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The Multipurpose  Bias Device* 
Part I 
The Commutator  Transistor 

An article on the design and development of the 
Rutz commutator transistor will be included in 
a subsequent issue of the IBM Journal of Re- 
search and Development. 

Abstract: It i s  suggested that multipurpose devices 

will provide economy in both number and assort- 

ment of basic computer  b.uilding blocks. A study is  
made of the Rutz  commutator  transistor largely  in 

application to three-input, one-output logical situa- 

tions. A basis i s  thereby provided for a more 

general analysis to be published at  a later date. 

General introduction 

In 1938, Shannon indicated  a  correlation of truth-func- 
tional expressions with  electrical circuits. Since that  time 
much effort has been made  to devise general  mechanical 
procedures for simplifying logical formulas. One  major 
difficulty, however, is the limited application of pro- 
posed solutions. Techniques which minimize expressions 
formed  from  one set of functions may not prove rele- 
vant if another set is assumed. As a  result, the  primary 
logical problem is to decide which groups of truth- 
functional elements are desired rather  than  to  formulate 
rules of simplification for a given set. 

The correspondent  practical concern is to  determine 
which types of physical device, correlative  with logical 
particles, can  be expected to serve as efficient building 
blocks for machines. Material  considerations are espe- 
cially pertinent. It is, for example,  quite  advantageous to 
diminish the  number of devices used. On  the  other 
hand, it is important  to minimize the kinds of machine 
element  required. 

If many different classes of devices are available, each 
type accomplishing a different truth-functional  connec- 
tive, the number of devices requisite for a given situation 
should prove relatively small. If, however, the variety of 
machine elements is so limited that only  a  few logical 
particles are achieved directly, the  number of devices 
needed may prove unduly  large. 

The alternative we wish to suggest is that multipur- 
pose devices be used. A multipurpose logic device is 

*Portions of this paper  were  presented  to  the  International  Symposium 
on Theory of Switching  at  Harvard  University,  April 4, 1957. 117 
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one which can  be  adjusted to realize directly  a diversity 
of truth-functional  elements. Economy in both number 
and assortment of basic machine building blocks might 
then be  obtained.  Ease of adjustment is, of course, pre- 
requisite. 

A bias device is one which achieves its logical func- 
tions by on-and-off biasing of inputs. An  input is said to 
be biased if it is so fixed as to be always on  or always off. 
Since  the  latter method of adaptation is both direct and 
flexible, multipurpose bias devices are of much interest. 

A  full adder  can be regarded  as a multipurpose bias 
device. Consider the following  table: 

P q r  SUM  CARRY 

1 1 1  1  1 
0 1 1  0 1 
1 0 1  0 1 
0 0 1  1 0 

1 1 0  0 1 
0 1 0  1 0 
1 0 0  1 0 
0 0 0  0 0 

‘ p ’, ‘ q ’, and ‘ r ’ may be thought of as  denoting the 
three variable  inputs. ‘SUM’ and ‘CARRY’ indicate the 
sum  and  carry respectively. The eight possible input 
states  are shown symbolically by the  three columns of 
1’s and 0’s on  the left. For example, the  top horizontal 
row signifies that all three  inputs  are on, since 1 is as- 
signed in  every case. The  next  row  down signifies that 
the first input is off and  the  other two on, since 0 is 
assigned to ‘ p  ’, and 1 to ‘ q ’ and ‘ r ’. The columns 
under ‘SUM’ and ‘CARRY’, which  indicate the resultant 
outputs,  are  functions of the  three variable inputs. As 
the table shows, 1 is assigned to ‘SUM’ if and only if 
one or three of the variable inputs  are  on. If exactly  two 
or three of the variable  inputs are on, 1 is assigned to 
‘CARRY’. 

It should  be  noted that  the logic of the present dis- 
cussion is 2-valued, in  that 1 and 0 are  the only  two 
values assigned throughout.  Such  terms  as singulary, 
binary,  ternary,  quaternary, on  the  other  hand,  are used 
here  to  denote  the  number of variable  inputs. 

Let us suppose the  input represented by ‘ r ’  is so 
adjusted  as to be always off. Then ‘ p ’ and ‘ q ’ indicate 
the only  variable  inputs. Under  such conditions, as  the 
bottom half of the  table shows, ‘SUM’ is assigned 1 if 
and only if 1 is assigned to either ‘ p ‘ or ‘ q ’, but not 
both. The binary exclusive ‘or’ (symbolized ‘ V ’) is thus 
achieved. Further,  as  the  table records, ‘CARRY’ is 
assigned 1 just in  that single case  where  1  as assigned 
to  both ‘ p ’ and ‘ q ’. The connective ‘and’ (symbolized 
‘ ’) is therefore realized. 

Suppose, however, the  input represented by ‘ r ’ is so 
118  regulated that  it is always on. The  top half of the  table 

reveals that 1 is assigned to ‘SUM’ just in  those cases 
where  both ‘ p ’ and ‘ q ’ receive like assignments of 1 
or 0. The binary function ‘if-and-only-if‘ (symbolized 

is assigned 0 just in that case  where both ‘ p ’ and ‘ q’ 
are assigned 0. The inclusive ‘or’ (symbolized ‘ V ’) is 
therefore realized. 

The singulary operator ‘not’ (symbolized ‘ - ’) is ob- 
tained by biasing two of the inputs. If constant 0’s are 
assigned to ‘ q ’ and  constant 1’s to ‘ r ’, ‘ p ’ will repre- 
sent  the only  variable  input. Under such conditions, as 
the  table indicates  in the  third  and  fourth rows down, 
‘ p ’ and  ‘SUM will in every case receive opposite as- 
signments of 1 and 0. 

There is considerable  advantage in generating ‘ ‘v‘ ’ and 
‘ E ’. The two  connectives can in many cases be substi- 
tuted  into  an already minimized expression assembled 
logically from ‘ - ’, ‘ ’, and ‘ V ’ in  such a way as to 
reduce  the  number of full  binary  functions  required; a 
full binary  connective is one which cannot  be reduced to 
a singulary  function. In  fact, ‘ V ’ and ‘ E ’ are  the only 
two of all the possible binary connectives which can be so 
used. The expression ‘ - ( p  q )  (p  V q)’, for example, 
can be  written simply as ‘ p tf q ’; and  the expression 
‘ ( p * q ) V - ( p V q ) ’ , a s ‘ p = q ’ .  

An  appropriate interchange of ‘ V ’ and ‘ ’ will also 
enable many denial signs to be  removed. Any expression 
or part of an expression in  which ‘ V ’ and ‘ E ’ are  the 
only  non-singulary functions  found is equivalent to some 
expression of equal length from which ‘ -’ has been 
eliminated. ‘ ( p  V q )  E r ’, for example, is equivalent to 
‘ ( p  E q )  G r ’. 

It  should further be noted that  the  ternary connectives 
‘SUM’ and ‘CARRY’ can  each be used to  reduce in size 
many  formulas assembled exclusively from singulary 
and binary  truth-functional elements. For example,  where 
‘ p ’, ‘ q ’ and ‘ r ’ represent the three  variable inputs, 
‘CARRY’ is equivalent to  the expression ‘ ( q  r )  ‘t ( p  
( q  V r )  ) ’. Consequently, it  can be seen that devices 
which achieve directly  functions involving more  than two 
variable  inputs are of substantial interest. 

R. F. Rutz, of these laboratories, has developed a two- 
collector  transistor which not only  operates  as  a  full 
adder, but  can also be  adjusted to achieve directly  the 
binary  functions ‘neither-nor’ and ‘not-both‘ (symbolized 
‘ J ’ and ‘ I ’ respectively). ‘ J ’ is assigned 1 just in that 
case  where both  component variables are assigned 0. ‘ I ’ 
is assigned 0 just in that case  where both component 
variables are assigned 1. Since all of  the full  binary  com- 
mutative connectives are obtained ( ‘ ’, ‘ V ’, ‘ V ’, ‘ E ’y 

‘ $ ’, ‘ I ’), we may  suitably  describe the device as an 
absolute binary  commutator (see Fig. 1, p. 122). 

The addition of ‘ 3. ’ and ‘ I ’ will in  no case permit a 
reduction  in  the  number of full binary  connectives requi- 
site for  an already  minimized expression. Their use wi& 
of course,  in many cases permit a reduction  in the num- 
ber of denial signs needed. The  formula ‘ p (q  V r )  ’, for 
example, is equivalent to the expression ‘ p .1 (q  4 r )  ’. 

The binary commutator is patently a versatile logical 

‘ E ’) is thus accomplished. On  the  other  hand, ‘CARRY’ 
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element.  Consequently,  a careful study of its  truth-func- 
tional  potentialities will do  much  to indicate the capacity 
of multipurpose  building blocks as  such. Also, a basis will 
be provided for comparison with other devices. 

In  Part I, which follows immediately, we examine the 
commutator, largely in application to three-input,  one- 
output situations. We  do not consider the transistor’s 
physical performance,  since  a separate  paper will be 
published by Rutz  in  a forthcoming issue of this  journal. 

It should be noted, however, that  the  adaptation to 
achieve ‘ J, ’ or ‘ I ’ involves more  than mere biasing of 
inputs. Load resistances, for example, may be modified. 

In  Parts I1 and 111, to be published later, we shall 
present  a brief analysis of the relative logical efficiency of 
different types of many-variable  functions. We shall then 
attempt  to  formulate a more general  philosophy of “mul- 
tipurpose logic”, and  to suggest possible lines of future 
investigation. 

Part I The commutator transistor Application to total three-variable functions 

P tf ( r V  (P . 4)) 
1 0 1 1 1  
0 1 1 0 1  B 
1 0 1 1 0  
0 1 1 0 0  

0 0 0 0 1  
1 0 0 1 1  

D 

0 0 0 0 0  
G 1 1 0 1 0  

From  the  schematic  letters ‘ p ’, ‘ q ’, and ‘ r ’, an infinite 
number of different truth-functional formulas  can  be as- 
sembled.  These can be broken  down,  however, into 256 
non-overlapping  groups of equivalent expressions. A 
convenient way of labeling these  groups,  which we shall 
call basic groups, is needed. 

Consider the following expression and skeleton truth 
table: 

Part of the table is arbitrary  and  part not. Starting de- 
liberately with an assignment of l to  each schematic 
letter  occurrence, we have  alternated 1 and 0 singly under 
‘ p ’, in  pairs under ‘ q ’, and in fours  under ‘ r ’. The 
column  under ‘ V’, the main  connective, shows that 
‘ p ff ( r  V ( p  q ) )  ’, taken as a whole, is assigned 1 in 
exactly three cases: first, where 0 is assigned to ‘ p ’, and 
1 to ‘ q ’ and ‘ r ’; second,  where 0 is assigned to ‘ p ’ and 
‘ q ’ and 1 to ‘ r ’; third,  where 1 is assigned to ‘ p ’, and 
0 to ‘ q ’ and ‘ r ’. 

The column of letters at  the right of the table, that is, 
‘ B ’, ‘ D ’, and ‘ G ’, indicates the method of labelling to 
be used. ‘ p ’, ‘ q ’, and ‘ Y ’ can be selected to represent 
the variables of any three-input  situation. 1’s and 0’s 
can be assigned to schematic  letters in the arbitrary man- 
ner just shown. Under  such  truth-table stipulations, an 
expression + will be logically equivalent to ‘ p tt ( r  V 
( p  * q )  ) ’ if and only if + is assigned 1 in  just the second, 
fourth,  and seventh rows down. The eight truth-table 
rows, in order  from  the top,  can  aptly be designated by 
t h e l e t t e r s ‘ A ’ , ‘ B ’ , ‘ C ’ , ‘ D ’ , ‘ E ’ , ‘ F ’ ,  ‘ G ’ ,  and‘H’ .  
The label ‘ BDG ’, then, will  be understood to  denote  the 
whole class of expressions which, under  the specific con- 
ditions, are assigned 1 in the  three rows designated by 
‘ B ’, ‘ D ’, and ‘ G ’. In  such a manner, 255 of the 256 
basic groups can be provided with unique labels. The 
one remaining  group, in which the resultant  truth-table 
columns  contain no 1’s whatsoever, can be appropriately 
labelled ‘- (ABCDEFGH) ’. 

We shall now present  as Table 1 an extended list of 
truth-functional expressions correlative  with  electrical 
circuits. As will be evident, no  more  than three, and in 
most cases one  or two, Rutz binary commutators  are 
needed to handle  the purely logical ingredient of any 119 
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three-input,  one-output  situation. 
It should be emphasized that  no  prior inversion of 

signals is presupposed,  since we wish every  relevant 
logical operation  to be patent. All 256 cases need not be 
considered, however. The 256 groups  earlier  described 
can be conveniently reclassified as eighty non-overlap- 
ping interchange  groups. An interchange group is a 
collection of expressions which are said to be interchange 
equivalent. A formula + is interchange equivalent to a 
formula $ if and only if either of the following conditions 
is realized: (1) + is truth-functionally  equivalent to $; 
(2) there is a formula +’, truth-functionally  equivalent 
to $, from which + can be obtained by mere  permutation 
of schematic letters. For example, the expression 
‘ p q r ’ is truth-functionally  equivalent to  the expres- 
sion ‘ p 1 ( q  I r )  ’. From  the latter, ‘ q 1 ( p  I r ) ’  can be 
obtained by permuting ‘ p ’ and ‘ q ’. Therefore,  although 

In  Table 1 , the graphic  symbols ‘ ’ and ‘ L’ 
are used in  place of ‘SUM’ and ‘CARRY’, respectively. 
Unless otherwise  shown, ‘ p ’, ‘ q ’, and ‘ r ’ are under- 
stood to  denote  the  three inputs of an unbiased  commu- 
tator. 

A modified notation,  such  as ‘ ~m’ * 
stipulates that ‘ p q ’, ‘ p ’, and ‘ r ’ represent the  three 
inputs. The inscription ‘ a ’ merely signifies that 
both the  sum  and  carry of a given transistor are utilized. 
For example, the expression ‘ ’ indicates the 
application of two commutators. The  sum  and  carry of 
the first, which is unbiased,  serve as the two variable in- 
puts for  the  second, which is biased to realize ‘ 3 ’. 

I 

The  number of transistors  requisite for  the logic of the 
different expressions in Table 1 can easily be determined. 
One need simply count  the occurrences of ‘ - ’, ‘ ’, ‘ V ’, 

would- require five transistors; , [IT I ( p  q ) ’ ,  three. 
The  column headed ‘MRCE (Minimum-Rutz-Commu- 
tator-Equivalent) records the smallest number of transis- 
tors  determined for each guide basic group. It is assumed, 
of course, that  the relatively trivial - (ABCDEFGH) 
and ABCDEFGH require  no commutators. 

.. - .  

One  further point  should be mentioned. The  term 
‘three-input situation’ has been understood  throughout to 
denote any situation involving no  more  than three types 
of variable input.  The  same variable input may be used, 
therefore,  a number of times. For example,  the  expres- 
sion ‘ (q p )  C ( q  tr r )  ’ shows that  the  input symbolized 
by ‘ q ’ is used twice. Since  inputs are also needed for ‘ p ’ 
and ‘ r ’, a physical realization of the expression in ques- 
tion would require  four signal loads. A signal load is 

not logically equivalent, ‘ p q r ’ and ‘ q 4 ( p  I r )  ’ are 
interchange  equivalent. 

One  addendum is necessary, however. To simplify the 
discussion, we assume that  the  formulas  in question  may 
contain vacuous  equivalent  parts. ‘ p V 4 ’, for instance, 
is taken  as interchange  equivalent to ‘ p V f ’, since the 
two can be  represented  in turn as follows: ‘ ( p  V 4 )  
( r V i ) ’ a n d ‘ ( p V f ) * ( q V c j ) ’ .  

Every  interchange group is composed of one,  three, 
or six of the 256 basic groups. Examination of any  one 
of the  latter will serve for  the total  interchange group of 
which that  one is a part, since the results obtained can be 
adjusted by a  straightforward  permutation of schematic 
letters to the other basic groups involved. In  each case, 
however, we shall  consider  only the guide  basic group, 
that is, the basic group having the earliest label in  alpha- 
betic order. 

merely one use of a  variable  input. For each guide basic 
group,  the column  headed ‘SLE (Signal-Load-Equiva- 
lent) records the signal loads necessary for  the simplified 
expression demanding  the least number of transistors. 

Reduction of signal loads and feedback circuits 

As Table 1 reveals, three  commutators  are  required in 
only twenty-six of the eighty cases. The remaining fifty- 
four can be achieved with less than three. No tacit inver- 
sion of signals has been presupposed, and only one kind 
of logical device has been assumed. We have  not weighed, 
however, the extralogical  equipment needed. It is felt that 
the  latter, by comparison with other approaches,  should 
not prove  too  considerable,  since  the purely logical ele- 
ments involved are so few. In particular, we have not 
specified how the logic is accomplished in time, and have 
not indicated possible time delays. 

Several  pertinent  questions,  however, still remain. In 
setting up  Table 1, our chief concern was to minimize 
the transistors necessary for each guide basic group.  Little 
attention was given to signal loads.  As the table shows, 
thirty of the eighty minimal  circuits require  extra signal 
loads. In Schematic  Diagram 1, therefore, no  extra signal 
loads are permitted; and a  re-examination is made of the 
thirty load-redundant  situations. 

Some new notation  must now be introduced.  Consider 
the following inscriptions: ‘E ’, ‘E ’, ‘ ’, 
‘ r’, and ‘ ’. The symbbl ‘ E”, designates 
a commutator biased to achieve ‘ E and ‘ V ’. ‘ E ’ is 

7 

realized at  the  output graphically portrayed by the  upper 
horizontal  arrow. ‘ V ’ is obtained at  the  other  output. 
Should only one of the two outputs be required, the 
superfluous arrow need not, of course, be recorded. The 
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ABFH.  ACDH.  ACGH,  AEFH. 3 4 
AEGH 

r ACFH,  ADEH 1 2  
1 3  

ADGH,  AFGH 2 3  

BCEF, BCEG 2 3  
BCDG,  BDEF,  BEFG,  CDEG. 3 4 

r* BEFH,  CEGH 3 3  
2 3  

BDEG.  CDEF 1 2  

CEFG 

" --' BCGH,  BDEH,  BEGH,  CDEH, 2 4 

CDFG, DEFG 
CDGH, EFGH 

2 3  
1 1  

BFGH,  CDFH,  CFGH,  DEFH, 3 4 

CEFH 

DEGH 

- (  CL I 2 3  

BDEFG,  CDEFG 3 4  
P I  ( 4 V 3  BCDGH.BDEFH,  BEFGH. ' 3 3 

CDEGH,  CEFGH 
BDEGH,  CDEFH 3 4  

P I ( q V r )  CDFGH. DEFGH 2 3  
ABCDEG,  ABCEFG 1 2  
ABCEFH,  ABCEGH 2 3  
ABDEFG,  ACDEFG , 2 3  



Figure I The Rutz commutator trc 
Shown here is a "hook" 
which will perform binary 
other logical operations. 

COLLECTOR 
COLLECTOR ONE 

EMITTER I 
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symbol ‘ 1“1, ’ indicates  that ‘ V ’ is obtained  at  the 
upper-arrow  output; ‘ ’ is realized at  the  lower. ‘ 5’. 
on  the  other  hand,  delineates a transistor  biased  to 
achieve ‘ - ’. For example,  where ‘ p ’ represents  the  sole 
variable  input, ‘ p ’ is realized  at  the  upper-arrow  output; 
and  the ‘ p ’ itself,  at  the  lower. ‘ ’ and ‘ ’ 
as the  two  notations  show,  designate  transistors  adapted 
to  achieve ‘ 1 ’ and ‘ I ’ respectively. 

Consider  the  following  graphic  expression: 

From  the  discussion  just  concluded, it can  be  seen  that 
q = p ’, ‘ r ’, and ‘q’ represent  the  three  variable  inputs 

of the  commutator  denoted  by ‘a’. Simple  truth- 
table  analysis will reveal  that, for  such  components,  the 
ternary  connective ‘a’ generates  an  expression  with 
the  label ‘ABCF’. 

‘ ”  

Next, let us  examine a different  formula: 

It is clear  that ‘ q - r ’ and ‘ p L ( q  ‘f r ) ’  represent  the  two 
variable  inputs of the  transistor  symbolized ‘ L’. 
Since ‘ V ’ functions as the  main  connective,  an  expression 
with  the  label ‘ABH ’ is obtained. 

One final point  should be touched.  The  thirty  expres- 
sions  which  comprise  Schematic  Diagram 1 are  num- 
bered in consecutive  order by the  numeral  preceding  the 
first dash of their  respective  headings. The  numeral  and 
label  following  the first dash  indicate  which  guide  basic 
group of Table 1 is under  consideration. 

It  can  be  seen,  that, if  no  redundant  signal  loads  arc 
allowed,  three  commutators  are still sufficient for all but 
the five starred  cases:  that is, 8-23-BCF,  10-26-BDG, 
18 -49-BDGH,   22 -56-ABCFH,  and 2 4 - 5 9 - A B D G H .  

These five, insofar as we  have  determined,  require  four 
transistors. 

An  additional  problem of some  interest  concerns  the 
applicability of Table 1 and  Schematic  Diagram 1 to  full 
adders of a different  type  from  the  Rutz  binary  commu- 
tator.  It is clear  from  the  Introduction  that  the  latter  de- 
vice, although  quite  simple, is logically  more  versatile 

than  the  usual  full  adder in that it can  be  adjusted  to 
achieve ‘ .1 ’ and ‘ I ’. Every  expression in Table 1 or 
Schematic  Diagram 1 ,  however,  which  docs  not  contain 
‘ 1 ’ or ‘ 1 ’ can be accomplished along the  lines  already 
indicated  through  the use of any  kind of full  adder. 

A  direct  examination of the  two  tables  reveals  that 
three  full  adders as such,  not  necessarily  commutators, 
are sufficient to  handle  seventy-eight of the  eighty  guide 
basic  groups. In fact, less than  three  are  adequate  in 
thirty-five  cases. The  two  remaining  groups, BDH and 
BCDFH, can  be  realized  with  four  full  adders.  It  might 
be noted,  however,  that, i f  either  one  of  the  conncctives 
’ 1 ’ or ‘ I ’ were  added,  the  two  groups in question  could 
be  achieved  with  only  three  physical  devices.  Table 1 
records ‘ p .1 ( q  f ) ’  for BDH,  and ‘ p I ( q  V f ) ’  for 
BCDFH. The  two  groups  can  also  be  accomplished  re- 
spectively  by  the unlisted expressions  which  follow: 

A further  question of some  importance  concerns  the 
use of commutator  hookups  involving  feedback.  These 
often  possess  unique  logical  properties. 

Consider  the  following  expression: 

If  0 is assigned to ‘ p ’ and 1 to ‘ q ’, an  oscillatory  situa- 
tion  arises. The  graphic  arrow ‘ ’,symbolizing  both an 
output  and  an  input,  cannot  consistently  be  allotted  either 
1 or  0. I f  1 is assigned,  simple  reflection  shows  that 0 is 
generated  at  the  arrow  in  question. If 0 is assigned, 1 is 
obtained.  There is thus a fluctuation  between 1 and 0, so 
that  any  physical  counterpart of the  above  expression 
would  presumably  oscillate. 

s 

A  great  many  commutator  feedback  circuits  are  of  an 
oscillatory  nature. The  input  conditions  which  lead  to 

~~ 

123 
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oscillation vary  from  hookup  to hookup.  Consider, for 
example, the two graphic  formulas below: 

The first expression involves fluctuation  just  in that case 
where 1 is assigned to ' p ' and 0 to ' q ' and ' r '. For the 
second expression, two input  states entail  fluctuation: 
first, where 0 is assigned to ' q ', and 1 to ' p ' and ' r '; 
second,  where 0 is assigned to ' r ', and 1 to ' p ' and ' q '. 

Another somewhat distinctive characteristic of feed- 
back hookups  can be  seen from  the following non-oscil- 
latory  expression: 

124 
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If either ' p ' or ' q ' is assigned 1, clearly  both of the con- 
necting output-input arrows, that  is, ' -' and 
'1 ', must be allotted 1. Should ' p ' and ' q ' be 
assigned 0, however, an unusual  circumstance arises. The 
two arrows in question can with  full consistency receive 
like assignments of 1 or 0; 1 will tend to  perpetuate 1, 
and 0,  0. Since the two output arrows  (inscribed ' + ') 
are in part a function of ' -' and ' 1 ,  ', this 
formula,  as against the  formulas  of earlier sections, is 
logically ambiguous. 

Let us imagine, however, a physical realization of the 
foregoing expression. The circuit may be so fixed that, 
before each new group of signals, all of the non-feedback 
inputs,  including biases, are  cut off, that is, reset-to-zero. 

The two wires, graphically  represented by ' ' and 
' l', will also cut off, and stay off for  the trouble- 
some  input condition  correlative with the assignment of 
0 to ' p ' and ' q '. As a result, the suggested circuit can 
receive a definitive truth-table  representation. 

There  are  many  such ambiguous  feedback expressions, 
some oscillatory and some  not. As the  circuit  application 
varies, however, the need for zero-reset may or may not 
prove  disadvantageous. The  formulas listed below are 
typical. We have  indicated, after  each  output arrow, the 
basic group obtained on  the assumption of zero-reset. 
The  starred cases are of most interest. 

ABDFG" 

ACDEFH 

' ABCFG* 

XBDGH* 
DEFG 



It should  be  remembered that  in  Table 1 three  commu- 
tators, as  against two, were  needed to achieve  either 
ABDFG o r  ABCFG. In  Diagram 1, where no  extra signal 
loads  were admitted,  four  commutators were necessary 
for either ABCFH or ABDGH. 

Ambiguous feedback  circuits  without  zero-reset  should 
not  be  disregarded,  however.  Such hookups  are indeter- 
minate, but only insofar as  their  immediate  condition is 
a  function of more  than  the  concurrent non-feedback 
inputs. The  prior logical state of the circuit is also rele- 
vant.  As  a  result, memory is involved. 

Let us suppose, for example, that  the eight feedback 
formulas already encountered in  this  section  represent 
eight  circuits so operated  that  input signals follow one 
another  without break. If a list of the temporally ordered 
signals  correlative with assignments of 1 or 0 to ‘ p ’, ‘ q ’, 
and ‘ r ’  were  provided, it is possible that we might for 
each step determine  the progressive logical states of the 
hookup.  In some cases, a signal might be trapped in the 
feedback  lines at  one  time step  which would influence 
the  operation of the circuit at  another.  The  added  prop- 
erty of memory might  then be used to advantage. 

A  somewhat  analogous possibility can be  seen from 
the following: 

p s 2  4 

If 0 is assigned to ‘ p ’ and 1 to ‘ q ’, the feedback arrow 
‘ v’ must  fluctuate between 1 and 0. Let us assume 
however,  a physical realization of the above. The circuit 
as a whole might be so adjusted that a properly  shaped 
input signal could activate  the line symbolized ‘a ’ 
and  terminate before oscillation begins. The line in ques- 
tion would then  contain  a  self-perpetuating on signal. 
This signal, combined  with  a later  on signal at either of 
the two  external  inputs would generate  a positive signal 
at  the  output symbolized ‘4 ’. Such a hookup, if it 
could  actually be made  to work, would function some- 
what like a flip-flop. The use of two  variable  inputs, as 
against one, however, might permit a more extended 
application. 

Consider, for example, the circuit  indicated below: 

Let us suppose that  the positive input signals are regu- 
lated in  the  manner just  described and  that they  occupy 
uniform time steps. For  each time  step, the  inputs repre- 
sented by ‘ p ’ and ‘ q ’ might both receive a positive 
signal. Positive signals would then be generated at  the 
output symbolized ‘-’ three  out  of every four  time 
steps. 

One  further  topic will be  mentioned briefly in  this 
section. The  Rutz  commutator is a single-emitter, ampli- 
tude-sensitive device. It  has been  described as having 
three inputs; and, in fact,  three  separate  input wires are 
directed into  the emitter  when it is used as  a commutator. 
The action of the transistor is a function of the  amplitude 
of the  input signal. Consider the  table below, which is a 
variation of the  table shown  in the  Introduction: 

P q r  CARRY SUM 

0 0 0  0 0 

0 0 1  
0 1 0  0 1 
1 0 0  

0 1 1  
1 0 1  1 0 
1 1 0  

1 1   1 1 1  1 

It  can be  seen that  the ‘SUM’ and ‘CARRY’ outputs, 
taken together,  represent the first four binary numbers  as 
a result of the superposition of the amplitudes of the 
input signals. Note  that  the  three cases where only one 
input is on, which are distinguishable from a logical point 
of view, are  lumped together  as giving the  same binary 
number  output.  This is also the case where exactly two 
inputs  are  on. 

Consider,  then the following expression: 

25G X 

Y 

Z 

The  output denoted by ‘ X  ’ will be on if and  only if 
exactly  one,  three, five, or seven of the  external  inputs 
(symbolized ‘- ’) are on. The  output denoted by ‘ Y ’ 
will be on if and only if exactly two, three, six, or seven 125 
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of the  inputs  are on. The  output denoted  by ‘ Z ’ will be 
on if and only if four or more of the  inputs  are on. This 
information is recorded in  the  table below: 

Inputs On Z 

None 0 
One 0 
Two 0 
Three 0 
Four 1 
Five 1 
Six 1 
Seven 1 

0 

X 

0 
1 
0 
1 
0 
1 
0 
1 

- 

It can be  seen that  the first eight  binary numbers  are 
accomplished. 

”Black-box“ arrangements 

Another possible use of the  Rutz transistor is in the  fab- 
rication of larger  building blocks which are themselves 
multipurpose elements. Consider the  arrangement sug- 
gested below: 

The  three symbolized full adders  can be  placed inside 
an imaginary  “black  box”  with six wires entering and 
three coming out.  An  apt selection of input wires to  carry 
biases and variable inputs will enable  the box  in  question 
to accomplish numerous logical operations. In  fact,  as 
Table 2 will show, more  than half of the eighty guide 
basic groups of Table 1 can be  achieved  without extra 
signal  loads. 

In  Table 2, the column  headed ‘Code Equivalent’ re- 
quires  some  explanation. The six input wires are  symbol- 
ized and  ordered by the circled numerals above. The 
code designation ‘ p q 1 r 0 0 Y ’, opposite the label ‘ A ’, 
signifies that guide  basic group A is obtained at  the  out- 

126 put  denoted by ‘ Y ’. The  input conditions are also speci- 

fied. ‘ p ’, ‘ q ’, and ‘ r ’ represent the variable  inputs at 
the first, second, and  fourth wires respectively. The  third 
wire receives a positive bias; the fifth and sixth wires, a 
negative one. 

From  Table 2 it can be seen that  the fixed combination 
just  shown  (typical of many  such  arrangements) is ade- 
quate without extra signal loads for forty-five of the 
eighty guide basic groups. Thirty-three of the groups 
obtained  represent  full ternary functions. 

It should be noted, however, that  the adjustments to 
achieve the various logical functions are external.  Con- 
sequently, the  Rutz transistor  operates merely as a  full 
adder,  and is not alternatively adapted  to realize ‘ C ’ or 
‘ I ’. 

Next,  let us examine  a different expression shown 
graphically below: 

/ 

The  hookup indicated is adequate  for all eighty guide 
basic groups, if extra signal loads are permitted  in twenty- 
two cases. Table 3 will provide the particulars. 

The  column headed ‘Code Equivalent’ is, of course, 
similar to  that of Table 2.  The twenty-two special cases 
are starred. We have not listed the  concurrent outputs, 
but these can be easily determined by the reader. 

It is probable that even more effective combinations of 
three  or  four  Rutz transistors  can be worked out. Never- 
theless, the two examples taken do indicate the broad 
adaptability of such “black-box” arrangements.  We  have 
not listed the  quaternary  nor  quinary connectives patently 
obtainable, but we have illustrated  in  some  detail the 
cumulative way in which many-variable  functions in- 
clude lesser ones. It is the  latter logical phenomenon 
which  underlies the  great versatility of multipurpose bias 
devices. 

In closing Part I, the  author wishes to  thank R. F. Rutz 
for  his generous assistance. A. Cobham, H. Fleisher, 

M. K. Haynes, L. P. Hunter, R. W. Landauer,  and J. A. 
Swanson have  made  many helpful suggestions. 
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Table 2 Generation of Functions by Arrangement No. 1 

Guide Basic Group  Code  Equivalent  Concurrent  Outputs 

(1) - (ABCDEFGH) p q 0 r 0 0 Y X ABCFG, Z BCDE 

(2) A p q 1 r 0 0 Y X BCDEH, Z DEFG 

p 1 0 q r 0 Y X ACDEFH, Z ADFG 

q 0 0 0 0 r Y X CDEF, Z - (ABCDEFGH) 

p q 1 0 0 r Y X BCEH, Z ABCEFG 

p q r 1 0 1 X Y ABCDEFG, Z DFGH 

p q O O O r Y  X A D F G , Z A E  

p l O O O r Y  X A C F H , Z A C E G  

p 1 0 q r 1 X Y ABCDEFH, Z ADFG 

(14) DH 1 1 1 p q 0 X Y ABCEFG, Z ADEH 

( 1 5 )  ABC p q 0 1 0 r Y X DEFG, Z BCDFGH 

(16) ABD p l O q O r Y  X C E F H , Z B C F G  

(17) ABG q r 1 p 1 1 X Y ABCDEFGH, Z ACEH 

(19) ADF q r 1 p 0 1 X Y ABCEGH, Z BDFG 

(24) BCH p q 0 r 1 1 X Y ABCDEFG, Z AFGH 

(28) BGH q r 0 p 0 1 X Y ACDEF, Z BCEG 

(31) ABCD r 1 0 0 0 0 Z X EFGH, Y - (ABCDEFGH) 

(32) ABCE p 0 0 q 1- r Y X ADFG, Z CDGH 

(34) ABCH p q 1 r 1 1 Z X ADE,  Y ABCDEFGH 

(38) ABGH q l O r l p Z  X B C F H , Y A C D E G  

(39) ADFG p 1 0 q r 1 Z X BG, Y ABCDEFH 

(40) ADFH q r 0 p 1 1 Z X CEH, Y ABCDEFG 

w 

8 
8 
5 r (41)   BCDE p q 0 r 0 0 Z X ABCFG, Y - (ABCDEFGH) 

Guide Basic Group  Code  Equivalent  Concurrent  Outputs 

(44) BCEH 

(45) BCFG 

(46) BCFH 

(47) BDFG 

(48) BDFH 

( 5 0 )  DFGH 

(51) ABCDE 

(52) ABCDF 

( 5 5 )  ABCFG 

(57) ABDFG 

(62) BCDEH 

(65) BCFGH 

(67) ABCDEF 

(68) ABCDEH 

(69) ABCDFG 

(70) ABCDFH 

(71) ABCFGH 

(73) BCDEFG 

(75) BCDFGH 

(76) ABCDEFG 

(77) ABCDEFH 

(80) ABCDEFGH 

p q r O O l X  

p l 0 q O l Z  

q l O r l p X  

q r l p O l Z  

p l O O 0 O X  

p q r l O l Z  

r O O p q l Y  

p l O q l r Y  

p q O r O l Y  

q r O p  1 OX 

p q l r O O X  

p q l r l O X  

9 1 1 1   1 r Y  

p q l r O l Y  

p q O l l r Y  

p l O l l r Y  

r l O p q O X  

p q r l O O X  

p q 0 l O l Z  

p q O r l l Y  

p l O q r l Y  

p q l r l l Y  

Y ADFG,  Z ABCE 

X CG,  Y ABDEFH 

Y ACDEG, Z ABGH 

X ADF,  Y ABCEGH 

Y - (ABCDEFGH),  Z ACEG 

X A H ,  Y ABCDEFG 

X AFGH,  Z BCFG 

X BEGH, Z ADEH 

X DEH,  Z BCDE 

Y CE,  Z ADFH 

Y A ,  Z DEFG 

Y ADE,  Z ABCH 

X ABGH,  Z ABCDEFGH 

X AFG,  Z DEFG 

X BCEH, Z A E  

X BDEG, Z ACEG 

Y E ,  Z ADFG 

Y A ,  Z DFGH 

X DH, Y ABCEFG 

X BCH, Z AFGH 

X BG,  Z ADFG 

X ADE,  Z ABCH 



Table 3 Generation of Functions by Arrangement No. 2 

Guide Basic Group Code  Equivalent 

( 1 )  - (ABCDEFGH) l O O p q r O O Z  

( 2 )  A 

( 3 )  B 

* ( 4 )  D 

* ( 5 )  H 
( 6 )  A B  

( 7 )  A D  

(8) A H  

( 9 )  BC 
( 1 0 )  BD 

( 1 1 )  BG 

( 1 2 )  BH 

( 1 3 )  DF 

( 1 4 )  DH 

( 1 5 )  ABC 

( 1 6 )  ABD 

( 1 7 )  ABG 

* (  18)  ABH 

( 1 9 )  ADF 

* ( 2 0 )  A D H  

* ( 2 1 )  BCD 

* ( 2 2 )  BCE 

( 2 3 )  BCF 

( 2 4 )  BCH 

( 2 5 )  BDF 
( 2 6 )  BDG 

" ( 2 7 )  BDH 

( 2 8 )  BGH 

* ( 2 9 )  DFG 

* ( 3 0 )  DFH 

( 3 1 )  ABCD 

( 3 2 )  ABCE 

* ( 3 3 )  ABCF 

( 3 4 )  ABCH 

( 3 5 )  ABDF 

( 3 6 )  ABDG 

* ( 3 7 )  ABDH 

( 3 8 )  ABGH 

( 3 9 )  ADFG 

( 4 0 )  ADFH 
128 

l O O p q r O O X  

O O O p l q r O X  

P q r r O p l q W  

P 4 0 P q r l 1  w 
O O O q O p O r X  

p q l r O O O O Y  

p O O q r l O l  W 

O O O p q r l O X  

p l O r O O O O Y  

0 0 0 p l q r l W  

q r O p l l O O Y  

q r l p l l O O Y  

l O O p q l 0 O Y  

O O O p q l O r X  

O O O p l q O r X  

1 0 0 q r p l l W  

l O O q r p O p W  

l O O q r p O l  W 
r O O p q r l 1  W 
O O O q r p O q W  

p l O q r p l O X  

p l O q l r l O X  

O O O p q r l l  W 

p l O l l q r O X  

r l O p O q O 1  W 

q l O p l r l q W  

O O O q r p O l  W 

O O O p q r O r W  

p l O r O q O r W  

O O O p O r O q Y  

p q r O O O O O Z  

q l O p l r O q X  

l O O p q r l O Y  

p l O q r O O O Y  

p l O q l r l O Y  

P q r q O P l r Y  
q l O r O O O O W  

O O O p l q r O Y  

O O O q r p l O Y  

Guide Basic Group Code  Equivalent 

( 4 1 )  BCDE 

* ( 4 2 )  BCDF 
( 4 3 )  BCDH 

( 4 4 )  BCEH 

( 4 5 )  BCFG 

( 4 6 )  BCFH 

( 4 7 )  BDFG 

( 4 8 )  BDFH 
'$ ( 4 9 )  BDGH 

( 5 0 )  DFGH 

( 5 1 )  ABCDE 

( 5 2 )  ABCDF 

* ( 5 3 )  ABCDH 

* ( 5 4 )  ABCEH 

( 5 5 )  ABCFG 

( 5 6 )  ABCFH 

(57) ABDFG 

( 5 8 )  ABDFH 

( 5 9 )  ABDGH 

* ( 6 0 )  ADFGH 

* ( 6 1 )  BCDEF 

( 6 2 )  BCDEH 

* ( 6 3 )  BCDFG 

* ( 6 4 )  BCDFH 

( 6 5 )  BCFGH 

* ( 6 6 )  BDFGH 

( 6 7 )  ABCDEF 

( 6 8 )  ABCDEH 

( 6 9 )  ABCDFG 

( 7 0 )  ABCDFH 

( 7 1 )  ABCFGH 

( 7 2 )  ABDFGH 

( 7 3 )  BCDEFG 

( 7 4 )  BCDEFH 

( 7 5 )  BCDFGH 

( 7 6 )  ABCDEFG 

( 7 7 )  ABCDEFH 

* ( 7 8 )  ABCDFGH 

* ( 7 9 )  BCDEFGH 

( 8 0 )  ABCDEFGH 

O O O p q r O O Y  

p q r q O r O l Y  

r l O p q l O O Y  
p q l r O O O O W  

O O O p O r O q W  

0 0 0 r l q O p W  

l O O q r p O O Y  

p 0 0 1 0 0 0 0 w  

p q r 1 0 r O p W  

p O O q r l O l Y  

O O O l O p q r X  

O O O p l q l r X  

1 0 0 q r p l q W  

p 1 0 q r p 0 0 W  

O O O p q r O l X  

p l O r O q O l X  

O O O q r p   1 0  W 

p l O O O q r l X  

r l O q l p l O W  

p l O q r p l O W  

O O O q r p  l p  W 

l O O p q r O O W  

r O O p q r O O  W 

q l O p O r O q W  

1 O O p q r l O W  

p l O q l r l q W  

q r l O O O O O Z  

l O O p q r O l X  

p q O r l O O O Y  

p l O r l O O O Y  

O O O r l p q O W  

q r O p l l O O W  

p 0 0 q r 1 0 0 W  

q r l p 1 1 0 0 W  

1 o o p q 1 o o w  

O O O p q r l l X  

O O O p l q r l X  

P q r r l P O q W  

p q l P q r O O W  
1 l O p q r O O Z  
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