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The  Lorenz Number 

Abstract:  The theory  of the Lorenz number  of a conducting  crystal i s  developed  for  the common models 

of the electron assembly. For the  one-electron  model  it is  shown  that,  provided scattering i s  elastic to 

an  approximation which is  examined,  the Lorenz number is  equal  to  the  square fluctuation of  the  thermo- 

electric power. For the  phenomenological  band  model  an  equivalent result i s  obtained.  It i s  hypothesized 

that these results are special cases of a more  general  one. Some applications,  including  the  theory of 
the  bipolar  anomaly  for semiconductors, are discussed. 
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1. Introduction 

The law  of Wiedemann and  Franz (1853) states that all 
metals have the  same  ratio of thermal conductivity to elec- 
trical conductivity, at any given temperature. At ordinary 
temperatures it holds quite well, except for  a few metals, 
over a range of about two decades in the values of K and u. 
The law was  refined by the conclusion of Lorenz (1 872) that 
the ratio is proportional to the  absolute temperature. Thus, 
if  we write 

K=AuT, (1) 

where K and u are  the thermal and electrical conductivities 
respectively, then the Wiedemann-Franz-Lorenz law states 
that  the “Lorenz Number” Al is the same for all metals at 
all temperatures. 

There is at present a growing interest in the application 
of the law to semiconductors,‘ partly as  a  natural conse- 
quence of the revelation of failures of the law  by recent 
measurements, partly of technological origin and because 
the efficiency  of conversion of thermal to electrical energy 
by a  thermocouple is proportional to u/K.  For these sub- 
stances, which are poor electrical conductors, an appreci- 
able part ( Ks,  say) of the  thermal conductivity originates in 
transfer of energy in ways other than by motion of the con- 
ducting electrons. The proper  form of the Wiedemann- 
Franz-Lorenz law  is then’ 
K=K”+.~UT. (2)  
The non-electronic part, KO, of K normally arises from 
transfer of energy by moving lattice vibration quanta. 

It will  be convenient in this paper to discuss the value of 
the dimensionless magnitude x defined by 
A\ = X(/?/(>)?, (3) 

where k is Boltzmann’s constant and P the charge of the 
electron, rather than that of .I itself. The theoretical value 
of x for metals, in conditions where the Weidemann-Franz- 147 
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Lorenz law holds, is r 2 / 3  : this fact was first established by W = (L+4)J - KgradT. ( 5 )  
Sommerfeld For metals even where the value of x deviates 

order of magnitude. For semiconductors on the other  hand  current density respectively, E is the electric field and 4 the 

values of x large to one should occur; and at and W in terms of the individual contributions from  the 

least one of the cases4 of anomalous dependence of K on bands: 
T which have been found may evidently be accounted for J=&J,, W+KagradT=Z,W,, (6) 
by the predicted anomalous values of x : this is the so-called 
“bipolar” effect. where 

with the theory of the Lorenz number, and  the possible 
anomalous values of x, according to  the single-electron W S = ( L ~ + ~ ) J ,  -K.@adT. 
(self-consistent field) model. It is shown that normally 
(kT)’x is equal to  the mean square fluctuation, over all pos- 
sible energies, of the electron energy, with the contribution, 

distinctly from the Sommerfeld value it remains of this Here J and w are  the electric current density and energy 

it may be  Shown,3 on the basis of the band model, that Potentia1* We generalize these equations by expressing 

The main part (Sections 3 to 5) of the present paper deals J, = u,(E+a,gradT), 

The subscript s= 1 ,  2,  . . . labels the band. By making use 
of the first of (6), (7) may be written in the  form 

at each energy, to  the electric current due  to  an electric 

square fluctuation of the Peltier heat. (The exception to this 
result occurs where the changes in electron energy on scat- 
tering are  not small compared with thermal energy kT.) 
Essentially the same result is obtained for  the phenomeno- 
logical theory presented in Section 2 ;  and  it is suggested in 
Section 6 that the result may be quite general, rather  than 
depending on certain approximations for  the collective 
states of the electrons of the substance, and may even have 
an extension to  the totality of thermal excitations of the 
substance 

2. Phenomenological theory 

I field as weighting factor. That is to say, (/CT)~X is the mean 

for several conducting bands 

Before examining the theory of electronic thermal  conduc- 
tivity on  the basis of the one-electron model, it is worth- 
while to discuss the theory  in terms of the phenomeno- 
logical model in which conduction is supposed to be the 
sum of contributions from a number of distinct conducting 
“bands,” for each of which there is a distinct range of 
energy for  the current carriers. This model originated from 
the results of the one-electron model for crystals but  it is 
possible, and expedient here, to introduce the  “band” 
model in phenomenological terms not depending on the 
concepts from which it originated. Actually the phenome- 
nological band model is, for semiconductors at least, prob- 
ably of more general validity. The analysis of the electronic 
thermal conductivity of semiconductors in  terms of a single 
effective conduction (electron) band and a single effective 
valence (hole) band originally led to  the prediction, by 
Davydov and Shmushkevich,” of anomalously large values 
of x for a semiconductor in which both valence and 
conduction bands contribute appreciably to U. In this 
section the phenomenological theory of this  phenomenon 
is generalized to apply to a homogeneous conductor with 
any number of conducting bands.’ 

For convenience, we assume isotropic or cubic symmetry: 
then the linear phenomenological equations for simultane- 
ous electrical and  thermal  conduction may be written in 
the form 

148 J =  u(E+ligradT), (4) 
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J, = (u$u) { J+Ztur(!2, --!l,)gradTl. (9) 

On substituting (9) into (8) ,  and  the result in turn  into the 
second of (6), we obtain an equation of the form of (5) with 

L = ZSLSU,/U (10) 

and 

K=Ko+Z,IK~-(a , lc~)L ,~ la l (eQ~-~~)~ .  (1  1) 

If we write 

K, = xau.7T(k/e)2 (1 2) 

for  the individual contributions of the bands to  the elec- 
tronic  thermal conductivity, then comparison of (1  1) with 
(2)  and (3) yields the formula 

The phenomenological coefficients L  and 8 are related to 
the Peltier heat 11 and the thermoelectric power Q by the 
formulas6 

en = (+eL, eQ  =d{/dT-eQ, (14) 

where .C is the chemical potential of the electrons (the Fermi 
energy in the one-electron model). In virtue of (10) and the 
corresponding relation for I! in  terms of the we may 
therefore write 

I 1  =2:sllsua/u, Q=2,,  QJua/u, (1  5 )  

defining 

~~ll,=j-+c.L,~, eQ,=d</dT-eeQ,. (16) 

Then (1 3) becomes 

Thus  the anomaly in x is proportional to  the correlation 
between the band contributions to I1 and  to  TQ. If the 
Kelvin relation 



is satisfied for each band separately, 

then this correlation is at its greatest, and we have 

Since the right-hand side of (17) may be written, taking 
(18) into account,  as 

the correction to (20) is proportional to the squares of 
deviations from (19). (See Section 4.) 

In terms of (20), the origin of the bipolar anomaly in x 
for semiconductors3 is a large contribution to  the right- 
hand side from the  conduction (s= 1 )  and valence (s=2) 
bands. Then 

u1 u2 ulu2 e(IIl-TI2) x--x1--x*=- 

Since {-en, is the average, weighted by the electron ve- 
locities in the presence of an electric field, of the electron 
energies in the band, the factor e ( I In - I I l )  must be not less 
than  the forbidden energy gap A. Since normally A>>kT, 
there will hence be a large anomaly when u1 and u2 are 
comparable. Actually e(I12-IIl)-A-kT,7 and so the 
anomaly in x cannot be very  much greater than (eA/2kT)2 
in practice (but see footnote 7). Normally x ,  and x z  will 
not be anonlalously large. 

The question naturally arises whether other  combina- 
tions of bands may  give rise to such an effect. Another kind 
of combination does actually exist, and may in principle be 
realised  in p-silicon: as in germanium the valence band is 
split by spin-orbit  coupling so that  the band-edge is double, 
but in silicon the  separation of the two valence band edges 
(i.e. at  the zone  center) is thought to be only 0.035 ev n. 
Thus this separation (Aso, say) is  of order kT  at  around 
400" K. In this case the contributions  from  thermal excita- 
tion of holes to 11, and  to II, (where "a" refers to  the de- 
generate upper valence band and "b" to  the split off lower 
valence band) are  both positive, and tend to cancel in 
n b  - II,. Then  for p-silicon 

u u  u2 ( kT > .  

In practice we  will also have 

ub/urr = ( m d m 2  z(pb/l*o)exp(-AsolkT), (22) 

where m,, mb are the density-of-states masses and pa,  pb 
the mobilities of the bands (in case "a", for the degenerate 
sub-bands in combination). From present knowledgeX it 
appears that mb"0.3ma. Then the  condition  for  the value 
of (21) at  the temperature of its maximum to be large is 
that Kb>>,&. In contrast to the  situation for  the bipolar 

effect, for  the effect being discussed the contribution to K 
may  be monotonically increased by doping and is propor- 
tional to u. However, for the contribution to K to be com- 
parable to KO, in silicon at  the temperature of the maximum, 
c would need to be some thousands of inverse ohm-cm; 
and this leaves the possibility of observing any anomaly 
in this case somewhat in question.9 The situation should be 
improved by alloying the silicon with germanium, which 
would presumably increase A,,, and hence increase the 
temperature for the maximum of x, and hence both increase 
A and decrease KO at the maximum, and at  the same  time 
further decrease the competing lattice conductivity K O  on 
account of the decrease with alloying at fixed temperature;' 
but all this can be expected to result in only a modest re- 
duction in the values of u needed. More favorable cases, 
among other semiconductors, may possibly exist.', 

By the first of (1  6), the right-hand side of (20) is propor- 
tional to  the  square fluctuation of L,, and hence essentially 
of the band energies, over the phenomenological bands, 
with u,/u as weighting factor. The question naturally arises: 
can this result be generalized (to represent x rather than 
just  the anomalous part) by including the fluctuation of 
carrier energy within each band? We shall see in  the follow- 
ing two sections that if conduction is treated in  terms of the 
one-electron model then, subject to a  certain restriction, 
this idea is right. The generalization is expressed by eq. (43). 

3. Theory for the  one-electron  model 

According to the one-electron (self-consistent field) model, 
the possible wave functions for all the electrons partici- 
pating in transport  phenomena in a  conducting crystal are 
Slater  determinants specified by occupation numbers, 
v(p,(Y,q) = O  or 1, of single-electron states, which in turn  are 
specified by the pseudomomentum p (p/h is the wave vector 
of a Bloch function), a  spin  component 6 = * f, and  the 
band index q. The word "band" is here used in the strict 
sense which it has in the Bloch-Brillouin theory. For each 
band there is an energy function which in the absence of a 
net magnetization may  be taken to depend only on p. Then 
E = ~(p,q). Corresponding to each single-electron state  there 
is also a particle velocity v = &/dp =v(p,q). A homogeneous 
stationary  condition of  the crystal may  be represented by 
an ensemble of  quantum states for all the electrons, each 
characterized by one such wave function and hence by a set 
of occupation numbers v(p,6,q). For the present purpose 
this ensemble is  sufficiently characterized by the mean 
values, f'(p,d,q), of the v. In  the case of thermal equilibrium 
at absolute  temperature T, f is a  function of E only: 

In a non-equilibrium steady state, f is caused to differ from 
f? by disturbances due to  the external "driving forces." 
The transport  phenomena arise when the  disturbance orig- 
inates in a space gradient: for example a  gradient of tem- 
perature, grad T, or of electric potential, grad += -E. 
These are treated by supposing the distribution  function 
to depend also on position in the crystal: f = j ( p , t ? , q ;  r). 149 

IBM JOURNAL * APRIL 1957 



Then the fundamental  equation describing the steady-state 
distribution  function for  the system is the Boltzmann 
equation12 

Z,~~a~ld3P’(f(P’,G’,q’)S(P’,G’,q’; P,$,d(l  -f(p,d,q)) 

-f(P,b,q)S(P,fi,q; P‘,fi’,q’)(l -f (P’,G’A’)) I 

where F is the Lorentz force acting on each electron and 
S(p’,G’,q’; p,G,q)(l - f (p,G,q))d”p is the probability per unit 
time  for an electron to be scattered from  the state  charac- 
terized by  (p’,G’,q’) to any of those belonging to the volume 
element d3p of p-space about  the  state characterized by 

The present section is concerned with the solution of 
(24), to first order in the deviation off from fo, when the 
driving forces are an electric field and a temperature gra- 
dient and when it may be assumed that  the scattering 
function S of (24) represents scattering by a crystal “sub- 
strate” which does not deviate appreciably from  its thermal 
equilibrium state. In virtue of this last assumption, it follows 
at once from  the principle of detailed balancingI3 that  the 
function 

(p,G,q). 

foi4P,q))S(P,fi,q; P’,$‘,q”-h(4P’,q’))) = Np,fi,q; p’,G‘,q’) 
(25) 

is symmetric with respect to  the primed and unprimed 
variables : 

R(p’,G’,q’; p,S,q) =Np,G,q; P’,fi’,d). (26) 

The left-hand side of (24) then vanishes when (23) is satis- 
fied. To  obtain  the  equation  for  the deviation off fromfo 
to first order in  the driving forces (i.e. the Boltzmann  equa- 
tion  for  the h e a r  transport effects), (24) is linearized by 
substituting f =h+ fi into  it  and equating the terms on  the 
left which are of first degree in,fi  to  the terms on  the right 
which are linear in the “driving  force^."'^ In  the present 
case the driving forces are  the space gradients of { and T, 
introduced by the term  in dfo/dr on  the right of (24), and 
the electric field E in the Lorentz  force F = -eE.  Then the 
contribution of the right-hand side of (24) to the linearized 
Boltzmann  equation is 

g(P,q)=-~.(A+EB)fo(l-fo), (27) 
where 

In virtue of the relation (25), (26), an alternative form of 
(30) is 

The form of (29) suggests the definition of a collision re- 
laxation time T by: 

1 
r(r> = 

- z ( r y y r ;  r’). (32) 

We wish to find expressions, in  terms of the driving 
forces, for  the flux of electrons and flux of electron energy, 
which are given respectively by 

(33) 

(34) 

(where Z is the sum-integral operator defined above and 
here operating on  the electron state variables for  the mag- 
nitudes v, E, f on  the right). To obtain a formal  solution for 
N and Welec., with f on  the right of (33) and (34) replaced 
by ,fi, we make use of the following theorem : Let +(I?) be 
any one-electron function and let a “conjugate” function 
+t be defined by the relation 

+qr) - m y - ( r ;  r’)T(r’)+t(r’) =+(r). (35) 

Then, by (29) and (32), 

rfi* = -z gr *t. 

Eqns. (27), (28) and (36) at once yield the  formal linear 
macroscopic transport equations, with v, VE, etc. for 9. It is 
convenient to make the  further abbreviation 

+h(l -h) E [II/I. (37) 

Then the linear transport  equations are*5 

N=A.[Tv V~]+B.[TEV v?], (38) 

W,~,,.=A.[TV(VE)~]+B.[TEV(VE)~]. (39) 

From (38), the electrical conductivity tensor has compo- 
nents 

u l  = (e2/kT)[.rv,vi?]. (40) 

The electronic thermal conductivity is  given  by the value 
of Welec. in the presence of a  temperature  gradient when 
the electric field is such that  the current density J =  “eN 
is zero. Thus we have to solve for A  in (38), for N=O, and 
substitute the result in (39). It is expedient at this point to 
specialize to  the case of cubic crystal symmetry. Then, for 
J=O, 

Before writing down  the complete linearized Boltzmann 
equation for fi, and proceeding, it is convenient to simplify 
the notation by letting a single symbol, I’, stand  for the set = { [ T V ~ ( V ~ ) ~ ] [ T E V ~ V ~ ] - [ T V ~ V ~ ~ [ T E V ~ ( V E ) ~ ] ) ~ ~ ~ ~  T 
of variables p,fi,q specifying an electron state, and  to let 
Z(r) stand for  the sum-integral operator  &Z$J’d3p . . . . 
Then the linearized Boltzmann  equation for fi is ( 2 )  and ( 3 )  

3kT2[~V.Vt]Wc1ec. 

and hence, if we identify -WClec. with (K-Kdgrad T, by 

( m m r ’ ;  r) - m ) T ( r ;  r’) I =gm, (41) 
-“ 

where g is defined by (27) and 
If  the scattering were perfectly elastic (i.e. connected 

150 qr;  r’)=s(r; r’)(l --fo(r’))+fo(r’)s(r’; r). (30) initial and final states only with the same value of E) then 
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we would have 

(VE)t = v + c  

(For  the proof of this  statement, see the beginning of Hence 
Section 5.) On substituting (42) into (41) the latter reduces 
to h3[7Q,t$I= Z7Q,tlC/tfo(l -h) 

Thus x ( ~ T ) ~  becomes simply the  square fluctuation of E 

over the levels, with rv.v+fo(l -fo) (proportional to  the 
contribution per one-electron state to  the conductivity) as 
weighting factor. The Sommerfeld value, x=r2/3, for 
metals results from (43) in special conditions which are dis- 
cussed below (Section 5 )  together with the conditions for 
(43) to be a good approximation to (41). The result (43) 
itself is the generalization of (20) which was proposed in 
the last paragraph of Section 2. 

4. Comparison of the two models; 
the  reciprocal  relations 

In this section we examine the correspondence of the results 
for the one-electron model to those for  the phenomeno- 
logical band model. Eq. (41) may be rewritten as 

where w and wt are defined by the relations 

[TEV ‘ Vt]  W[Tv ’ v’], 
[TV’(VE)t]-Wt[TV’V’]. i 

(44) 

On comparing (45) with (4), (5), (14), (38), and (39) it is 
found that 

w=<“eTQ,   wt={ -eI I .  (46) 

An analogy between (44) and (17), with Z ( u s / u )  . . . cor- 
responding to hPZ fo(l - ~ ~ ) ( T v . v + / [ T v . v ~ ] )  . . . , is then 
evident. [It makes no difference to  the result (44) if E is 
replaced by e-( in both (44) and (45).] 

We have to assure ourselves that the Kelvin relation (18) 
holds for  the model of a  conductor studied in Section 3. 
Eq. (46) shows that what is required is to verify that 

W = wt. (47) 

It is expedient to deal with this question at  the present point 
in the discussion, and  to  do so by proving the following 
theorem: If Q, and $ are any two functions of r (of course, 
such that  the double sum-integral in (49) is uniformly con- 
vergent), then 

C~Q,++I  = W 4 1 .  (48) 

The proof entails writing out the left-hand side according 
to  the definition (37) and then  substituting for $ in terms 
of $t by (35): 

h”[~+t&]=fr+t+tfO(I -hJ 

i - f ( ~ ) ~ ( ~ ” ) ~ ( r ) ~ , t ( r ) ~ ( ~ ) ( ~  --f0(r))T(r; r’)T(rwt(ro. 

$t. By (26), the second term on  the right is also symmetrical. 
Hence we arrive at (48). It is a significant property of the 
theorem that  it is true in virtue of the principle of detailed 
balancing as expressed by (26), and hence depends on  the 
assumption that  the crystal substrate-the agent of the 
scattering-is in  thermal equilibrium. It is not  true when 
there is an appreciable phonon  drag effect.I6 Eq. (48), 
applied in  conjunction with (36), embodies the Onsager 
reciprocal relationsI7 for  the  transport effects of the system 
of electrons considered here. With Q, and $ set equal to  two 
components, v i  and v 3 ,  of v, it follows at once from (40) 
that ui i=ui i .  This result is, of course, one of the Onsager 
relations for a crystal in  zero magnetic field. Similarly the 
coefficient  of B in (39) is a symmetric tensor. Finally, the 
( i , j )  component of the coefficient of B in (38) is equal to 
the (j,i) component of the coefficient  of A in (39). This last 
result is just  the Onsager relation for  the thermoelectric 
coefficients in  zero magnetic field.’* For a  cubic crystal it 
reduces to (47), which we set out  to prove. The Kelvin 
relation (1 8) is thus verified.lg 

We may now examine how the results of the one-electron 
model, (41), (43), and (44), may be explicitly reduced to 
(13), (17) and (20) of the phenomenological model. The 
natural expectation is that a one-one correspondence be- 
tween sets of one-electron states  in “I?-space” and  the 
“bands” of the phenomenological band model should be 
found. An implicit idea of the latter was that  the corre- 
spondence would be between thephenomenological “bands” 
labeled by the index s of Section 2 and  the Bloch bands, of 
one-electron states, labeled by the index q of Section 3. It 
is more enlightening, however, to proceed by arbitrarily 
dividing up the entirety of states over which 1’ ranges in the 
formulas of the preceding section into sets “1,” “2,” . . . 

CY, . . . which cover the whole range  without overlapping, 
and which are otherwise quite general except that for con- 
venience we require that each set still constitute  a system 
with cubic symmetry, and simply rewriting (41) in terms of 
magnitudes for each set analogous to x, w and wt. We write 

“ 1 9  

h P f  m$Al( 1 -fO) = [$la,  (50) 

where I,( I’) stands for summation and integration over the 
set “a,” and define 

u,=(e2/3kT)[.rv.vt],, (5  1) 

By the above definitions, 151 
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sitions entail emission or absorption of a  phonon. On  the 
other  hand,  transitions between bands separated by a for- 
bidden gap of more  than  the maximum lattice-mode 
quantum energy will entail emission or absorption of a 
photon, and be much less frequent. Inter-band  transitions 
by phonon  absorption or emission are thought to occur 
between the degenerate pair of valence bands  in ger- 
manium, and  to  amount  to  an appreciable  fraction of the 
relaxation processes for either band.21 However, since they 
have a  common band-edge point it should anyhow be more 
reasonable and convenient to combine these bands for  the 
present purpose, treating  the states belonging to them  as  a 
single set which is to be identified with one of the phenom- 
enological bands of Section 2. On the other  hand, it would 
be natural to divide up the states of the conduction  band of 
germanium into sets each belonging to one of the "valleys" 
of the energy function'l and  to treat  each set as a phenom- 
enological band. Each such band taken separately does not 
have cubic symmetry and hence their  contributions to  the 
thermoelectric crossterms of the fluxes (38) and (39) in  the 
direction ofthe electric field and temperature gradient would 
not be all equal, and hence there should be a  contribution 
to  the right-hand side of (17) in spite of the equivalence of 
the valleys. It is  believed that inter-valley transitions are  an 
appreciable fraction-though not the majority-of all re- 
laxation processes for any  one of the valleys,eJ so that (20) 
would not be valid and allowance should be made for  the 
departure from (19). 

5. Further discussion and applications 

We consider first the condition  for validity, and  the conse- 
quences, of (43). Eq. (41) may be rewritten, making use of 
(471, as 

where the second term on  the left  is the expression (43) and 
the right-hand side is the possible correction in which we 
are now interested. (The second term of the factor E - w on 
the right is arbitrary, in the sense that, by (45) and (47), 
adding any constant to this factor would not change the 
value of the numerator. The motive for the choice of the 
form e - w is to facilitate the reasoning leading to (63).) In 
discussing this correction it is convenient to  adopt  an 
abbreviated notation  for  the operator acting on +t in the 
second term on the left of (39, such that (35) reads 

(l-O)+t=+. 

Then, for arbitrary  functions +(I'), +(r), 
(1  - (3)((++)+-+t+) = o+t+-+o+t. 

In particular, 

(1 - O)((V€)t "vte) 
=l(r')T(r; r')T(r')(E(r')-e(r))vt(r'). (61) 

If the scattering is elastic, the  right-hand side of (61) van- 
ishes. Then (ve)? and vte can differ only by a vector function 

of F which is nullified by the operator 1-8. In general 
such does not exist, and so we arrive at (42). If the scatter- 
ing is not quite elastic, the  order of magnitude of (61) is 
vt times that of the average change in energy on scattering 
from  the  state r. This  should  then also be the order of 
magnitude of ( v E ) ~ - v ~ E .  Consequently, if we define €*(I?) 

by 

v .  ((VE)? "vtt) = E*V . v i ,  (62) 

then e* should be of  the order of magnitude of the changes in 
energy on scattering. Let us consider now the situation 
where (as normally in  a metal or extrinsic semiconductor) 
substantially all the contributions to  the sum-integrals of 
(60) come  from a single range of allowed values of E ,  and 
hence from  a  range "kT in extent. The numerator on  the 
right of (60) vanishes if E* is constant, and otherwise will 
be of order of magnitude (kT)2[w.vt] times the order of 
magnitude of dE*/de in this range, where the bar over E* 

signifies averaging in the usual way over all values of r for 
a given electron energy e. Hence 

" 

[TV.Vt(E-w)q dE* E* 

( k T ) 2 [ ~ ~ . ~ t ]  de kT , 
" " 

the right-hand side being understood to be evaluated in the 
range of E contributing substantially all the conduction. 
The condition for  the correction to (43) to be small is  evi- 
dently that e*<<kT. 

The single type of scattering process whose consequences 
it is the most important  to understand  in  the present con- 
nection is absorption or emission of a Debye phonon. If the 
velocity of these is s, the change of electron energy is 
*slp'-pl. For a metal normally the lengths of the wave- 
vectors, piti, of the electron states  contributing to conduc- 
tion  are of the  order of magnitude of the inverse of a lattice 
constant. The change in electron energy on scattering is 
hence "k0, where 0 is the Debye temperature, unless 
T<<O. Since scattering with a  change  in energy large 
compared with kT is in general improbable, if T<<O the 
change in energy is "kT. (What  then  happens is that for 
nearly all the scattering the angle between p' and  pis small.) 
Hence if T<<O the right-hand  side of (63) is of order unity 
and  cannot be neglected (except compared to an anomalous 
large  contribution, which is not in question here), but if 
T>>O it is "B/T and may be neglected. Similar considera- 
tions for  an extrinsic semiconductor with a non-degenerate 
band (fJ<<l or 1 -fu<<l) lead to  the conclusion that in this 
case (63) is small except at  the very  low temperatures of 
order nw2/k or less (where anyhow other types of scattering 
process will  be dominant). Evidently anomalously large 
values of x are likely to arise as  a consequence of (43), and 
hence are  to be explained in terms of it rather than by devia- 
tions from it. 

We now consider the possible values of x predicted by 
(43) for various cases. It is useful to write the sum-integrals 
as simple integrals with E as  the variable, by introducing  a 
factor G(E) such that G6e is the number of electron states, 
per unit volume of the crystal, in  the infinitesimal range 
6e, and deiining 153 
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(64) From  the foregoing discussion it may be concluded that 
in metals for T<<O, if the scattering is by emission and ab- 
sorption of phonons, x should in general be substantially 

where the integrals extend over all accessible levels for  the 
electrons included in  the system of one-electron states. If, 
as in metals, the range of energy E contributing appreciably 
to the integrals of (65) and (66)  is from many times kT less 
than j- to many times kT greater than r, and if qG does not 
vary appreciably over this range, then we may cancel out 
qG from the integrals and  take them from - 03 to +a. To 
this approximation 

= r 2 / 3  = 3.29. 

Thus we obtain the Sommerfeld value for x. If the above 
conditions are relaxed to  the extent that small but finite 
derivatives (dnqC/den), = are admitted,  then the right-hand 
side of (65) becomes a power series in the  odd derivatives 
times (kT)", the right-hand  side of  (66) in  the even deriva- 
tives times (kT)". With a few exceptions (such as bismuth 
and some metal alloys) even the leading terms of these 
series (of course excluding the term of  (66) with n=O) are 
small at ordinary  temperatures.  Normally (but see the next 
paragraph) the term of degree n is of order (kT/lf-Eol)n, 
where to is a band-edge energy and I f  - E,,\- an ev, but 
exceptions can occur where the Fermi energy f is  very near 
the  sharp minimum in C which occurs when the allowed 
energy ranges of two bands just slightly overlap. 

Appreciable values for  the right-hand side of  (66) can  be 
foreseen to occur for metals when T<<O, though of course 
in this case (66) is not accurately true. As explained above, 
in this case the change  in energy for  phonon scattering is 
" k T .  Consequently the second factor on  the right of (31 )  
will in general differ appreciably from unity when the first 
factor is nonzero. It is possible to infer qualitative features 
of the function X(I'), defined to be such that  the value of 
(32) is 1/X times what it would have been if this second 
factor on  the right of ( 3 1 )  had  not been present, from  the 
order of magnitude of the changes of electron energy on 
scattering. As E - (  increases from minus a few times 
kT to plus a few times kT, X increases from a value less 
than  one to a maximum greater than  one (for e- f -+kT)  
and finally tends to  one  for E - <  several times kT. Thus 
the effect on  the integrals of  (65) and (66)  is to tend to  cut 

less than a2/3. This result is a long-standing one of the 
theory of metals, and is confirmed by e~periment.~~  The 
purpose of the discussion here was to give an insight, from 
the point of  view of the present paper, into  the origin of the 
result, and  to suggest-though of course on a far from 
rigorous basis-that it is generic to inelastic scattering 
rather than  an "accidental" outcome of the mathematically 
elaborate theories for specific actual metals. At still lower 
temperatures the dominant  relaxation process in practice 
is scattering by impurities. It is customary to assume that 
this scattering is elastic. Then (a), Eq. (66) is rigorously 
correct (provided the  phonon  drag effect  is negligible); and 
(b), the second factor on  the right of ( 3 1 )  is rigorously equal 
to unity, and we may hence again expect qG to vary very 
little over a range " k T  about E = { and in  any case, so far 
as  the one-electron model itself is a good approximation, 
to vary at a rate independent of T. Hence 

x-a2/3  (kT/A$, (68) 

where normally, as for T>>O, 41-If-~OI. This prediction 
(68) of the  standard theory is also confirmed by experi- 
ment.24 It is found that as T decreases from values -0 the 
value of x decreases to a minimum and increases again 
towards a2/3. 

For semiconductors, so far  as  the  phonon  drag effect 
may be neglected, (43) or (66) is the general result of the 
one-electron model except at  the very lowest temperatures.25 
However, the results (67) are not valid, even for  an ex- 
trinsic semiconductor, because G and q vary strongly over 
the states  contributing to conduction, For  an extrinsic 
semiconductor it is convenient to write (43) in the  form 

where E" is the band-edge energy, rather  than  in  the form 
(66). The value of x depends altogether on  the particular 
dependence of q and G on E - E ~ .  It is  normally-not al- 
ways4orrect  to  take G to be proportional to ( * ( E  - E ~ ) ) %  

The  standard theory of the scattering leads to the r e s u P  
that q is also proportional to (+ ( E - E ~ ) ) ' ~ .  Then qG is 
proportional to + ( E  -eO)  : this dependence is assumed in 
deriving (70) and (71). If the Fermi level is many times kT 
beyond the band-edge on  the "forbidden" side, the distri- 
bution is non-degenerate, 

off the half of the range of integration for which E < f, and  and (69)  gives the  standard result 
to make qG a maximum, with r12(qG)/d&--(kT)--2, at 
E -  {"kT. Consequently the contribution to X on  the left of x = 3 ! - (2 !)2 = 2. (70) 
(60)  is reduced below the Sommerfeld value. The right- 
hand side of  (60)  is negative, according to  the discussion As the Fermi level moves into  the band, the value of x 
of it above, and hence acts in the same direction to decrease changes from  that given by (70) to  that given  by  (67). At 
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(Here f(n) is the Riemann function.) 
From  the account given  by loffel of the results of Dev- 

yatkova2 on n-PbTe, x was 1.9 in the non-degenerate state 
and increased to a limit of 2.7 on doping to  the degenerate 
state.*’ These results, when compared with (67),  (70) and 
(71), indicate that in the “degenerate” state f -e”  was of 
order kT (perhaps several times kT)  rather  than >> kT. 
This conclusion is consistent with the figure quoted by 
Ioffe for  the electron density and  the assumption that G 
was roughly equal to 2rr(2m/h’)3i~(~--E,)’A. It is necessary, 
however, to account for  the evident tendency (see  Fig. 8 
of Ioff-5, reference I)  for x to approach a limiting value, 
for high doping, substantially less than  the Sommerfeld 
value. Now, provided the  donor states, because of the 
strength of the mutual interaction of donor electron orbi- 
tals, form part of the system of one-electron states, so that 
(even  if there is no compensation) they can by themselves 
accomodate twice as many electrons as the  donors intro- 
duce, the Fermi level cannot rise above the uppermost of 
these donor-derived levels. It is a plausible assumption, in 
these conditions, that  the resulting contribution ( G ~ ( E ) ,  say) 
to  the density-of-states function should overlap the con- 
tribution (G-Gd=Go(~), say) of the undoped substance, 
so as to  form a single continuous spectrum. If the energy 
range of Gd were of order kT, the  condition f--Eo-kT 
would then be realized. It might not be reasonable, how- 
ever, to assume that  the curve of G would be thus “fattened 
up”  without being distorted. It may be, on  the  other  hand, 
that  there was only  a  small  overlap of the Gd and Go 
spectra, so that  the donor-derived levels formed a tail to 
the main  distribution, with d(qG,,)/de< 1. It would be in- 
teresting to know whether the thermoelectric power did or 
did not become small compared to  k/e  in  the high-conduc- 
tivity limit. 

In terms of (65), (66), the conditions for  the bipolar 
anomaly are  that there be a “forbidden” energy range  in 
which qG is zero or very small, separating  two ranges of 
finite qG by an energy large compared to kT, and  that  the 
Fermi level  lie in the middle of the forbidden range so that 
the  contributions to  the conductivity come  not  from ener- 
gies E={ but from  the “wings” of the curve of fo(l - fo)  
where le--j-J>>kT. The second moment of the function 
7GfL(l -fo) of E is then large compared to (kT)’if the actual 
position of  the Fermi level is such that  the two  contribu- 
tions to  the conductivity u are comparable. It is possible, 
at least in principle, for this  situation to be inverted so that 
x according to (66)  is small compared to one. The require- 
ment is for  the conduction to arise from a single range- 
of width A, say-of finite qG, with forbidden gaps of width 
>>kT above  and below it. Then x must be less than(A/kT)*, 
and hence if these conditions  can be maintained when 
T>>A/k then x must become ((1. The point which the fore- 
going discussion is intended to bring out is that determina- 
tion of Q and A may serve as a crude “spectrometer” in 

giving information about  the distribution of electron levels 
with q, the measure of their  contributions to u, as weighting 
factor. 

6. Possible generalizations 

In  the one-electron theory of Sections 3 and 4, the Lorenz 
number was related to  the mean square fluctuation of E 

over the levels, with the mobility factor q giving their 
relative weight. This result failed to hold just in the condi- 
tions which might have been  expected-when the magni- 
tude of the energy change on scattering was great  enough 
for  the resulting loss of definition of the energy of the 
electrons taking part in  conduction to be  appreciable rela- 
tive to  the  root mean square fluctuation of the energy. The 
form of the result suggests that  it is not  just a special one 
for  the one-electron model but has a “thermodynamic” 
generality; and this suspicion is somewhat born out by 
the fact that  the result of the  same  form arrived at  in 
Section 2  does not depend on  the one-electron model for 
validity, but only on  the Kelvin relations (19) for  the 
phenomenological “bands” of the model. Many-electron 
correlations within these would not in themselves make (20) 
fail. If, however, the result (43) derives from one of such a 
generality then at least it ought to refer, in  terms of the 
one-electron model, to averages over y-space rather than 
over ,u-space.‘* That this is a  reasonable  interpretation of 
the actual result is shown by the following consideration: 
Let us label the levels in p-space by subscripts i, j ,  etc. and 
set z,-exp{(-j---~JkT].  If vi=O or 1 is the occupation of 
the i’th level, then 

((Vi))=Zi/(lfZi)=fo, (72) 

where the double  bracket (( )) denotes an average over the 
grand canonical ensemble. Let A and B be  two  magnitudes 
of form 

A=Z:,aiv,,  B-Zibivi. (73) 

Then  it is easily shown that 

((AB)) - ( (A))(@))  
=zia,bi(((V,))-((Vi))’I  =Zab~(l--fo). (74) 

Thus  the substitution of the  factor fo(1 -,A) for  the  factor 
fo, in the averages Ifo(l -fo) . . . which give the relation of 
fluxes to forces in the linear transport theory, is just the 
change which appears, for Fermi statistics, in  going from a 
correlation in p-space to  one  in y-space. We cannot apply 
this result literally to (43), to justify the proposed interpre- 
tation, because the factor r * - r v ~ v ’ ~ / v 2  is by its  nature 
defined for p-space, not  for y-space. 

The same  considerations apply to  the remaining part  of 
the thermal conductivity, KO, where this  comes  from 
phonons, excitons, and plasmons which do  not interact 
appreciably. These are localizable “particles” (with crystal 
momentum p, energy E and velocity v =  &/dp) which are 
bosons whose number is not conserved in  certain allowed 
transitions which occur among  the relaxation processes. 
The equilibrium distribution  function NO(-) is therefore 
the Planck function; and there will be a  Boltzmann  equa- 155 
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tion,  for  the effect of  a temperature  gradient, which can  be 
linearized to  an  equation  corresponding  to  eq. (24) but  for 
N ,  = N -  No rather  than  for fi. If, to  save  trouble  con- 
sistently  with  the  present  purpose,  we  write  the  rate  of 
relaxation  of N , ,  corresponding to the  left-hand  side  of 
(24), as --,IT, then  we  find 

Ko=(l/3kT2)k8Z TlvCj'No(l+No).  (75) 

Here  the  operator Z stands  for  integration  over p-space 
and  summation  over  indices specifying the  nature of the 
excitation  (phonon, etc.), and  direction  of  -polarization, 
mode  of  vibration,  spin  state, etc. The  result (75) differs 
from  the  corresponding  one  for  electrons  in  that  the  factor 
No( I +No) replaces fo( 1 - fo) .  The  fluctuation  formula  cor- 
responding t o  (74), on the  other  hand, differs from (74) in 
just  the  same  way: No(]+ No) replaces .fb(l - f o )  on the 
right-hand  side.  Thus  the  right-hand  side  of (75) also  may 
be  interpreted  as  expressing a contribution  to  the  thermal 
conductivity in terms  of  the  square  fluctuation of the energy 
flux for  the "y-space" ensemble,  except  that  there  is  the 
same difficulty over  the  factor T.  

Presumably  this difficulty could  be resolved by  formu- 
lating a Boltzmann  equation  for  the localized many-particle 
distribution  function,  instead  of  for  the  localized  reduced 
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