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general  formula for the  linear Hall effect in a solid electronic  conductor.  Expressions for the conductivity in 

no magnetic field and for the quadratic magnetoconductivity are also obtained. These formulas introduce 

a vector mean free  path, not in general parallel to the electron velocity, which i s  related to the velocity by 

an integral  equation. Some possible cases of the  formula for the Hall effect are  analyzed. The  solution of 

the integral  equation for the vector mean  free path is  discussed, and methods of approximation are 

proposed. 
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Introduction 

The mathematical problem of the solution of the Boltz- 
mann equation for  the free electrons arose at the founding, 
by Drude  and Lorentz, of the theory of electronic transport 
processes  in solids; and it  has remained a prominent aspect 
of solid state physics. While knowledge of the free states of 
the electrons, and of the scattering transitions between the 
states, was still very limited, crude methods of approxi- 
mating the  solution of the Boltzmann equation were appro- 
priate. At the present time, however, detailed knowledge of 
the ingredients of the equation,  for many metals and semi- 
conductors, is growing up rapidly, and increasingly refined 
and extensive experimental data  on the  transport processes 
are being obtained. Accordingly there is an interest in more 
precise and more general mathematical methods. 

The present paper describes an application to the gal- 
vanomagnetic effects of a method which  was found useful 
originally in the theory of non-linear conduction (conduc- 
tion in strong electric fields), but which evidently has a 
number of potential applications. The method is explained 
in a paper where it is used in the theory of thermal conduc- 
tion by electrons.’ (This paper will be referred to here as 
“LN.”) The idea is to introduce a suitable integrating 
factor so that the Boltzmann equation integrates to give 
directly a formula  for the flux  (e.  g. electric current)  char- 
acterizing the  transport effect. The intermediate step of 
solving for the electron distribution  function, for the 
“force” (e.  g., electric field)  in question, is bypassed. The 
resulting formula gives the flux in terms of an average, over 
the thermal distribution R, of an expression containing a 
new unknown, the “conjugate” of the magnitude (e.  g., 
electron velocity) measured by the flux. This conjugate is 
in  turn given by an integral equation related to the Boltz- 
mann equation. Something is gained in this exchange of 
mathematical problems, however: 239 
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Hall effect: see Section 3). 
b) A general expression, not subject to any  approximations 

beyond  those implicit in  the Boltzmann equation itself, 
is obtained for the transport coefficient. From  the form 
of this expression, physical insights and definite conclu- 
sions can be derived (see, for example, the discussion of 
the linear  Hall effect for general crystal symmetry in Sec- 
tion 3). 

c)  The problem of solution of the  equation for  the conju- 
gate is amenable to physical intuition  in ways that the 
analysis of the original Boltzmann equation is not. In 
Section 5 ,  a number of approaches to  the problem of the 
calculation of the conjugate to the velocity are proposed: 
In particular, a minimum principle is used to  obtain a 
generalization of a well-known formula for the effect of 
anisotropy  in quasi-elastic scattering. 

It is proposed to call this technique “the integral method.” 
In the present paper, formulas are obtained  for the first 

three terms of the power series for the conductivity as a 
function of magnetic field: i. e. the terms proportional to 
the zero’th, first and second powers of the field. The for- 
mulas are completely general except that they assume that 
the diagonal elements of the reduced electron density 
matrix are given  by the Boltzmann  equation, and hence 
they depend  for example on  the applicability of the one- 
electron model. Therefore the present results might be 
modified by correlation phenomena and by the unknown 
influence of the effect which appears  as a dcpendence of the 
electron levels on temperature. The formula  for the third 
term of the expansion (magnetoconductivity), which is 
derived in Section 4, introduces a further “conjugate” 
which in general does not, apparently, reduce to  an explicit 
function of the  conjugate of the velocity. Thus it appears 
that the  method does not lead, as the conventional relaxa- 
tion-time approximation does,2 to a formula  for the con- 
ductivity in a magnetic field of arbitrary  strength:  This 
question has  not, however, been studied  further. 

1. The phenomenological theory 

The purpose of this section is to review the general phenom- 
enological theory of conduction in the presence of a mag- 
netic field, H, and  to introduce  the terminology and nota- 
tion  to be used. The phenomenological theory has been 
discussed by Juretschke,3 by Okada,4  and by Keyes,5 who 
discuss in  detail the situation  for  some specific crystal sym- 
metries. The system of vector notation used here (which 
is similar to  that of Keyes) is explained in the Appendix, 
where also some  required  formulas of vector algebra are 
stated. 

The theory presented in this paper, like kinetic theories 
of transport effects generally, naturally yields formulas for 
the electric current J caused by a given electric field E 
(rather than E for a given J), and hence for  the conductivity 
d(H). The Onsager relationG for electrical conduction  states 
that7 

1 240 d(H)” = d( - H). (1.1) 

that we may write the antisymmetric part  in the  form 
A 
d=H.@, (1.2) 

where the  triadic cf, is an even function of H and 

@(2-3) -@. (1.3) 

Then by Eq. (A2) of the Appendix we may express the 
conductivity in the form (A3): 

d=d-H.@X&, (1.4) 

where 
@ E  1@(2X3). I (1.5) 

Since 2 and @ are even functions of H, the power series 
for them  are of the  form 

;(HI= ~(o)+HH:w-+ . . . . , ., (1.6) 

@(H)= @(O)fHH:Q+. . . . . . . (1.7) 

In the following sections formulas for the first two terms 
of (1.6), and for  the first term of (1.7), are derived from  the 
first three terms of the expansion 

J=(d(O)+H.@(O)+HH:Y’+. . . . .)*E. (1.8) 

According to (1.4), the relation between J and E is  of 
form 

J = ~ . E - H . @ x E ,  (1.9) 

where the second term  on  the right expresses the Hall 
effect. The more  conventional expression of the  Hall effect 
is, however, by the second term of the inverse relation 

E=G.J+H-aXJ, (1.10) 

a being the  Hall  constant. (Again, the  appropriate Onsager 
relation requires that 6 and (Y be even functions of H.) 
In practice it  is the coefficients of ( l . lO) ,  rather  than those 
of (1.9), which are determined directly by measurements. 
Therefore it is important  to have available the formulas 
which relate 6 and a to 2 and e. These are given at once by 
(AS) and (A6), and  are 

i“+@ G=”--- (1.11) 
I+;:& 

(1.12) 

where 

@-H.@  H.g/D, - 
D=det. d . 
In zero magnetic field the Hall constant is 

4 0 )  = @(O). d(O)/D(O). (1.13) 

When a=m, and similarly for @, 2 and 6 (these are 
mutually consistent only for H = 0), then  there is a unique 
scalar  Hall mobility 
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pH = cp/a. (1.14) 

In general, however, there is no unique way of-defining a 
dyadic Hall mobility. It might be defined as cd.a ,  or  as 

The Onsager relations do not require @ (or a) to be 
symmetric. If, however, 6 is not symmetric then a vector 

C 6 . P .  

2s = @‘X’ (1.15) 

may be formed  from its elements; and s must be an even 
function of H, since @ is. Consequently s must correspond 
to  an inherent polarity of the substance. If an antisym- 
metric component of should exist in some  conditions, 
then (1.9) could be written in the form 

J = ~ . E - H . ~ ~ x E + ( H x s ) x E .  (1.16) 

The contribution  from  the  third  term of (1.16) might be 
referred to as a “polar Hall effect.” 

2. General results for  galvanomagnetic effects 

In this section some general results, to be applied in  the 
following sections, for galvanomagnetic transport phenom- 
ena will  be derived. The notation  and method are as ex- 
plained in Section 3 of LN. The distribution  function for 
the electrons is supposed to be expanded in a series 

such that fn is proportional to  the n’th power of the driving 
force, which in  the present case is the electric field E. Then 
from the fundamental  Boltzmann equation we obtain a 
linear inhomogeneous equation for f i  in terms of fo, the 
Fermi  distribution function: 

where the linearized relaxation operator Do is given by 

D~g(r)~z(r/)~g(r/)~(r/;r)-~(r)~(r;r/)~. (2.3) 

Here r stands for all the variables specifying the electron 
state  and Z(r) for  integration, j”d3p. . . . . . ., over pseudo- 
momentum together with summation over the  other vari- 
ables, band index y and an electron spin  component 6.8 
The charge of  the electron is -e, E is its  (Hartree-Fock) 
energy, and v is its group velocity dJdp. The collision 
function 7‘(r:r’) is the usual one, S(F;r’) (see eq. (24) of 
LN), with a “correction”  for  Fermi statistics (for when 
fo is not <<1), and is defined by eq. (30) of LN. In the 
conditions  for which (2.18) and (5.4) hold, T is given  by 
eq. (31) of LN: 

As in LN we define the relaxation time, T ,  by the equation 

I=z(ry-(r ;rl), (2.4) 

and we define for any  function +(r) a  conjugate  function, 
$t(I‘), by the equationg 

+t(r)- z(ryyr ;r/)T(r/)$+(r/) =+(r). (2.5) 

The following consequence of (2.4) and (2.5) is the  funda- 
mental  theorem of the integral method: if +(I?) and g(r) 
are any  functions such that  the double sum-integrals in- 
volved are uniformly convergent, then 

$g= “I fitTa)Og. (2.6) 

The use of the theorem is illustrated by the applications in 
the following sections and in LN. 

To  obtain the required results we further expandfi in  a 
series 

f l=f i .”+h, l+”f , ,2+.  . . . . . (2.7) 

such that fi,,, is proportional to the m’th power of H, and 
set up corresponding series for  the electric current density 
J =  -eWZ vf, so that 

J(”.”) = -& V f L .  (2.8) 

We seek to calculate J(’sO), J(lJ) (Section 3) and J(Iv2) 

(Section 4), and hence are concerned withfI,o, f i , l  and fl,2. 

From (2.2) we find 

a)~h,~=(e/kT)E.vfo(l -&I; (2.9) 

Dofi,m=(z/c)H.gfl,m--l, m> 1. (2.10) 

Here the differential operator g is the same aslo Herring’s 
y and Wilson’s Q / h 2 :  

g=vxa/ap, (2.1 1) 

and hence 

(~XH).d/dp=  “H.g.  

The result of operating with g on a magnitude which 
depends on p only through being a  function of e is zero. 
For example, gfo = 0. Also, as may be shown by “integration 
by parts”,l1 

1 +(&I = - 1  +(s+). (2.12) 

From these two rules follows the  further result 

[+g+I=-[+g+l,  (2.13) 
where, as  in LN, we introduce  the convenient “square 
bracket”  notation 

h-”lfi( 1 -fo)+ _= [+I. (2.14) 

A “flux” for the electron distribution  disturbed by the 
driving force E has the form of the density, k31+L of a 
one-electron magnitude +(r). To calculate  the term 
h-31+il,m, we make use  of the foregoing results to transform 
it to  an expression of form h-“I+’fl,m”L, hence in turn  to 
one of form h-3Z+’(fl,m-?, and so on down a ladder  ending 
with an expression of the form (2.14). For  the final stage, 
we apply the general result obtained by substituting (2.6) 
in (2.9) with g =  f l , O :  

Z+f, = - (e/kT)E. &(l -J;,>vT$~. (2.15) 

From (2.8) with m=O and (2.15) we have, for  the conduc- 
tivity in zero magnetic field, 24 1 
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$0) = 5(O) = (e2/kT)[ I v 1, (2.16) 

where 

1 E Vt 7. (2.17) 

The vector 1 may be called the mean free path  for electric 
currents. It was shown in LN that if the crystal substrate 
which scatters the electrons is in  thermal equilibrium, so 
that  the detailed balance theorem applies to  the electron 
state without reference to any  other variables, then 

[#T+tl =[+d'tl. (2.18) 

It follows from (2.17) and (2.18) that [lv]=[vl]: that the 
dyadic (2.16) actually is symmetric, and hence that  the 
result obtained here for d in  zero  magnetic field satisfies 
the Onsager relation (1.1). The  other Onsager relations for 
electric current and heat  current  in  zero magnetic field 
were also found in LN to be consequences of (2.18). 

By applying (2.18) to (2.1 5 )  we obtain the  formula 

hPZ#&,= -(e/kT)[ J .  1 ].E. (2.19) 

On  the other hand, for m 3 1 we have, by (2.6) and (2.10), 

-(e/c)H.ITVgf1,,-, 

and hence, by (2.12), 

Z#f,,n=(e/c)H.Ifi,,-lg(nC.t). (2.20) 

From (2.19) and (2.20) we obtain the second of a sequence 
of relations of which (2.19) is the first: 

h-3Z#~ ,  = - (e/kT)(e/c)H. [(g(nC.W 1 1. E 
= +(e/kT)(e/c)H.[dtg 11.E. (2.21) 

This result is applied in Section 3 to the calculation of the 
Hall effect. To obtain the  third relation of the sequence we 
apply (2.20) twice. Then, for m 3 2, 

Z#fl,m=(e/c)2 H . V I , ~ - ~  g(TXt), 

where 

X=H.g (T+t). 

Therefore, by (2.19), 

h-3Z#f~.2= -(e/kT)(e/c)' H.[(g(TXt)) 1l .E. 

By (2.13) and (2.18), 

[(&Tit)) 1 ] = - [Titg 1 ] = - [Tx(g I)?] 

and hence, finally, 

h-3Z#fi,2=~~(~)2HH:[7(g(nC.t))(g kT c 1)tl.E. (2.22) 

This last result is used in Section 4 to calculate  the mag- 
netoconductivity. 

When #= -ev, (2.19), (2.21) and (2.22) become the first 
three terms on  the right of (1.8). If, on the other  hand, we 
substitute # = EV they become the first three terms in the 
expansion of the energy flux density, and so represent the 

242 Peltier and Ettingshausen effects in a weak magnetic field. 

3. The linear Hall effect 

The linear Hall effect  is  given  by J(lJ). By (2.8) we have, on 
substituting # = v in (2.21) and making use of (2.1 7), 

and hence, by (l.S), 

We may verify from (3.1) that H.@(O) is antisymmetric, 
as it should be, since by (2.13) 

By (3.1) and (1.5), the linear Hall effect is  given  by the 
dyadic 

Eq. (3.2), together  with the definitions of its terms, is the 
central result of this paper. 

We now consider the consequences of some special cases 
of the functions E(I') and l(I'). If v and vt are parallel, and 
hence v and 1 are parallel, for all of the  range of l? contrib- 
uting to  the sum-integral, then (3.2) reduces to 

where y (Keyes' a/m) is the inverse mass dyadic: 

(3.4) 

Since y is symmetric, the  dyadic (3.3) is symmetric. If y is a 
constant  (for example, in the range of I' giving the contri- 
bution to @ from the neighborhood of a simple band-edge 
point in a semiconductor or semimetal) then (3.3) reduces 
to 

(3.5) 

(where the left-hand  side is the contribution from, and the 
sum-integral on  the right-hand side is taken over, the range 
of r for which y has  the given constant value). The com- 
ponents of the  tetradic are readily calculated for rectangular 
Cartesian axes parallel to the principal axes of y. For 
example, the (i, i, k, k) component is "y i i  and  the (i, k, i, k) 
component is +r fi. If the principal axes of [ 1 1 1  are in  the 
same directions as  those of y, we then have 

With I parallel to v, we might have written 

1 E TdV, 

or 

(the  subscript stands  for "diffusion"). In  the theory of 
Jones and Zener,12 (2.2) is solved by assuming that Dofl 
may be replaced by - f i / ~ ;  and if the diffusion time rd 
be substituted for T in this assumption then the result (3.3) 
is obtained. The foregoing analysis (a) discloses the actual 
condition for a result of the form (3.3) to hold; (b) provides 
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a general expression for  the diffusion time, for this case; 
and (c) shows that  the same diffusion time, and the  same 
condition for its application, apply for @(O) as  for d(0). 

When v and vt  are not parallel it would be natural to 
generalize (3.6) by making rd a dyadic: 

~ l = T d . V .  (3.7) 

i Dumke13 and Herring and Vogt14 both introduce a tensor 
relaxation time. Dumke treats only conduction  without  a 

i magnetic field  (i. e. he calculates d(0)). He writes 

fi- -(e/kT)fo(l --fo)E.t.v, 

which  is permissible and correct in general, and gets an 
equation  for  the  components of T which appears to be 
equivalent to (2.5)  with $ = E . v .  Herring and Vogt include 
the effect of a magnetic field but introduce  a  tensor relaxa- 
tion time by an assumption. They expandf,, in the neighbor- 
hood of a simple band-edge point, in spherical harmonics 
of v*  =y-* . v  and then assume that the  term transforming 
like v*  (v*~#W(e), say) satisfies 

3 ( I ) V *  = +)(UT -1 .v*.  
04 HV 

This result generalizes (3.5) by substituting 0 for the  cor- 
responding tetradic there. If v is symmetric with principal 
axes parallel to those of y,  then (v"Xv)iik= - L i k v a a v ~ .  
We then have, for the non-zero components of 0, 
O i i  ;;= - 7 k k V i j V k k  etc., and eiji;= f ~ k k v i i ~ k k ,  

etc. These results are simple generalizations of those for 
(3.5). 

The  other special case of (3.7) which we consider is 
where T~ is a function of E only, in its dependence on p, and 
is symmetric. Then  the derivative of T~ with respect to p 
makes no contribution to gI. Consequently 

~(O)=~(eZ/kT)(e/c)[vXy-~FdX"ed.v]. (3.10) 

This is the formula appropriate  to  the approximation 
(5.16). 

The general result ( 3 3 ,  expressed in terms of rectangular 
Cartesian components,  reads: 

a 

On specializing to cubic symmetry we obtain,  for the  Hall 
mobility, 

Since J depends only on this term, they obtain expressions pH=e[v ,(/~al;/ap,-i;ai,/ap,)]/[lzvi], (3.1  1) 
for  the terms of (1.8) as functions of y and T ~ ~ V .  They also 
give an expression (their eq. (11)) for  the components of 
T~~~ in certain  conditions. From  the point of  view of the 
present paper, it would not be appropriate in the most 
general case to introduce a dyadic relaxation time by the 
relation (3.7), since the relation  does not uniquely define 
cd but merely imposes three  conditions on its components. 
However, where the relation of the functions l(Y), v(r )  
allows it we could partially predetermine our T d  by assum- 
ing fixed directions for the three principal axes, the same 
over the whole region of the variables r involved in a 
particular calculation;15 and then the three magnitudes 
specifying T d  in these conditions are uniquely given  by 
(3.7), and conversely they uniquely determine 1. Both 
Dumke  and Herring and Vogt make  this  assumption of 
fixed principal axes, which is appropriate to their calcula- 
tions. The transformation of our results-for example 
(3.2)"to the form obtained by substituting (3.7)  with 
fixed principal axes for T d  is laborious but straightforward. 
Here we just examine the special case where y is constant 
and 1(r) is  of the  form 

l=T'(r)V.v (3.8) 

with v a fixed constant tensor (or, in other words, all the 
components of T d ,  (3.7), maintain fixed ratios to each  other 
as they vary with I'). Then 

(gl)x1=T'Vx(y.V"xV)'(7'V). 

On substituting this result in (3.2), and taking the dyadic 
function of v and y outside the sum-integral, we find 

p(0) =+(eZ/kT)(e/c)0 :[ 1'1' 1, 
where l'= r'v and 

o ~ - ( ( V - ~ v ) . y . g ) ( l - 3 ) .  

where i#k. (Here prI is defined as in  (1.14) so that it may 
have either sign, the negative sign being usually associated 
with "electrons" rather than "holes.") When,  as  for (3.3), 
1 and v are parallel, (3.1 1 )  reduces to 

p r f = e [ i I I k ~ j k - I j 2  ~ k k I / ' [ l ~ i I .  (3.12) 

4. Quadratic magnetoconductivity 

Before calculating T (see eq. (1.8)) explicitly, we note a 
general formula  for the effect of a magnetic field on con- 
ductivity which may be obtained from (2.2) and (2.6). On 
multiplying (2.2) by h-37J't and operating with I we obtain 

k 3 Z  ~ ~ , + ( ~ / k T ) [ ~ t ~ l . E = h - ~ ( ~ / ~ ) H . I ( g ~ t ) f i .  (4.1) 

When $= "ev ,  (4.1) becomes 

(6- d(0)) E = - (e2/c)H. k 3 I ( g l )  fi . (4.2) 

The  right-hand  side of  (4.2)  is proportional to E, and 
represents both the  Hall effect and  the magnetoconduc- 
tivity. 

From (2.22)  with $= -ev we have 

W =  -(eZ/kT)(e/c)l [r(g l)(g l)tl(2-3). (4.3) 

By making use of the Onsager relation (2.18) together with 
(2.22), we would have obtained, instead of (4.3), 

W =  -(ez/kT)(e/c)2 [r(g 1)tg 1](z-3). (4.4) 

Actually (4.4). rather than (4.3),  is the result that would 
have been obtained if no use at all of (2.18) had been 
made;I6 and we adopt it here as our  standard formula  in 
preference to (4.3). The result for y constant [as in (3.5)], 
and I = r d  ( E )  v, is 

(4.5) 243 
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[r(g 1)tg 1 l=[V.%Xy.Td VXY..ed]. (4.6) 

The contribution to V from a region of the  zone in which 
y is constant (i. e. from one valley) is then given by the 
contribution to  ET^ q d  .ed]. When, as is to be expected, the 
principal axes of q and y are parallel in  the same valley, 
the contribution from  that valley to \ I r i l k l  (where the 
coordinate axes are chosen parallel to the  principal axes)  is 

I - 3  n(;) z n z i k n s  jlnYkkYllY,n[~~k~lT*]~. 
2 e 2  e 2  

(4.7) 

~ 

For Boltzmann statistics (fo<<l) this is evidently the same 
resu!t as  Herring and Vogt’s (reference 14, eq. (20))  with 
T ~ I V  replaced by Q(E). 

The form of V for a cubic crystal is determined by 
the result given by Seitz (reference 2, eq. (I)) as 

HH: V=PHP~+~HH+6(Hi2ii+H12jj+Hk2kk), (4.8) 

where i, j, k are unit vectors parallel to  the three  crystal 
axes and P, -y, 6 are scalar parameters specifying Y’ in this 
case. By comparison of (4.8) with (4.4) we find 

I 

P = A .  . . 

y=Aii iZ+A,i l i  , 
P+y+G=A,iii , 

% I t 1  7 I (4.9) 

where 

A,,,, = -(e2/kT)(e/c>2[.r(g,Z,)~g,l,l. 

For  an isotropic region of a band, with y =  E/m*(c) and 
1 = Td( €)V, 

g l=(Td/m*)vXE. 

Therefore, for the contribution to V from such a region, 
with m* a  constant, we have from (4.9) 

6 =0, (4.10) 
p= ”y= ”( e’/kT)(e/m*C)1[r(.r~v)t. Tdv]. 1 
If in  addition the scattering is elastic, the expression in the 
square bracket of  (4.10)  is equal to v?rdY. Then (4.10) 
becomes a special case of the result given by (4.7). 

5. Calculation of the vector mean  free  path 

The foregoing prescription for the calculation of the 
transport coefficients d(O), @(O) would not be complete 
without some indication of how the “vector mean free 
path” I(r) may  be obtained in practice. The evaluation of 
the magnetoconductivity constant V ,  eq. (4.4), requires 
the calculation of (g I)? also. Therefore we have to consider 
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the solution of  (2.5) for $7. The solution is not unique, but 
any two solutions can  differ only by air, where a is 
constant (or piece-wise constant,  as described below). To 
prove this statement, we let two solutions of (2.5) be $t 
and $t+X(I’)/T. 
Then 

z(r’)(x(r)-x(r’))qr ;r’) =o. (5.1) 

I(r)l(r‘>(x(r)-x(r’))zR(r ;r’) =o. (5.2) 

Here R is the  function defined in LN, 

R(r ;r’) = m x l  --fo(rw(r ;r’), (5.3) 

and we have made use of the symmetry property 

R(r ;r’) = zqr‘ ;r), (5.4) 

which follows from  the detailed balance principle. Since 
R 3 0, (5.2) cannot be satisfied unless X(r’)=X(r) for any 
two  points I’, I”, connected by scattering processes. Such 
pairs of points must form  chains which either link to- 
gether the whole domain of r or else divide it into a set of 
sub-domains which are not connected with each  other by 
any scattering processes but in each of which all points are 
linked together. Therefore X must be constant in each 
domain,  but may have different values in different domains 
(be piece-wise constant). The replacement of $tT by 
$ tT+X then  has no effect on the value of the right-hand 
side of (2.6); and therefore the results of Sections 3 and 4, 
deduced from (2.6), are unique.I7 One may verify this in 
each specific case, for example on adding  a  constant vector 
to 1 (I’) in (3 .2)  and (4.4). Obviously, this conclusion is 
related to  the uniqueness of the solution of (2.2) for fi. 

Eq. (2.5) may be written as 

(1 -a)$+ =$, (5.5) 

in  terms of the  operator 13 introduced in LN and defined by 

~+~z( r ’ )~ ( r ;~ ’ )~ ( r ’ )~ ( r ’ ) ,  
or alternatively as 

(1 -oc>r$t = T$, (5.6) 

in  terms of the  operator b: defined by 

s+= T(r)z(r’)T(r ;r’)+(r’). 
A solution of (5.5) is 

$ t = ( l + ( 3 + ( 3 2 + .  . , . . . .)$, (5.7) 

provided the series converges; and similarly (5.6) is in- 
verted by the  operator 1+6+S2+. . . . . . . For fo<<l 
and with  scattering by acoustic phonons  alone, in the 
neighborhood of a simple band-edge point,l8 one may 
expect to find, in  some cases, that 

ov<<v. (5.8) 

When (5.8) is satisfied, the series solution 

v ~ - v = ~ v + ( 3 ” + .  . . . . . . (5.9) 

should converge rapidly, since one would expect to find 
13*v<<Ov, etc., at  the same time. On the other  hand,  for 
scattering predominantly by impurity ions (5.8) may be 
far from the truth, according to present ideas,I8 since small 
angles of scattering may be very probable.  There is in fact 
no obvious reason to expect the series (5.7) to converge 
in  all possible cases. The  natural physical interpretation of 
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sistance of velocity after  one, two, . . . . . . . etc. collisions 
following an initial free path.lg 

There is an especially simple solution of (5.5) if (O+)/p 
is unchanged when operated on by 0. In this case 

P = $ / ( l  - (W)/+) .  (5.10) 

One would not expect (5.10) to be valid unless the change in 
energy on scattering is negligible, since otherwise there are 
in general two distinct sets of final states connected to a 
given initial state by scattering. If the scattering is virtually 
elastic, and if the Brillouin zone  has spherical symmetry 
( E , T ,  etc. are functions ofp only, in their  dependence on p), 
then we have, as  a special case of (5.10), the standard 
r e s ~ l t * ~ ~  

7 d  = 7/( 1 - K), 

S V  E K(r)V 
where 1 (5.1 1) 

and rd is  given by (3.6). (The  two possible definitions of K, 

in terms of C and of (3, are equivalent here; but we shall 
find below that when there is a distinction it is the above 
definition, in terms of C, that we want.) 

For the problems in the theory of the transport effects 
posed by actual solids, the scattering probability function 
S(r; I”) is frequently very complicated. Since there is the 
prospect of the  scattering  function becoming known reli- 
ably in detail, for some of these cases, it is important  to 
have methods of getting good approximate  solutions of 
(5.5), or (5.6), systematically and without losing touch 
with intuitive ideas about the result. One such method may 
be provided by the following minimum principle?l  Let 

ments in the solution  for 1, indicated by reductions of 
(5.14) or increases of (5.15), correspond to successively 
more accurate values of d(O), but  that we have not proved 
that the  same  guarantee applies for @(O).  It seems reason- 
able to expect, however, that variational  solutions for 1 
may be obtained which give good values for @(O) along 
with good values of d(0). 

The minimum principle leads to a generalization of the 
solution (5.1 1) for  the  more realistic conditions where the 
Brillouin zone  does not have spherical symmetry but 
where the change in electron energy on scattering still is 
negligible. We set 

zi= 7i(E)V)i (5.16) 

and seek the “best” solution for 7i. The result is 

(5.17) 
s V i E K i ( r ) V i .  I 

The bar in (5.17), as  in LN, signifies averaging over a 
constant-energy “surface” : 
- 
+(E’) = Z(r)+h(€‘- t(r)), (5.18) 

where 6 is Mrac’s function. For a simple band-edge neigh- 
borhood with y constant, (5.17) reduces to  the result given 
by Herring and Vogt (reference 14, eq. (1 1) ). It should  be 
noted that it is not assumed in the derivation of (5.17) that 
T is a  function of e only. Solutions (5.16),  (5.17) of (2.5) 
may be obtained, with consistency, for  three directions but 
not more than three. The three  solutions may then be in- 
corporated into a  dyadic Q(E) which gives I in terms of v 

W(b) = by a  relation of the  form (3.7). Different dyadics T ~ ( E )  will 

where R is  given  by (5.3). Then if 

4= 4 t ,  (5.13) 

where +t satisfies (2.5), 

w ( ~ + x ) -  w(+) =z(r)z(r’)(x(r)-x(r’))2~(r ;r’) 
for any arbitrary function X. Therefore W is a minimum 
when + satisfies (5.13) (and is the same for any two solu- 
tions, &/T, +?/T, of (2.5) ). The minimum value of W is 

-2ZnC.t+h(l “h). 
It follows that  the functional 

W(h)=Z(”)Z(r’)lh(I’)-h(r’)(2R(I’;I’’) 

- 4Zh * v~O( 1 -fo) (5.14) 

is a minimum when h(r)=l .  Alternatively, for an arbitrary 
direction  in space the  functional 

Ui~(e?/ikT)[2hivi-(hi/7)(1-C)hi] (5.15) 

has a maximum of aii(0) when h i = l i .  It therefore gives a 
lower bound to the (i, i )  component of d(O), for an arbitrary 

mizing (5.14); but one would expect the correct choice to 
be usually clear from  the symmetry of the energy “surface.” 

The solution of (2.5) for 1 obtained  in the preceding para- 
graph may be generalized to  take  into account changes in 
E on scattering. The best solution,  according to the mini- 
mum principle, of (5.16) for T ~ ( E )  is that given by the 
integral equation 
~ - 
( v ~ ’ / ~ ) ~ ~ - J Z ~ ( E ; E ’ ) T ~ ( E ’ ) ~ E ’ = V ~ ? ,  (5.19) 

where 

Zz(E,;E2)= 

z(r)Z(rwE1-  E(r))6(ez- t(r’))vi(r)T(r ;r’)Vi(r’). (5.20) 

Thus, at  the expense of the approximation (5.16), eq. (2.5) 
is reduced to a one-dimensionaI integral equation. (To gen- 
eralize (5.19) for 7i a  function of E, 8 and q, one just 
replaces l(r), Z(r’), in (5.18) and (5.20) by j’&p . . . . . . . 
and J’djp’ . . . . . . . .) If the change of energy on scattering, 
and hence the “width” of the kernel Zz(e;d), is small 
enough, we may replace T ~ E ’ )  by T ~ ( E )  in the second term 
on the left of  (5.19). The ordinary algebraic equation for T~ 
then  obtained is identical with (5.17). For n-germanium 245 
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and n-silicon, at ordinary  temperatures, intra-valley scat- 
tering by acoustic  lattice  vibrations may be taken  as elastic 
in  calculating J(’), but  for intra-valley scattering by optical 
modes and inter-valley scattering the energy change may 
not be neglected. Herring and Vogt14 point out, however, 
that, whereas intra-valley scattering by acoustic modes is 
virtually “conserving”, the rest of the scattering by lattice 
vibrations is virtually “randomizing”: it has small per- 
sistence of velocity. Thus,  according to this view, we may 
split the scattering  function into two terms, 

T= Tc+TT, 

such that TC(I’;I’’) connects  states for which, as  in deriving 
(5.17),  we may take e(r)=c(I”), while T, has  the property 

z(ryxr ;r’)v(ro << v(r)/Tl(r), 

where T? is defined analogously to (2.4). Since e is virtually 
constant  (though differing from its initial value) among  the 
states  in  a given  valley to which an electron is scattered, by 
any one lattice  mode, from a given state, we may to 
the same  approximation drop  the “randomizing”  con- 
tribution to Zi. We then obtain  from (5.19) the solution 
(5.17) with V , ~ ( ~ - K ~ ) / T  replaced by 

where T , ~  is the value of ~i according to (5.17)  if the  “ran- 
domizing” collisions are neglected altogether. But, for  the 
same  conditions, T~ is virtually a function of E only.18 
Hence, finally, 

(5.21) 

The result on which (4.6) is based may be derived from 
the foregoing considerations. If 1 = v . T ~ ( E ) ,  then 

g I=vXy.Td(€). 

Now, y is a  constant of intra-valley scattering, but of course 
changes in the scattering from one valley to another. If 
inter-valley scattering is randomizing, however, these proc- 
esses in which y changes make  no contribution to  the 
difference between (gl) and (gl)t. Similarly, since intra- 
valley processes are either  randomizing or conserving, T ~ ( E )  

may be taken as constant. Consequently (gl)? is obtained 
on replacing v by v t  in gl: 

(gl)t=V.TdXy.Td/T. (5.22) 

In metals at low temperatures the change of E in scatter- 
ing is “ k T .  Then the width of the kernel Zi in  (5.19) may 
not be neglected. For intermediate  temperatures it might 
be approximated by taking the first two or three terms of 
the Taylor series for T ~ ( E ’ ) - T ~ ( E ) .  A linear differential 
equation of first or second order for ~ i ( e )  would result. 

It is obvious that  perturbation methods may be devel- 
oped  to approximate  solutions of the linear inhomogeneous 

equation (2.5). Suppose,  for example, that $ t o  is believed 
to be a good approximation to $t. If 

$t-$t0+$+1, 

then we have 

(1-0)$t,=~”(l-0)$t,. (5.23) 

If $to is in fact  a  good  approximation to $t, the right-hand 
side of (5.23)  will be small and hence the solution, $TI, 
may be expected to be small compared to $to. Then an 
approximate  solution of  (5.23) may be good enough.  There 
is no reason, however, to expect a series solution of form 
(5.7) for (5.23) to converge rapidly  although the corre- 
sponding  solution of (2.5) did not. If the series solution of 
(2.5) does not converge satisfactorily (for example, if the 
scattering is predominantly through small angles and we 
are seeking a  solution for 1) it is natural  to try as a first 
approximation the function 

$to  = b$, 

where t (5.24) 

b( 1 - 0)$ =$. 

(This “brute force solution” is just  the result (5.10) pro- 
posed irrespective of whether the necessary condition, that 
(0$)/$ is unchanged when operated on by 0, is satisfied.) 
Substitution of (5.24) into (5.23) results in the equation 

(l-O)$t,=O(b$)”0$. (5.25) 

Thus $TI is proportional to a  measure of the violation of 
the condition for (5.10) to be an exact solution. If the  con- 
dition is fairly well satisfied, so that  the right-hand side of 
(5.25) say) is small compared to $, and if application of 
the procedure  a second time to solve (5.25) leads to  an equa- 
tion of which the right-hand side is  in turn small compared 
with $,, a  rapidly converging sequence might be obtainable. 
It could be useful in practice, if a sufficient knowledge of 
T and T were available in suitable form, even though  the 
general term could not be reduced to a simple algebraic 
expression, like the general term of (5.7).  Of course  one 
could start instead from  the approximation, $to, given by 
(5.16) and (5.17) or (5.19). 

A different kind of situation for which perturbation 
methods are  appropriate is where a  good  solution of (2.5) 
is known for a  scattering  function, To, which  is an approxi- 
mation to  the actual function T. Thus we would know the 
solution, $to, of the equation 

$to  - 00$to  = +, (5.26) 

and require the solution of 

$t-O$t=+ (5.27) 

where 0 ~ 0 ~ .  The difference between 0 and Oo might be 
due  to scattering processes not included in To (for example 
to inter-valley scattering or  to a small amount of scattering 
by optical  lattice quanta  or by impurities); or  the difference 
might be due  to the effect of a shear  strain on inter-valley 
scattering.** Let 
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V-+t0+4, 

(3s ( 3 0 f 6 .  

Then, by  (5.26) and (5.27), 4 is given exactly by 

4-(3+=Wt0. (5.28) 

If 0 ‘ v O 0  then 4 is approximately equal  to q51 where 

41 - 0041 =@$to. (5.29) 

Eq. (5.29)  gives the first term of a series solution of (5.28), 
c$~++~+. . . . . . , of which the general term satisfies 

4 n + I - @ O 4 n + l = 6 4 ,  (5.30) 

for n >  1. 
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Appendix: vector notation and formulas 

The  notation  and terminology used here  for vector calculus 
are those of Gibbs,2:3 with the following modifications and 
extensions: Vectors are denoted by boldface latin letters, 
dyadics by boldface lower-case greek letters, and triadics, 
tetradics, etc. by boldface capital greek letters. The unit 
dyadic is E: 

a . E = & . a = a ,  a ! . ~ = ~ . a = a ,  etc. 

The unit skew triadic is B = --EX&. It  has  the property 

(ab):E=a.E.b=E:(ab)=bXa,  

and its rectangular Cartesian components Eiik are usually 
denoted by e i j k .  The transpose of a dyadic a is a!”: 

(ab)-=ba. 

The vector of a  dyadic a! is 
Q(X) E - (y :E, 

The symmetric and antisymmetric (“selfconjugate” and 
“anti-selfconjugate”) parts of a  dyadic a are 
I a!-~(a+a!“),  &=+(a:-a-). 

The extension to polyadics of the  notation  for transpose 
and vector of a dyadic is indicated by the examp1:s follow- 
ing : 

  ab^)(^-^) =acb, 

(abcd)(le3) = cbad, 

( a b ~ d ) ( ~ ~ ~ ) = a b X c d ,  
B (1x2) = 2&. 

A complicated succession of transposes is also indicated 
(see eq. (4.5) ) by specifying the final order of the  factors of 
the component polyads. E.  g. 

( a b ~ d e ) ( ~ ~ ~ ~ l )  = cebda. 

If a dyadic a! is antisymmetric thenz4 it is equal to 
-+a(”) x E. Therefore, for  a general dyadic a, 

k = a: :(+E x E). (‘41) 

- 3 W X 3 )  x E, (‘42) 
Similarly for a triadic if W 3 - 3 )  = --a then 

and so on. According to  (Al), a general dyadic may be 
expressed in the  form 

a=o+txe,  (A3) 

(A41 

where o is symmetric. Let  its inverse, if it exists, be 
a- l=  “0 f “f’XE. 

Then it can be shown that 

where D = det.o. These last results are used in Section 1 to 
convert the general expression for conductivity into one for 
resistivity. 

The Einstein summation convention is not used in  this 
paper.  Repeated indices are summed only where it is 
explicitly indicated. 
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