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Logical Design of the Digital Computer 
for the SAGE System* 

Introduction 

The digital computer which  is the central component 
of the SAGE air defense system  was  designed  jointly 
by IBM and the Lincoln Laboratory of MIT. Data  from 
a large number of radars and other sources are fed 
automatically into this computer, where  they are pro- 
cessed under programmed control. A complete air situa- 
tion is prepared by the computer and presented to 
operators by means of a special  display  system. The 
computer automatically generates control commands for 
the external environment in response to corrections and 
command information fed into it by the operators. 

The purpose of this paper is to describe the perform- 
ance criteria of the computer in general terms and to 
present some of the outstanding features of the logical 
design. These features are necessary in the computer 
because its air defense application requires a greater 
emphasis to be  placed on reliability,  speed, capacity, and 
flexibility than is  usual in scientific or commercial appli- 
cations. 

The computer is a large-scale, general purpose, single- 
address, parallel, digital computer utilizing  32-bit  word 
length. A high-speed, magnetic core memory is provided 
which contains 270,336 bits of storage arranged in  two 
banks of 33 planes, each plane consisting of a 64 x 64 
core matrix. The 33rd plane is used for parity check 
bits. In addition to its buffer drums for communicating 
with the external environment, an auxiliary drum stor- 
age system is provided. This system contains 3,244,032 
bits  of storage divided among eight  cylinders, each con- 
sisting of six  fields of 33-bit words. Each field has 2048 
words distributed around the circumference of a cylin- 
der. Five magnetic tape units of the IBM 728  design 
and a large CRT display  system are also provided. 

The air defense application of this computer required 
a reliability capable of providing continuous 24-hour 
operation. Using present-day components, this is  impos- 
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sible to obtain with one machine. Therefore, the duplex 
philosophy  was adopted. Wherever individual  equipment 
failures could cause complete  system failure, this equip- 
ment was duplicated. Other equipment, which  would 
cause only partial degradation of the system  in  case of 
failure, was not duplicated. Installed “hot” spares were 
provided, however. Thus, the central computer, drum 
system, and magnetic tape units were  duplexed. The in- 
put equipment, of which there is one piece per data 
source, was simplexed.This arrangement not only guards 
against overall system catastrophies caused by sudden 
machine failures but also  allows  planned partial shut- 
downs for maintenance purposes. 

One major consideration in the design  was the avail- 
ability of components, particularly in the case of the 
high-speed memory. The original thinking on this com- 
puter resulted in a need for  a memory faster and larger 
than in any existing computers. This pointed  toward the 
magnetic core memory development  which had been 
under way for some time at MIT. The logical  design of 
the computer was centered around the engineering  judg- 
ment that the minimum memory  cycle  time  would turn 
out to be in the order of 6 p e c  and that the largest 
matrix of cores should be  64 x 64. 

The availability of components also  affected the 
choice of the high-capacity storage medium, for which 
the type of magnetic drums used on the IBM Type 650 
was  chosen. The vacuum tubes and circuitry in the 
computer were  developed from designs  previously made 
by the Digital Computer Laboratory at  MIT and the 
Electronic Data Processing Machine (EDPM) develop- 
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ment  laboratories at IBM. The redesign of these basic 
circuits was dictated by the increased reliability require- 
ments. In  many cases this necessitated the use of more 
vacuum  tubes  and other components than  are required 
in scientific or commercial applications. 

The features of the  computer which are the primary 
subject of this  paper are  in  the logical design areas. The 
majority of these features were dictated by the need 
to obtain the most efficient use of the  drum capacity 
and core-memory speed with the minimum number of 
circuits. As a consequence, special attention was given 
to overlapping  operations within the machine  and to 
the  balance between the available components and  the 
logical arrangements  which would maximize their use- 
fulness. 

The first of these features  which will be discussed is 
the  arithmetic element. Much of the  data processed by 
the  machine are  in Cartesian  coordinates. A large num- 
ber of computations  which are involved in  the applica- 
tion perform  the  same operation on x as on y .  A saving 
in time is effected by the use of a  dual  arithmetic ele- 
ment which treats these quantities  separately and simul- 
taneously. In addition, the association of x and 3’ is 
maintained throughout  the process. The second feature 
is a high-speed multiplication technique, which dictated 
the design of the adder in the arithmetic element. It was 
found  that all of the proposed  arithmetic  operations, 
with the exception of multiplication and division, would 
be performed during  the cycle time of high-speed mem- 
ory. A special adder was developed so that  the multipli- 
cation process could be made  more compatible with the 
memory cycle. 

The  third  feature is an indexing system which auto- 
matically takes care of the large class of bookkeeping 
operations (i.e., address  modification)  without  taking 
extra  operation time. The  fourth of these features is an 
input-output  control  system which was designed to allow 
the computer to utilize the time which might otherwise 
be wasted during periods when data  are being trans- 
ferred between it and  the  input-output system. This is 
done by allowing the  computer to continue working 
while waiting for  the input-output  equipment to present 
or receive its information. The fifth  and final feature is 
a buffer drum system which matches  the  computer speed 
to  the incoming data  rate. 

Arithmetic element 

In the design of a digital computer, much consideration 
must be given to the characteristic  known  as “word 
length.” The desired precision of incoming and outgoing 
data,  as well as of intermediate results, helps to  deter- 
mine  the desired word length. The application for which 
this computer was intended  required 16 bits to provide 
the  proper accuracy to reduce the effects of roundoff 
and  truncation  errors  during intermediate calculations. 

In a stored-program  computer,  consideration  must 
also be given to  the  number of bits required to specify 

an instruction. In a large-scale computer the internal 
memory  may be quite  large and,  for high-speed opera- 
tion, each instruction  should be able to refer to  any  one 
of them. Thus  the address part of an instruction will 
require  from 11 to  14 bits for memory sizes from  2048 
to 16,384 registers, respectively. The operation code for 
a real-time computer  must be flexible enough to allow 
general-purpose  calculations to  be carried out with  a 
minimum waste of time and should  also  provide for 
some  foreseeable special-purpose operations. A basic 
operation code of 64 instructions  requires  6 bits. Special 
control bits, such  as for  automatic indexing, add another 
4 or 5 bits to the  operation  code. Thus  the word  length 
for a full instruction  (including basic operation code, 
control bits, and address)  might be between 21 and  25 
bits. 

The conflict between the 16-bit word length for  data 
and the 25-bit word  length for instructions was resolved 
by the choice of a 32-bit word length. This allows two 
16-bit numbers to be placed in  any register and allows 
additional  control bits to be included in instruction 
words. These  additional control bits are used for in- 
creasing the  potential speed of the machine.  Since the 
memory  must be capable of delivering the  full register 
simultaneously for instructions, it  can also deliver both 
numbers simultaneously. A separate  arithmetic  unit was 
provided for each of these numbers so that both could 
be manipulated simultaneously, thus doubling the speed 
of the computation.  This  combination of units was 
termed the ‘‘dual arithmetic”  unit. 

Special operations and control bits have been added 
to the basic operation code to increase the utility of the 
dual  arithmetic  unit. A conditional transfer of control, 
or branch,  can be made  to  take place if a specified 
arithmetic  unit is negative, or only if both  are negative. 
It is possible to store the full 32-bit word, or either  half 
independently. The address part of an instruction is 
placed in the right-half word;  hence a right store in- 
struction can also be used for modifying addresses. Shift 
and cycle instructions are provided for shifting  either 
arithmetic  unit itself, or  both together, or  for cycling 
data between the right and  left arithmetic  units. A 
“twin” feature, available on some  instructions, allows 
the left-half word from memory to be sent to  both arith- 
metic  units simultaneously. Thus, a  vector in  the  dual 
arithmetic  unit  may be multiplied by a scalar from a 
left-half word of memory by a single twin and multiply 
instruction. Each instruction  which  can  cause an over- 
flow  of the  accumulator  contains  a pair of control bits 
that allow suppression of an overflow alarm  from either 
or both  arithmetic  units. 

Of course,  it is not always possible to  make efficient 
use of the  dual  arithmetic  element. Single 16-bit  words 
can be handled just as easily by using the controls  men- 
tioned above, with no loss in speed except for  an 
occasional cycle to exchange left  for right. 

Regardless of the word  length used, there is usually a 
sizable body of data consisting of items  only a few bits 77 
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ADDER BIT n - 1  
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Figure I ADDER BIT n + 1 
CARRY TO 

Adder  circuit. Diamonds represent d-c levels; arrows, 
0.1-microsecond pulses. 

long. Storage  space can be saved by packing  a number 
of such  items  into  a register of storage. Packing and 
unpacking such items can be very time  consuming  un- 
less special instructions are provided. In this computer, 
an extract instruction allows a given item to be ob- 
tained from a memory register without  obtaining other 
items from  the same register. A deposit instruction 
allows the item to be replaced in storage  without dis- 
turbing other items in the  same register. 

High-speed  multiply 

The memory  unit of a general-purpose computer must 
be used one  or  more times for every instruction. In a 
real-time  computer the memory  should be  made as fast 
as possible and never  should  have to wait for  other 
processes. In this computer,  with the design goal of 
6 psec per  memory cycle, it would have been desirable 
to design a 6-psec multiplier because of the  frequent use 
of the multiply instruction. On  the  other  hand, a basic 
flip-flop speed of 0.5 psec and a  word  length of 16 bits 
allowed a  reasonably simple 8-psec multiplier, with 
0.5 psec for each  addition and shift. Each multiply in- 
struction thus requires the memory to pause for 2 psec 
to allow the multiplication to finish, making the multiply 
operation 14 psec in length,  including  memory access 
for  both  the instruction and  the multiplicand. An addi- 
tional  3.5 psec must be added  for manipulations such as 
sign control,  making the  total execution  time of the 
multiply instruction 17.5 psec. 

Each step of a  multiplication  should allow for  the pos- 
sibility of a carry propagated  a full register length, or 
16 bits. Although such a carry condition cannot occur 
mathematically,  it can be used to simplify the design 

78 procedure  because  it is a  reasonable  approximation to 

mathematically possible carries. If the basic gate-tube 
propagation  time is 0.04 psec, then  a  16-bit carry will 
require 0.64 psec. To  reach the goal of 0.5 psec per 
multiplication step, the  carry is accomplished concur- 
rently with the  0.5-psec flip-flop resolution time. This 
is done by making sure  that all pulses which arrive at 
a given flip-flop are spaced 0.5 psec apart, even though 
they are  carry pulses which have  arrived  as  much as 
0.64 psec after  the initiation of the carry  operation. 

As shown in Fig.  1,  each bit position makes use of 
a diode  matrix to  form  the  sum of two bits: one  from 
the  augend in  the accumulator and one from  the addend 
in the A register. The matrix  controls two sets of gate 
tubes,  one set to be sensed by an incoming “0 carry” 
pulse and  the  other by a “1 carry” pulse. When a  carry 
pulse arrives, only one gate tube passes it and indicates 
the sum of the two bits plus the  carry.  This  pulse is then 
sent out as  either  a “0  carry” or a “1 carry” pulse to 
the next highest bit, and  as  either  a “0” or a “1” sum 
pulse to  the accumulator flip-flop, depending on  the 
value of the  sum. Thus  the  carry takes  only the gate- 
tube propagation  time to pass each bit. Carry pulses 
supplied to the right (the least significant) end at 2 mc 
will cause every bit to receive carry pulses (of  either “0” 
or “1” value) at a 2-mc rate,  although the pulses at 
each bit will be displaced in time,  depending on  the dis- 
tance of the bit from  the right  end of the register. This 
principle forms the basis of the so-called “asynchronous 
adder.” 

For multiplication,  each  “add”  step  must be accom- 
panied by a  shift-right of one place, and some steps 
(for a  zero multiplier bit) will require a shift-right with- 
out  any addition. The shift on “add” is easily accom- 
plished by sending the “sum” pulse from  the adder to 
the accumulator flip-flop to  the right  instead of to  the 
flip-flop which generated the sum. The shift-right with- 
out addition  must  propagate  down the accumulator at 
the  same  rate as the  carry  in  order  to avoid conflict 
with a previously initiated  carry. This so-called “ripple- 
shift” is accomplished simply by letting the  shift pulse 
from one bit initiate the shift  command for  the next bit. 

Special controls could have  been  included to allow 
the sum to be displaced to  the  left instead of to  the right 
during a divide process, and  to be undisplaced during a 
plain addition.  However, the expense of such controls 
was not justified. A corrective shift-left for add instruc- 
tions, including a second corrective  shift-left after  an 
end-around  carry, can  be accomplished without delaying 
the memory cycle. Unlike multiply, which is used 
extensively in most  programs, the extra  time  required 
for divide does not appreciably  increase the average 
instruction execution time  because of the infrequent use 
of the divide instruction in most  programs. 

Indexing  system 

Most digital computer  programs involve sequences of 
instructions  which are repeated  many times on different 
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data. It is very wasteful of memory  space to include 
separately  stored  instructions to process each  datum, 
since the instructions will vary only in  the address to 
which they refer. On the other hand, time  is required 
to modify instruction addresses for  each execution. An 
indexing feature has  been included in this  machine to 
minimize the  time  required. 

The indexing feature consists of a  set of four index 
registers, an index  adder, and associated control circui- 
try. Each instruction  which  refers to a memory  address 
may have inserted control bits to specify an index regis- 
ter. The contents of the specified index register are 
added  to the address part of the  instruction prior  to its 
execution; however, the instruction as stored in memory 
remains  unchanged.  This indexing addition  does not re- 
quire any extra  time, since it  is executed while the 
memory cycle is being completed. Thus, if an add 
instruction  with an address part containing 1000 is exe- 
cuted, and if its control bits specify an index register 
which contains  24, the instruction will be executed  as 
if it  had  an address part  of 1024 but will remain stored 
in memory  as add 1000. 

In order  to utilize an index register in a cyclic pro- 
gram consisting of a  “loop” of instructions, it must be 
possible to set up  the index register to  an initial value. 
Two  instructions, reset index register and reset index 
register f rom right accumulator, have been provided in 
this computer.  They  load  the specified index register 
with the address part of the reset index register instruc- 
tion or with the contents of the  right  accumulator. 

There  are three other functions that  the indexing 
system must  provide: (1) the modification of the index 
register each time the loop is executed, (2)  the testing 
to determine if the loop  has been executed the desired 
number of times, and (3) the branching of control  back 
to the beginning of the loop unless it has been executed 
the desired number of times. All of these  functions are 
handled by one  powerful  instruction, branch and in- 
dex. Control bits included in the branch  and  index 
instruction specify an index register and a decrement. 
Each time  it is executed, the specified index register is 
first inspected to determine if it  contains a negative num- 
ber. If the  number is positive, the contents of the register 
are reduced by the specified decrement and  the in- 

, struction  branches to  the address specified in its address 
part, usually to the beginning of the loop. Thus, execu- 
tion of the loop will continue  until the index register 
contents  have been reduced  to  a negative number,  at 
which time the  branch is not executed and  the program 
continues in sequence. 

In addition to  the  four index registers, the right  ac- 
cumulator may also be used as an index register. This 
feature was included to facilitate  table  look-up  programs. 
Assume that a program  has been executed so that  the 
table argument has been computed in the right  accumu- 
lator. If the next instruction  executed is a clear and 
add instruction which specifies the right  accumulator  as 
an index register and  has  the first address of the table 

as its address, the first address and  the  argument will be 
added  before the instruction is executed. Thus, with only 
one  instruction, the desired table  contents are obtained. 

When an indexed  loop is used in searching for a de- 
sired value in a  table, it is often necessary to  determine 
the contents of the index register when the desired  value 
is found. An instruction called add  index has been 
provided to permit this important operation. 

Input-output  control 

The system application  requires that large  quantities of 
data be entered into the core memory, processed, and 
delivered out again. The  data sources and destinations 
have  varying  word rates  and access times. Since  com- 
puting  time is at a  premium, the input-output  control 
design goal was that  an arbitrarily sized block of words 
be transferred  with a minimum of time  devoted to  the 
transfer.  This  minimum consists of  the time  needed to 
execute the  program steps which set up  the transfer, 
plus the  one memory cycle required to  transfer each 
word into  or  out of core memory. 

Reading into  core memory will be assumed in  the 
following:  Writing out of memory is analogous. The 
design goal required the use of an independently operat- 
ing input-output  control which could remember  the 
input-output unit selected, the  number of words to be 
transferred, and  the location in core  memory for  the 
block of words. A  “break” system was needed which 
could interrupt  the  program operation for  one memory 
cycle whenever the input-output  unit had provided a 
word. The instructions in  the computer are designed in 
such a way that a “break’ memory cycle can be initiated 
at  the end of any memory cycle with no effect on  the 
instructions other  than  to delay their  execution. 

The system chosen  operates as follows. Special in- 
structions in  the computer  connect the  proper input- 
output unit to  the  information transfer  paths,  load 
counters which keep a record of the location in memory 
in which the data is to be stored and keep  a count of the 
words transferred,  and start  the flow of data. The  pro- 
gram operation then continues  normally,  except for in- 
terruptions of one memory cycle per word caused by 
the  break system. Each time a word  is  transferred, the 
counters are stepped accordingly in  preparation  for 
the next word. 

The operation is terminated  when the counters signal 
that  the requested number of words has been received. 
The operation can also be terminated  earlier by a dis- 
connect signal from  the  input-output unit. This signal 
occurs when the  program  has requested more words 
than  the  input-output unit  has to send and when the 
input-output unit has  run  out of words. Facilities have 
been included to allow the computer to examine the 
counters in order  to determine how many of the words 
requested  were  transferred. 

Interlocks hold up  the  program if an  input-output  op- 
eration is called for before the preceding one is finished. 79 
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Therefore, to use the system  efficiently, the programmer 
must provide enough work for the computer in order to 
consume all the time taken by the input-output operation 
before another input-output operation is started. To help 
accomplish this function, a conditional branch instruc- 
tion  is provided which can detect whether an input-out- 
put operation is still in process. This instruction also 
provides the programmer with a means of determining 
whether an input transfer has  been  completed before he 
attempts to use the data. 

Drum  buffer  system 

The real-time application for which  this computer was 
designed required that  the computer receive  its input 
data from many independent asynchronous sources. The 
exact quantity of data  to be  received from any one 
source could not be determined; however, it was possible 
to estimate the average and maximum amounts with a 
reasonable degree of accuracy. The application is such 
that the total amount of input data received from all the 
sources  combined  is  less than the sum of the individual 
maximum  amounts. 

Another characteristic of the data sources is that they 
operate at  a much lower  speed than that of the com- 
puter. It is not operationally feasible to interrupt the 
computer operations to accept each piece of data as it 
arrives. A buffering  mechanism  is  necessary to gather 
the data at the slow  incoming rate and then pass on 
large blocks of the data to the computer at the com- 
puter’s  speed.  Magnetic drums were  chosen for this 
buffer. 

The desired characteristics of the  drum buffer  system 
follow. Each input datum should be written on the drum 
as soon as possible after it is received and definitely 
before another datum is  received from the same source. 
The writing of input data on the drum should not in- 
terfere with the reading of data by the computer. The 
computer should be able to read selectively from the 
drum; that is, to read data from only one source at a 
time. In order to minimize the number of drum storage 
registers required, the buffering  system  must  be  able to 
combine the  data received from many sources. 

To provide the “no interference” characteristic, a 
dual-access drum is  used. This drum has two sets of 
drum heads. One set, called the OD (outside of drum 
system), is  used to communicate only with the outside 
world. The other set, called the CD (computer-side of 
drum system), communicates only with the computer. 

To provide the “minimum storage” and “write as soon 
as  possible” characteristics, the “random storage” drum 
was developed. Each drum register has a status bit  as- 
sociated with it. This bit is  used to indicate the “full” 
or “empty” status of the register. As a register  passes 
under the  OD drum heads, the status of the register  is 
sensed. If the register  is  empty, a “drum demand” pulse 
is generated and sent to interrogate the data input equip- 
ment. If there are  data  from one of the sources, a “data 

80 available”  pulse is sent back to the drum status circuits 

and the data  are sent to the drum write register. As the 
information is written on the drum, the status marker 
is  changed to indicate that the register  is now full. 

A single drum channel is not used for  the status in- 
dication. There is not enough time to read the status 
bit,  decide  whether it indicates “full” or “empty,”  gener- 
ate the “drum demand” pulse, interrogate the data 
sources, and write the full indication with the same 
drumhead. If a second head were  used on the same 
drum channel, for physical reasons it would have to be 
located many  registers  away,  which  would then necessi- 
tate the use of a shift register or delay-line  device  be- 
tween the two  heads. Therefore, two drum channels are 
used for the status indication, and the indicator bit is 
shifted back and forth between  them. The two  channels 
are called the  OD and CD status channels, since they 
are read by the OD and CD side of the drum, respec- 
tively. 

First, consider the OD side of the drum system  as 
shown in Fig. 2.  When a piece of data is  received by 
the input equipment associated  with a  data source, a 
“data received”  pulse  is generated and is used to set the 
corresponding flip-flop in the drum demand chain to the 
ONE condition. 

As each drum register approaches the drum write 
heads, the status bit on the OD status channel associated 
with the register is read. The status read head is located 
slightly before the write heads. If the status bit  is a 
ONE, indicating that the register is full, the only action 
that takes place is the writing of a  ONE  in  the  CD 
status channel by the status write head. If the status bit 
is a ZERO, indicating an empty  register, a “drum de- 
mand” pulse is generated and sent to the drum demand 
chain. This pulse interrogates each of the flip-flops  in 
order until it finds  one  which has been  set to the ONE 
state or until it reaches the end of the chain. If the pulse 
encounters a flip-flop  in the ONE state, it becomes a 
“data available”  pulse and (1) resets the flip-flop, ( 2 )  
causes the data from the source associated  with the flip- 
flop to be transferred to the drum writing circuits, and 
(3) causes the status circuit to write a  ONE in the CD 
status channel. If there are not data available, the ZERO 
indication is  passed on to the CD status channel. Each 
piece of data written on the drum has some identity 
bits  associated  with it to identify the source of data. 

There is a possibility that as the drum fills up, some 
of the data received will not be stored on the drum 
before the next datum is received from  the same source. 
This is particularly true of the sources at  the tail end of 
the  demand chain. The probability of storage on the 
drum depends on the rate of the input data and on 
the number of empty  registers on the drum. Most of the 
data rates are such that if the drum is kept at least 50 
percent empty by the computer, the probability of stor- 
age  is  better than 0.99. The  data received from this type 
of source are such that the occasional loss of a datum 
does not seriously  affect the system. Fortunately, the 
rate from the critical sources is  slow enough to allow 
a complete search of the drum for  an empty register 
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before a second  message can be received from the same 
source. 

Consider  now the CD side of the drum as shown in 
Fig. 3. The status heads and circuits on the CD side are 
almost identical to those on  the OD side. During periods 
when the computer is not reading the drum, the status 
information is automatically and continuously trans- 
ferred from the CD status channel to the OD status 
channel. 

The computer may read the drum in either of two 
modes-status or  identity.  When reading in the status 
mode, the contents of every full register  passing under 
the heads  is transferred to the core memory through the 
input-output buffer  register  and a ZERO is written in its 
associated status bit in  the OD status channel, indicating 
that the register  is  now  empty.  When reading in the 
identity  mode,  the computer first  places the identity code 
desired into the drum control register.  Only those words 
with matching identity are transferred to the core 
memory. 

The transfer of  words continues until a disconnect 
pulse  is  received from the computer, indicating that it 
has received the number of words it has asked for, or 
until the drum generates a disconnect  pulse. With an 
unknown quantity of data received from each source, 
the computer may  ask for more data than have  been re- 
ceived. In fact, in order to insure that the computer 
receives  all the data that have  collected on a drum field 
between  readings, the normal procedure is to ask for 
more than expected. A disconnect  pulse  is automatically 
generated at the end of a complete drum revolution, and 
the number of words read is  determined from the word- 
counter contents. 

Some of the  data sources have  messages  which con- 
tain more information than will  fit into one drum 
register. To handle such information, another feature 
has  been  added  to the drums associated with these 
sources: the drum has  been  divided into multiple-word 
slots of adjacent registers. For this application the only 
meaningful status bit  is the one  associated  with the first 
register of a slot, and the source identity is contained 
in the first  register of a slot. The operations associated 
with  those drums are almost identical to those of the 
single  register  drums. 

In addition to the input buffer drums described here, 
there are output buffer drums which handle outgoing 
data. They operate in a similar, though inverse, manner 
to the input drums. 

Conclusion 

The block diagram, Fig. 4, shows the overall organiza- 
tion  of the system. It is to be  emphasized that, although 
the block  1abeled"Arithmetic  E1ement"contains only the 
A registers, adders, and accumulator registers, there 
is a considerable amount of other equipment in  that 
element.  Since that equipment was not  specifically  men- 
tioned in the body of this paper and is not necessary for 
an understanding of the design features described, it was 
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Figure 4 
System  organization of SAGE digital  computer 

not included in  the simplified diagram. 
A view of the prototype computer is  shown in Fig. 5. 

No photographs of the production machine are avail- 
able at this  time. Although the prototype and production 
computers differ, the differences are slight and are con- 
centrated in  the mechanical rather than the logical  de- 
sign area. The unit in the left foreground is the 
operator's maintenance console. It contains switches for 
manual data or instruction entry and manual control, 
neon indicator lights for the major flip-flops  and  registers 
in the computer, visual  and audible indicators for com- 
puter-generated alarms, marginal checking controls and 
indicators, and power and air conditioning indicators. 

The units in the right foreground are operational-type 
82 display and manual entry consoles  which are used for 

maintenance purposes. One of the magnetic core 
memory  units  is  shown in the center of the picture. The 
magnetic core arrays are housed in the "shower  stall''  in 
the center of the unit. The memory circuitry is con- 
tained in the modules to the left and right of the "shower 
stall." The dual arithmetic element is housed in the 
two  units indicated as the left and right arithmetic units 
in Fig. 5. 

The computer, including the directly connected input- 
output equipment, contains approximately 12,500 tubes. 
It has an execution  time of 12 psec for arithmetic in- 
structions, excluding multiply and divide, which require 
17.5 and 53 psec,  respectively. The prototype model  has 
been  in satisfactory operation for approximately two 
years. 
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Figure 5 
Portions of computer  in  test cell. 

The novel design features described in this paper, 
namely, the  dual  arithmetic element, the high-speed 
multiply, the indexing  system (particularly  the  branch- 
and-index instruction),  the  input-output  control system, 
and  the  drum buffer system, have proven  to be of great 
value toward obtaining a high system capacity through 
the use of the component  parts  at  maximum efficiency. 
It is interesting to  note  that recent  studies  aimed at  in- 
creasing the multiply speed  have  proven that  the original 
logical design of the multiplier was very good.  Consider- 
ing the use of components with the  same  inherent speed 
as those used in this computer, in order  to  obtain  an 
appreciable  increase  in multiply speed, the component 

RIGHT OPERATING TAPE 
ARITHMETIC  UNIT  CONSOLES  ADAPTER 

count would have  to be  substantially  increased. 
The  incorporation of three bookkeeping functions into 

one instruction, that is, (1) the modification of the index 
register each  time the loop is executed, ( 2 )  the testing 
to  determine if the  loop  has been  executed the desired 
number of times, and ( 3 )  the  branching of control back 
to  the beginning of the loop,  somewhat  reduces the  in- 
struction storage  requirements and saves an appreciable 
amount of operation time. The  input-output  control sys- 
tem  reduces the time used by input-output operations to 
substantially  only the time  required to execute the 
transfer of data.  In a real-time  application such as air 
defense, this is a  very  valuable feature. 
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