76

M. M. Astrahan
B. Housman

J. F. Jacobs

R. P. Mayer

W. H. Thomas

Logical Design of the Digital Computer
for the SAGE System

Introduction

The digital computer which is the central component
of the SAGE air defense system was designed jointly
by IBM and the Lincoln Laboratory of MIT. Data from
a large number of radars and other sources are fed
automatically into this computer, where they are pro-
cessed under programmed control. A complete air situa-
tion is prepared by the computer and presented to
operators by means of a special display system. The
computer automatically generates control commands for
the external environment in response to corrections and
command information fed into it by the operators.

The purpose of this paper is to describe the perform-
ance criteria of the computer in general terms and to
present some of the outstanding features of the logical
design. These features are necessary in the computer
because its air defense application requires a greater
emphasis to be placed on reliability, speed, capacity, and
flexibility than is usual in scientific or commercial appli-
cations.

The computer is a large-scale, general purpose, single-
address, parallel, digital computer utilizing 32-bit word
length. A high-speed, magnetic core memory is provided
which contains 270,336 bits of storage arranged in two
banks of 33 planes, each plane consisting of a 64 X 64
core matrix. The 33rd plane is used for parity check
bits. In addition to its buffer drums for communicating
with the external environment, an auxiliary drum stor-
age system is provided. This system contains 3,244,032
bits of storage divided among eight cylinders, each con-
sisting of six fields of 33-bit words. Each field has 2048
words distributed around the circumference of a cylin-
der. Five magnetic tape units of the IBM 728 design
and a large CRT display system are also provided.

The air defense application of this computer required
a reliability capable of providing continuous 24-hour
operation, Using present-day components, this is impos-

*Portions of this paper were presented at Western Joint Computer Con-
ference, San Francisco, February 8, 1956 and at the University of
Michigan Special Conference on Digital Computers and Data Processors,
June 20, 1956,

IBM JOURNAL ° JANUARY 1957

Abstract: Special design features and performance cri-
teria are described for the logical system in the digital
computer used in the SAGE (Semi-Automatic Ground
Environment) air defense system. Design details are
given for the arithmetic element, high-speed multiply,
index registers, input-output control, and magnetic drum
buffer. The system is designed according to special mili-
tary application requirements of speed, capacity, reli-
ability and flexibility.

sible to obtain with one machine. Therefore, the duplex
philosophy was adopted. Wherever individual equipment
failures could cause complete system failure, this equip-
ment was duplicated. Other equipment, which would
cause only partial degradation of the system in case of
failure, was not duplicated. Installed “hot” spares were
provided, however. Thus, the central computer, drum
system, and magnetic tape units were duplexed. The in-
put equipment, of which there is one piece per data
source, was simplexed. This arrangement not only guards
against overall system catastrophies caused by sudden
machine failures but also allows planned partial shut-
downs for maintenance purposes.

One major consideration in the design was the avail-
ability of components, particularly in the case of the
high-speed memory. The original thinking on this com-
puter resulted in a need for a memory faster and larger
than in any existing computers. This pointed toward the
magnetic core memory development which had been
under way for some time at MIT. The logical design of
the computer was centered around the engineering judg-
ment that the minimum memory cycle time would turn
out to be in the order of 6 pusec and that the largest
matrix of cores should be 64 x 64.

The availability of components also affected the
choice of the high-capacity storage medium, for which
the type of magnetic drums used on the IBM Type 650
was chosen. The vacuum tubes and circuitry in the
computer were developed from designs previously made
by the Digital Computer Laboratory at MIT and the
Electronic Data Processing Machine (EDPM) develop-

ment laboratories at IBM. The redesign of these basic
circuits was dictated by the increased reliability require-
ments. In many cases this necessitated the use of more
vacuum tubes and other components than are required
in scientific or commercial applications.

The features of the computer which are the primary
subject of this paper are in the logical design areas. The
majority of these features were dictated by the need
to obtain the most efficient use of the drum capacity
and core-memory speed with the minimum number of
circuits. As a consequence, special attention was given
to overlapping operations within the machine and to
the balance between the available components and the
logical arrangements which would maximize their use-
fulness.

The first of these features which will be discussed is
the arithmetic element. Much of the data processed by
the machine are in Cartesian coordinates. A large num-
ber of computations which are involved in the applica-
tion perform the same operation on x as on y. A saving
in time is effected by the use of a dual arithmetic ele-
ment which treats these quantities separately and simul-
taneously. In addition, the association of x and y is
maintained throughout the process. The second feature
is a high-speed multiplication technique, which dictated
the design of the adder in the arithmetic element. It was
found that all of the proposed arithmetic operations,
with the exception of multiplication and division, would
be performed during the cycle time of high-speed mem-
ory. A special adder was developed so that the multipli-
cation process could be made more compatible with the
memory cycle.

The third feature is an indexing system which auto-
matically takes care of the large class of bookkeeping
operations (i.e., address modification) without taking
extra operation time. The fourth of these features is an
input-output control system which was designed to allow
the computer to utilize the time which might otherwise
be wasted during periods when data are being trans-
ferred between it and the input-output system. This is
done by allowing the computer to continue working
while waiting for the input-output equipment to present
or receive its information. The fifth and final feature is
a buffer drum system which matches the computer speed
to the incoming data rate.

Arithmetic element

In the design of a digital computer, much consideration
must be given to the characteristic known as “word
length.” The desired precision of incoming and outgoing
data, as well as of intermediate results, helps to deter-
mine the desired word length. The application for which
this computer was intended required 16 bits to provide
the proper accuracy to reduce the effects of roundoft
and truncation errors during intermediate calculations.

In a stored-program computer, consideration must
also be given to the number of bits required to specify

an instruction. In a large-scale computer the internal
memory may be quite large and, for high-speed opera-
tion, each instruction should be able to refer to any one
of them. Thus the address part of an instruction will
require from 11 to 14 bits for memory sizes from 2048
to 16,384 registers, respectively. The operation code for
a real-time computer must be flexible enough to allow
general-purpose calculations to be carried out with a
minimum waste of time and should also provide for
some foreseeable special-purpose operations. A basic
operation code of 64 instructions requires 6 bits. Special
control bits, such as for automatic indexing, add another
4 or 5 bits to the operation code. Thus the word length
for a full instruction (including basic operation code,
control bits, and address) might be between 21 and 25
bits.

The conflict between the 16-bit word length for data
and the 25-bit word Iength for instructions was resolved
by the choice of a 32-bit word length. This allows two
16-bit numbers to be placed in any register and allows
additional control bits to be included in instruction
words. These additional control bits are used for in-
creasing the potential speed of the machine. Since the
memory must be capable of delivering the full register
simultaneously for instructions, it can also deliver both
numbers simultaneously. A separate arithmetic unit was
provided for each of these numbers so that both could
be manipulated simultaneously, thus doubling the speed
of the computation. This combination of units was
termed the “dual arithmetic” unit.

Special operations and control bits have been added
to the basic operation code to increase the utility of the
dual arithmetic unit. A conditional transfer of control,
or branch, can be made to take place if a specified
arithmetic unit is negative, or only if both are negative.
It is possible to store the full 32-bit word, or either half
independently. The address part of an instruction is
placed in the right-half word; hence a right store in-
struction can also be used for modifying addresses. Shift
and cycle instructions are provided for shifting either
arithmetic unit itself, or both together, or for cycling
data between the right and left arithmetic units. A
“twin” feature, available on some instructions, allows
the left-half word from memory to be sent to both arith-
metic units simultaneously. Thus, a vector in the dual
arithmetic unit may be multiplied by a scalar from a
left-half word of memory by a single twin and multiply
instruction. Each instruction which can cause an over-
flow of the accumulator contains a pair of control bits
that allow suppression of an overflow alarm from either
or both arithmetic units.

Of course, it is not always possible to make efficient
use of the dual arithmetic element. Single 16-bit words
can be handled just as easily by using the controls men-
tioned above, with no loss in speed except for an
occasional cycle to exchange left for right.

Regardless of the word length used, there is usually a
sizable body of data consisting of items only a few bits

77

IBM JOURNAL * JANUARY 1957

CARRY FROM

ADDER BIT n -1
CARRY CARRY
0 1
SUM 1
SUM O
ACCUMULATOR + {
REGISTER >
BIT n ﬁ E >
1.1 Y 1

*| SUM
< MATRIX

Figure 1

78

CARRY TO
ADDER BIT n + 1

Adder circuit. Diamonds represent d-c¢ levels; arrows,
0.1-microsecond pulses.

long. Storage space can be saved by packing a number
of such items into a register of storage. Packing and
unpacking such items can be very time consuming un-
less special instructions are provided. In this computer,
an extract instruction allows a given item to be ob-
tained from a memory register without obtaining other
items from the same register. A deposit instruction
allows the item to be replaced in storage without dis-
turbing other items in the same register.

High-speed multiply

The memory unit of a general-purpose computer must
be used one or more times for every instruction. In a
real-time computer the memory should be made as fast
as possible and never should have to wait for other
processes. In this computer, with the design goal of
6 usec per memory cycle, it would have been desirable
to design a 6-psec multiplier because of the frequent use
of the multiply instruction. On the other hand, a basic
flip-flop speed of 0.5 usec and a word length of 16 bits
allowed a reasonably simple 8-usec multiplier, with
0.5 usec for each addition and shift. Each multiply in-
struction thus requires the memory to pause for 2 usec
to allow the multiplication to finish, making the multiply
operation 14 usec in length, including memory access
for both the instruction and the multiplicand. An addi-
tional 3.5 usec must be added for manipulations such as
sign control, making the total execution time of the
multiply instruction 17.5 psec.

Each step of a multiplication should allow for the pos-
sibility of a carry propagated a full register length, or
16 bits. Although such a carry condition cannot occur
mathematically, it can be used to simplify the design
procedure because it is a reasonable approximation to

IBM JOURNAL °* JANUARY 1957

mathematically possible carries. If the basic gate-tube
propagation time is 0.04 usec, then a 16-bit carry will
require 0.64 wsec. To reach the goal of 0.5 usec per
multiplication step, the carry is accomplished concur-
vently with the 0.5-usec flip-flop resolution time. This
is done by making sure that all pulses which arrive at
a given flip-flop are spaced 0.5 psec apart, even though
they are carry pulses which have arrived as much as
0.64 psec after the initiation of the carry operation.

As shown in Fig. 1, each bit position makes use of
a diode matrix to form the sum of two bits: one from
the augend in the accumulator and one from the addend
in the A register. The matrix controls two sets of gate
tubes, one set to be sensed by an incoming “O carry”
pulse and the other by a “1 carry” pulse. When a carry
pulse arrives, only one gate tube passes it and indicates
the sum of the two bits plus the carry. This pulse is then
sent out as either a “O carry” or a “1 carry” pulse to
the next highest bit, and as either a “0” or a “1” sum
pulse to the accumulator flip-flop, depending on the
value of the sum. Thus the carry takes only the gate-
tube propagation time to pass each bit. Carry pulses
supplied to the right (the least significant) end at 2 mc
will cause every bit to receive carry pulses (of either “0”
or “1” value) at a 2-mc rate, although the pulses at
each bit will be displaced in time, depending on the dis-
tance of the bit from the right end of the register. This
principle forms the basis of the so-called “asynchronous
adder.”

For multiplication, each “add” step must be accom-
panied by a shift-right of one place, and some steps
(for a zero multiplier bit) will require a shift-right with-
out any addition. The shift on “add” is easily accom-
plished by sending the “sum” pulse from the adder to
the accumulator flip-flop to the right instead of to the
flip-flop which generated the sum. The shift-right with-
out addition must propagate down the accumulator at
the same rate as the carry in order to avoid conflict
with a previously initiated carry. This so-called “ripple-
shift” is accomplished simply by letting the shift pulse
from one bit initiate the shift command for the next bit.

Special controls could have been included to allow
the sum to be displaced to the left instead of to the right
during a divide process, and to be undisplaced during a
plain addition. However, the expense of such controls
was not justified. A corrective shift-left for add instruc-
tions, including a second corrective shift-left after an
end-around carry, can be accomplished without delaying
the memory cycle. Unlike multiply, which is used
extensively in most programs, the extra time required
for divide does not appreciably increase the average
instruction execution time because of the infrequent use
of the divide instruction in most programs.

Indexing system

Most digital computer programs involve sequences of
instructions which are repeated many times on different

data. It is very wasteful of memory space to include
separately stored instructions to process each datum,
since the instructions will vary only in the address to
which they refer. On the other hand, time is required
to modify instruction addresses for each execution. An
indexing feature has been included in this machine to
minimize the time required.

The indexing feature consists of a set of four index
registers, an index adder, and associated control circui-
try. Each instruction which refers to a memory address
may have inserted control bits to specify an index regis-
ter. The contents of the specified index register are
added to the address part of the instruction prior to its
execution; however, the instruction as stored in memory
remains unchanged. This indexing addition does not re-
quire any extra time, since it is executed while the
memory cycle is being completed. Thus, if an add
instruction with an address part containing 1000 is exe-
cuted, and if its control bits specify an index register
which contains 24, the instruction will be executed as
if it had an address part of 1024 but will remain stored
in memory as add 1000.

In order to utilize an index register in a cyclic pro-
gram consisting of a “loop” of instructions, it must be
possible to set up the index register to an inijtial value.
Two instructions, reset index register and reset index
register from right accumulator, have been provided in
this computer. They load the specified index register
with the address part of the reset index register instruc-
tion or with the contents of the right accumulator.

There are three other functions that the indexing
system must provide: (1) the modification of the index
register each time the loop is executed, (2) the testing
to determine if the loop has been executed the desired
number of times, and (3) the branching of control back
to the beginning of the loop unless it has been executed
the desired number of times. All of these functions are
handled by one powerful instruction, branch and in-
dex. Control bits included in the branch and index
instruction specify an index register and a decrement.
Each time it is executed, the specified index register is
first inspected to determine if it contains a negative num-
ber. If the number is positive, the contents of the register
are reduced by the specified decrement and the in-
struction branches to the address specified in its address
part, usually to the beginning of the loop. Thus, execu-
tion of the loop will continue until the index register
contents have been reduced to a negative number, at
which time the branch is not executed and the program
continues in sequence.

In addition to the four index registers, the right ac-
cumulator may also be used as an index register. This
feature was included to facilitate table look-up programs.
Assume that a program has been executed so that the
table argument has been computed in the right accumu-
lator. If the next instruction executed is a clear and
add instruction which specifies the right accumulator as
an index register and has the first address of the table

as its address, the first address and the argument will be
added before the instruction is executed. Thus, with only
one instruction, the desired table contents are obtained.

When an indexed loop is used in searching for a de-
sired value in a table, it is often necessary to determine
the contents of the index register when the desired value
is found. An instruction called add index has been
provided to permit this important operation.

Input-output control

The system application requires that large quantities of
data be entered into the core memory, processed, and
delivered out again. The data sources and destinations
have varying word rates and access times. Since com-
puting time is at a premium, the input-output control
design goal was that an arbitrarily sized block of words
be transferred with a minimum of time devoted to the
transfer. This minimum consists of the time needed to
execute the program steps which set up the transfer,
plus the one memory cycle required to transfer each
word into or out of core memory.

Reading into core memory will be assumed in the
following: Writing out of memory is analogous. The
design goal required the use of an independently operat-
ing input-output control which could remember the
input-output unit selected, the number of words to be
transferred, and the location in core memory for the
block of words. A “break” system was needed which
could interrupt the program operation for one memory
cycle whenever the input-output unit had provided a
word. The instructions in the computer are designed in
such a way that a “break” memory cycle can be initiated
at the end of any memory cycle with no effect on the
instructions other than to delay their execution.

The system chosen operates as follows. Special in-
structions in the computer connect the proper input-
output unit to the information transfer paths, load
counters which keep a record of the location in memory
in which the data is to be stored and keep a count of the
words transferred, and start the flow of data. The pro-
gram operation then continues normally, except for in-
terruptions of one memory cycle per word caused by
the break system. Each time a word is transferred, the
counters are stepped accordingly in preparation for
the next word.

The operation is terminated when the counters signal
that the requested number of words has been received.
The operation can also be terminated earlier by a dis-
connect signal from the input-output unit. This signal
occurs when the program has requested more words
than the input-output unit has to send and when the
input-output unit has run out of words. Facilities have
been included to allow the computer to examine the
counters in order to determine how many of the words
requested were transferred.

Interlocks hold up the program if an input-output op-
eration is called for before the preceding one is finished.

79

IBM JOURNAL * JANUARY 1957

80

Therefore, to use the system efficiently, the programmer
must provide enough work for the computer in order to
consume all the time taken by the input-output operation
before another input-output operation is started. To help
accomplish this function, a conditional branch instruc-
tion is provided which can detect whether an input-out-
put operation is still in process. This instruction also
provides the programmer with a means of determining
whether an input transfer has been completed before he
attempts to use the data.

Drum buffer system

The real-time application for which this computer was
designed required that the computer receive its input
data from many independent asynchronous sources. The
exact quantity of data to be received from any one
source could not be determined; however, it was possible
to estimate the average and maximum amounts with a
reasonable degree of accuracy. The application is such
that the total amount of input data received from all the
sources combined is less than the sum of the individual
maximum amounts.

Another characteristic of the data sources is that they
operate at a much lower speed than that of the com-
puter. It is not operationally feasible to interrupt the
computer operations to accept each piece of data as it
arrives. A buffering mechanism is necessary to gather
the data at the slow incoming rate and then pass on
large blocks of the data to the computer at the com-
puter’s speed. Magnetic drums were chosen for this
buffer.

The desired characteristics of the drum buffer system
follow. Each input datum should be written on the drum
as soon as possible after it is received and definitely
before another datum is received from the same source.
The writing of input data on the drum should not in-
terfere with the reading of data by the computer. The
computer should be able to read selectively from the
drum; that is, to read data from only one source at a
time. In order to minimize the number of drum storage
registers required, the buffering system must be able to
combine the data received from many sources.

To provide the “no interference” characteristic, a
dual-access drum is used. This drum has two sets of
drum heads. One set, called the OD (outside of drum
system), is used to communicate only with the outside
world. The other set, called the CD (computer-side of
drum system), communicates only with the computer.

To provide the “minimum storage” and “write as soon
as possible” characteristics, the “random storage” drum
was developed. Each drum register has a status bit as-
sociated with it. This bit is used to indicate the “full”
or “empty” status of the register. As a register passes
under the OD drum heads, the status of the register is
sensed. If the register is empty, a “drum demand” pulse
is generated and sent to interrogate the data input equip-
ment. If there are data from one of the sources, a “data
available” pulse is sent back to the drum status circuits

IBM JOURNAL ~ JANUARY 1957

and the data are sent to the drum write register. As the
information is written on the drum, the status marker
is changed to indicate that the register is now full.

A single drum channel is not used for the status in-
dication. There is not enough time to read the status
bit, decide whether it indicates “full” or “empty,” gener-
ate the “drum demand” pulse, interrogate the data
sources, and write the full indication with the same
drumhead. If a second head were used on the same
drum chanrel, for physical reasons it would have to be
located many registers away, which would then necessi-
tate the use of a shift register or delay-line device be-
tween the two heads. Therefore, two drum channels are
used for the status indication, and the indicator bit is
shifted back and forth between them. The two channels
are called the OD and CD status channels, since they
are read by the OD and CD side of the drum, respec-
tively.

First, consider the OD side of the drum system as
shown in Fig. 2. When a piece of data is received by
the input equipment associated with a data source, a
“data received” pulse is generated and is used to set the
corresponding flip-flop in the drum demand chain to the
ONE condition.

As each drum register approaches the drum write
heads, the status bit on the OD status channel associated
with the register is read. The status read head is located
slightly before the write heads. If the status bit is a
ONE, indicating that the register is full, the only action
that takes place is the writing of a ONE in the CD
status channel by the status write head. If the status bit
is a ZERO, indicating an empty register, a “drum de-
mand” pulse is generated and sent to the drum demand
chain. This pulse interrogates each of the flip-flops in
order until it finds one which has been set to the ONE
state or until it reaches the end of the chain. If the pulse
encounters a flip-flop in the ONE state, it becomes a
“data available” pulse and (1) resets the flip-flop, (2)
causes the data from the source associated with the flip-
flop to be transferred to the drum writing circuits, and
(3) causes the status circuit to write a ONE in the CD
status channel. If there are not data available, the ZERO
indication is passed on to the CD status channel. Each
piece of data written on the drum has some identity
bits associated with it to identify the source of data.

There is a possibility that as the drum fills up, some
of the data received will not be stored on the drum
before the next datum is received from the same source.
This is particularly true of the sources at the tail end of
the demand chain. The probability of storage on the
drum depends on the rate of the input data and on
the number of empty registers on the drum. Most of the
data rates are such that if the drum is kept at least 50
percent empty by the computer, the probability of stor-
age is better than 0.99. The data received from this type
of source are such that the occasional loss of a datum
does not seriously affect the system. Fortunately, the
rate from the critical sources is slow enough to allow
a complete search of the drum for an empty register

before a second message can be received from the same
source.

Consider now the CD side of the drum as shown in
Fig. 3. The status heads and circuits on the CD side are
almost identical to those on the OD side. During periods
when the computer is not reading the drum, the status
information is automatically and continuously trans-
ferred from the CD status channel to the OD status
channel.

The computer may read the drum in either of two
modes—status or identity. When reading in the status
mode, the contents of every full register passing under
the heads is transferred to the core memory through the
input-output buffer register and a ZERO is written in its
associated status bit in the OD status channel, indicating
that the register is now empty. When reading in the
identity mode, the computer first places the identity code
desired into the drum control register. Only those words
with matching identity are transferred to the core
memory.

The transfer of words continues until a disconnect
pulse is received from the computer, indicating that it
has received the number of words it has asked for, or
until the drum generates a disconnect pulse. With an
unknown quantity of data received from each source,
the computer may ask for more data than have been re-
ceived. In fact, in order to insure that the computer
receives all the data that have collected on a drum field
between readings, the normal procedure is to ask for
more than expected. A disconnect pulse is automatically
generated at the end of a complete drum revolution, and
the number of words read is determined from the word-
counter contents.

Some of the data sources have messages which con-
tain more information than will fit into one drum
register. To handle such information, another feature
has been added to the drums associated with these
sources: the drum has been divided into multiple-word
slots of adjacent registers. For this application the only
meaningful status bit is the one associated with the first
register of a slot, and the source identity is contained
in the first register of a slot. The operations associated
with those drums are almost identical to those of the
single register drums.

In addition to the input buffer drums described here,
there are output buffer drums which handle outgoing
data. They operate in a similar, though inverse, manner
to the input drums.

Conclusion

The block diagram, Fig. 4, shows the overall organiza-
tion of the system. It is to be emphasized that, although
the block labeled “Arithmetic Element”contains only the
A registers, adders, and accumulator registers, there
is a considerable amount of other equipment in that
element. Since that equipment was not specifically men-
tioned in the body of this paper and is not necessary for
an understanding of the design features described, it was

DRUM DEMAND CHAIN

| e it —_—__]_—_“__—___'_'l
DRUM | N pony| ! I I |
DEMAND, [o | | :
| [I | i i
| GT | i ! i
! | ! l |
! | I
i | I t I
| o 1 | ' ! [
| FF | ! ! i
[i] |]
| } |] |
| t] [[[{
| I —— —_) —— |
DATA RECEIVED— 1 1
h)
DATA AVAILABLE '
y y \
DATA DATA DATA
SOURCE SOURCE Pereerereeresessunnes SOURCE
1 2 N

j I

A

= STATUS

WRITING CIRCUITS

CIRCUITS

’

DRUM HEADS

AAAAA

INFORMATION CHANNELS
STATUS
CHANNEL

Figure 2
OD side of the drum system

INFORMATION CHANNELS

DRUM HEADS

:

READ CIRCUITS

STATUS
CIRCUITS

i

[oara
PRESENT

L

l/o BUFFER REGISTER

)}

COMPARISON
CIRCUIT

!

DRUM CONTROL
REGISTER

Y

NQ COMPARE

A
FROM COMPUTER TO COMPUTER

Figure 3
CD side of the drum system

81

IBM JOURNAL °* JANUARY 1957

82

DATA SOURCES

R 1
l OD SIDE-DRUM :
! SYSTEM |
| (SEE FIG. 2) OUTPUT . CRT DISPLAY
1 } SYSTEM SYSTEM
[
o (o) |
SYSTEM = ==
! = |
| | | 1
} CD SIDE.DRUM : |
| SYSTEM f————————— e ——
] {SEE FIG. 3) | |
I J |
I J i
|
) U h T ________ O
] - 1 |
{ AUXILIARY)
I CORE MEMORY > DRUM STORAGE |e—— IN?g,;%g: ut |
| SYSTEM i
| I
| > |
| l [
| t— | |
LEFT A RIGHT A INsTRUCTION | _ INDEX
'! REGISTER REGISTER -« RO - REGISTERS {
|) ||
|
|
l LEFT ADDER RIGHT ADDER INDEX ADDER |t— |
; [SEE FIG. 1) |
|
\ |
\ |
‘ LEFT RIGHT !
| ACCUMULATOR ACCUMULATOR
I KEY: |
B wmawm vamney. CONTROL LINES |I
| DATA LINES [
| !
| 1
| ARITHMETIC ELEMENT i
[4

COMPUTER SYSTEM

Figure 4

Systein organization of SAGE digital computer

not included in the simplified diagram.

A view of the prototype computer is shown in Fig. 5.
No photographs of the production machine are avail-
able at this time. Although the prototype and production
computers differ, the differences are slight and are con-
centrated in the mechanical rather than the logical de-
sign area. The unit in the left foreground is the
operator’s maintenance console. It contains switches for
manual data or instruction entry and manual control,
neon indicator lights for the major flip-flops and registers
in the computer, visual and audible indicators for com-
puter-generated alarms, marginal checking controls and
indicators, and power and air conditioning indicators.

The units in the right foreground are operational-type
display and manual entry consoles which are used for

IBM JOURNAL °* JANUARY 1957

maintenance purposes. One of the magnetic core
memory units is shown in the center of the picture. The
magnetic core arrays are housed in the “shower stall” in
the center of the unit. The memory circuitry is con-
tained in the modules to the left and right of the “shower
stall.” The dual arithmetic element is housed in the
two units indicated as the left and right arithmetic units
in Fig. 5.

The computer, including the directly connected input-
output equipment, contains approximately 12,500 tubes.
It has an execution time of 12 psec for arithmetic in-
structions, excluding multiply and divide, which require
17.5 and 53 pusec, respectively. The prototype model has
been in satisfactory operation for approximately two
years.

LEFT MAINTENANCE MEMORY
ARITHMETIC UNIT CONSOLE UNIT

Figure 5
Portions of computer in test cell.

The novel design features described in this paper,
namely, the dual arithmetic element, the high-speed
multiply, the indexing system (particularly the branch-
and-index instruction), the input-output control system,
and the drum buffer system, have proven to be of great
value toward obtaining a high system capacity through
the use of the component parts at maximum efficiency.
It is interesting to note that recent studies aimed at in-
creasing the multiply speed have proven that the original
logical design of the multiplier was very good. Consider-
ing the use of components with the same inherent speed
as those used in this computer, in order to obtain an
appreciable increase in multiply speed, the component

RIGHT OPERATING TAPE
ARITHMETIC UNIT CONSOLES ADAPTER

count would have to be substantially increased.

The incorporation of three bookkeeping functions into
one instruction, that is, (1) the modification of the index
register each time the loop is executed, (2) the testing
to determine if the loop has been executed the desired
number of times, and (3) the branching of control back
to the beginning of the loop, somewhat reduces the in-
struction storage requirements and saves an appreciable
amount of operation time. The input-output control sys-
tem reduces the time used by input-output operations to
substantially only the time required to execute the
transfer of data. In a real-time application such as air
defense, this is a very valuable feature. -

Received August 10, 1956

83

IBM JOURNAL * JANUARY 1957

