62

M. L. Lesser
J. W. Haanstra

The Random-Access Memory

Accounting Machine

l. System Organization of the IBM 305

Introduction

The logical organization of the new IBM 305 Random-
Access Memory Accounting machine (RAMAC®) per-
mits the processing of business transactions as they occur.
The engineering design features of the random-access
system are shown in this paper, and the advantages over
sequential-access systems in automatic accounting ma-
chines are shown. This new system utilizes the IBM 350
Magnetic Disk Random Access File, which is described
in Part II of the paper.

The first section of Part I discusses the systems study
of this “in-line” concept in business applications which
led to the design of the IBM 305. In particular, it was
found that arithmetic power, per se, was very much sec-
ondary to the ability to manipulate variable field lengths
of alphanumeric data in a direct fashion and to make
direct multi-choice decisions based on the current status
of the information being transferred. It was also consid-
ered necessary that the programming technique be as
straightforward as possible in order to eliminate the
necessity for a high degree of special training on the part
of potential users.

The second section of this paper discusses the actual
logical organization of the machine. The data transfer
paths are shown, along with the decimal arithmetic
system. These include the communication links between
input, processing, magnetic disk file, and output. The
control system is discussed, with emphasis on the ability
of the machine to overlap operations occurring in these
several components.

The ‘‘in-line” processing concept

Historically, the processing of business data originated
as an “in-line” operation. We might say that with the
earliest direct barter systems, data processing began and
ended when the bartered material changed hands. Thus,
the operation was not only “in-line,” but was also
“immediate.”

As more formalized business-record systems come into

IBM JOURNAL * JANUARY 1957

Abstract: The design features of a new automatic data
processing machine for business applications, utilizing a
random-access memory system, are described. Unlike
the usual “batch” method of machine-processing business
transactions, the technique used permits transfer of in-
formation between any two points in the system and
allows multi-choice decisions according to the current
status of the information. The “in-line” operational con-
cept is discussed in detail and the data transfer routes
and processing controls are shown. Employing punched-
card input and printed-record output, the IBM 305 ac-
counting machine is designed to handle 10,000 line-
transactions per day.

being, data processing lost some of its immediacy but
still remained more or less an in-line affair. In general,
transactions were posted to their final record forms in
the sequence that they occurred, preferably with no
intermediate posting operations, and most certainly
without awaiting the accumulation of sufficient similar
fransactions in order to make an economical run of
data. In modern machine accounting terminology, there
was no sorting or collating except by distribution directly
to the appropriate ledgers.

With the steady increase in volume, the manual in-line
process could not keep up with the demands for relatively
current data in an easily digestible form. The solution
to this problem has been the mechanization of business
data processing by various devices and in various de-
grees. Inherent in most modern mechanization schemes
of any magnitude, to date, has been the “batch” concept.
According to the traditions of mass-production tech-
nology, the process of mechanization was approached by
the route of many simple repetitive operations. An array
of single-purpose machines was built and the informa-
tion passed through them in turn. A little more of the
job was bit off with each machine pass, until the final
report could be assembled from all the individual sub-
assemblies which had been fashioned on the machines.
The time necessary to accumulate a batch was accepted

as a small loss in view of the large time savings available
by the mechanization of data processing. Some continue
to accept this as a “way of life,” even in the face of
evidence to the effect that the batch accumulation time
is now growing longer than the process time in some
applications not inherently adaptable to batching. Faster
and more costly devices are now being built in an
attempt to salvage a sense of immediacy from data that
grew cold even before they were presented to the ma-
chine. This is done by building multi-purpose electronic
machines that carry out all the operations formerly
handled by the battery of single-purpose machines.
Although all this is done within a single set of cabinets
and with no manual intervention between operations,
nothing has really been done to eliminate the necessity
for batching.

A typical flow chart for a job handled with conven-
tional punched-card equipment is shown in Fig. 1. The
job is one of billing and invoicing, with the maintenance
of a perpetual inventory, and is the source operation for
data going to “accounts receivable” and “sales statistics
analysis” operations. The number of files to be consulted
is small. Only the inventory file is maintained by the sys-
tem in any way other than to replace the information
removed from it. The “sorts,” ‘“‘collates,” and “card
moving” stages are all shown. If the flow chart is trans-
lated to tape terms, the remaining sorts and collates are
still necessary. Most of the “decisions” required are not
shown and will be discussed later.

However, if the restriction that file information is
available only in a fixed, predetermined serial order is
removed, the batching requirement is eliminated. If
there is random access, with equal facility, to any place
in the memory, it is possible to pick out directly the
necessary items from each of the reference files in the
sequence established by the order in which the input
data are received and the secondary order established by
the transaction. In theory, a machine can be built to
take an input transaction record and carry it all the way
to final output document, distributing by-product infor-
mation to the proper files en route, with no regard as
to whether or not the next input refers to the same
type of transaction. The flow chart would then look like
Fig. 2. With this ability, “batch” processing techniques
can be reserved for those applications, such as statistical
analysis, that have an inherent batching requirement.

The memory device required to handle a large-
capacity in-line processing system is available. The IBM
Type 350 magnetic-disk, random-access memory, is
described in Part II of this paper. This memory is a
device allowing live storage with access to any one of
50,000 100-character alphanumerical records in approx-
imately one-half of a second. It should be noted that
the division into 100-character records is for conveni-
ence only; if the application requires it, any desirable
fraction or multiple of this record length may be used
and intermixed in the file, with a corresponding adjust-
ment of the number of records available.

SORT OUT
MULTIPLY
SALES, COST
SORT BY
CUSTOMER

RE-MERGE

CUSTOMER
ADDRESS
INVOICES ACCOUNTS
(ALL ITEMS) RECEIVABLE
RE-MERGE SORT OUT

PERIODIC DETAIL
STATISTICS CARDS
ITEM
DEMAND

Figure 1
Typical IBM batch processing.

WEEKLY
INVENTORY
RE-ORDER
REVIEW

Machine system requirements
for in-line processing

In this part of this paper we will discuss the system
requirements established for the complete data proces-
sing machine, IBM Type 305, designed specifically to
make use of the disk file. The detailed characteristics of
the machine will then be described. Only the gross
aspects of the system will be considered at first, as indi-
cated in the block diagram shown in Fig. 3, with em-
phasis on the desired characteristics of the unit marked
“process” in that diagram. Physically, this is a small
magnetic drum carrying multiple tracks, each capable
of storing a single 100-character record, and surrounded
by a control system. We will neglect the input-output
system, and the file itself, except for pointing out that
they are connected to the process unit by information
channels and are so buffered to the process unit that all

PERIODIC
STATUS
MONTHLY
STATEMENTS
PREVIOUS
BALANCE

63

IBM JOURNAL * JANUARY 1957

64

CREDIT
APPROVAL INVOICES

AVAILABLE
STOCK

IMMEDIATE
STATUS
MONTHLY
STATEMENTS

ACCOUNTS
RECEIVABLE

ITEM
DEMAND

DETAIL
CARDS
IMMEDIATE
INVENTORY
Figure 2

Typical IBM in-line processing.

PERIODIC
STATISTICS

EXCEPTION
(IMMEDIATE
E-ORDER, ETC.)

mechanical time delays may be overlapped by process
operations.

Briefly, the original requirements for the machine as
designed were as follows:

1. An in-line accounting machine that would
handle, from card input to printed-record output, 10,-
000 line-transactions per day. This implies posting the
basic data for each transaction to the record or records
involved, thereby maintaining all pertinent files on a
current basis as a direct adjunct to transaction process-
ing, and also making all those routine decisions that
could be relegated to an automatic machine. The inten-
tion is to approach “management by exception,” where
only those decisions essentially requiring manual han-
dling are brought to the attention of the operators.

2. During the processing of these transactions, the
system was to allow manual inquiry as to the status of
any record in the disk file at any time, producing a
printed output independent of the primary output from
the machine.

3. The whole machine system was to be made
available at a cost that would be considered reasonable
to a user for whom 10,000 transactions was a very
large day’s business.

A secondary requirement that was observed through-
out the system design was that the operating procedure
of the machine should be as straightforward as possible.
The form of instruction chosen should be as suited to

IBM JOURNAL ° JANUARY 1957

DIRECT LINE TO RESULTS

\]

the task as possible; there should be a minimum of
programming restrictions chargeable to the machine, as
opposed to those chargeable to the application; and the
operating procedure, in general, should be easily under-
stood by persons already familiar with conventional
punched-card techniques.

In the design of a machine system, practically the
entire arrangement centers around the method chosen
for control. In general, previous flexible machine sys-
tems were based on one of two techniques —a fully
stored program, or a fully wired, control panel pro-
gram. For the IBM 305, our approach to the control
problem was based on a study of the operation the ma-
chine would be required to perform. When a conclusion
was reached as to the form desired (an optimum com-
bination of the two techniques), the general organiza-
tion requirements of the machine followed directly.

In an accounting operation sequence, such as shown
in Fig. 1, the majority of operations are of the repro-
duction type, consisting of straight information transfers,
with a relatively small amount of computation. There
are also a large number of multi-choice decisions to
be made, most of which are not shown explicitly in
that illustration. In any case, it appeared that the pro-
posed control system should be slanted toward the ability
to mass-transfer large quantities of variable field-length
information, and the arithmetic requirements should be
met as an adjunct to this ability.

\

RANDOM % %/ (CARll;q:l;:DER) -
| s Z%%//{ "o _:‘Sfﬁi_
Z 2 PUNCH) .

INQUIRY
STATION

Figure 3
Gross block diagram of the IBM Type 305.

In addition to the transfer and arithmetic operations,
a machine system requires the ability to make three
distinct types of decisions if it is to operate successfully
as an automaton. These are:

1. Decisions based on static information wholly
contained in a given record. These might be considered
as “type of record” decisions and can usually be handled
most efficiently by recognition of a code mark or char-
acter in the record. Thus, for example, the machine can
make a decision based on the type of input card as to
whether this transaction is an order, a stock receipt, or
a customer payment record, and can go immediately to
the program and procedure necessary to process that
transaction.

2. Decisions based on the status of the transaction
processing to date. These are usually the result of arith-
metic operations and serve to indicate such basic items
as “out of stock, check for substitute or back order;”
“below minimum re-order level, signal for stock re-
order;” “customer’s credit allowance has been exceeded,
so signal for manual credit authorization before ship-
ment;” etc.

3. Decisions based solely on the sequence of proc-
essing to date. An easily understood example of this is
the case of substitutions allowed for out-of-stock orders.
If it is assumed that item 4 may be substituted for
item B if necessary, and vice versa, the procedure must
prevent a second substitution if, after the first is tried,
the second item is found to be also out of stock.

It is recognized that machine systems have been built
that handled all three types of decisions by means of a
single decision element actuated as a result of arithmetic
operations. However, for all decision types other than
the second, this method increases the requirement for
arithmetic operations not associated directly with the
requirements of the problem, which, in turn, increases
the complexity of programming otherwise straightfor-
ward applications.

It was early recognized that the most direct method of
machine-actuated decision-making was through the use
of the control-panel concept and direct relay-switching
of control impulses. The concept of the “selector” is
well understood, and separate selector systems could be
provided for each of the three types of decision elements
required. However, control-panel operation of the infor-

mation-transfer function becomes unwieldy for large
amounts of relatively poorly-sequenced data, particularly
if the nature of the problem eliminates the possibility
of considering the information as being grouped in ele-
ments of fixed word length. Thus, to handle variable-
length information fields purely on a control-panel basis,
it would appear necessary to utilize the technique of the
basic tabulating accounting machine — that of carrying
an individual wire for each character to be transferred
and utilizing mass selection to program the problem.
While this offers several advantages for the limited
amount of format change required in output printing,
and is used in the system for that application, it does
not appear feasible for the major information transfer
system.

Stored-program concepts used to date also offered
several disadvantages. Various solutions to the variable-
field-length problem are available, usually based on a
record mark either inherent in the record itself or pro-
grammed into the machine by way of an intermediate
transfer register. Both of these approaches put artificial
restrictions on the programming and, in general, intro-
duce “program steps” that are necessary because of
machine restrictions and do not contribute directly to
the processing of the transaction. Decision-making via
traditional stored-program concepts was too unwieldy
even to be considered — as it usually is based on single
binary choices resulting from real or induced arithmetic
inequalities.

The basic control system for the IBM Type 305 is a
compromise offering the best features of both the con-
trol panel and the stored-program control systems. All
information transfers during transaction processing are
made via a stored program. The necessity for record
marks is eliminated by specifying the number of char-
acters to be transferred as part of the instruction. Each
ten-character instruction thus completely specifies a
single reproducing operation. The track and starting col-
umn addresses of both the sending and receiving process
drum tracks involved are written, followed by the two-
digit quantity of the number of characters to be trans-
mitted. Arithmetic operations, in the form of addition,
subtraction, and distribution and multiplication (abso-
lute values only) were treated as information transfers
and programmed with the same form of instruction.
Arithmetic entered into the basic format specification
only because of our language inconsistencies. We read
alphabetic information from left to right and do arith-
metic from right to left. In order to propagate carries
during arithmetic processes, the internal information
transfers are made in a right-to-left manner. Thus, the
starting column address for any transfer is the “low
order” column of the field. The system is completely
analogous to setting up card processing routines, with
added conveniences, such as the ability to distribute a
single quantity into up to ten adjacent accumulators on
two instructions, one of which would probably be
necessary for a later multiplication in any case.

65

IBM JOURNAL * JANUARY 1957

66

Figure 4
The IBM 305 Random-Access Memory Accounting Machine.

All logical decisions are made by means of selector
wiring on the control panel. Process control may be
passed at will between the two forms of control. Instruc-
tions follow in numerical sequence until after one is
executed that is “flagged” by one of 47 symbols denoting
transfer to the control panel. At this time, a control pulse
is available from the corresponding one of 47 exit hubs on
the panel. This pulse may be sent through a selector net-
work and control returned to any instruction in the
stored program, thus restarting the sequence. In this
manner, multi-choice decisions are made on a single
operating cycle to the control panel.

The available decision elements, as noted above, are
all selectors. The three types of decisions are handled by
three differently actuated sets of selectors. “Recognition”
decisions are made by means of a character selector that
consists of points on a selector tree that is actually a
single-character relay register. Any character in any rec-
ord may be sent to this register, replacing its previous
contents. This character then controls up to a 48-way
choice by a single interrogation of the Character Selector.

“Status” decisions are made on several bases. Each of
the ten accumulators carries its sign in relay storage, the
points of which are available as selectors on the control
panel. Thus, decisions may be made as to the status
(plus, zero, or minus) of each of up to ten accumu-
lators, at any time. Further status decisions may be
made as a result of field comparison, identical or not,
and on whether or not any significant information other
than “zero” or “blank” was transmitted on the most
recent information transfer. This last item is very con-
venient in spread-card applications.

“Positional” decisions may be made using latch-type

IBM JOURNAL * JANUARY 1957

relay selectors that can be picked up or dropped out by
control pulses on the panel. Means for pulse-delay are
also provided to eliminate “relay races” in setting up
selector sequences through the points of controlled
selectors.

Although the machine has facilities for modifying its
own stored instructions by internal operations, this is
very rarely done. The main reason is that the instruction
used is extremely powerful as compared to the conven-
tional single-address operation, and all instructions are
directly useful operations. Thus, the total number of
instructions necessary to perform most transaction proc-
essing is usually relatively small. The secondary reason
is that if the immediate instruction capacity of the process
system should be exceeded for a given application, it is
usually easier and faster to bring in ten new instructions
as a single record than it is to perform arithmetic opera-
tions on one or two.

General system organization

Fig. 4 is a picture of the IBM Type 305 RAMAC. Phys-
ically, there are four distinct units within the system. At
the right of the picture is the console which contains a
card reader, switches and lights for control of the ma-
chine, and a keyboard and printer for file inquiry and
system test. The unit in the center is called the main
frame and consists of the magnetic disk random access
file at the right, the processing unit behind the two
center panels, and the power supply behind the panel
to the far left. To the left are the output units. In the
background is the Type 323 card punch and in the fore-
ground is the Type 370 printer.

Fig. 5 shows the system organization of the Type 305
RAMAC. Information enters the system via the card
reader shown in the upper right-hand edge of the dia-
gram. The information is written directly from the
reading brushes onto a magnetic drum housed in the
processing unit. On the next card cycle the information
is read at a check station and compared with the data
on the drum. Following a successful check the informa-
tion is available under program control within the proc-
ess unit. With the use of two tracks for input it is possi-
ble to parallel card feeding and processing operations.

The processing unit contains a magnetic drum with 33
tracks of 100 characters each and the circuitry for
manipulating information on the drum according to a
program that is also stored on the drum. Twenty of the
drum tracks can be directly addressed from the program
counter and make 200 program steps directly available
for use. Additional program steps may be brought from
any storage in the system and the 20 program tracks
may be used for general storage as well as program
storage. In addition, there are four general storage
tracks, three tracks used in the arithmetic system, a
track for use with the keyboard and printer unit on the
console, two tracks used for output, and a timing track.
The Random Access File is connected to the processing
unit at two points. The address register, which specifies
the record to be read from the file, is a five-position
storage unit. Numbers from any part of the process unit
may be sent to this unit. The selected record of the file
unit, as specified by the address register, is available to
the process unit for reading to procure information from
the file and for writing to place new information in the
file. The results of processing are sent to the output
track on the drum. The printer and punch take data
directly from this track and print and punch them accord-
ing to the rules set down on their respective control
panels.

An inquiry system to allow calling records from the
file independently of normal processing operations has
been provided. The location of the required record is
keyed into the keyboard, and at an appropriate time this
record is procured from the file and placed on a special
track into the process unit. Typing of the record from
this track proceeds independently of normal processing.

Information transfer

Informatijon transfer between the process drum and the
file occurs in blocks of 100 characters. Information
transfer within the process drum may occur in blocks of
from 1 to 100 characters according to the stored program
instructions. Fig. 6, which depicts the transfer of informa-
tion between two tracks of the process drum and the
input-output section, shows how the first eight characters
of the basic instruction are used to specify this transfer
of information. Fig. 5 shows the means depicted for
executing the basic transfer instruction.

All information transfers are routed through a 100-

column core buffer unit. For the execution of any given
instruction, the input to the core buffer is switched to
the track which is to deliver the information. On the
reading cycle the path from that track to the core buffer
is closed at a time corresponding to that when the first
position to be read is under the head on that track. The
path remains closed until the number of characters
specified by the “length” in the instruction have been
transmitted, at which time the path is opened. The out-
put of the core buffer is switched to the track which is
to receive information, and that path is closed and
opened during the writing cycle according to the posi-
tion where writing is to start and the length, as specified
in the instruction.

The processing unit executes information transfer
instructions in sequence, as specified by a program
counter which controls the next instruction to be read.
The instruction reading is indicated in the center of
Fig. 5. The tens position of the instruction register con-
trols which program track is to be read from, and the
units position controls which of the ten-position instruc-
tions on that track is to be read into the instruction
register. Once an instruction is in the instruction register,
the static contents of this register control the actual infor-
mation transfer, as outlined above.

Arithmetic operations in this machine are handled in
substantially the same manner as information transfer
instructions. The accumulator system is a track on the
process drum plus the necessary circuitry to handle
algebraic addition and subtractions. If the accumulator
track is specified as the receiving track in an information
transfer instruction, the numeric value of that informa-
tion is added to the value already on the accumulator
track and the result is written on the accumulator track.
Actually, the accumulator track may be specified as the
receiving track in two ways, add or subtract. In either
case the arithmetic system notes the signs of the two
numbers passing through it, notes the instruction speci-
fication of add or subtract, derives the proper result,
and writes this result back on the accumulator track.
The circuitry is arranged to treat the 100 positions of
the accumulator track as ten individual ten-position
accumulators. Each of the ten accumulators has its own
sign associated with it. Carries between accumulators
are not allowed and an overflow device is included to
indicate this condition, should it occur. Transfers out
of the accumulator track can either reset the part read
out or not, according to the way that the accumulator
is specified on the read-out instruction. There is no
restriction as to the number of positions that may be
read to the accumulator track on a transfer instruction.
Thus, several additions may be completed on a single
instruction.

As with addition, multiplication is also handled as an
information-transfer instruction. There is a multiplicand
track, and specification of this as the receiving track
will cause the number transmitted to be written on this
track ten times. A maximum of nine characters can be

67

IBM JOURNAL * JANUARY 1957

100
DDRESS
:EGIST:R CHARACTER
CORE BUFFER
: ;-mn-»
Y
: ay by ag by P
I
350 | R === :‘\ 370
RANDOM ACCESS i £
‘ Q FORMAT PRINTER
il I o, CONTROL
| i T2 X
| /) N
1
Lgod g, SL
X w9 z
I
! ARITHMETIC 323 PUNCH
' CIRCUITS FORMAT
‘ \ CONTROL]
A TT1 \

99 00
READ
CHARACTER PROGRAM storace | ARITHMETIC i
SELECTOR TRACKS TRACKS | LM-—ACCUM. | TYPES o qpirl NnpuT
(0-9) A1 w—z | N=MULTIPLICAND [WRITE CARD
\ X — MULTIPLIER READER
PROC DRUM 4
1 ESS DRU < ChECK
ol gyl
5 \ FORMAT
|
! /
i
I
|
i
: PROGRAM REGISTER
! ' _/ FROM 10 NUMBER
| ! oW ORDER oW GROER OF CONTROL | COMPARE
!
! ; ADDRESS "Dl By | ADDRESS |20 SP SRl pOSITION
|
: { Ty o) by T2 a2 bg l mn P Q
! i '
i |
A |
/N ‘
4 AN
SN i }
7 N]
7 N |
HUNDREDS TENS UNITS COPY DECISION ELEMENTS - IN FUNCTIONS
PROGRAM COUNTER FROM - ACCUMULATOR SIGNS
INPUT - ACCUMULATOR OVERFLOW EEED AD- | rypE.
TO - SELECTORS CARD PRINT (PUNCH O;IE[E%%E WRITE
PROGRAM - CHARACTER SELECTOR
o P TRACK 9 - BLANK FIELD
00 50 90 - COMPARE
0V 61 f - LAST CARD
0 5 g - INQUIRY INTERLOCK

L

A

~

A B COD zZ 0 14

Ly e

DECISION ELEMENTS — OUT
copy | RECORD - ACCUMULATOR SIGNS (+, —,0}
START & - ympLETED| ADVANCE - ACCUMULATOR OVERFLOW (YES, NO)
COMPLETE - SELECTORS {NORMAL, TRANSFERRED)
- CHARACTER SELECTOR (WHICH CHARACTER)
- BLANK FIELD (YES, NO)
- COMPARE (YES, NO)
-LAST CARD (YES, NO}
-INQUIRY INTERLOCK
Note: Control circuits indicated are completed by control-
. 5 panel wiring from exit hubs below to entry hubs above. Deci-
F zgz{re . sion elements may be used in any desired sequence. Control
Logic diagram for the Random-Access Memory is returned to stored program by picking appropriate level of
68 Accounting Machine. program counter.

IBM JOURNAL *» JANUARY 1957

20 34
v

FROM T0 LENGTH
———

———— ——
[A fas]k 1915]
T

POSITION POSITION

TRACK A

19

TRACK K

65 99
7
.

T

Figure 6
Information Transfer.

read to this track. Specification of the multiplier as the
receiving track in an instruction will cause multiplica-
tion of the number transmitted on this instruction by the
number on the multiplicand track. The product is stored
in the first two accumulators on the accumulator track.
The multiplication process is simple, in that each multi-
plier digit merely chooses when to start adding the
information on the multiplicand track into the product
register. The multiplicand track may be used for opera-
tions other than multiplication. One such use is to send
a number there and then add all or part of this track
to the accumulator track. In this manner the same num-
ber can be used to affect balances in several accumu-
lators in a single instruction. This distribution function
is the reason for writing the tenth field on the multipli-
cand track.

Any information-transfer instruction can be converted
from an actual transfer to a comparison of the data
specified on the from and to tracks by placing a 1 in the
tenth position of the instruction. The result of the com-
parison is made available for control operations to be
described later. Thus, if we wish to compare a name
that is on track A from positions 20 to 44 with a name
that is on track J from positions 65 to 89, we would
write the following instruction:

A 44 7 89 25 () 1

There is also a field compare operation made possible
by inserting a 2 in the tenth position of the instruction.
This instruction compares the data from the two tracks
specified and makes comparison results from each block
of 10 characters on the tracks available for control oper-
ations to be described later.

In addition to the drum tracks already mentioned,

there are two other units that may be specified as
receiving locations in an information-transfer instruc-
tion; these are the address register and the character
selector. The address register is a five-digit storage unit
where numbers are placed to specify the location of the
records required from the file. A regular information-
transfer instruction is used to place a number in the
register. A subsequent operation causes the arm on the
file unit to go to the location specified. The character
selector is a one-position storage unit to which any
character in the system may be sent using an informa-
tion-transfer instruction. This may be analyzed partially
or completely during a control operation within the
machine.

This completes the discussion of the information-
transfer aspects of the 305 system design. In summary,
the objectives were to provide an effective yet readily
understandable means for manipulating information in
a manner required in business data processing. In gen-
eral, the 305 has achieved this by:

1. Handling alphabetic and numeric information with
equal facility,

2. Providing for variable-length transfers as a basic char-
acteristic of the system,

3. Including an arithmetic system capable of handling
several numeric balances simultaneously,

4. Providing an alphanumeric comparison facility.

Processing control
Among the requirements of data processing are a means

for altering the way in which different situations are
handled. As was pointed out in the first portion of this 69

IBM JOURNAL * JANUARY 1957

70

paper, the 305 uses two mechanisms for accomplishing
the required results. A stored program is used for in-
formation transfer and a control panel for the control
functions. The general approach is to set up the condi-
tions for control with the information transfer instruc-
tions and then to wire the means of considering these
conditions on a control panel. The ninth character of
the instruction provides the means for testing these
conditions at a predetermined point in the instruction
sequence. An alphabetic character is placed in the ninth
position of an instruction, and at the completion of the
execution of this instruction the number in the program
counter is dropped, and an impulse is made available on
the control panel via the hub corresponding to the letter
used in the instruction. This hub will be wired through
various decision elements back to an entry point in the
instruction sequence. Physically, the impulse travels
through relay points controlled by the decision elements
and picks up a new position in the program counter.
The position that is picked up is determined by the status
of the decision elements and the control panel wiring.

The decision elements available on the control panel
are as follows:

1. Condition of the 10 accumulators—plus, minus and
Zero.

2. Contents of the character selector.

3. Status of the latest comparison made.

4. Status, blank field or not, of the latest information
transfer or field comparisons made.

5. Status of a group of latch selectors (relays) that have
been picked or dropped at previous control points.

With these decision elements, the normal process in
programming an application is to set up the conditions
for several decisions and then to make a multiple branch
in the program. The net result of the control system is
to provide a mechanism whereby many instructions do
not have to be utilized in making the decisions neces-
sary in the process.

This aim is accomplished by concentrating the deci-
sions to a few points on the program. Another feature
of the system lies in the programming simplicity achieved,
where the programmer can physically put his decisions
together on the panel without an elaborate review and
rearrangement of the stored program. This latter feature
is particularly advantageous, as it is usually in the con-
trol area that the more intricate problems in a program
develop, and here the programmer has a chance to con-
sider these problems independent of the more voluminous
but less intricate information transfers required.

Input-output-file controls

An important part of the 305 design is the operation

and control of the input, output, and file units. The three

aspects of importance in considering these units are:

1. Means of initiating operations of each unit.

2. Controls within each unit that are substantially inde-
pendent of the process unit.

IBM JOURNAL °* JANUARY 1957

3. Interlock system between these units and the process
unit.

Operations for the input, output and file units are
initiated by control panel wiring.

The controls within each unit must be discussed for
each unit. On the card reader two tracks are provided.
The card reads directly to one track, while the other
track is available to the process unit. A card-feed im-
pulse transfers the track just used by the process unit
to card-read status, and the other track from card-read
status to availability to the process unit. This impulse
also initiates feeding a new card to the track just placed
in the card-read status.

The printer and punch both obtain information from
a single output track. The control as to what informa-
tion to print or punch and how, is within the print and
punch units. In this manner the process unit only need
place the required information on the output track.
Print functions such as format arrangement, zero sup-
pression, etc., are specified on the print control panel.
Punch arrangement on the card is specified on a punch
control panel. The print or punch signal initiates the
proper operation. Information on the output track is
analyzed to determine the specification as to the mode
of printing and punching.

The file is given a new address by transferring a num-
ber to the address register which starts the file access
mechanism into motion.

A similar interlock system is used for integrating the
operations of all peripheral units with the process unit.
The basic approach in the interlocking system is to
achieve an overlap of operations such as card feeding,
processing, printing, punching, and file seeking. This
overlap has been achieved by providing sufficient con-
trols for each unit such that interlocks are required only
when there is a conflict in the needs of two of the units.
An example of such a conflict would be for the process
unit to attempt writing on the output track when printing
and punching of the data there from the previous opera-
tions had not been completed. At such points an interlock
would be effected. Writing on the output track would be
prevented until such times as printing and punching were
complete. Similar interlocks are effected for card reading
and other operations where these conflicts can develop.

The result of the interlocking and input-output-file
controls is such that for any given application the time
chargeable to a transaction on the machine is the longest
of the card feed, print, punch or processing functions
for that transaction instead of the sum of these. At any
given time, it will be normal for the machine to be
processing a given transaction, feeding the card for the
next transaction, and printing the results of the previous
transaction.

Machine speeds

The speeds of the various units within the RAMAC
system were set to achieve a balance in the time that

each unit spends upon a given transaction. The printer In any given problem the overall machine speed will

was the first unit chosen and the speeds in the remainder be limited by one of these units. In loading the file from

of the system are balanced to the printer speed. Table 1 cards, the machine will normally be card-feed limited,

gives the speeds of the various units in the RAMAC and in punching the file on cards, punch-limited. In a

system. typical billing job it would probably be printer-limited.
At two seconds per line we get 1800 lines per hour. At

Table I Machine Speeds reasonable utilization rates, the objective for the machine
of 10,000 line items per day can be achieved.

Unit Speed

Card feed 125 cards/min

Printer 50 col/sec, 30 cards/ min

Punch 100 cards /min

Process unit 30 msec/STEP -+ 20 msec/STEP
with control transfer

File 0.8 sec max, 0.15 sec min Received July 7, 1956

71

IBM JOURNAL * JANUARY 1957

