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On the  Statistical Mechanics 
of Impurity Conduction in Semiconductors 

Abstract: The statistical mechanics of the impurity electron states for  a semiconductor with a low density 

of donors, and  a  small amount of acceptor  compensation, is analyzed. Expressions are obtained for the 

number of dissociated donor ion states according to the Mott model, and for the effects of multiple  trap- 

ping, and of dispersion of the trapping energies, on this number. An expression for the thermoelectric 

power according to the Mott model is obtained. If a  small  proportion of “minority” donors, of a different 

chemical species with a smaller electron binding energy than the majority donors, were added  to the 

impurity content they should act as additional traps for donor ion states: The statistical mechanics of this 

system is  analyzed. 
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mobility of the latter electrons is very much greater. This 
new mode of conduction has now been investigated in 
some detail. It was originally believed that  the explanation 
of this  mode of conduction was that  the interaction, due 
to  the overlap of their wave-functions, between localized 
electron states on neighboring donor impurity atoms causes 
the macroscopically degenerate donor electron level to 
split into a  band (the so-called “impurity band”) of levels, 
each new level corresponding to a current-carrying state. 
It  has since been realized, however, that impurity  conduc- 
tion is found  in circumstances where this  explanation 
could not be  correctz, and  it  has been proposed that com- 
pensation then plays an essential role  in the mechanism of 
conduction. The new view  of impurity  conduction at low 
impurity densities’J  is as follows: 

When the  donor impurities are partly  compensated by 
acceptor impurities, the  latter become negative ions by 
acquiring electrons from  the former. Thus, if there 
are Nl,  donors and N A  acceptors, NA electrons will be 
transferred from  the  former  to  the latter.  This leaves 
Nu - N A  elcctrons distributed among NO donor “orbitals.” 

*For tile sake of brevity and claritV throughout this paper I refer to “electrons” 
“donors”,  and “ n  type”  dthoukii the  phenomena discussed occur  for botd 
polarities of extrlnslc  semiconductor.  Everything in i h e  following analysis 
applies, mutui mutandis, to p type also. 123 
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For the low concentrations we are concerned wil th here, 
the interaction between these orbitals is  very small; and 
consequently most of the ND!/N.I!  (NU-NA)! states whose 
wavefunctions are given  by assigning the NIj-NA electrons 
to N,,-N~! of the Nu available single donor wavefunctions 
are good approximations to  the  true ground  state, and will 
differ little from it in energy expectation. By mixing these 
state vectors, current-carrying  states may be formed at 
little cost in excitation energy. The mode of conduction is 
then essentially by permutation of occupied and unoccupied 
donor states, and it will be referred to here as “permutation 
conduction.” The broadening of the collective energy 
levels of this system by the lattice  vibrations coupled to  it 
will certainly be an  important effect, but it is supposed not 
to affect the  above conclusions in essence. When N,~<<ND, 
it is convenient to think of the current as carried by transfer 
of ‘donor defects’-states  of absence of an electron from a 
donor. 

The  argument  above did not take  into  account  the effect 
of the electrostatic repulsion between a donor electron and 
an ionized acceptor. Where Nzi<<NI,, this can be foreseen 
to have the effect of tending to concentrate the  “donor 
defects” around  the acceptors. Mott4  has suggested that this 
effect causes the  donor atoms, as sites for “defects,” to 
divide into trapping sites-those in the neighborhood of 
the acceptors-and the remaining free sites : it is presumed 
that only the  latter participate  in  conduction, while the 
former  have a lower energy for a defect and so reduce the 
conductivity by soaking up  the available defects. Since the 
experimental dependence of conductivity on temperature 
does manifest a definite activation energy, which further- 
more is of the order of magnitude to be expected for  the 
above coulomb binding en erg^^,^, this picture certainly 
ought to be considered and tried out. 

It is necessary both to consider whether Mott’s hypoth- 
eses have a reasonable physical basis and  to work out  the 
properties of his model in sufficient detail  for a meaningful 
comparison with experimental data.  The following ob- 
scurities are then disclosed: (a) in spite of the facts that 
a random distribution of donors, with a continuous  range 
of coulomb binding energies, is to be expected, and  that 
there is also a coulomb repulsion between defects, a definite 
single activation energy is assumed in  the model and  ap- 
parently required by the  data; (b) it is by no means clear 
how a sharp distinction between donor sites which partici- 
pate in  conduction and others which do  not could be ac- 
counted  for, and  in fact  there is no theory of the relaxation 
processes determining the mobility of the defects and  no 
theory for  the effect of lattice vibrations. 

Ln the work reported  in Sections 2, 3 and 4, an  attempt 
has been made  to deal with-or at least clarify-the issues 
(a) above, and  to  make some predictions of the model 
sufficiently specific for it to be constructively applied to 
experimental data.  The main results are firstly to  make it 
plausible that a single binding energy should be manifest, 
in spite of there being coulomb repulsion between defects 
and  more than one nearest neighbor donor  to  one acceptor 
(the  outcome of the repulsion being shown to be the same 
as if simultaneous occupation, by defects, of more  than  one 

of these nearest neighbors were forbidden), and secondly to 
obtain formulas for  the distribution of defects, between 
free and bound  states, thus predicted. An analysis is also 
made of the possible effect of random differences between 
the distributions of donors  near different acceptors. It 
appears that this might not be too serious after all. 

The available experimental evidence seems to be at least 
not inconsistent with the results given in Section 2. Never- 
theless I do not believe that  the model is  yet established on 
a sound theoretical or experimental basis. There seems no 
reason to  doubt  that compensation is of profound im- 
portance  for impurity  conduction, but beyond that  the 
physics of lightly doped  compensated germanium crystals 
at very low temperatures is (in my opinion, at least) still 
quite obscure. In particular, the effect of lattice vibrations, 
and  the  nature of relaxation processes for the bound elec- 
trons, have to be elucidated. 

2. The simplest version of the model 

In this section we examine the statistical mechanics of the 
simplest version of the system according to  the  Mott view. 
Suppose  a germanium crystal contains NA acceptors and 
NO donors, so that  at low temperatures  there are N21 
acceptor  ions and NA donor defects. (For the model to be 
plausible, we should have N~<<ND.) Let  the  coulomb fields 
of the acceptor  ions split off rN11 = Nl of the ND defect sites 
and make  them “trap” sites, leaving Nu-rNA-  N2 “free” 
sites. The average number of defects occupying free sites is 

n 2 = N : / [ e - ~ ’ k T + I ]  , (1) 

where II, is the chemical potential of a defect relative to its 
energy at a free site. If  we assume that  not more than one 
at a  time of the r traps  around  an acceptor  ion can be occu- 
pied, and  that with a binding energy e,  then the average 
number of defects occupying traps is 

nl = N , / [ e ~ ( + + ~ ) ’ k ~ + r ]  . (24  

If on  the other hand we allow any number s, 0 < s < r,  to be 
simultaneously occupied, with total binding energy se, then 

nl =N,/[e-(+ff)’kT+l] . 
To work out both cases together, we write 

nl =N, / [C(++~”~~+C]  , 
with e= 1 (case b) or r (case a). 
In addition to (1)  and (2) ,  we have 

n l + n 2 = N ~ i .  

From (1) and (2) ,  

z(N2nl --nln2)=Nln2-ccnlnz, 

where 

z = exp( - e/kT) . 
Hence, by (3), 

n?’(z-c)-[(N2+N;~)z+(r-c)N. l]n~+z~~N,~ =O . 
In the limit of z small, where n2<<NA, (5 )  becomes 

z N2N*=c  n2+(r-c)NAn2. 



If c = r we then have 

n2=(N2N,lz/r)f . (74  

If, on the  other hand, c = I Z r ,  we have 

n , = ~ ~ z / ( r - C ) = N ~ z / ( r - l )  . (7b) 

It is desirable to understand why the two results (7) 
should differ so drastically. In the  conditions  for which (6) 
and (7) apply, the average number of trapped defects per 
ion is  very nearly one: nl?N,l. If the fluctuation in this 
number were small in case (b),  then  there would be no 
reason to expect the result for this case, (7b), to differ much 
from (7a), since the condition imposed in case (a) would be 
very nearly satisfied in case (b) also. It is easy to show, 
however, that  the fluctuation is in fact large. The proba- 
bility that s of the r traps around  an ion are occupied is, 
in case (b), 

where 

+exp[(#+d/kTI 

The average number occupied is then 

Since nl.vN..i, we have {.vl/(r-l). For simplicity in  what 
follows we  will take 

j-= 14v-1) 

exactly. Then 

P( I )  = [(r - l)/rY-1 . (10) 

Also 

P ( 0 ) = [ ( r - l ) / r ] ' = [ ( r - l ) / r ] P ( l )  . 
Thus,  although the average occupation is one, the  proba- 
bility for  the occupation  number actually to be one is as 
follows: 

For large r,  the combined probability of occupations 
greater than one, 1 -P(O) - P ( l ) ,  tends to 1 -2/e  =0.264. 
The suppression of these configurations  in  case (a) causes 
(7a) to differ from (7b). In  the following section it is shown 
that case  (b) cannot be expected to represent the  actual 
situation  in  any  conditions,  but  case (a) should apply  in 
most circumstances. A graph of the function ni(z) accord- 
ing to (5) in case (a), for the full range of z ,  is  given in the 
appendix of reference 5. 

3. A more general theory 

In the physical situation we have in mind, multiple occu- 
pation (2 < s < r )  of the set of traps around an acceptor  ion 
is presumably possible, but the binding energy will  be  less 
than S E  because of the coulomb repulsion between the 
donor defects. The average number, in the  crystal, of ac- 

ceptor ions at which s 3 2 (for given values of II, and T )  
will therefore in actuality be less than for case (b), though 
not zero as in case (a). In general the binding energy will 

not be the  same for all the configurations with a given 

value of s, and hence what will appear in the corresponding 
Boltzmann Factor  in the theory will be the free energy for 
these configurations, and will be  a function of T. We shall 
not take explicit account of this fact here. Let  the binding 
(free) energy for s defects be E ,  (so that EI is what so far we 
have been calling E )  and let 

( 3  

z, = exp( - cs/k T) ,  p = exp(#/k T )  . 
Then 

On combining (12) and (13) with (3), we obtain an equation 
for p .  NOW,  it follows from (12) that if n2<<N,t then I>> 
(N2IN.t)p. We may then drop a number of terms from the 
equation forp, so that it simplifies to 

Furthermore, since n,/N2 < Na/N2<<I, eq. (12) shows that 
always p<<l, and hence we may substitute in (15) 

p = n2/N2 . (1 2') 

Then, when 4 = 0, eq. (1  5) reduces to the result for case (a), 
namely eq. (7a). It may be made plausible that only the 
first term of (14) need  be taken into account in (15). Since 
p<<l, only the  terms of (14) for which zl>>z, -that is, the 
terms for which E &  > -are appreciable. We may write 

where X,t, is the averaged mutual (coulomb) potential of 
a  pair of the  trapped defects. Then geometrical considera- 
tions  make it reasonable to suppose that < X 2 <  I, 
di < A S  < 1 ,  etc. Consequently 

and 

Hence only the first two terms of (14) need  be considered. 
Let us first look at the consequences of taking only the 

first term in (14). Eq. (15) at once becomes 

[ r ( N ~ / N . ~ ) + f r ( r - l ~ z ~ / z : l p Z = z l  , (1 7)  

and hence 
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It is clear that  at a high enough  temperature for zI to be 
small compared with (N2/NA)z2  the first term of  (17')  will 
dominate and (7a) will be valid, but  that  at lower tempera- 
tures it is to be expected that 

n2 = Nz(2z2/r(r- l))'<<(NzN.dzl/r)i . (18) 

It is noteworthy that  the superseding of (7a) by  (18) does 
NOT imply that acceptors with two defects trapped are 
more probable than those with one  trapped. What happens 
to change the value of n2 from that given by (7a) to  that 
given  by  (18) is rather that  as T increases from zero most 
of the defects "freed" by excitation of an acceptor's trap 
complex from s = 1 to s = O  go  to occupy other complexes 
doubly (s=2) instead of going into free sites. 

We now consider the effect of including the second term 
of (14), as well as the first, on  the solution of  (15). Making 
use  of (32')  we have, instead of (17'), 

It may be  shown that this  equation for n2 has only one real 
positive root.  The  ratio of the  third term of (19) to  the 
second term is +(r -2)(z2/z3)(n2/N2), which is certainly small 
compared with a/z3  for the  conditions  in which we are 
interested. It follows that if c3 <E?, so that  z2<z3, we may 
drop  the third  term  without  any  further ado. However, 
we still have to consider the possibility, which is not ex- 
cluded by the discussion above, that c3 > cz. Now, it follows 
from (19) that 

nz< [ 2 . 2 2  1 1 ' 2  . 
Nz r(r- 1) 

Consequently the  ratio of the  third term of (19) to  the 
second must be less than 

lf  we take  for c2 the lowest value, el, allowed by the dis- 
cussion above, and  for €3 the highest value, 1.27 c ~ ,  al- 
lowed, then we find for  the largest plausible value of z2:/z3 
the expression exp (-0.23 cl/kT). For  the conditions we 
are considering, this will be small. Consequently the third 
term of  (19) may be neglected. It appears finally that the 
only appreciable effect of multiple occupation is that  due 
to  the possibility of the simultaneous trapping of  two 
defects by a single acceptor  ion. The influence of this on 
the value of n2 is  given by eq. (17'), where it  is contained 
in  the second term on the right. 

4. Dispersion in the binding energies 

The model considered in Section 2 may also be brought 
closer to  the presumed reality by allowing for some dis- 
persion in the values of the binding energy for different 
acceptor ions. Here  the effect of this will be examined for 
case (a) of Section 2, with a single binding energy charac- 
terising each  acceptor.  Let ci  be  this binding energy for 
the i'th  acceptor, and let z,=exp( -ci/kT) and the average 
value of the zi  be  zo: 
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Then we find, by the same  procedure as led to ( 9 ,  

where 

and we have made use  of the  fact that n2<<Nz to replace 
p by n:/N2 in  accordance with (12). Now, it follows from 
(2a) and ( 3 )  that  z/pr=n2/n1. Consequently (in the  case to 
which (2a) applies) where n2<<NA, and hence n2<<nl, we 
must have z<<pr and hence z<<r(n,/Nz). We may suppose 
this result to apply for each of the zi also, provided the 
dispersion of the ci is not too great.  Then we may expand 
the summand of (22) in powers of the zi, obtaining 

Substitution of (23), taken as far  as  the second term,  in (21) 
yields 

where 

is the mean square dispersion of the zz.  The first term, 
-zoN2n2/r, on the  right of (24) may actually be  dropped, 
since it is small compared with the second term on the 
left when nZ<<N.+. To get an idea of the effect of the dis- 
persion of the binding energies we consider a definite dis- 
tribution. If G(c)dc is the fraction of the values of the ci 

lying in the infinitesimal interval (E, e+&), suppose that 

G(c) = A  exp[ - (E - ~n)'/2A'] , (26) 

where A, €0 and A are constants.  Then 

(27) 
6 =e~p[(A/kT)~] - 1 . 
From (24) and (27)  we may derive a rough rule for dis- 
persion to be unimportant, so that (7a) holds (with z re- 
placed by zo), when nz<<N.4. The rule  is: 

A<+kT. (28) 

When (28) holds, the  ratio of the second term to the first 
term  in the exponential of the expression (27) for zo will 
be less than  kT/8~o. Therefore, since by (7a) Zo should be 
small for n2<<N4, the  ratio will be small and zo will  be 
adequately approximated by exp( - Eo/kT). The second 
term on the  right of (24) is (n2/NA) 6 times the second term 
on  the left, according to (7a), and therefore may be neg- 
lected if  (28) holds. Representative numerical values might 
be to = 1 milli  ev, kT=0.4 milli ev, and hence, by  (28), 
A<0.2 milli ev: not more than 20% r.m.s. dispersion for 
the  trap energies. At 1 degree K, this  upper limit is re- 

~, 



duced to Y5,. Thus it is quite likely that  at the lower tem- 
peratures the effect of dispersion is appreciable. 

The possibility that  the traps around a given acceptor 
ion have differing binding energies ought also to be con- 
sidered. For this case (2a) would be replaced by 

where the parenthesis is an average over the  traps around 
one ion. If this average be  defined as l/zi, for the i’th ac- 
ceptor,  then (21) remains valid. Further defining ei ap- 
propriately in terms of zi (so that  it is a free energy), we 
may suppose it to have a dispersion of form (26) and so 
arrive at  the same  criterion (28). However, eo will now be a 
function of temperature,  and we need a  further criterion 
for this to be virtually a  constant.  This  latter criterion can- 
not be as simply handled, because r is not a large number 
and hence we cannot suppose  a  unique  continuous spec- 
trum for  the e , .  Furthermore it is not obvious that it is 
expedient to handle “intra-acceptor’’ and “inter-acceptor” 
dispersions separately. So far this question has  not been 
investigated any further. 

5. Thermoelectricity 

The theory of the thermoelectric power, Q, for permutation 
conduction is quite simple. From  the single assumption 
that the  current is carried only by defects on “free” sites 
all of the same energy, it follows by the general theory of 
thermoelectricity that* 

and hence, from (l),  that 

Q=(k,)log(z -1 ) .  

Evidently, from measurements of Q and the conductivity 
absolute values of N2p, where p is the mobility of the free 
defects, may  be obtained. According to the model the 
variation of N2p with temperature  should give the  variation 
of p with temperature  (the  absolute values being, of course, 
somewhat uncertain). By  (31), Q will be positive so long 
as n2 <+N2.  

We now examine the specific predictions of model (a) 
of Section 2. At  the low temperature limit we have, by 
(74, 

Q“(k/e>lo~(A’:/n,) 

= (k/2e)log(Nlr/N~z). 

That is, 

Thus, measurements of Q versus T  should provide a means 

of testing this particular model, and evaluating e and 
N:r/N., .  On the other  hand, at  the high temperature limit 
n2 + N,, and therefore 

Q-(kle)log(N2/Na) . (33) 

In principle, from absolute values of Q at both limits, 
both N , 4 / N ~  and r might be determined. In practice, how- 
ever, the conditions necessary for the actual thermoelectric 
power of the impurity mode and conduction-band  mode in 
combination to approximate that of the impurity mode in 
isolation, in the high temperature limit, might not be 
realizable. 

6. Minority donor states us traps 

The general picture of impurity conduction discussed above 
being once accepted, one may conceive special elaborations 
of the impurity content which should modify the electrical 
properties in interesting ways. In particular,  one might 
exploit the fact that  the binding energies for chemically 
distinct donors may differ  by as much as  milli-e~,~  and  that 
this is the order of magnitude of the coulomb energy trap- 
ping  a defect state in the neighborhood of an acceptor. 
Suppose we add  to  the impurity content  a  number ND‘ of 
“minority” donors, with Nu‘<<ND, for which the electron 
binding energy is less than that of the majority donors by a 
definite amount e’.8 Since ND‘<<ND and rN.4<<ND, we may 
ignore the small proportion of the minority donors at 
“trap” sites in the neighborhood of an acceptor. The re- 
mainder, however, are also traps for donor defect states, 
since when a defect is transferred from  a  (non-trap) ma- 
jority donor  atom  to a (non-trap) minority donor  atom 
the energy of the crystal decreases by e’. We may assume, 
in  accordance with the general model, that defects at these 
special traps  do  not  contribute  to conduction. In this sec- 
tion  the theory of this system is investigated for case (a) 
of Section 2. 

Let  the  number of defects on minority-donor sites be n’ 
and let 
z’ = exp( - e‘/kT) . 
The number of conducting defect sites is 

N2 = No - rN,, . 
Let ns of them be occupied by defects. Then  in place of 
eqs. (l), (2a),  (3) we have 

N h  = 1 +exp( - +/k T> , 
NA/nl = 1 +(z/r>exp(-+/lW , 
Nu‘/n‘ = 1 +z’exp( -+/k T )  , 
and 

nl+ns+n’=NA . (35) 

It is easily seen that the  solution of these equations for + 
and the n’s is unique. On eliminating nl, n’ and J .  from 
(34) and (35) we find, instead of ( 5 )  with c=r ,  

(r-z)n~’+[z(N2+N~)+fN~’]n2-zN~N~=0 (36) 

where 

i (34) 

*The sign of Q her? 1s according  to  the same convention as  i s  used in  reference 
2, such t h a t  normally for an  extrinsic  semiconductor Q is positive  for p type, f= 2p - 
negative  for n type. z’Nz + (1 - z‘)n2 ’ 

zN-+(r-z)nz (37) 127 
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Table I 

Case 

A NA  >Nu' Z' -~ +o 

NA < ND' D 

N A  > NJ)' Z'=Z C 

NA < N f i  (e' > E )  

Z 

B 

(e'= E )  

E 
(e'< E )  

F N A  = ND' 

We consider only the case E ' > O ;  so that z'+O, as well as 
z+O, when T-0. To examine this low temperature limit, 
we assume that 

flz- 00, as 2-0 , (38) 

and 

ni2/z--t0, as z+O , (39) 

and shall verify (38) and (39) from the solutions then ob- 
tained. With these assumptions,  in the low temperature 
limit (36) becomes 

nn f = z N~NAIND' , (40) 

and hence 

The solutions of (40)  and (41) for  the different possible 
situations are set out in Table 1. In the table(cases C and D),  

It may be  verified by inspection that (38) and (39) hold in 
each of the six cases. 

These results are quite different in character from (7a), 
and it is of interest to inquire under what  conditions  there 
is a range of temperature (between the low temperature 
limit of the foregoing results, and  the high temperature 
"saturation" limit where nz+Nli) for which (7a) holds. 
The condition for (7a) to hold,  according to (36), is (for 
z<< I ) 

z(N,+N.i)+tNU'<< 2(vz NAN,); . (43) 

Since both terms on the left of (43) are positive, they must 
each be small compared with the right-hand side. Therefore 
(7a) will hold if 
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(44) 

Then, by (7a) and the first of (44),  the first term of the 
numerator of  (37)  is small compared with the second term. 

Hence 

f z r / [ l  +z' (rN: /~N. l ) ; ]  . 
The conditions (44) may therefore be written 

If Nn'<<N.4, then these conditions will certainly be satisfied 
simultaneously for some  range of T, whatever the value of 
E'. For this range (7a) will hold (and for lower temperatures 
the relations given in the table, for case A, C,  or E, will 
hold". An alternative sufficient condition is that there 
exist a  temperature  range  for which (45) is satisfied simul- 
taneously with 

This requires that E log (2iV2/N~')  exceed E' log ( N z / 4 r N . ~ )  
by at least a few times kT for the temperatures in question. 

Case B is of particular interest. Here  the only role of the 
acceptors is to provide defects, which  fill the minority 
donor traps. As T increases from  zero,  the  number excited 
to the free sites does not depend at all on  the trapplng 
property of the coulomb field  of the acceptors. If this case 
can be realized  in practice, it should be possible to study 
permutation  conduction with an activation energy un- 
relatctl to that due to  the trapping mechanism suggested 
by Molt. Thc value of the activation energy would be just 
the diKcrcncc  bctween the electron binding energies for 
the majority and minority donors. 
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