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~ Reliability  Improvement 
by the  Use of Multiple-Element  Switching  Circuits 

Abstract:  Physical  devices used for switching have finite  probabilities  of  failure. Circuits which  make use of 

redundancy to achieve  resultant  reliabilities  greater  than  that  of their elements have  been  proposed  and 

have  been  analyzed  for  the case of intermittent  failures. The present paper  extends  certain  of these results 

to the case of  permanent  failures  of  the elements, assuming  that  the  reliability of these elements is known. 

It i s  shown  that,  for  operating  periods which are short compared  to  the  mean  time to failure of the  elements, 

a substantial increase in  reliability can be  obtained  by such redundancy. 

The problcm of constructing more reliable switching cir- 
cuits by the use of redundant elements  has been consid- 
ered by von Neumannl  and by Moore  and  Shannon?  for 
certain cases of intermittent  failures of elements whose 
probability of failure is constant  with time. It is the 
purpose of this paper  to point out  that their  results can 
be extended to cover cases of permanent failures of ele- 
ments, provided that the reliability" of the  elements is 
known. The examples used for illustration are circuit 
arrangements suggested in the reference  papers. 

The assumptions used in  those  papers were as  follows: 
I .  The probability of failure of any element is independ- 

ent of the probability of failure of any other element. 
2. Only intermittent  failures are considered. 
3. The probability of failure of an element is defined for 

each operation, is constant with time, and is the  same 
for every  element. 

z ( t ) d t  = the probability that  an element or circuit 
will fail during  the infinitesimal interval dt  beginning at 
time t ,  conditional on non-failure prior  to time t .  Z ( t )  
may then be called the  failure  rate for survivors. (We will 
assume that Z (  t )  may be any non-negative  function of t 
which is integrable over any  finite  time  interval; it need 
not be continuous.  We also assume that Z ( t )  does not 
approach  zero as t-+m,) 

The relation between Z (  t )  and R ( t )  is: 

R ( t + d t )  = R ( t )  - - R ( t ) Z ( t ) d t ,  ( 1 )  

R ( t )  = exp [ -lt Z ( d d i ]  . 
If Z (  t )  =X, where h is a constant,  the reliability becomes 

In this paper, we assume the following: R, ( t )  =V" 

1. The probability of failure of any  element is indcpend- 

2. All failures are  permanent;  that is, when an element The cumulative failure distribution function  for  an 

3. The reliability of the elements is known (as a  function F,( t )  = = -e-ht. 

(4) 

cnt  of  the probability of  failure of any other element. which is the well-known exponential law of f a i h ~ r e . ~ , ~  

fails, it remains in the failed  condition.  element  obeying the exponential law is then 

of time)  and is the same  for every element. (5) 

We dcfine the following probabilities: 
F ( t )  = the probability that  an element or circuit will 

fail  during the  time  interval 0 to t. This is the cumulativc 
distribution  function of time to failure. 

R ( t )  = 1 - F ( t )  = the probability that  an element 

This is shown as  curve 0 of Fig. 4 and is plotted using 
normalizcd time, At.  

With  the preceding assumptions  rcgarding the reli- 
ability of the  elements we now consider two types of 
multiple-element circuits. 

. ,  . .  
or circuit will not  fail during  the time  interval 0 to t .  This The von  Neumann  2-out-of-3  majority' 
is the reliability for  the time  interval 0 to t .  Von Neumann suggested the use of a  majority organ fed 

142 of the prescribed  function  for a specified  time. to as  elements) which operate  from  the  same  source of 
*Reliability as used herein  means  the  probability of adequate  performance by three independent logical devices (hereafter referred 
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input  information, as shown in Fig. 1. We  shall  assume 
that  the majority organ itself is perfect and  that  the only 
failures to be considered are those of the  three elements 
which  feed it. These may  fail in two modes; (a) with the 
output remaining  permanently in  the “low” voltage state, 
or (b) with the  output remaining  permanently in  the 
“high” voltage state. We investigate two cases having 
different assumptions  in this respect. 

Case 1 

This is the upper  bound for  failure of this arrangement, 
obtained by assuming that all failures of the elements 
occur in the  same mode. Then  failure of the  redundant 
system will occur if any  two or three of the elements  fail, 
or conversely, the system will not fail if all three or any 
two of the elements still function correctly. If the  prob- 
ability that any  element will function correctly is R,,, the 
probability that all three elements will function correctly 
is .RO3; the probability that  any  one element  fails  and 
the  other two still function correctly is ( I  -Ro)  Rc,2. 
Since  this  latter possibility can  happen in three different 
ways the reliability, i.e., the probability that  the  redun- 
dant system will not fail, will be 

R~=R,“+3(1 -R~)R,2=3R02-2R,3 .  ( 6 )  

R1 is plotted  against R,, as curve 1 of Figure 3. This rela- 
tion is valid for any R,( t )  . However, if the exponential 
law is assumed for  the elements,  then by substituting 
RE(t)  for R,, we obtain 

The corresponding  cumulative failure distribution func- 
tion, Fie= 1 - R1,, is shown as curve 1 of Figure 4. 

Case 2 

For this we assume that  the elements have  equal  prob- 
ability of failing in  the “high” or the “low” state.  This 
means that when  exactly  two  elements  fail, there is a 
probability of 1 / 2  that they will fail  in  opposite  direc- 
tions, in which  case the  output of the system would still 
be correct.  The probability that two elements  fail and 
the  other still functions correctly is (1 -Ro) 2RR,, and 
this can happen  in three  different ways. Therefore,  the 
reliability 

Rz = R,J3 + 3(1-R,,)R,,2 +- (l-Ro)‘RR, 
3 
2 

3 1 
2 2 

- -_  R,  --Ro’. (8) 

This is plotted vs. R, as curve 2 of Fig. 3. Since 0 1  R,< 1 ,  
then R,” I R , , ,  and  it follows that R 2 2  R, for  any R,. 
Also, for the exponential  law, 

R~ =_ e - A t  -_ e - 3 A t .  
3 1 

e 2  2 
(9) 

The corresponding Fz,= 1 -Rz is shown as curve 2 of 
Fig. 4. 

The  Shannon-Moore 
series-parallel relay contact  network2 

e’ 

~ ~ ~ : = 3 ~ - z ~ t - 2 ~ - : j ~ t .  (7) This  redundant circuit uses four identical relays, each 

Figure 1 Two-out-of-three  majority  circuit. 
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Figure 2 Series-parallel  relay contact network  on 

four  relays. 

with one contact, to replace  a single relay having one 
contact. The  arrangement is as  shown  in  Fig. 2. The  four 
coils in  parallel  replace the single coil and  the  contact 
network  shown  replaces the single contact. Two  such 
contact arrangements were discussed by Shannon  and 
Moore, with and without the center  connection; we shall 
consider  only  this  one. 

Shannon  and  Moore have  shown that  for a two- 
terminal  network made  up of rn statistically independent 
contacts, each  contact of which has the probability p of 
being closed, the network will have  a  probability h ( p )  
of being closed,  as  follows: 

h ( p )  = 2 A,p"( 1 - p ) " " a ,  
m 

(10) 
n=u 

q.,( t )  = the probability that a contact will fail to  make 

PI,( t )  = the  probability that a  contact will fail to break 
during  the interval 0 to t .  

during  the interval 0 to t .  
It follows that: 

p,(t) = 1 - q , ( t )  = the probability that a  contact 
will be closed whenever it should  be closed during  the 
interval 0 to t. This is the reliability of being closed, 
defined for this interval. 

q l , ( t )  = 1 - p b (  t )  = the probability that a  contact 
will be open whenever it should  be open  during  the inter- 
val 0 to t. This is the reliability of being open, defined 
for this  interval. 

The  total probability of failure of the  circuit in the 
interval 0 to t is the  sum of the disjoint probabilities of 
failure  to  make  and  failure  to break. The probability that 
this circuit will fail to  make  at  some  time  during  the 
interval 0 to t is 

4 4 

l ~ h ( p , ~ )  = 2 B,(l-p,)np,4-n = 2 B,q,lZ(l-qq,)'"'. 
n=o 7c=u 

(12a) 

Since Bo=B1=O, Bz=2, B,=4, B,=l,  

l~h(p , )=2q, ' ( l~q , , ) '++44a~( l -qq , )+q0 '  

= 2q,? - q ,4 .  (12b) 

Similarly, the probability of  the circuit  failing to break 
at  some  time during  the interval 0 to t is 

4 

h ( P b )  = 2 A&?'( 1 P P b )  4-?* 
?L=o 

= 4~1,~(  1 -pb)')+4p$(  l-pb) +PI,* 

- 4pb"4p*"pb4. - ( 1 3 )  

Then the  total  probability of circuit failure in the interval 
0 to t is 

F,=2q,'Pq,'+4pb2--4po"+pb4. ( 1 4 )  

where A ,  is the number Of ways we can a  subset We shall now consider three for this circuit with 
of IZ contacts such  that if these n contacts are closed and  assumptions as to failure probabilities. In all 
all others  open,  then  the network will be closed. these cases F, is the  total probability that any given con- 

Similarly, the probability of the network being open is tact will fail. 
rn 

1 - h ( p )  = 2 B,( 1 - p )  nppn-n, ( 1 1 )  Case 3 
n=0 

where B, is the  number of subsets of n contacts such  that 
if all contacts in a  subset are  open  and all others closed, qa=F,,, p b = O ,  and 

All failures are assumed to be failures to make. Then 

the  network is open. 
Neglecting the possibility of coil failures, each  contact F3=2F02"F043  - - 

may fail in two ways: (a) it may  fail to  make  contact or 
when it should, or  (b)  it may  fail to break contact when 
it should. As used herein, the term "fail to make" means R:; = 1 - [2( 1 - R,) - (1 R,) 
failure of a contact  or a  circuit to be closed whenever it 
should be closed, and "fail to  break"  means  failure of a 
contact  or circuit to be open whenever it should be open. This is shown as curve of Fig. 3. For the exponential 
As previously stated, either  type of failure is assumed law, 
to be permanent. 

~4Ro"4Ro'+R,4. (16) 

144 We define two cumulative failure distributions: " e (17) R,,  =4e-".\t_4e-3Xt+e-4ht. 
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Circuit reliability versus element  reliability. 

The  corresponding F 3 e = I - R : j e  is shown as curve 3 of R 4 = l - F ~ = 1 - [ 4 ( 1 ~ ~ , , ) ~ - - 4 ( l - ~ ~ , : ~ ) + ( I - ~ , ~ ) ~ ]  
Fig. 4. =2R,,"RR,,4. (19) 

This is plotted  as  curve 4 of Fig. 3. For the  exponential 
All failures are assumed  to  be  due to contacts  failing to law, 
break.  Then qa=O, pb=F, ,  and R4e=2e-2Xl - e - 4 X t  (20) 

and  the  corresponding F g e =  1 - R4e is shown as curve 4 

0 Case 4 

F,=4F,2-4F03+FF,,', 

or of Fig. 4. 145 
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Figure 4 Probability of circuit failure versus time for elements obeying exponential law. 

Case 5 Figure 4 shows that if the  exponential law of reliability 

Failures to  make  and failures to break are considered is applicable to  the elements,  then the reliability improve- 

equally  probable. Then qa=pt,  = +F, , ,  and ment  for these circuits (as indicated by a  reduced prob- 
ability of failure) is most effective when the desired 

F5 = 2 ($) - (-$y + 4 ($y period of operation is such  that Xt<<l. Since (see the 
next section) X= l /mo,  where m, is the  mean time to 
failure  for  an element,  this  means that  the significant gain 
in reliability is obtained for t<<m,,. 

Mean time to failure 
- 4 ( + Y + ( 3  

1 

3 1 
2 2 

- - - F,' - - F,,', (21) If no maintenance of the equipment is contemplated ex- 
cept when failure of the  redundant circuit  occurs,  then 

or the figure of interest is the mean  time to failure, nz. 
Equation ( 3 )  may be rewritten  as 

R( t )= l - -F( t )=e-Y( t ) ,  (23) 

where 

Since R5 is identical with R2,  it also is represented by 
curve 2 of Fig. 3. And similarly, for  the exponential  law, 
F5,=F2,, and is represented by curve 2 of Fig. 4. As 
for  Case 2, we note  that  for  any R,,, R,2R,. 

Figure 3 shows that  for Cases 1 ,  3 and 4 the use of 
redundancy  may  decrease the reliability of the circuit to 
below that of the elements, and  that  the circuit is more 
reliable than its elements  only if the reliability of these 
elements exceeds some minimum value for each case. 
However, for Cases 2 and 5 ,  the  redundant circuit is 
always more reliable, regardless of the  element reliability. 

Jo 
The  mean time to  failure is 

= -[ t e - q ;  +J- 'd t .  

But 
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Since Z ( t )  does not approach  zero as t + x ,  then e ‘c t )Z ( t )  
+ m  as t + z >  and therefore, 

n l = ~ ~ e - ” ) d r = ~ ( t ) d i .  ( 2 6 )  

For the exponential  law,  where it is assumed that  the 
element reliability is R,,=e-Af,  then 

1 
h 

in, ,  = - . ( 2 7 )  

With this element reliability, the  mean times to failure 
for  the five cases are as follows: 

3 ? 5 
2h 3X 6 

1 ~ 1 ~  = - - - -mu;  ( 2 8 )  

4 
3 

m6 = m2 = - I ? ? < , .  

Conclusion 

Since, for any of these cases, the reliability of the redun- 
dant circuit is not  linearly  related to the reliability of its 
elements, it follows that  any relative  comparison  must be 
made  on  the basis of particular  assumptions  about the 
operating  time, the preventive maintenance  procedures, 
and the  failure distribution. 

For unattended operation until  failure,  without pre- 
ventive maintenance, and assuming the exponential law 

( 3 2 )  

applies to  the elements,  circuits of either  type  can give 
only a 4/3 gain in mean  time to  failure  for  the most fa- 
vorable  assumption about  failure modes  (Cases 2 and 5 ) .  

However, if the desired operating period between 
maintenance  intervals is short  compared  to m,, a very 
substantial  gain is possible for either  circuit arrangement 
and for any of these assumptions about  failure modes. 
For example (again assuming the exponential law), if one 
had elements  with a mean life of 10,000 hours,  their relia- 
bility for a 100-hour operating period would be predicted 
to be 0.99, i.e., the probability of failure of an element 
during  that period would be  0.01. For Cases 2 or 5, the 
resultant  probability of failure of the  redundant circuit 
during 100 hours would be 0.0001 5 ,  or about 1/67 as 
much as for  the single element. If all elements  were 
checked after the  100-hour operating period and all failed 
elements  replaced, then, since the exponential  law implies 
the absence of wear-out effects, the same reliability could 
be expected for  the next 100 hours of operation. 
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