(4-18-4ABH)

(3-17-ABG)

(2-16-ABD)

q—4 = 3 q — q 14
r—YV . R r l
q =
14 Y r Y)
19-ADF) (6-20-ADH) (7-22-BCE) (8-23-BCF)*
q = p
r \% q

P —

Diagram 1 Three-variable logical functions (9-24-BCH)
Graphic representation of three-variable logical p v
functions which can be achieved without extra signal q .
loads, using the Rutz commutator transistor. In
Table 1 these functions require extra signal loads.
An explanation of the labeling is found in the text.

<

(13-33-4ABCF)
p —

-28-BGH)
9 —¥

¥F—

(12-29-DFG)

~
|
<l

i-37-ABDH) (16-42-BCDF)
P —-l - " P r
gV
3-52-ABCDF) (20-54-ABCEH) (21-55-ABCFG)
q V- —_ P —
. q —
p — =
r 4V .
3-57-ABDFG) (24-59-ABDGH) * (25-60-ADFGH) (26-61-BCDEF)
q ¥ P — l
r .
q E= v
P — Y r \' + L
7-62-BCDFEH) (28-63-BCDFG) (29-65-BCFGH) (30-71-ABCFGH)
14 = — p— ¥ r—= r — v
a4V M a1 " r gV -

IBM JOURNAL * APRIL 1957

B. Dunham

The Multipurpose Bias Device®

Part |

The Commutator Transistor

An article on the design and development of the
Rutz commutator transistor will be included in
a subsequent issue of the IBM Journal of Re-
search and Development.

Abstract: It is suggested that multipurpose devices
will provide economy in both number and assort-
ment of basic computer building blocks. A study is
made of the Rutz commutator transistor largely in
application to three-input, one-output logical situa-
tions. A basis is thereby provided for a more
general analysis to be published at a later date.

General introduction

In 1938, Shannon indicated a correlation of truth-func-
tional expressions with electrical circuits. Since that time
much effort has been made to devise general mechanical
procedures for simplifying logical formulas. One major
difficulty, however, is the limited application of pro-
posed solutions. Techniques which minimize expressions
formed from one set of functions may not prove rele-
vant if another set is assumed. As a result, the primary
logical problem is to decide which groups of truth-
functional elements are desired rather than to formulate
rules of simplification for a given set.

The correspondent practical concern is to determine
which types of physical device, correlative with logical
particles, can be expected to serve as efficient building
blocks for machines. Material considerations are espe-
cially pertinent. It is, for example, quite advantageous to
diminish the number of devices used. On the other
hand, it is important to minimize the kinds of machine
element required.

If many different classes of devices are available, each
type accomplishing a different truth-functional connec-
tive, the number of devices requisite for a given situation
should prove relatively small. If, however, the variety of
machine elements is so limited that only a few logical
particles are achieved directly, the number of devices
needed may prove unduly large.

The alternative we wish to suggest is that multipur-
pose devices be used. A multipurpose logic device is

*Portions of this paper were presented to the International Symposium
on Theory of Switching at Harvard University, April 4, 1957.

117

IBM JOURNAL * APRIL 1957

118

one which can be adjusted to realize directly a diversity
of truth-functional elements. Economy in both number
and assortment of basic machine building blocks might
then be obtained. Ease of adjustment is, of course, pre-
requisite.

A bias device is one which achieves its logical func-
tions by on-and-off biasing of inputs. An input is said to
be biased if it is so fixed as to be always on or always off.
Since the latter method of adaptation is both direct and
flexible, multipurpose bias devices are of much interest.

A full adder can be regarded as a multipurpose bias
device. Consider the following table:

4 q r SUM CARRY
1 1 1 1 1
0 1 1 0 1
1 0 1 0 1
0 0 1 1 0
1 1 0 0 1
0 1 0 1 0
1 0 o0 1 0
0O 0 o 0 0

‘p’, “q’, and ‘r’ may be thought of as denoting the
three variable inputs. ‘SUM’ and ‘CARRY’ indicate the
sum and carry respectively. The eight possible input
states are shown symbolically by the three columns of
1’s and O’s on the left. For example, the top horizontal
row signifies that all three inputs are on, since 1 is as-
signed in every case. The next row down signifies that
the first input is off and the other two on, since O is
assigned to ‘p’, and 1 to ‘q’ and ‘r’. The columns
under ‘SUM’ and ‘CARRY’, which indicate the resultant
outputs, are functions of the three variable inputs. As
the table shows, 1 is assigned to ‘SUM’ if and only if
one or three of the variable inputs are on. If exactly two
or three of the variable inputs are on, 1 is assigned to
‘CARRY",

It should be noted that the logic of the present dis-
cussion is 2-valued, in that 1 and O are the only two
values assigned throughout. Such terms as singulary,
binary, ternary, quaternary, on the other hand, are used
here to denote the number of variable inputs.

Let us suppose the input represented by ‘r’ is so
adjusted as to be always off. Then ‘ p’ and ‘ ¢’ indicate
the only variable inputs. Under such conditions, as the
bottom half of the table shows, ‘SUM’ is assigned 1 if
and only if 1 is assigned to either ‘p’ or ‘g’, but not
both. The binary exclusive ‘or’ (symbolized ‘ ¥) is thus
achieved. Further, as the table records, ‘CARRY’ is
assigned 1 just in that single case where 1 as assigned
to both *p’ and ‘q°. The connective ‘and’ (symbolized
¢ «?) is therefore realized.

Suppose, however, the input represented by ‘r’ is so
regulated that it is always on. The top half of the table

IBM JOURNAL ¢ APRIL 1957

reveals that 1 is assigned to ‘SUM’ just in those cases
where both ‘p’ and ‘g’ receive like assignments of 1
or 0. The binary function ‘if-and-only-if’ (symbolized
¢ =) is thus accomplished. On the other hand, ‘CARRY’
is assigned O just in that case where both ‘p’ and ‘g’
are assigned 0. The inclusive ‘or’ (symbolized ‘V’) is
therefore realized.

The singulary operator ‘not’ (symbolized ‘ — ") is ob-
tained by biasing two of the inputs. If constant 0’s are
assigned to ‘g’ and constant 1's to ‘r’, ‘p’ will repre-
sent the only variable input. Under such conditions, as
the table indicates in the third and fourth rows down,
‘p’ and ‘SUM’ will in every case receive opposite as-
signments of 1 and 0.

There is considerable advantage in generating ‘ ¥’ and
‘=", The two connectives can in many cases be substi-
tuted into an already minimized expression assembled
logically from ‘—’, ‘¢’, and ‘V’ in such a way as to
reduce the number of full binary functions required; a
full binary connective is one which cannot be reduced to
a singulary function. In fact, ‘¥’ and ¢ =’ are the only
two of all the possible binary connectives which can be so
used. The expression ‘— (peg) * (p V g)’, for example,
can be written simply as ‘p ¥ q’; and the expression
‘(prq)V—(pVq)as‘p=q’

An appropriate interchange of ‘¥’ and ‘ =’ will also
enable many denial signs to be removed. Any expression
or part of an expression in which ‘¥’ and ‘ =’ are the
only non-singulary functions found is equivalent to some
expression of equal length from which ‘—’ has been
eliminated. ‘ (p ¥ q) =r’, for example, is equivalent to
‘=g =1

It should further be noted that the ternary connectives
‘SUM’ and ‘CARRY’ can each be used to reduce in size
many formulas assembled exclusively from singulary
and binary truth-functional elements. For example, where
‘p’, “q’ and ‘r’ represent the three variable inputs,
‘CARRY’ is equivalent to the expression ‘ (g+r) ¥ (p*
(g¥r))’. Consequently, it can be seen that devices
which achieve directly functions involving more than two
variable inputs are of substantial interest.

R. F. Rutz, of these laboratories, has developed a two-
collector transistor which not only operates as a full
adder, but can also be adjusted to achieve directly the
binary functions ‘neither-nor’ and ‘not-both’ (symbolized
¢!’ and ° |’ respectively). |’ is assigned 1 just in that
case where both component variables are assigned 0. ¢ | *
is assigned O just in that case where both component
variables are assigned 1. Since all of the full binary com-
mutative connectives are obtained (‘¢’,‘V’, ‘¥’ ‘=",
‘1% ¢]"), we may suitably describe the device as an
absolute binary commutator (see Fig. 1, p. 122).

The addition of ‘!’ and ‘| > will in no case permit a
reduction in the number of full binary connectives requi-
site for an already minimized expression. Their use will,
of course, in many cases permit a reduction in the num-
ber of denial signs needed. The formula ‘5 (g V r) ’, for
example, is equivalent to the expression ‘p{ (gl r) .

The binary commutator is patently a versatile logical

element. Consequently, a careful study of its truth-func-
tional potentialities will do much to indicate the capacity
of multipurpose building blocks as such. Also, a basis will
be provided for comparison with other devices.

In Part I, which follows immediately, we examine the
commutator, largely in application to three-input, one-
output situations, We do not consider the transistor’s
physical performance, since a separate paper will be
published by Rutz in a forthcoming issue of this journal.

Part| The commutator transistor

It should be noted, however, that the adaptation to
achieve ‘|’ or ‘|’ involves more than mere biasing of
inputs. Load resistances, for example, may be modified.

In Parts II and III, to be published later, we shall
present a brief analysis of the relative logical efficiency of
different types of many-variable functions. We shall then
attempt to formulate a more general philosophy of “mul-
tipurpose logic”, and to suggest possible lines of future
investigation.

Application to total three-variable functions

From the schematic letters ‘ p°, ¢ °, and ‘ r’, an infinite
number of different truth-functional formulas can be as-
sembled. These can be broken down, however, into 256
non-overlapping groups of equivalent expressions. A
convenient way of labeling these groups, which we shall
call basic groups, is needed.

Consider the following expression and skeleton truth
table:

p ¥ Vi)

rt o0 1 1 1

o 1 1 o 1 |B
1 0 1 1 0

o 1 1 0 o0 |D
1 0 0o 1 1

0 0 0o o0 1

1 1 0 1 o0 |G
0 0 0 0 0

Part of the table is arbitrary and part not. Starting de-
liberately with an assignment of 1 to each schematic
letter occurrence, we have alternated 1 and O singly under
‘p’, in pairs under ‘g’, and in fours under ‘r’. The
column under ‘¥’, the main connective, shows that
‘pY¥(rV(ps+q))’, taken as a whole, is assigned 1 in
exactly three cases: first, where O is assigned to ‘ p’, and
1to ‘q’ and ‘r’; second, where 0 is assigned to ‘ p * and
‘q’and 1 to ‘r’; third, where 1 is assigned to ‘ p’, and
Oto‘g’and‘r’.

The column of letters at the right of the table, that is,
‘B’,*D’, and * G, indicates the method of labelling to
be used. ‘p’, ‘q’, and ‘r’ can be selected to represent
the variables of any three-input situation. 1’s and 0’s
can be assigned to schematic letters in the arbitrary man-
ner just shown. Under such truth-table stipulations, an
expression ¢ will be logically equivalent to ‘p¥ (rV
(p*q))’ if and only if ¢ is assigned 1 in just the second,
fourth, and seventh rows down. The eight truth-table
rows, in order from the top, can aptly be designated by
the letters ‘A °,*B°,*C’,*D",‘E’,*F’,*G’,and ‘H".
The label * BDG ’, then, will be understood to denote the
whole class of expressions which, under the specific con-
ditions, are assigned 1 in the three rows designated by
‘B’, *D’, and ‘G ’. In such a manner, 255 of the 256
basic groups can be provided with unique labels. The
one remaining group, in which the resultant truth-table
columns contain no 1’s whatsoever, can be appropriately
labelled ‘ — (ABCDEFGH) .

We shall now present as Table 1 an extended list of
truth-functional expressions correlative with electrical
circuits. As will be evident, no more than three, and in
most cases one or two, Rutz binary commutators are
needed to handle the purely logical ingredient of any

1BM JOURNAL * APRIL 1957

119

120

three-input, one-output situation.

It should be emphasized that no prior inversion of
signals is presupposed, since we wish every relevant
logical operation to be patent. All 256 cases need not be
considered, however. The 256 groups earlier described
can be conveniently reclassified as eighty non-overlap-
ping interchange groups. An interchange group is a
collection of expressions which are said to be interchange
equivalent. A formula ¢ is interchange equivalent to a
formula y if and only if either of the following conditions
is realized: (1) ¢ is truth-functionally equivalent to y;
(2) there is a formula ¢’, truth-functionally equivalent
to ¢, from which ¢ can be obtained by mere permutation
of schematic letters. For example, the expression
‘peqer’ is truth-functionally equivalent to the expres-
sion ‘pl (g | r)’. From the latter, ‘gl (p | r)’ can be
obtained by permuting ‘ p ’ and ‘ ¢ °. Therefore, although

\

In Table 1, the graphic symbols ‘D_.’ and * D_"

are used in place of ‘SUM’ and ‘CARRY’, respectively.

Unless otherwise shown, ‘p°, ‘q°’, and ‘r’ are under-
stood to denote the three inputs of an unbiased commu-
tator.

A modified notation, such as ¢ p*q E:r_’ ’
stipulates that ‘peg’, ‘p’, and ‘r’ represent the three
’ merely signifies that
both the sum and carry of a given transistor are utilized.
="’ indicates the
application of two commutators. The sum and carry of
the first, which is unbiased, serve as the two variable in-
puts for the second, which is biased to realize * =".

The number of transistors requisite for the logic of the
different expressions in Table 1 can easily be determined.

]

inputs. The inscription

<

For example, the expression l | _v

<

One need simply count the occurrences of ‘ — 7, “¢’, “ V>,
=000 ’,‘D—”, ‘E]_”, and ‘EE:’. For
example, the expression ‘(r=(pVgq))— (p+q)’
would require five transistors; , | (pegq)’, three.
The column headed ‘MRCE’ (Minimum-Rutz-Commu-
tator-Equivalent) records the smallest number of transis-
tors determined for each guide basic group. It is assumed,
of course, that the relatively trivial — (4BCDEFGH)
and ABCDEFGH require no commutators.

One further point should be mentioned. The term
‘three-input situation’ has been understood throughout to
denote any situation involving no more than three types
of variable input. The same variable input may be used,
therefore, a number of times. For example, the expres-
sion ‘(g *p) | (g ¥ r)’ shows that the input symbolized
by * g’ is used twice. Since inputs are also needed for ‘ p°
and ‘r’, a physical realization of the expression in ques-
tion would require four signal loads. A signal load is

IBM JOURNAL * APRIL 1957

not logically equivalent, ‘fege+r’and ‘gl (p | r)’ are
interchange equivalent.

One addendum is necessary, however. To simplify the
discussion, we assume that the formulas in question may
contain vacuous equivalent parts. ‘p V ¢’, for instance,
is taken as interchange equivalent to ‘ p V 7’, since the
two can be represented in turn as follows: ‘ (pV q) *
(rVF)’and‘(pVF) +(gVq)’

Every interchange group is composed of one, three,
or six of the 256 basic groups. Examination of any one
of the latter will serve for the total interchange group of
which that one is a part, since the results obtained can be
adjusted by a straightforward permutation of schematic
letters to the other basic groups involved. In each case,
however, we shall consider only the guide basic group,
that is, the basic group having the earliest label in alpha-
betic order.

merely one use of a variable input. For each guide basic
group, the column headed ‘SLE’ (Signal-Load-Equiva-
lent) records the signal loads necessary for the simplified
expression demanding the least number of transistors.

Reduction of signal loads and feedback circuits

As Table 1 reveals, three commutators are required in
only twenty-six of the eighty cases. The remaining fifty-
four can be achieved with less than three. No tacit inver-
sion of signals has been presupposed, and only one kind
of logical device has been assumed. We have not weighed,
however, the extralogical equipment needed. It is felt that
the latter, by comparison with other approaches, should
not prove too considerable, since the purely logical ele-
ments involved are so few. In particular, we have not
specified how the logic is accomplished in time, and have
not indicated possible time delays.

Several pertinent questions, however, still remain. In
setting up Table 1, our chief concern was to minimize
the transistors necessary for each guide basic group. Little
attention was given to signal loads. As the table shows,
thirty of the eighty minimal circuits require extra signal
loads. In Schematic Diagram 1, therefore, no extra signal
loads are permitted; and a re-examination is made of the
thirty load-redundant situations.

Some new notation must now be introduced. Consider
the following inscriptions: ‘ ’, ‘ ’, ‘E[: %
¢ ’, and * T . The symbol * *, designates
a commutator biased to achieve ‘= and 'V’ ‘=’ is
realized at the output graphically portrayed by the upper
horizontal arrow. ‘V ' is obtained at the other output.
Should only one of the two outputs be required, the
superfluous arrow need not, of course, be recorded. The

Table 1 Total Three-Variable Functions

LS6T THHdY « TYNINOL WEI

1zt

' Guide Basic Group First Simpliﬁcation | Simplification | Simplification D Simplification Interchange Equivalents MRCE SLE
(1)—(4BCDEFGH) p+ o 0
@4 prar 2 3
(3B pracr pliain CE 2.3
(4D —(pVa)er ar F,G 23
(5)H —((VaVr) pl(aVn) 2 3
(6) AB q-r AC, AE 1 2
(7) 4D re(p=gq AF, 4G 23
(8) AH e=9- = = 2 3
(9) BC re(p¥q) BE,CE 2 3
(10) BD per BF,CD, CG, EF, EG 2 2
(11) BG ¥ q) - (p¥D ,+p CF, DE 2 4
(12) BH prla=r) plia¥n CH,EH z 3
(13) DF Fela¥r) plla=r DG, FG 23
(14) DH — (Ve plgq FH,GH 1 2
(15) 4BC r(pVq) ABE, ACE 2 3
(16) ABD A pla g——] | , 4BF, ACD, ACG, AEF, AEG 2 4
(17) ABG (pVa)-(g=r ACF, ADE 3 4
(18) ABH r=(@VpeF) (:l:.,,) =2 ACH, AEH 3 4
(19) ADF (P=(q-1))*(@Vr [J -@Vr 4DG AFG 3 s
(20) ADH p=(q-(BV 1)) (D_.V’) = AFH, AGH 3 4
(21) BCD re—(p+q) r(pl @) BEF, CEG 2 3
(22) BCE (¥ (@) -(aVn O ea 3s
(23) BCF a¥ (e (gVr) BCG, BDE, BEG, CDE, CEF 3 4
(24) BCH r=@Ve)—(@-q) T¥@EVa)ilp-9 D—’l(P'q) BEH, CEH 3 5
(25) BDF pe(gVr pligin CDG, EFG 2 3
(26) BDG PY UV (pea)) BFG, CDF, CFG, DEF, DEG 3 4
(27) BDH pe(@vr) pligF) BFH, CDH, CGH, EFH, EGH 3 3
(28) BGH — (g p)r(g=r) (g+p)l(aVr) CFH, DEH 3 4
(29) DFG YOV —) =@V bpa) O elo 308
(30) DFH —(pV(ger) pligen . DGH,FGH 2 3
(31) ABCD r ABEF, ACEG (i} 1
(32) ABCE (@=r)¥ (pe(a¥n) L, 3
(33) 4BCF rE(PV(g=r)) p¥q m ABCG, ABDE, ABEG, ACDE, 2 4
ACEF
(34) ABCH r=(pVe ABEH, ACEH 2 3
(35) ABDF (@-rV=pV(g=r)) 4 T;H]__. ACDG, AEFG 2 3
(36) 4BDG Y P'4 57—] ABFG, ACDF,ACFG,ADEF, 2 4
ADEG
(37) ABDH (@Vp)=(q+r) ABFH, ACDH, ACGH, AEFH, 3 4
AEGH
(38) ABGH g=r ACFH, ADEH 1 2
(39) ADFG p¥avr o 13
(40) ADFH P=(q+r) ADGH, AFGH 2 3
(41) BCDE ¥ (peq) BCEF, BCEG 2 3
(42) BCDF @VI¥(-q) BCDG, BDEF, BEFG, CDEG, 3 4
) CEFG
(43) BCDH P a)¥ (V=g P%—1, seFH cEGH 33
(44) BCEH (p¥a) =r . 2 3
(45) BCFG P¥q BDEG, CDEF 1 2
(46) BCFH P=(3+r) alr 3T BCGH,BDEH,BEGH,CDEH, 2 4
a CEFH
(47) BDFG ¥ (qVr) CDFG, DEFG 2 3
(48) BDFH] CDGH, EFGH L4 1
(49) BDGH YV (p=4q)) BFGH, CDFH, CFGH, DEFH, 3 4
DEGH
(50) DFGH (g-r)=(p-(g¥r)) —(D—») 2 }
(51) 4BCDE Vipeq) | ABCEF, ABCEG 2 3
(52) ABCDF N (Beq) Plea T—J T A4BCDG, ABDEF, ABEFG, 2 4
N ACDEG, ACEFG
(53) ABCDH rV—(pVaq) rViplq) ABEFH, ACEGH 2 3
(54) ABCEH r=EV V- 3 5
(55) ABCFG YY) Oieie ABDEG, ACDEF 3 4
(56) ABCFH r=(@Vig-n) ABCGH, ABDEH, ABEGH, 3 4
- S i .. ACDEH.ACEFH _ __ ___ _.
(57) ABDFG @Y @V Vign Vian ACDFG, ADEFG 3 s
(58) ABDFH 5V(g-r) ? ACDGH, AEFGH 2 3
(59) ABDGH g=(r-(@Vq) ABFGH, ACDFH, ACFGH, 3 4
ADEFH, ADEGH
(60) ADFGH =@ MV—(@Vr) (=@ Vgln OVoie 3 s
(61) BCDEF (G-p) VY (g¥r) (LL,ve¥Y BCDEG,BCEFG 3 4
(62) BCDEH ¥ pegNV—0pVe ¢¥@q)Vple m(pvq) BCEFH, BCEGH 3 5
(63) BCDFG BrVp¥e (- BDEFG, CDEFG 3 4
(64) BCDFH AR pl(gVP BCDGH, BDEFH, BEFGH, ' 3 3
‘ CDEGH, CEFGH
(65) BCFGH — VAV (p¥a) winVpre BDEGH, CDEFH 3 4
(66) BDFGH —(p-(pVr) ?l@Vvn CDFGH, DEFGH 2 3
(67) ABCDEF qvr ABCDEG, ABCEFG 1 2
(68) ABCDEH Vp=q) ABCEFH, ABCEGH 2 3
(69) ABCDFG rV(p¥aq) ABDEFG, ACDEFG 2 3
(70) ABCDFH vr ARCONAH ADNECL ADTTALS ~ -

Figure I The Rutz commutator transistor
Shown here is a “hook” collector version
which will perform binary full addition and
other logical operations.

COLLECTOR
COLLECTOR ONE TWO

EMITTER

122 COMMON P ar SUM CARRY

IBM JOURNAL * APRIL 1957

symbol * > indicates that ‘¥’ is obtained at the
upper-arrow output; ‘ «’ is realized at the lower. ¢ EE: ’,
on the other hand, delineates a transistor biased to
achieve ‘ — . For example, where ‘ p ’ represents the sole

=

variable input, ‘ p ' is realized at the upper-arrow output;
and the ‘ p’ itself, at the lower. * " and W ’
as the two notations show, designate transistors adapted
to achieve ‘| *and * | ’ respectively.

Consider the following graphic expression:

PV

A 4

From the discussion just concluded, it can be seen that
‘g=p’, ‘r’, and ‘q’ represent the three variable inputs
of the commutator denoted by ° >, Simple truth-
table analysis will reveal that, for such components, the
ternary connective * ’ generates an expression with
the label ‘ABCF".

Next, let us examine a different formula:

P“ﬂi

‘
<lil

A 4

It is clear that g +r’and ‘' p l (g ¥ r)’ represent the two
variable inputs of the transistor symbolized ° ’.
Since ¢ V ’ functions as the main connective, an expression
with the label “4ABH ’ is obtained.

One final point should be touched. The thirty expres-
sions which comprise Schematic Diagram 1 are num-
bered in consecutive order by the numeral preceding the
first dash of their respective headings. The numeral and
label following the first dash indicate which guide basic
group of Table 1 is under consideration.

It can be seen, that, if no redundant signal loads are
allowed, three commutators are still sufficient for all but
the five starred cases: that is, 8-23-BCF, 10-26-BDG,
18-49-BDGH, 22-56-ABCFH, and 24-59-ABDGH.
These five, insofar as we have determined, require four

transistors.
An additional problem of some interest concerns the

applicability of Table 1 and Schematic Diagram 1 to full
adders of a different type from the Rutz binary commu-
tator. It is clear from the Introduction that the latter de-
vice, although quite simple, is logically more versatile

than the usual full adder in that it can be adjusted to

achieve ‘|’ and ‘|’. Every expression in Table 1 or
Schematic Diagram 1, however, which does not contain
“l” or °|’ can be accomplished along the lines already

indicated through the use of any kind of full adder.

A direct examination of the two tables reveals that
three full adders as such, not necessarily commutators,
are sufficient to handle seventy-eight of the eighty guide
basic groups. In fact, less than three are adequate in
thirty-five cases. The two remaining groups, BDH and
BCDFH, can be realized with four full adders. It might
be noted, however, that, if either one of the connectives
‘1’ or ‘|’ were added, the two groups in question could
be achieved with only three physical devices. Table 1
records ‘pl (g+7)’ for BDH, and ‘p| (qVF¥)’ for
BCDFH. The two groups can also be accomplished re-
spectively by the unlisted expressions which follow:

qlr

—(P)
qlr

—(r— 1,)

A further question of some importance concerns the
use of commutator hookups involving feedback. These
often possess unique logical properties.

Consider the following expression:

If O is assigned to ‘' p " and 1 to ‘ ¢, an oscillatory situa-
tion arises. The graphic arrow * S ’,symbolizing both an
output and an input, cannot consistently be allotted either
1 or 0. If 1 is assigned, simple reflection shows that 0 is
generated at the arrow in question. If O is assigned, 1 is
obtained. There is thus a fluctuation between 1 and 0, so
that any physical counterpart of the above expression
would presumably oscillate.

A great many commutator feedback circuits are of an

oscillatory nature. The input conditions which lead to

123

IBM JOURNAL * APRIL 1957

124

oscillation vary from hookup to hookup. Consider, for
example, the two graphic formulas below:

p—Ty

v

)
<ll

=

The first expression involves fluctuation just in that case
where 1 is assigned to ‘p’and 0 to ‘g’ and “ r’. For the
second expression, two input states entail fluctuation:
first, where O is assigned to ‘q’, and 1 to ‘p’ and ‘r’
second, where O is assignedto ‘r’,and 1to‘p’and“q’.

Another somewhat distinctive characteristic of feed-
back hookups can be seen from the following non-oscil-
latory expression:

<lll

v

Dy
|
<l

If either “ p’ or “ ¢’ is assigned 1, clearly both of the con-
necting output-input arrows, that is, O’ and
“" L_,", must be allotted 1. Should p’and ‘g’ be
assigned 0, however, an unusual circumstance arises. The
two arrows in question can with full consistency receive
like assignments of 1 or 0; 1 will tend to perpetuate 1,
and 0, 0. Since the two output arrows (inscribed ‘ —)
are in part a function of ¢ <_>’ and *~ L’ this
formula, as against the formulas of earlier sections, is
logically ambiguous.

Let us imagine, however, a physical realization of the
foregoing expression. The circuit may be so fixed that,
before each new group of signals, all of the non-feedback
inputs, including biases, are cut off, that is, reset-to-zero.

IBM JOURNAL *APRIL 1957

The two wires, graphically represented by * O * and
T 1_,’, will also cut off, and stay off for the trouble-
some input condition correlative with the assignment of
Oto ‘p’and ‘q’. As a result, the suggested circuit can
receive a definitive truth-table representation.

There are many such ambiguous feedback expressions,
some oscillatory and some not. As the circuit application
varies, however, the need for zero-reset may or may not
prove disadvantageous. The formulas listed below are
typical. We have indicated, after each output arrow, the
basic group obtained on the assumption of zero-reset.
The starred cases are of most interest.

> ACDEFH

l

<iil

> ABDFG*

—
-

~
|
<|ll

—'> CDFG

—> BCDE

~—> ABCFG*

]

ABDGH*

—> DEFG

It should be remembered that in Table 1 three commu-
tators, as against two, were needed to achieve either
ABDFG or ABCFG. In Diagram 1, where no extra signal
loads were admitted, four commutators were necessary
for either ABCFH or ABDGH.

Ambiguous feedback circuits without zero-reset should
not be disregarded, however. Such hookups are indeter-
minate, but only insofar as their immediate condition is
a function of more than the concurrent non-feedback
inputs. The prior logical state of the circuit is also rele-
vant. As a result, memory is involved.

Let us suppose, for example, that the eight feedback
formulas already encountered in this section represent
eight circuits so operated that input signals follow one

another without break. If a list of the temporally ordered

signals correlative with assignmentsof 1orOto‘p’, ‘g’
and ‘r’ were provided, it is possible that we might for
each step determine the progressive logical states of the
hookup. In some cases, a signal might be trapped in the
feedback lines at one time step which would influence
the operation of the circuit at another. The added prop-
erty of memory might then be used to advantage.

A somewhat analogous possibility can be seen from
the following:

If 0 is assigned to ‘p’ and 1 to © ¢, the feedback arrow
¢ O’ must fluctuate between 1 and 0. Let us assume
however, a physical realization of the above. The circuit
as a whole might be so adjusted that a properly shaped
input signal could activate the line symbolized G >
and terminate before oscillation begins. The line in ques-
tion would then contain a self-perpetuating on signal.
This signal, combined with a later on signal at either of
the two external inputs would generate a positive signal
at the output symbolized ‘— . Such a hookup, if it
could actually be made to work, would function some-
what like a flip-flop. The use of two variable inputs, as
against one, however, might permit a more extended
application.
Consider, for example, the circuit indicated below:

<

p—

L3
g

\ 4

Let us suppose that the positive input signals are regu-
lated in the manner just described and that they occupy
uniform time steps. For each time step, the inputs repre-
sented by ‘p’ and ‘g’ might both receive a positive
signal. Positive signals would then be generated at the
output symbolized ‘—>’ three out of every four time
steps.

One further topic will be mentioned briefly in this
section. The Rutz commutator is a single-emitter, ampli-
tude-sensitive device. It has been described as having
three inputs; and, in fact, three separate input wires are
directed into the emitter when it is used as a commutator.
The action of the transistor is a function of the amplitude
of the input signal. Consider the table below, which is a
variation of the table shown in the Introduction:

D q r CARRY SUM
0O o0 O 0 0

0o o 1

0 1 0 0 1

1 0 0

0 1 1

1 0 1 1 0

1 1 0

1 1 1 1 1

It can be seen that the ‘SUM’ and ‘CARRY’ outputs,
taken together, represent the first four binary numbers as
a result of the superposition of the amplitudes of the
input signals. Note that the three cases where only one
input is on, which are distinguishable from a logical point
of view, are lumped together as giving the same binary
number output. This is also the case where exactly two
inputs are on.
Consider, then the following expression:

v

11

L 4
N

The output denoted by ‘X’ will be on if and only if
exactly one, three, five, or seven of the external inputs
(symbolized ‘e—) are on. The output denoted by ‘Y’
will be on if and only if exactly two, three, six, or seven

125

IBM JOURNAL * APRIL 1957

126

of the inputs are on. The output denoted by “ Z’ will be
on if and only if four or more of the inputs are on. This
information is recorded in the table below:

Inputs On Z Y X
None 0 0 0
One 0 0 1
Two 0 1 0
Three 0 1 1
Four 1 0 0
Five 1 0 1
Six 1 1 0
Seven 1 1 1

It can be seen that the first eight binary numbers are
accomplished.

“Black-box’’ arrangements

Another possible use of the Rutz transistor is in the fab-
rication of larger building blocks which are themselves
multipurpose elements. Consider the arrangement sug-
gested below:

@_._J

@EO
[

\A
N =< X

The three symbolized full adders can be placed inside
an imaginary “black box” with six wires entering and
three coming out. An apt selection of input wires to carry
biases and variable inputs will enable the box in question
to accomplish numerous logical operations. In fact, as
Table 2 will show, more than half of the eighty guide
basic groups of Table 1 can be achieved without extra
signal loads.

In Table 2, the column headed ‘Code Equivalent’ re-
quires some explanation. The six input wires are symbol-
ized and ordered by the circled numerals above. The
code designation ‘p g 1r 00 Y ’, opposite the label “ 4°,
signifies that guide basic group A is obtained at the out-
put denoted by ‘Y ’. The input conditions are also speci-

IBM JOURNAL SAPRIL 1957

fied. “p’, ‘q’, and ‘r’ represent the variable inputs at
the first, second, and fourth wires respectively. The third
wire receives a positive bias; the fifth and sixth wires, a
negative one.

From Table 2 it can be seen that the fixed combination
just shown (typical of many such arrangements) is ade-
quate without extra signal loads for forty-five of the
eighty guide basic groups. Thirty-three of the groups
obtained represent full ternary functions.

It should be noted, however, that the adjustments to
achieve the various logical functions are external. Con-
sequently, the Rutz transistor operates merely as a full
adder, and is not alternatively adapted to realize ‘|’ or
‘.

Next, let us examine a different expression shown

graphically below:
@ — 4
— ® —
® ® > X
@ @ A > Y
®= @
® > Z

The hookup indicated is adequate for all eighty guide
basic groups, if extra signal loads are permitted in twenty-
two cases. Table 3 will provide the particulars.

The column headed ‘Code Equivalent’ is, of course,
similar to that of Table 2. The twenty-two special cases
are starred. We have not listed the concurrent outputs,
but these can be easily determined by the reader.

It is probable that even more effective combinations of
three or four Rutz transistors can be worked out. Never-
theless, the two examples taken do indicate the broad
adaptability of such “black-box™ arrangements. We have
not listed the quaternary nor quinary connectives patently
obtainable, but we have illustrated in some detail the
cumulative way in which many-variable functions in-
clude lesser ones. It is the latter logical phenomenon
which underlies the great versatility of multipurpose bias
devices.

In closing Part I, the author wishes to thank R. F. Rutz
for his generous assistance. A. Cobham, H. Fleisher,
M. K. Haynes, L. P. Hunter, R. W. Landauer, and J. A.
Swanson have made many helpful suggestions.

=
B
g
Wy
o
<
=
2
>
&
o
&
g
3
Jud
©
v
~J

Table 2 Generation of Functions by Arrangement No. 1

Guide Basic Group

Code Equivalent Concurrent Qutputs

Guide Basic Group

Code Equivalent Concurrent Outputs

(1) — (ABCDEFGH) pq0r00Y

(2) A

(3)B

(6) AB

(7) AD

(8) AH

(9) BC
(10) BD
(11) BG
(14) DH
(15) ABC
(16) ABD
(17) ABG
(19) ADF
(24) BCH
(28) BGH
(31) ABCD
(32) ABCE
(34) ABCH
(38) ABGH
(39) ADFG
(40) ADFH
(41) BCDE

LTl

pqlr00Y
plO0gr0Y
g0000rY
pqlo0ry
pqrl101X
pg000rY
pl1000rY
pl0Ogri1X
111pg0X
pq010rY
pl10g0ryY
grlpllX
grlp01X
pq0rl11X
grOp01X
r10000Z

p00glrY
pgqlrll1Z

ql0rlpZ

plOgrlZ

qrOpll1Z

pq0r00Z

X ABCFG, Z BCDE

X BCDEH, Z DEFG

X ACDEFH, Z ADFG

X CDEF,Z — (ABCDEFGH)
X BCEH, Z ABCEFG

Y ABCDEFG,Z DFGH

X ADFG,Z AE

X ACFH,Z ACEG

Y ABCDEFH,Z ADFG

Y ABCEFG,Z ADEH

X DEFG,Z BCDFGH

X CEFH,Z BCFG

Y ABCDEFGH,Z ACEH

Y ABCEGH, Z BDFG

Y ABCDEFG,Z AFGH

Y ACDEF, Z BCEG

X EFGH,Y — (ABCDEFGH)
X ADFG,Z CDGH

X ADE, Y ABCDEFGH

X BCFH,Y ACDEG

X BG, Y ABCDEFH

X CEH,Y ABCDEFG

X ABCFG,Y — (ABCDEFGH)

(44) BCEH
(45) BCFG

(46) BCFH
(47) BDFG
(48) BDFH
(50) DFGH
(51) ABCDE
(52) ABCDF
(55) ABCFG
(57) ABDFG
(62) BCDEH
(65) BCFGH
(67) ABCDEF
(68) ABCDEH
(69) ABCDFG
(70) ABCDFH
(71) ABCFGH
(73) BCDEFG
(75) BCDFGH
(76) ABCDEFG
(77) ABCDEFH
(80) ABCDEFGH

pgqr001X
pl10g01Z
qlorlpX
qrlp01Z

p10000X
pqrl01Z

r00pqglY
pl0qglryY
pg0r01Y
grOpl0oX
pqlr00X
pqlr10X
qll1liry
pgqlr0lyY
pgq011lrY
pl011rY
ri0opq0X
pgqrl100X
pg0101Z
pgqOrl1lyY
plOgrlyY
pglrllyY

Y ADFG,Z ABCE
X CG,Y ABDEFH
Y ACDEG,Z ABGH
X ADF,Y ABCEGH
Y — (ABCDEFGH),Z ACEG
X AH,Y ABCDEFG
X AFGH, Z BCFG
X BEGH,Z ADEH
X DEH,Z BCDE

Y CE,ZADFH

Y A,ZDEFG

Y ADE,Z ABCH

X ABGH,Z ABCDEFGH
X AFG, Z DEFG

X BCEH,Z AE

X BDEG,Z ACEG
Y E,Z ADFG

Y A,ZDFGH

X DH,Y ABCEFG
X BCH,ZAFGH

X BG,Z ADFG

X ADE,Z ABCH

Table 3 Generation of Functions by Arrangement No. 2

Guide Basic Group Code Equivalent
(1) — (ABCDEFGH) 100pgr00Z
2)4 100pgro0X
3)B 000plgroX
*(4) D pqrrOplgW
*(5)H pqOpgrli 1 W
(6) AB 000g0p0rX
(7) AD pglr0000Y
(8) AH p00qgrl101W
(9) BC 000pgr10X
(10) BD pl0or0000Y
(11) BG 000plgr1Ww
(12) BH grOpl1100Y
(13) DF grlpl1100Y
(14) DH 100pgl100Y
(15) ABC 000pgl10rX
(16) ABD 000p1gq0rX
(17) ABG 100grpl1 W
*(18) ABH 100grpOpW
(19) ADF 100grpO1W
*(20) ADH r00pgrliw
*(21) BCD 000grpOgW
*(22) BCE plOgrpl0X
(23) BCF pl0glr10X
(24) BCH 000pgrl11w
(25) BDF pl011groX
(26) BDG r10p0qO1W
*(27) BDH qlOplrigW
(28) BGH 000grp0O1W
*(29) DFG 000pgrOrWw
*(30) DFH plor0gqOrw
(31) ABCD 000p0r0qgY
(32) ABCE pqr00000Z
*(33) ABCF ql0plr0gX
(34) ABCH 100pgr10Y
(35) ABDF pl0gr000Y
(36) ABDG pl0glr10Y
*(37) ABDH pqrqOplryY
(38) ABGH qlor0o000W
(39) ADFG 000plqgr0Y
(40) ADFH 000grpl0Y

128

IBM JOURNAL * APRIL 1957

Guide Basic Group

Code Equivalent

(41) BCDE
*(42) BCDF
(43) BCDH
(44) BCEH
(45) BCFG
(46) BCFH
(47) BDFG
(48) BDFH
*(49) BDGH
(50) DFGH
(51) ABCDE
(52) ABCDF
*(53) ABCDH
*(54) ABCEH
(55) ABCFG
(56) ABCFH
(57) ABDFG
(58) ABDFH
(59) ABDGH
*(60) ADFGH
*(61) BCDEF
(62) BCDEH
*(63) BCDFG
*(64) BCDFH
(65) BCFGH
*(66) BDFGH
(67) ABCDEF
(68) ABCDEH
(69) ABCDFG
(70) ABCDFH
(71) ABCFGH
(72) ABDFGH
(73) BCDEFG
(74) BCDEFH
(75) BCDFGH
(76) ABCDEFG
(77) ABCDEFH
*(78) ABCDFGH
*(79) BCDEFGH

(80) ABCDEFGH

000pgr00Y
pqrq0r01Y
ri10pgl00Y
pglrO0000W
000p0rOgWw
000r1lqOpW
100grp00Y
p0010000W
pqrlOrOp W
p00grl101Y
00010pgrX
000plglrX
100grplgW
plOgrpOOW
000pgr01X
pl10r0g01X
000grplOW
pl000gr1X
ri0glplow
plOgrplOW
000grplpW
100pgrO0OW
r00pgrO00OW
qglOp0rOgW
100pgr1OwW
plOglrigW
gqr100000Z
100pgr01X
pg0r1000Y
pl0r1000Y
000rlpqOW
qgrOpl1100W
p00grl100W
grlpl100W
100pgl0O0W
000pgr11X
000plgr1X
pgqrrlpOgW
pqlpgqrOOW
110pgr00Z

Bibliography

The first chapter of W. V. Quine’s Mathematical Logic
(revised edition, Harvard University Press, 1951) will
provide to the reader unacquainted with logic all the
information necessary to understand the foregoing dis-
cussion. Some of the more interesting works which bear
upon the application of elementary logic to the design of
circuits are the following:

1. C. E. Shannon, “A Symbolic Analysis of Relay and
Switching Circuits,” Transactions of the AIEE, 57,
713 (1948).

2. Staff of the Computation Laboratory, Synthesis of

Electronic Computing and Control Circuits, Harvard
University Press, 1951.

3. Keister, Ritchie, and Washburn, The Design of
Switching Circuits, D. Van Nostrand Co., 1951.

4. Goodell, Sobocinski, and others, a series of papers

dealing with typical logical particles which can be
assembled machine-wise to generate the whole class
of truth-functional elements, The Journal of Comput-
ing Systems, 1, nos. 1-4 (1953-4).

Received December 28, 1956

129

IBM JOURNAL * APRIL 1957

