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of Multiple Spin Echoes

A theory has been developed for the amplitudes and
shapes of a series of spin echoes produced by a train of
rectangular pulses of arbitrary number, amplitude, dura-
tion and time sequence., The treatment is based upon
Jaynes’ method! of solving the Bloch equation in terms
of the 2X2 rotation matrices of spinor theory. Whereas
the formalism set up by Jaynes’ for the solution of special
cases requires matrix elements to be multiplied out at
length, the present method manipulates the non-commu-
tative algebra of the matrix formulas to arrive at the
required results directly. To illustrate the method, we con-
sider the case (see Fig. 1) in which a train of uniform
pulses applied in arbitrary time sequence is made to pro-
duce a series of ‘“stimulated normal order echoes.””? We
must determine the motion of the magnetization M(Aw)
by solving the Bloch equation without relaxation terms.
If the pulse train be generated by an amplitude modulated
oscillator, the Bloch equation may be written in a rotating
frame of reference as?
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where H,,, “the effective field,” is constant during each
pulse and is

H,=H.+Aw/y.

In this frame M(Aw) satisfies (1) if it rotates about H,,
with angular velocity h=[(yH\)>+(Aw)?3. In Fig. 1 we
show H, as a function of time. For simplicity let us as-
sume that M(Aw) rotates only about H, during each
pulse, i.e. that Aw/v< H,. Following Jaynes, each rota-
tion of M(Aw) is represented by a 2X2 rotation matrix
Q,, and the resultant rotation of a series of rotations may
be represented by a matrix Q which is given by the prod-
uct of the individual rotation matrices Q.. If the initial
magnetization is in the z-direction and normalized to unit
magnitude, i.e. if MAw)=1k, and if Q rotates M, into
M where

_( « B
then the y-component of M(Aw) can be shown to be
M (Aw) =i(a*B*—af). (3)

1If g(Aw), the distribution or weighting function of M(Aw)
over the sample,! be a symmetric function in Aw, i.e. if
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Figure 1

Pulse amplitude H, in the rotating frame versus time, 7, for production of a train of normal order spin echoes. In the
case illustrated, N identical “information” pulses are applied at arbitrary times. During each pulse M(Aw) is assumed
to rotate only about H, through the angles shown; between pulses M(Aw) precesses freely about the z-axis through angles
o;=Awt; The times of occurrence of desired normal order echoes are indicated; the undesired or “interpulse” echoes?

are not shown.
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2(Aw)=g(—Aw), then only M (Ae) is needed to find the
shapes and amplitudes of the spin echoes. It is useful to
define two matrices A and B such that

_fa O _{ 0 8
A—(O a*)y B_(___ * 0)7 (4)
for then Q=A-+B, and M,(Aw) has the matrix form
M, (Aw)=(—i)Tr(A*3,B), )

where Tr denotes the trace of matrix (A*¢.B).

Jaynes gives an exponential and a binomial form which
express the individual rotation matrices Q. explicitly in
terms of the rotation angle # and the unit vector n in the
direction of the rotation axis. These forms are

Q:=exp(—1in-686) =1 cos(39) —in- ¢ sin(39). (6)

The vector ¢ has components é,, é,, 6, which are the
Pauli spin matrices.! Using (6) to describe the rotations
indicated in Fig. 1, we may write Q at time ¢ after the
second 90° pulse as

Q =exp(—1%i6.¢ Jexp(—+id.m/2)exp(—3id.dw 1)

(c—isd)exp(—%id.pn)- - - - exp(—36.4,)(c—isd,)
exp(—}id.p)exp(—+id.m/2) @)
where
c=1cos(36,), s=sin(39,) 8
and
0,=(H\)ty, 0;=Awt;, or=Awt. ©)

In (7) the exponential and binomial forms of (6) have
been used respectively for periods of free precession and
for pulse rotations. From the anti-commutation property
of the Pauli spin matrices, specifically that ¢6.6.=4.d.,
there follows the commutation relation

exp(—%id.)8. = 6.exp(}id.). (10)

Using (10) to move the exponentials in (7) to the right,
and using (6) with §==/2, Q can be written

Q=3%Z 1—6.)PZ(1—-3,), an

where
P= (C —isd, eXp[idzquUrl]) (C —isd, eXp[idz(d)Nﬂ +¢N> ])

(i3, explitulyat - +an)) (12)
and
Z,=cexp.—1id.d.),
Z=exp|—48.(oxut vt -+l 13

If P be multiplied out, the commutation relation (10),
together with the property of a Pauli spin matrix that
é.2=1, may be used to express P in the binomial form

P=P —ig,P.. (14

The functions P, and P, are polynomials in the variables
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¢ and s with coefficients which are the sum of products of
matrices of the form exp(id.¢). The significance of (14),
since 6, does not appear in P; or P, is that the terms of
P, and P, may be handled by the rules of ordinary, com-
mutative algebra. Furthermore, P, and P, commute with
each other and with all other matrices of form exp (i3.¢),
such as Z; and Z. If (14) is substituted in (11), Q may
be expressed as the sum of eight terms each of form
Z.-PZ. From this expression, A* and ¢,B are readily ob-
tained as the sum of four terms each. The matrix A*-¢,B
thus consists of 16 terms, but of these only two have the
time dependence characteristic of the direct order echoes
desired in practice. Consequently, for desired, direct order
echoes, it is found that

M(Aw)=3Tr(Z_.Z)*- PPy, (15)

where Z_,=exp(id.Awt). Form (15) is a central result
of this method. Special algebraic methods are developed
to pick from PP, those terms which contribute to the
echo of the s#th pulse. The sum of these terms, once identi-
fied, is readily obtained, and the result is that M,(Aw)
for the echo of the nth pulse is

M, (Aw)l,,=3TrD.exp(id.AwT)], (16)

where r=¢r—(t+t4+---- - t,), and the echo amplitude
function D, obtained from P,P, is

D,=1-D,=1-sc: (c})"!(c?—s2)¥n, an

where s and 6, are given in (8) and (9), and c=cos(8,/2).
D, is independent of Aw. The echo of the nth pulse is
found by integrating (16) over g(Aw).! It is

(M, D) =% f TrD,exp(id.AwT)] - g(Aw)d Aw). (18)

M,(f) is the y-component in the rotating frame of the
magnet moment M(#) of the sample at time ¢, which is

M) = [ M{(Aw, Hg(Aw)d(Aw),

where f gAw)d(Aw) =1, (19)

The peak of the echo occurs at time t'=¢4---41¢,, or
when 7=0; hence as follows from (19) and the fact that
Trlexp(0)] =2, the peak of the echo is for M(0) =1k

[M,(£)]u= D (20)

Formula (20) is a rigorous proof of a result published
previously.? This result may be generalized using the
method just illustrated to the case where M(Aw) is per-
mitted to rotate about the z-axis during all pulses except
the two 90°-pulses. The result is that (16) and (18) still
hold but D,, in (18) is now a function of Aw and the matrix
6.5

D, (Aw,8.) =SC{C)H" {CC*—SH) ¥, ey

where now  C=1-co0s(4,/2)—in.sin(4,/2)- é., (22)




and S=1-n.sin(8,/2), (23)
in which 6,=bz,.

The quantities n,, n,, and b are functions of Aw, and are
given by Bloom.* The trace of D,(Aw,d.)exp(id.Awr) in
(18) may be found in terms of a variable o, which takes

on the values 41 and —1, the diagonal elements of ¢.. -

Thus if D,(Aw,s.) be the function

D, (Aw,c,)=SC(CH 1 (CC*— SH)N=, 24)
where  C=cos(8,/2)—insin(6,/2)c ., (25)
and S=n,sin(0,/2), 26)

it follows from the multiplication rule for the diagonal
matrices D, and D,exp(ié.Awr) that

Tr[D.(Aw, 8 )exp(ié. Awr)} = D,(Aw,+ Dexp(iAwr)

+ D,(Aw, — exp(—iAwT). @7

By a slight extension of the methods outlined here, D,
in (16) and (18) may be obtained for the still more general
case in which rotation about the z-axis during all pulses
except the two 90°-pulses is permitted, and the pulse train
consists of pulses of arbitrary amplitude and duration.

5A. L. Bloom, Phys. Rev., 98, 1105 (1955).
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The result for D, is that

G=n—1 =N
D,(Aw,8)=8,C. ] J(c» JTc.cr—s, 28)
=1 j=n+1

where the subscripts #n, i, and j indicate that formulas
(22) and (23) are to be written for the nth, ith, and jth
pulses, respectively. The general result (28) can be ex-
pressed in words as follows: The apparent action of each
pulse preceding the sth pulse is to multiply D, by the
factor C?, and that of every subsequent pulse is to multiply
D, by (CC*—S?); the nth pulse itself introduces the facter
SC into D,.

It may be shown also by this method that the ampli-
tudes of echoes in a train of “‘inverse order mirror echoes™?
are twice as large but otherwise identical with those which
would be produced in direct order by an “associated pulse
train.” The associated train is defined as follows: Let the
pulse train producing mirror echoes be labelled backwards
in time from the 180° pulse as n=1, 2 . .. N; then the
“associated pulse train” consists of these same pulses
labelled n=1, 2 ... N (and the intervals between them)
but applied in direct order of time sequence following the
first 90°-pulse. The amplitude result follows when M, (Aw)
is expressed in terms of matrices; the form is almost that of
(16). Details of this theory will be published subsequently.
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