qy , a4
where
Ry =Lim(t"— =) f IT)PE T WA )dt . (15)

t

This relation (14) is easily proved.* The probability that the
electron will not have been scattered out of the state I' by
time ¢’ is exp{(r—¢)/7([)}. Therefore the contribution to
@y from the interval before the electron is first scattered
(after time ?) is

f Y(Mexpl(t—1)/r(D)ldt' =1y .

The contribution from all times after the first scattering is
obviously £L(®Ry). Therefore

Ry =y+LAY , (16)
or
A—L)Ry=r¢ . a7

Eqgs. (13) and (17) are consistent with the proposed rela-
tion (14).

As was shown in reference 2, the solution of (13) is
unique except that addition of any invariant of scattering
(a function, a(T"), which has the same value for any two
states between which scattering occurs) to T¢+ yields
another solution, (But any two solutions differing by a/r
give the same value for a transport constant—e.g. for (11).)
On the other hand the function ®¢ given by (15) is unique.
If we wish a unique specification, therefore, we may prefer
to choose as our standard solution of (13) the one equal to
/&Y 5

It is proposed to call By the “relaxation integral” of y.
The vector mean free path (9) has a simple physical inter-
pretation as the relaxation integral ®v: The vector mean
free path is the limit, after a virtually infinite time, of the
mean displacement, in Brownian motion, of the position of an
electron initially in the specified state.

The extended theory

Frequently in practice one wishes to deal with the Boltz-
mann equation given by adding to the left-hand side of (1)
the rate of change of 4 due to various fields (not expressed
by their influence on g), such as a magnetic field H, “bias-
ing” electric field E,® or the field expressing the electron
acceleration due to a strain gradient.” In these cases there
is an acceleration,

dop/dt=F(T) , (18)

of the electron between collisions. A function Y(I") changes
between collisions at the rate

(0/0D fiernty = GY (19)
where

G=FI)-9/dp . (20)
Eq. (1) should be replaced by

Dh=g , (le)
where

D=D1—G . @1

The integral method generalizes as follows:* In place of
Yt we have an “extended conjugate” yYte satisfying the
equation®

(1—-L—7G)Yte=ny , (13¢)
and instead of (8) the relation
Nh=—Irytyg . (8e)

In formulas such as (11), for example, we have to replace
1 by an ‘“‘extended mean free path”

°=TVe %e)

*]t should be understood that the function ¢ ¢ defined by egs. (13¢) and (14e) as
given in the text exists only if the extension of (4) holds for ¥ (i.e. if Iyf0=0
where f0 is the steady-state distribution function, satisfying 9)f°=0). The
appropriate extension of the theory is obtained by replacing ¥ on the right hand
sides of (13e) and (14e) by y—(I¢f?/If?). (The definition (15¢) of R, and the
proof which follows, are still valid, and apply to any magnitude—~denoted there
by ¢ —satisfying the extension of (4). We are extending the definition of yt¢
here, and leaving the definition of ®® unchanged.) It can be shown that (8¢) as
given in the text then continues to hold. Thus the more general form of (9¢)}
(needed when an electric field contributes to G, for example) may be written

1°= ®°(v—u)

where u is the average of v over the steady state, Ivf?/If0,
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The first three terms of the series development
mgre=npt4r{G(ryYN}t

+r{Gr{ G DI+ ... , (22)
with?

e d
G=—%(vxH) 5, @3

give the general results obtained in Section 2 of reference 2
for the galvanomagnetic effects.

It is an obvious question for investigation whether the
generalization of (14) holds for y+. The relaxation proc-
esses and the acceleration (18) will together generate, from
an initial electron state I at time ¢, an ensemble of pos-
sible states represented by P(I",¢|I",t"), the generalization
of P(T',t|T”,¢’). The ‘“‘extended relaxation integral”

&

Ry =Lim(¢""—0) f KI)P(T,t
t

I, WA )dr (15e)

is the corresponding generalization of the function defined
by (15). The relation we are conjecturing is then

Wit=R%Y . (14e)
This conjecture turns out to be correct. The proof is as

follows:

The probabilities of scattering to the neighborhoods of
given final states now vary with time as the electron is ac-
celerated. The probability that an electron will not have
been scattered by time ¢ if it was certainly in state I' at
time ¢’ is now

NS =exp{ - f ) dt,/ T(tl)} , 25

where 7(¢)) means the value of r for the state, I';, which
the unscattered electron has reached by time ¢.. Suppose
@(t1) is some magnitude varying along the unscattered
path. We define an operation Q(¢') as follows:

0(r)p= f B0 —0S(]1)j0n dr, . 6)

Thus, for initial state I" at time ¢, Q(#)¢ is the expectation
of the value of ¢ at the instant before the first subsequent
scattering. Then the generalization of (16) is

Ry = Q(t)< f \l/(ta)dtz+{£@‘*¢i(h)> . @n

We now have to obtain two auxiliary formulas involving
Q. For the first, we rewrite (26) as

0= [ sr(Swinyre)ar (28)

by making use of (25) to express the derivative of S. Hence,

0

i 0wliar= [ (swyiren)@sian

—()S( () (r')
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= (2= [1 .

Now, Q(t')¢ is a path variable, and therefore differentia-
tion with respect to ¢’ is, by (19), equivalent to operating
on Q¢ with G. Hence, finally,

o=(1—-7G) Q¢ 29)

where ¢(¢,) and Q(¢,)¢ are regarded as functions of I'; gen-
erated by varying the initial state I" while holding ¢ and #
fixed. The second required formula is obtained by substi-

t
tuting f Y(t:2)dt. for ¢ in (26), integrating by parts on the
t

right-hand side, and making use of (28). Then

o) f Uedts= Q@) . (30)
By substituting (30) into (27) we obtain

Ry = QO Y+ LAY} . 3D
From (29) and (31) we have

(1—-L—7G0)RY =1y . (17¢)

Again, (13e) and (17e) are consistent with the proposed
relation (14e). Provided (le) has a unique solution,!® all the
solutions of (13e) for m¥t° should give the same value for
the right-hand side of (8¢) and hence for the derived trans-
port constants. The function Ry will be one of these solu-
tions,'' the one satisfying (14e), and might as well be taken
as the solution.

The results (8¢), (14e) lead directly to auto-correlation
theorems such as appear in the general theory of transport
processes.’? For example the (ohmic) conductivity in the
presence of a magnetic field (with G given by (23)) is

e P 0 y|f)e
d(H)=Wﬁdt{lf V|1 v} 32)
where
Y|ty =KI)P(L,0[T7,00(T) . (33)

In more conventional notation, this formula may be
written"

6=(1/nkT)fdt<J(t)J(O)> , 34

where J is the electric current density and » is the electron
density (1/2w7)fo .

The theory of the Boltzmann equation developed here is
a mirror image—so to speak—of the Shockley-Chambers
theory.' In the latter the solution of (1) or (le) is obtained,
essentially, by applying the adjoint® of the &, or ®¢, oper-
ator to the right-hand side. The two theories join together
in the results of the type of (32) to which they both lead.
The scopes of the two theories, as presented here and as
presented in Heine’s paper,'* are somewhat different. The
assumption of isotropic scattering in Shockley-Chambers
(which is concerned with the case ' =v) is equivalent to




omitting the term in £ from (16) and (27). On the other
hand the present paper does not treat the situation where
g in (1) and (le) is a function of time.!” A more funda-
mental limitation in the present paper is the restriction to
Markoffian relaxation processes. This restriction excludes
transport phenomena in thin bodies, and the anomalous
skin effects, where scattering of the electrons from the sur-
faces is significant. This surface scattering appears as a
correlation between the times of successive scatterings, if
the position of the electron is suppressed as a variable in
the Boltzmann equation. The Chambers theory applies to
(and was developed in connection with) this situa-
tion.!* 16 17 The definitions (15), (15¢) of the relaxation
integral obviously may be directly extended to include non-
Markoffian relaxation; but the analysis in the present paper

does not have this elasticity, because it depends on the
properties of the function S(#|¢”") given by eq. (25). The
generalization of the results given here (i.e. of (8) and (8e)
with 7+ and m¢1t° given by (14) and (l4e) and hence by
(15) and (15e)) to include non-Markoffian processes in the
relaxation integral is in fact valid. This statement will be
justified in a subsequent paper dealing with the general
theory of the Boltzmann equation, in which the present
results and those of Shockley, Chambers and Heine will
appear as particular cases in a more general analysis.
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