
as BDAM Logic

Release 21

Program Number 360S-DM-509

This book describes the internal logic of the basic direct access
method (EDAM). It is intended as a reference book for
programming support representatives and system programmers
maintaining BDAM routines and for customer programmers
modifying BDAM routines.

A general understanding of data management is prerequisite
knowledge for understanding the information in this book. See
Data Management Services Guide, GC26-3746, for background
information on data management.

File Number S360-30
Order Number GY28-6617-6

Program Logic

Seventh Edition (February 1972)

This book is a major revision of, and makes obsolete, GY28-6617-5. It corresponds
to Release 21 of the operating system and to all subsequent releases unless otherwise
indicated in new editions or technical newsletters. Changes may be made to the
information in this manual at any time; before using this manual in connection with the
operation of IBM systems, consult the latest SRL Newsletter, GN20-0360, for the
editions that are applicable and current.

Forms for readers' comments are provided at the back of this book. If the forms have
been removed, address comments to IBM Corporation, Programming Publications,
Department D78, Monterey and Cottle Roads, San Jose, California 95114.

For copies of this or any other IBM pUblication, see your IBM representative or call
your local IBM Branch Office.

© Copyright International Business Machines Corporation 1970, 1971, 1972

ABOUT THIS BOOK

This book describes the internal logic of the basic direct access method (BDAM). It is
intended as a reference book for programming support representatives and system
programmers maintaining BDAM routines and for customer programmers modifying
BDAM routines.

The major parts of this book and the information contained in them are as follows:

The first part, the Introduction, explains what BDAM does and how it relates to
the rest of the operating system.

• The second part, Program Description, describes what each BDAM module does,
the intermodule relationships, and the flow of control between BDAM modules
and other parts of the operating system.

• The last four parts of the book contain flowcharts and reference material that will
be useful in analyzing BDAM listings and storage dumps.

A general understanding of data management is prerequisite knowledge for under
standing the information in this book. See Data Management Services Guide,
GC26-3746, for background information on data management.

The following publications are referred to in this book:

as DADSM Logic, GY28-6607, which describes allocation of extents to a data set

as System Control Blocks, GC28-6628, which describes the control blocks used by
BDAM

as Data Management Macro Instructions, GC26-3793, which contains information
about many of the macro instructions referred to in this book

as I/O Supervisor Logic, GY28-6616, which describes the appendage vector table

as Messages and Codes, GC28-6631, which explains the messages issued by BDAM
modules

as Open/Close/EOV Logic, GY28-6609, which describes the open and close
routines of data management

as SAM Logic, GY28-6604, which describes the BP AM routines used in the address
conversion process

as Storage Estimates, GC28-6551, which contains information about BDAM

as Supervisor Services and Macro Instructions, GC28-6646, which explains the
ENQ and DEQ macro instructions

as MVT Supervisor Logic, GY28-6659, which describes the exit effector routine of
the task supervisor

IBM System/360 Component Descriptions - 2841 and Associated DASD,
GA26-5988, which explains the coding of channel programs

iii

CONTENTS

iii

ix

x

1
1
1
1
2
3

5
5
5
5
7
8
9
9
9

11
13
14
15
16
16
16

17
18
24
24
25
27
28
29
30
32
33

35

41

43
43
44
46
49
49

About This Book

Summary of Changes for Release 21

Acronyms Used in This Book

Introduction
Relationship of BDAM to the Operating System
Overview of BDAM

Opening a Data Set
Processing an II 0 Request
Closing a Data Set

Program Description
Open Executor Modules (IGGOI93A,3C,3E,3F,3G)

IGG0193A
IGG0193C
IGG0193G
IGG0193E
IGG0193F

Foundation Modules (IGG019KA,KJ)
Base Routine
Asynchronous Interrupt Routine

Address Conversion Modules (IGG019KC,KE,KF,KG,KH)
IGG019KC (Relative Track Conversion Module)
IGG019KE (Relative Block Conversion Module - No Track Overflow)
IGG019KF (Relative Block Conversion Module - Track Overflow)
IGG019KG, KH (Feedback Modules for Relative Block Addressing)

Channel Program Generating Modules
(IGG019KI,KK,KR,KW,KO,KM,KN,LA,KY,KQ)
Update Channel Programs (IGG019KI,KK,KR,KW)
Format Channel Programs
IGG019KQ (Write-Verify Module)

BDAM Appendage Modules (IGG019KL,LE,KU,LC)
IGG019KL,LE (Dynamic Buffering Modules)
IGGO 19KU (Channel End/Abnormal End Appendage Module)
IGG019LC (End-of-Extent Appendage Module)

Exclusive Control Module (IGG019LG)
Releasing Blocks Under Exclusive Control

Check Module (IGG019LI)
Gose Executor Moduie (IGG0203A)

BDAM Flowcharts

Module Directory

Data Areas
BCB (Buffer Control Block)
Buffer Pools
DCB (Data Control Block)
DEB (Data Extent Block)
DECB (Data Event Control Block)

v

50 lOB (Input/Output Block)
55 Read-Exclusive List

57 Appendixes
57 Appendix A: Periods of an Extent
59 Appendix B: Calculations Done in Module IGG019KE to Get a Relative Track

Address
61 Appendix C: Calculations Done in Module IGG019KF to Get a Relative Track

Address
63 Appendix D: Channel Programs for BDAM
85 Appendix E: Messages and Codes Issued by BDAM Modules

87 Glossary

89 Index

vi

FIGURES

6 Figure l. BDAM open executor modules
7 Figure 2. BDAM module addresses are stored in the DeB, the

AVT, or other BDAM modules
10 Figure 3. Base routine of the foundation module
11 Figure 4. ASI routine in the foundation module
17 Figure 5. BDAM channel program generating modules
18 Figure 6. Block on a direct-access storage device
19 Figure 7. Data field of a capacity record
22 Figure 8. Module relationships for WRITE-add requests in a

multitask environment
25 Figure 9. Dynamic buffering module
32 Figure 10. Operations performed by the exclusive control module
33 Figure 11. BDAM close executor module
35 Figure 12. Flow of control in base routine of foundation module
36 Figure 13. Flow of control in lOS appendages
37 Figure 14. Flow of control in ASI routine of foundation module
38 Figure 15. Flow of control for block updating
39 Figure 16. Exclusive control in a multitasking system
43 Figure 17. BeB for spanned records without dynamic buffering
43 Figure 18. BeB for dynamic buffering
44 Figure 19. Fields, field size, and field contents of the BeB

for dynamic buffering
44 Figure 20. Buffer in buffer pool: dynamic buffering of

nonspanned records
45 Figure 2l. Buffer in buffer pool: dynamic buffering of spanned

records
45 Figure 22. Buffer in buffer pool: simple buffering of

spanned records
46 Figure 23. Fields of the DeB for BDAM
47 Figure 24. Fields, field sizes, and field contents of the DeB

for BDAM
48 Figure 25. Fields of the DEB for BDAM
49 Figure 26. Fields, field size, and field contents of the DEB

for BDAM
50 Figure 27. Fields of the DEeB for BDAM
51 Figure 28. Fields, field sizes, and field contents of the DEeB

for BDAM
52 Figure 29. Fields of the lOB for BDAM
52 Figure 30. Fields, field sizes, and field contents of the lOB

c~~nT'\A.~"
lUi JJJ.J~n.l

56 Figure 3l. Segment of the read-exclusive list
56 Figure 32. Entry in the read-exclusive list
58 Figure 33. Track overflow
59 Figure 34. DEB information needed to calculate relative track

addresses
62 Figure 35. DEB information needed to calculate relative track

addresses
84 Figure 36. BDAM modules issuing messages and codes
86 Figure 37. Relationship among processing program, BDAM routines,

and other parts of the operating system

vii

SUMMARY OF CHANGES FOR RELEASE 21

Module Eliminated

Material Added

The start-I/O appendage module, IGG019KS, has been eliminated. Start-I/O logic is
now in modules IGG019KL and IGG019LE, the dynamic buffering modules.

Hexadecimal displacements for control blocks and lists (in the "Data Areas"
section of the manual)

Messages and codes issued by BDAM modules (in Appendix E)

• A glossary (at the back of the manual)

• Figure 5, which will help you get to the description of a particular channel
program generating module and then to the illustration of the channel program
that that module builds

Miscellaneous Changes

Much of the material in this manual has been rewritten for clarification.

Minor technical changes have been made.

ix

ACRONYMS USED IN THIS BOOK

ASI

AVT

BCB

BDAM

BPAM

BSAM

CCW

DADSM

DCB

DEB

DECB

DSCB

I/O

lOB

lOS

IRB

RPS

SVC

TCB

UCB

asynchronous interrupt

appendage vector table

buffer control block

basic direct access method

basic partitioned access method

basic sequential access method

channel command word

direct-access device space management

data control block

data event block

data event control block

data set control block

input/ output

input/ output block

input/ output supervisor

interrupt request block

rotational position sensing

supervisor call

task control block

unit control block

x

INTRODUCTION

The basic direct access method (BDAM) is a group of routines that retrieves data from
and stores data into data sets that are directly organized and reside on direct-access
devices.

BDAM is a part of the operating system control program. BDAM routines are grouped
into modules that are placed in the supervisor call (SVC) library at system generation.
This library is part of the system residence library, which resides on direct-access
storage. When BDAM is to be used by a processing program, the modules that will be
used in the particular application are loaded from the system residence volume into
main storage.

Relationship of BDAM to the Operating System

When a data set to be processed using BDAM is opened, the Open routine of data
management (discussed in OS Open/Close/EOV Logic) gets control and calls the
BDAM module that will begin opening the data set.

When an input/output operation terminates, the processing program is interrupted.
The I/O supervisor then gives control to a BDAM module that will schedule the
remaining processing required for the I/O request. When all processing for the request
has been completed, the supervisor returns control to the processing program.

When a data set is closed, the Close routine of data management gets control and calls
the BDAM module that closes the data set.

Overview of BDAM

For purposes of discussion, BDAM is divided into three sections, based on the type of
operations it performs:

• Opening a data set

• Processing an I/O reyuest

Closing a data set

The major operations done in each of these sections are discussed in the following
paragraphs. Figure 37 at the back of the book shows at what point in a BDAM
application each of these operations is done and which BDAM modules are involved in
a given operation.

Opening a Data Set

The modules involved in opening a BDAM data set are called the BDAM open
executor modules. The open executor modules:

• Determine which BDAM modules will be used in a particular application and load
them into main storage

Build control blocks and lists for subsequent use by BDAM

Introduction 1

Processing an I/O Request

The following operations may be performed when an I/O request is processed:

Controlling the processing

• Converting addresses

Building channel programs

Allocating buffers dynamically

Changing extents

Scheduling remaining processing

Maintaining exclusive control

Checking for request completion

Controlling the Processing

Converting Addresses

The module that controls the processing of a BDAM I/O request is called the
foundation module. The foundation module:

Completes the preparations necessary before an I/O request can be processed

Passes control to other modules involved in processing an I/O request

Completes processing of a request after an I/O operation has terminated

The modules involved in converting addresses are called the address conversion
modules. BDAM converts block addresses whenever relative addressing is specified in
a processing program.

The address of a block may be converted:

From a relative address to an actual address (necessary because the channel
program, when it searches for a block, does so using the actual address of that
block), or

• From an actual address to a relative address (done when the processing program
requests feedback).

The BDAM address conversion modules initiate the conversion process.

When a relative address is being converted to an actual address, a BP AM
convert-to-actual routine does the conversion from TTR to MBBCCHHR. When an
actual address is being converted to a relative address, a BPAM convert-to-relative
routine does the initial conversion from MBBCCHHR to TTR. However, if the
relative block addressing scheme is being used, the BDAM address conversion module
then converts TTR to a relative block number.

Building Channel Programs

2 as BDAM Logic

The modules that build channel programs are called channel program generating
modules. A channel program is built for every BDAM I/O request. All but one of the
channel program generating modules build channel programs that search storage
volumes either for data to be brought into main storage or for space on which to place
data that is being transferred from main storage. The other channel program
generating module builds a channel program that verifies data written on auxiliary
storage devices. This module is used only if the write-validity-check option was
specified in the processing program.

AUocating Buffers Dynamically

Changing Extents

The modules that obtain a buffer, assign it to a request, and then release it are called
the dynamic buffering modules. These modules, which are used in processing an I/O
request only if the dynamic buffering option is in effect, can be entered from the I/O
supervisor or the FREEDBUF SVC. The dynamic buffering modules have two entry
points: start I/O and free dynamic buffer.

If entered at the start-I/O entry point, the dynamic buffer module assigns a buffer to
the request.

\
If entered at the free dynamic buffer entry point, the dynamic buffer module either
releases the buffer used by an I/O request that has been satisfied or extends the
unscheduled list.

When the extended search option was specified in the processing program and the
channel program must switch from one extent to another while reading, writing, or
adding a block, the I/O supervisor gives control to a module called the end-of-extent
appendage module.

This module determines the address of the next extent (if one is available) to be
searched and whether the search li~it is reached in that extent.

Scheduling Further Processing

When a channel program ends, the I/O supervisor gives control to a module called the
channel end/abnormal end appendage module. This module schedules further
processing for an I/O request.

Maintaining Exclusive Control

A module called the exclusive control module is used in processing an I/O request if
the exclusive control option is specified in the processing program. This module
protects the data portion of a block. It ensures that if more than one request is made
for use of a block, only the first request can use it while it is under exclusive control.
The exclusive control module maintains a read-exclusive list, which contains the
addresses of all blocks presently being used that require exclusive control.

Checking for Request Completion

A module called the check module is used in processing an I/O request if the
processing program uses the CHECK macro instruction to ensure that a given I/O
request has been satisfied. This module determines if, and waits if necessary until, a
request is posted as complete. If errors have been detected during the I/O operation,
the check module gives control to a user's error routine.

Closing a Data Set

One BDAM module, called the close executor module, is involved in closing a BDAM
data set. The close executor module:

• Releases to the system all main storage obtained by BDAM

• Restores the fields of the DCB that have been changed by BDAM routines

Introduction 3

PROGRAM DESCRIPTION

This section describes each of the major operations performed by BDAM. The
modules used in each operation, the conditions under which they are used, and the
intermodule relationships are discussed. Figure 37 at the back of the book is a
composite of Figures 1, 3, 4, 9, and 11, which appear in this section. Figure 37 will
give you a general perspective of BDAM and its relation to a processing program and
to the operating system.

Open Executor Modules (IGG0193A, 3C, 3E, 3F, 3G)

IGG0193A

IGG0193C

BDAM has five open executor modules. Either three or four of these modules are
given control during the opening of a BDAM data set. These modules:

• Determine which BDAM modules will be used in a particular application and load
them into main storage

• Build control blocks and lists for subsequent use by BDAM

When the OPEN macro instruction is encountered in a processing program that
specifies BDAM, control is given to the open routine of data management (see Figure
1). The open routine gives control to BDAM module IGGOI93A.

From information in the DCB and the DSCB for the data set, IGG0193A determines
the amount of main storage needed to build the actual extents in the DEB. IGG0193A
then gets main storage for the DEB and the appendage vector table, which immediately
precedes the DEB in main storage. (See OS I/O Supervisor Logic for more
information about this table.)

IGG0193A places control information in the fields of the DEB. It also provides space
(in the DEBSUBID fields of the DEB) for the subroutine identifications of BDAM
modules that are required as a result of specifications given in the DCBMACRF,
DCBOPTCD, and DCBRECFM fields of the DCB. As each current DEB is being
constructed, it is attached to the appropriate TCB.

Note: A user label track, if allocated, is not included in the extents reflected in the
DEB.

IGG0193A also gets main storage for and initializes the read-exclusive list.

Then IGG0193A checks the where-to-go table, which is created by the data
management Open routine, to determine whether it includes other DCBs that require
the use of this module. If there are none, IGG0193A gives control to module
IGGOI93C. Otherwise, this module is reentered and does the required processing.

Module IGG0193A gives control to module IGGOI93C. IGGOI93C's major activity,
which it shares with module IGGOI93G, is to load into main storage the BDAM
modules that will be used by the processing program.

Program Description 5

6 OS BDAM Logic

-.. T
OPEN • - Data Mllflogomont

Open Routine
.~

.~ • ;1 1GG0183A

J • Get stor. for
DEB Ind build it

,~ (includi .. eppond.

~
vector tlble)

• Get storage for
read-exclullve
listllfldInltiaUzeIt

• Attach DEB to
DeB

• IOOO1113C

Loed processing
modulosllfld store
odd ,

10001_ spanned 1000113F -• BUild IRB ~ • Get storage for
• Load processing buffen and BCB

modules and store • Format buffers - l:!~'" ,,!ock add~ ... i .. or dynamic buffering
of noriSPlnri8d records

IGG0113E

• G or.for
buffer.lnd BC8

• Form .. buffen
• Build relative

extents in DEB

•
Figure 1. When the processing program issues the OPEN macro instruction, the data

management Open routine gets control and, in conjunction with the BDAM
open executor modules, opens the data set.

There is a routine within the module for:

• Determining which foundation module will be used and loading it. IGG0193C
puts the addresses of certain optional BDAM modules in the foundation module
(see Figure 2).

• Determining whether an address conversion module is required and, if so, loading
it. (An address conversion module is required only if an addressing scheme other
than actual addressing is specified in the processing program.)

• Determining which channel program generating module(s) will be used and
loading it.

• Determining if any optional modules will be used and, if so, loading them.

If main storage contains any BDAM modules used when a data set was previously
opened, IGG0193C obtains their main-storage addresses from the supervisor, and they
are not reloaded.

IGG0191G

Module

Channel End/Abnormal End Appendage
(lGG019KU)
Check (lGG019L1)
Dynamic Buffering (lGG019KL,LE)2
End-of-Extent Appendage (lGG019LC)
Exclusive Control (lGC0005C)3
Foundation (lGG019KA,KJ)
10 (lGG019KK)
Key (lGG019KI)
Key Extended Search (lGG019KW)
Preform at (lGG019KO)
Preform at Extended Search (lGG019LA)
Relative Block Feedback (lGG019KG,KH)
Relative Track Conversion (lGG019KC)
Self-format (lGG019KM,KN)
Self-format Extended Search (lGG019KY)
Write Verify (lGG019KQ)

1 The address of the appendage vector table IS In the DEB

Module. Control Block. or List
in Which Address is Placed

Appendage Vector Table 1

DCB
Appendage Vector Table 1

Appendage Vector Table 1

DCB
DCB
Foundation Module (lGG019KA,KJ)
Foundation Module (lGG019KA, KJ)
Key Module (lGG019Ki)
DCB
Preformat Module (lGG019KO)
DCB
Foundation Module (lGG019KA,KJ)
DCB
Self-format Module (lGG019KM,KN)
Foundation Module (lGG019KA,KJ)

2 The start-I/O entry pomt IS In the first field of the appendage vector table; the free dynamic buffer entry pomt IS at the
start-I/O entry pOint +8.

3 The address of the read-ilxcluslve hst IS 10 the DCB

Figure 2. BDAM module addresses are stored in the DCB, the A VT, or other BDAM
modules by BDAM open executor modules.

Notes:

If BDAM modules are included in the link pack area, they are accessible to all
jobs that request them (since BDAM modules are reenterable). All BDAM
modules that branch to each other by means of addresses placed within them by
open executor modules must be included as a unit in the link pack area. (See the
publication OS Storage Estimates for further information on this subject.)

• If a given main task loads a BDAM module into a region assigned to that task,
only that task or its attached subtask has access to the module. If another main
task requires the same module, it must load the module into its own region. The
OS MVT Supervisor Logic manual contains more detailed information
concerning these situations.

As modules are loaded into main storage, IGG0193C puts their module identifications
in the DEB. (After processing of a data set has been completed, the close routine uses
th1~ 11'\fnTn"t~tinn fnt" f"p.lp~f;!inO' Qtnr!HJp. !lrp~~ " ~n~"p fnr thp Ci;!l1hrnnt;np lrlpnt;fl~~t;nn~
~""""""oJ- ... ". _ _ --........ "' 0 '-1 -0- -.6. __ , -r--- - ... _ - - ... _- __
was allotted by IGG0193A. Then IGG0193C checks the where-to-go table, which
was created by the data management open routine, to determine whether it includes
other DCBs that require the use of this module. If there are none, control is given to
module IGG0193G. Otherwise, the module is reentered and does the required
processing.

Module IGG0193C gives control to module IGG0193G. IGG0193G continues the
processing begun by IGG0193C by loading any optional BDAM modules specified in
the following DeB fields: DCBMACRF, DCBRECFM, DCBOPTCD, and DCBBFTK.

Program Description 7

IGG0193E

8 OS BDAM Logic

It then stores in the DEB the subroutine identifications of the loaded modules and the
number of modules that were loaded. If main storage contains any BDAM modules
used when a data set was previously opened, IGG0193G obtains their main-storage
addresses from the supervisor, and they are not reloaded.

There is also a routine within IGGO 193G for:

Determining which appendage modules will be used and loading them into main
storage.

Initializing some of the fields of the DCB.

• Branching to a supervisor routine to build the IRB. Note: The IRB flags specify
execution in problem program state using the protection key of the problem
program task that opens the data set.

After the preceding operations are done, IGG0193G checks the where-to-go table,
which is created by the data management Open routine, to determine if any more
DCBs associated with the current OPEN macro instructions require the use of this
module. If so, this module is reentered and does the required processing. If not, control
passes to:

• IGG0193E, if relative block addressing or dynamic buffering of nonspanned
records is specified in the DCB,

IGG0193F, if spanned records are specified in the DCB, or

The Open routine of data management

Module IGG0193G gives control to IGG0193E if relative block addressing or dynamic
buffering of nonspanned records is specified in the DCB.

If dynamic buffering is specified in the DCBOPTCD field of the DCB, IGG0193E uses
the buffer information in the DCB macro instruction to obtain the main storage
necessary for the buffers and a buffer control block (BCB). IGG0193E then divides
the buffer area in main storage into the requested number of buffers and puts the
address of the first available buffer in the BCB. Then it chains the buffers together by
putting the address of the next buffer into the first word of each buffer.

If relative block addressing is specified in the DCBOPTCD field of the DCB,
IGGO 193E builds the relative extents in the DEB (see the DEB in the "Data Areas"
section of this manual for the format of the relative extent areas). The relative extents
contain information that, during BDAM processing, is used to convert relative block
addresses to actual addresses. Address conversion is necessary because data set blocks
on a direct-access device can only be accessed using actual addresses. One relative
extent is built for each actual extent in the DEB.

If relative block addressing and track overflow are indicated in the DCBOPTCD and
DCBRECFM fields of the DCB respectively, module IGG0193E builds modified
relative extents in the DEB (see the DEB in the "Data Areas" section of this manual
for the format of the relative extents). In addition, IGG0193E builds two fields
between the last actual extent and the first relative extent in the DEB. These fields are
referred to as the overflow section of the DEB and contain information about the size
of a period, as discussed in Appendix A.

IGG0193F

Before passing control to another routine, module IGG0193E determines if any more
DCBs require the use of this module. If so, this module is reentered and does the
required processing. If not, the data set is open as far as BDAM is concerned, and
control is given either to an open executor module for another data set or to the open
routine of data management.

IGG0193G passes control to IGG0193F if spanned record format is specified in the
DCB macro instruction.

If dynamic buffering is not specified in the DCB, IGG0193F gets main storage for a
pool of segment work areas (illustrated under "Buffer Pools" in the "Data Areas"
section of this book) and a BCB.

If dynamic buffering is specified in the DCBOPTCD field of the DCB, IGG0193F uses
the buffer information in the DCB macro instruction to obtain the main storage
necessary for the buffers and a BCB. IGG0193F then divides the buffer area in main
storage into the requested number of buffers and puts the address of the first available
buffer in the BCB. Then it chains the buffers together by putting the address of the
next buffer into the first word of each buffer.

Before passing control to another routine, module IGG0193F determines if any more
DCBs require the use of this module. If so, this module is reentered and does the
required processing. If not, the data set is open as far as BDAM is concerned, and
control is passed either to an open executor module for another data set or to the Open
routine of data management.

Foundation Modules (IGG019KA, KJ)

Bose Routine

BDAM has two foundation modules. Module IGG019KJ is used as the foundation
module when spanned records are specified in a processing program; IGG019KA is
used for nonspanned records. Each of the foundation modules has two routines: a base
routine and an asynchronous interrupt (ASI) routine.

Control passes to the base routine of the foundation module when the READ or
WRITE macro instruction issued by the processing program is executed (see Figure 3).

The base routine:

• Establishes the validity of options specified in the READ or WRITE macro
instruction.

• Combines options specified in the type field of the READ or WRITE macro
instruction with options specified in the DCBOPTCD field of the DCB. The
result of this combination is placed in the DECB. When the lOB is built, this
information is transferred to it.

• Determines the amount of main storage needed for the lOB. Since the channel
program is one part of the lOB whose size varies, the size of the channel program
to be constructed for the request must be determined. The base routine
determines the size by checking the type field of the DECB.

Program Description 9

t -- IGG019KA or KJ , ~. ,
Base routine of
foundation module IGG019KC IGG019KE IGG019KF

• Check validity Initiate conversion Initiate conversion Initiate conversion
of request

of relative track of relative block of relative block
• Complete fields address to actual address to actual address to actual

of OECB address address; no overflow address; overflow
• Build lOB
• Convert address -I--

if relative address
specified IGG019KR

• Generate channel _ n Update spanned records; r IGG019KQ
program search on block 10

• Process invalid Add CCWs to channel

lOS requests
IGG019KK

program to verify

I Schedule 1/0 request r- • Issue EXCP to written data
scnedule I/O n Update nonspanned ree-
requests ords; search on block 10

I IGG019KR l Update spanned records. IGG019KW
search on key - Modify channel program ~

I IGG019KI when extended search
specified n Update nonspanned r

records, search on key

IGG019KN
IGG019KY

Add format·VS record r
Modify channel program ..

I IGG019KM I when extended search n Add format· V or
r specifIed

format·U record

IGG019LA

I IGG019KO I
Add format·F record

Modify cHannel program ..
when extended search
specified

Figure 3. When the processing program issues the READ or WRITE macro, the base routine of the
foundation module gets control. The base routine, in performing its operations, gives control to the
other BDAM modules shown.

10 OS BDAM Logic

• Obtains an lOB from a pool of available lOBs (lOBs no longer in use because the
I/O requests they were associated with have already been satisfied), if the pool
contains one that is large enough. Otherwise, the base routine issues a
GETMAIN for the main storage needed for the lOB. In either case, the base
routine then builds the lOB.

• Determines the type of block addressing specified in the processing program. If
actual addressing was specified, address conversion is not done. If relative
addressing was specified, control is given to one of the BDAM modules that
converts relative addresses to actual addresses. The address conversion module
returns control to the base routine.

• Determines, by checking fields in the lOB and DCB, the type of channel program
to be built. Control is then given to a channel program generating module to
build the channel program required for the request. If the extended search option
has been specified in the processing program, the channel program will reflect the
search limit in the DCBLIMCT field of the DCB. When the channel program has
been built, the base routine again receives control.

• Establishes and stores the address where the channel program should end. After
execution of the channel program, the I/O supervisor compares the address where

the channel program should have ended with the address where it actually ended.
If the two do not match, the II 0 supervisor concludes that the channel program
terminated abnormally.

• Processes any invalid requests. An invalid request is based on the difference
between the parameters specified in the DECB and the parameters specified in
the DCB. Invalid requests can be detected in the processing done by the base
routine itself or in the address conversion (IGGOI9KE, IGGOI9KC, IGGOI9KF)
or channel program generating (IGGOI9KO) modules to which the base routine
passes control.

When the base routine detects an invalid request, it releases the lOB associated with
the request, indicates in the DECB that an invalid request has been detected, posts the
ECB to indicate processing of that I/O request is complete, and returns control to the
processing program.

Asynchronous Interrupt Routine

ERP.

Before a request is considered completed, certain processing operations must be done
by the foundation module. When the processing program is interrupted by the
completion of an input/output operation, the I/O supervisor gives control to the
BDAM channel end/abnormal end appendage module (see Figure 4). The ASI routine
is scheduled by the supervisor after the BDAM channel end/abnormal end appendage
module, IGGOI9KU, has indicated the need for the ASI routine.

Channel Program 1-----1 IGG019KU ,--_Te_'m_In_a'_e, __ ..J ~:nZ~:~~~~b~~:~!
Exit effector
of task supervisor

Schedule BDAM
ASI routine

Supervisor h
'-----T------" I

if no
Check for error retry
procedure requirement if yes

IGG019KA or KJ
ASI routme of
foundation module

IGCOOO5G IGG019KL 0' LE

• Issue FREEDBUF ~t==:~~~s~v~c ~57~;~--=-:1~F~,e~e d~Y~na~m~iC~bU~ff~e'l SVC to release buffers routine of dynamiC
• PrOVide or remove buffenng module

exclusive control IGG019LG
of block

• Schedule rest of
WRITE-add channel

Exclusive control
module

program IGG019KC
• COMPUTE feedback+--.----t.r--=":=,:,:;:,,,--!
• Release lOB to pool Track feedback

• Set completion codes
• Post request

COMPLETION

• Process segmented
(spanned) records
- Process any

subsequent segments

~ Modify channel
programs

- COMPUTE next
address

IGG019KG

Rln('k fpprH'I:II(,1c

no overflow

IGG019KH

Block feedback.
track overflow

Figure 4. The ASI routine in the foundation module is scheduled by module IGG019KU after the channel
program ends. The ASI routine, in performing its operations, gives control to the other BDAM
modules shown.

Program Description 11

The ASI routine and those routines branched to by the ASI routine operate under the
control of a data set's IRB. Because there is only one IRB for each DCB, it would be
impossible for another task using the same DCB to update the same lOB queue or
read-exclusive list at the same time. Since the IRB is associated with the task that
opened the data set, all processing done on that data set by the ASI routine and
routines branched to by the ASI routine is executed under the opener's TCB.
Likewise, all system enqueuing by the exclusive control module reflects the opener's
TCB. This is important to note when multiple tasks are sharing the same DCB.

The two foundation modules operate differently in the ASI routine and are therefore
discussed separately. Each of the ASI routines contains a subroutine for processing
requests whose completion is abnormal. A discussion of this subroutine appears after
the separate discussions of the ASI routine.

ASI Routine for Spanned Records (Foundation Module IGG019KJ)

The operations performed by the ASI routine when spanned records have been
specified are:

To determine the cause of interruptions.

To act on this determination either by initiating a restart of a channel program or
by branching to error subroutines or other processing modules (such as address
conversion and feedback).

• To move the segment just read on input to the user record area; to form the next
segment on output and move it to the segment work area to be written.

• To modify the channel program, changing the length to account for the absence
of keys on all but the first segment of a segmented record, eliminating searching
for subsequent segments (because their location can be determined from the
previous location of previous segments), changing the channel commands to
search for successive segments by block identification rather than by key, and
changing the sequence of CCWs for the next address option so they return the
address of the next block rather than the next segment.

• To reinitiate the channel program when subsequent record segments are to be
processed or when next address feedback is requested.

• To call the exclusive control module to acquire or release exclusive control of a
block.

• To release the request's lOB to the pool of lOBs. After the lOB has been
released, the request is posted as complete by the post routine, and control is
returned to the supervisor.

ASI Routine for Nonspanned Records (Foundation Module IGG019KA)

12 OS BDAM Logic

The operations performed by the ASI routine when spanned records are not being
processed are:

• To determine the cause of interruptions.

• To initiate a restart of a channel program if necessary or' branch either to the
error subroutine or other processing modules (such as self-format, or address
conversion for either relative block or relative track feedback).

If the request currently being processed is a request to write a block and if the
dynamic buffering option has been specified, to issue the FREEDBUF macro
instruction to free the buffer that has been allocated for the READ request that
corresponds to this WRITE request. (A WRITE request issued without a
previous READ request does not allow dynamic buffering, as the buffer is initially
assigned for READ requests only.)

If either the exclusive control option has been specified or a request to add new
blocks of variable or undefined length has been specified, to call the exclusive
control module to place blocks in or remove them from a queue.

To release the request's lOB, making it available for reuse. (This operation is
performed by the check module if a CHECK macro instruction is encountered
and the DCB macro instruction specifies that the CHECK macro is being used.)
After the lOB is released, the request is posted as complete by the post routine,
and control is returned to the supervisor.

For each request, only those operations that are applicable are performed.

Routine for Abnormal Completion of a Request (Both Foundation Modules)

There are several situations in which abnormal completion of a request occurs in
BDAM.

One situation results from device errors. Included in this category are any errors
associated with input/output devices and control units or end-of -data-set conditions
(which are received by the channel end/abnormal end appendage module as unit
exception conditions). An error condition also results when, in the case of a request to
add a fixed-length block to an existing data set, a dummy record cannot be found. An
indication of device error (or other unit check condition) is established when the I/O
supervisor enters the abnormal end routine of the BDAM channel end/abnormal end
appendage module, IGG019KU.

Abnormal completion can also occur when a request is made to write a new block
whose length is either variable or undefined. If it is determined that there is no
available space in which to add the new block, a BDAM routine sets an indicator to
inform the processing program so that appropriate action may be taken.

When abnormal completion occurs, this routine releases the related lOB to the lOB
pool associat~d with the DCB, posts an indication of the type of error and an
indication of the completion of the request, and returns control to the supervisor. Note
that the lOB is released to the lOB pool by the check module if applicable.

Address Conversion Modules (IGG019KC~ KE~ KF~ KG~ KH)

The address conversion modules are used only if the processing program specifies
relative addressing. These modules provide input for and pass control to BPAM
routines that either convert relative addresses to actual addresses or convert actual
addresses to relative addresses. Conversion to an actual address is necessary because
the channel program searches for a block using its actual address. Conversion to a
relative address is done when the processing program specified the feedback option.

Program Description 13

If the purpose of address conversion is to get an actual address, one of the following
modules is used:

• IGG019KC - processing program specifies relative track address

Note: This module also used for relative track feedback.

• IGG019KE - processing program specifies relative block number, no track
overflow
IGG019KF - processing program specifies relative block number and track
overflow

If the purpose of address conversion is to get feedback, one of the following modules is
used:

IGG019KG - processing program specifies relative block addressing, no track
overflow

IGG019KH - processing program specifies relative block addressing and track
overflow

• IGG019KC - processing program specifies relative track addressing

Note: This module also used for conversion of a relative address to an actual
address.

IGG019KC (Relative Track Conversion Module)

Either the base routine or the ASI routine in the foundation module gives control to the
relative track conversion module (see Figures 3 and 4). IGG019KC is entered from the
base routine if the purpose is to initiate conversion of a relative track address to an
actual address. Entry is from the ASI routine if the purpose is to initiate conversion of
an actual address to a relative track address. The latter conversion is done if the
processing program specifies the feedback option.

Entry From Base Routine

14 as BDAM Logic

Actual conversion of track addresses is done by a BPAM conversion routine (referred
to as the convert-to-actual routine). (For more information on this routine, refer to
OS SAM Logic.) When the BDAM conversion module gives control to the BPAM
routine, it supplies:

The address at which the actual address is to be placed for use by the channel
program (the address of the IOBSEEK field of the lOB)

The relative track number that the user has indicated in the block address
parameter of the request macro instruction

The address of the DEB (supplied so that the BPAM routine can refer to the
actual extents in the DEB)

From the DEB extents, which contain cylinder and track information for the various
sections of the data set, the BP AM routine obtains the actual starting address of each
extent and the number of tracks in each extent. From this information, the BPAM
conversion routine derives the actual address of the block for which the user specified a
relative track address. This address is then placed in the IOBSEEK field of the lOB,
and the BPAM routine returns control to the BDAM relative track conversion module,
which returns control to the base routine of the foundation module.

If the extended search option has been specified, the foregoing procedure is used to
determine the actual address of the next track after the last track that will be searched.
The starting track address and the number of tracks to be searched (as specified in the
LIMCT parameter of the DCB macro instruction) enable the search limit to be
computed. This limit is placed in the IOBUPLIM field of the lOB.

Entry From ASI Routine

The ASI routine in the foundation module gets control after a channel program ends.
If the processing program specified relative track feedback, the ASI routine gives
control to the BDAM relative track conversion module, which gives control to a
resident BPAM conversion routine (referred to as the convert-to-relative routine).
(For more information on the BPAM routine, refer to the publication as SAM Logic.)
The BDAM module gives the BPAM routine both the address where the actual block
address can be found (the address of the lOB SEEK field in the lOB) and the address
of the DEB. The BPAM routine converts the actual address to a relative track address,
places the relative track address in a parameter register, and returns control to the
BDAM relative track conversion module. The relative track conversion module stores
the relative track address in the BLKREF field and returns control to the ASI routine.

IGG019KE (Relative Block Conversion Module - No Track Overflow)

The base routine of the foundation module gives control to module IGG019KE when
the processing program specified a relative block number but did not specify track
overflow (see Figure 3).

IGG019KE converts a relative block address to a relative track address. Appendix B
shows the calculations done in this conversion process.

After calculating the relative track address, IGG019KE gives control to the BPAM
convert-to-actual routine. This routine converts relative track addresses to actual
addresses. (For more information on the BPAM routine, refer to as SAM Logic.)
When the BDAM conversion module gives control to the BPAM routine, it supplies:

• The address at which the actual address is to be placed for use by the channel
program (the address of the lOB SEEK field of the lOB)

• The relative track number that the user has indicated in the block address
parameter of the request macro instruction

• The address of the DEB (supplied so that the BPAM routine can refer to the
actual extents in the DEB)

The BP AM conversion routine converts the relative track address to an actual address
and places the converted address in the IOBSEEK field of the lOB. Then it returns
control to the BDAM relative block conversion module, which gives control back to the
foundation module.

If the extended search option has been specified, the foregoing procedure is used to
determine the actual address of the next track after the last track that will be searched.
The starting track address and the number of tracks to be searched (as specified in the
LIMCT parameter of the DCB macro instruction) enable the search limit to be
computed. This limit is placed in the IOBUPLIM field of the lOB.

Program Description 15

IGG019KF (Relative Block Conversion Module - Track Overflow)

The base routine of the foundation module gives control to module IGG019KF when
the processing program specified a relative block number and track overflow (see
Figure 3).

IGG019KF converts a relative block address to a relative track address when track
overflow is specified. Appendix e shows the calculations done in this conversion
process.

After calculating the relative track address, IGG019KF gives control to the BPAM
convert-to-actual routine and processing proceeds as described for the nonoverflow
case (module IGG019KE).

IGG019KG, KH (Feedback Modules for Relative Block Addressing)

After the channel program ends, the ASI routine of the foundation module gives
control to one of the feedback modules if the processing program specified feedback
and relative block addressing (see Figure 4). Module IGGO 19KH gets control if track
overflow was specified; otherwise, module IGGO 19KG gets control.

The feedback modules initiate conversion of an actual address to a relative block
address. They give the actual address of the block whose address is to be converted to
the BPAM convert-to-relative routine. The BPAM routine converts this address to a
relative track address and returns the relative track address to the feedback module.
(For more information on the BPAM routine, refer to OS SAM Logic.) Using
information contained in the actual and relative extents and, if track overflow was
specified, the overflow section of the DEB, the feedback module then converts the
relative track address to a relative block address and places the relative block address in
the BLKREF field.

The method by which the feedback modules convert a relative track address to a
relative block address is basically a reversal of the technique used to convert a relative
block address to a relative track address (the latter conversion is shown in Appendixes
B and e).

The feedback modules return control to the ASI routine of the foundation module.

Channel Program Generating Modules
(IGG019KI, KK, KR, KW, KO, KM, KN, LA, KY, KQ)

16 OS BDAM Logic

A channel program is constructed for every BDAM READ or WRITE request. BDAM
channel programs can read or write blocks using either the key or block identification
field of a block as a search argument.

The channel program generating modules receive control from the base routine in the
foundation module. The base routine determines which channel program generating
module should get control by checking the IOBDTYPE field in the lOB, which contains
data from the parameters specified in the DeB and request macro instruction. The
base routine determines whether the data set is on a device with the rotational position
sensing (RPS) feature by checking the UeBTYP field in the UeB. If the device does
have the RPS feature, foundation module IGG019KA places a X'FF' in the first byte
of the IOBDePND field of the lOB or IGG019KJ sets a X'23' in the same field. The

channel program generating module checks this byte to determine whether the channel
program should include RPS channel command words.

When the channel program generating module gets control, it constructs a channel
program in the lOB associated with t~e READ or WRITE request and then returns
control to the base routine in the foundation module.

BDAM constructs three types of channel programs: update, format, and verification.
Figure 5 shows what these channel programs do, which modules build them, and which
extended search modules can modify them.

Update Channel Programs (IGG019KI, KK, KR, KW)

Type of channel
program

UPDATE

FORMAT

VERIFICATION3

The update channel programs read or write data for purposes other than adding a new
block to an existing data set. Figure 5 shows which modules build a particular update
channel program. Six channel programs can be built for reading or writing an existing
block. Each channel program can take one of two forms depending on whether it is
built in response to a READ or WRITE request.

What channel
program does

Reads or writes a
block for pur-
poses other than
addtng a new
block to an
eXIsting data set

Adds a new block
to an existing
data set

Checks accuracy
of informatIon
wntten by a
channel program
associated wIth
~ \A/DITI= rOnIIOQt'
.... """" - "1 ~

Record Search Module Extended
search
module1

format argument that

Non- Key
spanned

Non- Block
spanned ID

VS Key

VS Block
ID

F

V,U

VS

builds
basic
channel
program

IGG019KI IGG019KW

IGG019KK Not

IGG019KR

IGG019KR

IGG019KO

applicable

IGG019KW

Not
applicable

IGG019LA

IGG019KM IGG019KY

IGG019KN IGG019KY

IGG019KQ

Channel
program number2

No Extended
extended search
search

2 5

12(read) 8(read)
13(write) 9(write)

10(read) 11 (write)

3 6

4

7

1 The extended search module modifies the basIc channel program when the extended search option IS speCified m the procesSing program

2 The channel program number refers to the number of the channel program '" AppendIX D.

3 The verif,cat,on module adds channel command words to the basIc channel program whenever the wnte-vahd,ty-check optIon IS In effect.

Figure 5. BDAM channel program generating modules build update, format, and verification channel
programs.

Program Description 17

COUNT FIELD KEY

Block ID 1
Key Data FIELD

Field 2 Field 3
(CCHHR) Length Length

..... 5 bytes 1 byte 2 bytes ~

1 CCHHR gives the physical position of the block on the device.

2 The key field length may be from 0 to 255 bytes.

3 The data field length may be from 0 to 32,760 bytes.

DATA

FIELD

Figure 6. A block on a direct-access storage device has count, key, and data fields.

Figure 6 shows the fields of a block as it appears on a direct-access storage device.
The search argument, which in part determines which module will generate a channel
program, is either the key field or the block identification in the count field.

If the extended search option has been specified, modules IGG019KI and IGG019KR
pass control to the extended search module, IGG019KW. IGG019KW modifies the
channel program so that it will search additional tracks or blocks beyond those
specified in the READ or WRITE macro instruction. The extended search module
returns control to module IGG019KI or IGG019KR.

If the write-validity-check option has been specified for a WRITE request, control is
given to the write-verify module, IGG019KQ, after the channel program is built. This
module adds to the channel program, channel command words that will verify the
accuracy of the data written by the channel program. The write-verify module returns
control to the foundation module.

Figure 15 summarizes the flow of control between BDAM modules for updating an
existing block.

Format Channel Programs

The format channel programs, which are sometimes called write-add channel programs,
write a new block from main storage onto a direct-access device. Format channel
programs that write fixed-length records are called preformat channel programs; those
that write variable-length, variable-length spanned, or undefined-length records are
called self-format channel programs. Figure 5 shows which modules build a particular
format channel program.

Preformat Channel Programs (IGG019KO, LA)

18 OS BDAM Logic

Preformat channel programs are built by module IGG019KO when a new fixed-length
block is to be added to a data set. In order to add fixed-length blocks, the user must
have initially formatted his data set blocks on the direct-access device using the BSAM
write routine for creating a data set with direct organization. As blocks were placed on
the direct-access device, dummy records will have been provided if new records were
later to be added to the data set.

The channel program built by module IGG019KO, when executed, operates as follows:

It searches the specified track for a dummy record, starting with the first block on
the track.

If a dummy record is not found, the no-space-found bit is set in the DECSDECB
field of the DECB during the posting of the ECB.

If a dummy record is found, the first byte of the data field, which contains the
relative block number of the dummy record on the track (the R in
MBBCCHHR), is read into the IOBSEEK field of the lOB (which now contains
MBBCCHHR). The beginning of the durn.p1y record can now be located by
searching for the block identification in the 'count field (which contains CCHHR).
Once the dummy record is found, the new record is written in its place.

If the extended search option has been specified, the channel program built by
IGG019KO is modified by module IGGOI9LA, in which case the operation is as that
outlined above except that the channel program searches for a dummy record on as
many tracks as are specified in the IOBUPLIM field of the lOB. Module IGG019LA
is given control by, and returns control to, module IGG019KO.

If the write-validity-check option was specified in the processing program, the channel
program is enlarged by module IGG019KQ to include the channel command words that
verify written data. IGG019KQ then gives control to the foundation module.

Self-Format Channel Programs

A self-format channel program is built when a new variable-length, undefined-length,
or variable-length spanned record is to be added to an existing data set. Module
IGG019KM builds the channel program when the record is of variable or undefined
length; module IGG019KN builds it when the record is variable-length spanned.
When the extended search option is specified, module IGG019KY modifies the channel
program that has been built. Module IGGO 19KQ adds channel command words to the
basic channel program when the write-validity-check option is specified.

As with fixed-length records, the BSAM write routine for creating a data set with direct
organization must have been used initially to format the data set on the direct-access
device. When the blocks are initially put on the direct-access device, a capacity record
(block 0) is placed on each track. The capacity record contains both the block
identification of the last block on the track and the number of usable bytes (bytes
available for adding new blocks) remaining on the track. Figure 7 illustrates the data
field of the capacity record.

ID of
Usa hie hytes

last block
remaining on Unused

track

5 bytes .. ~ 2 bytes ... ~ 1 byte ~

Figure 7. The data field of a capacity record contains information that allows BDAM
to determine whether space in which to add a record is available on a
particular track.

Program Description 19

20 OS BDAM Logic

IGG019KM, IGG019KY (Nonspanned Records): Foundation module IGG019KA gives
control to module IGG019KM to build the channel program for format-U and-V
records.

To build the channel program, IGG019KM moves constants, representing elements of
channel command words, into assigned positions of the request's lOB to form channel
command words.

The channel program, when built, has two sections:

The first reads the capacity record into main storage.

• The second writes the new block and then updates the capacity record to reflect
inclusion of the new block on the track.

When the first section of the channel program is built, the last channel command word
does not include a command chaining flag. This permits the I/O supervisor to give
control to the channel end/abnormal end appendage module after the capacity record
has been read. When the appendage module gets control, it branches to a supervisor
routine to schedule the ASI routine.

In the following description, numbers in parentheses refer to the numbers in Figure 8.
The ASI routine gives control to the exclusive control module (2). The exclusive
control module gets control so that if more than one request is made to add a block to
a particular track, only one of the requests can examine and update the capacity record
at a time. If the capacity record has already been placed in the read-exclusive list as
the result of a previous request, the exclusive control module places the lOB for the
capacity record on the unposted queue (4). Otherwise, it places the capacity record for
that track in the read-exclusive list and then in an intertask queue by using the ENQ
macro instruction (3). (The operations performed by the exclusive control module are
described more fully in the section "Exclusive Control Module (IGG019LG).") In
either case, control is then given to the supervisor.

After the channel program reads the capacity record again in connection with a given
WRITE-add request, the supervisor gives control to the ASI routine (5). The ASI
routine then gives control to module IGGO 19KM so that the information in the
capacity record can be tested (6) to determine if the block to be written will fit on the
track.

If the new block will fit on the track, the capacity record is updated. The channel
program is then modified to reflect the correct search argument, and an EXCP macro
instruction is issued to write the new block and the updated capacity record. Module
IGG019KM then gives control to the exclusive control module (7). If the new block
will not fit on the track, control is given to the exclusive control module immediately.

The exclusive control module determines whether the unposted queue has an lOB
waiting for the capacity record that was just updated. If it does not, the capacity
record is no longer needed for the performance of the current task, and the exclusive
control module issues a DEQ macro instruction to release the record to other tasks that
may require it. Control is then given to module IGG019KM (8). If the unposted
queue does contain an lOB waiting for this capacity record, the unposted queue is
updated and both the address of the lOB and program control are given to self-format
module IGG019KM. No system or list de queuing takes place.

The self-format module determines whether the block was placed on the track (that is,
whether the track had room for the block).

If it was and if the unposted queue contained another lOB for the same capacity record
(9), the value in the IOBDBYTR field of the lOB, which contains the number of
remaining bytes on the track, is moved from the lOB of the current request to the lOB
of the next request for this capacity record. In this situation, the capacity record is still
retained as a result of the ENQ macro instruction issued for the current task.
Therefore, the self-format module can immediately begin processing this next request
at the point of determining whether the block will fit on the track (6).

If the block was placed on the track and if the unposted queue did not contain any
more lOBs for this capacity record, module IGG019KM gives control to the supervisor
(10).

If the block was not placed on the track because of space limitations and if the
extended search option has not been specified, an indication that no space is available
is placed in the lOB (11). The ASI routine then gets control to post the request as
complete and to place a no-space-found indication in the DECB (12). The
self-format module then determines if the unposted queue contained another lOB for
the same capacity record (13) and either returns control to the supervisor or moves the
value in the IOBDBYTR field and continues as described in the preceding paragraph.

If the block was not placed on the track because of space limitations but the extended
search option has been specified, control is given to the self-format extended search
module IGGOI9KY. This module updates the current track address by 1 and proceeds
as follows:

A. If the updated track address is equal to the search limit indicated in the
IOBUPLIM field of the lOB, the no-space-found indication is set in the DECB
for this request (14). Control then returns to the self-format module and
processing continues as if the extended search option had not been specified.

B. If the updated track address is not in the current extent, control is given to the
BDAM end-of-extent module, IGG019LC. This module determines if more
extents are available for searching and proceeds as follows:

1. If there are more extents available and if the upper limit of the search has
not been reached, the address of the first track of the next extent is given to
the self-format module. Since access to this new track may be required in
the performance of other tasks, it is necessary to give control to the
exclusive control module at this point (2). The read-exclusive list is
checked for the occurrence of the new track address and processing
continues as previously described (in the beginning of this section) for the
first capacity record.

2. If there are no more available extents or the search limit has been reached,
thp nTO\"pclllTP i" "" dp"c-rihpd for ('ondition (A).
-~~- r ~ ~ - - - -~- - -- _v_ -- - - ---- - - - - "' ~

C. If the updated track address is within the current extent and the search limit has
not been reached, the processing of condition (B 1) is continued at the point
where control is given to the exclusive control module.

Where applicable, the procedures described in the preceding paragraphs are repeated as
many times as necessary until either track space on which to write the block is found or
the search limit is reached.

If the unposted queue contained another lOB for the same capacity record, processing
of that lOB then continues from point D in Figure 8.

Program Description 21

WRITE-ADD (ON
;----

FOUNDATION
~

BUILD CHANNEL
~ TRACK X (MODULE BASE PROGRAM

REQUEST ROUT I NE

I
~

PROCESS I NG
PROGRAM

INTERRUPTION
CHANNEL PROGRAM

COMPLETE FOR
CAPACITY RECORD

O"---FOUND-"'O' ~8""-------'
MODULE AS!

CHANNEL PROGRAM

COMPLETE FOR

ROUTINE

8-
o

o

FOUNDATION
MODULE ASI

ROUTINE

SELF-FORMAT
MODULE

(IGGOI9KM~

FOUND A T I ON MOD
ASI ROUTINE

ISSUE EXCP TO
>Y,;;E,:;S_-I u~§+~5 ~~~ ~~8

ON TRK X

DEQUEUE CAP RCO
FROM I NTERT ASK

;----1 AND INTRATASK

POST THE
REQUEST ANO SET
DECB INDICATION

QUEUES

MOVE
IOSDBYTR FROM

FIRST CAP RCDS
108 TO NEW CAP

RCDS lOB

ISSUE EXCP FOR
CAP RCD OF

TRACK X

I

f;\r-----, V PUT CAP RCD ON
NO EXCL LIST

;----1 ENQUEUE CAP RCD
ON INTERTASK

QUEUE

PUT lOB FOR CAP
RCD ON UNPOSTED

QUEUE

ISSUE EXCP TO
RO CAP RCD FOR

TRACK

YES GET ADDRESS OF
TH I 5 TRACK

o

Figure 8. Module relationships for WRITE-add requests in a multitask environment

22 OS BDAM Logic

IGG019KN, IGG019KY (Spanned Records): Foundation module IGG019KJ gives
control to module IGG019KN to build the channel program for variable-length
spanned records.

To build the channel program, IGG019KN moves constants, representing elements of
channel command words, into assigned positions of the request's lOB to form channel
command words.

The channel program, when built, has two sections:

• The first reads the capacity record into main storage.

• The second writes the new record segment(s) and then updates the capacity
record(s) to reflect inclusion of the new block on the track(s).

Add Logic Section. The ASI routine in foundation module IGG019KJ gives control to
this section of IGGO 19KN after a capacity record has been read and placed on an
intertask queue to prevent interference. The add logic section adds the track balance
from the capacity record just read to any previous balance accumulated for this request
to add a record. Thus, it maintains a cumulative record of the total space available for
the request. After updating the total, it checks whether the space is large enough to
contain the proposed addition.

If the total space is large enough to accommodate the record, the first (or only)
segment of the record to be added is formed and moved to the segment work area. An
EXCP is issued to write the segment. Any subsequent segments will be formed and
written by the ASI routine in foundation module IGG019KJ.

If the total space is not large enough to accommodate the record, the self-format
extended search module, IGG019KY, is called to obtain the address of the next track.
IGG019KY may return, in addition to the address of the next track, an indication that
the search limit (specified in the LIMCT parameter of the DCB macro instruction) has
been reached. If it does, the no-space-found bit is set in the lOB and processing
continues.

Whenever control is returned from the extended search module, the no-space-found
bit in the lOB is checked. If it is on and if the track obtained by the extended search
module contains a data record, the requestor's DECB is posted with a no-space-found
indication and control is immediately returned to the processing program.

If the return from the extended search module is normal, IGGO 19KN checks the next
track address to be sure it is on the same volume as the other tracks that will contain
parts of the new record. (A record is not permitted to span volumes.) If the next track
is on the same volume, the exclusive control module is called to enqueue on the new
{rack and issue an EXCF LO read ils capacily record. IGG019KN lhen issues an SVC3
(exit). When the channel program finishes reading the capacity record, the ASI routine
gets control, the new space is added to the available space, and processing continues as
above.

If the new track is on a new volume, all previous tracks are released from exclusive
control, the space available for a record to be added is set to 0, and the search for
space is started again on the new volume. However, the tracks searched on the old
volume are still counted in determining if the search limit has been reached. If the
no-space-found bit in the lOB is on when a volume switch is detected, the request is
posted with no space found indicated in the DECB for the request.

Program Description 23

DEQ Section. The DEQ section of module IGG019KN is entered from the add logic
section:

When the add logic section determines that it must release a track, or

When the add logic section is about to issue an exit but finds that a DEQ loop
indication (explained below) has been set in the current lOB during a previous
pass through the DEQ routine for a different lOB.

The DEQ section calls the exclusive control module (IGG019LG) to dequeue one track
at a time. If the return from IGGO 19LG indicates that there is an lOB waiting for this
track, the waiting lOB is made the current lOB and the DEQ section returns to the
beginning of the add logic section after setting the DEQ loop indication.

The DEQ loop indication operates as follows: If a particular WRITE-add request is
finished with a track, control goes to the DEQ section to dequeue the track(s) just
used. If, however, another lOB is waiting for the track, the track is not taken off the
exclusive control list, but the DEQ loop bit in the lOB is set and control is given to the
request represented by the waiting lOB. When this second lOB can be processed no
further (because, for example, it is waiting for I/O or for another track), the
WRITE-add routine would normally issue an SVC3 (exit). However, it inspects the
DEQ loop bit and, if it is on, gives control to the DEQ section at the point where the
original lOB lost control.

IGG019KQ (Write-Verify Module)

If the processing program specifies the write-validity-check option in the DCB macro
for the data set, the write-verify module, IGG019KQ, is used to generate additional
channel command words to verify information that has been written by a channel
program. These channel command words are added to the existing channel program.

The write-verify module gets control from the module that generates the channel
program for the request macro instruction. As data blocks are written, the control unit
develops a check code for each field of the block. This code is based on the
information that is written in the fields of the block. As each field is written, the check
code developed for' it is appended to it. Verification is accomplished by reading back
the block to be checked to permit the control unit to recompute the check codes. The
control unit then compares the check code written on the track with the check code it
just recomputed. If the two codes are not equal, a data check indication is set by the
channel. The skip flag in the last channel command word of the verification program is
set to 1 (on) so that the data that is read back is not placed into main storage.

The write-verify module returns control to the base routine of the foundation module.

BDAM Appendage Modules (IGG019KL, LE, KU, LC)

24 OS BDAM Logic

BDAM has the following appendage modules:

Dynamic buffering module (IGG019KL,LE)

Channel end/abnormal end appendage module (IGG019KU)

End-of-extent appendage module (IGG019LC)

The routines in these appendage modules can receive control from the I/O supervisor,
from other BDAM modules, or from a routine associated with a macro instruction.

IGG019KL, LE (Dynamic Buffering Modules)

The I/O supervisor gives control to one of the dynamic buffering modules when a
request for which the dynamic buffering option is specified is ready to be executed.

IGG019KL handles buffering for spanned records, IGG019LE for nonspanned records.
The modules operate the !ijUD.e way except for differences that result from different
buffer formats. The buffer for spanned records has a segment work area that the
buffer for nonspanned records doesn't have. This work area is used by
segment-processing routines in the module to assemble the parts of a record for input
operations or to segment a record for output operations. The address of the segment
area in the segment work area is the address specified in the channel program and
accessed by the channel. The address of the segment work area is in the word
preceding the lOB. See the "Data Areas" section of this manual for a detailed
description of buffers and buffer control blocks.

The dynamic buffer modules have start I/O and free dynamic buffer entry points. The
following discussion is organized by entry point to the dynamic buffering modules.

Start-I/O Appendage Entry Point

The I/O supervisor gives control to the start-I/O routine in the dynamic buffering
module when a request to read data is ready to be executed (see Figure 9).

The start-I/O routine checks the 10BTYPE field of the lOB to determine whether a
buffer should be assigned to the request. If not, the start-I/O routine returns control
to lOS so the request can be executed. If a buffer should be assigned, the start I/O
routine determines whether a buffer has already been assigned.

If a buffer has already been assigned, this routine gives control to the I/O supervisor,
which initiates execution of the channel program.

- .. "'-110 Interrupt

:-
lOS •

1110 request at top of
request queue J

lOS

---.J Remove this request fromt
~-IIOS scheduled queue

lOS

Y Begin channel program I ..

no buffer
available

buffer
available

IGG019LE or KL
Start 110 Routine of
dynamic buffering
modules

Get buffer if
dynamic buffori ..
specified

Figure 9. If dynamic buffering is in effect, the I/o supervisor gives control to the
dynamic buffering module before executing the request.

If a buffer has not been assigned, this routine determines whether the buffer pool
contains an available buffer. If one is available, it is assigned to the request and the
buffer pool is updated to reflect removal of the buffer. Then the address of the buffer
is placed in the channel program associated with the request. The channel program is

Program Description 25

now complete and ready for execution. Control is given to the I/O supervisor, which
initiates execution of the channel program.

If a buffer is not available in the buffer pool, the address of the lOB associated with
the request is placed in the lOB buffer queue, which is a queue of requests waiting for
buffer assignment (the address of this queue is in the BCBFRQT field of the buffer
control block). As buffers subsequently become available, they are allocated to the
requests in the lOB buffer queue. As each request is added to the queue, it becomes
the last request. When a buffer becomes available, it is allocated to the request
currently at the top of the queue and that request is then removed from the queue.
After putting a request on the lOB buffer queue, the start-I/O routine returns control
to the 1/ 0 supervisor.

Free Dynamic Buffer Entry Point

26 OS BDAM Logic

When the ASI routine in the foundation module issues the FREEDBUF SVC, control
passes to module IGC0005G. IGC0005G gives control to the dynamic buffering
module at the free dynamic buffer entry point to release a buffer.

When a request that specifies dynamic buffering has been satisfied (either successfully
or unsuccessfully), the buffer assigned to the request may be made available to other
requests. This can happen in one of two ways:

• A buffer assigned to a READ request for a block not being updated can be
released only by the FREEDBUF macro instruction issued by the processing
program.

• A buffer assigned to a READ request for a block that is being updated is released
when a corresponding WRITE request that specifies dynamic buffering is
satisfied. Control is given to the ASI routine in the foundation module when the
WRITE request is satisfied, and the ASI routine issues the FREEDBUF macro
instruction to release the buffer.

The expansion of the FREEDBUF macro instruction includes a supervisor call
instruction (SVC 57). The supervisor call routine gives control to the dynamic
buffering module at the free dynamic buffer entry point.

Because the buffer control block and the lOB buffer queue are updated during the
processing required for both freeing and obtaining a buffer, the free dynamic buffer
routine must operate with I/O interruptions prevented.

The free dynamic buffer routine releases the buffer used by the request that has just
completed. If it finds an lOB waiting in the lOB buffer queue for a buffer, this routine
assigns to the lOB the buffer it just freed. It updates the buffer queue by moving each
request up one position in the queue.

After updating the buffer queue, the free dynamic buffer routine puts the address of
the buffer assigned to the request in the channel program associated with the request.
The channel program is now complete, and the free dynamic buffer routine issues an
EXCP request to execute the channel program.

If there are no lOBs waiting in the buffer queue for a buffer, the buffer just released is
placed in the list of available buffers. The buffer control block is then updated to
include the added buffer.

The free dynamic buffer routine then returns the system to enabled state and gives
control to the supervisor, which in turn gives control to the processing program.

IGG019KU (Channel End/Abnormal End Appendage Module)

Channel End Routine

The I/O supervisor gives control to module IGG019KU when a channel program
terminates (either normally or abnormally).

There are two routines in this module: one for channel end and one for abnormal end.
The discussion that follows describes the conditions that cause each of the routines to
be entered and the operations performed by each of the routines in response to those
conditions.

This routine is entered if:

A channel program terminates normally. In this case, the channel end routine
schedules the ASI routine in the foundation module and then gives control to the
I/O supervisor. To schedule the ASI routine, the channel end routine branches to
the exit effector routine of the task supervisor. (For information on the exit
effector routine, refer to OS MVT Supervisor Logic.) The exit effector routine
then schedules the ASI routine and returns control to the channel end/ abnormal
end appendage module. When the ASI routine is executed, it will run under the
TCB of the task that opened the data set.

A channel program encounters a unit exception condition, which is interpreted by
BDAM as an end-of-data-set condition. In this case, the channel end routine
sets indicators in the lOB, requests scheduling of the ASI routine in the
foundation module, and then gives control to the I/O supervisor. To schedule the
ASI routine, the channel end routine branches to the exit effector routine of the
task supervisor. (For information on the exit effector routine, refer to OS MVT
Supervisor Logic.) The exit effector routine then schedules the ASI routine and
returns control to the channel end/abnormal end appendage module. When the
ASI routine is executed, it will run under the TCB of the task that opened the
data set.

• The execution of a channel program reveals that the block length specified in the
READ or WRITE macro instruction is not equal to the number of bytes read
from or written to the device. In this case, the channel end routine determines
the type of request and responds as follows:

If the request was a READ request for a variable-length block, the length of
the block being read is compared to the number of bytes of data actually read
by the channel program. (The length of the block being read is specified in the
first 2 bytes of the data field of the block read into the designated area. The
nnmhpr nf hvtp<: !'Irtn!'lllv rp"rl i<: rlptprminf'rl frnm !'I r!'llrnl!'ltinn invnlvinv thp --------- -- -.1--- ----~---.1 ---- -- ------------- ------ _. --------.----- --- -- ---0 ----

bytes-remaining field of the channel status word.) If the two lengths are equal,
the incorrect-length indication in the 10BCSW field is set to 0 (off), and the
ASI routine is scheduled by the exit effector routine. Control is then returned
to the I/O supervisor. If the two lengths are not equal, the ASI routine is not
scheduled, the incorrect-length indication in the lOB is left at 1 (on), and the
channel end routine gives control to the I/O supervisor.

If the request was a READ request for format-U records, the incorrect-length
indication in the IOBCSW field is set to 0 (off), and the ASI routine is
scheduled by the exit effector routine. Control is then returned to the I/O
supervisor.

Program Description 27

If the request was a WRITE request or a READ request for format-F records,
the ASI routine is not scheduled, the incorrect-length indication is left at 1
(on), and the channel end routine gives control to the I/O supervisor.

Abnormal End Routine

This routine is entered when either a device error or a permanent error (one from
which the system cannot recover) has occurred. If a device error occurs, the I/O
supervisor receives control and uses a standard IBM error-recovery procedure. If the
error condition remains after this procedure, the error is classed as a permanent error.

For permanent errors, the abnormal end routine sets an indicator in the lOB, schedules
the ASI routine in the foundation module, and returns program control to the I/O
supervisor.

IGG019LC (End-of-Extent Appendage Module)

The BDAM end-of-extent appendage module is entered if the extended search option
is specified in the DCB macro instruction. This module can receive control from the
I/O supervisor or the self-format extended search module.

Operations Performed When Control Received From I/O Supervisor

28 OS BDAM Logic

The I/O supervisor gives control to the end-of-extent appendage module when a
channel program reaches the end of a data set extent while searching for a block to be
read or written, or a dummy record in which to write a new preformat block.

The end-of-extent appendage module establishes the address of the next extent to be
searched. Note that if the search has begun at some point other than the beginning of
the first extent (as reflected in the first actual extent in the DEB), the address of the
extent may, at some point in the search, become that of the first extent.

The next operation performed by this module depends on whether the search limit is
reached in the next extent to be searched.

If the search limit is not in the next extent, the end-of-extent module either:

• Returns control to the I/O supervisor to restart the channel program using the
new extent, or

If the new extent refers to another device, gives control to the BDAM ASI
routine in the foundation module to reschedule the channel program using a
search address in the new extent.

If the search limit is in this new extent but the new search address is not equal to the
search limit, the channel program will be rescheduled by either the I/O supervisor or
the ASI routine as before.

If the search limit is in this extent and the new search address equals the search limit,
the search has ended unsuccessfully. An indicator is then set in the lOBO STAT field
of the lOB to show that either no space was found or no block was found, and control
is given to the I/O supervisor, which, in turn, gives control to the abnormal end routine
in the BDAM channel end/abnormal end appendage module.

Operations Performed When Control Received From Self-Format Extended Search Module

The self-format extended search module (IGG019KY) gives control to the
end-of-extent appendage module if, in the process of establishing search addresses, it
reaches the end of an extent.

The end-of-extent appendage module determines the availability of other extents to be
searched, establishes a new search address, and determines whether the search limit has
been reached. If the search limit has not been reached, the end-of-extent appendage
module uses the search address related to the new extent and reschedules the channel
program (to read in the capacity record of the next track). Then it gives control back
to the self-format module.

If the search limit has been reached, an indication that no space has been found is
placed in the request's lOB. When the request is posted, this indication is placed in the
DECSDECB field of the DECB.

Exclusive Control Module (IGG019LG)

The ASI routine in the foundation module gives control to the exclusive control module
if the processing program specifies the exclusive control option.

IGG019LG handles the block queuing and dequeuing that is required with the
exclusive control option. In addition, IGG019LG is used to place records in a queue
when the processing program issues a request to add to a data set a new block of either
variable-length or undefined-length records.

With exclusive control in effect for a block, the block may not be updated (or
otherwise acted upon) by processing associated with other requests until exclusive
control for that block has been released. If the MACRF operand of a DCB macro
instruction for BDAM contains the exclusive control specification, the following BDAM
macro instructions require the exclusive control module:

READ (with an exclusive control specification)

WRITE (with an exclusive control specification)

RELEX

Until the exclusive control module is first given control, the read-exclusive list (see the
"Data Areas" section of this manual) consists of an 80-byte segment of main storage
obtained by open executor module IGG0193A. This segment contains space for nine
entries, each entry consisting of the UCB pointer and the actual address of a block for
which exclusive control is required. When more than nine entries are needed on the
read-exclusive list, additional main storage is obtained in increments of 80 bytes. Each
80 bytes can contain nine entries. The address of the first segment is contained in the
DCBXARG field of the DCB, and each succeeding segment is chained to the one
preceding it. The read-exclusive list is an intratask list of actual addresses of blocks
(capacity records and data blocks) requested for the performance of the current task.

There are two situations in which a block is to be read under exclusive control:

• A self-format WRITE-add request is encountered. (See the section
"Self -Format Channel Programs.")

• A READ macro instruction that requests exclusive control is encountered.

Program Description 29

When either of these situations occurs, module IGG019LG determines if the actual
address of the appropriate block is on the read-exclusive list. The appropriate block is
the track capacity record in the case of a WRITE-add request; in the case of a
READ-exclusive request, it is the block to be read.

If the block address is in the list, the lOB for the request is placed in a queue called the
unposted queue. This is an intratask queue of lOBs representing requests for blocks
whose addresses are currently in the read-exclusive list and are associated with the
current task. The DCB contains the addresses of the first and last lOBs in this queue,
and each intermediate entry is chained to the one preceding it. Control is then given to
the routine from which module IGG019LG was entered.

If the block address is not on the read-exclusive list, this is the only request for the
record for any task sharing this DCB. The lOB contains the block address. The UCB
pointer and the CCHHR bytes of the actual address of the block are put in the
read-exclusive list. Since the same block may be required in the performance of
another concurrent task using a different DCB, it is necessary to provide protection
against unwanted changes to the block. Therefore, the exclusive control module causes
the block to be placed on an intertask queue by issuing an ENQ macro instruction for
the block. Before an entry can be removed from this queue, a DEQ macro instruction
must be issued for the entry. Note that the block must be dequeued by a routine
associated with, or processing under, the TCB of the task that opened the data set.
Since a block on this intertask queue cannot be used in the performance of one task
until it is disassociated from another task (if the tasks are not sharing the same DCB),
a waiting period of indeterminate length may result. Module IGG019LG then issues an
EXCP macro instruction for the rereading of the block that has just been enqueued.
Control is then given to the ASI routine which, in turn, gives control to the supervisor.

The OS Supervisor Services and Macro Instructions publication further explains the
use of the ENQ and DEQ macro instructions.

In searching the read-exclusive list for either an address equal to the address of the
block to be read or, having found that the block address is not on the list, a place on
the list in which to place the block address, it may be necessary to scan through several
segments of the read-exclusive list. A new segment is obtained if the second part of
the search does not locate a place in which to put the block address.

Releasing Blocks Under Exclusive Control

Release by Writing

30 as BDAM Logic

For the task that opened the DCB, blocks that have been read under exclusive control
may be released from exclusive control either by use of a WRITE macro instruction
that specifies the exclusive control feature or by use of a RELEX macro instruction.
The RELEX macro instruction is used for blocks that have not been updated or
modified (that is, whose data fields remain unchanged). Only the task that opened the
DCB can use RELEX.

When a request (called a WRITE-exclusive request) to write a block that has been
previously read under exclusive control is executed, the read-exclusive list is scanned to
locate the block's address. When the address is found, the unposted queue is searched
for other requests (associated with the current task) that may have been issued for the
same block.

Release by RELEX

If a WRITE-exclusive request is given to release a block from exclusive control and the
block had not been read under exclusive control, the WRITE request is invalid.
Module IGGO 19LG sets an exception code in the IOBDST AT field of the lOB so the
user may identify the error. Control is then given to the ASI routine to free the lOB
and post the request as complete.

If the unposted queue does not contain lOBs for other intratask requests for the block,
module IGG019LG clears the block's address from the read-exclusive list. This
permits another entry to be made in the list at that space. To free the block for
another task, the exclusive control module then issues a DEQ macro instruction for the
block. Module IGG019LG then returns control to the supervisor.

If the search of the unposted queue indicates the presence of other requests for the
block being written, it is necessary that these other requests be provided with the
current version of the data portion of the block. Therefore, before the current
WRITE-exclusive request is posted as complete, the exclusive control module moves
the data portion of the current block into the input data area of each request for that
block in the queue. Control then passes to the ASI routine so that the first of these
requests may be posted as complete and its lOB made available. The ASI routine then
gives control back to the exclusive control module and processing continues as if the
unposted queue did not contain any READ-exclusive requests for the block.

When a RELEX macro instruction is given to release a block that was read under
exclusive control, it is assumed that the data portion of the block has not been
changed. Therefore, data is not moved into input areas of other requests for that
block. The procedures performed by the exclusive control module are otherwise similar
to those performed in the case of a WRITE request for blocks read exclusively.

The RELEX module, IGC0005C, receives control when a RELEX macro instruction is
issued by the processing program. After initialization, determination of the type of
addressing that has been specified, and conversion (if necessary) of a block address to
an actual address, module IGC0005C gives control (by issuing the SYNCH macro) to
the exclusive control module. The exclusive control module searches the read-exclusive
list for the block specified for release from exclusive control. If it can't find the block,
it indicates an error condition; the programmer has requested the release of a block
that was not under exclusive control. The exclusive control module sets an error code
in register 15 and gives control to the RELEX module. The RELEX module gives
control back to the processing program.

Because RELEX is an SVC (and therefore runs under the TCB of the task that makes
the request), it can be issued only by the task that opened the data set. (The exclusive
control option must be specified in a WRITE macro instruction to dequeue all other
tasks.) The exclusive control module then gains control from the ASI routine running
under the TCB of the task that opened the data set.

Figure 10 summarizes the main operations performed by the exclusive control module
as they have been described in the preceding paragraphs.

Program Description 31

Macro Instruction
That Requests Action

READ (Exclusive)

READ (Exclusive)

WRITE (Exclusive)

WRITE (Exclusive)

WRITE (Exclusive)

RELEX

RELEX

RELEX

Block Address
Already on
Read-Exclusive List

Yes

No

No

Yes

Yes

No

Yes

Yes

Other lOBs for
Same Block on
Unposted Queue

Yes

No

Yes

No

Action Taken

Place request's lOB on
unposted queue. Go to
supervisor.

Add block's address to read
exclUSive list. Enqueue
block on intertask queue.
Schedule the block for
reading. Go to supervisor.

Take error eXit to ASI
routine.

Remove READ request from
queue. Move data Into all
READ request areas. Go to
ASI routine to post first
READ request on queue and
free ItS lOB. Go to ASI
routine to post WRITE
request and free its lOB.

Go to ASI routine to post
WRITE request and free the
lOB. Remove entry from
read-exclUSive list and
from intertask queue. Go
to supervisor.

Return to RELEX routine with
error code.

Remove READ request from
queue. Go to ASI routine
to post READ req'uest and
free the lOB. Return to
RELEX routine.

Remove block from read
exclusive list and from
Intertask queue. Return to
RELEX routine.

Figure 10. The operations performed by the exclusive control module are determined by
the conditions in the first three columns.

Check Module (IGG019LI)

32 OS BDAM Logic

The CHECK or WAIT macro instruction is coded in the processing program to ensure
that a given READ or WRITE request is completed before a certain point in the
processing program. The BDAM check module, IGG019LI, is used when the CHECK
macro instruction has been specified and the DCB macro instruction for the data set
includes the check specification. The address of a user's synchronous error recovery

(SYNAD) routine should be given in the DCB macro instruction that contains the
check specification.

When the check module receives control, it establishes a wait condition if the request
with which it is associated has not been posted as complete. If the request is complete
at this point or is completed while the processing program is in the wait state, and if no
errors have been indicated in the DECB, the lOB for the request is released to the lOB
pool, and control is given to the processing program. (When the DCB macro
instruction includes the check specification, the CHECK macro instruction must be
used to effect the wait condition; if the W AIT macr~ instruction is used, the lOB for
the request is not released.)

After a request is posted as complete and if error indications have been placed in the
DECB, the check routine identifies both the type of request and the types of errors
listed. Error types are placed in a register and control is given to the user's SYNAD
routine if there is one. The manual OS Data Management Macro Instructions
indicates the contents of registers when the BDAM check module gives control to a
SYNAD routine. The absence of a SYNAD routine causes BDAM to terminate the
processing program by issuing an SVC 55 (control passes to end of volume) to request
abnormal termination.

Close Executor Module (IGG0203A)

The BDAM close executor module, IGG0203A, is given control during the closing of a
DCB that specifies BDAM (see Figure 11). When the CLOSE macro instruction is
issued by a processing program, the expansion of the macro instruction causes program
control to be given to the data management close routine. This routine passes control
to the BDAM close executor module.

The main purpose of the BDAM close executor module is to release to the system all
BDAM-acquired storage areas that have been associated with the DCB to which the
CLOSE macro instruction refers. This is done in from two to four steps, depending on
the type of requests used in the application.

t - DltlManagomont
Close Routine

, • 10_

• Purgo scheduled lOB.
\ io R IOB

1:,
storage IntIS

• Clear DCB flelds

I
builtbyBDAM

• Rei all storage
...... for buffers . -"_." . ..u nrtKJ-I;IA\oluan'. mn I

I

Figure 11. When the processing program issues the CLOSE macro instruction, the data
management Close routine gets control and, in conjunction with the BDAM
close executor module, closes the data set.

The first step consists of removing from the I/O supervisor's queue of scheduled
requests any requests that have been scheduled but whose channel programs have not

Program Description 33

34 OS BDAM Logic

yet completed. The purge routine of the I/O supervisor accomplishes this removal.
The BDAM close executor program then releases the main-storage area assigned to the
lOBs for these requests. These requests are chained together, beginning with an
address placed in the DEB by the purge routine.

The second step is the releasing of main-storage areas assigned to available lOBs or
the list of lOBs. The lOB list includes the lOBs that are in either the I/O supervisor
scheduled queue or a buffer queue. Therefore, only storage for lOBs not currently
being used is released at this time.

The third step is the releasing of storage that has been allotted to any lOBs remaining
in the unposted queue. These lOBs were placed on the queue by the exclusive control
module. As a fourth step, the storage allotted to lOBs in the lOB buffer queue is
released. These are the lOBs for requests waiting for buffer assignment. The
main-storage areas that have been obtained for the BCB, for buffers to be assigned
dynamically, and for segment work areas are also released.

In addition to releasing the storage areas assigned to lOBs, the BDAM close executor
module clears from the DCB all fields that BDAM has built for, and that specifically
refer to, the current use of the DCB to which the CLOSE macro instruction refers.

BDAM FLOWCHARTS

SAVE USER
REG I STER

CONTENTS SET UP
CONTROL BLOCK

ADDRESSES

CALCULATE I DB
5 I ZE REQU I RED

FOR THIS
REQUEST

INITIALIZE lOB
FIELDS

CONSTRUCT CHAN
NEL PROGRAM IN

lOB (CHANNEL
PROGRAM GENERA

TION MODULES)

ISSUE EXCP TO
SCHEDULE TH I 5

REQUEST

RESTORE USER
REGISTER
CONTENTS

NO PROCESS INVALID
REQUEST

ISSUE GETMAIN
FOR AMOUNT OF
MAIN STORAGE

REQUIRED

CONVERT RELATIVE
ADDRESS TO ACTUAL
ADDRESS (ADDRESS

CONVERSION MODULES)

Figure 12. Flow of control in base routine of foundation module

BDAM Flowcharts 35

CHANNEL ENO

ROUTINE OF

I GGO f 9KL OR

ASSIGN BUFFER
TO TH I SlOB

'-'=_-' SET E~EAgF-DATA

SCHEDULE A S I
ROUTINE FOR

THIS lOB

Figure 13. Flow of control in lOS appendages

36 OS BDAM Logic

! GGO 19LC

ESTABLISH
STARTING

ADDRESS OF NEXT
EXTENT TO BE

SEARCHED

IDS

SET EXCEPT I ON
CODE IN DEC8

SCHEDULE AS!
ROUTINE FOR

THI SlOB

ABNORMAL END

ROUTINE OF

SCHEDULE AS I
ROUTINE FOR

THIS 108

I GGO 19KA OR

DEQUEUE WA I T I NG
REQUEST

MAKE THE BUFFER
AVAILABLE FOR

ANOTHER REQUEST

R~6~~:~ A~~~~:~8T
SEGMENT WORK

AREA POOL

ANALYZE THE

E§~~RFO~E8s~R

DEVELOP AND
:>-"---1 STORE FEEDBACK

UAIorC' TnR "~C'''
AVAILABLE TO

THE POOL OF
AREAS

POST THI S
REQUEST

COMPLETE

YES ENQUEUE THE
BLOCK

QUEUE THIS READ

~Y~E~S_~~~~0~s~§~V~~~~S
THE BLOCK

Figure 14. Flow of control in ASI routine of foundation module

MODIFY CHANNEL
PROGRAM FOR

NEXT SEGMENT

BDAM Flowcharts 37

I GGO 1 9KK

GENERATE
CHANNEL PROGRAM 1-. __ "'£

VERIFY (ADD TO
CHANNEL

PROGRAM)

GENERATE
CHANNEL PROGRAM

FOUNDATION
MODULE) SA SE

ROUTINE)

Figure 15. Flow of control for block updating

38 OS BDAM Logic

GENERATE
CHANNEL PROGRAM

YES

YES

I GGO 19KR

GENERATE
CHANNEL PROGRAM

IGGO 19KW

KEY EXTENDED
SEARCH (MOD I FY

j----t CHANNEL
PROGRAM)

(GGO 19KQ

YES VERIFY (ADD TO
~--~ CHANNEL

PROGRAM)

NO

PUT BLOCK
ADDRESS ON

READ-EXCLUSIVE
LI ST

ENQUEUE BLOCK
ON INTER TASK

QUEUE

ISSUE EXCP TO
REREAO BLOCK

PUT lOB IN
UNPOSTED QUEUE

REMOVE FIRST
lOB FROM QUEUE

Figure 16. Exclusive control in a multitasking system

SET ERROR
IND I CAT I ON

REMOVE ENTRY
FROM

READ-EXCLUSIVE
LI ST

OEQUEUE BLOCK
FROM INTERTASK

QUEUE

MOVE DATA IN
CURRENT BLOCK
TO I NPUT AREA

OF 108 REQUEST
ING SAME BLOCK

POST THIS
CURRENT READ

REQUEST

BDAM Flowcharts 39

MODULE DIRECTORY

In this directory, each BDAM module is listed by its microfiche name. The following
information is listed opposite the microfiche name:

•

•

•

The record format, where applicable, since it frequently determines which module
is used to perform a given operation

An indication of the operation performed by each module

The number of the page on which the description of the module begins

Module Directory 41

Page on which
Micronche Record Function/Description Module
Name Formats Description Begins

IGCOOO5C Release Exclusive Control SVC 31

IGCOO05G F,V,U,VS FREEDBUFSVC 26

IGG019KA F,V,U Foundation Module 9

IGG019KC Relative Track (TTR)
Address Conversion 14

IGG019KE Relative Block Conversion
Without Track Overflow 15

IGG019KF Relative Block Conversion
With Track Overflow 16

IGG019KG Relative Block Feedback
Without Track Overflow 16

IGG019KH Relative Block Feedback
With Track Overflow 16

IGG019KI F,V,U Update By Key 17

IGG019KJ VS Foundation Module 9

IGG019KK F,V,U Update By Block ID 17

IGG019KL VS Dynamic Buffering 25

IGG019KM V,U WRITE-add, Self-Format 20

IGG019KN VS WRITE-add, Self-Format,
Spanned Records 23

IGG019KO F WRITE-Add, Preformat 18

IGG019KQ Write Verification 24

IGG019KR VS Update Spanned Records 17

IGG019KU Channel End/Abnormal
End Appendage 27

IGG019KW Extended Search for Update 17

IGG019KY V,U Extended Search for Self-format 20,23

IGG019LA F Extended Search for Preformat 18

IGG019LC End-of-Extent Appendage 28

IGG019LE F,V,U Dynamic Buffering 25

IGG019LG Exclusive Control 29

IGG019LI Check Module 32

IGG0193A Open Executor 5

IGG0193C Open Executor 5

IGG0193E Open Executor 8

IGG0193F Open Executor 9

IGG0193G Open Executor 7

IGG0203A Close Executor 33

42 OS BDAM Logic

DATA AREAS

BCB (Buffer Control Block)

A BCB is built if the dynamic buffering option has been specified or if spanned records
are being processed. Module IGG0193E or IGG0193F obtains a continuous area of
main storage for both the BCB and the required number of buffers. The BCB is
initialized by module IGG0193E or IGG0193F but subsequent entries are placed in it
by the dynamic buffering module. The main-storage area for both the BCB and the
buffers is released by the BDAM close executor module.

A BCB is also used to control the pool of segment work areas for processing spanned
records. The format of this block is shown in Figure 17. The format of the BCB for
dynamic buffering is shown in Figure 18.

0(0)
Flag 1

4(4) Number of Buffers

1 X'FF' = Buffer being used
X'OO' = Buffer available

Address of Next Available Buffer

16(6) Buffer Length

Figure 17. BCB for spanned records without dynamic buffering

BCBFROT

BCBFROB

1
818

)

BCBNABFR

BCBTBRS

Figure 18. BCB for dynamic buffering

Data Areas 43

Buffer Pools

Field

BCBFRQT

BCBFRQB

BCBNABFR

BCBTBRS

Field Size Field Contents and Comments
(in bytes)

4 Address of the first lOB waiting to be assigned a buffer from the buffer
queue. The dynamic buffering module inserts this address.

4

4

4

Address of the last lOB waiting to be assigned a buffer from the buffer
queue. The dynamic buffering module inserts this address.

Address of the next buffer available for assignment to an lOB. Initially,
module IGG0193E or IGG0193F inserts this address. Subsequent
addresses are inserted by the dynamic buffering module.

The total size, in bytes, of the buffer pool and the BCB. Module
IGG0193E or IGG0193F inserts this value.

Figure 19. Fields, field size, and field contents of the BCB for dynamic buffering

A buffer pool is a continuous area of main storage divided up into buffers. BDAM
uses three kinds of buffer pools:

• A pool of segment work areas for processing spanned records without dynamic
buffering

A pool of segment work areas and record areas for processing spanned records
with dynamic buffering

• A pool of record areas for dynamic buffering of nons panned records

A buffer pool follows its buffer control block in main storage. The dynamic buffering
pools use the buffer control block described in Figure 18, while the segment work area
pool uses the buffer control block described in Figure 17.

Figure 20 describes a section of the buffer pool used for dynamic buffering of
nonspanned records, Figure 21 describes a section of the buffer pool used for dynamic
buffering of spanned records, and Figure 22 describes a section of the buffer pool used
for processing spanned records without dynamic buffering.

10 (0)

T
Address of next available buffer if this buffer is available or record area 1.

1 This field is 4 bytes long if it contains the address of the next available buffer. If it is the
record area, its length is DCBBLKSI + DCBKEYLE, with the length, if necessary, rounded
to the next multiple of 8.

Figure 20. Buffer in buffer pool: dynamic buffering of nonspanned records

1
J

44 OS BDAM Logic

0(0) Address of Next Available Buffer

4(4)
Address of Record Area

8(8)
Offset' \'O(A)

Segment Currently Being Processed 2
~I" ~

0(0) Address of this Buffer. Used to free the buffer after a WR ITE request.

4(4)
. 3 T R"o,d A<e. I" tho "SO, SO" "I. Segm.n" ,,,d '"to tho ",m.nt "" w,1I b. <e.d h".. T

1 When this offset is added to the address of the record area (above), the sum is the address of the next
segment to be processed.

2Length of segment = smaller of: track size and DEBBLKSI + DCBKEYLE.
The end of this field is padded with up to 7 bytes, if necessary, for alignment of the next field.

3Length of record area = DCBBLKSI + DCBKEYLE.
The end of this field is padded, if necessary, to round the buffer length to a multiple of 8.

Note: The first three fields (bytes 0 to 10 in decimal) compose the segment work area.

Figure 21. Buffer in buffer pool: dynamic buffering of spanned records

0(0) Flag Field' I' (') Address of Next Available Buffer

4(4) Address of Record Area

I'O(A)

1---------------------1 Segment Currently Being Processed 3

8(8)
Offset2

t f
'X'FF' = buffer in use
X'OO' = buffer available

2When this offset is added to the address of the record area (above), the sum is the address of the
next segment to be processed.

3Length of segment = smaller of: track size and DCBBLKSI + DCBKEYLE

Note: The first four fields of the buffer (bytes 0 to 10 in decimal) compose the segment work area.

Figure 22. Buffer in buffer pool: simple buffering of spanned records

Data Areas 45

DCB (Data Control Block)

46 OS ROAM Logic

The DCB contains information about the current use of a data set. Figure 23 shows
the fields of the DCB especially important in BDAM applications. A more complete
description of the DCB is in as System Control Blocks.

1'61101 DeBKEYLE
117(11) DCBREL

T
49(31)

DCBREAD or DCBWRITE

52(34)DCBOPTCD 53(35)
DCBCHECK

56(38)
DCBSYNAD

60(3C)
Reserved

62(3E)
DCBBLKSI

,J

72(48)
DCBIOBUQ

76(4C)
DCBUQND

81151)
DCBLlMCT

85(55)
DCBXARG

88(58) DCBMVXNO 89(59)
DCBDRDX

92(5C)
DCBDFOR

96(60)
DCBDFBK

100(64)
DCBDYNB

Figure 23. Fields of the OCB for BDAM

r-'

Field

DCBKEYLE

DCBREL

DCBREAD
or
DCBWRITE

DCBCHECK

DCBSYNAD

DCBBLKSI

DCBIOBUQ

DCBUQND

DCBLlMCT

DCBXARG

DCBMVXNO

DCBDRDX

DCBDFOR

DCBDFBK

DCBDYNB

Field Size Field Contents and Comments
(in bytes)

3

3

3

3

2

Length of key field for each block in the data set.

Number of relative tracks or blocks in the data set. This
number is placed in the DCBREL field by a BDAM open executor
module (lGG0193A for tracks, IGG0193E for blocks), and it can
be used by the processing program in converting a relative address.

Address of the BDAM foundation module IGG019KA.

Indication of options specified for the data set. Bits of
the DCBOPTCD field and their Interpretations for BDAM are as
follows (when the bit is set to 1, the interpretation IS in
effect; when set to 0, the interpretation is not in effect):

Bit 0: Write-validity-check option has been specified.
Bit 1: Reserved for future use.
Bit 2: Extended search has been specified.
Bit 3: Feedback has been specified.
Bit 4: Actual addressing has been specified.
Bit ·S: Dynamic buffering has been specified. (This bit is

set by BDAM.)
Bit 6: Reserved for future use.
Bit 7: Relative block addressing has been specified.

Notes: If neither actual addressing nor relative block addressing
has been specified (that is, if bits 4 and 7 are both 0). relative
track addressing IS specified.

Address of the check module, IGG019L1.

Address of user's SYNAD routine.

Maximum size of a record block in the data set.

4 Reserved for future use.

4 Reserved for future use.

4

4

3

3

3

4

4

4

Address of the first lOB in the un posted queue.

Address of the last lOB in the unposted queue.

Number of tracks (for relative track addressing) or number of
blocks (for relative block addressing) to be searched when
extended search option is specified.

Reserved for future use.

Address of the read-exclusive list.

Total number of extents in a multivolume data set.

Address of the exclusive control module, IGG019LG.

Address of the format channel program generating module required for
the block format indicated in the DCB macro instruction. This address
is placed in DCBDFOR by the BDAM open executor IGG0193C.

Address of the feedback module, IGG019KG (if relative block
feedback was specified).

If dynamic buffering was not specified and BFTEK = R, address of the
segment work area; otherwise, unused.

Figure 24. Fields, field sizes, and field contents of the DeB for BDAM

Data Areas 47

DEBAMLNG

The initial value of each of the fields containing an address in Figure 23 is 0000000l.
When the data set is opened, the value of each of these fields that corresponds to a
required BDAM module is changed to the main-storage address of the module; the
values of address fields corresponding to modules that are not required remain at
00000001, and the values of the DCBIOBUQ and DCBUQND fields are set to
00000000.

1
T

....

32(20) 133(21)
DEBDVMOD DEBUCBAD

36(24)
DEBBINUM

38(26)
DEBSTRCC

40(28)
DEBSTRHH

42(2A)
DEBENDCC

44(2C)
DEBENDHH 46(2E) DEBNMTRK

,.., -
0(0)

Number of Tracks per Period

4 (4) Number of Blocks per Period

8 (8) Number of \ 9 (9) Number of Blocks per Extent Blocks per Track

,

DEBSUBID

Figure 25. Fields of the DEB for BDAM

48 OS BDAM Logic

...,

~

Actual
Extent

}
Overflow
Section

} Relative
Extent

(.,

T
} Subroutine

Identification

DEB (Data Extent Block)

The DEB, which is built by module 1000193A, contains information about the
physical characteristics of a data set.

The DEB fields of special importance in BDAM applications are shown in Figure 25.

The relative extents in the DEB are built only when relative block addressing has been
specified. There is one relative extent for each actual extent in the DEB.

If track overflow has not been specified, each relative extent consists of a I-byte field
that contains the number of blocks on a track (for the device used) and a 3-byte field
that contains the number of blocks in the extent. The latter value is obtained by
multiplying the number of tracks in the extent (given as the value in the last 2 bytes of
the associated actual extent) by the number of blocks on a track.

If track overflow has been specified, each relative extent consists of only a 3-byte
blocks-per-extent field. The byte preceding each blocks-per-extent field is unused.
In addition, two I-word fields constituting an overflow section are inserted between
the last actual extent and the first relative extent. The values in these fields are based
on the size of the period that is calculated by module 1000193E.

Field Field Size
(in bytes)

DEBAMLNG

DEBDVMOD

DEBUCBAD 3

DEBBINUM 2

DEBSTRCC 2

DEBSTRHH 2

DEBENDCC 2

DEBENDHH 2

DEBNMTRK 2

DEBSUBID 2
repeated for
each routine
name

Field Contents and Comments

Number of words of main storage used to contain the relative
extents.

Device modifier: file mask.

Address of UCB associated with this extent.

Bin number.

Cylinder address for the start of an extent.

Read/write track address for the start of an extent.

Cylinder address for the end of an extent.

Read/write track address for the end of an extent.

Number of tracks in the actual extent corresponding to this
relative extent.

Each access method subroutine, appendage subroutine, and IRB
routine has a unique 8-byte name. The low-order 2 bytes
of each subroutine name are put in this field if the subroutine
is loaded into main storage by an open executor module.

Figure 26. Fields, field sizes, and field contents of the DEB for BDAM

DECB (Data Event Control Block)

The DECB, which results from the expansion of either a READ or a WRITE macro
instruction, contains information about the I/O operation requested by the macro
instruction. Figure 27 contains the fields of the DECB used by BDAM.

Data Areas 49

0(0)
DECSDECB

4(4)
DECTYPE 16(6) DECLNGTH

8(8)
DECDCBAD

12(C)
DECAREA

16(10)
DECIOBPT

20(14)
DECKYADR

24(18)
DECRECPT

28(lC)
DECNA

Figure 27. Fields of the DECB for BDAM

lOB (Input/Output Block)

50 OS BDAM Logic

The lOB contains information required by the I/O supervisor to perform an
input/ output operation. In BDAM, the lOB is built by the base routine in the
foundation module (IGG019KA or IGG019KJ).

The fields of the lOB are constructed as a processing program is executed. The storage
area used for the lOB is obtained either from a pool of available lOBs for which
storage has been previously obtained or by use of the GETMAIN routine. If the area
is taken from a pool of lOBs, that area is made unavailable to the pool until the request
associated with the lOB is completed.

When a request is completed, the lOB is either replaced in the pool or assigned to the
pool for the first time, depending on how it was obtained. If the lOB was obtained
from the pool, the availability byte in the lOB is set to 0 indicating the lOB has been
returned to its former position in the pool. If the lOB was obtained by the GETMAIN
routine, it is placed in the pool (placement is by size), the next lOB pointers are
updated as necessary, and the availability byte is set to O.

All storage areas assigned to lOBs are released to the system by the FREEMAIN
routine when the data set is closed.

Note: If the first use of an lOB storage area occurs with an invalid request, the area is
returned to the system by the FREEMAIN routine rather than being placed in the pool
when the request is completed.

Various BDAM routines use fields in the lOB as temporary work areas until such time
as these fields are filled in with the information described in Figure 30.

Field

DECSDECB

DECTYPE

DECLNGTH

DECDCBAD

DECAREA

DECIOBPT

DECKYADR

DECRECPT

DECNA

Field Size
(in bytes)

4

2

2

4

4

4

4

4

4

Field Contents and Comments

Standard event control block (ECB). (Refer to the 10BDSTAT
field of the lOB.)

Type of request operation. The contents of this field are
described in the discussion of the 10BDTYPE field.

Length of data portion of the block being processed.

Address of the DCB to which a request is related.

Address of area into which th~ data portion of a block is to be written
or from which it is to be read.

Address of the lOB associated with this DECB.

The contents of this field vary depending on the type of
request the DECB refers to.

Type of Request D£CKYADR Contents

Write by ID Address of the key to be written.

Write-Add Address of the key to be written.

Read by ID Address of the area Into which the key is
to be read.

Read by Key Address of the key to be used as a search
argument.

Wnte by Key

Write-Add
(Format-F)

Address of the key to be used as a search
argument.

Key to be written to replace the dummy
key. (Searching is done on the hexadecimal 'FF' that
is in the first byte of the key field of the dummy
record.)

Address of the BLKREF field.

Address of the next address feedback field. This field is present only if
"R" is coded in the READ macro.

Figure 28. Fields, field sizes, and field contents of the DECB for BDAM

There are four main sections to the lOB as used by BDAM (see Figure 29).

The first part of the lOB, an 8-byte prefix, contains information applicable only to
spanned records. It is present only if BFTEK=R and RECFM= VS.

The second part is a standard 40-byte section and is described in the publication OS
System Control Blocks. BDAM refers to this part, for example, to determine the status
of a completed channel program and to locate addresses of storage areas to be used as
work areas.

The third part of the lOB is a 40-byte section that contains information needed by
BDAM to process a request. The 11 fields in this part are described in Figure 30.

The fourth part contains the channel program constructed for the input or output
request. The channel command words are placed in this part of the lOB as they are
formed.

Data Areas 51

/

-8(-8) 10BDEOIN 1-7(-7) 10BDOADB }

~--4-(--4-)----------~~--~ ~~!iX
10BSWAP

40(28)
10BDBYTR

44(2C) 10BDAVLI 145 (2D)

48(30)
IOBDTYPE

52(34)

56(38)
10BDBYTN

60(3C)

64(40)

72(48)

80(50)

I.-

j42(2A)

10BDPLAD

1 50(32)

10BDCPND

1 58(3A)

10BDOPTR

10BUPLIM

10BDNRCF

10BDIOBS

10BDSTAT

Reserved

I/} Standard
lOB ,....

'"

~

BDAM
Extension
to lOB

t
Channel Program

I-
Figure 29. Fields of the lOB for BDAM

52 OS BDAM Logic

Field Field Size Field Contents and Comments
(in bytes)

IOBDEQIN

IOBDQADB 3

10BSWAP 4

Bit 0: Indicates that a track containing spanned records IS being
dequeued.

Bits 1-7: Reserved for future use.

Address of the lOB waiting to dequeue the tracks occupied by a spanned
record.

Address of the segment work area.

Figure 30 (Part 1 of 4). Fields, field sizes, and field contents of the lOB for BDAM

Field

10BDBYTR

10BDIOBS

10BDAVLI

10BDPLAD

10BDTYPE

Field Size
(in bytes)

2

2

3

2

Field Contents and Comments

Number of unused bytes remaining on a track on which a new variable
or undefined-length block is to be written. This value is initially placed
in 10BDBYTR when the channel program reads the capacity record.
Subsequent updating of the 10BDBYTR field is done by the self-format
module, IGG019KM. The channel program later updates the capacity
record before the I/O operation is completed.

Overall size of the lOB, in bytes. The base routine of the foundation
module places this value in 10BDIOBS after the main-storage area for an
lOB has been obtained.

Indication of the availability of the lOB. When the lOB is taken from the
pool of available lOBs, the value of 10BDAVLI is set to hexadecimal FF
to indicate that the lOB is being used (is unavailable). This is done by
the base routine of the foundation module. When an I/O operation is
posted as complete, and an lOB is either returned to or placed in the
pool of available lOBs, the value of 10BDAVLI is set to O. Depending on
the cause of the completion of the I/O operation, the 0 value is set by
either the asynchronous interrupt routine or the base routine of the
foundation module.

Address of the next lOB area in the pool of lOBs attached to the current
DCB. If there are no more lOBs in the pool, the value of this field is O.
Each lOB in the pool became a member of the pool after the first use of
the lOB. When a new lOB IS added to the pool, the 10BDPLAD field of
the preceding lOB IS updated.

Indication of the type of request and the options specified in the DECB
related to the request. The contents of the DECTYPE field (see DECB)
are placed in the 10BDTYPE field when the lOB is initialized. Significant
bits of the 10BDTYPE field and their interpretations for BDAM are as
follows (when the bit is set to 1, the interpretation is in effect; when set
to 0, the interpretation IS not in effect):

First Byte:

Bit 0: Verification of written block has been specified.
Bit 1: Track overflow (that is, overflow blocks are being used).

(Refer to the publication ·05 SAM Logic.)
Bit 2: Extended search has been specified.
Bit 3: Feedback of block address has been specified.
Bit 4: Actual block addressing is being used.
Bit 5: Dynamic buffering is being used.
Bit 6: Exclusive control is being used.
Bit 7: Relative block addressing is being used.

Note: If bits 4 and 7 are both 0, relative track addressing is
being used.

Second Byte:
Bit 0: S has been specified in the key address operand of the READ

or WRITE macro instruction. For dynamic buffering, a buffer
is to be allocated for a READ request, and the key part
of a buffer is to be freed after a WRITE request.

Bit 1: S has been specified in the length operand of the READ
or WRITE macro instruction. When variable-length blocks are
Demg Written, the setting OT this bil is ignon,u (ii'di is,
not tested) since the block length is given in the first 2 bytes,
of the data field.

Bit 2: Next address feedback can be the address of either a data
record or a capacity record, whichever occurred first. This bit
can be set to 1 only when bit 3 (below) is set to 1 .

Figure 30 (Part 2 of 4). Fields, field sizes, and field contents of the lOB for BDAM

Data Areas 53

54 OS BDAM Logic

Field

10BDSTAT

Field Size Field Contents and Comments
(in bytes)

2

Bit 3: R is suffixed to the type of the READ or WRITE
macro instruction, meaning that next address feedback
has been requested.

Bit 4: A READ request. (0 indicates a WRITE request.)
Bit 5: The search argument is the block key. (0 indicates

the search argument is the block ID.)
Bit 6: Indicates a WRITE request to add a new block.
Bit 7: A RELEX macro instruction has been issued.

Indication of status of the request. Significant bits of the 10BDSTAT
field and their interpretations for BDAM are as follows (when the bit
is set to 1, the interpretation is in effect; when set to 0, the
interpretation is not in effect):

First Byte:
Bit 0: The request has completed abnormally. See second byte

for details.
Bit 1: On extended search, the ASI routine in the foundation module

is to issue the EXCP macro instruction after the end-of-extent
appendage module has determined that the next extent is on
a new volume. The end-of-extent appendage module cannot
issue an EXCP macro instruction in this case.

Bit 2: Reserved for future use.
Bit 3: On extended search, indicates to relative block conversion

routine that the second pass of a two-pass conversion
routine has been completed. Note: The first pass of the
routine converts the starting address for a track search,
and the second pass converts the address for the search
limit. The bit is set to 1 when the second pass begins.
This bit is also set by the self-format module after the
module has calculated the number of bytes required to write
a block on a track. Then, if additional tracks must be examined
for space, the calculation of bytes required is bypassed.

Bit 4: The read-exclusive request related to this lOB has been placed
on an intertask queue by the exclusive control module.

Bit 5: A buffer has been assigned to this lOB.
Bit 6: A given block (to be written) can fit on the track associated

with the capacity record that has just been read into
storage. Module IGG019KM sets this indicator.

Bit 7: Unused.

Second Byte:

The bits in this byte, when on, indicate abnormal completion of a
request. When the request is posted as complete, these indications
of abnormal completion are placed in byte 1 (the second byte) of
the DECSDECB field of the DECB.

Bit 0: The requested block was not found on the indicated track.
Bit 1: The length of the block was incorrect. Refer to "IGG019KU

(Channel End/Abnormal End Appendage Module)" for more
information about incorrect length.

Bit 2: No space in which to write a new block was found.
Bit 3: Request is invalid.
Bit 4: A READ operation (either to bring data into main storage or

to verify written data) has resulted in a data check error
that has not been corrected by the standard IDS error retry
procedure. (Refer to "IGG019KQ (Write-Verify Module)"
for more detailed information about verification of data.)

Figure 30 (Part 3 of 4). Fields, field sizes, and field contents of the lOB for BDAM

Field

10BDCPND

10BDBYTN

10BDQPTR

10BUPLlM

10BDNRCF

Field Size Field Contents and Comments
(in bytes)

4

4

4

8

8

Bit 5: The request has been completed but the block the
user has requested to be read or written is an
end-of-data set record (indicated as having a data
field length of 0). Refer to the section
"IGG019KU (Channel End/Abnormal End Appendage
Module)" for more information about the end-of
data set conditions.

Bit 6: An error that cannot be attributed to any of the other
causes indicated by bits in this byte has occurred.

Bit 7: No match has been found on the read-exclusive list.

The main-storage address of the expected end of the channel
program if the program goes to a normal completion. This
address is placed in the 10BDCPND field by the base routine
of the foundation module.

At the completion of a request, the I/O supervisor
places an address In the channel status word. This address
is equal to the address of the last channel command word
executed plus 8 bytes. A normal completion is indicated if the two
addresses are equal and there have been no error indications.

The required number of bytes to contain a new block.
This value is calculated by the self-format module
after control has been given to It by the ASI
routine in the foundation module.

Either the address of the next lOB in the unposted queue
of lOBs (address determined by the exclusive control
module, IGG019LG) or the address of the next lOB In the
lOB buffer queue (address determined by dynamic buffering
module).

Address at which to begin the search for the start of
a track on which the indicated block IS contained or
is to be written. On extended search, the address of
the first track following the last track to be searched.

The count field developed by the self-format module when a
new block of variable-length or undefined-length records
is to be added to a track.

Figure 30 (Part 4 of 4). Fields, field sizes, and field contents of the lOB for BDAM

Read-Exclusive List

The read-exclusive list is an area of main storage containing the UeB address and
actual address of blocks requiring exclusive control. The list is composed of one or
more 80-byte segments. Each segment has space for nine 8-byte entries, each entry
identifying a block for which exclusive control is required. IGG0193A obtains storage
for the first 80-byte segment; if additional segments are required, the exclusive control
module obtains storage for them. The close executor module releases the storage
obtained for the read-exclusive list segments.

Figure 31 indicates the contents of the fields of a typical segment of the read-exclusive
list. Figure 32 indicates the contents of an entry in a segment.

Data Areas 55

56 OS BDAM Logic

0(0)
Address of This Segment

4(4)
Pointer to Next Segment if One Exists

8(8)

First Entry in Segment

16(10)

~ Space for Seven More Entries

72(48)

Last Entry in Segment

Figure 31. Segment of the read-exclusive list

1
2(2) Address (CCHHR) of the block being

1-------------------' placed on the read-exclusive list. For
WR ITE-add requests for variable- or undefined-length blocks, the address of the track
capacity record (RD).

0(0)
Address of the UCB for the block

Figure 32. Entry in the read-exclusive list

~;.

APPENDIXES

Appendix A: Periods of an Extent

BDAM data sets are created by the basic sequential access method (BSAM). When
BSAM places blocks on a direct-access device, it is possible that a block may start on
one track and finish on a following track within the same extent. Such a block is called
an overflow block. At least 1 byte of the data portion of a block must fit on a track in
order for the block to overflow to the next track. For purposes of calculating the size
of a period, the track on which a block begins is considered to contain the block.
When a track is reached on which not enough space is left to contain at least 1 byte of
the data portion of a new block to be written, the end of a period has been reached.

Thus, a period is a group of tracks containing a group of blocks such that the first track
does not begin with an overflow block and the last track does not contain a block that
overflows to another track. Example 1 illustrates the concept of a period.

Example 1: In this example, assume the following:

• A given data set is on a device that permits 3625 bytes per track to be allocated
to data blocks, excluding a track capacity record (RO).

• The block length for the data set is 844 bytes, divided as follows:

14 bytes for address marker plus count area
tOO bytes for the block key portion
730 bytes for the block data portion

• There are no interrecord gaps on the tracks. (This assumption simplifies the
calculations in the example.)

• Part of the given data set occupies an extent consisting of consecutive tracks
beginning with track 47 on this device.

From the second assumption, it is determined that at least the first 115 bytes (count +
key + 1 data byte) of a block must fit on a track for track overflow to occur. Figure
33 illustrates the manner in which the data blocks would appear on the tracks of the
extent.

The identifications B1, B2, ... , B32 represent the first 32 blocks placed in this extent.
The numbers above the blocks represent the number of bytes of the block appearing on
a track. Arrows at the end of a track and at the beginning of a track indicate where
track overflow OCCl1r'S.

As shown in Figure 33, track overflow occurs from track 47 to track 48 (block B5),
from track 48 to track 49 (block B9), and so on until the end of track 53. Since track
overflow (in this example) requires at least the first 115 bytes of a block to appear on
a track, and only 55 bytes remain on track 53 after block B30 has been placed there,
block B31 cannot overflow from track 53 to track 54. Therefore, tracks 47-53
constitute a period, and a new period begins with block B31 on track 54. For purposes
of calculating relative block addresses (see Examples 2 and 3 in Appendixes B and C),
the number of blocks on each track is given in Figure 33 as the "Track Block Count."

Module IGG0193E computes, based on block characteristics (key length and data
length) and device characteristics, the size of the period for the data set. It then

Appendixes 57

Track 47

Track 48

Track 49

Track 50

Track 51

Track 52

Track 53

Track 54

computes both the number of blocks in a period and the number of tracks in a period
and places the computed values in the two fields of the overflow section of the DEB.
These fields are each 1 word long, and they occur only once for a given data set. The
values placed in these fields are constant for a given data set.

844 844 844 844 249 Track Block
'--....;.;R~0_--'-__ ---=B=..;1:...-__ l..-__ -=B::::2 __ ---I ___ !:::;B3:::..-__ ...I.-__ -lB:t:4!..-__ ..uIB~5:......:..i...l Count
- . 5 Blocks

595 844 844 844 498 I

,--_R~0_-L-[._~B::;;:5,--_-,-__ ---"B",,6 __ --,-__ --!::B:..:.7 ___ L--__ ..!::B!:::;8 __ --I._-lB~9::....._-;:;J' 4 Blocks

RO r-.~:

RO
844
B14

844
B10

844
B15

844
811

844
B16

844
B12

844
B17

747
B13 4 Blocks

4 Blocks

692 844 844 844 401
L---!..!R.::.O_-L-C+_---'B=-1:..:8'--_..I-.. __ -=B:...:.19:::..-__ L--_---'8!!:20~ __ ...l._ ___ B~2~1:..._ _ _1..__=B=22=---+l;..J 5 Blocks

443 844 844 844 650
'----'-'R,.:;;.O_-'-::C+;-;:-::'B:=,;2::::2'---'--__ .:B.::;23=--__ '--__ ::;82=-4'--_--'-__ __'B:=,;2::::S:...-_--'-__ B::;2:.:6:-_-..0 : 4 Blocks

194 55
~61 844 844 844 844 I(

'--.....;...:;R,.:;;.O_-L-~_-'-. __ ---"8:.:2.:-7 __ -'-__ ~B 2::::8'--_--1 __ __'B"'29=-__ -'--__ B==30=-__ ..u! 4 Blocks

RO
844
B31

844
B32 I' 4 Blocks

Figure 33. Track overflow

58 OS BDAM Logic

Because the allocation of actual extents to members of a data set is performed by space
management routines (refer to the publication as DADSM Logic), while the period is
a concept used by BDAM, the boundaries of extents and periods may differ. However,
the end of an extent terminates the last period in the extent. In this case, the last
period may be complete or it may be only partially complete. In either case, the start
of a new extent coincides with the start of a new period.

Appendix B: Calculations Done in Module IGG019KE to Get a Relative Track
Address

To convert a relative block address to a relative track address, module IGGO 19KE does
the following calculations: Starting with the first extent in the data set, IGG019KE
subtracts the number of blocks in that and each successive extent from the BLKREF
field. (The BLKREF field, whose address is in the DECRECPT field of the DECB,
contains the relative block number that was specified in the block address field of the
READ macro instruction.) As the number of blocks in each extent is subtracted, the
number of tracks in each subtracted extent is accumulated. Thus, the value in the
BLKREF field decreases while the number of accumulated tracks increases. This
process continues until an extent is reached in which the number of blocks, if
subtracted from the number that remains in the BLKREF field, would result in a
negative value. This extent is called the terminal extent.

When the terminal extent is reached, the number of remaining blocks in the BLKREF
field is divided by the blocks per track field in the DEB. The quotient in this division
is added to the cumulative total of tracks. This cumulative total represents the track
number, relative to the beginning of the data set, on which the block whose address is
to be converted resides. The remainder in this division is the number of blocks on the
terminal extent that must be counted to get to the block whose address is to be
converted.

The relative track address, in the form TIR, is the result of these calculations. TT is
the number of the track on which the block whose address is to be converted resides,
and R is the number of that block.

Example 2 illustrates conversion of a relative block number to a relative track address.

Example 2: Assume a data set is contained in four extents identified as I, II, III, and IV.
Let extent I contain 10 tracks with 80 data blocks; extent II contain 14 tracks with 112
data blocks; extent ill contain 8 tracks with 64 data blocks; and extent IV contain 12
tracks with 96 data blocks. (This assumes that the data set is on a device permitting 8
data blocks to be placed on one track.) The information needed from the DEB for this
data set is summarized in Figure 34.

Without Track Overflow

DEB Field Extent Extent Extent Extent
I II ILJ IV

Blocks per 8 8 8 8
Track

Tracks per 10 14 8 12
Extent

Blocks per 8, =80 82 = 112 83 =64 8=96
Extent

Figure 34. DEB information needed to calculate relative track addresses

Appendixes 59

60 OS BDAM Logic

If the BLKREF field contains 284, the calculations to find the relative track address
are as follows:

BLKREF value - B, = R, (remainder)

284 - 80 = 204

R\ - B2 = R2

204 - 112 = 92

R2 -B3 = R3

92 - 64 = 28

R3 - B = R

28 - 96 < 0

The 80 blocks from extent I are on 10 tracks.

The 112 blocks from extent II are on 14 tracks.

The 64 blocks from extent III are on 8 tracks.

Since R is less than 0, the last extent (IV) cannot be subtracted. Extent IV becomes
the terminal extent. The previous remaining value (R3 = 28) is divided by the blocks
per track value (8) to give a quotient of 3 and a remainder of 4. The 3 represents the
number of tracks of the terminal extent that must be added to the sum of the
underlined numbers of tracks from extents I, II, and III. The 4 represents the number
of data blocks that must be counted from the beginning of the terminal track. Thus,
the relative track address (TTR) of the block in this example is 35 tracks (the TT
value) and 4 blocks (the R value) from the beginning of the data set.

Appendix C: Calculations Done in Module IGG019KF to Get a Relative Track
Address

To convert a relative block address to a relative track address, module IGG019KF does
the following calculations:

Starting with the first extent in the data set, IGGO 19KF subtracts the number of blocks
in that and each successive extent from the BLKREF field. (The BLKREF field,
whose address is in the DECRECPT field of the DECB, contains the relative block
number that was specified in the block address field of the READ macro instruction.)
As the number of blocks in each extent is subtracted, the number of tracks in each
subtracted extent is accumulated. This process continues until an extent is reached in
which the number of blocks, if subtracted from the number that remains in the
BLKREF field, would result in a negative value. This extent is called the terminal
extent.

The number of blocks in each period of the terminal extent is then subtracted from the
BLKREF field. As the number of blocks in each period are subtracted, the number of
tracks on which these blocks reside is added to the cumulative total of tracks. This
process continues until a period is reached in which the number of blocks, if subtracted
from the number that remains in the BLKREF field, would result in a negative value.
This period is called the terminal period.

The number of blocks in each track of the terminal period is then subtracted from the
BLKREF field. As the number of blocks in each track of the terminal period is
subtracted, the numbers of tracks on which these blocks reside is added to the
cumulative total of tracks. This process continues until a track is reached in which the
number of blocks, if subtracted from the BLKREF field, would result in a negative
value. This track is the terminal track.

The accumulated tracks and the number remaining in the BLKREF field at this point
become the relative track address, in the form TTR. TT is the track on which the
block whose address is to be converted resides, and R is the actual number of the block
on that track.

Example 3 illustrates conversion of a relative block number, when track overflow has
been specified, to a relative track address.

Example 3: Assume a data set is contained in three extents identified as I, II, and III.
Let extent I contain 20 tracks with 114 data blocks; extent II contain 10 tracks with 57
data blocks; and extent III contain 27 tracks with 153 data blocks. Further, assume
that open executor module IGG0193E has established that each period contains 3
tracks with a total of 17 blocks and that the blocks are placed on the tracks so that the
first 2 tracks contain 6 blocks each and the third track contains 5.

The information needed from the DEB for this data set is summarized in Figure 35.

Appendixes 6 1

62 OS BDAM Logic

With Track Overflow

DEB Field Extent Extent Extent
I " III

Tracks per Extent 20 10 27

Tracks per Period 3 3 3

Blocks per Period 17 17 17

Blocks per Extent B1 = 114 B2 =57 B3= 153

Figure 35. DEB information needed to calculate relative track addresses

If the BLKREF field contains 217, the calculations to find the relative track address
are as follows:

BLKREF value - B] = R] (remainder)

217 - 114 = 103

R] -B2 = R2

103 - 57 = 46

R2 - B3 = R3

46 - 153 < 0

The 114 blocks (from extent I) are on 20 tracks

The 57 blocks (from extent II) are on 10 tracks

Since R3 is less than 0, the last extent (III) cannot be subtracted. Extent III becomes
the terminal extent. Now the periods in the terminal extent are considered.

Let the periods of extent III be designated as IlIa, IIIb, I1Ic, etc. The calculations
proceed as follows:

R2 - IlIa = R3

46 - 17 = 29

R3 - I1Ib = R

29 - 17 = 12

R - IIIc = R

12-17<0

The 17 blocks (from period IlIa) are on 3 tracks.

The 17 blocks (from period I1Ib) are on 3 tracks.

Since R is less than 0, all of the blocks in the period (I1Ic) cannot be subtracted.
Period I1Ic becomes the terminal period. Now the blocks on the tracks in the terminal
period are subtracted. The 12 remaining blocks (the R value) are equivalent to 1 track
(of 6 blocks) plus 6 blocks (on the terminal track).

The total number of tracks plus additional blocks thus is equal to the sum of the
underlined numbers of tracks in the two full extents (I and II) and the two full periods
(IlIa and IIIb) in extent III plus the 1 track and 6 blocks from period I1Ic. This value
is 37 tracks and 6 blocks, giving a TTR value that can be used by the BP AM
convert-to-actual routine to obtain an actual address for the block.

Appendix D: Channel Programs for BDAM

The channel program for each request using BDAM is constructed by the appropriate
channel program generating module and placed in the lOB for that request. A channel
program consists of a group of channel command words (CCWs), each word having
the following format:

Command Address Flags 000 (ignored) Count
Code

(1 byte) (3 bytes) (5 bits) (3 bits) (1 byte) (2 bytes)

Note: The last 4 bytes are ignored by a transfer-in-channel (TIC) command word.

The entry in the address field is one of the following:

• The main-storage address where data is to be placed or found; this is for a read
or write command word.

• The location of the search argument; this is for a search command word.

• The address of the CCW to which a transfer is made; this is for a
transfer-in-channel command word.

The entry (or entries) in the flags field have the following meanings:

CC Command chaining

DC Data chaining

SKIP Skip the transferring of data

SILl Suppress incorrect length indication

The entry in the count field represents either the number of bytes of data to be
transferred or the number of bytes of data on which a search is to be made for
comparison.

Note: For more detailed information on channel programs, see IBM System/360
Component Descriptions - 2841 and Associated DASD.

In the channel programs that follow, the purpose of each command word is given in the
comment following the count field. The channel command words are identified by the
number to the left of the command code.

If track overflow has been specified, the applicable form of the channel program will
end with a CCW having Nap as the command code and ignoring the other fields. The
preceding CCW will also have the command chaining (CC) flag bit set on.

Appendixes 63

1. Channel Program for Reading or Writing by Block ID (Type DI)

CCW
No.

2

3

5

74 ,6

Command Code
Hex Description

23 Set sector

31

08

OE
OD

06
05

22

Search ID
equal

TIC

Read
Write

Read
Write

Key
and
data

Data

Read sector

Address

Sector
address 1

IOBSEEK+3

CCW2

Contents
of
DECKYADR

Contents
of
DECAREA

Sector
address 2

1B Seek cylinder IOBDNRCF
head (CCHH)

23

31

08

OE

Set sector

Search ID
equal

TIC

Read key and
data

Sector
address 2

IOBSEEK+3

CCW9

1 CCWl IS present only for fixed-length records.

Flags
Hex

40

40

00

80

00
404

40

40

40

40

00

30

Description

CC

CC

DC

(CC)

CC

CC

CC

CC

Sill, SKIP

2 This CCW IS present only for devices with the rotational positIOn sensing feature

3 CCW4 IS omitted If either the DCBKEYLE or DECKYADR IS zero

Count Comments

5

Wait for record - sector value IS
precalculated for format-F record

Search for specified block

Repeat search if block not found

Key Read or write key portion of block
length

Data Read or write data portion of block
length

6

5

256

Get sector value for validity-check routine

Seek back to track where block begins

Walt for record to come Into position again

Search for block Just updated

Repeat search if block not found

Read block just written to check for errors
- write-validity-check

4 CCWs 6-11 are present and the command-chain bit In CCW4 IS on only when the DCPOPTCD field of the DeB specifies the write-validity-check option
5 CCW6 IS omitted for fixed-length records
6 CCW7 IS present only If track overflow IS specified

64 OS BDAM Logic

2. Channel Program for Reading or Writing by Block Key (TYPE KD)

CCW
No.

2

3

4

102

Command Code
Hex Description

12

29

08

06
05

22

1B

23

29

08

06

Read count

Search key
equal

TIC

Read
Write

Data

Read sector

Seek head
(CCHH)

Set sector

Search key
equal

TIC

Read data

Address
Flags
Hex

IOBDNRCF+2 60

Contents
of
DECKYADR

CCW1

Contents
of
DECAREA

Sector
address 2

IOBDNRCF

Sector
address 2

Contents of
DECKYADR

CCW6

60

00

00
402

40

40

40

60

00

30

Description

CC, Sill

CC, Sill

(CC)

CC

CC

CC

CC, Sill

SILL SKIP

1 These CCWs are present only for deVices with the rotational position senSing feature

Count Comments

5 Read full address (CCHHR) for feedback

Key Search for block with specified key
length

Repeat search if block not found

Data Read or update the desired block
length

Get sector value for validity-check routine

6 Seek back to track where block begins

Set to sector of last write

Key Search for block just updated
length

256

Repeat search if block not found

Read block just written to check for errors
- write-validity-check

2 CCWs 5-10 are present and the command-chain bit In CCW4 IS on only when the DCBOPTCD field of the DCB specifies the write-validity-check option.
3 CCW6 IS present only If track overflow IS specified.

Appendixes 6S

3. Channel Program for Writing a New Block of Fixed.Length Records (Type DA)

CCW
No.

2

3

4

8

9

11

14

15

16

Command Code
Hex Description

12

29

08

06

22

1B

23

31

08

Read count

Search key
equal

TIC

Read data

Read sector

Seek head
(CCHH)

Set sector

Search 10
equal

TIC

00 Write key
and data

05 Wnte data

1 B Seek head
(CCHH)

23

31

08

8E

Set sector

Search 10
equal

TIC

Read key
and data

Address
Flags
Hex

IOBDNRCF+2 60

Dummy key 60

CCW1 00

IOBONRCF+6 60

Sector
address 2

IOBONRCF

Sector
address 2

40

40

40

IOBONRCF+2 40

CCW6

Contents of
DECKYAOR

Contents of
OECAREA

IOBONRCF

Sector
address 2

00

80

00
404

40

40

IOBDNRCF+2 40

CCW14 00

30

Description

CC, Sill

CC, Sill

CC, Sill

CC

CC

CC

CC

DC

(CC)

CC

CC

CC

Sill, SKIP

1 These CCWs are present only for devices with the rotational position senSing feature.

2 CCWs 6 and 12 are present only If track overflow IS specified.
3 CCW10 IS omitted If either the DCBKEYLE or DECKYADR field IS O.

Count Comments

5

6

5

Read full address (CCHHR) for feedback

Search for a dummy record

Repeat search if record not found

Read dummy record's position - "R" of
CCHHR

Note sector value of dummy record

Seek back to track where block begins

Wait for dummy record to come into
position again

Search for dummy record

Repeat search if record not found

Key Wnte the new key
length

Data Write the new data
length

6 Seek back to track where block begins

5

256

Wait for block just wntten to come Into
position again

Search for block just written

Repeat search if block not found

Check block just written for errors -
write-validity-check

4 CCWs 12-16 are present and the command-chain bit In CCW11 IS on only when the DCBOPTCD field of the DCB specifies the wrlte-valld,ty-check option.

66 OS BDAM Logic

4. Channel Program for Writing a New Block of Variable-Length or
Undefined-Length Records (Type DA)

CCW
No.

l'

2

3

4

6

7

8

9

10

11

13

141,4

Command Code
Hex Description

23

31

08

06

23

31

08

05

31

08

1D

1D

1D

22

23

31

08

OE

23

16

Set sector

Search ID
equal

TIC

Read data

Set sector

Search ID
equal

TIC

Write data

Search ID
equal

TIC

Write count

Write key

Wnte data

Read sector

Set sector

Search ID
equal

TIC

Read key
and data

Set sector

Read RO

Address

Sector~O

IOBSEEK+3

CCW2

10BDNRCF

Sector~O

10BUPLIM

CCW6

IOBSEEK+3

CCW2

CCW9

10BDNRCF

Contents of
DECKYADR

Contents of
DECAREA

Sector
address 2

Sector
address 2

IOBSEEK+3

CCW16

Sector~O

Flags
Hex

40

40

00

20

40

40

00

60

40

00

80

80

00
404

40

40

40

00

70

40

00

Description

CC

CC

Sill

CC

CC

CC, Sill

CC

DC

DC

DC

CC

CC

CC

CC, Sill,
SKIP

CC

1 These CCWs are present only for deVices with the rotational position sensmg feature

Count Comments

5

7

5

7

5

8

Key
length

Data
length

5

256

16

Set to beginning of track

Search for track capacity record

Repeat search if record not found

Read capacity record Into lOB

Walt for beginning of track to come Into
position again

Search for track capacity record

Repeat search if record not found

Update capacity record

Search for current last block on track

Repeat search If block not found

Wnte new record

Note sector value of new record

Walt for new record to come into position
again

Search for new record

Repeat search if record not found

Check new record for errors - write
validity

Walt for beginning of track to come into
position again

Check capacity record for errors - wnte
validity-check

2 ThiS IS actually two channel programs. The first program (CCWs 1-4) reads the capacity record. After the BDAM routmes fmd a capacity record that Indicates
enough space IS available for the add request, CCWs 1-4 are overlaid wIth data that Includes the address of the current last block. The channel program that
actually writes the new block consists of CCWs 5-20.

3 CCW12 IS omitted If either the DCBKEYLE OR DECKYADR field IS O.
4 CCWs 14-20 are present and the command-cham bit In CCW13 IS on only when the DCBOPTCD field of the DCB specifies the write-validity-check option.

Appendixes 67

5. Channel Program for Reading or Writing by Block Key Using Extended Search
(Type DK)

CCW Command Code Flags
No. Hex Descrietion Address Hex Descrietion Count Comments

11 23 Set sector Sector=O 40 CC Set to be91nnin9 of track

03 Nap 60 CC, Sill 1

2 31 Search ID IOBSEEK+3 40 CC 5 Search for capacity record
egual

3 08 TIC CCW2 00 Repeat search if record not found

4 B1 Search ID IOBUPLlM+3 40 CC 5 Check for search limit
equal
(multitrack)

5 08 TIC CCW7 00 Go to key search If stili within search limit

6 03 Nap 20 Sill End channel program if search limit reached

7 29 Search key Contents of 60 CC, Sill Key Search for given key
egual DECKYADR len!i!th

8 08 TIC CCW4 00 Check limit again before contlnUln9 search

91 22 Read sector Sector 40 CC Note sector value to be used for read or
address 2 write

03 NOP 60 CC, Sill

101.2 23 Set sector Sector=O 40 CC Walt for beginning of track to begin
feedback loop

03 Nap 60 CC, Sill

11 1A Read home 70 CC, Sill, Note beginning of track
address SKIP

121 23 Set sector Sector 40 CC Wait for desired record to come into
address 2 eositlon

03 Nap 60 CC, Sill

13 12 Read count IOBDNRCF+2 60 CC, Sill 5 Read CCH H R for feedback

14 29 Search key Contents of 60 CC, Sill Key Search for user-specified record
egual DECKYADR length

15 08 TIC CCW13 00 Update CCHHR and repeat search If wrong
record

16 05 Read Data Contents of 00 (CC) Data Read or update the block
00 Write DECAREA 403 len9th

173 .4 1B Seek head IOBDNRCF 40 CC 6 Seek back to track where block beings
(CCHH)

181 23 Set sector Sector 40 CC Walt for desired record to come Into
address 2 position

03 Nap 60 CC, Sill

19 29 Search key Contents of 60 CC, Sill Key Search for block Just updated
egual DECKYADR len9th

20 08 TIC CCW19 00 Repeat search if block not found

21 06 Read data 30 Sill, SKIP 256 Check block for errors - write-validity-
check

1 These CCWs are set to NOP for devices without the rotational position sensmg feature.
2 CCWs 10-15 are present only If feedback IS requested.
3 CCWs 17-21 are present and the command-<:ham bit 10 CCW16 IS on only when the DCBOPTCD field of the DCB specifies the wrlte-valldlty-check option.
4 CCW17 IS present only If track overflow IS specified.

68 OS BDAM Logic

6. Channel Program for Adding a New Fixed-Length Block Using Extended Search
(Type DA)

CCW
No.

l'

2

3

4

5

6

7

8

9

10

11

12

13

14

15

19

20

22

233 .2

25

26

27

Command Code
Hex Description

23 Set sector

31 Search ID
equal

08 TIC

06 Read data

31 Search ID
equal

08 TIC

29 Search key
equal

08 TIC

08 TIC

B1 Search ID
equal
(multitrack)

08 TIC

03 NOP

29 Search key
equal

08 TIC

06 Read data

22 Read sector

1 B Seek head
(CCHH)

23 Set sector

31 Search ID
equal

08 TIC

OD Write key
and data

05 Write data

1 B Seek head
(CCHH)

23 Set sector

31 Search ID
equal

08 TIC

OE Read key
and data

Address

Sector~O

Flags
Hex

40

IOBSEEK+3 40

CCW2 00

IOBDNRCF+2 60

IOBDNRCF+2 40

CCW13 00

Dummy key 60
address

CCW10 00

CCW15 00

IOBUPLlM+3 40

CCW4 00

20

Dummy head 60
address

CCW5 00

IOBDNRCF+6 60

Sector
address 2

IOBDNRCF

40

40

Sector 40
address 2

IOBDNRCF+2 40

CCW19 00

Contents of
DECKYADR

Contents of
DECAREA

IOBDNRCF

Sector
address 2

80

00
403

40

40

IOBDNRCF+2 40

CCW25 00

30

Description

CC

CC

CC, Sill

CC

CC, Sill

CC

Sill

CC, Sill

CC, Sill

CC

CC

CC

CC

DC

(CC)

CC

CC

CC

Sill, SKIP

1 This CCW IS present only for deVices With the rotational POSition sensing feature.

2 This CCW IS present only If track overflow IS specified.

Count Comments

5

5

5

5

6

5

Key
length

Data
length

6

5

256

Wait for beginning of track to come into position

Search for capacity record

Repeat search if record not found

Read full address (CCHHR) for feedback

Search for last data record on track

If not last data block, check for dummy record

Search for dummy record

If not dummy record, go to extended search
routine

If dummy record found, go to add routine

Check for search limit

Read capacity record from next track if stili
Within search limit

End channel program if search limit reached

Search for dummy record

Check next record If dummy record not found

Read dummy record's position - "R" of CCHHR

Get sector value of dummy record

Seek back to track where dummy record
began

Wait for dummy record to come Ina
position again

Search for dummy record

Repeat search if record not found

Write new key

Write data portion of record

Seek back to track that contains beginning
of track just written

Walt for record Just wntten to come into
position again

Search for record just written

Repeat search if record not found

Check block just written for error - write
validity-check

3 CCWs 23-27 are present and the command-cham bit m CCW22 IS on only when the DCBOPTCD field of the DCB specifies the write-validity-check option.
4 ThiS CCW IS omitted If either the DCBKEYLE or DECKYADR IS O.

Appendixes 69

7. Steps of the Channel Program for Adding a New Variable-Length Spanned
(Format-VS) Record (Type DA)

A. Original channel program for reading capacity record and writing first segment

CCW
No.

11

2

3

4

6

7

8

9

10

11

13

144 ,5

Command Code
Hex Description

23

03

31

08

06

23

03

31

08

05

31

08

Set sector

NOP

Search 10
equal

TIC

Read data

Set sector

NOP

Search ID
equal

TIC

Wnte data

Search ID
equal

TIC

1 D Write count

1 D Write key

1 D Write data

22 Read sector

23 Set sector

31

08

OE

16

Search ID
equal

TIC

Read key
and data

Read RO

Address

Sector=O

IOBSEEK+3

CCW2

10BDNRCF

Sector=O

CCW6

IOBSEEK+3

CCW9

10BDNRCF

Contents of
DECKYADR

Segment
work area

Sector
address 2

Sector
address 2

IOBSEEK+3

CCW16

Flags
Hex

40

60

40

00

20

40

60

40

00

60

40

00

80

80

00
404

40

40

40

00

70

10

Description

CC

CC, Sill

CC

Sill

CC

CC, Sill

CC

CC, Sill

CC

DC

DC

(CC)

CC

CC

CC

CC, Sill,
SKIP

SKIP

1 ThiS CCW IS set to NOP for deVices Without the rotatIOnal POSition sensmg feature.

Count Comments

5

7

5

7

5

Wait for beginning of track to come into
position

Search for capacity record

Repeat search If record not found

Read capacity record Into lOB

Wait for beginning of track to come Into
position again

Search for capacity record

Repeat search if record not found

Update capacity record

Search for last block on track

Repeat search if block not found

8 Wnte count field of new record

Key Write key field
length

Segment Write data field
length

5

256

16

Note sector value of record just written

Wait for new record to come into position
again

Search for record just written

Repeat search If record not found

Check the new block for errors - wnte
validity-check

Check the capacity record

2 ThiS IS really two channel programs. The first, CCWs 1-4. reads the capacity record. The second. CCW 5-19, updates the capacity record and writes the first
segment of the new record.

3 CCW12 IS omitted If the DCBKEYLE or DECKYADR field IS O.

4 CCWs 14-19 are present and the command-chain bit In CCW13 IS on only when the DCBOPTCD field of the DCB specifies the wnte-valld,ty-check option.
5 ThiS CCW IS present only for deVices With the rotational positIOn sensmg feature

70 OS BDAM Logic

B. Channel Program for Writing All Segments but the First (Subsequent Segments Have no Keys)

CCW Command Code Flags
No. Hex Description Address Hex Description Count Comments

11 23 Set sector Sector=O 40 CC Wait for beginning of track

03 NOP 60 CC, Sill

2 31 Search 10 CCW2 of 40 CC 5 Search for capacity record
equal Part A

3 08 TIC CCW2 00 Repeat search if record not found

4 05 Write data IOBSEEK+3 60 CC, Sill 7 Update capacity record

5 10 Write count, IOBONRCF 80 DC 8 Write new record (key length is specified
key, as 0 in IOBONRCF)

6 10 And write Segment 00 (CC)
data work area

71.2 23 Set sector Sector =0 40 CC Wait for beginning of track to come into
position again

03 NOP 60 CC, Sill

82 16 Read RO 50 CC, SKIP 16 Check capacity record for errors

92 OE Read key 30 Sill, SKIP 256 Check new record for errors - write--
and data validity-check

1 This CCW IS set to NOP for devices without the rotational position senSing feature.
2 CCWs 7-9 are present and the command-cham bit m CCW6 IS on only when the DCBOPTCD field of the DCB specifies the wnte-vahdlty-check option.

Appendixes 71

8. Stages of the Channel Program to Read a Variable-Length Spanned Record by
Block Key Using Extended Search

A. Original channel program as developed by IGG019KR and IGG019KW

CCW Command Code Flags
No. Hex Description Address Hex Description Count Comments

l' 23 Set sector Sector = 0 40 CC Wait for beginning of track

03 NOP 60 CC, Sill

2 31 Search 10 IOBSEEK+3 40 CC 5 Search for capacity record
equal

3 08 TIC CCW2 00 Repeat search If record not found

4 B1 Search 10 IOBUPLlM+3 40 CC 5 Check for search limit
equal
(multitrack)

5 08 TIC CCW7 00 Check record's key if not beyond search
limit

6 03 NOP 20 Sill End channel program if search limit
reached

7 29 Search key Contents of 60 CC, Sill Key Search for specified key
equal DECKYADR length

8 08 TIC CCW4 00 Repeat search if key not found

9' 22 Read sector Sector 40 CC Note sector value of desired record
address 2

03 NOP 60 CC, Sill

10' 23 Set sector Sector = 0 40 CC Go back to beginning of track for feedback
loop

03 NOP 60 CC, Sill

11 1A Read home 70 CC,SILI, Note beginning of track
address SKIP

12' 23 Set sector Sector 40 CC Walt for desired record to come Into
address 2 position

03 NOP 60 CC, Sill

13 12 Read count IOBDNRCF+2 60 CC, Sill 5 Read CCHHR for feedback

14 29 Search key Contents of 60 CC, Sill Key Search again for desired record
equal DECKYADR len9th

15 08 TIC CCW13 00 Reeeat search If record not found

16 06 Read data Segment 00 Data Read the record
work area len!i!th

1 ThiS CCW IS set to NOP for devices without the rotational position sensing feature.

72 OS BDAM Logic

B. Channel Program After Reading First Segment

CCW Command Code Flags
No. Hex Description Address Hex Description

11 23 Set sector Sector =0 40 CC

03 NOP 60 CC, Sill

2 31 Search 10 IOBSEEK+3 40 CC
equal

3 08 TIC CCW2 00

4 06 Read data Segment 00
work area

52 03 NOP 20 Sill

1 Th,s CCW IS set to NOP for devIces wIthout the rotatIonal posItIon senSIng feature
2 ThIs CCW IS present only when "next address" feedback IS requested

Count Comments

Wait for beginning of track

5 Search for second block on next track

Repeat search If second block not found

Data Read the segment
length

Appendixes 73

9. Stages of the Channel Program to Write a Variable-Length Spanned Record by
Block Key Using Extended Search

A. Original Channel Program as Developed by IGG019KR and IGG019KW

CCW Command Code Flags
No. Hex Description Address Hex Description Count Comments

l' 23 Set sector Sector=O 40 CC Wait for beginning of track

03 Nap 60 ce, Sill

2 31 Search 10 IOBSEEK+3 40 CC 5 Search for capacity record
equal

3 OS TIC CCW2 00 Repeat search if record not found

4 B1 Search ID IOBUPLlM+3 40 CC 5 Check for search limit
equal
(multitrack)

5 OS TIC CCW7 00 Check record's key If not beyond search limit

6 03 Nap 20 Sill End channel program If search limit reached

7 29 Search key Contents of 60 ee, Sill Key Search for specified key
equal OECKYADR length

S OS TIC CeW4 00 eheck limit again if key not found

9' 22 Read sector Sector 40 CC Note sector value of desired record
address 2

03 Nap 60 ee, Sill

10' 23 Set sector Sector=O 40 ec Walt for beginning of track to begin
feedback loop

03 Nap 60 ee, Sill

11 1A Read home 70 ce, Sill, Note beginning of track
address SKIP

12' 23 Set sector Sector 40 CC Wait for desired record to come Into
address 2 position

03 Nap 60 ce, Sill

13 12 Read count IOBDNReF+2 60 ee, Sill Read "R" of CCHHR for feedback

14 29 Search key Contents of 60 CC, Sill Key Search for desired segment
equal DECKYADR length

15 OS TIC eeW13 00 Repeat search if segment not found

16 06 Read data Segment 20 Sill S Read block and segment descriptor words
work area

17',2 23 Set sector Sector 40 ee Wait for record to come Into position
address 1 again

03 Nap 60 ce, Sill

1S2 31 Search ID IOBSEEK+3 40 ee 5 Search for record just written
equal

192 OS Tie eeW1S 00 Repeat search If record not found

202 OE Read key 30 Sill, SKIP 256 Check data just written
and data

1 ThiS CCW IS set to NOP for devices Without the rotational POSition sensmg feature.

2 CCWs 17-20 are not used In the first pass through thiS channel program.

74 OS BDAM Logic

B. Channel Program After Locating and Reading the Count Field of the First Segment to Determine Its
Length

CCW Command Code Flags
No. Hex Oescrietion Address Hex Oescrietion Count Comments

11 23 Set sector Sector 40 CC Wait for desired record
address 1

03 NOP 60 CC, Sill 1

2 31 Search 10 IOBSEEK+3 40 CC 5 Search for record found during last pass
equal

3 08 TIC CCW2 00 Reeeat search if record not found

4 B1 TIC CCW16 00 If record is found, Iilo to write it

5 08 TIC CCW7 00

6 03 NOP 20 Sill

7 29 Search key Contents of 60 CC, Sill Key
equal DECKYADR len9th

8 08 TIC CCW4 00

91 22 Read sector Sector 40 CC
address

03 NOP 60 CC, Sill

101 23 Set sector Sector=O 40 CC

03 NOP 60 CC, Sill

11 1A Read home 70 CC, Sill,
address SKIP

121 23 Set sector Sector 40 CC
address

03 NOP 60 CC, Sill 1

13 12 Read count Segment work 60 CC, Sill 8
area

14 29 Search key Contents of 40 CC Key
egual DECKYADR length

15 08 TIC CCW13 00

16 05 Write data Segment 00 (CC) Segment Wnte the updated record
work area 402 lenlilth

171,2 23 Set sector Sector 40 CC Wait for the record to come Into position
address 1 a9ain

03 NOP 60 CC, Sill 1

182 31 Search ID IOBSEEK+3 40 CC 5 Search for an equal CCHHR
__ • _I

'V\.IUGI

192 08 TIC CCW18 00 Reeeat search if not equal

202 OE Read key 30 Sill, SKIP 256 Check record for errors
and data

1 This CCW IS set to NOP for devices without the rotational POSition sens~ng feature.
2 CCWs 17-20 are present and the command--charn bit In CCW16 IS on only when the DCBOPTCD field of the DCB specifies the wnte-vahd,ty--check option.

The channel program now consists entirely of CCWs 1-4 and CCWs 16-20, which will be used to write all the segments. The
channel command words were modified by the ASI routine in IGG019KJ.

Appendixes 75

10. Stages of the Channel Program to Read a Variable-Length Spanned Record
(Type D1)

A. Original Channel Program as Developed by IGG019KR

CCW Command Code Flags
No. Hex Description Address Hex Description Count Comments

11.2 23 Set sector Sector=O 40 CC Wait for beginning of track

03 NOP 60 CC, Sill

22 31 Search ID IOBUPLlM+3 40 CC 5 Search for capacity record
equal

32 08 TIC CCW2 00 Repeat search if record not found

42 06 Read data IOBDNRCF+2 06 CC, Sill 5 Read data portion of RO to find next address

5 31 Search ID IOBSEEK+3 40 CC 5 Search for specified record
equal

6 08 TIC CCW5 00 Repeat search if record not found

73 OE Read key Contents of 80 DC Key Read the key
and data DECKYADR len9th

8 06 Read data Segment 00 Data Read the data
work area length

1 This CCW IS set to NOP tor devices without the rotational position sen slOg feature
2 CCWs 1-4 are present only when "next address" feedback IS specified
3 CCW7 IS omitted If either the DCBKEYLE or DECKYADR field IS zero.

B. Channel Program After Reading the First Segment

CCW Command Code Flags
No. Hex Description Address Hex Description Count Comments

11.2 23 Set sector Sector=O 40 CC Wait for beginning of track

03 NOP 60 CC, Sill

21 31 Search ID IOBUPLlM+3 40 CC 5 Search for capacity record
equal

31 08 TIC CCW2 00 Repeat search if record not found

41 06 Read data IOBDNRCF+2 60 CC, Sill 5 Read capacity record for "next address"
feedback

5 31 Search 10 IOBSEEK+3 40 CC 5 Search for next segment
equal

6 08 TIC CCW5 00 Repeat search if se9ment not found

7 06 Read data Segment 00 Data Read the data
work area len9th

8 06 Read data Segment 00 Data (This CCW not used)
work area length

1 CCWs 1-4 are Included only If "next address" feedback IS specified.
2 This CCW IS set to NOP for devices Without the rotational position senSing feature.

CCW8 has replaced CCW7 since there are no keys for subsequent segments. The channel program now effectively ends with
CCW7. The change was made by the ASI routine in IGG019KJ.

76 OS BDAM Logic

11. Stages of the Channel Program to Write a Variable-Length Spanned Record
(Type D1)

A. Original channel program as developed by IGG019KR. This channel program reads the segment descriptor
word to determine the segment's length.

CCW Command Code Flags
No. Hex Description Address Hex Description Count Comments

03 NOP 60 CC, Sill (Will be changed in later pass)

2 31 Search ID IOBSEEK+3 40 CC 5 Search for specified I D
equal

3 08 TIC CCW2 00 Repeat search if ID not found

4 06 Read data Segment 20 Sill 8 Read 8 bytes from the data field
work area

5 05 Write data Segment 00 (CC) Data
work area 40 length

6 22 Read sector Sector 40 CC
address 2

03 NOP 60 CC, Sill

7 23 Set sector Sector 40 CC
address 2 These CCWs not used

03 NOP 60 CC, Sill
In this pass

8 31 Search 10 IOBSEEK+3 40 CC 5
egual

9 08 TIC CCW8 00

10 OE Read key 60 Sill, SKIP 256
and data

Appendixes 77

B. Channel Program After Reading tbe Block Descriptor Word of tbe FIrSt Segment to Determine Its Lengtb

CCW Command Code Flags
No. Hex Description Address Hex Description Count Comments

03 NOP 60 CC, Sill (Will be changed in later pass)

2 31 Search ID IOBSEEK+3 40 CC 5 Search for first segment
equal

3 OS TIC CCW2 00 Repeat search if segment not found

4' OD Write key Contents of SO DC Key Update the key
and data DECKYADR length

5 05 Write data Segment 00 (CC) Data Update the data
work area 402 length

62.3 22 Read sector Sector 40 CC Note position of this segment
address 2

03 NOP 60 CC, Sill

72.3 23 Set sector Sector 40 CC Wait for segment to come into position
address 2 again

03 NOP 60 CC, Sill

S2 31 Search ID IOBSEEK+3 40 CC 5 Search for segment
equal

92 08 TIC CCW8 00 Repeat search if segment not found

102 OE Read key 30 Sill. SKIP 256 Check the updated record for errors -
and data write-validity-check

1 CCW4 IS omitted If either the DCBKEYLE OR DECKYADR field IS O.
2 CCWs 6-10 are present. and the command-cham bit In CCW5 IS on only when the DCBOPTCD field of the DCB specifies the wrlte-vahdlty-check option.
3 ThiS CCW IS set to NOP for deVices WIthout the rotational POSition sensing feature.

78 OS BDAM Logic

C. Channel Program After Writing the First Segment

CCW Command Code Flags
No. Hex Description Address Hex Description Count Comments

11 23 Set sector Sector-O 40 CC Wait for beginning of track

03 NOP 60 CC, Sill

2 31 Search ID IOBSEEK+3 40 CC 5 Search for segment ID
egual

3 08 TIC CCW2 00 Repeat search if ID not found

4 08 TIC CCW5 00 When found, go to update segment

5 05 Write data Segment 00 (CC) Data Update the segment
work area 402 length

61,2 22 Read sector Sector 40 CC Note its sector value
address 2

03 NOP 60 CC, Sill

71.2 23 Set sector Sector 40 CC Wait for segment to come into position
address 2 again

03 NOP 60 CC, Sill

82 31 Search 10 IOBSEEK+3 40 CC 5 Search for updated segment
equal

92 08 TIC CCW8 00 Repeat search if segment not found

102 OE Read key 30 Sill, SKIP 256 Check the record for errors - write-
and data validity-<:heck

1 ThiS CCW IS set to NOP for devices without the rotational position sensing feature.
2 CCWs 6-10 are present and the command-chain bit In CCW5 IS on only when the DCBOPTCD field of the DCB specifies the wrote-vahdlty-check option.

CCW4 (when present) has changed to TIC to CCW5. This was the CCW to write the key, but keys are not necessary for
subsequent segments. This change was made by the ASI routine in IGG019KJ.

Appendixes 79

12. Stages of the Channel Program to Read a Variable-Length Spanned Record by
Block Key (Type DK)

A. Original Channel Program as Developed by IGG019KR

CCW Command Code Flags
No. Hex Description Address Hex Description Count Comments

12 Read count IOBDNRCF+2 60 CC, Sill 5 Read CCHHR for feedback

2 29 Search key Contents of 60 CC, Sill Key Search for given key
equal DECKYADR length

3 08 TIC CCW1 00 Update feedback and search again if key
not found

4 06 Read data Segment work 00 Data Read the segment
area length

51,2 23 Set sector Sector = 0 40 CC Wait for beginning of track

03 NOP 60 CC, Sill

6' 31 Search ID IOBSEEK+3 40 CC 5 Search for capacity record
equal

7' 08 TIC CCW6 00 Repeat search if record not found

8' 06 Read data Segment work 60 CC, Sill 5 Read capacity record for "address"
area feedback

9' 03 NOP 20 Sill

1 cews 5-9 are present only when "next address" feedback IS specified.
2 This CCW IS set to NOP for deVices Without the rotational POSition sensmg feature.

CCWs 5-9 are not used in this pass.

80 OS BDAM Logic

B. Channel Program After Reading the First Segment

CCW Command Code Flags
No. Hex Description Address Hex Description Count Comments

11 23 Set sector Sector=O 40 CC Wait for beginning of track
03 NOP 60 CC, Sill \

2 31 Search 10 IOBSEEK+3 40 CC 5 Search for next segment
equal

3 OS TIC CCW2 00 Repeat search if segment not found

4 06 Read data Segment 00 Data Read the segment
work area length

51,2 23 Set sector Sector-O 40 CC Wait for beginning of track to come
into position again

03 NOP 60 CC, Sill

62 31 Search 10 IOBSEEK+3 40 CC 5 Search for track capacity record
equal

72 OS TIC CCW6 00 Repeat search if record not found

S2 06 Read data Segment 60 CC, Sill 5 Read the capacity record
work area

92 03 NOP 20 Sill

1 This CCW IS set to NOP for deVices without the rotational position sensing feature.
2 CCWs 5-9 are present only when "next address" feedback IS speCified.

CCWs 5-9 are not used in this pass.

CCWs 1-3 of Part A have been changed to search on the block 10 for a subsequent segment. The change was made by the
ASI routine in IGG019KJ.

C. Channel Program After Reading the Last Segment

CCW Command Code Flags
No. Hex Description Address Hex Description

5 23 Set sector Sector-O 40 CC

03 NOP 60 CC, Sill

6 3i Stti:lu;h iD I_n""'r-r-v " An CC IVDvl:l:I'-Tw .. v

equal

7 OS TIC CCW2 00

S 06 Read data Segment 60 CC, Sill
work area

9 03 NOP 20 Sill

1 This CCW IS set to NOP for deVices Without the rotational position sensing feature.

Count Comments

Wait for beginning of track

5 Search fer capac!!)1 record

Repeat search if record not found

5 Read the next address

(This command code serves as switch
for ASI routine)

This channel program is contained in the channel programs shown in parts A and B, but it was not executed with them. It is
executed independently, after the last segment has been read, in order to provide the disk address of the next record when
"next address" feedback has been requested in the READ macro instruction.

Appendixes 81

13. Stages of the Channel Program to Write A Variable-Length Spanned Record
(Type DK)

A. Original Channel Program as Developed by IGG019KR

CCW Command Code Flags
No. Hex Description Address Hex Description Count Comments

12 Read count IOBONRCF+2 60 CC, Sill 5 Read CCH H R for internal feedback

2 29 Search key Contents of 60 CC, Sill Key Search for specified key
equal OECKYAOR length

3 08 TIC CCW1 00 Update feedback and search again
if key not found

4 06 Read data Segment 60 CC, Sill 8 Read segment descriptor words
work area

5' 22 Read sector Sector 40 CC Note segment's sector value
address 2

03 NOP 20 Sill

6 31 Search 10 IOBSEEK+3 40 CC 5
equal

7 08 TIC CCW6 00 These CCWs not used in this pass

8 OE Read key 30 Sill, SKIP 256
and data

1 This CCW IS set to NOP for devices without the rotational position sensing feature.

82 OS BDAM Logic

B. Channel Program After Reading the Count Field of the First Segment to Determine Its Length

CCW Command Code Flags
No. Hex Description Address Hex Description Count Comments

l' 23 Set sector Sector 40 CC Wait for positioning found on last pass
address 1

03 NOP 60 CC. Sill

2 31 Search ID IOBSEEK+3 40 CC 5 Search for segment
equal

3 OS TIC CCW2 00 Repeat search if segment not found

4 05 Write data Segment 00 (CCl Segment Update segment when found
work area 402 length

5'·2 23 Set sector Sector 40 CC Walt for updated segment to come
address 1 into position again

03 NOP 60 CC. Sill

62 31 Search ID IOBSEEK+3 40 CC 5 Search for updated segment
equal

72 OS TIC CCW6 00 Repeat search if segment not found

S2 OE Read key 30 Sill. SKIP 256 Check the record for errors
and data

1 ThiS CCW IS set to NOP for devices Without the rotational POSition sensing feature.
2 CCWs 5-8 are present and the command-cham bit m CCW4 IS on only when the DCBOPTCD field of the DCB specifies the Write-- validity-check option.

CCWs 1-4 of part A have been changed to write the updated segment and validity check it when necessary. All segments will
now be written by searching on a known ID. The changes to the channel program were made by the ASI routine in IGG019KJ.

Appendixes 83

Appendix E: Messages and Codes Issued by BDAM Modules

84 OS BDAM Logic

Figure 36 directs you to the BDAM module that issued a particular completion code
and/ or message. Refer to OS Messages and Codes for the meaning of a specific
message or completion code.

Completion Message BDAM Module Issuing
Code Number Message or Code

013 IEC1411 IGG0193E
020 IGG0193A
001 I EC0201 IGG019L1
026 IGG019LG

Figure 36. BDAM modules issuing messages and codes

_I ..
Progrom

OPEN -

; .;

READorW RITE -
"

~

+
Data Management
Open Routine

t
IGG0193A

• Get storage for
DEB and build It
(including appendage

I
vector table)

• Get storage for
read-exclusive
hst and initialize It

• Attach DEB 10
DCB

• IGG0193C

Load processing
modules and store
add

• IGG0193G spanned IGG0193F

• Build IRB I record~ • Get storage for 1-. Load processing buffen and BCB
modules and store • Format buffers
acldr J ~~ at ve~~~k addressing

or dynamic buffering
of nonspanned records

IGG0193E

• Get storage for
buffers and BCB

• Format buffers
• Build relative

extents in DEB

• •
IGG01SKAor KJ
Sese routine of
foundation module IGG01BKC

• o.eck validity Initiate conversion
of request of relative trICk

• Complete 'Ields address to actual
of DECB addrass

• BUIld lOB

• Convert address --
if retative addreH
specified IGG01SKR I

• Generate channel Update spanned records[program search on block 10
• Process invalid

lOS requests
I IGG01BKK I

Schedule I/O request r • Issue EXCP to
schedule 110 n Update nonspanned rec; r
requests ortis, search on block 10

I I IGG019KR I n Update spanned records:r
search on key -IGG019KI n Update nonspanned r
records; ... ch on key

IGG01IKN

r Add format-VS record

IGG01IKM

I_ Add format- V or
format-U record

I IGG01BKO J
Add format-F record

~ ~
IGG01BKE IGG01BKF

Initiate conversion Initiate conversion
of relative block of relative block
address to actual address to actUal
address; no overflow addren; overflow

IGGOIBKQ

Add CCWs to channel
program 10 verify
written data

IGG01BKW

::~~::::: :'C:8m r-
specified

IGG019KY

!~~~x:~= ~,!am -
spacifled

IGG019LA

Modify channel program ..
when extended search
speclflad

Figure 37. Relationship among processing program, BDAM routines, and other parts of the operating system
(Part 1 of 2)

Appendixes 85

Exit effector
of task supervisor

Schedule BDAM
ASI routine

ii'~~ ____ ~_~~N~i_W ____ ~

no buffer
a.oIl_

buffer
available

~~ SY_NA_D_....l1-0

RELEX • CLOS E
t - Dete Man ent

Close Routine

IGG019LE 0' KL
Start 110 Routmelof
dynamic buffering
modules

Getbu_,f
dynamic buff.ring
spac:lfiad

IGG019KU
Channel End/Abnormal
End Appendage Module

Check for error retry
procedure requirement

IGG019KA or KJ
ASI routin~ of
foundation module

• Issue fREEDBUf
SVC to release buffers

• Provide or remove
exclusive control
of block

• Schedule rest of
WR ITE-add channel
program

• COMPUTE feedback
• Release 108 to pOQI
• Set comptetion codes
• Post request

COMPLETION
• Process segmented

(spanned) records
• Process any

subsequent segments

- Modify channel
programs

- COMPUTE next
addre"

IGG019L1
Check Modulo

ClItck for requOlt
completion

IGCOOOIC
RelexModule

Release block need
under exclusive control

1
IGG0203A

• Purge scheduled lOB.
• Rele .. IOB

storage are.
• CI .. , DeB fields

built by BDAM
• R.I all storage

areas for buffert
and reed-excluslve list

I

If no

if yes

not
comP!eta
com oto

IGCOOO5G

SVC57

IGG019LG

Excluslvlcontrol
module

IGG019KC

Track feedback

IGG019KG

Block feedback.
no overflow

IGG019KH

Block feedback,
track overflow

no erron
erron

F

IGG019KL or LE

Free dynamic buffer
routine of dynamiC
buffermg module

1. If a WAIT is encountered as mdicated. the superVISor returns
control to the processing program. If a WAIT is encountered
before the request IS posted as complete (that IS, before the
second indicated I/O Interrupt). the processing program
relinquIshes control until posting occurs.

2. Either a WAIT or a CHECK may be speoified.

Figure 37. Relationship among processing program, BDAM routines, and other parts of the operating system
(Part 2 of 2)

86 as BDAM Logic

GLOSSARY The following terms are defined as they are used in this book. If you do not find the
term you are looking for, refer to the index or to the IBM Data Processing Glossary,
GC20-1699.

actual address: A pattern of characters that, without
further modification, identifies a unique storage
location.

actual extent: An area in the DEB containing data
that describes the space occupied by an extent of a
data set. BDAM module IGG0193A builds one
actual extent for each extent in the data set.

BLKREF field: A field the user specifies in his
program into which is put the data in the block
address operand of the READ macro instruction.
This data is either the relative or the actual address
of the record the user wants access to. If it is the
relative address, the BDAM address conversion
routines convert it to an actual address
(MBBCCHHR). Then the actual address is placed
in the IOBSEEK field of the lOB so that the
channel program can use the address to find a
block.

buffer pool: A continuous area of main storage
divided into buffers.

capacity record: The first block (block 0) on each
track of a data set. It contains the ID of the last
block on the track and the number of usable bytes
remaining on the track.

dummy record: A record, created when BSAM
builds a BDAM data set, whose purpose is to
provide space in which new records can be added
to the data set after it is created. The first byte in
the key field of the dummy record contains X'FF,'
and the first byte in the data field has a value
indicating the position of the dummy record on the
track (the R in MBBCCHHR).

extent: A continuous area of space on a
direct-access device occupied by or reserved for a
data set or part of a data set.

!OB !mff{'!, ~!!~!!~~ The addresses of TORs for re
quests for which a buffer is not available. The BCB
contains the addresses of the first and last lOB in
this chain and the IOBDQPTR field in each lOB in
the chain contains the address of the next lOB.

period: A group of tracks in which the first track
does not begin with an overflow block and the last
track does not contain a block that overflows to
another track.

processing program: Any program that is not a
control program; synonymous with problem
program.

read-exclusive list: An area of main storage
containing the UCB address and actual address of
blocks requiring exclusive control. This list is
described in detail in the "Data Areas" section of
this manual.

relative address: The position of a block in a data
set relative to the first block of a data set. The
relative address can be a relative track number or
relative block number. See "relative track address"
and "relative block address."

relative block address: A 3-byte binary number that
indicates the position of a block in relation to the
first block of a data set. The first block of a data
set always has a relative block address of O.

relative extent: An area in the DEB containing
either the number of blocks in each extent (if track
overflow is in effect) or the number of blocks in
each track (if track overflow is not in effect) of a
data set. Module IGGO 193E builds the relative
extent area when relative block addressing is
specified in the processing program.

relative track address: A 3-byte binary number in
the form TTR where:

TT is the position of the track relative to the first
track of a data set. The first track has a
relative position of O.

R is the number of the block relative to the first
block on the track TT. The first block of data
on a track has a relative value of 1.

search argument: The field of a block that contains
data identifying the block as unique from any other
block in the data set. Can be either the key field or
the block ID in the count field.

search limit: The track following the last track that.
should actually be searched in a data set. The
search limit is calculated and put in the IOBUPLIM
field of the lOB when the request macro instruction
specifies the extended search option for a block.

subroutine identification: The 2 low-order bytes of
each module's unique 8-byte name.

unposted queue: A queue of lOBs for requests for
blocks whose addresses are currently on the
read-exclusive list. The unposted queue contains
only lOBs for the current task.

Glossary 87

INDEX

Indexes to OS logic manuals are consolidated in the as Master Index to Logic Manuals, GY28-6717.
For additional information about any subject listed in this index, refer to other publications listed for the
same subject in the Master Index.

abnormal completion
abnormal end routine
access methods

BPAM 14-16
BSAM 18-19

actual address

13,27-28
28

in address conversion modules 13-16
defined 89
in foundation modules to
in read-exclusive list 29

actual extent
defined 89
examined by 16
storage obtained for 5

add logic section of IGGOl9KN 23
address conversion 59-62

(see also address conversion modules)
address conversion modules

described 13-16
illustrated to-I 1,86
(see also IGGOI9xx)

addresses
actual (see actual address)
relative (see relative address)
relative block (see relative block address)
relative track (see relative track address)
storing module addresses 7

appendage vector table 5,7
ASI (asynchronous interrupt) routine

described 11-13
illustrated 11,86
(see also IGGOI9KA, KJ)

AVT (appendage vector table) 5,7

base routine
described 9-11
illustrated to
(see also IGGOI9KA, KJ)

basic partitioned access method
basic sequential access method
BCB (buffer control block)

built 8-9

14-16
18-19

when CLOSE macro issued 34
described and illustrated 43-44
modified 26

BLKREF field 59-62,89
block address parameter 14-15
block addressing

(see relative block addressing)
BPAM (basic partitioned access method)
BSAM (basic sequential access method)
buffer control block (see BCB)
buffers

built 8-9
when CLOSE macro issued 34
obtained and freed 25-26

buffer pool
defined 89
described and illustrated 44-45
obtaining buffers from 25-26

buffer queue 26,34,87

capacity record
defined 89
illustrated 19

14-16
18-19

in self-format channel programs 19-21,23
channel end/abnormal end appendage modules

(see IGGOI9KU)
channel end routine 27-28
channel programs

building 16-24
illustrated 63-84
modifying 12
restarting 12
storage for 9
termination of 27

channel program generating modules
de,scribed 16-25
illustrated to,86
(see also IGGOI9xx)

charts (see flowcharts)
check module

described 32-33
illustrated 87
(see also IGG019LI)

CHECK macro 32-33,87
close executor module

described 33-34
illustrated 33,87

CLOSE macro 33-34,87
Close routine 33,87
codes, completion 85
completion, abnormal 13,27-28

Index 89

completion codes 85
conversion, address 59-62

(see also address conversion modules)
convert-to-actual routine, BPAM 14-16
convert-to-relative routine, BPAM 15-16
core (see main storage)

m
data areas 43-56
data control block (see DCB)
data event control block (see DECB)
data extent block (see DEB)
data set control block 5
DCB (data control block)

when CLOSE macro issued 34
described and illustrated 46-48
examined 5,10
initialized 8

DEB (data extent block)
built 5,8
data provided for address conversion 59-62
described and illustrated 49

DEBSUBID fields 5
DECB (data event control block)

described and illustrated 49-50
initialized 9
modified 11,19-20,23,29

DEQ loop indication 24
DEQ macro 21,30-31
DEQ section of IGG019KN 24
device errors 13,28
direct-access storage device 1,18
directory, module 41-42
DSCB (data set control block) 5
dummy records

defined 89
searching for 19,30

dynamic buffering modules
described 24-26
illustrated 25,87
(see also IGGOI9KL, LE)

dynamic buffering option
in IGG019KA 13
in IGGOI9KL, LE 25-26
in IGG0193E 8
in IGG0193F 9

II
ECB (event control block) II
end-of-data-set condition 27
end-of-extent appendage module

described 28-29
illustrated 87
(see also IGGOI9LC)

ENQ macro 20-21,30
ERP (error recovery procedure) 28,87

90 OS BDAM Logic

error recovery procedure 28,87
errors

device 13,28
in IGGOI9KA, KJ 12-13
in IGG019KU 27-28
invalid requests 11
SYNAD routine 33

error messages issued by BDAM modules 85
event control block 11
exclusive control module

described 29-32
illustrated 11,87
(see also IGGOI9LG)

exclusive control option 29-32
EXCP macro

issued by IGGOI9KL, LE 26
issued by IGG019KM 20
issued by IGGOl9KN 24
issued by IGG019LG 30

executor modules
(see close executor module, open executor modules)

exit effector routine 27
extended search modules

described 17-23
illustrated 10,86
(see also IGGOI9KW, LA, or KY)

extended search option
in channel program generating modules 18-19,21
in IGG019KC 15
in IGG019LC 28

extents
actual (see actual extent)
allocation of 58
defined 89
determining availability of 21
end-of-extent conditions 28-29
periods of an 57-58,89
relative (see relative extents)

II
F record format 18,28
feedback modules

described 16
illustrated 11,87
(see also IGGOI9KG, KH)

feedback option 14-15
fixed-length records 18,28
flowcharts

base routine of foundation module 35
lOS appendages 36
ASI routine of foundation module 37
updating block 38
exclusive control in multitasking system 39
WRITE-add requests in multi task environment 22

format channel programs
described 18-25
illustrated 10,86
(see also IGGOI9xx)

format-F records 18,28

format-U records 19,27,29
foundation modules

described 9-13
illustrated 10-11,86
(see also IGGOI9KA, KJ)

free dynamic buffer entry point
free dynamic buffer routine
FREEDBUF macro 13
FREEDBUFSVC 26

m
GETMAIN macro

D
IGC0005C 7,31
IGC0005G

described 26
illustrated 11,87

IGG019KA
described 9-13

10

in IGGOl9KM 20-21
in IGGOl9KU 27-28
in IGGOl9LC 30
in IGGOl9LG 30-32
illustrated 10-11,86
loaded by 6
pointer to 7

IGGOl9KC
described 14-15
in IGGOI9KA, KJ 10
illustrated 10-11 ,86-87
loaded by 6
pointer to 7

IGGOl9KE

26
7,26

calculating relative track address
described 15
in IGGOI9KA, KJ 10
illustrated 10,86
loaded by 6

IGG019KF
calculating relative track address
described 16
in IGGOI9KA, KJ 10
illustrated 10,86
loaded by 6

IGGOl9KG
described 16
illustrated 11,87
loaded by 6
pointer to 7

IGGOl9KH
described 16
illustrated 11,87
loaded by 6
pointer to 7

59-60

61-62

IGGOl9KI
described 17-18
in IGGOI9KA, KJ 10
illustrated 10,86
loaded by 6
pointer to 7

IGGOl9KJ
described 9-13
in IGGOl9KN
in IGGOl9KU 27-28
in IGGOl9LC 30
in IGGOl9LG 30-32
illustrated 10-11,86
loaded by 6
pointer to 7

IGGOl9KK
described 17-18
in IGGOI9KA, KJ 10
illustrated 10,86
loaded by 6
pointer to 7

IGGOl9KL
described 25-26
illustrated 25,87
loaded by 8
pointer to 7

IGG019KM
described 19-22
in IGGOI9KA, KJ 10
illustrated 10,86
loaded by 6
pointer to 7

IGGOl9KN
described 23-24
in IGGOI9KA, KJ 10
illustrated 10,86
loaded by 6
pointer to 7

IGGOl9KO
described 18-19
in IGGOI9KA, KJ 10
illustrated 10,86
loaded by 6
pointer to 7

IGGOl9KQ
in channel program generating modules 18-19
described 24
illustrated 10,86
loaded by 6
pointer to 7

IGGOl9KR
described 17-18
in IGG019KA, KJ 10
illustrated 10,86
loaded by 6

IGGOl9KU
in channel program generating modules 20
described 27-28
in IGG019KA, KJ II
illustrated 87
loaded by 8
pointer to 7

IGGOl9KW

Index 91

IGG019KW (continued)
described 17 -18
illustrated 10,86
loaded by 6
pointer to 7

IGGOl9KY
described 19-23
in IGGOl9LC 29
illustrated 10,86
loaded by 6
pointer to 7

IGG019LA
described 18-19
illustrated 10,86
loaded by 6
pointer to 7

IGG019LC
in channel program generating modules 21
described 28-29
illustrated 87
loaded by 8
pointer to 7

IGG019LE
described 25-26
illustrated 25,87
loaded by 8
pointer to 7

IGG019LG
completion code issued 85
described 29-32
in IGGOI9KA, KJ 12-13
in IGGOl9KM 20-21
in IGGOl9KN 23-24
illustrated 11,87

IGGOl9LI
completion code issued 85
described 32-33
illustrated 87
message issued 85
pointer to 7

IGG0193A
completion code issued 85
described 5
illustrated 6,86

IGGOl93C
described 5-7
illustrated 6,86

IGGOl93E
calculating size of period 57-58
completion code issued 85
described 8-9
illustrated 6,86
message issued 85

IGG0193F
described 9
illustrated 6,86

IGG0\93G
described 7-8
illustrated 6,86

!GG0203A
described 33-34
illustrated 33,87

input/output block (see lOB)

92 OS BDAM Logic

I/O interruptions 87
interruption request block 8,12
I/O supervisor 1,86-87
interruptions, I/O 87
invalid requests II
lOB (input/output block)

built 9-10
described and illustrated 50-55
examined 10,16,24-25
modified 17,19-24,27-29,31
released 11-13,33-34
on unposted queue 20,30-31

lOB buffer queue 26,34,89
IRB (interruption request block) 8,12
link pack area 7
list, read-exclusive

(see read-exclusive list)

macros
CHECK 32-33,87
CLOSE 33-34,87
DEQ 21,30-31
ENQ 20-21,30
EXCP (see EXCP macro)
FREEDBUF 13
GETMAIN 10
OPEN 5,86
READ (see READ macro)
RELEX 30-32,87
SYNCH 31
WAIT 32-33
WRITE (see WRITE macro)

main storage 5-10,33-34
MBBCCHHR 19
memory (see main storage)
messages issued by BDAM modules 85
modules (see IGxxxxxx)
modules addresses, storing 7
module directory 41-42

m
next address option 12
nonspanned records

in IGGOl9KA 12-13
in IGGOl9KM 20
in IGG0\9LE 25
in IGGOl93E 8

m
open executor modules

open executor modules (continued)

described 5-9
illustrated 6,86
(see also IGGOI93x)

OPEN macro 5,86
Open routine 5,86
operating system 1,86-87
options

dynamic buffering (see dynamic buffering option)
exclusive control 29-32
extended search (see extended search option)
feedback 14-15
next address 12
write-validity-check 18-19

overflow block 57
overflow section of DEB 8,16

'periods of an extent 57-58,89
permanent error 28
post routine 12-13
preformat channel programs

described 18-19
illustrated 10,86
(see also IGGOI9xx)

processing program
CLOSE macro issued 33-34
defined 89
illustrated 86-87
I/O interruption 11
OPEN macro issued 5
READ macro issued 9
WRITE macro issued

programs
9

channel (see channel programs)
processing (see processing program)

purge routine 34

queues
lOB buffer 26,34,87
unposted -,u--,2,34,88

m
read-exclusive list

built 5
defined 89
described and illustrated 55-56
in IGG019KM 20-21
in IGG019LG 29-32
pointer to 7

READ macro
checked for completion 32
with exclusive control specification 29
when issued by processing program 9,86

record formats for each BDAM module 42
records

capacity (see capacity record)
dummy 19,30,87
fixed·length 18,28
nonspanned (see nonspanned records)
undefined length 19,27,29
format of 42
segmented (see spanned records)
undefined-length 19,27,29
variable-length 19,27,29
variable-length spanned 19

recovery procedure, error 28,87
relative address

defined 89
in foundation modules 10

relative block addressing
in address conversion modules 15-16
defined 89
in IGGOI9KA, KJ 10
in IGG0193E 8

relative block conversion module
with track overflow (see IGGOI9KF)
without track overflow (see IGGOI9KE)

relative extents
built by 8
defined 89
examined by 16

relative track addressing
in address conversion modules 14-16
how calculated 59-62
defined 89
in IGGOI9KA, KJ 10

relative track conversion module
described 14-15
illustrated 10-11,86-87
(see also IGGOI9KC)

relative track feedback 15
RELEX macro 30-32
RELEX module 7,31
rotational position sensing feature 16-17,63
routines

abnormal end 28
ASI routine 11-13,86
(see a/so IGGOI9KA, KJ)
base 9-11
(see aiso iGGOi 9KA, Kj)
channel end routine 27-28
close 33,87
convert-to-actual
convert-to-relative
exit effector 27

14-16
15-16

free dynamic buffer 26
open 5,86
post 12-13
purge 34
start I/O 25-26
SYNAD 33
write 18-19

RPS (rotational position sensing) feature 16-17,63

Index 93

search argument 20,89
search limit

defined 89
in IGG019LC 28
in 10BUPLIM field 15
in self-format channel programs 21,24

segment work areas
built by 9
when CLOSE macro issued 34
in IGG019KJ 12
in IGG019KL 25

segmented records
(see spanned records)

self-format channel programs
described 19-25
illustrated 10,86
(see also IGGOI9xx)

self-format extended search module
described 19-23
illustrated 10,86
(see also IGGOI9KY)

spanned records
in IGGOl9KJ 12
in IGGOl9KL 25
in IGG019KN 23
in IGGOl93F 9

start I/O appendage entry point 7,25-26
start I/O routine 25-26
subroutine identification fields 5,7-8,87
supervisor, I/O 1,86-87
SVC (supervisor call) library
SVC 3 23
SVC 55 33
SVC 57 26
SYNAD routine 33
SYNCH macro 31
synchronous error recovery routine 33
SYSGEN I
system generation
system residence library

D
tables

94 OS BDAM Logic

AVT 5,7
WTG 5,7-8

task control block 5,12,27
TCB (task control block) 5,12,27
track addressing (see relative track addressing)
track overflow 8,16

I!I
16,29
19,27,29

U-record format 19,27,29
UCB (unit control block)
undefined-length records
unit control block 16,29
unit exception condition 27
unposted queue 30-32,34,88
update channel programs

described 17-18
illustrated 10,86
(see also IGG0l9xx)

user label track 5
user record area 12
variable-length records 19,27,29
variable-length spanned records 19

II
WAIT macro 32-33
where to go table 5,7-8
write-add channel programs

(see format channel programs)
WRITE-exclusive request 30-31
WRITE macro

checked for completion 32
with exclusive control specification 29-32
when issued by processing program 9,86

Write routine 18-19
write-validity-check option 18-19
write-verify module

(see IGG019KQ)
WTG (where to go) table 5,7-8

READER'S COMMENT FORM

OS BDAM Logic Order Number GY28-6617-6

Your comments about this publication will help us to produce better publications for your use. If
you wish to comment, please use the space provided below, giving specific page and paragraph
references.

Please do not use this form to ask technical questions about the system or equipment or to make
requests for copies of publications. Instead, make such inquiries or requests to your IBM represen
tative or to the IBM Branch Office serving your locality.

Reply requested

Yes D
No D

Name __ _

Job Title ______________________ _

Addre~------------------------

____________________ ap ____________ __

No postage nece~ary if mailed in the USA

Order Number GY28-6617·6

YOUR COMMENTS, PLEASE ...

This publication is one of a series which serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your answers to the questions on the back of
this form, together with your comments, will help us produce better publications for your
use. Each reply will be carefully reviewed by the persons responsible for writing and
publishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.,

POSTAGE WILL BE PAID BY ..

IBM Corporation
Monterey & Cottle Rds.
San Jose, California
95114

Attention: Programming Publications, Dept. 078

fold

International Business Machines Corporation
Data Processing Division
1133 Weslchesler Avenue, White Plains, New York 10804
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

FIRST CLASS
PERMIT NO. 2078
SAN JOSE, CALIF.

fold

fold

Order Number GY28-6617-6

Intematlonal Business Machines Corporation
Data Proceaalng Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

