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Part I 
The Work of Woodger and 

General introduction to  Parts I,  II, and 111 

If scientific theories can be expressed in axiomatic lan- 
guages, it  is conceivable that machines can be fabricated to 
derive theorems within those languages. There  are, how- 
ever, many related problems. Among these, the extent to 
which scientific languages can be formalized is especially 
pertinent. 

Clearly, any language which the machine can handle 
properly must satisfy demands of rigor and precision. Von 
Neumann and Morgenstern, early in their classic work 
upon game theory, raise the question why mathematics 
has not been more successful in economics. To begin with, 
they remark, economic problems have not been formulated 
clearly and  “are often stated in such vague terms as  to make 
mathematical  treatment a priori appear hopeless because 
it is quite uncertain what the problems really are.  There is 
no point in using exact methods where there is no clarity 
in the concepts and issues to which they are  to be applied.”’ 

A probable requirement of rigor for any language suit- 
able to  the present purpose is that proofs  admit of effective 
check. It is doubtful, however, that this prerequisite can be 
satisfied if the  language in question is unformalized. As 
Church notes, the essential purpose in the formal construc- 

*This  paper is based  in part on  material  contained in a  paper  awarded  first 
prize in an international  essay  contest,  sponsored by the  Institute for the 
Unity of Science, on  the  topic  “Mathematical  Logic  as a Tool of Analysis.” 

Hull 

Abstract: The extent to which scientific languages 
can be formalized is  an important problem, es- 
pecially if it i s  assumed that a theorem-proving 
machine will  deal most effectively with formal 
systems. In Part I ,  the axiomatic attempts of 
Woodger in genetics and of Hull in the theory of 

rote learning are examined. In Parts II and 111, to 
be published later, the more prominent efforts 
to formalize physical theory will  be considered 
and a  general study will  be  made of related ques- 
tions. 

tion of a logistic system is to obtain  “an objective, external 
criterion for  the validity of proofs and inferences.”‘ With- 
out formalization, we are subject to unforeseen difficulties 
and errors.:$ 

If  it can be assumed, then, that a theorem-proving 
machine will deal most appropriately with formal  lan- 
guages, the question is paramount  to what  extent scientific 
languages have, in fact, been formalized. Important,  too, is 
the related question of the degree to which formalization 
can be expected in the future. 

There is, of course,  some  confusion  as to what  constitutes 
a  formal system. The fact that a theory has been set forth 
in axiomatic  manner and  that its individual problems  can 
be stated in mathematical terms does not necessarily mean 
that it satisfies the various requirements of a  formal system, 
as  the latter are commonly understood by logicians. Num- 
ber theory itself was not developed as a purely formal 
calculus until the  latter half of the Nineteenth  Century and 
the first years of the Twentieth.‘ 

What, then, is a fbrmalized language?  Tarski, in a well- 
known, non-technical account of the  matter, first of all 
describes an exactly specijied language or system as  one  in 
which we have characterized unambiguously the class of 
those words and expressions to be considered meaningjul. 
In addition, all words to be used without definition (unde- 
fined or primitive terms) are indicated. Rules o j  definition 34 1 
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are provided for introducing new or defined terms, and 
explicit criteria are presented for distinguishing within the 
class of expressions those to be called sentences. Finally, 
“we must formulate the conditions  under which a sentence 
of the language can be asserted. In particular, we must 
indicate all a x i o m  (or primitive senfmzces), i. e.,  those 
sentences which we decide to assert without proof;  and we 
must give the so-called rules of inference (or rules of’proof) 
by means of  which we can deduce new asserted sentences 
from other sentences which have been previously asserted. 
Axioms, as well as sentences deduced from them by means 
of rules of inference, are referred to as ‘theorem’ or 
‘provable sentences.’ I f  in specifying the  structure of a  lan- 
guage we refer exclusively to the form of the expressions 
involved, the language is said to  bejormalized.”~ 

Symbolic logic is the discipline most directly concerned 
with the derivation and study of formal systems, and espe- 
cially with the use  of such systems in  the  solution of prob- 
lems. The task of formalizing a scientific theory can be 
viewed primarily as one of applied symbolic logic. 

It must be noted, however, that there is much divergent 
opinion as to the scientific achievement and prospects of 
logic. Some writers, like Bridgman, have disparaged its 
usefulness almost with finality.fi Others, like Hull, have 
championed  it, suggesting that it  may eventually provide 
the solution to profound difficulties and  problem^.^ Still 
others,  like Hempel, have adopted  a  more  neutral, unde- 
cided attitude;8 so that, although the question has received 
widespread attention,  there is much confusion and dis- 
agreement. 

In the discussion which follows, we shall argue that less 
progress has been made in the actual formalization of 
scientific languages than is often thought. It will  be main- 
tained, however, that  the lack of achievement usually rests 
upon discernible grounds. As a result, critical investigation 
of representative efforts can  notably  improve  the possibility 
of success. We shall thus examine not only what is wrong 
with much of the work presently being done, but also shall 
consider how future work can be undertaken  more profit- 
ably. 

The discussion will be broken down into three chief 
parts. Part I ,  which follows immediately, will deal primarily 
with the work of Woodger and Hull. Both  men have made 
significant attempts to formalize scientific languages. In 
Part 11, to be published later, we shall examine some of the 
more  prominent efforts to formalize physical theory. In 
Part I l l ,  we shall consider a  number of related problems 
and sum up  the  argument. 

achievement. The immediate problem,  then, is to examine 
Woodger’s work critically. 

Let us consider a  fragmentary,  but very typical, system 
W, reconstructed from  a  manuscript by Woodger.“ Four 
extralogical expressions are taken as undefined, namely: 
‘ f ’ ,  ‘T’, ‘cell’, and ‘dl’. The expression ‘P(x,  y)’ means that 
the thing x is a part of the  thing y .  ‘T(x ,  y)’ means that  the 
thing x is before the thing y in time. Woodger writes in 
explanation of the  latter: “When we say . . . that x is 
before y in time, this might be understood to mean that 
every part of x precedes y in time, or that x ends at  the 
moment when y begins . . . when either of these states of 
affairs holds  for  a given part x and y of things, we shall 
say that x T ~ . ” ’ ~  ‘ x  E cell’ means that x is a  cell;  and 
‘dl(x, y ,  z)’, that x develops in y into z. To understand  the 
latter, we must first observe that  the universe of discourse 
for Wis “not restricted to purely spatial things but includes 
four-dimensional time-extended things.”’& The thing x is 
taken as some complete initial part of z. The object y may 
be roughly described as  the total causal entity operating 
upon z. I f  we imagine z, for example, as an elongated 
cigar stretching through four-dimensional space-time, one 
tip its starting  moment and  the other its stopping  moment, 
y might be regarded as  the remaining space-time having the 
same  starting  and  stopping moments. Or, if we modify our 
notion of the universe somewhat, y might be construed as 
merely a larger, hollowed cigar totally encasing z, and so 
on. Such explanation of ‘dl’ is, of course,  vague; but there 
is no need to expand  upon it for  the moment.’l 

The logical machinery employed in W includes quantifi- 
cation theory, a theory of identity, a calculus of classes, 
and a calculus of relations. That machinery and  the nota- 
tional devices used are explained, with only minor deviation 
from what we shall employ, in Chapter 11, The  Axiomatic 
Method in Biology.‘j 

With this brief account, we may now present some bi- 
conditionals and definitions. The words in parentheses, 
which follow in  each case, provide verbal labels for  the 
concepts in question.“’ 

loo* c(R,  x, y )  = ,,f(7d[R(X, y )  . P(x,  u) . P(y, u) : ( v )  : 

P(v ,  u)  . 3 .  Pr’, n P< # A vP7v n P’y # A ]  

(the event composed of x in R to y).  

101* P,, = D f G  [P(x ,  y )  . x # yl 

(proper part of). 

102* mom = &&, x)] 

Woodger (momentary). 

J. H.  Woodger has published numerous  papers and three 103* c = u f ~  A 
booksy  upon the formalization of theory,  notably  in biol- 
ogy. Like many methodologists, he looks to logic as a (contemporary with). 

device for rendering scientific language internally sound. 
By formalization, he believes, we can better determine not 

104* SI = (x E mom n P‘y . C‘x n P‘y C P‘x) 
+ +  + 

only a theory’s consequences but also the precise relation- (time slice of). 
ship of one theory to another.’O A h  

Woodger’s argument is always provocative, but such 105* A = T(x, Y )  . E!(?u)[Wu, X) . S ~ U ,  Y ) I I  
342 assertions cannot be reasonably judged apart from specific (adjoined to). 
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106* E = urSf A T 

(first slice). 

107* E = nrSI i\ ? 
(last slice). 

A h  
108* D = rlrxy[x E cell . y E cell . P,,(B'y, E'x)] 

(divides into). 

109* F = Dr.qv[x E cell . y E cell . P,,(E'x,B'y)] 

(fuses (with another cell) to  form). 

A n  

I io* zygote = ] , ( a 6 F  - a'FL - D'F 

(zygote). 

1 1 1 *  O / ( x , y )  =, ( 3 ,  v, W )  . X  = ~ ( A , u ,  v) . y  = c(A, v, 1 ~ )  

(x overlaps y) .  

1 12" Ci(x, y )  = . (310 . y = c(A, x, 4 
(x is contained initially in y ) .  

113* Cm(x, .>I) f . ( 3 ,  v) . Y = c [ A ,  c(A, u, x) ,  V I  

(x is contained medially in y) .  

114* Ct(x, y )  =. ( a )  . y = c(A,  u, x) 
(x is contained terminally in y ) .  

115* U(x,  y )  = I ) f ( lu) [F(x ,  u) . F(y, u) . u E zygote] 

(the zygote formed by union of x with y) .  

116* dlz(x, y ,  z )  =. df(x ,  y ,  z )  . x E zygote 

(zygote x develops in y into z ) .  

x i s  before y in time, as explained for W ;  'Cx', that x is a 
cell; and 'Dxyz', that x develops in y into z, also  as ex- 
plained for W. Using the  customary devices of a first-order 
functional calculus, we proceed as follows: 

200*  EX^ =. Axy .- Ayx 

( x  is a  proper part of y ) .  

201* Fxy 1. Axy  . Ayx 

(x is the same  as y ) .  

202* Gx = Bxx 

(x is momentary). 

203* Hxy  E .  Bxy . Byx 

(x is contemporary with y).  

204* Ixy 3 .  Axv . (z)(Hzx . Azy . 3  Azx) 

(x is a time slice of y). 

205 * Jxy  = . Ixy . (z)(Izy 3 Bxz) 

( x  is a beginning time slice of y) .  

206* Kxy E .  Ixy . (z)(lzy 3 Bzxj 

(x is a final time slice  of y).  

207* Lxy E.  C x  . Cy . ( 3 z ) ( Z v ) ( K z ~  . Jvy . Evz) 

(x divides into y ) .  

208* Mxy  =. CX . Cy . (3z)(4v)(Kzx . Jvy . Ezv) 
(x fuses (with another cell) to form y). 

117* Z ( X )  = l)r(qu)[(Zv) . dlz(u, V ,  X ) ]  209* Nxy = (3z)(Azx . Azy) 
(the zygote of x). (x and y have a  common  part). 

118* d x )  = M ( ~ v ) [ ( ~ u )  . d/z(u, v, x)] 
(the  environment of x). 

210* OXY E.  EX^ . (z)(CZ . A z ~  .- BXZ. 3 A Z X )  

+ +  
(x is an initial part of y).  

119* g(x) = d [ u  E D'F . P'rr A P'x # A . z(x)D,,,z~] 

(the gametes (geneticist's) produced by x). 
21 1 * Pxy E.  EX^ . (z)(CZ . A z ~  . - BZX , 3  A Z X )  

(x is a terminal part of y) .  
120' M x ,  y )  =. z(x)D,,,, ] FZW 

(x is sexual parent of y). 

It is significant, as we shall argue later, that Woodger 
early introduces so complicated a logical machinery." 
The techniques and symbolisms are largely reminiscent of 
Russell and Whitehead.18  In a simple applied functional 
calculus of first orderly  for which the values of variables are 
restricted to spatial-temporal entities, we cannot com- 
pletely reproduce the language W. Neither  a calculus of 
classes nor  a calculus of relations is available to us. It is 
simple to show, however, that a closely related language 
W', apparently  as useful as Win clarifying basic genetical 
concepts, can be constructed within the bounds of such a 
system. 

Four predicates will constitute  the undefined extralogical 
language of W'. 'Axy' means that x is part of y ;  'Bxy', that 

212* Qx 3. ( 3 z ) M ~ x .  ( y ) ( ~ ) ( - M x y .  Myx 3 - - M z ~ )  

(x is a zygote). 

213 * Rxyz = . Myx . Mzx . (u)(Mux 3 . Fuy v Fur) 

(x is a zygote formed by a union of y and z). 

214* Sxyz =. Dxyz . Q x  

(x is a zygote which developes in y into z). 

215" Txy = (Elz)Szxy 

(x is the environment of y ) .  

216* Uxy E .  CX . Cy . ('3Z)j OXZ . P ~ z  . (.)[CU . AUZ .- 
F u ~  . 3 ( 3 v ) ( L u v .  Avz) : Iuz 3 ( Z v ) ( C v ,  Avz.  Z U V ) ] ]  

( x  is linked by cellular division to y ) .  343 
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2 1 7 * vxy = (3z)Sxzy 

( x  is the zygote of y). 

218* Wxy = . Nxy . (3z)Mxz . (3z)( Vzy . Uzx) 

( x  is a  gamete (geneticist’s) produced by y) .  

219* Xxy (3z ) (3v ) (Wzx  . Mzv . Vvy) 

( x  is a sexual parent of y). 

220’ Yxyz E. x y x  . xzx .- Fyz . (u)(Xux 3 .  Fuy v Fuz) 

( x  is an offspring of y and z). 

We see from  the  above constructions that  the earlier 
language W makes use of a somewhat complicated logical 
machinery. In a later section, we shall argue  that initial 
economy in system-building is more than trivially impor- 
tant. Austerity may be said to be strategic. The chief criti- 
cism we wish to propose at present, however, is that 
Woodger has  not sufficiently appreciated  the need for an 
unpresumptive point-of-departure. 

The fashionable objection against Woodger (and other 
similar writers) is a basically external one: namely, that  he 
has not really gotten  anywhere. He has  not uncovered, it is 
said, new theoretical implications of interest to geneticists; 
nor has he laid bare previously unobserved links between 
genetics and  other  areas of theory. If, however, there is 
some justice in the fashionable objection, the primary con- 
cern is to discover why such is the case, why it is that such 
an effort as Woodger’s has  not gone further. 

A tall building cannot be built upon  sand. The choice of 
site is as  important a matter of strategy as  the variety of 
brick used. If we endeavor to formalize a scientific theory 
which presupposes in  a vague or ambiguous way some 
other area of science, we may well contradict our purpose. 
We cannot render  clear, explicit, and precise, that which 
presupposes what has  not itself been already so rendered. 
We must seek, in other words, an unpresun?ptive point-of- 
departure. 

The  fundamental criticism of Woodger is that he has 
sought to formalize an area of theory too heavily dependent 
upon other  areas of unformalized scientific theory. Con- 
sider, for example, the fragmentary system W. By 120*, 
we are  able  to define the notion that x is a sexual parent 
of y .  It is almost universally true  that  the male gamete is 
smaller and more mobile than the female. Therefore, were 
we able  to  speak of relative size and mobility in W, we 
might well define the  rather  important ideas that x is male 
parent of y ,  and z, female parent.  Unfortunately, however, 
the system W, as earlier presented, gives no obvious prom- 
ise of such a development. The difficulty  is that the basic 
language of a non-biological character with  which we have 
to work is so meager and unexpanded that the purely 
biological construction itself is blocked. 

Further, it  is not entirely clear that the definitions already 
obtained are satisfactory. 106* asserts that a first time slice 
is one which comes before all others; 107*, that a  last time 
slice is one which comes after all others. By 108*, we learn 
that, where cell x divides to form cell y ,  the first time slice 
of y is a proper  part of the last  time slice of x. Let us 

imagine that we have two cells of the same organism 
undergoing mitosis at approximately the  same time. We 
raise the question whether cell A’s last  time slice came be- 
fore, simultaneously with, or after B’s. Let us also  suppose 
complete pictorial  records are available of A’s and B’s 
almost side-by-side division to form new cells, so that  no 
question arises as to whether, let us say, a  pair of chromo- 
somes from A or from B reached the opposite  spindle first. 
I t  is reasonable to ask whether A or B ends  first;  but  the 
answer to this question  can be given only if  we have arbi- 
trarily selected some  instantaneous event which occurs in 
cellular division as the  moment of the  last time slice of one 
cell and  the first  time slice of another. When this problem 
was raised by  me in  conversation with Professor Woodger, 
we were unable to determine any event, representable as 
instantaneous (with some degree of latitude, of course), 
which has unique occurrence in every instance of cellular 
division. It would seem, therefore, that, although  a  notion 
like ‘cell’ as presented in W is on  the surface both familiar 
and definitive, it may actually involve latent complications 
and ambiguities which tend to destroy its capacity for 
clarifying other scientific concepts. 

An even more  serious difficulty arises, I believe, from 
Woodger’s use of ‘dl’. In his Biological Principles, Woodger 
emphasizes that changes in the  foundations of physics are 
of concern to biology.20 He attempts, nevertheless, to define 
the notion of environment, 118*, in  terms of a primitive 
‘dl’, whose meaning patently must vary depending upon 
which principles of physics are accepted and rejected. Be- 
cause such acceptance and rejection is for the most part 
implicit in W, the problem is not easily to be solved by a 
mere selecting of axioms for ‘dl’. A given set of axioms for 
‘dl’ will probably be inadequate to differentiate signifi- 
cantly between one physical theory and  another. Should it 
be  adequate, however, the  appropriate development of the 
physical language needed in W ought to be made early, in 
advance of the use of ‘dl’ for  the explication of genetical 
concepts. Let us suppose, for example, that we assume  a 
classical field theory of mechanics. Then,  commensurate 
with our earlier rough description of ‘dl(x, y ,  z)’, where 
d/(x, y ,  z) ,  the object y ,  insofar  as mechanics is concerned, 
may suitably be taken  as the enlarged, hollowed cigar also 
mentioned. If a  different theory is assumed, however, in a 
universe where the local causal influence is not described by 
differential equations, y might be regarded as  the remaining 
physical objects in the  total  area of space-time having the 
same  starting and stopping moments as z. Or, if  we assert 
that  no influence is propagated  faster  than  a  certain speed, 
y might be taken as a kind of spatial-temporal  cone. The 
first time slice of z would be a proper  part of the cone’s 
beginning, larger end.  The last time slice of z would be 
identical with the cone’s last  time slice, and so on. 

For all these reasons, although the constructions at- 
tempted by Woodger are both interesting and suggestive, 
one  doubts  that such attempts to formalize areas of theory 
heavily reliant upon other  areas of unformalized theory 
can go far. Woodger’s work is,  of course, far more  sub- 
stantial  than  almost all similar efforts,21 the majority of 
which simply involve the sprinkling of a few logic symbols 
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here and there  in familiar scientific statements.  One  does 
not much clarify, for example, the science of star gazing, if 
one rewrites “every revolving planet has two poles” as: 

( x ) ( x  E RP 3 (Xy)(3z)[y  E PO . z E PO . x H y  . XHZ . y # 
z .  (u)(u E P O .  XHU . 3  . u = y v u = z ) ] ) .  

Hull 

The work of C. L. Hull (and his associates) has been 
notably subject to external criticism. In his most substantial 
logical publication, Mathematico- Deductive Theory of Rote 
Learning, a system is presented requiring sixteen extra- 
logical primitives and eighteen postulates with corollaries. 
The portion of psychological theory embraced is admittedly 
rather small, indeed almost infinitesimal when compared 
with the broad areas of mathematics formalized from rela- 
tively meager beginnings. It is not surprising, therefore, 
that some critics have expressed such reservations as, for 
example, “pseudo-clarity,” “too costly rigor,” “too costly 
clarity,” and so on.‘‘ 

It is easy to subject a  formal system to a kind of eyebrow- 
raising criticism in which one cites apparently damaging 
statistics. As in the case of Woodger, it is  of much greater 
interest to  probe  into  the why-and-wherefore of those 
statistics. Hull is subject, I believe, to the same basic criti- 
cism raised against  Woodger.  He  has chosen to formalize 
an area of theory heavily reliant upon  other  areas of un- 
formalized theory. Since that objection was elaborated in 
such detail for Woodger, however, we shall devote our 
attention in this section to a  different topic. The chief 
criticism we shall argue against Hull  (and many of his 
disciples) is that  he  has sought to mold his formal construc- 
tion too rigidly into a preconceived pattern. In so doing, he 
has endeavored to apply certain generally accepted, val- 
uable methodological principles outside their appropriate 
spheres of usefulness. As a result, his actual  formal  con- 
struction  has suffered. 

Hull  urges: ( I )  that “in any truly scientific system, all 
unobservables must be linked to one or more observables 
by unambiguous logical relationships;”’” and ( 2 )  that 
“qualitative”  postulates are not so satisfactory as  “quanti- 
tative” ones.e4 Ultimate appeal to “unobservables” and the 
use of “qualitative” language are, then, to be avoided so 
far as possible. 

In his most important application of logic to the theory 
of rote learning, however, Hull does not succeed in totally 
eliminating the unobservables from the language, which 
we shall call H. ‘Stimulus trace’, ‘excitatory potential’, 
‘inhibitory potential’, and so forth,  are all concepts falling 
within that category. He does  indicate  (perhaps motivated 
by Haldane’s  proposal that Woodger’s Axiomatic  Method 
should be rewritten, if possible, “in terms of observable 
phenomena only”)25 that much effort has been expended 
with that general purpose in mind. 

Various remedies have, in fact, been propounded by 
others. Koch, for example (in remarks directed primarily 
toward Hull’s earlier  “miniature” systems,”’ but applicable 
to N also), suggests that by the use of Carnap’s reduction 
sentencesz7 such concepts can be  defined operationally and 

the general difficulty alleviated.28 Unfortunately,  the latter 
has never been accomplished. 

But does  Hull fully appreciate  the problem? Einstein 
remarks, in reply to a  comment by Bridgman : “In order  to 
be able  to consider a logical system as physical theory it is 
not necessary to demand that all of its assertions can be 
independently interpreted and ‘tested’ ‘operationally’; de 
facto this has never yet been achieved by any theory and 
cannot  at all be achieved. In order  to be able to consider a 
theory as  a physical theory it is necessary only that  it im- 
plies empirically testable assertions in general. This  formu- 
lation is insofar entirely unprecise, as ‘testability’ is a quality 
which refers not merely to  the assertion itself but also to the 
co-ordination of concepts,  contained in it, with experi- 
ence.”y9 

Specifically, it is often asserted that the ideal scientific 
theory is one completely formalized, having only observ- 
ables or operationally defined concepts as extralogical 
primitives. As indicated above in the remarks by Einstein, 
this is an ideal involving a basic extension to  the essential 
function of a scientific theory, the latter being that it imply 
empirically testable assertions in general. If  we endeavor 
to make the connection between our primitive concepts 
and the  content of experience too immediate, as 1 believe 
Hull does, we  may totally divorce from our construction 
those very fundamental, underlying statements  and  theo- 
retical concepts which we normally expect any substantial 
theory to possess. I t  is, in fact, generally taken as  a sign of 
progress in a scientific theory that its more primitive lan- 
guage does not deal directly with every-day objects and 
“middle-sized’’ facts. I f  one does literally attempt  to  start 
“in the middle,” one cannot be expected to go far  on only 
a small beginning; and  the possibility of relating the 
specific area under advisement to other larger areas will 
be diminished. 

Consider H. Of the sixteen extralogical primitives, the 
following are typical : 

U1. Syllable  exposure (slex): A class of events each of 
which may  be described as  the stationary presence in the 
window of a memory machine of a syllable consisting of a 
vowel placed between consonants  in  a  combination  not 
used as a word by the subject. The syllable is supposed to 
be printed in such a way as to reflect clearly a  characteristic 
pattern of light rays. The subject may or may not be 
present. 

U 1’. “a is a syllable exposure” will  be expressed thus  in 
symbolic logic: a E slex. 

U4. Reaction (rn) : The subject’s act of speaking a syllable 
according to his previously acquired habits of speech. 

U4’. “a is a reaction of b” will be expressed thus  in 
symbolic logic: a  rn b. 

U6. Stin?ulus trace ( tr):  The stimulus trace of a syllable 
presentation (explained in Def. 17) is a progressively 
changing activity within the subject’s body corresponding 
uniquely to the syllable presentation in  question. The be- 
ginning of the activity coincides with the beginning of the 
syllable presentation in question, and  the end of the activity 
coincides with the  end of the syllable-presentation cycle 345 
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(explained in Def. 21) in which the syllable presentation 
occurs. 

U6’. “a is the stimulus trace of 6” will be expressed thus 
in symbolic logic: a  tr b. 

U16. Ending time (nd): The time, in seconds, at which 
an event ends. 

U16’. “ x  is the time at which a ends” will  be expressed 
thus  in symbolic logic: x nd a.m 

It  can be fairly said, I believe, that such primitives, 
typical of H, fall largely within what we might call roughly 
“experimental” language. Using such notions and those 
generated immediately out of them, we can, of course, make 
assertions that lead  almost at once to experimental situa- 
tions and problems. Postulate 1, for example, is as follows: 

A. During all syllable-presentation cycles of the learn- 
ing of any rote series, stimulus  traces ( 1  lstrs . . . 1 )  extend 
from  the beginning of every syllable presentation (s) 
through the remainder of the syllable-presentation cycle 
but no further. 

A‘. P E slpncy . a E C‘P . 3 .  E! tr‘a . bg‘tr‘a = bg‘a . 
nd‘tr‘a = cytm‘ P.al 

The immediacy of the language to experimental situa- 
tions may well run counter, however, to deductive and 
definitional fertility. In addition, it may be  difficult to link 
the language obtained with that of another  area of theory 
in which the experimental situation is somewhat different. 
It is not surprising, therefore, as we noted earlier, that the 
language H, with sixteen extralogical primitives and 
eighteen postulates with corollaries, embraces so limited 
an area of theory. 

Consider also Hull’s remarks concerning quantitative 
and qualitative postulates. He writes: “Since it appears 
probable that everything which exists at all in nature exists 
in  some amount,  it would seem that  the ultimate form of 
all scientific postulates  should be quantitative . . . The great 
reason why qualitative  postulates are so unsatisfactory is 
that they have so little deductive fertility . . . When the 
postulates can be  written out in  equations, or in words 
which readily generate equations, and especially when, in 
addition, the constants  making up important  portions of 
the equations are known from empirical determination,  the 
rich store of powerful devices which mathematicians have 
invented, at once becomes available.””z 

Postulate 13, typical of H, is as  follows: 

A. In  the learning of any rote series, any inhibitory 
potential (I,)  resulting from  any given massed practice de- 
creases with the passage of time ( t )  following the  termina- 
tion of such massed practice, the  rate of decrease at any 
time being proportional to  the  amount of inhibitory  poten- 
tial existent at  that time, i. e., 

I,(t) = I,ecdt 

where d is a  constant > 0, t is the time elapsed since the 
termination of the massed practice in question with the 
exception of that part of such time which may be occupied 
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Clearly, when one’s attention is restricted to those 
basic concepts out of which a language is generated, the 
distinction between “qualitative” and “quantitative” may 
well  be blurred. A substantial part of the language of 
mathematics  has been derived definitionally from such 
logical notions as  the truth-functional connective ‘neither- 
nor’, the universal quantifier, class membership, class ab- 
straction, and so on. It is not very meaningful, however, to 
characterize  the latter  as quantitative. Similarly, the axioms 
at  the very foundations of mathematics (in such a system 
as Quine’s Mathematical  Logic,% for example) are not 
easily so characterized. Yet it is from these very notions 
and axioms that  the numerous concepts and theorems of 
number and quantity, “that rich store of powerful devices 
which mathematicians  have  invented,” are generated. 

Even more elementary instances can be provided in 
which expressions apparently quantitative are defined in 
terms of expressions apparently qualitative, if it is, in fact, 
meaningful so to characterize the  parts of a formal system 
at all. Consider, for example, the fragmentary system H ,  
which follows. Reading ‘Axy’ as ‘ x  is part of y’ and ‘Bx’ 
as ‘ x  is a  circular  plane section’, we employ the elementary 
machinery of polyadic quantification theory. The objects 
of our universe are merely non-vacuous, closed point sets 
of a three-dimensional Euclidean space. 

300* Cxy =. Axy . Ayx 

( x  is the  same  as y ) .  

301* Dxy =. Axy .- Ayx 

(x is a  proper part of y) .  

302* Exy = Cgz)(Azx . Azy)  

(x and y have a  common  part). 

303* Fxyz = (u)(Aux =. Auy . Auz) 

( x  is a total common part of y and z). 

304* GX = ( y )  - DYX 

(x is a point). 

305 * H x  (EIy){ By . Ayx . (z)[Bz . Ayz .D AZX : GZ . 
Azx . 3  (3u)(Bu , Ayu . Azu . Aux)])  

(x is a plane). 

306* IX E ( 3 ~ ) ( 3 ~ ) ( H y  . HZ .- CYZ . FXYZ) 

( x  is a  straight line). 

307* J X  E .  -Gx . (Y)(Z)(H-V . FZXY . 3 .  Gt v Bz) 
(x is a spherical solid). 



308* KX E .  “Gx . ( 3 ~ ) ( 3 z ) ( B y  . ZZ . F x ~ z )  

(x is a  straight line segment, not  a  point). 

309* L X ~ Z  E. H x  . H.v . JZ .-  EX^ . ( 3 ~ ) ( 3 v ) ( G u  . GV . 
Fuxz . Fvyz) 

(parallel planes x and y are both  tangent to spherical 

solid z). 

310* Mxy =. Kx . Axy . (Zz)(Zu)(Lzuy. Exz . Exu) 

(x is a  diameter of spherical solid y ) .  

31 1 * Nxy = (~z) (Zu)(Lzux . Lzuy) 

(x and y are spherical solids of equal volume). 

312* Oxy = (Zz) (3u)(Mxz .  Myu . Nzu) 

(x and y are line segments of equal length). 

313* Pxy =. Kx . (3z)(Dzx . Ozy) 

( x  is a longer line segment than y).  

314* Qxy E .  Jx. A x y .  ( z ) ( J z .  A z ~  . 3 -Dxz) 

(x is a spherical solid part of y and  not a proper  part 

of any other spherical solid of y). 

315* Rxy = . Ky . Axy . ( 3 ~ ) ( 3 u )  { Quz . Mxu . (v )[Cv  . 
Avy. 3 (3w)(Zx’)( Qwz . Mx’w . Avx’ . Ax’y . (y’) 

(z’)(u’)( Qy’z . QZ’Z . - CY’Z’ . FU’Y’Z’ . 3 . NY’z’ . 
Gu’))l I 

(line segment y can be broken up  without remainder 
into segments equaling x ,  and x is one of the seg- 
ments in question). 

316* Sxy = (3z)(Rzx . Oyz) 

( x  can be broken up  without remainder into segments 

equalizing y in length). 

317* Txy = (3z)(Sxz . Syz) 

(segments x and y are commensurable in length). 

318* U X ~  E. K x .  Ky .- T x ~  

(segments x and y are incommensurable in length). 

319* VX,V = (ZZ)(EIU)[RZ~.  RUX . - CZU . O Z ~  . (v)(Evx 3. 
Evz v Evu)] 

( x  is twice as  long  a segment as y).  

320* Wxy = the reader may  fill  in at his pleasure 

(x is 237/871 as  long  a segment as y).  

Sample postulates of H‘ might be somewhat as follows: 

PI. (x)(y)[Axy = (z)(Exz 3 Eyz)] 

P2. (x)(y)(Zz)(Axz . Ayz) 

P3. (x)(y)[Bx . Dyx .3 (3z)(Dyz . Dzx)] 

P4. (x)(y)[Bx . By . - Axy . - Ayx .3 (z)(Fzxy 3 - Bz)] 

The capacity of a  formal  language to generate  problems 
which admit of numerical solution  does  not  require that its 
postulates be “quantitative.” The situation is akin to  that 
mentioned earlier. In order  for a physical theory to imply 
“empirically testable assertions in general,” it is not neces- 
sary that its individual postulates be independently inter- 
preted and tested operationally. Analogously, it is not 
requisite that  the postulates of a  theory be in the form of 
equations, in order  for  the theory itself to be  of such a 
nature  as  to  take advantage of existing symbolic techniques. 

Once  again,  Hull is assuming for his construction an 
ideal which,from  its  verynature,  can limit both the potential 
development and  application of the system in  question. I t  
is important to have equations with which to work,  but to 
take the latter  as  the rigid and perfect models for  the 
postulates of a formal language is to be restrictive in a 
meaningless fashion. Hull has decided too much in advance 
that which the actual process of formalization can itself 
best settle-namely, which type of primitive concepts and 
theorems will  yield the most satisfactory system. 

Conclusion of  Part I 
The attempts of Woodger and Hull to formalize scientific 
languages are probably the most  prominent which have 
been made outside of physical theory. The two projects are 
of great interest, but  neither is very much developed. In 
each case, the inability of the  author  to go further rests 
upon discernible grounds. Both have  undertaken to formal- 
ize areas of theory heavily dependent upon  other areas of 
unformalized theory. Hull has  also  sought to mold his 
formal  construction rather rigidly into a preconceived 
pattern. 

In Part 11, to be published at a later time, we shall ex- 
amine  some of the more  notable efforts to formalize physi- 
cal theory. I f  the criticisms advanced against Woodger and 
Hull are valid, special interest attaches to those efforts, 
since physics is the  natural science which underlies all 
others. 

In closing Part I ,  the  author wishes to thank J. H. 
Woodger and W. V. Quine, with whom many of these 
problems have been discussed. P. Bernays, A. Cobham, 
H. Cole, E. Hutton,  and R. Landauer have  made helpful 
comments. 
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