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E. G. Kogbetlianiz

Computation of eN for —o<N<+®

Using an Electronic Computer

Single Double

Machine Approx. Computation  Precision Precision

M PCDg MPCDg

5ﬂoatingpoint 319 9 5 21 19
Binary R 4 8 10 6 8 18
{ﬁxedpoint 335 10 6 10 21
4 8 10
” floating point 5 17 8 8 30 18
Decimal P 9 24 17
1ﬁxed point 5 25 10 9 32 20
6 19 10
Introduction

The aim of this paper is to formulate shorter procedures for
the evaluation of eV which involve fewer operations and
therefore consume less time. Approximations must always
be adapted to particular features of the electronic com-
puter used. Thus, for instance, if division is too slow
then rational approximations cannot be used since they
involve divisions. On the other hand, for the IBM 704,
rational approximations are the most economical. In re-
ducing the infinite range (— o, -+ ) to a shorter range
in which the approximation to be used is sufficiently accu-
rate, different procedures must be used for binary and for
decimal machines.

The number of precomputed constants involved in a sub-
routine and stored in the memory of the machine is also
important. It is always possible to decrease the number of
muitiplications and divisions (additions are so rapid that
we omit them from the consideration), increasing the
number of precomputed constants; but, on the other hand,
it is not advisable to load the memory of the machine
by too many constants. These conflicting considerations
make the choice of the best procedure a very important
question. In this paper we disregard the case of routines
based on the use of many precomputed constants. We will
try to reduce the number of multiplications and/or divi-
sions, without increasing the number of precomputed
constants above an upper bound equal to 35, the choice of
which is dictated by our experience.

Two mathematical tools are considered here: approxi-
mating polynomials are derived from the classical expan-
sion of the exponential function into Fourier Series of
Tchebychev polynomials 7.(x), [1], while our rational ap-
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Abstract: Rational R and polynomial P approxima-
tions to the exponential function eV are studied.
They allow e to be computed for any value of
the exponent N in the infinite range from minus
infinity to plus infinity in a minimum number M
of multiplications (and divisions, for the rational
approximations). This minimum is attained without
unduly increasing the number PC of precomputed
and stored constants and also without limiting the
number Dg of the first correct significant digits. The
main results are presented in the table at the left.

proximations are the diagonal elements of the well known
Padé Table for e<, [2] . In the Tchebychev expansion

©

evr = Io(a)+2 Z;l (@) Tn(X) (Ixl=1) (9]

L.(2) is the modified Bessel function J,.(¢), namely I,.(z)=
i J,(iz), while T,,(x)=cos (m-arccos x).

Let Q.{a,x) denote the sum of first n+1 terms of the
series (I), while E,(a,x) is the absolute error made in re-
placing e by Q,_+(a,x), so that
e”=Qn71(a;x>+En(ayx)- (1)

With [x| =1, E. admits the following upper bound

|En(@,x)|£2- 2 Lu(a) £2L,(a)/[1 =4 (n+1)""-al. @

m=n

The (m,n)-th element in the m-th row and s-th column
of the Padé Table for e* is P,.(x)/P..(—x), where the
polynomial of n-th degree P,..(x) is defined by

n

(m+n)- Pon(x) =n! § (m+n—s)!xs/[sl(n—s)].

It is known [2] that
€% Pun(—X) = Ppn(x)+(—1)m. xmtntl

1

xf ent.ym. (1 —u)’hdu”/(m—f-n)!
0




Therefore, the absolute value of relative error, made in
approximating ¢” for given values of x and of the sum
m+n=s, but for variable m=0, 1, 2,. . . s, by Pun(x)/
P,..(—x), reaches its minimum for n=m, that is for a
diagonal element P,,..(x) = P (x) of the Padé Table. Now in

€= P (2)/Pu(—2)F* Rul2), &)

where

Cm)IP,(2)=m! 2 2m—s)'z¢/[s!(m—5)1], 4)
s=0

the relative error R,.(z) is given by:

Rm(z) - (_ l)m,efz,ZQWH'l
1

Xf e*(u(l—w)™ -du/[2m) P, (—2z)].

The substitution 2u =1+t shows that the definite integral
is equal to

mll'(3) e 1,,,3(2/2) /2% -
Therefore, the inequality
0<lyny3(2/2) - 221 274 T (m+3/2) <e?/[8(2m-+3)],
yields the following upper bound for |R,.(2)|:
[R.(2)| < (2n+1)71- (nl/ (2n) 1) 2Pt - em2rrtenlstndal. (5)

The expression (3) will be used in a sufficiently small
range |z <27*-in2 where the choice of the positive integer
k depends on the accuracy required. For a given accuracy
we can minimize the number of multiplications and divi-
sions in (1) or (3) by choosing a small value of » and
sufficiently large value of k.

The number of precomputed constants is equal to 2!
plus a constant and it increases rapidly with k. This pre-
cludes the use of larger values of k. We shall consider only
four cases: k=2, 3, 4 and 5. Four values n=2, 3, 4, 5 in
(3) and two values n=35, 6 in (1) will be considered. The
reader can easily extend our results to other values of &
and n, if needed.

The rational approximations to e* studied in this paper
are not new. They are a very particular case of the gen-
eralized Taylor series formed in 1876 by the French mathe-
matician Gaston Darboux [3]:

n

[f (2)—=f (@)]- P™(0) =m2 (=D)[Pe=m(0)-f “(a)

=1

—Po=m(1)-f ™ (2)]- (z—a)"+R,

R,=(—1)*(z—a)*™! f P(t)-f e a+tt(z—a)]-dt.

]

Particularizing this expansion for f(z)=e?, P(t)=1*
(t—1)*, a=0, one obtains our approximations. Another
French mathematician H. Padé [4] formulated in 1892
a general method for constructing a complete table of all
rational functions approximating a function f(x). The
diagonal of his table for e* contains our approximations.

In 1949, seventy three years after the Darboux paper was
published, Messrs. P. M. Hummel and C. L. Seebeck re-
discovered [5] the particular case P(r)=¢"-(t—1)* of the
Darboux expansion and, applying it to e¢*, formed again
the diagonal of the classical Padé table for e-.

Reproducing again the work of Darboux in his book on
numerical analysis [6], Dr. C. Lanczos ascribes it to
Messrs. P. M. Hummel and C. L. Seebeck.

We add that the same sequence of approximations to e*
can be obtained from Lambert’s well known continued
fraction [7]. '

Cx/2] 2 (x/2)
tanhyp(x/2) _T+ ,EI [(2n+1)

Let us denote the n-th convergent of this continued
fraction by A.(x)/B.x). Then e*=[14tanhyp(x/2)]
[l —tanhyp (x/2)]"! is approximated as follows:

eI Bn(x)+ An(x))/[Bu(x) — An(x)].

The second member is identical with our approximation.

Part A—Binary machine;
rational approximations

1. Reduction to small range

Multiplying the exponent N in e¥, —w <N<+w, by
log, ¢ and denoting the integral part of the product by M

N-log:e=M+F=M+alk)+f, (O0<F=a(k)+f<1) (1)

we reduce first the infinite range of N in eN=2M.¢gF/log,e to
the range (0, In 2) of the exponent F/logwe=F-In 2.
Choosing a fixed positive integer k, we subdivide the
interval (0,1) into 2* subintervals [27%.j; 27%.(j4-1)] with
0<j<2*—1. Beginning with fo=F, k numbers £, f;, . . .
Jfi—1, fr=fare computed successively in k additions by letting
Sin=fi—s/2, (0=£i=k—1), where s; denotes the sign
of f;, namely: s; =signum (/).

Thus, we have in F=a(k)+f

k—1

f=fi=F—alk)=F— X 5;/2/*,
=0

There are 2! different possible values of a(k) since
k—1 signs 5;, 1<i<k—1, are involved (so=-1) and each
of them can take either one of two values ==1. The 2t
constants to be stored are the different possible values of
2utk) gince eFin?=ea®) . in2.gfln2=2all).efln2 It js easy to
prove by induction that | f]<27* so that the range of the
exponent z in e?=e/'n? is:

—27%.In2< f-In2=z< 2% In2.

This reduction to as small a range as we wish (k can be
chosen at our convenience) is the most important step
since it allows us to obtain any desired accuracy.
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2. Study of the relative error R, (.) in (3)

The maximum of the upper bound (5) for the absolute
value of relative error is attained for z= —27%-In2. De-
noting this maximum by M (k,m) we computed the follow-
ing values of this function of two parameters k& and m:

Table I Values of M (k, m)
m\k 2 3 4 5

2 24X107 72X 107 22X 1010 67 X 1072
3 51 X101 38 X101 30X 107 23 X 1077
4 51X101 1.1 X107 22X 10020 42 X 1072
5 46x101 22X102 10X 1072 50 X 10

The number d of correct significant digits in an approx-
imate value of eV computed by (3) and expressed in
decimal numeration depends on the value of M(k,m). If
the binary representation of the exponent z=f"In2 is con-
sidered as exact, the first 4 significant digits in eV will be
correct, if M(k,m) is less than %-107*. But if the value of z
is affected by an absolute error dz the condition M(k,n)
<1-107"is necessary, but not sufficient. Since ¢ - d(e?) = dz,
an absolute error dz in the exponent z generates an equal
relative error in e°.

Even if the decimal representation Ny, of N is known to
be exact so that there is no error DNy, in the given value
of Ny, the conversion of Ny, into the binary representation
N, of N introduces an error DN,#0. In a single precision
fixed point computation with a 35-bit binary machine,
we can have DN,=27%-N and, if the double precision is
used, DN,=2"".N. For floating point computations the
corresponding conversion errors can reach 27%-N and
275 N,

Let us consider the case when N is large and has ¢ digits
in the integral part of its decimal representation N, SO
that 10> N> 1077, In this case, the absolute error dz in
z=f-In2 can reach 3.10¢* and there will be at most only
10 —gq correct significant digits in the final value of eV,

Another cause of possible loss of accuracy unrelated to
the value of M(k,m) is the generation of an error dz in the
multiplication of log:e by N, if N is large. Suppose that the
binary value of log.e stored in the memory of the machine
has 35 bits, so that the absolute error in logse is less than
27, 1If the integral part of N;, has g digits, then the absolute
errorDf in f=N-log:e — M —a(k) can reach the value 27%.
107-1og.e so that dz=Df In2=27%-10=3,10"" and again,
instead of ten, only 10—gq first significative digits will be
correct, if M(k,m)<5.10, To avoid the loss of accuracy
which may be caused by the conversion of Ny into N,
and/or by the multiplication of log:e by N, it is advisable,
if N is large, to use the double precision binary representa-
tions of log.e and N, in computing f and then continue a
single precision computation. This will insure 21 —q correct
digits, if 1001< N<109, provided M(k,m)>110c72,

In what follows, we suppose that the double precision is
used in computing £, so that the accuracy of the result will
depend on M(k,m) only.
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3. Number of operations

To be able to choose among combinations (k,m) insuring
the same accuracy we have to compare the number of
operations and of precomputed constants involved in each
of these procedures. Using (4) for m=2, 3, 4, 5, forming
the corresponding expressions of quotients P,(z)/P.(—z)
and replacing in them z by its value z=f-In2=f]g, where
g=log.e=1In"12, we finally obtained the following practical
rules for computing the products I1,,=2¢®. P, (2)/P,.(—2):

My=2®+ay-[ f—cotbo f ()

= =220+ ay- [by—f—ca (f+ds-f )
My=22®+ay-[by-f 1=cotde fAhe (b f )7
Ty=2:200- {3+ bs—f—cal f >+ ds= il £* +rs )T,
where

ax=12g-2°0; by=12g% cy=06g; as=24g-2°®;
b;=12g; c¢3=50g2; ds=10g%;, a,=42g-2°®;
by=42g%;, c,=21g; d,=1.05; hs=102.9g2; b;=30g;
¢;=9240g°; d;=4116g%/11; h;=244, 944¢/121;
r;=504g%/11.

Since

eN2M . 2a® . P, (2)/Pp(—2z)=2M 11,

it is seen that the number of multiplications (divisions
being counted as multiplications) for m=2, 3, 4, 5 is equal
to m+1 because one more multiplication is needed to find
f. The factor 2¥ is accounted for by a shift. The number of
additions in computing II,, is also equal to m—+1. Adding
k additions necessary for the determination of f, we have
in all m+-k-+1 additions. The precomputed constants to be
stored are: 27! numbers of the type 2¢®, as well as 2¢!
numbers a,, for m=2, 3 and 4 and 2*~! numbers 2-2¢® for
m=35. This gives 2*4-m constants necessary to compute
I1,, for 2<m=4, while the computation of II; necessitates
214+ m constants. Adding to it the constant g, we sum-
marize these results in Table 2.

Table 2 Values of M, PC, Dg
k=2 k=3 k=4 k=5
M PCDg M PCDg M PCDg M PC Dg

3 7 6 3 11 7 3* 19 9 3* 35 10
4* 8 10 4 12 12 4 20 14 4 36 16
5 9 14 5 13 16 5% 21 19 5 37 22
6* 8 18 6* 10 21 6 14 24 6 22 28

¥ IIS
[T
Wb W N

* Important Combinations

The number of divisions for m=2, 3, 4 and 5 is equal to
2, 3, 3 and 3 respectively. Using the rational approxima-
tions it is not possible to eliminate divisions completely,
but in some cases it is preferable to reduce their number.
A simple algebraic transformation reduces the number of
divisions for m=3, 4, 5 to one, replacing a division by two

+ Suggested by Dr. George E. Collins, IBM.




multiplications. Thus, IT;, TI, and IT; can be computed in
4, 5 and 6 multiplications plus one division, using the fol-
lowing equivalent expressions:

= Az {a*s+f (b*s+f?) - [c*s+d*s-f2—f (b*s+/ )]
II,=A4,- {a*4+f(b*4+f2) .
[c*st-(d*sth*a-f2) f2—F (b*tf D]
II;= A4;- {a*5+f' s+ 2Hb* D]
[e*s4 (@ sHh*s-f2) f2—f (ks (0% +f )],

where
A3:A4=A5=2,2a(k); a*3=a*4=a*5=%;
b*3=60g2, b*,=42g2 b*;=420g2; c*;=120g?, c*;=84g3,
c*;=30,240g%; d*;=12g, d*,=9g, d*;=3360g?;
h*y=(20g)7, h*;=30g and k;=15,120g",

Two single precision subroutines for the computation
of eV, based on (3), were coded a year ago for the IBM
704. They yield ten correct digits, but only eight are needed

in the floating point computation. Their characteristics
are as follows:

Table 3 IBM 704 Subroutines for eN

fixed point Aoating point
Combinations used k=1, m=4 k=2 m=3
Multiplications 4 3
Divisions 2 2
Precomputed constants 5 7
Time (in milliseconds) 2.80 2.63

Six combinations of Table 2 are important for single and
double precision, fixed and floating point subroutines for
the computation of eV, They are given in Table 4.

Table 4 Important Combinations

Combination M PC Dg
) m=2k=4 3 19 9
Q m=2k=5 3 35 10
B m=3, k=2 4 8 10
@ m=d4,k=4 5 21 19
6) m=5k=2 6 8 18
6 m=5k=73 6 10 21

Among them (1), (5) should be used in single precision
floating point, double precision floating point and (4) or
(6)—in double precision fixed point computations respec-
tively. In single precision fixed point computations the
combination (3) needs one more multiplication than (2),
but it involves only 8 stored constants while (3) has 35
constants.

Part B—Decimal machine;
polynomial approximations
4. Reduction to small range

Multiplying N in eV by g=log e, we have Ng=N-log.e
=M*4F=M*+a(k)+f, where M* is the integral and F

the fractional part of the product. Dividing the range
(0;1) of Finto 2* subintervals exactly as in Part A and
using the same notations a(k) and f, we have

eN =10M*. 10k . ¢/Inl0
with | f[S27% Here the 2" precomputed constants are

equal to 10+®) where a(k) takes the same 2%! values
Qji—1D/2%, 1 £j<2¥, as in Part A.

5. Rational approximations

Without repeating the analysis of Part A, we give (in
Table 5) its results, which can be useful only in the case
when division is not too slow an operation for a given
decimal machine:

Table 5 Values of Mlk, m)

m\k 2 3 4 5
2 1.9 X 10 4.0 X 10°¢ 1.0 X 1077 3.0 X 10#
3 45 X107 2.4 X 1079 1.5 X 1071 1.1 X 10718
4 59X 1010 78X 1008 13X 10715 22 X 10718
5 49 X107 1.6 X 10718 6.6 X 1020 30 X 10723
6 29X 1071 24X 10720 24X 10 2,7 X 1072

In the case m=6, e* is approximated by P.(z)/Pi(—2z),
where the coefficients ¢; of

6
Py(2)=1+2z/24 2 ¢} 2%
k=2

are. CQ=5/44, C3= 1/66, C4=C3/12, C5=C4/20 and C6=C5/42.
The quotient Py(z)/Ps( —z) is computable in one multiplica-
tion (necessary to form z%) and four divisions:

Pu(2)/Po(=2) = 142 [1=2/242/Q(@)],
where
Q1) =84—ay {t+bstco- (t4ds) 1}

with as=43,344, bs=12294/43, c+=53,824,320/432, ds=
3960/43.

Thus, for a decimal machine allowing the use of division
the rational approximations yield the same results as for a
binary machine, but the number of operations and of pre-
computed constants, for the same accuracy, is somewhat
greater. We cite some of them in Table 6.

Table 6 Values of M, PC, Dg

m k  Mult. Add.  Prec. Const.  Correct Digits
2 5 3 8 35 8
3 3 4 7 12 8
3 4 4 8 20 10
5 4 6 10 14 18
6 3 7 10 12 19
5 5 6 11 22 22

The rational approximations should not be used for
decimal machines in which the division is too slow. For
such machines polynomial approximations deduced from
the series (I) are much more economical. They are more
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Table 7 Values of M* (n, k)

kK\n 5 6 7 8 9 10

2 1 X 10 7 X 1076 3 X 1077 1 X108 3 X 1010 *1 X 101
3 2 X 1078 5 X 1078 1 X 107 *2 X 101 3 X 1078 5 X 10715
4 5 X 108 6 X 10710 *6 X 10712 5 X 101 4 X 10716 3 X108
5 2 X 107 *7 X 10712 4 X 10714 2 X 10716 7 X 10718 3 X 102

114

economical than the partial sums of exponential power
series, even when the latter are shortened by relaxation
of last terms.

6. Polynomial approximations

We study now the relative error R.(z)=e™- E,(a,x), where
E,(a,x) verifies the inequality (2), z=ax, a=2"*-In10 and
|x| = 1. Therefore

|R.(2)| £2.10%- I (a)[1 —a(n+1)"'/2] 1= M*(n,k)

Denoting the upper bound of [R.(z)| by M*(nk), we
have the result given in Table 7.

It is interesting to compare M *(n,k) to the relative error

n—1

made in approximating e* by the partial sum 2  zi/j!
7=0

This relative error is essentially equal to e z*/n!-(1 —z/
(n+1))7', the maximum value of which (obtained for
z=—In10/2%) we denote by B(n,k):

" (010,25 (n) /11 — 2(n4-1)]

Thus, we have approximately B(n,k)=M*(nk)- 21 which
shows that the relative error made using the Maclaurin
expansion of e is 277! times greater than the relative error
of our polynomial approximation. For n=6, 8, 10 the
factor 2% takes the values 32, 128, 512.

Different combinations (z,k) insure the same number of
correct digits in the final result. Thus, for instance ten
correct digits can be obtained using either one of four
combinations (6,5), (7,4), (8,3) and (10,2).

The coefficients ¢, of the polynomial approximation

On (%)

Bink)=10*

n—1 n—1
e =0, 1(x)=I@)+2 Z I.(a) Tu(x)= 2 ¢; xi

m=1 7=0
are obtained, replacing the Tchebychev polynomial T.,.(x)
by its expression

2m=n

2T, (x)=n- 2 (=" (";"‘) - X)) (n— ).

The final result is

n—1

e=0ui(2)= = (1=by)2/j!

where b, ; are small, so that our approximating polynomial
Q.._1(x) appears as the sum of the first » terms of the ex-
ponential series for e** with slightly modified coefficients.
We now illustrate the computation of coefficients and
the relaxation of Q,_:(x) on a particular example of approx-
imation giving ten correct significant digits. The combina-
tion used in this example is n=6 and k=35, so that a=
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(In10)/32. Replacing in the expression for Qs(x) the poly-
nomials T,(x) by their expansions and omitting the
argument a of the Bessel functions I,.(a), we have

Qs(x) =I+21- x+21- 2x*—1)+21;- (4x*—3x)
+27- (8x—8x*+1)+21;- (16x°—20x*+5x).
Thus,

5
e=05(x)= 2 ¢;(2x)7,
=0
where

co=Iv—20,4-21; c;=1,—31:+4-51;; co=1,—4l4;
C3=13—515; C4=I4; C5=15.

7. Relaxation

The last term 2°- ¢5- x° can be replaced by an approximating
polynomial of the fourth degree, the error made being less
than 1071, In fact we will have two approximating poly-
nomials: one in 0<x=<1 and the other in —1=x=0. The
modified Tchebychev polynomial

Ts(x) =512x>—1280x'+1120x3 —400x24-50x—1 (0=x=1)

is less in absolute value than one, if 0=<x=1. Changing the
sign of its argument, we have another polynomial

T*5(x)= —(512x°+1280x*+1120x*4-400x>4-50x+1)
(—1=x=0)

which is less than one in absolute value, if —1<x=<0.
Therefore, in 0=x=1 we take

x°=5x4/2—35x3/16+25x%/32 —25x/256+1/512+g(x),
0=x=1)

where |g(x)| <27 for 02 x <1, while in —1=<x<0 we have

x5= —5x1/2—35x3/16—25x2/32—25x/256 — 1 /5124 h(x),
(—1=x=0)

where again |#(x)| <2~ for —1=<x=0. Now, since a=
(In10)/32, we have 2°-¢;=2% I;(a)< 1077-™% and therefore
25.c;5-g|(x)] and 2°-¢5- |h(x)| are less than 10~10.5052 which
proves that the absolute error made in dropping g(x) or
h(x) is less in absolute value than 3.2X107, The corre-
sponding relative error is less in absolute value than
3.44X 101, Thus, replacing x* by a polynomial of the
fourth degree we obtain

25 . csx"’ = 15 .
[£5-2x)*—35-2x)*/4 £25-(2x)*/4—25-(2x)/16 1/16],

so that the relaxed coefficients ¢*; become

C*o=Io—‘21?+214:*:15/16; C*1=11—313+5515/16;
(‘*2=12—4[4:b2515/4; C*3=13—55'15/4; C*4=I4:t515.




In c*,, ¢*, and c¢*, the plus sign should be taken, if f is
positive, and the minus sign if f is negative. The relaxa-
tion of the term in x* does not work, the resulting error
being of the order of 10—5,

Thus, e can be computed with the aid of two approxi-
mating polynomials of the fourth degree in five multi-
plications :

e~dy+f-[d\+f (dotf-[dst+ds- f])]
where
d;=20+07. c* ;. —64i.c*

Adding to the eight coefficients d;, the 2*4-1=17 pre-
computed constants necessary for the reduction of the
infinite range — o <N< o« to | f| <275, we obtain, in all, 26
precomputed constants. The number of operations is: nine
additions and five multiplications.

This example, it is hoped, shows clearly the procedure
which is to be followed in the computation of the coeffi-
cients d; of a relaxed approximating polynomial Q,, . (z),
when # and &£ have fixed known values.

The number of precomputed constants is equal to 2+!
+n+[n/2]41, [#/2] denoting the integral part of n/2. The
number of multiplications and additions is equal to n—1
and n+3.

8. Briggs’ Method

To conclude we describe a rather curious adaptation of an
old method, used by Briggs in 1624 for compiling his table
of logarithms, for the computation of ¢ with the aid of an
electronic computer. To fix our ideas let us consider only
the case where first ten significant correct digits are re-
quired, the computer being a binary machine.

To compute the factor 27 in eN=2M.2F 0<F<1, with
ten correct digits we will use 17 precomputed and stored
constants ¢, =log,(14+27%), 1=k=17. Let fo=F and define

recursively f;, a, as follows: f..i=f; and a,,=0, if
fi<ci, but fipi=fi—cip1and a; =1, if f;>¢;y1-Then
17

F= E ak-ck+f*,
k=1

where 0<f*=f;<c;;=1.1X1075 so that i(f* In2)*<
3.1071 and 2/*~21-+f*-In2. Therefore
17
2P =(14f*1n2)- 11 1427%%  (@=0or 1)
k=1
The multiplications by factors 14+27* are in fact per-
formed as additions:

A- (1429 =A+27 4

In all only two multiplications are used: one to form F,
another to compute the product f*-In2. The number of
additions depends on N. It varies between 18 and 35. There
are 19 precomputed constants: In2, log.e and seventeen c;.

If first eight correct digits are required (floating point
computation), then f* =f,,. Six correct digits are obtained,

if f*=f1.
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