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Irredundant Disjunctive and
Conjunctive Forms of a Boolean Function

Introduction

Since C. E. Shannon’s! work on the analysis and synthesis
of relay and switching circuits, the simplification (min-
imization) of the Boolean expression symbolizing the
operation of a binary system has become a major prob-
lem. W. V. Quine? has treated the problem of obtaining
the simplest normal equivalent of a Boolean function.
More generally, we define “Quine’s problem” as the
problem of finding the complete set of irredundant nor-
mal (or alternational or disjunctive) forms of a given
function.

In the present paper, we describe a general method for
the solution of Quine’s problem. We also consider the
problem of finding the complete set of irredundant con-
junctive forms of a given function, and we show that
this problem can be reduced to Quine’s problem, through
a set of transformations which we fully describe. Any
solution to Quine’s problem is therefore a solution to this
problem, including the method we describe.

Definitions and symbols

Consider n binary independent variables. These are rep-
resented by the letters

Va1 Va2 " Vi* " V2 V1 Vo

The complement (inverse, or negation) of the variable
v; is written ¥;.

The symbol + represents alternation (disjunction, in-
clusive union, logical sum, inclusive OR).

The symbol » represents conjunction (intersection, logical
product, AND).

A binary function will be generally denoted by f.

f implies f1 is written f — f1.

*Also Gazale,

Abstract: A thorough algebraic method is described
for the determination of the complete set of irre-
dundant normal and conjunctive forms of a
Boolean function. The method is mechanical and
therefore highly programmable on a computer.

f is equivalent to f! is written f = fL.
Single variables or inverses of single variables are re-
ferred to as literals.

It is always possible to replace a conjunction of literals
where a given literal appears more than once by an
equivalent conjunction where this literal appears only
once, by virtue of the idempotent law. Such a conjunction
will be referred to as conjunctional term, or simply term.
(This is actually Quine’s “fundamental formula.”) Sim-
ilarly, an alternation of literals where a given literal
appears only once will be referred to as alternational
term, or alterm.

A normal form (or alternational, or disjunctive form) is
an alternation of terms.

A conjunctive form is a conjunction of alterms.

An implicant of a given function is a term which implies
that function.

An implicate of a given function is an alterm which is
implied by that function.

An implicant of a function of n variables where all n
variables appear will be called canonical implicant.

An implicate of a function of n variables where all n
variables appear will be called canonical implicate.

Following Quine, a term ¢, is said to subsume a term
¢ if and only if all the literals whereof ¢ is a conjunc-
tion are among the literals whereof ¢, is a conjunction.
Similarly, an alterm i is said to subsume an alterm v if
and only if all the literals whereof ¢ is an alternation are
among the literals whereof ¢ is an alternation.

It is clear that if ¢; subsumes ¢z, d1 —> P2, and that if
Y1 subsumes 2, Y2 —> 1.

If ¢1, ¢2, @3 etc....are implicants of a function f,
the alternation (1 + ¢2 + ¢3) is also an implicant of £.
Similarly, if {1, ¢, 3 are implicates of a function f, the
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conjunction (y1y2¢s . ...) is also an implicate of f.

Alsoif f* > f,wehave f* = fland f + f* = f.

An irredundant alternation (or conjunction) is an
alternation (or conjunction) of terms (or alterms) such
that none of the terms (or alterms) involved is superflu-
ous, and none of the literals within any of these terms
(or alterms) is superfluous.

Quine defined a prime implicant of a function f as an
implicant of f which subsumes no other implicant of f.
We define a prime implicate of a function f as an impli-
cate of f which subsumes no other implicate of f.

The set of prime implicants and the set of prime
implicates of a given function f are finite. Quine has
proved that any simplest normal equivalent of f will
necessarily be an alternation of prime implicants of f.

This is easily extended to any irredundant normal
form. In an identical manner, any irredundant conjunc-
tive form will necessarily be a conjunction of prime
implicates.

The set of irredundant normal forms

Given the complete set of implicants of a function f

Drd2.. Djee.. Pn

Consider an irredundant solution
fi=du+ ¢+ dm

Any ¢; such that j 7= k ¥ | 7 m is superfluous with
respect to f; and satisfies the relation

b >+ di+ dm (GFkFEIFm)

The problem is to determine the complete set of irre-
dundant combinations of the prime implicants of the
function f.

The set of irredundant conjunctive forms

Given the set of prime implicates of a function f

Y12, oty i

any irredundant conjunctive solution will necessarily be
a conjunction of prime implicates of f.

The problem is to determine the complete set of irre-
dundant combinations of these prime implicates of f.

Theorem

Given the complete set of prime implicates

of a function £, any irredundant conjunctive form f; of f
is the dual* of an irredundant normal form f;* of an aux-

*Every literal is replaced by its inverse, every conjunctive sign by an
alternation sign, and vice versa.
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iliary function f* whose prime implicants are

P12z Pj..... bn

obtained from the set of prime implicates by the trans-

formation ¢; = y;
Proof

Consider an irredundant conjunctive form f; given by
fi = Yuddm

Regarding this solution, any ¢; such thatj #* k #1# m
is superfluous, i.e.,

Yidiym = Yididm * 4 (j F k F 15 m)
This gives
Uidigm —> ¢ F kF1F m)

i.e., any prime implicate implied by the conjunction f; is
superfluous with respect to this conjunction.
Again, this gives

Yi—=> e+ Yt (7 kF17#m)

Introducing the functions

we get
¢ = o + 1+ Pu(j F k F 1 F m)

Now, since every y; is an alterm, it follows that every
¢; is a term. Again, since no alterm i; subsumes another,
no term ¢; will subsume another. We can therefore con-
sider the set of ¢; as being the set of prime implicants of
an auxiliary function which we shall denote f*.

Now, since ¢; —> ¢x + ¢1 + ¢m, one irredundant nor-
mal form of f* will be

fit =+ d1+ dm
and we have fi=74

In other words, given the set of prime implicates y;,
first obtain the set ¢; such that ¢; = ¥;. Then consider
this set as being the set of prime implicants of a function
f1. Obtain the set of irredundant normal forms f;! of this
function 1. The set of irredundant conjunctive forms will
be derived from it by the simple transformation f; =7,
i.e., replacing each ¢ in the solution f; by the correspond-
ing ¢, and alternation signs by conjunction signs.

The problem of finding the complete set of irredundant
conjunctive forms is therefore reduced to Quine’s prob-
lem, by the use of the above transformations. Any
method providing a solution to Quine’s problem, includ-




ing the method we are about to describe, is therefore
valid in this case.

Remark

The set of prime implicates of f can be obtained by
simply applying the distributive law

ab+cd=(a+c)la+d)(b+c)(b+d)

to the alternation of the complete set of prime impli-
cants or to some normal form of f, and suppressing any
alterm subsuming another alterm.

Conversely, the set of prime implicants of f can be
obtained by simply applying the distributive law

(a + b)(c+d) =ac+ ad + bc + bd

to the conjunction of the complete set of prime impli-
cates or to some conjunctive form of f, and suppressing
any term subsuming another term.

The method

Let us first introduce the following fundamental opera-
tion: We define the ratio of a function f to a literal / as
the binary function which is equivalent to f whenever
! equals 1. The ratio of f to [ is written

7 1
7 (1)
Examples
Vv veb - vV
nrzrs _ oy 5, 173 — yi7s
V2 V2
% =0 Vi = 1 V1 =1 etc
V3 Vi Vivz

In other words, the ratio of f to / is obtained by form-
ing the conjunction of f and /, and suppressing / from
this conjunction.

It is easily shown that

h n fo _ h+tt

L I L

(2)
It follows that the ratio of a function f to a term which

implies f is valid.

Proof

Let this term be ¢. We have ¢ — f

therefore  ¢f = ¢
and _f_ _ _f_ 1
¢ ¢f

Consider now the list of prime implicants of a func-
tion f

According to Quine, a given prime implicant is dis-
pensable if it implies the alternation of the remaining
prime implicants. In other words, a given prime impli-
cant ¢; is dispensable if the alternation of the ratios ¢;/ ¢;
for all values of j except j = i, is valid.

Construct a chart as follows:

P1 b2 Ce e (o3} ba
b . P2 %
N ! o1 d1
b2 b1 \. ﬂ $n
o2 N b2 b2
\.
AN
¢ B b2 N &
i i N\ i b
AN
AN
AN
N
¢ B S &N
¢7L ¢n ¢n

The general term, on Row i and Column j is ¢;/ ¢:.
The diagonal is the locus of ¢;/¢; = 1. Nothing should
be written upon it.

A given prime implicant ¢; is dispensable if the alter-
nation of all the ratios on Row i is valid. Let us consider
an example:

The prime implicants of a function f are the following:

Xy Xy Xz yz wz

The ratio chart is as follows:

1 2 3 4 5

Xy xy Xz ¥z wz
1 Xy . . . z wz Not dispensable
2 xy . . z . wz Not dispensable
3 xz . y . y w  Dispensable
4 yz x . x . w Dispensable
S wz | Xy xy X y + Not dispensable

The prime implicants ¢1, ¢ and ¢5 are not dispensable.
¢s3 is dispensable since y + y + w = 1.
¢4 is dispensable since ¥ + x + w = 1.

Consider now ¢3. From the chart, we can see that the
alternation y + y + w is valid, which gives

¢33 —> P2+ Py + @5 3)

But also the alternation § 4 y is valid, which gives

b3 —> P2 + by 4 173
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This shows that ¢5 is not necessary to make ¢z dis-
pensable. Relation 3 is therefore redundant in ¢5 and
Relation 4 is irredundant.

Similarly, Row 5 gives us the irredundant relation

s — P11+ s (9

Let us now introduce what we refer to as presence
factor and denote o;. A presence factor o; is a binary
coeflicient, attached to ¢; such that the presence of prime
implicant ¢; in a given irredundant normal form of f
corresponds to o; = 1, and its absence to o; = 0.

Considering the relation ¢z — ¢2 - ¢4, it follows that
the absence of prime implicant ¢; from a given irredun-
dant normal form of f implies the presence of both ¢
and ¢, in that same normal form. In logical symbols,
this gives

a3 —> 02 0y

Note that the redundant relation ¢s — ¢z + b4 + &5
would yield the relation &5 — o2 - 04 - 05 which is not
irredundant, since the absence of ¢; does not necessarily
imply the presence of ¢s.

In a similar way, we can write the set of irredundant
relations:
g1 —>0
g2 — 0
03 —> 0204
04 —> 0103

G5 >0

We know, from the properties of implication that if
a — b, then a+b = 1. This gives the set of equivalences:

g1 = 1
ago = 1
g3 + 0204 — 1
g4 + 0103 = l
o5 =1

Any irredundant normal form of f has to satisfy all the
above equivalences. In other words, we have an irredun-
dant normal form every time the above equivalences are
simultaneously satisfied. So that if we write:
S = 0102 (03-+0204) - (04+0103) * 05 (6)

We have an irredundant normal form of f whenever
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S = 1. § is called presence function of f. Computing (6),
we get

S = 01020305 + 01020405 (7)
The two irredundant normal forms of f are therefore

Fi=¢1+ ¢2+ 3 + ¢5

for 01020305 = 1

and Fy = ¢1 - ¢p2 + s + ¢5

for o1020405 = 1
These are

Fi=3Xy +xy + xz 4+ wz
and Fo = Xy + xy + yz + wz

In general, if the number of prime implicants of a
function f is n, the chart yields n equivalences of the type
G; — §;, that is,

o+ 8 =1 (8)

Where S; is a function of the presence factors o; for all
values of j except j = i. The presence function S is there-
fore of the form

S =TT (o;: + S» 9

i=1

It involves no inverses of o; and therefore if the re-
peated conjunction is computed throughout, the only
simplification which is necessary consists in suppressing
any resulting term which subsumes another term.

An essential condition is that S; be irredundant. In the
above example, these §; were rather obvious. It can hap-
pen, however, that the situation be more complicated, as
the following example shows:

Consider the following chart of ¢;/¢:. (Such a chart
will be called ¢ chart.)

1 2 3 4 5 6 7 8

de cdé dcd ace abd abe bcd bce
1 de . . . ac . ab . be
2 cde a . ab . b .
3 dcd . é . e . . b be
4 dce d . d . . . bd b
5 abd . cé . . . e c ce
6 abe d . . . d . cd c
7 bed . é a de a ae . e
8 bce d . ad a ad a d

The first row yields &, —0 §1=0 o =1

The second yields G >0 S, =0 gz =1

The third ylelds T3 —> 0204 S; = 0904 O3 + 0204 == 1




The fourth yleIds G4 — 0103 S3 = 0103 04 + o103 = 1

The fifth yields &5 —> 0 Ss5=0 o5 = 1

The sixth yields ¢ — o105 S¢ = 6105 05 + 0105 = 1

Now §7 and Ss are not obvious. To determine them, we
resort to a procedure which we call cracking. First con-
sider Row 7. Construct a ratio chart whose horizontal
and vertical entries are the ratios on Row 7. (Such a
chart will be denoted ¢/ ¢ chart.)

1 2 3 4 5 6 7 8
¢/ b7 é a ae a ae . e
1 .
2 ¢ . a a
3a é . e e
4 ae . 1 1
5a é e e
6 ae . 1 1
7.
8 e a a a a

Now, we can say that ¢; implies the function consid-
ered, whenever the alternation of one of the lines in the
above chart is valid. This gives us
;. —> (02 + 0305) (03 + 0204 + 0208) (04 -+ 03 + 03)

(o5 + 6206 + 0203) (06 + o5 + 035)
(08 -+ 0305 + 0306 + 0475 -+ 0406)
that is,

Gr —> 0305 + 0208 + 020306 + 020405 + 020406

Similarly for Row 8, if we construct the ¢/ ¢s chart,
we get:

O3 —> 0107 + 0406 -+ 010305 + 010405 + 010306
Finally, we can write an expression for S:
S = (01) (02) (03 + 0204) (04 + 0103) (05) (06 + 0105)
(07 + 0305 + 0208 -+ 020306 + 020405 + 020404)
(o8 + 0107 + 0406 + 010305 + 010405 + 01030%)
Computing, we get
§ = 01020305 + 01020405
The two irredundant solutions are thus:
F; = de + cdé + acd + abd and

Fy = de + cdé + ace + abd

In other words, a prescnce function S is given by (9)
where i is any row of the ¢ chart, and §; a corresponding
function of ¢4, g2+ - 0j + * - 0u (j F Q).

In turn, S; is given by

Si = IT (ox + Six) (10)
k=1

where k is any row on the ¢/¢; chart, and Sy a corre-
sponding function of ¢1, 62....05..... on(jFiF k).
Similarly S;; can be given by

n

Six = I (o1 + Sir) (11)

I=1

where [ is any row on the (¢/¢;)/ (d)k/ ¢1) chart and S
a corresponding function of o4, 62....0j....0,

(G7i#kF1) ...etc

If this method is used by a computer, cracking can be
achieved in an exhaustive manner. But, for pencil and
paper work, cracking is seldom needed, and the reader
can check that even when the number of variables is very
high, it is easy to obtain any function S;. For instance,
Row 7 of the ¢ chart shows

that ¢7 — 3 -+ @5 because d - a = 1

also ¢7 —> P2 + s because & + e = 1

also ¢7 — P + ¢p3 + ¢ because & + @ + ae =1
also ¢7 — P2 + Pg + ¢5 because & + ae +a =1
also ¢7 —> ¢z + Ps + P because € + de 4- ae = 1
This gives

G7 —> 0305 + 0208 + 020306 -+ 020405 + 020406
Conclusion

The present method is thorough and yields a complete
list of all the irredundant forms of a given function. Of
these, the simplest will be retained if desired, according
to whatever criterion of simplicity is chosen. The pro-
cedure itself involves no choice and can therefore be
entirely mechanized.

The main idea in this method is that whenever it is
stated that a prime implicant is dispensable, this state-
ment is, of course, true but often involves redundancy.
To be irredundant the statement has to involve the com-
plete list of reasons which are necessary and sufficient to
make this prime implicant dispensable. Any reason im-
plying another reason would appear in the S function as
a term subsuming another term and would therefore be
rejected. When such a list is not obvious, systematic
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“cracking” is used, if the problem is actually cracked into
a number of minor problems of standard type.

This method can therefore be highly mechanized.
However, if the solution is to be manual, it is consider-
ably simpler than other existing ones, because the only
difficulty would lie in writing the function S with a mini-
mum of cracking, and this difficulty is actually of a very
limited character.

Interesting papers on this general subject have been
published by various authors, and especially R.H. Urbano,
E. W. Samson, R. K. Mueller?*5 and S. R. Petrick,® of
the Air Research and Development Command. Petrick’s
paper presents a method for the direct determination of
the irredundant forms of a Boolean function from the set
of prime implicants, in which it is necessary to obtain
the set of canonical implicants. In the present method
however, only the set of prime implicants is necessary.
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