J. Jeenel

Programs as a Tool for Research

in Systems Organization

Abstract: A program for the solution of a problem by a data-processing system constitutes a conceptual link

between the problem and the machine. It is proposed that both problems and machine organization be

studied in terms of programs. A data-processing system may for this purpose he considered a collection of

units such as arithmetic units and stores of different types and characteristics. A standard representation of

programs is proposed for studying the organization of systems composed of processing units and stores.
This approach may lead to more efficient and systematic design of data-processing systems as well as to

improved programming methods for existing machines.

1. Introduction

A computer program for the solution of a problem is
frequently viewed only as a control device which causes
the machine to perform a desired task. This, of course,
is the primary purpose of programs in present-day data
processing. It is felt, however, that programs may also
be considered a conceptual link between the problems
and the machines, and therefore merit attention from a
more general point of view. A study of problems as well
as systems organization in terms of programs appears to
be a promising approach to the formulation of a theory
of automatic data processing. Such a theory could be
expected to lead to more efficient systems design and
also to more efficient programming techniques,

Most current efforts in the field of programming re-
search seem to be directed either toward specific systems
or particular classes of applications. The majority of the
effort appears to be concentrated in the area of non-
machine languages, or shorthand codes, with the objec-
tive of making the program a better control device, that
is, to make it easier to write and more readily understand-
able for the machine. The languages thus constitute an
answer to the question “How do I talk to the machine?”
rather than “What should I tell the machine?” To best
serve this purpose the languages are descriptive rather
than functional. Essentially, they permit a large amount
of intricate control information to be summed up in
compact form, but they do not permit formal manipula-
tion of their symbols according to a theory for optimizing
the use of the processing units and stores. The research
proposed in this paper is concerned with the primary
functions of data-processing equipment, the processing

and storing of data, rather than with the necessary sub-
ordinate function of controlling the equipment.

To be useful as a research tool, programs should be
represented in a uniform and compact manner. A stand-
ard representation of programs as a hierarchy of “basic
forms” would facilitate the process of programming.
This subject as well as much of the material in the present
paper is treated in detail by the author in a forthcoming
book on programming for stored-program calculators.
The representation of a program in terms of basic forms
emphasizes the storage of the problem data and the flow
of this information through the system, two particularly
important aspects of the machine solution of a problem.

This method of program representation has also been
found applicable to systems other than conventional
stored-program calculators; it has provided some insight
into the functioning of a “decentralized” system of card-
handling data-processing machines, and it has been ap-
plied successfully to a hypothetical machine in which
the data are identified by means essentially different from
conventional addresses.

A data-processing system in this paper is considered
to be a collection of arithmetic units and stores. This
paper shows, through examples, how programs might
be used as a research tool in studying the organization of
machine systems represented in this manner.

2. Basic form and address patterns

As a first example, consider a problem which requires
the elements of two 3-dimensional arrays f; ;,» and g, ;,«
to be added in pairs producing a 3-dimensional array

105

IBM JOURNAL *%APRIL 1958

106

ri,j,1- The elements of each array may be visualized to
be associated with the nodes of a cube as illustrated by
Figure 1. The problem requires the elements from the
same relative positions in the f- and g-cubes to be added
in pairs to form the elements of the r-cube.

® Statement of the problem

i
forj; 0, L,...,9.

k)

i e=fii k&K

® Address assignments
L(fi,;,x) =1000-+100i+10j+ &,

L{g; ;%) =2000+ i+ 10j+ 100k,

L(r;,;,£)=3000+100i+10j+ k.

e Flow chart
See Figure 2, pages 108 and 109.

The arrays f; ;, » and g, ;,% are assumed to be available
in a random-access store. The elements of the result
array r;, ;,, will be placed in the same store. The addresses,
or locations, L(fi ;x), L{g:jx), and L(r; ;1) of the
elements of the arrays are given as linear functions of
the indices i, j, and k. As indicated by these address pat-
terns, the first input array f;; x and the output array
ri, ;1 are both stored in order by i, j, and k, whereas the
second input array g; ;, « 1S available in the opposite order
by k, j, and i.

The program is represented as a basic form by the
flow chart in Figure 2. The boxes on the flow chart are
arranged in columns from left to right by increasing
frequency of execution, which also corresponds to the
different levels of control implied by the system of “loops
within loops.” The k-level represented by the rightmost
column represents the innermost loop; it is of the lowest
logical order and has the highest relative frequency of
10% executions. The frequencies of execution for the j-
and i-levels, which are of higher logical orders, are 102
and 10, respectively. The level of highest logical order
on the extreme left of the basic form is “open,” that is,
it does not contain a loop since it is executed only once
per execution of this program.

The computations r;,j,k—fi,;, 5+ 85,1 are performed
in Box C on the k-level. The instructions in this box
contain the variable addresses L(fi,j,x), L(g:j %), and
L(ri,;,1x). The address L(g; ;) is stepped with respect
to k, j, and i in Boxes B, E, and G on the k-, j-, and i-
levels, respectively. It is initially set in Box J on the open
level. The addresses L(f; ;,x) and L(r;;) are set ini-
tially also on the open level in Box I. Unlike L(g;,j 1),
the addresses L(fi;,x) and L(r; ;1) are stepped with
respect to all three indices on the k-level.

Stepping L(f; ;1) with respect to k, for instance, may
be described by the following recursion formula of the
address pattern L(f;,;,%):

IBM JOURNAL ° APRIL 1958

L(fi,j,kn) =L(fi,;,1) +1.

Similarly, stepping with respect to j and at the same time
resetting & from its maximum value 9 to its initial value
0 is described by

L(fi,ji1,0) =L(fi,5,9) + 1.

The right-hand members of these two recursion formulas
contain the same constant, 1. Since this constant is the
stepping constant to be applied to L(f;,;,%) on the k-level,
Box A on this level will also serve to step L(f; ;1) with
respect to j, simultaneously resetting the index & con-
tained in L(f; ; x). The corresponding recursion formu-
las of the address pattern L(g;,;) are

L(gi,j, k) =L(gij 1) +100
and
L(gi,:1,0) =L(gi,5,9) —890.

The different constants in the right-hand members of
these formulas indicate that the variable address L(g;, ;, %)
must be operated upon separately on the k- and j-levels.

The indices were assigned in the order i, j and k to the
Ievels of the basic form from left to right. If they were
assigned in the opposite order %, j, and i, that is, in the
order in which the array g.;» is stored, the situation
with respect to the generation of the variable addresses
would be reversed. L(g; ;) could then be stepped with
respect to all three indices on the rightmost level whereas
L(f;,x) and L(r; ;) would have to be operated upon
on the center levels of the basic form.

Each series of consecutive executions of a level is
terminated by a terminating box (Boxes D, F, and H)
at the bottom of the level. Program execution enters in
the upper left-hand corner of a basic form and eventually
leaves it by the lower left-hand corner. The execution
pattern of many basic forms is somewhat analogous to
the action of a counter. The rightmost level would be
executed repeatedly until the associated index reaches
its maximum value. Then the next level to the left is
executed once before the rightmost level is again ex-
ecuted repeatedly. This corresponds to a carry into an
adjacent counter position. When the indices of several
adjacent levels have reached their maximum values, pro-
gram execution proceeds through the terminating boxes
from right to left across the basic form in much the same
way a carry propagates across several counter positions.

Programs of greater complexity may be represented in
a standard manner by a hierarchy of basic forms as indi-
cated by Figure 3. In such a hierarchy, basic forms con-
tain on their levels lower-order basic forms as details in
serial and parallel combinations. The different stages of
such a hierarchy again reflect different levels of control.
From the point of view of sequencing, a hierarchy of
basic forms helps to separate the two fundamental types
of sequencing elements, loops and branches, which rep-
resent repetition and decision, respectively. On a given
detail in a hierarchy of basic forms, one may have exten-
sive branching but only trivial looping represented by a

Fijik

r..
i,k

0,0,0 i

€935 + 9935 = Toas

fo34 + 9934 = Tosu

Figurel The elements of 3-dimensional arrays arranged at the nodes of cubes. The elements r;,«,; are to
be generated as the sum of the corresponding elements f; ; ;. and g, ;, - 107

IBM JOURNAL ~APRIL 1958

°
OPEN : ONCE PER
°
[
°
o
[}
. |
)
.
L] ec s o000
L . .
L J e .
: °
.
o
o
.
°
[
[
°
°
o °
[.
e0 00060000000 oo
o0 0000000000 o0
[°
[} []
[} °
[} [
° o
. [
° °
[} .
° L]
[]
° °
] °
[L [}
° [} .
] o000 00
.
[J

Figure 2 A program as a basic form of four columns representing the four logical levels.

fBM JOURNAL * APRIL 1958

@0 0000060 0!
. ;

|
. G }
i
i
i

i
"
|

1

e 00000000

|
|
{
I
!
|
i
|

® © 0 0060 0 0
. :
. H |
i []

00
wn
o
—
=
o
A
<
.
!
<
Z
-4
2
Qo
=
=
Qa
—

00 0 00 000000000 0006000000006 0006006000000 000000000600600000060000000
. .
° .
oA =< @] [a] °
] L
® L]
. X
.
.
.
e oo e eooceoe ceooeoe eoooeoe !
[-*4
w
a
n:.v- XX} oo e
z * :
° []
O . .
) ®
© 0000000000000 0060000060606000000OCS XX N]
L [
.]
00 000 0000000000000 000000000000060000060000060O0COCCS
. . . .
. ° ° .
« v . o .
. . . .
. . .]
. .] XX}
. . .
. . °
. ° .
— LX) R X T K) '
-4
w
a
oo e
w X X .
v . .
z .]
O . .
e — > ’ v<:&\.IAw ~ e b

. .
® ® [L 4
® [] PY Y ® L
. . e °
[] . B ° .) *
'Y [4 M N °
. ; . . . s
: . T :
. .
L ° Y o
[° . ®
[Ps . Y
L 4)
1 ®
® ° . . ®
. . . . ° . .
* L . Ps . hd .
* g . ° [L4 [
¢ L4 e0e 805000000000 0 080 00000 cc0000c e
. . .
. ° .
. . .
.
° °
. .
. .
° .
. .
° .
'Y L]
. .
. .
Y L]
. e L4
. . [
. I [
e . 000 0000000000000 0080 00000 snco0cO e
. PS L]]
. PY [o . [} ° [
. ps . . ° ° ° .
. 'Y ®] [3
bt ° L] ® °
. ° L ° .
.. ° L4 3]
. PY [] ° *
. Y ® [})
. ™ L] ° [
. * *))
b ° . . .
. ° ® ° [
. ° Y L d . ° ° [
° . . * e s e .
.
o000 c0s00e e eeos000 ® ®g0000000000 XXX XK R

KX NN N NN

4
1

0000000000009 0000000000000s0nstrnssnIensssnisee

sssssnnine e

[AN NN ENNENNRENRENRZNNNERNNH®]

[E RN ENENNENNNENNERN NN NNRENNNE NN NN NN N NN NNNNNENNRNNNNNRENNNENN NN N
oo @0

.
.
.
.
0000000060000 000000 00, o
[] [.
. PY °
. ° b
.
.
°
.
°
°
.
.
*
.
[] L L]
[] [] []
3 ° .
° 900 ¢ 0os0vc00cos00
.
9000000000000 00c000 0
. .
® [2
o []
Y *
. o
. L] -
. o
° °
°
[} 000 G008 00COOCOIOIOGY
. ° [
[. [}
[} . .
.
L
[}
®
.
e
[}
[
.
[}
o . o .
° . ° .
[000000000000 90000000 °

i

i
i

112

single loop; more intricate looping would be shown on
lower-order details which at this stage are considered
“black boxes.” Conversely, a given detail may contain
any number of cascaded loops with trivial branching
represented by the terminating branches associated with
the loops; more intricate branching arrangements would
in this case be enclosed in “black boxes” to be shown as
separate lower-order details.

For a second example of a program, consider the
problem previously discussed with the following modifi-
cation. The second input array, g;,;, x, was assumed to be
available in the opposite order from the other two arrays
fi,5,& and r; ;3. It will now be assumed that g;,; 1 is also
stored by i, j, and k so that all three arrays associated with
the basic form are stored in the same order.

® Statement of the problem
i

roe=fii e 80k for ji=0,1,...,9.
k)

® Address assignments

L(f; ;%) =1000+100i4+10j+k,

L(gi 1) =20004100i-+ 10j+k,

L(r;;,1)=30004100i+10j+ k.

® Flow chart
See Figure 4.

The program, which performs the same computing as
the one in the previous example, is now represented by
a basic form of only two, rather than four, levels. The
right-hand level of the present basic form is executed
once per triplet of indices (i, j, k). The variable address
L(g:,;x), which in the previous example necessitated the
existence of the center levels of the wider basic form, is
now stepped on the right-hand level according to the
recursion formulas

L(gi,j,ke1) =L(g:,5,%) +1,
L(gi,j4,0) =L(gi,59) +1,
L(giv1,0,0) =L(gi,5,9) +1,

with the same stepping constant 1 in their right-hand
members.

A group of indices, such as the triplet (i, j, k), assigned
to a level of a basic form is termed a “compound index.”
A compound index narrows the width of a basic form by
consolidating levels which would otherwise correspond
to the individual component indices. Whether compound
indices can be formed depends on the properties of all
input and output address patterns associated with the
basic form. A necessary condition for combining several
indices into a compound index is that the portions of all
address patterns in which the indices appear be linearly
dependent. For example, the address patterns

Li=ai+bii+cij+dik+eil,

IBM JOURNAL ~APRIL 1958

Lo=as+bai+ 02j+ d2k+ (321,

would be linearly dependent with respect to the indices
i and £k if the following linear relation with constant coeffi-
cients R and C holds:

(bui+ dsk) =R (byi+dik) +C.

A matrix-multiplication problem, for instance, according
to the formula

n
Cilk= 2 aijb]‘k

j=1
with all three matrices stored by columns would have
address patterns of the form

L(ay) =K1+i+nj,
L(bjk)=K2 +]+nk,
Lcx)=Ks+i +nk.

Since not all three address patterns are linearly dependent
with respect to any pair of indices, compound indices
could not be formed. The basic form for the matrix-
multiplication program would contain four levels, one
for each of the indices 4, j, k and an open level.

3. Rearranging and sorting

The programs for the two versions of the problem r; ;,.—
fi,i,x+ &5, % given in Section 2 of this paper are repre-
sented by a four-level and a two-level basic form, re-
spectively, although both programs perform the same
computing. The greater width of the first basic form is
necessitated only by the order in which the arrays are
stored in the machine. A portion of the complexity of a
program is thus not inherent in the problem itself, which
requires only a certain amount of computing to be per-
formed, but is due to the specific manner in which the
machine is made to retain the data.

The two-level basic form may be considered to repre-
sent the computing as required by the problem, whereas
the four-level basic form may be considered to perform
an implicit rearranging process on the g;, ;,x concurrently
with the computing. These two aspects of the program,
computing and rearranging, and their effects on the width
of the basic form could be separated in the following
manner. The rearranging of the g; ; could be performed
explicitly in its entirety prior to computing. To rearrange
gi,j,x from the order in which they were given for the
first version of the problem to the order in which they
were assumed for the second version would require a
four-level basic form. This rearranging program could
then be followed by a two-level basic form for computing
like the one given for the second version of the problem.
The four-level basic form for the first version may thus
be visualized as a two-level basic form for the computing,
upon which a four-level basic form is superimposed for
concurrent rearranging.

The width of a basic form reflects the degree to which
the different arrays of data connected by the basic form

OPEN

L 2X BN BN 3N N J

Figure 4

ONCE PER (i,j,k)

XEEX) R EE R I
°) °
. . .

.

.

°

.

.

.

.

.

°

.

° .
L4 .
L4 .
® [}
L] °
’ .
.

°

°

.

°

.

.

°

°

A .
i .
A .
b °
hd °
.

.

.

.

.

°

.

.

°

. . b
[[} L4
TEREXX] TEEERX]

A two-level basic form for the same com-
puting as represented by Figure 2 but with

the arrays of data available in compati-
ble order.

IBM JOURNAL * APRIL 1958

114

conform to each other as far as the ordering of the data
within the arrays is concerned. If the g; ;,x were given in
order by j, k and i, which is only “partially opposite” to
the order by i, j and k in which the f; ; » and r;, ;5 are
stored, the program for computing and concurrent re-
arranging would be represented by a three-level (i.e.,
intermediate) basic form. In this intermediate case, the
properties of the address patterns

L(f:,3,%) =1000-+100i+ 10j+ &,

L(gi,j,%x)=2000+ i+100j-+ 10k,

L(ry ;1) =30004100i+ 10j+ &,

would permit the compound index (j, k) to be formed
and the address patterns to be rewritten as follows:

L(f,;,x) =1000+100i+ (j, k),

L(gi,;x)=2000+4 i+10(, k),

L(ri,3,8) =30004100i+ (j, k).

The order in which indices are assigned to the levels
of a basic form determines the order in which the pro-
gram scans the arrays of data. One may, for instance,
visualize the elements of an array g;, ;,» corresponding to
the nodes of a 3-dimensional mesh where, in the conven-
tional manner, i and j are assigned to the axes in a hori-
zontal plane and where the k-direction is vertical. (Com-
pare Fig. 1.) With the indices assigned in the order &, j
and i to the levels of a basic form from left to right, the
program would first scan a horizontal row, then the hori-
zontal row behind it in the same plane, and so on until
the plane is covered, and then proceed to the next hori-
zontal plane above. With the indices assigned in the
apposite order i, j, and k to the levels of a basic form, the
program would first scan a column, then the column
behind it, and so on until a vertical plane is covered, and
then proceed to the adjacent vertical plane.

In most rearranging procedures one may distinguish
the two fundamental elements of selection and distribu-
tion. With a selection procedure one would select the
elements from their old locations in the order in which
they are to appear in their new locations. With this meth-
od, to rearrange information on tapes, one would shuttle
over the input tape selecting the elements in the order in
which they are to be written on the output tape. With a
distribution procedure, on the other hand, one would take
the elements as they come in their old order and dis-
tribute them into the desired new locations. A distribu-
tion operation on tapes would thus permit the input tape
to be read in a single pass but would require shuttling on
the output tape. Pure selection and pure distribution
permit the output and input array, respectively, to be
scanned in a simple linear fashion and may therefore be
said to favor the output or input, respectively.

As indicated earlier, a program to completely rearrange
a three-dimensional array such as g;, ; x would be repre-
sented by a four-level basic form. If the indices i, j, and &k
are assigned to the levels of the basic form in the order

IBM JOURNAL * APRIL 1958

in which the input is available, the program rearranges
by pure distribution favoring the input. If the indices
are assigned to the levels in the opposite order, that is,
in the order in which the output is to be stored, the pro-
gram performs a pure selection operation favoring the
output.

Any other index assignment would represent a com-
bination of selection and distribution in the rearranging
process. Assigning, for instance, the “middle index” j to
the rightmost level of the basic form would yield a bal-
ance between selection and distribution which favors
neither the input nor the output. For rearranging on
tapes, this index assignment would distribute the shuttling
over both tapes and considerably reduce required tape
travel. In rearranging a 3-dimensional array of n3 ele-
ments by either pure selection or pure distribution the
distance of tape travel required is in the order of n®
spaces on the tapes. This is almost entirely accounted for
by the shuttling over one of the two tapes. With the well
balanced index assignment, a combined tape travel in
the order of only n* spaces is required; the shuttling is
here distributed over both tapes and furthermore allows
portions of this combined travel to be performed con-
currently.

For rearranging in a random-access store, a well bal-
anced index assignment may reduce the time and equip-
ment required for the generation of variable addresses.
Consider, for example, a matrix multiplication with ail
three matrices stored in the same manner, by columns,
for instance. Frequently the summation index is associ-
ated with the rightmost level of the basic form, that is,
with the “innermost loop,” and two automatic address
modifiers, or “indexing registers,” are employed to step
the effective addresses of the matrix elements by 1 and
by n respectively, where n equals the number of rows
and columns in the matrices. A more efficient index
assignment would associate the summation index with
the second level from the right on the basic form. Such
an index assignment would require only one automatic
address modifier on the rightmost, high-frequency level
of the basic form. In addition, it would tend to yield a
faster program than one employing two automatic ad-
dress modifiers, since only one rather than two modifiers
would have to be stepped on the high-frequency level.

The term “rearranging” has been used here to desig-
nate processes which transfer data from one state of
order into another state of order. The term “sorting,” by
contrast, will be used to designate processes which trans-
fer information from a state of disorder, with respect to
the current purpose, into a state of order. Rearranging
and sorting may be distinguished in two ways. In re-
arranging, on one hand, the new addresses of the data as
a function of the old addresses can be represented by a
formula, and the data are identified implicitly by their
addresses. In sorting, on the other hand, the new ad-
dresses as a function of the old addresses can be repre-
sented only in the form of a table, and the data are
identified explicitly by identification codes, “control
numbers,” or “keys,” carried along with the data.

In rearranging, the formula giving the new addresses
as a function of the old addresses is known and is used
in designing a rearranging procedure. In sorting, the
address table giving the new addresses as a function of
the old addresses is usually unknown, and the sorting
process is frequently subdivided into two distinct parts.
The machine would first extract from the data in their
state of “disorder” the necessary information to construct
the address table. During the second phase of the sorting
process the data would then be moved according to the
specifications represented by the address table. In both
phases of sorting, some technique of indirect addressing
is usually employed.

Sorting, like rearranging, may be performed implicitly
and concurrently with computing or else explicitly as a
separate operation. When sorting is performed explicitly
on tapes one might again reduce the required tape travel
by an efficient combination of selection and distribution.
If the address table giving the new locations as a function
of the old locations is used in the order by the old ad-
dresses, the program would perform sorting by pure
distribution, If, conversely, the data are moved chrono-
logically in order by their new locations, sorting would
be performed by pure selection. For a more efficient
sorting operation requiring less tape travel one might
reorder the lines of the address table so that when the
data are later moved in the chronological order indicated
by the table the burden of traveling will be shared by
both tapes.

Present tape-storage systems usually permit informa-
tion to be read in any order desired but require data to
be written on tapes into consecutive spaces. Such tape
systems permit only pure selection procedures to be
implemented and thus preclude the application of poten-
tially more efficient methods for rearranging and sorting.

4. The program as a transceiver

The following example will illustrate how a program may
be considered a receiver and transmitter of data. Assume
that a vector b; is to be multiplied by the rows of a matrix
a;; to yield the vector ¢; according to the formula

n
Ci= 2 al-jb]-.
j=1

The input vector b; is given on a tape. The matrix a;; is
given on another tape in order by columns, that is, in the
order ayi, ds1, ..., 0dn1, Qio, A22, ..., An3, ..., A1n, d2n,
..., ann. The output vector c¢; is to be written on a third
tape. Individual elements, rather than blocks of numbers,
are written on and read from the tapes.

An area of n cells, capable of holding one vector, is
assumed to be available as work space in memory. Fig-
ures 5 and 7 represent alternative programs with different
index assignments. Address-computing, setting, and ter-
minating procedures are not shown on the flow charts;
procedures for these purposes are implied by the index
assignments, In either program the productive computing,
represented by the formation of a product a;;b; and the

addition of this product to a progressive sum I, is per-
formed in the box in the center of the rightmost level.

In the first program, shown in Figure 5, the summation
index j is assigned to the rightmost level of the basic
form. The elements c; of the output vector are produced
one at a time, that is, the progressive sum representing
one ¢; is completed and written on the output tape before
computing the next ¢; is commenced. The complete input
vector b; is read into the memory area of n cells on the
open level at the start of the program. The elements a;;
of the matrix are read one at a time on the j-level. Suc-
cessive elements a; with consecutive values of j for a
given i are located n element spaces apart on the a;; tape.
For the transition from each i to the next, the matrix tape
is backspaced on the i-level by a distance in the order of
a matrix space on tape. The tape travel for reading the
elements of the matrix is thus in the order of n passes
over the matrix tape.

In the second program, shown in Figure 7, the summa-
tion index j is assigned to the second level from the right.
With this index assignment, the memory area of n cells
is used to hold the output vector c¢;. Since the index i is
assigned to the rightmost level, the computations proceed
“by i’s within j”; that is, n progressive sums 3 for the n
output elements ¢; are built up in parallel in the memory
area. During the first n executions of the i-level, for j=1,
the first contribution to each of the n progressive sums is
made; during the second n executions of the i-level, for
j=2, the second contributions are made, and so on. All
elements c; of the output vector are written on the output
tape at the end of the program on the open level. The
elements b; of the input vector are read one at a time on
the j-level. The elements a;; of the matrix are read one
by one on the i-level. Successive elements a;; with con-
secutive values of i for a given j are located in adjacent
element spaces on the a;; tape. The tape travel for reading
the elements of the matrix a;; required with this index
assignment is therefore a single pass over the matrix tape.

The two programs for the same problem use the same
memory and storage capacities. One vector space is used
in memory. Two vector spaces and one matrix space are
used on three tapes. The tape travel required for reading
the matrix, which may be considered a measure of pro-
gram execution time, however, amounts to approximately
n passes over the matrix tape in the first program but only
to a single pass with the second program. This substantial
difference in the efficiency of the alternative programs
for the same purpose may be interpreted in terms of
selection and distribution employed for the implicit re-
arranging performed by the program. The index assign-
ment in the first case represents a selection operation
which favors the output in the sense that the elements c;
of the output vector are produced one by one in the
order in which they are to be written on the output tape.
The second index assignment represents a distribution
operation in the sense that the output elements c; are
built up in parallel by distributing the contributions over
the n progressive sums in memory. This second index

115

IBM JOURNAL ~APRIL 1958

spiom U 104 a10js yndino 1psul

SpIOM 7 U 104
a10ys yndur 21124>

‘DIDP JO IBPIWSUDI} PUD IBAIISI D SD UMmoYys aAoqp woiBoud ay) ¢ aunsiy

‘wioj 21sPY oYt jo [9A] Isouyybu oy} o} paubissp xapul uoypwwINS
oyl Yim xipw p Aq 10p3A P jo uoypdijdynw oy} 10 woaboid vy ¢ aundry

e®0 000 L X I) o o0 0o oo eo0e o0
! . .]
i Y) [Y L] [) L []
:) [} L []
i ° Y [[
° [} L [
i . L] b d L
! . . o .
! ° ° ° °
° . .]
Y [] L4 *
; . . . °
i PY °
i [] ® Y Y L] []
: ® [Y 'y [Y
* L] ® L] . [
g [) Y L] L]
* L] [y [} L
I3 * [.
; L4 'Y °
[P [
® Y ®
® Y ®
i ® L4 ¢
i g . L
' [] ® ®
L4 [[
® [] []
. ® [PY L) []
; [[e o 00ccoeOoOOOCOCO L]
) L [[] L]
L ® [BN J 00000000000 []
® ® [] [] ® []
[] [] L] []
® L] ® [
[] [] [] ®
[3 * ® L]
L] L4 [4 [
o L] o [4
[] LJ ® L]
[] [[} L]
L J [] ® []
[} N [] ® []
[L] Py [}) [[] []
] ® o L]) [} ° [}
o000 O0OOOOEOSS LI B) LI I I N BN BN BN) o000

(NOlILYWWnNS) ! !

spiom u oy 81045 4yndu Ip2UI

N3IdO

assignment, representing a distribution operation, favors
the input. The volume of input data, comprising a matrix,
is substantially larger than the volume of output data,
and it is seen that the index assignment which favors the
larger volume of input yields a considerably more effi-
cient program than the index assignment which favors the
smaller volume of output.

In either program, progressive sums are completed and
become available to be written as output on a tape at the
time program execution returns from the level associated
with the summation index to the level on its left. The
accumulation operations are in either case performed on
the rightmost level. When, as in Figure 5, the summation
index is assigned to this level, one completed sum be-
comes available as output during each execution of the
center level. When, as in Figure 7, the summation index
is assigned to the center level, which is in this case
“backed up” by the rightmost level with a relative fre-
quency of n, the entire output consisting of n completed
sums becomes available simultaneously on the open level.
Visualizing a basic form as a “black box” producing out-
put data, one may consider output to be transmitted from
a “slot” on a certain level of the basic form. Similarly,
one may visualize “slots” on the levels through which the
basic form receives input data.

The basic form in Figure 5 is pictured as a receiver
and transmitter of information in Figure 6. The elements
b; of the input vector, which are read on the open level
in a linear fashion, are received by the basic form from a
linear input store whose capacity is n words. Similarly,
the ¢; emerging on the center level in a linear fashion
may be considered to be transmitted from this level of
the basic form into a linear output store. The matrix
elements a;; are read on the rightmost level of the basic
form. After n elements have been read, the matrix tape
is backspaced, and another n elements are read. This
repetitive cycle of reading and backspacing may be con-
sidered to simulate the function of a cyclic, or “recircu-
lating,” store. If the matrix were given, for instance, on a
closed-loop tape, which represents a cyclic store, the
cycles of reading and backspacing could be replaced by
reading repeatedly around the loop in the forward direc-
tion. The matrix a;; may thus be considered to be received
by the basic form from a cyclic input store whose capacity
is n? words. The memory area of n cells is pictured as a
cyclic work store inside the basic form. This store holds
the input vector b; whose elements are scanned repeatedly
in the cyclic order by, bs, ..., by, b1, boy oo\ by o, by,
boy ooy by

The basic form with the alternative index assignment
represented by Figure 7 is pictured as a receiver and
transmitter of information in Figure 8. A linear input
store and a linear output store for the vectors b; and c;
are again shown for the corresponding levels of the basic
form. The cyclic work store inside the basic form is in
this case used for the n progressive sums 3 which are
referred to cyclically in the distribution operation. The
matrix a; is read in a single pass over the matrix tape

and therefore shown as being received from a linear input
store with a capacity of n? words.

A comparison of Figures 6 and 8 shows equivalent
situations with respect to the input and output stores for
the vectors as well as the cyclic work store. The stores
required for these purposes are in either case two linear
stores and one cyclic store with a capacity of n words
each. The input store holding the matrix a;;, however, is
in the first case a cyclic store with a capacity of n? words
and a rate of flow of n® words per execution of the pro-
gram. In the second case, the matrix is received from a
linear store with again a capacity of n? words but the
lower rate of flow of only n? words per execution of the
program.

As pointed out earlier, the second index assignment
would yield a more efficient, that is, faster, program for
an existing machine. From the point of view of machine
organization, the alternative index assignments provide a
choice between two pieces of equipment for the same
purpose. If a linear store with a certain capacity and
rate of flow is assumed to be less expensive than a cyclic
store with the same capacity and n times this rate of flow,
the second index assignment would also suggest the more
efficient machine organization.

5. Stores

Three types of stores may be distinguished according to
the technical characteristics of the equipment: random-
access, cyclic, and linear stores. In random-access stores,
such as magnetic cores, the time required for an access
is completely independent of the particular location re-
ferred to. In cyclic stores, such as drums or disks, each
location becomes available periodically. In linear stores,
such as tapes or decks of cards, the information is ar-
ranged along an essentially one-dimensional carrier me-
dium.

Linear stores are usually operated on a start-stop basis
in order to synchronize their effective rate of flow with
the speed of data processing. In a typical application of
tapes, for instance, one would read a block of data, let
the tape come to rest, process these data, and, at the time
processing of the data is completed, start the tape again
for an access to the next block. In this manner tape oper-
ation is synchronized with processing by means of the
program which provides the tape-handling instructions
at time intervals whose lengths reflect the rate of data
processing. With cyclic stores, on the other hand, the
cycle of the store is usually not synchronized with proc-
essing. Instead, a cyclic store is usually employed asyn-
chronously and considered a pseudo-random-access store.
The pseudo-random-access time of a cyclic store used in
this manner might be defined generously as the period
of the store which constitutes an upper bound for the
access time to any location. More commonly, however,
it is defined on a random basis as half the period of the
cyclic store or as an even shorter period taking into ac-
count some limited “optimization” of address assign-
ments. In certain applications, address assignments for

117

IBM JOURNAL »APRIL 1958

OPEN

i (SUMMATION) i

°
[}

° LI I oo 000000000 o000 S0 000000000

[[. [[] ° [[] [

° . [. o ° ° ° [}

° o . ° [}

. o ° ° c

L] L] L] Y []
® * Y 'Y [] :
o [[° e !
o000 000000 o0 . ° *
[] ° [] :

[] ° []

[Y []

[] o [

L . . L c

L4 [® L4 []
o000 00OOGLOIOEOIOIESE OO0 o0 000 O0OOOGIOOISE o0 o * .
° L4 [° P :
. L4 [} [} e
[3 o L J i

L L] [

[} ° [}

° ° [}

[} ° [}

L4 []

L4 [°

L4 [[}
L Y 'Y |
L4 S0 0000000000 oo c
. . . ° .) o

[[° . [] L []

[] L] * [° . *

L] [] [L] [] * []

° ° ° [} ° L [

[} [[° [}

[] [] 'Y Y []
o [] Y Y [] i
[° ° [} o
L * [o o
o . ° ° o
[L] . [o
: [} [° ° o |
' LI
[] ® ® ® [3 i
e ° ° ° ° ° [} [} o ‘
.] o |
° eoe o0 000 oo eo0eeeooe LI SR) 00000 3
L4 i
. |
b

Figure 7 A program for the same purpose as the one represented by Figure 5
but with the summation index assigned to the center level of the
basic form.

Figure 8 The program above shown as a receiver and transmitter of data.

Linear input store for n words Linear input store for n2 words

Linear output store for n words ¢

pseudo-random-access stores are not “optimized” with
respect to the access times required for data in the cyclic
store but rather to reduce the time required for gener-
ating the addresses to be inserted into the instructions of
the program as in the case of “randomized” address
assignments.

In many problems, data are handled in units referred
to as “packets of words,” and the packets, in turn, are
commonly combined into “blocks” for storage. A packet
may correspond to an individual business record in a
commercial application or to all the data pertaining to a
certain point of a space-mesh in a scientific or technical
problem. A block, comprising a number of packets, might
then correspond to a group of business records or a set
of points along a row of a mesh.

In typical applications of data-processing systems one
may consider the random-access memory as a buffer be-
tween the processing unit of the system and storage
devices, such as tapes, drums, and disks. As long as the
problem requires only rearranging in the broad sense,
including the frequently present implicit rearranging dis-
cussed in Section 3, random-access memory is used to
simulate cyclic and linear buffers with respect to packets
within blocks. Random accesses are in this case required
only within the single packet or the small set of adjacent
packets currently being processed. Only when sorting,
including implicit sorting, is required for packets, the
random-access property of memory is exploited also with
respect to packets within blocks, i.e., over substantial
areas in memory rather than over trivially small portions
of memory corresponding to individual packets.

For a concrete example of the use of memory as a
cyclic buffer one may refer to the cyclic work store dis-
cussed in Section 4. The efficiency of the alternative
schemes for the same purpose may be interpreted in
terms of the exploitation of random-access memory for
the simulation of a cyclic work store. If one considers
this problem of multiplying a vector by a matrix a tape-
limited operation, the total machine time for the problem
will be approximately proportional to the travel required
of the matrix tape. In this sense, the first program will be
executed during n units of time whereas the second pro-
gram for the same problem will be executed within only
one unit of time. The simulated cyclic buffer, in the first
case for the b; and in the second case for the 3; will in
either case complete n cycles of n words each. Since the
total duration of program execution is n times larger in
the first case, the rate of flow of the cyclic work store is
n times higher in the second case. With the second, more
efficient scheme, the random-access memory is thus more
efficiently exploited in the sense that it is programmed
to simulate a cyclic store which is n times as fast as the
buffer simulated with the first approach.

This example also indicates that in simulating a cyclic
or linear store in random-access memory, one does not
utilize the random-access quality of the memory since the
spatial distribution of the accesses to the simulated store
is perfectly regular and not at all random. For this pur-
pose one utilizes only the fact that memory will retain

a piece of information for an indefinite period of time
and yet make it available instantaneously when required.
It is this quality of memory, rather than its random-access
property, which permits the simulated buffer store to be
synchronized by the program with the rate of processing.

The preceding observations may be summarized as
follows. In many data-processing systems an expensive
random-access memory, such as a magnetic-core store, is
provided. In many typical applications, this random-
access memory is ‘“converted” by programming into
linear and cyclic stores which are synchronized with the
processing unit of the system. This simulation of work
stores does not utilize the random-access quality of the
memory. The programmed implementation of this simu-
lation is frequently facilitated by incorporating additional
equipment for automatic address-modification in the sys-
tem. When a magnetic drum is used for memory, one
often observes the following twofold transition between
types of stores as far as the utilization of the drum is
concerned. The drum is a fast cyclic store operated asyn-
chronously with respect to the rate of processing and is
considered a pseudo-random-access store. This pseudo-
random-access store, in turn, provides the basis for pro-
grammed implementation of simulated cyclic stores
which are synchronized with the processing unit of the
system.

For an example of how expendable capacities affect
the speed of rearranging, consider the case of rearranging
a two-dimensional array on tapes. The elements of the
array are assumed to be given in blocks on an input tape
where each block contains a row of the array; the ele-
ments are to be written on an output tape by blocks cor-
responding to the columns of the array. The rearranging
process is assumed to be performed by a conventional
selection method so that the tape travel on the input tape
may be taken as the primary measure of the required
machine time. For different programs uwsing different
amounts of random-access memory for buffer areas as
well as additional true linear stores, that is, work tapes,
one then finds the following approximate relations. The
machine time required for the rearranging process is a
linear function of 1/M, where M is the total memory
capacity available for the simulation of linear buffer
stores. The required machine time is also a linear func-
tion of 1/7T+ 1, where T is the number of available true
linear stores of virtually unlimited capacity, that is, the
number of tapes available for work tapes in addition to
the input tape and the output tape.

6. Arithmetic units

Most data-processing systems at present have only one
arithmetic unit but several stores. There appear to be two
main reasons accounting for this fact. Many problems,
especially computational ones, are believed to be of a
sequential nature in the sense that usually one quantity
must be computed before one can proceed to computing
the next quantity. From a technological and economical
point of view, it is widely believed that fast arithmetic
units are more readily obtainable than fast stores, and

119

IBM JOURNAL * APRIL 1958

120

MESH

ADJACENT
ROWS

TAPES

DDDDDDDDDDIIIIIIIIIIIIIIIIe

IIIIIIIII.IIII.IIIIIDDDDUr_‘])

-«———n WORDS —

Figure 9 Mesh of a network problem covered row by row from left to right, and the two tapes holding the

data for two adjacent rows.

that therefore one of the most serious problems in ma-
chine organization is to provide enough adequate stores
to keep even a single arithmetic unit busy. However, it
can be seen from the following example of alternative
programs for a typical network problem that these two
motivations for having only one arithmetic unit in a sys-
tem may not be valid for large and important classes of
data-processing applications.

Assume that the values of a function ¢;,; are to be
computed for the nodes of a two-dimensional mesh ac-
cording to the formula

i, i=1(Pia, 5 bi,j1).

With the i- and j-directions being horizontal and vertical,
respectively, the formula requires for the computations
at a point (i, j) the data at the neighboring point (i—1, j)
to the left and at the neighbor (i, j—1) below. The values
of ¢ are given along the bottom row j=0 and the left-
most column i=0. The purpose of the computations is
to produce the values of ¢ along the top row j=jax. The
values of ¢ at internal points of the mesh, which are to

IBM JOURNAL * APRIL 1958

be computed as intermediate results, may be discarded
as soon as they have served their purpose of advancing
the computations toward the top row. Two alternative
programs will be considered for this problem. The first
program causes the computations to proceed along the
horizontal rows of the mesh, the second program trav-
erses the mesh by segments of diagonals.

Figure 9 illustrates the first program. The values along
a row are given on a tape in blocks of n numbers each.
After having read such a block into a memory area of n
cells, the corresponding » points in the adjacent row
above are computed. They replace the “old” values in
the memory area from which they are then written on
the other tape. In this manner the program proceeds
along a row, block by block. At the end of each row both
tapes are rewound. The previously “old” tape then be-
comes the “new” tape to be read, and the other tape is
available for writing the new current row. The tape travel
for reading and writing required by this program would
amount to two tape passes per row.

The alternative program is pictured by Figure 10. In

iA MESH

TAPES

D OoooO0OjpoO0coOoj{asaasn

“e e aafenauals)

E B @am® 00000 D?

<—§ WORDS_g-|

Figure 10 Mesh of a network problem covered by horizontal layers of parallelograms, and the two tapes
holding the data for the bottom rows of two adjacent layers.

this case the mesh is covered by diagonals within seg-
ments of the plane in the shape of parallelograms. As-
sume the data along the bottom of such a segment read
as a block from a tape into a memory area of n/2 cells.
Also assume the data along the leftmost diagonal of the
segment given in another memory area of n/2 cells. The
computations can then proceed along the first internal
diagonal of the segment from the bottom to the top since
the lefthand and lower neighbors of all these points are
available. The new diagonal will replace the old one to
its left in the memory area of n/2 cells. The value on
top of the diagonal replaces its counterpart at the bottom
of the diagonal in a cell of the other memory area which
is associated with the tapes. The program then traverses
the next diagonal to the right. In this manner the entire
segment is covered. The top row of the completed seg-
ment is then written on the current output tape and the
bottom row of the adjacent segment to the right is read
into its place in memory. After an entire layer of seg-
ments has been covered, the tapes are rewound and their
functions as input and output tapes are interchanged in

preparation for the next layer of segments above. The
tape travel required for reading and writing with this
program amounts to approximately 4/n tape passes per
row of the mesh.

Both programs require the same number of tapes and
the same memory space. In tape-limited operation the
second program would require less machine time by a
factor in the order of 2/n, where n is the usually large
number of memory cells available for the problem. This
substantial difference in the efficiency of the alternative
programs, which is a function of the expendable memory
space, may be interpreted in terms of the exploitation of
memory for simulated buffers (see Section 5). In the first
case the input-output area in memory may be considered
a buffer between the arithmetic section and the tapes
with a certain rate of flow. In the second case, the half
of this memory space which holds the successive diago-
nals may be considered a buffer store whose rate of flow
is n/2 times greater than in the first case.

The second program suggests the following observa-
tions pertaining to machine organization. At the start of

121

IBM JOURNAL * APRIL 1958

122

Figure 11 Five arithmetic units working concur-
rently along five adjacent rows of a
mesh with a horizontal delay of one
point between adjacent arithmetic units.

the computations for a diagonal, the lefthand and lower
neighbors of all the points to be computed are available.
If as many as n/2 separate arithmetic units were avail-
able in the system, one could therefore compute all
points of a diagonal concurrently. This is illustrated for
five adjacent rows of the mesh by Figure 11. The arithme-
tic units would proceed in parallel along horizontal rows
as indicated by arrows. At a given time, the different
arithmetic units would simultaneously compute the dif-
ferent points of a diagonal marked with circles. In transi-
tion to the next diagonal each arithmetic unit would
make its result available to the arithmetic unit above
where it will serve as the lower neighbor, and it would
retain this result temporarily in order to use it for the
lefthand neighbor. In this manner an entire layer of rows
could be covered across the whole width of the mesh,
requiring memory accesses only for the linear arrays of
data along the bottom and top rows of the layer but not
for the two-dimensional array of internal points in the
layer.

This example illustrates the following points. The
problem, although it suggests that the array of ¢ ; be
covered systematically, is not sequential in nature since
it permits computing to be performed concurrently for
any number of adjacent rows. Furthermore, a large num-
ber of separate arithmetic units operating concurrently
may reduce rather than increase the number of memory
accesses required per arithmetic operation. This implies
that each arithmetic unit is supplemented with a very
small random-access store, possibly in the form of indi-
vidual registers, whose capacity is in the order of a packet
of data in the sense of Section 5. The main memory,
which in present systems is in the order of thousands of
words and would be used only for linear and cyclic buf-
fers with respect to packets, could be designed for a
substantially lower number of accesses per arithmetic
operation.

IBM JOURNAL * APRIL 1958

7. Conclusion

The preceding examples indicate how systems organiza-
tion may be studied in terms of programs. A data-
processing system would be viewed as a collection of
processing units and stores of different types and charac-
teristics. The program would represent the problem in
terms of such system components and thus provide a
link between the problem and the machine in terms of
which both the applications and the system may be
studied.

With a sufficiently powerful representation of pro-
grams one might be able to make the problem itself “say”
in these terms what kind of a system it wants to be solved
on. This might permit the process of systems design to
be eventually systematized and ultimately mechanized.

This approach might also lead to more efficient
methods of programming for existing systems which
would lend themselves better to systematization and
automation. The process of programming for existing
machines might be subdivided into two distinct phases.
The first would be identical with the process of systems
design in the sense indicated above; it would produce
the specifications for a hypothetical system which is
optimum with respect to the particular problem under
consideration. The second distinct phase of such a pro-
gramming process would then consist of realizing the
hypothetical optimum system on an existing data-
processing system with the primary objective of preserv-
ing the optimum qualities of the hypothetical system as
far as possible.

Future research might be conducted primarily in the
following areas: One would wish to know how a problem
can be subdivided into separate parts which can be
operated upon independently and concurrently. For a
description of a problem in terms of such parts one
would wish to know in which chronological order the
parts should be processed so as to minimize systems
requirements. These requirements might be minimized
with respect to the volume of data to be retained during
the course of problem solution, with respect to the
amount of rearranging and sorting required by the prob-
lem solution, and with respect to the cost of all process-
ing units and stores of the system other than the one
which limits the performance of the over-all system.

Acknowledgment

The material presented in this paper has been developed
at the Watson Research Laboratory by the author in
collaboration with present and past members of the
laboratory staff. Particularly significant contributions to
the subject matter have been made by Dr. D. H. Tycko
and Miss A. T. Flanagan.

Received October 14, 1957

