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Introduction

The increasing interest of the electronics industry in
graded-base transistors has prompted intensive studies
on the diffusion of impurities into semiconductors.:”
Since the distribution of impurities in the graded base
affects the transistor characteristics, it is desirable to
estimate and control the diffusion pattern with the
highest possible accuracy.

It has been frequently taken for granted that the
diffusion rate is governed by Fick’s laws:?

J = —D(on/?x) N
and (3n/ot), = —(0J/9x), (2a)
= D(8?n/9x%)¢ (2b)

Where J is the current and n the concentration of a
diffusing substance, D a diffusion coefficient, ¢ the time,
and x the distance. For the sake of conciseness, only
unidirectional diffusion is considered here.

It is known, however, that Egs. (1) and (2b) do not
hold for many systems. A more widely applicable rela-
tion, first used by Boltzmann,* takes account of any
possible variations of the diffusion coefficient D with
concentration:

on/dt = D(n)(9?n/8x%) + (2D(n)/on) (on/ox)* (3)

where D(n) is a function of concentration. Equation
(3) follows directly from Eq. (2a) and the generalized
form of Eq. (1):

J = —D(n) (3n/ox) (4)

An obvious extension of Eq. (3) to systems of more
than two components is:

oni/ot = D;(n) (0°n;/3x?)
+ 3,[(2D;i(n)/3n;) (on;/9x) (on;/ox)] (5)

where the subscripts i, j, refer to the various components.
Equation (5) probably could be made to fit most exper-
imental data available to date, since the function D;(n)
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reported to date, it has usually been assumed that these
coefficients do not vary with concentration. This assump-
tion is questioned here. Interactions between acceptors,
donors, electrons, and holes may lead to complicated
diffusion equations, as shown by an analysis based on
Onsager’s theory. In particular, appreciable covalent
compound formation is likely to occur between some
substitutional donors and acceptors. This alone may lead
to a marked dependence of diffusion coefficients on con-
centration, and to diffusion of acceptors induced by con-
cenfration gradients of donors and vice versa. Such
effects are suggested by some discrepancies in the experi-
mental results reported thus far.

can be adjusted at will. The experimental problem
would then consist simply of determining D;(n) over
all conceivable ranges. Since this would require a tre-
mendous amount of work, it is usually preferred to
assume at first that D;(n) may be represented by a con-
stant D. This expedient assumption may be quite satis-
factory when high accuracy is either unnecessary or
unattainable.

Unfortunately, however, the accuracy attainable by
an experimental procedure is frequently judged solely
by the consistency of the results obtained. Rather than
attribute any observed discrepancies to actual variations
in D;(n), one may be tempted, instead, to blame them
on possible experimental errors.

The present paper will be concerned with the applica-
bility of Fick’s law, Eq. (2b), to the diffusion of accep-
tors and donors into semiconductors. It will be shown
that, theoretically, this law may not apply if compound
formation or other complicating factors are significant.
This proof will be followed by a discussion of some
experimental work reported to date.

Onsager’s equations for isothermal diffusion

A theoretical approach quite generally applicable to iso-
thermal diffusion is due to Onsager.5 His equations are:

Ji = —E]-Q,-ja‘uj/ax - Qifi (6)
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where u; is the chemical potential of the j-th component,
fi the average resultant force due to any electrical or
other fields acting on a particle of the i-th species, and
Q;; are mobility terms obeying the reciprocity relation:

Qi; = Qy N

The term Q;; is proportional to the concentration n; of
the particles of the i-th species and inversely propor-
tional to the frictional forces opposing the displacement
of these particles. Where these frictional forces are ap-
proximately invariant this can be written:

Qii s n1Dz/kT (8)

where T is the absolute temperature, & the Boltzmann
constant, and D; the diffusion coefficient. For nearly
ideal solutions the chemical potential is:

= RT In n; (9)
and
i/ 0x = (RT/n;) (ony/ox) (10)

Hence, if the terms 3 Q(ou;/0x) and f; are negligible,
i*j

Eq. (6) reduces to Eq. (1).

The terms Q;; where i 5= j may be much more compli-
cated. To obtain a physical picture of their meaning, one
might consider the simple case where two components
A and B form compound C:

A+B=C

and where the motions of the individual species 4, B, and
C are not otherwise interrelated. Then the condition for
local equilibrium is:

pa + pe = po (11)

If Eq. (6) were then to describe the motion of the total
substance A, it could be written:

—"JA = Q*AA(a‘U,A/ax) -+ Qo(}(a‘uo/ax) (12)
where Q* 4 and Q¢¢ are given by Eq. (8):
AD*A/kTQ*AA = p* and Qcc = nan/kT, (13)
where D*, and n*, apply to that part of substance 4
which is not combined. If it is not desired, however, to
consider the combined and uncombined forms separ-
ately, then Eq. (6) would be written:
—J4 = QAA(BMA/ax) + QAB(a‘U,B/ax) (14)
Comparison of Eqs. (11), (12) and (14) lead to

QAB = QCC

(15)
and Qas = Q*AA + QCO
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In more complicated cases, however, the terms Qy;, where
i 7= j, may be due to either an entrainment or an obstruc-
tion of the i-th species by the j-th species, or vice versa,
through long-range interactions.

The following sections will be concerned with the
application of Onsager’s equations to diffusion of donors
and acceptors into semiconductors under conditions
where simplified treatments may be legitimate. These
conditions will be specified in the next section.

Complicating factors in the theoretical
treatment of diffusion in semiconductors

According to Longini and Greene® the concentration of
vacancies in semiconductors may be highly dependent
on the difference between the concentrations of donor
and acceptor impurities, and would be much higher for
n-type than for p-type semiconductors. In such cases the
coefficient D; of equation (8) would have to be replaced
by a function D; (n;, n;...) of the concentrations, as
diffusion of substitutional impurities is believed to be
determined by the vacancy concentration. This possibil-
ity would introduce further complications, which though
important, are outside the scope of the present paper.

Since donor and acceptor impurities are almost com-
pletely ionized at temperatures at which appreciable
diffusion occurs, their chemical potentials are affected by
complex electrostatic interactions, such as those de-
scribed by Reiss et al.” Fortunately, however, these inter-
actions decrease with increasing concentration and
increasing temperature. Furthermore, at temperatures
for which the concentration of electrons and holes in
the intrinsic semiconductor is higher than the impurity
concentration, any variation of the latter will have a neg-
ligible effect on the observable electrostatic contributions
to chemical potentials. This range of temperatures and
concentrations will therefore be considered exclusively
in the following sections.

Finally, it will be assumed that any entrainment of
particles of one species by those of another species is
negligible in solid semiconductors. However, space-
charge effects will be considered.

Summarizing, then, the following treatment will apply
to conditions for which equations (8) and (10) would
apply to each impurity species and where the terms Q;
are negligible for i 7 j.

Electrical field associated with impurity
concentration gradients

When different species of charged particles are diffusing,
those having high mobilities tend to advance ahead of
the remaining species. This tendency, however, is
checked by the requirement for electroneutrality if the
fast and slow particles are oppositely charged. Thus a
space-charge field is formed which accelerates the slower
particles and retards the fast ones. To estimate the effect
of this field, consider a semiconductor with the concen-
trations N and P of donor and acceptor impurities, re-




spectively, at a given absolute temperature 1. The
concentrations n, and n;, of electrons and holes, respec-
tively, will then be determined by the electroneutrality
condition

ne—np,=N—P (16)
and by the mass action law

n.n, = Ky (17)
where K, is a constant. Let Dy, Dp, D,, and D), be the
diffusion coefficients for donors, acceptors, electrons,

and holes, respectively. Then, Egs. (6), (8) and (10)
yield

Jv= —Dy[(dN/ox) + NF/kT] (18)
Jp= —Dp[(8P/0x) — PF/kT] (19)
J. = —D,(on./0x) — nF/kT] (20)
and Jp = —Dyp[(0np/0x) + mF/kT) 21)

where Jy, Jp, J. and J;, are the respective diffusion cur-
rents of donors, acceptors, electrons, and holes, and —F
is the average electrical force acting on a positively
charged particle. The cross terms ;;(ép;/0x) of equation
(6) where i 7= j are assumed to be negligible. In the ab-
sence of any net electrical current one must have:

Iv+Ih=Jp+ 1, (22)

as long as no appreciable local deviations from electro-
neutrality occur.

Eqgs. (16) through (22) allow calculation of F in terms
of P, N, 9P/ox, and dN/ox. From Eqs. (16) and (17)
one obtains:

ne=3%(N—P) + [}(N—P)? + Ki]? (23)
n,= —3(N—P) + [}(N-P)* + Ki]t (24)
on/o(N—P) =

H1+-(N—-P)/(3(N—P)* + K;)#] (25)

and 3np/d(N—P) =
H—1+(N-P)/(R(N—P)* + K1)¥]  (26)

For K; >> (N —P)?, equations (23) through (26) sim-
plify to:

ne =~ m =~ VK, (27
and an.,/3(N—P) =~ — 3n/3(N—P) ~ % (28)

Hence, on./0x =
[0n/o(N—P)1[6(N—P)/ox] =~ 4 o(N—P)/ox (29)

and ony/ox ~ - L 9(N--P)/ox (30)

Substitution of Eqs. (27) through (30) in Egs. (20)
and (21), followed by substitution of the latter together
with Eqs. (18) and (19) into Eq. (22), then yields:

ox NF _
DN[N }rDh[Hl AN—P) VEF]

ox kT T x T Tt
op PF 3(N—P) - \/K.F
= p[—————]+De[% - YK
ox kT ox kT
3L
Hence, i
kT

_ 3(D.+Dy) (3(N—P)/ox) +Dp(d8P/0x) —Dy(0N/8x)
VKi(D.+D,) + NDy + PDp

(32)

Since D, and D), are much larger than Dp and Dy,
equation (30) simplifies to:

F/kT ~ [3(N—P) /2x1/2 VKy (33)
Hence, Egs. (18) and (19) become:
Jy=—Dy[(1+3+NK; %) (dN/0x) —3NK,2(aP/ox)] (34)
and

Jp=—Dp[(1+3PK %) (3P/0x) —4PK1~#(dN/9x)1 (35)

Effect of compound formation

It has been pointed out by Reiss, Fuller and Morin?
that the electrostatic attraction between the positively
charged donor particles and the negatively charged ac-
ceptors should give rise to ion-pairing:

D"+ A —=AD

Their theoretical treatment of such pairing was based
mainly on electrostatic considerations. However, covalent
interactions and geometric factors affecting the stability
of the crystal lattice may be stronger contributing fac-
tors towards such pairing than purely electrostatic
attraction, especially in the case of substitutional impuri-
ties, e.g., indium and antimony in germanium or silicon.
Covalent compounds such as InSb, AISb, etc., are known
to be very stable, as evidenced by their negative energies
of formation.®® It is very likely, then, that even in a
crystal of germanium or silicon, strong covalent forces
will favor such compound formation. Furthermore, the
negatively charged acceptors usually have a larger effec-
tive radius and the positively charged donors a smaller
one, than does a neutral germanium or silicon atom.
Hence, substitution of a germanium or silicon atom by
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an acceptor or donor may produce a local compression
or contraction of the lattice. When a donor and acceptor
are placed in adjacent lattice sites, these local strains
should be largely relieved and appreciable energy thus
released.*

The fraction of donors and acceptors which are paired
would be a complicated function of their concentrations
if electrostatic interaction energies were the controlling
factors, but this function would assume a simple form if
short-range covalent and intracrystalline energies are
mainly involved. In the latter case, the simple equilib-
rium relation should hold:

Ko = N*P*/C (36)

where K is an equilibrium constant, C is the concentra-
tion of the compound AD, and N* and P* are the con-
centrations of free donors and acceptors, respectively,
ie., of those donors and acceptors which are not in
combined form. Hence, at equilibrium:

dC = (P*/Kz)dN* + (N*/K;)dP* (37)

If the local rate of attainment of equilibrium is fast in
comparison with the rate of diffusion, then C could be
considered to follow instantaneously any local changes
in N* and P* so that

(8C/0t); = (P*/K3) (BN*/dt) . + (N*/K3) (0P*/3t),
(38)

Hence, if Jy* and Jp* are the diffusion currents of free
donors and acceptors, the continuity Eq. (2a) would no
longer apply,

(ON*/0t) . = — (0Jn/0%x) ¢

(0P*/0t) # — (0Jp/0x):

*Consider, e.g., the cycle:

PO

(PURE}

AD
(IN SEMICONDUCTOR)

The energy change AHj5 would then be:
AHy = AHs — (AH1 + AHz -+ AH3)

Now the low solubilities of uncompensated acceptors 4 and donors D as
compared with those of many 4D compounds in semiconductors suggest that
usually AHs > AH4 and AHs > AHy. Hence, AHs may have appreci-
able negative values, a major fraction of which may be attributed to the
forces discussed above,
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but would have to assume the form
(BN*/8t), = — (BJx/3x) —(8C/3t), (39)
(3P*/3t) . = — (3Jp/0x): — (3C/81), (40)

where the correction term — (9C/9t), would represent
the concentration of donors or acceptors changing into
the compound AD. Any diffusion of compound AD itself
is disregarded here, because its diffusion coefficient should
be extremely small, in view of its larger size and weight,
and, what is probably most important, its tighter bonding
in the crystal lattice.

Egs. (39) and (40) yield:
(0P*/3t) ,, = (ON*/3t) » + (8] y+/0x)y — (8T px/3x), (41)

Eliminating (8P*/2t), and (2C/9¢), between Eqgs. (38),
(41), and (39), and rearranging, one obtains:

(ON*/3t), = [1/(K:+N*+P*)]
[N*(9]p+/0x); — (Ko+N*) (8Jy+/0x)4] (42)

Similarly,

(OP*/3t), = [1/(K:+N*+P*)]
[P*(0Jys/3x) s — (K2+P*) (3Jpx/0x),] (43)

where the terms 9J/6x would be given by substituting the
letters N* and P* for N and P in Egs. (34) and (35).

Discussion of the derived relations

Even if no compound formation occurred, it follows
from Egs. (34) and (35) that, strictly speaking, diffu-
sion in semiconductors should fail to obey not only
Fick’s laws, but also the more generalized Egs. (4) and
(5). In order to hold strictly, the latter equations would
have to be generalized even further:

Comparing Eqgs. (34) and (35) with (44) one obtains:

Dyy = (1+3NK,#)Dy (45)
Dpp = (1+4PK;%) Dp (46)
Dyp = —3NK:tDy (47)
and Dpy = —3%PK1*Dp (48)

Since it has been assumed in this discussion that N<K;?
and P<K;%, Dyy and Dpp cannot vary by a factor greater
than 3/2 over the entire range of concentrations con-
sidered. Furthermore, in most practical cases encoun-
tered, N<K:* and P<K;%, so that Dyy and Dpp reduce
to Dy and Dp, respectively. However, the terms




DypoP/ox and DpyoN/ox appearing in Eq. (44) may
not be negligible in certain cases. Thus, if the gradient
of one impurity species is zero, while that of the other
is high, these terms predict counterdiffusion of the
former species in the direction of increasing concentra-
tion of the latter.

Much larger deviations from Fick’s law would occur,
however, in case of appreciable compound formation,
as shown by Eqgs. (42) and (43). In the extreme case
where K. is negligibly small, compound formation
would be stoichiometric, and Eqs. (42) and (43) would
reduce to:

oN*/ot = —oJy+/0x for N>P (49a)
= 0 for NP (490b)
oP*/3t = —oJps/0x for N<P (50a)
= 0 for N>P (50b)

Egs. (49) and (50) could be rewritten in terms of the
excess donor or acceptor concentrations:

O(N—P)/ot = —0oJy«/0x for N>P (51a)

= +0Jpx/0x for P>N (51b)
The problem would then be similar to that for diffusion
in a two-phase system, and solutions worked out for
the latter case could be applied here.’® The result would
be a sharp change in 3(N—P)/ox for N = P, i.e., at the
p—n junction.

The actual existence of sharp changes in 9(N—P)/ox
would be indicated by the lines observed when germa-
nium crystals are cross sectioned and etched following
diffusion of impurities. The locations of such etchlines
do not always coincide, however, with those of the p—n
junction.l® Nevertheless, the etchlines suggest irregulari-
ties in concentration gradients which could not be pre-
dicted by Fick’s law. On the other hand, when K is not
quite negligible, Eqs. (42) and (43) may lead to steep
changes in 9(N—P)/ox at points which do not neces-
sarily coincide with the p—n junction. Similar irregular-
ities might also occur even if K, is negligibly small, but
where the equilibrium between the concentrations of
free and of paired impurities is attained rather slowly.

Experimental evidence of pairing between acceptors
and donors and of its effect on diffusion is given by
Reiss et al” for boron and lithium in silicon. This pairing
is, however, mainly attributed to electrostatic interac-
tions and the formation of an LiB- complex. Since lithium
is an interstitial rather than substitutional impurity, it

may well be that these interactions are more significant
in this case than the covalent and intracrystalline inter-
actions discussed in the previous section.

In most of the other experimental work on diffusion
in semiconductors, Fick’s law was assumed to be valid,
and any discrepancies were attributed to experimental
error. Some of these might be due, however, to the
complicating factors discussed above. Thus, in Dunlap’s
work! on the diffusion of antimony into germanium, the
diffusion coefficients obtained by the tracer method were
consistently higher than those given by the p—n junction
method. This result could suggest counterdiffusion of
acceptors due partly to electrical fields, Eqgs. (34) and
(35), but mainly to compound formation, Egs. (42)
and (43).

Discrepancies between results of different investi-
gators>12 might perhaps be also attributed partly to
differences in the concentrations of the diffusing impuri-
ties and of the impurities initially present in the semi-
conductors in the different experiments. The same might
apply to some discrepancies between values obtained by
the same authors. Unfortunately, the a priori assumption
of the validity of Fick’s law has led to a common failure
to report accurately the impurity contents of the speci-
mens studied. In particular, the concentrations of the
impurities present in these samples prior to diffusion
have rarely been mentioned.
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