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The Formalization of Scientific Languages”

Part |

The Work of Woodger and Hull

General introduction to Parts |, 1I, and 11l

If scientific theories can be expressed in axiomatic lan-
guages, it is conceivable that machines can be fabricated to
derive theorems within those languages. There are, how-
ever, many related problems. Among these, the extent to
which scientific languages can be formalized is especially
pertinent.

Clearly, any language which the machine can handle
properly must satisfy demands of rigor and precision. Von
Neumann and Morgenstern, early in their classic work
upon game theory, raise the question why mathematics
has not been more successful in economics. To begin with,
they remark, economic problems have not been formulated
clearly and “‘are often stated in such vague terms as to make
mathematical treatment a priori appear hopeless because
it is quite uncertain what the problems really are. There is
no point in using exact methods where there is no clarity
in the concepts and issues to which they are to be applied.”!

A probable requirement of rigor for any language suit-
able to the present purpose is that proofs admit of effective
check. It is doubtful, however, that this prerequisite can be
satisfied if the language in question is unformalized. As
Church notes, the essential purpose in the formal construc-

*This paper is based in part on material contained in a paper awarded first
prize in an international essay contest, sponsored by the Institute for the
Unity of Science, on the topic *‘Mathematical Logic as a Tool of Analysijs.”

Abstract: The extent to which scientific languages
can be formalized is an important problem, es-
pecially if it is assumed that a theorem-proving
machine will deal most effectively with formal
systems. In Part 1, the axiomatic attempts of
Woodger in genetics and of Hull in the theory of
rote learning are examined. In Parts Il and Ill, to
be published later, the more prominent efforts
to formalize physical theory will be considered
and a general study will be made of related ques-
tions.

tion of a logistic system is to obtain “‘an objective, external
criterion for the validity of proofs and inferences.””? With-
out formalization, we are subject to unforeseen difficulties
and errors.?

If it can be assumed, then, that a theorem-proving
machine will deal most appropriately with formal lan-
guages, the question is paramount to what extent scientific
languages have, in fact, been formalized. Important, too, is
the related question of the degree to which formalization
can be expected in the future.

There is, of course, some confusion as to what constitutes
a formal system. The fact that a theory has been set forth
in axiomatic manner and that its individual problems can
be stated in mathematical terms does not necessarily mean
that it satisfies the various requirements of a formal system,
as the latter are commonly understood by logicians. Num-
ber theory itself was not developed as a purely formal
calculus until the latter half of the Nineteenth Century and
the first years of the Twentieth.’

What, then, is a formalized language? Tarski, in a well-
known, non-technical account of the matter, first of all
describes an exactly specified language or system as one in
which we have characterized unambiguously the class of
those words and expressions to be considered meaningful.
In addition, all words to be used without definition (unde-
fined or primitive terms) are indicated. Rules of definition
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are provided for introducing new or defined terms, and
explicit criteria are presented for distinguishing within the
class of expressions those to be called sentences. Finally,
“we must formulate the conditions under which a sentence
of the language can be asserted. In particular, we must
indicate all axioms (or primitive sentences), i. e., those
sentences which we decide to assert without proof; and we
must give the so-called rules of inference (or rules of proof)
by means of which we can deduce new asserted sentences
from other sentences which have been previously asserted.
Axioms, as well as sentences deduced from them by means
of rules of inference, are referred to as ‘theorems’ or
‘provable sentences.” If in specifying the structure of a lan-
guage we refer exclusively to the form of the expressions
involved, the language is said to be formalized.”

Symbolic logic is the discipline most directly concerned
with the derivation and study of formal systems, and espe-
cially with the use of such systems in the solution of prob-
lems. The task of formalizing a scientific theory can be
viewed primarily as one of applied symbolic logic.

It must be noted, however, that there is much divergent
opinion as to the scientific achievement and prospects of
logic. Some writers, like Bridgman, have disparaged its
usefulness almost with finality.® Others, like Hull, have
championed it, suggesting that it may eventually provide
the solution to profound difficulties and problems.” Still
others, like Hempel, have adopted a more neutral, unde-
cided attitude;® so that, although the question has received
widespread attention, there is much confusion and dis-
agreement.

In the discussion which follows, we shall argue that less
progress has been made in the actual formalization of
scientific languages than is often thought. It will be main-
tained, however, that the lack of achievement usually rests
upon discernible grounds. As a result, critical investigation
of representative efforts can notably improve the possibility
of success. We shall thus examine not only what is wrong
with much of the work presently being done, but also shall
consider how future work can be undertaken more profit-
ably.

The discussion will be broken down into three chief
parts. Part I, which follows immediately, will deal primarily
with the work of Woodger and Hull. Both men have made
significant attempts to formalize scientific languages. In
Part 11, to be published later, we shall examine some of the
more prominent efforts to formalize physical theory. In
Part I1I, we shall consider a number of related problems
and sum up the argument.

Woodger

J. H. Woodger has published numerous papers and three
books? upon the formalization of theory, notably in biol-
ogy. Like many methodologists, he looks to logic as a
device for rendering scientific language internally sound.
By formalization, he believes, we can better determine not
only a theory’s consequences but also the precise relation-
ship of one theory to another.'

Woodger’s argument is always provocative, but such
assertions cannot be reasonably judged apart from specific
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achievement. The immediate problem, then, is to examine
Woodger’s work critically.

Let us consider a fragmentary, but very typical, system
W, reconstructed from a manuscript by Woodger.! Four
extralogical expressions are taken as undefined, namely:
‘P, T, “cell’, and *dl’. The expression ‘P(x, y)’ means that
the thing x is a part of the thing y. ‘T(x, )’ means that the
thing x is before the thing y in time. Woodger writes in
explanation of the latter: “When we say . . . that x is
before y in time, this might be understood to mean that
every part of x precedes y in time, or that x ends at the
moment when y begins . . . when either of these states of
affairs holds for a given part x and y of things, we shall
say that x7y.”"? ‘x e cell’ means that x is a cell; and
‘dl(x, y, z)’, that x develops in y into z. To understand the
latter, we must first observe that the universe of discourse
for W is “not restricted to purely spatial things but includes
four-dimensional time-extended things.””** The thing x is
taken as some complete initial part of z. The object y may
be roughly described as the total causal entity operating
upon z. If we imagine z, for example, as an elongated
cigar stretching through four-dimensional space-time, one
tip its starting moment and the other its stopping moment,
y might be regarded as the remaining space-time having the
same starting and stopping moments. Or, if we modify our
notion of the universe somewhat, y might be construed as
merely a larger, hollowed cigar totally encasing z, and so
on. Such explanation of ‘dl’ is, of course, vague; but there
is no need to expand upon it for the moment.!

The logical machinery employed in W includes quantifi-
cation theory, a theory of identity, a calculus of classes,
and a calculus of relations. That machinery and the nota-
tional devices used are explained, with only minor deviation
from what we shall employ, in Chapter 1, The Axiomatic
Method in Biology."®

With this brief account, we may now present some bi-
conditionals and definitions. The words in parentheses,
which follow in each case, provide verbal labels for the
concepts in question.!®

100* (R, x, p) = p(1)[R(x, ¥) . P(x, u) . P(y, u) : (v) :
P, u).D. Py Px#AvPvyn Py#A]

(the event composed of x in R to p).

101% P, = pexd [P(x, ¥) . x 5 ]
(proper part of).

102* mom = ux[T(x, X)]
(momentary).

103*C =T AT
(contemporary with).

104* S/ = Dp’éf/ (x £ mom n?‘y . E‘x n Py C F‘x)
(time slice of).

105% A = pxp{ T(x, ¥) . EXow)[Sku, x) . SKu, )]}
(adjoined to).




106* B = i SI A T
(first slice).
107 E = wSI A T
(last slice).
108* D = pixylx ecell . y ecell . P(B'y, E*x)}
(divides into).
109% F = pecrlx e cell . y e cell . P(Ex,BY)]
(fuses (with another cell) to form).
110* zygote = ,;‘'F — A‘F* — D'F
(zygote).
1H1*0lx,y) =.Fu,v,w) . x = (A, u,v) .y = c(A4, v, w)
(x overlaps ).
112* Cilx, y) =. (Fw) . y = (A, x, 1)
(x is contained initially in y).
113* Cm(x, y) =. (Fu, v) . y = A4, (4, u, x), v]
(x is contained medially in ).
14* Cr(x, y) =. (Ju) .y = (A4, u, x)
(x is contained terminally in y).
115*% U(x, y) = ni(w)F(x, u) . F(y, u) . u € zygote]
(the zygote formed by union of x with y).
116* diz(x, v, z) =. dl(x, y, z) . x € zygote
(zygote x develops in y into z).
17* 2(x) = p)[(@V) . dlz(u, v, X)]
(the zygote of x).
118* e(x) = pd(W(Juw) . dlz(u, v, x)]
(the environment of x).
119% g(x) = vettlur € DF . Pru 4 Pox % A . 2()Dpuid]
(the gametes (geneticist’s) produced by x).
120* Ps(x, y) =. z(x)D,, | Fz2(»)

{x is sexual parent of y).

It is significant, as we shall argue later, that Woodger
early introduces so complicated a logical machinery.!”
The techniques and symbolisms are largely reminiscent of
Russell and Whitehead.® In a simple applied functional
calculus of first order® for which the values of variables are
restricted to spatial-temporal entities, we cannot com-
pletely reproduce the language W. Neither a calculus of
classes nor a calculus of relations is available to us. It is
simple to show, however, that a closely related language
W, apparently as useful as W in clarifying basic genetical
concepts, can be constructed within the bounds of such a
system.

Four predicates will constitute the undefined extralogical
language of W’. ‘Axy’ means that x is part of y; ‘Bx)y’, that

x is before y in time, as explained for W; ‘Cx’, that x is a
cell; and ‘Dxyz’, that x develops in y into z, also as ex-
plained for W. Using the customary devices of a first-order
functional calculus, we proceed as follows:

200*% Exy =. Axy .— Ayx

(x is a proper part of y).
201* Fxy =. Axy . Ayx

(x is the same as y).
202* Gx = Bxx

(x is momentary).

203* Hxy =, Bxy . Byx

(x is contemporary with y).

204% Ixy =, Axy ., (zXHzx . Azy .D Azx)
(x is a time slice of y).
205* Jxy =. Ixy . (2)(Izy D Bxz)
(x is a beginning time slice of y).
206* Kxy =. Ixy . (z2)({zy O Bzx)
(x is a final time slice of ).

207* Lxy =. Cx . Cy . (d2)@v)(Kzx . Jvy . Evz)

(x divides into p).
208* Mxy =. Cx . Cy . (dz2)(Av)}{(Kzx . Jvy . Ezv)

(x fuses (with another cell) to form y).

209* Nxy = (dz)(Azx , Azy)

(x and y have a common part).
210* Oxy =, Exy . (2)(Gz . Azy .— Bxz. D Azx)
(x is an initial part of y).
211* Pxy =, Exy . (z2(Gz . Azy .— Bzx .D Azx)
(x is a terminal part of y).
212*% Qx =. (ADMzx . (W)()(—Mxy . Myx D —Mzy)
(x is a zygote).
213* Rxyz =. Myx . Mzx . W Mux D . Fuy v Fuz)
(x is a zygote formed by a union of y and z).
214* Sxyz =. Dxyz . Qx
(x is a zygote which developes in y into z).
215* Txy = (42)Szxy
(x is the environment of y).

216* Uxy =, Cx . Cy . (2){0xz . Pyz . )[Cu . Auz .—
Fuy . D (@v)(Luv , Avz) : luz D (Av)(Cv. Avz . Iuv)}}
(x is linked by cellular division to ). 343
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217* Vxy = (d2)Sxzy
(x is the zygote of y).

218*% Wxy =. Nxy . (2)Mxz . (A2)(Vzy ., Uzx)

(x is a gamete (geneticist’s) produced by y).

219*% Xxy = (H2)Av)(Wzx . Mzv . Vvy)

(x is a sexual parent of y).

220* Yxyz =, Xyx . Xzx .— Fyz . (u)(Xux D . Fuy v Fuz)
(x is an offspring of y and z).

We see from the above constructions that the earlier
language W makes use of a somewhat complicated logical
machinery. In a later section, we shall argue that initial
economy in system-building is more than trivially impor-
tant. Austerity may be said to be strategic. The chief criti-
cism we wish to propose at present, however, is that
Woodger has not sufficiently appreciated the need for an
unpresumptive point-of-departure.

The fashionable objection against Woodger (and other
similar writers) is a basically external one: namely, that he
has not really gotten anywhere. He has not uncovered, it is
said, new theoretical implications of interest to geneticists:
nor has he laid bare previously unobserved links between
genetics and other areas of theory. If, however, there is
some justice in the fashionable objection, the primary con-
cern is to discover why such is the case, why it is that such
an effort as Woodger’s has not gone further.

A tall building cannot be built upon sand. The choice of
site is as important a matter of strategy as the variety of
brick used. If we endeavor to formalize a scientific theory
which presupposes in a vague or ambiguous way some
other area of science, we may well contradict our purpose.
We cannot render clear, explicit, and precise, that which
presupposes what has not itself been already so rendered.
We must seek, in other words, an unpresumptive point-of-
departure.

The fundamental criticism of Woodger is that he has
sought to formalize an area of theory too heavily dependent
upon other areas of unformalized scientific theory. Con-
sider, for example, the fragmentary system W. By 120*,
we are able to define the notion that x is a sexual parent
of y. It is almost universally true that the male gamete is
smaller and more mobile than the female. Therefore, were
we able to speak of relative size and mobility in W, we
might well define the rather important ideas that x is male
parent of y, and z, female parent. Unfortunately, however,
the system W, as earlier presented, gives no obvious prom-
ise of such a development. The difficulty is that the basic
language of a non-biological character with which we have
to work is so meager and unexpanded that the purely
biological construction itself is blocked.

Further, it is not entirely clear that the definitions already
obtained are satisfactory. 106* asserts that a first time slice
is one which comes before all others; 107*, that a last time
slice is one which comes after all others. By 108*, we learn
that, where cell x divides to form cell y, the first time slice
of y is a proper part of the last time slice of x. Let us
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imagine that we have two cells of the same organism
undergoing mitosis at approximately the same time. We
raise the question whether cell A’s last time slice came be-
fore, simultaneously with, or after B’s. Let us also suppose
complete pictorial records are available of A’s and B’s
almost side-by-side division to form new cells, so that no
question arises as to whether, let us say, a pair of chromo-
somes from A4 or from B reached the opposite spindle first.
It is reasonable to ask whether 4 or B ends first; but the
answer to this question can be given only if we have arbi-
trarily selected some instantaneous event which occurs in
cellular division as the moment of the last time slice of one
cell and the first time slice of another. When this problem
was raised by me in conversation with Professor Woodger,
we were unable to determine any event, representable as
instantaneous (with some degree of latitude, of course),
which has unique occurrence in every instance of cellular
division. It would seem, therefore, that, although a notion
like “cell” as presented in W is on the surface both familiar
and definitive, it may actually involve latent complications
and ambiguities which tend to destroy its capacity for
clarifying other scientific concepts.

An even more serious difficulty arises, I believe, from
Woodger’s use of ‘dl’. In his Biological Principles, Woodger
emphasizes that changes in the foundations of physics are
of concern to biology.” He attempts, nevertheless, to define
the notion of environment, 118*, in terms of a primitive
‘dl’, whose meaning patently must vary depending upon
which principles of physics are accepted and rejected. Be-
cause such acceptance and rejection is for the most part
implicit in W, the problem is not easily to be solved by a
mere selecting of axioms for ‘d/’. A given set of axioms for
‘dl’ wili probably be inadequate to differentiate signifi-
cantly between one physical theory and another. Should it
be adequate, however, the appropriate development of the
physical language needed in ¥ ought to be made early, in
advance of the use of ‘dl’ for the explication of genetical
concepts. Let us suppose, for example, that we assume a
classical field theory of mechanics. Then, commensurate
with our earlier rough description of ‘di(x, y, z)’, where
dl(x, y, z), the object y, insofar as mechanics is concerned,
may suitably be taken as the enlarged, hollowed cigar also
mentioned. If a different theory is assumed, however, in a
universe where the local causal influence is not described by
differential equations, y might be regarded as the remaining
physical objects in the total area of space-time having the
same starting and stopping moments as z. Or, if we assert
that no influence is propagated faster than a certain speed,
y might be taken as a kind of spatial-temporal cone. The
first time slice of z would be a proper part of the cone’s
beginning, larger end. The last time slice of z would be
identical with the cone’s last time slice, and so on.

For all these reasons, although the constructions at-
tempted by Woodger are both interesting and suggestive,
one doubts that such attempts to formalize areas of theory
heavily reliant upon other areas of unformalized theory
can go far. Woodger’s work is, of course, far more sub-
stantial than almost all similar efforts, the majority of
which simply involve the sprinkling of a few logic symbols




here and there in familiar scientific statements. One does
not much clarify, for example, the science of star gazing, if
one rewrites “every revolving planet has two poles™ as:

@) {xeRP D (Ay)E)ye PO.ze PO .xHy .xHz .y #
z.(uePO.xHu.D .u=yvu=2)].

Hull

The work of C. L. Hull (and his associates) has been
notably subject to external criticism. In his most substantial
logical publication, Mathematico-Deductive Theory of Rote
Learning, a system is presented requiring sixteen extra-
logical primitives and eighteen postulates with corollaries.
The portion of psychological theory embraced is admittedly
rather small, indeed almost infinitesimal when compared
with the broad areas of mathematics formalized from rela-
tively meager beginnings. 1t is not surprising, therefore,
that some critics have expressed such reservations as, for
example, ‘“‘pseudo-clarity,” ““too costly rigor,” “too costly
clarity,” and so on.?

1t is easy to subject a formal system to a kind of eyebrow-
raising criticism in which one cites apparently damaging
statistics. As in the case of Woodger, it is of much greater
interest to probe into the why-and-wherefore of those
statistics. Hull is subject, I believe, to the same basic criti-
cism raised against Woodger. He has chosen to formalize
an area of theory heavily reliant upon other areas of un-
formalized theory. Since that objection was elaborated in
such detail for Woodger, however, we shall devote our
attention in this section to a different topic. The chief
criticism we shall argue against Hull (and many of his
disciples) is that he has sought to mold his formal construc-
tion too rigidly into a preconceived pattern. In so doing, he
has endeavored to apply certain generally accepted, val-
uable methodological principles outside their appropriate
spheres of usefulness. As a result, his actual formal con-
struction has suffered.

Hull urges: (1) that “in any truly scientific system, all
unobservables must be linked to one or more observables
by unambiguous logical relationships;”* and (2) that
“qualitative” postulates are not so satisfactory as ‘““quanti-
tative” ones.2* Ultimate appeal to “‘unobservables™ and the
use of “qualitative’” language are, then, to be avoided so
far as possible.

In his most important application of logic to the theory
of rote learning, however, Hull does not succeed in totally
eliminating the unobservables from the language, which
we shall call H. ‘Stimulus trace’, ‘excitatory potential’,
‘inhibitory potential’, and so forth, are all concepts falling
within that category. He does indicate (perhaps motivated
by Haldane’s proposal that Woodger's Axiomatic Method
should be rewritten, if possible, “in terms of observable
phenomena only”)* that much effort has been expended
with that general purpose in mind.

Various remedies have, in fact, been propounded by
others. Koch, for example (in remarks directed primarily
toward Hull’s earlier ““miniature” systems,? but applicable
to H also), suggests that by the use of Carnap’s reduction
sentences? such concepts can be defined operationally and
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the general difficulty alleviated.”® Unfortunately, the latter
has never been accomplished.

But does Hull fully appreciate the problem? Einstein
remarks, in reply to a comment by Bridgman: “In order to
be able to consider a logical system as physical theory it is
not necessary to demand that all of its assertions can be
independently interpreted and ‘tested’ ‘operationally’; de
Jfacto this has never yet been achieved by any theory and
cannot at all be achieved. In order to be able to consider a
theory as a physical theory it is necessary only that it im-
plies empirically testable assertions in general. This formu-
lation is insofar entirely unprecise, as ‘testability’ is a quality
which refers not merely to the assertion itself but also to the
co-ordination of concepts, contained in it, with experi-
ence.”®

Specifically, it is often asserted that the ideal scientific
theory is one completely formalized, having only observ-
ables or operationally defined concepts as extralogical
primitives. As indicated above in the remarks by Einstein,
this is an ideal involving a basic extension to the essential
function of a scientific theory, the latter being that it imply
empirically testable assertions in general. If we endeavor
to make the connection between our primitive concepts
and the content of experience foo immediate, as 1 believe
Hull does, we may totally divorce from our construction
those very fundamental, underlying statements and theo-
retical concepts which we normally expect any substantial
theory to possess. It is, in fact, generally taken as a sign of
progress in a scientific theory that its more primitive lan-
guage does not deal directly with every-day objects and
“middle-sized” facts. If one does literally attempt to start
“in the middle,” one cannot be expected to go far on only
a small beginning; and the possibility of relating the
specific area under advisement to other larger areas will
be diminished.

Consider H. Of the sixteen extralogical primitives, the
folowing are typical:

Ul. Syllable exposure (slex): A class of events each of
which may be described as the stationary presence in the
window of a memory machine of a syllable consisting of a
vowel placed between consonants in a combination not
used as a word by the subject. The syllable is supposed to
be printed in such a way as to reflect clearly a characteristic
pattern of light rays. The subject may or may not be
present.

Ul'". “a is a syllable exposure” will be expressed thus in
symbolic logic: a e slex.

U4. Reaction (rn): The subject’s act of speaking a syllable
according to his previously acquired habits of speech.

U4’ “a is a reaction of b will be expressed thus in
symbolic logic: a rn b.

U6. Stimulus trace (tr): The stimulus trace of a syllable
presentation (explained in Def. 17) is a progressively
changing activity within the subject’s body corresponding
uniquely to the syllable presentation in question. The be-
ginning of the activity coincides with the beginning of the
syllable presentation in question, and the end of the activity
coincides with the end of the syllable-presentation cycle

345
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(explained in Def. 21) in which the syllable presentation
occurs.

U6'. “a is the stimulus trace of b will be expressed thus
in symbolic logic: a tr b.

U16. Ending time (nd): The time, in seconds, at which
an event ends.

U16". “x is the time at which a ends” will be expressed
thus in symbolic logic: x nd a.*

It can be fairly said, I believe, that such primitives,
typical of H, fall largely within what we might call roughly
“experimental” language. Using such notions and those
generated immediately out of them, we can, of course, make
assertions that lead almost at once to experimental situa-
tions and problems. Postulate 1, for example, is as follows:

A. During all syllable-presentation cycles of the learn-
ing of any rote series, stimulus traces ([|s7rs . . . y||) extend
from the beginning of every syllable presentation (s)
through the remainder of the syllable-presentation cycle
but no further.

A’. Peslpncy . .aeCP.D.E! tr'a. bg'tria = bg‘a .
nd‘tr‘a = cytm* P.%

The immediacy of the language to experimental situa-
tions may well run counter, however, to deductive and
definitional fertility. In addition, it may be difficult to link
the language obtained with that of another area of theory
in which the experimental situation is somewhat different.
1t is not surprising, therefore, as we noted earlier, that the
language H, with sixteen extralogical primitives and
eighteen postulates with corollaries, embraces so limited
an area of theory.

Consider also Hull’s remarks concerning quantitative
and qualitative postulates. He writes: “‘Since it appears
probable that everything which exists at all in nature exists
in some amount, it would seem that the ultimate form of
all scientific postulates should be quantitative . . . The great
reason why qualitative postulates are so unsatisfactory is
that they have so little deductive fertility . . . When the
postulates can be written out in equations, or in words
which readily generate equations, and especially when, in
addition, the constants making up important portions of
the equations are known from empirical determination, the
rich store of powerful devices which mathematicians have
invented, at once becomes available.”’s?

Postulate 13, typical of H, is as follows:

A. In the learning of any rote series, any inhibitory
potential (I,) resulting from any given massed practice de-
creases with the passage of time (¢) following the termina-
tion of such massed practice, the rate of decrease at any
time being proportional to the amount of inhibitory poten-
tial existent at that time, i. e.,

L(t) = Le

where d is a constant > 0, ¢ is the time elapsed since the
termination of the massed practice in question with the
exception of that part of such time which may be occupied
by congruent massed practice, and
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dA NI, = bAVE, n.

A x=1L0OLT).=ux#0:=:r=0.Hy).v=

t — 3u.x = R(BT,T) X ANPL, X e~ . CT C rtin‘P
UINVL(T, P, T)

t.d X ANTL > b X AE.®

Clearly, when one’s attention is restricted to those
basic concepts out of which a language is generated, the
distinction between “‘qualitative’” and ‘‘quantitative’ may
well be blurred. A substantial part of the language of
mathematics has been derived definitionally from such
logical notions as the truth-functional connective ‘neither-
nor’, the universal quantifier, class membership, class ab-
straction, and so on. It is not very meaningful, however, to
characterize the latter as quantitative. Similarly, the axioms
at the very foundations of mathematics (in such a system
as Quine’s Mathematical Logic,** for example) are not
easily so characterized. Yet it is from these very notions
and axioms that the numerous concepts and theorems of
number and quantity, “that rich store of powerful devices
which mathematicians have invented,” are generated.

Even more elementary instances can be provided in
which expressions apparently quantitative are defined in
terms of expressions apparently qualitative, if it is, in fact,
meaningful so to characterize the parts of a formal system
at all. Consider, for example, the fragmentary system H’,
which follows. Reading ‘Ax)’ as ‘x is part of y’ and ‘Bx’
as ‘x is a circular plane section’, we employ the elementary
machinery of polyadic quantification theory. The objects
of our universe are merely non-vacuous, closed point sets
of a three-dimensional Euclidean space.

300*% Cxy =, Axy . Ayx
(x is the same as y).
301* Dxy =, Axy .— Ayx
(x is a proper part of y).
302*% Exy = (Az)(Azx . Azy)
(x and y have a common part).

303* Fxyz = (u)(Aux =. Auy . Auz)

(x is a total common part of y and z).
304* Gx = (y) — Dyx
(x is a point).

305* Hx = (Ay){By . Ayx . (D)[Bz . Ayz .D Azx : Gz .
Azx . D (Ju)(Bu . Ayu , Azu . Aux)]}
(x is a plane).

306* Ix = (Ay)dz)(Hy . Hz .— Cyz , Fxyz)

(x is a straight line).

307* Jx =. —Gx . (»)(2)(Hy . Fzxy .D. Gz v B2)

(x is a spherical solid).




308* Kx =, —Gx . (Ay)dz)(By . Iz . Fxyz)

(x is a straight line segment, not a point).

309* Lxyz =, Hx . Hy . Jz .— Exy . (Auw)(3Av)(Gu . Gv .
Fuxz . Fvyz)
(parallel planes x and y are both tangent to spherical

solid z).

310* Mxy =. Kx . Axy . (Az2)(Hu)(Lzuy . Exz . Exu)

(x is a diameter of spherical solid y).

311* Nxy = (Hz)(Hw)(Lzux . Lzuy)

(x and y are spherical solids of equal volume).

312* Oxy = (Hz)(Jw)(Mxz . Myu . Nzu)

(x and y are line segments of equal length).

313* Pxy =. Kx . (Az)(Dzx . Ozy)

(x is a longer line segment than y).

314* Qxy =. Jx . Axy . (2)(Jz . Azy . D —Dxz)
(x is a spherical solid part of y and not a proper part

of any other spherical solid of y).

315 Rxy = . Ky . Axy . (A2)Au)| Quz . Mxu . ()[Gv .
Avy. D Aw)@x)(Qwz . Mx'w . Avx’ . Ax’y . ()
@ENNQy'z. Qzz. — Cy'Z . Fu'y'zZ . D . Ny'Z.

Gu)}
(line segment y can be broken up without remainder
into segments equaling x, and x is one of the seg-
ments in question).

316* Sxy = (Hz)(Rzx . Oyz)

(x can be broken up without remainder into segments

equalizing y in length).
317* Txy = (z2)(Sxz . Syz)
(segments x and y are commensurable in length).

318* Uxy =. Kx . Ky .— Txy

(segments x and y are incommensurable in length).

319* Vxy = (dz)(du)[Rzx . Rux .— Czu . Ozy . (v)(Evx J.
Evz v Evu)]

(x is twice as long a segment as y).

320* Wxy = the reader may fill in at his pleasure
(x is 237/871 as long a segment as y).

Sample postulates of H’ might be somewhat as follows:
Pl. (x)(")[Axy = (z2)(Exz D Eyz)]
P2. ()(0)(Az)(Axz . Ayz)

P3. (X)()[Bx . Dyx .D (dz)(Dyz . Dzx)]
P4. (x)(»)[Bx . By .— Axy .— Ayx .D (z)(Fzxy D — Bz)]

The capacity of a formal language to generate problems
which admit of numerical solution does not require that its
postulates be “quantitative.”” The situation is akin to that
mentioned earlier. In order for a physical theory to imply
“empirically testable assertions in general,” it is not neces-
sary that its individual postulates be independently inter-
preted and tested operationally. Analogously, it is not
requisite that the postulates of a theory be in the form of
equations, in order for the theory itself to be of such a
nature as to take advantage of existing symbolic techniques.

Once again, Hull is assuming for his construction an
ideal which, from its very nature, can limit both the potential
development and application of the system in question. It
is important to have equations with which to work, but to
take the latter as the rigid and perfect models for the
postulates of a formal language is to be restrictive in a
meaningless fashion. Hull has decided too much in advance
that which the actual process of formalization can itself
best settle—namely, which type of primitive concepts and
theorems will yield the most satisfactory system.

Conclusion of Part |

The attempts of Woodger and Hull to formalize scientific
[anguages are probably the most prominent which have
been made outside of physical theory. The two projects are
of great interest, but neither is very much developed. In
each case, the inability of the author to go further rests
upon discernible grounds. Both have undertaken to formal-
ize areas of theory heavily dependent upon other areas of
unformalized theory. Hull has also sought to mold his
formal construction rather rigidly into a preconceived
pattern.

In Part 1I, to be published at a later time, we shall ex-
amine some of the more notable efforts to formalize physi-
cal theory. If the criticisms advanced against Woodger and
Hull are valid, special interest attaches to those efforts,
since physics is the natural science which underlies all
others.

In closing Part I, the author wishes to thank J. H.
Woodger and W. V. Quine, with whom many of these
problems have been discussed. P. Bernays, A. Cobham,
H. Cole, E. Hutton, and R. Landauer have made helpful
comments.
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