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On Checking an Adder+ 

Short Cornnlunication 

Introduction 

When  the checking  circuit forms  an integral part of an 
adder,  there is the possibility that the failure of a single 
component will affect both  the result and  the check  in 
such a way that  an undetected error will occur. It is there- 
fore  important  to  determine what type of check can be 
accomplished  when the checking  circuit is made  com- 
pletely independent. The use of a residue-class check 
such as "casting out nines" is well known. The present 
paper demonstrates that this is the only  type of checking 
possible where adder  and checker are independent.  Every 
check under these  circumstances is the  same as  some 
residue-class check. 

Independent check, modulo some base b 

The checking system studied in this paper is shown in 
Fig. 1. The principal feature of this system is the  separ- 
ation of the  adder  and  the checker into independent  units. 
Corresponding  to  each  number n which may occur in  this 
system, there is a  check  symbol C ( n ) .  Whenever  a num- 
ber is stored  in the system, the corresponding  check 
symbol is stored with it. When two numbers, nl and nz, 
are  to be added, they are sent to  the  adder,  and their 
check symbols, C(n1) and C(nz ) ,  are sent to  the checker, 
which is entirely separate  from  the  adder.  The  output 
from  the  adder is nl+nz, and  the  output  from  the 
checker, denoted  by C(nl) * C ( n z ) ,  must be the check 
symbol  corresponding to nl+n2; that is, 
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Abstract: It is  widely  known  that a computer adder 

can be checked by a completely independent circuit 

using check  symbols that  are residues of the num- 

bers modulo some base. This paper describes such 

a residue checking system and shows, moreover, 

that  independent  adding  and checking circuits are 

possible only with systems of this type. The  discus- 

sion includes a method of handling residue-class 

check  symbols when  overflow occurs. 

C(n l ) "C(nz )=C(n l+n*) .  (1) 

A validity check can then be made  to see whether the 
actual  outputs  from  the  adder  and checker agree. 

Such  a system of checking  can  be achieved by using 
the residue of the  numbers  modulo some fixed base b as 
check symbols, and using a  checker  which is a "mod b" 
adder. These residue-class checks  work  because  adding 
and  then taking residues gives the  same result  as  taking 
residues first and  then adding.' In symbols, if 

C ( n ) " n  mod b ( 2 )  

then 

C ( n ~ + n d  = C(n1) + C ( n d  , ( 3 )  

where it is understood that  the addition on  the right is 
modulo b. That is. b is added  to  or  subtracted  from  the 

" 1  c 
ADDER * n 1  + " 2  

"2- - 

Figure 1 Checking system with  independent  adder 
and checker. 



result if necessary to  make the  result lie between zero and 
( b -  1 )  inclusive. If the checker operation( ':) is addition, 
Eq. (3) is the same as Eq. (1). 

Proof thaf independent checks are  always 
residue-class checks 

This paper shows that every checking system of the type 
under discussion is the  same as  a  check  modulo  some base 
b. The check symbols can always be considered to repre- 
sent  in  some code all the  numbers between zero and 
( b -  1) in such a manner  that  Eq. ( 2 )  holds and  the 
checking operation ( *  ) is equivalent to addition  modulo 
6 ,  as in Eq. (3) .  The proof consists of showing  what this 
code  must be and demonstrating that with this code Eqs. 
(2 )  and ( 3 )  do hold. 

Clearly C (  0) must be taken as the code symbol for 0. If 
C( 1) is different, it  is taken  as the code  symbol for 1.  If 
C (  2) is not the same as  either C(0) or C( l ) ,  it  is taken 
as the code symbol for 2.  Similarly, the process continues 
until a number h is found such that C ( b )  = C ( a ) ,  where 
a is a positive number smaller than b.? 

Since C (  b )  = C ( a )  , Eq. ( 1) implies that 

C(O)=C(a)*C( - -a )=C(b) : " ( -a )=C(b-a ) ;  (4) 

that is, C (  b - a )  is the same  as C( 0) .  Because of the way 
it was chosen,  however, b is the smallest number such 
that C ( b )  is the  same as the check  symbol for a  smaller 
number.  Therefore, 

b s b - a .  ( 5 )  

But, 

a z o ,  (6) 

and ( 5 )  and (6) can hold simultaneously only if a=O, 
and hence 

C( b )  = C( 0) * (7) 

Since C( n + b )  = C (  n )  * C (  b )  , we can now state  that 

C ( n f b ) = C ( n ) * C ( O ) = C ( n + O ) = C ( n ) ,  (8) 

and also that 

C ( n f k b )  = C ( n ) .  (9) 

Thus, if two numbers  are  congruent mod b, they have 
the  same check  symbol. Since every integer is congruent 
mod b to some number between 0 and ( b  - 1 ) , there must 
be  exactly b distinct  check symbols, and these symbols 
are  the coded  representation of the  numbers, 0, 1 ,  2, . . . . 
( b -  1) .  Furthermore, every number n 2 b  has associated 
with it the check  symbol  corresponding to  the residue of 
n mod b. 

Finally, if the code  for nl, C ( n l ) ,  and  the code for n2, 
C(np) ,  are put into  the checker, the  output is C(n,)  
C(n2) = C ( n 1 + n 2 ) ,  the code for ( n l + n 2 )  mod b. Thus 

?If no  number b is found  such  that C ( b )  = C ( a )  with a < b, then  there 
must  be a different  check symbol for  every  number,  and  the  chrcker  is 
essentially a duplicate  adder. 

the  star operation  on check  symbols is equivalent to addi- 
tion mod b on  the  code representation, and  the checker 
is essentially a  mod b adder. 

The proof is essentially algebraic, and  the ideas  behind 
it can be described very compactly  in terms of modern 
algebra. The  property which the check  symbol function 
C( n) must possess, indicated  in Eq. ( l ) ,  makes this func- 
tion  a homomorphism.2 The  theorem is essentially equiv- 
alent to  the statement that every homomorphic image of 
the integers is isomorphic to  the set of residue classes of 
integers modulo some  number. This follows from  the  fact 
that  the integers are cyclic, that  the  homomorphic image 
of a cyclic group is a  cyclic group,  and  that every cyclic 
group is isomorphic  either to  the integers or  to  the inte- 
gers modulo some number. 

Handling  overflow 

It has been assumed so far  that  the  adder itself adds the 
numbers  correctly. This will be the case if the  sum of the 
two numbers is not too  large  for  the  computer  to  handle 
without overflow. Convenience in machine application 
usually requires that  the  outputs of the  adder  and checker 
should  agree even when there is overflow. This brings up 
a  question first as to  the condition under which such 
agreement will occur with residue-class checks, and sec- 
ond as to what modification might be made  to bring  this 
condition about if agreement  does  not  occur. 

Typically when overflow occurs in an  adder, the  calcu- 
lated  result differs from  the  true answer by some fixed 
amount: 2" in  a k-bit binary adder, ( 2k-  1) if it  has 
"end-around-carry," or 10'" in  a k-digit decimal  adder. 
This means that typical adders  are  adders  modulo 2k, 
2"- 1 ,  or lok. To build an  adder modulo  some other 
number  to use for checking would require only  minor 
modifications of present  techniques. 

If the difference between the  output  from  the  adder and 
the true result is N when there is overflow, then agree- 
ment of check  symbols  requires that 

C ( n + N ) = C ( n ) .  

Then 

C ( N ) = C ( n + N - n ) = C ( n + N ) * C ( - n )  

= C ( n ) * C ( - n ) = C ( n - n ) = C ( O ) .  

Since C( n )  must be a residue-class check, 

N=O, mod b, 

where b is the base of the check. Thus a necessary and 
sufficient condition for agreement of check  symbol with 
adder result, even with overflow, is that  the base of the 
check divide N .  

In  the  ordinary binary adder, where N=2k, b must be 
power of two, let us say 2a ,  in  order  to divide N .  Thus  the 
check symbols are  the  numbers modulo 2 p ,  or essentially 
duplicates of the p low-order bits. Because no check is 
provided on  the bits of higher order  than p ,  such  a  check 
would be of very little use. 

A similar  result occurs in the decimal case. Here 167 
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N= l O k ,  and  in  order  to divide N the base b must  have 
the  form b=2pSq. There is a  complete  check on digits of 
order lower than p and q, and  no check at all on digits of 
order higher than  the greater of p and q. 

For the binary  adder with end-around-carry, N =2k - 1, 
and if this has  any  factors of suitable size, a residue-class 
check based on  it would probably  work out well. 

Certainly in  the case of the  ordinary binary adder, if a 
residue-class check is used, the base would not be chosen 
to be  a  power of 2,  and some modification would be 
necessary to  make  the check  symbol and  adder result 
consistent  when overflow occurs. Fortunately,  the neces- 
sary modification is simple. When N is dropped  from  the 
output of the  adder because of overflow, the overflow 
indication can be used to cause the residue of N modulo 
b to be subtracted  from  the  check symbol. This  feature 
may in fact be  very  desirable; if the overflow signal  failed, 
the check  symbol would not  be  corrected,  and  the  error 
would be  detected by the next validity check. 

Conclusion 

This  paper demonstrates that if an independent  checker 
is not  a duplicate  adder, it must always employ  a  check 
of the residue-class type. It  has been shown, too, that 

such checks are generally feasible. Although somewhat 
negative,  these  results do suggest some  directions for 
constructive thought  on  the checking  problem. 

In  the first place, added emphasis is placed on  the 
residue-class checks, and  further investigation of their 
properties appears  worth while. A  base-three check will 
provide  single-error  detection for  the  ordinary binary and 
decimal  adders. It would be interesting to  know,  for 
example,  what base should be used for multiple-error 
detection or for a given degree of error correction with a 
binary or decimal k-place adder. 

In  the second  place,  in  situations  where  a residue-class 
check is not  suitable,  integration of the checking  and 
adding circuits is indicated, and all effort can be  turned 
immediately to investigation of integrated systems. 
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