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A Positive-Integer  Arithmetic  for Data Processing 

Abstract: It is  hypothesized that positive numbers 

suffice for the expression of quantities in account- 

ing. New arithmetic  operations are devised that 

yield  non-negative results in computation, and  the 

applicability of these operations to data processing 

i s  studied. These operations  permit  a wide  variety 

of functions to be computed with  fewer  and less 

complex steps and  imply the  feasibility of construct- 

ing less complex data-processing machines. 

Introduction 

This  report describes some  exploratory work  on  an  arith- 
metic  intended to be more useful for accounting and  data 
processing. The  report deals with the question, “What 
would be the effects of using only positive numbers in 
accounting?” Effects that would interest us especially are 
reductions in  the  number or in the complexity of steps of 
computation  and, possibly, a closer correlation between 
data processing and  that which it represents. 

Certain operations are  performed by accountants  and 
bookkeepers in  order  to avoid  having to  count  the  ob- 
jects of their interest. These  are  the  common  arithmetic 
operations of addition,  subtraction, multiplication and 
division. The unrestricted  use of subtraction gives rise to 
negative numbers  and necessitates the  further operations 
of testing for negative balances. 

It  can be  contended that negative numbers  do not 
occur “naturally” in  accounting:  that quantities can be 
expressed only by means of the  counting  numbers  and 
zero. If “credit” is taken as a positive quantity of some- 
thing, then “debit” ought  to be thought of as  a positive 
quantity of something else. The  practice of maintaining 
separate totals of debit and credit is an instance of this 
concept. 

In postulating  a positive-integer arithmetic  for book- 
keeping,” new operations  must  be devised to work within 
this number system. We will employ an  operation, called 
diminish, instead of subtract.  In  terms of diminish, we 
can define add,  take the lesser, and take the greater. The 
body of this report discusses some  properties and uses of 
these operations. 

‘The  author  has  not  been  able  to  discover  any  published  work  dealing  with 
a non-negative  system  of  arithmetic  in  data  processing.  Some  of  the com- 
putation  techniques  described in  this  paper,  or  variations  such  as those 
using  absolute-value  operations,  are  known  to  programmers,  but,  to  the 

158 author’s  knowledge,  have not  bcen developed  extensively  or reported. 

As this report shows, a wide variety of functions can 
be computed with the diminish  operation. In particular, 
the kind of function  that is ordinarily  described by a 
number of conditional  statements (e.g.-if x is positive, 
multiply by r )  becomes a single, non-conditional arith- 
metic expression. This observation has some important 
implications  with  respect to  the design and use of data- 
processing machines: 
1. Data-processing-machine programs  are straight-line 

rather  than branched. This  fact implies that: 
a Fewer selectors are  required  for machines  with 

control panels. 
b  Stored programs  can be retained in sequential- 

access memories rather  than in  random-access 
memories  because program control transfers  are 
not required. 

c The construction and assembly of stored programs 
is simplified. 

2. The  total  number of program steps is reduced, thus 
conserving  space. 

3. The  number of program steps executed in performing 
a computation is sometimes  reduced,  sometimes 
increased. 

4. Equipment  for  the storage and  control of number 
signs can be eliminated from data-processing  machines. 

Definition and elementary properties of diminish 

Diminish is a  primitive  recursive function,  and  has 
been  studied  as a topic of mathematical logic.” In  that 
context the  operation  has  not been given a specific name, 
but is designated by the symbol “ I ”. Because this  symbol 
might  be  confused  with the divide symbol, we prefer  to 

‘See, e.g., S. C. Kleene, Introduction to Metamzfhematicr, D. Van Nostrand 
and Co., New York, 1952, p. 217, Chap. IX. 
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use “e” to stand for  the diminish operation, which we 
define* to be: 

x e y = x - y  i f x > y  
= o  i f x < y  

Diminish, therefore,  produces  the  quantity of objects 
remaining after as  many  as y have been removed from x. 

Diminish can be associated with other operations: 

T h e   s u m  of x and  y: 

x + y = G e [ ( G 8 ~ ) 0 y l  
= G G [ ( G e y )  8 x 1  

G is any number  large  enough so that making  it  larger 
does not alter the value of x + y .  

T h e  lesser of x and  y: 

x n y = ~ e ( X e ~ ) = ~ e ( ~ e x )  

x ~ y = X + ( y e ~ ) = y + ( ~ e ~ )  

T h e  greater of x and y :  

In the same  manner  that we use the phrase “the add 
operation,” we  will use the  phrases  “the lesser operation” 
and  “the greater  operation.” 

The  four operations, diminish,  add,  greater, and lesser, 
represent directly certain simple data processes. For ex- 
ample,  suppose we have two sets of objects, X and Y ,  
and x and y are  the counts of the two sets. If we withdraw 
one of  X for each of Y ,  certain derivative quantities 
appear: 

x 8 y = number of unmatched X objects 

y 8 x = number of unmatched Y objects 

x n y number of matched X or Y objects 

Interpretations  like these are helpful in working out 
expressions of more complicated processes because di- 
minish, unlike  subtract, does not  have the  cancellation 
properties which allow the reduction of long expressions. 

Miscellaneous identities 

X e Y e  (1) 

( X e Y )  ex= o (2) 

( xey )  e ( y e x )   = x e y  (3)  

( n e y ) e z = ( X e z ) e y = x ~ ( Y + Z )  ‘4) 

= y e ( z G x )  i f x < z  (5b) 

= ( x e z )  + [Ye ( Z W I  (5c) 

= [ ( x e z )  + Y I ~  ( z e x )  ( 5 4  

x e ( z e Y )  = ( x + y ) e z   i f z Y y  (6a) 

= [ ( x + Y ) e Z l e ( Y e z )  ((33) 

= (x + Y )  e (Y u z )  ( 6c) 

An  instance of the use of diminish 

The computation of income-tax and FICA deductions in 
payroll processing illustrates  the use of the diminish 
operation.  These are two separate  computations which 
usually are  done together in practice. 
( 1) An income-tax deduction, D ,  is made only if the 
gross pay, G,, exceeds the exemption allowance, E.  The 
tax is computed on the difference between gross pay and 
exemption. 

Written in conventional  arithmetic, this relation is: 

D = r ( G , - E )  i fG,>E  ( r - taxrate)  

= o  i f G , < E  

The diminish operation  permits  the same function to 
be written as: 

D = r ( G n 8   E )  

(2)  The FICA deduction, F, is based on gross pay if 
gross earnings-to-date, ZnGi, are less than $4200, based 
on  the difference, 4200 - Zn-IGi, if gross earnings-to- 
date go over $4200 in this pay  period; and zero if $4200 
has already been exceeded. 

More briefly, these conditional relations are written in 
conventional  arithmetic  as: 

F = sG,  if ZnGi < 4200 

= s(4200 - Zn-IGi)  if Cn-IGi <4200 < CnGi 

= o  if Zn-IGi > 4200 

Using diminish and lesser, these relations become: 

F = s[Gn n (4200 8 Zn-lGi)] or 

F = S { G ,  e [G, e (4200 e z ~ - ~ G ~ ) I )  

( x + Y ) ~ z =  ( x e z )  + Y  i f x > z  (5a) If we assume an instruction  set,  such  as that of the 
IBM 705 computer, plus the additional  instruction to 
perform the diminish operation, we can contrast  the 

*Dr. R. R. Seeber  Jr.  of IBM has pointed  out  in  a  note  that  calculators 
with  absolute-value  instructions  can  perform  the  diminish Operation as programs performing these functions in the two ways’ It 
follows: is convenient to define the diminish instruction as, 

X e Y = = % c ( x - y )  + I X - Y I I  “Diminish the  quantity specified by the  address part of 
Comparable  relations  hold  for x U y and x n JJ. Thus  the procedures the diminish instruction by the quantity in the  arithmetic 
for  evaluating  various  functions,  worked  out  in  this  paper  in  terms of 
diminish,  can  be  translated  into  procedures  using  absolute-value  oper- 

register.” A comparison of the two types of programming 
I ations. is shown in Program 1. 159 
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Program 1 Comparison of conventional 
programming* steps with use of “diminish” 
operation. 

Conventional  Using  Diminish a 
1.1 R ADD (G,) 1.1 R ADD ( E )  
.2 SUB ( E )  .2 DIM (GI 0 
.3 TR + 2.1 .3 MPY (1.)  
.4 R ADD (0) .4  STORE ( D )  
.5 TR 2.2 

2.1  MPY ( r )  
.2 STORE ( D )  a 

0 

3.1 R ADD  (4200) 2.1 R ADD (Sn-’Gi) 
.2 SUB (Zn-lGi) .2 DIM  (4200) a 
.3 SUB (Gn) .3 DIM (Gn) 
.4  TR + 4.1 .4 DIM (Gn) 
.5 ADD (G,) .5 MPY ($1 
.6 T R  + 4.2 .6 STORE ( F )  
.7 R ADD (0) 
.8 TR 4.3 

Figure I Graphic representation 
of arithmetic boundaries between sets of 
points  in  a  given  plane. 

4.1 R ADD ( G n )  
.2 MPY (s) 
.3 STORE ( F )  

*R ADD (Gn) means  “reset  the  arithmetic  register  to  contain  the  number 

SUB ( E )  means  “subtract  from  the  number in the  arithmetic reg- 

T R  2.2 means  “perform  next  the  operation 2.2” 
MPY (r )  means  “multiply  the  number  in  the  arithmetic  register by 

STOKE ( D )  means  “put  the  rlumber i n  the  arithmetic  register  into 
storage  and  rrfer to it as D” 

T R  + 4.1 means  “perform  next  the Operation 4.1 only if the  num- 
brr  in  the  arithmetic  register  is  poritivr,  otherwise per- 
form  the  nrxt  operation  in  sequence” 

Gn” 

ister  the  number E” 

the  number r” 

In  the instance of Program 1, diminish  provides: 
( 1) A  saving of eight out of eighteen  instruction  spaces; 
(2) A saving of an average of three  out of thirteen  in- 

structions  executed; 
(3) A  straight-line  program 

Characteristics of the operations greater and lesser 

points, segregates a set of points. The set, designated X ,  
is isomorphic to  the  quantity x. Another  boundary,  drawn 
either wholly  within or wholly  without the  boundary 
around x, produces  another  set, Y ,  isomorphic to the 
quantity y .  X or Y will be void sets if the corresponding 
quantities happen  to be zero  (see  Fig.  1 ) . 

The union of two sets, X U Y ,  is defined as the set 
having  elements  in  either X or Y .  Therefore  the set-theo- 
retic union  for  the special construction of sets just defined 
is isomorphic to  the value, the larger of the quantities x 
and y. Similarly, the intersection of two sets, X n Y ,  is 
defined as the set  having  only the elements common  to 
X and Y .  Thus  the set-theoretic  intersection is isomorphic 
to  the value, the lesser of x and y .  These  isomorphisms 
account  for  the use of the  standard symbols u (cup)  and 
n (cap)  for  the greater and lesser operations. 

Having established these  isomorphisms, we can trans- 
late certain relations,  proved in set theory, into  the fol- 
lowing: 

Quite often  in  data processes, it is necessary to  obtain a x = x 
quantity which is in  a certain relation to  other quantities; 
for example, the least of three quantities. The operations, x n Y = Y n X (commutative  relations) 
greater  and lesser, will be used exclusively in expressions 
for  performing  such processes and  therefore  are of special x U ( y  U Z) = (X U y )  U z 
interest.  Moreover, these two  operations  can  be associated 
directly  with the  theory of sets. There  are a number of 

x n  (Y  nz) = ( ~ n y )  n z  (associative relations) 

useful  relations involving these  two operations  that can . 
be presented,  either by proving  them from  the definitions 
of greater and lesser in  terms of diminish, or by making x n ( y  U z )  = (x n y )  U (x n z )  (distributive relations) 
the association  with set  theory  and using that  theory  to 
provide us with  ready-made  relations.  This  second way is x U (x U y )  = x U y 
briefer and will be given here. 

The quantities,  denoted by x, y ,  . . . , express the  count 
of certain physical or conceptual  objects. The objects  can 
be represented by any tokens, such as  points on a plane, 

X u (Y  n Z) = (X u y )  n ( X  u Z )  

x n  ( x n y )   = x n y  

X u (X n y )  = X 

160 for  arithmetic purposes.  A boundary,  drawn  around x x n ( x  u y )  = x 

IBM JOURNAL APRIL 1957 



bers (a, b, c, . . . n).  There will be another set (a, P, y, . . . 
v) containing the  same  numbers but ordered in  increasing 
magnitude. 

(a, b, c, . . . ) could be numbers stored  in memory, in 
order of memory address. (a ,  ,8, y, . . .) are  the  ordinals 
of this set: Le., a is least, /3 is the next, or second least, 
etc. 

Every ordinal, CY, /3, y,  . . . X, p, V, from either end 
is calculable from (a, b, c, . . .) using only the operations 
greater ( U ) and lesser ( n ) . This implies that  the ordinal 
is also calculable  with  only diminish. Using greater  and 
lesser, the calculability is shown in the following manner: 

( 1)  The least and  the greatest  quantities, CY and V, are: 

a = a n b n c n  . . .  
v = a U b U c U  . . .  

since u and n are transitive. 
( 2 )  Consider the n different subsets of (a, b, c, . . .), 

each containing n - 1 elements. Each subset will contain 
all but  one of a,  b, c, . . . , and, by ( 1) will have  a  calcul- 
able least  element afl  CY'^. One subset will not con- 
tain a, and will therefore contain /3 as  a  least  element. 
All other subsets will contain CY which will be the least 
element. Therefore,  the next to  the least element of the 
original set will be the greatest of the leasts of these  sub- 
sets : 

p == CYfl u a’* u u ’ . u CY’, 

= ( b n c n d n  . . . )  u ( a n c n d  n . . . )  

u ( a  n b n d n . . . )  u . . .  

( 3 )  By (2 )  the next leasts of the  same subsets are 
calculable. The subset not containing CY, and  the subset 
not  containing ,8 will contain y as the next least. All 
other subsets  contain both CY and /3, and /3 will be the next 
least in these. The next-next least, y ,  of the original  set is 
therefore: 

y = PI1 u u p3 u .. u P I n .  

(4)  By induction, it can be seen that any ordinal  from 
least on  up  can be calculated. This is done by taking the 
subsets, each not  containing one of a, b, c, . . . and  there- 
fore not  containing one of CY, ,& y,  . . . and calculating the 
previous ordinal  for  each,  then calculating the greater of 
these  previous  ordinals. 

( 5 )  In exactly  similar  fashion, the second  greatest, 
third greatest,  etc. are calculable. 

As  an example,  suppose we want the second  least of 
the  four quantities a, b, c, d. By the above  rule,  this will 
be the greatest of the leasts of the  four subsets (abc) ,  
(abd)  , (acd) , (bcd )  : 

Applying the  formulas of the preceding  section to  the 
first and second  parenthetical terms  and  to  the third and 
fourth: 

p = ( ( a  n b )  n ( C  u d ) )  u ( ( c  n d )  n ( a  u b ) ) .  

The machine program  for evaluating  this  expression, 
or  others of the type  described  in  this  section, would be 
straight-line,  and would not require  the use of compari- 
son  operations to  determine  one of several alternate 
programs. 

When dealing  with the  inner  ordinals (second  least, 
next-to-greatest, etc.)  there is an  important distinction 
that must be made  to avoid misinterpreting the verbal 
description of an operation. An  operation  such as “Take 
the second  least of the quantities a, b, c, . . . n,” means 
that if all the quantities are  rearranged  such  that 

a < p < y <  ... < v ,  

the  operation gives /3 as a  result,  regardless if a = P, 
P = y ,  . . .  

A different function might be defined as “Take  the 
second least, not  counting  equals.” That is, if we have 

f f = p  =. .= s < E = , $ =  .. l < K =  . . .  

the result of this operation is a quantity between the first 
and second < symbols. Such  a function  can  not be  con- 
structed with the diminish operation  or its  derivatives for 
reasons that will be  considered  in  connection with the 
continuity  properties of expressions using diminish  and 
its derivative  operations. 

Functions constructable with diminish 

Diminish is being discussed as it applies to accounting 
arithmetic. In this application, the counting numbers 
serve  as  measures of quantity.  We wish now to find out 
what functions  can be formulated as expressions using 
diminish. This  can be done most easily by permitting the 
quantities to  take  on all real positive values, rather  than 
just  integral  values, and analyzing the continuity prop- 
erties of these expressions. Later  on,  it will be shown that 
we have  more variety in the  functions  that  can be calcu- 
lated by machine if we restrict  quantities to integers, or 
at least to  numbers  that  can  change only in discrete steps. 

We use the conventional operation of subtract only as 
a  convenient  means of defining diminish. If we set  up 
the  function 

f ( x , y )   = x e y = x - y   i f x > y  

= o  i f x < y  

f (x, y) is single-valued and  continuous  for all values 161 
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x < y, and x > y ,  because both x - y and 0 are continu- 
ous. If x = y ,  f (x, y) = 0; moreover, this is the limit of 
f (x, y) as x and y approach  each  other  from either 
direction. Thus f (x, y) is a single-valued and  continuous 
function of both variables. 

Terms like ( x  8 y) will appear in more complex ex- 
pressions. As all the variables  in such expressions change, 
each  term of the  form (x 8 y )  will vary  continuously, 
and  thus  can be  considered to be a single dependent  vari- 
able. That is, in  an expression like 

g (x,Y, z) = ( ~ e y )  ez, 
where x, y ,  and z may be  varied  simultaneously, we can 
treat ( x  8 y )  as a single variable,  recognizing that 
g (x, y, z )  is a continuous  function of all variables. 

Assuming that  any finite assortment of variables,  di- 
minish operation,  and parentheses  in an expression can be 
decomposed  by stages into terms  like ( x  8 y ) ,  any  such 
expression  must  be  a continuous  function of all the vari- 
ables. Because the  operations  add, greater, and lesser are 
all definable in terms of diminish,  these  operations also 
provide continuous functions. 

We  may be given any  function  in  the  form of a  table, 
or graph,  or  statement in words. In  order  to  determine if 
the stated form of the  function  can be  replaced  with an 
expression of terms like  those just discussed, it is neces- 
sary first of all, to  determine if the  function is continuous. 
If it is not,  then some other  method of computation must 
be used. Two  methods will be considered later,  one using 
the additional operation of multiply, the  other being an 
algorithm for  computing functions given as tables. 

If the  stated  function is continuous, however, we can 
conjecture that  the  function  can  be replaced  by an ex- 
pression using the diminish  operation. In  the next section, 
the continuity  properties of certain functions  of  data 
processing will be examined. 

if a given function is continuous is the  primary  concern 
of this  section. 

The notion or concept  “relative values of variables” is 
fundamental  to  the definition of configuration  functions 
and requires  elaboration before proceeding to  the con- 
tinuity  properties of these  functions. What will be done 
is to classify the  domains of the variables into sub- 
domains,  in each of which the relative values of the 
variables are different. Therefore, by definition, a  con- 
figuration function assumes a single value  which is also 
the value of one or more of the variables, but which of 
the variables it is, depends on  the sub-domain  where the 
function is evaluated. 

The classification of the domains will be done  in two 
stages, the first stage  resulting  in  sub-domains called 
configurations which are characterized by such relations 
as 

x < y < z <  ... 
The second  stage  takes apart  the configurations and 

results  in the sub-configurations 

x < y < z <  ... 
x = y < z <  ... 
x < y = z <  ... 
x = y = z <  . . .  etc. 

In general, it is necessary to evaluate  a  configuration 
function  for  each sub-configuration of the variables in 
order  that  there  may not be an ambiguity  as to  the value 
of the  function  in  the sub-domains  where  two or more 
variables  assume equal values. However, it is only  with 
the discontinuous  functions that  an ambiguity can  occur, 
as will be seen. 

A function of n independent  variables is an explicit 
Configuration functions expression of certain variable symbols . . . , x,  y, z. To 

evaluate the  function, a  schedule of substitutions is 
An  important class of functions  includes such relations  needed: 
as : 

f l  ( X ,  y ,  z )  = the second  least of x,  y, z. (1) 
For x substitute 5 

For y substitute 4 

fz (x ,  Y ,  z )  = the lesser of x and y which is greater 
than z, or else z. (2) 

These  are representative of a class which we call con- 
figuration functions, and  characterize as follows: 
(1) They  are single-valued functions of n variables. 
( 2 )  The  function value is the  same as the value of one 

( 3 )  The  function value  depends on  the relative values 

The  nature of ( 1 ) and (2) suggests that  the  functional 
statement, in words, might be replaced by an expression 
employing the operations  greater and lesser. However, 
this possibility does not exist if it  can be determined that 

162 the  function is not  continuous. The process of finding out 

of the variables. 

of the n variables. 

For z substitute  3 

The  numbers (5, 4, 3) can be put into the relation 

3 < 4 < 5  ( 4 )  

by the  method described  previously.  Now, if we interpret 
the substitution  relations ( 3 )  as reflexive, we have  from 
( 4 )  

z < y < x  ( 5 )  

We define the relation ( 5 )  as  a configuration of the vari- 
ables x, y, z. The configuration defines a closed region, 
or domain, of the variables x, y, z, for which the relative 
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are portions of the  total domain of x ,   y ,  z that belong to 
more  than  one configuration. For example, if 

then both of the following are  true: 

z < y < x  

y < z < x .  

The generic  configuration 

is used to indicate any  permutation of the variables 
x ,   y ,   z ,  . . . in  the configuration  relation.  Since all real 
numbers have the properties: 

(1) Either a 4 b or b 4 a, or both;  and 

(2)  I f a < b a n d b < c , t h e n a < c ,  

we require all permutations of x ,   y ,   z ,  . . . in (6) to cover 
the  domains of x ,  y ,  z ,  . . . . 

Within the configuration there  are 2”-l conditions, 
termed sub-configurations, that  can  be established by 
appropriate choices of values for  the variables. There  are 
n-  1 symbols 4 ,  and  each may have either of two mean- 
ings, = or <. The sub-configuration 

belongs to  one  and only one configuration (6 ) ,  while of 
the sub-configurations, 

[ = 9 < 5 ‘ <  ... 
[ < r ]=%< . . .  
< = q = < <  ..., etc., 

each belongs to  more  than  one configuration. 

used to  provide values for  the variables, [, q,  C, . . . Thus, 
if f ( x ,   y ,  z )  is continuous everywhere, it must  be  continu- 
ous along the  curve described by the  parametric functions. 
In  particular, a  typical  set of parametric functions is in 

Table I Function f l  ( x ,  y ,  z) 

I Sets of continuous  functions of a parameter t can be 

- = the second least of x, y ,  z. 

x < y < z  y x = y  y = z  x = y = z  
y < x < z  x x = y  x = z  x = y = z  
y < z < x  z y = z  x = z  x = y = z  
z < y < x  y y = z  x = y  x = y = z  
z < x 4 y  x x = z  x = y  x = y = z  
x < z < y  z x = z  y = z  x = y = z  

. . . a < [ p +  t 1 < l y +  (&ay) t i <  ... < F < . . . ( 9 )  

and gives values in the sub-configuration 

, $ < q < % <  . . .  < o <  ... 

for t < 1,  and in the sub-configuration 

[ < q =  <=. . .=  lo< ... 

when t = 1. The existence of (9) thus proves that, if 
f ( x ,   y ,  z, . . .) is continuous, it is continuous  within a con- 
figuration. 

This theorem has  the  important implication that a 
continuous  configuration function can  be  described, in 
full, by listing, for  each configuration, the variable whose 
value is taken by the  function in that configuration. In 
other words, it is unnecessary to consider  conditions of 
equality if the  function is continuous. 

It is also true  that if a function is discontinuous at some 
point, it must  be  discontinuous  within at  least  one  con- 
figuration. This is because  every point of the domains of 
x ,   y ,   z ,  . . .has all its neighboring  points  in the  same con- 
figuration, although  the neighboring  points may them- 
selves belong to more  than  one configuration. 

In testing the continuity of specific configuration func- 
tions, one way of proceeding is to list all rz! configurations, 
and  for  each configuration,  all 2”-1 sub-configurations. 
The  function in  question is then  analyzed, and  the vari- 
able whose value is assumed  by the  function is put in 
correspondence  with the sub-configuration. If the  same 
variable appears in each sub-configuration of each con- 
figuration, the  function is continuous. For example, the 
two  examples given earlier are  put in  this form  in Tables 
1 and 2. 

Examination of the tabulation for f l ( x ,   y ,  z )  shows 
that  the  same variable appears  throughout  each configu- 
ration  and differs only in different  configurations. On  the 
other  hand, f z ( x ,   y ,   z )  has  the value of y in the sub-con- 
figuration z < y < x ,  and x in the sub-configuration 
z = y < x .  Thus fl  is continuous while f2 is not. 

This method of analysis is interesting in  that  it suggests 
a way of defining  continuity, or rather a property  analo- 
gous to continuity, for  functions whose variables are 
discrete rather  than continuous. That is, we might say that 
a  configuration function is “connected,” if  the variable 

Table 2 Function f 2  (x, y ,  zl 
= the lesser of x and y 
which is  greater than z, or else z. 

x < y Q z  z Z y = z   x = y = z  
y < x Z z  z Z x = z   x = y = z  
y 4 z 4 x  x X x = z   x = y = z  
z < y < x  y X x = y   x = y = z  
z < x < y  x Y x = y   x = y = z  
x 4 z Q y  y Y Y = z  x = y = z  163 
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Figure 2 Values of three independent  variables 
plotted as a  point in three-dimensional space. 

whose value is assumed is the  same  for every  sub-con- 
figuration of a configuration.  This  concept  might be ex- 
tended to a larger class of functions by letting the variable 
be dependent,  in  the sense that a dependent variable is an 
expression using only the elementary  operations. How- 
ever,  this  conjecture is presented as interesting, but is 
apart  from  the  major objective of exploring the properties 
of diminish and its derivative  operations. 

Instead of going through  the tedious  process of evalu- 
ating a configuration function  for every  sub-configura- 
tion, it is easier to discover a lack of continuity by using 
some  test function.  The test function provides a set of n 
values as a function of a parameter t ,  each value being 
applied to  one of the n variables of the configuration 
function being tested. Each value of the set is a continu- 
ous  function of t,  and as t is varied, the test function 
places the variables  in  every  configuration. In  the next 
section we  will describe a suitable test function  graph- 
ically. 

A test function for determining continuity 
configuration functions 

Any set of values of three independent  variables can be 
plotted as a point in  three-dimensional  space. The positive 
octant,  to which the values of the variables are restricted, 
is divided into six regions by the planes x = y ,  x = z, 
y = z ,  as shown in  the left diagram of Fig. 2.  Each region 
corresponds to a configuration of the variables. 

164 Looking  down into  the  octant along the line x = y = z ,  

the  planes of equality would appear as lines at 60" to  one 
another.  This line of view establishes a plane of projection 
on which we can  trace out,  in  projection, the  path de- 
scribed by any  variation of the  three  independent vari- 
ables. The right diagram of Fig. 2 shows this  projection of 
the planes of equality and of an  arbitrary  path  (the 
circle) described by the set of the  three independent 
variables. 

We can  put a two-dimensional figure, which shows the 
variation of the individual  variables, on  the above pro- 
jection  plane, using angular position along the projected 
path as a parameter.  In Fig. 3 the  radial  distance  from 
the intersection x = y = z is the value of the individual 
variable. 

It is evident that  the only  situation  which can not be 
plotted is x = y = z # 0. Since we are concerned espe- 
cially with the  lack of continuity of functions,  any  arbi- 
trary  path over  which the  function is discontinuous is 
sufficient to show the discontinuity of the  function.  There- 
fore, we can choose a path  not including the condition 
x = y = z and avoid the difficulty in representation. 

The configuration  functions, by definition, will consis: 
of segments of the above  figure; that is, if we choose one 
line  segment in  each sector, we have a representation of 
a configuration  function.  It  is  evident  that  most of 
33!  = 729 combinations of segments of three variables 
will be  discontinuous, in  that they  contain a jump, for 
example, from x to z at  the plane x = y .  

The  number of continuous paths in  this  figure can be 
counted,  and gives us an  upper limit to  the configuration 
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functions  that might  be  written  as expressions using di- 
minish. This  number is 18 in the case of three variables, 
and, in fact, these can all be  written as expressions using 
only the  operations greater and lesser, as  shown in  Table 
3. The  method of counting  continuous  paths is to establish 
a starting point  on some  line  segment, then pass to the 
next sector and  count  the  number of ways of getting to 
each line  segment from  the previous  sector  in  a  continu- 
ous manner. This process is continued around,  and  the 
number of ways that provide  a return  to  the starting point 
is the  number of continuous configuration functions con- 
taining the starting  line segment. The  numbers  on  the 
above  diagram  are  the different ways in which each seg- 
ment can be  traversed from  the indicated  starting  point. 
The  total  number  of  continuous configuration functions 
is obtained by counting  paths  for  each line  segment in  the 
starting sector. 

Table 3 Continuous configuration functions 
of three variables. 

Y X X X Y Y  
z z x x x z  
Z Z Z Y Y Y  
X Y Y Y X X  
x x z z z x  
Y Y Y Z Z Z  

y x x x x z  
x x z y x x  
Y X Z Y Y Y  
Y Y Y Y X Z  
z z z y x z  
y x z z z z  

The  advantage of this  graphical  construction is that it 
provides an easy visual method of testing if a function is 
continuous. The two functions, given previously as ex- 
amples, can be  presented  as  in Figs. 4(a)  and  4(b). 

The figures show that fl is continuous, while fz is not, 

might assume. In  the event that  there  are  more  than  three 
independent  variables, we assume that  the two-dimen- 
sional  projection  plane can also be  interpreted  as a pro- 
jection of multi-dimensional space. Figure 5 represents 
the configuration functions of four variables, and is 
drawn by  superimposing the  fourth variable, w,  letting it 
assume all possible configurations  with  respect to the six 
configurations of x ,   y ,  z .  The  continuous configurations 
have been counted  on this  type of diagram  and  found  to 
be 6993. 

Several  observations can be made  about these  dia- 
grams : 
( 1) Regardless of the  number of variables, a test func- 

tion exists which passes through every  configuration. 
( 2 )  Within each configuration, the test function passes 

through  the sub-configuration [ < 7 < 5' < . . . and 
through only  two of the  degenerate sub-configura- 
tions, each containing one equality. Thus,  the test 
function  can be used only  with  configuration func- 
tions  in  which  equality  conditions are  not singled out. 

Multiplication 

In addition to  the operations so far  treated (diminish, 
add, greater, lesser), most data processing requires  the 
use of multiplication.  Multiplication is distributive  with 
respect to diminish and its derivative operations: 

and  therefore fz can  not be expressed only  in terms of 
diminish. 

The  method of testing  continuity  just  described can 
be extended to  any  number of variables and  to  functions Figure 3 Two-dimensional  plot 
which take  on values which are derivative from  the inde- on the projection plane of the right diagram 
pendent  variables. To  do this, we simply draw  on  the of Fig. 2 showing variation of individual 
same figure the additional  variables  which the  function variables. 165 

IBM JOURNAL APRIL 1957 



z *.+. 

Figure4(a) Function fl, the second least of x ,  y,  z 

Figure 4(b) Function f2, the lesser of x and y, 
which is greater than z ,  or else z .  The figures 

166 show that fl is continuous, while fz is not. 
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X ( Y  Z )  = XY n xz 

x(y u 2) = xy u xz. 

The operation of multiplication,  along with diminish, 
permits expressions to be written which represent  func- 
tions  containing discontinuously-varying rates. For ex- 
ample, a public-utility rate schedule is: 

$1.90 for the first 24 kwh or less 

5.3d/kwh for the next 120 kwh 

3.7d/kwh  for the next 136 kwh 

2.2$/kwh  for  more than  280 kwh. 

This  function is represented by the expressions 

f(x) = 1.900 + .0531(~ e 24) e ( x  e 144)1 

+ .037[(x 8 144) e (x e 280)l + .022(x e 280) 

= 1.900 

+ {.053~e[1.272 + . 0 1 6 ( ~ e 1 4 4 )  + . 015(~e280)1 ) .  

The single-address stored  programs,  compared on the 
same basis as the example titled  “Program 1” are shown 
in Program 2. 

Program 2 Comparison 
of single-address stored programs. 

Conventional  Using  Diminish 

1:1 R ADD (x) 1.1 R ADD (x) 
.2 SUB (24) .2 MPY (.053) 
.3 TR + 2.1 .3 STORE 99.1 
.4 R ADD (1.900) 
.5 TR 4.3 

2.1 SUB (120) 2.1 R ADD (280) 
.2 TR + 3.1 .2 DIM (x) 
.3 ADD (120) .3 MPY (.015) 
.4 MPY (.053) .4 STORE 99.2 
.5 ADD ( 1.900) 
.6 TR 4.3 

3.1 SUB (136) 3.1 R ADD (144) 
.2 TR + 4.1 .2 DIM ( x )  
.3 ADD (136) .3 MPY (.016) 
.4 MPY (.037) .4 ADD 99.2 
.5 ADD (8.260) .5 ADD (1.272) 
.6 TR 4.3 .6 DIM 99.1 

4.1 MPY (.022) .7 ADD ( 1 .goo) 
.2 ADD (13.292) 

In the  instance of Program 2, diminish provides: 
( 1) A saving of five out of nineteen  instruction spaces; 
(2) A loss of approximately four  in additional  instruc- 

(3) A straight-line program. 
tions executed; 



XYZ w 
I 

Figure 5 Configuration functions  of four  variables 
The  fourth  variable,  w, is superimposed, and 
assumes all possible configurations  with respect 
to the  configurations of x, y ,  z. 167 
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The simulation of discontinuous  functions 
in  digital computation 

set  (1, 2, 3, . . .) which we call the  ordinal  number set. 
Any number, x, among  the original numbers, xl, x2,  x3, 

Diminish, by itself, only  permits the construction of con- 
tinuous  functions, or functions that would be continuous 
if each  quantity could  assume any  real positive value. 
The use of multiplication  makes possible expressions 
which simulate  discontinuous functions in digital data- 

, . . is the  same as one of a, /3, y,  . . . and  therefore corre- 
sponds to some i of 1 ,2 ,  3, . . . The correspondence is 
unique provided that all the xi are different. 

Let x be the  number  in  the set (xj) whose ordinal, 
i, is to be found.  Then 

processing machines.  Consider the  function i = $ [I 0 ( x j  e x)], 
f(x) = l e ( a 8 X )  = 0  i f l + x t a  

= 1  i f x > a .  

j=1 

because for  each x k  < x, 

1 8  ( X k e x )  = 1 
If x can vary  continuously, the  graph of f (x) consists 

of the two  line segments f = 0 and f = 1 joined by a for the x, 
segment (x + 1) 8 a. To a digital machine computing 
this function,  the joining segment will not  be accessible 0 = 

when the quantities are scaled such  that  the incremental 
change in x is unity, so f (x) can be considered to simu-  and for each xm > x, 
late the  unit step  function. 

The  function 1 e (x,ex) = 0 .  

The  numbers  in  the set (xi) need  not be integers, 
provided that  there is some number, s, such  that 

has  the value 1 only if a < x t b. A more general 
function, h(x), can  be  set up  to be 1 only if any number x i s  = integer* 
of conditions are  met: 

If this is so, then 

= l i f w < x a n d y < z , a n d  . . . .  

= 0 otherwise. 

Having a function which is unity  only when a pre- 
scribed  set of order relations are  met,  and  zero otherwise, 
it is possible to simulate, on a digital computer,  any  func- 
tion  with  a finite number of discontinuities. This is done 
by multiplying one of the above types of unity functions 
by the  appropriate value, and taking the  sum of a number 
of such products. 

Calculation of the ordinal number of 
a number in a set 

Previously it was  shown that  the first, second,. . . nth, of 
a  set of numbers could be calculated. This calculation 
might  be  described  as:  “Given the  ordinal (first,  second, 
etc.), which number of the set is it?” The preceding sec- 
tion now  provides  a method  for  the inverse operation: 
“Given  a number which is one of a set, which  ordinal 
is it?’ 

n 
i = z [I e e x) 1. 

j=1 

As an  additional point, if equalities are  permitted 
among  the xj, there arises the  question as to  what is meant 
by the  ordinal  number of x if x = x k  where {xk} is a 
subset of the original set of numbers (xj). 

We can define the following: 

n 

j=1 
i,,, = 8[18 (xj 0 X)] 

n 
imin = n + 1 8 . [ l e  (x €3 xi)], 

which amounts  to defining the  ordinal of a number in 
terms of an  upper  and lower  bound. 

I t  is interesting to  note  that computing the  number 
whose ordinal is given is performed by expressions which 
are continuous, while the inverse  process of finding the 
ordinal  number of a given number is performed by simu- 
lating  a  discontinuous process. 

Computation of tabular functions 

3=1 

If the original  set is (XI, XZ, x.?, . . .) which  contains n The basic problem of computation might be described 
distinct  integers, there will be a  corresponding set (a, /3, y, in this way: 
. . .) in  which (1) Given  once, a statement of a functional relationship, 

and, 

function, determine,  repeatedly,  a new number in 
a < p < y <  . . .  (2) Given repeatedly,  various numbers  to  apply in the 

i 168 To the set (a, p, y,  . . .) there  corresponds  a third  accordance with  both ( 1) and (2). 
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Up  to now, we have been treating  statements which 
employ such words  as "the lesser of," "if x is less than 
y" to express the  functional relationship.  We have shown 
that  there exist mathematical expressions which are 
equivalent functional relationships, and  that these ex- 
pressions are translatable into very  simple,  unconditional 
steps of computation. 

Perhaps  the most specific way of describing  a func- 
tional  relationship is to use a succession of statements: 

If xi-1 < x < xi, take fi(i F 2, 3 , .  . . n ) ,  

where xi-l, xi, f i  are all numbers, given once  as  the 
functional relationship, while x is one of the  numbers 
given on repeated  occasions. The  shorthand way of repre- 
senting  this functional relationship is by means of a  table: 

. . .  X i  ... Xn 

"~"" 

f = 

f l  1 f z  
. . .  fi . . .  f n  

The table is arranged so that xi < xi+1, but f need not 
be a monotonic function of x. 

There  are several ways in which a computer  can get f i ,  

if given xi using well-known table-look-up  procedures. 
The  purpose of this sectlon is to describe another method 
for  computing  tabular functions. Basically, the  method 
consists of two  stages:  converting the  tabular entries to 

coefficients, and  performing  an algorithm,  which uses the 
coefficients to build up the value f ( x ) .  The first stage is, 
of course,  a  one-time operation:  once determined, the 
coefficients are available for  any  future determination of 
f (x). The algorithm, which is performed  for  each value 
of the  argument x, will be  described first, in  order  to show 
what Coefficients are obtained. 

We first define an adjoined number xilui to be the  rep- 
resentations of x i  and ai placed side by side and  manipu- 
lated  as  a single number.  For example, if xi = 212 and 
ai = 1907, the adjoined number xilai = 2121907. If the 
radix is r,  and  the  number of digits of ai is s, then 

xilai = xirs + ai 

Operations  and calculations can be performed  on  ad- 
joined numbers, just  as on  ordinary numbers. Thus 

xilai 8 x10 = xi 8 xlai if xi  > X 
= 010 ifxi < x  

The  purpose of this maneuver is to use the diminish 
operation  to wipe out ai if xi  < x ,  but  leave ai available if 
xi > x. 

With this definition as  a basis, we can now  set up a 
sequence of functions, Pi, which will be the  procedure 
for computing tabular functions. The  functions  are shown 
with the value  which  they  assume under  the indicated 
conditions: 

x 4 x1 

where al < a2 < a3 < . . . < a,. 

This process is carried  on  for n steps (until x, is 
reached), resulting  in  a quantity xllg,. Disregarding the 
x1 part, which can be  readily  removed  in  a  machine, we 
have  for g,: 

If x < XI, 
g n l = a , e (  .... e ( a 4 e ( a 3 e ( a 2 e a l ) ) ) . . . ) .  

If x xz, g,? = a, e (. . . . e (a4 e (a3 e a 2 )  1 . . . ). 

If x < xn, g,"+l = 0. 

x 4 x2 x < x:i 

Since 

a1 < a2 < a3 < . . . < a,, 

The  upper signs are taken if n is even. 
Because we  get a different value of gni for different 

ranges, xi-l < x 4 xi, and because the coefficients ay are 169 
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arbitrary  (except for the condition a8 < ay+l), we can set 
gni equal  to  the  table entries fi. There is a preliminary 
step, however,  because 

If f i  should conform  to this order, we can set fi = gni 
and solve for  the coefficients a,. Most of the time, f i  will 
be in different order,  but we can set 

f i  = gni = f i  (modm). 

In general, m is conveniently a power of the  number 
radix (10 for decimal numbers), so that  after P,  = xl lg ,  
is computed,  both x1 and  the excess digits of gn can be 
removed in  one operation. 

To  summarize, we have a computational  procedure, 
as  shown  in Program 3.  

Program 3 Computing procedure. 

I I I 
1.212 DIM (xTIla?Z) 
1.211 + 1 SET L . .. 

The  procedure indicated in Program 3 leaves in the 
accumulator  the value fi corresponding to < x < xi. 

The  method, as described,  requires two program  steps 
for each entry of the  table plus  some preparatory steps. 
In general, it is not  as  rapid  as  direct  look-up or search 
methods of obtaining table values,  but will require 
smaller storage space,  particularly for small tables. A 
typical  example is that of an  insurance  company which 
retains in  each policy record  the  month  and year to which 
the  premium is paid. Premiums  may be paid annually, 
semi-annually, quarterly,  or  monthly,  the mode of pay- 
ment being  coded  with a single digit in the policy record. 
As each new premium  payment is made,  the  premium- 
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paid-to-date  must be revised. In this instance the  code is 
adjoined to  the  month  to which the  premium is paid to 
give a number which will be used as the  argument to 
determine  the year-month  increment. 

Detailed  programs have been  written, and show that 
this method, in  comparison to conventional table-look- 
up  procedures, resulted in ( 1) a saving of 10 out of 
32  instruction  spaces; ( 2 )  a loss of approximately 10 in 
additional program steps  executed; and ( 3 )  a  straight- 
line program. 

Conclusions 

Positive-integer arithmetic,  with its appropriate  opera- 
tions,  provides  a basically different method of computa- 
tion.  Conventionally, tests on  the signs of numbers  are 
used to  determine  the  later course of computations and 
are  stated explicitly in the computation. In positive-integer 
arithmetic,  the tests are contained implicitly in the  funda- 
mental operations, and  the  course of computation is fixed. 

A very wide range of functions  can be  written  as 
simple expressions. This includes  functions  which other- 
wise require verbal  descriptions or tables to express, as 
well as  non-analytic  functions. 

In  the application of positive-integer arithmetic  to 
data-processing and computing  machines,  this  study dis- 
closes the following: 

( 1 )  It is possible to build efficient machines with less 
equipment  than is now used. The reduction in equipment 
appears  in  the storage  requirements for  machine pro- 
grams; the elimination of equipment  for  the control of 
signs; and  the use of sequential,  instead of random, 
program storages. 

( 2 )  The addition of the diminish operation  to existing 
equipment offers the  programmer means of reducing 
requirements on  machine capacity,  either  in program 
storage or in control panel  functions. 

( 3 )  The  programmer,  in thinking through a  complex 
computation,  may find it easier to follow  a single line of 
reasoning rather  than  to keep  in  mind the branchings of 
alternate procedures. Besides this  subjective  considera- 
tion, it appears  that  automatic  programming  and  program 
assembly are simpler  when  only  linear  procedures occur. 

(4) In some types of computations, the disadvantage 
of this system of arithmetic is that it requires more  pro- 
gram steps to be  executed and  therefore would be a 
slower machine operation. 
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