130

W. W, Peterson

Addressing for Random-Access Storage®

Introduction

It is sometimes impossible to store information in an
information storage system in such a way that the exact
location of a record, or unit of information, can be deter-
mined completely from the identification for that record.
This is usually the case, for example, when names are
used for identification in business files.! Under these cir-
cumstances, given only the identification for a record,
some searching will be required to locate the record in
the storage system. This paper provides estimates of the
amount of searching required for several storage systems,
including detailed data on one system which often excels
commonly used systems both in flexibility and in speed
of access.

Although this study was motivated by an interest in the
use of random-access storage systems of very large capac-
ity for business application, the results apply to many
other situations. The dictionary for language translation
by a computer, the symbol table for an assembly program
or compiler, and many other problems which are essen-
tially table look-up require a system like those described
in this paper. Likewise, the results are not restricted to
storage systems of a certain size or speed, or even to elec-
tronic systems. No attempt was made, however, to extend
the work to include cross-referencing; each record was
assumed to have only one identification.

The next section explains the addressing problem in
more detail. Following that are the descriptions of several
addressing systems with methods for estimating length of
search. Finally the application of these data is illustrated
with several sample problems.

*Portions of this paper were presented ut the AIEE Winter General
Meeting at New York, January 25, 1957,

IBM JOURNAL * APRIL 1957

Abstract: Estimates are made of the amount of
searching required for the exact location of a record
in several types of storage systems, including the
index-table method of addressing and the sorted-
file method. Detailed data and formulas for access
time are given for an “open’ system which offers
high flexibility and speed of access. Experimental
results are given for actual record files.

The addressing problem

In large files of records, a portion of each record is gen-
erally used as identification. Usually this identification is
a number, different for each record, such as the man
number in some payroll and personnel files, the part
number in an inventory file, or the policy number in an
insurance file. The identification may consist partly or
entirely of alphabetic characters, for example, names in a
business file or words in a dictionary. Any identification,
however, can be converted to numbers. One simple
scheme for accomplishing this conversion would be to list
in sequence all the permitted identification groups of
characters and to number them starting with “one.” The
numbers could then be used to replace the corresponding
groups of characters as identification.*

Although identification numbers may be chosen in a
sequence in which every acceptable number is used, as in
the case of the serial numbers on checks, more frequently
only a small fraction of acceptable identification numbers
are used, and these are chosen in some mathematically
erratic way. For example, in a file in which names are
used as identification, sixteen character positions might be
allowed for the name, and any of 27 characters (the
alphabet plus a blank) might appear in any column.
There are (27)1%, or about 8 x 1022 possible 20-character
sequences, but in an actual file at most a few million
would appear. More typically, the ratio of the number of
acceptable identifications to the number actually used
ranges from about two to perhaps a million.

*This is essentially the same as considering the sequence of characters as a

representation of a nutber with the base equal to the number of characters
permitted in each position. The conversion procedure described above is
conceptually simple, but impracticable, akthough formulas or conversion

schemes are not difficult to derive.

Whenever a file of records is stored in a data-processing
system, some procedure must be devised for deciding
where to store each record and for locating a stored
record, given its identification number. Such a procedure
will be called an addressing system. The addressing sys-
tem should make the average access time, i.e., the average
time required for obtaining a record, as small as possible.
At the same time, the system should be economical, and
in particular the storage space in the random-access mem-
ory should be used efficiently.

When all possible identification numbers are assigned
to records, the identification numbers, perhaps with slight
modification, can be used as address numbers for the
random-access storage.* One and only one record will be
placed in each storage section, and the access time will be
that inherent in the memory device.

Addressing becomes difficult when only a small frac-
tion of all possible identification numbers is used and
these are chosen in some erratic way. If a memory section
is assigned to each possible identification number, the
access time would be that inherent in the memory device,
but only a small fraction of the memory would contain
records. (It would certainly not be economical to have a
memory a thousand times larger in capacity than neces-
sary to store the records.) The memory can be used effi-
ciently by simply storing the records in the memory with-
out trying to make memory addresses and identification
numbers correspond. Then it would be necessary to
search for the record, and the effective access time would
be much greater than the inherent access time for obtain-
ing a record of known memory address.

Practical schemes are compromises between these two
extremes; they set up a partial correspondence between
identification numbers and memory addresses and also
require some searching. Several such schemes are consid-
ered in this paper.

Use of an index table

An often-suggested system for addressing is to store
somewhere in the data-processing system a table which
lists for each identification number corresponding to a
record, the actual address in the random-access memory
where the record is stored. But how should the table look-
up be organized?

Upon closer analysis, it becomes clear that the problem
of table look-up is precisely the same as the problem of
addressing for the random-access memory. The table
entries can be considered to be records consisting of an
identification number and the address at which the cor-
responding real record can be found. These table entry
“records” may be considerably shorter than the real rec-
ords, however, and this may make the access time for the

*Minor adaptations might be necessary in certain applications. For exam-
ple, a file of 3000 100-character records with identification numbers
assigned in succession could be stored in a memory which has 1000 300-
character sections by placing the first three records in the first memory
section, the next three records in the second memory section, and so forth.
The calculation of memory address from identification number would
consist of dividing the identification number by three and using the
quotient as the memory address.

table look-up, and even the over-all access time, less than
would be possible without the table look-up.

It is simple to evaluate such a system if the memory
requirements and access time for the table look-up system
are known. The average access time is the table look-up
time plus the time required to read one record from the
random-access memory. Likewise the memory space re-
quired is the space required for the file plus the space
required for the table.

Given an addressing system, then, it may be used
directly on the record file, or for the table look-up oper-
ation in an index file. The systems will be discussed in the
remainder of this paper as applying directly to the file,
although they could be used alternatively as table look-up
systems in an index file.

Addressing systems using a sorted file

The most commonly used addressing systems depend
upon having the file sorted so that the records are stored
with the identification numbers in proper sequence.

One common way of finding a record in a sorted file,
given its identification number, is to proceed as follows.
The identification number of the desired record is com-
pared with that of the middle record of the file. This
comparison tells which half of the file contains the desired
record. The next comparison is made with the middle
record of the proper half and it determines which quarter
of the file contains the record. The procedure continues,
narrowing the search by a factor of two until the record
is found. For a file of N records, this “binary search”
requires about logzN comparisons and as many accesses
to the file.

If the identification numbers for the file run from 0000
to 9999 and record No. 1000 is desired, it would seem
more reasonable to look first at a point about one-tenth
of the way through the file. If it turns out that the record
at that point actually has identification 1100, then the
next place to check would be 1/11 of the way back
toward the beginning of the file. In general, at each stage,
one might estimate by linear interpolation or some other
simple scheme where the desired record is and then look
for it there.

The effectiveness of such a system depends upon the
statistical characteristics of the file. If the identification
numbers are chosen with perfect uniformity, this system
will find the record on the first access. For the case of
randomly chosen identification numbers, a lower bound
can be determined for the number of accesses to the file
required by this modified binary search. This bound can
be established by an argument which involves estimating
the amount of information required to locate a record.

The optimum point at which to enter the file at each
stage is the point which divides the file into two parts of
nearly equal probability. For large files, this probability
will be very close to one-half. Entry at this point gives
the most information regarding the record, very nearly
one bit.? Thus the uncertainty, or entropy, of the location
of the record, provides an estimate of the number of
accesses required.

131

IBM JOURNAL ~APRIL 1957

132

Consider a file of N records. It can be assumed without
loss of generality that the identification numbers are
between “zero” and “one,” for if they were not, they
could be normalized. It will be assumed that the set of
N numbers are independent random numbers with a uni-
form probability distribution over the interval from
“zero” to “one.” This approximates the situation in which
only a small fraction of a large number of acceptable
identification numbers are chosen randomly.

For a search of the file, one of these N numbers would
be known, and the required information is its position in
the file. This is equivalent to knowing how many numbers
are below it. Thus there are N possible events: no num-
bers below p, one number below p, . . . N — 1 numbers
below p.

Since the numbers are assumed to have a uniform
probability distribution in the interval from “zero” to
“one,” the probability that any one number falls below p
is equal to p. The numbers are independent, and therefore
the probability that k£ of the N — 1 other numbers falls
below p is given by the binomial distribution,?

Pi=b (kN —1,p) :(Ngl)pkqb*-k-l, (1)

where g = 1 — p.
When this expression for P is substituted in the for-
mula for uncertainty or entropy,

N

H (p) = 3 Pylog, Py, 2)
k=0

the resulting formula is useful for calculations only for
very small values of N — 1. A few values, calculated on
the IBM 704, are given in Table 1.

For large values of N—1, an approximate formula for
H can be found by approximating the binomial distribu-
tion by the normal distribution and approximating the

Table 1 Entropy of the binomial distribution —

sum by an integral. The resulting expression, derived in
Appendix I, is

H = }logs (N — 1) + %log: pge. 3)

Unfortunately, it does not converge rapidly. Some com-
parisons between the values computed directly from (2)
and the approximation (3) are given in Table 2. For
large values of N—1, the second term in (3) becomes
negligible, and H is approximately 0.5 log.N.

This quantity H represents the average amount of un-
certainty as to the location of the record, or the amount
of information required to find a record on the average.
Since for large files each access to the file provides very
nearly one bit of information (and on the average no
more than one bit), the modified binary search requires
on the average about 0.5 log.N (and on the average no
fewer) accesses to the file, or about half as many as
required by the ordinary binary search.

Another way in which addressing with a sorted file may
be modified, often to advantage, is to store, separate from
the file, a table of key entries, like the thumb index on a
dictionary. For example, with a file of 10,000 records, the
identification and location of every 100th record might
be stored in a separate table. A search of the table would
narrow the search in the large file to a section of 100
records.

If the ordinary binary search is used in both the search
of the key table and the indicated section of the main
file, for a file of N records with a key table of k entries,
the search of the key table requires roughly log:k com-
parisons and the search in the main file log.N/ % compari-
sons. The total is then roughly log,N, the same as without
the key table. This indicates that there is no theoretical
advantage in having the key table. There may be practical
advantages, however. For example, it may be possible
to keep the entire key table in the fast memory of the

Table 2 Entropy of the binomial distribution —

(Base Two) Comparison of approximate formula and cal-
culated values.
P= 0.0001 0.001 0.01 0.1 0.5 N P Calculated Formula (3)
N 10 0.1 1.8436 0.5694
10 0.0114 0.0809 0.4809 1.8436 2.7064 0.5 2.7064 1.3064
20 0.0208 0.1419 0.7714 2.4052 3.2077
30 0.0295 0.1955 0.9957 2.7245 3.5004 40 0.01 1.1799 0.0349
40 0.0376 0.2442 1.1799 29445 3.7080 0.1 2.9445 1.6271
60 0.0530 0.3319 14717 3.2475 4.0005 0.5 3.7080 2.3641
80 0.0673 0.4100 1.7971 3.4595 4.2080 100 0.5 4.3690 3.0361
100 0.0809 0.4813 1.8790 3.6229 4.3690
120 0.0940 0.5472 2.0303 3.7561 175 0.01 2.3446 1.1137
140 0.1065 0.6086 2.1590 3.8684 0.1 4.0307 2.7059

160 0.1187 0.6663 2.2702 3.9655

IBM JOURNAL °* APRIL 1957

machine, making the key table search much faster than
the search in the main file.

The addressing systems which use a sorted file have
several drawbacks. In the first place, the file must be
sorted before storing, and sorting is a time consuming
process. Secondly, they cannot accommodate the inser-
tion of new records and the deletion of records no longer
required, without resorting. With an “open” type system
it is possible to overcome these drawbacks and gain other
advantages.

““Open” type addressing systems

The typical open type addressing system is organized
as follows: there is a set of rules which determines, for
each acceptable identification number, a list of possible
memory positions in which the record might be stored.
Initially the record is normaily stored in the first position
on the list. If that is already occupied, the second listed
position would be used. If that also is full, the third would
be tried, etc., until an empty position is found. When a
search is made for a record, the search starts with the
first memory position listed and proceeds down the list
until the record is found.

Of all the possible variations to this procedure, the
simple system to be described is superior to anything else
which T have considered. It is the only open system
which will be considered in any detail in this paper.

This open system can best be described by example.
Consider a file of 8,000 records. The memory is divided
into 1000 “buckets.” From the identification number of
each record a three-digit number would be derived, per-
haps by using a certain three digits of the original identi-
fication number. This three-digit number designates the
bucket of memory in which the record should be stored.
The average number of records per bucket of the mem-
ory is 8,000/1,000 = 8. The buckets should have some-
what larger capacity, perhaps 10, in order to take care of
most of the upward deviations from the average.

In those cases when a bucket is filled, additional records
intended for that bucket are stored in vacancies in suc-
ceeding buckets. For example, suppose that the three-
digit number derived from the identification of a particu-
lar record is 680. Then that record should be stored in
bucket number 680. If that bucket is full, it would be
stored in 681. If 681 is also filled, an attempt would be
made to store it in 682. This procedure would be carried
on until a space was found for the record.

In searching for a record, a similar procedure would be
used. For example, if the three-digit number derived from
the identification of a record were 997, then the search
for the record would begin at bucket 997 and proceed
to 998, 999, 000, 001, 002, etc. until the record was found.

The important parameters of this system are the bucket
size, the total memory size, and the total number of rec-
ords in the storage. Rather than to refer to the total
number of records stored, it is usually more convenient
to refer to the ratio of the number of records stored to
the total capacity of the memory, i.e., the percentage of
the memory being used.

As long as there is a space anywhere in the memory,
another record can be stored with this system. The search
for a place to store the record will start from the point
designated by the number derived from the identification
and it will continue until a space is found. The access
time for the last few records is so great, however, that it
generally makes this type of operation impractical. There-
fore, in evaluating this system, the most important char-
acteristic is the average number of buckets through which
one must search to find any given record, as a function of
the bucket size and the percentage of the memory which
contains records.

It turns out to be very difficult to calculate the average
length of search for this system. Therefore, it was simu-
lated on an IBM 704 data-processing system, using
random numbers in place of record identification num-
bers, and also using several actual record files. The
method of simulation is outlined in Appendix II.

The results from a single simulation run with random
identification numbers are presented in Table 3.

Table 3 Length of search for a record
in a random-access memory with the open
addressing system and random identification
numbers.
(Bucket capacity 20 records.
Memory capacity 10,000 records, 90% full.)

Length of Search No. of Records Length X No.
1 8418 8418
2 336 672
3 111 333
4 70 280
5 26 130
6 9 54
7 14 98
8 7 56
9 5 45

10 1 10
11 1 11
12 0 0
13 1 13
14 1 14

9000 10134

For this file 8418 of the 9000 records would be found in
the first bucket searched, while in 336 cases the search
would continue to the next bucket and end there, etc. The
average length of search is found by calculating the total
number of buckets which would have to be searched to
find every record in the file and dividing by the total
number of records. For this case it is 10,134/9000 =
1.126.

Table 4 shows the average length of search at various
stages during the loading of the random-access memory.

133

IBM JOURNAL APRIL 1957

134

AVERAGE LENGTH OF SEARCH (BUCKETS)

The table gives data for four separate runs with the
simulated memory loaded with different random numbers
on each run. There is a rather wide variation in the re-
sults, especially when the memory was nearly full. This
was typical of all the data obtained.

Extensive data on the average length of search for a

of being full, however, the last few records inserted are
likely to be placed so far from the first address tried that
the length of search for these records is an appreciable
fraction of the memory size, and the average length of
search does depend strongly on the memory size.

record are presented in Tables SA and 5B. The data are Table 4 Average length of search for a record
also shown graphically in Fig. 1. These data are also in random-access memory with the open
results of the simulation of the 704 data-processing sys- addressing system.
tem, as described in Appendix II. Because of the large (Bucket capacity 20 records.
variations in results, as observed in Table 4, several runs Memory capacity 10,000 records.
were made for each case and the table entries are the Random identification numbers.
averages of the results from the several runs. Individual data from four runs.)
All the data obtained by simulation for a particular
bucket size were also made with the same memory capac- % Full IstRun 2nd Run 3rd Run 4th Run
ity. Except when the memory is almost full, the average 40 1.000 1.000 1.000 1.000
length of search will not be greatly affected by the 60 1.001 1.002 1.002 1.003
memory size. This is because the maximum length of 70 1.008 1.013 1.009 1.010
search is very unlikely to be comparable with the memory 80 1.026 1.043 1.029 1.035
size. When the memory is full or lacks only a few records 85 1.064 1.073 1.062 1.067
90 1.134 1.126 1.138 1.137
Figure I Average length of search for a record 95 1.321 1.284 1.331 1.392
in random-access storage with open addres- 97 1.623 1.477 1512 1.797
sing system (simulated system with random 99 2.944 2.112 2.085 2.857
identification numbers). 100 4,735 3.319 3.830 4.279
8 ?
7
BUCKET
CAPACITY 5
6
5 /

20

1
/

/
/.

3 Lo,
: - —

0 10 20 30 40

PERCENT FULL CAPACITY

IBM JOURNAL * APRIL 1957

60 70 80 90 100

Table 5A Average length of search for a record

in random-access memory with 704 addressing system (simulated memory with random

identification numbers).

Bucket Capacity (Records) 5 10 20 30 40 50
Memory Capacity (Records) 2,500 5,000 10,000 10,000 10,000 10,000
Number of Runs 8 7 4 4 3 3
% Full
40 1.015 1.001 1.000 1.000 1.000 1.000
60 1.072 1.016 1.002 1.001 1.000 1.000
70 1.131 1.042 1.010 1.003 1.001 1.000
80 1.280 1.111 1.033 1.017 1.011 1.005
85 1.443 1.172 1.066 1.038 1.028 1.015
920 1.762 1.330 1.134 1.082 1.071 1.034
95 2.467 1.755 1.334 1.231 1.185 1.110
97 3.154 2.187 1.602 1.374 1.399 1.228
99 4,950 3.212 2.499 1.852 2.007 1.585
100 6.870 4,889 4.041 2,718 2.844 2.102

A rough quantitative estimate can be made as follows
for bucket size 1: Consider a memory of size M in which
there are R records. It can be shown that if the records
are randomly placed in the memory, and if one enters
the file at any given point and looks there and at succes-
sive memory positions for an unused memory position,
the length of search will be, on the average,

. M+
M+1—R’
(Note that this agrees with the obvious answer Sz =1

for the first record, i.e. R = 0, and Sg = (M+1) /2
for the last record,i.e. R=M — 1.)

Sk “)

Table 5B Average length of search for a record
in random-access memory with 704 address-
ing system (simulated memory with random
identification numbers).

Bucket Capacity (Records) 1 2
Memory Capacity (Records) 500 1000
Number of Runs 9 9
% Full % Full
10 1.053 20 1.034
20 1.137 40 1.113
30 1.230 60 1.325
40 1.366 70 1.517
50 1.541 80 1.927
60 1.823 90 3.148
70 2.260 95 5.112
80 3.223 100 11.389
90 5.526
100 16914

Now, storing random numbers using the open addressing
system is not quite the same as storing records in a com-

pletely random manner, and it turns out that the open
system would require a somewhat longer search than
this. This is close enough, however, to give an indication
of the behavior to be expected.

If formula (4) is used for the length of search for the
(R -+ 1)st record inserted into the file, then the average
length of search for a record in a file with R, records in
it would be:

S—— > """ ®)

For files having several thousand records, it would be
difficult to calculate this sum. It can be approximated by
using the formula#*

|
¥ — = log.n + 0.5772157. (6)
K=1 K
Formula (5) can be rewritten

M| w g TR

+ +
s=——| S—- 3= = |, @)
Ry Kzzl K Ke1 K]

and substituting from (6) gives

M4+ 1
S =—+[10ge M--1) — log,. (M+1~Ro)j| s ®

0

provided M + 1 — R, is not too small.
Dropping the I's in the terms M + 1, and denoting
the percentage full by

Ro
P=——, 9
v)
the approximation becomes
. log (1—P)

S= (10)

P

135

IBM JOURNAL * APRIL 1957

136

For a full memory, the second sum in (7) consists of
only one term, equal to one, and the formula becomes

~MAT I:loge (M+1) + 0.5772157 —1]

Sfull memory ~

= log.(M + 1) — 0.4227843. (11)

Note that this approximation for a memory not full
is independent of the memory size, but the formula
for the full memory gives a result which increases as
log.(M + 1). Even for the full memory, making it
e(=2.718) times as large only increases the length of
search by one record.

Numerical calculations from these formulas are com-
pared with the observed results for memory size 500 in
Table 6.

The results in Table 6 agree well only for 10% full.
However, they do have the right order of magnitude,
and, while this is not a sufficiently good approximation
to use in engineering calculations, they indicate the type
of dependence on memory size.

It is clearly possible with the open system to insert new
records, or to delete records no longer required, at any

Figure 2(a) Average length of search
for open addressing system with insertions
and deletions. Bucket size 1.

Table 6 Comparison of simulation results
and calculations from formulas (10) and (11).

Average Length of Search

Calculated from Simulation

Percent Full (10)and (11) on 704
10 1.054 1.053
20 1.116 1.137
30 1.189 1.230
40 1.277 1.366
50 1.386 1.541
60 1.527 1.823
70 1.720 2.260
80 2.012 3.223
20 2.558 5.526
100 5.792 16.914

time without disturbing the rest of the file. This feature
is important, since insertions and deletions are neces-
sary in many applications, particularly in business data
processing.

The effect of insertions and deletions on average access
time was studied by simulation on the IBM 704, as de-
scribed in Appendix II. During the run, first the memory
was loaded to a certain fraction of its capacity, and the
average length of search was recorded. Then a random

70
60 !
°
]
] e — ¢ .
97% FULL
'
; /
o
40 /
%)
'—
w
)
S 30
a
T
@)
&
@ 20 [—— * 90% FULL
0 B
T ’/././'/l
= [
2 /
|__|,J 10 /‘/0/‘
w L .4 - . .
o | e —¢—o— ¢ 80% FULL
< ———o—8
e k,,‘o”—-"'”_./“
S e 70% FULL
< 0
4] 1000 2000 3000 4000 5000 6000 7000 8000 9000 10.000
NUMBER OF INSERTION/DELETION CYCLES

IBM JOURNAL * APRIL 1957

number was inserted and one deleted, one inserted and
one deleted, etc., until a certain number of these inser-
tion-deletion cycles had taken place. Again the average
length of search was printed. Another batch of insertion-
deletion cycles was made, and another line printed, etc.,
until the file appeared to reach an equilibrium.

Some of these data are presented in Figs. 2(a) through
(f) for memories 70%, 80%, 90% and 97% full, re-
spectively. There was, in every case, a rather large in-
crease in average length of search. The increase took
place gradually and rather steadily as the processing
continued, and it seemed to approach an equilibrium
when the number of insertion-deletion cycles was in the
order of several times the memory capacity.

Effects of rearranging records before storing them

An interesting fact about the open addressing system is
that when there are no deletions, and when records are
all used with equal frequency on the average, the average
number of accesses required to find a record is inde-
pendent of the order in which the records are stored. The
proof will now be shown.

Figure 2(b) Average length of search
for open addressing system with insertions
and deletions. Bucket size 2.

Suppose that a and b are two records in the file and
that b is the next record following a in the process of
storing the file in the random-access memory. Consider
the effect of storing b and then a. There will be no effect
if the records go into the same places as they'would have
gone in their normal order. This will be the case, unless b
goes into the space occupied by a in the previous case.
But then a will clearly go into the space previously oc-
cupied by b. The length of search for b is reduced, but
the length of search for a is increased by an equal
amount, and hence the average is unchanged.

Any rearrangement of the file can be achieved as a
combination of (perhaps many) transpositions of two
adjacent records, as described in the previous paragraph.
Since each transposition leaves the average the same, so
would the entire rearrangement.

It is interesting to note also that if the file were sorted
initially, the records in each bucket will be in sequence
after they are stored.

If some records in the file are used more frequently
than others, and if the relative frequencies are known,
then this knowledge can be used to reduce the average
access time with the open addressing system. This could
be done simply by storing the records in order by fre-
quency of use, with the ones most frequently called for
stored first. For example, consider the open addressing

35
/.
[]
979% FULL
L J
30
»
®
25 L
p
[]
(]
[]
20
[)
» .
-
w
X
g 1 4
Q
I
o (]
[/
<€
w L
® 10
w L,
° ,_/”II’”/’J
T /4/* 90% FULL
= 9
© L
E ‘/"/4/’*
3 b
w / ol 80% FULL
g [
o '__'4_’4?———”‘*”/_‘.%‘/_‘
o oy ¥ 70% FULL
< o
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
NUMBER OF INSERTION/DELETION CYCLES

137

IBM JOURNAL * APRIL 1957

system with bucket capacity 10, and capacity 10,000 process, and a new average weighted according to fre-
records. Referring to Table 5, we find the average length quency of use can be calculated.

of search when the memory is 40% full, i.e., contains
4000 records, is 1.001. This would also be the average
length of search for the first 4000 records, no matter how
many other records are stored in the memory, because
storing additional records will not affect the locations of Length of Length of
records already stored. Thus, if almost all transactions Bucket Size Search (Buckets) Search (Records)
involve only the first 4000 records stored and very infre- 1 5526 5526

quent accesses are made to other records, the average 2 3.148 5.796

Iength of search would be very little more than 1.001 5 1.762 6.810
buckets. ' .

Table7 Average table length of search
for the open system.*

10 1.330 8.830

The average length of search for the next 2000 records 20 1.134 13.180
can be calculated as follows. The average length of search 30 1.082 17.96
for the first 6000 records is given as 1.016; since this is 40 1.071 23.34
the average of access times for the first 4000 and the next 50 1.034 27.20

2000, the average for the next 2000 could be found from
the formula 4000 (1001) + 2000X = 6000 (1016)’ #*The data in the first and second columns were taken from Table 5. In

which gives X = 1.046 as the average for the 4001st calculating the last column, it was assumed that the search involved the
through the 6000th records Similarly the average Iength record which was found and half the capacity of the rest of the last
. E

bucket as well as all of the previous buckets. The formula used is
of search can be calculated for each stage of the storing
L=, —)BF 21 41
Figure 2(c) Average length of search ?
for open addressing system with insertions where L, = length of search in records

. X L; = length of search in buckets
and deletions. Bucket size 5. B — bucket capacity in records

35
30
25
® e &

* * /
6 []
’-—
w
X 97% FULL
5 15 .
g /
P <
(&) /
[1'4
o .
@ 10 r
(V5%
o /
x <
=
0] /
z L
=)
: / — 90% FULL
0]

,,,_,——ﬂ———-‘_‘ A
= 9 4 80% FULL
W
Z 0 70% FULL
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
138 NUMBER OF INSERTION/DELETION CYCLES

IBM JOURNAL %APRIL 1957

Choice of bucket size

In many random-access memories, there is a natural unit
of memory such as a track on a drum or on a disc, and
the access is always made to the beginning of one of these
units. In such a case, there appears to be no advantage
in making a bucket any smaller than this.

On the other hand, in general there will be no advan-
tage in using bucket size greater than one track (or one
record, if a record is larger than a track). The advantage
of small bucket size is shown clearly in Table 7, where
average length of search is expressed in “records” as con-
trasted to “buckets” in the previous data. Exceptions to
this rule might occur when there is considerable advan-
tage in shortening the index number, or when the statis-
tical properties of the identification numbers are such
that access time would be shorter with a larger bucket
size.

Other addressing systems

As an alternative to the open system described here,
the memory might be divided into separate main store
and overflow parts. A record would normally be stored
in a main store bucket, but after a main store bucket is
full any further records designated for that bucket would
go to an overflow bucket according to some system.

The difficulty with a system of this sort is that it pro-
vides no way of using the space in buckets in the main
store which happen to have received few records. The
overflow sections may, and indeed almost certainly will,
be filled while there are still unused and unusable spaces
in the main store. One such system was simulated on the
704. It was never superior to the open system described
here. Although it was almost as good when the bucket
size was large and the memory not too full, with small
bucket size and a nearly full memory, the open system
described here was far superior.

There is a system often used in business applications
with insertions and deletions, which has features of both
the open addressing system and addressing with a sorted
file. A typical variation might be organized as follows.

First the file would be sorted. The storage would be
divided into buckets. Let the number of buckets be N.
Then the sorted file would be divided into N nearly equal
parts. The first part would be stored in the first bucket,
the second part in the second bucket, etc. A table of the
identification numbers of the first record in each bucket

Figure 2(d) Average length of search
for open addressing system with insertions
and deletions. Bucket size 10.

7 -
/ 97% FULL
L
6
5 /
/
4
&
-
w
:]
3
3 -
I L)
e
5 | 90% FULLy
] I
o e
T // 80% FULL
2 L 70% FULL
— 1
[11]
4o
w
5]
<
o
S
< o0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
NUMBER OF INSERTION/DELETION CYCLES

139

IBM JOURNAL * APRIL 1957

4 ¢ |

97% FULL

/
/ 90% FULL
L p

AVERAGE LENGTH OF SEARCH (BUCKETS)

____’__q._—/_‘h
. ¢ 80% FULL
; -
70% FULL
0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
NUMBER OF INSERTION/DELETION CYCLES
4
3
)
’._
w
X /‘
O e
@ /l 97% FULL
I /
0 /
[v'4
o
) h
w
o) /
I
[
5 /‘
zZ [
z .
|
w
T e 90% FULL
& e
e o
Z 14—+ 80% FULL
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000
140 NUMBER OF INSERTION/DELETION CYCLES

IBM JOURNAL * APRIL 1957

Figure 2(e) Average length of search
for open addressing system with insertions
and deletions. Bucket size 20.

would be kept, preferably in the fast memory of the data
processing machine. So far this system is just a variation
of addressing with a sorted file.

In order to make handling of insertions and deletions
possible, the buckets are made larger than necessary.
When a record is to be inserted, the bucket in which it
logically belongs is found from the table of identification
numbers for the first record in each bucket. The record
is stored in that bucket if there is space for it there. If
that bucket is already full, an attempt is made to store
it in the next bucket, etc. In other words, insertions are
handled just as with the open addressing system.

With this system the inserted records would not gen-
erally be placed in the file in sequence. They would, how-
ever, be near their proper place, and this fact could be
used to reduce the time required for re-sorting the file.

The average access time for this system depends upon
the statistical properties of the identification of the rec-
ords being inserted. It seems reasonable that in some
situations, an inserted record is as likely to go in any
one bucket as any other. On the other hand, buckets in a
sparsely used region of identification numbers span a
longer range of identification numbers than buckets in a
densely used region, and it might be more reasonable to
assume the probability is proportional to the number of
identification numbers associated with a bucket. In still
other situations, certain regions will receive more inser-
tions than others because of peculiarities of the file. For
example, the section of a parts file associated with a new
machine would receive more than its share of insertions.
The most favorable of the above mentioned possibilities
is the first. The other two would have a greater tendency
to overflow certain buckets.

This addressing system with insertions and deletions
was also simulated on the 704. All buckets were assumed
equally likely to receive each inserted record. This is the
first and most favorable of the possibilities mentioned in
the preceding paragraph. The data taken are exactly
analogous to that taken for the open addressing system.
The results are presented in Fig. 3.

The length of search for this system, excluding sorting
time and the table look-up, is less than for the open
addressing system with the same bucket size and percent
full when the number of insertions is small. But, when
the number of insertions reaches the size of the file, the
length of search for the two systems is roughly the same.
With the assumption that all buckets have the same prob-
ability of receiving each inserted record, this system is
mathematically the same as the open addressing system
during the insertion-deletion processing except for the

Figure 2(f) Average length of search
for open addressing system with insertions
and deletions. Bucket size 40.

initial condition of the file. Therefore, agreement would
be expected after so many insertions and deletions that
the files have reached equilibrium. This can be seen
for the 70% full files, but for the others, the system with
the initially sorted file still shows some advantage at the
end of the runs.

Experimental results with the open addressing
system and actual record files

The identification numbers for four business record files
were stored in the simulated random-access storage with
the open addressing system. Though the experiments
were limited in scope, they brought out some important
points regarding the use of the open addressing system.

The method of simulation is described in Appendix II.
In all of the experiments a bucket size of 10 numbers was
used. The memory size was 5,000 or 10,000 records,
depending upon the size of the file being stored. Some of

Table 8 Performance of the open addressing system
with actual files (bucket capacity 10).

File Description Capacity Per- Average

and Method Memory cent Length
of Indexing Full of Search
Random Numbers 5,000 80 1.111
. 90 1.330
100 4.889
IBM Parts Numbers
Columns 7-6-5 10,000 90 1.227
100 4.749
Columns 5-6-7 10,000 90 1.570
100 13.776
First Account Numbers File
Columns 2-3-4 5,000 80 1.118
Columns 4-2-3 5,000 80 1.075
Columns 3-2-4 5,000 80 1.086
Second Account Numbers File
Columns 2-3-4 5,000 90 1.780
100 30.965
Columns 4-3-5 5,000 90 1.780
100 5.320
With Random Permutation
Columns 2-3-4 5,000 100 4.206
Columns 4-3-5 5,000 90 1.172
100 4.578
Names File
Method A
(See Appendix II) 10,000 80 1.872
90 2.960
100 14.945
Method B 10,000 80 1.888
90 2.559
100 10.080
Names File (Edited)
Method A 10,000 80 1.241
90 1.647
Method B 10,000 80 1.279
90 1.792

141

IBM JOURNAL * APRIL 1957

142

the results are presented in Table 8. The average length of
search for random identification numbers is included for
comparison.

In the description of the open addressing system it was
stated that an index number designating the bucket to be
tried first should be derived from the identification
number. The experiments described here consisted essen-
tially of comparing average length of search for various
methods of deriving the index numbers.

The first file consisted of the first 10,000 records of
the IBM parts file. The identification was a seven-digit
decimal number. The last three digits were each found to
have at least as uniform a distribution as would be ex-
pected if they were randomly chosen. When they were
used in reverse order as the index numbers, the average
length of search was less than that found for random
identification numbers. Note, however, that these same
digits in their normal order resulted in considerably
larger average length of search.

The second file consisted of a file of 4000 account
numbers from an insurance agency. The identification
consisted of five-digit numbers. The middle three digits

Figure 3 Addressing with sorted file (solid curves)

Open addressing systems (dashed curves)
Memory capacity 10,000 records.

1.7

were found most nearly uniform: the index number was
found by halving a three-digit number found from the
middle three digits. Of the three arrangements tried, the
normal order for the digits gave the poorest results, only
slightly poorer than those for random numbers.

The third file was also a file of account numbers from
an insurance agency. All digits except the first were
found to have at least as uniform distribution as would
be expected with random numbers. Yet of about eight
arrangements of these digits, none resulted in as short a
length of search as was found with random numbers. A
further modification of the identification numbers, con-
sisting of applying a fixed randomly-chosen permutation
to the 1000 possible three-digit numbers, resulted in
marked improvement, giving results better than those
found with random identification numbers.

Neither the rearrangement of digits nor the random
permutation could have been successful if the digits had
not already been quite uniformly distributed, as was the
case with all three of these files. If certain digits pre-
dominate in each digit position, some more drastic modi-
fication of the identification numbers would be required.
Schemes such as adding digits (dropping the carry), or
using digits from the center of the square of the identifi-
cation number have been tried with some success.

The fourth file consisted of about 10,000 last names

———

Pl
4 AN

90%, FULLL-BUCKET CAPACITY 20

) i i ol

90% FULL1-BUCKET CAPACITY 40
e

AVERAGE LENGTH OF SEARCH (BUCKETS)

80% FULLL+BUCKET CAPACITY 20

P,,'
70% FULL4+BUCKET CAPACITY 20

0 2000 4000 6000 8000

NUMBER OF INSERTION/DELETION CYCLES

IBM JOURNAL “APRIL 1957

10,000 12,000 14,000 16,000 18,000 20,000

of IBM employees. The index numbers were derived from
the names by doing mathematical operations on the
binary numbers which represented these names as they
entered the IBM 704 during the simulation. A number
of schemes such as squaring the number and using the
center digits were tried. Those corresponding to the data
in the table are described in Appendix II. Experiments
were tried also with an edited version of this file in
which nearly all duplications of names were eliminated.
With this edited file, length of search was somewhat
shorter.

In no case with this file was the length of search as
short as with random identification numbers. I know no
reason why these names should result in longer access
times. In fact, it would seem that with non-random iden-
tification numbers one always ought to be able to use the
non-randomness to his advantage to reduce length of
search to a value less than that for random numbers. At
the very least, one would expect to be able to “randomize”
the identification numbers by some mathematical pro-
cedure to approach the length of search found for random
identification numbers. The facts of the matter are, how-
ever, that though I tried diligently with this file, I did not
succeed in finding a way of achieving results as good as
were obtained with random numbers.

In summary, it appears that with some files it is pos-
sible to achieve, quite simply, an average length of search
as good as or better than that found for random numbers.
In other cases this can be achieved only after trying many
schemes for deriving index numbers from identification
numbers, or it may not be possible at all. The scheme
which is good for one file is not necessarily good for
another. Even though it may not be possible to achieve
results as good as with random numbers, the open addres-
sing system will frequently perform more efficiently than
systems using a sorted file.

Applications

In this section the application of the data of previous
sections is illustrated by the calculation of average access
time for two problems. For simplicity, neither the prob-
lem nor the characteristics of the data-processing system
will be considered in detail, and hence the results will
not be precise. The average length of search found for
random identification numbers will be used in these
calculations. The data presented in the previous section
indicate that the average length of search for actual files
may deviate either up or down from average length of
search for random identification numbers.

For the first problem, suppose that 18,000 250-charac-
ter records are to be stored in an IBM magnetic disc
random-access storage unit. What type of addressing
system should be used, and what would be the average
access time?

The following characteristics will be assumed for the
disc unit:
50 discs
200 tracks per disc

500 characters per track
50 msec. to read a track

100 msec. access to adjacent track

200 msec. access track to track on same disc

600 msec. access track to track on different discs
These are roughly the maximum access times, but they
will be used as average access times in the calculations.
Computer instruction times relating to addressing will
not be considered. In general, they will probably be small
in comparison with the actual access times for the disc
unit, and probably could be overlapped with disc unit
access times in many cases. In a thorough analysis of an
application, they would certainly have to be accounted
for.

Consider first the open addressing system. As has been
pointed out, the smaller the buckets are, down to a single
track, the lower the access time will be. This indicates a
bucket of size 1 track, or 2 records. For this problem,
there will be 10,000 buckets, 90% full. Table 5 gives
3.148 buckets as the length of search, with no insertions
or deletions. This corresponds to reading on the average
3.148 successive tracks.

The initial access is generally to a new disc and
requires 600 msec. Occasionally it is to a new track on
the same disc and requires only 200 msec. For simplicity
the average will be considered to be 600 msec.; the cor-
rected average is about two percent smaller. Likewise
going from one track to the succeeding one generally
requires 100 msec. Occasionally, however, the succeeding
track is on a different disc face, and requires more access
time. This fact will also be neglected; it results in an
increase in the average of about 3%.

The total time for a search of length n tracks is the
sum of the initial access time to the other (n—1) discs,
and the reading time for the n discs. The total is

T =600+ 100- (n—1) + 50n
=500 + 150-n

For average length of search, 3.148 successive tracks, the
time would be

T = 500 + 150 - 3.148 = 972 msec.

When there are insertions and deletions, the average
length of search increases gradually, finally reaching an
equilibrium when the number of insertions and deletions
is one or two times the number of records in the file. For
this problem the equilibrium value, as seen from Fig. 2,
is about 10. Thus after many insertions and deletions
the average access time would be about

T = 500 + 150 - 10 = 2000 msec.

If the file is sorted and the binary search is used, the
number of accesses to the file would be the next integer
larger than log218,000, or 15. Each access would require
an average of 650 msec. Clearly the time required would
be many times that of the open addressing system.

If the file is divided into “buckets” and a table is kept
in the fast memory of the machine which gives the iden-

143

IBM JOURNAL * APRIL 1957

144

tification number of the first record in each bucket, the
number of the bucket which contains any desired record
can be found by searching this table. Then the contents
of this bucket can be brought into the main memory and
searched for the desired record.

When the contents of a bucket are brought into the
main memory, they could be searched one track at a
time. If the desired record is in the first track, the search
could end there. If it is not, the second track would be
searched, then the third, etc. until the whole bucket had
been searched. If each bucket contains enough records
to fill m tracks, then a fraction 1/m of the records are in
the first, likewise in the second, the third, or say the ith.
The records in the ith track require that i tracks be read.
Hence the average number of tracks which have to be
read is

3

1 m{m+1) m+ 1,
m 2 2

n = i=

1
m g

1
-

It follows that the average access time is

T =500 + 150. 7 L.

(11

This, of course, does not include time required for table
look-up. This system certainly could not match the open
system if this time, exclusive of table look-up, is greater
than 972 msec., the average time for the open system.
The critical value of m can be found by solving

1
972 = 500 +150- 71,

and m is found to be 5.293 tracks. Thus for this system
to excel the open system, the bucket size would have to
be five or fewer tracks, i.e., ten or fewer records. It would
require a table of 1800 entries or more, which would
probably be prohibitive with present memories.

Now consider the possibility of using an index table.
The records for this problem require 4,500,000 of the
5,000,000 characters of storage, leaving 500,000 charac-
ters for an index table. The table entries would require,
let us assume, 8 digits for the identification number and
4 digits for the track number, or 12 digits per record.
This makes 18,000 x 12 = 216,000 characters. Therefore
the table requires less than half the remaining space. Each
track could hold as many as 40 table entries, and this
would make a good bucket size. With the table organized
according to the open system of addressing and less than
50% full, the probability that a record would not be
found in the first track searched would be so small that
it would have a negligible effect on access time. The
access time to the table would be

T = 500 + 150-1 = 650 msec.

and a like amount of time would be required to get the
record after the exact location of the record is found.
Thus the total access time would be

T = 1300 msec.

IBM JOURNAL * APRIL 1957

This would hold even with insertions and deletions.
Therefore this system would be somewhat poorer than
the open system with no insertions and deletions, but
would be better for a problem in which many insertions
and deletions occur. More uniform distribution of identi-
fication numbers would favor the open system, while this
system would be much less sensitive to poorly distributed
identification numbers.

Similar calculations made assuming 180,000 25-char-
acter records and 1800 2500-character records clearly
indicate the use of the open system for the former, and
an index table using the open system for table look-up
for the latter case.

As a second example, consider a table look-up opera-
tion completely in the core memory of a 704 computer
such as might be required for an assembly program or
compiler. Assume that 2048 words are available for
storage, and that each item or record requires one word
of storage. An estimate of average access time is required
for the binary search and for the search using the open
addressing system described in this paper, with bucket
size 1.

I found it possible to do the binary search on the IBM
704 with a program requiring Cyinary = 4 + 3n instruction
executions, where n is the number of comparisons re-
quired, i.e. the smallest integer as log.N for an N record
file. For the open addressing system, Copen = 7 + 21 in-
struction executions. This time n is the average length
of search for bucket size one, from table 5B, assuming
that the records in this problem store as efficiently as
random numbers. It was assumed in both cases that the
comparison is made on the entire word—to mask part of
the word would require about 2n additional instructions
in either case. In the case of the open system three instruc-
tions were allowed for the formation of the nine-bit index
number which designates the first word to be compared:
this is probably a bare minimum. On the other hand, no
account is taken of the fact that the binary search re-
quires the file to be sorted, while the open addressing sys-
tem does not.

For the example being considered, for a file of any-
where from 1025 to 2048 records, n for the binary
search is nine, and the search requires thirty-one instruc-
tions per search on the average. For the open address-
ing system, the results are summarized as follows:

Table 9 Average length of table search
for sample problem (open addressing system—
704 computer).

No. of No. of Instructions
Percent Comparisons Executions
No. Items Full per Search per Search
1024 50 1.2 9.4
1229 60 1.325 9.65
1434 70 1.517 10.03
1638 80 1.927 10.85
1843 90 3.148 13.30
1946 95 5.112 17.22

The third column in the table was taken directly from
Table 5B. At 100% full, the average access time for the
open system would probably exceed that for the binary
search, but not by a great amount. At 70% full the
open addressing system is three times as fast as the
binary search.

Conclusion

Several systems of addressing for random-access storage
have been described in this paper. For each, data and
formulas have been presented which enable one to esti-
mate average access time for records in the storage. Two
simplified examples of the calculation of average access
time for specific problems have been included.

While the best system to use will depend in general
upon the problem, the “open” addressing system de-
scribed in this paper does seem to offer advantages in
flexibility, simplicity, and speed over commonly used
systems based upon a sorted file or index.

Acknowledgment

To the best of my knowledge, the open type addressing
system described in this paper was devised in 1954 by
Dr. A. L. Samuel, Dr. G. M. Amdahl, and Miss Elaine
Boehme for use in the table look-up process in an assem-
bly program for the IBM 701. The system is so natural,
that it very likely may have been conceived independ-
ently by others either before or since that time.

1 have received many ideas and suggestions from a
number of engineers at IBM both from conversations
and from reports. Dr. A. L. Samuel, A. J. Critchlow, and
N. Rochester have been particularly helpful.

Appendix |

In this appendix, an estimate of the entropy of the bino-
mial distribution is found by using the normal approxi-
mation?®:

Pe=b(kiN-1,p) = (V1) ams = h g (x0),
where
h=[(N—1) pql

Xpy=hlk—(N—1)p],

. _X2
and ¢ (X) = (2n)3 expl: > :I
Then,
H (p)

N_1 N-1
= — X prlogepr = kZ — h ¢ (Xi) logz [h ¢ (Xi)]
k=0 =0

N-1

N-1
= — kz h ¢ (Xi) logsh — 72 h ¢ (Xr) logs ¢ (Xi)
= —loggh
N-1
— 2 h¢lhk —h (N —1) pliogs ¢ [hk — h (N — 1) p]

k=0

The last sum can be approximated by an integral,

h(N-1 (1-p)

H (p) = — logsh — ¢ (X) logz ¢ (X) dx.

-h(N-1) p

~ — logeh — logzef ¢ (X) log. ¢ (X) dx.

The last step is possible for large N, since the integrand
becomes very small for large positive or negative values
of X.

The integral can be found in many tables of integrals;

its value — %2. Thus

H (p) = — logzh -+ %+ logee = 1 logs (N—1) + +logopge

The average value of H (p) for all values of p is

H=£H@Mp

= 3log: (N—1) — % log:e.

The maximum of H (p) occurs when p = %}, and then
H(}) = 3logs (N—1) + 3 logse — 1.

Appendix I

In this appendix the method of simulating the open
addressing system on an IBM 704 data-processing system
is described.

Nine bits of memory (one-fourth of a 704 word) were
used for each record position in the simulated random-
access memory. The program was set up to allow any
memory size up to 10,000 records. This could be divided
into buckets of any size, provided the memory was an
integral multiple of the bucket size. A “zero” in any
record position (9 bits of memory) indicated that no
record was stored in that position. In storing a record,
the machine would calculate the proper bucket number
from the record identification, go to the first record posi-
tion in that bucket, and start from there to search each
record position until a position containing a zero was
found. At the same time count was kept of the number
of buckets which had to be searched. When an empty
record position was found, this number was stored, to
indicate that a record was stored there and to store the
access time for that record. Note that while this model
is very similar to the open addressing system, only the
necessary information is kept. Neither the actual records
nor even the record identification is of interest. The only
important data are the presence of a record and its
access time.

There was, in some cases, a possibility that a record
would be more than 511 buckets from where it was
entered. Whenever this occurred, the number 511 was
entered, since no larger number could be stored with 9
bits. If this happened more than a few times, it would
affect the accuracy of the calculation of average access
time. Therefore, the number of 511’s was checked in
cases where they were at all likely to occur, and if they
occurred, the run was repeated with smaller memory
size.

145

1BM JOURNAL * APRIL 1957

146

Deletions were handled as follows: a random number
between zero and the random-access memory capacity
was generated, and the corresponding nine-bit record
position was inspected. If it was not zero, it was made
zero, i.e. this record was deleted. If it was already zero,
another random number was generated and another
position inspected, etc., until a record was deleted.

The average length of search is obviously the sum of
all the 9-bit numbers, divided by the number of records
in the file.

The random-number generator used was the currently
popular one, successive powers of 513 mod 235 (Refs. 5,
6). The right-hand 18 bits of each 35 bit “random num-
ber” were dropped by shifting the number to the right
18 places in the computer. A number between zero and
M —1 was required, where M was the number of buckets
in the memory for an insertion, and the capacity of the
memory in the records for a deletion. This number was
obtained by dividing the remaining 17 bits of the “random
number” by M, and using the remainder. The remainder,
which was in the accumulator, was used as the random
number.

The first three actual record files were stored on tape
and read by a subroutine which translated any specified
three or four columns into a binary number. This sub-
routine simply replaced the random-number generator
subroutine.

Simple permutation of the digits did not sufficiently
randomize the identification numbers in all cases. A more
thorough randomizing was accomplished as follows: one
thousand cards were numbered with punches from 000
to 999, and were punched with random numbers in
fifteen other columns. Then they were sorted on six
columns of random numbers in order to put them in
random order. Then they were stored in the 704 memory
in random order. When an identification number was
read from the tape, it was converted by table look-up

IBM JOURNAL s APRIL 1957

in this table before being stored in the random-access
memory.

The names file and the edited-names file were also
stored on tape. The names consisted of at most twelve
characters, which were brought into the IBM 704 in a
binary code in two 36-bit 704 words. They were read
and processed by a subroutine which replaced the ran-
dom-number generator.

A number of methods for transforming this identifica-
tion into an index number were tried. The two best
methods correspond to the data in Table 8. Of those,
method A consisted of adding the two binary words com-
prising the identification, squaring, shifting to obtain the
center 36 bits of the 72-bit square, and finally, dividing
the center by 1000 and using the remainder. Method B
consisted of dividing each of the two 36-bit words into
two 18-bit words, adding these four 18-bit words, divid-
ing by 1000, and using the remainder.

References

1. A. I. Dumey, “Indexing for Rapid Random-Access Mem-
ory,” Computers and Automation 5, No. 12, 6-8 (Dec.
1956).

2. C. E. Shannon and W. W. Weaver, Mathematical Theory
of Communication, University of Illinois Press, 1949.

3. Feller, An Introduction to Probability Theory and its Ap-
plications, Wiley, New York (1950), pp. 104-106.

4. Whitaker and Watson, Modern Analysis, Cambridge Uni-
versity Press, Cambridge, England ¢1927) p. 235. The con-
stant is known as Euler’s constant. The formula is within
about 2.2% for n = 10 and improves as n increases.

5. D. H. Lehmer, “Mathematical Methods on Large Scale
Computing Units,” Harvard Computation Laboratory
Annals, 26, 141-146, (1951).

6. O. Taussky and J. Todd, “Generation and Testing of
Pseudo-Random Numbers,” Symposium on Monte Carlo
Methods, edited by H. A. Meyer, Wiley, New York (1956)
pp. 15-28.

Received October 1, 1956

