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Computation of eN for - ~ o < N <  + 00 

Using  an  Electronic  Computer 

Single Double Abstract: Rational R and polynomial P approxima- 
Machine Approx. Computation Precision Precision tions to the exponential function e~ are studied. 

i 
M P C D g   M P C D g  

floating  point 3 19 9 5 21 19 
Binary 4 8 1 0 6  8 1 8  

[ fixed  point 3 35 10 6 10 21 
4 8 10 

floating  point 5 17 8 8 30 18 
Decimal 9 24 17 

fixed  point 5 25 10 9 32 20 
6 19 10 

They allow eN to be computed for any value of 
the exponent N in the infinite  range from minus 
infinity to  plus infinity in a minimum number M 
of multiplications (and divisions, for the rational 
approximations). This minimum is  attained without 
unduly increasing the number PC of precomputed 
and stored  constants and also without  limiting the 
number Dg of the first correct significant digits. The 
main results are presented in the table  at the left. 

m 

be adapted to particular  features of the electronic com- 
puter used. Thus, for instance, if division is too slow 

eaz=Zo(a)+2 S z,,~(u). T,(x) (1x1 5 1) 
m=1 

ducing the infinite range (- m, + m) to a shorter range 
in which the approximation to be used  is  sufficiently accu- 
rate, different procedures must be used for binary and for 
decimal machines. 

Let Qn(a,x) denote the sum of first n + l  terms of the 
series (I), while E,(a,x) is the  absolute error  made in re- 
placing ear by Q,-,(a,x), so that 

The number of precomputed  constants involved in a  sub- ear = QnPl(a,x) + & ( U , X ) .  (1) 
routine and stored  in  the memory of the machine is also 
important. It is always possible to decrease the  number of 
multiplications and divisions (additions are so rapid that m 

we omit  them  from the consideration), increasing the lE,(a,x)I 6 2 .  2 Z,(a) 52IL(a)/[l  -:(n+l)-l.a]. (2) 
number of precomputed constants; but, on the  other  hand, 

With 1x1 5 1, E, admits the following upper bound 

m=n 

it is not advisable to load the memory of the machine 
by too many constants. These conflicting considerations 
make  the choice of the best procedure  a very important 
question. In this  paper we disregard  the case of routines 
based on  the use of many precomputed  constants. We will 
try  to reduce the number of multiplications and/or divi- 
sions, without increasing the number of precomputed 
constants  above an upper bound equal to 35, the choice of 
which is dictated by our experience. 

Two  mathematical  tools are considered here:  approxi- 
mating polynomials are derived from the classical expan- 
sion of the exponential function into  Fourier Series of 

110 Tchebychev polynomials T,(x), [l], while our rational ap- 

The (m,n)-th element in the m-th row and n-th column 
of the Pade  Table for e" is f ' , , & ~ ) / P , ~ ~ ( - x ) ,  where the 
polynomial of n-th degree P,,(x) is defined  by 

7l 

(rn+n)!.P,,(x) = n !  2 (m+n-s)!xs / [ s! (n-s )! ] .  
S=O 
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Therefore, the absolute value of relative error, made in 
approximating er  for given values of x and of the sum 
m+n = s ,  but  for  variable m =0, 1, 2,. . . s, by P,,(x)/ 
Pvtn( -x), reaches its minimum for n =m, that is for a 
diagonal element P,,(x) = P,(x) of the  Pade Table. Now in 

ez= P,n(z)/P,(-z)+e*. R,(z), (3) 

where 

(2m)!~,(z) =m! I: (2m--s)!z~/[~!(m-~)!], (4) 
m 

a=O 

the relative error R,(z) is given by: 

R ( )-(_l)m.e-Z.z2m+l mz - 

In 1949, seventy three years after  the Darboux paper was 
published, Messrs. P. M.  Hummel  and C. L. Seebeck re- 
discovered [5] the particular case P(t)  =t..(t- 1)"  of the 
Darboux expansion and, applying it  to  ex, formed  again 
the diagonal of the classical Pade  table  for er. 

Reproducing  again  the  work of Darboux in his book on 
numerical analysis [6], Dr. C. Lanczos ascribes it to 
Messrs. P. M. Hummel and C. L. Seebeck. 

We add  that the same sequence of approximations to ez 
can be obtained from  Lambert's well known continued 
fraction [7]. 

Let us denote  the n-th convergent of this continued 
fraction by A,(x)/Bn(x). Then ez= [I +tanhyp(x/2)1. 

The substitution 2u = 1 +t  shows that  the definite integral [ 1 - tanhyp (x/2)]- is approximated as follows: 

Therefore, the inequality 

0<1,+~(~,'2).2~~+~.z-~-~.I'(rn+3/2) <ez'/[8(2m+3)], 

yields the following upper bound for IR,(z)l: 

jR,(z)[<(2n+1)-I.(n!/(2n)!)*.Izl""+l.e-Z/"+Z'1[8(Ln+3)1. ( 5 )  

The expression ( 3 )  will be used  in a sufficiently small 
range Iz~ s2-k.ln2 where the choice of the positive integer 
k depends on the accuracy required. For a given accuracy 
we can minimize the number of multiplications and divi- 
sions in  (1) or ( 3 )  by choosing a small value of n and 
sufficiently large value of k. 

The number of precomputed  constants is equal to 2"" 
plus a  constant and it increases rapidly with k.  This  pre- 
cludes the use of larger values of k .  We shall consider only 
four  cases:  k =2, 3,  4 and 5. Four values n = 2, 3,  4, 5 in 
( 3 )  and two values n = 5 ,  6 in (1) will be considered. The 
reader  can easily extend our results to other values of k 
and n, if needed. 

The  rational approximations to e' studied in this paper 
are  not new. They are a very particular case of the gen- 
eralized Taylor series formed in  1876 by the French mathe- 
matician Gaston  Darboux [3] : 

n 

[f(z)-f(a)].P'n'(O)= z (-l)m[p(,-,)(O).f(m)(a) 
m= I 

-p(n-m)(l).f(m)(z)]'(z-a)m+R, 

R,= (-l)"(z-a)"+'. p ( t ) . f ( n + ' ) [ ~ + t ( ~ - ~ ) ] . d t .  s' 

The second member is identical with our approximation. 

Part A-Binary machine; 
rational  approximations 

1. Reduction to small range 

Multiplying the exponent N in ey, - w < N <  + 00, by 
logp e and denoting  the  integral part of the  product by M 

N.log,e=MfF=M+a(k)+f,  (O<F=a(k)+f<l) (1) 

we reduce first the infinite range of N in  eA-=2Jf.eF/loase to 
the  range (0, In 2 )  of the exponent F/logs=  F.ln 2. 
Choosing  a fixed positive integer k, we subdivide the 
interval (0,l)  into  2k subintervals [2-"j; 2P.(j+l)] with 
O s j 5 2 k -  1. Beginning with f o =  F, k numbers f;, fi, . . . 

fk" t r fk  =fare computed successively  in k  additions by letting 
fi+l=fi-s,/2ii1, (Osisk-l), where si denotes the sign 
of f i ,  namely : s, =signum ( fJ .  

Thus, we have in F=a(k)+.f 

k-1 

f = f k = F - a ( k ) = F -  2 ~ i i 2 ~ " .  
2=0 

There  are 2k-1 different possible values of a(k) since 
k - 1 signs st, 1 5 is k - 1, are involved (SO = + 1) and each 
of them can take either  one of two values Z!Z 1. The 2k" 
constants to be stored are the different possible values of 

prove by induction that [ f i  1 2 ?  so that  the  range of the 
2u(L) since eFIn2=ea(k).ln2.efln2,2a(k).efln~. It is easy to 

Particularizing this expansion for f(z)=e*, P(t)  = t". 
( t  - 1 )", a = 0, one  obtains our approximations.  Another -2-h. ln2 < f .  ln2 = < 2-k. ln2. 
French mathematician H .  Pade [4] formulated in 1892 
a general method for constructing  a complete table of all This reduction to  as small a range as we  wish (k can  be 
rational  functions  approximating  a  function f ( x ) .  The chosen at  our convenience) is the most important step 
diagonal of his table for ez contains our approximations. since it allows us to obtain any desired accuracy. 111 

exponent z in ez=efln* is: 
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2. Study of the relative error R, (3 in (3) 

The maximum of the  upper  bound (5) for  the absolute 
value of relative error is attained for z =  -2V. 11-12. De- 
noting  this maximum by M (k,m) we computed the follow- 
ing values of this function of two parameters  k and m: 

Table 1 Values of M Ik, ml 

m\ k 3 3  4 5 

2 2.4 x 10-7 7.2 x 10-9  2.2 x 10-10 6.7 x 10-12 

3 5.1 x 10-11 3.8 x 10-13 3.0 x 10-15 2.3 x 10-17 

4 5.1 x 10-15 1 .1  x 10-17 2.2 x 10-20 4.2 x 10-23 

5 4.6 x 10-19 2.2 x 10-22 1.0 x 10-25 5.0 x 10-29  

The number d of correct significant digits in an approx- 
imate value of  eN computed by (3) and expressed in 
decimal numeration depends on  the value of M(k,m). If 
the binary representation of the exponent z=  f . ln2 is con- 
sidered as exact, the first h significant digits in elr  will be 
correct, if M(k,m) is less than +.lo-*. But if the value of z 
is affected by an absolute error dz the condition M(k,m) 
<+. loph is necessary, but  not sufficient. Since e-..d(eZ) =dz, 
an absolute error dz  in the exponent z generates an  equal 
relative error in ez. 

Even if the decimal representation Nlo of N is known to 
be exact so that there is no  error  DNlo in the given value 
of Nlo,  the conversion of Nlo  into the binary representation 
N ,  of N  introduces an  error  DN2#0.  In a single precision 
fixed point computation with a 35-bit binary machine, 
we can  have D N Z = F 5 .  N and, if the double precision is 
used, DN, = N. For floating point computations the 
corresponding conversion errors  can reach 2?. N and 

Let us consider the case when N is large and  has q digits 
in the integral part of its decimal representation Nlo, so 
that lOq>N> 10*-l. In this case, the  absolute error dz in 
z=f.ln2 can reach 3.10*-11 and there will be at most only 
10-q correct significant digits in the final value of  eN. 

Another  cause of possible loss of accuracy unrelated to 
the value of M(k,m) is the generation of an  error dz in  the 
multiplication of  1og.e by N,  if N is large. Suppose that  the 
binary value of log,e stored in the memory of the machine 
has 35 bits, so that  the absolute error in  log2e is  less than 

2-54. N .  

3. Number of operations 

To be able  to choose among combinations (k,m) insuring 
the  same accuracy we have to  compare  the number of 
operations and of precomputed  constants involved in each 
of these procedures. Using (4) for  m=2, 3, 4, 5, forming 
the corresponding expressions of quotients P,(z)/P,( -z) 
and replacing in  them z by its value z=jln2=j;lg, where 
g=logse =ln-l2, we finally obtained the following practical 
rules for computing the products II, = 2a(k) . P,(z)/P,( -z) : 

~ , = 2 a ( k ) + a z . [ f - c C 2 + b 2 . f - 1 ] - 1  (t) 

I13=-22"(k)+as.[b3-f-c3.(f+d3.f-1)-1]-1 

I14=2a(li)+aq.[b4.f-1-c4+d4.f+h4. (f+b4.f-l)--l]--l 

~ 5 = 2 . 2 " ( k ) . ( ~ + f . [ b g - f - ~ 5 ( f 2 + d 5 - h S [ f 2  +rg]-l)-l]-l], 

where 

as=12g.2a(k);  b2=12g2;  c2=6g;  a3=24g.2a(k); 

b3=12g;  c3=50g2;  d3=10g2;  a4=42g-2R(k); 

b4=42g2; ~4=21g; d4=1.05; hq=102.9g2; bs=30g; 

c5=924Og3; d5=4116g2/11; hgz244, 944g4/121; 

r6 = 504g2/1 1. 

Since 

e ~ ' ~ 2 " . 2 " ( k ) . P , ( ~ ) / P , ( - z ) = 2 M . ~ ~  

it is seen that  the number of multiplications (divisions 
being counted as multiplications) for  m=2, 3, 4, 5 is equal 
to m+ 1 because one  more multiplication is needed to find 
f. The factor 2.44 is accounted for by a shift. The number of 
additions  in  computing II, is also  equal to  m+l. Adding 
k  additions necessary for  the determination of j; we have 
in all m+k+l additions. The precomputed  constants to be 
stored are: 2"" numbers of the type 2a(/c),  as well as 2"" 
numbers a, for  m=2, 3 and 4 and 2"" numbers 2.2a(k)  for 
m=5. This gives 2k+m constants necessary to compute 
II, for 2 5 m s  4,  while the computation of 115 necessitates 
2k-'+m constants. Adding to  it  the  constant g, we sum- 
marize these results  in  Table 2. 

Table 2 Values of M ,  PC, Dg 

k = 2   k = 3   k = 4   k = 5  
M PCDg M P C  Dg M P C  Dg M P C D g  

2-:jfi.  If theintegral  part of NIO has q digits, then theabsolute = 6 11 3* 19 3* 35 
errorDjin f=N.log,e--M-a(k)  can  reach the value F 6 .  m = 3 4* 8 10 4 12 12 4 20  14 4 36 16 
10~~logzesothatdz=Df~ln2=2~3~~lO~=3.10*-11andagain, = 4  14 13 16 5* 21 19 37 22 
instead of ten, only 10-q first significative digits will be = 6* 18 6* 21 6 14 24 6 22 28 
correct, if M(k,m)<5.10-". To avoid the loss of accuracy ____ 

I which may be caused by the conversion of Nlu into N2 *Important Combinations 
and/or by the multiplication of log,e by N2,  it is advisable, 
if N is large, to use the double precision binary representa- 
tions of logse and N z  in  computing f and then  continue a 
single precision computation.  This will insure 21 -q correct 
digits, if lo*"< N< 109, provided M(k,m)>+10*-21. 

In what follows, we suppose that  the double precision is 
used in computingf, so that  the accuracy of the result will 

The number of divisions for m = 2,  3, 4 and 5 is equal to 
2,  3, 3 and 3 respectively. Using the rational  approxima- 
tions it is not possible to eliminate divisions completely, 
but  in some cases it is preferable to reduce their  number. 
A simple algebraic transformation reduces the number of 
divisions for m = 3,4, 5 to one, replacing a division by two 

112 depend on M(k,m) only. t Suggested by Dr. George E. Collins, IBM. 
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multiplications. Thus, IT3, TI4 and ITs can be  computed  in 
4, 5 and 6 multiplications plus one division, using the fol- 
lowing equivalent expressions: 

I13=A3.{a*3+f.(b*3+f2).[~*3+d*3.f2-f(b*3+f2)J-1] 

II,=A4.{a*4+f(b*4+f2). 

r I 5  = A s .  { a*~+f.   [k5+f2(b*5+f2) I. 
[c*4+(d*4+h*4.f? f"f(b*4+f2)1-11 

[C*5+(d*5+h*S~f2~f2-~~~s+f2~~*s+f2)~1--1), 

where 

A3=A4=A5=2.2a(k). * - * - * - 1  , a  3-a  4-a 5-7; 

b*3=60g2, b*4=42g2, b*5=420g2; c*3=I2Og3, c*4=84g3, 

c*S=3O,24Og5; d*3=12g, d*4=9g,  d*s=3360g3; 

1~*,=(2Og)-~, / ~ * ~ = 3 0 g  and k5=15,120g4, 

Two single precision subroutines  for the computation 
of e.v, based on (3), were coded a year ago for the IBM 
704. They yield ten correct digits, but only eight are needed 
in the floating point  computation. Their characteristics 
are  as follows: 

Table 3 IBM 704 Subroutines for eN 

fixed  point  floating  point 
Combinations used k = l , n z = 4  k = 2 , r n = 3  
Multiplications 4 3 
Divisions 2 2 
Precomputed  constants 5 7 
Time (in milliseconds) 2.80  2.63 

Six combinations of Table 2 are  important for single and 
double precision, fixed and floating point  subroutines  for 
the  computation of e v. They are given in  Table 4. 

Table 4 Important  Combinations 

Combination M PC Dg 
(1) n~ = 2, k = 4 3 19 9 
(2) m = 2, k = 5 3 35 10 
(3) nz = 3, k = 2 4 8 10 
(4) rn = 4, k = 4 5 21 19 
( 5 )  rn = 5, k = 2 6 8 18 
(6) rn = 5 ,  k = 3 6 10 21 

Among  them ( l ) ,  ( 5 )  should be used in single precision 
floating point,  double precision floating point and (4)  or 
(6)-in double precision fixed point  computations respec- 
tively. In single precision fixed point  computations the 
combination (3) needs one  more multiplication than (2), 
but it involves only 8 stored  constants while (3) has 35 
constants. 

Part B-Decimal machine; 
polynomial  approximations 

4. Reduction to small range 

Multiplying N in e-\- by g=logloe, we have Ng= N.logl0e 
=M*+F=M*+a(k)+f, where M *  is the integral and F 

the fractional part of the product. Dividing the  range 
( 0 ; l )  of F into 2k subintervals exactly as in Part A and 
using the same notations a(k) and f, we have 

e.\-= 10.\1*. 1 o a ( k )  . e jh ln  

with I f I S 2Pc. Here  the 2k-1 precomputed  constants are 
equal to lo"@)', where a(k) takes  the same 2"' values 
(2j--1)/2", 1 S j  S2k-1,  as in Part A. 

5. Rational  approximations 

Without repeating the analysis of Part A, we give  (in 
Table 5) its results, which can be useful only in the case 
when division is not  too slow an operation  for  a given 
decimal machine: 

Table 5 Values of Mik, ml 
m\k 2  3  4  5 

2 1.9 x 10-4 4.0 x 10-6 1.0 x 10-7 3.0 x 10-9 
3 4.5 x 10-7 2.4 x 10-9 1.5 x 10-11 1.1 x 10-13 
4 5.9 X 10-lO 7.8 X 10-13 1.3 X 10-li 2.2 X 10-18 
5 4.9 X 10-13 1.6 X 10-16 6.6 X 10-20 3.0 X 10-23 

6 2.9 X 10-'6 2.4 X 10-20 2.4 X 2.7 X 10-28 

In  the case m =6, ez is approximated by Pi(z)/P6( -z), 
where the coefficients ck of 

6 

P6(z) = 1 f z / / 2 +  2 Ck'Zk 
/c=2 

are: cy = 5/44,  c3 = 1/66, c1 = c3/12, cj  =c4/20 and cG = c5/42. 
, The quotient P,(Z)/PG( -z)  is computable in one multiplica- 
tion (necessary to  form zz) and  four divisions: 

P~(z)/P~(-z)=I+z.[I-z/~+z~/Q(z~)]-~, 

where 

Q ( t )  =84-a6* (t+bs+co. (t+dg)-')"l 

with a6 =43,344, b6= 12294143, cg = 53,824,320/432, d6 = 
3960143. 

Thus, for a decimal machine allowing the use of division 
the rational  approximations yield the same results as  for a 
binary machine, but the number of operations and of pre- 
computed  constants, for  the same accuracy, is somewhat 
greater. We cite  some of them in Table 6. 

Table 6 Values of M, PC, Dg 

m k Mult.  Add. Prec.  Const. Correct Digits 
2 5  3 8 35 8 
3 3  4 I 12 8 
3 4  4 8 20 10 
5 4  6 10 14 18 
6 3  7 10 12  19 
5 5  6 11 22 22 

The rational  approximations  should  not be used for 
decimal machines in which the division is too slow. For 
such machines polynomial approximations deduced from 
the series (I) are much more economical. They are  more 113 
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Table 7 Values of M* In, kj 

k\ n 5 6 7 8 9 10 
2 1 x 10-4 7 x 10-6 3 x 10-7 
3 2 x 10-6 5 x 10- I x 10-9 
4 5 x 10-5 6 x 10-10 *6 X 10-12 
5 2 x 10-9 *7 x 10-12 4 x 10-14 

economical than the  partial sums of exponential power 
series, even  when the  latter  are shortened by relaxation 
of last  terms. 

6. Polynomial approximations 

We study now the relative error R,(z) = e-z. E,(a,x), where 
En(a,x) verifies the inequality (2), z=ax,  a=2-k.ln10  and 
1x1 5 1. Therefore 
IR,(~)l52.10~.Z~(a)[l-a(n+l)-~/2]"=M*(n,k) 
Denoting the upper bound of lR,(z)I by M*(n,k), we 

It is interesting to  compare M*(n,k) to  the relative error 

made in  approximating ez by the partial  sum 2 zi/j! 

This relative error is essentially equal to  ec2.zn/n!.(l -z/ 
(n+l))-I,  the maximum value of which (obtained for 
z =  -ln10/29 we denote by B(n,k): 

have the result given in Table 7. 

n-1 

i=O 

B:n,k) = 102-k. (Ir110/2~)"(n!)-'/[l -z(n+l)] 

Thus, we have  approximately B(n,k) = M*(n,k) .  2"" which 
shows that  the relative error made using the Maclaurin 
expansion of ez is 2%" times greater  than the relative error 
of our polynomial approximation. For n =6, 8, 10 the 
factor 2"" takes the values 32,  128,  512. 

Different combinations (n,k) insure the same  number of 
correct digits in  the final result. Thus, for instance ten 
correct digits can be obtained using either  one of four 
combinations (6,5), (7,4), (8,3) and (10,2). 

The coefficients ck of the polynomial approximation 
Qn-l<x) 

n-1 n-1 

eaz=Qn-l(x)=Zo(a)+2. 2 Z,(a).T,(x)= 2 c i . x i  

are obtained, replacing the Tchebychev polynomial Tm(x) 
by its expression 

2 ~ , ( x ) = n .  2 ( - 1 ) " . ~ ~ " ) . ( 2 x ) " - ~ " / ( n - - m ) .  

The final result is 

m=1 i=O 

2 m S n  

m=O 

n-1 

ez=Qn-l(z) = 2 (l-&i)zj/j! 

where 6, are small, so that  our approximating polynomial 
Qm-l(x) appears  as the  sum of the  first n terms of the ex- 
ponential series for ea= with slightly modified coefficients. 

We now illustrate the computation of coefficients and 
the relaxation of on a particular example of approx- 
imation giving ten  correct significant digits. The combina- 
tion used in  this example is n =6  and k =  5 ,  so that a = 

j=0 

114 
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1 x 10-5 3 x 10-10 *1 x 10-11 
*2 x 10-11 3 x 10-13 5 x 10-15 

5 x 10-14 4 x 10-16 3 x 10-18 
2 x 10-16 7 x 10-19 3 x 10-21 

(ln10)/32. Replacing in the expression for Q5(x) the poly- 
nomials T,(x) by their expansions and omitting the 
argument a of the Bessel functions Z,(a),  we have 

Q ~ ( x )  =Zof211.~+212. (2~ ' -  1)+213. ( 4 2 - 3 ~ )  
+ 2 Z ~ * ( 8 ~ ~ - 8 ~ ~ + 1 ) + 2 Z ~ . ( 1 6 ~ ~ - 2 0 2 + 5 . ~ ) .  

Thus, 

ez=Q5(x)- 2 ci(2x)i, 

where 

co=Zo--2Z2+2Z4;  c1=Z1"3Z3+5Z5;  cz=Zn-414; 
c3=Z3-5Zs; c4=z4; cg=Z5. 

7. Relaxation 

The last  term 2 .  cs. xs can be replaced by an approximating 
polynomial of the  fourth degree, the  error made being less 
than lo-". In fact we  will have two approximating poly- 
nomials: one in 05x5  1 and the other in - 1 5x50. The 
modified Tchebychev polynomial 

5 

i=O 

T ~ ( ~ ) ~ 5 1 2 ~ ~ - 1 2 8 0 ~ ~ + 1 1 2 0 ~ ~ - 4 0 0 ~ ~ + 5 0 ~ ~ 1  ( 0 5 x 5 1 )  

is less in  absolute value than one, if 0 5  x 5  1. Changing the 
sign of its argument, we have another polynomial 

T * ~ ( x ) =  - ( 5 1 2 ~ " + 1 2 8 0 ~ ~ + 1 1 2 0 ~ ~ + 4 0 0 ~ ~ + 5 0 ~ + 1 )  
( -15x50)  

which is  less than  one in  absolute value, if -1,<x50. 
Therefore, in 0 5 x S l  we take 

~~=5~~/2-35x3/16+25~~/32-25~/256+1/512+g(~),  
(05x51)  

w h e r e l g ( ~ ) / 5 2 - ~ f o r 0 $ ~ 5 1 ,  whilein -15x iOwehave  

x5= -5x4/2-35~3/16-25~2/32-25~/2S6-1/512+h(x), 
( -15x50)  

where again ( h ( ~ ) ( 5 2 - ~  for -15x50. Now, since a= 
(ln10)/32, we have 25.c5=25.Zs(a)l 10-7.79125 and therefore 
25.c5.gl(x)( and  2s.~5.1h(~)I  are less than  10"10.~s2, which 
proves that  the absolute error made  in  dropping g(x)  or 
h(x) is less in  absolute value than 3.2X1O-l1. The corre- 
sponding relative error is  less in  absolute value than 
3.44X1O-l1. Thus, replacing x? by a polynomial of the 
fourth degree we obtain 

25. c5X5 = z5. 
[~5 . (2~)~ -35 . (2x )~ /4 f25 . (2~)~ /4 -25 . (2x ) /16 f1 /16 ] ,  

so that  the relaxed coefficients c*k become 

c*o=Zo-2bf214fZ5/16; ~*1=Zl-313+55G/16; 
c*2=I?-4z4+251s/4; c*3=13-55.15/4; c*4=14=t5zs. 



In  and c * ~  the plus sign should be taken, i f f  is 
positive, and  the minus sign if j is negative. The relaxa- 
tion of the term in x4 does not work, the resulting error 
being of the  order of 10P. 

Thus, ez can be  computed with the  aid of two approxi- 
mating polynomials of the  fourth degree in five multi- 
plications: 

ez~dn+f.[dl+f. (dz+f.[d3+d4.fl)l 
where 

d 1 -  -2(k+l);.C*i. = 6 4 i . p j  

Adding to the eight coefficients d f ,  the 24+1 = 17 pre- 
computed  constants necessary for  the reduction of the 
infinite range - m < N <  m to I f 1  5 2-j,  we obtain, in all, 26 
precomputed constants. The number of operations is: nine 
additions and five multiplications. 

This example, it is hoped, shows clearly the procedure 
which  is to be followed in  the computation of the coeffi- 
cients d ;  of a relaxed approximating polynomial en-, (z), 
when n and k have fixed known values. 

The number of precomputed constants is equal to 2k-1 
+n+[n/2]+1, [n/2] denoting the integral part of 4 2 .  The 
number of multiplications and additions is equal to n - 1 
and n+3. 

8. Briggs' Method 

To conclude we describe a rather curious adaptation of an 
old method, used  by Briggs in 1624 for compiling his table 
of logarithms, for  the computation of e 5  with the aid of an 
electronic computer. To fix our ideas let us consider only 
the case where first ten significant correct digits are re- 
quired, the computer being a binary machine. 

To compute the factor 2 F  in  e"=21w.2F, O<F< 1, with 
ten correct digits we  will use 17 precomputed and stored 
constants ck=log2(1+2""), lSkS17.  Let jo=Fand  define 

recursively f,, a L  as follows: f t + l = f s  and  alL1=O, if 
f i<ci+l ,  but fi+l=fi-ci+l and ai+ ,=l ,  if fi>ci+,.Then 

17 

F= 2 ~k.ck+f*, 
k=l  

where O<f*=f17<~l;=1.1X10-5, so that  f(f*.ln2)2< 
3.10-11 and  2f*Zl+f*.ln2. Therefore 

17 

2"=(1+~*.1n2). II (1+2-k)q ( u k = ~ o r  1) 
k=1 

The multiplications by factors 1+2+  are in  fact per- 
formed  as  additions : 

A.(1+2-k)=A+2-k.A 

In all only two multiplications are used: one  to  form F, 
another  to compute the product f * .ln2. The number of 
additions depends on N. It varies between 18 and 35. There 
are 19 precomputed  constants : ln2,10g2e and seventeen ch. 

If first eight correct digits are required (floating point 
computation), then/* =fL4. Six correct digits are obtained, 
iff * = f i 2 .  
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