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Spatial Variation of Currents and Fields 
Due to Localized Scatterers 
in Metallic Conduction 

Abstract: localized scatterers can be expected to give rise to spatial  variations in the electric field and  in 

the current distribution. The transport equation allowing for spatial variations is  solved by first considering 

the homogeneous transport equation which omits  electric fields. The homogeneous solution gives the 

purely diffusive motion of current  carriers and involves large space charges. The  electric field is  then found, 

and  approximate space charge neutrality i s  restored, by  adding a particular solution of the transport 

equation in which the electric field is associated only with space charge but not with a current. The pres- 

ence of point scatterers leads to a dipole field about each scatterer. The spatial average of a number of 

these dipole fields is the same a s  that obtained  by the usual approach which does not explicitly consider 

the spatial  variation. Infinite plane obstacles with a reflection coefficient r are also considered. These pro- 

duce a resistance proportional to r / ( l   -r l .  

1. Introduction 

In the  solution of the  transport equation  in  modern  treat- 
ments of the electrical conductivity process, it is customary 
to assume that  the distribution of electrons in momentum 
space is the same throughout  the specimen (or  at best has 
only a macroscopic variation due  to temperature gradients, 
et cetera).  Coupled with this is an assumption that  the  ap- 
plied  field is uniform. The applied field then produces a 
motion of the electronic distribution in momentum space. 
Scattering by lattice waves and obstacles tends to restore 
the original distribution, and equilibrium is established be- 
tween the scattering and the accelerating field. The current 
density is then computed by taking  a sum over the states of 
the  undisturbed crystal and weighting the  current associated 
with each state by its probability of occupation.  This proc- 
ess ignores the off-diagonal elements of the current matrix. 
These off-diagonal elements do not  contribute to  the space 
average of the current density, but they can represent local 
fluctuations in the current  distribution. The current due  to 
each of  the diagonal  terms has the periodicity of the crystal. 
The spatial uniformity of current  can,  therefore, be re- 
garded as a consequence of the assumed field uniformity 
and of the neglect of the off-diagonal matrix elements. 

We wish to point out  that the uniformity of the field and 
current density are assumptions which may frequently be 
well justified, but whose validity in general is not apparent. 
If the intensity of scattering is not uniformly distributed 

over the material, but is concentrated in  well localized 
scattering centers, as is the case in the residual resistivity 
caused by impurities at low temperatures, then it seems in 
fact reasonable that the field should be concentrated near 
the points where the scattering is actually produced, so as 
to enable the current to pass around these obstacles. We 
shall, therefore, in this paper solve the  transport equations 
in two simple cases without neglecting the relevant spatial 
variations. We shall consider the case of highly localized 
point scatterers and also the case of scattering by specular 
reflection at planes of infinite extension. 

Despite the  fact that  the ordinary viewpoint neglects 
spatial  variations it will, in most cases, lead to a correct 
answer. The quantities which have spatial variations may 
be characterized by suitably defined average values, which 
then can be used in the usual formalism. Some care must be 
exercised in this averaging process. If the averaging is car- 
ried out in too naive a manner, incorrect results can be 
obtained, as will  be shown in the case of plane obstacles 
treated in Section 8. 

In constructing our solution we do  not wish to assume a 
uniform field and initially do  not know the  correct field 
distribution. It will, instead, be assumed that  at the  bound- 
aries of the specimen the number of electrons which are 
moving into the  interior of the specimen are so controlled 
as to maintain the proper current flow in and  out of the 

IBM JOURNAL - J 

223 

ruLY 1957 



material. If there were no scattering  in the specimen, the 
current  carriers  could move unhampered, and  the main- 
tenance of the current at  the surfaces of the specimen 
would not produce  a field. An obstacle  in the path of the 
current will result in a pile-up of electrons on  one side of 
the obstacles and a deficit on  the  other side. This dipole 
moment will grow until the resultant electric field enables 
the incident current  to pass the obstacle at  the same rate at 
which further charges arrive. It is a superposition of many 
such dipole fields which will then constitute the electric 
field associated with the  current flow, and  it is the space 

of the homogeneous  equation to satisfy the  boundary  con- 
ditions. We shall use this  procedure and shall use a par- 
ticularly simple solution of Eq. (2.1) for  the particular 
solution. Eq. (2.1) always has a solution  in which the 
electric field produces  spatial  variations  in electronic den- 
sity but does not cause a current.  This is a solution in which 
N ( P ,  r) is independent of P. In  that case, we can expect 
the term (aNjat) ,  to vanish. Using E =   - v V ,  we then find 
for Eq. (2.1) the  form 

c&.VV=VP,VN,  (2.2) 

average of these dipole fields which enter  into a  conduc- which has  the solution 
tivity measurement. 

metals, the conductivity is evaluated with the  aid of the 
In  the usual discussions of the residual resistivity of N(r)= cYv(r)+c=-  -eV(r)+c, 1 dn 

V 4 r  dU (2.3) I 
electron acceleration law, dkldt = -eE/rZ. Since the electric 
field is spatially  inhomogeneous and highly concentrated 
about positions where the periodicity of the lattice poten- 
tial is disturbed, the use of this  relation is questionable. The 
transport equation,  as used in  the subsequent discussion, 
will naturally involve a  term closely related to  the electron 
acceleration law. It will be seen, however, that  the term can 
be modified at positions close to  the scatterers without 
affecting our evaluation of the conductivity. 

2. General form of treatment 

All the complications due  to  the real  crystalline nature of 
the medium will be neglected in  this treatment,  and we will 
assume that  our medium is isotropic. Its crystalline nature 
will be acknowledged only through  the fact that  the density 
of states in energy, dn/dU, at  the spherical  Fermi surface, 
and  the wave number ko associated with this Fermi surface, 
will be taken as  independent quantities. Except for  the use 
of Fermi statistics our considerations will be classical, and 
we shall  assume that  at each point  in space there is a well- 
defined distribution of electrons in k space. (k is the wave 
vector which determines the wave-function variation in 
going from cell to cell.) In  the presence of a  current, the 
number of electrons  per unit volume moving within a solid 
angle dQ about  the direction SL (a unit vector) will  differ 
from  the number that moves in  that direction in  the undis- 
turbed metal by an  amount N(SL)dQ. We shall restrict our- 
selves to sufficiently low temperatures so that  the distribu- 
tion changes represented by N(P) are contained  in a suffi- 
ciently narrow energy range to give all the N ( P )  extra (or 
deficit) electrons the  same velocity and scattering  cross 
sections. The  transport  equation  for  the steady state  can 
then  be  written  in the  form 

dN(P, r ) /d t=O=--aQ.E-VN.v+(dN/dt )s .  (2.1) 

where c is independent of r, and dn/dU is the density of 
states at  the Fermi surface. 

The boundary  conditions which determine the current 
entering and leaving the specimen must  then  be satisfied 
by a solution of the homogeneous transport equation. The 
homogeneous equation represents the motion of particles 
subject only to scattering and therefore gives the purely 
diffusive motion of the carriers. 

3. Neutrality condition 

Let N,>(P, r) represent the solution to the homogeneous 
equation.  Let N V ( P ,  r) be the particular  solution  as given 
by Eq. (2.3).  No will be determined by the  boundary con- 
ditions and  the diffusive motion. To determine NV and V, 
we have to use Poisson’s equation in  addition to Eq. (2.1). 
This  states 

v z V = 4 r e ~ ( N D + N v ) d P .  (3.1) 

Now  let 

nD = s NodSL and nv = s NvdQ.  (3.2) 

If  in (2.3) we choose the origin of the potential such  that 
N(r) = 0 where V(r) = 0, it becomes 

nv(r) = -eV(r). dn 
dU (3.3)  

Combining (3.3),  (3.2), and (3.1), we  find 

nv - l2O 2nv = ng, (3.4) 

with 1/12=4re2dn/dU. The distance 1 is the  range  to which 
the electronic screening in this medium permits electric 
fields to penetrate. In a typical good  conductor, if  we are 
concerned  with  variations existing over a distance of several 
atomic cells, then we can neglect the term Z 2 V %  in Eq. (3.4) 

In this equation  the first term on  the right-hand side repre- and  find 
sents the acceleration by the field. In terms of the electronic 
charge e and  the Fermi-surface wave number ko, we have 
a = ekoz/4r3h. The second  right-hand  term represents spa- (dn/d U)eV= - nD. (3.6) 
tial gradients, and v =h”P dU/dk. The last  term represents 
the effect  of the scatterers which cause the resistance. 

Eq. (2.1), considered as  an  equation  for N, is a  linear We shall now analyze in detail the case of a  point scatterer 
inhomogeneous equation.  Such  equations can be solved by embedded  in  a spatially uniform  background scattering. 

224 taking a particular  solution and then adding  to  it solutions This is immediately suggestive of an impurity embedded in 

nV “ n D ,  (3.5) 

4. Point  scatterer 
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a material which is scattering thermally. As we shall see 
later, however, other interpretations are possible. 

Before entering into  the details of our argument we 
would like to clear up  one frequent misconception con- 
cerned with the relative importance of the physical dimen- 
sions, e.g., the  radius a of a  point  scatterer and its quantum 
mechanical scattering cross section (T. We will assume that 
both a and ,,/Tare small compared to  the mean free path. 
The localized obstacle will disturb the otherwise uniform 
current flow. If we are  at a distance several times a from  the 
center of the obstacle, then  the disturbances set up there by 
the obstacle will depend  only on the  number of electrons 
that have had their direction changed by the obstacle- 
i. e., on  the differential cross section of the obstacle. The 
physical size of the obstacle and  the potential  variation 
within its physical extension are primarily relevant to  an 
evaluation of the disturbances in the volume of the obstacle 
itself. These will not concern us, except for some auxiliary 
discussions. 

In solving the problem of the point  scatterer, we shall 
use Eq. (2.1) in the  form 

-ffP.E"VN.~+(dN/Bt)ll=0, (4.1) 
where (aM/at ) l j  denotes the background scattering. Eq. 
(4.1) is then satisfied everywhere except at  the obstacle 
which is taken to be at r = 0. We shall satisfy the  scattering 
conditions at r = O  by superposing two solutions of Eq. 
(4.1). One  solution represents the motion of the electrons 
without the obstacle, and the other represents the correc- 
tions due  to the  changed  motion of the carriers  after  their 
incidence on  the obstacle. 

We shall restrict the  nature of the scattering, both for the 
obstacle and for ( a N / d t ) ~ .  In  both cases the probability of 
scattering will be taken  as a  function only of the angle 
through which the electron is deflected, and  not as a func- 
tion of the incident direction. In that case', the usual theory 
of conductivity which neglects spatial  variations permits 
the background scattering to be characterized by a single 
conductivity relaxation time rB ,  and also permits the 
medium which has only a  distribution of obstacles to be 
characterized by a single conductivity relaxation time ro. 
Furthermore,  in  that case the combined effects of both 
types of scattering can also be described by a single relaxa- 
tion  time in accordance with Matthiessen's rule.' 

It is to be  particularly noted that  the assumption of dif- 
ferential scattering cross sections which are functions only 
of the angle through which the particle is scattered, leads to 
a simple timewise exponential relaxation for  the disturb- 
ance  produced by an electric field. For these same scatter- 
ing cross sections, there will be many other possible dis- 
turbances from equilibrium which do  not show a relaxation 
characterized by a single time constant. 

In  the ensuing discussion we shall use the symbol i to 
denote  a  current measured in numbers of electrons crossing 
a unit area in unit time. The electrical current j will then be 
given  by j = - ei. We shall take  the particular  situation  in 
which i far away from the obstacle has only a z  component 
denoted by i,. If v =  h-ldU/dk is the velocity at  the Fermi 
surface far away from the obstacle, we  will have 

N(P)= 3i,cos 8/47rv,  (4.2) 

where 0 is the angle between P and  the z-axis. This  current 
is accompanied by a field which can be  determined from 
Eq. (4.1). Omitting the second  term  in Eq. (4.1) gives 

E,= -3i , /4mar~, (4.3) 

which corresponds to a conductivity 

(4.4) 

If N(P) and E(r), as given by Eqs. (4.2) and (4.3), are 
presumed to hold for all r, then Eq. (4.1) is satisfied every- 
where. The effect of the localized obstacle will in that case 
be ignored. Let us assume that  the obstacle has a differen- 
tial scattering cross section, f2(8)dQ, for scattering through 
the angle 0 into a  range dQ of solid angle. If Eq. (4.2) is 
correct in describing the number of electrons incident on 
the obstacle, then the  rate  at which electrons are scattered 
by the obstacle into  an angular  range dQ about the direction 
P I  is, through the use of (4.2), 

In Eq. (4.5), f"(P@i,) denotes f ' (8)  where 8 is the angle 
between the incident direction Pi and  the scattered direc- 
tion P,. B i  denotes the angle between the direction of 
incidence and  the z-axis. 8, will similarly locate the scattered 
direction relative to  the z-axis. With a little spherical trig- 
onometry, the right-hand  side of Eq. (4.5) can be put  into 
the  form 

dQ%os 0,Sf z(8)cos 0 d P ,  
47r 

where the integral is now independent of PI. Expression 
(4.6) gives the  rate  at which electrons are scattered into 
a,, but it has  not  had subtracted  from it  the  rate  at which 
electrons which were originally moving within a  range dQ of 
the direction PI are scattered out of this range. The latter 
rate will be 

(4.7) 

Subtracting the right hand side of Eq. (4.7) from (4.6), we 
find that  the number of electrons per second leaving the 
obstacle in  the range dQ exceeds the number specified in 
Eq. (4.2) by 

-dQgm(cos 0 , ) ~ f z ( 8 ) ( l  "cos 8)dP. 

The integral in (4.8), in which deflections are weighted by 
the factor (1 -cos@, is the scattering cross section found 
relevant in the usual  theory of conductivity and we  will 
label it S(,. Then (4.8) can be written 

47r (4.8) 

-dQ-(cos 8,)So. 3 i, 
4a (4.9) 

We shall now construct a solution of Eq. (4.1) which has 225 
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as its source  electrons issuing from the obstacle as specified 
by (4.9). Furthermore, we shall require that the  solution 
Ns(O,r) generated by this  source vanish at infinity. The 
superposition,  then, of N S  on the spatially uniform  solution 
given by Eq. (4.2) and (4.3) satisfies both  Eq. (4. I )  and the 
scattering  conditions imposed by the obstacle. This is 
actually not quite correct. The solution NS contains elec- 
trons which can,  after  some  scattering by the background, 
return  again to the obstacle at r =O. Since N,s is a  strict 
solution of Eq. (4.1), it does not take into account  scatter- 
ing by the obstacle when the electron returns  to  the obstacle 
a second (or later) time. If, however, the mean free path de- 
termined by the background is large compared to  the 
effective dimensions of the scatterer (i. e., the square root 
of its scattering cross section), the probability of multiple 
scatterings by the obstacle will be small, and we  will there- 
fore restrict our further  considerations to this case. 

We shall  deal with the scattered solution Ns(P,r) by 
first treating the purely diffusive motion, thus finding 
Nsn(P,r), and then using Eq. (3.6) to find the accom- 
panying field. 

5. Diffusive  motion about point  scatterer 

The diffusive motion  about  a  point scatterer is schematized 
in Fig. 1. Line A shows a direction in which the number of 
incident carriers exceeds the equilibrium number. Similarly, 
line B shows a direction in which fewer than the equilib- 
rium number are moving. A and B represent the spatially 
uniform solution (4.2) which  gives the  number of electrons 
incident on the obstacle. Line C shows a direction along 
which there is an excess  of scattered electrons. Along line 
D there is a deficit. After a  number of scatterings by the 
background the electrons which initially move away from 
the obstacle along C and D will have their velocity com- 
pletely randomized. Their  motion will then obey the diffu- 
sion equation. This diffusion current is schematically 
indicated by the  broad arcs, which finally show the re- 
combination of the electron excess and deficit. 

Consider first the diffusion current generated by all the 
electrons which start their motion away from the  scattering 
center in directions that lie within dQ, of the direction Pj. 
Far away from r=O at a position in space denoted by 
( r ,  o), where r is the distance from the  scattering  center and 
w is a  unit vector pointing  from the scatterer to the  point 
involved, the diffusion current will establish a  concentration 
C(Qf,o,r)dQf of electrons, all of which were originally 
travelling away from r = 0 in the direction P,. This concen- 
tration obeys the steady state diffusion  equation v2C=O. 
Up to terms of order l / r  2 this has the  solution 

C(Pj,w, r)=a/r+p.o/r*, (5.1) 

with a and p arbitrary. The radial current density (in 
electrons/cm%ec) far from the origin due to  the a/r term is 
dDfDBa/r2 where D B  is the diffusion coefficient of electrons 
in  the presence of the background scattering. The inte- 
grated flow out of a large sphere is then 4nDnadQ2/ electrons 
/sec. The other  term p.o/r? does not contribute to  the 

To terms of order l/r2, the  right-hand side of Eq. (5.1) 
has the form a/ Ir -r/ 1 with r/ = pia. The term p .  w/r* simply 
serves to displace the effective source away from the origin 
in the direction of p. The average position of the particles 
described by Eq. (5.1) is therefore r/=p/a. The average 
position of the particles can also be found by following a 
beam of particles issuing from r=O at r = O ,  and initially 
proceeding along sLf. The average position then  is: 

(5 .3)  

( v ) ~ "  as used  in Eq. (5.3)  is an average over electrons 
which initially left r=O in the direction sLf. ( v  is there- 
fore  a function of P ,, but  for  the  sake of typographical com- 
pactness this will not be explicitly indicated. ( v ) ~ "  decays 
with time because of background scattcring. The decay is 
generally not a simple exponential, since the initial velocity 
distribution,  a collimated beam, is not the distribution in- 
volved in the usual definition of a relaxation time for  the 
conductivity process. Since p=rra, combining (5.2) and 
(5 .3)  gives 

(5.4) 

To find the  total concentration of diffused carriers we have 
to integrate (5.1) over all values of P,. The integration over 
the a/r terms gives a vanishing result since the  total number 
of carriers emitted at r=O, according to (4.9), is zero. 
This leaves 

n,,(o, r )  = JdQfC(Pf,  a, r )= J"dQ,p.o/r2 

After exchange of integrations  this becomes 

The values of v ) A v  which result  from the electrons 
initially proceeding along PI are now weighted with the 
factor cos 8,. Therefore, Eq. (5.6) represents  a timewise 
integration over a velocity distribution which is initially 
similar to  the distribution  produced by an electric field. 
Hence we can expect J'dPf(cos 8,) ( v  )A" to decay as exp 
(- t /rU),  where T B  is the conductivity relaxation  time for 
the background  scattering. At t = 0 we have an initial value 

(5.7) 

with z, representing the unit vector in the z-direction. 
Combining ( 5 . 5 )  with (5.7) gives 

8, is the angle between o and  the positive z-axis. 
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Figure I Schematic representation of current flow disturbed by the scatterer S. 
Electrons in  excess numbers are incident along A,  then  are scattered to C, then scattered by the background. The 
number of electrons incident along B is less than the equilibrium number. The deficit is scattered to  D, then scat- 
tered by the background. The  excess and deficit d&%use together and recombine along the arcs. 

The diffusion coefficient D f j ,  as determined by the back- 
ground  scattering, and  the conductivity uB, determined by 
the same  scattering, are not  independent. By considering 
the balance between diffusion currents and conductivity 
currents, in an equilibrium situation, we arrive at  the 
"Einstein" relation for completely degenerate Fermi sta- 
tistics in the same way as  for  semiconductors.3 The re- 
sulting relation is 

De2dnld U = u . (5.9) 

For our isotropic band structure and isotropic background 
scattering  the conductivity in (5.9) is given by 

oe=""kL-. re e2 dU 
3a2 W' dk 

Hence we find 

(5.10) 

(5.1 1 )  

This value for Du can be introduced into Eq. (5.8) to give 

n,(w )- "" - ___. ,r - 3aimSoA dn cos 0, 
4k' dl/  r' (5.12) 

Eq. (3.6) permits us to  go from the above to the  potential 
distribution 

(5.13) 

Eq. (5 .1 )  which we  used in the derivation of (5.12) and 
(5.13) is only an asymptotic expansion, and therefore we 
cannot on the basis of the above derivation expect (5.13) 
to be valid close to the scatterer. Consider the electrons 
close to  the scatterer  as specified by (4.9) and before they 
have been appreciably scattered by the background. The 
density n/J(or  r) due  to these electrons is easily evaluated 
and leads again to  the expression (5.12). Since (5.12) is 
correct when  we are much closer to  the scatterer than a 227 
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mean  free path,  and also when we are many  mean  free 
path lengths away from the  scatterer, and since further- 
more it  is easily shown from (4.9) that n,,(o, r )  must vary 
as cos Ow, for all values of r,  we can expect that n ~ ( w ,  r) is 
closely approximated by (5.12) for all r values. In com- 
puting an average field or conductivity, however, it is only 
the asymptotic behavior of (5.13) that matters, and this 
has been accurately justified. 

Eq. (5.13) gives a potential associated with a dipole of 
moment 

p = 3nimS&/4k2e. (5.14) 

If we have a density of 8 obstacles per  unit volume 
which are sufficiently far  apart  to be non-interacting, there 
will be a polarization %p, and  the space average of the 
dipole fields  will be 

E,= -4nP,= -3~~i,S&%/k~e. (5.15) 

The mean  free  time ro as used in the usual conductivity 
theory,  and associated only with scattering by the obstacle 
is given  by 

70 = l/%SOV. (5.16) 

This makes the space average field, as given in (5.151, 
equal  to 

E, = - 3n2i,h/k2evr0. (5.17) 

In terms of the electric current j ,  = - ei,, we  find 

E , = - ( - )  J,, 
3a2h2 dU -1. 

k2e2ro dk (5.18) 

which is exactly the field associated with the obstacles, as 
found by the usual approach [e. g., compare with Eq. (5.10) 
which gives the connection between u and r resulting from 
the usual considerations]. The field given  by (5.18) exists 
in  addition to  the background field of Eq. (4.3). Matthies- 
sen’s rule is satisfied; (5.18) does not depend on T ~ .  

We would like to stress the extreme  extent to which 
these dipole fields are really localized. To  do this we must 
consider how the charges that  are responsible for  the 
dipole  moment given  by (5.14) are actually  distributed. 
Let us assume for  the moment that  the charge density, in 
the (spherical) volume of the scatterer is of the  form 
p(r)cos 0, and vanishes outside the scatterer. In computing 
an average field for  the whole specimen we must  evaluate 
J”Edr, where the E includes the contributions of the  par- 
ticular dipole  moment under discussion. Under  the con- 
ditions specified above, 213 of this  dipole  contribution to 
JEdr comes from the volume of the scatterer. Actually, of 
course, the dipole charges cannot be as well localized as 
we have assumed. [The screening length I of Eq. (3.4) is 
finite, the uncertainty principle also prevents an excessively 
localized charge. Furthermore, Eq. (5.12) is derived from a 
point model and  cannot  be expected to  hold  true  up  to  the 
actual surface of the scatterer.] Therefore, only perhaps 
1/3, instead of 213, of the voltage drop associated with the 
residual resistance is contained in  the volume occupied by 
the impurity atoms. 

Since such a large  portion of the field  is located where the 
crystalline potential has been disturbed,  the use of the usual 
electron acceleration equation, dkldt = -eE/A, becomes 
questionable. Note  that in our arguments the field is found 
as a result of screening considerations. The exact nature of 
the screening close to  the impurity  atom, is not relevant 
to the  evaluation of an average field. That is, the  nature of 
the first term in Eq. (2.1) can be modified, close to  the 
impurity  atoms,  without  appreciably affecting our asymp- 
totic  evaluation of the dipole potential. It is only necessary 
that (dn/dU), in Eq. (3.6) represent the actual density of 
states, in the dilute alloy, rather  than  the density in the 
pure solvent. 

6. Interaction of obstacles 
The preceding section has been concerned with a localized 
obstacle of cross section So embedded  in a medium with a 
relaxation time TR. This is obviously applicable to  the case 
of a single obstacle in a medium which otherwise has only 
thermal scattering. If we consider a medium which has a 
density of obstacles such that  the obstacle scattering is 
comparable to  the uniform  scattering or larger, then we 
must invoke some  supplemental considerations. First of 
all, the radial  current  scattered by a particular obstacle, as 
given by Eq. (4.9), will now be subject to scattering by other 
obstacles as well as by the  uniform background. Let us 
confine our considerations to  the most  common case, that 
in which the  mean free path (as determined by the com- 
bined scattering) is large  compared to  the distance between 
obstacles. Only a small  portion of the radial  current will 
then be scattered by any  one  obstacle and  the radial  current 
will therefore see a relaxation  time TB which depends on 
both kinds of scattering. Therefore, as  the density of 
obstacles is increased, the effective value of TB changes. 
The value of r ~ ,  however, does not affect the dipole field 
brought in with each  additional obstacle. As the number of 
obstacles is increased, therefore, the space average of the 
electric field changes just as it does in the usual theory. 

We have assumed in the preceding section that  the elec- 
tron velocity distribution incident upon  the obstacle is 
equal  to  the average velocity distribution which exists far 
away from  the obstacle. A localized scatterer disturbs the 
velocity distribution. Close to  the obstacle there are  the 
scattered  radial  currents  as given  by Eq. (4.9). Further 
away there are  the diffusion currents. Both of these kinds 
of currents  constitute deviations from the average velocity 
distribution. A second obstacle placed near the first will 
be exposed to  the deviations caused by the first obstacle. 
An obstacle, however, will generally see the deviations 
caused by many obstacles, not  just those caused by  one. 
If we add  the disturbances due  to  the many obstacles ran- 
domly placed within the vicinity of a given one, then we 
are doing the same thing as  adding  the disturbances due to 
a particular obstacle over many  points in its environment, 
as  long  as the obstacles are uncorrelated in their positions. 
The mere fact that  the obstacles are finite in extension will 
give them some  correlation.  Let us temporarily neglect 
this. It is easily shown that if  we consider the deviations 
caused by a single obstacle, in a particular velocity class, 



these deviations vanish after  integration over all space. 
Hence, an obstacle which is exposed to the deviations 
caused by many other obstacles is exposed to  the average 
velocity distribution. 

The argument which has  just been given relies on  an 
integration which  in turn strictly requires a point  scatterer, 
as we have assumed. Let us take  a  more realistic view and 
give the scatterer an extension in space. Then the scatterers 
exclude (or diminish) the current within a small volume, 
and the average value of the current density at locations 
which are outside of the excluded regions is larger than  the 
average taken over all space. It is this larger current density 
which an additional  scatterer, placed among  the previously 
existing ones, will  see. In principle, therefore, one should 
apply corrections to find the correct “internal” velocity 
distribution in a  manner similar to  the use of Lorentz  cor- 
rections in dielectric theory. If the volume occupied by the 
scatterers is small, as in a dilute  solution, this is presumably 
a small effect. If the  scatterers occupy an appreciable frac- 
tion of the volume, these corrections will  very likely be 
overshadowed by the direct effect of the scatterers on  the 
electronic structure of the medium. In  the extreme case 
where the complete volume of the metal is occupied by the 
scatterers, as in the case of high temperature scattering by 
independently vibrating atoms,  then again the incident 
velocity distribution  must be the average velocity distribu- 
tion. 

7. Degree of localization  required 

The argument we have used in arriving at  our dipole field 
relies upon  the localization of the scatterer. Since the  quan- 
tities entering into  the transport  equation vary on a scale 
comparable to  the mean free path (associated with the 
background), it is only necessary that  the scatterer be small 
compared to the  mean free path.  This  condition will gen- 
erally be satisfied for impurity scattering. 

Actually, the localization of the background  scattering 
is as relevant as that of the obstacle scattering. The use of 
Eq. (4.1) implies that  the scattering  depends only on the 
disturbance N,](Q, r )  at  the point r under consideration. 
Therefore, the obstacle and  the background must be 
‘‘localized’’ to the  same extent. Scattering of electrons by 
phonons is generally sufficiently localized, since a wave 
packet of the representative thermally excited phonons is 
usually short compared to the electronic mean free path. 
The only apparent exception is the case of electron scatter- 
ing by phonons at extremely low temperatures in an alloy 
where the scattering is almost completely determined by the 
lattice defects. At  a sufficiently  low temperature,  the typical 
phonon wavelength will then exceed the mean free path. 
In this case, however, the  phonon scattering will be an 
extremely small portion of the total scattering. Further- 
more, this is a case in which any other theory would pre- 
sumably have difficulties  in correctly evaluating the con- 
tribution of the  phonon scattering. 

It might be thought that  the spatial  variations discussed 
here must disappear at very low temperatures since the 
small energy range of the  order kTover which the probabil- 
ity of occupation varies from 1 to 0, does  not  permit the 

construction of very localized wave packets. This is, how- 
ever, not relevant. One  can, in principle, form stationary 
states which represent the multiple scattering of electrons 
by many obstacles, and  thus find the probability of direc- 
tional changes at various points in space. Such a  solution 
specifies the scattered intensity as a  function of direction 
of scattering within a few wavelengths of the scattering 
center. The relevant dynamic  parameters for  our theory 
are  thus obtainable from solutions of the time-independent 
wave equation for a  particular energy. (At least  this is 
true for the cases where the time-wise variation of the 
lattice vibrations is not significant.) 

The condition that one can construct highly localized 
wave packets, small compared to  the mean free path, is the 
condition h / r  < kT, given  by Peierls4 long ago  for  the 
validity of the Bloch theory. This criterion was introduced 
as a consequence of the use of time-dependent pertur- 
bation theory and is a criterion only of the validity of 
time-dependent perturbation  theory. If the probability of 
scattering is known correctly from  some  other  treatment, 
this criterion has no relevance. 

8. Reflecting walls 

When  there is a  current impinging on a reflecting wall one 
can expect a voltage drop confined to  the immediate vicin- 
ity of the reflecting plane. This is, in fact, taken for granted 
in  the  treatment of the contact resistance at  the junction of 
two metallic conductors.5 We have in mind a situation in 
which the  current flow  is perpendicular to  the wall, and 
assume that  the reflection is specular.  A density of 92 such 
planes per cm will be assumed without any additional 
source of electron scattering. These walls can be considered 
to be models of grain  boundaries or of stacking faults. 
The reflection coefficient r will be assumed to be  a  function 
of the angle, 0, between the wall normal and  the direction 
of incidence. We shall take  the wall normal  to be in the 
positive z-direction and 0 to be the angle with this direction 
so that r(0) = Y ( K  A), and shall first compute the conduc- 
tivity according to  the usual non-local viewpoint. 

An electron travelling in a direction at  an angle 0 with 
the z-axis  will pass %lcos 01 walls per cm of its travel, and 
will therefore be incident upon %lcos 0l/v walls per second, 
where v is the velocity at  the Fermi surface. At  each of these 
collisions only a  fraction r(0) of the electrons are reflected. 
If there are n+ electrons per  unit volume moving in  a 
certain direction, and n-electrons in the reflected direction, 
we can expect that 

&+/dl= -n+%[cos OIr(0)/v+n-%lcos 0lr(0)/v, (8.1) 

dn-/dt= -nd~Icos  Olr(0)/v+n+%Icos Olr(0)lv. (8.2) 

If no is the number of electrons travelling in the two direc- 
tlons concerned, in the absence of a  current,  then symmetry 
requires 

n+”n0=i20-n”. (8.3) 
If (8.3) is substituted in (8.2) and (8.1), we find 
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d(n--n,,)= -(n--n,,p%lcos elr(%)/v, the scattering probabilities cannot  just be added, since each 
dt (8'5) orientation by itself would result in a different shape  for  the 

and therefore a  relaxation  time T(%) =v/2%1cos %lr(O). The velocity distribution. 

usual conductivity theory then gives us a conductivity 9. Multiple reflections by a single obstacle 
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where the integration is over all directions of motion. Note 
that this value for  the conductivity cannot be exact. As 
r(%) is permitted to approach unity for all 8, all current flow 
must cease, yet Eq. (8.6) still yields a finite conductivity. 
This finite conductivity results from a finite relaxation 
time. The latter, in turn, is a result of the assumption of a 
uniform field. If the accelerating electric field  is taken to be 
uniform, and  the current flow  is generated equally at all 
points in space, then it will take a finite time for portions of 
this  current to reach the nearest reflecting barrier, and this 
is the relaxation time which can be obtained  from (8.4) 
and (8 .5) ,  even if r = 1 .  

Instead of the treatment leading to  Eq. (8.6), we can 
handle  the problem by the methods we have already de- 
scribed. This  requires that we have an expression for  the 
distribution of electrons incident upon  the wall. For any 
incident velocity distribution we can  calculate  a scattered 
current  and a  compensating charge. In general, however, 
these will be such that a second plane, parallel to the first, 
would be exposed to a different incident velocity distribu- 
tion. We  must  therefore  choose an incident velocity distri- 
bution  such that  the final resultant velocity distribution is 
the  same  on  both sides of the plane at distances which are 
more  than a screening length away from  the plane. This 
leads, with a little calculation, to a velocity distribution 
(including incident electrons, reflected electrons, and com- 
pensating charge), of the  form 

In  the treatment of point obstacles in Sections 4 and 5 we 
ignored the possibility of repeated reflections by the same 
localized obstacle, and  found  that  the field associated with 
the point obstacles was linear in the scattering cross section 
So. In  the treatment of plane reflectors in Section 8, our 
method  did not ignore the multiple reflections and  the 
resultant field was not linear in r ,  but varied as r/(l - r ) .  
We shall here give a very rough  argument to show that a 
more careful treatment of the point  scatterer,  taking  into 
account the possibility of repeated reflection by the same 
obstacle, also leads to a resistivity which is non-linear in 
the scattering cross section So. 

Consider the scattered  current as given  by Eq. (4.9). 
The z-component of the scattered current (measured in 
carriers per sec)  is obtained by multiplying (4.9) by cos Of 
and integrating over dB. The resulting current has only a 
z-component given by I,= -Sei,. This  scattered  current 
consists of electrons moving away from  the  obstacle in a 
radial direction for a distance of about X, where X is the 
mean free path determined by the background scattering. 
After moving through this  distance X, the electrons have 
their velocity randomized and follow a diffusive motion. 
After  this  randomization  a  fraction of them will  be scat- 
tered again by the original obstacle. This  fraction is 
roughly So/47rX2. 

The total  current incident on  the obstacle at any one time 
is due  to electrons which are incident  for  the first time and 
also due to electrons which have previously been scattered 
by the obstacle one or more times. The scattered  current, 
integrated over all directions, is therefore of the  form 

where P is independent Of The conductivity The diffusion charges, No, and  the resulting potential will 
from  the detailed localized treatment is then vary with SO as So/(l -So/47rX2). This is comparable 

This differs from (8.6) through  the appearance  in the inte- 
grand of the  factor (1 - r(@). This  factor serves to make the 
conductivity vanish as r(0) approaches unity for all 8. The 
difference between (8.6) and (8.8) is therefore only impor- 
tant if the reflection probability is comparable to unity. 
In this  connection it is interesting to  note  that some of the 
calculations for  the reflection coefficient of stacking  faults 
predict values for r which are  not very small compared to 

to  the factor r/( 1 - r )  in the case of plane reflectors. It seems 
plausible, then, that in situations  in which the mean  free 
path is large  enough so that multiple scatterings are negli- 
gible, we can expect the resistivity to vary linearly with 
scattering cross sections and  can expect the usual formalism 
to be applicable. Thus, for example, in the case of highly 
localized, well separated cylindrical obstacles, we would 
expect that most of the  carriers which are incident  upon a 
given obstacle will be scattered only once by it, and  that 
therefore the usual  relations between resistance and scat- 
tering cross section are valid. 

unity.6 

with I9 as cos 19. Therefore,  there is no single relaxation  time A detailed solution of the  transport equation  has shown 
for  the whole conduction process. If reflecting walls exist that spatially localized scatterers produce spatially localized 
simultaneously with thermal scattering, Matthiessen's rule electric fields in the presence of current flow. In  the case of 
will not be satisfied. Even without  thermal  scattering, if  we point scatterers, these localized fields are dipole fields, one 
have a number of such walls with differing orientations, for each scatterer. The resistivity calculated on this basis 

Note  that  the velocity distribution (8.7) does not vary 10. Conclusions 
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is the same  as that given by the  more usual calculations. only for uniform fields in strictly periodic crystals. In  the 
The resistivity calculation has, however, been put  on a more case of a reflecting plane, the resistivity calculated  from the 
secure footing since the discussion that  has been presented localized fields is higher than  that calculated from  the usual 
does not rely as intimately as the usual theory upon the equations,  but the difference is significant only if the re- 
acceleration law, d k / d t =   - e E / h ,  which has been proven flection coefficient is comparable to unity. 
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