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A General  Theory 
of Multiple Spin Echoes 

A theory has been developed for  the amplitudes and 
shapes of a series of spin echoes produced by a  train of 
rectangular pulses of arbitrary  number,  amplitude, dura- 
tion  and time sequence. The treatment is based upon 
Jaynes’ method’ of solving the Bloch equation  in  terms 
of the 2 x 2  rotation matrices of spinor theory. Whereas 
the formalism set up by Jaynes’ for  the solution of special 
cases requires matrix elements to be multiplied out  at 
length, the present method manipulates the non-commu- 
tative algebra of the matrix formulas to arrive at  the 
required results directly. To illustrate the method, we con- 
sider the case (see Fig. 1) in which a  train of uniform 
pulses applied in  arbitrary  time sequence is made to  pro- 
duce a series of “stimulated normal order echoes.”* We 
must determine the  motion of the magnetization M(Aw) 
by solving the Bloch equation  without relaxation terms. 
If the pulse train be generated by an amplitude  modulated 
oscillator, the Bloch equation may be written in a  rotating 
frame of reference as3 

*(nu) +y[H,~, X M;Aw)]  = 0, 
at (1) 

where H,,, “the effective field,” is constant during each 
pulse and is 

He, = HL + A u / ~ .  

In this  frame M(Aw) satisfies (1) if it rotates about H,, 
with angular velocity h= [(yH,)2+(Aw)’L]a. In Fig. 1 we 
show HI as  a function of time. For simplicity let us as- 
sume that M(Aw) rotates only about H, during each 
pulse, i.e. that Am ’y<<H,. Following Jaynes, each  rota- 
tion of M(Aw) is represented by a 2 x 2  rotation matrix 
Qt,  and the resultant rotation of a series  of rotations may 
be represented by a matrix Q which  is  given by the prod- 
uct  of the individual rotation matrices Qi. If the initial 
magnetization is  in the z-direction and normalized to unit 
magnitude, i.e.  if Mo(Aw) = lk,  and if Q rotates Mo into 
M where 

then the y-component of M(Aw) can be shown to be 

M!,(Aw) =i(a*p*-aP). (3) 
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Figure I 
Pulse amplitude H ,  in the rotating frame  versus time, t ,  for production of a  train of normal  order  spin echoes. In the 

case illustrated, N identical “information” pulses are applied at arbitrary times. During each pulse M(Aw) is assumed 
to  rotate only about H, through the angles shown; between pulses M(Am) precesses  freely about  the z-axis through angles 
pj=Awt i .  The times of occurrence of desired normal order echoes are indicated; the undesired or “interpulse” echoes2 
are  not shown. 93 
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g(Aw)=g( - 4 ~ ) ,  then only Mv(4,) is needed to find the 
shapes and amplitudes of the spin echoes. It is useful to 
define two  matrices A and B such  that 

for then Q = A+B, and M,(Au) has  the matrix form 

M , ( A w ) = ( - ~ ) T ~ ( A * ~ , B ) ,  ( 5 )  

where Tr denotes the  trace of matrix (A*dzB). 
Jaynes gives an exponential and a  binomial form which 

express the individual rotation matrices Qi explicitly in 
terms of the rotation angle O and  the unit vector n in  the 
direction of the  rotation axis. These forms  are 

Qi=exp(-+in.dO)=l cos(+O)-in.d sin(f0). (6) 

The vector d has  components d,, d,,  d, which are  the 
Pauli spin matrices.' Using (6) to describe the rotations 
indicated in Fig. I ,  we may write Q at time t after the 
second 90' pulse as 

Q = exp( -*id,+ ,)exp( -+idZa/2)exp( -+idz+N+l) 

exp( -+id,+l)exp( -+id,a/2) (7) 

In (7) the exponential and binomial forms of (6) have 
been  used  respectively for periods of free precession and 
for pulse rotations. From  the anti-commutation  property 
of the Pauli spin matrices, specifically that d,d,= d,d,, 
there follows the commutation  relation 

exp( - $idJd, = d,exp(+idJ. (10) 

Using (10) to move the exponentials in (7) to  the right, 
and using (6) with %=a/2 ,  Q can be written 

Q = +Z (1 - d,)PZ(l- dz), (11) 

where 

P- ( c-isd, esp:idz+.,-+,l) (c-isdz exp[id,i+.v+l++Nil) 

. . . . ( c - i s ~  exp:id,(+N+~+....++2)1) (12) 

and 

Zt=exp[-+id,+t), 

Z=expl-+d.(+N+l++~+. . . . + + d l .  (1 3) 

If P be multiplied out,  the commutation relation (lo), 
together with the property of a Pauli spin matrix that 
d,'= 1, may be used to express P in the binomial form 

P = P, - id,Pr. (14) 

i 94 The functions PI and Pp are polynomials in the variables 

c and s with coefficients which are  the  sum of products of 
matrices of the  form exp(id,+). The significance of (14), 
since d, does not  appear in PI or P? is that  the terms of 
PI and P? may be  handled by the rules of ordinary,  com- 
mutative algebra. Furthermore, PI and P2 commute with 
each other  and with all other matrices of form exp (idz+), 
such as Zt and Z. If (14) is substituted in ( l l ) ,  Q may 
be expressed as the sum of eight terms  each of form 
Zt.PIZ. From this expression, A* and d,B are readily ob- 
tained as the sum of four terms each. The matrix A*. d,B 
thus consists of 16 terms, but of these only two have the 
time dependence characteristic of the direct order echoes 
desired in practice. Consequently, for desired, direct order 
echoes, it is found  that 

M , ( A W ) = ~ T ~ : ( Z ~ ~ Z ) ~ . P ~ P ~ ] ,  ( 1  5) 

where Z-, =exp(+i&Awt). Form (15) is a  central result 
of this method. Special algebraic methods are developed 
to pick from PIP2 those  terms which contribute to  the 
echo of the nth pulse. The sum of these terms, once identi- 
fied, is readily obtained, and  the result is that M$,(Aw) 
for the  echo of the nth pulse is 

M,(Aw)ln=+T~:Dnexp(id.Awr)], (1 6) 

where r=t-(tl+t,+. . . . . ' t , ) ,  and  the echo  amplitude 
function D, obtained from PIP, is 

D , = ~ . D , = ~ . s c . ( c ~ ) ~ - - ~ ( c ~ - s Z ) . ~ - - ~ ,  (1 7) 

where s and O p  are given in (8) and (9), and c=cos(O,/2). 
D, is independent of Aw. The echo of the  nth pulse is 
found by integrating (I  6) over ~ ( A W ) . ~  It is 

[MU(t)ln =+J'Tr[Dnexp(idzAw~)] .g(Aw)d,Aw). ( 1  8) 

%?,(t) is the y-component in the rotating  frame of the 
magnet moment a(t) of the sample at time t, which is 

M ( t )  = fM(Aw, t)g(Aw)d(Aw), 

where J'g(Au)d(Aw) = 1.  (19) 

The peak of the  echo occurs at time t '= t,+ . . . +tn, or 
when T = O ;  hence as follows from (19) and the fact that 
Tr[exp(O)] = 2, the peak of the  echo is for M(0) = 1 k 

[MU(t ' ) ln=Dn.  (20) 

Formula (20) is a rigorous  proof of a result published 
previously.' This result may be generalized using the 
method just illustrated to  the case where M(Aw) is per- 
mitted to  rotate  about  the z-axis during all pulses except 
the two 90'-pulses. The result is that (16) and ( 1  8) still 
hold but D, in (18) is now a  function of Aw and  the matrix 
6,; 

D,(Aw,d,)=SC(C2)n"1(CC*-S2)-v"n, (21) 

where now C-l.cos(9,/2)-in.sin(8,/2).d,, (22) 

JBM JOURNAL - JANUARY 1957 



and S = 1.  n,sin(&J,/2), (23) 

in which 8, = bt,]. 

The quantities nl,  n,, and b are functions of Am, and  are 
given  by Bloom.5 The trace of D,(Aw,dz)exp(id,Am.r) in 
(18) may be found in  terms of a variable uz which takes 
on  the values + 1 and - 1, the diagonal elements of d,. 
Thus if D,(Aw,aJ be the function 

D,(A~,u , ) -SC(C' ) )""(CC*-S ' ) .~~" ,  (24) 

where C-cos(8,/2)--in,sin(8,/2)~,, (25) 

and S=n,sin(8,/2), (26) 

it follows from  the multiplication rule for  the diagonal 
matrices D, and D,exp(id,Awr) that 

Tr[D,(Aw,dZ)exp(idzAw.r)] = Dr,(Aw,+ I)exp(iAwr) 

+D,(Am,-l)exp(-iAm~). (27) 

By a slight extension of the methods outlined here, D, 
in (16) and (18) may be obtained for  the still more general 
case in which rotation about  the z-axis during all pulses 
except the  two 90"-pulses is permitted, and  the pulse train 
consists of  pulses of arbitrary  amplitude and duration. 
-~ ~ ~~~ 
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The result for D, is that 

i=n-1 i= .v 

i=l ++l 

where the subscripts n, i, and j indicate that formulas 
(22) and (23) are  to be written for the  nth,  ith, and  jth 
pulses, respectively. The general result (28) can be ex- 
pressed in  words  as follows: The apparent  action of each 
pulse preceding the nth pulse is to multiply D, by the 
factor C', and  that of every subsequent pulse is to multiply 
D, by (CC* -S2); the nth pulse itself introduces the factor 
SC into D,. 

It may be shown also by this  method that  the ampli- 
tudes of echoes in  a  train of "inverse order  mirror echoes"' 
are twice as large but otherwise identical with those which 
would be produced in direct order by an "associated pulse 
train." The associated train is defined as follows: Let the 
pulse train  producing  mirror echoes be labelled backwards 
in time from the 180' pulse as n = 1, 2 . . . N ;  then the 
"associated pulse train" consists of these same pulses 
labelled n= 1, 2 . . . N (and the intervals between them) 
but applied in direct order of time sequence following the 
first 90"-pulse. The amplitude result follows when M.,(Ao) 
is expressed in terms of matrices;  the form is almost that of 
(16). Details of this theory will  be published subsequently. 


