
J. A. Swanson 

Clarification of First-Order 
Semiconduction Effects through 
Use of Electrochemical  Potentials 

introduction 

The complete  set of equations governing carrier flow in 
semiconductors is exceedingly complex. This complexity 
derives not only from  the  number of simultaneous equa- 
tions  involved,”  but also from  the nonlinear character of 
some of the equations. 

One method of dealing with these  nonlinearities is to 
remove them QD initio by  restricting oneself to  effects of 
first order  in  the “causative” physical variables. Mathe- 
matically,  this  corresponds to neglecting the  products of 
quantities  which are  zero  at equilibrium. There  are, of 
course, many problems (such as  those  involving rectilka- 
tion)  in which the nonlinearities are essential. Neverthe- 
less certain quantities of basic physical  interest can be 
determined precisely by  first-order  considerations. It is 
the  theory  of  such first-order  considerations  which  con- 
cerns us in this paper. 

The linearized theory of conduction effects in  semicon- 
ductors  has been previously treated  many times in  con- 
nection  with  problems of varied nature.  This  paper is not 
intended  primarily to furnish new results, but  rather  to 
clarify the conceptual  picture. The  nature of this con- 
ceptual clarification will be  more evident if we first review 
briefly the conventional approach to the problem. 

In  the nonlinearized theory  the following simplification 
is often  iutroduced: Poisson’s equation is replaced by the 
“charge  neutrality  condition.” The  latter is an assumed 
relation of equality between the deviation of the electron 
concentration  at  any point from  the  normal equilibrium 
concentration  at  that  point  and  the corresponding  devia- 
tion in  the  hole concentration. In general,  this assumed 
relation is  not precisely fulfilled, since  by Poisson’s equa- 
tion it is the discrepancy  between  these  concentration 
deviations  which  provides  the  charge  acting as the 
“source” of the electric field. The replacement is justified, 
however, as an  approximation, if the required  discrepancy 
is much smaller than  the individual concentration devia- 
tions. Whether or not this is so can be  checked, after a 

*In  the  simplest  case,  there  are Jive: two transport  equations,  two  equations 
of continuity,  and  Poisson’s  equation. 

Abstract:  When  deviations  from  equilibrium  conditions 
are small,  the  net  rate  at  which  electrons  are  interchanged 
between two groups  of  electrons  which  are  separately in 
states of thermodynamic  equilibrium  is  proportional to 
the  difference  of  the  Fermi levels applying to the two 
groups.  With  the help of  this  principle  the  first-order 
treatment  of  conduction  effects in semiconductors  (ap- 
propriate  when  carrier  concentration  deviations  are 
small) is considerably  simplified.  Poisson’s  equation is 
shown to be  ignorable in the  first-order  treatment  of 
steady-state  effects.  Application is given  to  the Hall effect 
and to the  characterization of probes. 

solution of the set of equations has been obtained, by 
substitution of the solved electric field in Poisson’s equa- 
tion  and calculation of the  required charge density. The 
approximation is found  to be good in  the  interior of a 
semiconductor  except near reverse-biased junctions, for 
which other  approximations  are appropriate. 

The conventional  first-order treatment  has also  incor- 
porated  the neutrality  condition.  One of the principal 
points of this paper is to show that  the mathematics of 
first-order  steady-state effects is as simple without  the 
neutrality  assumption  as  with it.  Hence, if a problem can 
be solved approximately  by  assuming  space-charge  neu- 
trality, it can also be solved exactly. In  fact, we shall be 
able  to show that  the  exact solution can be  obtained from 
the  approximate solution  by a simple reinterpretation of 
the variables. 

When the  problem is formulated in terms of the elec- 
trochemical  potentials, Poisson’s equation is seen to be 
ignorable. It is this unusual  feature of the first-order, 
steady-state problem which gives rise to  the above prop- 
erties. The  fact  that  the electrochemical  potentials are 
also operationally significant (connected with the voltage 
assumed by the  probes) means that  the electrostatic po- 
tential  can  be  altogether  ignored in this type of semicon- 
ductor problem. 

This investigation was first undertaken  in  order to 
make  more rigorous the results of some  previous  work, in 39 
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which the  author participated, on  the effect on  the Hall 
voltage of carrier  concentration deviations induced by the 
magnetic field. Accordingly,  some discussion of this 
problem will be  included. 

The  first-order system 
in  terms of electrochemical  potentials 

Electrochemical  potentials,  which are  related directly to 
the  Fermi level or  “quasi-Fermi level” of the one-electron 
band  theory  approximation,  have  often been  employed  in 
connection  with semiconductor prob1ems.l A separate 
electrochemical  potential can be defined for  any  group of 
electrons  which is in  thermodynamic equilibrium  with 
itself (but  not necessarily with other  electrons).  The 
advantage  here gained by the use of electrochemical 
potentials consists in the  fact  that  the  net  rate of inter- 
change of electrons between two such  groups is, so far 
as first-order  considerations are involved, simply propor- 
tional to  the electrochemical  potential difference, or, in 
the continuous case, to  the potential  gradient. 

Thus,  the  current densities of holes and electrons are 
given to first order by the  equations: 

i P  = -ePPP”V+P (11 

i,, = -eep,n,v+, ( 2 )  

where p o  and no are  the equilibrium  concentrations, not 
necessarily uniform, +P and +n are  the electrochemical 
potentials for holes and electrons, respectively, and pCn 
and pn are  the hole and electron mobilities. The electro- 
chemical potential of holes is defined as that of electrons 
in  the valence band,  and  that of “electrons”  as the elec- 
trochemical  potential appropriate  to  the  conduction  band 
electrons. The sign convention adopted  here is such as to 
render Eqs. (1) and (2) formally  identical to  the usual 
pure conduction  equations  written in  terms of the electro- 
static potential. These equations,  however, also include 
diffusion effects. 

First-order  concentration deviations  (deviations  small 
compared to equilibrium concentrations) result in a 
steady-state  recombination of holes and electrons propor- 
tional to  the difference of the electrochemical  potentials. 
Thus  to equations ( 1 ) and (2) may be added: 

V *  i ,  = - 7’ i,, -7 - K ,  (bP - & )  ( 3 )  

where K1 is a positive constant determined by the lifetime. 
Equation (3) is valid for a  steady-state  process even if 
the deviations  in  hole and electron  concentrations are  not 
equal; i.e., even if there  are  trapping effects. Recombina- 
tion  at  the  surface is also proportional  to  the difference 
( +p - + n ) .  In this  case we have 

i . i p  = KZ ( + p  - +n) (4) 

lFor a discussion see W. Shockley, Elecirons and Holes in Semiconductors 
(D. Van Nostrand Company, Inc., New York, 1951) Sec. 12.4. 

where it is the  unit  outward  normal  to  the  surface  and K z  
is a positive constant related to  the  surface recombination 
velocity. This is a complete  set of equations. The  current 
densities may be  eliminated  by  substituting the right 
members of equations (1) and ( 2 )  in equation ( 3 )  for 
i,, and in in  equations (3) and (4). Thus  the  current densi- 
ties and electrochemical  potentials can be found  through 
the use of equations ( 1) to (4) and suitable boundary 
conditions at contacts, without inquiring into  the behavior 
of the electrostatic field, or introducing an  arbitrary rela- 
tionship between hole and  electron  concentration devia- 
tions. The electrostatic potential  may subsequently be 
calculated, if desired, from  the first-order Poisson’s 
equation, which  takes the  form 

v‘$ = soeZ [ ( n o  + p o l  $ - no+n - pO+pl/ kT 

in the absence of trapping levels. However, the electro- 
static potential is intrinsically less interesting than  the 
electrochemical  potentials, since  the voltage of a probe 
placed on  the semiconductor surface is sensitive to  the 
latter  rather  than  to  the  former. Poisson’s equation is 
thus of little  interest in connection  with  first-order,  steady- 
state effects. (This result cannot be  generalized to  non- 
steady-state  problems,  since in this  case the  equation of 
continuity  involves  the  concentration  deviations 
explicitly.) 

Application to  the weak-field Hall  effect 

The preceding discussion shows in  particular  that  the 
semiconductor Hall constant(s)  can be  calculated  with- 
out  reference  to Poisson’s equation.  We  have  (to first 
order in the magnetic field) 

a+p PPH i, 

az e ePPPo ( 5 )  

az e epn& ( 6 )  

” ” E H +  - 

a b  
-= - - Pnh 

E H -  - 12 

where E is  the  primary longitudinal  electric field, H is 
the  perpendicular  component of magnetic field, i, is the 
current of holes flowing perpendicularly to E and H (i, 
is also the negative of the corresponding  electron current, 
since the  net transverse current is zero),  and p p ~  and p L n ~  
are  the hole and electron Hall mobilities. The z-axis has 
been chosen to lie  in the direction of magnetic deflection 
of holes and electrons. 

When  the lifetime is infinite, i, is zero, and +n and +p 

have  independent values appropriate  to  the  particle con- 
cerned. When  the lifetime is finite, i, may be  calculated 
using equations (3) to (6) and  appropriate  boundary 
conditions. In the special  case of zero lifetime, and +n 

are  equal  and  equations (5) and (6) determine  the con- 
ventional Hall voltage for mixed  carriers. 

Probes  may  in principle  be constructed  to  measure 
either 4p or (pn. Thus it is possible to measure a positive 

I IBM JOURNAL JANUARY 1957 



Hall  constant  on n-type material or a negative Hall con- 
stant  on p-type  material. The discrepancy  between +, and 
+, may be used as a measure of lifetime. An  ohmic  probe 
introduces the  boundary condition +,L = +, at  the  surface 
of the  probe  and  thus insures the measurement of the 
conventional Hall effect in a  uniform  sample. 

A comprehensive analysis of the effects of lifetime on 
the  Hall constant has been made by Landauer  and 
Swanson.’ In  that  paper,  the usual  approximation 

is employed,  where p1 is the deviation in  the concentration 
of holes from  the equilibrium  value, and n1 is the  same 
quantity  for electrons. Equation (7) is not fulfilled 
exactly, since  a  net difference (pl - n l )  in the  concentra- 
tion deviations is required  to satisfy Poisson’s equation. 
However, the  fraction ( p l  ~ n l ) / p l  is usually very  small, 
and  the  approximation (7) is therefore a  reasonable one. 
St will now  be shown in fact  that  the previous  results are 
exact insofar as the electrochemical  potentials are con- 
cerned. This circumstance  results essentially from  the 
ignorability of Poisson’s equation  in  first-order,  steady- 
state processes. 

Let us introduce  the new quantities 

It is easily verified that if equation (7) holds,  then 

Let us introduce also the quantities T and s: 

If the  concentration deviations are equal, T is the usual 
volume  lifetime, and s is the  surface recombination veloc- 
ity. In  terms of +, p’, T ,  and s the  equations (1) to (4) 
take  the  same  form as  those for $ and p1 employed  in  Ref. 
2. Thus, substituting the  interpretations  (10)  to (12) for 
the  occurrences of $, pl, T ,  and s in the  equations of Ref. 
2, we achieve an exact treatment of the  Hall effect. It is 
interesting to  note  that even should trapping effects occur, 
resulting  in  a relatively large  value of (p1 - n l ) ,  the  treat- 
ment is still exact,  providing that T and s are reinterpreted 
in accordance with equation (12).  Trapping effects do 
not invalidate  equations (3) and (4), but necessitate the 
use of a more general form of Poisson’s equation, in 

2R. Landauer and J. Swanson, Phys. Rev. 91, 555   (1953) .  
3P. C.  Banbury, H. K. Henisch, and A. Many, Proc. Phys. SOC. 66, 7 5 3  

(1953) .  

which p o  and no are replaced by other concentrations  de- 
termined by the relative number of trapped carriers. 

A correction  to  the  Hall electrostatic potential  for  the 
special case of uniform, extrinsic,  short-lifetime material 
has been  calculated by Banbury,  Henisch, and  Manys 
taking into  account  the deviations from space charge neu- 
trality  which,  in the absence of surface states,  constitute 
the  source of the  Hall electric field. The  present discus- 
sion, while affording  a  means of calculating the correc- 
tion in  the  more general case, shows this correction  to be 
relatively uninteresting,  since it does  not  lead to a  corres- 
ponding  alteration of the measured Hall  constant.  The 
Hall voltage is in fact measured by probes, and  the voltage 
assumed by probes is a  characteristic  average of the elec- 
trochemical potentials  in  the  neighborhood of the  probe 
(cf. next section). 

In  treating higher order effects, such as the variation of 
the  Hall constant  with field, the electrostatic  potential  can 
no longer  be  ignored.  However, approximate  treatments 
which reject Poisson’s equation in favor of an approxi- 
mate  relationship between hole and electron concentra- 
tions should give satisfactory  results in view of the mi- 
nuteness of the space  charge effects. Higher  order effects 
should be unimportant as long as the  Hall voltage remains 
less than k T / e .  

The  characterization of probes 

In this  section, it will be  shown that  the voltage of a float- 
ing probe of given character is completely  determined by 
the electrochemical  potentials  in the neighborhood of the 
probe, provided that  the  concentration deviations  in the 
neighborhood of the  probe  are small compared  to  the 
equilibrium  concentrations. This  latter condition is USU- 

ally fulfilled when dealing  with  linear or “first order” 
effects, such as the  Hall effect at low  magnetic field 
strengths. It  has been shown  above that  the electrochem- 
ical potentials may be  determined  without reference  to 
the electrostatic  potential or to Poisson’s equation. St will 
be established that  the electrostatic  potential is also ignor- 
able when  considering the  actual voltages assumed by 
probes. 

The obtained  result is the following: 

where V,f is the voltage  assumed  by  a  floating  probe, +, 
and +, are  the electrochemical  potentials  which would 
exist at  the position of the  probe were the  probe absent, 
and k,  and k ,  are dimensionless constants  characteristic 
of the probe. In most cases 

k,  = y (13a) 

where Y is the hole  injection efficiency of the  probe.  These 
results follow essentially from  the linearity of equations 41 

IBM JOURNAL JANUARY 1957 



TO METAL LEAD 

t 
shall  identify  with S2, the electrochemical  potentials are 
both  equal  to  the voltage of the  probe, V,, 

Figure I 
A probe  and the  associated  surfaces SI, S2, and SS em- 
ployed in the  analysis. The surface S4 is the  continuation 
within the probe  of  the surface of the  bulk semiconductor. 
The  surface S2 may  be above S4 as shown (filamentary 
contact),  at S4 (point  contact  or alloy contact),  or pos- 
sibly  somewhat  beneath S4. There  may  be  a p-n junction 
in  the  neighborhood  of S2. 

( 1)  to (4). A  rigorous proof of equation ( 13) will now 
be given. 

Consider a volume of semiconductor enclosed by a 
surface, S. Let S be  composed of three sections SI, Sz, and 
SS. Along S1 and S2 let the electrochemical  potentials have 
constant values, and  furthermore let them  have  equal 
values along S2. Along S, the values are  not  predeter- 
mined, but condition (4) is to apply. The  argument is 
general, but S1, S2, and S3 will be interpreted in the pres- 
ent case  as  follows: SI is a  hemisphere  totally  contained 
by the semiconductor  with edge on  the semiconductor 
surface, such  that this  edge is centered about  the  probe 
under consideration (see Fig. 1).  We shall  assume that 
the  probe is small compared with  distances  over  which 
the electrochemical  potentials  in the absence of the  probe 
would change appreciably; thus a radius R exists for  the 
hemisphere such  that  the electrochemical  potentials are 
substantially constant along the hemisphere and  equal to 
the values they would have were the  probe absent. This 
radius is less than  the distance over which the potentials 
would change appreciably  were the  probe absent, but 
several times larger  than a typical  linear  dimension of the 
probe. The electrochemical  potentials at SI, +pl and +,,,, 
are hence in this  case essentially the potentials which 

and  the Cii’s are constants. 

(The validity of equations  (15a  and  b) is easily con- 
firmed by observing that  the general  solution is a super- 
position of solutions  having A+p = 0 and solutions 
having A+,, = 0. But all solutions  with A+p = 0 are 
constant multiples of each  other;  hence all currents in 
this  case are linearly  related to A+,,. The symmetrical 
statement holds when A& = 0). 

If the  probe is floating, I ,  + I ,  = 0. Hence, 

from which it readily follows that a  relationship of type 
( 13) holds for +pl and +nl with 

This completes the  more  important  part of this  section. 
It is, however, of interest also to justify the semiquantita- 
tive  relations (1  3 ) .  To do this we must find y in  terms of 
the Cij’s. Imagine a current passing through  the probe, 
and let  this current be the sole source of excess carriers. 
Then, if the  radius of the hemispherical surface S1 is 
truly  large  compared  to  probe dimensions, we may  take 
+pl = +,,I = voltage of the bulk of the semiconductor, 
and consequently A+p = A+,,. Then 

would exist at  the  surface of the semiconductor  were the 
probe absent. Whatever  the  nature of the probe, at Some ( c 2 1  4- c 2 2 )  I p  = ( C 1 1 t C 1 2 )  I ,  
surface  there is a transition from  the semiconductor to an 

42 essentially metallic  material. At this surface, which we  from which it follows that 
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if y is defined as of great practical  value,  since it would be difficult to 
measure y independently.  However, it is true  that a 

y = I J ( I p  + I,) (at SI) (21) probe with  unity y would  certainly measure &, and a 
probe with zero y would measure +,. Such  probes can 

If we could take Clz = Cz1, equations (13a)  and  (13b) be constructed by  suitable forming,  that is, impurity 
would follow. This  cannot be done in  general.  However, diffusion  or alloying in the immediate  vicinity of the 
in most cases, the off-diagonal elements of C are  much  probe. 

4The presence of the  off-diagonal  terms and C-1 is  due  to  the recombi- 1110re nearly  fulfilled if wr define y as the injectioll rficiellcy along the 
nation of holes and electrons. If the hulk lifetime  were  infinite,  and  if  the surface Sq ( a  continuation of the  external  s~rniconductor  surface) or, if 
aurface  recornbination  velocity were zero except at St, w e  should have the probe structure  includes a junctiorl extending heyorld Sq, the  injection 

semiconductor if aurfarr recombination is negligiblr, and if R < 1, 
Clz = Czl = 0. There  is little  contribution  to C12 or C-1 from  the  bulk efficiency along  this  junction.  However, since we are iuterested  principally 

in  equation ( l ) ,  which is always valid,  and not  the  qualitative  equivalence 
where L is the diffusion length. In  the  general case equations (2)  are ( 2 ) ,  it does not seem desirable  to  treat these questions  in greater detail. 
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