E. G. Kogbetliantz

Computation of Arctan N for—-o<N<+®
Using an Electronic Computer

Abstract: Rational (R) and polynomial (P) approximations to Arctan N are studied with the aim of com-

puting this function, to any prescribed accuracy and without unduly increasing the number PC of stored

constants, in a minimum number M of multiplications (and divisions for R approximations). The number

Dg of first correct significant digits in principle is not bounded. The results corresponding to the values 8,

10, 18 and 20 of this number are as follows:

Approximation Point (Computation) Single Precision Double Precision
Dg M PC Dg M PC
4* 21 6* 19
Floating 8 18
S 9 7 17
Rational (R)
5 14 6* 30
Fixed 10 20
6* 9 7 18
5 10 17 8 21
Floating 8
6 8 18 9 14
Polynomial (P)
6 11 9 22
Fixed 10 20
7 9 10 15

If M is increased, subroutines with smaller PC are easily deduced from our general results. Thus, for

instance, rational approximations with Dg — 6 can be obtained in three multiplications only, if PC =19

{combination m* — 3, q — 10); but the same accuracy Dg = 6 characterizes also the cases M — 4
with PC =11 and M — 5 with PC —=7 (combinations m* —=4, q =6 and m =5, q — 4).

If polynomial approximations are used, Dg — 6 is obtained for M = 5, PC = 7, but also for M — 4 and
PC — 11. No subroutines with a stored table of values of Arctan x are considered.

Introduction

The aim of this paper is to formulate the most economical
procedures for the approximate evaluation of Arctan N
adapted to binary and/or decimal computing machines
and sufficiently flexible to yield as many correct significant
digits as desired, and this for any value of Nin (— », 4+ «).

Two mathematical tools are used here to form our ra-
tional and polynomial approximations to the function

*C, F. Gauss: Werke, 1876. v. TII. See also: H. S. Wall, Continued Fractions,
Van Nostrand, 1948, p. 343; form. (90.3).

Arctan N. Successive convergents (approximants) K,.(f) of
the classical continued fraction found in 1812 by Gauss*
1

nt 2t

Arctan t = @
yield a sequence of rational approximations the accuracy
of which increases very rapidly with m. Our approximating
polynomials are partial sums S,.(x) of first (m-+1) terms
of the series.
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o=} 1y n+
Arctan (x-tan 20) = 2. X ( 1)—t—aq2—1—0~Tgn+1(X)-

=0 2n+1
(xt=1 1D

This expansion of the Arctangent into a Fourier series
of Tchebychev polynomials 7,(x) converges absolutely and
uniformly in |x|£1 for 0<6<x/4, so that Arctan N,
N=x tan 26, is represented by (II) in as large an interval
0<N< tan 28 as we please, but the convergence becomes
very slow when 6<w/4 is near w/4. Expression (IT) will
be used for small values of . For x=1, the series (il)
reduces to the classical Gregory series

[es] —_ l)n
0 - ( . 21L+10
nz“—;() 2n+] tan ’

while 8=m/4 yields a curious generalization of Leibnitz’
series for 7/4:

at = 5 %)T Tanir(x). (0<xS1)

Both (1) and (IT) will be used in a reduced range 0 SN =
tan (w/2q), the parameter g having positive and integral
values. The number Dg of first correct significant digits of
an approximation K, or S, is an increasing function of m
and q. So also is the number PC of precomputed and stored
constants. The number PC increases quite rapidly with g
and this precludes the use of too large values of g.

The problem studied in this paper can be formulated as
follows: For a given value of Dg (that is for a prescribed
accuracy), find the optimum combination (m,q) charac-
terized by the least possible values of M and PC, M de-
noting the number of multiplications and/or divisions.

In the sequel we consider in detail the five most inter-
esting cases: Dg = 6, 8, 10, 18 and 20. These cases cor-
respond to fixed and floating-point computations with
single or double precision.

Rational approximations

o 1. Proof of the expansion (II)
Let us expand the function of ¢
F(f) = Arctan [2a- Cos t/(1 —a?)]

in the interval 0 <= into its Fourier Cosine series
F(1) = 34a) + 3 A(a)- Cos nt, (0<a<l)
n=1
and compute the coefficients 4,(a) by
m
wAfa) = 2§ F@) - Cos nt - dt.
0

Since
(142a? Cos 2t+a ) F'(£) = —2a(l —a?»)-Sin ¢,
an integration by parts gives, for n=1:

w1 An(@) = 2a(1 — @) jnr@) —jn1(@)],
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where

Jnl@y= g(l +2a® Cos 2t+a*)1. Cos nt dt. )
Substituting into (1) the expansion

(1—a*)(142a Cos 2t+a) ' =142 él(—l)m.aﬂm Cos 2mt,

we find first of all that ju., (a)=0, n20, so that 4,,=0.
On the other hand

(1—a?)joula)=(—1)"a>(1 +a>)* 7gr 2 Cos? 2nt-dt=(—1)"
0 wa/(14-a%)

and therefore A1 =2(—1)"a**"/(2n+1), so that
F()=3}A@)+2 3 (= )"a+1. Cos [Qn+DA/Qn+1).  (2)
n=0

The substitution r=w/2 proves that Aya)=0, since
F(r/2)=0. For a = tan § and Cos t=x, (2) becomes (II).

We add that (II) can also be transformed into a
Tchebychev expansion of the function f(x)=Log [(1+2ax
+a?)/(1 —2ax+a?)], namely into

fx)=4 §0a2"+1-T2n+1(x)/(2n+1) (al<1, x| =D @I

To deduce (IIT) replace a by ia in (2) and use the relation
2i Arctan (iz)=Log [(1 —2)/(1+2)].

The series (II) converges in —1 =x =<1 absolutely and
uniformly, provided |a} < 1. It is a source of very accurate
polynomial approximations to the natural logarithm Log
N, the argument x being defined by x=a—a(N+1)?
with 2a=a-+a™!, since the constant a can be chosen very
small. Series (IIT) was obtained by Mr. Germizoglou
(IBM-France) by a direct integration of the generating
function of Tchebychev polynomials.

o 2. Reduction to a smaller range

Let us denote the integral part of a number z by [z].
Given a known integer g, we subdivide the infinite range
(0, ©) of N into v =[g/2]41 intervals Ii{a;_1, ar]; 1 Sk =<v;
where ay=0, a,=« and a,=tan[(k—%)w/q] for 12k =
v —1. The intervals I; are half-open intervals, so that N
belongs to I, (denoted by N C 1), if a;_; S N<a;.

The range (0, 7/2) of # = Arctan N is also subdivided
by points 8, =(k—%)-w/q into v intervals i, | £k <v, and
# = Arctan N belongs to i, if 8,_, £6<6:. Here 6§,=0 and
6y=7/2. 1f N C I, then 8 C i, and vice versa. The length
of i, is 8,=n/2q. If q is even then the last interval i,=
(64_1;7/2) is equal to the first, but the v —2 interior inter-
vals iy, 2=k <vy-—1, are of the length =/q. If q is odd,
then the length of i, is also equal to 7/q and there is only
one, namely the first, interval of length x/2q. In general,
there are [(g—1)/2] intervals of length 7/gq and in them
6 = Arctan N is computed with the aid of the addition
theorem:




Arctan N=kn/q+Arctan z; (NCL) ?3)
where
2= ze(N,q) = o, — B(N+a) ]

with ar =Cotan(kw/q) and B,=1+au’

For an even g and NC I, we will use in this last interval
(of length 7/2q in 0) the relation

Arctan N==/2—Arctan (N7). (NCI,, g=even) ©)

In the first interval, NC1,, Arctan N is computed directly
as such.

Given N, the first thing to do is to locate NV in some
I, 1 £k <. Therefore, [g/2] constants a, = tanf, = tan {(k —
Dr/q] are to be stored. In many cases it is possible to
reduce their number, expressing some of them in terms of
the others.

The computation of z; using (4) involves, for each one
of [(g—1)/2] intervals where (4) is to be used, two con-
stants, namely Cotan (k7/q) and Cosec? (kw/q). As will be
seen below, it is possible to save one multiplication in ap-
proximating Arctan z; with the aid of K,.(z;) and com-
puting this convergent of even order 2m as a function
K*,.(t), not of z;, but of t,=X\,"1z, \,, this being a
suitable constant. Then (4) will take the form

=NV ze=a*,—* - (N+vi)? (NC I) 4*)

which involves three constants: v, = Cotan (kn/q), a*,=
A"t Cotan (km/q) and B*.=M\,.'- Cosec? (k/q), instead
of two. Therefore, in saving one multiplication the number
of stored constants has been increased by [(g—1)/2].

In the last step (3) again [(g—1)/2] constants kw/q are
needed. Finally, there are also m constants involved in the
computation of Arctan z, with the aid of K,.(zx), K*.(%)
or S..(zx). If ¢ is even, (5) adds, using (15) or (16), m con-
stants, but as will be shown below, the use of (5) can be
avoided.

Table 1a Values of p,,/9

Thus, if K,, or S, are used, the total number of stored
constants is at most equal to

PC=3[(g—1)/2]+[g/2]+m[3+(—1)1/2
while, if K*,,, m = even, is applied, PC* = PC+[(g—1)/2].

These two numbers should be considered in fact as upper
bounds for PC. Some of the constants used in the subroutine
are linear combinations of other constants computable by
the machine in one or two additions only. Such constants
need not be stored.

e 3. Relative error of rational approximations

The numerator and denominator of the m—th convergent
K,.(1) of (I) are denoted in the sequel by t-P, and Qn.
They are odd and even polynomials of degrees 2[(rn—1)/2]
-1 and 2[m/2] respectively:

2sSm—1 255 m
Pm= ; psm'tzs; Qm= E_ qsm'tas (6)
Herep“m =qom=(2m— 1) " N p13=4, q13=9;p14=55, q14=90,
g:+=9 and, for 5=<m <10, see Tables la and 1b below.

We will need in the sequel the following expressions:

Gmam =[Cm—1)!}; Gm—1,2m =MQ2M41) -G 2m;
gmomi1 =[Cm+DUE pmampi=2m!)%
P, 2msy2=Pmi1,2mt3—Gm,2me1 =[Cm+2) NP2 —[2m+ D

The absolute value R..(r) of the relative errvor in the first
interval I;, namely 0 < R,.(t) =(—1)™[1 — K.(t)/Arctan 1], is
an even and increasing function of ¢. It is sufficient to con-
sider R, (¢t) for t>0. If the range of |¢| is (0, T),

R.(N=RAT). O<[I=T) )]

Equation (7) is justified by proving that R’,(#)>0 in
0<t=<T. Denoting the absolute value of the absolute
error by E,.() so that

E,.(ty=(—1)"[Arctan t—K,(9)],

m s=1 s=2 s=3 s=4

5 245/3 64/9

6 1,190 231

7 19,250 5,943 256

8 345 X 1,001 147,455 15,159

9 6,825 X 1,001 3,735 X 1,001 638,055 16,384

10 29,580 X 1,001 19,782 X 5,005 962,676 X 25 61,567 X 25
Table 1b Values of q;,,/9

m s=1 s=2 s=3 s=4 s=5

5 350/3 25

6 1,575 525 25

7 24,255 11,025 1,225

8 420 X 1,001 242,550 44,100 1,225

9 8,100 X 1,001 5,670 X 1,001 161,700 X 9 99,225

10 172,175 X 1,001 5,670 X 1,001 X 25 47,250 X 1,001 99,225 X 55 99,225 45
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one easily finds that
E () =(mpem(1+57"0. )20

and

E7u(t)=2(m12Gu(t)-(1+ )72 Qn*(10)- £
where

Gu(t)=[m(1+12) —£10m(1) — {1 +1)-Q n(?).
Now

(141 (Arctan N):R .()=F1t)=(1+#) Arctan t-E',(t)—
E,.(f) and, thanks to E,.(0)=0 and to (1+7) Arctan =1,

Ft)=tE . (t)—E.(t)= §uE”m(u)-du.

Therefore, F(r) and R’,.(¢) are positive in (0, T), if Gn(?) is,
since then E”,(u) is positive. But the expression of G.(f)
is as follows:

285 m
GM(’)=mq0m+ §1 [(m—zs)(qsm+qs—1,m)+q8—1,Tn]t28_rm(t)s

where r.,(1)=0 if m is odd, but

r2m(t) =qm,?m‘t2m+2-

It is seen, therefore, that Giny1(f)>0 for all values of ¢,
but for large r G..(f) can become negative. Omitting in

Gan(?) all positive terms except the term for which s=m,
one has the inequality

G2m(t) > (qm—1,2m —qm,Zm't2)'t2m-

This result proves that G..(f) remains positive at least
fOr 2> @m_1.2m/Gm, 2m, that is for 22<m(2m-+1) and a fortiori
for t=<+/21 if m= 3. Since only the values g=2 and T=tan
(m/2q) are considered it can be concluded that for g=2
and m=3 the lemma is proved and R,(T) is the upper
bound R.,., of R.(f) in 0=r=tan (7/29):

R,.,=R.(T). (T=tan (v/29))

For g<6 (and 3=<m=10) R.(T) was computed directly.
For g=7 an upper bound B,,, was used. It is obtained as
follows: Since Arctan T =/2q, we have

Rul(T) =207 E(T) =2q-72- \ E'uliddi
where
E' () < (m)2u™ Q= H0) = (m )2 [[2m — 1)U
Thus
Ruy=Ru(T)=2q-C,(T]2)* 1
the constant C,, being very near to one:
0.9312 < Cr =221 (m D { 2m— D) NQ2m+1)117} <0.9775.
(3=m=10)
Replacing C,, by one, B, is defined as follows:
R, < Bg=2q[} tan (z/2¢)P™ 1.

If g=7 this upper bound is sufficiently accurate for our
purpose. How good it is for large g can be illustrated on
the example of B; ;5. For m=7, ¢=18 it is found that
B7‘13= 1.48X10_19, that iS, Log B7.1s= —18.83.
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A direct computation of Ry, ;s based on the formulae
Kiltan(e/2)] = N«(@)/Di(e)  (a=m/18)

Ni{e)=45,619 Sin «+4-29,155 Sin 245,155 Sin 3«
+181.5 Sin 4«

D+(a)=85,750+116,620 Cos a+34,300 Cos 2«
+3,500 Cos 3170 Cos 4o

and the values of Sine and Cosine of angles equal to 10°,
20°, 30°, 40° taken with first twenty correct digits after the
dot, yields R7,13=1.23 X107, or Log R: 15=—18.91.

To insure in the final value of Arctan N first Dg correct
significant digits we compare L,,=|LogioBn, to Dg +
0.3. The combination (m,q) yields Dg correct significant
digits if L,,>Dg-0.3. It is sufficient to know L., with
an accuracy of 0.05. But then the error made in replacing
in the definition of B, tan (w/2q) by its argument 7/2q is
negligible for g=7, m=10 and the expression of L, can
be simplified:

L,,,=|LogioBn,| =(2m-+1)Log(4g/m) —Logw(2q)

that is

L,,~(2 Log ¢q+0.21)-m—0.20.

Thus, for a fixed value of g=7, L,, is a linear function
of m and the same fact is confirmed for ¢ <6 by a direct

computation of R., which gave slightly smaller coeffi-
cients of m than 2 Log ¢+0.21:

g= 2 3 4 5 6
Coefficient of m = 076  1.14 140  1.60  1.89

This result is represented in Fig. 1, where five horizontal
lines mark the critical values 6.3; 8.3; 10.3; 18.3; and
20.3 of L,, Combinations represented by points (m, q)
immediately above or on a horizontal line—(marked by cir-
cles)—insure the corresponding accuracy of first 6, 8, 10,
18 or 20 significant digits respectively.

Thus, many combinations (1, g) have the same accu-
racy (see Table 2).

Table 2 Combinations (m, q) with same Dg
Dg = 6 for (3;10),(4;6),(5;4), (6; 3),(9; 2).
Dg = 8 for (3;20),(4;9),(5;6),(6;5),(7;4),(8; 3).
Dg = 10 for (4;16),(5;9), (6;6), (7; 5), (8; 4), (10; 3).
Dg = 18 for (7;18),(8;12),(9;9), (10; 7).
Dg =20 for (8;15),(9; 12),(10;9).

A direct computation of the relative error rejected the
combinations (4, 5); (6, 4) and (7, 16) since for t=T the
errors are equal to 6 X107, 6.4X107° and 6.2X107%.

To choose between many combinations listed in Table 2
with the same value of Dg, it now is necessary to study the
number M of multiplications and the number PC of con-
stants involved in each of these combinations.

e 4. Study of M and PC

The convergents K,.(f) and K.,.,1(#) of even and odd order
can be computed in the same optimum number m-+2 of
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multiplications (and/or divisions) if they are given the fol-
lowing forms:

MZ1) KonO) =Mt 2Byt & Azl

§=1 It2+Bs,2m| }_1 (8)

with A =pu_1,30/qm,2m =[2m) 1/2m —1)!1—1, and

m —A 2m+1|
m=2) K =10 Ay i1t S o onmtll
( =2) ?"H—l(t) ! {A0’~m+l s=1 |t2+Bs.2m+1 }. (9)

There are n constants in K, (f) and its computation neces-
sitates [#/2]4-2 multiplications. The rational numbers A,,,
B,, are stored; they should be computed to the degree of
accuracy expected of the final result. Thus, for instance,
in a floating-point double-precision computation of Arctan
N, these constants are to be stored with eighteen correct
significant digits.

Other forms, obtained in decomposing the algebraical
fractions P,.(9)/Q.(#) into simple fractions of the variable
z=1? could also be used. They are equivalent to (8) and
(9) since they allow the computation of K,(f) in the same
number [#/2]42 of multiplications and involve the same
number n of constants, All [#/2] roots z;= —wg, 1ZIiS
[n/2], of the equation Q.(z)=0 are simple, real and nega-
tive because Q.(z) has positive coefficients. Depending on
the parity of n, the degree of P,.(z) is equal to or one unit
less than the degree [#/2] of Q.(z). Thus, we obtain

Kon() =1 2 £on(Ptwi 2m)t (10)
s=1
K2m+l(r) =t{7]om+ % nsm'(12+wi,2m+l)_l} (1 1)

with 70m=2m)!/2m+1)!! and £m, Men=Pn(—w:n)/Q'x
(—ws), taking n=2m for &, and n=2m+1 for n.m.
Example: If m=4, then Py(z)=105+455z; Q«(z) =105490z
4922 and woa=52(10/3)%; £,,=5[11 £17-(3/10)!}/18; s =1,
2. Thus

K@) = t{g1:(CF w1+ 2o P+ wad) '} = Mot { 2+ By

A]4

- ﬁB_“} 112
with N\y=55/9, By;=89/11, 4:,=1372/363 and B;=21/11.
In the sequel we use (8) and (9), but not (10) or (11).

The case m=3 is an exception. In this case the forms
(9 and (11) coincide and Ki()=r{4/9+(25/27)-(r*+
5/3)~'}. To compute Ki(r) three multiplications are needed,
but this number can be reduced to two, computing K3(z)
as a function of the variable r=4¢/9:

(r=419)  K*(O=7+a(r+b/n™ (13)

with a=100/243 and b=80/243. One multiplication is
gained replacing ¢ by 7 because for NCI, it is necessary
to compute first the argument z; of K, involved in (4).
Now, in approximating Arctan z; by K*i(z;) it is neces-
sary to compute not z; but #,=4z;/9, using (4*) with A\;=
9/4. In saving a multiplication, the number of constants is
increased using three instead of two in each interval 7,. If
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q is not large this increase of PC by [(g—1)/2] units is not
important. It could be applied when Dg=6 correct digits
only are required, because then m=3 is combined with
g=10and [(g—1)/2]=4.For Dg=8, m=3 one has ¢=20s0
that, using K*; instead of Kj;, the number PC is increased
by 9. If the value m=3 is used for Dg=8, 10, 18, 20 the
computation of Arctan N is achieved in only three mul-
tiplications.

It is important that the same device can be applied to
K;n(1) (but not to Kimi1). Defining 7 by 7=1t/\,, where
An=[Cm)!/2m—1)!!]2—1, we obtain for (8) the following
equivalent form:

m—1 __ A*s’2m|

K*sm()=7[7"+B*; 2t Z

L t7 Sem] 11
s=1 l7'2+B*s,2m] (14)

where

B*, 0n=B; snAn 2 and A*; 3 =A, smAn"% If NCI,, then
T=t,=N-\,"!, but if NCI, and 1Zk=<[(g—1)/2), then
7=t =2\ is computed by (4*).

In the last interval I, the relation
Arctan N=m/2—Arctan (N

is to be used for ¢ even. In such a case the convergents
K.(N™) could be computed as follows:

KZM(N—1)=N.[N2+ba+7Z§I| N*frlL - (15
Kon N =T1+ £ ﬁ]ﬂv (16)
with ¢;=1/3 and

G=1) ay =514 (165*— 16s4-3)~"/(16s2—1)

(5=0) bo=[14(165*+85s—3)1]/2

6=2) Co= (45— 654-2)Y/[(4s — 5)(ds— 3(ds—1)]
21) dy= (25— 17/(165>— 165-+3)-+4s2/(165*— 1),

The forms (15) and (16) necessitate m-+1 and m-+2 mul-
tiplications respectively, so that K,.(N1) is computable in
[7/2]4[3 —(—1)"]/2 multiplications. For instance, [5/2]42
=4 multiplications suffice in

1/3| 12/175]
[N*+0.6 ~ |[N2423/45

KN =[1— I/N.
Expressions (15) or (16) will not be used, forming in-
stead t,=1/N and applying (8) or (9).

e 5. Choice of combinations

It is always possible to reduce M by increasing PC. In
order to choose the most economical combinations from
among those listed in Table 2, we studied the reduced
values of PC (and PC*). The results of this study are con-
densed in Table 3 which gives also the numbers M =[m/2]
+3 and M*=M—1, M* and PC* denoting the values of
M and PC, when K*; or K*,, (m even, m=2p) are applied
instead of K; and K,,. Thus, Table 3 gives the best com-
binations (i, ¢) involving smaller numbers M and PC for
Dg=6, 8, 10, 18 and 20.




Table 3 Best combinations {m, q)
Value of Dg

Case (Accuracy) m q M PC M* PC*
1 six 3 10 — — 3 19
2 six 4 6 — — 4 11
3 six 5 4 5 7 - -
4 eight 4 9 - — 4 17
5 eight 5 6 5 9 — —
6 ten 5 9 5 14 — —
7 ten 8 4 — — 6 11
8 eighteen 8 12 — — 6 18
9 eighteen 8 12 7 15 — —

10 twenty 8 15 — — 6 30
11 twenty 9 12 7 16 — —

It is possible to compute Arctan N with Dg=6, 8, or 10
in three multiplications, using (13) for ¢=10, 20 and 45,
respectively. Likewise Dg =18 or 20 is obtained, using (14)
with m=6 and for g=27 or 45, respectively. Naturally, by
increasing ¢ it becomes necessary to store more and more
constants.

s 6. Examples of R-approximations
Example 1

Initially, the combination (5, 10) which yields Dg =10 cor-
rect digits in five multiplications will be studied. The upper
bound for PC gives PC=27, but this upper bound can be
reduced to PC=17 as follows.

The upper bound Bj;,;0=20(} tan 9°)!' ~10-1¢-® was com-
puted for the first interval 0 <<N= tan 9°, but the relative
error is much smaller for N=1 and decreases, when N
increases. This suggests the use of larger intervals for
N> 1. Instead of dividing the range (0,7/2) of § = Arctan
N into [q/2]+1=6 intervals i, as described above, the fol-
lowing five intervals: I,=(0; tan 9°), I, = (tan 9°; tan
279, I, = (tan 27°; 1), Iy = (1; tan 67°.5) and I; = (tan
67°.5; «) will be used. The corresponding constants used
in (4) for 1 k=<4, are:

k 1 2 3 4
@y = tan 72° tan 54° tan 33°75 tan 11°.25
Br = Sec? 72° Sec? 54°  Sec? 33°.75 Sec?211°25

It is seen that the use of equation (15) is avoided and
five constants are thus saved. Decreasing the number of
intervals one location constant is omitted. One more con-
stant can be omitted among four location constants ay:
tan 9°=V54+1—V'5+(5), tan 27°=V5—-1—-V5-2(5)},
tan 45° and tan 67°.5=v2+41, namely a;=1. The four
constants needed in (3) are n1=7/10, no=2n,, n3=>57/16 and
ny="Tr/16. Again, it suffices to store n, only because n3=2m,
“+n+n/8 and ny=4n,~+n/4+n/8. Therefore in all, 17
instead of 27 constants will be used. The five constants in
the expression of Ki(f)

B Dl |\
K5(t)=l{A — m - [tz_i_Ej 17)

are: A=64/225; B=1,309/675; C=8,743/2,805;
D=551,124/874,225 and E=1,449/935.

To facilitate the computation of eight constants oy,
Br=14a;? the following exact expressions of a;?are given:
02 =5+2V5; a?=1+04V5; a?=[2—V2)—1]V2+1;
ad=[Q+V2)E—-1]vV2-1.

It remains to prove that with our choice of Iz and I
the relative error R;, 1 does not exceed 107'°-3. Since Arctan
Nz=z=/4 if N=1, it is sufficient to check R; 1o at the left
end of I, where the value of |#;] is T=tan 11°.25, N=1 and
Arctan N=7/4. The absolute error E,.(?) verifies the in-
equality

E.(D= E(T)Z[mQm—DIPT™H[(2m+-1).

Therefore Log Ei(T)=< —10.54863 and Log Rs;=Log
(4Es;/m)< —10.44372 or R;7=3.6X107. A direct com-
putation of R; shows indeed that R; 1,=3.175X 10711

Therefore the combination (5, 10) yields Dg=10 correct
digits in M =35 multiplications the number PC of stored
constants being equal to 17 and Ki(z;) being computed
by (9).

Example 2

Sometimes a single multi-precision subroutine is desirable
which allows the computation of Arctan N with the first
6, 8, 10, 18 or 20 correct significant digits. Such routines
are possible as will be shown in this example, in which
q=9. To locate N in one of five intervals

I,=[0; tan (7x/18)], Ir,=[tan ((2k—1) 7/18); tan (Rk+1)
7/18)]

four constants a,=tan [(2k—1) 7/18], 1 £k =<4 are needed.
Using (3) with n,=kw/9, only one of these four constants,
namely n.=2w/9 can be stored because rn =ns/2, ns=ns~+
n:f2 and ns=2n,. Moreover, in (4) there are four more
constants o, Br=1+40a%, since ary=as_;, 1<k =Z4.

To these nine constants are added the constants involved
in K, (#). Figure 1 shows that for g=9 the value m=Dg/2
insures exactly Dg correct digits. Thus, it is necessary to
use five different convergents K,, involving 3, 4, 5, 9 and
10 constants since the number of constants in a K, is
equal to m=Dg/2. Adding these 31 constants to 9 a total
of PC=40 precomputed and stored constants are ob-
tained. This is not much for a subroutine which allows
floating and fixed point, single and double precision com-
putations. The number of multiplications M is equal to
[m/2] + 3 = [Dg/4] + 3, that is to 4, 5, 5, 7 and 8 for
Dg=6, 8, 10, 18 and 20, respectively.

The explicit expressions (8) and (9) of K,.(f) for m=3,
4 and 5 were already given in (12), (13) and (17). To ob-
tain those for m=9 and m=10 it is sufficient to apply
Euclid’s algorithm to the quotients

4 4
PyQ71=( 2 ps,gzN 20 Go9:2)7t where (z=12)
8=0 §=

and

4 5
Py Qo =( Z ps,102°) 20 qs1002°)7,
s=0 §=
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using the numerical values of coefficients p’s and g¢’s (see
Table 1). Another way would consist in retransforming
the expressions (8) and (9) for m=9 and 10 into quotients
of polynomials and solving the equations for their coeffi-
cients A’s and B’s obtained by identifying these quotients
10 tP.(1)-Q.~(1*); m=9; 10.

o 7. Detailed description of best combinations

The eleven best combinations listed in Table 3 will now be
described in order to facilitate their application.

Case 1: m=3, qg=10, M*=3, PC*=19, Dg=6.
The same intervals and constants a; as, as, m defined in
Example 1 are used here. Since (13) is used, to form
71=4N/9 when NCI, the constant 4/9 is stored. In the
four intervals I, 1<k=4, twelve constants are needed:
vi=cotan 8, with 6, =m/10, §;=m/5, ;=56°15", 6, =78°45";
a*,=4v:/9 and B*.=4(14+,:*)/9. Finally, in (13) two con-
stants are used. In all there are nineteen stored constants.

Case 2: m=4,q=6, M*=4, PC*=11, Dg=6.

Four intervals: 0° — 15° — 45° — 75° — 90°, Since a; =2 —
V3 and a;=2+ \/5, only one location constant, \/3, is
stored. Storing n.=/3, we have n=ny/2 and n/2=m+
n2/2, so that it suffices to store n.. Using (5) and the form
(14), we have to form N/\,, if NC1I,, and \o/N, if NC1,,
so that both A\s=55/9 and \s'=9/55 are stored. In I, and
I; the six constants v, = V'3, y2= V3/3,a%, =9vV/3/55, a*, =
3V3/55, B* =41 and B*=4\,7Y/3 are used. There are
four to be stored: v:, a*;, a*: and B*.. Finally, in (14)
there are three constants to store: B¥y, = By-(9/55)2=17,209/
33,275; B*4=B4+(9/55)?=1,701/33,275 and A*i,=AuX
(9/55)1=3,000,564/1,107,225,625.

Case 3: m=35,q=4, M=5, PC=7, Dg=6.

Three intervals: iy =(0; 22°30"), i:=(22° 30’; 67°30") and
i3=(67°30";90°). Location constants: a¢; =tan 22°.5= v2-1
and a.=tan 67°.5=\/§+1, to store V2, m=m/4 so that
7/2=2n,; in (4), applied in I; only, one has «; =Cotan 45°
=1 and B,=2—nothing to store. Finally, there are five
constants in K (see (9)). In all, seven constants are to be
stored.

Case 4: m=4, q=9, M*=4, PC*=17, Dg=38.

Five intervals: 0° — 10° — 30° — 50° — 70° — 90°; four
location constants a;=tan (20°-k —10°); among the four
constants n;=kw/9 only one, n,, to store since m=n,/2,
N3 =ny+ny/2 and ny=2n,;in (4*) v, = Cotan (km/9) =a; . are
already stored as ay, but a*;,="y,-A;"1=9v,/55 and B*,=
(14-v:2)/55, 1 £k =4, are stored as well as \s1=9/55; add-
ing finally the three constants involved in K*, (see Case 2),
gives a total of 17 constants.

Case 5: m=5,q=6, M=5, PC=9, Dg=38.
Four intervals: 0° — 15° — 45° — 75° — 90° and only one
location constant, namely V'3, since tan 45°=1 while tan
15°=2—\/§, tan 75°=2-+V3; to store also m=m/6 while
ne=2m and w/2=2n,+n; ay=Cotan 30° = \/3, as=Cotan
60°=3/3, B;=4, B:=4/3 and thus it suffices to store as
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and (3;; finally in K; (see (9)) there are five constants. In
all, there are nine constants to store.

Case 6: m=35,q=9, M=5, PC=14, Dg=10.
Same intervals and same constants ax, 1=k=4, and n. to
store as in Case 4; in (4) ax = as_«, thus only four 8 =14 o?
to store; adding to these nine constants five involved in
K, a total of 14 constants are obtained.

Case 7: m=8, q=4, M*=6, PC*=11, Dg=10.
Same intervals and same two constants +/2, m=7/4 to
store as in Case 3; but since (4*) is applied it is also
required to store A.=[(8!!}/7!1)2—1]=15,159/1,225 and
A 1=1,225/15,159; now +vi=1,a*;=Aly;=A' and

* =AYl +712)=2N" so that there is nothing to store
using (4%) in I,; finally in K*s there are seven constants
B*3=Bs\2, 0<s=<3 and A*s3=AsNi*, 1=5=3. The
coefficients A, B,s are deducible from the expressions of
Pg/9 and Qs/9 where pos/9=qos/9=15!1/9 should be used
since Table 1 gives p.s/9 and g.s/9.

Case 8: m=8, q=12, M*=6, PC*=18, Dg=18.

Seven intervals: 0 — 7°.5 — 22°.5 — 37°.5 — 52°.5 —
67°.5 — 82°.5 — 90°, so that /2 is necessary, as well as
A and AL, to form t;=\y/N, if NCL, and t;=N/\y, if
NCI. Among m,=kr/[12, 1=2k<5, it suffices to store
ny=m[6 since m=ns/2, ns=ns+ns/2, na=2n,, n;=2ns-+n,/2
and m/2=2n,+n.. There are six location constants a,=tan
[Qk—1)x/24], 1 £k <6 and they can be expressed in terms
of four: V2, V3, p=2+V 24++/3 and g=2V2—+/3 since
a=p—2~V3,a:=V2—1,a5=q—2+V3, as=q+2—V3,
as=+2+1 and as=p-+2+V3. In five interior intervals 15
constants a*;, 3%, v, 15k=5 are used, but only four
among them are to be stored: ys=1/V3, a*s=V3/\,,
a* =\YV3 and B*;=4\/3, because the eleven others
are as follows: v1=2+V3, v2=V3, va=1, y;,=2—V3,
a* =21 4a*,, a*; =>\4_1, a*; =2\t —a*,, 6*1 =8\ 14
da*y, ¥, =4\, B¥3=2N"and B*;=8\;"1 —4a*,. Finally,
there are seven constants involved in K*s, so that the total
number of stored constants amounts to 18.

Case 9: m=8,q=12, M=7, PC=15, Dg=18.

If the form (8) of K is used instead of the form (14) of
K*;, there are eight constants in K, A included, so that
A1 is no longer necessary and instead of a*x, B*:, ax="yx
and Bx=1-++:2 will be used in the interior intervals, stor-
ing only v:=1/v'3 and 8,=4/3 since 8;=8-+4V3, B.=4,
8;=2 and B;=8 —4V'3. Thus, three constants are saved in
comparison to Case 8 and PC=15.

Case 10: m=8, q=15, M*=6, PC* =30, Dg=20.
Here there are eight intervals, 0° — 6° — 18° — 30°
— 42° — 54° — 66° — 78° — 90° and seven location con-
stants ay=tan [(2k—1) 7/30] to store, 1=k=<7. Among
m,=kmw/15 only n;=2%/15 is to be stored: m=n:/2,
ny=ns+ns/2, na=2mn,, n;=2ny+n:/2, ng=2n2-+ns, ny=4n,—
ny/2. Among 21 constants v, a*i, 3*; the constants v, =as_x
are already stored, so that fourteen constants a*;=+u/\4,




B*.=(14~v:»)/Ns will be stored. One also needs Ay ' and
seven constants in K*;. The total is therefore: PC=30.

Case 11: m=9, q=12, M=7, PC=16, Dg=20.

Same intervals and same constants V2, V3, p, g, ns as in
Case 8 except that o*;, 8*; are not needed now, but only
ar="7r and Br=14+v:% 1=k =5. It suffices to store as=
V3/3 and B,=4/3. Adding to these seven constants the
nine constants involved in K, the total of 16 constants is
obtained. Thus twenty correct significant digits can be ob-
tained in seven multiplications using in the subroutine only
sixteen constants.

Polynomial approximations
o 8. Study of the relative error R,.

The Tchebychev polynomial Ty..41(x) verifies in —1=x=1
not only the inequality | Tn{x)| =1, but also

| Tomgi{x)| < (2m=+1)-|x]. (18)

This inequality gives an upper bound for the relative
error R, made in approximating Arctan N, N=Xx-tan 26, by
the polynomial P,_; of degree 2n—1

Pos=2'S (= 1)mtan®™H9. Ty i(x)/(2m+1).

m=o

(xl=1) (19)
With the aid of (18)

2| 3 (— D)mtant™ . Toppn(0)/2m-+1)| £ [x|-tan 26.(tan 6

so that

|R.] = |x|-tan 26(tan 6)*"/N=tan* 6.

Subdividing the range (0, «) of N into intervals as ex-
plained in Section 2, we choose #=m/4q so that the order
of magnitude of [tan (7/4¢g)]** depends on the two param-
eters n and q.

To insure an accuracy characterized by first Dg correct
significant digits the integers 7 and g should be chosen so
as to verify the condition

2n.|Log tan (w/4q)| > Dg+-0.3.

As for R-approximations there are many combinations
(n, g) verifying this condition for the same value of Dg.
In them the number M =n+1 does not depend on ¢, but
the number PC is a function of both parameters » and q.

Omitting the details of a long comparative study of all
possible combinations (n, g) for various values of Dg (it
is quite similar to the study of combinations (m, q) for
R-approximations), we will simply state the final results
obtained for Dg=6, 8, 10, 18 and 20.

The eleven best cases listed in Table 4 were retained. In
them M=n+1 and PC=n+2[q/2], 3=n=9 while the
parameter g takes four values only; g=35, 6, 9 and 12:

Table 4 Best combinations (n, p}

q=12 q=9

Case Dg n M PC| Case Dg n M PC
1 6 3 4 9 6 6 3 4 11
2 8 4 5 10 7 8 4 5 12
3 10 5 6 11 8 10 5 6 13
4 :128 8 9 14 [ ¢
5 0 9 10 15 10 3 5 6 8

qg=>5 11 10 6 7 9

6 4 5 7

Substituting in (19) the explicit expression of 2(—1)™
Tomya(x)/(2m+1), namely
mts

2= D" Toma(0)/2m+1) = g) (—1)*< )(2x)’“+‘/(2s+1),

grouping together the like terms and replacing 2x by #(1 —
tan%). Cotan 6, P, () takes the following form

Py (0="3 (= 1y Austo¥1(25+1) (20)

where

n—s—l 9545

Ans=(1—~tan? 9)**t. ¥ ) tan? 6.
i

7

In particular for s=0:
1

Azo=(1—tan? §) 3 tan* §=1—tan> 6,
i=0

which shows that the value of 4,, can be rounded off to
one rejecting tan?* 6. It can be neglected because |R.|=
tan?* 6 and the first term of our approximation is N-A,,.
Thus, A4.,=~1 need not to be stored and the polynomial
P,_, has n—1 coefficients to store.

Here r=x-tan 26 is equal to N, if NCI,, but if NCI,
then ¢ =z, is computed by (4). To illustrate this transforma-
tion of P,_,, consider Case 1: n=3, g=12 and 8=3°.75.
Now one has s=0, 1, 2 and

-5

2 s+ 7 .
Ass=(1—tan? 6=+ 3 (° +’) tan? 9
=0 i

so that 4;=1—tan® #; 4;,=(14+3 tan? §) (1 —tan? 4)® and
As=(1—tan? #)°. Since tan §=tan (7/48)=0.065 543 4628

.., it is found that A4z,=1—793X107; A45,=0.999 889
90136...; A:2=0.978 704 0328.... Thus, for N= tan
7°.5, we obtain the approximation:

Arctan N=N[d,— N¥d,—d»N?)] @1

with dy=A43=0.999 999 9207, d,=A45/3=0.333 296 6338
and do=A3,/5=0.195 740 8066. Applying (21) to N*=tan
7°.5=0.131 652 497 . . . one should obtain first six correct
digits in the true value of Arctan N*=7/24=0.130 899
6938. ... Computing the right hand member of (21) for
N=N* we find much better approximation, namely 0.130
899 6948 . ., so that the relative error is equal to 7.64 X 10~
and eight digits are correct instead of six. The reason for
it is simple: the upper bound tan® # of the relative error
was obtained with the aid of (18) and this inequality greatly
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exaggerates the true value of T, (x) for x=1, though for
small x it gives a very reasonable estimate.

This suggests that for small values of N no more than
six correct digits can be obtained. Indeed, applying (21) to
N=tan0°.5=008 726 8678.. ., one expects the value of
w/360=0.008 726 6462 . .. and the right-hand member of
(21) yields the number 0.008 726 6450 with first six correct
significant digits, the relative error being equal to 12360
X101/ =1.4 X107,

© 9. Description of eleven cases

The location constants ax, as well as the constants nx, o
and B; depend only on ¢ and therefore their number and
values are the same both for R- and P-approximations,
provided the value of q is the same. Therefore, in describ-
ing the cases, except Case 9, of P-approximations it is
sufficient to refer to the corresponding cases of Section 7
to define all the constants except the n—1 coefficients of
P,._, (1) (the first is always equal to one).

Case 1

See Case 9, Section 7. To the seven constants of Case 9
which are not coefficients of K; are added rounded-off d,
and ds. of the example (dy=1):

d21=0.333 2966; d5~=0.195 7408

Cases 2-5

In these cases, the seven constants ax, nx, ar, Bi are the
same as in Case 1, since the value of ¢g=12 does not
change. The n—1 coefficients d,_;, ; of P,_, (), 1=5j<n—1
are added to the constants in each case.

Cases 6-8

Since ¢=9, there are the same nine constants ax, 7, 8x as
in Case 6, Section 7. Adding to the constants d,_;,;; 1 <j<
n—1; for n=3, 4 and 5, one obtains PC=11, 12 and 13
of Table 4.

Case 9

Here g=5, n=4, and 20=18°. There are three intervals
0° — 18° — 54° — 90° and four constants to store: a;=
tan 18°=(1—0.4V5)}; a,=tan 54°=(1+04V5)}; m=m/5
and 0.4V'5 since n,=2n, a; =cotan 36° =a,, as=cotan 72°
=a, 61=2+0.4\f5 and B,=2—0.4V5. Adding to these four
constants the coefficients ds;, ds» and ds; a total of seven
stored constants is obtained. Thus, six correct digits are
obtained in five multiplications, if PC=7.

Cases 10 and 11

These cases correspond to Case 5, Section 7. Four stored
constants: V3, w/6, V'3/3 and 4/3. Adding to them four,
if n=35, and five, if n=6, coefficients of P, ; (r) one has
PC=8 and 9 as in Table 4.

If it is desired to decrease by one the values M=9 and
10 necessary for obtaining Dg=18 and 20, it will be neces-
sary to increase the number PC of stored constants. Choos-
ing g=15 (see Case 10 of Table 3) one can use 26=6°,
so that the upper bound 2n- Log tan 3° of the logarithm
of relative error is equal to —17.92< —17.3 and —20.49<
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—20.3 for n="7 and n=38, respectively. Therefore, Dg=17
and Dg=20 if g=15, n=7 and 8, respectively. This gives
the two cases listed in the abstract, when Dg=17 and 20
are obtained in eight and nine multiplications, the number
of precomputed constants being equal to 21 and 22, re-
spectively.

o /0. Conclusion

To compare our results with known approximations to
Arctan x the following three formulae are chosen which
seem to be the best among the known approximations
which involve no tables of values of Arctan x stored in
the subroutine:

(L)* Arctan x/x=(1+a:x?taux*+asx%)/
(14+asx*+asx*+a:x+a,x%)

(M)t Arctan x/x=(bo+box2+bsx!—+bext)/
(14-b.1x2+bsx*+b:xf)

(H)} Arctan x/x=co—c1x24coxt— cax+cax® — csx10+4-
Coxi2—cpxt

where a,=5/3; as=2; a,=47/60; as=5/4; a;=19/210; a;=
1/4; a,=1/128; bo=1—19X10"1%; b, =1.45356 71346; b,=
1.12023 40143; bh;=0.56503 09796; b,=0.28050 45407,
b;=0.04901 75912; bs=0.00856 11889; ¢;=0.99999 93329,
¢1=0.33329 85605; ¢»=0.19946 53599; ¢;=13908 53351;
¢4=0.09642 00441 ; ¢;=0.05590 98861 ; ¢s=0.02186 12288;
¢7=0.00405 40580.

The formula (H) will be compared to our P-approxima-
tions. Those (L) and (M) necessitate, in the form in which
they are given by their authors, eight multiplications, but
replacing them by the equivalent continued fractions it is
possible to reduce the number of multiplications. The up-
per bound of errors in (L) is not mentioned by Dr. C.
Lanczos. We computed it for real x and found |x|?/8,000
for small |x| and 1.4X10~° for [x|=1 insofar as absolute
error is concerned. It belongs to the same type as our
R-approximation and could be used in a reduced range
only. Similar to our Kjs it could give Arctan x in seven
multiplications, but it has an insufficient accuracy: for
x=1 only the first four digits are correct, while Case 7
gives ten correct digits in six multiplications against seven
necessitated by (L). For x=0.1 Lanczos’ method (L) gives
six correct digits, while our Case 6 yields ten in five mul-
tiplications only.

The approximation (M) is much better: its range of
validity is 0= x=<1 with the same upper bound 6.10~¢ for
the absolute error in the whole range. It gives eight cor-
rect digits and for many values of x even nine. Thus, for
x=0.057, the correct value of Arctan 0.057 is 0.056 938
389 06 and the formula (M) gives 0.056 938 388 98 . . so
that the absolute and relative errors are equal to 8§ X 10~
and 1.4 X107, respectively, and Dg=8. For x=0.1, Arctan
0.1=0.099 668 652 49 and (M) yields the approximation
0.099 668 652 52, so that again Dg=8. Our Case 6, (n=35;
g=12), gives 0.099 668 652 49 so that Dg=10 in five
multiplications.

*C, Lanczos. Applied Analysis, p. 492. Prentice Hall, 1956.

1Dr. Hans J. Maehly, Institute for Advanced Study, Princeton, N. J.

IIDC. Hastér;gs. Approximasions for Digital Computers, p.137. Princeton Univ.
ress, 1955.




1t is possible to give to (M) another form which involves
also only five multiplications. For 0<x=<1 it is:

Al A
lx2+Bl |x2+B2
A
) e

©<xs<1) Arctan x=x.3Bo—|—

with

B,=0.17465 54388;
B,=6.762 139 240;
B,=3.316 335 425;
B;=1.448 631 538.

A,=3.709 256 262;
A>=17.106 760 045;
A;=0.264 768 6202.

Since the form (22) holds only for 0<x =<1, the values of
x=1 necessitate another form equivalent to (M), namely

an A
[x?4B*  |x*+B*

A*
) @)

(x21) Arctan x=n/2— (B*o—

with

B*,=0.999 999 9981;
B*=0.59998 72689;
B*,=0.50597 40184,
B*;=0.34760 58473.

We transformed (M) into the forms (22) and (23) in
order to save three multiplications. Using them it is pos-
sible to compute Arctan N for 0 N< « in five multipli-
cations, the number of stored constants being equal to
PC=14. gince no subdivisions of the ranges (0; 1) and

A*1=0.333 333 1177;
*,=0.06847 53582;
A*3;=0.05451 02420.

(1, =) are involved, the logical part of the corresponding
program is very short, which also saves time.

The book of C. Hastings contains six P-approximations
to Arctan x in the range (0; 1) (sheets 8-13, pp. 132-137).
Their accuracy and number of operations and of stored
constants are:

Sheet 8 9 10 11 12 13
Dg 2 3 3 4 5 6
M 4 5 6 7 8 9
PC 3 4 5 6 7 8

We consider only the last one with Dg=6 (see formula
(H)). This approximation belongs to the same type as (M)
and it holds in the interval (0; 1). Here are some numerical
results. For x=0.1 formula (H) yields 0.099 668 615..
so that the relative error is 3.7 X107, For x=1 it gives
0.785 398 126 which corresponds to a relative error 4.7 X
1078, the first seven digits being correct.

Comparing now (H) with our Cases 1, 6 and 9 since they
have the same accuracy of Dg=6:

(H) Casel Case6 Case9
Number of multiplications 9 4 4 5

Number of stored constants 8 9 11 7

It is to be noted that in nine multiplications our Case 4
yields 18 correct digits instead of six, using six more con-
stants (PC=14) than in (H).

Received July 10, 1957
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