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Clarification of First-Order
Semiconduction Effects through
Use of Electrochemical Potentials

Introduction

The complete set of equations governing carrier flow in
semiconductors is exceedingly complex. This complexity
derives not only from the number of simultaneous equa-
tions involved,* but also from the nonlinear character of
some of the equations.

One method of dealing with these nonlinearities is to
remove them ab initio by restricting oneself to effects of
first order in the “causative” physical variables. Mathe-
matically, this corresponds to neglecting the products of
quantities which are zero at equilibrium. There are, of
course, many problems (such as those involving rectifica-
tion) in which the nonlinearities are essential. Neverthe-
less certain quantities of basic physical interest can be
determined precisely by first-order considerations. It is
the theory of such first-order considerations which con-
cerns us in this paper.

The linearized theory of conduction effects in semicon-
ductors has been previously treated many times in con-
nection with problems of varied nature. This paper is not
intended primarily to furnish new results, but rather to
clarify the conceptual picture. The nature of this con-
ceptual clarification will be more evident if we first review
briefly the conventional approach to the problem.

In the nonlinearized theory the following simplification
is often introduced: Poisson’s equation is replaced by the
“charge neutrality condition.” The latter is an assumed
relation of equality between the deviation of the electron
concentration at any point from the normal equilibrium
concentration at that point and the corresponding devia-
tion in the hole concentration. In general, this assumed
relation is not precisely fulfilled, since by Poisson’s equa-
tion it is the discrepancy between these concentration
deviations which provides the charge acting as the
“source” of the electric field. The replacement is justified,
however, as an approximation, if the required discrepancy
is much smaller than the individual concentration devia-
tions. Whether or not this is so can be checked, after a

*In the simplest case, there are five: two transport equations, two equations
of continuity, and Poisson’s equation,

Abstract: When deviations from equilibrium conditions
are small, the net rate at which electrons are interchanged
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solution of the set of equations has been obtained, by
substitution of the solved electric field in Poisson’s equa-
tion and calculation of the required charge density. The
approximation is found to be good in the interior of a
semiconductor except near reverse-biased junctions, for
which other approximations are appropriate.

The conventional first-order treatment has also incor-
porated the neutrality condition. One of the principal
points of this paper is to show that the mathematics of
first-order steady-state effects is as simple without the
neutrality assumption as with it. Hence, if a problem can
be solved approximately by assuming space-charge neu-
trality, it can also be solved exactly. In fact, we shall be
able to show that the exact solution can be obtained from
the approximate solution by a simple reinterpretation of
the variables.

When the problem is formulated in terms of the elec-
trochemical potentials, Poisson’s equation is seen to be
ignorable. It is this unusual feature of the first-order,
steady-state problem which gives rise to the above prop-
erties. The fact that the electrochemical potentials are
also operationally significant (connected with the voltage
assumed by the probes) means that the electrostatic po-
tential can be altogether ignored in this type of semicon-
ductor problem.

This investigation was first undertaken in order to
make more rigorous the results of some previous work, in
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which the author participated, on the effect on the Hall
voltage of carrier concentration deviations induced by the
magnetic field. Accordingly, some discussion of this
problem will be included.

The first-order system
in terms of electrochemical potentials

Electrochemical potentials, which are related directly to
the Fermi level or “quasi-Fermi level” of the one-electron
band theory approximation, have often been employed in
connection with semiconductor problems.! A separate
electrochemical potential can be defined for any group of
electrons which is in thermodynamic equilibrium with
itself (but not necessarily with other electrons). The
advantage here gained by the use of electrochemical
potentials consists in the fact that the net rate of inter-
change of electrons between two such groups is, so far
as first-order considerations are involved, simply propor-
tional to the electrochemical potential difference, or, in
the continuous case, to the potential gradient.

Thus, the current densities of holes and electrons are
given to first order by the equations:

Ip = —eppPoVey (1)
iy = _e,UunnoV(ZSn (2)

where p, and n, are the equilibrium concentrations, not
necessarily uniform, ¢, and ¢, are the electrochemical
potentials for holes and electrons, respectively, and u,
and u, are the hole and electron mobilities. The electro-
chemical potential of holes is defined as that of electrons
in the valence band, and that of “electrons” as the elec-
trochemical potential appropriate to the conduction band
electrons. The sign convention adopted here is such as to
render Eqgs. (1) and (2) formally identical to the usual
pure conduction equations written in terms of the electro-
static potential. These equations, however, also include
diffusion effects.

First-order concentration deviations (deviations small
compared to equilibrium concentrations) result in a
steady-state recombination of holes and electrons propor-
tional to the difference of the electrochemical potentials.
Thus to equations (1) and (2) may be added:

Viip= —Vin= Ky (¢’p—¢n) (3)

where Kj is a positive constant determined by the lifetime.
Equation (3) is valid for a steady-state process even if
the deviations in hole and electron concentrations are not
equal; i.e., even if there are trapping effects. Recombina-
tion at the surface is also proportional to the difference
(¢» — ¢=). In this case we have

ﬁ'ip = K2 (¢p - ¢‘n) (4)

1For a discussion see W. Shockley, Electrons and Holes in Semiconductors
(D. Van Nostrand Company, Inc., New York, 1951) Sec. 12.4.
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where 7 is the unit outward normal to the surface and K,
is a positive constant related to the surface recombination
velocity. This is a complete set of equations. The current
densities may be eliminated by substituting the right
members of equations (1) and (2) in equation (3) for
i, and i, in equations (3) and (4). Thus the current densi-
ties and electrochemical potentials can be found through
the use of equations (1) to (4) and suitable boundary
conditions at contacts, without inquiring into the behavior
of the electrostatic field, or introducing an arbitrary rela-
tionship between hole and electron concentration devia-
tions. The electrostatic potential may subsequently be
calculated, if desired, from the first-order Poisson’s
equation, which takes the form

VA = eoe? [(1o -+ Po) ¢ — Rotpn — poppl / kT

in the absence of trapping levels. However, the electro-
static potential is intrinsically less interesting than the
electrochemical potentials, since the voltage of a probe
placed on the semiconductor surface is sensitive to the
latter rather than to the former. Poisson’s equation is
thus of little interest in connection with first-order, steady-
state effects. (This result cannot be generalized to non-
steady-state problems, since in this case the equation of
continuity involves the concentration deviations
explicitly.)

Application to the weak-field Hall effect

The preceding discussion shows in particular that the
semiconductor Hall constant(s) can be calculated with-
out reference to Poisson’s equation. We have (to first
order in the magnetic field)

o¢p _ Pon EH + iz

0z e €lpDo (5)
9 i

¢n o fnh EH — z

0z 4 enlly (6)

where E is the primary longitudinal electric field, H is
the perpendicular component of magnetic field, i, is the
current of holes flowing perpendicularly to E and H (i;
is also the negative of the corresponding electron current,
since the net transverse current is zero), and ppy and pny
are the hole and electron Hall mobilities. The z-axis has
been chosen to lie in the direction of magnetic deflection
of holes and electrons.

When the lifetime is infinite, i, is zero, and ¢, and ¢,
have independent values appropriate to the particle con-
cerned. When the lifetime is finite, i, may be calculated
using equations (3) to (6) and appropriate boundary
conditions. In the special case of zero lifetime, ¢, and ¢»
are equal and equations (5) and (6) determine the con-
ventional Hall voltage for mixed carriers.

Probes may in principle be constructed to measure
either ¢, or ¢, Thus it is possible to measure a positive




Hall constant on n-type material or a negative Hall con-
stant on p-type material. The discrepancy between ¢, and
¢» may be used as a measure of lifetime. An ohmic probe
introduces the boundary condition ¢, = ¢, at the surface
of the probe and thus insures the measurement of the
conventional Hall effect in a uniform sample.

A comprehensive analysis of the effects of lifetime on
the Hall constant has been made by Landauer and
Swanson.? In that paper, the usual approximation

pr=m (7

is employed, where p; is the deviation in the concentration
of holes from the equilibrium value, and n, is the same
quantity for electrons. Equation (7) is not fulfilled
exactly, since a net difference (p; — n1) in the concentra-
tion deviations is required to satisfy Poisson’s equation.
However, the fraction (p; — n1)/p: is usually very small,
and the approximation (7) is therefore a reasonable one.
It will now be shown in fact that the previous results are
exact insofar as the electrochemical potentials are con-
cerned. This circumstance results essentially from the
ignorability of Poisson’s equation in first-order, steady-
state processes.
Let us introduce the new quantities

Po ¢p + No ﬁbn
_fove @ oym 8

¢’ Do -+ R, ( )

, e Po No 9
14 *kT p0+n0(¢fl_¢‘n) (
It is easily verified that if equation (7) holds, then
=1y (if pr = m) (10)
pPP=p1=n (if p1 = m) (11)
Let us introduce also the quantities = and s:

e? o Mo K.

Kir=—2_ Pl _ 22 (12)

kT  p, + n, s

If the concentration deviations are equal, 7 is the usual
volume lifetime, and s is the surface recombination veloc-
ity. In terms of ¢, p’, 7, and s the equations (1) to (4)
take the same form as those for ¢ and p; employed in Ref.
2. Thus, substituting the interpretations (10) to (12) for
the occurrences of ¢, p1, 7, and s in the equations of Ref.
2, we achieve an exact treatment of the Hall effect. It is
interesting to note that even should trapping effects occur,
resulting in a relatively large value of (p1 — n1), the treat-
ment is still exact, providing that 7 and s are reinterpreted
in accordance with equation (12). Trapping effects do
not invalidate equations (3) and (4), but necessitate the
use of a more general form of Poisson’s equation, in

2R. Landauer and J. Swansen, Phys. Rev. 91, 555 (1953).
3P, C. Banbury, H. K. Henisch, and A. Many, Proc. Phys. Soc. 66, 753
(1953).

which p, and n, are replaced by other concentrations de-
termined by the relative number of trapped carriers.

A correction to the Hall electrostatic potential for the
special case of uniform, extrinsic, short-lifetime material
has been calculated by Banbury, Henisch, and Many?*
taking into account the deviations from space charge neu-
trality which, in the absence of surface states, constitute
the source of the Hall electric field. The present discus-
sion, while affording a means of calculating the correc-
tion in the more general case, shows this correction to be
relatively uninteresting, since it does not lead to a corres-
ponding alteration of the measured Hall constant. The
Hall voltage is in fact measured by probes, and the voltage
assumed by probes is a characteristic average of the elec-
trochemical potentials in the neighborhood of the probe
(cf. next section).

In treating higher order effects, such as the variation of
the Hall constant with field, the electrostatic potential can
no longer be ignored. However, approximate treatments
which reject Poisson’s equation in favor of an approxi-
mate relationship between hole and electron concentra-
tions should give satisfactory results in view of the mi-
nuteness of the space charge effects. Higher order effects
should be unimportant as long as the Hall voltage remains
less than kT/e.

The characterization of probes

In this section, it will be shown that the voltage of a float-
ing probe of given character is completely determined by
the electrochemical potentials in the neighborhood of the
probe, provided that the concentration deviations in the
neighborhood of the probe are small compared to the
equilibrium concentrations. This latter condition is usu-
ally fulfilled when dealing with linear or “first order”
effects, such as the Hall effect at low magnetic field
strengths. It has been shown above that the electrochem-
ical potentials may be determined without reference to
the electrostatic potential or to Poisson’s equation. It will
be established that the electrostatic potential is also ignor-
able when considering the actual voltages assumed by
probes.
The obtained result is the following:

Vi = kp¢p + kn¢n (13)

where V; is the voltage assumed by a floating probe, ¢,
and ¢, are the electrochemical potentials which would
exist at the position of the probe were the probe absent,
and k, and k, are dimensionless constants characteristic
of the probe. In most cases

kp=1y (13a)
kn=(1—7) (13b)

where v is the hole injection efficiency of the probe. These
results follow essentially from the linearity of equations
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Figure 1

A probe and the associated surfaces S;, S:, and S; em-
ployed in the analysis. The surface S, is the continuation
within the probe of the surface of the bulk semiconductor.
The surface S, may be above S, as shown (filamentary
contact), at S, (point contact or alloy contact), or pos-
sibly somewhat beneath S,. There may be a p-n junction
in the neighborhood of S..

(1) to (4). A rigorous proof of equation (13) will now
be given.

Consider a volume of semiconductor enclosed by a
surface, S. Let S be composed of three sections Sy, S, and
S3. Along S, and S; let the electrochemical potentials have
constant values, and furthermore let them have equal
values along S.. Along S5 the values are not predeter-
mined, but condition (4) is to apply. The argument is
general, but Sy, Sz, and S3 will be interpreted in the pres-
ent case as follows: S; is a hemisphere totally contained
by the semiconductor with edge on the semiconductor
surface, such that this edge is centered about the probe
under consideration (see Fig. 1). We shall assume that
the probe is small compared with distances over which
the electrochemical potentials in the absence of the probe
would change appreciably; thus a radius R exists for the
hemisphere such that the electrochemical potentials are
substantially constant along the hemisphere and equal to
the values they would have were the probe absent. This
radius is less than the distance over which the potentials
would change appreciably were the probe absent, but
several times larger than a typical linear dimension of the
probe. The electrochemical potentials at Si, ¢, and ¢u,
are hence in this case essentially the potentials which
would exist at the surface of the semiconductor were the
probe absent. Whatever the nature of the probe, at some
surface there is a transition from the semiconductor to an
essentially metallic material. At this surface, which we
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shall identify with S,, the electrochemical potentials are
both equal to the voltage of the probe, V,,

bo2 = 2 =V, (14)

The surface Ss is now interpreted as the free surface of
the semiconductor which joins Sy and S.. Let I, and I,
be the total hole and electron currents, respectively, that
flow through the surface ;. Because of the linearity of
equations (1) to (4), we may write the relations

I, = C11Ady + C12A¢, (15a)
I, = C21A¢p + Ca22Ady (15b)
where

Ay =2 — 1 =V — ¢p1 (16a)
Adu = 2 — dm =V — ¢m (16b)

and the Cj;’s are constants.

(The validity of equations (15a and b) is easily con-
firmed by observing that the general solution is a super-
position of solutions having A¢, = 0 and solutions
having A¢, = 0. But all solutions with A¢, = 0 are
constant multiples of each other; hence all currents in
this case are linearly related to A¢,. The symmetrical
statement holds when A¢, = 0).

If the probe is floating, /, - I, = 0. Hence,
(C11 + Cn)App = —(Crz2 + Ca2) Ay 17)

from which it readily follows that a relationship of type
(13) holds for ¢,1 and ¢,1 with

Cu + Cn
ky=—— (18a)
? S5 Ci
Ci2 + Cs
k, = .__]‘21_‘2 (18b)
~ij Cij

This completes the more important part of this section.
It is, however, of interest also to justify the semiquantita-
tive relations (13). To do this we must find y in terms of
the Cj;’s. Imagine a current passing through the probe,
and let this current be the sole source of excess carriers.
Then, if the radius of the hemispherical surface S, is
truly large compared to probe dimensions, we may take
¢dp1 = ¢Pn1 = voltage of the bulk of the semiconductor,
and consequently A¢, = A¢,. Then

(Co1 + C22) Iy = (C1a+Cr2) I, (19)

from which it follows that




v = (Cy + C12)/35Cy (20)

if y is defined as

vy =1/, + I,) (at Sy) (21)
If we could take Cy» = Caq, equations (13a) and (13b)

would follow. This cannot be done in general. However,
in most cases, the off-diagonal elements of C are much

4The presence of the off-diagonal terms Cyo and Cgy is due to the recombi-
nation of holes and electrons. If the bulk lifetime were infinite, and if the
surface recombination velocity were zero except at 81, we should have
Cy2 = C21 = 0. There is little contribution to Cy12 or Ca1 from the bulk
semiconductor if surface recombination is negligible, and if R < 1,
where L is the diffusion length. In the general case equations (2) are

smaller than the diagonal elements,* so that relations
(13) are approximately fulfilled. These relations are not
of great practical value, since it would be difficult to
measure y independently. However, it is true that a
probe with unity y would certainly measure ¢, and a
probe with zero y would measure ¢,. Such probes can
be constructed by suitable forming, that is, impurity
diffusion or alloying in the immediate vicinity of the
probe.

more nearly fulfilled if we define v as the injection efficiency along the
surface S84 (a continuation of the external semiconductor surface) or, if
the probe structure includes a junction extending beyond 84, the injection
efficiency along this junction. However, since we are interested principally
in equation (1), which is always valid, and not the qualitative equivalence
(2), it does not seem desirable to treat these questions in greater detail.
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