158

R. W. Murphy

A Positive-Integer Arithmetic for Data Processing

Introduction

This report describes some exploratory work on an arith-
metic intended to be more useful for accounting and data
processing. The report deals with the question, “What
would be the effects of using only positive numbers in
accounting?” Effects that would interest us especially are
reductions in the number or in the complexity of steps of
computation and, possibly, a closer correlation between
data processing and that which it represents.

Certain operations are performed by accountants and
bookkeepers in order to avoid having to count the ob-
jects of their interest. These are the common arithmetic
operations of addition, subtraction, multiplication and
division. The unrestricted use of subtraction gives rise to
negative numbers and necessitates the further operations
of testing for negative balances.

It can be contended that negative numbers do not
occur “naturally” in accounting: that quantities can be
expressed only by means of the counting numbers and
zero. If “credit” is taken as a positive quantity of some-
thing, then “debit” ought to be thought of as a positive
quantity of something else. The practice of maintaining
separate totals of debit and credit is an instance of this
concept.

In postulating a positive-integer arithmetic for book-
keeping,* new operations must be devised to work within
this number system. We will employ an operation, called
diminish, instead of subtract. In terms of diminish, we
can define add, take the lesser, and take the greater. The
body of this report discusses some properties and uses of
these operations.

*The author has not been able to discover any published work dealing with

a non-negative system of arithmetic in data processing. Some of the com-
putation techniques described in this paper, or variations such as those
using absolute-value operations, are known to programmers, but, to the
author’s knowledge, have not been developed extensively or reported.

IBM JOURNAL * APRIL 1957

Abstract: It is hypothesized that positive numbers
suffice for the expression of quantities in account-
ing. New arithmetic operations are devised that
yield non-negative results in computation, and the
applicability of these operations to data processing
is studied. These operations permit a wide variety
of functions to be computed with fewer and less
complex steps and imply the feasibility of construct-
ing less complex data-processing machines.

As this report shows, a wide variety of functions can
be computed with the diminish operation. In particular,
the kind of function that is ordinarily described by a
number of conditional statements (e.g.—if x is positive,
multiply by r) becomes a single, non-conditional arith-
metic expression. This observation has some important
implications with respect to the design and use of data-
processing machines:

1. Data-processing-machine programs are straight-line
rather than branched. This fact implies that:

a Fewer selectors are required for machines with
control panels.

b Stored programs can be retained in sequential-
access memories rather than in random-access
memories because program control transfers are
not required.

¢ The construction and assembly of stored programs
is simplified.

2. The total number of program steps is reduced, thus
conserving space.

3. The number of program steps executed in performing
a computation is sometimes reduced, sometimes
increased.

4. Equipment for the storage and control of number
signs can be eliminated from data-processing machines.

Definition and elementary properties of diminish

Diminish is a primitive recursive function, and has
been studied as a topic of mathematical logic.* In that
context the operation has not been given a specific name,
but is designated by the symbol ““ — . Because this symbol
might be confused with the divide symbol, we prefer to

*See, e.g., S. C. Kleene, Introduction to Metamathematics, D, Van Nostrand
and Co., New York, 1952, p. 217, Chap. I1X.

use “©” to stand for the diminish operation, which we
define* to be:

x8y=x—y ifx >y
=0 ifx<y

Diminish, therefore, produces the quantity of objects
remaining after as many as y have been removed from x.
Diminish can be associated with other operations:

The sum of x and y:

x+y=GONGOx)Oy]
=GO [(GBYy) Ox]

G is any number large enough so that making it larger
does not alter the value of x + y.

The lesser of x and y:
xNy=x0x0y) =y0(Ox)
The greater of x and y:
xUy=x+(yOx) =y + (xSy)

In the same manner that we use the phrase “the add
operation,” we will use the phrases “the lesser operation”
and “‘the greater operation.”

The four operations, diminish, add, greater, and lesser,
represent directly certain simple data processes. For ex-
ample, suppose we have two sets of objects, X and Y,
and x and y are the counts of the two sets. If we withdraw
one of X for each of Y, certain derivative quantities
appear:

x © y = number of unmatched X objects
y & x = number of unmatched Y objects
x N y = number of matched X or Y objects

Interpretations like these are helpful in working out
expressions of more complicated processes because di-
minish, unlike subtract, does not have the cancellation
properties which allow the reduction of long expressions.

Miscellaneous identities

xOy<x (1)
(x©y)Ox=0 (2)
(xOy) O (yOx) =x0y (3)
(x6y)0z=(x62) Oy =x8(+2) 4)
x+»)Oz=(x02z) +y ifx>z (5a)

*Dr. R. R. Seeber Jr. of IBM has pointed out in a note that calculators
with absolute-value instructions can perform the diminish operation as

follows:
xOy=ul(x—y) +lx—]

Comparable relations hold for x Uy and x N y. Thus the procedures
for evaluating various functions, worked out in this paper in terms of
diminish, can be translated into procedures using absolute-value oper-
ations.

=y (zOx) ifx<z (5b)

= (x02) +[y© (zOx)] (5¢)
=[(x82) +¥1C (zOx) (5d)
x0@OY)=Gx+y)Sz ifz>y (6a)
=[x +¥)Cz8 (yO2) (6b)
=(x+y)O (V2 (6¢c)

An instance of the use of diminish

The computation of income-tax and FICA deductions in
payroll processing illustrates the use of the diminish
operation. These are two separate computations which
usually are done together in practice.

(1) An income-tax deduction, D, is made only if the
gross pay, G., exceeds the exemption allowance, E. The
tax is computed on the difference between gross pay and
exemption.

Written in conventional arithmetic, this relation is:

D=r(G,—E) ifG,>FE (r=taxrate)
=0 ifGn L E

The diminish operation permits the same function to
be written as:

D =r(G,OE)

(2) The FICA deduction, F, is based on gross pay if
gross earnings-to-date, 3"G;, are less than $4200, based
on the difference, 4200 — 3*-!G;, if gross earnings-to-
date go over $4200 in this pay period; and zero if $4200
has already been exceeded.

More briefly, these conditional relations are written in
conventional arithmetic as:

F =sG, if 3nG; €4200

= 5(4200 — 371G;) if 37 1G; <4200 < 3G,
=0 if 371G > 4200

Using diminish and lesser, these relations become:

F = s[G, n (4200 ©5"1G;)] or

If we assume an instruction set, such as that of the
IBM 705 computer, plus the additional instruction to
perform the diminish operation, we can contrast the
programs performing these functions in the two ways. It
is convenient to define the diminish instruction as,
“Diminish the quantity specified by the address part of
the diminish instruction by the quantity in the arithmetic
register.” A comparison of the two types of programming
is shown in Program 1.

159

IBM JOURNAL * APRIL 1957

160

Program I Comparison of conventional
programming® steps with use of “diminish”

operation.
Conventional Using Diminish
1.1 R ADD (G») 11 R ADD (E)
2 SUB (E) 2 DIM (G)
3 TR + 2.1 .3 MPY (r)
4 R ADD (0) .4 STORE (D)
S5 TR 2.2
2.1 MPY (r)
.2 STORE (D)
3.1 R ADD (4200) 2.1 R ADD GGy
2 SUB (3%1G;) .2 DIM (4200)
.3 SUB (Gr) .3 DIM (Gr)
4 TR+ 41 4 DIM (Gn)
.5 ADD (Gr) .5 MPY (s)
6 TR + 4.2 .6 STORE (F)
.7 R ADD (0)
.8 TR 4.3
41 R ADD (G.)
2 MPY (s)
3 STORE (F)
*R ADD (Gn) means “‘reset the arithmetic register to contain the number
G 2
SUB (E) mﬁans “subtract from the number in the arithmetic reg-
ister the number E”
TR 2.2 means “perform next the operation 2.2”
MPY (r) means “multiply the number in the arithmetic register by

the number "
STORE (D) means ‘“put the number in the arithmetic register into
storage and refer to it as D"’
means ‘‘perform next the operation 4.1 only if the num-
ber in the arithmetic register is positive, otherwise per-
form the next eperation in sequence’”

TR+ 441

In the instance of Program 1, diminish provides:
(1) A saving of eight out of eighteen instruction spaces;
(2) A saving of an average of three out of thirteen in-
structions executed;
(3) A straight-line program

Characteristics of the operations greater and lesser

Quite often in data processes, it is necessary to obtain a
quantity which is in a certain relation to other quantities;
for example, the least of three quantities. The operations,
greater and lesser, will be used exclusively in expressions
for performing such processes and therefore are of special
interest. Moreover, these two operations can be associated
directly with the theory of sets. There are a number of

useful relations involving these two operations that can .

be presented, either by proving them from the definitions
of greater and lesser in terms of diminish, or by making
the association with set theory and using that theory to
provide us with ready-made relations. This second way is
briefer and will be given here.

The quantities, denoted by x, y, . . ., express the count
of certain physical or conceptual objects. The objects can
be represented by any tokens, such as points on a plane,
for arithmetic purposes. A boundary, drawn around x

IBM JOURNAL * APRIL 1957

®

/%
Figure 1 Graphic representation
of arithmetic boundaries between sets of

.0
777 y/////‘/
points in a given plane.

XuY XnY

points, segregates a set of points. The set, designated X,
is isomorphic to the quantity x. Another boundary, drawn
either wholly within or wholly without the boundary
around x, produces another set, Y, isomorphic to the
quantity y. X or Y will be void sets if the corresponding
quantities happen to be zero (see Fig. 1).

The union of two sets, X U Y, is defined as the set
having elements in either X or Y. Therefore the set-theo-
retic union for the special construction of sets just defined
is isomorphic to the value, the larger of the quantities x
and y. Similarly, the intersection of two sets, X N Y, is
defined as the set having only the elements common to
X and Y. Thus the set-theoretic intersection is isomorphic
to the value, the lesser of x and y. These isomorphisms
account for the use of the standard symbols U (cup) and
N (cap) for the greater and lesser operations.

Having established these isomorphisms, we can trans-
late certain relations, proved in set theory, into the fol-
lowing:

xUy=yUx

xNy=ynNx (commutative relations)

xU@Uzg=(xUy) Uz

xN(ynNnz)=(xnNny)nz (associative relations)

xU(yNz)=(xUy)n(xUz)

xN (yUz)=(xnNny)U(xnz) (distributive relations)
xU(xUy)=xUy

xN(xNy)=xnNy

xU((xny)=x

xN(xVUy)=x

The calculability of any ordinal of a set of quantities

Suppose we are given an arbitrarily-ordered set of num-
bers (a, b, c, . .. n). There will be another set (a, 8, v, . . .
v) containing the same numbers but ordered in increasing
magnitude.

{a, b, c,...) could be numbers stored in memory, in
order of memory address. (a, B, v, ...) are the ordinals
of this set: i.e., « is least, 8 is the next, or second least,
etc.

Every ordinal, a«, B, v,...A, g, v, from either end
is calculable from (a, b, c, .. .) using only the operations
greater (U) and lesser (N). This implies that the ordinal
is also calculable with only diminish. Using greater and
lesser, the calculability is shown in the following manner:

(1) The least and the greatest quantities, « and v, are:

ae=anbnen...

v=aUbUcuU...

since U and N are transitive.

(2) Consider the n different subsets of (g, b, c,...),
each containing n—1 elements. Each subset will contain
all but one of @, b, ¢, . . ., and, by (1) will have a calcul-
able least element o'y a2 a's a’». One subset will not con-
tain «, and will therefore contain B as a least element.
All other subsets will contain o which will be the least
element. Therefore, the next to the least element of the
original set will be the greatest of the leasts of these sub-
sets:

B=d1UasUdsVU--Ud,

=(bnendn...)U(anend n...)

U@nbndn...)u...

(3) By (2) the next leasts of the same subsets are
calculable. The subset not containing «, and the subset
not containing 8 will contain y as the next least. All
other subsets contain both « and 3, and 8 will be the next
least in these. The next-next least, y, of the original set is
therefore:

y=B81UB2UB30U U B,

(4) By induction, it can be seen that any ordinal from
least on up can be calculated. This is done by taking the
subsets, each not containing one of @, b, ¢, . . . and there-
fore not containing one of a, 8, v, . . . and calculating the
previous ordinal for each, then calculating the greater of
these previous ordinals.

(5) In exactly similar fashion, the second greatest,
third greatest, etc. are calculable.

As an example, suppose we want the second least of
the four quantities a, b, ¢, d. By the above rule, this will
be the greatest of the leasts of the four subsets (abc),
(abd), (acd), (bcd):

B=@nbncyu(anbnd)U (ancnd)
Unend).

Applying the formulas of the preceding section to the
first and second parenthetical terms and to the third and
fourth:

B={anb)n(cud) U ((cnd) n(aVb)).

The machine program for evaluating this expression,
or others of the type described in this section, would be
straight-line, and would not require the use of compari-
son operations to determine one of several alternate
programs.

When dealing with the inner ordinals (second least,
next-to-greatest, etc.) there is an important distinction
that must be made to avoid misinterpreting the verbal
description of an operation. An operation such as “Take
the second least of the quantities a, b, ¢, ...n,” means
that if all the quantities are rearranged such that

aZBLyZ.. .. Ly,

the operation gives 3 as a result, regardless if a« = §3,

B=7v ...

A different function might be defined as “Take the
second least, not counting equals.” That is, if we have

the result of this operation is a quantity between the first
and second < symbols. Such a function can not be con-
structed with the diminish operation or its derivatives for
reasons that will be considered in connection with the
continuity properties of expressions using diminish and
its derivative operations.

Functions constructable with diminish

Diminish is being discussed as it applies to accounting
arithmetic. In this application, the counting numbers
serve as measures of quantity. We wish now to find out
what functions can be formulated as expressions using
diminish. This can be done most easily by permitting the
quantities to take on all real positive values, rather than
just integral values, and analyzing the continuity prop-
erties of these expressions. Later on, it will be shown that
we have more variety in the functions that can be calcu-
lated by machine if we restrict quantities to integers, or
at least to numbers that can change only in discrete steps.

We use the conventional operation of subtract only as
a convenient means of defining diminish. If we set up
the function

fuy)=xQy=x—-y ifx>y

=0 ifx <y

f (x, y) is single-valued and continuous for all values

161

IBM JOURNAL * APRIL 1957

162

x <y, and x > y, because both x — y and 0 are continu-
ous. If x = y, f (x,y) = 0; moreover, this is the limit of
f(x,y) as x and y approach each other from either
direction. Thus f (x, y) is a single-valued and continuous
function of both variables.

Terms like (x © y) will appear in more complex ex-
pressions. As all the variables in such expressions change,
each term of the form (xS y) will vary continuously,
and thus can be considered to be a single dependent vari-
able. That is, in an expression like

g(xy2)=(xSy)Oz,

where x, y, and z may be varied simultaneously, we can
treat (x©y) as a single variable, recognizing that
g (x,y, z) is a continuous function of all variables.

Assuming that any finite assortment of variables, di-
minish operation, and parentheses in an expression can be
decomposed by stages into terms like (x © y), any such
expression must be a continuous function of all the vari-
ables. Because the operations add, greater, and lesser are
all definable in terms of diminish, these operations also
provide continuous functions.

We may be given any function in the form of a table,
or graph, or statement in words. In order to determine if
the stated form of the function can be replaced with an
expression of terms like those just discussed, it is neces-
sary first of all, to determine if the function is continuous.
If it is not, then some other method of computation must
be used. Two methods will be considered later, one using
the additional operation of multiply, the other being an
algorithm for computing functions given as tables.

If the stated function is continuous, however, we can
conjecture that the function can be replaced by an ex-
pression using the diminish operation. In the next section,
the continuity properties of certain functions of data
processing will be examined.

Configuration functions

An important class of functions includes such relations
as:

f1(x, ¥, 2) the second least of x, y, z.)
f2 (x, ¥, z) = the lesser of x and y which is greater
than z, or else z. (2)

These are representative of a class which we call con-

figuration functions, and characterize as follows:

(1) They are single-valued functions of n variables.

(2) The function value is the same as the value of one
of the variables.

(3) The function value depends on the relative values
of the n variables.

The nature of (1) and (2) suggests that the functional
statement, in words, might be replaced by an expression
employing the operations greater and lesser. However,
this possibility does not exist if it can be determined that
the function is not continuous. The process of finding out

[BM JOURNAL * APRIL 1957

if a given function is continuous is the primary concern
of this section.

The notion or concept “relative values of variables” is
fundamental to the definition of configuration functions
and requires elaboration before proceeding to the con-
tinuity properties of these functions. What will be done
is to classify the domains of the variables into sub-
domains, in each of which the relative values of the
variables are different. Therefore, by definition, a con-
figuration function assumes a single value which is also
the value of one or more of the variables, but which of
the variables it is, depends on the sub-domain where the
function is evaluated.

The classification of the domains will be done in two
stages, the first stage resulting in sub-domains called
configurations which are characterized by such relations
as

xZy<z<Z.,..

The second stage takes apart the configurations and
results in the sub-configurations

x<y<z<...
r=y<z<,...
x<y=z<...

x=y=2z<... etc

In general, it is necessary to evaluate a configuration
function for each sub-configuration of the variables in
order that there may not be an ambiguity as to the value
of the function in the sub-domains where two or more
variables assume equal values. However, it is only with
the discontinuous functions that an ambiguity can occur,
as will be seen.

A function of n independent variables is an explicit
expression of certain variable symbols..., x, y, z. To
evaluate the function, a schedule of substitutions is
needed:

For x substitute 5
For y substitute 4 3)
For z substitute 3

The numbers (5, 4, 3) can be put into the relation
3€4<5 4

by the method described previously. Now, if we interpret
the substitution relations (3) as reflexive, we have from

(4)
7€y<x (5
We define the relation (5) as a configuration of the vari-

ables x, y, z. The configuration defines a closed region,
or domain, of the variables x, y, z, for which the relative

values of the variables are fixed. It is obvious that there
are portions of the total domain of x, y, z that belong to
more than one configuration. For example, if

(x,y,2)=(5,3,3),
then both of the following are true:

z€y<x

A A
A

y<z<x.

The generic configuration
{€qg<gi<... (6)

is used to indicate any permutation of the variables
X, ¥, Z,... in the configuration relation. Since all real
numbers have the properties:

(1) Eithera € bor b £ a, or both; and

(2) Ifa€ band b € ¢, thena < c,
we require all permutations of x, y, z, . . . in (6) to cover
the domains of x, y, z,

Within the configuration there are 2"' conditions,
termed sub-configurations, that can be established by
appropriate choices of values for the variables. There are
n—1 symbols <, and each may have either of two mean-
ings, = or <. The sub-configuration

E< << ... (7)

belongs to one and only one configuration (6), while of
the sub-configurations,

=<, .
E<y=0¢<... (8)
E=p=0<..., etc,

each belongs to more than one configuration.

Sets of continuous functions of a parameter ¢ can be
used to provide values for the variables, £, , ,... Thus,
if f(x, y, z) is continuous everywhere, it must be continu-
ous along the curve described by the parametric functions.
In particular, a typical set of parametric functions is in

the relation:

a<[BH (OB N<iy+ (e07) 1<...<e<...(9)
and gives values in the sub-configuration

E<p << .. <ao<...

for ¢t < 1, and in the sub-configuration
E<p=C¢=...=0<...

when t = 1. The existence of (9) thus proves that, if
f(x,y, z,...) is continuous, it is continuous within a con-
figuration.

This theorem has the important implication that a
continuous configuration function can be described, in
full, by listing, for each configuration, the variable whose
value is taken by the function in that configuration. In
other words, it is unnecessary to consider conditions of
equality if the function is continuous.

It is also true that if a function is discontinuous at some
point, it must be discontinnous within at least one con-
figuration. This is because every point of the domains of
X, ¥, Z,...has all its neighboring points in the same con-
figuration, although the neighboring points may them-
selves belong to more than one configuration.

In testing the continuity of specific configuration func-
tions, one way of proceeding is to list all n/ configurations,
and for each configuration, all 2#-1 sub-configurations.
The function in question is then analyzed, and the vari-
able whose value is assumed by the function is put in
correspondence with the sub-configuration. If the same
variable appears in each sub-configuration of each con-
figuration, the function is continuous. For example, the
two examples given earlier are put in this form in Tables
1land 2.

Examination of the tabulation for fi(x, y, z) shows
that the same variable appears throughout each configu-
ration and differs only in different configurations. On the
other hand, f2(x, y, z) has the value of y in the sub-con-
figuration z < y < x, and x in the sub-configuration
z = y < x. Thus f; is continuous while /- is not.

This method of analysis is interesting in that it suggests
a way of defining continuity, or rather a property analo-
gous to continuity, for functions whose variables are
discrete rather than continuous. That is, we might say that
a configuration function is “connected,” if the variable

Table I Function f1(x, y, z) Table 2 Function f2 (x, y, z)

= the second least of x, y, z. = the lesserof xand y

which is greater than z, or else z.

<<l £=n<L <=L E=n= §<n<{ £=9< E<yn=¢ &=n=¢
xZy<Zz y xX=y y=2z XxX=y=2z x<y<z z z y=1z X=y=2
yZx<z X x=y X =z xX=y=2z yZx<z z z x=7z X=y=
y<z<x z y =2z X =2z X=y= yZz<x x x x=1z X=y=2
z€y<Zx y y=2z x=y X=y= z€y<x y x x=y X=y=2
zZ€x<y X x =7z x =1y XxX=y=2z z€x<Zy X y x=y xX=y=
x<z<y z x=12 y=z x=y=z x<z<y y y y=z x=y=z

163

IBM JOURNAL * APRIL 1957

164

whose value is assumed is the same for every sub-con-
figuration of a configuration. This concept might be ex-
tended to a larger class of functions by letting the variable
be dependent, in the sense that a dependent variable is an
expression using only the elementary operations. How-
ever, this conjecture is presented as interesting, but is
apart from the major objective of exploring the properties
of diminish and its derivative operations.

Instead of going through the tedious process of evalu-
ating a configuration function for every sub-configura-
tion, it is easier to discover a lack of continuity by using
some test function. The test function provides a set of n
values as a function of a parameter ¢, each value being
applied to one of the n variables of the configuration
function being tested. Each value of the set is a continu-
ous function of ¢, and as ¢ is varied, the test function
places the variables in every configuration. In the next
section we will describe a suitable test function graph-
ically.

A test function for determining continuity
configuration functions

Any set of values of three independent variables can be
plotted as a point in three-dimensional space. The positive
octant, to which the values of the variables are restricted,
is divided into six regions by the planes x = y, x = gz,
y = z, as shown in the left diagram of Fig. 2. Each region
corresponds to a configuration of the variables.
Looking down into the octant along the line x = y = z,

IBM JOURNAL * APRIL 1957

Figure 2 Values of three independent variables
plotted as a point in three-dimensional space.

the planes of equality would appear as lines at 60° to one
another. This line of view establishes a plane of projection
on which we can trace out, in projection, the path de-
scribed by any variation of the three independent vari-
ables. The right diagram of Fig. 2 shows this projection of
the planes of equality and of an arbitrary path (the
circle) described by the set of the three independent
variables.

We can put a two-dimensional figure, which shows the
variation of the individual variables, on the above pro-
jection plane, using angular position along the projected
path as a parameter. In Fig. 3 the radial distance from
the intersection x = y = z is the value of the individual
variable.

It is evident that the only situation which can not be
plotted is x = y = z = 0. Since we are concerned espe-
cially with the lack of continuity of functions, any arbi-
trary path over which the function is discontinuous is
sufficient to show the discontinuity of the function. There-
fore, we can choose a path not including the condition
x = y = z and avoid the difficulty in representation.

The configuration functions, by definition, will consist
of segments of the above figure; that is, if we choose one
line segment in each sector, we have a representation of
a configuration functjon. It is evident that most of
33! = 729 combinations of segments of three variables
will be discontinuous, in that they contain a jump, for
example, from x to z at the plane x = y.

The number of continuous paths in this figure can be
counted, and gives us an upper limit to the configuration

functions that might be written as expressions using di-
minish. This number is 18 in the case of three variables,
and, in fact, these can all be written as expressions using
only the operations greater and lesser, as shown in Table
3. The method of counting continuous paths is to establish
a starting point on some line segment, then pass to the
next sector and count the number of ways of getting to
each line segment from the previous sector in a continu-
ous manner. This process is continued around, and the
number of ways that provide a return to the starting point
is the number of continuous configuration functions con-
taining the starting line segment. The numbers on the
above diagram are the different ways in which each seg-
ment can be traversed from the indicated starting point.
The total number of continuous configuration functions
is obtained by counting paths for each line segment in the
starting sector.

Table 3 Continuous configuration functions
of three variables.

XyZ YXZ YIX ZYX ZXy XZ¥

xUy y x x x 'y y
x Uz z z X X X zZ
yuVUz 4 z 'y ¥y vy
xNy x Yy y ¥y x X
xnNz X x 2z Zz z X
ynz y Yy vy b4 z z
xU(ynz) y X x X X 4
xN(yyz) x X z y X x
yuU(xnNgz) y x z y ¥y ¥y
yn(xVz) y ¥y ¥y ¥y x z
zV (xNy) z z z ¥y x z
zN(xVy) y x z z z z
xN(xVy)y=xn(xVUgz)
=xU (xNy)etc. x x x X x X

yn(xUy) y ¥y vy ¥y vy
zN (yVz) zZ z z z z z
xUyUz zZ z x x y 'y
xnNtyngz x y y z z
(xuy)nxuz)n

(yU2z2) y x z ¥y x z

The advantage of this graphical construction is that it
provides an easy visual method of testing if a function is
continuous. The two functions, given previously as ex-
amples, can be presented as in Figs. 4(a) and 4(b).

The figures show that f; is continuous, while 7 is not,
and therefore f; can not be expressed only in terms of
diminish.

The method of testing continuity just described can
be extended to any number of variables and to functions
which take on values which are derivative from the inde-
pendent variables. To do this, we simply draw on the
same figure the additional variables which the function

might assume. In the event that there are more than three
independent variables, we assume that the two-dimen-
sional projection plane can also be interpreted as a pro-
jection of multi-dimensional space. Figure 5 represents
the configuration functions of four variables, and is
drawn by superimposing the fourth variable, w, letting it
assume all possible configurations with respect to the six
configurations of x, y, z. The continuous configurations
have been counted on this type of diagram and found to
be 6993.
Several observations can be made about these dia-
grams:
(1) Regardless of the number of variables, a test func-
tion exists which passes through every configuration.
(2) Within each configuration, the test function passes
through the sub-configuration ¢ <5 <¢<...and
through only two of the degenerate sub-configura-
tions, each containing one equality. Thus, the test
function can be used only with configuration func-
tions in which equality conditions are not singled out.

Multiplication

In addition to the operations so far treated (diminish,
add, greater, lesser), most data processing requires the
use of multiplication. Multiplication is distributive with
respect to diminish and its derivative operations:

x(y©z2) =xyBaxz

x(y+z)=xy+xz

Figure 3 Two-dimensional plot
on the projection plane of the right diagram
of Fig. 2 showing variation of individual
variables.

IBM JOURNAL s APRIL 1957

Figure 4(a) Function f1, the second least of x, y, z

z
Rzx

2, ‘L‘d

Figure 4(b) Function f, the lesser of x and y,
which is greater than z, or else z. The figures
166 show that fy is continuous, while f, is not.

IBM JOURNAL °* APRIL 1957

x(ynz)=xynaxz

x(yUz) =xyUxz

The operation of multiplication, along with diminish,
permits expressions to be written which represent func-
tions containing discontinuously-varying rates. For ex-
ample, a public-utility rate schedule is:

$1.90 for the first 24 kwh or less
5.3¢/kwh for the next 120 kwh
3.7¢/kwh for the next 136 kwh
2.2¢/kwh for more than 280 kwh.
This function is represented by the expressions

f(x) = 1.900 + .053[(x©24) S (xS 144)]
+ .037[(x © 144) © (x © 280)] + .022(x © 280)
=1.900

+ {.053xO[1.272 4 .016(xS144) + .015(x5280)1}.

The single-address stored programs, compared on the
same basis as the example titled “Program 1” are shown
in Program 2.

Program 2 Comparison
of single-address stored programs.

Conventional Using Diminish
1.1 R ADD (x) 1.1 R ADD (x)
.2 SUB (24) .2 MPY (.053)
3 TR + 2.1 .3 STORE 99.1
4 R ADD (1.900)
S5 TR 4.3
2.1 SUB (120) 2.1 R ADD (280)
2 TR + 3.1 .2 DIM (x)
.3 ADD (120) .3 MPY (.015)
4 MPY (.053) .4 STORE 99.2
.5 ADD (1.900)
6 TR 4.3
3.1 SUB (136) 3.1 R ADD (144)
.2 TR + 4.1 .2 DIM (x)
.3 ADD (136) .3 MPY (.016)
4 MPY (.037) 4 ADD 99.2
.5 ADD (8.260) .5 ADD (1.272)
.6 TR 4.3 .6 DIM 99.1
4.1 MPY (.022) .7 ADD (1.900)
.2 ADD (13.292)

In the instance of Program 2, diminish provides:

(1) A saving of five out of nineteen instruction spaces;

(2) A loss of approximately four in additional instruc-
tions executed;

(3) A straight-line program.

WJ’Z,\'

Ywzx
X

yxzW

xN\17\

ZWJ’X

Wzyx

et

RZMX

XZWy

oW Y

w‘LXy

Figure 5 Configuration functions of four variables
The fourth variable, w, is superimposed, and
assumes all possible configurations with respect
to the configurations of x, y, z. 167

IBM JOURNAL * APRIL 1957

168

The simulation of discontinuous functions
in digital computation

Diminish, by itself, only permits the construction of con-
tinuous functions, or functions that would be continuous
if each quantity could assume any real positive value.
The use of multiplication makes possible expressions
which simulate discontinuous functions in digital data-
processing machines. Consider the function

fx) =16@Sx)=0 ifl+x<a

=1 ifx>a.

If x can vary continuously, the graph of f(x) consists
of the two line segments f =0 and f = 1 joined by a
segment (x + 1) Oa. To a digital machine computing
this function, the joining segment will not be accessible
when the quantities are scaled such that the incremental
change in x is unity, so f(x) can be considered to simu-
late the unit step function.

The function

g(x) =10[(aCx) + (x©b)]

has the value 1 only if ¢ € x € b. A more general
function, h(x), can be set up to be 1 only if any number
of conditions are met:

hx)=1n(wBx)N &z n....
=1lifw<xandy € z,and....
= 0 otherwise.

Having a function which is unity only when a pre-
scribed set of order relations are met, and zero otherwise,
it is possible to simulate, on a digital computer, any func-
tion with a finite number of discontinuities. This is done
by multiplying one of the above types of unity functions
by the appropriate value, and taking the sum of a number
of such products.

Calculation of the ordinal number of
a numberin a set

Previously it was shown that the first, second, . . . nth, of
a set of numbers could be calculated. This calculation
might be described as: “Given the ordinal (first, second,
etc.), which number of the set is it?” The preceding sec-
tion now provides a method for the inverse operation:
“Given a number which is one of a set, which ordinal
is it?”

If the original set is {xi, x2, X3, ...) Which contains n
distinct integers, there will be a corresponding set {a, 3, ¥,
.. .) in which

a<B<y<...

To the set (a, B, v,...) there corresponds a third

IBM JOURNAL * APRIL 1957

set (1, 2, 3,...) which we call the ordinal number set.
Any number, x, among the original numbers, xi, Xz, X3,
... is the same as one of &, 83, v, . . . and therefore corre-
sponds to some i of 1,2, 3,...The correspondence is
unique provided that all the x; are different.

Let x be the number in the set (x;) whose ordinal,
i, is to be found. Then

=316 (x;00)],

j=1

because for each x;, <x,
19 (xxOx) =1

while for the x; = x,
19 (x6x) =1

and for each x,, > x,
16 (xn©x) =0.

The numbers in the set (x;) need not be integers,
provided that there is some number, s, such that

x;s = integer.

If this is so, then

i—3[168s®xOxN].

J=1

As an additional point, if equalities are permitted
among the x;, there arises the question as to what is meant
by the ordinal number of x if x = x; where {xx} is a
subset of the original set of numbers (x;).

We can define the following:

s = 3[10 (x;© 1)1
j=1

fmin = 1 + 1e,§1[1@(xex,~>],
j=

which amounts to defining the ordinal of a number in
terms of an upper and lower bound.

It is interesting to note that computing the number
whose ordinal is given is performed by expressions which
are continuous, while the inverse process of finding the
ordinal number of a given number is performed by simu-
lating a discontinuous process.

Computation of tabular functions

The basic problem of computation might be described

in this way:

(1) Given once, a statement of a functional relationship,
and,

(2) Given repeatedly, various numbers to apply in the
function, determine, repeatedly, a new number in
accordance with both (1) and (2).

Up to now, we have been treating statements which
employ such words as “the lesser of,” “if x is less than
y” to express the functional relationship. We have shown
that there exist mathematical expressions which are
equivalent functional relationships, and that these ex-
pressions are translatable into very simple, unconditional
steps of computation.

Perhaps the most specific way of describing a func-
tional relationship is to use a succession of statements:

If xix<x<ux, takefi(i=2,3,...n),
where x;1, x;, f; are all numbers, given once as the
functional relationship, while x is one of the numbers

given on repeated occasions. The shorthand way of repre-
senting this functional relationship is by means of a table:

X = X1 X2 . X “on Xn

f= f1 f2 fi fr

The table is arranged so that x; < x;,1, but f need not
be a monotonic function of x.

There are several ways in which a computer can get f;,
if given x; using well-known table-look-up procedures.
The purpose of this section is to describe another method
for computing tabular functions. Basically, the method
consists of two stages: converting the tabular entries to

coefficients, and performing an algorithm, which uses the
coefficients to build up the value f(x). The first stage is,
of course, a one-time operation: once determined, the
coefficients are available for any future determination of
f(x). The algorithm, which is performed for each value
of the argument x, will be described first, in order to show
what cgefficients are obtained.

We first define an adjoined number x;|a; to be the rep-
resentations of x; and a; placed side by side and manipu-
lated as a single number. For example, if x; = 212 and
a; = 1907, the adjoined number x;|a; = 2121907. If the
radix is r, and the number of digits of g; is s, then

xi|ai = x;r® + a;

Operations and calculations can be performed on ad-
joined numbers, just as on ordinary numbers. Thus
xi|a,- e X |0 =

O x|a; ifx; >x

= 0|0 ifx; <x

The purpose of this maneuver is to use the diminish
operation to wipe out g; if x; < x, but leave q; available if
xS x.

With this definition as a basis, we can now set up a
sequence of functions, P;, which will be the procedure
for computing tabular functions. The functions are shown
with the value which they assume under the indicated
conditions:

x < x x < Xo x Z x5
Py = (x1]a1 ©x|0) + x|0 X1|m x[0 x|0
P2= (X2]azeP1) +x|0 x+x2ex1|a29a1 XQIaz xlo
P, = (x3|a39P2) +X10 X3 © x2 + x1]aseaz + a X+ x36 xz]a; © az x3|a3
wherea; < a; <a; <...<a,.
This process is carried on for n steps (until x, is Since
reached), resulting in a quantity x'|g,. Disregarding the
x! part, which can be readily removed in a machine, we a<a<a<...<ay,
have for g.: .
En =4y —.... T a a3 a+a;
Ifx € x4,
gl =S (....0(a:S (a0 (20 a1))) ..). g =an—....Fastagta
Ifx<xy g2=a.9(..0@S((@aOa))...). 8 = an—.... % a, * as
Ifx<x3 g2=a.9(...8@Oasz)...). ga" = Qn.

Ifx>xp, g = an.

The upper signs are taken if » is even.
Because we get a different value of g, for different

Ifx € x,, gt =0. ranges, x;_1 < x € x;, and because the coefficients a, are 169

IBM JOURNAL * APRIL 1957

170

arbitrary (except for the condition a, < a,,1), we can set
g:' equal to the table entries f;.. There is a preliminary
step, however, because

g 1< g3 . < gt <, g2 gn,

If #; should conform to this order, we can set f; = g,’
and solve for the coefficients @,. Most of the time, f; will
be in different order, but we can set

fi = &' = fi (mod m).

In general, m is conveniently a power of the number
radix (10 for decimal numbers), so that after P, = x'|gy
is computed, both x* and the excess digits of g, can be
removed in one operation.

To summarize, we have a computational procedure,
as shown in Program 3.

Program3 Computing procedure.

1.1 R ADD (x|0)
2 DIM (x1]ar)
3 ADD (x]0)
4 DIM (lea2)
.5 ADD (x/0)
6 | |
| 1 |

| | l

| | |

| | |

| | |
1.2n DIM (xn|an)

1.2n+1 SET L

The procedure indicated in Program 3 leaves in the
accumulator the value f; corresponding to x;_; < x < x;.

The method, as described, requires two program steps
for each entry of the table plus some preparatory steps.
In general, it is not as rapid as direct look-up or search
methods of obtaining table values, but will require
smaller storage space, particularly for small tables. A
typical example is that of an insurance company which
retains in each policy record the month and year to which
the premium is paid. Premiums may be paid annually,
semi-annually, quarterly, or monthly, the mode of pay-
ment being coded with a single digit in the policy record.
As each new premium payment is made, the premium-

IBM JOURNAL * APRIL 1957

paid-to-date must be revised. In this instance the code is
adjoined to the month to which the premium is paid to
give a number which will be used as the argument to
determine the year-month increment.

Detailed programs have been written, and show that
this method, in comparison to conventional table-look-
up procedures, resulted in (1) a saving of 10 out of
32 instruction spaces; (2) a loss of approximately 10 in
additional program steps executed; and (3) a straight-
line program.

Conclusions

Positive-integer arithmetic, with its appropriate opera-
tions, provides a basically different method of computa-
tion. Conventionally, tests on the signs of numbers are
used to determine the later course of computations and
are stated explicitly in the computation. In positive-integer
arithmetic, the tests are contained implicitly in the funda-
mental operations, and the course of computation is fixed.

A very wide range of functions can be written as
simple expressions. This includes functions which other-
wise require verbal descriptions or tables to express, as
well as non-analytic functions.

In the application of positive-integer arithmetic to
data-processing and computing machines, this study dis-
closes the following:

(1) It is possible to build efficient machines with less
equipment than is now used. The reduction in equipment
appears in the storage requirements for machine pro-
grams; the elimination of equipment for the control of
signs; and the use of sequential, instead of random,
program storages.

(2) The addition of the diminish operation to existing
equipment offers the programmer means of reducing
requirements on machine capacity, either in program
storage or in control panel functions.

(3) The programmer, in thinking through a complex
computation, may find it easier to follow a single line of
reasoning rather than to keep in mind the branchings of
alternate procedures. Besides this subjective considera-
tion, it appears that automatic programming and program
assembly are simpler when only linear procedures occur.

(4) In some types of computations, the disadvantage
of this system of arithmetic is that it requires more pro-
gram steps to be executed and therefore would be a
slower machine operation.

Received January 8, 1957

