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On the Statistical Mechanics
of Impurity Conduction in Semiconductors

Abstract: The statistical mechanics of the impurity electron states for a semiconductor with a low density

of donors, and a small amount of acceptor compensation, is analyzed. Expressions are obtained for the

number of dissociated donor ion states according to the Mott model, and for the effects of multiple trap-

ping, and of dispersion of the trapping energies, on this nhumber. An expression for the thermoelectric

power according to the Mott model is obtained. If a small proportion of “minority”” donors, of a different

chemical species with a smaller electron binding energy than the majority donors, were added to the

impurity content they should act as additional traps for donor ion states: The statistical mechanics of this

system is analyzed.
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1. Introduction

It has been known for several years! that in electrical con-
duction in germanium, for small fields and at very low
temperatures, the current may be carried mostly by the
electrons* in the localized (donor) states, rather than by the
very small fraction of the available electrons which are
thermally excited to the conduction band, even though the
mobility of the latter electrons is very much greater. This
new mode of conduction has now been investigated in
some detail. 1t was originally believed that the explanation
of this mode of conduction was that the interaction, due
to the overlap of their wave-functions, between localized
clectron states on neighboring donor impurity atoms causes
the macroscopically degenerate donor electron level to
split into a band (the so-called “impurity band”) of levels,
each new level corresponding to a current-carrying state.
It has since been realized, however, that impurity conduc-
tion is found in circumstances where this explanation
could not be correct?, and it has been proposed that com-
pensation then plays an essential role in the mechanism of
conduction. The new view of impurity conduction at low
impurity densities>? is as follows:

When the donor impurities are partly compensated by
acceptor impurities, the latter become negative ions by
acquiring electrons from the former. Thus, if there
are N, donors and N, acceptors, N4 electrons will be
transferred from the former to the latter. This leaves
Ny, — Ny electrons distributed among Np donor “orbitals.”

*For the sake of brevity and clarity, throughout this paper I refer to “electrons”,
“donors”, and “n type” although the phenomena discussed occur for both
polarities of extrinsic semiconductor. Everything in the following analysis
applies, mutus mutandis, to p type also.
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For the low concentrations we are concerned with here,
the interaction between these orbitals is very small; and
consequently most of the Np!/N4! (Np—N4)! states whose
wavefunctions are given by assigning the Np— N, electrons
to N~ N, of the Nj available single donor wavefunctions
are good approximations to the true ground state, and will
differ little from it in energy expectation. By mixing these
state vectors, current-carrying states may be formed at
little cost in excitation energy. The mode of conduction is
then essentially by permutation of occupied and unoccupied
donor states, and it will be referred to here as “‘permutation
conduction.” The broadening of the collective energy
levels of this system by the lattice vibrations coupled to it
will certainly be an important effect, but it is supposed not
to affect the above conclusions in essence. When N;<< Np,
it is convenient to think of the current as carried by transfer
of ‘donor defects’—states of absence of an electron from a
donor.

The argument above did not take into account the effect
of the electrostatic repulsion between a donor electron and
an ionized acceptor. Where N << N, this can be foreseen
to have the effect of tending to concentrate the ‘“‘donor
defects” around the acceptors. Mott! has suggested that this
effect causes the donor atoms, as sites for “‘defects,” to
divide into trapping sites—those in the neighborhood of
the acceptors—and the remaining free sites: it is presumed
that only the latter participate in conduction, while the
former have a lower energy for a defect and so reduce the
conductivity by soaking up the available defects. Since the
experimental dependence of conductivity on temperature
does manifest a definite activation energy, which further-
more is of the order of magnitude to be expected for the
above coulomb binding energy>f, this picture certainly
ought to be considered and tried out.

It is necessary both to consider whether Mott’s hypoth-
eses have a reasonable physical basis and to work out the
properties of his model in sufficient detail for a meaningful
comparison with experimental data. The following ob-
scurities are then disclosed: (a) in spite of the facts that
a random distribution of donors, with a continuous range
of coulomb binding energies, is to be expected, and that
there is also a coulomb repulsion between defects, a definite
single activation energy is assumed in the model and ap-
parently required by the data; (b) it is by no means clear
how a sharp distinction between donor sites which partici-
pate in conduction and others which do not could be ac-
counted for, and in fact there is no theory of the relaxation
processes determining the mobility of the defects and no
theory for the effect of lattice vibrations.

In the work reported in Sections 2, 3 and 4, an attempt
has been made to deal with—or at least clarify—the issues
(a) above, and to make some predictions of the model
sufficiently specific for it to be constructively applied to
experimental data. The main results are firstly to make it
plausible that a single binding energy should be manifest,
in spite of there being coulomb repulsion between defects
and more than one nearest neighbor donor to one acceptor
(the outcome of the repulsion being shown to be the same
as if simultaneous occupation, by defects, of more than one

IBM JOURNAL *+ APRIL 1958

of these nearest neighbors were forbidden), and secondly to
obtain formulas for the distribution of defects, between
free and bound states, thus predicted. An analysis is also
made of the possible effect of random differences between
the distributions of donors near different acceptors. It
appears that this might not be too serious after all.

The available experimental evidence seems to be at least
not inconsistent with the results given in Section 2. Never-
theless I do not believe that the model is yet established on
a sound theoretical or experimental basis. There seems no
reason to doubt that compensation is of profound im-
portance for impurity conduction, but beyond that the
physics of lightly doped compensated germanium crystals
at very low temperatures is (in my opinion, at least) still
quite obscure. In particular, the effect of lattice vibrations,
and the nature of relaxation processes for the bound elec-
trons, have to be elucidated.

2. The simplest version of the model

In this section we examine the statistical mechanics of the
simplest version of the system according to the Mott view.
Suppose a germanium crystal contains N4 acceptors and
Np donors, so that at low temperatures there are Ny
acceptor ions and N4 donor defects. (For the model to be
plausible, we should have N,<<Np.) Let the coulomb fields
of the acceptor ions split off ¥N,= N; of the Np defect sites
and make them “‘trap” sites, leaving Np—rNi=N, “free”
sites. The average number of defects occupying free sites is

ny=Nfle VT 41] M

where ¢ is the chemical potential of a defect relative to its
energy at a free site. If we assume that not more than one
at a time of the r traps around an acceptor ion can be occu-
pied, and that with a binding energy ¢, then the average
number of defects occupying traps is

n1=N1/[€_(‘o+e)/kT+l'] . (Za)

If on the other hand we allow any number s, 0< s < r, to be
simultaneously occupied, with total binding energy se, then

m=N[[e- G+l L] | (2b)
To work out both cases together, we write
m=NfleWTokl L] , )

with ¢=1 (case b) or r (case a).
In addition to (1) and (2), we have

nt+n=Nji. 3)
From (1) and (2),

2(Nony — i) = Nino—cmynz 4
where

z=exp(—e/kT).

Hence, by (3),

n(z—c) —[(No+Na)z4-(r —c)Nalu:+zN-N1=0 . )
In the limit of z small, where m.<<Na4, (5) becomes

z NyNa=c n?+(r—c)Nan; . ©)




If c=r we then have

na=(NaNazjr)t . (7a)
If, on the other hand, ¢=15r, we have
ny=Naz[(r—c)=Naz/(r—1) . (7b)

It is desirable to understand why the two results (7)
should differ so drastically. In the conditions for which (6)
and (7) apply, the average number of trapped defects per
ion is very nearly one: m~N,. If the fluctuation in this
number were small in case (b), then there would be no
reason to expect the result for this case, (7b), to differ much
from (7a), since the condition imposed in case (a) would be
very nearly satisfied in case (b) also. It is easy to show,
however, that the fluctuation is in fact large. The proba-
bility that s of the r traps around an ion are occupied is,
in case (b),

P& =(5)eia+0r, ®
where

{=expl(Y+e)/kT]

The average number occupied is then

G e K @b)
N TEPO= 17

Since m>~N,4, we have {~1/(r—1). For simplicity in what
follows we will take

{=1/(r~1) )
exactly. Then

P=[(r—D/rT. (10
Also

PQ)=[(r—D/rI'=[r—1)/r1PQ) .

Thus, although the average occupation is one, the proba-
bility for the occupation number actually to be one is as
follows:

r= 2 1314 |5 |...=»
P)= [1/27| 4/9 | 9/64 | 256/625 | ... 1]e

For large r, the combined probability of occupations
greater than one, 1—P(0)— P(l), tends to 1—2/e=0.264.
The suppression of these configurations in case (a) causes
(7a) to differ from (7b). In the following section it is shown
that case (b) cannot be expected to represent the actual
situation in any conditions, but case (a) should apply in
most circumstances. A graph of the function n.(z) accord-
ing to (5) in case (a), for the full range of z, is given in the
appendix of reference 5.

3. A more general theory

ceptor ions at which s32 (for given values of ¢ and T)
will therefore in actuality be less than for case (b), though
not zero as in case (a). In general the binding energy will
r
A
value of s, and hence what will appear in the corresponding
Boltzmann factor in the theory will be the free energy for
these configurations, and will be a function of 7. We shall
not take explicit account of this fact here. Let the binding
(free) energy for s defects be ¢, (so that ¢ is what so far we
have been calling €) and let

not be the same for all the ( ) configurations with a given

zi=exp(—e,/kT), p=exp(/kT) . (1
Then
M P, (12)
N 1+p
n _rp+pdeldp (13)
Ni  zitrpt+¢
where

PN
s0=3 )z (14)

On combining (12) and (13) with (3), we obtain an equation
for p. Now, it follows from (12) that if ny< N, then 1>
(Ns/N.)p. We may then drop a number of terms from the
equation for p, so that it simplifies to

r(No/N.)p*+(pddldp—¢) =2z . 15

Furthermore, since na/N. < Na/No<k1, eq. (12) shows that
always p<<1, and hence we may substitute in (15)

p=mnyfN,. (129

Then, when ¢ =0, eq. (15) reduces to the result for case (a),
namely eq. (7a). It may be made plausible that only the
first term of (14) need be taken into account in (15). Since
p<1, only the terms of (14) for which z,>>z, —that is, the
terms for which e,> ¢, —are appreciable. We may write

e&=[s—+s(s—DAJe , (16)

where A is the averaged mutual (coulomb) potential of
a pair of the trapped defects. Then geometrical considera-
tions make it reasonable to suppose that 1 <A, <1,

\/%<)\3< 1, etc. Consequently
6 <€<1.5¢; 0<e<1.27¢ ;
and

<€, €<€;....c¢€tC.

Hence only the first two terms of (14) need be considered.
Let us first look at the consequences of taking only the
first term in (14). Eq. (15) at once becomes

In the physical situation we have in mind, multiple occu- [r(N/NO+3r(r=Dz/z)p* =2, an

pation (2 < s € r) of the set of traps around an acceptor ion and hence

is presumably possible, but the binding energy will be less

than se because of the coulomb repulsion between the 1 re—1) anm

donor defects. The average number, in the crystal, of ac- n?  zZ.N.Ny4 z,Ny? 125
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It is clear that at a high enough temperature for z to be
small compared with (No/N.)z, the first term of (177) will
dominate and (7a) will be valid, but that at lower tempera-
tures it is to be expected that

ny=NoQzs/r(r — )P (NaNazy[r)? . (18)

1t is noteworthy that the superseding of (7a) by (18) does
NOT imply that acceptors with two defects trapped are
more probable than those with one trapped. What happens
to change the value of n, from that given by (7a) to that
given by (18) is rather that as T increases from zero most
of the defects “freed” by excitation of an acceptor’s trap
complex from s=1 to s=0 go to occupy other complexes
doubly (s=2) instead of going into free sites.

We now consider the effect of including the second term
of (14), as well as the first, on the solution of (15). Making
use of (12") we have, instead of (17'),

i=4r ﬂ_l)_i_%’”("“l)(r 2) nz) (19)
n?  zZiNaN4 z,N? ZsNo?

It may be shown that this equation for n. has only one real
positive root. The ratio of the third term of (19) to the
second term is $(r —2)(z2/25)(n:/ N3), which is certainly small
compared with z/z; for the conditions in which we are
interested. It follows that if e;<e., so that z.<z;, we may
drop the third term without any further ado. However,
we still have to consider the possibility, which is not ex-
cluded by the discussion above, that €; > ¢e;. Now, it follows
from (19) that

1] 2z, vz,

172<[7(7— D

Consequently the ratio of the third term of (19) to the
second must be less than

3 —Dr(r— DIz 25)

If we take for e; the lowest value, €, allowed by the dis-
cussion above, and for ¢ the highest value, 1.27 ¢, al-
lowed, then we find for the /argest plausible value of zf/z;
the expression exp (—0.23 ¢/kT). For the conditions we
are considering, this will be small. Consequently the third
term of (19) may be neglected. It appears finally that the
only appreciable effect of multiple occupation is that due
to the possibility of the simultaneous trapping of two
defects by a single acceptor ion. The influence of this on
the value of n. is given by eq. (17'), where it is contained
in the second term on the right.

4. Dispersion in the binding energies

The model considered in Section 2 may also be brought
closer to the presumed reality by allowing for some dis-
persion in the values of the binding energy for different
acceptor ions. Here the effect of this will be examined for
case (a) of Section 2, with a single binding energy charac-
terising each acceptor. Let ¢; be this binding energy for
the i’th acceptor, and let z;=exp(—e,;/kT) and the average
value of the z; be z;:

Na
ZQE(I/NA) 2121‘ . (20)
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Then we find, by the same procedure as led to (5),

(202 %)-r.

where

= 1 5t 2tr(n Ny
X‘TVA El Zi+r (”2/ N‘l) (22)

and we have made use of the fact that #.<<NV; to replace
p by n:/N, in accordance with (12). Now, it follows from
(2a) and (3) that z/pr=mn./m. Consequently (in the case to
which (2a) applies) where n.<<N,, and hence n.<<n;, we
must have z<& pr and hence z<&r(n./N-). We may suppose
this result to apply for each of the z; also, provided the
dispersion of the ¢; is not too great. Then we may expand
the summand of (22) in powers of the z;, obtaining

L N:\*

X~ 1+( E(zl—zo) 4ol 23)

Substitution of (23), taken as far as the second term, in (21)
yields

e PNN = — Zi’Nanl:l p N 2].\2’ ‘45] , 24
r y r 113]
where
1 w(zi—2p)?
= .- 3\ 5
0 A/AZ zy? ¢ )

is the mean square dispersion of the z;. The first term,
— zoNarsfr, on the right of (24) may actunally be dropped,
since it is small compared with the second term on the
left when ny<<Na. To get an idea of the effect of the dis-
persion of the binding energies we consider a definite dis-
tribution. If G(e)de is the fraction of the values of the e;
lying in the infinitesimal interval (e, efde), suppose that

G(e)=A exp[— (e —e)/247] , (26)

where A, & and A are constants. Then

Z°:exp[ — i %(kéfﬂ g % %)

o =exp[(A/kT)]—1.

From (24) and (27) we may derive a rough rule for dis-
persion to be unimportant, so that (7a) holds (with z re-
placed by zy), when ns<<N,. The rule is:

A<LKT. (28)

When (28) holds, the ratio of the second term to the first
term in the exponential of the expression (27) for z, will
be less than k7/8¢. Therefore, since by (7a) z, should be
small for n,<<Na, the ratio will be small and z will be
adequately approximated by exp(—e/kT). The second
term on the right of (24) is (#:/N,) 6 times the second term
on the left, according to (7a), and therefore may be neg-
lected if (28) holds. Representative numerical values might
be =1 milli ev, kT=0.4 milli ev, and hence, by (28),
A <0.2 milli ev: not more than 209, r.m.s. dispersion for
the trap energies. At 1 degree K, this upper limit is re-




duced to 59%,. Thus it is quite likely that at the lower tem-
peratures the effect of dispersion is appreciable.

The possibility that the traps around a given acceptor
ion have differing binding energies ought also to be con-
sidered. For this case (2a) would be replaced by

m o (lrz,;em(e,/kr))
N 1+’(1r2;1exp(el /kT)) ;

29

where the parenthesis is an average over the traps around
one ion. If this average be defined as 1/z;, for the i’th ac-
ceptor, then (21) remains valid. Further defining e¢; ap-
propriately in terms of z; (so that it is a free energy), we
may suppose it to have a dispersion of form (26) and so
arrive at the same criterion (28). However, ¢ will now be a
function of temperature, and we need a further criterion
for this to be virtually a constant. This latter criterion can-
not be as simply handled, because r is not a large number
and hence we cannot suppose a unique continuous spec-
trum for the ¢. Furthermore it is not obvious that it is
expedient to handle “intra-acceptor” and ‘“‘inter-acceptor”
dispersions separately. So far this question has not been
investigated any further.

5. Thermoelectricity

The theory of the thermoelectric power, Q, for permutation
conduction is quite simple. From the single assumption
that the current is carried only by defects on “free” sites
all of the same energy, it follows by the general theory of
thermoelectricity that*

Q=—yeT 30)
and hence, from (1), that
o= )oe(-1) an

Evidently, from measurements of Q and the conductivity
absolute values of Nou, where u is the mobility of the free
defects, may be obtained. According to the model the
variation of N:u with temperature should give the variation
of u with temperature (the absolute values being, of course,
somewhat uncertain). By (31), Q will be positive so long
as ny <iN..

We now examine the specific predictions of model (a)
of Section 2. At the low temperature limit we have, by
(7a),

O~(k/e)log(N-/ny)
=(k/2e)log(N.r/Naz).

That is,

() 0e()+ 5 ] &)

Thus, measurements of Q versus T should provide a means

*The sign of Q here is according to the same convention as is used in reference
2, such that normally for an extrinsic semiconductor @ is positive for p type,
negative for # type.

of testing this particular model, and evaluating ¢ and
N.r/N,4. On the other hand, at the high temperature limit
s — N, and therefore

Q~(k/e)log(N-/Na4) . 33)

In principle, from absolute values of Q at both limits,
both N4/Np and r might be determined. In practice, how-
ever, the conditions necessary for the actual thermoelectric
power of the impurity mode and conduction-band mode in
combination to approximate that of the impurity mode in
isolation, in the high temperature limit, might not be
realizable.

6. Minority donor states as traps

The general picture of impurity conduction discussed above
being once accepted, one may conceive special elaborations
of the impurity content which should modify the electrical
properties in interesting ways. In particular, one might
exploit the fact that the binding energies for chemically
distinct donors may differ by as much as milli-ev,” and that
this is the order of magnitude of the coulomb energy trap-
ping a defect state in the neighborhood of an acceptor.
Suppose we add to the impurity content a number N’ of
“minority’” donors, with Np’<<Np, for which the electron
binding energy is less than that of the majority donors by a
definite amount €'.2 Since Np'<<Np and rN4<<Np, we may
ignore the small proportion of the minority donors at
“trap” sites in the neighborhood of an acceptor. The re-
mainder, however, are also traps for donor defect states,
since when a defect is transferred from a (non-trap) ma-
jority donor atom to a (non-trap) minority donor atom
the energy of the crystal decreases by ¢/. We may assume,
in accordance with the general model, that defects at these
special traps do not contribute to conduction. In this sec-
tion the theory of this system is investigated for case (a)
of Section 2.

Let the number of defects on minority-donor sites be n’
and let

Z’=exp(—¢€/kT) .
The number of conducting defect sites is
No=Np—rN, .

Let n, of them be occupied by defects. Then in place of
eqgs. (1), (2a), (3) we have

Nojng =14exp(—¥/kT),

Naujny =1+(z[r)exp(—y/kT), (34)
Np'[n' =1+z'exp(—¢/kT),

and

m+ne+n' =Ny . (3%

1t is easily seen that the solution of these equations for ¢
and the #’s is unique. On eliminating #,, n” and ¢ from
(34) and (35) we find, instead of (5) with ¢=r,

(r—2nt+[2(Ne+Na)+fNp' 1no—2zNAN,=0 (36)
where
fu= Nt =2 1)

Z’N2+(1 —Z,)nz )
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Table 1

Case f= P]\T’, =
B (¢>¢) Na<Ny 3 N%}NA) le’fl//}.vz
c Na>Ml (Mn") @y Neowy) i1
e i )" (V)"
F Ni=Np’ (rzfz")e (zz'[r)ii2

We consider only the case ¢ >0; so that z’—0, as well as
z—0, when T—0. To examine this low temperature limit,
we assume that

flz— 2, as z—0, (38)
and
n?/z—0, as z—0, (39)

and shall verify (38) and (39) from the solutions then ob-
tained. With these assumptions, in the low temperature
limit (36) becomes

n2f=2 NzNA/ND' N (40)
and hence

_SHANANY)
1= @R+ (NAIN - @n

The solutions of (40) and (41) for the different possible
situations are set out in Table 1. In the table(cases C and D),

4rNp'N, (12
9= 3 1+ (Np'—Ny)? “2)
It may be verified by inspection that (38) and (39) hold in
each of the six cases.

These results are quite different in character from (7a),
and it is of interest to inquire under what conditions there
is a range of temperature (between the low temperature
limit of the foregoing results, and the high temperature
“saturation” limit where n,—N,) for which (7a) holds.
The condition for (7a) to hold, according to (36), is (for
zK1)

ZIN,FNO+HfNL' K 2rz NaNs . 43

Since both terms on the left of (43) are positive, they must
each be small compared with the right-hand side. Therefore
(7a) will hold if

2 K ArNNo (NN, }

@
22> (fNp')}/4rN4N- .
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Then, by (7a) and the first of (44), the first term of the
numerator of (37) is small compared with the second term.

Hence
S=r [Il+2(rN-fzN1)Y] .

The conditions (44) may therefore be written

z <<4rN4 /Ny, 45)
Ny (ZNo N N (46)
4N, <<<4rN;;> +z (zNA)

If Np'<< N4, then these conditions will certainly be satisfied
simultaneously for some range of T, whatever the value of
¢’. For this range (7a) will hold (and for lower temperatures
the relations given in the table, for case 4, C, or E, will
hold?). An alternative sufficient condition is that there
exist a temperature range for which (45) is satisfied simul-
taneously with

Z>>Ny/2N; . “7

This requires that e log (2N./Np") exceed € log (N./4rN4)
by at least a few times £ T for the temperatures in question.

Case B is of particular interest. Here the only role of the
acceptors is to provide defects, which fill the minority
donor traps. As T increases from zero, the number excited
to the free sites does not depend at all on the trapping
property of the coulomb field of the acceptors. If this case
can be realized in practice, it should be possible to study
permutation conduction with an activation energy un-
related to that due to the trapping mechanism suggested
by Mott. The value of the activation energy would be just
the diffcrence between the electron binding energies for
the majority and minority donors.
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