The Lorenz Number

P. J. Price

Abstract: The theory of the Lorenz number of a conducting crystal is developed for the common models

of the electron assembly. For the one-electron model it is shown that, provided scattering is elastic to

an approximation which is examined, the Lorenz number is equal to the square fluctuation of the thermo-

electric power. For the phenomenological band model an equivalent result is obtained. It is hypothesized

that these results are special cases of a more general one. Some applications, including the theory of

the bipolar anomaly for semiconductors, are discussed.
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1. Introduction

The law of Wiedemann and Franz (1853) states that all
metals have the same ratio of thermal conductivity to elec-
trical conductivity, at any given temperature. At ordinary
temperatures it holds quite well, except for a few metals,
over a range of about two decades in the values of K and 7.
The law was refined by the conclusion of Lorenz (1872) that
the ratio is proportional to the absolute temperature. Thus,
if we write

K=AcT, 0}

where K and ¢ are the thermal and electrical conductivities
respectively, then the Wiedemann-Franz-Lorenz law states
that the “Lorenz Number™ A is the same for all metals at
all temperatures,

There is at present a growing interest in the application
of the law to semiconductors,! partly as a natural conse-
quence of the revelation of failures of the law by recent
measurements, partly of technological origin and because
the efficiency of conversion of thermal to electrical energy
by a thermocouple is proportional to /K. For these sub-
stances, which are poor electrical conductors, an appreci-
able part (K, say) of the thermal conductivity originates in
transfer of energy in ways other than by motion of the con-
ducting electrons. The proper form of the Wiedemann-
Franz-Lorenz law is then?®

K=K0+AO’T. (2)

The non-electronic part, K,, of K normally arises from
transfer of energy by moving lattice vibration quanta.

It will be convenient in this paper to discuss the value of
the dimensionless magnitude x defined by

A=x(k/e), 3

where 4 is Boltzmann’s constant and ¢ the charge of the
electron, rather than that of A itself. The theoretical value
of x for metals, in conditions where the Weidemann-Franz-
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Lorenz law holds, is 7%3: this fact was first established by
Sommerfeld For metals even where the value of x deviates
distinctly from the Sommerfeld value it remains of this
order of magnitude. For semiconductors on the other hand
it may be shown,® on the basis of the band model, that
values of x large compared to one should occur; and at
least one of the cases? of anomalous dependence of K on
T which have been found may evidently be accounted for
by the predicted anomalous values of x: this is the so-called
“bipolar” effect.

The main part (Sections 3 to 5) of the present paper deals
with the theory of the Lorenz number, and the possible
anomalous values of x, according to the single-electron
(self-consistent field) model. It is shown that normally
(kT2 is equal to the mean square fluctuation, over all pos-
sible energies, of the electron energy, with the contribution,
at each energy, to the electric current due to an electric
field as weighting factor. That is to say, (kT)?*x is the mean
square fluctuation of the Peltier heat. (The exception to this
result occurs where the changes in electron energy on scat-
tering are not small compared with thermal energy £T.)
Essentially the same result is obtained for the phenomeno-
logical theory presented in Section 2; and it is suggested in
Section 6 that the result may be quite general, rather than
depending on certain approximations for the collective
states of the electrons of the substance, and may even have
an extension to the totality of thermal excitations of the
substance

2. Phenomenological theory
for several conducting bands

Before examining the theory of electronic thermal conduc-
tivity on the basis of the one-electron model, it is worth-
while to discuss the theory in terms of the phenomeno-
logical model in which conduction is supposed to be the
sum of contributions from a number of distinct conducting
“bands,” for each of which there is a distinct range of
energy for the current carriers. This model originated from
the results of the one-electron model for crystals but it is
possible, and expedient here, to introduce the ‘‘band”
model in phenomenological terms not depending on the
concepts from which it originated. Actually the phenome-
nological band model is, for semiconductors at least, prob-
ably of more general validity. The analysis of the electronic
thermal conductivity of semiconductors in terms of a single
effective conduction (electron) band and a single effective
valence (hole) band originally led to the prediction, by
Davydov and Shmushkevich,? of anomalously large values
of x for a semiconductor in which both valence and
conduction bands contribute appreciably to ¢. In this
section the phenomenological theory of this phenomenon
is generalized to apply to a homogeneous conductor with
any number of conducting bands.’

For convenience, we assume isotropic or cubic symmetry:
then the linear phenomenological equations for simultane-
ous electrical and thermal conduction may be written in
the form

J=c(E+QgradT), A
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W =(L+¢)J—KgradT. &)

Here J and W are the electric current density and energy
current density respectively, E is the electric field and ¢ the
potential. We generalize these equations by expressing J
and W in terms of the individual contributions from the
bands:

J=2J, W+KgradT=2Z.W,, ©)
where

J.=0(E+Q.gradT), D
W,=(L+¢)J.—K,gradT. (8)

The subscript s=1, 2, . . . labels the band. By making use
of the first of (6), (7) may be written in the form

Ji=(o/o) | J+Z w0 (Q—Q)gradT!. 9

On substituting (9) into (8), and the result in turn into the
second of (6), we obtain an equation of the form of (5) with

L=Z%.L.ofo (10)
and

K=Ko+Z,{K;—(0s/0)LZ 10 {Q:s— )} (11)
If we write

K,=x.0.T(k/e)? 12

for the individual contributions of the bands to the elec-
tronic thermal conductivity, then comparison of (11) with
(2) and (3) yields the formula

% 15 1'@ (LS—LI)(QI'_'QS)
X_zsa X“+§<2,' o? T(k/e): . a3

The phenomenological coefficients L and € are related to
the Peltier heat II and the thermoelectric power Q by the
formulas®

ell={+el, eQ=d{[dT—e, (14)

where { is the chemical potential of the electrons (the Fermi
energy in the one-electron model). In virtue of (10) and the
corresponding relation for @ in terms of the Q, we may
therefore write

11=2l0,/o, O=2Z,Q0.a, (15)
defining
elly=(+eL,, eQ.=di/dT—ed,, (16)

Then (13) becomes

= () 2 T o

- (%) Es:_-sT(Qé‘— Q)T —1ID. an

Thus the anomaly in x is proportional to the correlation
between the band contributions to II and to T Q. If the
Kelvin relation

Tg=1 (18)




is satisfied for each band separately,
TQ,=1I, (19)

then this correlation is at its greatest, and we have

s T50¢ e(Hs_IIt) 2
x=2g =22 ()

_ Os e(ns—n) 2 (20)
=2(57) .
Since the right-hand side of (17) may be written, taking
(18) into account, as

(ir) 27 1 (e -n) - (5,

the correction to (20) is proportional to the squares of
deviations from (19). (See Section 4.)

In terms of (20), the origin of the bipolai anomaly in x
for semiconductors? is a large contribution to the right-
hand side from the conduction (s=1) and valence (s=2)
bands. Then

(a1 02 oo fe(Il;—TI,)\2
x=gx— o= (i)

Since {—ell, is the average, weighted by the electron ve-
locities in the presence of an electric field, of the electron
energies in the band, the factor e(I1,—II,) must be not less
than the forbidden energy gap A. Since normally A>>AT,
there will hence be a large anomaly when ¢, and o are
comparable. Actually e(Il,—II,)—A~k&T,” and so the
anomaly in x cannot be very much greater than (eA/2kT)?
in practice (but see footnote 7). Normally x, and x. will
not be anomalously large.

The question naturally arises whether other combina-
tions of bands may give rise to such an effect. Another kind
of combination does actually exist, and may in principle be
realised in p-silicon: as in germanium the valence band is
split by spin-orbit coupling so that the band-edge is double,
but in silicon the separation of the two valence band edges
(i.e. at the zone center) is thought to be only 0.035 ev ®,
Thus this separation (A, say) is of order A7 at around
400° K. In this case the contributions from thermal excita-
tion of holes to 11, and to II, (where “a” refers to the de-
generate upper valence band and 5™ to the split off lower
valence band) are both positive, and tend to cancel in
11, —I1,. Then for p-silicon

Ta

Op ~ Ta¥b ASO E
x=gxe=0 =" (7). @y

0-2
In practice we will also have
G/ = (m/ma)* i/ )exp(—Aw/kT), (22)

where m,, m, are the density-of-states masses and w., us
the mobilities of the bands (in case “a”, for the degenerate
sub-bands in combination). From present knowledge® it
appears that »m,~~0.3m,. Then the condition for the value
of (21) at the temperature of its maximum to be large is
that us>>u.. In contrast to the situation for the bipolar

effect, for the effect being discussed the contribution to K
may be monotonically increased by doping and is propor-
tional to o. However, for the contribution to K to be com-
parable to K, in silicon at the temperature of the maximum,
¢ would need to be some thousands of inverse ohm-cm;
and this leaves the possibility of observing any anomaly
in this case somewhat in question.? The situation should be
improved by alloying the silicon with germanium, which
would presumably increase A,, and hence increase the
temperature for the maximum of x, and hence both increase
A and decrease K, at the maximum, and at the same time
further decrease the competing lattice conductivity X, on
account of the decrease with alloying at fixed temperature;!
but all this can be expected to result in only a modest re-
duction in the values of ¢ needed. More favorable cases,
among other semiconductors, may possibly exist.!

By the first of (16), the right-hand side of (20) is propor-
tional to the square fluctuation of L,, and hence essentially
of the band energies, over the phenomenological bands,
with o,/o as weighting factor. The question naturally arises:
can this result be generalized (to represent y rather than
just the anomalous part) by including the fluctuation of
carrier energy within each band? We shall see in the follow-
ing two sections that if conduction is treated in terms of the
one-electron model then, subject to a certain restriction,
this idea is right. The generalization is expressed by eq. (43).

3. Theory for the one-electron model

According to the one-electron (self-consistent field) model,
the possible wave functions for all the electrons partici-
pating in transport phenomena in a conducting crystal are
Slater determinants specified by occupation numbers,
¥(p,%,q)=0 or 1, of single-electron states, which in turn are
specified by the pseudomomentum p (p/# is the wave vector
of a Bloch function), a spin component ¢ = =4, and the
band index g. The word ‘““band” is here used in the strict
sense which it has in the Bloch-Brillouin theory. For each
band there is an energy function which in the absence of a
net magnetization may be taken to depend only on p. Then
e=¢(p,q). Corresponding to each single-electron state there
is also a particle velocity v=3¢/dp=v(p,q). A homogeneous
stationary condition of the crystal may be represented by
an ensemble of quantum states for all the electrons, each
characterized by one such wave function and hence by a set
of occupation numbers »(p,d,q). For the present purpose
this ensemble is sufficiently characterized by the mean
values, f(p,3,q), of the v. In the case of thermal equilibrium
at absolute temperature 7, f'is a function of ¢ only:

F@s0 =0 =1+ep( ) 23)

In a non-equilibrium steady state, f'is caused to differ from
fo by disturbances due to the external “‘driving forces,”
The transport phenomena arise when the disturbance orig-
inates in a space gradient: for example a gradient of tem-
perature, grad 7, or of electric potential, grad ¢= —E.
These are treated by supposing the distribution function
to depend also on position in the crystal: f=f£(p,9,q; r).
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Then the fundamental equation describing the steady-state
distribution function for the system is the Boltzmann
equation!?

ZpZy [d L f0,0,0)S®,9 .4 08,01 —f (9,9,0))
—f(0,9.9)8(1p,9,q9; p",9,9 W1 —f (0,9",a)}

W @0.0) S 05)

=F " TV a o

24
where F is the Lorentz force acting on each electron and
S, %.,q"; p,3,9)(1 —f (p,3,9))d’ is the probability per unit
time for an electron to be scattered from the state charac-
terized by (p’,9’,q’) to any of those belonging to the volume
element dp of p-space about the state characterized by
®.9,9)-

The present section is concerned with the solution of
(24), to first order in the deviation of f from f;, when the
driving forces are an electric field and a temperature gra-
dient and when it may be assumed that the scattering
function S of (24) represents scattering by a crystal ““sub-
strate” which does not deviate appreciably from its thermal
equilibrium state. In virtue of this last assumption, it follows
at once from the principle of detailed balancing®® that the
function

fole(@,))S(,%,q; p’,9,9 YA —fo(ep',9" ) = R(p,3,q; p",9",9")
(25)

is symmetric with respect to the primed and unprimed
variables:

R ,9',q"; p,9,9)=R(p,d,9; p,¥,9). (26)

The left-hand side of (24) then vanishes when (23) is satis-
fied. To obtain the equation for the deviation of f from f;
to first order in the driving forces (i.e. the Boltzmann equa-
tion for the linear transport effects), (24) is linearized by
substituting f=f,+f1 into it and equating the terms on the
left which are of first degree in f; to the terms on the right
which are linear in the ‘““driving forces.”"* In the present
case the driving forces are the space gradients of { and 7,
introduced by the term in df3/dr on the right of (24), and
the electric field E in the Lorentz force F= —¢E. Then the
contribution of the right-hand side of (24) to the linearized
Boltzmann equation is

g(psq)=—v-(A+eB) fi(1—f0), @7
where
A= —eE+(¢/T—d[dT)gradT _ __gradT 28)

kT ’ kT* "

Before writing down the complete linearized Boltzmann
equation for f1, and proceeding, it is convenient to simplify
the notation by letting a single symbol, I, stand for the set
of variables p,9d,q specifying an electron state, and to let
I(I") stand for the sum-integral operator Z,Zs[d% . . . .
Then the linearized Boltzmann equation for f; is

K { AT ; D) —ADT X I} =g(1), (29)
where g is defined by (27) and
T; T)=8T; I —f(I)+,L)ST; T). (30)
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In virtue of the relation (25), (26), an alternative form of
30) is

1—fo(T)

The form of (29) suggests the definition of a collision re-
laxation time 7 by:

IT)HT(T; T). (32)

T(T; T) = S(T; T) ;1 —ﬁ(I")% . G1)

1
)™
We wish to find expressions, in terms of the driving

forces, for the flux of electrons and flux of electron energy,
which are given respectively by

N=#r"1 vf, (33)
Welee. =H731 vef 34

(where I is the sum-integral operator defined above and
here operating on the electron state variables for the mag-
nitudes v, ¢, f on the right). To obtain a formal solution for
N and Welec., with f on the right of (33) and (34) replaced
by f1, we make use of the following theorem: Let Y(I") be
any one-electron function and let a “conjugate” function
YT be defined by the relation

YA —II)TA; Y (CWAI)=y(T). (35)
Then, by (29) and (32),
If=—TIgryt. (36)

Egns. (27), (28) and (36) at once yield the formal linear
macroscopic transport equations, with v, ve, etc. for . It is
convenient to make the further abbreviation

KLyl —f) =] 37
Then the linear transport equations are's

N=A-[rv vi]4+B-[7ev vT], 38)
Wetee. = A - [rv(ve) T]+B-[rev(ve)T]. (39

From (38), the electrical conductivity tensor has compo-
nents

0= (e‘l/kT)[ijv,;T]. (40)

The electronic thermal conductivity is given by the value
of Welee. in the presence of a temperature gradient when
the electric field is such that the current density J= —elN
is zero. Thus we have to solve for A in (38), for N=0, and
substitute the result in (39). It is expedient at this point to
specialize to the case of cubic crystal symmetry. Then, for
J=0,

3kTH v v ]Welec.
=1{[rv-ve) lrev-vI]—[rv-vi]rev-(ve)tligrad T

and hence, if we identify —Wiee. with (K—Ky)grad T, by
(2) and (3)

NARS [rev-(ve)'] _ [rev-¥] [TV'(VE)T]% 1)
X_(lﬁ‘)§ [rv-vi] [rv-vi] [rv-vi] §-

If the scattering were perfectly elastic (i.e. connected
initial and final states only with the same value of ¢) then




we would have
(ve)t =vte, “42)

(For the proof of this statement, see the beginning of
Section 5.) On substituting (42) into (41) the latter reduces
to

= [T vt (e [Tv.v’re])2] /(kT)‘Z[Tv'vT]. 43)

T [rvevh

Thus x(kT)? becomes simply the square fluctuation of e
over the levels, with 7v-vify(1—f3) (proportional to the
contribution per one-clectron state to the conductivity) as
weighting factor. The Sommerfeld value, x==%3, for
metals results from (43) in special conditions which are dis-
cussed below (Section 5) together with the conditions for
(43) to be a good approximation to (41). The result (43)
itself is the generalization of (20) which was proposed in
the last paragraph of Section 2.

4. Comparison of the two models;
the reciprocal relations

In this section we examine the correspondence of the results
for the one-electron model to those for the phenomeno-
logical band model. Eq. (41) may be rewritten as

_ [r(ve—vw)-((ve)t —viwh)]

X &T)rv-vi] » 44)
where w and wt are defined by the relations

[rev-vi]=wlrv-vi], 45
[rv-(vOTl=wilrv-v']. % “5)

On comparing (45) with (4), (5), (14), (38), and (39) it is
found that

w={—eTQ, wt={—ell. (46)

An analogy between (44) and (17), with Z(o./s) . . . cor-
responding to A% fi(1—f)(rv-v¥[rv-v']) . . ., is then
evident. [It makes no difference to the result (44) if € is
replaced by e—{ in both (44) and (45).]

We have to assure ourselves that the Kelvin relation (18)
holds for the model of a conductor studied in Section 3.
Eq. (46) shows that what is required is to verify that

w=wt, @7

It is expedient to deal with this question at the present point
in the discussion, and to do so by proving the following
theorem: If ¢ and ¢ are any two functions of I" (of course,
such that the double sum-integral in (49) is uniformly con-
vergent), then

[ro™Y1=[r¢T¢]. (48)

The proof entails writing out the left-hand side according
to the definition (37) and then substituting for ¢ in terms
of Y1 by (35):

Wlrgtyl=Ir¢ yifo(1 —f0)
— IO (D)D) fo)A =ATNTA; T)r(T)HI).

Now, by (25) and (31),
(DA =AINTT; T)=RT; T).
Hence
hlret]=Ir¢tifi(l —f1)
—IMIT) TR T (TR, 49

The first term on the right of (49) is symmetrical in ¢t and
Y1. By (26), the second term on the right is also symmetrical.
Hence we arrive at (48). Tt is a significant property of the
theorem that it is true in virtue of the principle of detailed
balancing as expressed by (26), and hence depends on the
assumption that the crystal substrate—the agent of the
scattering—is in thermal equilibrium. It is not true when
there is an appreciable phonon drag effect.' Eq. (48),
applied in conjunction with (36), embodies the Onsager
reciprocal relations'” for the transport effects of the system
of electrons considered here. With ¢ and ¥ set equal to two

components, v; and v;, of v, it follows at once from (40)
that o;;=0;; This result is, of course, one of the Onsager

relations for a crystal in zero magnetic field. Similarly the
coefficient of B in (39) is a symmetric tensor. Finally, the
(i,j) component of the coefficient of B in (38) is equal to
the (j,i) component of the coefficient of A in (39). This last
result is just the Onsager relation for the thermoelectric
coefficients in zero magnetic field.”® For a cubic crystal it
reduces to (47), which we set out to prove. The Kelvin
relation (18) is thus verified.!®

We may now examine how the results of the one-electron
model, (41), (43), and (44), may be explicitly reduced to
(13), (17) and (20) of the phenomenological model. The
natural expectation is that a one-one correspondence be-
tween sets of one-electron states in “I'-space” and the
“bands” of the phenomenological band model should be
found. An implicit idea of the latter was that the corre-
spondence would be between the phenomenological “bands”
labeled by the index s of Section 2 and the Bloch bands, of
one-electron states, labeled by the index g of Section 3. It
is more enlightening, however, to proceed by arbitrarily
dividing up the entirety of states over which I' ranges in the
formulas of the preceding section into sets “1,” 2, _ ..
“a,” ... which cover the whole range without overlapping,
and which are otherwise quite general except that for con-
venience we require that each set still constitute a system
with cubic symmetry, and simply rewriting (41) in terms of
magnitudes for each set analogous to x, w and wt. We write

AL fo(1—fo)= w/]a’ (50

where 1(I") stands for summation and integration over the
set “«,”” and define

ooa=(e3kT)[7v - V1],, (5D

[rev-vila=walrv vi],,

[TV - (VE)T]a = WTa[Tv . VT]m % (52)
[T(VG-—-VWQ)' ((VG)T _VTWTa)]a (53)

Xa= GT)rv-vil,

By the above definitions,
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0= a0e, W=Zu T We, W= Zo ot ¢4

Then (41) transforms to

Ta  _ s5n0a08 Wa—wa)wot—whp)
X_Em?xa_§<zﬂ P kT):

Ta (Wawt o —wwt)

a (kT)?

_z Ta Wamw)(wa—wi)
T (kT)?

=24

(55

The substitutions
Woe=(¢—eT Qa, who={—rell,, (56)

which are consistent with (15), (46) and (54), and whose
relation to (46) is analogous to the relation of (19) to (18),
complete the formal analogy between (55) and (17).

So far, however, the partitioning of the one-electron
states into sets, each to be identified with one of the phe-
nomenological bands of Section 2, has been arbitrary, and
so the correspondence between (55) and the results of the
theory developed in Section 2 may be expected to be in
general formal rather than physical. For example, one can
imagine the states to make up each set chosen from all over
the whole range of values of ¢, so that all the w, (or alter-
natively all the wt,) are equal. In this case (55) vanishes.
The value of x has of course not been changed by this pro-
cedure. Rather this choice of the sets makes the x, larger,
since by (53) they essentially measure the dispersion of
energies € in each set. We expect the sets to be chosen rather
so as to partition the scale of electron energy into ranges in
a physically natural way. A further reasonable criterion of
the suitability of the sets to correspond to what is usually
had in mind by the phenomenological band model is that
the relations (19) should hold, to a good approximation,
for them. We are therefore interested in the condition for
the relations

Wa=wa (57

to hold to a good approximation. These latter relations
are, as is evident from the definitions (52), satisfied for any
choice of the sets if (42) is satisfied; but in that case (41)
reduces to (43), and then the partitioning of x into the con-
tributions from the x, and the “inter-set” contributions on
the right of (55) is indeed arbitrary. (What is of concern in
this case is just the distribution, over the range of electron
energy e, of contributions to o, without regard to the classi-
fication of the contributing electron states: see Section 5.)
Here we are concerned with the conditions for (57) to hold
when (42) is not in general satisfied.

The conditions for (57) to hold may be studied by adapt-
ing the proof of (48), and hence of (47), given above. By the
same process as yields (49), one finds

[roWla— [ pla=h"3{1(T)*T")
— 14D LT (DRI T)r(T)HTWHT),  (58)

where the operator /* stands for summation and integra-
tion over all states except those belonging to the set «:
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I*=1—1,.

The right-hand side of (58) vanishes if there are no tran-
sitions between the set a and other sets (so that R vanishes
when I' belongs to « while IV does not), and is otherwise
proportional to the probability of inter-set transitions. In
fact the fractional difference between [r¢¥], and [r¢1¢].
is of the order of magnitude of the fraction of the transitions
given by R which are inter-set transitions.

On the other hand, if an appreciable fraction of the
transitions for the set « are to or from the other sets then
wq and wt,, defined by (57), no longer respectively give
precisely the current contributed by the set « in the presence
of a temperature gradient and the energy flux contributed
by the set « in the presence of an electric field. The identi-
fication (56) has still a formal validity in that (17) is satis-
fied, but it is inappropriate physically in that (16) is then
not consistent with (7) and (8). To see that the values of
w. and w', deviate, in proportion to the probability of
inter-set transitions, from those corresponding to the physi-
cal meaning (56) which we would like to attribute to w,
and wt,, we observe that the generalization of (36) for an
arbitrary set « of states is

Lo fidb+Tagr ¢ = {14 (I7)
—L(DIX)} ADYTA; T W), (59

The right-hand side of (59) vanishes for the same condition
as for the vanishing of the right-hand side of (58). Thus if
we carry through the argument leading to the equations,
corresponding to (38) and (39), for the contributions from
the set @ to N and Wele.. we will find additional terms on
the right originating from the right-hand side of (59) and
proportional to the probability of transitions into and out
of the set. Consideration of the forms of the right-hand
sides of (58) and (59) indicates that there is not a general
condition for them to cancel each other out so that (19) is
satisfied. If inter-set transitions occur then in general (19)
is not satisfied. The situation disclosed is similar to that
concerning the calculation of the thermoelectric coefficients,
and the formulation of the Kelvin relations, when the pho-
non drag effect is appreciable.? The further analysis of this
situation is beyond the scope of the present paper. The
conclusion we note for the purposes of the present paper
is that the convenient relations (19) for the phenomeno-
logical theory are approached closest when the sets into
which the one-electron states are divided are such that
transitions between them have the least probability.

The criterion which we have arrived at, for choosing the
sets of electron states to be treated phenomenologically as
acting together in “‘bands,” is the one which would be sug-
gested by intuition. It is, also, likely to be satisfied when the
sets chosen coincide with the Bloch bands of the one-
electron theory, since transitions within these bands are
normally more probable than transitions between them.
The selection rules and matrix elements for transitions are
governed by the symmetry of the wavefunctions of the
initial state and the final state, and the classification of the
one-electron wave functions into Bloch bands is actually a
classification by symmetry. Generally the intra-band tran-




sitions entail emission or absorption of a phonon. On the
other hand, transitions between bands separated by a for-
bidden gap of more than the maximum lattice-mode
quantum energy will entail emission or absorption of a
photon, and be much less frequent. Inter-band transitions
by phonon absorption or emission are thought to occur
between the degenerate pair of valence bands in ger-
manium, and to amount to an appreciable fraction of the
relaxation processes for either band.? However, since they
have a common band-edge point it should anyhow be more
reasonable and convenient to combine these bands for the
present purpose, treating the states belonging to them as a
single set which is to be identified with one of the phenom-
enological bands of Section 2. On the other hand, it would
be natural to divide up the states of the conduction band of
germanium into sets each belonging to one of the “valleys”
of the energy function and to treat each set as a phenom-
enological band. Each such band taken separately does not
have cubic symmetry and hence their contributions to the
thermoelectric crossterms of the fluxes (38) and (39) in the
direction of the electric field and temperature gradient would
not be all equal, and hence there should be a contribution
to the right-hand side of (17) in spite of the equivalence of
the valleys. It is believed that inter-valley transitions are an
appreciable fraction—though not the majority—of all re-
laxation processes for any one of the valleys,? so that (20)
would not be valid and allowance should be made for the
departure from (19).

5. Further discussion and applications

We consider first the condition for validity, and the conse-
quences, of (43), Eq. (4]1) may be rewritten, making use of
47), as

[rv-vi(e=w)Y  [r(e—wyv- (vl —vTe)]
XTkDrv-vi] — G [rv-vi] ’

(60)

where the second term on the left is the expression (43) and
the right-hand side is the possible correction in which we
are now interested. (The second term of the factor e—w on
the right is arbitrary, in the sense that, by (45) and (47),
adding any constant to this factor would not change the
value of the numerator. The motive for the choice of the
form e—w is to facilitate the reasoning leading to (63).) In
discussing this correction it is convenient to adopt an
abbreviated notation for the operator acting on ¥ in the
second term on the left of (35), such that (35) reads

(1—0pt=y.

Then, for arbitrary functions ¢(I"), (I,
(1 —=0)(eP)T —¢Td) = OYTp—pOYt.

In particular,

(1-0)((ve)t —vte)
=II")TI; T 7)) —eTHVIT). (61)

If the scattering is elastic, the right-hand side of (61) van-
ishes. Then (ve)T and vfe can differ only by a vector function

of I" which is nullified by the operator 1 —0. In general
such does not exist, and so we arrive at (42). If the scatter-
ing is not quite elastic, the order of magnitude of (61) is
vT times that of the average change in energy on scattering
from the state T'. This should then also be the order of
magnitude of (ve)f —vte. Consequently, if we define ¢*(T")

by
v-((vot —vie)=e*v-vt, (62)

then e* should be of the order of magnitude of the changes in
energy on scattering, Let us consider now the situation
where (as normally in a metal or extrinsic semiconductor)
substantially all the contributions to the sum-integrals of
(60) come from a single range of allowed values of ¢, and
hence from a range ~kT in extent. The numerator on the
right of (60) vanishes if ¢* is constant, and otherwise will
be of order of magnitude (kT)Yrv-vt] times the order of
magnitude of de*/de in this range, where the bar over e*
signifies averaging in the usual way over all values of I" for
a given electron energy e. Hence

[rv-vi(e—w)? - de* €*

X"yl de kT, (63)

the right-hand side being understood to be evaluated in the
range of e contributing substantially all the conduction.
The condition for the correction to (43) to be small is evi-
dently that e*<<kT.

The single type of scattering process whose consequences
it is the most important to understand in the present con-
nection is absorption or emission of a Debye phonon. If the
velocity of these is s, the change of electron energy is
=+s|p’—p|. For a metal normally the lengths of the wave-
vectors, p/fi, of the electron states contributing to conduc-
tion are of the order of magnitude of the inverse of a lattice
constant, The change in electron energy on scattering is
hence ~kf, where 0 is the Debye temperature, unless
T«#. Since scattering with a change in energy large
compared with kT is in general improbable, if 7<<f the
change in energy is ~kT. (What then happens is that for
nearly all the scattering the angle between p” and p is small.)
Hence if T« the right-hand side of (63) is of order unity
and cannot be neglected (except compared to an anomalous
large contribution, which is not in question here), but if
T>8 it is ~0/T and may be neglected. Similar considera-
tions for an extrinsic semiconductor with a non-degenerate
band ( fy<<1 or 1 —fy<1) lead to the conclusion that in this
case (63) is small except at the very low temperatures of
order ms?*/k or less (where anyhow other types of scattering
process will be dominant). Evidently anomalously large
values of x are likely to arise as a consequence of (43), and
hence are to be explained in terms of it rather than by devia-
tions from it,

We now consider the possible values of x predicted by
(43) for various cases, It is useful to write the sum-integrals
as simple integrals with e as the variable, by introducing a
factor G(e) such that Géde is the number of electron states,
per unit volume of the crystal, in the infinitesimal range
¢, and defining
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n(Q=1v-v1. 64
Then
_eQ w=¢ J(e=nGfi(1 —fode.

& T KT~ KT[nGfl—fyde (65)
eQ\? [(e—)Gfo(1 —fo)de
X+ (T = "D [1Gfol —fyde (66)

where the integrals extend over all accessible levels for the
electrons included in the system of one-electron states. If,
as in metals, the range of energy e contributing appreciably
to the integrals of (65) and (66) is from many times AT less
than ¢ to many times k7 greater than ¢, and if G does not
vary appreciably over this range, then we may cancel out
nG from the integrals and take them from — to +«. To
this approximation

(e/k) Q=0;
X= f (e~ 0ol —fo)de [(T)* | foll —fi)de (67
=7%3=3.29.

Thus we obtain the Sommerfeld value for x. If the above
conditions are relaxed to the extent that small but finite
derivatives (d"nG/de") = ¢ are admitted, then the right-hand
side of (65) becomes a power series in the odd derivatives
times (kT)", the right-hand side of (66) in the even deriva-
tives times (k7). With a few exceptions (such as bismuth
and some metal alloys) even the leading terms of these
series (of course excluding the term of (66) with n=0) are
small at ordinary temperatures. Normally (but see the next
paragraph) the term of degree » is of order (KT/|{ —ed|)?,
where ¢ is a band-edge energy and |{—e¢|~ an ev, but
exceptions can occur where the Fermi energy { is very near
the sharp minimum in G which occurs when the allowed
energy ranges of two bands just slightly overlap.

Appreciable values for the right-hand side of (66) can be
foreseen to occur for metals when T<<#6, though of course
in this case (66) is not accurately true, As explained above,
in this case the change in energy for phonon scattering is
~kT. Consequently the second factor on the right of (31)
will in general differ appreciably from unity when the first
factor is nonzero. It is possible to infer qualitative features
of the function MT"), defined to be such that the value of
(32) is 1/\ times what it would have been if this second
factor on the right of (31) had not been present, from the
order of magnitude of the changes of electron energy on
scattering. As e—({ increases from minus a few times
kT to plus a few times k7, X increases from a value less
than one to a maximum greater than one (for e—{~+kT)
and finally tends to one for e—{ several times k7. Thus
the effect on the integrals of (65) and (66) is to tend to cut
off the half of the range of integration for which e<{, and
to make 7G a maximum, with d*(nG)/det~—(kT)™2, at
e— {~kT. Consequently the contribution to x on the left of
(60) is reduced below the Sommerfeld value. The right-
hand side of (60) is negative, according to the discussion
of it above, and hence acts in the same direction to decrease
x below the Sommerfeld value.
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From the foregoing discussion it may be concluded that
in metals for 7«6, if the scattering is by emission and ab-
sorption of phonons, x should in general be substantially
less than #%/3. This result is a long-standing one of the
theory of metals, and is confirmed by experiment.” The
purpose of the discussion here was to give an insight, from
the point of view of the present paper, into the origin of the
result, and to suggest—though of course on a far from
rigorous basis—that it is generic to inelastic scattering
rather than an ‘“‘accidental” outcome of the mathematically
elaborate theories for specific actual metals. At still lower
temperatures the dominant relaxation process in practice
is scattering by impurities. It is customary to assume that
this scattering is elastic. Then (a), Eq. (66) is rigorously
correct (provided the phonon drag effect is negligible); and
(b), the second factor on the right of (31) is rigorously equal
to unity, and we may hence again expect 7G to vary very
little over a range ~kT about e={ and in any case, so far
as the one-electron model itself is a good approximation,
to vary at a rate independent of 7. Hence

x—n%3 =2 (kT/A), (68)

where normally, as for 726, Ai~/|{—eo|. This prediction
(68) of the standard theory is also confirmed by experi-
ment.? It is found that as T decreases from values ~§ the
value of x decreases to a minimum and increases again
towards 7%/3.

For semiconductors, so far as the phonon drag effect
may be neglected, (43) or (66) is the general result of the
one-electron model except at the very lowest temperatures.?
However, the results (67) are not valid, even for an ex-
trinsic semiconductor, because G and 7 vary strongly over
the states contributing to conduction. For an extrinsic
semiconductor it is convenient to write (43) in the form

_ J(e—eymGfi(l —fi)de B 3 J(e—eanGfo(1 —fo)de % 2 )
X="T Gl —fo)de kT[nGf(1—fode § ,

where ¢, is the band-edge energy, rather than in the form
(66). The value of x depends altogether on the particular
dependence of 7 and G on e—e. It is normally—not al-
ways—correct to take G to be proportional to (= (e —ey)) 2.
The standard theory of the scattering leads to the result®
that % is also proportional to (=(e—ey))"2. Then G is
proportional to =(e—¢o): this dependence is assumed in
deriving (70) and (71). If the Fermi level is many times kT’
beyond the band-edge on the “forbidden” side, the distri-
bution is non-degenerate,

Sl —fo) = exp{ =( —e)/kT},

and (69) gives the standard result

x=31-(2H=2, (70)
As the Fermi level moves into the band, the value of x

changes from that given by (70) to that given by (67). At
the intermediate point where { =¢,, we have from (69)




£Q=%§) =2.36;
(1)
9(3)/2 (TN
X= 1112 —(1‘117 =2.23.

(Here {(n) is the Riemann function.)

From the account given by Ioffé! of the results of Dev-
yatkova? on n-PbTe, x was 1.9 in the non-degenerate state
and increased to a limit of 2.7 on doping to the degencrate
state.”” These results, when compared with (67), (70) and
(71), indicate that in the “degenerate” state { —e, was of
order kT (perhaps several times kT) rather than >> kT.
This conclusion is consistent with the figure quoted by
Toffé for the electron density and the assumption that G
was roughly equal to 27w (2m/h?)*>(e —ey)"A. It is necessary,
however, to account for the evident tendency (see Fig, 8
of Ioffé, reference 1) for x to approach a limiting value,
for high doping, substantially less than the Sommerfeld
value, Now, provided the donor states, because of the
strength of the mutual interaction of donor electron orbi-
tals, form part of the system of one-clectron states, so that
(even if there is no compensation) they can by themselves
accomodate twice as many electrons as the donors intro-
duce, the Fermi level cannot rise above the uppermost of
these donor-derived levels. It is a plausible assumption, in
these conditions, that the resulting contribution (G.(e), say)
to the density-of-states function should overlap the con-
tribution (G —G,;=Gy(e), say) of the undoped substance,
so as to form a single continuous spectrum. If the energy
range of G; were of order k7, the condition {—ey~kT
would then be realized. It might not be reasonable, how-
ever, to assume that the curve of G would be thus ““fattened
up”” without being distorted. It may be, on the other hand,
that there was only a small overlap of the G, and G,
spectra, so that the donor-derived levels formed a tail to
the main distribution, with d(nG,)/d:<1. It would be in-
teresting to know whether the thermoelectric power did or
did not become small compared to 4/e in the high-conduc-
tivity limit.

In terms of (65), (66), the conditions for the bipolar
anomaly are that there be a “forbidden” energy range in
which 5G is zero or very small, separating two ranges of
finite G by an energy large compared to k7, and that the
Fermi level lie in the middle of the forbidden range so that
the contributions to the conductivity come not from ener-
gies e=={ but from the “wings™ of the curve of fi(l—f;)
where |e—{|>>kT. The second moment of the function
nGf (1 —fo) of eis then large compared to (k7): if the actual
position of the Fermi level is such that the two contribu-
tions to the conductivity ¢ are comparable. It is possible,
at least in principle, for this situation to be inverted so that
x according to (66) is small compared to one. The require-
ment is for the conduction to arise from a single range—
of width A, say—of finite nG, with forbidden gaps of width
>kT above and below it. Then x must be less than(A/kT)2,
and hence if these conditions can be maintained when
T>>Afk then x must become <1, The point which the fore-
going discussion is intended to bring out is that determina-
tion of Q and A may serve as a crude ‘“‘spectrometer” in

giving information about the distribution of electron levels
with 7, the measure of their contributions to ¢, as weighting
factor.

6. Possible generalizations

In the one-electron theory of Sections 3 and 4, the Lorenz
number was related to the mean square fluctuation of €
over the levels, with the mobility factor n giving their
relative weight. This result failed to hold just in the condi-
tions which might have been expected—when the magni-
tude of the energy change on scattering was great enough
for the resulting loss of definition of the energy of the
electrons taking part in conduction to be appreciable rela-
tive to the root mean square fluctuation of the energy. The
form of the result suggests that it is not just a special one
for the one-electron model but has a “thermodynamic”
generality; and this suspicion is somewhat born out by
the fact that the result of the same form arrived at in
Section 2 does not depend on the one-electron model for
validity, but only on the Kelvin relations (19) for the
phenomenological “bands™ of the model. Many-electron
correlations within these would not in themselves make (20)
fail. If, however, the result (43) derives from one of such a
generality then at least it ought to refer, in terms of the
one-electron model, to averages over ~y-space rather than
over u-space.? That this is a reasonable interpretation of
the actual result is shown by the following consideration:
Let us label the levels in u-space by subscripts 7, /, etc. and
set z,=expl{({ —e)/kT}. If v;=0 or 1is the occupation of
the i’th level, then

() =z/(1+z)=f, (72)

where the double bracket (( )) denotes an average over the
grand canonical ensemble. Let 4 and B be two magnitudes
of form

AEZl'[liVi, BEEibiV«;. (73)
Then it is easily shown that

((4B) —(A)(B)
=Za:ib:i{ () — ()} = labf(1 - fo). (74

Thus the substitution of the factor fi(1 —f;) for the factor
fv, in the averages Ifo(1 —fo) ... which give the relation of
fluxes to forces in the linear transport theory, is just the
change which appears, for Fermi statistics, in going from a
correlation in u-space to one in y-space. We cannot apply
this result literally to (43), to justify the proposed interpre-
tation, because the factor 7*=7v-vl/y? is by its nature
defined for u-space, not for y-space.

The same considerations apply to the remaining part of
the thermal conductivity, K, where this comes from
phonons, excitons, and plasmons which do not interact
appreciably. These are localizable ““particles” (with crystal
momentum p, energy e and velocity v=03¢/0p) which are
bosons whose number is not conserved in certain allowed
transitions which occur among the relaxation processes.

The equilibrium distribution function Ng(e) is therefore

the Planck function; and there will be a Boltzmann equa-
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tion, for the effect of a temperature gradient, which can be
linearized to an equation corresponding to eq. (24) but for
N,=N— N, rather than for f.. If, to save trouble con-
sistently with the present purpose, we write the rate of
relaxation of N, corresponding to the left-hand side of
(24), as — N,/7, then we find

Ko=(1/3kTHH I 7|ve[*No(14- No). (75

Here the operator I stands for integration over p-space
and summation over indices specifying the nature of the
excitation (phonon, etc.), and direction of -polarization,
mode of vibration, spin state, etc. The result (75) differs
from the corresponding one for electrons in that the factor
Ny(14 Ny) replaces fi(1 —f3). The fluctuation formula cor-
responding to (74), on the other hand, differs from (74) in
just the same way: No(1-4+ Ny) replaces fi(1—f;) on the
right-hand side. Thus the right-hand side of (75) also may
be interpreted as expressing a contribution to the thermal
conductivity in terms of the square fluctuation of the energy
flux for the “y-space” ensemble, except that there is the
same difficulty over the factor 7.

Presumably this difficulty could be resolved by formu-
lating a Boltzmann equation for the localized many-particle
distribution function, instead of for the localized reduced
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