The Linear Hall Effect

P. J. Price

Abstract: A new method for handling the Boltzmann equation is used to obtain, without approximation, a

general formula for the linear Hall effect in a solid electronic conductor. Expressions for the conductivity in

no magnetic field and for the quadratic magnetoconductivity are also obtained. These formulas introduce

a vector mean free path, not in general parallel to the electron velocity, which is related to the velocity by

an integral equation. Some possible cases of the formula for the Hall effect are analyzed. The solution of

the integral equation for the vector mean free path is discussed, and methods of approximation are

proposed.
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Introduction

The mathematical problem of the solution of the Boltz-
mann equation for the free electrons arose at the founding,
by Drude and Lorentz, of the theory of electronic transport
processes in solids; and it has remained a prominent aspect
of solid state physics. While knowledge of the free states of
the electrons, and of the scattering transitions between the
states, was still very limited, crude methods of approxi-
mating the solution of the Boltzmann equation were appro-
priate. At the present time, however, detailed knowledge of
the ingredients of the equation, for many metals and semi-
conductors, is growing up rapidly, and increasingly refined
and extensive experimental data on the transport processes
are being obtained. Accordingly there is an interest in more
precise and more general mathematical methods.

The present paper describes an application to the gal-
vanomagnetic effects of a method which was found useful
originally in the theory of non-linear conduction (conduc-
tion in strong electric fields), but which evidently has a
number of potential applications. The method is explained
in a paper where it is used in the theory of thermal conduc-
tion by electrons.! (This paper will be referred to here as
“LN.”) The idea is to introduce a suitable integrating
factor so that the Boltzmann equation integrates to give
directly a formula for the flux (e. g. electric current) char-
acterizing the transport effect. The intermediate step of
solving for the electron distribution function, for the
“force” (e. g., electric field) in question, is bypassed. The
resulting formula gives the flux in terms of an average, over
the thermal distribution fy, of an expression containing a
new unknown, the “conjugate” of the magnitude (e. g.,
electron velocity) measured by the flux. This conjugate is
in turn given by an integral equation related to the Boltz-
mann equation. Something is gained in this exchange of
mathematical problems, however:
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a) The same conjugate is shared by more than one transport
effect (for example, by zero-field conductivity and linear
Hall effect: see Section 3).

b) A general expression, not subject to any approximations
beyond those implicit in the Boltzmann equation itself,
is obtained for the transport coefficient. From the form
of this expression, physical insights and definite conclu-
sions can be derived (see, for example, the discussion of
the linear Hall effect for general crystal symmetry in Sec-
tion 3),

c) The problem of solution of the equation for the conju-
gate is amenable to physical intuition in ways that the
analysis of the original Boltzmann equation is not. In
Section 5, a number of approaches to the problem of the
calculation of the conjugate to the velocity are proposed:
In particular, a minimum principle is used to obtain a
generalization of a well-known formula for the effect of
anisotropy in quasi-elastic scattering.

1t is proposed to call this technique “the integral method.”
In the present paper, formulas are obtained for the first

three terms of the power series for the conductivity as a
function of magnetic field: i. e. the terms proportional to
the zero’th, first and second powers of the field. The for-
mulas are completely general except that they assume that
the diagonal elements of the reduced electron density
matrix are given by the Boltzmann equation, and hence
they depend for example on the applicability of the one-
electron model. Therefore the present results might be
modified by correlation phenomena and by the unknown
influence of the effect which appears as a dependence of the
electron levels on temperature. The formula for the third
term of the expansion (magnetoconductivity), which is
derived in Section 4, introduces a further “conjugate™
which in general does not, apparently, reduce to an explicit
function of the conjugate of the velocity. Thus it appears
that the method does not lead, as the conventional relaxa-
tion-time approximation does,? to a formula for the con-
ductivity in a magnetic field of arbitrary strength: This
question has not, however, been studied further.

1. The phenomenological theory

The purpose of this section is to review the general phenom-
enological theory of conduction in the presence of a mag-
netic field, H, and to introduce the terminology and nota-
tion to be used. The phenomenological theory has been
discussed by Juretschke,* by Okada,* and by Keyes,> who
discuss in detail the situation for some specific crystal sym-
metries. The system of vector notation used here (which
is similar to that of Keyes) is explained in the Appendix,
where also some required formulas of vector algebra are
stated.

The theory presented in this paper, like kinetic theories
of transport effects generally, naturally yields formulas for
the electric current J caused by a given electric field E
(rather than E for a given J), and hence for the conductivity
6(H). The Onsager relation® for electrical conduction states
that”

é(H)~ = é(—H). .1
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Therefore the symmetric part of é is an even function, and
the antisymmetric part an odd function, of H. It follows
that we may write the antisymmetric part in the form

¢=H o, (1.2)
where the triadic ® is an even function of H and
DD = P, (1.3)

Then by Eq. (A2) of the Appendix we may express the
conductivity in the form (A3):

6=6—H-(Xz, (1.4)
where
=3P, (1.5)

Since ¢ and $ are even functions of H, the power series
for them are of the form

6(H)=(0)+HH: W+ . ... .. , 1.6)
BH)=8(0)+HH:Q+. ...... 1.7

In the following sections formulas for the first two terms
of (1.6), and for the first term of (1.7), are derived from the
first three terms of the expansion

J=(6(0)+H-®O0)+HH:W+. . ... )+E. (1.8)

According to (1.4), the relation between J and E is of
form

J=¢-E—H-3XE, 1.9)

where the second term on the right expresses the Hall
effect. The more conventional expression of the Hall effect
is, however, by the second term of the inverse relation

E=p - J+H-axJ, (1.10)

« being the Hall constant. (Again, the appropriate Onsager
relation requires that p and e« be even functions of H.)
In practice it is the coefficients of (1.10), rather than those
of (1.9), which are determined directly by measurements.
Therefore it is important to have available the formulas
which relate p and « to 6 and 3. These are given at once by
(A5) and (A6), and are

g= o Tt (1.11)
14-6:0H

e=—2bB9 (1.12)
D(1+3:0H)

where

o =H-3 H-B/D,

D=det. ¢

In zero magnetic field the Hall constant is
«(0)=8(0)- 6(0)/ D(0). (1.13)

When a=ae, and similarly for 3, 6 and g (these are
mutually consistent only for H=0), then there is a unique
scalar Hall mobility




uH=cB/o. (1.14)

In general, however, there is no unique way of defining a
dyadic Hall mobility. It might be defined as ¢é-@, Or as
co-B.

The Onsager relations do not require 3 (or «) to be
symmetric. If, however, 3 is not symmetric then a vector

25=300 (1.15)

may be formed from its elements; and s must be an even
function of H, since § is. Consequently s must correspond
to an inherent polarity of the substance. If an antisym-
metric component of 3 should exist in some conditions,
then (1.9) could be written in the form

J=6.-E—H - 3XE-+(HXs)XE. (1.16)

The contribution from the third term of (1.16) might be
referred to as a ““polar Hall effect.”

2. General resulis for galvanomagnetic effects

In this section some general results, to be applied in the
following sections, for galvanomagnetic transport phenom-
ena will be derived. The notation and method are as ex-
plained in Section 3 of LN. The distribution function for
the electrons is supposed to be expanded in a series

S=ftfitht e (2.1)

such that f, is proportional to the n’th power of the driving
force, which in the present case is the electric field E. Then
from the fundamental Boltzmann equation we obtain a
linear inhomogeneous equation for f; in terms of fo, the
Fermi distribution function:

e Oh_ ( € Vg -vfi(l—
iDaf1+E(V><H) 9p - \kT. E-vf(1—1). 2.2)
where the linearized relaxation operator 9y is given by

D)= I(I") {&(T) T ) —g (DT @.3)

Here T stands for all the variables specifying the electron
state and I(I") for integration, [d%p. ... ... , over pseudo-
momentum together with summation over the other vari-
ables, band index ¢ and an electron spin component 4.8
The charge of the electron is —e, € is its (Hartree-Fock)
energy, and v is its group velocity J¢/dp. The collision
function T(T';I") is the usual one, S(I';I'") (see eq. (24) of
LN), with a “correction” for Fermi statistics (for when
fy is not «1), and is defined by eq. (30) of LN. In the
conditions for which (2.18) and (5.4) hold, T is given by
eq. (31) of LN:

st

As in LN we define the relaxation time, 7, by the equation

%EI(F’)T(I‘ T, 2.4)

and we define for any function ¥(I') a conjugate function,
Y1(I"), by the equation®

YHID) — )T XTI = ¢(D). 2.5)

The following consequence of (2.4) and (2.5) is the funda-
mental theorem of the integral method: if Y(I") and g(I")
are any functions such that the double sum-integrals in-
volved are uniformly convergent, then

I'yg=—Iy17Deg. (2.6)

The use of the theorem is illustrated by the applications in
the following sections and in LN,

To obtain the required results we further expand f; in a
series

fi=fotfintfietoooonn @7

such that f1 ,, is proportional to the m’th power of H, and
set up corresponding series for the electric current density
J= —eh31 vf, so that

Joum = — o3[ yf,, . (2.8)

We seek to calculate J4.0, JA.D (Section 3) and J@2
(Section 4), and hence are concerned with f; o, f1,1 and f3,2,
From (2.2) we find

Dofr,e=(e/kDE-vf(1—1); 2.9
iDOfl,m:(e/c)H'gfl,m—l, m> 1. (2.10)

Here the differential operator g is the same as'® Herring’s
v and Wilson’s Q/#A2:

g=vXd/dp, 2.11)
and hence
(vXH)-9d/dp=—H-g.

The result of operating with g on a magnitude which
depends on p only through being a function of e is zero.
For example, g/fo=0. Also, as may be shown by “integration
by parts”,!

I ¢(gh)=—1 Y(gd). (2.12)
From these two rules follows the further result
[ogyl=—-[¥ gl (2.13)

where, as in LN, we introduce the convenient “square
bracket” notation

o lf (1 —fo =[] (2.19

A “flux> for the electron distribution disturbed by the
driving force E has the form of the density, A3I)f, of a
one-electron magnitude ¢(I')., To calculate the term
A 3Ryf1 n, we make use of the foregoing results to transform
it to an expression of form A—*R)'f} .._1, hence in turn to
one of form A3l fi . », and so on down a ladder ending
with an expression of the form (2.14). For the final stage,
we apply the general result obtained by substituting (2.6)
in (2.9) with g=f) :

Hf o= —(e[kTYE- If(1 — fo)vryt. 2.15)

From (2.8) with m=0 and (2.15) we have, for the conduc-
tivity in zero magnetic field,
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8(0)=8(0)=(e/kT)1v], (2.16)
where
1=vtr. 2.17)

The vector 1 may be called the mean free path for electric
currents. It was shown in LN that if the crystal substrate
which scatters the electrons is in thermal equilibrium, so
that the detailed balance theorem applies to the electron
state without reference to any other variables, then

Wrotl=[ory1] (2.18)

It follows from (2.17) and (2.18) that [Iv]l=[vl]: that the
dyadic (2.16) actually is symmetric, and hence that the
result obtained here for ¢ in zero magnetic field satisfies
the Onsager relation (1.1). The other Onsager relations for
electric current and heat current in zero magnetic field
were also found in LN to be consequences of (2.18).

By applying (2.18) to (2.15) we obtain the formula

h=*Wfi0=—(e/kT) ¢ 11-E. (2.19)
On the other hand, for m > 1 we have, by (2.6) and (2.10),
Hfim=—(e[OH-InYigfi m

and hence, by (2.12),

Hofim= (el N - If 1, mrg(r¥1). (2.20)

From (2.19) and (2.20) we obtain the second of a sequence
of relations of which (2.19) is the first:

i hfia = —(e[kT)e/cH -[(g(r¢y1)) 1]-E
=+(e/kT)e/c)H:[r}Tg1]-E. (2.21)

This result is applied in Section 3 to the calculation of the
Hall effect. To obtain the third relation of the sequence we
apply (2.20) twice. Then, for m3 2,

1yfi m=C(e/c)* H-If1,m_2 g(TAT),

where

A=H-g (r¢7).

Therefore, by (2.19),

3 Ryf1,.= —(e/kT Xe/cy* H-[(@(rAT)) 1]-E.

By (2.13) and (2.18),

[(e(-AD) 1]=—[7ATg 1 ]=—[rN(g D]

and hence, finally,

2
tfa= {(S) HRUr (v ))E DT]-E. 2.22)
This last result is used in Section 4 to calculate the mag-
netoconductivity.

When ¢ = —ev, (2.19), (2.21) and (2.22) become the first
three terms on the right of (1.8). If, on the other hand, we
substitute ¢ =ev they become the first three terms in the
expansion of the energy flux density, and so represent the
Peltier and Ettingshausen effects in a weak magnetic field.
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3. The linear Hall effect

The linear Hall effect is given by J®.1, By (2.8) we have, on
substituting ¥ =v in (2.21) and making use of (2.17),

JOD=(ekT)e/c)H-[(gD1]-E
and hence, by (1.8),
D(0)=(kT)(e/co)(gD 1] 3.1

We may verify from (3.1) that H-®(0) is antisymmetric,
as it should be, since by (2.13)

[(ghil=—[gD1]e>.

By (3.1) and (1.5), the linear Hall effect is given by the
dyadic

B(0)=1(e*/kT)(e/o)l(g DX1]. (3.2)

Eq. (3.2), together with the definitions of its terms, is the
central result of this paper.

We now consider the consequences of some special cases
of the functions e(I') and I(T"). If v and vt are parallel, and
hence v and 1 are parallel, for all of the range of I" contrib-
uting to the sum-integral, then (3.2) reduces to

BO)=H(e¥kT)(e/o) IXyX1] (3.3)
where vy (Keyes’ a/m) is the inverse mass dyadic:

_ 0%
=50 3.4)

Since v is symmetric, the dyadic (3.3) is symmetric. If v is a
constant (for example, in the range of T' giving the contri-
bution to  from the neighborhood of a simple band-edge
point in a semiconductor or semimetal) then (3.3) reduces
to

sO=1 ()@ y- =111 3.5

(where the left-hand side is the contribution from, and the
sum-integral on the right-hand side is taken over, the range
of T' for which ¥ has the given constant value). The com-
ponents of the tetradic are readily calculated for rectangular
cartesian axes parallel to the principal axes of v. For
example, the (i, /, k, k) component is —v;;and the (G, k, i, k)
component is +v ;. If the principal axes of [ 11] are in the
same directions as those of ¥, we then have

(XY XT)ii= =7l Bl =yul 1], ete.

With 1 parallel to v, we might have written

I=1yv,

or

vi=(ri/)v (3.6)

(the subscript stands for “diffusion”). In the theory of
Jones and Zener,'? (2.2) is solved by assuming that D,f;
may be replaced by —fi/r; and if the diffusion time 7,
be substituted for 7 in this assumption then the result (3.3)
is obtained. The foregoing analysis (a) discloses the actual
condition for a result of the form (3.3) to hold; (b) provides




a general expression for the diffusion time, for this case;
and (c) shows that the same diffusion time, and the same
condition for its application, apply for 3(0) as for ¢(0).

When v and v’ are not parallel it would be natural to
generalize (3.6) by making r,; a dyadic:

I=7;-v. 3.7

Dumke!? and Herring and Vogt!* both introduce a tensor
relaxation time. Dumke treats only conduction without a
magnetic field (i. e. he calculates 6(0)). He writes

fi=—(e/kT)f(1—f)E =V,

which is permissible and correct in general, and gets an
equation for the components of = which appears to be
equivalent to (2.5) with y =E-v. Herring and Vogt include
the effect of a magnetic field but introduce a tensor relaxa-
tion time by an assumption. They expand f}, in the neighbor-
hood of a simple band-edge point, in spherical harmonics
of v¥*=+"t.v and then assume that the term transforming
like v* (v*¢®(e), say) satisfies

'ZDqu(”V* = _¢(1)1HV71 Lv¥,

Since J depends only on this term, they obtain expressions
for the terms of (1.8) as functions of v and =;-. They also
give an expression (their eq. (11)) for the components of
~yy in certain conditions. From the point of view of the
present paper, it would not be appropriate in the most
general case to introduce a dyadic relaxation time by the
relation (3.7), since the relation does not uniquely define
=, but merely imposes three conditions on its components.
However, where the relation of the functions 1(I"), v(I")
allows it we could partially predetermine our =4 by assum-
ing fixed directions for the three principal axes, the same
over the whole region of the variables I' involved in a
particular calculation;'® and then the three magnitudes
specifying =, in these conditions are uniquely given by
(3.7), and conversely they uniquely determine 1. Both
Dumke and Herring and Vogt make this assumption of
fixed principal axes, which is appropriate to their calcula-
tions. The transformation of our results—for example
(3.2)—to the form obtained by substituting (3.7) with
fixed principal axes for =, is laborious but straightforward.
Here we just examine the special case where v is constant
and I(T") is of the form

1=7(D)v-v (3.8)

with v a fixed constant tensor (or, in other words, all the
components of <4, (3.7), maintain fixed ratios to each other
as they vary with I"). Then

@) XI=1vX(y- v~ X¥)-(+'V).

On substituting this result in (3.2), and taking the dyadic
function of v and + outside the sum-integral, we find

B(0) = He¥/kT)(e/)®:[ 1T ], z
where I'=r'v and 3.9
=—((v"X )y B, S

This result generalizes (3.5) by substituting @ for the cor-
responding tetradic there. If v is symmetric with principal
axes parallel to those of ¥, then (v“X %)= —Z; aViiVis.
We then have, for the non-zero components of @,

Oiiji= —YmV ;e etc., and O:jii=tYiViiVks

etc. These results are simple generalizations of those for
(3.5).

The other special case of (3.7) which we consider is
where =, is a function of e only, in its dependence on p, and
is symmetric. Then the derivative of ¢, with respect to p
makes no contribution to gl. Consequently

B(0) = Uk T Xe/)v X v TaXTa V] (3.10)
This is the formula appropriate to the approximation
(5.16).

The general result (3.2), expressed in terms of rectangular
cartesian components, reads:

2
B(O)‘L]=%(%,) (%) ErZsEtzu Ei?‘-s E]'lu ['Ur(£lt)[u]-

On specializing to cubic symmetry we obtain, for the Hall
mobility,

pH = efv (4011 dpp—1 00/ p) v ], (G.1D

where 7>k, (Here uf is defined as in (1.14) so that it may
have either sign, the negative sign being usually associated
with “electrons” rather than ‘“holes.”) When, as for (3.3),
1 and v are parallel, (3.11) reduces to

pl =efl fyy—1 ’Ykk]/[li‘lfi]- (3.12)

4. Quadratic magnetoconductivity

Before calculating W (see eq. (1.8)) explicitly, we note a
general formula for the effect of a magnetic field on con-
ductivity which may be obtained from (2.2) and (2.6). On
multiplying (2.2) by A~*r¢T and operating with I we obtain

W3- (efk Ty vl- E=A"3%(e/c)H - HgryT) f1. @.1n
When ¢ = —ev, (4.1) becomes
(6—6(0))-E= —(e*/c)H-h*I(g]) /1. “.2)

The right-hand side of (4.2) is proportional to E, and
represents both the Hall effect and the magnetoconduc-
tivity.

From (2.22) with ¢ = —ev we have

W= — (e kT )e/c)* [7(g 1Ng D], 4.3)

By making use of the Onsager relation (2.18) together with
(2.22), we would have obtained, instead of (4.3),

W= —(e/kT)efc)* [r(g Dig 116D @.4)

Actually (4.4), rather than (4.3), is the result that would
have been obtained if no use at all of (2.18) had been
made;® and we adopt it here as our standard formula in
preference to (4.3). The result for v constant [as in (3.5)],
andl = r4(e) v, is

W= (G) ey =] “3)
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When the result (5.22) of the following section applies,
we have

[rgDig 1 ]=[v-xs Xy s vXv il 4.6)

The contribution to W from a region of the zone in which
v is constant (i. e. from one valley) is then given by the
contribution to [e 7; ©; 72]. When, as is to be expected, the
principal axes of =, and v are parallel in the same valley,
the contribution from that valley to V¥, (where the
coordinate axes are chosen parallel to the principal axes) is

2 2
-g %,(Z) ZoE iknZ i Y Y 1Y nal €TET 1T ). 4.7
For Boltzmann statistics ( fp<<1) this is evidently the same
result as Herring and Vogt’s (reference 14, eq. (20)) with
= v replaced by <.(e).
The form of W for a cubic crystal is determined by
the result given by Seitz (reference 2, eq. (1)) as

HH: W =gH*+vyHH-6(H %i+ H i+ Hkk), 4.8)

where i, j, k are unit vectors parallel to the three crystal
axes and B, v, & are scalar parameters specifying W" in this
case. By comparison of (4.8) with (4.4) we find

B=Aiu;

v=AutAiii (4.9
B+v+é=Aiuii

where

Amnrs = (62/k T)(e/c)2[‘r(gmln)'rg7[s]-

For an isotropic region of a band, with y=¢/m*(¢) and
1=Td(€)‘r',

g l=(rs/m*)vXe.

Therefore, for the contribution to W from such a region,
with m* a constant, we have from (4.9)

6=0, g
B=—v=—%([kT)e/m*c) r(rav)t - 74¥].

If in addition the scattering is elastic, the expression in the
square bracket of (4.10) is equal to v?r;%. Then (4.10)
becomes a special case of the result given by (4.7).

(4.10)

5. Calculation of the vector mean free path

The foregoing prescription for the calculation of the
transport coefficients ¢(0), 3(0) would not be complete
without some indication of how the ‘“vector mean free
path” KI") may be obtained in practice. The evaluation of
the magnetoconductivity constant ¥, eq. (4.4), requires
the calculation of (g )t also. Therefore we have to consider
the solution of (2.5) for Y. The solution is not unique, but
any two solutions can differ only by a/7, where a is
constant (or piece-wise constant, as described below). To
prove this statement, we let two solutions of (2.5) be ¢ T
and ¢T4+X(T)/7.

Then

KT —XT"NTI ;1) =0. (5.1
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On multiplication by 2X(T") f(TYW(1 —f«(I")), and summa-
tion-integration over I', (5.1) becomes

IMITHXT)=XT"N2R(T;T")=0. (5.2
Here R is the function defined in LN,
R Iy =f(D)A—=f(I)TA;T), (5.3)

and we have made use of the symmetry property
R(I';T) = R(I";D), (CX))

which follows from the detailed balance principle. Since
R0, (5.2) cannot be satisfied unless X(I'")=X(T") for any
two points I', I, connected by scattering processes. Such
pairs of points must form chains which either link to-
gether the whole domain of T or else divide it into a set of
sub-domains which are not connected with each other by
any scattering processes but in each of which all points are
linked together. Therefore X must be constant in each
domain, but may have different values in different domains
(be piece-wise constant). The replacement of Yfr by
Y174X then has no effect on the value of the right-hand
side of (2.6); and therefore the results of Sections 3 and 4,
deduced from (2.6), are unique.’” One may verify this in
each specific case, for example on adding a constant vector
to 1(I') in (3.2) and (4.4). Obviously, this conclusion is
related to the uniqueness of the solution of (2.2) for f.
Eq. (2.5) may be written as

(1—-ont=y, (5.5
in terms of the operator O introduced in LN and defined by
O =1(I")T(I';I")r(I")p(I"),

or alternatively as

(1=t =1y, (5.6)
in terms of the operator £ defined by
Lop=r(I)IIT)TT;I)H(17).

A solution of (5.5) is

Yr=(14+04024....... W, 3.7
provided the series converges; and similarly (5.6) is in-
verted by the operator 1+£+£2+. . ... .. For fi«1

and with scattering by acoustic phonons alone, in the
neighborhood of a simple band-edge point,’”® one may
expect to find, in some cases, that

Ovv. (5.9)
When (5.8) is satisfied, the series solution
vi—v=0v40+....... 5.9

should converge rapidly, since one would expect to find
O« Ov, etc., at the same time. On the other hand, for
scattering predominantly by impurity ions (5.8) may be
far from the truth, according to present ideas,' since small
angles of scattering may be very probable. There is in fact
no obvious reason to expect the series (5.7) to converge
in all possible cases. The natural physical interpretation of




the successive terms of the series (5.9), where it converges,
is as giving the effect, on the transport constants, of per-
sistance of velocity after one,two, ... .... etc. collisions
following an initial free path.?

There is an especially simple solution of (5.5) if (O)/y¥
is unchanged when operated on by O. In this case

=4/ — (o). (5.10)

One would not expect (5.10) to be valid unless the change in
energy on scattering is negligible, since otherwise there are
in general two distinct sets of final states connected to a
given initial state by scattering. If the scattering is virtually
elastic, and if the Brillouin zone has spherical symmetry
(¢,7, etc. are functions of p only, in their dependence on p),
then we have, as a special case of (5.10), the standard
result?: 20

Td= T/(l - K): }
Ly=«k(D)v

where (5.11)

and 7,4 is given by (3.6). (The two possible definitions of «,
in terms of £ and of O, are equivalent here; but we shall
find below that when there is a distinction it is the above
definition, in terms of £, that we want.)

For the problems in the theory of the transport effects
posed by actual solids, the scattering probability function
S(T'; ) is frequently very complicated. Since there is the
prospect of the scattering function becoming known reli-
ably in detail, for some of these cases, it is important to
have methods of getting good approximate solutions of
(5.5), or (5.6), systematically and without losing touch
with intuitive ideas about the result. One such method may
be provided by the following minimum principle:* Let

W(p)=

I NST)— (I R ;T) =4I fi(1— o), (5.12)
where R is given by (5.3). Then if

p=npt, (5.13)
where ¢/ satisfies (2.5),

W(é-+x)— W () =II)(I)(xX(T)—X(I")*R(T;)

for any arbitrary function X. Therefore W is a minimum
when ¢ satisfies (5.13) (and is the same for any two solu-
tions, ¢1/7, ¢o/7, of (2.5) ). The minimum value of W is

=2InyNYf1—fo).
It follows that the functional
W () =IO —h(T)2RT;T)
—4Ih-vf(1—£) (5.14)

is a minimum when h(I") =1. Alternatively, for an arbitrary
direction in space the functional

Ui=(e/kT)2hwi— i/ (1= L)hi] (5.15)

has a maximum of ¢;,(0) when A;=/{;. It therefore gives a
lower bound to the (i, /) component of ¢(0), for an arbitrary

function /(T"). It should be noted that this property of the
maximum of (5.15) guarantees that successive improve-
ments in the solution for 1, indicated by reductions of
(5.14) or increases of (5.15), correspond to successively
more accurate values of 6(0), but that we have not proved
that the same guarantee applies for 3(0). It seems reason-
able to expect, however, that variational solutions for 1
may be obtained which give good values for 3(0) along
with good values of 6(0).

The minimum principle leads to a generalization of the
solution (5.11) for the more realistic conditions where the
Brillouin zone does not have spherical symmetry but
where the change in electron energy on scattering still is
negligible. We set

lLi=7ev; (5.16)

and seek the “‘best™ solution for 7. The result is
ri=v2[@AH1=x)[7), }

Lv;=x,)v,.

where ¢.17

The bar in (5.17), as in LN, signifies averaging over a
constant-energy ‘‘surface’:

W) =I(TWS( —e()), (5.18)

where § is Dirac’s function. For a simple band-edge neigh-
borhood with + constant, (5.17) reduces to the result given
by Herring and Vogt (reference 14, eq. (11) ). 1t should be
noted that it is nor assumed in the derivation of (5.17) that
7 is a function of ¢ only. Solutions (5.16), (5.17) of (2.5)
may be obtained, with consistency, for three directions but
not more than three. The three solutions may then be in-
corporated into a dyadic z4(e) which gives I in terms of v
by a relation of the form (3.7). Different dyadics =4(e) will
be obtained for different choices of the three directions,
and obviously the *‘best’ choice could be found by mini-
mizing (5.14); but one would expect the correct choice to
be usually clear from the symmetry of the energy “surface.”

The solution of (2.5) for 1 obtained in the preceding para-
graph may be generalized to take into account changes in
e on scattering. The best solution, according to the mini-
mum principle, of (5.16) for 7.e) is that given by the
integral equation

@)= JZ{e;€)T(€)de =07, (5.19)
where

Z (ese)=

IMII)5(er— e(IN)d(e2— (TN (DT AI7). (5.20)

Thus, at the expense of the approximation (5.16), eq. (2.5)
is reduced to a one-dimensional integral equation. (To gen-
cralize (5.19) for 7, a function of ¢, ¢ and ¢, one just
replaces I(T), I{I'), in (5.18) and (5.20) by [d%p.......
and fd%' ........ ) If the change of energy on scattering,
and hence the “width” of the kernel Z.(e;€’), is small
enough, we may replace 7{¢) by 7:{¢) in the second term
on the left of (5.19). The ordinary algebraic equation for 7;
then obtained is identical with (5.17). For n-germanium
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and n-silicon, at ordinary temperatures, intra-valley scat-
tering by acoustic lattice vibrations may be taken as elastic
in calculating J@, but for intra-valley scattering by optical
modes and inter-valley scattering the energy change may
not be neglected, Herring and Vogt!" point out, however,
that, whereas intra-valley scattering by acoustic modes is
virtually “conserving”, the rest of the scattering by lattice
vibrations is virtually “randomizing”: it has small per-
sistence of velocity. Thus, according to this view, we may
split the scattering function into two terms,

T= Tc+ Tn

such that T(T";I) connects states for which, as in deriving
(3.17), we may take e(I')=¢(T"), while T, has the property

IT)TAT;Tv(IY) L v(I)/ (D),

where 7, is defined analogously to (2.4). Since ¢ is virtually
constant (though differing from its initial value) among the
states in a given valley to which an electron is scattered, by
any one lattice mode, from a given state, we may to
the same approximation drop the ‘“‘randomizing” con-
tribution to Z,. We then obtain from (5.19) the solution
(53.17) with 221 —«,)/7 replaced by

@3 7)—v (D) TAT ;T 1),
Therefore

1 _1 (WiZ/TT)’

e 1 7 2

T

where 7. is the value of 7, according to (5.17) if the “ran-
domizing” collisions are neglected altogether. But, for the
same conditions, 7, is virtually a function of e only.®
Hence, finally,
1_1,L (.21
Tis T4 Tr

The result on which (4.6) is based may be derived from
the foregoing considerations, If 1=v-z(e), then

gl=vXy-z4e).

Now, « is a constant of intra-valley scattering, but of course
changes in the scattering from one valley to another. If
inter-valley scattering is randomizing, however, these proc-
esses in which ¥ changes make no contribution to the
difference between (gl) and (gl)f. Similarly, since intra-
valley processes are either randomizing or conserving, z.(¢)
may be taken as constant. Consequently (gl)t is obtained
on replacing v by vT in gl:

@D =v-2aXy- wafT. (5.22)

In metals at low temperatures the change of ¢ in scatter-
ing is ~kT. Then the width of the kernel Z; in (5.19) may
not be neglected. For intermediate temperatures it might
be approximated by taking the first two or three terms of
the Taylor series for 7 ¢)—74¢). A linear differential
equation of first or second order for r,(e) would result.

It is obvious that perturbation methods may be devel-
oped to approximate solutions of the linear inhomogeneous
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equation (2.5). Suppose, for example, that ¢, is believed
to be a good approximation to y*. If

Y=yl
then we have
(1—0Wt =¢—(1— 0}t (.23

If ¢ty is in fact a good approximation to y¥, the right-hand
side of (5.23) will be small and hence the solution, ¥,
may be expected to be small compared to y¥f,. Then an
approximate solution of (5.23) may be good enough. There
is no reason, however, to expect a series solution of form
(5.7) for (5.23) to converge rapidly although the corre-
sponding solution of (2.5) did not. If the series solution of
(2.5) does not converge satisfactorily (for example, if the
scattering is predominantly through small angles and we
are seeking a solution for 1) it is natural to try as a first
approximation the function

Pro=by, 1
where (5.24)
b(1—OW=y. 5

(This “brute force solution” is just the result (5.10) pro-
posed irrespective of whether the necessary condition, that
(OY)/¢ is unchanged when operated on by 0, is satisfied.)
Substitution of (5.24) into (5.23) results in the equation

(1— Ot =0(by)—bOY. (5.25)

Thus ¢1, is proportional to a measure of the violation of
the condition for (5.10) to be an exact solution. If the con-
dition is fairly well satisfied, so that the right-hand side of
(5.25) (1, say) is small compared to ¥, and if application of
the procedure a second time to solve (5.25) leads to an equa-
tion of which the right-hand side is in turn small compared
with ¥, a rapidly converging sequence might be obtainable.
It could be useful in practice, if a sufficient knowledge of
T and 7 were available in suitable form, even though the
general term could not be reduced to a simple algebraic
expression, like the general term of (5.7). Of course one
could start instead from the approximation, ¢, given by
(5.16) and (5.17) or (5.19).

A different kind of situation for which perturbation
methods are appropriate is where a good solution of (2.5)
is known for a scattering function, 7,, which is an approxi-
mation to the actual function 7. Thus we would know the
solution, ¥, of the equation

Ylo— Opto=1, (5.26)
and require the solution of
Yyr—oyt=y (5.27)

where O~0,. The difference between O and O, might be
due to scattering processes not included in T, (for example
to inter-valley scattering or to a small amount of scattering
by optical lattice quanta or by impurities); or the difference
might be due to the effect of a shear strain on inter-valley
scattering.” Let




yi=y¢foto,

0=01+8.

Then, by (5.26) and (5.27), ¢ is given exactly by

d— O =Pyt (5.28)
If ©~0, then ¢ is approximately equal to ¢, where

¢1— Oopr =Py, (5.29)
Eq. (5.29) gives the first term of a series solution of (5.28),
dr1t+dot. ... , of which the general term satisfies
Dry1— Oopni1=CFo, (5.30)

forns 1.
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Appendix: vector notation and formulas

The notation and terminology used here for vector calculus
are those of Gibbs,?* with the following modifications and
extensions: Vectors are denoted by boldface latin letters,
dyadics by boldface lower-case greek letters, and triadics,
tetradics, etc. by boldface capital greek letters. The unit
dyadic is e:

a-g=¢-a=a, w-e=t¢-a=q, €tC.

The unit skew triadic is 2= —eXe. It has the property
(ab):E=a-E-b==E:(ab)=bXa,

and its rectangular cartesian components =, are usually
denoted by e; 5. The transpose of a dyadic e is «™:
(ab)~=ba.

The vector of a dyadic a is

a0 =—a:E.,

The symmetric and antisymmetric (“selfconjugate” and
“anti-selfconjugate”) parts of a dyadic « are

@=ete”), a=Ha—a).

The extension to polyadics of the notation for transpose
and vector of a dyadic is indicated by the examplzs follow-
ing:

(abc)@~® =ach,

(abed)~® =cbad,

(abed)®® =abXcd,

ZO®=2e,

A complicated succession of transposes is also indicated
(see eq. (4.5) ) by specifying the final order of the factors of
the component polyads. E. g.

(abede)®524) = cebda.

If a dyadic « is antisymmetric then® it is equal to
—1a®™ Xe. Therefore, for a general dyadic a,

&=a:(38Xe). (A1)
Similarly for a triadic if @@= —® then
®=—-1PODXe, (A2)

and so on. According to (Al), a general dyadic may be
expressed in the form

a=0+tXe, (A3)
where » is symmetric. Let its inverse, if it exists, be
=0 —t'Xe. (A4)
Then it can be shown that

, =¢.)‘1D+tt AS
T DFtet’ (A3)
p—_to (A6)

" Dttot’
where D=det.». These last results are used in Section 1 to
convert the general expression for conductivity into one for
resistivity.

The Einstein summation convention is not used in this
paper. Repeated indices are summed only where it is
explicitly indicated.
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