
W. W. Peterson*

On Checking an Adder+

Short Cornnlunication

Introduction

When the checking circuit forms an integral part of an
adder, there is the possibility that the failure of a single
component will affect both the result and the check in
such a way that an undetected error will occur. It is there-
fore important to determine what type of check can be
accomplished when the checking circuit is made com-
pletely independent. The use of a residue-class check
such as "casting out nines" is well known. The present
paper demonstrates that this is the only type of checking
possible where adder and checker are independent. Every
check under these circumstances is the same as some
residue-class check.

Independent check, modulo some base b

The checking system studied in this paper is shown in
Fig. 1. The principal feature of this system is the separ-
ation of the adder and the checker into independent units.
Corresponding to each number n which may occur in this
system, there is a check symbol C (n) . Whenever a num-
ber is stored in the system, the corresponding check
symbol is stored with it. When two numbers, nl and nz,
are to be added, they are sent to the adder, and their
check symbols, C(n1) and C(nz) , are sent to the checker,
which is entirely separate from the adder. The output
from the adder is nl+nz, and the output from the
checker, denoted by C(nl) * C (n z) , must be the check
symbol corresponding to nl+n2; that is,

"Now at University of Florida, Gainesville, Fla.
i-Most of the work reported in this paper was done at the IBM Research

Center, Poughkeepsie, N. Y. 166

IBM JOURNAL APRIL 1958

Abstract: It is widely known that a computer adder

can be checked by a completely independent circuit

using check symbols that are residues of the num-

bers modulo some base. This paper describes such

a residue checking system and shows, moreover,

that independent adding and checking circuits are

possible only with systems of this type. The discus-

sion includes a method of handling residue-class

check symbols when overflow occurs.

C(n l) "C(nz)=C(n l+n*) . (1)

A validity check can then be made to see whether the
actual outputs from the adder and checker agree.

Such a system of checking can be achieved by using
the residue of the numbers modulo some fixed base b as
check symbols, and using a checker which is a "mod b"
adder. These residue-class checks work because adding
and then taking residues gives the same result as taking
residues first and then adding.' In symbols, if

C (n) " n mod b (2)

then

C (n ~ + n d = C(n1) + C (n d , (3)

where it is understood that the addition on the right is
modulo b. That is. b is added to or subtracted from the

" 1 c
ADDER * n 1 + " 2

"2- -

Figure 1 Checking system with independent adder
and checker.

result if necessary to make the result lie between zero and
(b - 1) inclusive. If the checker operation(':) is addition,
Eq. (3) is the same as Eq. (1).

Proof thaf independent checks are always
residue-class checks

This paper shows that every checking system of the type
under discussion is the same as a check modulo some base
b. The check symbols can always be considered to repre-
sent in some code all the numbers between zero and
(b - 1) in such a manner that Eq. (2) holds and the
checking operation (*) is equivalent to addition modulo
6 , as in Eq. (3) . The proof consists of showing what this
code must be and demonstrating that with this code Eqs.
(2) and (3) do hold.

Clearly C (0) must be taken as the code symbol for 0. If
C(1) is different, it is taken as the code symbol for 1. If
C (2) is not the same as either C(0) or C(l) , it is taken
as the code symbol for 2. Similarly, the process continues
until a number h is found such that C (b) = C (a) , where
a is a positive number smaller than b.?

Since C (b) = C (a) , Eq. (1) implies that

C(O)=C(a)*C(- -a)=C(b) : " (-a)=C(b-a) ; (4)

that is, C (b - a) is the same as C(0) . Because of the way
it was chosen, however, b is the smallest number such
that C (b) is the same as the check symbol for a smaller
number. Therefore,

b s b - a . (5)

But,

a z o , (6)

and (5) and (6) can hold simultaneously only if a=O,
and hence

C(b) = C(0) * (7)

Since C(n + b) = C (n) * C (b) , we can now state that

C (n f b) = C (n) * C (O) = C (n + O) = C (n) , (8)

and also that

C (n f k b) = C (n) . (9)

Thus, if two numbers are congruent mod b, they have
the same check symbol. Since every integer is congruent
mod b to some number between 0 and (b - 1) , there must
be exactly b distinct check symbols, and these symbols
are the coded representation of the numbers, 0, 1 , 2,
(b - 1) . Furthermore, every number n 2 b has associated
with it the check symbol corresponding to the residue of
n mod b.

Finally, if the code for nl, C (n l) , and the code for n2,
C(np) , are put into the checker, the output is C(n,)
C(n2) = C (n 1 + n 2) , the code for (n l + n 2) mod b. Thus

?If no number b is found such that C (b) = C (a) with a < b, then there
must be a different check symbol for every number, and the chrcker is
essentially a duplicate adder.

the star operation on check symbols is equivalent to addi-
tion mod b on the code representation, and the checker
is essentially a mod b adder.

The proof is essentially algebraic, and the ideas behind
it can be described very compactly in terms of modern
algebra. The property which the check symbol function
C(n) must possess, indicated in Eq. (l) , makes this func-
tion a homomorphism.2 The theorem is essentially equiv-
alent to the statement that every homomorphic image of
the integers is isomorphic to the set of residue classes of
integers modulo some number. This follows from the fact
that the integers are cyclic, that the homomorphic image
of a cyclic group is a cyclic group, and that every cyclic
group is isomorphic either to the integers or to the inte-
gers modulo some number.

Handling overflow

It has been assumed so far that the adder itself adds the
numbers correctly. This will be the case if the sum of the
two numbers is not too large for the computer to handle
without overflow. Convenience in machine application
usually requires that the outputs of the adder and checker
should agree even when there is overflow. This brings up
a question first as to the condition under which such
agreement will occur with residue-class checks, and sec-
ond as to what modification might be made to bring this
condition about if agreement does not occur.

Typically when overflow occurs in an adder, the calcu-
lated result differs from the true answer by some fixed
amount: 2" in a k-bit binary adder, (2k- 1) if it has
"end-around-carry," or 10'" in a k-digit decimal adder.
This means that typical adders are adders modulo 2k,
2"- 1 , or lok. To build an adder modulo some other
number to use for checking would require only minor
modifications of present techniques.

If the difference between the output from the adder and
the true result is N when there is overflow, then agree-
ment of check symbols requires that

C (n + N) = C (n) .

Then

C (N) = C (n + N - n) = C (n + N) * C (- n)

= C (n) * C (- n) = C (n - n) = C (O) .

Since C(n) must be a residue-class check,

N=O, mod b,

where b is the base of the check. Thus a necessary and
sufficient condition for agreement of check symbol with
adder result, even with overflow, is that the base of the
check divide N .

In the ordinary binary adder, where N=2k, b must be
power of two, let us say 2a , in order to divide N . Thus the
check symbols are the numbers modulo 2 p , or essentially
duplicates of the p low-order bits. Because no check is
provided on the bits of higher order than p , such a check
would be of very little use.

A similar result occurs in the decimal case. Here 167

IRM JOURNAL APRIL 1958

N= l O k , and in order to divide N the base b must have
the form b=2pSq. There is a complete check on digits of
order lower than p and q, and no check at all on digits of
order higher than the greater of p and q.

For the binary adder with end-around-carry, N =2k - 1,
and if this has any factors of suitable size, a residue-class
check based on it would probably work out well.

Certainly in the case of the ordinary binary adder, if a
residue-class check is used, the base would not be chosen
to be a power of 2, and some modification would be
necessary to make the check symbol and adder result
consistent when overflow occurs. Fortunately, the neces-
sary modification is simple. When N is dropped from the
output of the adder because of overflow, the overflow
indication can be used to cause the residue of N modulo
b to be subtracted from the check symbol. This feature
may in fact be very desirable; if the overflow signal failed,
the check symbol would not be corrected, and the error
would be detected by the next validity check.

Conclusion

This paper demonstrates that if an independent checker
is not a duplicate adder, it must always employ a check
of the residue-class type. It has been shown, too, that

such checks are generally feasible. Although somewhat
negative, these results do suggest some directions for
constructive thought on the checking problem.

In the first place, added emphasis is placed on the
residue-class checks, and further investigation of their
properties appears worth while. A base-three check will
provide single-error detection for the ordinary binary and
decimal adders. It would be interesting to know, for
example, what base should be used for multiple-error
detection or for a given degree of error correction with a
binary or decimal k-place adder.

In the second place, in situations where a residue-class
check is not suitable, integration of the checking and
adding circuits is indicated, and all effort can be turned
immediately to investigation of integrated systems.

References

I . G . Birkoff, and S. MacLane, A Survey of Modern Alge-

2. B. L. van der Waerden, Modern Algebra, Frederick Ungar

3. G . Birkoff, and S. MacLane; op. cit., p. 138 and p.155.

bra, Macmillan, New York, 1941, pp. 23-29.

Publishing Co., New York, 1949, p. 27.

Received October 17,1957

168

IBM JOURNAL - APRIL 1958

