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Irredundant  Disjunctive and 
Conjunctive  Forms of a Boolean Function 

Abstract: A thorough algebraic method is  described 

for the determination of the complete set of irre- 

dundant  normal and conjunctive forms of a 

Boolean function. The method is  mechanical and 

therefore highly  programmable on a computer. 

Introduction 

Since C. E. Shannon’s1 work on  the analysis and synthesis 
of relay and switching circuits, the simplification (min- 
imization) of the Boolean expression symbolizing the 
operation of a binary  system  has  become  a major  prob- 
lem. W. V. Quine* has treated the  problem of obtaining 
the simplest normal equivalent of a Boolean function. 
More generally, we define “Quine’s problem”  as the 
problem of finding the complete set of irredundant  nor- 
mal (or alternational or disjunctive) forms of a given 
function. 

In  the present paper, we describe  a  general method  for 
the solution of Quine’s problem.  We also consider the 
problem of finding the complete  set of irredundant con- 
junctive forms of a given function,  and we show  that 
this problem  can be reduced to Quine’s problem, through 
a set of transformations which we fully  describe. Any 
solution to Quine’s problem is therefore a  solution to this 
problem,  including the method we describe. 

Definitions and symbols 

Consider n binary  independent  variables.  These are rep- 
resented by the letters 

vn-l vn_z * . . vi.. . v:: V I  v,. 

The complement  (inverse, or negation) of the variable 
vi is written Gi. 
The symbol + represents  alternation  (disjunction, in- 
clusive union, logical sum, inclusive OR). 
The symbol represents  conjunction  (intersection, logical 
product, AND). 
A  binary function will be  generally  denoted by f. 
f implies f1 is written f -+ fl. 

*Also Gazale. 

f is equivalent to f1 is written f = fl. 
Single variables or inverses of single variables are  re- 
ferred  to as literals. 

It is always possible to replace  a  conjunction of literals 
where  a given literal appears  more  than  once by an 
equivalent  conjunction  where  this  literal appears only 
once, by virtue of the idempotent law. Such  a  conjunction 
will be referred  to as  conjunctional term, or simply term. 
(This is actually Quine’s “fundamental  formula.”) Sim- 
ilarly, an  alternation of literals  where a given literal 
appears only once will be referred  to as alternational 
term, or alterm. 
A normal form (or alternational, or disjunctive form) is 
an alternation of terms. 
A conjunctive form is a  conjunction of alterms. 
An implicant of a given function is a term which implies 
that function. 
An implicate of a given function is an  alterm which is 
implied by that  function. 
An implicant of a  function of n variables  where all n 
variables appear will be called canonical implicant. 
An implicate of a  function of n variables  where all n 
variables appear will be called canonical implicate. 

Following  Quine,  a term dl is said to subsume a term 
+2 if and only if all the literals whereof +2 is a  conjunc- 
tion are  among  the literals whereof +1 is a  conjunction. 
Similarly, an  alterm $1 is said to subsume an  alterm #2 if 
and only if all the literals whereof t,h2 is an  alternation  are 
among  the literals whereof ql is an alternation. 

It is clear that if +1 subsumes +2, -+ +2, and  that if 

If &,  &, etc. . . . are implicants of a function f, 
the alternation (C1 + +2 + +3) is also an implicant of f. 
Similarly, if $1, $2, $3 are implicates of a function f, the 171 

$1 subsumes $2, $2 -+ $1. 

IBM JOURNAL APRIL 1957 



conjunction ($I$z$~ . . . .) is also an implicate of f. iliary function f1 whose prime  implicants are 
Also if f1 + f, we have fll = f1 and f + f1 = f. 
An  irredundant  alternation (or coniunction) is an $1 $2 * * $i * * * * $n 

alternation  (or  conjunction) of terms  (or  alterms)  such 
that  none of the  terms  (or  alterms) involved is superflu- formation $j = Ti 
OUS, and  none of the literals  within any of these terms 

obtained from  the set of prime implicates by the trans- 

(or  alterms) is superfluous. Proof 
Quine defined a prime implicant of a function f as an 

implicant of f which  subsumes no other implicant of f. Consider an  irredundant conjunctive form fi given by 

We define a prime implicate of a function f as  an impli- fi = +k+.l+m 

cate of f which  subsumes no  other implicate of f. 

implicates of a given function f are finite. Quine  has is superfluous, i.e., 
proved that  any simplest normal equivalent of f will 
necessarily be an  alternation of prime implicants of f. $k$l$m = $k$l$rn . $i(j # k # 1 # m )  

This is easily extended to  any  irredundant  normal 
form.  In  an identical manner, any irredundant conjunc- This gives 
tive form will necessarily be  a  conjunction of prime 
implicates. $k$l$m + $ j ( i  # k # 1 # m )  

The set of prime implicants and  the set of prime Regarding  this  solution, any $i such  that j # k # 1 # m 

The  set of irredundant  normal forms i.e., any  prime implicate  implied by the conjunction fi is 
Given the complete  set of implicants of a function f superfluous  with  respect to this  conjunction. 

Again,  this gives 

Consider an  irredundant solution Introducing  the  functions 

$1 $2. . . . . $j . . . . . +n 
Any $i such  that i # k # 2 # m is superfluous with such  that +i = Ti 

respect to ft and satisfies the relation 
we get 

$ j ~ $ k + $ l + $ r n ( j # k # 2 # m )  
$ i + + k +  $ 1  $m ( i # k # l # m )  

The problem is to  determine  the complete  set of  irre- 
dundant combinations of the  prime implicants of the 
function f. 

Now,  since  every $i is an  alterm,  it follows that every 
$i is a term. Again,  since no  alterm subsumes another, 
no  term & will subsume  another.  We  can  therefore con- 

The  set of  irredundant conjunctive  forms sider the  set of +i as being the set of prime implicants of 
. .  

Given  the set of prime implicates of a function f an auxiliary function which we shall denote fl. 
Now, since + $k + $1 + $m, one  irredundant nor- 

any  irredundant conjunctive  solution will necessarily be 
a  conjunction of prime implicates of f. 

The  problem is to  determine  the complete  set of irre- 
dundant combinations of these prime implicates of f. 

Theorem 

Given  the complete set of prime implicates 

$1 $2 . . . . . $j . . . . . $* 

of a function f, any  irredundant conjunctive form fi of f 
is the  dual* of an  irredundant  normal  form fi1 of an aux- 

and we have f i  = f l i  

In  other words, given the  set of prime implicates $i, 
first obtain  the  set $i such  that $i = Ti. Then consider 
this  set  as being the  set of prime implicants of a  function 
fl. Obtain  the  set of irredundant  normal  forms fil of this 
function fl. The set of irredundant conjunctive forms will 
be  derived from  it by the simple transformation fi =j i l t  

i.e., replacing each $ in  the solution fi by the correspond- 
ing $, and  alternation signs by conjunction signs. 

The problem of finding the complete  set of irredundant 
conjunctive forms is therefore reduced to Quine's prob- 

*Every  literal  is  replaced by its  inverse,  every  conjunctive sign by an 
lem,  by the use of the above  transformations.  Any 

172 alterrlatiorl sign,  and vice  versa. method  providing  a  solution to Quine's problem,  includ- 
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ing the  method we are about to describe, is therefore According to Quine,  a given prime implicant is dis- 
valid in  this case. pensable if it implies the alternation of the remaining 

Remark 
prime implicants. In  other words, a given prime impli- 
cant $i is dispensable if the alternation of the ratios $j/+ 

The set of prime implicates of f can be obtained by for all values of j except j = i, is valid. 
simply applying the distributive law Construct a chart as  follows: 

ab + cd = ( a  + c )  ( a  + d )  ( b  + c) ( b  + d )  9 1  92 . . . . . .  4, . . .  +n 

to  the alternation of the complete set of prime impli- 91 0 -  . . . . . . - . . . -  92 9j 4 n  
cants  or  to some normal  form of f,  and suppressing any \ 91 91 4 1  alterm subsuming another alterm. 

Conversely, the set of prime implicants of f can be 91 \ 9 2  - - - $i - 9 n  
obtained by simply applying the distributive  law 92 \ 9 2  4 2  

. . . . . .  ... 
\ . . . . . . . . .  e . . . . . .  . . . . .  * 

( a + b ) ( c + d )   = a c + a d + b c + b d  \ 

to  the conjunction of the complete set of prime impli- 
cates or to some  conjunctive form  of f ,  and suppressing 
any  term subsuming another term. \ 
The method \ 
Let us first introduce  the following fundamental  opera- . . . . . . . . . . . . . . . . . .  
tion:  We define the ratio of a function f to a  literal 1 as \ 

91 92 \ 9i $ i  - - ... - ... - 9 n  
9i 9i '\ +i 9i 

. . . . . . . . . . . . . . .  * e . .  

\ 
e ' . *  

the binary function which is equivalent to f whenever 9 1  92 +I \ +n - - . . . . . .  - ...  
I equals 1. The  ratio of f to I is written 9 n  9 n  4n  

e 

L 
1 

The general term,  on Row i and  Column i is $i/+. 
( l )  The diagonal is the locus of $ i / $ i  = 1. Nothing should 

Examples 
be written upon it. 

A given prime  implicant $ i  is dispensable if the  alter- 
" v1v2v3 - v1v3 v1v3 - v1p3 nation of all the ratios on Row i is valid. Let us consider 

V2  v2 an example: 
The prime  implicants of a function f a r e  the following: 

" 
Vlv2v3 - 0 "1 " v1 

- 1 etc. 
v3  V1  VlVZ ?y x7 xz yz wz 

In  other words, the  ratio of f to I is obtained by form- 
ing the conjunction of f and I, and suppressing 1 from 
this conjunction. 

It is easily shown that 

-+-= fl f 2  fl + f z  

I1 11 11 

It follows that  the  ratio of a function f to a term which 
implies f is valid. 

Proof 

Let this term be 9. We have $ "+ j 

therefore $f = $ 

and f - f - - ]  
"" 

9 9f 
Consider now the list of prime  implicants of a func- 

tion f 

The  ratio  chart is as follows: 

1 2 3 4 5  
z y  xji xz y z  wz 

1 j y  

z y  xy n y Not dispensable 5 wz 
3 x . w Dispensable 4 y z  
. j i  - y w Dispensable 3 xz 

z . wz Not dispensable 2 x7 
- z wz Not dispensable 

The  prime implicants $1, $2 and 95 are  not dispensable. 
$3 is dispensable  since 7 + y + w = 1. 
$4 is dispensable  since 3 + x + w = 1. 

alternation 7 + y + w is valid, which gives 
Consider  now &. From  the  chart, we can see that  the 

$3 "j $2 + $4 + $5 ( 3 )  

But also the  alternation 3 + y is valid, which gives 

$1 $2. . . . . .  $i $3. . . . .  $3 -+ $2 + $4 (4) 173 
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This shows that (b5 is not necessary to  make $3 dis- 
pensable. Relation 3 is therefore  redundant  in $5 and 
Relation 4 is irredundant. 

Similarly,  Row 5 gives us the  irredundant relation 

$4 + $1 + $3 ( 5 )  

Let us now introduce  what we refer to as presence 
factor and  denote ui. A  presence factor ui is a  binary 
coefficient, attached  to $i such  that  the presence of prime 
implicant $i in a given irredundant  normal  form of f 
corresponds to ui = 1, and its  absence to ~i = 0. 

Considering the relation $3 "+ $2 + &, it follows that 
the absence of prime implicant d3 from a given irredun- 
dant  normal  form of f implies the presence of both $2 

and q54 in that  same  normal  form.  In logical symbols, 
this gives 

- 
0 3  + u2 . U.L  

Note  that  the  redundant relation $3 "+ $2 + $4 + $5 

would yield the relation os + u2 . u4. u5 which is not 
irredundant, since the absence of $:% does not necessarily 
imply the presence of $5. 

In a similar way, we can write the set of irredundant 
relations: 

u1 + 0 

5 2  -9 0 

- 

- 
u3 + m u 4  

- 
u4 + u1@3 

- 
u5 + 0 

We know, from  the properties of implication that if 
a + b, then d t b  = 1. This gives the set of equivalences: 

u1 = 1 

u2 = 1 

(T3 + U 2 u 4  = 1 

u4 + (TIC73 = 1 

(Tg = 1 

Any  irredundant  normal  form of f  has  to satisfy all the 
above equivalences. In  other words, we have  an  irredun- 
dant  normal  form every  time the above  equivalences are 
simultaneously satisfied. So that if we write: 

S = u1- UP (u3+0204) . (u4+u1u3) u5 ( 6 )  

174 We  have an  irredundant  normal  form of f whenever 

S = 1. S is called presence function off.  Computing ( 6 ) ,  

we get 

S = u1u2u3u5 + u102uqu5 ( 7 )  

The two irredundant  normal  forms of f are  therefore 

F1 = $1 + $2 + $3 + $5 for ( T ~ u ~ u ~ u ~  = 1 

and FZ = $1 + $2 + $4 + $5 for u1u2u4u5 = 1 

These  are 

F1 fy + XY + xz  + wz 

and F 2  = f y  + xg + yz + wz 
In general, if the  number of prime implicants of a 

function f is n, the  chart yields n equivalences of the type 
+ Si, that is, 

ui + Si = 1 (8) 

Where Si is a function of the presence factors uj for all 
values of j except j = i .  The presence  function S is there- 
fore of the  form 

n 

S = 11 ((Ti + Si) (9) 
i=l 

It involves no inverses of ui and  therefore if the  re- 
peated  conjunction is computed  throughout,  the only 
simplification which is necessary consists in suppressing 
any resulting term which  subsumes another  term. 

An essential condition is that Si be irredundant.  In  the 
above  example, these Si were rather obvious. It  can  hap- 
pen, however, that  the situation  be more complicated,  as 
the following example  shows: 

Consider the following chart of $ j / $ i .  (Such a chart 
will be called q5 chart.) 

1 2 3 4 5 6 7 8  
de cd? dcd dce a6d a6e 6cd 6ce 

1 de ac a6 6c 
2 cdE d . a 6 . 6 .  
3 d c d  i? - e . 6 6e 

~- 

4 d c e  d d - 6d 6 
5 a6d - C Z  - a e c c e  
6 a6e d . * d . c d c  
7 6 c d  .? d de a ae - e 
8 6 c e  d * dd d ad a  d . 
The first row yields i?l + 0 S1 = 0 ul = 1 

The second yields + 0 S p  = 0 U~ = 1 

The  third yields as + u2u4 S3 = u2u4 u3 + u2u4 = 1 
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The  fourth yields c4 -+ u1u3 S3 = u1u3 u4 + u1U3 = 1 In  other words,  a  prescnce function S is given by ( 9 )  
where i is any  row of the + chart,  and Si a  corresponding 

The fifth yields c5 0 Ss = 0 u5 = 1 function of u1, u2 . . . uj . . . u,(j # i ) .  

The sixth yields 5 6  -+ U1U5 SF = UlU5 UG + U1U5 = 1 In  turn, Si is given by 

Now ST and Sa are  not obvious. To determine them, we n 

resort to a procedure which we call cracking. First con- si = 11 + S i k )  

sider  Row 7. Construct a ratio  chart whose horizontal k= 1 

and vertical  entries are  the ratios on Row 7. (Such a 
chart will be denoted $/$7 chart.) 

1 2 3 4 5 6 7 8  
+/ $7 a 2 c i d e a a e . e  

1 .  
2 5  

m d c i a a .  8 e  
7 .  

- 1 .  - 1  6 ae 
. e .  . e . e  S a  

e l .  e 1  4 de 
- 2  . e -  - e  3 6  

. d . a .  

Now, we can say that $7 implies the  function consid- 
ered,  whenever the alternation of one of the lines in the 
above chart is valid. This gives us 

- 
ui -+ (u2 + u3C5)   (u3  + U2U4 + U2US) (U4 + U3 + U8) 

(u5 + UZUG f UZ%> (UG + U5 + 0 8 )  

(US + 0 3 0 5   + u 3 a G  f u4V5 + U4uG) 

that is, 

- 
(Ti +@3U5 + 02U8 + (r2U3UG + (T2UqU5 + UZU4U6 

Similarly for Row 8, if we construct  the +/$* chart, 
we get: 

where k is any row  on  the + / + i  chart,  and Sir, a corre- 
sponding function of ul, u2 . . . . uj . . . . . u,L(j # i # k ) .  

Similarly S i k  can be given by 

n 

S i k  E 11 (Ul  + S i k l )  (11) 
1=1 

where 1 is any  row  on  the ($/ $ i )  / ( $ k /  $ i )  chart  and S i k l  

a  corresponding function of ul, u2 . . . . ui . . . . un 
( j  # i # k # I )  . . . etc. 

If this method is used by a computer, cracking can be 
achieved in an exhaustive manner. But, for pencil and 
paper work,  cracking is seldom  needed, and  the  reader 
can check that even  when the  number of variables is very 
high, it is easy to  obtain any function Si. For instance, 
Row 7 of the $ chart shows 

that $7 -+ $3 + $5 because ci + a = 1 

also $7 -+ +Z + 48 because .? + e = 1 

also f i7 -+ &- + $3 + $6 because 5 + d + ae = 1 

also +7 -+ c $ ~  + + +5 because .? + de + a = 1 

also $7 -+ $2 + +4 + +G because .? + de + ae = 1 

This gives 

Finally, we can write an expression for S: Conclusion 

The present method is thorough  and yields a  complete 
list of all the irredundant forms of a given function. Of 
these, the simplest will be  retained if desired,  according 
to whatever  criterion of simplicity is chosen. The pro- 
cedure itself involves no choice and  can  therefore be 
entirely  mechanized. 

The main  idea  in  this method is that whenever it is 
stated  that a prime implicant is dispensable, this state- 
ment is, of course, true  but  often involves redundancy. 
To be irredundant  the  statement  has  to involve the com- 
plete list of reasons  which are necessary and sufficient to 
make this prime implicant dispensable. Any reason  im- 
plying another reason would appear in the S function  as 
a term subsuming another  term  and would therefore be 
rejected.  When such a list is not obvious,  systematic 175 
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“cracking” is used, if the problem is actually  cracked into 
a number of minor problems of standard type. 

This  method  can  therefore be highly mechanized. 
However, if the solution is to be manual, it is consider- 
ably  simpler than  other existing ones, because the only 
difficulty would lie in writing the  function S with  a mini- 
mum of cracking, and this difficulty is actually of a very 
limited character. 

Interesting  papers on this  general  subject  have been 
published by various authors,  and especially R. H. Urbano, 
E. W. Samson, R. K. M ~ e l l e r ~ , ~ , ~  and S. R. Petrick,F of 
the  Air Research and Development Command. Petrick’s 
paper presents  a method  for  the direct  determination of 
the  irredundant  forms of a Boolean function  from  the set 
of prime implicants,  in  which it is necessary to  obtain 
the set of canonical  implicants. In  the present method 
however, only the set of prime implicants is necessary. 
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