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Computation of Arctan N for-m<N<+oa 
Using an Electronic Computer 

Abstract: Rational (R) and  polynomial (PI approximations  to Arctan N are studied with the aim  of com- 

puting this function, to any prescribed accuracy and  without  unduly increasing the number PC of stored 

constants, in a  minimum number M of multiplications (and divisions  for R approximations). The number 

Dg  of first correct significant digits  in  principle i s  not bounded. The results corresponding to the values 8, 

10, 18 and 20 of this number are as follows: 

Approximation Point (Computation) Single Precision Double Precision 

D9 M PC  Dg M PC 
21 19 1:' 17 

5 14 30 1:' 18 

Floating 8  18 1: 9 

1.. 9 

Rational (R) 

Fixed 10 20 

Floating 

Polynomial (P)  

Fixed 

10 17  8 21 1: 8  18 9 14 

11 22 

11; 15 

8 

10 1: 9 
20 

I f  M i s  increased, subroutines with smaller PC are  easily deduced from our general results. Thus, for 

instance, rational  approximations  with  Dg = 6 can be  obtained  in three multiplications only, if PC = 19 

(combination m* = 3, q = 10); but the same accuracy Dg = 6 characterizes also the cases M = 4 
with PC = 11 and M = 5 with PC = 7 (combinations m* = 4, q = 6 and m = 5, q = 4). 

If  polynomial  approximations are used, Dg = 6 i s  obtained for M = 5, PC = 7, but also for M = 4 and 

PC = 11. No subroutines with a stored table of values of Arctan x are considered. 

Introduction 

The aim of this paper is to formulate  the most economical Arctan N .  Successive convergents (approximants) & ( I )  of 
procedures for the approximate evaluation of Arctan N the classical continued fraction  found in 1812 by Gauss* 
adapted to binary and/or decimal computing machines 
and sufficiently  flexible to yield as many correct significant A~~~~~ = ~ I1 + 2 S ' W 1  ___ 

digits as desired, and this for  any value of N in ( - m , + M ). I 1  s=l /2s+l (1) 

Two are wed here to form Our ra- yield a sequence of rational  approximations  the accuracy 

polynomials are partial sums S,n(x) of first ( r n + l )  terms 
tional and polynomial approximations to the function of which increases very rapidly with m. Our approximating 

*C. F. Gauss: CYerke, 1876. v.  111. See also: H. S. Wall, Cnnf inzd  Fractions. 
Van Nostrand, 1948, p. 343; form. (90.3). of the series. 43 
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This expansion of the Arctangent into a Fourier series 
of Tchebychev polynomials T,(x) converges absolutely and 
uniformly in 1x1 S 1 for 0<% < a/4, so that Arctan N,  
N = x  tan 28, is represented by (11) in as large an interval 
0 < N <  tan 2% as we please, but the convergence becomes 
very slow when B<x/4 is near a/4. Expression (TI) will 
be used for small values of 8. For x= I ,  the series (11) 
reduces to  the classical Gregory series 

while % =s /4  yields a curious generalization of Leibnitz' 
series for nI4: 

T/4 = 2 ~~ * T2,+l(x). (O<XS 1 )  
( - 1 ) n  

n=O 2n+l 

Both (I) and (11) will be used in a reduced range 0 6 N I  
tan (a/2q), the parameter q having positive and integral 
values. The number Dg of first correct significant digits of 
an approximation K ,  or S, is an increasing function of m 
and q. So also is the number PC of precomputed and stored 
constants. The number PC increases quite rapidly with q 
and this precludes the use of too large values of q. 

The problem studied in this paper can be formulated as 
follows: For a given value of Dg (that is for a prescribed 
accuracy), find the optimum  combination (rn,q) charac- 
terized by the least possible values of M and PC, M de- 
noting the number of multiplications and/or divisions. 

In  the sequel we consider in detail the five most  inter- 
esting cases: Dg = 6, 8, 10, 18 and 20. These cases cor- 
respond to fixed and floating-point computations with 
single or double precision. 

Rational  approximations 

0 1.  Proof of the expansion ( I I )  

Let us expand the function of t 

F(t) = Arctan [2a. Cos t / ( l  -a2)] 

in  the interval 0 S t 5 a into its Fourier Cosine series 

and compute the coefficients A&) by 

T 

nA,(a) = 2 S F(t) . COS nt . dt. 
0 

Since 

(1+2a2 Cos 2t+a4)F(t)=  -241 -&).Sin t, 

an integration by parts gives, for n 2 1 : 

44 
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where 

j,(a) = S(l+2a2 cos 2t+d)-'. cos nt dt. ( 1 )  
7r 

0 

Substituting into ( 1 )  the expansion 

( 1  -a4)(1+2a2 cos 2t+a4)y = 1+2 5 (- l)m.a*" COS 2mt, 

we find first of all that j2n+l(a) =0, n 2 0, so that Aan=O. 

m=l 

On the other hand 

K 

( I -a~)~? , (a )=( - l )"a2~(I+a2) -1~2  cos2 2ntd t=( - l )" .  
r a y 1  +a?) 

and therefore &+I = 2( - 1),a2*+1/(2n+ I), so that 

4 t ) = 3 A o ( u ) + 2 ~ ( - - l ) n a 2 n + ~ .  cos [(2n+l)t1/(2n+1). (2)  
n=O 

The substitution t = r / 2  proves that Ao(a)=O, since 
F(a/2)=0.  For a = tan % and Cos t=x ,   (2 )  becomes (11). 

We add  that (11) can  also be transformed into a 
Tchebychev expansion of the  function f ( x )  =Log [( 1 +2ax 
+a2)/(1  -2ax+a2)], namely into 

f(x)=4 ~u*"+'.T2n+1(x)/(2n+1)  (lal<l, IXlSl) (111) 
m 

n=O 

To deduce (111) replace a by ia in (2) and use the relation 

2i Arctan (iz)=Log [ ( l  -z)/(l +z)].  

The series (111) converges in - 1 S x 5 1 absolutely and 
uniformly, provided la1 < 1 .  It is a source of very accurate 
polynomial approximations to  the  natural logarithm  Log 
N ,  the argument x being defined  by x =a-a(N+l) - '  
with 2a=a+a-l, since the constant a can be chosen very 
small. Series (111) was obtained by Mr. Germizoglou 
(IBM-France) by a direct integration of the generating 
function of Tchebychev polynomials. 

2. Reduction to a smaller range 

Let us denote the integral part of a number z by [z]. 
Given a known integer q, we subdivide the infinite range 
(0, m ) of N into y =[q/2]+ 1 intervals I k [ a ~ ~ ,  ak]; 1 S k I y ; 
where a. =0, a, = m and ak= tan[(k-*)a/q] for 1 k 6 
y - 1 .  The intervals Ik are half-open intervals, so that N 
belongs to Ik (denoted by N c 13, if ak-1 SN<ak.  

The range (0, n/2)  of % = Arctan N is also subdivided 
by points %k = ( k  -+).a/q into y intervals i k ,  1 S k S y, and 
% = Arctan N belongs to ik, if ekPl S%<%k. Here Bo = O  and 
%, = a/2 .  I f  N c 4 ,  then % c ik and vice versa. The length 
of i l  is = a/2q. If q is even then the last  interval i ,  = 
(%,-,;a/2) is equal to the first, but  the 7 - 2  interior inter- 
vals ik, 2 5 k 5 y - 1, are of the length a/q. If q is odd, 
then the length of i, is also  equal to a/q and there is only 
one, namely the first, interval of length a/2q. In general, 
there are [ (q-1) /2]  intervals of length a / q  and  in them 
% = Arctan N is computed with the  aid of the addition 
theorem : 



Arctan N =  kr/q+Arctan z k  ( N C  I k )  (3) 

where 

Zk = Z k ( N , q )  = Lyk - pk(N+&' (4) 

with Qk = Cotan(kn/q) and f l k  = 1 +(Yk2. 

For  an even q and N c I ,  we  will use in this last interval 
(of length n/2q  in 0) the relation 

Arctan N=n/2-Arctan (N-I). ( N C I , ,  q=even) ( 5 )  

In  the first interval, N C I l ,  Arctan N is computed directly 
as such. 

Given N ,  the first thing to  do is to locate  N  in some 
Ik, 1 5 k 5 y. Therefore, [q/2] constants a k  =tan& = tan [(k - 
+)r/q] are  to be  stored. In many cases it is possible to 
reduce their  number, expressing some of them in terms of 
the others. 

The computation of z k  using (4) involves, for  each one 
of [ (q-  1)/2] intervals where (4) is to be used, two con- 
stants, namely Cotan (ka/q) and Cosec? (kslq). As will be 
seen below, it is possible to save one multiplication in ap- 
proximating Arctan zk with the  aid of K z n b ( z k )  and com- 
puting this convergent of  even order 2m as a function 

suitable  constant.  Then (4) will take the form 
K * Z m ( f k ) ,  not Of  zk, but Of tk=Xm-'.Zk, X T n ,  this being a 

tk=XnL' .Zk=LY*l i -p*k. (N+yk)- '  (NCIk)  (4*) 

which involves three constants: yk = Cotan (krlq), & * k =  

X,-'. Cotan (kr /q)  and p*k=X,-'. Cosec2 (kr /q) ,  instead 
of two. Therefore, in saving one multiplication the number 
of stored  constants has been increased by [ (q-  1)/2]. 

In  the last  step (3) again [ (q-  1)/2] constants kn/q are 
needed. Finally, there are also m  constants involved in the 
computation of Arctan z k  with the  aid of Km(zk), K * m ( f k )  

or S,(zk). If q is even, ( 5 )  adds, using (15) or (16), m  con- 
stants, but as will be shown below, the use of ( 5 )  can be 
avoided. 

Table l a  Values of p , , / 9  

Thus, if K,,, or S, are used, the  total number of stored 
constants is at most equal to 

~ C = 3 ~ ~ q - - ~ / ~ l + ~ q / 2 1 + m ~ 3 + ( - - ~ * 1 / ~  
while, if K*,,  m = even, is applied, PC* = PC+[(q- 1)/2]. 

These two numbers should be considered in  fact as upper 
bounds  for PC. Some of the constants used in the  subroutine 
are linear combinations of other  constants  computable by 
the machine in one or two additions only. Such constants 
need not be stored. 

3. Relative error of rational approximations 

The numerator and denominator of the m-th convergent 
K,(t) of ( I )  are denoted in the sequel by t .P,  and Q,. 
They are  odd  and even polynomials of degrees 2[(m - 1)/2] 
+ 1 and 2[m/2] respectively : 

2s 5 m-I 2 s s m  
P m =  Psm.tZ8; Q m =  21 qSrn.P (6) 

3- 0 O = R  

Herep,,,=q,,=(2m-l)!!;p,,=4,q13=9;p1~=55,q~~=90, 
qZr=9 and,  for 5 SrnS 10, see Tables l a  and l b  below. 

We  will need in the sequel the following expressions: 

qm:zm=[(2m-l)!!12;  qm-l,zm=m(2m+l)~q,,~m; 
qm.?rn+~=[(2m+1)!!12; ~rn.?m+1=(2m!!)~; 
~ m , ~ m + ~ ~ ~ m + ~ . ~ ~ ~ + ~ ~ ~ m , ~ m + ~ ~ [ ( 2 ~ ~ + ~ ~ ~ ~ 1 * ~ ~ ~ ~ ~ + ~ ~ ~ ~ 1 ~ ~  

The absolute value R,(t) of the relative error in the first 
interval I, ,  namely O <  R,(t) =( - 1)".[1 "K,(t)/Arctan 11, is 
an even and increasing function of t .  It is sufficient to con- 
sider R,(t) for t > O .  If the  range of I tI is (0 ,  T), 

Rm(t)sRm(T). (O<ltlS T) (7) 

Equation (7) is justified by proving that R',(t)>O in 
O < t 5  T. Denoting the absolute value of the absolute 
error by E,,,(t) so that 

Em(t) = (- l)"[Arctan t - K,(t)], 

rn s=l 
~ 

s = 2  s=3 s=4 
5 24513 6419 
6 1,190 23 1 
7 19,250 5,943  256 
8 345 x 1,001 147,455  15,159 
9 6,825 X 1,001 3,735 x 1,001  638,055  16,384 

10 29,580 X 1,001 19,782 X 5,005  962,676 X 25 61,567 X 25 

Table l b  Values of q,,/9 

m s= 1 s = 2  s=3 s=4 s=5 
5 35013 25 
6 1,575 525  25 
7 24,255 1 1,025  1,225 
8 420 X 1,001 242,550 44,100  1,225 
9 8,100 X 1,001 5,670 X 1,001 161,700 X 9 99,225 

10  172,175 X 1,001 5,670 X 1,001 X 25 47,250 X 1,001  99,225 X 55 99,225 45 
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one easily finds that 

E ' ~ ( t ) = ( m ! ) 2 t 2 ~ ~ ( 1 + t 2 ) - 1 ~ Q m - 2 ( t ) ~ 0  

and 

E",(t)=2(m!)2.G,(t).(l+t2)-z~Q,-3(t)~t2m" 
where 
G,(t)=[m(l+tz)-tz]Q,(t)-t( l+t2)Q'm(t).  

Now 

(1 + t z )  (Arctan t)2.R',(t) = F(t) = (1 +t2) Arctan t.E',(t) - 
E,(t) and, thanks to E,(o) = O  and  to (l+tz) Arctan tzt, 

t 

F(t) 2 t.E',(t) -E&) = SuE',(u).du. 
0 

Therefore, F(t) and R',(t) are positive in (0, T) ,  if Gm(t) is, 
since then E'',(u) is positive. But the expression of G,(t) 
is as follows: 

G,(t)=mq,,+ Z [(m-2s)(q,,+q,-1,,)+q~-1.,lt""-r~~(~), 

where r,(t)-0 if m is odd,  but 

r2,(t)=qm,2m.t2m+2. 

It is seen, therefore, that G2,+l(t)>0 for all values of t ,  
but for large t Gfm(t)  can become negative. Omitting in 
GZm(t)  all positive terms except the term for which s=m, 
one  has  the inequality 

2 s s m  

s=1 

~?,(t)>(qm-i,z,-44m.zm.~2).~2~. 

This result proves that G2,(t) remains positive at least 
for t2>q,-l,2m/qm,zm, thatis  for  t2<m(2m+1)and a fortiori 
for t5 Jxif m 2 3. Since only the values q2 2 and T =  tan 
(n/2q) are considered it can  be concluded that  for q2 2 
and m 2  3 the lemma is proved and R,( T )  is the  upper 
bound R,, of R,(t) in 0s t $  tan (n/24): 

R,, = R,( T ) .  ( T =  tan (r/2q)) 

For q$ 6 (and 3 5 m 5 10) R,(T) was computed directly. 
For q 2 7 an upper  bound B,, was used. It is obtained as 
follows : Since Arctan T = r/2q, we have 

T 
R,( 7') = 29r-'.Em( 7') = 2q.r-l. s E',(u)& 

where 
E',(u)~(m!)2~2m.Q,-2(0)=(m!)2uzm/[(2m-1)!!]2. 

Thus 
R,, = R,( r )  5 2q.C,( T/2)2m+1 

the constant C, being very near to one: 

0.9312<C,=22~+1(m!)2/((2m-1)!!(2m+l)!!~) <0.9775. 
( 3 I m 5 1 0 )  

Replacing C, by one,  Bmq is defined as follows: 

R,, < B,, = 2q.[+ tan (n/2q)Izm+'. 

If q 2 7 this  upper  bound is sufficiently accurate for  our 
purpose. How good it is for large q can be illustrated on 
the example of B7,]8. For m =7, q= 18 it is found that 
B7,,8=1.48X10-19, that is, Log B ~ , M =  -18.83. 

A direct computation of R7.18 based on the  formulae 

K7[tan(a/2)1=  N7(a)/D7(a) (a =r/18) 

N7(a)=45,619 Sin a+29,155 Sin 2a+5,155 Sin 3a  
f181.5 Sin 401 

D7(a) =85,750+116,620 COS a+34,300 COS  CY 
+3,500 Cos 3a+70 Cos 4 a  

and  the values of Sine and Cosine of angles equal to lo", 
20",  30",  40" taken with first twenty correct digits after  the 
dot, yields R7,1s=1.23X10-19, or Log R ~ , M =  -18.91. 

To insure in the final value of Arctan N first Dg correct 
significant digits we compare L,,=  ILogloBmql to Dg + 
0.3. The combination (m,4) yields Dg correct significant 
digits if  L,,>Dg+O.3. It is sufficient to know L,, with 
an accuracy of 0.05. But then the  error made  in replacing 
in the definition of BmP tan (r/2q) by its  argument r/2q is 
negligible for q2 7, ms 10 and  the expression of L,, can 
be simplified : 

L,, = ILogloBmqI =(2m+ l)Log10(4q/n) -Loglo(2q) 
that is 

L,,= (2 Log q+0.21).m-0.20. 

Thus,  for a fixed value of q 2 7, L,, is a linear function 
of m and  the same  fact is confirmed for q 5 6 by a direct 
computation of R,,, which gave slightly smaller coeffi- 
cients of m than 2 Log q+0.21: 

q =  2 3 4 5 6 
Coefficient of m = 0.76 1.14 1.40 1.60 1.89 

This result is represented in Fig. 1, where five horizontal 
lines mark  the critical values 6.3; 8.3; 10.3; 18.3; and 
20.3 of Lmg. Combinations represented by points (m, q) 
immediately above or on a horizontal line-(marked  by cir- 
cles)-insure the corresponding accuracy of first 6, 8, 10, 
18 or 20 significant digits respectively. 

Thus, many combinations (m, q) have the  same accu- 
racy (see Table 2). 

Table 2 Combinations Irn, ql with same Dg 

Dg = 6 for (3; lo), (4; 6 ) ,  ( 5 ;  4), ( 6 ;  3), (9; 2) .  

Dg = 8 for (3; 20), (4; 9), ( 5 ;  6 ) ,   ( 6 ;  5) ,  (7; 4), (8; 3). 

Dg = 10 for (4; 16), ( 5 ;  9), ( 6 ;  6), (7; 5) ,  (8; 4) ,  (IO; 3).  

Dg = 18 for (7; 18), (8; 12), (9; 9), (IO; 7 ) .  
Dg = 20 for (8; 15), (9; 12), (10; 9). 

A direct computation of the relative error rejected the 
combinations (4, 5 ) ;  (6, 4) and (7, 16) since for t =  T the 
errors  are equal to 6X10-', 6.4X10-9 and 6.2X 

To choose between many combinations listed in Table 2 
with the same value of Dg, it now is necessary to study the 
number M of multiplications and  the number P C  of con- 
stants involved in  each of these combinations. 

4. Study of M and P C  

The convergents K2,(t) and K2,+](t) of even and  odd  order 
can be computed in  the same optimum  number m+2 of 46 
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2 0  
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13 
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1 1  

10 
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ORDER OF A P P R O X I M A T I O N ,  m 

Figure 1 Graphs of 1 fm, gl. 47 
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multiplications (and/or divisions) if they are given the fol- 
lowing forms : 

with X,=p,l,zm/qm,zm=[(2m)!!/(2m-l)!!12-l, and 

There are n constants  in K,(t) and its  computation neces- 
sitates [n/2]+2 multiplications. The  rational numbers A,,, 
B,, are  stored; they should be computed to  the degree of 
accuracy expected of the final result. Thus, for instance, 
in a floating-point double-precision computation of Arctan 
N, these constants are  to be stored with eighteen correct 
significant digits. 

Other  forms,  obtained  in decomposing the algebraical 
fractions Pm(t2)/Qm(t2) into simple fractions of the variable 
z =  t2,  could also be used. They are equivalent to (8) and 
(9) since they allow the computation of Kn(t) in  the same 
number [n/2]+2 of multiplications and involve the same 
number n of constants. All [n/2] roots zz = - w i n ,  1 s i 5  
[n/2], of the equation Qn(z)=O are simple, real and nega- 
tive because Q,(z) has positive coefficients. Depending on 
the parity of n, the degree of P,(z) is equal  to  or  one unit 
less than  the degree [n/2] of Qn(z). Thus, we obtain 

with qOm=(2m)!!/(2m+l)!! and tam, qsm=Pn(-wJQn 
( -wen) ,  taking n=2m for gsm, and n=2m+l for q8,. 
Example: If m=4, then P4(Z) = 105+55z; Q4(z) = 105+90z 
+9~~andw,~=5f2(10/3)f:~~~=5[11f17~(3/10)~]/18;s=1, 
2. Thus 

K4(t)=f( E12(t2+W14)-1+E22(t2+(J24)-1} =X2t(t2+B04 

with Xz=55/9,  B~4=89/11, A14=1372/363 and BI4=21/11. 
In  the sequel we use (8) and (9), but  not (IO) or (1 1). 

The case m=3 is an exception. In this case the forms 
(9) and (I 1) coincide and K3(t)= t. (4/9+(25/27).(t?+ 
5/3)"}. To compute K3(t) three multiplications are needed, 
but this number can be reduced to two, computing K3(t) 
as a function of the variable r =4t/9: 

( ~ = 4 t / 9 )  K * ~ ( ~ ) = T + u . ( T + ~ / T ) - ~  (13) 

with a= 100/243 and b  =80/243. One multiplication is 
gained replacing t by r because for NCIk it is necessary 
to compute first the argument z k  of K ,  involved in (4). 

Now,  in  approximating  Arctan zk by K*3(zk) it is  neces- 
sary to compute not z k  but t k  =4zk/9, using (4*) with X3= 
9/4. In saving a multiplication, the number of constants is 
increased using three instead of two in each interval Ik. If 48 
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q is not large this increase of PC by [(q- 1)/2] units is not 
important. It could be applied when Dg=6 correct digits 
only are required, because then m= 3 is combined with 
q=10and[(q-l)/2]=4.ForDg=8,m=3onehasq=20so 
that, using K*3 instead of K3, the number PC is increased 
by 9. If the value m= 3 is used for Dg= 8, 10,  18, 20 the 
computation of Arctan N is achieved in only three mul- 
tiplications. 

It is important that  the same device can be applied to 
K Z m ( f )  (but not  to K P m f l ) .  Defining r by r= t/X, where 
Xm=[(2m)!!/(2m- l)!!]z-l, we obtain  for (8) the following 
equivalent form: 

where 
B*s,?m=Bs.~mAm-Z and A*,,zm=A,,2m.Xm-4. If NCZ,, then 
r=t,=NAm-', but if NCZk and 1 6ks[(q-l)/2],  then 
r= tk=Zk/Xm is computed by (I.*). 

In  the last interval I ,  the relation 

Arctan N =  s / 2  -Arctan (N-l) 

is to be used for q even. In such a case the convergents 
K,(N") could be computed as follows: 

Kz,+l(N-l)=[l + 2 
m 

5-1 IN2+% 

with c1 = 1/3 and 

( s 2  1) ~ , ~ s ~ [ 1 + ( 1 6 ~ " 1 6 ~ + 3 ) ~ ' ] / ( 1 6 ~ ~ " 1 )  

( s 2  0) b,=[1+(16~*+8~-3)-~]/2 

62 2) ~ ~ = ( 4 ~ ~ - 6 ~ + 2 ) ~ / [ ( 4 ~ - 5 ) ( 4 ~ - 3 ) ~ ( 4 ~ - 1 ) ]  

( s 2  1) ds=(2~-1)2/(16~2-16~+3)+4~2/(16~2-l). 

The forms (15) and (16) necessitate m+l and m+2 mul- 
tiplications respectively, so that K,(N") is computable  in 
[n/2]+[3 -( - 1)"]/2 multiplications. For instance, [5/2]+2 
-4  multiplications suffice in 

Expressions (15) or (16) will not be used, forming  in- 
stead to  = 1/N and applying (8) or (9). 

5. Choice of combinations 

It  is always possible to reduce M by increasing PC. In 
order  to choose the most economical combinations  from 
among those listed in  Table 2, we studied the reduced 
values of PC (and PC*). The results of this study are con- 
densed in  Table 3 which gives also the numbers M=[m/2] 
+3 and M* = M -  1, M* and PC* denoting the values of 
M and PC, when K*3 or K**, (m even, m=2p) are applied 
instead of K3 and KZp.  Thus,  Table 3 gives the best com- 
binations (m, q)  involving smaller numbers M and PC for 
Dg=6,8 ,  10, 18 and 20. 



Value of Ug 
Case  (Accuracy) m q M PC M* PC* 

1 six 3 1 0 "  3 19 

2 six 4 6 "  4 11 

3 six 5 4 5  7 "  
4 eight 4 9 "  4 17 

5 eight 5 6 5   9 "  

6 ten 5 9 5 1 4 "  

7 ten 8 4 "  6 11 

8 eighteen 8 1 2 "  6 18 

9 eighteen 8 12 7 1 5 "  

10 twenty 8 1 5 "  6 30 

1 1  twenty 9 12 7 1 6 " -  

It is possible to compute  Arctan N with Dg= 6, 8, or 10 
in three multiplications, using (13) for q = 10, 20 and 45, 
respectively. Likewise Dg= 18 or 20 is obtained, using (14) 
with rn = 6 and  for q = 27 or 45, respectively. Naturally, by 
increasing q it becomes necessary to store more and more 
constants. 

6. Examples of R-approximations 

Example 1 
Initially, the combination (5 ,  10) which  yields Dg= 10 cor- 
rect digits in five multiplications will  be studied. The upper 
bound for PC gives PC=27, but this upper bound can be 
reduced to PC= 17 as follows. 

The upper bound Bs,10=20(f. tan 9°)L1=10-1u.8 was com- 
puted for the first interval O<NS tan 9", but the relative 
error is much smaller for N L  1 and decreases, when N 
increases. This suggests the use of larger intervals for 
N >  1.  Instead of dividing the range (0,7r/2) of 0 = Arctan 
N into [q/2]+ 1 = 6 intervals i k  as described above, the fol- 
lowing five intervals: Zo=(O; tan 9"), Zl = (tan 9" ;  tan 
27"), Zz = (tan 27"; I), Z3 = (1; tan 67O.5) and Zq = (tan 
67O.5; m) will  be  used. The corresponding  constants used 
in (4) for 1 5 k 5 4 ,  are: 

k 1 2 3 4 
a k  = tan 72" tan 54" tan 33O.15 tan 11O.25 

P k  = Sec2 12" Sec2 54" Sec2 3 3 O . 7 5  Sec2 11O.25 

It is seen that  the use of equation (1 5 )  is avoided and 
five constants are  thus saved. Decreasing the number of 
intervals one location constant is omitted. One more  con- 
stant  can  be omitted among four  location  constants ak:  
tan 9 " = d 5 + 1 - ~ 5 + ( 5 ) + ,  tan 27°=f i -1 - -  
tan 45" and  tan 67O.5 = t'2+1, namely a3= 1 .  The  four 
constantsneeded in (3)arenl=7r/10,n2=2n1,n3=57r/16and 
nr=77r/16. Again, it suffices to store nl  only because n3 =2nl 
+nl+n1/8 and n4=4nl+n1/4+n1/8. Therefore in all, 17 
instead of 27 constants will  be used. The five constants in 
the expression of &(t) 

-~- 

To facilitate the computation of eight constants a h ,  

P k  = 1 +ak* the following exact expressions of f f k 2  are given: 
a 1 ' = 5 + 2 4 ;  a~~=1+0.4&;  ( ~ 3 ~ = [ ( 2 - f i ) b " ] * + 1 ;  

It remains to prove that with our choice of 1 3  and 1 4  
the relative error R5,  does not exceed 10-10.3. Since Arctan 
Nz7r/4 if NZ 1 ,  it is  sufficient to check R5, at the left 
end of Z3, where the value of It3[ is T = tan 11O.25, N =  1 and 
Arctan N = T / ~ .  The absolute error E,(t) verifies the in- 
equality 

E~(t)5E,a(T)$[m!/(2m-1)!!]2Tzm+1/(2m+1). 

Therefore Log E5(T)5  - 10.54863 and Log Rs=Log 
(~Es/T) 5 - 10.44372 or Rs, 3.6X lo-". A direct com- 
putation of RS shows indeed that R,,l~=3.175X10-11. 

Therefore the combination (5 ,  10) yields Dg= 10 correct 
digits in M = 5  multiplications the number P C  of stored 
constants being equal to 17 and K&k) being computed 

a2=[(2+~2)4-1]d3-11.  

by (9). 
Example 2 

Sometimes a single multi-precision subroutine  is desirable 
which allows the  computation of Arctan N with the first 
6, 8, 10, 18 or 20 correct significant digits. Such routines 
are possible as will  be shown in this example, in which 
q=9. To locate N in one of  five intervals 

Zo=[O; tan (7r/18)], Zk=[tan ((2k-1) n/18); tan ((2k+l) 
all 811 

four constants ah =tan [(2k - 1) x/18], 1 5 k 5 4 are needed. 
Using (3) with nk=kn/9, only one of these four constants, 
namely n2 = 2n/9 can be stored because nl = 4 2 ,  n3 = n2+ 
n2/2 and n4=2n2. Moreover, in (4) there are four more 
constants (Yk, P k  = 1 +a%, since (Yk =aLk, 1 5 k 5 4. 

To these nine constants are added  the  constants involved 
in K,(t) .  Figure 1 shows that  for q = 9 the value m = Dg/2 
insures exactly Dg correct digits. Thus, it is necessary to 
use five different convergents K,,, involving 3, 4, 5, 9 and 
10 constants since the  number of constants in a K,,, is 
equal  to m = Dg/2. Adding these 3 1 constants to 9 a total 
of PC=40 precomputed and stored constants are  ob- 
tained. This is not much for  a  subroutine which allows 
floating and fixed point, single and double precision com- 
putations. The number of multiplications M is equal to 
[rn/2] + 3 = [Dg/4] i- 3, that is to 4,  5, 5, 7 and 8 for 
Dg = 6, 8, 10, I8 and 20, respectively. 

The explicit expressions (8) and (9) of K,(t) for m=3,  
4 and 5 were already given in (12), (13) and (17). To  ob- 
tain those for m=9 and rn= 10 it is  sufficient to apply 
Euclid's algorithm to  the quotients 

4 4 

S=O S=O 
Pg.Q,'=( 2 ~ a , g . z " > (  2 q..g.Z")" where (z  = t2) 

and 

4 5 

PIO.QIO"=( I: P ~ . I o . z ~ ) (  I: qs,lo.zs)", 
S=O a=o 49 
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the expressions (8) and (9) for m = 9 and 10 into quotients 
of polynomials and solving the equations  for their coeffi- 
cients A's and B s  obtained by identifying these quotients 
to tPm(t2)~Q,-1(tz); m=9; 10. 

7. Detailed description of best  combinations 
The eleven best combinations listed in Table 3 will now  be 
described in order  to facilitate their  application. 

Case 1: m=3, q=10, M*=3, PC*=19,  Dg=6. 
The same  intervals and constants al az, a4, nl defined in 
Example 1 are used here. Since (13) is used, to form 
~ ~ = 4 N / 9  when N C ZI the constant 419 is stored. In  the 
four intervals Zk, 1 5 k 5 4 ,  twelve constants are needed: 
yk=cotan 8 k  with 19~=7r/10, &=?r/5, e3=56015', 84=78'45'; 
a*k=4yk/9 and p*k=4(1+yk2)/9. Finally, in (13) twocon- 
stants are used. In all there are nineteen stored  constants. 

Case2:  m=4,  q=6,  M*=4,  PC*=Il,  Dg=6. 
Four intervals : 0" - 15" - 45" - 75" - 90". Since al = 2 - 
4 and a2=2+ 4, only one location  constant, 4, is 
stored.  Storing n2 =?r/3, we have nl =n2/2 and 3r/2 =n2+ 
4 2 ,  so that  it suffices to  store n2. Using (5) and the form 
(14), we have to  form NIX2, if N C  I , ,  and X2/N, if NCZ4, 
so that  both XZ= 5519 and X2-I =9/55 are stored. In Z2 and 
Z3thesixconstantsyl=fi ,y2=a/3,a*1=9A/55,a*2= 
3*/55, p*l=4.X~-1 and p*2=4X2-1/3 are used. There are 
four  to be stored: yz, a*,, a*2 and p*2. Finally, in (14) 
there are three  constants to store: B*,M = B ~ ( 9 / 5 5 ) ~  = 7,209/ 
33,275; B*14=B14.(9/55)2=1,701/33,275 and A*14=A14X 
(9/55)4 =3,000,564/1,107,225,625. 

Case 3: m = 5 ,  q=4,  M=5,  PC=7,  Dg=6. 
Three intervals: il =(O; 22"30'), iZ=(22O 30'; 67"30') and 
i3 =(67"30';90"). Location  constants: al =tan 22O.5 = A- 1 
and a2= tan 67O.5 = ./Z+l,  to store fi, nl=?r/4 so that 
?r/2 = 2nl; in (4), applied in Z2 only, one has a1 = Cotan 45" 
= 1 and p1 = 2-nothing to store. Finally, there are five 
constants  in K5 (see (9)). In all, seven constants are  to  be 
stored. 

Case 4: m=4, q=9, M*=4,  PC*=17,  Dg=8. 
Five intervals: 0" - 10" - 30" - 50" - 70" - 90"; four 
location constants a k  = tan (20".  k - 10') ; among the  four 
constants n k  = ks/9 only one, 112, to  store since n1 =n2/2, 
n3=n2+n~/2andn4=2n2;in(4*)yk=Cotan(k7r/9)=aLkare 
already stored as ak, but  CY*^ = yk.X2" = 9yk/55 and p*k = 9 
(1 +yk2)/55, 1 5 k 5 4, are stored  as well as X2-' = 9/55 ; add- 
ing finally the three  constants involved in K*4 (see Case 2), 
gives a total of 17 constants. 

Case 6: m=S,  q=9, M=5,  PC=14,  Dg=lO. 
Same intervals and same  constants a h ,  1 S k 5 4, and nz to 
store  as  in  Case 4; in (4) (Yk = aLk, thus only four p k  = 1 + a k 2  

to  store; adding to these nine constants five involved in 
Kg,  a total of 14 constants are obtained. 

Case 7: m=8,  q=4,  M*=6,  PC*=II,  Dg=lO. 
Same intervals and same two constants nl=?r/4 to 
store as in Case 3 ;  but since (4*) is applied it is also 
required to store X4=[(8!!/7!!)z-l]=15,159/1,225 and 
X4c1=1,225/15,159; now y l = l ,  C U * ~ = X ~ - ~ . ~ ~ = X ~ - "  and 
p*1=X4-1(l+y,z)=2X4-1 so that there is nothing to  store 
using (4*) in 12; finally in K*s there are seven constants 
B*,58=B,s.X4-2, 0 5 ~ 5 3  and A*s~=As8.X4-4, 1 5 ~ 5 3 .  The 
coefficients Ass,  Bs8 are deducible from  the expressions of 
Ps/9 and Q8/9 where pOs/9 =qo8/9 = 15 ! !/9 should  be used 
since Table 1 gives p,~/9 and qs8/9, 

Case 8: m=8, q=12,  M*=6,  PC*=18,  Dg=18. 
Seven intervals: 0 - 7O.5 - 22O.5 - 37O.5 - 52O.5 - 
67O.5 - 82O.5 - 90°, so that a/2 is necessary, as well as 
X4 and X P ,  to form f 7  = X4/N, if N c Zi, and t l =  N/XI, if 
NCIl.  Among nk=k?r/12, 1 I k 4  5,  it suffices to  store 
n2 = ?r/6 since nl = 4 2 ,  123 =n2+n2/2, n4 = 2n2, n5 = 2n~4-n2/2 
and ~ / 2  = 2122+n2. There are six location  constants a k  =tan 
[(2k- 1)?r/24], 1 4 k 5  6 and they can be expressed in  terms 
of four: fi, &,p=2-& and q = 2 m j  since 
a l = p - 2 - - , a z = v 2 - 1 , a 3 = q - 2 + ~ , a 4 = q + 2 - ~ ,  
a5=v%+l and a6=p+2+&. In five interior intervals 15 
constants Q*k,  P*k, y k ,  1 S k 5  5 are used, but only four 
among  them are  to be stored: y 4 = l / f i ,  a*2=d//x4, 

a*4=X4-1/& and p*4=4X4-1/3, because the eleven others 
are  as fo1lows: y 1 = 2 + 4  yz=*, y3=1, y 5 = 2 - 4  

4a*2,P*2=4Xp1,~*3=2XI-landP*5=8X4-1-40(*2.Finally, 
there are seven constants involved in K*8, so that  the  total 
number of stored  constants amounts  to 18. 

r 

C Y * ~ = ~ X ~ - ~ + O ( * . L ,  a*3=XQ1, CY*F,=~X~-~-CY*~,  p*1=8X4"+ 

Case 9: m=8, q=12,  M=7,  PC=15,  Dg=18. 
If the  form (8) of KS is used instead of the form (14) of 

there are eight constants  in K8, XC included, so that 
XI-' is no longer necessary and instead of a*kr p*k,  (Yk=yk 
and Pk = 1 +yk2  will be used in the interior intervals, Stor- 
ing only y 4 = l / 4  and p4=4/3 since P1=8+4A,  p2=4, 
P3 = 2 and p5 = 8 -4&. Thus,  three  constants are saved in 
comparison to Case 8 and PC= 15. 

Case 10: m=8, q=15,  M*=6, PC*=3O, Dg=20. 



p*k=(1+yk2)/x4 will be  stored.  One also needs i4-' and 
seven constants  in K%. The  total is therefore: PC=30. 

Case 11: m=9,  q=12, M = 7 ,  PC=16, Dg=20. 

Same intervals and same  constants fi, ./5, p ,  q, n2 as in 
Case 8 except that a * k ,  p*k are  not needed now, but only 
f fk'yk and &= 1 +yk2, 15 k$ 5. It suffices to store a4= 
4 1 3  and p4=4/3. Adding to these seven constants the 
nine constants involved in K9 the  total of 16 constants is 
obtained.  Thus twenty correct significant digits can be ob- 
tained in seven multiplications using in the subroutine only 
sixteen constants. 

Polynomial  approximations 

8. Study of the relative error R,. 

The Tchebychev polynomial TZ,+~(X) verifies in - 1 5 x 5  1 
not only the inequality I T2m+l(~)I 5 1, but also 

I ~2rn+I(X)l5 (2m+l)4xl. (18) 

This inequality gives an upper  bound for  the relative 
error R, made in approximating  Arctan N, N=x.tan 28, by 
the polynomial PnP1 of degree 2n - 1 

P,,=2 (- l)".tanZrn+'8. Tz,+1(x)/(2m+l). 
n-1 

m-0 

(1x1 s 1) (19) 
With the aid of (1 8) 
m 

21 Z: (-l)rntan2m+18.T2m+l(~)/(2m+1)I$Ixl.tan 28.(tan 

so that 

JRnl 5 JxJ,tan 28(tan 8)2n/N=tan2n 6. 

m=n 

Subdividing the  range (0, m) of N into intervals as ex- 
plained in Section 2, we choose B=r/4q so that the order 
of magnitude of [tan (a/4q)I2" depends on  the two param- 
eters n and q. 

To insure an accuracy characterized by first Dg correct 
significant digits the integers n and q should be chosen so 
as  to verify the  condition 

2n.lLog tan (a/4q)1> Dg+0.3. 

As for R-approximations  there are many combinations 
(n, q)  verifying this condition for the same value of Dg. 
In them the number M = n + l  does not depend on q, but 
the number PC is a function of both  parameters n and q. 

Omitting the details of a  long  comparative study of all 
possible combinations (n, q) for various values of Dg (it 
is quite similar to  the study of combinations (m, q) for 
R-approximations), we  will simply state  the final results 
obtained for Dg= 6, 8, 10, 18 and 20. 

The eleven best cases listed in Table 4 were retained. In 
them M = n + l  and PC=n+2[q/2], 3 5 n $ 9  while the 
parameter q takes  four values only; q= 5, 6, 9 and 12: 

Case Dg n M PC Case Dg n M PC 
1 6 3 4 9 6 6 3 4 1 1  
2 8 4 5 1 0 7 8 4 5 1 2  
3 1 0 5   6 1 1   8 1 0 5   6 1 3  
4 1 8 8  9 
5 20 9 10 ;: 1 q i 6  * 

q=5 I 11 10 6 7 9 
9 6 4 5 1  

Substituting in (19) the explicit expression of 2( - 1)" 
T2m+~(~)/(2m+  l), namely 

2(-1~"~,m+1(x)/(2rn+l)= z (-1)s (2X)2'+'/(2S+l), 
m 

s=o ( 3  
grouping  together the like terms and replacing 2x by t.(l- 
tan28). Cotan 8, PnPl(t) takes the following form 

Pn-l ( t )  = 2 (- 1)sAn8*t2"1/(2~+l) 
11.-1 

(20) 
S = O  

where 

In particular  for s = 0 : 

An,=(1-tan2 8) 2 tanZi  8=l-tan2* 0, 

which shows that  the value of A,, can  be  rounded off to 
one rejecting tanzn 8. It  can be neglected because IR,i 5 
tan2* 8 and the first term of our approximation is  N.An,. 
Thus, A,, = 1  need not  to be stored and  the polynomial 
Pni1 has n-1 coefficients to store. 

Here t=x.tan 28 is equal to N, if N C  I,, but if NCIk 
then t=zk is computed by (4). To illustrate this transforma- 
tion of Pn-,, consider Case 1 : n=3, q= 12 and 8=3".75. 
Now one  has s=O, 1 , 2  and 

Ass=(l -tan2 8)2s+1. 7 ( )-tan2i 8 

so that A30= 1 -tan6 8 ;  A31 =(1 + 3  tan2 8) (1 -tan2 1 9 ) ~  and 
A 3 2  = (1 - tan2 8)j. Since tan 8 =tan (r/48) = 0.065 543 4628 
. . ., it is found that Aa0= 1 -793X10-10; As1 =0.999 889 
901  36 . . . ; A32=0.978  704 0328. . . . Thus, for  N$  tan 
7 O . 5 ,  we obtain  the  approximation: 

Arctan N=N[do-N2(dl-d2.N2)] (21) 

with do=As0=0.999 999 9207, dl= Aa1/3 =0.333 296 6338 
and d2=As2/5=o.1% 740 8066. Applying (21) to  N*=tan 
7".5=0.131 652 4 9 7 . .  . one should obtain first six correct 
digits in the  true value of Arctan N*=a/24=0.130 899 
6938. . . . Computing the right hand member of (21) for 
N= N* we find much better approximation, namely 0.130 
899 6948 . ., so that  the relative error is equal to 7.64X 
and eight digits are correct instead of six. The reason for 
it is simple: the upper bound  tanzn 8 of the relative error 
was obtained with the  aid of (18) and this inequality greatly 51 

n- 1 

i=o 

2-8 zs+j 

1=0 
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exaggerates the  true value of T2m+l (x) for x= 1 ,  though for 
small x it gives a very reasonable estimate. 

This suggests that  for small values of N no more than 
six correct digits can be obtained. Indeed, applying (21) to 
N=tan 0".5=008 726  8678 . . ., one expects the value of 
~1360  = 0.008 726  6462 . . . and  the right-hand member of 
(21) yields the number 0.008 726  6450 with first six correct 
significant digits, the relative error being equal to 12x360 
x IO-yT = 1.4 x 10-7. 

9. Description of eleven cases 
The location  constants ak, as well as  the constants n k ,  ffk 

and P k  depend only on q and therefore their number and 
values are  the same both  for R- and P-approximations, 
provided the value of q is the same. Therefore, in describ- 
ing the cases, except Case 9, of P-approximations it is 
sufficient to refer to  the corresponding cases of Section 7 
to define all the constants except the n - 1 coefficients of 
PflPl ( t )  (the first is always equal  to one). 

Case 1 
See Case 9, Section 7. To  the seven constants of Case 9 
which are  not coefficients of K8 are added rounded-off dZl 
and d22 of the example (dZo = 1) : 

d21=O.333 2966; d22=O.195  7408 

Cases 2-5 

In these cases, the seven constants ak, n k ,  ffk, P k  are the 
same as  in  Case 1 ,  since the value of q= 12 does not 
change. The n - 1 coefficients dnPl ,i of P,,-l (I), 1 n - 1 
are  added  to  the constants in each case. 

Cases 6-8 
Since q = 9, there are  the same  nine  constants ak, n2, P k  as 
in  Case 6, Section 7. Adding to  the constants d- l , i ;  1 S j S  
n - I ;  for n=3, 4 and 5, one obtains PC=11, 12 and 13 
of Table 4. 

Case 9 
Here q= 5 ,  n=4, and 28 = 18". There are three intervals 
0" - 18" - 54" - 90" and  four constants to store: a l=  
tan18"=(1-0.4&);; az=tan 54"=(1+0.4&)+; nl=?r/5 
and 0.4& since nz=2nl, a1 =cotan 36" =a2, as=cotan 72" 
=al,Pl=2+0.4&and~z=2-0.4~.Addingtothesefour 
constants the coefficients d31,  d32 and d33 a total of seven 
stored  constants is obtained.  Thus, six correct digits are 
obtained in five multiplications, if PC=7. 

Cases 10 and 11 
These cases correspond to Case 5, Section 7. Four stored 
constants: 4, ~ 1 6 ,  4 1 3  and 413. Adding to them four, 
if n = 5 ,  and five, if n=6, coefficients of P,-l ( t )  one  has 
PC= 8 and 9 as in Table 4. 

If it is desired to decrease by one the values M = 9  and 
IO necessary for  obtaining Dg= 18 and 20, it will be neces- 
sary to increase the number PC of stored  constants. Choos- 
ing q = 15 (see Case 10 of Table 3) one  can use 20= 6", 
so that  the upper  bound 2n. Log tan 3" of the logarithm 
of relative error is equal to --17.92< -17.3 and -20.49< 
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-20.3 for n = 7  and n=8, respectively. Therefore, Dg= 17 
and Dg=20 if q = 15, n=7 and 8, respectively. This gives 
the two cases listed in  the abstract, when Dg= 17 and 20 
are obtained in eight and nine multiplications, the number 
of precomputed constants being equal  to 21 and 22, re- 
spectively. 

10. Conclusion 
To compare our results with known  approximations to 
Arctan x the following three  formulae are chosen which 
seem to be the best among  the known  approximations 
which involve no tables of values of Arctan x stored  in 
the subroutine: 

(L)* Arctan xlx=(1+a2x2+a4x4+a6x6)/ 
(1 +a3x2+a6x4+a~x6+a9x*) 

( I  +b1X*+b3X4+b5X") 
( M ) t  Arctan xlx=(bO+b,~*+bq~~+bG.~~)/  

(H)X Arctan x ~ x = c ~ - c ~ x ~ + c ~ ~ - c s x ~ + c ~ * - - c ~ x ~ ~ +  
C&12-C7X14 

where a2=5/3;  a3=2; ar=47/60;  a5=5/4; a6=19/210; a7= 
1/4; a,=1/128;  b0=1--19XlO"~;  b1~1.45356 71346; b2= 

1.12023  40143;  h3=0.56503 09796; ba=0.28050  45407; 
b5=0.04901  75912; bs=O.O0856 11889; Co=O.99999 93329; 
~1=0.33329 85605; ~2=0.19946 53599; ~3=13908 53351; 
~ 4 ~ 0 . 0 9 6 4 2  00441 ; ~5=0.05590 98861; ~~=0 .02186  12288; 
~7 =0.00405 40580. 

The formula ( H )  will be  compared to  our P-approxima- 
tions. Those (L) and ( M )  necessitate, in the  form in which 
they are given  by their  authors, eight multiplications, but 
replacing them by the equivalent continued  fractions it is 
possible to reduce the number of multiplications. The up- 
per bound of errors in (L) is not mentioned by Dr. C. 
Lanczos. We computed it  for real x and found 1~1~/8,000 
for small 1x1 and 1.4X for 1x1 = 1 insofar as absolute 
error is concerned. It belongs to  the same  type as  our 
R-approximation and could be used in a reduced range 
only. Similar to  our Kg it could give Arctan x in seven 
multiplications, but it has  an insufficient accuracy:  for 
x= 1 only the first four digits are correct, while Case 7 
gives ten  correct digits in six multiplications against seven 
necessitated by (L). For x=O.1 Lanczos' method (L) gives 
six correct digits, while our Case 6 yields ten in five mul- 
tiplications only. 

The approximation ( M )  is much better:  its  range of 
validity is OS x 5  1 with the same  upper  bound 6.10"O for 
the absolute error  in  the whole range. It gives eight cor- 
rect digits and  for many values of x even nine. Thus, for 
x=0.057, the correct value of Arctan 0.057 is 0.056 938 
389  06 and  the formula ( M )  gives 0.056 938  388  98 . . so 
that  the absolute and relative errors  are equal to 8 X 10-1' 
and 1.4 X loP9, respectively, and Dg = 8. For x = 0.1, Arctan 
0.1 =0.099 668  652  49 and ( M )  yields the  approximation 
0.099 668  652  52, so that again Dg=8. Our Case 6, (m= 5; 
q= 12), gives 0.099 668  652  49 so that Dg= 10 in five 
multiplications. 
*C. 1,anczos. Applied  Analysis p. 492. Prentice Hall 1956, 
tDr. H a n s  J. Maehly Institut; for Advanced Study,'Prince+on N. J. 
XC. Hastings. Appro&notions for Dicital  Computers, p. 137. Princeton Univ. 
Press, 1955. 



It is possible to give to ( M )  another  form which involves (1, a) are involved, the logical part of the  corresponding 

The book of C. Hastings contains six P-approximations 
to Arctan x in the range (0; 1) (sheets 8-13, pp. 132-137). 
Their accuracy and number of operations and of stored 
constants are: 

also only five multiplications. For 0 5 x 5  1 it is: program is very short, which also saves time. 

( 0 5 x 5  1) Arctan x=x. Bo + 7 All " Azl - 1 Ix +BI Ix2+& 

with Sheet 8 9 10 11 12 13 
Bo = 0.17465  54388 ; A1=3.709  256 262; 

B116.762 139 240; A2=7.106  760 045; 

B2=3.316 335 425; Aa=0.264 768  6202. 

B3 = 1.448  63 1 538. 

Since the form (22) holds only for OS x 5  1, the values of 
x 2  1 necessitate another form equivalent to (M) ,  namely 

with 

B*o=0.999  999  9981;  A*1=0.333  333 1177; 

Dg 2 3 3 4 5 6 
M 4 5 6 I 8 9 

PC 3 4 5 6 7 a 
We consider only the last one with Dg=6 (see formula 

(H)) .  This  approximation belongs to the  same type as ( M )  
and  it holds  in the interval (0; 1). Here are some numerical 
results. For x =0.1 formula ( H )  yields 0.099 668 615 . . 
so that  the relative error is 3.7X For x =  1 it gives 
0.785  398  126 which corresponds to a relative error 4.7X 
lo-*, the first seven digits being correct. 

Comparing now ( H )  with our Cases 1, 6 and 9 since they 
have  the  same accuracy of Dg = 6 : 

( H )  Case 1 Case 6 Case 9 

B*1=0.59998 72689; A*z=0.06847 53582; Number of multiplications 9 4 4 5 

B*z=0.50597 40184; A*3 =O.O545 1  02420. Number of stored constants 8 9 11 I 

B*3=0.34760 58473. It is to be  noted that in  nine multiplications our Case 4 
we transformed ( M )  into the forms (22) and (23) in yields 18 correct digits instead of six, using six more con- 

order  to save three multiplications. Using them it is pos- stants than in 
sible to compute  Arctan N for 0 5  N <  m in five multipli- 
cations, the number of stored  constants being equal to 
PC=14. Since no subdivisions of the ranges (0; 1) and Received July 10, 1957 
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