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Reliability Improvement

W. E. Dickinson
R. M. Walker

by the Use of Multiple-Element Switching Circuits

Abstract: Physical devices used for switching have finite probabilities of failure. Circuits which make use of

redundancy to achieve resultant reliabilities greater than that of their elements have been proposed and

have been analyzed for the case of intermittent failures. The present paper extends certain of these results

to the case of permanent failures of the elements, assuming that the reliability of these elements is known.

It is shown that, for operating periods which are short compared to the mean time to failure of the elements,

o substantial increase in reliability can be obtained by such redundancy.

The problem of constructing more reliable switching cir-
cuits by the use of redundant elements has been consid-
ered by von Neumann' and by Moore and Shannon? for
certain cases of intermittent failures of elements whose
probability of failure is constant with time. It is the
purpose of this paper to point out that their results can
be extended to cover cases of permanent failures of ele-
ments, provided that the reliability* of the elements is
known. The examples used for illustration are circuit
arrangements suggested in the reference papers.

The assumptions used in those papers were as follows:

[. The probability of failure of any element is independ-
ent of the probability of failure of any other element.

2. Only intermittent failures are considered.

3. The probability of failure of an element is defined for
each operation, is constant with time, and is the same
for every element.

In this paper, we assume the following:

1. The probability of failure of any element is independ-
ent of the probability of failure of any other element.

2. All failures are permanent; that is, when an element
fails, it remains in the failed condition.

3. The reliability of the elements is known (as a function
of time) and is the same for every element.

We define the following probabilities:

F(t) = the probability that an element or circuit will
fail during the time interval O to ¢. This is the cumulative
distribution function of time to failure.

R(t) = 1 — F(t) = the probability that an element
or circuit will not fail during the time interval O to ¢. This
is the reliability for the time interval O to ¢.

*Reliability as used herein means the probability of adequate performance
of the prescribed function for a specified time.

IBM JOURNAL * APRIL 1958

Z(t)dt = the probability that an element or circuit
will fail during the infinitesimal interval d¢ beginning at
time ¢, conditional on non-failure prior to time t. Z(?)
may then be called the failure rate for survivors. (We will
assume that Z(¢) may be any non-negative function of ¢
which is integrable over any finite time interval; it need
not be continuous. We also assume that Z(¢) does not
approach zero as —>%,)

The relation between Z(t) and R(¢) is:

R(t+dt)=R(t) —R(t)Z(1)dt, (1)
drR(t) _
R = —Z(t)dt, (2)

t
R(t)=exp[—/ Z(r)df]. 3)
o

If Z(t) =), where X is a constant, the reliability becomes
R.(1) =e (4)

which is the well-known exponential law of failure.?:*
The cumulative failure distribution function for an
element obeying the exponential law is then

F.(t)=1—R.(1)=1—e}. (5

This is shown as curve 0 of Fig. 4 and is plotted using
normalized time, At.

With the preceding assumptions regarding the reli-
ability of the elements we now consider two types of
multiple-element circuits.

The von Neumann 2-out-of-3 majority’

Von Neumann suggested the use of a majority organ fed
by three independent logical devices (hereafter referred
to as elements) which operate from the same source of




input information, as shown in Fig. 1. We shall assume
that the majority organ itself is perfect and that the only
failures to be considered are those of the three elements
which feed it. These may fail in two modes; (a) with the
output remaining permanently in the “low” voltage state,
or (b) with the output remaining permanently in the
“high” voltage state. We investigate two cases having
different assumptions in this respect.

® Case 1

This is the upper bound for failure of this arrangement,
obtained by assuming that all failures of the elements
occur in the same mode. Then failure of the redundant
system will occur if any two or three of the elements fail,
or conversely, the system will not fail if all three or any
two of the elements still function correctly. If the prob-
ability that any element will function correctly is R,, the
probability that all three elements will function correctly
is .R,*; the probability that any one element fails and
the other two still function correctly is (1—R,)R,%
Since this latter possibility can happen in three different
ways the reliability, i.e., the probability that the redun-
dant system will not fail, will be

Ri=R,*+3(1—R,)R,2=3R,>— 2R, (6)

R, is plotted against R, as curve 1 of Figure 3. This rela-
tion is valid for any R,(¢). However, if the exponential
law is assumed for the elements, then by substituting
R,(t) for R, we obtain

R18=3872’\t*2€’3>‘t. (7)

Figure 1 Two-out-of-three majority circuit.

The corresponding cumulative failure distribution func-
tion, Fle: 1 _Rle’ is shown as curve 1 of Figure 4.

® Case 2

For this we assume that the elements have equal prob-
ability of failing in the “high” or the “low” state. This
means that when exactly two elements fail, there is a
probability of 1/2 that they will fail in opposite direc-
tions, in which case the output of the system would still
be correct. The probability that two elements fail and
the other still functions correctly is (1—R,)*R,, and
this can happen in three different ways. Therefore, the
reliability

R:; =R, + 3(1—-R,)R,? +—;- (1—-R,)*R,

3 1
=_—R,— —R3. 8
> 5 (®)
This is plotted vs. R, as curve 2 of Fig. 3. Since 0<R,<1,
then R,*<R,, and it follows that R.>R, for any R..
Also, for the exponential law,

1
R, =% et iy e-3At, 9)

The corresponding F26= 1 —Rze, is shown as curve 2 of
Fig. 4.

The Shannon-Moore

series-parallel relay contact network®

This redundant circuit uses four identical relays, each
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Figure 2 Series-parallel relay contact network on
four relays.

with one contact, to replace a single relay having one
contact. The arrangement is as shown in Fig. 2. The four
coils in parallel replace the single coil and the contact
network shown replaces the single contact. Two such
contact arrangements were discussed by Shannon and
Moore, with and without the center connection; we shall
consider only this one.

Shannon and Moore have shown that for a two-
terminal network made up of m statistically independent
contacts, each contact of which has the probability p of
being closed, the network will have a probability 4(p)
of being closed, as follows:

h(p) = 2 Awp"(1—p)™>, (10)
n=0
where A, is the number of ways we can select a subset
of n contacts such that if these n contacts are closed and
all others open, then the network will be closed.
Similarly, the probability of the network being open is

1—h(p) = 3 Bu(1—p)"p™™, (11)
n=0

where B, is the number of subsets of # contacts such that

if all contacts in a subset are open and all others closed,

the network is open.

Neglecting the possibility of coil failures, each contact
may fail in two ways: (a) it may fail to make contact
when it should, or (b) it may fail to break contact when
it should. As used herein, the term “fail to make” means
failure of a contact or a circuit to be closed whenever it
should be closed, and “fail to break” means failure of a
contact or circuit to be open whenever it should be open.
As previously stated, either type of failure is assumed
to be permanent.

We define two cumulative failure distributions:
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q.(#) = the probability that a contact will fail to make
during the interval O to ¢.

pu(t) = the probability that a contact will fail to break
during the interval O to t.

It follows that:

pa(t) = 1 — gq.(t) = the probability that a contact
will be closed whenever it should be closed during the
interval O to ¢ This is the reliability of being closed,
defined for this interval.

gv(t) = 1 — pu(t) = the probability that a contact
will be open whenever it should be open during the inter-
val O to r. This is the reliability of being open, defined
for this interval.

The total probability of failure of the circuit in the
interval O to ¢ is the sum of the disjoint probabilities of
failure to make and failure to break. The probability that
this circuit will fail to make at some time during the
interval O to ¢ is

1—h(p) = ﬁBn(l_[)a)n[)a4_n = %Bnqa"(lwqa)“"“-
- " (12a)
Since By=B;=0, B:=2, B;=4, B,=1,
1=h(pa) =2¢.*(1—qa)* +4q.* (1—qa) +q4"
=2q42—qa*. (12b)
Similarly, the probability of the circuit failing to break
at some time during the interval O to ¢ is

4
h{py) = 2 Anps™(1—pp)*™

n=0
= 4py*(1—py)*+4py° (1—ps) +py?
= 4p,* —4py*+ pu*. (13)

Then the total probability of circuit failure in the interval
Ototis

F,=2q2—q.+4pp>—4ps®+ pyt. (14)

We shall now consider three cases for this circuit with
different assumptions as to failure probabilities. In all
these cases F, is the total probability that any given con-
tact will fail.

® Case 3

All failures are assumed to be failures to make. Then
go=F,, pp=0, and
F3=2F2—F,%, (15)
or
Ro=1-[2(1—R,)*— (1 R,)*]

=4R.2—4R,3+R,2. (16)

This is shown as curve 3 of Fig. 3. For the exponential
law,

R;;e:46‘2”—48‘3)"5—{—6‘4“. (17)




Ro o

Figure 3 Circuit reliability versus element reliability.

The corresponding F5 = 1—R;, is shown as curve 3 of
Fig. 4.

e Case 4

All failures are assumed to be due to contacts failing to
break. Then ¢.=0, p,=F,, and

F,=4F>—4F 3+ F,*, (18)

or

Ri=1—F=1—[4(1—R,)*~4(1—R,)+(1—R,)1]

=2R,2—R,* (19)
This is plotted as curve 4 of Fig. 3. For the exponential
law,

Ry =2e2M —e i, (20)

and the corresponding F,;esl—R4e is shown as curve 4
of Fig. 4. 145
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Figure 4 Probability of circuit failure versus time for elements obeying exponential law.

o Case 5

Failures to make and failures to break are considered
equally probable. Then g,=p,=1%F,, and

o) (5 (5
)

3 1
:__F()Qh__F“.%’ 21
> > (©29)
or
R 1 > 1—R,)? 1 1—R,)?
5 2 ( 0) 2 ( - 0)
> R ! R, 22)
- 2 [ 2 0 . (

Since R; is identical with R,, it also is represented by
curve 2 of Fig. 3. And similarly, for the exponential law,
F5,=F3,, and is represented by curve 2 of Fig. 4. As
for Case 2, we note that for any R,, Rs>R,.

Figure 3 shows that for Cases 1, 3 and 4 the use of
redundancy may decrease the reliability of the circuit to
below that of the elements, and that the circuit is more
reliable than its elements only if the reliability of these
clements exceeds some minimum value for each case.
However, for Cases 2 and 5, the redundant circuit is
always more reliable, regardless of the element reliability.
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Figure 4 shows that if the exponential law of reliability
is applicable to the elements, then the reliability improve-
ment for these circuits (as indicated by a reduced prob-
ability of failure) is most effective when the desired
period of operation is such that At<<{1. Since (see the
next section) A=1/m,, where m, is the mean time to
failure for an element, this means that the significant gain
in reliability is obtained for t<<<m,.

Mean time to failure

If no maintenance of the equipment is contemplated ex-

cept when failure of the redundant circuit occurs, then

the figure of interest is the mean time to failure, m.
Equation (3) may be rewritten as

R(t)=1—F(t)=e", (23)
where

¢
v(1) =/ Z(7r)dr, with y(0) =0. (24)

The mean time to failure is

m= 1talF= wte-”“—dldt
0 0 dt
[ [ @)
0 0
But

1 1
1 -7 =1 — | =k —_—
e "’] lt‘ii[w] i e*zm]'




Since Z(#) does not approach zero as —> >, then "V Z(?)
— % as t—><¢, and therefore,

m=/ e4<f>dt=fR(t)dt. (26)
0 0

For the exponential law, where it is assumed that the
element reliability is R,=e*", then

1
m, = BN 27)

With this element reliability, the mean times to failure
for the five cases are as follows:

3 2 5

M T T e 29
3 I 4

TN e T3 M (29)
4 4 1 11

I T T ™ 39
2 1 3

M = o TN T 4 M (31)

4
Mz = my = Trm. (32)

Conclusion

Since, for any of these cases, the reliability of the redun-
dant circuit is not linearly related to the reliability of its
elements, it follows that any relative comparison must be
made on the basis of particular assumptions about the
operating time, the preventive maintenance procedures,
and the failure distribution.

For unattended operation until failure, without pre-
ventive maintenance, and assuming the exponential law

applies to the elements, circuits of either type can give
only a 4/3 gain in mean time to failure for the most fa-
vorable assumption about failure modes (Cases 2 and 5).

However, if the desired operating period between
maintenance intervals is short compared to m,, a very
substantial gain is possible for either circuit arrangement
and for any of these assumptions about failure modes.
For example (again assuming the exponential law), if one
had elements with a mean life of 10,000 hours, their relia-
bility for a 100-hour operating period would be predicted
to be 0.99, i.e., the probability of failure of an element
during that period would be 0.01. For Cases 2 or 5, the
resultant probability of failure of the redundant circuit
during 100 hours would be 0.00015, or about 1/67 as
much as for the single element. If all elements were
checked after the 100-hour operating period and all failed
elements replaced, then, since the exponential law implies
the absence of wear-out effects, the same reliability could
be expected for the next 100 hours of operation.
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