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Abstract: A  program for the solution of a  problem by a  data-processing system  constitutes a conceptual link 

between the problem and the machine. It is  proposed that both problems and machine organization  be 

studied in terms  of programs. A data-processing system may for this purpose be considered a collection of 

units such as arithmetic units and stores of different types and characteristics. A standard  representation of 

programs is  proposed for studying the organization of systems composed of processing units and stores. 

This approach may  lead to more  efficient and systematic design of data-processing systems as  well as to 

improved programming methods for existing machines. 

1. Introduction 

A computer  program  for the  solution of a  problem is 
frequently viewed only  as a control device which causes 
the  machine  to  perform a desired task. This, of course, 
is the  primary purpose of programs  in  present-day data 
processing. It is felt,  however, that  programs  may also 
be considered a conceptual  link between the problems 
and  the machines, and  therefore  merit  attention  from a 
more general  point of view. A study of problems  as well 
as systems organization in terms of programs  appears to 
be a promising approach  to  the  formulation of a theory 
of automatic  data processing. Such  a  theory  could be 
expected to lead to  more efficient systems design and 
also to  more efficient programming  techniques. 

Most current efforts in  the field of programming  re- 
search seem to be directed  either  toward specific systems 
or particular classes of applications. The majority of the 
effort appears  to be concentrated  in the  area of non- 
machine  languages, or shorthand codes, with the objec- 
tive of making the program a better  control  device, that 
is, to  make it easier to write  and  more  readily understand- 
able for  the machine. The languages thus constitute an 
answer to  the question “How do 1 talk to  the machine?” 
rather  than  “What should I tell the machine?” To best 
serve this purpose the languages are descriptive rather 
than  functional. Essentially, they  permit  a  large amount 
of intricate control information to be summed up in 
compact  form,  but they do not  permit formal manipula- 
tion of  their symbols according to a  theory for optimizing 
the use of the processing units and stores. The research 
proposed in this paper is concerned with the primary 
functions  of data-processing  equipment, the processing 

and storing of data,  rather  than with the necessary sub- 
ordinate  function of controlling the equipment. 

To be useful  as  a  research tool, programs should be 
represented in a uniform  and  compact  manner. A stand- 
ard representation of programs  as  a hierarchy of “basic 
forms” would facilitate  the process of programming. 
This subject as well as much of the material  in the present 
paper is treated in detail by the  author in  a  forthcoming 
book on programming for stored-program  calculators. 
The representation of a program in  terms of basic forms 
emphasizes the storage of the problem data  and  the flow 
of this information  through  the system, two  particularly 
important aspects of the  machine solution of a  problem. 

This  method of program representation has also been 
found applicable to systems other  than conventional 
stored-program calculators; it has provided  some  insight 
into  the  functioning of a  “decentralized” system of card- 
handling  data-processing  machines, and  it has  been  ap- 
plied successfully to a hypothetical machine in  which 
the data  are identified by means essentially different from 
conventional addresses. 

A data-processing system in this paper is considered 
to be a  collection of arithmetic units and stores. This 
paper shows, through examples,  how  programs  might 
be used as a  research  tool  in  studying the organization of 
machine systems represented  in this manner. 

2. Basic form and address patterns 

As a first example,  consider  a  problem which requires 
the elements of two  3-dimensional arrays f i , i , k  and g i , j , k  

to be  added  in  pairs producing a  3-dimensional array 105 
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be associated  with the nodes of a cube as illustrated by 
Figure 1. The  problem requires  the  elements from  the 
same relative positions in the f -  and g-cubes to be added 
in  pairs to  form  the elements of the r-cube. 

Similarly,  stepping with respect to j and  at  the  same time 
resetting k from its maximum value 9 to its  initial value 
0 is described by 

Statement of the  problem 

il 

kJ 
r i , j , k = f i , j , k + g i , j , k  for j tO,  I , .  . . ,9 .  

Address  assignments 

L(f{, j ,k)  = 1000+ 100i-t l O j +  k, 

L(gi , i , k )  =2000+ i+ lOj+ look, 

The  right-hand members of these two recursion formulas 
contain  the  same  constant, 1. Since  this constant is the 
stepping constant  to be applied to L(f i ,  i, l i)  on  the k-level, 
Box A on this level will also serve to step L(fi,j, IC) with 
respect to j ,  simultaneously  resetting the index  k  con- 
tained  in L(fi,j, k). The corresponding  recursion formu- 
las of the address pattern L(gi , j ,k)  are 

L(gi , j , k+l )  = L ( g i , j , k )  + 100 

and 

1 106 

0 Flow chart 
See Figure 2, pages 108 and 109. 

The  arrays f , , j , k  and g , , i , k  are assumed to be available 
in  a  random-access store.  The elements of the result 
array ri, j ,  J; will be placed in the  same store. The addresses, 
or locations, L ( f i ,  j ,  k )  , L ( g i ,  j ,  IC), and L(  ri, j ,  J ~ )  of the 
elements of the  arrays  are given as linear functions of 
the indices i, j ,  and k .  As indicated by these  address pat- 
terns,  the first input  array f i ,  j , k  and  the  output  array 
ri, j ,  k are both  stored  in order by i, j ,  and k ,  whereas the 
second input  array gi, j, is available in the opposite order 
by k, j ,  and i. 

The  program is represented  as  a basic form by the 
flow chart in Figure 2 .  The boxes on  the flow chart  are 
arranged in  columns from left to right by increasing 
frequency of execution,  which also corresponds to  the 
different levels of control implied by the system of “loops 
within loops.” The k-level represented by the rightmost 
column  represents the innermost  loop; it is of the lowest 
logical order  and has the highest relative frequency of 
10:’ executions. The frequencies of execution for  the j -  
and i-levels, which are of higher logical orders,  are 102 
and 10, respectively. The level of highest logical order 
on the extreme  left of the basic form is “open,”  that is, 
it does not contain  a  loop  since it is executed  only once 
per execution of this program. 

The computations r,, j ,  k =  f i ,  j ,  k+ gi, j, k are  performed 
in Box C on  the k-Ievel. The instructions  in this box 
contain the variable  addresses L ( f i ,  j ,  IC), L( gi, j ,  f c )  , and 
L (  ri,j, k) . The address L(gi , j ,  Jc) is stepped  with  respect 
to k, j ,  and i in Boxes B, E, and G on  the k-, j - ,  and i- 
levels, respectively. It is initially set  in Box J on  the  open 
level. The addresses L ( f i , i , k )  and L(r i , j ,~( )  are set ini- 
tially also on  the  open level in Box I. Unlike L ( g i ,  j ,  IC), 

the addresses L ( f i , j , k )  and L(ri,j,lc) are stepped with 
respect to all three indices on  the k-level. 

Stepping L ( f i , j , k )  with  respect to k ,  for instance,  may 
be described by the following recursion formula of the 
address pattern L(f,,j,lc) : 

The  different constants  in the right-hand  members of 
these formulas indicate that  the variable  address L(gi , j ,  k) 
must  be operated  upon separately on the k- and j-levels. 

The indices were assigned in  the  order i, j and k to  the 
levels of the basic form  from  left  to right. If they  were 
assigned in the opposite order k, j ,  and i, that is, in  the 
order in  which the  array gi, j ,k is stored,  the situation 
with  respect to  the generation of the variable  addresses 
would be reversed. L ( gi, j ,  k) could  then be stepped with 
respect to all three indices on  the rightmost level whereas 
L(f,,j,h-) and L(r i , j , k )  would have to be operated  upon 
on  the center levels of the basic form. 

Each series of consecutive  executions of a level is 
terminated by a  terminating  box (Boxes D, F, and H) 
at  the bottom of the level. Program execution  enters in 
the  upper  left-hand  corner of a basic form  and eventually 
leaves it by the lower left-hand corner. The execution 
pattern of many basic forms is somewhat  analogous to 
the action of a counter.  The rightmost level would be 
executed  repeatedly  until the associated index reaches 
its maximum value. Then  the  next level to  the  left is 
executed once before the rightmost level is again ex- 
ecuted  repeatedly. This corresponds to a carry  into  an 
adjacent counter position. When  the indices of several 
adjacent levels have reached  their  maximum values, pro- 
gram execution  proceeds through  the terminating boxes 
from right to left  across the basic form in much  the  same 
way a carry propagates  across  several counter positions. 

Programs of greater complexity may be represented in 
a standard  manner by a  hierarchy of basic forms as  indi- 
cated by Figure 3 .  In  such a hierarchy, basic forms  con- 
tain on their levels lower-order basic forms as  details in 
serial and parallel  combinations. The different stages of 
such a hierarchy again reflect different levels of control. 
From  the point of view of sequencing,  a hierarchy of 
basic forms helps to  separate  the two fundamental types 
of sequencing  elements,  loops and branches,  which  rep- 
resent repetition and decision, respectively. On a given 
detail  in a hierarchy of basic forms,  one may have  exten- 
sive branching but only trivial  looping  represented by a 
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f 9,3.5 + g 9,3,5 = 9,3,5 

f 9,3,4 + g 9,3 4 = 9,3,4 

Figure I The elements of 3-dimensional arrays arranged  at the nodes of cubes.  The elements ri,It,i are to 
be generated as the sum of the corresponding elements fi,.j,k and gi, 9, k. 107 
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single loop;  more intricate  looping would be shown on 
lower-order  details which at this stage are considered 
“black boxes.” Conversely,  a given detail  may  contain 
any number of cascaded  loops with trivial  branching 
represented by the terminating  branches associated with 
the  loops; more intricate  branching arrangements would 
in this case be enclosed in “black boxes” to be shown as 
separate lower-order details. 

For a  second  example of a program, consider the 
problem previously discussed with the following modifi- 
cation. The second input  array, g i , j , k ,  was assumed to be 
available in the opposite order  from  the  other two arrays 
f i ,  j, h- and ri, j ,  k. It will now  be assumed that gi, j ,  IC is also 
stored by i, j ,  and k so that all three  arrays associated with 
the basic form  are stored  in the same order. 

0 Statement of the  problem 

i 
ri,i,Ic=fi,j,k+gi,j,Ic for J = 0,1,  . . . , 9 .  

kJ 

0 Address  assignments 

L ( f i , j , k )  = 1 O O O f  lOOi+ 10j+k,  

L(gi,j,k) =2000+ 1OOi+ 1Oj+k,  

L(ri,j,k) =3000+ 1OOi+ 10j+k. 

Flow chart 
See Figure 4. 

The program, which performs  the same  computing  as 
the one in the previous  example, is now represented by 
a basic form of only  two, rather  than  four, levels. The 
right-hand level of the present basic form is executed 
once per  triplet of indices (i, j ,  k ) .  The variable  address 
L (gi, j ,  k )  , which  in the previous  example necessitated the 
existence of the center levels of the wider basic form, is 
now stepped on the  right-hand level according to  the 
recursion formulas 

L k i , j , I C + l )  =L(gi, j ,h-) + 1 ,  

L(g i , j+l ,o)  =L(gi, j ,a) + 1 ,  

L(gi+l,o,o) =L(gi,‘3,!1) + 1, 
with the same  stepping  constant 1 in their  right-hand 
members. 

A group of indices, such as  the  triplet (i, j ,  k )  , assigned 
to a level of a basic form is termed  a “compound index.” 
A compound index  narrows the width of a basic form by 
consolidating levels which would otherwise  correspond 
to  the individual component indices. Whether compound 
indices can  be formed depends on  the properties of all 
input and  output address  patterns associated with the 
basic form. A necessary condition for combining  several 
indices into a compound index is that  the portions of all 
address patterns in which the indices appear be linearly 
dependent. For example,  the  address  patterns 

L1=al+bli+clj+dlk+ell, 

L?=a*+bui+csj+dzk+ezl, 

would be linearly dependent with respect to the indices 
i and k if the following linear  relation with constant coeffi- 
cients R and C holds: 

( b 2 i + d 2 k )  =R(b l i+d lk )  +C. 

A matrix-multiplication  problem,  for  instance,  according 
to the  formula 

T t  

ci/c= x Uijbjk 
j=1 

with all three matrices  stored by columns would have 
address  patterns of the  form 

L(aij)   =KI+i+nj,  

L(bjrc)=K:! + j + n k ,  

L (til,) = K:; + i + nk .  

Since  not all three  address  patterns are linearly dependent 
with respect to  any  pair of indices, compound indices 
could  not be formed.  The basic form  for  the matrix- 
multiplication program would contain  four levels, one 
for each of the indices i, j ,  k and  an open level. 

3. Rearranging and sorting 

The programs for  the two versions of the  problem ri, j ,  k= 

fi,!,  k+gi,j, k given in Section 2 of this paper are  repre- 
sented by a  four-level and a two-level basic form, re- 
spectively, although both  programs perform  the same 
computing. The greater width of the first basic form is 
necessitated only by the  order in  which the  arrays  are 
stored in the machine. A portion of the complexity of a 
program is thus not inherent in the problem  itself, which 
requires  only  a  certain amount of computing to be per- 
formed,  but is due  to the specific manner in which the 
machine is made  to retain the  data. 

The two-level basic form  may be considered to repre- 
sent the computing as required by the problem, whereas 
the four-level basic form may  be  considered to  perform 
an implicit  rearranging process on  the gi, i, k concurrently 
with the computing.  These  two  aspects of the  program, 
computing and  rearranging,  and their effects on  the width 
of the basic form could be separated in the following 
manner.  The rearranging of the g , j ,  k could be performed 
explicitly in its entirety prior  to computing. To rearrange 
gi,?, k from  the  order in which they were given for the 
first version of the problem to  the  order in  which they 
were assumed for  the second version would require a 
four-level basic form.  This  rearranging  program could 
then be  followed by a two-level basic form  for computing 
like the  one given for  the second version of the problem. 
The four-level basic form  for  the first version may thus 
be visualized as a two-level basic form  for  the computing, 
upon which  a  four-level basic form is superimposed for 
concurrent rearranging. 

The width of a basic form reflects the degree to which 
the different arrays of data connected by the basic form 
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conform  to  each  other as far as the  ordering of the  data 
within the  arrays is concerned. If the gi,i,k were given in 
order by j, k and i, which is only  “partially  opposite” to 
the  order by i, j and k in  which the fi, j ,  k and ri, j ,  k are 
stored,  the  program  for computing and  concurrent  re- 
arranging would be represented by a three-level (i.e., 
intermediate) basic form.  In this  intermediate  case, the 
properties of the address patterns 

L(fi,~,k)=lOOO+lOOi+ l 0 j t  k ,  

L(gi , j , k )  =2000+ i+ 100j+ 10k, 

L(ri,j,k) =3000+100i+ 10j+ k ,  

would permit  the  compound index ( j ,  k )  to be formed 
and  the address patterns  to be rewritten  as  follows: 

~ ( f i , j , J ~ ) = ~ ~ ~ ~ + ~ ~ ~ ~ +  ( j ,  k ) ,  

L(gi,j,k)=2000+ i+lO(j, k ) ,  

L(ri,j,k) =3000+ 10oi+ ( j ,  k ) .  

The  order in  which  indices are assigned to  the levels 
of a basic form determines the  order in which the  pro- 
gram scans the  arrays of data.  One may, for instance, 
visualize the elements of an  array gi, i, k corresponding to 
the nodes of a  3-dimensional  mesh  where,  in the conven- 
tional manner, i and j are assigned to  the axes in a hori- 
zontal  plane and  where  the k-direction is vertical. (Com- 
pare Fig. 1.) With  the indices assigned in the  order k ,  j 
and i to  the levels of a basic form  from left to right, the 
program would first scan  a  horizontal row,  then  the  hori- 
zontal  row  behind it in the  same plane, and so on until 
the plane is covered, and  then proceed to  the next hori- 
zontal  plane  above. With  the indices assigned in  the 
opposite order i, j, and k to  the levels of a  basic form,  the 
program would first scan a  column, then  the column 
behind  it, and so on until  a  vertical  plane is covered, and 
then  proceed to  the adjacent  vertical  plane. 

In most  rearranging  procedures one may distinguish 
the two fundamental elements of selection and distribu- 
tion. With  a selection procedure  one would select the 
elements from their  old  locations  in the  order in which 
they are  to  appear  in  their new locations.  With this meth- 
od,  to  rearrange  information on tapes, one would shuttle 
over  the  input  tape selecting the elements  in the  order in 
which they are  to be  written on  the  output tape. With a 
distribution  procedure, on  the  other  hand,  one would take 
the elements as they come in  their old order  and dis- 
tribute  them  into  the desired new locations. A distribu- 
tion operation  on tapes would thus  permit  the  input tape 
to be read in  a single pass but would require shuttling on 
the  output tape. Pure selection and  pure distribution 
permit  the  output  and  input  array, respectively, to be 
scanned in a simple linear  fashion and may therefore be 
said to  favor  the  output  or  input, respectively. 

As indicated  earlier,  a program  to completely rearrange 
a  three-dimensional array  such as gi,i,  k would be repre- 
sented by a  four-level basic form. If the indices i, j, and k 
are assigned to  the levels of the basic form in the  order 
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in which the  input is available,  the program rearranges 
by pure distribution favoring  the  input. If the indices 
are assigned to  the levels in the opposite order,  that is, 
in the  order in which the  output is to be stored,  the  pro- 
gram  performs a pure selection operation  favoring  the 
output. 

Any other  index assignment  would  represent  a com- 
bination of selection and distribution  in the rearranging 
process. Assigning, for instance, the “middle  index” j to 
the rightmost level of the basic form would yield a bal- 
ance between selection and distribution which favors 
neither the  input  nor  the  output.  For rearranging on 
tapes, this index  assignment would distribute the shuttling 
over both tapes and considerably reduce  required tape 
travel. In  rearranging a  3-dimensional array of r t 3  ele- 
ments by either pure selection or  pure distribution the 
distance of tape travel  required is in the  order of n5 
spaces on  the tapes. This is almost  entirely  accounted for 
by the shuttling over  one of the two tapes. With  the well 
balanced  index assignment, a  combined tape travel in 
the  order of only n4 spaces is required; the  shuttling is 
here distributed over  both tapes and  furthermore allows 
portions of this  combined  travel to be performed con- 
currently. 

For rearranging in a  random-access  store,  a well bal- 
anced index  assignment may  reduce  the time and equip- 
ment required  for  the generation of variable  addresses. 
Consider, for example,  a matrix multiplication  with all 
three  matrices  stored  in  the same  manner, by columns, 
for instance. Frequently  the  summation  index is associ- 
ated with the rightmost level of the basic form,  that is, 
with the “innermost  loop,” and two automatic address 
modifiers, or “indexing registers,” are employed to step 
the effective addresses of  the  matrix elements by 1 and 
by n respectively, where n equals the  number of rows 
and columns in  the matrices. A more efficient index 
assignment  would  associate the  summation  index with 
the second level from  the right on  the basic form. Such 
an index  assignment would require only one  automatic 
address modifier on  the rightmost,  high-frequency level 
of the basic form.  In addition, it would tend to yield a 
faster  program  than  one employing  two automatic  ad- 
dress modifiers, since  only one  rather  than two modifiers 
would have  to be  stepped on  the high-frequency level. 

The  term  “rearranging”  has been used here  to desig- 
nate processes which transfer  data  from  one  state of 
order  into  another  state of order.  The  term “sorting,” by 
contrast, will be used to designate processes which trans- 
fer  information  from a  state of disorder,  with  respect to 
the  current purpose, into a state of order. Rearranging 
and sorting may be distinguished in  two ways. In re- 
arranging, on  one  hand,  the new addresses of the  data as 
a function  of  the old addresses can be represented by a 
formula,  and  the  data  are identified implicitly by their 
addresses. In sorting, on  the  other  hand,  the new ad- 
dresses as  a function of the old  addresses  can  be repre- 
sented  only  in the  form of a  table, and  the  data  are 
identified explicitly by identification codes, “control 
numbers,”  or “keys,” carried along with the  data. 



In  rearranging,  the  formula giving the new addresses 
as  a function  of  the old addresses is known and is used 
in designing a  rearranging  procedure. In sorting, the 
address  table giving the new addresses as a function of 
the old addresses is usually unknown, and  the sorting 
process is frequently subdivided into two distinct  parts. 
The  machine would first extract  from  the  data  in their 
state of “disorder” the necessary information  to construct 
the address table. During  the second phase of the sorting 
process the  data would then be moved  according to  the 
specifications represented by the address  table. In  both 
phases of sorting,  some  technique of indirect  addressing 
is usually employed. 

Sorting, like rearranging, may be performed implicitly 
and concurrently with computing or else explicitly as  a 
separate operation. When sorting is performed explicitly 
on tapes one might  again  reduce the required tape travel 
by an efficient combination of selection and distribution. 
If the address  table giving the new locations as a function 
of the old locations is used in the  order by the old ad- 
dresses, the program would perform sorting by pure 
distribution. If, conversely, the  data  are moved chrono- 
logically in order by their new locations,  sorting would 
be performed by pure selection. For a more efficient 
sorting operation requiring less tape travel one might 
reorder  the lines of the address  table so that when the 
data  are  later moved in the chronological order indicated 
by the table the burden of traveling will be shared by 
both tapes. 

Present  tape-storage systems usually permit informa- 
tion to be read in  any order desired but  require  data  to 
be written on tapes into consecutive spaces. Such  tape 
systems permit  only pure selection procedures to be 
implemented and  thus preclude the application of poten- 
tially more efficient methods for rearranging and sorting. 

4. The program as a transceiver 

The following example will illustrate how a program may 
be considered  a receiver and  transmitter of data. Assume 
that a  vector bj  is to be multiplied by the rows of a  matrix 
nij to yield the  vector ci according to the formula 

n 

j=1 
ci= 2 U, jb j .  

The  input vector bj is given on a  tape. The  matrix aij is 
given on  another tape  in order by columns, that is, in the 
order an,  ~ 2 1 ,  . . . , GI, ~ 1 2 ,  ~ 2 2 ,  . . . , an23 . . . , a l n ,  a2n,  

. . . , ann. The  output vector c, is to be  written on a  third 
tape.  Individual  elements, rather  than blocks of numbers, 
are written on  and read from  the tapes. 

An  area of n cells, capable of holding one vector, is 
assumed to be available as work space  in memory. Fig- 
ures 5 and 7 represent  alternative  programs  with different 
index assignments. Address-computing,  setting, and ter- 
minating  procedures are not  shown on the flow charts; 
procedures for these  purposes are implied by the index 
assignments. In either  program the productive  computing, 
represented by the  formation of a product aijbj and  the 

addition of this product  to a progressive sum X, is per- 
formed in the box in the center of the rightmost level. 

In  the first program, shown  in Figure 5 ,  the summation 
index j is assigned to  the rightmost level of the basic 
form.  The elements ci of the  output vector are produced 
one  at a  time, that is, the progressive sum representing 
one ci is completed and written on  the  output  tape before 
computing the next ci is commenced. The complete input 
vector bj is read into  the  memory  area of n cells on  the 
open level at  the  start  of  the  program.  The elements aij 

of  the  matrix  are read one  at a  time on  the j-level. Suc- 
cessive elements aij with  consecutive values of j for a 
given i are located n element spaces apart  on  the ail tape. 
For the transition from  each i to  the next, the  matrix  tape 
is backspaced on  the i-level by a  distance in the  order of 
a matrix space on  tape.  The  tape travel for reading the 
elements of the  matrix is thus in the  order of n passes 
over the  matrix tape. 

In the  second program, shown  in Figure 7, the  summa- 
tion  index j is assigned to  the second level from the  right. 
With this  index  assignment, the memory area of n cells 
is used to hold the  output vector ci. Since the index i is 
assigned to  the rightmost level, the computations  proceed 
“by i’s within j ” ;  that is, n progressive sums 2 for  the n 
output elements ci are built up in parallel  in the memory 
area.  During  the first n executions of the i-level, for j =  1 ,  
the first contribution to  each of the n progressive sums is 
made;  during  the second n executions of the i-level, for 
j=2, the second  contributions are  made,  and so on. All 
elements ci of the  output vector are written on  the  output 
tape  at  the end of the  program  on  the  open level. The 
elements bj of the  input vector are  read  one  at a  time on 
the j-level. The elements aij of the  matrix  are read one 
by one  on  the i-level. Successive elements aij with  con- 
secutive values of i for a given j are located in adjacent 
element  spaces on  the aij tape. The  tape travel for reading 
the elements of the  matrix aij required with  this  index 
assignment is therefore a single pass over the matrix  tape. 

The two programs  for  the  same problem use the same 
memory  and storage  capacities. One vector  space is used 
in  memory. Two vector  spaces and  one  matrix space are 
used on  three tapes. The  tape travel  required for reading 
the matrix,  which may be  considered  a measure of pro- 
gram execution  time,  however, amounts  to approximately 
n passes over  the  matrix  tape in the first program but  only 
to a single pass with the second program.  This substantial 
difference in the efficiency of the alternative  programs 
for  the  same purpose may  be interpreted  in  terms of 
selection and distribution  employed for  the implicit  re- 
arranging  performed by the  program.  The index assign- 
ment  in the first case  represents a selection  operation 
which  favors the  output  in  the sense that  the elements ci 
of the  output vector are  produced  one by one  in  the 
order in which they are to be  written on  the  output  tape. 
The second  index  assignment  represents  a  distribution 
operation in the sense that  the  output elements ci are 
built up in  parallel by distributing the contributions  over 
the n progressive sums in  memory. This second  index 115 
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assignment,  representing  a  distribution operation, favors 
the  input. The volume of input  data, comprising  a matrix, 
is substantially  larger than  the volume of  output  data, 
and it  is seen that  the index  assignment which favors the 
larger  volume of  input yields a  considerably more effi- 
cient program than  the index  assignment which favors the 
smaller  volume of output. 

In either program, progressive sums are completed  and 
become  available to be written as output  on a tape  at  the 
time program  execution returns  from the level associated 
with the summation index to the level on its left. The 
accumulation  operations are in  either case performed  on 
the rightmost level. When, as in Figure 5 ,  the  summation 
index is assigned to this level, one completed  sum be- 
comes available as output during  each  execution of the 
center level. When, as in Figure 7, the summation  index 
is assigned to  the  center level, which is in this case 
“backed up” by the rightmost level with a  relative fre- 
quency of n, the  entire  output consisting of n completed 
sums becomes available  simultaneously on  the  open level. 
Visualizing a basic form as  a  “black  box”  producing out- 
put data,  one may  consider output  to be transmitted from 
a  “slot” on a  certain level of the basic form. Similarly, 
one  may visualize “slots” on  the levels through which the 
basic form receives input  data. 

The basic form in Figure 5 is pictured  as  a  receiver 
and transmitter of information in Figure 6. The elements 
hj of the  input vector, which are  read  on  the  open level 
in a  linear fashion,  are received by the basic form  from a 
linear input store whose capacity is n words.  Similarly, 
the ci emerging on  the center level in  a  linear  fashion 
may be  considered to be  transmitted from this level of 
the basic form  into a  linear output store. The matrix 
elements aij are  read  on  the rightmost level of the basic 
form.  After n elements  have been read, the  matrix tape 
is backspaced, and  another n elements are  read.  This 
repetitive cycle of reading  and  backspacing  may  be  con- 
sidered to simulate the function of a cyclic, or “recircu- 
lating,” store. If the  matrix were given, for instance, on a 
closed-loop tape, which represents  a cyclic store,  the 
cycles of reading and backspacing  could be replaced by 
reading  repeatedly around the  loop  in the  forward direc- 
tion. The  matrix ai j  may thus be considered to be received 
by the basic form  from a cyclic input store whose capacity 
is nr words. The memory  area of n cells is pictured  as  a 
cyclic work  store inside the basic form. This  store  holds 
the  input vector bj whose elements are scanned  repeatedly 
in the cyclic order h l ,  h-, . . . , h,, b l ,  hZ, . . . , h,, . . . , bl, 
b,, . . . , brL. 

The basic form with the alternative index assignment 
represented by Figure 7 is pictured as a receiver and 
transmitter of information in Figure 8. A  linear input 
store  and a linear output  store  for  the vectors b, and c,  
are again  shown for  the corresponding levels of the basic 
form.  The cyclic work  store inside the basic form is in 
this case used for  the n progressive sums 2 which are 
referred to cyclically in  the  distribution  operation. The 
matrix aij  is read in a single pass  over the matrix  tape 

and  therefore shown  as being received from a  linear input 
store with a  capacity of n2 words. 

A comparison of Figures 6 and 8 shows equivalent 
situations with respect to the input  and  output stores for 
the vectors as well as the cyclic work  store. The stores 
required for these  purposes are in  either  case  two  linear 
stores and  one cyclic store with a  capacity of n words 
each. The  input store  holding the matrix aij, however, is 
in the first case  a cyclic store with  a  capacity of n2 words 
and a rate of flow of n3 words  per  execution of the  pro- 
gram.  In  the second case, the matrix is received from a 
linear  store  with  again  a  capacity of I t 2  words but  the 
lower rate of flow of only nz words  per  execution of the 
program. 

As  pointed out earlier, the second  index assignment 
would yield a more efficient, that is, faster, program  for 
an existing machine. From  the point of view of machine 
organization, the alternative  index assignments provide  a 
choice between two pieces of equipment for  the  same 
purpose. If a  linear store with  a  certain  capacity  and 
rate of flow is assumed to be less expensive than a cyclic 
store with the  same capacity and n times this rate of flow, 
the second  index  assignment would also suggest the more 
efficient machine organization. 

5. Stores 

Three types of stores  may be distinguished according to 
the technical  characteristics of the equipment:  random- 
access, cyclic, and linear  stores. In random-access  stores, 
such as  magnetic  cores, the time  required for  an access 
is completely independent of the  particular location re- 
ferred to. In cyclic stores, such as drums or disks, each 
location becomes available periodically. In linear  stores, 
such as  tapes or decks of cards,  the  information is ar- 
ranged  along an essentially one-dimensional carrier me- 
dium. 

Linear  stores are usually operated  on a  start-stop basis 
in order  to synchronize  their effective rate  of flow with 
the speed of data processing. In a  typical  application of 
tapes, for instance, one would read  a block of  data, let 
the  tape  come  to rest, process these data,  and,  at  the time 
processing of the  data is completed, start  the  tape again 
for  an access to  the next block. In this manner  tape oper- 
ation is synchronized with processing by means of the 
program which provides the tape-handling  instructions 
at time  intervals whose lengths reflect the  rate of data 
processing. With cyclic stores, on  the  other hand, the 
cycle of the store is usually not  synchronized with proc- 
essing. Instead, a cyclic store is usually employed  asyn- 
chronously and considered  a  pseudo-random-access  store. 
The pseudo-random-access  time of a cyclic store used in 
this manner might be defined generously as the period 
of the  store which  constitutes an  upper bound for  the 
access time to any  location. More commonly, however, 
it is defined on a random basis as half the period of the 
cyclic store or as an even shorter period  taking into ac- 
count some limited “optimization” of address assign- 
ments. In certain  applications,  address assignments for 117 
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pseudo-random-access  stores are not  “optimized” with 
respect to  the access times  required for  data  in  the cyclic 
store  but  rather  to  reduce  the time  required for gener- 
ating the addresses to be  inserted into  the instructions of 
the  program as in the case of “randomized”  address 
assignments. 

In  many problems, data  are handled in units  referred 
to as  “packets of words,” and  the packets,  in turn,  are 
commonly  combined into “blocks” for storage. A packet 
may correspond to  an individual business record in  a 
commercial  application or  to all the  data pertaining to a 
certain  point of a space-mesh in  a scientific or technical 
problem. A block,  comprising  a number of packets,  might 
then  correspond to a group of business records or a set 
of points  along a row of a mesh. 

In typical  applications of data-processing systems one 
may consider the random-access memory as  a buffer be- 
tween the processing unit of the system and storage 
devices, such as tapes, drums?  and disks. As long  as the 
problem  requires  only  rearranging  in  the broad sense, 
including the  frequently present implicit rearranging dis- 
cussed in Section 3, random-access  memory is used to 
simulate cyclic and linear buffers with respect to packets 
within blocks. Random accesses are in this case required 
only within the single packet or  the small set of adjacent 
packets currently being processed. Only  when sorting, 
including implicit sorting, is required for packets, the 
random-access property of memory is exploited also with 
respect to packets within blocks, i.e., over  substantial 
areas in memory rather  than  over trivially small  portions 
of memory  corresponding to individual  packets. 

For a  concrete  example of the use of memory as  a 
cyclic buffer one may  refer  to  the cyclic work store dis- 
cussed in Section 4. The efficiency of the alternative 
schemes for the same purpose may  be  interpreted in 
terms of the exploitation of random-access memory  for 
the  simulation of a cyclic work store. If one considers 
this  problem of multiplying a  vector by a matrix a tape- 
limited operation,  the  total machine  time for  the problem 
will be approximately proportional  to  the travel  required 
of the  matrix tape. In this sense, the first program will be 
executed during n units of time  whereas the second pro- 
gram  for  the same problem will be executed within only 
one unit of time. The simulated cyclic buffer, in the first 
case for  the bi and  in  the second  case for  the &, will in 
either  case  complete n cycles of n words  each.  Since the 
total duration of program execution is n times larger in 
the first case, the  rate of flow of the cyclic work store is 
n times  higher  in the second case. With  the second, more 
efficient scheme, the random-access memory is thus  more 
efficiently exploited in the sense that  it is programmed 
to simulate  a cyclic store which is n times as fast as the 
buffer simulated  with the first approach. 

This example  also  indicates that in  simulating  a cyclic 
or linear store  in random-access memory,  one does not 
utilize the random-access  quality of the memory  since the 
spatial  distribution of the accesses to  the simulated store 
is perfectly  regular and not at all random.  For this pur- 
pose one utilizes only the  fact  that memory will retain 

a  piece of information  for  an indefinite period of time 
and  yet  make  it available  instantaneously  when  required. 
It is this  quality of  memory,  rather  than its random-access 
property, which  permits the simulated buffer  store  to be 
synchronized  by the  program with the  rate of processing. 

The preceding  observations may be  summarized  as 
follows. In  many data-processing systems an expensive 
random-access memory,  such as  a  magnetic-core  store, is 
provided. In  many typical  applications,  this random- 
access memory is “converted” by programming  into 
linear and cyclic stores which are synchronized  with the 
processing unit of the system. This  simulation of work 
stores  does not utilize the random-access  quality of the 
memory. The programmed  implementation of this  simu- 
lation is frequently  facilitated by incorporating additional 
equipment for  automatic address-modification  in the sys- 
tem.  When  a  magnetic drum is used for  memory,  one 
often observes the following twofold  transition between 
types of stores as far as the utilization of the  drum is 
concerned. The  drum is a  fast cyclic store  operated asyn- 
chronously  with  respect to  the  rate of processing and is 
considered  a  pseudo-random-access  store. This pseudo- 
random-access  store,  in turn, provides  the basis for  pro- 
grammed  implementation of simulated cyclic stores 
which are synchronized with the processing unit of the 
system. 

For  an example of how  expendable  capacities affect 
the speed of rearranging, consider the case of rearranging 
a two-dimensional array  on tapes. The elements of the 
array  are assumed to be given in blocks on  an  input  tape 
where each block contains  a row of the  array;  the ele- 
ments are  to be  written on  an  output  tape by blocks cor- 
responding to  the columns of the  array.  The  rearranging 
process is assumed to be performed by a  conventional 
selection method so that  the  tape travel on  the  input  tape 
may be taken as the  primary  measure of the  required 
machine  time. For different programs using different 
amounts of random-access memory  for buffer areas as 
well as  additional true linear  stores, that is, work tapes, 
one then finds the following approximate relations. The 
machine time  required for  the  rearranging process is a 
linear function of 1/M, where M is the  total  memory 
capacity  available for  the simulation of linear buffer 
stores. The  required  machine time is also a linear func- 
tion of 1/T+ 1, where T is the  number of available true 
linear  stores of virtually  unlimited  capacity, that is, the 
number of tapes  available for work  tapes  in  addition to 
the  input  tape  and  the  output tape. 

6. Arithmetic units 

Most  data-processing systems at present have only one 
arithmetic unit but several  stores. There  appear  to be  two 
main  reasons  accounting for this fact.  Many problems, 
especially computational ones, are believed to be of a 
sequential nature in the sense that usually one  quantity 
must be computed before one  can proceed to  computing 
the next quantity.  From a  technological and economical 
point of view, it is widely believed that  fast  arithmetic 
units are  more readily obtainable  than  fast stores, and 119 
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Figure 9 Mesh  of a network  problem covered row  by  row from left to right, and the two tapes  holding the 
data  for  two  adjacent  rows. 

that  therefore one of the most  serious problems in  ma- be computed as intermediate  results, may be discarded 
chine organization is to provide  enough adequate stores as  soon as they have served their  purpose of advancing 
to keep even a single arithmetic unit busy. However, it the  computations toward  the top row. Two alternative 
can be seen from  the following example of alternative programs will be  considered for this problem. The first 
programs for  a typical  network  problem that these two program causes the  computations to proceed along the 
motivations for having  only one  arithmetic unit  in a sys- horizontal rows of the mesh, the  second  program  trav- 
tem may not be valid for large and  important classes of erses the mesh by segments of diagonals. 
data-processing  applications. Figure 9 illustrates  the first program. The values along 

Assume that  the values of a function + i , j  are  to be a row are given on a tape in blocks of n numbers each. 
computed for  the nodes of a two-dimensional mesh ac- After having read such  a block into  a memory  area of n 
cording to  the  formula cells, the corresponding n points  in the adjacent row 

above  are computed. They replace the “old” values in 
the memory area  from which they are then  written on 

With the i- and j-directions being horizontal and vertical,  the other tape. In this manner  the program  proceeds 
respectively, the  formula requires for  the computations  along a row, block by block. At  the  end of each row  both 
at  a point (i, j)  the  data at  the  neighboring  point (i- 1, j) tapes are rewound. The previously “old” tape  then be- 
to the left and  at  the neighbor (i, j -  l )  below. The values comes  the “new” tape to be read,  and  the  other  tape is 
of + are given along  the  bottom  row j = O  and  the left-  available for writing the new current row. The  tape travel 
most column i = O .  The purpose of the computations is for  reading  and writing required by this program would 
to  produce  the values of + along the  top  row  j=jlnex.  The  amount  to two tape passes per  row. 

4. .+(&I, i, + i , j - l ) .  1 7 1  

120 values of + at internal  points of the mesh, which are  to  The alternative program is pictured by Figure 10. In 
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Figure 10 Mesh of a network  problem  covered  by  horizontal  layers of parallelograms,  and  the  two  tapes 
holding  the  data  for  the  bottom  rows of two  adjacent  layers. 

this case  the mesh is covered by diagonals within seg- 
ments of the plane in the shape of parallelograms.  As- 
sume the  data along the  bottom of such  a  segment  read 
as  a block from a  tape  into  a  memory  area of n / 2  cells. 
Also assume the  data along the leftmost diagonal of the 
segment given  in another memory  area of n / 2  cells. The 
computations  can  then proceed along the first internal 
diagonal of the segment from  the bottom to the  top since 
the  lefthand  and lower  neighbors of all these points are 
available. The new diagonal will replace the old one  to 
its left  in  the  memory  area of n / 2  cells. The value on 
top of the  diagonal replaces its counterpart at the bottom 
of the diagonal  in  a cell of the other memory  area which 
is associated with the tapes. The program  then  traverses 
the next diagonal to the  right. In this manner the entire 
segment is covered. The top  row of the completed seg- 
ment is then written on the current  output tape and  the 
bottom row of the adjacent segment to  the right is read 
into its  place  in memory.  After  an  entire layer of seg- 
ments has been covered, the tapes are rewound and their 
functions as input  and  output tapes are interchanged in 

preparation  for  the next layer of segments  above. The 
tape travel required for reading  and writing with this 
program amounts  to approximately 4 / n  tape passes per 
row of the mesh. 

Both programs require the same number of tapes and 
the same memory  space. In tape-limited operation  the 
second  program would require less machine  time by a 
factor in the  order of 2 / n ,  where n is the usually large 
number of memory cells available for  the problem. This 
substantial difference in the efficiency of the alternative 
programs,  which is a function of the  expendable  memory 
space,  may  be  interpreted in terms of the exploitation of 
memory for simulated buffers (see Section 5).  In  the first 
case  the input-output  area in memory may be considered 
a buffer between the  arithmetic section and  the tapes 
with a  certain rate of flow. In  the second case, the half 
of this memory  space  which  holds  the successive diago- 
nals  may be considered  a buffer store whose rate of flow 
is n / 2  times greater than in the first case. 

The second program suggests the following  observa- 
tions pertaining to machine  organization. At  the  start of 121 
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Figure 11 Five  arithmetic  units  working concur- 
rently  along  five  adjacent  rows  of a 
mesh  with a horizontal  delay of one 
point  between  adjacent  arithmetic units. 

the computations for a  diagonal,  the lefthand  and lower 
neighbors of all the points to be computed  are available. 
If as many as n / 2  separate  arithmetic units were avail- 
able  in the system, one could therefore  compute all 
points of a  diagonal  concurrently. This is illustrated for 
five adjacent rows of the mesh by Figure 1 1. The  arithme- 
tic units would proceed  in  parallel  along  horizontal  rows 
as indicated by arrows. At a given time, the different 
arithmetic  units would simultaneously compute  the dif- 
ferent points of a  diagonal marked with  circles. In transi- 
tion to  the next diagonal each  arithmetic unit would 
make its  result  available to  the  arithmetic unit  above 
where it will serve as the lower  neighbor, and it would 
retain this result  temporarily  in order  to use it for  the 
lefthand neighbor. In this manner  an  entire layer of rows 
could  be  covered  across the whole width of the mesh, 
requiring memory accesses only for  the linear arrays of 
data along the bottom and  top rows of the layer but not 
for  the two-dimensional array of internal  points in  the 
layer. 

This example  illustrates the following points. The 
problem, although it suggests that  the  array of +i , j  be 
covered systematically, is not sequential in  nature since 
it permits  computing to be performed concurrently for 
any number of adjacent rows. Furthermore, a  large num- 
ber of separate arithmetic  units  operating  concurrently 
may  reduce rather  than increase the  number of memory 
accesses required  per  arithmetic operation. This implies 
that  each  arithmetic unit is supplemented  with  a  very 
small  random-access store, possibly in the  form of indi- 
vidual registers, whose capacity is in the  order of a  packet 
of data in the sense of Section 5. The main memory, 
which  in  present systems is in the  order of thousands of 
words and would be used only for linear and cyclic buf- 
fers with  respect to packets,  could  be designed for a 
substantially  lower number of accesses per arithmetic 
operation. 

7. Conclusion 

The preceding  examples  indicate how systems organiza- 
tion may  be  studied  in  terms of programs.  A data- 
processing system would be viewed as a  collection of 
processing units and stores of different types and  charac- 
teristics. The  program would represent the problem in 
terms of such system components and  thus provide  a 
link between the problem  and the machine in terms of 
which both  the applications and  the system may be 
studied. 

With a sufficiently powerful representation of pro- 
grams one might be able to  make  the problem itself “say” 
in  these terms what kind of a system it wants to be solved 
on. This might permit  the process of systems design to 
be  eventually systematized and ultimately mechanized. 

This  approach might also lead to  more efficient 
methods of programming for existing systems which 
would lend themselves better to systematization and 
automation.  The process of programming for existing 
machines  might  be subdivided into two distinct phases. 
The first would be identical  with the process of systems 
design in the sense indicated above;  it would produce 
the specifications for a  hypothetical system which is 
optimum with  respect to  the  particular problem under 
consideration. The second  distinct  phase of such a pro- 
gramming process would then consist of realizing the 
hypothetical optimum system on  an existing data- 
processing system with the  primary objective of preserv- 
ing the  optimum qualities of  the hypothetical system as 
far as possible. 

Future research  might  be  conducted  primarily  in the 
following areas:  One would wish to  know how  a  problem 
can be  subdivided into  separate  parts which  can be 
operated  upon independently and concurrently. For a 
description of a  problem  in terms of such  parts  one 
would wish to  know in  which  chronological order the 
parts  should be processed so as to minimize systems 
requirements. These requirements might be minimized 
with respect to  the volume of data  to be  retained during 
the course of problem solution,  with  respect to  the 
amount of rearranging and sorting  required by the  prob- 
lem  solution, and with  respect to  the cost of all process- 
ing units and stores of the system other  than  the  one 
which limits the  performance of the over-all system. 
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