
......

Systems Reference Library

IBM System/360 Operating System:

Job Control Language Reference

The job control language is used with all
System/360 Operating System control programs.
Every job submitted for execution by the
operating system must include job control
language statements. These statements contain
information required by the operating system to
initiate and control the processing of jobs.

This publication describes the facilities
provided with the job control language and
contains the information necessary to code job
control language statements.

This publication is intended for review and
reference by programmers who are familiar with
the information contained in IBM System/360
Operating System: Job Control Language User's
Guide, GC28-6703, or who have experience ~n
USIng the job control language.

File No. S360-36
GC28-6704-0 OS

~irs~_~dit~~~ (June, 1970)

This publication is for reference purposes only. It contains
all of the information necessary to code job control language
statements. If you have never coded job control language
statements, you should read and become familiar with the
information in the publication IBM~ystem/360 Operatin~System:
Job Control Language User's Guide, GC28-6703, before using
this one.

This edition applies to release 19, of IBM System/360
Operating System, and to all subsequent releases until other­
~~ise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein; before
using this publication in connection with the operation of IBM
systems, consult the latest IBM System/360 SRL Newsletter,
Order No. GN20-0360, for the editions that are applicable
a.nd current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of
-this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems Publica­
tions, Department 058, PO Box 390, Poughkeepsie, N. Y. 12602

© Copyright International Business Machines Corporation 1970

This publication describes the facilities
provided with the job control language and
contains the information necessary to code
job control language statements.

This publication can be used by
programmers who are familiar with the job
control language and are coding job control
language statements. The publication may,
for example, be used for review of a
particular job control language stat.ement
or parameter, or for reference on how to
code a parameter or what occurs when a
particular parameter or subparameter is
coded.

This publication has five logical parts:

1. Programming notes, which contain
coding conventions used in coding job
control language statements.

2. Job control language statements, which
describe the format of each statement
and the format of the parameters
associated with the statement. There
is a separate section for each
statement.

3. Appendixes, which include additional
information on the job control
language facilities, such as how to
write and use cataloged procedures,
and what default values are provided
when certain parameters are not coded.

4. Glossary, which contains definitions
of many of the terms used in this
publication.

5. Foldout charts, which show the format
of JOB, EXEC, and DD statement
parameters. The foldout charts appear
after the index.

Preface

Before you read tbis publication, you
should understand the concepts and
terminology introduced in the prerequisite
publications listed below. In addition,
the text refers you to other publications
for detailed discussions beyond the scope
of this publication.

Prerequisite Publications

IB~ system/360 Operating System:

Introduction, GC2~-6534

Concepts and Facilities, GC28-6535

Job Control Language User's Guide,
GC28-6703

Publications to Which the Text Refers
IBM System/360 operating System:

Systerr. Programmer's Guide, GC28-6550

Utilities, GC28-6586

Operator's Guide, GC28-6540

SUEervisor and Lata Management Services,
GC28-6646

Supervisor and Data Management Macro
Instructions, GC28-6647

Storage Estimates, GC28-6551

Tape Labels, GC28-6680

Advanced Checkpoint/Restart Planning
§uide, GC28-6708

~-

Programming Notes Notes

JOB Statement

EXEC Statement EXEC

DD Statement ------------~------------~ ...

Command Statement Cornman

Comment Statement Comment

Delimiter Statement Delimiter

Null Statement Null

PEND Statement PEND

PROC Statement PROC

Appendixes Appendixe

Glossary Glossary

Index Index

Foldout Charts Charts

SUMtI.:ARY OE MAJOR CHANGES - RELEASE 1.9 • 1.3

THE FORMAT OF THIS PUBLICATION • • • 15

SECTION I: PROGRAMMING NOTES ••••
Notation for Defining control

• 17

Statement Parameters. • • • • 17
Fields in Control Statements • • • 18
Parameters in the Operand Field 19
continuing Control Statements ••••• 20
Backward References • • • 22
Concatenating Data Sets • • • • • 22
Character Sets • • • • • • • 23
using Special Characters • • • • • • • • 24
coding Form • • • • • 25

SECTION II: THE JOB STA'IEMEN'l' •
JOB Statement Format • • • • • •
Rules for Coding • • • • • • •
positional and Keyword Parameters
Sample JOB Statements • • • •
Assigning a Jobname • • • • • • •
Examples of Valid Jobnames • • • '.
Accounting Information Parameter (For
PCP, MFT, MVT) •••••••••
Rules for Coding • • • • • • • •
supplying Accounting Information
Examples of the Accounting Information
Parameter • • • • • • • • • • •
Programmer's Name Parameter (For PCP,
MFT, MVT) • • • • • • • • •
Rules for Coding • • • • • • • • •
when to Code the Programmer's Name
Parameter • • • • • • • • • •
Examples of the Programmer's Name

• 27
• 27
• 27

28
• 29

31
· 31

• 33
• 33
• 33

• 34

• 35
• 35

35

Parameter • • • • • • • • • • • • • 35
The CLASS Parameter (For MFT, MVT) • 37
Rules for Coding • • • • • • • • • • 37
Assigning a Job Class to Your Job • 37

The CLASS Parameter and Time-Slicing • 37
Examples of the CLASS Parameter • 37
The COND Parameter (For PCP, MFT , MV'I) • 39
Rules for Coding • • • • • • • 39
using the COND Parameter • • • 39

When the COND Parameter is coded on
Both the JOB and EXEC Statements

Examples of the COND Parameter • •
• 39
• 40

The MSGCLASS Parameter (For MFT, MVT)
Rules for Coding • • • • • • • • • • •
Assigning an Output Class to System

• 41
• 41

Messages • • • • • • • • • • • • • • • • 41
Examples of the MSGCLASS Parameter • • • 41
The MSGLEVEL Parameter (For PCP, MF'l',
MVT) • • • • • • •• • • • •
Rules for Coding • • • • • • • •
Requesting Output of Job control
statements and Certain Messages
Examples of the MSGLEVEL Parameter •
The PRTY Parameter (For MFT, MVT)
Rules for Coding • • • • • • • • • •
What the PRTY Parameter Does • • • •

The PRTY Parameter and Time-Slicing

• 43
43

43
• • 44

45
• • 45

45
• 45

Contents

Exampl~s of the PRTY Parameter • •• 45
The RD Parameter (For PCP, MFT, MV~) 47
Rules for Coding • • • • • • • • • • • • 47
Using the Restart Facilities • 47

Defining Restart • • • • • . • 48
Examples of the nD Parameter • 49
The REGION Parameter - Without Main
storage Hierarchy Support (For MVT)
Rules for Coding • • • • • • •
Requesting Main storage

51
51
51
51

• 51
Acquiring Additional Main Storage

Examples of the ~EGION Parameter • . •
The REGION Parameter - With Main
Storage Bierarc£y Support (For MVT,
Excluding M65MP) • • • • • 53

• • 53 Rules for Coding • • • • •
Requesting Main Storage in One or Two
Hierarchies ••••• 53

Acquiring Additional Main Storage • • 54
Examples of the REGION Paran'eter • • • • 54
The RESTART Paran,eter (For PCP, MF'r,
MVT) • • • • • • • • • • • • • • • • • • 55
Rules for Coding • • • • • • • • • 55
When to Code the RESTART Parameter • • • 55

Rules for Referencing Generation
Data Sets and Using Backward
Heferences • • • • • • • • • • •• 56

Examples of the RESTART Parameter ••• 56
The RCLL Parameter (For MVT) • • • • 59
Rules for Coding • • • • • • • •• • 59
When to Code the HOLL Parameter • • • • 59
Examples of the ~OLL Parameter • • • • • 60
The TIME. Parameter (For MFT, MVT) 61
Rules for Coding • • • • • • • • • 61
Specifying a Time Limit for the Job •• 61

Time Limit for wait States • • • • 61
How to Eliminate Timing 62
Examples of the TIME Parameter • • 62
The TYPRUN Parareeter (For MF~r MVT) 63
Rules for Coding • • • • • • • • 63
Holding a Job • • • • • • • 63
Example of the 'IYPIWN Parameter • • • • 63

SECTION III: THE EXEC STATEMENT • 65
EXEC Statement Format • • • • • 65
Rules for c6ding • • • • • • • •• • 65
positional and Keyword Parameters • • • 66
Sample EXEC Statements • • • 67
Assigning a Stepname • • • • • • • 69
Examples of Valid stepnames 69
The PGM Parameter (For PCP, MFT, MVT) • 71
Identifying the Program to be Executed • 71

Tero~orary Library • 71
System Library • • • • • • •• • • 72
Private Library •••• 72
'l'he IEFER14 Program • • • • • 72

Examples of the I-G1'1 Pararr'eter • • • 72
The PROC Parameter (For PCP, MFT, MVT) • 75
Identifying the cataloged or In-stream
Procedure to be Called • • • • • • • • • 75
Examples of the PROC Parameter • • • • • 75
The ACCT Parameter (For PCP, MFT, MVT) • 77

Contents 7

Rules for Coding • . . • • . • •
Providing Accounting Information for a

77

Job step or Procedure step • • • • • • • 77
Examples of the ACCT Parameter •. . 77
The COND Parameter (For PCP, MFT, MVT) • 79
Rules for Coding • . . • . • 79
Using the COND Parameter • . ••• 80

Bypassing a Job Step • • • • • . . • • 30
hxecuting a Job Step •. ..••. 80
When You Call a cataloged Procedure • 81

Examples of the COND Parameter 81
The DPRTY Parameter (For MVT) 83
Rules for Coding. • • 83
Assiqninq a Dispatching Priority .. 83

The DPRTY Parameter and Time-Slicing • 84
When You Call a Cataloged Procedure • 84

Examples of the DPRTY Parameter • 84
The PARM Parameter (For PCP, MFT, MV1) . 8~

Rules for Coding • . • • • • . . 85
Providing a Processing Program With
Information at Execution Time • • • 85

When You Call a Cataloged or
In-Stream Procedure . • • 8~

Examples of the PARM Parameter •. . 86
The RD Parameter (For PCP, MFT, KVT) 87
Rules for Coding • • • • . . • . • . 87
Using the Restart Facilities •• .. 87

Defininq Restart • . • • . •. • • 88
When You Call a cataloged Procedure . 88

Examples of the Fm Parameter • • . 89
The REGION Parameter - without Main
Storaqe Hierarchy Support (For MV'I) 91
Hules for Coding • • . • . . • . 91
Requesting Main Storage . . . 91

Acquiring Additional Main Storage •• 91
When You Call a Cataloged Procedure • 91

Examples of the REGION Parameter • . . • 92
The REGION Parameter - With Main
storage Hierarchy Support (For MVT,
Excluding M65MP) • • • 93
Rules for Coding • . • .. ••••• 93
Requesting Main Storage in One or Two
Hierarchies . . • • . •• ••••. 93

Acquiring Additional Main Storage .• 94
When You Call a Cataloged Procedure • 94

Examples of the i~EGION Parameter .• 94
The ROLL Parameter (For MVT) . • • • •. 95
Rules for coding • . • • . • . 0 • • • • 9~
When to Code the ROLL Parameter . 95

When You Call a Cataloged Procedure • 95
Examples of the ROLL Parameter • • • 96
The TIME Parameter (For MFT, MVT) . 97
Rules for Coding • . . • • • . . 97
Specifying a Time Limit for a Jo~ step • 97

Time Limit for wait States •• •• 97
How to Eliminate Timing • • •• • • 98

How the Job Time Limit Affects the
step Time Limit: • . • • . • • • . 98
When You Call a Cataloged Procedur~

Examples of the TIME Parameter • •
• 98

98

SECTION IV: THE DD STATEMENT
DD Statement Format
Rules for Coding .
positional and Keyword
Sample DD ~tatements .
Assigninq a Ddname . .

8 JCL Reference

Parameters

· .. 101
.101

· •. 101
• •• 102
· .. 103

.10~

~nen Adding or Overriding
Information in a cataloged Procedure
step • . • • • • • • . • •

Bxamples of Valid Ddnames ••••
... 105
_ .. 106

.107
• • -. .108

Special Ldnames
JOBLIB .

~ules for Coding the JOBLIB DD
Statement

The DISP Parameter
When the Library Is cataloged

• u .108
_. .108

.1019

.109

.1019
When th~ Licrary Is Not Cataloged
Concatenating Libraries . . • • u

~hen the Job Includes a STEPLIE DD
statement .•••••• u .110

Examples of the JOBLIB DD staterrent u .110
STEPLIE 111

Nules tor Coding the STE~LIE DD
statement . • . . . • •

When the Library Is cataloged
~hen the Licrary Is Not Cataloged

... 111
.111

or Passed • • • • • .. .111
When the Li~rary Is Fassed By a
Previous SteF ••. • • •
concatenating Libraries •• • •
When the Jcb Includes a JOBLIE DD

... 112

... 112

statement 112
Examples of the STEFLIB DD statement ... 112
SYSABEND and SYSUDUMP •••• u .114

Writing the DUITF to a unit Record
Device 114
~toring the 0u~p • • • • ••• u .114

Examples of the SYSAB~ND and S:X:SUDULF
DD statements ... 115
SYSChK . • 116

~ules for Coding the SYSCEK DD
statement ... 116

When the Checkpoint Data Set Is
Cataloged • • • . • .. .116
whEn the Check~oint Data Set Is
Not cataloged ... 117

Examples of the SYSCHK DD statement ... 117
The * Parameter •119
Hules for Coding . . . • •. .119
Defining Data in the Input ~trearr,119

~hen You Use a System with PCP .• u .120
Wnen ~cu Use a System with MFT or Mvr 120

The DCB Suuparameters BLKSIZL and
BUl'Ne •••• " .1:;W

Examples of the * Parameter •••• u .121
The DATA Parameter • . " .123
Rules tor Coding • • •123
Defininc Data in the Input Strearr . u .123

When You Use a System With PCP •1 :;:~4
When You Use a System with MFT or MVT 124

The ~Cb SUDrara~eters BLKS~Z~ and
.l::3U.FUO ..•••.•.• • ... 124

Example~ of the DATA Parameter125
The DUM.EY Parar.-eter • . • . .127
Rules for Codins . u .127
What the DUIv1">Y Pardrreter Does .. .1 '27
coding tht LUM!/JY Pararreter . • . .1 :;:~7
Examples of the uUM~Y Paraweter • • " .128
The AF.F Parameter ••• • • ... 129
Rules for Coding . • ... 129

Optimizinq Channel Usage • • • u .129
Requestinq Channel Separation 129
EXdmple of the AFF Parameter • ." .130
Th~ DeL ~arameter •. 131

Rules for Coding • • • • • • • • •
Completing the Data Control Block

DCB Macro Instruction ••••
DCB Parameter ••••••••
Data set Label • • • • • • • •

Specifying DCB Information on the DD

.131

.131

.132

.133

.133

statement • • • • • • • • • • • • • • .133
supplying DCB Keyword subparameters .133
Copying DCB Information From a Data
Set Label • • • • • • • • • • •• 133
Copying DCB Information From an
Earlier DD Statement • • • • .134

Glossary of DCB subparameters .134
Examples of the DCB Parameter .147
The DDNAME Parameter. • • • • • •• 149
Rules for Coding • • • • • • • • •• 149
What the DDNAME Parameter Does ••••• 149
When You Code the DDNAME Parameter .149

The DCB Subparameters BLKSIZE and
BUFNO •••••••••••••••• 1Sl

Examples of the DDNAMb Parameter •• 151
The DISP Parameter • • • • • • •• .153
Rules for Coding • • • • • • • • • • •• 154

What the "DISP Parameter Does ••••• 154
Specifying the Data set's status .154

When you Specify NEW as the Data
set's Status.. • ••••••• 155
When You specify OLD as the Data
Set's Status.. • ••••••• 155
When You Specify SRR as the Dat.a
set's Status.. • ••••••• 155
When You Specify MOD as the Data
Set's Status ••

Specifying a Disposition for the Data
Set • • • • • • • •

When You Specify DELETE as the

.155

.1~6

Dis~osition • • • • • • .1~7
When You specify KEEP as the
Disposition • • • • • •• 157
When You Specify PASS as the
Disposition ••••••• 157
When You Specify CATLG as the
Disposition • • • • • •• 158
When You Specify UNCATLG as the
Disposition •••••.•• 158

Specifying a Conditional Disposition
for the Data Set . • • • • • • • •• 159

When You 3pecify DELETE as the
Conditional Disposition
When You Specify KEEP as the
Conditional Disposition

.159

• •• 1~9
When You Specify CATLG as the
Conditional Disposition •••••• 160
wnen You Specify UNCATLG as the
Conditional Disposition •••• 160

Disposition processing Chart • .160
Examples of the DISP Parameter ••••• 163
The DSNAME Parameter • • .165
Rules f or Coding • • • • • • • .165

Identifying the Data Set. • • .166
Creating or Retrieving a Nontemporary
Data Set. • • • • ••••• 166

Nontemporary Data Sets • • • • • •
Members of a Partitioned Data Set
Generations of a Generation Data
Group • • • • • • • • • • • •
Areas of an Indexed sequential
Data Set • • • • • • • • • • •

.166

.167

.167

.167

Creating or Retrieving a TeRporary
Data Set • • • • • • • • • • • • •

Temporary Data Sets • . • • •
.168
.168

Members of a Temporary Partitioned
Data Set •••.•••••••.•. 168
Areas of a Temporary Indexed
sequential Data Set
Using a Dedicated Data Set .

Copying the Data Set Name From an
Earlier DD Statement • . • • •
Specifying the DSNAME Parameter in
Apostrophes •••••• . • • •
Examples of the DSNAME Parameter
The LAEEL Parameter
Rules for Coding • • • • • • • • •

Data Set Labels • • • • • •
When to Code the LAEEL Parameter

The Data Set Sequence Number

• .169
· .169

· • .169

• .169
· .170

· • .171
.172

· •. 172
· .172

subparameter • • • • • • • • • • .173
The Label Type Subparameter ••. 173
The PASSWORD Sub~arameter .174
The IN and OUT Subparaweters ••. 174
The RETPD and EXPDT subparameters • .175

Examples of the LAEEL Parameter •.•• 175
The OUTLIM Parameter -- MFT, MVT •••. 177
Rules for Coding • • • • • • • • • .1 77
What the OUTLIM Parameter Does. • .177
Determining the Output Limit • • • .177
Example of the OUTLIEi Parameter • • • .1 77
The SEP Parameter •• • • • .179
Rules for Coding •••••••••.•• 179

Optimizing Channel Usage ••••••. 179
Requesting Channel separation •• 179
Example of the SEP Parameter • • •. 180
The SPACE Parameter •••••••.•. 181
Rules for Coding • • • • • • . • .. 182

Requesting Space for a Data Set •• .182
Specifying the SPACE Parameter • • • .183

Letting the System Assign specific
Tracks • • • • • • • • • • • • • • . • .183

Specifying the Unit of Measurement • .183
Specifying a primary Quantity .184
Specifying a secondary Quantity .184
Requesting Space for a Directory or
Index •.•••••.•••.•. 185
Releasing Unused Space -- RLSE • • • .185
Specifying the Forwat of Allocated
0pace -- CONTIG, MXIG, or ALX •. 186
Allocating Whole Cylinders -- Rourm .186

Assigning Specific Tracks . • • • ••. 186
Examples of the SPACE Parameter • .187
The SPLIT Pararr,eter •••.•.•. 189
Rules for Coding • • • • • • • . • .•• 189

Requesting Space for a Data set .•• 190
Specifying the SPLIT Parameter ••••. 190

Requesting Space in units of
Cylinders • • • • • • • • • • .190
Requesting Space in units of Blocks .191

Examples of the SPLIT ParaTheter • .192
The 3UBALLOC Parameter. • . • •• .193
Rules for Coding •.•••••••.•• 194

Requesting Space for a Data Set ••• 194
Specifying the SUBALLOC Parameter .• .194

Specifying the Unit of Measurerr:ent • .195
Specifying a Priffiary Quantity • .195
Identifying the Original Data Set •• 195
Specifying a secondary Quantity .196
Requesting Space for a Directory' ••• 19b

Contents 9

Examples of the SUBALLOC Parameter ••• 197
The SYSOUT Pararreter -- PCP • • .199
Rules for Coding.. . ••••... 199
Advantages to Coding the SYSOUT
Parameter • • • • • • • • .199

The Classname • • • • • • • .199
Job Separators • • • • •• .200

Examples of the SYSOUT Parameter for
PCP • • • • • • • • • .200
The SYSOUT Parameter -- MFT, MVT •••• 201
Rules for Coding •• •• • • • . • .201
Advantages to Coding the SYSOUT
Parameter •••• • • • .

The Classname • • • • •
The Program Name • • • • .
The Form Number

.201
• • • • 202

.202

.202
coding Other Parameters With the
SYSOUT Paramet.er • • • • • • •
Job separators • • • • • • • • •

Examples of the SYSOUT Parameter for
MFT and MVT • • • • • • • • • •

Coding Other Parameters with the
Sysout Parameter written to the same

.203

.203

.204

unit record device. • ••• 204
'rhe ucs Parameter • • • • • .205
Rules for Coding •••••••••••• 205
special Character sets • • •. .205

Identifying the Character Set •••• 206
Requesting Fold Mode ••••••••. 207
Requesting Operator Verification ••• 207

Examples of the UCS Parameter .207
The UNIT Parameter • • • • • • •• .209
Rules for Coding. • • • . .209
providing unit Information. .210

Identifying the Device. • •••• 211
unit Address • .211
Device Type • • • • • .211
Group Name • • • • • • • • • .213

unit Count •••••••••••••• 214
Parallel Mounting ••• 214
Deferred Mounting • • • • .214
Unit separation • • • • • ••• 215

Unit Affinity • • • • • •• 215
Examples of the UNIT Parameter ••• 216
The VOLUME Parameter • • • • • •• .217
Rules for Coding. • • • • • • • .218
Providing Volume Information. • .218

Specific Volume Request .•• 218
Nonspecific Volume Request .219

The PRIVATE Subparameter • • • .219
When PRIVATE Is Not Coded ••• 219

The RETAIN Subparameter • • •• .220
The Volume Sequence Number
Subparameter • • • • • • • • • •• 220
The Volume Count Subparameter •••• 221
Supplying Volume Serial Numbers (SER) 221
Referring the System to an Earlier
Specific Volume Request (REF) •• 222

Volume States •• • • • • • • • •• 222
The Mount and Use Attributes ••••• 223
Nonsharable Attribute •••••••• 226
Satisfying Sp€~cific Volume Requests .226
Satisfying Nonspecific Volume
Requests • • • • • • • • • • • •

Examples of the VOLUME Parameter •
.226
.227

SECTION V: THE COMMAND STATEMENT ••• 229
~rhe Command Statement Format • • • • • .229

10 JCL Reference

Rules for Coding •••••••••••• 229
Corr-mands That Can Be Entered Through
the Input stream • • • • • . • • • .230

PCP •••• 230
MFT • • • • • •• 231
MVT ••• 231

Example of the Command Statement •••• 232

SECTION VI: THE COMMENT STATEMENT ••• 233
The Comment Statement Format
Rules for Coding • • • • • • • • •

output Listings • • • • • •
Example of the Comment Statement •

.233
• •• 233
· • .233

.233

SECTION VII: 'THE DELIMITER STATEMEN']~ .235
The Delimiter statement Format.. .235
Rules for Coding • • • • • • • •• .235
Example of the Delimiter State~ent ••• 235

SECTION VIII: THE NULL STATEMENT'
The Null Statement Fo'rmat
Example of the Null Statement

• • .237
.237
.237

SECTION IX: THE PE~D STATEMENT
The PEND Statement Format

• • .239
•••• 239

Rules For Coding • • • • • • • •
Examples of the PEND Statement

SECTION X: THE PROC STATEMENT •
The FROC Statement Format

• .239
• • .239

.241
• .241

Rules for Coding • • • • • • • •
Assigning a Value on a PROC Statement:

• .241

to a Symbolic Parameter • • • •
Examples of the PROC statement

SECTION XI: APPENDIXES

.242
• •• 243

• • .245

APPENDIX A: CATALOGED AND IN-STREAM
PROCEDURES • • .247

USING CATALOGED AND IN-STREAM
PROCEDURES • • • • • • • • • • • .249
How To Call a Cataloged Procedure ••• 249
How tc Call An In-stream Procedure .249
Assigning Values to Symbolic ParametE~rs 250

Nullifying a Symbolic Parameter ••• 251
Example of Assigning Values to
Symbolic Parameters •• • • • • •
Overriding, Addin9, and Nullifying

.252

Parameters on an EXEC Statement •• 253
Overriding EXEC STATEMENT ParaIlietel:s .253
Adding EXEC STATEMENT Parameters • • .255
Nullifying EXEC STATEMENT Parametel:s .255

Examples of Overriding, Adding, and
Nullifying Parameters on an EXEC
Statement ••••••••••••••• 256
Overriding, Adding, and Nullifying
Parameters on a DD Stateffent • • •

Overriding DD STATEMENT Parameters •
Adding DD Statement Parameters • • •
Nullifying DD STATEMENT Parameters •

.257

.257
• 259
• 259

Examples of Overriding, Adding, and
Nullifying Pararr.eters on a DD StatemEmt 260
Overriding DD Statements That Define
Concatenated Data Sets ••••••••• ~62
Adding DD Statements to a Procedure •• 262
Examples of Adding DD Statements to a
Procedure ••••••••••••••• 263

WRITING PROCEDURES: CATALOGED AND
IN-STREAM • • • • • • • • • • •• .265
Why Catalog Job Control Statements ••• 265
Why Use In-Stream Procedures •••••• 265

The Contents of cataloged And
In-stream Procedures • • • • • • .265
Using Symbolic Parameters in a
Procedure • • • • • • • • • •• .266
Adding and Modifying Cataloged
Procedures •••••••••••••• 268

APPENDIX B: USING THE RESTART
FACILITI:t..S • • • • • • • •
Restarts • • • • • • • • • • •

Automatic step Restart • • • • •
Automatic Checkpoint Restart
Deferred Step Restart
Deferred Checkpoint Restart

Examples of Using the Restart
Facilities • • • •• • • • •

APPENDIX C: CREATING AND l<ETRIEVI~G

.269

.269

.269

.269
• .269

.270

• .272

INDEXED SEQUENTIAL DATA SETS. • .275
Creating an Indexed Sequential Data set 275

The DSNAMh Parameter •••• • .276
The UNIT Parameter. • .276
The VOLUME Parameter • • .276
The LABEL Parameter .276
The DCB Parameter .277
The DISP Parameter. .277
The SPACE Parameter • • • • • .277

Nonspecific Allocation Technique •• 277
Absolute Track Technique. .278

The SEP or AFF Parameter. • • • .278
Area Arrangement of an Indexed
sequential-Data Set •••••• .278
Retrieving an Indexed Sequential Data
Set • • • • • • • • • • •••••• 280

The DSNAME Parameter •• 280
The UNIT Parameter. • .280
The VOLUME Parameter. • .280

The DCB l:Jarameter • • • • • •• .280
T be DISP Parameter • • • • • • • .280

Example of creating and Retrieving an
Indexed sequential Data Set ••. 281

APPENDIX D: CREATING AND RETRIEVING
GENERATION DATA SETS •••••••••• 283
Before You Define the First Generation
Data Set •••••••••••••••• 283

Creating a Model Data Set Label •• 283
Referring the System to a
Cataloqed Data Set. • • .284

Creating a Generation Data Set ••• 284
The DSNA1.VjE Parameter. • • • .284
Tne LISP Parameter • • •••••. 284
The UNIT Pararreter • • • •. 285
The VOLUME Parameter • • .285
The SPACE Paraffieter • • • • . •. 285
The LABEL Paran'eter • • • • • •• 285
The DCE Paraweter •• 285

Retrieving a Generation Data Set •••• 286
'The DSNA~b Parameter • • • • • .286
The LISP Pararne'ter • • • • • .286
The UNIT Parameter •••••••••• 286
The LABEL Parameter • • • • • • .286
The DCB Parameter ••• 286

Resubmitting a Job for Restart ••• 286
Example of creating and Retrieving
Generaticn Data Sets • • • • • .287

APPENDIX E: DEFAULT PARAMETER VALUES
SUPPLIED IN THE INPUT READER PROCEDURE .289
How Tc Keep Track of the Default
Values and Restrictions •••••• 289

APPENDIX F: A CEECKLIST • • •• 293
Examples • •• 295

SECTION XI: GLOSSARY • •• 299

INDEX • .307

SECTION XII: ceNTROL STATEMENT
FOLDOU~ CHARTS ••••••••••••• 321

Contents 11

Illustrations

Figures

~igure 1. Control statement Fields
Figure 2. Character Sets .•..
Figure 3. Coding Form for Codins
Control Statements . . • •
Figure 4. How the Data Control block
Is Filled • • . . • • .

Tables

. 18
23

. 25

.132

Table 1. Disposition Processing Chart 161
Table 2. Co~binations of ~ount and
Use Attributes. . . • • . . • . .225
Table 3. Area Arranqement of Indexed
sequential Data Sets279

12 JCL Reference

Tatle 4. Default Values and
Restrictions Su~~lied in the Input
Header Procedures • . • . . .:,2 ')1

Tatle j. A Checklist (Part 1 of 3) •• 293

Summary of Major Changes--Release 19

Ihe Release 19 changes listed below are described in this manual. They are indicated in
the text by a vertical line to the left of the change.

r---------------------T--------------------------·----------------------T----------------,
I Item I Description I Areas Affected I
~---------------------t--t----------------~
ISystem Management IThe TIME pa~'ameter on the JOB and EXEC state- I 28 61 66 97 I
IFacilities Subset 1 Iments now applies to ~FT as well as MVT. I'" I
~---------------------t--t----------------~
ISystem Management IOUTLIM, a new parameter on the DD statement I I
IFacilities Subset 2 Ithat specifies SYSOUT, allows you to limit the 1 102 177 203 303 1
I Inumber of logical records you want included in 1 ' , , I
I Ian output data set. I I
~---------------------+--+----------------~
I Input/Output IREPOS, a new DCB subparameter that specifies I 1
IRecovery Management Irepositioning for tape devices, has been added. I 145 231 232 I
I support IA new command, SWAP, that allows Dynamic Device I " I
I IReconfiguration of two volumes has been added. I I
~---------------------+--t----------------~
IData Management ITwo new values for BFTEK, a DCB subparameter, I I
Isupport for American Ihave been added. A specifies record area 1 134-135 1
INational Standard I buffering; R specifies record bufferin~. I 1

1 COBOL 1 I 1
~---------------------+--+----------------1
12495 Tape cartridge 12495 is now supported. 1 213 I
I Reader I 1 I
~---------------------+--t----------------~
IOptical Readers IVOLUME=SER=OCRINP is assumed for Optical ~eadersl I
I lif no volume serial number is specified. 1285, 1 1
1 11287, and 1288 Optical Readers are now 1 1
1 1 supported. 0 and H are new values for DCb 1 142,143,212 1
1 I subparameter OP'I'CD. 0 specifies on line 1 1
1 Icorrection for Optical Readers; H requests 1 1
1 Ihopper empty exit fQr Optical Readers. 1 I
~---------------------+--t----------------~
11419 Magnetic Tape 11419 and 1275 are now supported. 1 I
I Reader and 1275 I 1 212 21 3 1
IOptical Reader Sorterl 1 1
~---------------------t--t----------------i
IRecognition of IB, a new value for DCB subparameter OPTCD, 1 1
IEOF on Input Irequests that end-of-file recognition be 1 142-143 I
I Idisregarded for tapes. 1 1
~---------------------+--+----------------~
IISAM Improvements IFor ISAM, a newly created data set can now I 1
I loverlay an older one -- reusing the space. The I 1
1 lindependent overflow area of an ISAM data set 1 276,277,279,280 1
I Ican now be on a different device type from the 1 1
I I prime area. 1 1 l _____________________ ~ __ ~ ________________ J

(continued)

Summary of Major Changes - Release 19 13

(continued)
r---------------------T--T----------------,
I Item I Description I Areas Affected I
~---------------------t---------------------~--------------------------t----------------i
IDirect System lIn MFT and MVT, an output data set can now I I
IOutput Facility Ibe written directly to the desired unit record I 203 I
I lor magnetic tape device. I I
~---------------------+--+----------------~
Iseven-Track Tape IThe default for 7-track tape is now 800 I 138 I
IDefault of 800 BPI Ibits-per-inch. I I
~---------------------+--+----------------~
IDD DUMMY Substitu- IA data set that is not needed after restart can I 271 I
Ition at Restart: Ibe defined by coding the DUMMY parameter. I I
~---------------------+--+--------------R-~
lIn-Stream Procedures IA facility has been added that allows procedures I ~~;2~4~5~:~:~~~'1
I Ito be included in the input stream of a job. 1 301 ,303' "'I
~---------------------+--+----------------~
IMain Storage IIf you code the REGION parameter and request I I
I Hierarchy Support, I storage only from hierarchy 1, no hierarchy 0 I 54,93 I
IMVT Extension I segment is allocated. I I
r----------------------t---t----------------,,-~
IBlocksize Adjustment IIf the BLKSIZE parameter for a SYSOUT data set I I
Ifor Sysout Data Sets lis not an integral multiple of and larger than I 135-136 I
I Ithe logical record length, it is adjusted. I I L _____________________ ~ __ ~ ________________ J

14 JCL Reference

The Format of This Publication.

This publication is designed for easy reference. The first section of
this publication contains information that is common to all job control
language statements; for instance, one of the topics in this section is
how to continue a field onto another control statement. You may want to
review section I from time to time.

Sections II through X contain descriptions and examples of the
different control statements. 'The job control statements are described
in the following order:

1. The JOB statement.
2. The EXEC statement.
3. The DD statement.
4. The command statement.
S. The comment statement.
6. The delimiter statement.
7. The null statement.
8. The PEND statement.
9. The PROC statement.

Each statement description includes the purpose of the statement and
rules for coding the statement. Notice that the JOB, EXEC, and DD
statements are described first, in the order in which they normally
appear in the input stream. The remaining statements are described in
alphabetical order.

The statement description for the JOB, EXEC, and DD statements is
followed by a chapter on assigning a name in the name field of the
statement and a chapter for each positional and keyword parameter that
can be coded on the statement. The chapters on positional parameters
appear before the chapters on keyword parameters. Both positional and
keywork parameters are described in alphabetical order.

The format of the positi.onal or. keyword parameter appears at the
beginning of the chapter. Each subparameter is then described briefly.
The text following the format description of the parameter describes the
purpose ~f the parameter and each subparameter. Each chapter ends with
examples on the use of the parameter and its subparameters.

section XI consists of Appendixes A th~ough F. These appendixes
include:

1. Appendix A: cataloged and In-stream Procedures

2. Appendix B: Using the Restart Facilities

3. Appendix C: creating and Retrieving Indexed sequential Data Sets

4. Appendix D~ creating and Retrieving Generation Data Sets

5. Appendix E: Default parameter Values Supplied in the Input Reader
Procedure

6. Appendix F: A Checklist

Section XII is a glossaz'y of terms used in this publication.

section XIII, which follows the, index, is a set of foldout charts.
These charts show the format of JOB, EXEC, and DD statement parameters.

The Format of This Publication 15

~.

Section I: Programming Notes

Notation for Defining Control Statement Parameters

The formats of the parameters described in this publication for the JOE,
EXEC, and DD statements appear at the beginning of the chapter on the
corresponding parameter. Not~ations used in the format descriptions are
described below.

1. Uppercase letters and words are coded on the control statement
exactly as they appear in the format description, as are the
following characters.

ampersand &
asterisk *
comma
equal sign
parentheses ()
period

2. Lowercase letters, words, and symbols appearing in the format
description represent variables for which specific information is
substituted when the parameter is coded.

For example, PRTY=priority is the format description for the PRTY
parameter. When you code the PRTY parameter on a JOB statement,
you substitute a number for the word "priority."

3. Braces (} are a special notation and are never coded on a control
state~ent. Braces are used to group related items; they indicate
that you must code one of the items.

For example, {TRK } is part of the format description
CYL
block size

for the SPACE parameter. When you code the SPACE parameter, you
must code either TRK, CYL, or a substitute for "block size," which
would be a number.

4. Brackets [] are a special notation and are never coded on a
control statement. Brackets indicate that the enclosed item or
items are optional and you can code one or none of the items.

For example, [,DEFER] is part of the format description for the
UNIT parameter. When you code the UNIT parameter, you can include
,DEFER in the UNIT parameter or omit it.

An example of more than one item enclosed in brackets is

rEXPDT=yydddl , which is part of the format description for the
LRETPD=nnnn J

LABEL parameter. When you code the LABEL parameter, you can
include either EXPDT=yyddd or RETPD=nnnn in the LABEL parameter or
omit both.

Sometimes, one of a group of items enclosed in brackets is a comma.
You code the comma when none of the other items in the group is
used and a following part of the parameter is still to be coded.

Section I: programming Notes 17

The comma indicates to the system that you have not selected to
code any of the items enclosed in the brackets.

For example. [: prognarne] [. form on urnb er J) is part of the format

description for the SYSOUT parameter in systems with MFT and MVT.
WhE~n you code the SYSOUT parameter, you have the option of coding
bot~h ",progname" and" ,form numbern, omitting both, or coding onljl
one. The comma enclosed in brackets with" ,progname" must be codE~d
when ",progname" is not coded but ",form number" is coded; that is,
you would code: "form number).

5. An ellipsis ••. (three consecutive periods) is a special notation
and is never coded on a control statement. An ellipsis is used to
indicate that the preceding item can be coded more than once in
succession.

For example, COND=«code,operator), •••) is the format description
for the COND parameter on the JOB statement. The ellipsis
indicates that (code,operator) can be repeated.

Fields in Control Statements

Every control statement is logically divided into different fields.
There are four fields -- name field, operation field, operand field,
comments field -- but not all of the control statements can contain all.
of these fields. Figure 1 shows the fields for each statement.

r---------------T-------------T--,
I I Columns I I
I statement I 1 and 2 I Fields I
~---------------+-------------+--i
I Job I // Iname operation(JOB) operand1 comments 1 I
I Execute I // Iname 1 operation(EXEC) operand comments1 I
IData Definition I // Iname1 operation(DD) operand comments1 I
IPROC(Cataloged) I // Iname 1 operation(PROC> operand comments1 I
I PROC (in-stream) I / / 1 name operation (PROC) operand1 comments 2: I
IProcedure end 1 // Iname 1 operation(PEND) comments 1 I
I Command I // loperation(command) operand comments 1 I
IDelimit~er I /* I comments 1 I
INull I // I I
~---------------+-------------+--i
I statement I Columns 1,2,31 Field I
.---------------+-------------+--~
I Comment I //* I comments 1
~---------------~-------------~--i
11 0ptional I
12 0ptional -- If an operand(s) is not coded, comments cannot be coded. I
I If an operand(s) is coded, comments are optional. I L __ J

Figure 1. Control statement Fields

The name field identifies the control statement so that other
statements and system control blocks can refer to it. The name field i.s
1 to 8 alphameric and national (#, @, $) characters; the first charact€!r
must be alphabetic or national. The name field must begin in column 3.

The operation field specifies the type of control statement, or, in
the case of the command statement, the command. The operation field
must follow the name field and must be preceded and followed by at least
one blank.

18 JCL Reference

The operand field contains parameters separated by commas. The
operand field must follow the operation field and must be preceded and
followed by at least one blank. The operand field is described in more
detail in the next chapter "Parameters in the Operand Field."

The comments field contains any information deemed helpful by the
person who codes the control statement. The comments field must follow
the operand field and must be preceded by at least one blank.

Control statement fields -- except the name field, which must begin
in column 3 -- can be coded in free form. Free form means that the
fields need not begin in a particular column. separate each field with
a 'blank; the blank serves as a delimiter between fields.

Except for the comment statement, which can be coded through column
80, fields cannot be coded past column 71. If the total length of the
fields will exceed 71 columns, you must continue the fields onto one or
more succeeding statements. How to continue fields is described in the
chapter "Continuing Control Statements."

Some examples of how the different field~ appear on control
statements are:

Columns:

1 2 3
Name Operation ~perand Comments

/ / JOB8 JOB MSGLEVEL=(I,I) THE FIRST STATEMENT IN JOB

/ / STP] EXEC PGM=PROG4,REGION=801< EXECUTES PROGRAM NAMED PROG4

/ / WORK DD UNIT=2400 DEFINES A TEMPORARY DATA SET

Parameters in the Operand Field

The operand field is made up of two types of parameters: one type is
characterized by its position in the opexand field in relation to other
parameters (a positional parameter); the other type is positionally
independent with respect to others of its type, and is characterized by
a keyword followed by an equal sign and variable information (a keyword
parameter). Both positional parameters and the variable information
associated with keyword parameters can assume the form of a list of
several items (subparameters) of information.

All positional and keywol:d parameters and subparameters coded in the
operand field must be separated from one another by commas.

positional parameters must be coded first in the operand field in a
specific order. The absence of a positional parameter is indicated by a
comma coded in its place. However, if the absent parameter is the last
one, or if all later positional parameters are also absent, you need not
code replacing commas. If elll positional. parameters are absent from the
operand field, you need not ·code any replacing commas.

Keyword parameters can be used anywhel:e in the operand field with
respect to one another. Because of this positional independence, you
need not indicate the absence of a keyword parameter.

A positional param,eter or the variablE~ information in a keyword
parameter sometimes assumes the form of a list of sUbparameters. Such a

sE~ction I: Programming Notes 19

list may be composed of both positional and keyword subparameters that
follow the same rules and restrictions as positional and keyword
parameters. You must enclose a subparameter list in parentheses, unle's:3
the list reduces to a single subparameter.

The EXEC statements and DD statements in cataloged procedures can
contain one other type of parameter -- a symbolic parameter. A symbolic
parameter is characterized by a name preceded by an ampersand (&); a
symbolic parameter stands as a symbol for a parameter, a subparameter,
or a value. Symbolic parameters allow you to make any information in
the operand field of a procedure EXEC statement or DD statement
variable. A value to be assumed by a symbolic parameter may be coded on
the EXEC statement that calls the procedure. This value is in effect
only while the procedure is being executed. For a detailed discussion
on how to assign values to symbolic parameters, refer to the chapter
"Assigning Values to Symbolic Parameters" in Appendix Ai for a detailed.
discussion on how to use symbolic parameters in a set of control
statements that you plan to catalog as a procedure, refer to the chapter
"Using Symbolic Parameters ina Procedure" in Appendix A.

Continuing Control Statements

When the total length of the fields on a control statement will exceed
71 columns, you must continue the fields onto one or more succeeding
statements.

The command, comment, delimiter, and null statements cannot be
continllP-d-

You can continue the operand field or the comments field. To
continue either of these fields, you mnst follow the continuation
conventions.

To continue the operand field:

1. Interrupt the field after a complete parameter or subparameter,
including the comma that follows it, at or before column 71.

~;;~;-~~~M[~,~I~~~I'rT..r@'i[1~~:I~:&I'1~~h:ri3~~I~i.iIl~r.J~M9f91~~ol?T.-hr3JlI~~fu.T.['
Il,LJ>J>-,-i/L~~-1.~JNI!M-,-:::J?c8,Qt~lr'L~A:~~.J.'DLi,.,s:'Jet==L(/'!,.~ll{vA€£.~f,-J:P..J;l..§..rL.~l~J~[LL.L..LL .. L .L --1-..... L .. [... L . .I.--,_ . .l-.L '_LL_L[_L.l.LLL 1 .. J .. '-- L.

2. comments can be included by following the interrupted field with at,
least one blank.

~~~-;;~,~;~;;~~~~;;l~lbi~ti~~~II~~~~~Jiro1;~~~l~l~d~~~=:~~ ~- 0 ;"2' ;:15~~~-8~~-O I~-3:~:O;~-~"~ 
(~/~~i/Ll~Pl.J.~.JfMIE,,,"IPIli.J9$lIM~L!4':.J.UlI£.wL' 11<1££P~AE~.J1:€J~,-_jMr&_l~L~r.L-'-"1cL.%elsl-r,~,il 1--'-'---'---'---'----'---'-'---'-----1 

3. Optionally, code any nonblank character in column 72. (The 
nonblank character in column 72 is required only when you are 
continuing a comments field.) If you do not code a character in 
column 72 when continuing the operand field, the system treats the 
next statement as a continuation statement as long as you follow 
the conventions outlined in items 4 and 5. 

20 JCL Reference 



4. code the identifying characters // in columns 1 and 2 of the 
following statement. 

5. continue the interrupted operand beginning in any column from 4 
through 16. (If you begin coding after column 16, the systenl 
treats the field as a comments field ,.) 

To continue the comments field: 

1. Interrupt the comment at a convenien-t place before column 72., 

2. Code a nonblank characte'r in column 72. 

3. Code the identifying characters // in columns 1 and 2 of the 
followinq statement. 

4. continue the comments field beginning in any column after column 3. 

Any control statements in the input stream, other than a comment 
statement, that the system considers to contain only comments have //* 
in columns 1 through 3 on an output listing. Any control statements in 

section 1: Programming Notes 21 



a cataloged procedure, other than a comment statement, that the system 
considers to contain only comments have xx* in columns 1 through 3 on an 
output listing. For a comment statement, *** appears in columns 1 
through 3 on an output listing. 

Backward References 

A facility of the job control language allows you to refer the system to 
an earlier 00 statement in the job for certain information. A backward 
reference is of the following form: 

• parameter=*.ddnarne -- use this form when the earlier OD statement is 
contained in the same job step. 

• parameter=*.stepname.ddname -- use this form when the earlier DO 
statement is contained in an earlier job step. 

• parameter=*.stepname.procstepname.ddname -- use this form when the 
earlier DD statement is contained in a cataloged procedure called by 
an earlier job step. ("stepname" is the name of the step that calls 
the procedure.) 

You can use the backward reference facility only with certain 
parameters. These parameters and the information the system obtains 
when the backward reference facility is used are: 

• PGM -- the data set that contains the program to be executed in this 
job step. 

• DCB -- all DCB subpararneters coded on the earlier DD statement. (If 
you code any DCB keyword subparameters following the backward 
reference, these subpararr.eters override any of the corresponding 
subparameters coded on the earlier OD statement. If a DD statement 
defines an existing data set and contains a backward reference in 
the DCE parameter, the system copies only those subparameters from 
the earlier OD statement that were not previously specified for the 
existing data set.) 

• DSNAME -- the name of the data set being defined on this DD 
statement. 

• VOLUME=REF -- the volume serial nurnber(s) on which the data set 
resides or will reside; unit information is also obtained by the 
system. 

Concatenating Data Sets 

Up to 255 sequential or up to 16 partitioned input data sets, each of 
which may reside on a different volume, can ne logically connnected for 
the duration of a job step~ To concatenate data sets, simply omit the 
ddnames from all the DO statements except the first in the sequence. 
When this ddname is encountered in a data control block in the 
processing program, each data set is automatically processed, in the 
same sequence as the DD statements defining them. 

If concatenated data sets have unlike characteristics, e.g., the 
device types, block lengths, or record formats differ, the DCBOFLGS 
field of the data control block must be modified while the program is 

22 JCL Reference 



executing. For details, refer to the topic "Concatenating Sequential 
and Partitioned Data Sets" in the Supervisor and Data Mangement S4=rvices 
publication. 

If you make a backward reference to a concatenation, the system 
obtains information only from the ~irst data set defined in the 
sequence. 

You should not concat~nate other data sets to a data set you h~ve 
defined using the DUMMY parameter. When the processing program asks to 
read a dummy data set, an end-of-data-set exit is taken immediately and 
any concatenated data set is ignored. 

The following example illustrates a group of DD statements defining 
concatenated data sets, including a data set in the input stream. 

//INPUT DD 
// DD 
// DD 

DSNAME=A.B.C,DISP=(OLD,DELETE) 
DSNAME=X.Y.Z,DISP=OLD,LABEL=(,NL) 
DSNAME=ALPHA,UNIT=2311,VOLUME=SER=P12,DISP=(OLD,DELETE) 

// DD * 

data 

/* 

Character Sets 

Job control statements are coded using a combination of the characters 
from three different character sets. The contents of each of the 
character sets are described in Figure 2. 

r-----------------------T----------------------------------------------, 
I Character Set I Contents I 
~-----------------------+-------------------------T--------------------~ 
I Alphameric I Alphabetic I A through Z I 
I I Numeric I 0 through 9 I 
~-----------------------+---.----------------------+--------------------~ 
I I "At" sign I @ I 
I National I Dollar-sign I $ I 
I 1 Pound sign I # I 
~-----------------------+-------------------------+--------------------~ 
1 Comma 
I· Period 
1 Slash / 
1 Special Apostrophe 
1 Left parenthesis ( 
1 Right parenthesis ) 
I Asterisk * 
I Ampersand & 
I Plus sign + 
I Hyphen 
1 Equal sign = 
I Blank L _______________________ ~ _________________________ ~ ___ ------------____ _ 

Figure 2. Character Sets 

section I: programming Notes 23 



When you code any special characters, certain rules must be followed. 
These rules and the use of special characters are described next. 

Using Special Characters 

Special characters are used in the job control language to: 

1.. Delimit parameters (the comma). 
2. Delimit fields (the blank). 
3. Perform syntactical functions. (For example, the appearance of &'& 

as the first two characters following DSNAME= tells the system that 
a ·temporary data set name follows. The appearance of / in the UNIT 
parameter, UNIT=293/S, tells the system that a specific 2321 bin is 
desired. ) 

sometimes you can code a special character that does not satisfy onle 
of the three uses of special characters. In most of these cases, you 
must indicate that special characters are being used by enclos~ng the 
item that contains the special characters in apostrophes (5-8 punch), 
e.g., ACCT='123+456'. If one of the special characters is an 
apostrophe, you must code two consecutive apostrophes (two 5-8 punches) 
in its place, e.g., 'O"NEILL'. 

The following list contains those parameters that can have special 
characters as part of thei:r variable information, and indicates when the 
apostrophes are not required. 

1.. Thle accounting information on the JOB statement. The account 
number and additional accounting information can contain hyphens 
without being enclosed in apostrophes. 

2. The programmer's name on the JOB statement. The programmer's name 
can contain periods without being enclosed in apostrophes. 

3. The checkid field in the RESTART parameter on the JOB statement. 

l~. The ACCT parameter on the EXEC statement. The ACCT parameter can 
contain hyphens without being enclosed in apostrophes. 

~). The PARM parameter on the EXEC statement. 

6. The DSNAME parameter on the DD statement. The DSNAME parameter can 
contain hyphens without being enclosed in apostrophes. If the 
DSNAME parameter contains a qualified name, it can contain periods 
without being enclosed in apostrophes. If the DD statement 
identifies a generation of a generation data group, the generation 
number in the DSNAME parameter can contain a plus or minus (hyphen) 
sign without being enclosed in apostrophes. If the DD statement 
defines a temporary data set, the DSNAME parameter can contain, as 
the first two characters, ampersands without being enclosed in 
apostrophes.. If the DD statement defines a member of a partitioned 
data set, a generation of a generation data group, or an area of an 
indexed sequential data set, the DSNAME parameter contains 
parentheses that enclose the member name, generation number, or 
area name; these parentheses are not enclosed in apostrophes. 

7. The volume serial number in the VOLUME parameter on the DD 
statement. The volume serial number can contain hyphens without 
being enclosed in apostrophes. 

2q JCL Reference 

.,... .. 



Coding Form 

For your convenience in coding control statements, you can use Form 
N74167, a punch card containing formatted lines, each representing a 
different type of statement. (See Figure 3.) Some of the lines can be 
used for concatenations, overl~ides, and continuation statements. 

Shorter Than Maximum as Shown, Allow Left Justification of Fields That Follow. 

Figure 3. Coding Form for coding Control Statements 

Section I: Programming Notes 25 

Notes 



~" 



Section II: T·he JOB Statement 

The JOB statement marks the beginning of a job and, when jobs are. 
stacked in the input stream, marks the end of the control statements for 
the preceding job. The JOB statement must contain a valid jobname in 
its name field. All parameters in its operand field are optional, 
unless your installation has established that the account number and the 
programmer's name parameters must be coded. If no parameters are coded 
in the operand field of the JOB statement, no comments can be coded on 
the statement. 

JOB Statement Format 

(//jObname JOB operands comments 

The JOB statement consists of the characte:rs / /, in columns 1 and 2, and 
four fields -- the name, operation (JOB), o~erand, and comments fields. 

Rules for Coding 

Follow the order listed below when coding ·the JOB statement: 

1. Code the characters // in columns 1 and 2. 

2. Select a name for the job; code that name, starting in column 3. 

3. Follow the jobname with at least one blank. 

4. Code JOB. 

'1,/,C,A,LIC, ,::r.o,~ , , , , I , , , , I ' , , , I ' , , , I ' , , , I , , , , I ' , , , I , , , , I ' , , , I , , , , I ' , , ,..L......L L....L...1f-1--J.-L...L....L...L..J......L.L...j 

5. Follow JOB with at least one blank. 

Section II: The JOB Statement 27 



6. code any desired positional parameters. Separate each parameter 
with a comma. 

7. code: any desired keyword parameters. Separate each parameter with 
a comma. 

;~j-~~~;~1~~~;;6£~;;~~~r~i91~h[?1~~~~I~1~iQh:liDL43r5J~I~i8[9T6hEI;li~T~Jf~~191~?~~~t&r~ID6]ii;~~~.~ O~-~~~07 8 9 0 

lJ-L~~l-L~£+--'-J-l~_ .. L~.&Q-M!y.}j,,1t~6:.J,u~jL_c&~!.t1,x~~,yc'"J!~~_~_j_-'-'-LLL_LJ_-L~-'-'-L-J..-.l"--L_l , I ' , , , I , '--'--'--

8. Code at least one blank. 

9. Code any desired comments. 

~~~%J8I9T6f~:ill'[~~~~I~~~;;~~'~~i~i~~i~~~ti~&r~£~JmiB1~1TIl~~~;f;~~i~i~tr;i;;{~&fu~ 
i~~,QiJ't-41~L~,.B&Ql.~~~Jt~l6.J..Lli.l'l.gf.L-~j(~I!J.lJ."&~f...l~L~lLqLQ...~IQj~.£:r....J--,-~J!ff~I~l_+--'-"_L.-'-l_.L'-'-~

Positional and Keyword Parameters

There are two types of parameters that can be coded on the JOB
statement. :

positional parameters, which must precede any keyword parameters and
must be coded in the following order:

accounting information (PCP, MFT, MVT)
progr ammer 's name (PCP, MFT", MVT)

These positional parameters are described in the following pages in the
order listed above.

Keyword parameters, which may be coded in any order after the positional
parameters. Any of the following keyword parameters can be coded on th€~
JOB statE~ment:

CLASS (MFT, MVT)
COND (PCP, MFT, MVT)
MSGCLASS (MFT, MVT)
MSGI£VEL (PCP, MFT, MVT)
PRTY (MFT, MVT)
RD (PCP, MFT, MVT)
REGION (MVT)
RES,]~ART (PCP, MFT, MVT)
ROLl. (MVT)
TIME (MFT, MVT)
TYPRUN (MFT, MVT)

'I'hese keyword parameters are described, after the positional parameters"
in the ol~der listed above.

28 JCL Reference

Sample JOB Statements

1"

2.

3.

4.

//ALPHA

//LOS

//MART

//TRY8

JOB

JOB

JOB

JOB

843,LINLEE,CLASS=F,MSGLEVEL=(1,1)

,BROWNLY,REGION=90K,TIME==(4,30),MSGLEV::E.L=(2,O)

1863,RESTART=STEP4

section II: The JOB statement 29

Assigning a Jobname

(//jObname JOB

You must assign a name to every job submitted for execution. The
jobname must begin in column 3 of the JOB statement and must consist of
1 through 8 alphameric and national (#, @, $) characters. .The first
character must be an alphabetic or national character.

NO two jobs in a multiprogI:amming environment should have the same
jobname.

The following names and characters should not be used a.s jobnames,
because they are keywords of the DISPLAY command:

CONSOLES
DSNAME
JOB NAMES
SPACE
STATUS

A
N
Q
R
T

If you must assign one of these keywords as a jobname, notify the
operator, so he will be sure to enclose the jobname in parentheses when
he uses it with the DISPLAY command. For example, if you have assigned
the jobname SPACE to a job and the system operator wishes to display the
status of the job, he must issue a command stating DISPLAY (SPACE). If
the parentheses were omitted, the operator would get the amount of
available space on a particular direct access volume resulting from a
DISPLAY SPACE command.

Examples of Valid Jobnames

//RERUN4 JOB

//#123A JOB

//JOBD58 JOB

section II: The JOB statement -- Assigning a Jobname 31

... ~

Accounting Information Parameter (For PCP, MFT, MVT)

([account number] [.additional accounting information ••••]>

account number
the account number to which this job is to be charged.

additional accounting information
any other accounting information required by an installation's
accounting routines. When additional accounting information
consists of more than one item. each must be separated by a corr.ma.

Rules for Coding

1. When accounting information is supplied, it rrust be coded before
any other parameter on the JOB statement.

2. The account number and each item of additional accounting
information are considered subparameters and each must be separated
by a comma.

3. When accounting information consists of more than one subparameter,
you must enclose the information in either parentheses or
apostrophes (5-8 punch>. e.g •• '5438,GROUP6' or (5438,GROUP6).

4. If the accounting information must be continued on another
statement, enclose the accounting information in parentheses. You
may not continue on anothpT statement any accounting information
enclosed in apostrophes.

5. The account number and other accounting information cannot exceed
142 characters, including the corr~as that separate the
subparameters.

6. If any of the subparameters contain special characters (except
hypll~ns), either: (1) enclose the accounting i;nforrnation in
apostrophes, or (2) enclose the subparameter in apostrophes and the
accounting information in parentheses, e.g., '5438,10/08/66' or
(~438,'10/08/66·). (The enclosing apostrophes are not considered
part of the information.) If one of the special characters is an
apostrophe, code two consecutive apostrophes in its place, e.g.,
(5438,'O"NEILL'). If one of the special characters is an
ampersand and you are not defining a syrr.bolic parameter, code two
consecutive ampersands in its place, e.g., '34&&8241'.

7. If you do not supply accounting information but do code the
programmer's name, you must code a comma preceding toe programmer's
name to indicate that the accountinq information parameter, which
is a positional parameter, has been omitted.

Supplying Accounting Information

Accounting information is optional unless the installation establishes
it as a requirement in (1) a system generation option in PCP, or (2) a
PARM field parameter of the cataloged procedure for the input. reader in
MFT and MVT.

section II: The JOB statement -- Accounting Inforffiation Parameter 33

Routines that process accounting information must be su~plied by the
installation. For information on how to add accounting facilities,
refer to the chapter "Handling Accounting Information" in the System
programme~..§.. Guid~ publication.

Examples of the Accounting Information Parameter

1.. //JOB43 JOB D548-868

Account number only; no parentheses are required.

2. //JOB44 JOB (D548-868,'12/8/69' ,WILSON)

Account number plus additional accounting information; parentheses
are required.

3. //JOB45 JOB (,E1659,GROUPbX)

Only additional accounting information; parentheses are required.

34 JCL Reference

Programmer's Name Parameter (For PCP, MFT, MVT)

programmer's name

programmer's name
the name or identification of the person responsible for the job.

Rules for Coding

1. If the programmer's name parameter is coded, it must follow the
accounting information parameter, or the comma that indicates its
absence, and must precede all keyword parameters.

2. The name cannot exceed 20 characters, including all special
characters.

3. If the uame contains special characters, other than periods,
enclose the name in apostrophes. If the special characters include
apostrophes, each must be shown as two consecutive apostrophes.

4. If you are not required to specify a name, you need not code a
comma to indicate its absence.

When to Code the Programmer's Name Parameter

The programmers' name parameter is optional unless the installation
establishes it as a requirement in (1) a system generation option in
PCP, or (2) a PARM field parameter of the cataloged procedure for the
input reader in MFT and MVT.

Examples of the Programmer's Name Parameter

1. //APP JOB ,C.L.BROWN

Programmer's name, without accounting information supplied.

2. //DELTA JOB ,'T.O"NEILL'

Programmer's name containing special characters, without accounting
information $upplied.

3. //#30S JOB (S46349,GROUP12),GREGORY

Account number plus additional accoun1:ing information and
programmer's name.

section II: The JOB statement -- Programmer's Name Parameter 35

The CLASS Parameter (For MFT, MVT)

CLASS=jobclass

jobclass
assigns a job class to your job. Code any alphabetic character
from A through 0, depending on the characteristics of your job and
the installation's rules for assigning a job class.

Rules for Coding

1. If the CLASS parameter is coded for PCP, the parameter is not used,
but is checked for syntax.

Assigning a Job Class to Your Job

The CLASS keyword parameter provides a way of establishing a good mix of
jobs in the system; an example of a good mix would be one job that is
I/O bound in the system with another job that is CPU bound. A good mix
can be established since the job class determines where a job will be
placed on the input work queue and jobs with common characteristics are
assigned to the same job class. Jobs within a job class are assigned a
priority, either in the PRTY parameter or by default. This allows jobs
within a class to be selected for processing based on their priorities.

If you .. do not specify the CLASS paramet.~r, the default job class of A
is assigned to the job.

THE CLASS PARAMETER AND TIME-SLICING

If your installation provides time-slic1ng facilities with MFT, the
CLASS parameter can be used to make a job part of a group of jobs to be
time-sliced. At system generation, a group of contiguous partitions are
selected to be used for time-slicing, and each partition is assigned at
least one job class. To make your job part of a group of jobs to be
time-sliced, specify a class that'was assigned only to the partitions
selected for .time-slicing. (With MVT, you use the PRTY parameter and
the DPRTY parameter to make, respectively, a job or job step part of a
group of jobs and job steps to be time-sli(:ed.)

Examples of the CLASS Parameter

1. //SETUP JOB CLASS=C

Assigning a job to job class C.

2. //JAN JOB CLASS=M,PRTY=10

Assigning a job to job class M with a priority of 10.

section II: The JOB Statement -- CLASS Parameter 37

'-----,------____ 'i_ I_lillllllllllillllllli~

......

The COND Parameter (For PCP, MFT, MVT)

code

COND=«code,operator), •••)

a decimal number from 0 through 4095,. This number is compared with
the return code issued by each job s·tep.

operator
the type of comparison ·to be made with the return code. Relational
operators and their meanings are:

GT ••• greater than
GE ••• greater than or equal to
EQ ••• equal to
LT ••• less than
LE ••• less than equal to
NE ••• not equal to

Rules for Coding

1. Code from one through eight differen1: return code tests.

2. When making only one return code test, you need not code the outer
parentheses.

Using the COND Parameter

The COND keyword parameter can be used to eliminate unnecessary use of
computing time by basing the continuation of a job on the successful
completion of one or more of its job steps. 'The operator in the COND
parameter indicates the mathE~matical relat:ionship between the code
specified on the JOB statement and the code returned by a completed job
step. The operator or operators are compared with the return code and
if any of the relationships are true, the remaining steps are bypassed
and the job is terminated. Up to eight different tests, each consisting
of a code and operator, may be specified.

The compiler, assembler, and linkage editor programs issue return
codes. You may want to use the COND parameter to test these return
codes. If you write your processing programs in assembler language or
PL/I, you can use the COND parameter to test return codes issued by your
programs.

WHEN THE COND PARAMETER IS CODED ON BOTH 'l'HE JOB AND EXEC STATEMENTS

The COND parameter can also be coded on an EXEC statement •. When a
return code test requested 011 an EXEC stat.ement is satisfied, the
associated job step is bypas8ed.

If you code the COND parameter on the JOB statement and on one or
more of the job's EXEC statements, the return code tests requested on
the JOB statement have precedence over those requested on the EXEC
statements. Therefore, any return code test requested on the JOB
statement that is satisfied causes termination of the job, even if the
return code test is not sati8fied for a particular step.

section l:I: The JOB Statement -- COND Parameter 39

Example. of the COND Parameter

1. //TYPE JOB COND=(7,LT}

If 7 is less than the return code, the job is terminated. (Any
return code less than 7 allows the job to continue.)

2. //TEST JOB COND=«20,GE},(30,LT}}

If 20 is greater than or equal to the return code, or 30 is les's
than the return code, the job is terminated. (Any return code of 21
through 30 allows the job to continue.)

40 JCL Reference

,-------_____ = ___ 111"_1---"'1_

The MSGCLASS Parameter (For MFT, MVT)

MSGCLASS=output class

output class
the output class to which system messages for your job are to be
routed by the .system. Code an alphabetic (A-Z) or numeric (0-9)
character depending on your installation's rules for assigning an
output class for system messages.

Rules for Coding

1. If the MSGCLASS paramet(~r is coded for PCP, the parameter is not
used, but is checked for syntax.

Assigning an Output Class to System Messages

If the MSGCLASS parameter is not coded, system messages associated with
your job are routed to the default output class specified in the PARM
field of the input reader procedure. The default for the MSGCLASS
parameter is A unless changed by your installation. You can consult the
system Programmer's Guide for information concerning the input reader
procedure. Your installation may require that you specify a different
output class ather than the defaul·t value in order to separate different
types of output or to distribute the workload of the output writers.
One or more output classes is associated with each output writer; each
output writer is associated with a specific output device.

You can route a job's system messages and output data sets to the
same output class. You do this by coding the same output class in both
the MSGCLASS parameter on the JOB statement and the SYSOUT parameter on
the DD statements for the data sets.

Examples of the MSGCLASS Parameter

1. //IN JOB MSGCLASS=F

Specifying an output class.

2. //BOTLE JOB

3.

specifying no output class. In this case, the output class will
default to the MSGCLASS value specified in the PARM field of the
input reader procedure. The default is A unless changed by your
installation.

//A1430
//STEP1
//OUTPUT

JOB
EXEC
DD

MSGCLASS=L
PGM=PRINT
SYSOUT=:L

Specifying that a job's system messages (MSGCLASS parameter) and
output data set (SYSOUT parameter) are to be routed to the same
output class.

section II: The JOB statement -- MSGCLASS Parameter 41

The MSGLEVEL Parameter (For PCP, MFT, MVT)

MSGLEVEIJ= (statements ,messages)

statements
specifies which job control statements are to be written as
output from your job. Code:

o - when only the JOB statement is to be written.
1 - when all input job control statements, cataloged

procedure statements, and the internal representation of
procedure statement parameters after symbolic parameter
substitution al~e to be written.

2 - when only input job control statements are to be written.

messages
specifies what allocation/termination messages (consisting of
allocation, disposition, and allocation recovery messages) are
to be written as output from your job. Code:

o - when no allocation/termination messages are to be
written, unless the job abnormally terminates. If this
occurs, these messages are to be written as output.

1 - when all allocation/terminat.ion messages are to be
written.

Rules for Coding

1. If the first subpararoeter of the MSGLEVEL parameter is omitted, you
must code a comma to indicate its absence, e.g., MSGLEVEL=(,l).

2. If the second subparameter of the MSGIJEVEL parameter is omitted,
you need not code the parentheses, e.g., MSGLEVEL=2.

Requesting Output of Job Control Statements
and Certain Messages

The MSGLEVEL keyword parameter is used to tell the job scheduler what
output from your job is to be written as part of the output listing.
You can request the following output:

• The JOB statement.

• All input job control statements.

• All cataloged procedure statements for procedures called by any of
the job's steps and the internal representation of procedure
statement parameters after symbolic parameter substitution..

• Allocation, disposition, and allocation recovery messages
(allocation/termination messages).

You need to code the MSGLEVEL parameter only when the established
default will not provide you with the desired output. In PCP, the
default is established during system generation. In MFT and MVT, the
default is established as a PARM parameter field in the cataloged
procedure for the input reader. The established default is assumed when
MSGLEVEL is not coded or when one of the subparameters is not coded.

section II : ~rhe JOB statement -- MSGLEVEL Parameter 43

Examples of the MSGLEVEL Parameter

1. //GD40 JOB MSGLEVEL=(2,1)

Requesting tnat only input statements and all allocation/termination
messages be written.

2. //STEL JOB MSGLEVEL=CO,l)

Requesting that only the JOB statement and all
allocation/termination messages be written.

3. / /SY~l JOB MSGLEVEL=(l,O)

Requesting that all input control statements, procedure sta~ements.
the internal representation of procedure statements after symbolic
parameter substitution, and no allocation/termination messages be
writt.en.

44 JCL Reference

The PRTY Parameter (For MFT, MVT)

PRTY=priority

priority
assigns a priority of 0 through 13 to your job. (The highest
priority is 13.)

Rules for Coding

1. Avoid using priority 13 since this priority is used by the system
to expedite processing of jobs in which certain errors were
diagnosed.

2. In MVT, if you want a job step to have a different dispatching
priority than the job's, code the DPRTY parameter on the EXEC
statement associated with that job step_

3. If the PRTY parameter is coded for PCP, the parameter is not used,
but is checked for syntax.

What the PRTY ParameteJ:' Does

The PRTY keyword parameter determines the job's initiation priority
within its job class. (The job class is assigned in the CLASS parameter
on the JOB statement.) When the job is initiated, the system converts
the job's priority into a dispatching priority so that the job's tasks
can compete with other tasks for use of rrain storage and CPU resources.

If you do not specify the PRTY parameter, a default priority is
assumed. The default is specified as a PARM parameter field in the
cataloged procedure for the input reader.

TflE PRTY PARAMETER AND TIME-SLICING

If your installation provides time-slicing facilities in MVT, the PRTY
parameter can be used to make a job part of a group of jobs and job
steps to be time-sliced. The priorities of the time-sliced groups are
selected at system generation. To make your job part of a group of jobs
to be time-sliced, specify a priority number selected for time-slicing.
(To make one of the job's steps part of a group of jobs and job steps to
be time-sliced, code the DPRTY parameter on the associated EXEC
statement.)

Examples of the PRTY Parameter

1. //#1930 JOB PRTY=8,CLASS=C

The job will have an initiation priority of 8 in the job class C.

2. //RING JOB PRTY=4

The job will have an initiation priority of 4 in the job class A.
(Since the CLASS parameter is not specified, the job is assigned to
the default job class A.)

Section II: The JOB statement -- PRTY Parameter 45

The RD Parameter (For PCP, MFT, MVT)

RNC

NC

NR

RD= R
RNC
NC
NR

specifies that automatic step restart is permitted.

specifies that automatic step restart is permitted and automatic
checkpoint restart is :not permitted and no checkpoints can be
established.

specifies that neither automatic step restart nor automatic
checkpoint restart is permitted and no checkpoints can be
established.

specifies that neither automatic step restart nor automatic
checkpoint restart is permitted, but the CHKPT macro instruction
can establish a checkpoint.

Rules for Coding

1. Be sure to code MSGLEVEL=(1,O), MSGLEVEL=(1,1), or MSGLEVEL=1 in
MFT and MVT when RD=R or RD=RNC is specified.

2. If you are permitting automatic step restart, assign each step a
unique step name.

3. Code the RD parameter on EXEC statements, instead of the JOB
statement, when you wa:nt to make different restart requests for
each job step. (If the RD parameter is coded on the JOB statement,
RD parameters coded on the job's EXEC statements are ignored.)

Using the Restart Facilities

The RD (restart definition) keyword parruoeter is coded when you want to
make use of the step restart facilities, to suppress the action of the
CHKPT macro instruction, or to suppress automatic restarts. The step
restart facilities permit execution of a job to be automatically
restarted at a job step after the job abnormally terminates, or, in MFT
and MVT, after a system failure occurs. Through the RD parameter, you
can specify that execution of a job is to be automatically restarted at
the beginning of a job step that abnormally terminates (step restart).

Execution of a job can also be automatically restarted within.a job
step that abnormally terminates (checkpoint restart). In order for
checkpoint restart to occur, the CHKPT macro instruction must have been
executed in the processing program before abnormal termination. When
you use the RD parameter to request suppression of CHKPT macro
instruction action, automatic checkpoint restart cannot occur.

Section lIz The JOB Statement -- RD Parameter 47

If the RD parameter is not coded, step restart cannot occur. If the
RD parameter is not coded and the processing programs contain CHKPT
macro instructions, checkpoint restart can occur.

The following two conditions must be met before automatic step or
checkpoint restart can occur: (1) the completion code returned during
abnormal termination indicates that the step is eligible for restart,
a~d (2) the operator authorizes restart. In addition, for automatic
restart to occur in MFT or MVT, MSGLEVEL=(l,O), MSGLEVEL=(l,l), or
MSGLEVEL=l must be coded on the JOB statement. If these conditions are
satisfied, special disposition processinq is performed before restart.
If automatic step restart is to occur, all data sets in the restart step
with a status of OLD or MOD, and all data sets being passed to steps
following the restart step, are kept. All data sets in the restart step
with a status of NEW are deleted. If automatic checkpoint restart is to
occur, all data sets currently in use by the job are kept.

DEFINING RESTART

You define the type of restart that can occur by coding one of the
subparameters of the RD parameter: R, RNC, NC, or NR. Each of these
subparameters is described in detail in the following paragraphs.

RD=R: R indicates that automatic step restart is permitted. If the
job's processing programs do not include any CHKPT macro instructions,
coding RD=R permits execution to be resumed at the beginning of any step
that abnormally terminates. If any program does include a CHKPT macro
instruction, coding RD=R permits step restart to occur only if the step
abnormally terminates before execution of the CHKPT macro instruction;
thereafter, only checkpoint restart can occur. If you cancel the
effects of the CHKPT macro instruction before a checkpoint restart is
performed, the request for automatic step restart is again in effect.

RD=RNC: RNC indicates that automatic step restart is permitted and
automatic checkpoint restart is not permitted. RD=RNC should be
specified when you want to suppress the action of all CHKPT macro
instructions included in the job's processing programs and to permit
automatic step restart.

RD=NC: NC indicates that neither automatic step restart nor automatic
checkpoint restart is permitted. RD=NC should be specified when you
want to suppress the action of all CHKPT macro instructions included in
the job's processing programs and not to permit automatic step restart.
RD=NC has no effect on processing if CHKPT macroinstructions are not
included in the programs.

RD=NR: NR indicates' that a CHKPT macro instruction can establish a ,
checkpoint, but neither automatic step restart nor automatic checkpoint
restart is permitted. Coding RD=NR allows you to resubmit the job at a
later time and specify in the RESTART parameter the checkpoint at which
execution is to be resumed. (The RESTART pararr.eter is coded on the JOB
statement of the resubmitted job.) RD=NR has no effect on processing if
CHKPT macro instructions are not included in the job's processing
programs.

References

1. For detailed information on the checkpoint/restart facilities,
refer to the publication Advanced Checkpoint/Restart Planning
Guide, GC28-6708; the topic "Checkpoint and Restart" in the
publTcation Supervisor and Data Management Services: and "Using
the Restart Facilities" in Appendix B of this publication.

48 JCL Reference

2. For information on how to code the CHKFT macro instruction, refer
to the publication supervisor and Data Management Macro
Instructions.

Examples of the RD Parameter

1. //MAY JOB RD=R,MSGLEVEL=(l,O)

Permits execution to be automatically restarted with the step that
abnormally terminates.

2. //TRY56 JOB RD=RNC,MSGLEVEL=(l,l)

Permits execution to be automatically restarted beginning w-ith the
step that abnormally terminates and suppresses the action of CHKPT
macro instructions.

3. //PASS JOB RD=NR,MSGLEVEL=(l,l)

Neither automatic step nor checkpoint restart can occur, but CHKPT
macro instructions can establish checkpoints.

Section II: The JOB Statement -- RD Parameter 49

_ _. ___ ~ • _________ • ___ ... "'liIlillllllll_.~lIi1111m1~m~I~~Mi

The REGION Parameter--Without Main Storage Hierarchy Support

(For MVT)
REGION=valueK

valueK
specifies the number of contiguous 1024-byte areas of main storage
to be allocated to each job step. The nlmbe~ can range from one to
five digits but may not exceed 16383.

Rules for Coding

1. Code an even number. (If you code an odd number, the system treats
it as the next highest even number. When the value 16383K is
coded, the system treats it as 16384K. However. the value 16384K
must not be coded on the JOB statement.)

2. Code the REGION parameter on EXEC sta.tements, instead of the JOB
statement, when you wan"t to specify a. different region size for
each job step. (If the REGION parameter is coded on the JOB
statement, REGION parameters coded on the job's hXEC statements are
ignored.)

3. If the REGION parameter is coded for PCP or MFT, the parameter is
not used, but is checked for syntax.

Requesting Main Storage

'I'he REGION keyword parameter is used to specify how much main storage,
in contiguous bytes, is to be allocated to each job step. Code the
R~GION parameter when you want more storage or less storage than would
be allocated if the default region size was used. The default region
size is established as a PARM parameter field in the cataloged procedure
for the input reader. You can consult the storage Estimates publication
to help you determine how much main storage is required to process your
job.

ACQUIRING ADDITIONAL MAIN STORAGE

If any of the job's steps may require use of more storage than has been
allocated, you can code the ROLL parameter and request that the system
try to provide you with additional main storage. The ROLL parameter is
described in the chapters "The ROLL Parameter" later in this section and
in section III.

Examples of the REGION Parameter

1. //COLE JOB REGION=11.2K

specifies that 112 contiguous 1024-byte areas of main storage are to
be allocated to each job step.

Section II: The JOB statement -- REGION Parameter 51

2. //J34 JOB REGION=70K,ROLL=(YES,YES>

The REGION parameter specifies that 70 contiguous,1024-byte areas of
main storage are to be allocated to each job step. In the ROLL
parameter, the first subpararneter tells the system that any of the
job's steps may be rolled out if additional storage is required by
another job; the second subparameter tells the system that it should
try to provide you with additional main storage if it is required.

52 JCL R1eference

The REGION Parameter--With Main Storage Hierarchy Support
(For MVT, Excluding M65MP)

REGION=(value o K,value1K)

valueoK
specifies the number of contiguous 1024-byte areas in hierarchy 0
to be allocated to each job step. If IBM 2361 Core Storage is
present, the number cannot exceed 16383.

value1K
specifies the number of contiguous 1024-byte areas in hierarchy 1
to be allocated to each job step. If IBM 2361 Core storage is
present, the number cannot exceed 1024 (for each Model 1) or 2048
(for each Model 2).

Rules for Coding

1. When processor storage includes hierarchies 0 and 1, the sum of
valueo and value1 cannot exceed 16383.

2. code even numbers. (If you code an odd number, the system treats
it as the next highest even number. When 16383K is coded for
valueo, the system treats it as 16384K. However, 16384K must not
be coded for value 0' on the JOB statement.)

3. When you are requesting storage only in hierarchy 1, precede value1
with a comma, to indicate the absence of valueo.

4. When you are requesting storage only in hierarchy 0, you need not
code the parentheses.

5. Code the REGION parameter on EXEC statements, instead of the JOB
statement, when you want to specify a different region size for
each job step. (If the REGION parameter is coded on t.he JOB
statement, REGION parameters coded on the job's EXEC statements are
ignored.)

6. If the REGION parameter is coded for PCP or MFT·, the parameter is
not used, but is checked for syntax.

Requesting Main Storage in One or Two Hierarchies

The REGION keyword parameter is used to specify how much main storage is
to be allocated to each job step, and, when main storage hierarchy
support has been specified at system generation, in which hierarchy or
hierarchies main storage is to be allocated. with main storage
hierarchy support, storage hierarchies 0 and 1 are provided. If IBM
2361 Core Storage, Model 1 or 2, is present in the system, processor
storage is referred to as hierarchy 0 and 2361 Core storage is referred
to as hierarchy 1. If 2361 Core Storage is not present, a two-part
region is established in processor storage when regions are requested in
two hierarchies. The two parts are not necessarily contiguous.

Section II: The JOB Statement -- REGION Parameter 53

Code t:he REGION parameter to specify how much storage is to be
allocated in each hierarchy, or that all storage for the job is to be
allocated in a particular hierarchy. (If you do not code the REGION
parameter on either the JOB or EXEC statement, the default region size,
which is a PARM parameter field in the cataloged procedure for the input:
reader, is used and is always allocated in hierarchy O. If you code the

I REGION paral!"eter and request storage only fron' hierarchy 1, n? hierarchy
o segment wll1 be allocated. You can consult the storage Estlmates
publication to help you determine how much main storage is required to
process your job. Then, depending on your reasons for using
hierarchies, determine how much storaqe is required in each.

If maj~ storage hierarchy support was not specified at system
generation and regions are requested in both hierarchies, the region
sizes are combined and an attempt is made to allocate a single region
from processor storage. If a region is requested entirely frow
hierarchy 1, an attempt is made to allocate the region from processor
storage.

ACQUIRING ADDITIONAL MAIN STORAGE

If your job may require use of more main storage than has been allocated
in a particular hierarchy, you can code the ROLL parameter and request
that the system try to provide you with additional main storage in that
hierarchy. The ROLL parameter is descriced in the chapters "The ROLL
parameter" later in this section and in section III.

Examples of the REGION Parameter

1. //MAIN JOB REGION=(80K,30K)

Specifies that the system is to allocate 80 contiguous 1024-byte
areas of storage in hierarchy 0 and 30 contiguous 1024-byte areas of
storage in hierarchy 1. If main storage hierarchy support is not
included in the system, the system will try to obtain 110 contiquous
1024-byte areas in processor storage.

2. //WEEK JOB REGION= (, 98K)

Specifies that the system is to allocate 98 contiguous 1024-byte
areas of storage in hierarchy 1.

3. //JWC JOB REGION=98K

specifies that the system is to allocate 98 contiguous 1024-byte
areas of storage in hierarchy o.

4. //TEST12 JOB REGION=(100K,50K),ROLL=(Y~S,YES)

The REGION parameter specifies that the system is to allocate 100
contiguous 1024-byte areas of storage in hierarchy 0 and 50
contiguous 1024-byte areas of storage in hierarchy 1. In the ROLL
parameter, the first subparameter tells the system that any of the
job's steps may be rolled out if additional storage is required oy
another job: the second subparameter tells the system that it should
try to provide you with additional main storage if it is required.

54 JCL Reference

The RESTART Parameter (For PCP, MFT, MVT)

*

RESTART=<{* }£,CheCkid)
stepname

,stepname.procstepname

indicates that execution is to be restarted at or within the first
job step.

stepname
specifies that execution is to be restarted at or within the named
job step.

stepname.procstepname
specifies that execution is to be restarted at or within a
cataloged procedure step. stepname is the name of the job step
that calls the cataloged procedure, and procstepname is the name of
the procedure step_ You can code * in place of
stepname.procstepname if the first job step calls a cataloged
procedure and you want execution to be restarted at or within the
first procedure step.

checkid
is the name of the checkpoint at which execution is to be
restarted. When checkid is coded, execution is restarted'within
the specified job step at the named checkpoint. If checkid is not
coded, execution is restarted at the specified job step.

Rules for Coding

1. You need not code the parentheses if execution is to be restarted
at a job step, i.e., if you do not code the checkid subparameter.

2. If the checkpoint name contains special characters, the name must
be enclosed in apostrophes. If one of the special characters is an
apostrophe, identify it by coding two consecutive apostrophes in
its place.

3. Be sure to include the SYSCHK DD statement when execution is to be
restarted within a job step. <The SYSCHK DD statement is described
in the chapter "Assigning a Ddname" in S.::ction IV of this
publication.)

When to Code the RESTART Parameter

The RESTART keyword parameter is coded when you are resubmitting a job
for execution and you want to make use of the restart facilities. The
restart facilities allow a job that is resubmitted for execution to be
restarted at or within 'a particular job step. This reduces the time
required to execute the job Bince execution is resumed, not repeated.
If the RESTART parameter is not coded, eXE~cution of the entire job is
repeated.

Through the RESTART parameter, you can specify where execution is to
be restarted. Execution of a resubmitted job can be restarted at the

Section II: The JOB Statement -- RESTART Parameter 55

JOB

beginning of a step (step restart) or within a step (checkpoint
restart). In order for checkpoint restart to occur, the CHKPT macro
instruct:ion must have been executed in the {:rocessing program during the
original execution of the job. If execution is to be restarted at a
checkpoint, the resubmitted job must include an additionalDD statement:.
This DD statement defines the checkpoint data set and has the ddna~e
SYSCHK. (For additional information on the SYSCHK DD statement, see the
chapter nAssigning a Ddname" in section IV of this publication.)

RULES FOR REFERENCING GENERATION DATA SETS AND USING BACKWARD REFERENCES

Because the resubmitted job has been previously executed and because you
may not be restarting with the first job step, there are certain rules
that apply to referencing generation data sets and using backward
references. They are:

1. If step restart is performed, generation data sets that were
created and cataloged in steps preceding the restart step must not:
be referred to in the restart step or in steps following the
restart step by means of the same relative generation numbers that:
were used to create them. Instead, you must refer to a generation
data set by means of its present relative generation number. For
example, if the last generation data set created and cataloged waE:
assigned a generation number of +2, it would be referred to as 0 in
thE! restart step and in steps following the restart step. In thiE;
case, the generation data set assigned a generation number of +1
would be referred to as -1. If generation data sets created in the
restart step were kept instead of cataloged (i.e.,
DISP= (NEW, CATLG,KEEP) was coded), you can during checkpoint restaI:t
refer to these data sets and generation data sets created and
cataloged in steps preceding the restart step by the same relativE!
generation numbers used to create them.

2. Before resubmitting a job, check all backward references to steps
that precede the restart step. Eliminate all backward references
for the following keywords: PGM and COND, on the EXEC statements,
and, SUBALLOC and VOLUME=REF=reference, on the DD statements. (A
backward reference of VOLUME=REF=reference is allowed if the
referenced statement includes VOLUME=SER=(serial number, •••).)

Reference

1. For detailed information on the checkpoint/restart facilities,
refer to the publication Advanced CheckFoint/Restart" Planning
Guide, the topic ·Checkpoint and Restart" in the publication
supervisor and Data Management Services, and "Using the Restart
Facilities" in Appendix B of this publication.

Examples of the RESTART Parameter

1. //LIN.ES JOB RESTART=COUNT

specif ies that execution is to be restart-ed at the job step named
COUNT.

2. //Q)LOC5 JOB RESTART=(PROCESS,CHRPT3)

Specifies that execution is to be restarted within the job step
named PROCESS at the checkpoint named CHKPT3. This JOB statement

56 JCL Reference

.....

must be followed by a nn statement named SYSCHK, which defines the
data set on which an entry for the checkpoint named CHKPT3 was
written.

3. //WORK JOB RESTART=(*,CKPT2)

Specifies that execution is to be restarted at the checkpoint named
CKPT2 in the first job step.

4. //CLIP5 JOB RESTART=(PAY.WEEKLY,CHECK8)

Specifies that execution is to be restarted within the procedure
step named WEEKLY at the checkpoint n~ned CHECK8. PAY is the name
of the job step that calls the cataloged procedure that cont,ains the
procedure step named WEEKLY. This JOB statement 'must be followed by
a nn statement named SYSCHK, which defines the data set on which an
entry for the checkpoint named CHECK8 was written •

section IIz The JOB statement -- RESTART Parameter 57

,. """"",."",,. ____ '''''_,,_'''' _______ " _________________ , ________ , ___________________________ I __ IIIIIl_

The ROLL Parameter (For MVT)

x

y

ROLL=(x,y)

declares whether the steps of the job may be rolled out. Code YES
if the job's steps can be rolled out; code NC if the job's steps
cannot be rolled out.

declares whether the steps of the job may cause rollout of another
job step. Code YES if "the job's steps can cause rollout of another
job step; code NO if the job's steps cannot cause rollout of
another job step. YES must be coded if you want additional main
storage allocated to the job's steps when additional main storage
is required.

Rules for Coding

1. If you code the ROLL pa:rameter, both subparameters must be
specified.

2. Code the ROLL parameter on EXEC statements, instead of the JOB
statement, when you want to make different requests for each job
step. (If the ROLL parameter is coded on the JOB statement, RCLL
parameters coded on the job's EXEC statements are ignored.)

3. Code ROLL=(NO,YES> or ROLL=(NO,NO> if this job is a teleprocessing
job that uses the Auto Poll option. If you allow the job's steps
to be rolled out, the job cannot be restarted properly.

4. If the ROLL parameter is coded for PCP or MFT, the parameter is not
used, but is checked for syntax.

When to Code the ROLL Parameter

The ROLL keyword parameter should be coded if any of the job's steps may
require more main storage than was requested in the REGION parameter.
When you specify in the ROLL parameter that this job can cause rollout
of other job steps, an attempt is made to allocate additional storage if
a job step requires it. In order to allocate this additional space to a
job step, another job step with a lower priority may have to be rolled
out, i.e., temporarily transferred to secondary storage.

The ROLL parameter should also be coded when you want control over
whether the job's steps can be rolled out because of another step's need
for additional main storage. If the ROLL parameter is not coded, the
default established in the PA~l parameter field in the cataloged
procedure for the input reader is used.

section II: The JOB statement -- ROLL Parameter 59

Examples of the ROLL Parameter

1. //DINTER JOB ROLL=(YES,YES>,REGION=lOOK

Specifies that the job's steps can be rolled out and can cause
rollout of another job step if a step requires more than lOOK of
main storage.

2~ //TEST332 JOB ROLL=(NO,YES>

specifies that the job's steps cannot be rolled out but can cause
rollout of another job step.

60 JCL Reference

I The TIME Parameter (For MFT, MVT)

TIME={<minutes,seCOndS)}
1440

minutes
specifies the maximum number of minutes the job can use the cpu.
The number of minutes must be less than 1440 (24 hours).

seconds

1440

specifies the maximum number of seconds beyond the specified number
of minutes the job can use the CPU, or, if no minutes are
specified, the maximum number of seconds the jot; can use the cpu.
The number of seconds must be less than 60.

specifies that the job is not to be timed. code 1440 if the job
may require use of the CPU for 24 hours or more or if any of the
job's steps should be allowed to remain in a wait state for more
than the established time limit.

Rules for Coding

1. If the CPU time- limit is given in minutes only, YlJti need not code
the parentheses.

2. If the CPU time limit is given in seconds only, you must code a
comma preceding the seconds to indicate the absence of minutes.

3. You can also code the TI:ME parameter on EXEC statements to indicate
how long each step can use the CPU.

4. If the TIME parameter is coded for PCP, the parameter is not used,
but is checked for syntax.

Specifying a Time Limit for the Job

The TIME keyword parameter can be used to specify the maximum amount of
time a job may use the cpu. Two benefits of coding the TIME parameter
are that it allows you to find out how long the job uses the cpu (CPU
time used appears on the output listing), and it helps limit the CPU
time wasted by a step that goes into a loop. Normally, a job that
exceeds the specified time limit is terminated. However, if the system
Management Facilities option is included in the system and a user exit
routine is provided, this routine can extend the time limit so that
processing can continue. When the TIME parameter is not coded on the
-JOB statement, there is no CPU time limit assigned to the job; however,
each job step is still timed.

TIME LIMIT FOR WAIT STATES

Since a job step can go into an extremely long wait state, the time a
job step may remain in a wait: state is limited. If the System
Management Facilities option is included in the system, the installation
determines this time limit. In this case, a job step remaining in a
wait state for more than the established t.ime limit causeS termination
of the job unless a user-provided exit routine extends the wait-state

Section II: The JOB statement -- TIME Parameter 61

time limit for that step. If the System Management Facilities option is
not included, the system automatically provides a 30-minute time limit
for wait states; a job step remaining in a wait state for more than 30
consecutive minutes causes termination of the job.

How to Eliminate Timing

Certain applications require a job to use the CPU for 24 hours or more.
In this case you must eliminate timing by coding TIME=1440. This
specification should also be made when any of the job's steps should be
allowed to remain in a wait state for more than the established time
limit.

Reference

1. A discussion of the System Management Facilities option is
contained in "Section 5: Task Management" in Concepts and
Facilities. Information on user exit routines to be used with thE~
System Management Facilities option is contained in the chapter
"system Management Facilities" in System Programmer's Guide.

Examples of the TIME Parameter

1. //SImn JOB T IME= (12 , 10)

Specifies that the maximum amount of time the job can use the CPU is
12 minutes 10 seconds.

2. //TYPE41 JOB TIME= (,30)

specifies that the maximum amount of time the job can use the CPU i.s
30 seconds.

3. //FORMS JOB TIME=5

Specifies that the maximum amount of time the job can use the CPU is
5 mi.nutes.

4. //RAINCK JOB TIME=1440

specifies that the job is not to be timed. Therefore, the job may
use the CPU and may remain in a wait state for an unspecified period
of time.

62 JCL Reference

The TYPRUN Parameter (For MFT, MVT)

HOLD

TYPRUN=HOLD

specifies that the job is to be held in the job queue until the
operator issues a RELEASE command.

Rules for Coding

1. If the TYPRUN=HOLD paramE;ter is coded for PCP, the parameter is not
used, but is checked for syntax.

Holding a Job

Code TYPRUN=HOLD when the job should be held for execution until some
event has occurred. The operator must be informed of what it is you are
wai.ting for. When the event has occurred, the operator issues a HELEASE
command, thereby allowing the job to be selected for -processing.

Example of the TYPRUN Parameter

Jobs UPDATE and LIST are to be submitted for execution. The job UPDATE
uses a program that adds and deletes members to a library; the job LIST
uses a program that lists the members of a library. In order to get an
up-to-date listing of the library, UPDATE must be executed before LIST.
This is accomplished by coding TYPRUN=HOLD on the JOB statement for the
job named LIST. If a DISPLAY JOBNAMES comnand is issued by you or the
operator, the operator is notified on the console when UPDATE has
completed processing; he issues a RELEASE cOIrltland for LIS'I. The job
LIST can then be selected for execution.

Section II: The JOB Statement -- TYPRUN Parameter 63

''''-'''''"-'"''''"'''j''''''''"''''"''''' ____ ~,,----.... --''''-.. ---.'''''''''' ... ----.---!II._.!II!!~. ____ ' __ . _, __ ~ _____ _____ ,_'III~_!l_:!It!I_! _IIII1II1 ••• _.Y_R~1IIIII!1ti.IIIIIIIIII!1IINI!III1~~!':iIWQi\I,H.-!'-'

Section III: The EXEC Statement

The EXEC statement is the first statement of each job step and cataloged
procedure step. The EXEC statement is followed by DD statements and
data that pertain to the step. The principal function of the EXEC
statement is to identify the program to be executed or the cataloged
procedure to be called. All other parameters in the operand field are
optional. A job cannot contain more than 255 job steps and procedure
steps.

EXEC Statement Format

(//stepname EXEC operands comments

The EXEC statement consists of the characters //, in columns 1 and 2,
and four fields -- the name, operation (EXEC>, operand, and comments
fields.

Rules for Coding

Follow the o~der listed below when coding the EXEC statement:

1. Code the characters // in columns 1 and 2.

2. Optionally, you may assign a name to the job step; if you do, code
the stepname starting in column 3.

3. Follow the stepname or // with at least one blank.

4. Code EXEC.

1-::IO-----~----li~20 h 21-30 ~3I=~1=W--~~ ~ 61-70 ~ 7i~80- ~-
IT2I3T4T5I6m8r9r61]i[3I4I5ThTIJ8I9IO~J6T718T9~]4J"g~I5T6JTI8j01234I5161718T9JO~?ill4T516J7I8T9I6JJ?T3J4~ Q

1~~;1~eLL1~f.~ft:.L~1 I I I I I I I I 1 I I I I I I I I I 1 I I I '-l-~-'--'-L.l-l-c-L~' I I I I I I I I 1 I I I I I I I I I

~. Follow EXEC with at least one blank.

section III: ThE EXEC statement 65

6. Identify the program to be executed (PGM), or the cataloged
procedure to be called (PROC). (When you are calling a procedure,
you may omit PROC=.)

:----I~-Ifu:r-~rll..:20 1 21-30· [31-40 [.. -41_50uu:~-51':60--~------~~~6-1':'· __ iO---- --71":130---
~<@I6 7 ~ 9 0 illrn-'H~];ltI§Th161Oi])1~I[!§I:lli1NIQ1I[.~J~1~?T~IQJJJmI4]1I§III!@JQum.~H.IM~TI~0 I 234567890 I 234567890

llJM~~ESd~'t.litI;,.f.ifLL1 .. _L.L .. L.Lj._~_LLL L.LLLLt_LL1_LL...lJ. ... LLj_L..L_J.....Ll-'---' ' , I ' , , '..l....L.~LL-'-_LLLL

7. Code any desired keyword parameters. Separate each parameter with
a comma.

8. Code at least one blank.

9. Code any desired comments ..

i---~:-I~lo-:-::-:-T::"--:--1T-20~---:T---:-2I-::~o--~·-T---__ :3T~40--·-r-----41=-50_.__-____ -} . . 51-60 1 61-70 oh 71-80
!I IillJ~IEIT7]8T9 10lIl2)3 14 J516 ~J.Ql}1?n141~lH!lliwJjJ.?l3lilll§l?.rnm6tmJ3 ffi"sl§Illilmo 1]2"[3 14J5J6Tn~1Q JJ:illHI~7[8[9IQ!I2J3I4T~ 8 9 0

[/J. ,S, r.Ei?, /, ,E.X$cU~M,:,.y,c Rj.1".£'h;EBg~..J'.LIf~'Z-f-..M.,!~~.L<:!,J'~,P.7L~r~8LJE~~CM~,QJLIlPJKG..-'--~-...L...L.L-LLLL-L-L

Positional and Keyword Parameters

There are two types of parameters that can be coded on the EXEC
statement:

positional parameters, which must precede any keyword parame~€rs. One
of the following two positional parameters is coded:

PGM (PCP, MFT, MVT)
PRoe (PCP, MFT, MVT)

These positional parameters are described in the following pages in the
order listed above.

Keyword parameters, which may be coded in any order after the positional
parameter. Any of the following keyword parameters can be coded on the
EXEC statement:

ACCT (PCP, MFT, MVT)
COND (PCP, MFT, MVT)
DPRTY (MVT)
PARM (PCP, MFT, MVT)
RD (PCP, MFT, MVT)
REGION (MVT)
ROLL (MVT)
TIME (MFT, MVT)

These keyword parameters are described, after the positional parameters,
in the order listed above.

66 JCL Reference

Sample EXEC Statements

1. //STEP4

2. //

3. //FOR

4. //PIC4

EXEC

EXEC

EXEC

EXEC

PGM=DRBC,PARM='3018,NO'

PGM=ENTRY,REGION=80K,TIME=(2,30),DPRTY=(11,11)

PROC=PE489,TIME=4

SAL83,ACCT.STEP1=123019

section III: The EXEC Statement 67

EXEC

Assigning a Stepname

(//stepname EXEC

The stepname identifies a job step within a job. The stepname is
optional. You must assign a stepname if you wish to do any of the
following:

1. Make backward references to the step.

2. override parameters on a.n EXEC statement or DD statement in a
cataloged procedure step, and add DD statements to a cataloged
procedure step.

3. Perform a step or checkpoint restart at or within the step~

The stepname must begin in column 3 of thE~ EXEC statement and must
consist of 1 through 8 alphameric and national (@, #, $) characters.
The first character must be an alphabetic or national character. Each
stepname within a job or a ca.taloged procedure must be unique.

Examples of Valid Stepnames

1. //STEP4 EXEC

2. //@LOC EXEC

3. //PRINT EXEC

Section III: The EXEC statement -- Assigning a Stepname 69

The PGM Parameter (For PCP, MFT, MVT)

PGM={program name }
*.stepname.ddname
*.stepname.procstepname.ddname

program name
is the member name or alias of the program to be executed. The
program must be a member of a partitioned data set that resides in
a temporary, system, or private library.

*.stepname.ddname
is a backward reference to a DD statE~ment that defines, as a member
of a partitioned data set, the program to be executed; stepname is
the name of the step in which the DD statement appears. Usually,
this form is used when a previous job step creates a temporary
partitioned data set to store one program until the program is
required.

*.stepname.procstepname.ddname
is a backward reference to a DD statement within a cataloged
procedure step that defines, as a member of a partitioned data set,
the pro9ram to be executed. stepname is the name of the step that
calls the procedure, and procstepnaroe is the name of the procedure
step that contains the DD statement. Usually, this form is used
when a cataloged procedure step, called by an earlier job step in
the job, creates a temporary partitioned data set to store a
program until the program is required.

Identifying the Program to Be Executed

All programs that can be executed are merrbers of partitioned data sets
(libraries). The library that contains the program may be a temporary
library, the system library, or a private library. In order to execute
a program contained in any of these libraries, you must code the PGM
parameter as the first parameter on the EXEC statement.

TEMPORARY LIBRARY

If in a job you want to assemble, linkage edit, and then execute a
program, you must make the Qutputof the linkage editor a member of a
partitioned data set. This is accomplished by creating a temporary
library. A temporary library is a partitioned data set created in the
job to store a program, as a member of the data set, until it is
executed in a following job step. When the program is required, you may
refer back to the DD statement that defines the temporary library and
the member by coding PGM=*.stepname.ddname or
PGM=*.stepname.procstepname .. ddname. You may also request use of a
program that is a member of a temporary library by coding PGM=program
name and including a DD statement named JOBLIB or STEPLIB that defines
the temporary library. (Information on the JOBLIB and STEPLIB DD
statements can be found in the chapter nAssigning a Ddname n in Section
IV of this publication.)

If you want to keep this program available for use by other jobs, you
must make the program a member of the system library or a private
library.

secti.on III: The EXEC Statement -- PGM Parameter 71

SYSTEM LIBRARY

The system library is a partitioned data set named SYS1.LINKLIB and it
contains frequently used programs, as well as programs used by the
system. You request the use of a program that is a merober of the system
library simply by coding PGM=program name. The system automatically
looks in SYS1.LINKLIB for a member with the corresponding name.

A program that resides in the system library may also be executed by
coding PGM=*.stepname.ddname or PGM=*.stepname.procstepname.ddname.
This can be done only when the named DD statement defines the program as
a member of the system library.

PRIVATE LIBRARY

A private library is a partitioned data set that contains programs not
used frequently enough to warrant their inclusion in the system library.
You request use of a program that is a member of a private library by
coding PGM=program name and. including a DD statement named JOBLIB or
STEPLIB that defines the private library. The system automatically
looks in the private library and, if the program is not found there, in
SYS1.LINKLIB for a member with the corresponding name. (Information on
the JOBLIB and STEPLIB DD statements can be found in the chapter
"Assigning a Ddname" in section IV of this publication.)

A program that resides in a private library may also be executed by
coding PGM=*.stepname.ddname or PGM=*.stepname.procstepname.ddname.
This can be done only when the named DD statement defines the program as
a member of a private library.

THE IEFBR14 PROGRAM

If space allocation and disposition processing requests are contained in
your job control statements, you can satisfy these requests prior to
executinq your program. To do this, substitute IEFBR14 for your
program's name. This also allows you to check the accuracy of your
control statements. (If you create a data set when using this program,
the data set's status will be old when you execute your own program.)

Examples of the PGM Parameter

1. //STEPl EXEC PGM=TABULATE

2.

specifies that the program named TABULATE is a member of
SYS1.LINKLIB.

//JOB8
//JOBLIB
//STEPl

JOB
DD
EXEC

MSGLEVEL=(2,O)
DSNAME=DEPT12.LIB4,DISP=(OLD,PASS)
PGM=USCAN

Specifies that the system is to look for the program named USCAN in
a private library named DEPT12.LIB4, and, if not found there, the
system is to look in the system library.

72 JCL Reference

3.

4.

//CREATE
//SYSLMOD
//
//EXCUTE

EXEC PGM=IEWL,REGION=96K
DD DSNAME=&&PARTDS(PROG),UNIT=2311,DISP=(MOD,PASS),

SPACE=(1024,(50,20,1»
EXEC PGM=*.CREATE.SYSLMOD

X

Use of backward reference to a DD stat.ement that defines a temporary
library created in the step named CREATE. The program named PROG is
stored as a member of the partitioned data set naroed &&PARTDS and is
executed in the step namE~d EXCUTE.

//STEP2
//DDA
//STEP3

EXEC
DD
EXEC

PGM=UPDT
DSNAME=SYS1.LINKLIB(P40),DISP=OLD
PGM=*.STEP2.DDA

Use of backward reference to a DD statement that defines the system
library. The program named P40 is stored as a member of
SYS1.LINKLIB and is executed in the st:ep named STEP3.

5. //CHECK EXEC PGM=IEFBR14

Executing the program named IEFBR14 allows you to satisfy space
allocation and disposition processing requests prior to executing
your program. The remaining job control statements in the job are
also checked for syntax.

section III: The EXEC statement -- PGM Parameter 73

The PROC Parameter (For PCP, MFT MVT)

procedure name

{
PRoc=procedure name}
procedure name

the member name (or alias) of the cataloged procedure or the name
of the in-stream procedure to be called.

Identifying the Cataloged or In-stream Procedure to Be Called

A cataloged procedure is a set of job control statements that has been
placed in a special partitioned data set referred to'as the procedure
library. (The IBM-supplied procedure library is named SYS1.PROCLIB; at
your installation, there may be additional procedure libraries, which
would have different names.) Each cataloged procedure is a member of
this data set. An in-stream procedure is a set of job control
statements, beginning with a PROC statement and ending with a PEND
statement, that have been placed in the input stream. An in-stream
procedure can be executed any number of times during the job in which it
appears. Both cataloged and in-stream procedures consist of one or more
procedure steps; each procedure step consists of an EXEC statement,
which identifies the program to be executed, and DD statements, which
define the data set requirements of the step.

In order to use a cataloged or in-stream procedure, you must code the
PROC statement as the first parameter on t,he EXEC statement, instead of
the PGM parameter, and give t:he name of the cataloged procedure. You
can, instead, code only the cataloged or in-stream procedure name; the
job scheduler will recognize that it is a procedure name since it must
appear first in the operand field.

When the EXEC statement specifies that a cataloged or in-stream
procedure is to be called, subsequent parameters in the operand field
can be used to override EXEC statement par'ameters in the procedure.
Also, any DD statements that follow the EXEC statement are either
overriding DD statements or DD statements that are to be added to the
cataloged or in-stream procedure for the duration of the job step.
Overriding and adding to cataloged procedures are discussed in the
chapter "Using Cataloged and in-stream Procedures" in Appendix A of this
Pliblication.

Examples of the PROC Parameter

1. //SP3 EXEC PROC=PAYWKRS

Specifies that the catal(~'ed or in-stream ~rocedure named PAYWKRS is
to be called.

2. //BK3 EXEC OPERATE

specifies that the cataloged or in-stream procedure named OPERATE is
to be called. This specification has the same effect as coding
PROC=OPERATE.

Section III: The EXEC statement -- PROC Parameter 75

'-------·--------------_, _______ IIIIIIIIII_UIllllIllFI'lllIIIIIIIiIIiIIIIiIIIIIJ,J,,"JIII!IIIIIIIII ... II~II~I_!II..

~.

The ACCT Parameter (For PCP, MFT, MVT)

ACCT=(accounting information, •••)

accounting information
includes one or more subparameters of accounting information to be
passed to the installation's accounting routines by the system.

Rules for Coding

1. If the accounting information includes several subparameters, each
must be separated by a comma.

2. If the accounting information consists of only one subparameter,
you need not code the parentheses.

3. The maximum number of characters of accounting information, plus
the commas that separate the subparameters, is 142.

4. If a subparameter contains special characters (other than a
hyphen), enclose the subparameter in apostrophes. The apostrophes
are not considered part of the information. If one of the special
characters is an apostrophe, code two consecutive apostrophes in
its place.

Providing .Accounting Information for a Job Step or Procedure Step

Code the ACCT keyword parameter when you want to provide accounting
information for a step. If the job step calls a cataloged procedure,
the ACCT parameter overrides any ACCT parameters coded in the procedure
steps and pertains to all the procedure steps. If different steps in
the procedure require different accounting information, code
ACCT.procstepname=(accounting information, •••) for each step that
requires accounting information. Accounting information will then
pertain only to the named procedure step.

Examples of the ACCT Pa:rameter

1. / /STEP1 EXEC PGM=JP5 ,ACCT= (LOCA'IION8, 'CHGE+3')

Specifies that this accounting information pertains to this job
step.

2.. //STP3 EXEC LOOKUP,ACCT=('/S346S')

Specifies that this information pertains to this job step. Since
this step calls a cataloged procedure, the accounting information
pertains to all the steps in the procedure.

3. //STP4
//

EXEC BILLING,ACCT.PAID=56370,ACCT.LATE=56470,
ACCT.BILL='121+366'

Specifies that different accounting information pertains to each of
the named procedure steps (PAID, LATE, and BILL).

x

section III: The EXEC statement -- ACCT Parameter 17

EXEC

The COND Parameter (For PCP, MFT, MVT~

code

COND= ([<code,operator)] , ••• [,] lEVEN])
(code,operator,stepname) ONLY
(code,operator,stepname.procstepname)

a decimal number from 0 through 4095. This number is compared with
the return code issued by all previous steps or a specific step.

operator
the type of comparison to be made with the return code. Relational
operators and their meanings are:

GT ••• greater than
GE ••• greater than or equal to
EQ ••• equal to
LT ••• less than
LE ••• less than or equal to
NE ••• not equal to

stepname
the name of a preceding job step that issued the return code to be
tested.

stepname.procstepname

EVEN

ONLY

the name of a procedure step "procstepnamen that issued the return
code to be tested; the procedure step-is part of a procedure that
was called by an earlier job step named "stepname."

specifies that the job step is to be executed even if one or more
of the preceding job steps have abnormally terminated. If the
current job step specifies that return code tests are to be made
and if any of the tests are satisfied, this job step is bypassed.
Do not code EVEN when ONLY is coded.

specifies that the job step is to be executed only if one or more
of the preceding job steps have abnormally terminated. If the
current job step specifies that return code tests are to be made
and if any of the tests 'are satisfied, this job step is bypassed.
Do not code ONLY when EVEN is coded.

Rules for Coding

1. When neither EVEN nor ONLY is coded, you can make as many as eight
tests on return codes issued by preceding job steps or cataloged
procedure steps, which completed normally. When either EVEN or
ONLY is coded, you can make as many as seven tests on return codes.

2. If you want only one test made, you need not code the outer
parentheses.

3. If you code only EVEN or ONLY, you need not enclose it in
parentheses.

4. If you want each return code test to be made on the return code
issued by every preceding step, do not code a stepname.

5. The EVEN or ONLY subparameter can appear before, between, or after
return code tests.

Section III: The EXEC statement -- COND Parameter 79

Using the COND Parameter

The COND keyword parameter can be used to eliminate unnecessary use of
computing time by basing the execution of a job step on the successful
completion of one or more preceding job steps. When the COND parameter
is coded on the JOB statement, any return code test that is satisfied
causes all remaining job steps to be bypassed. If, instead, YOQ want a
particular job step to be bypassed when a return code test is satisfied,
code the COND parameter on the EXEC statement. Besides allowing you to
specify the conditions for Eypassing a job step, the COND parameter
allows you to specify the condition for ~xecuting a job step.

'rhe compiler, assembler, and linkage editor programs issue return
codes. You may want to use the COND parameter to test these return
codes. If you write your processing programs in assembler language or
PL/I, you can use the COND parameter to test return codes issued by your
programs.

BYPASSING A JOB STEP

The return code tests specified in the COND parameter determine whether
a job step is to be bypassed. Each return code test consists of a code,
an operator, and, optionally, a stepname. The operator indicates the
mathematical relationship between the code specified on the EXEC
statement and the code returned by a completed job step. The operator
or operators are compared with the return code or codes and if any of
the relationships are true, the job step is bypassed.

If the return code test includes a stepname, the test is made using
the return code issued by the named step. If' the return code test does
not include a stepnarne, the test is made using the return code issued by
every preceding job step that completed normally. To test in a later
job step the return code issued by a cataloged procedure step, specify
both the name of the job step that called the procedure and the
procedure stepname, i.e., stepname.procstepname.

EXECUTING A JOB STEP

Abnormal termination of a job step normally causes subsequent steps to
be bypassed and the job to be terminated. Ey means of the COND
parameter, you can specify the condition for executing a job step after
one or more of the preceding job steps have abnormally terminated. For
the COND parameter, a job step is considered to abnormally terminated if
a failure occurs within the-user's program once it has received control.
(If, during scheduling, a job step is not scheduled for execution
because of failures such as job control language errors or inability to
allocate space, the remainder of the job steps are bypassed, whether or
not a condition for executing a later job step was specified.)

The condition for executing a job step after one or more of the
preceding job steps have abnormally terminated is either EVEN or ONLY.
EVEN causes the step to be executed even if one or more of the preceding
job steps have abnormally terminated; ONLY causes the step to be
executed only if one or more of the preceding job steps have abnormally
terminatedu When a job step abnormally terminates, the COND parameter
on the EXEC statement of the next step is scanned for the EVEN or ONLY
subparameter. If neither is specified, the job step is bypassed and the
EXEC statement of the next step is scanned for EVEN or ONLY. If EVEN or
ONLY is specified, return code tests, if any, are made on all previous
steps specified that did not abnormally terminate. If anyone of these
tests is satisfied, the job step is bypassed. Otherwise, the job step
is execut.ed.

80 JCL Reference

caution: When a job step that contains the EVEN or ONLY subparameter
refers to a data set that was to be created or cataloged in a preceding
step, the data set (1) will not exist if t~he step creating it was
bypassed, or (2) may be imcomplete if the step creating it abnormally
terminated. Also, if the job step refers the system to an earlier job
step for volume and unit information, this inforrr,ation is not available
if the earlier job step was bypassed.

WHEN YOU CALL A CATALOGED PROCEDURE

The COND parameter may be coded on the EXEC statement of a cataloged
procedure step. If the job step calls a cataloged procedure, you may
want to override all COND parameters in the procedure or only certain
COND parameters. To override all COND parameters, code the COND
parameter on the EXEC statement that calls the procedure. This
establishes one set of return code tests and the EVEN or CNLY
subparameter for all steps in the procedul:-e. 'Io override only certa1n
COND parameters, code, on the ~XEC statement that calls the procedure,
COND.procstepname for each procedure step that you want to override.
Return code tests and the EVEN or ONLY subparameter will then pertain
only to the named procedure step.

Examples of the COND Parameter

1. //STEP6 EXEC PGM=BAE,COND=(4,GT,STEP3}

If 4 is greater than the return code issued by STEP3, this step is
bypassed. (A return code of 4 or greater allows this step to be
executed.) since neither EVEN nor ONLY is specified, this job step
is automatically bypassed if a preceding step abnormally terminates.

2. //TEST2 EXEC PGM=BACK,COND=((16,GE),(90,LE,STEP1),ONLY)

If 16 is greater than or equal to the return code issued by any of
the preceding job steps or if 90 is less than or equal to the return
code issued by STEP1, this step is bypassed. If none of the tests
are satisfied (any return code of 11 through 89 does not satisfy toe
tests) and a preceding job step has abnormally terminated, this step
is executed because ONLY is coded.

3. //PRCH EXEC PGM=SPE,COND=(12,EQ,STEP4.LOOKUP}

If 12 is equal to the return code issued by the procedure step named
LOOKUP, the job step is bypassed. Since neither EVEN nor ONLY is
specified, this job step would be aut.omatically bypassed if a
preceding step abnormally terminated.

4. //STP4 EXEC BILLING,COND.PAID=(EVEN, (20,LT», X
// COND.LATE=(60,GT,FIND),COND.BILL=«20,GE),(30,LT,CHGE»

Specifies that different return code tests pertain to each of the
named procedure steps (PAID, LATE, and BILL). If the return code
test specified for the procedure step named PAID is not satisfied,
the step is executed even if a preceding step abnormally terminated.

section ITI: The EXEC Statement -- COND Parameter 81

The DPRTY Parameter (For MVT)

DPRTY=(valuel,value2)

valuel
a number from 0 through 15. If you do not assign a number, a value
of 0 is assumed.

value2
a number from 0 through 15. If you do not assign a number, a value
of 11 is assumed.

Rules for Coding

1. Avoid assigning a number of 15 to valuel. This number is used for
certain system tasks.

2. If you omit value2, you need not code the parentheses.

3. If you omit valuel, you must code a comma preceding value2 to
indicate the absence of valuel.

4. If the DPRTY parameter is coded for PCP or MFT, the parameter is
not used, but is checked for syntax.

Assigning a Dispatching Priority

The DPRTY parameter is used to assign a dispatching priority to a job
step. Dispatching priority determines in what order tasks will use main
storage and CPU resources. If you do not code the DPRTY parameter, the
job step is assigned the priority assigned to the job either on the JOB
statement (the PRTY paramete.r) or by default.

Valuel of the DPRTY parameter has the same meaning as the value you
assign in the PRTY parameter. That is, if you code PRTY=10 on the JOB
statement and DPRTY=10 on the EXEC statement, the job and step priority
are the same. Also, in this case the job and step have the same
dispatching priority. This is because the system converts the number 10
to an internal priority and then adds 11 to the internal priority to
form the dispatching priorit:y (11 is always the number added to the
job's internal priority; 11 is the number added to the job step's
internal priority when valuE:2 of the DPR'I'Y parameter is omitted>.

If you code value2 of thE~ DPRTY parameter, the system adds that value
to the internal priority to form the dispatching priority. (The
internal priority is formed by the system by converting the value
assigned to valuel in the DPRTY parameter.)

When you want the job step to have a different dispatching priority
than the job, you c0ge the DPRTY parametE~r and either raise or lower thp
values, depending on whether the step is to have a higher or lower
priority than the job.

section II.I: The EXEC ::ita tement -- DPRTY Parameter 83

THE DPRTY PARAMETER AND TIME-SLICING

If your installation provides time-slicing facilities in a system with
MVT, the DPRTY parameter can be used to make a job step part of a group
of jobs and job steps to be time-sliced. (To make an entire job part of
a group of jobs and job steps ~o be time-sliced, code the PRTY parameter
on the JOB statement.) At system generation, the priorities of the
time-sliced groups are selected. If the number assigned to "value1"
corresponds to a priority number selected for time-slicing and "value2"
is either omitted or assigned a value of 11, then the job step's tasks
will be time-sliced.

WHEN YOU CALL A CATALOGED PROCEDURE

The DPRTY parameter may be coded on the EXEC statement of a cataloged
procedure step. If the job step calls a cataloged procedure, you rray
want to override all DPRTY parameters in the procedure or only certain
DPRTY parameters. To override all DPRTY parameters, code the DPRTY
parameter on the EXEC statement that calls the procedure. This
establishes one dispatching priority for all the steps in the procedure.
To override only certain DPRTY parameters, code, on the EXEC statement
that calls the procedure, DPRTY.procstepname for each procedure step
that you want to override. The dispatching priority will then pertain
only to the named procedure step.

Examples of the DPRTY Parameter

1. //BP2 EXEC PGM=FOUR,DPRTY=(13,9)

The system uses these numbers to form a dispatching priority for
this step. Since the numbers are hiqh, the dispatching priority
will be high.

2. //STEP3 EXEC PGM=BROWN31,DPRTY=(,12)

The system first assigns a value of 0 to the absent subparameter and
then forms a dispatching priority. In this case, the dispatching
priority will be very low.

3. //ST2 EXEC COMF,DPRTY=4

The system assigns a dispatching priority of 4 to all steps in the
procedure named COMP.

84 JCL Reference

The PARM Parameter (For PCP, MFT, MVT)

value

PARM=value

consists of up to 100 characters of information or options that the
system is to pass to the processing program.

Rules for Coding

1. If the value contains more than one expression separated by commas,
the value must be enclosed in apostrophes or parentheses, e.g.,
PARM='P1,123,MTS' or PARM=(Pl,123,MTS). (Enclosing apostrophes and
parentheses are not passed to the processing program: commas within
apostrophes and parentheses are passed as part of the value.)

2. If any expression contains special characters, either (1) enclose
the value in apostrophes, or (2) enclose the expression in
apostrophes and the value in parentheses, e.g., PARM='PSO,12+80' or
PARM=(PSO,'12+80'). (The enclosing apostrophes and parentheses are
not considered part of the value.) If one of the special
characters is an apostrophe, code two consecutive apostrophes in
its place, e.g., PARM='CONTROL INFORM"N'. If one of the special
characters is an ampersand and you are not defining a symbolic
parameter, code two consecutive ampersands in its place, e.g.,
PARM='3462&&S'. (When two apostrophes or two ampersands are coded,
only one is passed to the processing program.)

3. If the value must be continued on another statement, enclose the
val~e in parentheses. 'I'he continuation cOJll.ma is considered part of
the value field and counts towards the maximum of 100 characters of
data. You may not continue on another statement any value enclosed
in apostrophes.

Providing a Processing Program With Information
at Execution Time

Some information required by a program may vary from application to
application, such as module attributes and options required by compiler,
assembler, and linkage edi to:r programs. In order to provide this
information to the program a-t the time it is executed, you can code the
PARM keyword parameter. The program must include instructions that can
retrieve this information. (The exact location and format of the
information passed to a processing program are described under the topic
"program Management" in Section I of supervisor and Data Management
Services.)

WHEN YOU CALL A CATALOGED OR IN-STREAM PROCEDURE

The PARM parameter may be coded on the EXEC statement of a cataloged or
in-stream procedure step. If the job step calls a cataloged or
in-stream procedure, you can pass information to the first procedure
step and nullify all other PARM parameters in the procedure or override
some of the PARM parameters contained in the procedure. To accomplish
the first, code the PARM parameter on the EXEC statement that calls the
procedure. The information contained in the PARM parameter is passed to
the first procedure step and PARM parameters in all other procedure

Section III: The EXEC statement -- PARM Parameter 8S

steps are nullified. To override some of the. PARM parameters contained
in the procedure, code, on the EXEC statement that calls the procedure,
PARM.procstepname for each procedure step that you want to override.
Information provided is passed only to the named procedure step.

Examples of the PARM Parameter

1. //RUN3 EXEC PGM=APG22,PARM=CP1,123,'P2=5')

The system passes the information in the PAlli~ parameter, except the
apostrophes, to the processing program narred APG22.

2.. // EXEC PROC81,PARM=MT5

The system passes this information to the first step of the
procedure named PROC81. If any of the other procedure steps contain
the PARM parameter, these parameters are nullified.

3.. //STP6 EXEC ASMFCLG,PARM.LKED=CMAP,LET)

The system passes this information to the procedure step named LKED ..
If any of the other procedure steps contain the PARM parameter,
these parameters are still in effect.

86 JCL Reference

The RD Parameter (For PCP, MFT, MVT)

RD= ~NCI NC
NR

R
specifies that automatic step restart is permitted.

RNC

NC

NR

specifies that automatic step restart is permitted and automatic
checkpoint restart is no·t permitted and no checkpoints can be
established.

specifies that neither automatic step restart nor automatic
checkpoint restart is permitted and no checkpoints can be
established.

specifies that neither automatic step restart nor automatic
checkpoint restart is permitted, but the CHKPT macro instruction
can establish a checkpoint.

Rules for Coding

1. Be sure to code MSGLEVEL=(l,l) , MSGLEVEL=(l,O), or MSGLEVEL=l in
MFT and MVT when RD=R or RD=RNC is specified.

2. If you are permitting automatic step restart, assign the step a
unique step name.

3. If you have coded the RD parameter on the JOB statement, RD
parameters on the job's EXEC statements are ignored.

Using the Restart Facilities

The RD (restart definition) keyword parameter is coded when you want to
make use of the step restart facilities, 1:0 suppress the action of the
CHKPT macro instruction, or to suppress automatic restarts. The step
restart facilities permit execution of a job to be automatically
restarted at a job step after the job abnormally terminates or, in MFT
and MVT, after a 'system failure occurs. Through the RD parameter, you
can specify that execution of a job step is to be automatically
restarted at the beginning of the step if it abnormally terminates (step
restart).

Execution of a job step can also be automatically restarted within
the step if it abnormally terminates (checkpoint restart). In order for
checkpoint restart ,to occur, the CHKPT macro instruction must have been
executed in the processing program before abnormal termination. When
you use the RD parameter to request suppression of the CHKPT macro
instruction action, automatic checkpoint restart cannot occur.

If the RD parameter is not coded, step restart cannot occur. If the
RD parameter is not coded and the processing program contains CHKPT
macro instructions, checkpoint restart can occur.

section III: The EXEC statement -- RD Parameter 87

EXEC

The following two conditions must be met before automatic step or
checkpoint restart can occur: (1) the completion code returned during
abnormal termination indicates that the step is eligible for restart,
and (2) the operator authorizes restart. In addition, for automatic
step restart to occur in MFT or MVT, MSGLEVEL=(l,O), MSGLEVEL=(l,l), 01:

MSGLEVEL=l must be coded on the JOB statement.. If these condi tions ar~~
satisfied, special disposition processing is performed before restart.
If automatic step restart is to occur, all data sets in the restart sb~p
with a status of OLD or MOD, and all data sets being passed to steps
following the restart step, are kept. All data sets in the restart stE~p
with a status of NEW are deleted. If automatic checkpoint restart is 1:0
occur, all data sets currently in use by the job are kept.

DEFINING RESTART

You define the type of restart that can occur by coding one of the
subparameters of the RD parameter: R, RNC, NC, or NR.. Each of these
subparameters is described in detail in the following paragraphs ..

RD=R: R indicates that automatic step restart is permitted. If the
processing program used by the job step does not include any CHKPT macro
instructions, coding RD=R allows execution to be resumed at the
beginning of this step if it abnormally terminates. If the program dOE!s
include a CHKPT macro instruction, coding RD=R permits automatic step
restart to occur only if the step abnormally terminates before execution
of the CHKPT macro instruction; thereafter, only checkpoint restart can
occur. If you cancel the effects of the CHKPT macro instruction beforE!
a checkpoint restart is performed, the request for automatic step
restart is again in effect.

RD=RNC: RNC indicates that automatic step restart is permitted and
automatic checkpoint restart is not permitted. RD=RNC should be
specified when you want to suppress the action of all CHKPTmacro
instructions included in the processing program and to permit automatic
step restart ..

RD=NC: NC indicates that neither automatic step restart nor automatic
checkpoint restart is permitted. RD=NC should be specified when you
want to suppress the action of all CHKPT macro instructions included in
the processing program and not to permit automatic step restart. RD=NC
has no effect on processing if CHKPT macro instructions are not included
in the program.

RD=NR: NR ind1cates that a CHKPT macro instruction can establish a
checkpoint, but neither automatic step restart nor automatic checkpoint
restart is permitted. Coding RD=NR allows you to resubmit the job at a
later time and specify in the RESTART parameter the checkpoint at which
execution is to be resumed. (The RESTART parameter is coded on the JOB
statement of the resubmitted job.) RD=NR has not effect on processing
if CHKPT macro instructions are not included in the program.

WHEN YOU CALL A CATALOGED PROCEDURE

The RD parameter may be coded on the EXEC statement of a cataloged
procedure step. If the job step calls a cataloged procedure, you may
want to override all RD parameters in the procedure or only certain RD
parameters. To override all RD parameters, code the RD parameter on th,e
EXEC statement that calls the procedure. This establishes one restart
request for all the steps in the procedure. To override only certain RD
parameters, code, on the EXEC statement that calls the procedure,
RD.procstepname for e~ch procedure step that you want to override. The
restart request will then pertain only to the named procedure step.

88 JCL Reference

References

1. For detailed information on the checkpoint/restart facilities,
refer to the publication Advanced Checkpoint/Restart Planning
Guide, the topic "Checkpoint and Restart" in the publication
Supervisor and Data Management Services, and "Using the Restart
Facilities" in Appendix B of this publication.

2. For information on how to code the CHKPT macro instruction, refer
to the publication supervisor and Data Management Macro
Instructions.

Examples of the RD Parameter

1. //STEPl EXEC PGM=GIIM,RD=R

permits execution to be a.utomatically restarted with this step if it
abnormally terminates.

2. //NEST EXEC PGM=T18,RD=RNC

Permi"ts execution to be automatically restarted with this step if it
abnormally terminates; suppresses the action of CHKPT rr,acro
instructions issued in the program this job step uses.

3. //CARD EXEC PGM=WTE,RD=NR

Neither automatic step restart nor automatic checkpoint restart can
occur, but CHKPT macro instructions issued in the program that this
job step executes can est.ablish checkpoints.

4. //STP~ EXEC BILLING,RD.PAID=NC,RD.BILL=NR

Specifies that different restart requests pertain to each of the
named procedure steps (PAID and BILL).

section III: The EXEC Statement -- RD Parameter 89

EXEC

The REGION Parameter--Without Main Storage Hierarchy
Support (For MVT)

REGION=valueK

valueK
specifies the number of contiguous 1024-byte areas of main storage
to be allocated to the job step. The number can range froro one to
five digits but may not exceed 16383.

Rules for Coding

1. Code an even number. (If you code an odd number, the system treats
it as the next highest even number. When the value 16383K is
coded, the system treats it as 16384K. However, the value 16384K
must not be coded on the EXEC statement.)

2. If you have coded the REGION parameter on the JOB statement, REGION
parameters on the job's EXEC statements are ignored.

3. If the REGION parameter is coded for PCP or MFT, the parameter is
not used, but is checked for syntax.

Requesting Main Storage

The REGION keyword parameter is used to specify how much main storage,
in contiguous bytes, is to be allocated to the job step. Code the
REGION parameter when you want more storage or less storage than would
be allocated if the default region size was used. The default region
size is established as a PARM parameter field in the cataloged procedure
for the input reader. You can consult the Storage Estimates publication
to help you determine how much main storage is required to process your
job.

ACQUIRING ADDITIONAL MAIN S'l'ORAGE

If the step may require use of more main storage than has been
allocated, you can code the ROLL parameter on either the JOB statement
or this EXEC statement and :t'equest that the system try to provide you
with additional main storage. The ROLL parameter is described in the
chapters "The ROLL Parameter" later in this section and in Section II.

WHEN YOU CALL A CATALOGED PROCEDURE

The REGION parameter may be coded on the EXEC statement of a cataloged
procedure step. If the job step calls a cataloged procedure, you roay
want to override all REGION parameters in the procedure or only certain
REGION parameters. To overl:ide all REGION parameters, code the REGION
parameter on the EXEC statenlent that calls the procedure. Each
procedure step will be allocated the same amount of storage. To
override only certain REGION parameters, code, on the EXEC statement
that calls the procedure, REGION.procstepname for each procedure step
that you want to override. The requested region size will then be
allocated only to the named procedure step.

section 1113 The EXEC Statement -- REGION Farameter 91

Examples of the REGION Parameter

1. //JUNE EXEC PGM=A1403.REGION=112K

Specifies that 112 contiguous 1024-byte areas of main storage are to
be allocated to the job step.

2. / /S'I'P:2 EXEC PGM=RATL, REGION=7 OK, ROLL= (YES, YES)

The REGION parameter specifies that 70 contiguous 1024-byte areas of
main storage are to be allocated to the job step. In the ROLL
parameter, the first subparameter tells the syste:rr. that this step
may be rolled out if additional storage is required by another job;
the second subparameter tells the system that it should try to
provide this step with additional main storage if it is required.

3. //STP4 EXEC BILLING,REGION.LATE=80K,REGION.BILL=108K

Specifies that different region sizes are to be allocated to the
named procedure steps (LATE and BILL).

92 JCL Reference

The REGION Parameter--With Main Storage Hierarchy Support
(For MVT, Excluding M8SMP)

valueoK
specifies the number of contiguous 1024-byte areas in hierarchy 0
to be allocated to the job step. If IBM 2361 Core Storage is
present, the number cannot exceed 16383.

value1 K
specifies the number of contiguous 1024-byte areas in hierarchy 1
to be allocated to the job step. If IEM 2361 Core Storage is
present, the number cannot exceed 1024 (for each Modell) or 2048
(for each Model 2).

Rules for Coding

1. When processor storage includes hierarchies 0 and 1, the sum of
valueo and value1 cannot exceed 16383.

2. code even numbers. (If you code an odd number, the system treats
it as the next highest even number. When 16383K is coded for
valueo ,the system trea·ts it as 16384K • However, 16384K filuSt not
be coded for value on ·the EXEC statement.)

3. When you are requesting storage only in hierarchy 1, precede value1
with a comma, to indica·te the absence of valueo •

4. When you are requesting storage only in hierarchy 0, you need not
code the parentheses.

5. If yOU have coded the REGION parameter on the JOB statement, REGION
parameters on the job's EXEC statements are igncred.

6. If the REGION parameter is coded for PCP or MFT, the parameter is
not used, but is checked for syntax.

Requesting Main Storage :in One or Two Hierarchies

The REGION keyword parameter is used to specify how much main storage is
to be allocated to each job step, and, when main storage hierarchy
support has been specified a·t system generation, in which hierarchy or
hierarchies to allocate main storage. With main storage hierarchy
support, storage hierarchies 0 ~nd 1 are provided. If IBM 2361 Core
storage, Model 1 or 2~ is present in the system, processor storage is
referred to as hierarchy 0 and 2361 Core Storage is referred to as
hierarchy 1. If 2361 Core storage is not present, a two-part region is
established in processor sto:rage when regions are requested in two
hierarchies. The two parts are not necessarily contiguous in processor
storage.

Code the REGION parameter to specify how much storage is to be
allocated in each hierarchy, or that all storage for the job step is to
be allocated in a particular hierarchy. (If you do not code the REGION
parameter on either the JOB or EXEC statement, the default region size,
which is a PARM paraD~eter field in the cataloged procedure for the input
reader, is used and is always allocated in hierarchy O. If you code the
REGION parameter and request storage only from hierarchy 1, no hierarchy
o segment will be allocated.) You can consult the storage Estimates
publication to help you determine how much main storage is required to
process the job stepft Then, depending on your reasons for using
hierarchies, determine how much storage is required in each.

section III: The EXEC statement -- REGION Parameter 93

If main storage hierarchy support was not specified at system
generation and regions are requested in both hierarchies, the region
sizes are combined and an atterr,pt is made to allocate a single region
from processor storage. If a region is requested entirely from
hierarchy 1, an attempt is rr,ade to allocate the region from processor
storage.

ACQUIRING ADDITIONAL MAIN STORAGE

If the job step may require more main storage than has been allocated,
you can code the ROLL parameter and request that the system try to
provide you with additional main storage in that hierarchy. The ROLL
parameter is described in the chapters "The ROLL Paraweter" later in
this section and in Section II.

WHEN YOU CALL A CATALOGED PROCEDURE

The REGION parameter may be coded on the EXEC statement of a cataloged
procedure step. If the job step calls a cataloged procedure, you may
want to override all REGION parameters in the procedure or only certain
REGION parameters. To override all REGION parameters, code the REGION
parameter on the EXEC statement that calls the procedure. Each
procedure step will be allocated the sa~e amount of storage in the
specified hierarchies. To override only certain REGION parameters,
code, on the EXEC statement that calls the procedure,
REGION.procstepname for each procedure step you want to override. The
requested region size will then be allocated in the specified
hierarchies only to the nawed procedure step.

Examples of the REGION Parameter

1. //MART EXEC PGM=TYP,REGION=(80K,30K)

Specifies that the system is to allocate 80 contiguous 1024-byte
areas of storage in hierarchy 0 and 30 contiguous 1024-byte areas of
storage in hierarchy 1. If main storage hierarchy support is not
included in the system, the system will try to obtain 110 contiguous
1024-byte areas in processor storage.

2. // EXEC PGM=U1489,REGION=(,98K)

Specifies that the system is to allocate 98 contiguous 1024-byte
areas of storage in hierarchy 1.

3. //RAND EXEC PGM=SSYS,REGION=(100K,50K),ROLL=(YES,YES)

The REGION parameter specifies that the system is to allocate 100
contiquous 1024-byte areas of storage in hierarchy 0 and 50
contiguous 1024-byte areas of storage in hierarchy 1. In the ROLL
parameter, the first subparameter tells the system that this step
may be rolled out if additional storage is required by another job;
the second subparameter tells the system that it should try to
provide this step with additional main storage if it is required.

4. //STP4 EXEC BILLING,REGION.PAID=(28K,10K),REGION.LATE=(44K,8K)

Specifies that different region sizes are to be allocated to the
named procedure steps (PAID and LATE).

94 JCL Reference

The ROLL Parameter (FOI" MVT)

x

y

ROLL=(x,y>

declares whether the job step may be rolled out. Code YES if the
step may be rolled out; code NO if the step nay not be rolled out.

declares whether the job step may cause rollout of another job
step. Code YES if the step may cause rollout of another job step;
code NO if the step may not cause rollout of another job step. YES
must be coded if you want additional main storage allocated to the
step when additional main storage is required.

Rules for Coding

1. If you code the ROLL parameter, both subparameters must be
specified.

2. If you have coded the ROLL parameter on the JOB statement, ROLL
parameters coded on the job's EXEC statements are ignored.

3. Code ROLL=(NO,YES> or ROLL=(NO,NO> if this step is part of a
teleprocessing job that uses the Auto Poll option. If you allow
the step to be rolled out, the step cannot be restarted properly.

4. If the ROLL parameter is coded for PCP or MFT, the parameter is not
used, but is checked fOl: syntax.

When to Code the ROL'L Parameter
The ROLL keyword parameter should be coded if the job step' may require
more main storage than was requested in the REGION parameter. When you
specify in the ROLL parameter that this job step Ir.ay cause rollout of
another job step, an attempt is made to allocate additional storage if
the step requires it. In order to allocate this additional space to a
job step, another job step with a lower priority roay have to be rolled
out, i.e., temporarily transferred to secondary storage.

The ROLL parameter should also be coded when you want control over
whether the job step can be rolled out because of another step's need
for additional main storage. If the ROLL parameter is not coded, the
specification made in the PAI~ parameter field in the cataloged
procedure for the input reader is used.

WHEN YOU CALL A CATALOGED PROCEDURE

The ROLL parameter may be coded on the EXEC statement of a cataloged
procedure step. If the job step calls a cataloged procedure, you may
want to override all ROLL parameters in the procedure or only certain
~OLL parameters. To override all ROLL parameters, code the ROLL
parameter on the EXEC statement that calls the procedure. This
establishes one rollout/rollin request fOl~ all the steps in the
procedure. To override only certain ROLL parameters, code, on the EXEC
statement that calls the procedure, ROLL.procstepname for each procedure
step that you want to override. The rollout/rollin request will then
pertain only to the named procedure step.

section III: 'the EXEC Statement -- ROLL Parameter 95

Examples of the ROLL Parameter

1. //FILL EXEC PGM=PLUS,ROLL=(YES,YES),REGION=lOOK

Specifies that this step may be rolled out and may cause rollout o:E
anot:her job step if this step requires more than lOOK of main
storage.

2. //UP EXEC PGM=Z165,ROLL=(NO,YES)

Specifies that this step may not be rolled out but may cause rollout
of another job step.

3. //STP4 EXEC BILLING, RCLL.LATE= (YES,NO).ROLL.BILL=(NO,NO)

Specifies that different rollout/rollin requests pertain to each of
the named procedure steps (LATE and BILL).

96 JCL Reference

.~.

I The TIME Parameter (For MFT, MVT)

TIME={(minutes,seconds>}
1440

minutes
specifies the maximum number of minutes the job step can use the
cpu. The number of minutes must be less than 1440 (24 hours).

seconds

1440

specifies the maximum number of seconds beyond the specified number
of minutes the job step can use the CPU, or, if no minutes are
specified, the maximum number of seconds the job step can use the
cpu. The number of seconds must be less than 60.

specifies that the job step is not to be timed. Code 1440 if the
step may require use of the cpu for 24 hours or more or if the step
should be allowed to re!main in a wait state for more than the
established time limit.

Rules for Coding

1. If the CPU time limit i.s gl.ven in minutes only. you need not code
the parentheses.

2. If the cpu time limit is given in seconds only, you must code a
comma preceding the seconds to indicate the absence of minutes.

3. If the TIME parameter is coded for PCP, the parameter is not used,
but is checked for synt.ax.

Specifying a Time Limit for a dob Step
The TIME keyword parameter can be used to specify the maximum amount of
time the job step may use the cpu. Two benefits of coding the TIME
parameter are that it allows you to find out how long the step uses the
cpu (CPU time used appears on the output listing), and it helps limit
the cpu time wasted by the step if it goes into a loop. Normally, a
step that exceeds the specified time limit causes termination of the
job. However, if the System Management Facilities option is included in
the system and a user exit routine is provided, this routine can extend
the time limit so that processing can continue. When the TIME parameter
is not coded, a default time limit is assumed. The default is specified
as a PARM parameter field in the cataloged procedure for the input
reader.

TIME LIMIT FOR WAIT STATES

Since the job step can go into an extremely long wait state, the time a
job step may remain in a wait state is limited. If the system
Management Facilities option is included in the system, the installation
determines this time limit. In this case, 1f the job step remains in a
wait state for more than the established ,time limit, the job is
terminated unless a user-provided exit routine extends the wait-state
time limit for the step. If the System Management Facilities option is
not included, the system autom.atically provides a 30-minute time limit
for wait states; if the job step remains in a wait state for more than
30 consecutive minutes, 'the job is terminated.

section III: The EXEC statement -- TIME Parameter 97

How to Eliminate Timing

certain applications require a job step to use the CPU for 24 hours or
more. In this case you must eliminate timing by coding TIME=1440. This
specification should also be made when the step should be allowed to
remain in a wait state for more than the established time limit.

HOW THE JOE TIME LIMIT AFFECTS THE STEP TIME LIMIT

The remaining job time may affect the amount of time the step can use
the CPU. If the remaining CPU time for the job is less than the CPU
t~me limit specified on the EXEC statement, the step can use the CPU
only for the job's remaining CPU time. For example, if the job's
remaining CPU time is 5 minutes and the ste~ s~ecifies a CPU time limit
of 10 minutes, the step can only use the CPU for 5 minutes.

WHEN YOU CALL A CATALOGED PROCEDURE

The TIME parameter may be coded on the EXEC statement of a cataloged
procedure step. If the job step calls a cataloged procedure, you may
want to override all TIME parameters in the ~rocedure or only certain
TIME parameters. To override all TIME parameters, code the TIME
parameter on the EXEC statement that calls the procedure. This applies
a CPU time limit for the entire procedure, and nullifies any TIME
parameters that appear on EXEC statements in the procedure. To override
only certain TIME parameters, code, on the EXEC statement that calls the
procedure, TIME.procstepname for each procedure step that you want to
override. The CPU time limit will then pertain only to the named
procedure step.

Reference

1. A discussion of the System Management Facilities option is
contained in "Section 5: Task Management" in Concepts and
Facilities. Information on user exit routines to be used with the
System Management Facilities option is contained in the chapter
"System Management Facilities" in System Programmer's Guide.

Examples of the TIME Parameter

1. //STEP1 EXEC PGM=GRYS,TIME=(12,10)

Specifies that the maximum amount of time the step can use the CPU
is 12 minutes 10 seconds.

2. //FOU.R EXEC PGM=JPLUS,TIME=(,30)

Speci"fies that the maximum amount of time the step can use the CPU
is 30 seconds.

3. //INT EXEC PGM=CALC,TIME=5

Specifies that the maximum amount of time the step can use the CPU
is 5 minutes.

98 JCL Reference

4. //LONG EXEC PGM=INVANL,TINE=1440

specifies that the job step is not to be timed. Therefore, the step
may use the CPU and may remain in a wait state for an unspecified
period of time.

5. //STP4 EXEC BILLING,TIME.PAID=C45,:30),TIME.BILL=Cl12,59)

Specifies that different time limits pertain to each of the named
procedure steps.

section III: The EXEC statement -- TIME Parameter 99

Section IV: The DD Statement

The DD (data definition> statement describes a data set that is to be
used in a job step and specifies the input and output facilities
required for use of the data set. Each data set to be used in a step
requires a DD statement; all DD statements for a step follow that step's
EXEC statement. Although all DD statement parareeters are optional, a
blank operand field is invalid, except when you are overriding DD
statements that define concatenated data sets. (See nOverriding,
Adding, and Nullifying Parameters on a DD statement" in Appendix A of
this publication.) You can include a maximum of 255 DD statements per
job step.

DD Statement Format

(//ddname DD operands comments

The DD statement consists of ·the characters //, in columns 1 and 2, and
four fields - the name, operation (DD), operand, and comments field.

Rules for Coding

Follow the order listE~d below when coding the DD statement:

1. Code the charactE~rs / / in columns 1 and 2.

1/,/, 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 1.' 1 1 1 I 1 1 1 ~L..I..-L-L L.LJ .. LL ! .. L_LLLL-,--,-.L '-

2. Code a ddname, starting in column 3. (A ddname is not coded in two
cases. These cases are described in the chapter nAssigning a
Ddname. n)

3. Follow the ddnamE~, or // if a ddname :is not coded, with at least
one blank.

4. Code DD.

5. Follow DD with at. least one blank.

section IV: The DD statement 101

6. Code any desired positional parameter.

7. Code any desired keyword parameters. Separate each parameter with
a comma.

"~;~~;~~6I~;~~~J~J~LJmHlhljIThI~Qtr~Illil~I~T8]9TojImllilii:~~J~l£lffir~ 9 ;1~n2~:~=to;~' ~-~1~-3-:~:O;-~~~-~
Uj)&])JLJ~"lg..McMJ'-'J.J1.sN'ill~Et~&.&.4J.I}rfL:::J~fJZlI"L"".J.."'.Lj'.J"""J~LL_LL.L....LLP..L..LJ~LL,.LL I I I I I I I I I I I I I I I~

8. Code at least one blank.

9. Code any desired comments.

I::~io~- T~~II::2.6 "121-30 L 31-40 I 41-50 I 51-60 61:'::70 71=80~
ImThT5I6m8]!IQ1[[g:l3.ill~Lhl:lliI~I9IIlli~I6]7T8J9r61Ilml'tihl§Itl!!I!i]QjjJmI~~I§mhl~JQlTI~I~l~l~ 890 I 234567890 I 2 ~ 4 56.7890

,lL~J.Lll~Y,MM i'l j;b,SN1l11j£:=A"Ji!',JcL>JJt~~.J..~a.J..~1<...L~WM,.'£"l'n"tJ~ILf1j1.t'r/l~JIlElj~,y,~J~~~~-L..J.-L I I I I I I I

Positional and Keyword Parameters

There are 'l-.wo types of parameters that can be coded on the DD statement:

positional parameters, which must precede any keyword parameters. One
of the following positional parameters may te coded on a DD stateroent:

* DA'TA
DUMMY

These positional parameters are described in the following pages in the
order listed above.

Keyword~rameters, which may be coded in any order. The following
keyword parameters can be coded on a DD statement:

AFF
DCB
DDNAME
DISP
DSN (see DSNAME)
DSNAME
LAEEL
OUTLIM - MFT, MVT
SEP
(continued on next page)

102 JCL Reference

SPACE
SPLIT
SUBALLOC
SYSOUT - PCP
SYSOUT - MFT, MVT
UCS
UNIT
VOL (see VOLUME)
VOLUME

These keyword parameters are described, after the positional parameters,
in the order listed above.

Sample DD Statements

1. //DDA DD DSNAME=&&TEMP,UNIT=2400,DISP=(NEW,PASS)

2. //PRINT DD SYSOUT=F

3. //IN DD DSNAME=ALLOC, DISP= (, KEEl) ,DELETE) , UNIT=2311,
// VOLUME=SER=541382,SPACE=(CYL, (12,1»

4. //DWN DD *

section IV: The DD Statement 103

Assigning a Ddname

(/ /ddname DD

The ddname identifies a DD statement so that subsequent control
statements and the data control block in the processing program can
refer to it. The ddname must begin in colurr.n 3 and consist of 1 through
8 alphameric and national (~, #, $) characters. The first character
must be an alphabetic or national character.

Each ddname within a job step should be unique. If duplicate ddnames
exist in a step, allocation of devices and space and disposition
processing are done for both DD statements; however, all referepces are
directed to the first such DD statement in the step.

There are several special ddnames that tell the system that you want
to make use of particular facilities. Except for the ddname SYSCHK, do
not use the special ddnames unless you want these facilities. These
special ddnames are individually discussed following "Examples of Valid
Ddnames."

Apart from the restricted use of certain special ddnames, there are
two instances when you should not code a ddname at all:

1. If a DD statement is to define a data set that is concatenated with
a data set defined by a preceding DD statement.

2. If the DD statement is the second or third consecutive DD statement
that defines an indexed sequential data set. (Defining an indexed
sequential data set on more than one DD statement is discussed in
"Appendix C: Creating and Retrieving Indexed Sequential Data
Sets.")

WHEN ADDING OR OVERRIDING INFORMATION IN .A CATALOGED PROCEDUHE STEP

If the job step uses a cataloged procedure, DD statements that follow
the EXEC statement are used (1) to override parameters on the various DD
statements in the procedure, and (2) to add new DD statements to the
procedure. These modifications exist only for the duration of the job
step; they do not change the procedure permanently.

To make one of these modifications, each ddname must be qualified by
a procedure step name, i.e., procstepname.ddname,as follows:

1.

2.

To override parameters on a DD statement, code the name of the
procedure step in which the DD statement appears, followed by a
period, followed by the name of the DD statement that you want to
override.

To add DD statements to a procedure step, code the name of the
procedure step in which you want to add the statereent, followed by
a period, followed by a ddname of your choosing.

To supply a procedure step with data in the input stream, code the
name of the procedure step that is to use the data, followed by a
ddname. This ddname may be predefined in the procedure step by
means of the DDNAME parameter. In this case, the ddname that
follows the procedure step name is the name coded in the DDNA~ili
parameter. Otherwise, you code a ddname of your choosing.

section IV: The DD Statement -- Assigning a Ddname 105

Examples of Valid Ddnames

1. //DD1 DD

2. //#5863 DD

3. //INPUT DD
// DD

Because the ddname is missing from the second DD statement, the data
sets de£ined in these statements are concatenated.

4. //PAYROLL.DAY DD

If the procedure step naThed PAYROLL includes a DD statement named
DAY, this statement overrides parameters on the statement named DAY •
.If the step does not include a DD statement named DAY, this
statement is added to the procedure step for the duration of the job
step.

5. //STEPSIX.DD4 DD
// DD

You can define data sets that are to be concatenated and added to
the procedure step by coding this sequence: that is by identifying
the procedure step in which you want to add the statements, followed
by a ddname of your choosing, on the first DD statement and omitting
the ddname on the second DD statement.

106 JCL Reference

Special Ddnames

There are five special ddnames that tell the system you want to make use
of a particular facility. The five ddnames and their functions are:

• JOBLIB - this DD statement defines a private library that the
system makes available for use by the job.

• STEPLIB - this DD statement defines a private library that the
system makes available for use by a job step.

• SYSABEND - this DD statement defines a data set on which a dump
can be wri t:ten if the step abnormally terminates. The
dump provided would incl~de the system nucleus, the
processing program storage area, and, possibly, a
trace table.

• SYSUDUMP - this DD statement defines a data set on which a dump
can be written if the step abnormally terminates. The
dump provided would include only the prqcessing
program storage area.

• SYSCHK- this DO statement defines the checkpoint data set and
is included when a deferred checkpoint restart is to
occur.

Section IV: The CD Statement -- Special Odnames 107

JOBLIB

Unless the system is told that the program you request on the EXEC
statement resides in a private or temporary library, the syste~ expects
to find it in the system library (SYS1.LINKLIB). One way to tell the
system that a program resides in a private library is to follow the JOB
statement with a DD statement named JOBLIB. (The other way to tell the
system that a program resides in a private library is to include, as one
of the DD statements for a job step, a DD statement named STEPLIB. The
STEPLIB DD statement is described under the next topic, "STEPLIB.") If
you include a JOBLIB DD statement, each time you request a program t.he
system first looks in the private library; if the system does not find
the program there, the system looks foz it in the system library.

The parameters you code on the JOBLIB DD statement are determined by
whether the library is cataloged. The parameters that must be coded
when the library is cataloged and when the library is not cataloged are
described under "When the Library Is cataloged" and "When the Library Is
Not Cataloged," respectively. In either case, how you code the DISP
parameter is the same and is described in the topic "The DISP
Parameter."

RULES FOR CODING THE JOBLIB DD STATEMENT

1. The ddname must be JOBLIB. Never use the ddname JOBLIB except when
you are defining a private library.

2. The JOBLIB DD statement must appear immediately after the JOB
statement to which it pertains.

3. A JOBLIB DD statement cannot appear in a cataloged procedure.

The DISP Parameter

To make the private library available throughout the job, you must code
the DISP parameter to specify the library's status and disposition. OnE~
of the following may be coded:

1. DISP=(OLD,PASS)
The library already exists and is kept at the end of the job. If
you code DISP=OLD, the system assumes DISP=(CLD,PASS}.

2. DISP=(SHR,PASS)
The library already exists and is kept at the end of the job. The
library may be used by other jobs that are executing concurrently.
If you code DISP=SHR, the system assumes DISP=(SHR,PASS).

3. DISP=(NEW,PASS}
The library is created and used in the job, and is deleted at the
end of the job.

4. DISP=(NEW,CATLG}
The library is created, cataloged, and used in the job, and is kept:
at the end of the job.

108 JCL Reference

When the Library Is cataloged

If the private library is cataloged, you must always code the DSNAME and
DISP parameters ..

• The DSNAME parameter specifies the name of the private library.
• The DISP parameter is either DISP=(OLD,PASS) or DISP=(SHR,PASS).

The other parameter you might code is DCB.

• Code the DCB parameter if complete data control block information is
not contained in the data set label.

If you wish to refer to the private library in a later DD statement,
code DSNAME=*.JOBLIB and the DISP parameter, DISP=(OLD,disposition).
(Do not assign a disposition of DELETE, because the library would tben
be deleted at the end of the job step and be unavailable for use during
the remainder of the job.) If a later DD staterrent defines a data set,
that is to be placed on the same volume as the private library, you can
code VOLUME=REF=*.JOBLIB to obtain volume and unit information.

When the Library Is Not cataloged

If the private library is not cataloged, you must always code the
DSNAME, DISP, VOLUME, and UNIT parameters.

• The DSNAME parameter specifies the name of the private library.

• The DISP parameter is
DISP=(OLD,PASS),DISP=(SHR,PASS),DISP=(NEW,PASS>, or
DISP=(NEW,CATLG).

• The VOLUME parameter identifies the volume serial number.

• The UNIT parameter specifies the device to be allocated to the
library.

The other parameter you might code is DCB.

• code the DCB parameter if complete data control block inforffiation
is not contained in the data set label.

If you wish to refer to the private library in a later DD statement,
code DSNAME=*.JOBLIB, VOLUME=REF=*.JOBLIE (or VOLUME=SER=serial number,
UNIT=unit information), and the DISP parameter, DISP=(OLD,disposition).
(Do not assign a disposition of DELETE, because the library would then
be deleted at the end of the job step and be unavailable for use during
the remainder of the job). If a later DL staterr.ent defines a data set
that is to be placed on the same volume as the private library, you can
code VOLUME=REF=*.JOBLIB to obtain volume and unit information.

Concatenating Libraries

You can arrange a sequence of DD statements that define different
libraries. The libraries are searched in the order in wbich the DD
statements appear. If the system library is not defined on one of these
DD statements, it is searched last.

To concatenate libraries, omit the ddname from all the DD statements
defining the libraries except the first DD statement. The first DD
statement must specify a ddname of JOBLIB, and the entire group must
appear immediately after the JOB statement.

Section IV: The DD Staterrent -- Special Ddnames 109

When the Job Includes a STEPLIB DD Statement

If both JOBLIB and STEPLIB DD statements appear in a job, the STEP LIB
definition has precedence, i.e., the private library defined by the
JOBLIB DD statement is not searched for any step that contains the
STEPLIB definition. If you want the JOBLIB definition ignored but the
step does not require use of another private library, define the system
library on the STEPLIB DD statement:

//STEPLIB DD DSNAME=SYS1.LINKLIB.DISP=OLD

Examples of the JOBLIB DD Statement

1.

2.

//PAYROLL
//JOBLIB
//STEP1
//STEP2
//DDl

JOB
DD
EXEC
EXEC
DD

DSNAME=PRIVATE.LIB4,DISP=(OLD,PASS)
PGM=SCAN
PGM=UPDATE
DSNAME=*.JOBLIB,DISP=(CLD,PASS)

The private library defined on the JOBLIB DD statement is cataloged.
The statement named DD1 refers to the private library defined in the
JOBLIB DD statement.

//PAYROLL
//JOBLIB
//
/ /STEP1
//STEP2
//DD1

JOB
DD

EXEC
EXEC
DD

REGION=86K
DSNAME=PRIV.DEPT~8,DISP=(OLD,PASS),UNIT=2311, X
VOLUME=SER=D58PVL
PGM=DAY
PGM=BENEFITS
DSNAME=*.JOBLIB,VOLUME=REF=*.JOBLIB,DISP=(OLD,PASS>

The private library defined on the JOELIB DD statement is not
cataloged. The statement named DOl refers to the private library
defined in the JOBLIB DD statement.

3. //TYPE
//JOBLIB
//
//STEPl
//DDA

JOE MSGLEVEL=(l,l)
DD DSNru~E=GROUP8.LEVEL5,DISP=(NEW,CATLG>,UNIT=2311, X

VOLUME=SER=148562,SPACE=(CYL,(SO,3,4»
EXEC PGM=DISC
DD DSNAME=GROUP8.LEVELS(RATE>,DISP=OLD, X

VOL=REF=*.JOBLIB

4.

//
//STEP2 EXEC PGM=RATE

The private library defined on the JCBLIE DD statement does not
exist yet; therefore, all the parameters required to define the
private library are included on the JOBLIB DD statement. The
library is not created until STEPl when a new member is defined for
the library. The system looks for the program named DISC in the
system library; the system looks for the program named RATE first in
the private library.

//PAYROLL
//JOB:LIB
//
//
//

JOB
DD
DD
DD

DSNAME=KRG.LIB12,DISP=(CLD,PASS)
DSNAME=GROUP3l.TEST,DISP=(OLD,PASS>
DSNAME=PGMSLIB,UNIT=2311,
DISP=(OLD,PASS>,VOLUME=SER=34568

X

Several private libraries are concatenated. The system searches for
each program in this order: KRG.LIB12, GROUP31.TEST, PGMSLIB,
before searching SYS1.LINKLIB.

110 JCL Reference

STEPLIB

Unless the system is told tha.t the program requested on the EXEC
statement resides in a private or temporary library, the system expects
to find it in the system library (SYS1.LINKLIB). One way to tell the
system that the program the job step needs resides in a private library
is to include, as ODe of the DD statements for that step, a DD statement
named STEPLIB. (The other way to tell the system that a program resides
in a private library is to follow the JOB statement with a DD statement
named JOBLIB. The JOBLIB nn statement is described in the previous
topic, "JOBLIB.") If you include a STEPLIB DD statement, each time a
program is requested the system first looks in the private library for
the program the job step uses; if the system does not find the program
there, it looks for the program in the system library.

RULES FOR CODING THE STEPLIB DD STATEMENT

1. The ddname must be STEPLIB. Never use the ddname STEPLIB except
when you are defining a private library.

2. A STEPLIB DD statement can appear in any position among the DD
statements for the step.

3. The library defined on a STEPLIB DD statement can be referred to by
or passed to later job steps in the same job.

4. A STEPLIB DD statement can appear in a cataloged procedure.

5. The parameters you code on the STEPLIB DD statement are determined
by whether the library is cataloged, not cataloged, or passed by a
previous job step.

When the Library Is cataloged

If the private library is cataloged, you must always code the DSNAME and
DISP parameters.

• The DSNAME parameter specifies the name of the private library.

• The DISP parameter specifies the library's status, either OLD or
SHR, and its disposition. The disposition would be KEBP, UNCATLG,
DELETE, or PASS, depending on how you want the library treated after
its use in the job step.

The other parameter you might code is DCB.

• Code the DCB parameter if complete data control block information is
not contained in the data set label.

When the Library Is Not cataloged or passed

If the private. library is not cataloged or passed, you must always code
the DSNAME, DISP, VOLUME, and UNIT .parameters.

• The DSNAME parameter specifies the name of the private library.

• The DISP parameter specifies the library's status, either OLD or
SHR, and its disposition. The disposition would be KEEP, CATLG,
DELETE, or PASS, depending on how you want the library treated after
its use in the job step.

Section IV: The DD Statement -- Special Ddnames 111

• The VOLUME parameter identifies the volume serial number.

• The UNIT parameter specifies the device to be allocated to the
library.

The other parameter you might code is DCB.

• Code the DCB parameter if complete data control blcck information is
not contained in the data set label.

When the :Library Is Passed ~~...!"evio!!.~ step

If a private library has been assigned a disposition of PASS, a later
job step can use the library when you code the DSNAME and DISP
parameters on a STEPLIB DD statement.

• The DSNAME parameter specifies either the name of the private
library or a backward reference of the form *.stepnarne.STEPLIB. If
the STEPLIB DD statement that assigned a disposition of PASS occurs
in a cataloged procedure, the backward reference must include the
procedure step name. i.e., *.stepname.procstepnarne.STEPLIB.

• The DISP parameter specifies a status of OLD and a disposition. The
disposition would be KEEP. CATLG, UNCATLG, DELETE, or PASS.
depending on how you want the library treated after its use in the
job step.

concatenati!!9 Libraries

You can arrange a sequence of DD statements that define different
libraries. The libraries are searched in the order in which the DD
statements appear. If the system library is not defined on one of these
statem~pts, it will be searched last for the program the job step uses.

To concatenate libraries. omit the ddname from all the OD statements
defining t.he libraries except the first DO statement. The first DO
statement must specify a ddname of STEPLIB, and the entire group appears
as part of the DD statements for a particular step.

When the Job Includes a JOBLIB DD Statement

If both JOBLIB and STEPLIB DD statements appear in a job, the STEPLIB
definition has precedence, i.e •• the private library defined by the
JOBLIB DD statement is not searched for any step that contains the
STEPLIB definition. If you want the JOBLIB definition ignored but the
step does not require use of another private library. define the system
library on the STEPLIB DD statement:

//STEPLIB DD DSNAME=SYS1.LINKLIB,DISP=OLD

Examples of the STEPLIB DD Statement
1. //PAYROLL

//STEP:1
//STEP2
//STEPLIB
//STEP3
//STEPLIB

JOB
EXEC
EXEC
DD
EXEC
DD

LAB14
PGM=SPKCH
DSNAME=PRIV.LIB5.DISP=(OLO,KEEP)
PGM=TIL80
DSNAME=PRIV.LIB13,DISP=(OLD,KEEP)

The private libraries defined in STEP2 and STEP3 are cataloged.

112 JCL Reference

" !

2.

3.

//PAYROLL
//JOBLIB
//STEPl
//STEP2
//STEPLIB
//
//STEP3
//STEP4
//STEPLIB
//

JOB
DD
EXEC
EXEC
DD

EXEC
EXEC
DD

DSNAME=LIB5.GROUP4,DISP=(OLD,PASS>
PROC=SNZ12
PGM=SNAP10
DSNAME=LIBRARYP,DISP={OLD,PASS>,
UNIT=23l1, VOLUME=SER=~)5566
PGM=A1530
PGM=SNAP1l
DSNAME=*.STEP2.STEPLIB,
DISP= (OLD_,KEEP)

X

X

The private library defined in STEP2 is not cataloged. The STEPLIB
DD statement in STEP4 refers to the library defined in STEP2. since
a JOBLIB DD statement is included, STEPl and STEP3 could execute
programs from LIB5.GROUP4 or, if not found there, from SYS1.LINKLIB.
STEP2 and STEP4 could execute prograns fron; LIBRARYP or
SYS1.LINKLIB.

//PAYROLL
//JOBLIB
//STEPl
//STEPLIB
//STEP2
//STEP3
//STEPLIB
//
//
//
//STEP4

JOB
DD
EXEC
DD
EXEC
EXEC
DD
DD

DD
EXEC

DSNAME=LIB5.GROUP4,DISP=(OLD,PASS)
PGM=SUM
DSNAME=SYS1.LINKLIB,DISP=OLD
PGM=VARY
PGM=CALC
DSNAME=PRIV.WORK,DISP=(CLD,PASS)
DSNAME=I,IBRARYA,DISP= <OLD,KEEP) ,
UNIT=231.l,VOLUME=SER=44455
DSNAME=LIB. DEPT88,DISP= (OLD,KEEP)
PGM=SHORE

STEP2 and STEP4 can use programs contained in the private library
named LIB5.GRCUP4, which is defined in the JOBLIE DD statement.
STEPl can use a program only from the system library, since the
library defined on the STEPLIB DD statement is the system library
and the JOBLIB definition is ignored. A concatenation of private
libraries is defined in ~)TEP3. The system searches for the program
named CALC in this order: PRIV.WORK, LIERARYA, LIB.DEPT88,
SYS1.LINKLIB. If a later job step refers to the STEPLIB DD
statement in STEP3, the system will search for the program in the
private library named PRIV.WORK, and if not found there, in
·SYS1. LINKLIB.

X

section IV: The DD statement -- special Ddnames 113

SYSABEND and SYSUDUMP
Each job step may contain one DD statement with a ddname of either
SYSABEND or SYSUDUMP~ if more than one is included, all but the first DD
statement is ignored. These DD statements define a data set in which an
abnormal termination dump can be written if the job step abnormally
terminates. (Never use the ddname SYSABEND or SYSUDUMP unless you are
defining a data set in which a dump can be written.) The dump provided
when the SYSABEND DD statement is used includes the system nucleus, the
processing program storage area, and a trace table, if the trace table
option (PCP and MFT only) was requested at system generation. The
SYSUDUMP DD statement provides only a durrp of the processing program
storage area.

The parameters you code on one of these statements are determined by
whether you want the dump written to a unit record device or stored and
written at~ a later time.

WRITING ~rHE DUMP TO A UNIT RECORD DEVICE

If you want the dump written to a unit record device, you code either
the UNIT or SYSOUT parameter .

• The UNIT parameter specifies the unit record device to which you
want to write the dump, e.g., UNIT=1403.

• The SYSOUT parameter specifies the output class through which you
want the data set routed, e.g., SYSOUT=A.

If the SYSOUT parameter is coded for MFT or MVT, the durop is not
routed directly to a system output device. Instead, the dump is stored
on a direct access device and later written on a system output device.
If you want control over which direct access device the dump is stored
on, you can include the UNIT parameter. You can also control the amount,
of space allocated to the durr.p by including the SPACE parameter.
Otherwise, the system assigns a direct access device and space for a
dump. (The device and space that the systerr, assigns are specified as
PARM parameter fields in the cataloged procedure for the input reader.)
If you may require a great deal of space for durrping, you should code
the SPACE parameter, rather than using the default, and assign an
adequate amount of space so that the dumping operation is not inhibited
due to insufficient space.

STORING THE DUMP

If you want to store the durr:p and write it at a later time, the DD
statement must include the DSNAME, UNIT, VOLUME, and DISP parameters.

• The DSNAME parameter specifies the name of the data set.

• The UNIT parameter specifies the device to allocate to the data set.

• The VOLUME parameter identifies the volurr,e serial number.

• The DISP parameter specifies the data set's status and disposition.
Since you want to store the data set, the data set's disposition
must be either KEEP, CATLG, or PASS.

If the dump is to be stored on a direct access device you must code
either the SPACE, SPLIT, or SUBALLOC parameter. '

• The SPACE, SPLIT, or SUBALLOC parameter specifies the amount of
space you want allocated to the data set.

114 JCL Reference

•. ~

~r

Reference

1. Refer to the publication ProqraImler's Guide to Debugging for
information on how to interpret dumps.

Examples of the SYSABEND and SY·SUOUMP 00 Statements
1. //STEP2 EXEC PGM=A

2.

3.

4.

//SYSABEND DD SYSOUT=A

The SYSABEND DD s"tatement. specifies that you want the dump routed
through the standard output class A.

//STEP3
//SYSUDUMP

EXEC
OD

PGM=B
SYSOUT=F, SPACE= (TRK, (O,50»,UNIT=(2311,3)

The SYSUDUMP DD statement:. specifies that you want the dump routed
through the output class F. If the job is run in a system with MF'I'
or MVT, the dump is temporarily stored on the specified device. If
the UNIT and SPACE paramE=ters were not coded, the system would
assign a direct access device and an estimate of space required for
the dump. In the SPACE parameter, zer.o tracks are requested for the
primary quantity; therefore, no space is allocated unless the step
abnormally terminates. If the step abnormally terminates, space for
a dump is allocated using the secondary quantity. Requesting
multiple units increases the likelihood that one of the volumes
mounted on these devices contains enough space to allocate the
secondary quantity.

//STEPl EXEC
//SYSABEND DD
//
//STEP2 EXEC
//SYSABEND DD

PGM=PROGRAMl
DSNAME=DUMP,UNIT=2311,DISP=(,PASS,KEEP), X
VOLUME=SER=1234,SPACE=(TRK,(110,10»
PGM=PROGRAM2
DSNAME=*.STEP1.SYSABEND,DISP=(OLD,DELETE,KEEP)

The SYSABEND DD statements specify that you want the dump stored.
The space request in STEPl is large (110 tracks) so that the dumping
operation is not inhibited due to insufficient space; if STEPl does
not abnormally terminate but STEP2 does, the dump will be written
using the space allocated in STEP1. In both steps, a conditional
disposition 'of KEEP is specified. This allows storing of the dump
if either of the steps abnormally terminates. If both of the steps
are successfully executed, the second term of the DISP parameter
(DELETE) in STEP2 causes the data set to be deleted and the space
acquired for dumping to be freed.

//STEPl
//SYSUDUMP
//
//STEP2
//IN
//

EXEC
DD

EXEC
DD

PGM=WWK
DSNAME=DUMP,UNIT=2311,DISP=(,DELETE,
KEEP)gVOLUME=SER=54366,SPACE=(TRK,(SO,10»
PGM=PRINT,COND=ONLY
DSNAME=*.STEP1.SYSUDUMP,DISP=(OLD,DELETE),
VOLUME=REF=*.STEPlmSYSUDUMP

X

X

STEPl specifies that the dump is to be stored if the step abnormally
terminates. Because COND=ONLY is specified in STEP2, the step is
executed only if STEPl abnormally terminates. STEP2 uses a program
that prints the dump.

section IV: The DD statement -- Special Ddnames 115

SYSCHK

If CHKPT macro instructions were executed during the original execution
of your processing program, checkpoint entries were written on a
checkpoint data set. If you plan to resubmit your job for restart and
execution is to be restarted at a particular checkpoint, you must
include a DD statement named SYSCHK when you resubmit the job. The
SYSCHK DD statement defines the data set on which the checkpoint entry
was written.

RULES FOR CODING THE SYSCHK DD STATEMENT

1. The ddname must be SYSCHK. SYSCHK can be used as the ddname of
other DD statements in jobs.

2. The SYSCHK DD statement must immediately precede the first EXEC
statement of the resubmitted job when restart is to begin at a
checkpoint. (If the first EXEC statement is preceded by a DD
statement named SYSCHK and restart is to begin at a step, the
SYSCHK DD statement is ignored.)

3. If a JOBLIB DD statement is included, the SYSCHK DD statement must
follow it.

4. The RESTART parameter must be coded on the JOB statement;
otherwise, the SYSCHK DD statement is ignored.

5. The parameters you code on the SYSCHK DD statement are determined
by whether the checkpoint data set is cataloged.

When the checkpoint Data Set Is Catalo9~d

If the checkpoint data set is cataloged, you must always code the DSNAME
and DISP parameters •

• The DSNAME parameter specifies the name of the checkpoint data set.

• The DISP parameter must specify or imply a status OLD and a
disposition of KEEP.

other parameters you might code are VOLUME, UNIT, LABEL, and DCB •

• If t:he checkpoint entry exists on a tape volume other than the
first volume of the checkpoint data set, you must indicate this by
coding the volume serial number or volume sequence number in the
VOLUME parameter. (The serial number of the volume on which a
checkpoint entry was written is contained in the console message
printed after the checkpoint entry is written.) If you code the
volume serial number, you must also code the UNIT parameter, since
the system will not look in the catalog for unit information.

• Code the LABEL parameter if the checkpoint data set does not have
standard labels.

II code DCB=TRTCH=C if the checkpoint data set is on 7-track magnetic
tape with nonstandard labels or no labels.

116 JCL Reference

~hen the Checkpoint Data Set Is Not cataloged

If the checkpoint data set is not cataloged, you must always code the
DSNAME, DISP, VOLUME, and UNIT parameters.

• The DSNAME parameter specifies the name of the checkpoint data set.
If the checkpoint data set is partitioned, do not include a member
name in the DSNAME parameter.

• The DISP parameter must specify or imply a status of OLD and
disposition of KEEP.

• The VOLUME parameter specifies the volune serial number of the
volume on which the checkpoint entry resides. (The serial number of
the volume on which a checkpoint entry was written is contained in
the console message prin"ted after the checkpoint entry is written.)

• The UNIT parameter specifies the device to be allocated to the data
set.

Other parameters you might code are LABEL. and DCB .

• Code the LABEL parameter if the checkpoint data set does not have
standard labels.

• Code DCB=TRTCH=C if the checkpoint data set is on 7-track magnetic
tape with nonstandard or no labels.

Examples of the SYSCHK DD Statement

1.

2.

3.

//JOB1
//SYSCHK
//
//STEP1

JOB
DD

EXEC

RESTART=(STEP3,CK3)
DSNAME=CHLIB,UNIT=2311,
DISP=OLD,VOLUME=SER=456789

The checkpoint data set defined on the SYSCHK DD statement is not
cataloged.

//JOB2 JOB
//JOBLIB DD
//SYSCHK DD
//
//STEP1 EXEC

RESTART=: (STEP2, NOTE2)
DSNAME=PRIV.LIB3,DISP=(OLD,PASS)
DSNAME=CHECKPTS,DISP=(OLC,KEEP),
UNIT=2400,VOLUME=SER=438291

The checkpoint data set defined on the SYSCHK DD statement is not
cataloged. Note that the SYSCHK DD statement follows the JOBLIB DD
statement.

//JOB3
//SYSCHK
//
//STEPl

JOB
OD

EXEC

RESTART=(*,CHECK4)
DSNAME=CHKPTLIB,OISP=OLD,
LABEL= (, NSL) , DCB= (TR'l~CH=C)

The checkpoint data set defined on the SYSCHK OD statement is
cataloged and has nonstandard labels.

x

x

X

Section IV: The DD statement -- Special Ddnarres 117

--'

The * Parameter

*

(1lddname DD *

specifies that the data following this statement is to be entered
through the input stream for use by a processing program.

Rules for Coding

1. In PCP, there may be only one DD * statement per job step, and the
DD * statement must be the last DD statement for the job step.

2. In PCP, when you call a cataloged procedure, you can add only one
DD * statement per procedure step. A DC * statement that you want
to add to a procedure step must be the last of the overriding DD
statements for that step.

3. In PCP, the data must be followed by a delimiter statement (1*).

4. In PCP, any other parameters coded on a DD * statement are not used
but are checked for syntax.

5. In MFT and MVT, there may be more than one DD * statement per job
step.

6. In MFT and MVT, when you call a cataloged procedure, you may add
more than one DD * statement to a procedure step.

7. In MFT and MVT, if the data is preceded by a DD * statement, a
delimiter statement (/*> following the data is optional.

8. In MFT and MVT, the DCB subparameters ELKSIZE and BUFNO have
meaning when coded on a DD * statement. Any other parameters coded
on a DD * statement are not used but are checked for syntax.

9. A cataloged procedure cannot contain a DD * statement.

10. Code the DATA parameter instead of the * parameter when the data
contains job control statements •

. Defining Data in the Input Stream
".l'he input stream can be on a card reader, a magnetic tape, or, for MFT
and MVT, a direct access device.

If the EXEC statement for the job step specifies a program name, you
can include the data 'for the job step in t:he input strean,. If the EXEC
statement for the job step calls a cataloged procedure, you can include
the data for each ,procedure step in the input stream.

If the processing program does not read all the data in an input
stream, the remaining data is flushed without causing abnormal
termination of the job.

Section IV: The DD statement -- * Parameter 119

WHEN YOU USE A SYSTEM WITH PCP

For each iob step there can be only cne DO * statement, and that
statement must be the last OD statement for the job step. When you call
a cataloged procedure, you can add a DO * statement to a procedure step,
but the statement must be the last of the overriding DD statements for
that step,. In all cases, the data must be followed by a delimiter
statement (/*).

The following rules apply when data is entered through an input
stream:

.1 The input strearr. must be on a card reader or magnetic tape. (Even
if the input stream is on magnetic tape, the backspace operation is
not permitted.)

• The records must be unblocked, and 80 characters in length.

• The characters in the records must be coded in BCD or EBCDIC.

WHEN YOU USE A SYSTEM WITH MFT OR MVT

You can include several distinct groups of data in the input stream for
a job step or procedure step. The system can recognize each group of
data if you precede each group with a DD * statement, or follow each
group with a delimiter statement (/*>, or both. (If you leave out the
DD * statement for a group of data, the system provides a DD * statemen't
having SYSIN as its ddname.)

The following rules apply when data is entered through an input
stream:

• The input stream can be on any device supported by QSAM.

• The characters in the records must he coded in BCD or EBCDIC.

Note: When the automatic SYSIN hatching reader is used to read the
input stream, a OD * statement does not appear in the output listing.
Instead, an identically named DD statement describing the temporary data
set created from the input data appears.

The DCB Suhparameters BLKSIZE and BUFNO

The input reader procedure causes data in the input stream to be written
onto a direct access device so that the data can be retrieved rapidly
when it is required by a processing program. As the data is written
onto the direct access device, the data may be blocked. The block size
and numbE:!r of buffers used for blocking the data is established in the
input reader procedure assigned to read the input stream. If you want
shorter blocks than would be the case if the block size in the input
reader procedure were assumed, you can specify the desired block size.
(You cannot request larger blocks.)

To spE~cify the desired block size, code DCB=BLKSIZE=blocksize on the
DD * stat:ement. To decrease the number of buffers, include the DCB
subparameter BUFNO, e.g., DCB=(BLKSIZE=80,BUFNO=1). (when a job is
submitted via remote job entry and the DCB subparameter BUFNO is coded
on a DD * statement, BUFNO is ignored.>

BLKSIZE and BUFNO may be coded on a DD statement that contains the
DDNAME parameter, which refers to another DD statement. If, in turn,
the referenced DD statement defines data in the input stream, these DCB

120 JCL Reference

-..-

subparameters are used to block the data. However, if the referenced DO
statement contains its own DCB subparameters BLKSIZE and BUFNO, these
values override those on the DO statement that contains the ODNAME
parameter.

Examples of the * Parameter

1. //INPUT1 DO *

2.

data

/*

Defining data in the input stream for any configuration.

//STEP2
//SETUP.WORK
//SETUP.INPUTl

/*
//PRINT.FRM
//PRINT.INP

/*

data

data

EXEC
DD
DD

DD
DO

PROC=FRESH
UNIT=2400,LABEL=(,NSL)

*

UNIT=180

*

Defining data in the input stream fo:[' any control program. The
input data defined by the DD statement named SETUP.INPUT1 is for use
by the cataloged procedure step named SETUP; the input defined by
the DD statement named PRINT.INP is for use by the cataloged
procedure step named PRINT.

3. //INPUT2 DD *,DCB=(BLKSIZE=1600,BUFNO=2)

data

/*

Defining data in the input stream for systems with MFT or MVT.
These DCB subparameters override those specified in the input reader
procedure.

Section IV: The])O Statement -- * Parameter 121

4. //INPUT3 DD *

data

/*

data

/*

//INPUT4 DD *

data

/*

Defining several groups of data in the input stream for systems with
MFT or MVT.

122 JCL Reference

... ~

The DATA Parameter

DATA

(//ddname DD DATA

specifies that the data following this statement is to be entered
through the input stream for use by a processing J;rogram. This
data contains job control statements (i.e., these statements have
the characters // in columns 1 and 2 ..)

Rules for Coding
1. The data may not contain statements with /* in columns 1 and 2.

2. In PCP, there may be only one DD DATA statement per job step, and
the DD DATA statement must be the last DD statement for the job
step.

3. In PCP, when you call a cataloged procedure, you can add only one
DD DATA statement per job step. A DD DATA statement that you want
to add to a procedure step must be the last of the overriding DD
statements for that step.

4.

5.

6.

7 .

8.

9.

In PCP, the data must be followed by a delimiter statement (/*).

In PCP, any other parameters coded on a DD DATA statement are not
used but are checked for syntax.

In MFT and MVT, there may be more than one DD DATA statement per
job step.

In MFT and MVT, when you call a cataloged procedure, you may add
more than one DD DATA statement to a procedure step.

In MFT and MVT, each group of data must be preceded by a DD DATA
statement and followed by a delimiter statement (/*).

In MFT and MVT, the DCB subparameters BLKSIZE and BUFNO have
meaning when coded on a DD DATA statement. Any other parameters
coded on a DD DATA statement are not used but are checked for
syntax.

10. A cataloged procedure cannot contain a DD DATA statement.

11. The * parameter may be coded instead of the DATA parameter when the
data does not contain job control statements.

Defining Data in the Input Stream

The input stream can be on a card reader, a magnetic tape, or, for MFT
and MVT, a direct access device.

If the EXEC statement for the job step specifies a program name, you
can include the data for the job step in the input strearr. If the EXEC
statement for the job step calls a cataloged procedure, you can include
the data for each procedure step in the input stream.

If the processing program does not read all the data in an input
stream, the remaining data is flushed wi t:hout causing abnormal
termination of the job.

Section IV: The DD Statement -- DATA Parameter 123

WHEN YOU USE A SYSTEM WITH PCP

For each iob step there can be only one DD DATA statement, and that
statement must be the last DD statement for the job step. When you call
a cataloged procedure, you can add a DD DATA statement to a procedure
step, but the statement must be the last of the overriding DD statereents
for that step. In all cases, the data must be followed by a delimiter
statement (/*).

The following rules apply when data is entered through an input
stream:

• The input stream must be on a card reader or magnetic tape. (Even
the input stream is on a magnetic tape, the backspace operation is
not permitted.)

• The records must be unblocked, and 80 characters in length.

• The characters in the records must bp coded in BCD or EBCDIC.

WHEN YOU USE A SYSTEM WITH MFT OR MVT

You can include several distinct groups of data in the input stream for
a job step or procedure step. The system can recognize each group of
data only if you precede each group with a DD DATA statement and follow
each group with a delimiter statement (/*).

The following rules apply when data is entered through an input
stream:

• The input stream can be on any device supported by QSAM.

• The characters in the records must be coded in BCD or EBCDIC.

Not~: When the automatic SYSIN batching reader is used to read the
input stream, a DD DATA statement does not appear in the output listing"
Instead, an identically named DD statement describing the temporary data
set creat:ed from the input data appears.

The input~ reader procedure causes data in the input stream to be written
onto a direct access device so that the data can be retrieved rapidly
when it i.s required by a processing program. As the data is written
onto the direct access device, the data may be blocked. The block size
and nUmbE!r of buffers used for blocking the data is established in the
input reader procedure assigned to read the input stream. If you want
shorter blocks than would be the case if the block size in the input
reader procedure were assumed, you can specify the desired block size.
(You cannot request larger blocks.)

To specify the desired block size, code DCB=BLKSIZE=blocksize on the
DD DATA statement. To decrease the number of buffers, include the DCB
subparameter BUFNO, e.g., DCB=(BLKSIZE=80,BUFNO=l). (When a job is
submitted via remote job entry and the DCB subparameter BUFNO is coded
on a DD DATA statement, BUFNO is ignored.)

124 JCL Reference

BLKSIZE and BUFNO may be coded on a OD statement that contains the
DDNAME parameter, which refers to another DO statement. If, in turn,
the referenced OD statement defines data in the input stream, these DCB
subparameters are used to block the data. However, if the referenced DD
statement contains its own DCB subparameters BLKSIZE and BUFNO, these
values override those on the DD statement that contains the ODNAME
parameter.

Examples of the DATA Parameter

1. //INPUT1 DO DATA

2.

data

/*

Defining data in the input stream for any configuration.

//STEP2 EXEC
//PREP.OD4 DD
//
//PREP.INPUT DO

data

PROC=UPOATE
OSNAME=A.B.C,VOLUME=SER=D88, X
UNIT=2311,SPACE=(TRK, (10,5»,OISP=(,CATLG,OELETE)
DATA

/*
//AOD.D06
//AOD.IN

DD SPACE=(TRK, (5,1»
OD *

data

/*

Defining data in the input stream for any configuration. The .input
defined by the DD statement named PREP. INPUT is for use by the
cataloged procedure step named PREP. This data contains job control
statements. The input defined by the DD statement named ADD.IN is
for use by the cataloged procedure step anmed ADD. Since this data
is defined by a DD * statement, it must not contain job control
statements.

section IV: The OD Statement -- DATA Parameter 125

3. //INPUT2 DD DATA,DCB=(ELKSIZE=400,BUFNC=1)

data

/*
//INPUT3 DD DATA

data

/*

Defining several groups of data in the input stream for systems with
MFT or MVT. The DCB subparameters coded on the DD statement named
INPUT2 used to block the data that follcws that statement.

126 JCL Reference

The DUMMY Parameter

DUMMY

(//ddname DD DUMMY

specifies that no devices or external storage space is to be
allocated to the data set, no disposition processing is to be
performed on the data set, and, for BSAM and QSAM, specifies that
no input or output operations are to be performed on the data set.

Rules for Coding

1. You can code the DUMMY parameter by itself or follow it with all
the parameters necessary to define a data set.

2. If the DUMMY parameter is coded and an access method other than the
basic sequential access method (BSAM) or queued sequential access
method (QSAM) is requested to read or write the data set, a
programming error occurs.

What the DUMMY Parameter Doep

When you use either the basic sequential or queued sequential access
method, the DUMMY parameter allows your processing program to execute
without performing input or output operations on a data set. When the
processing program asks to write a dummy data set, the write request is
recognized, but no data is transmitted. When the processing program
asks to read a dummy data set, an end-of-data-set exit is taken
immediately.

Besides bypassing input or output operations on a data set, the DUMMY
parameter causes the UNIT, VOLUME, SPACE, and DISP parameters, when
coded on the DD DUMMY statement, to be iqnored (if coded, these
parameters are checked for syntax). Therefore, no devices or external
storage space is allocated to the data set and no disposition processing
is performed on the data set.

If you know that certain parts of a program "work n and need not be
processed each time the job is submitted for testing, the DUMMY
parameter can help save time. The DUMMY parameter can also be used to
suppress the writing of data sets, such as output listings, that you do
not need.

Coding the DUMMY Parameter

You can code the DUMMY parameter by itself or follow it with all the
parameters you would normally code when defining a data set. However,
in one case you must . code another parameter after the DUMIvJY parameter:
when certain DCB information, not supplied in the DCB macro instruction,
is required for the processing program to execute successfully. For
example, when an OPEN routine requires a BLKSIZE specification to obtain
buffers, and BLKSIZE is not specified in the DeB macro instruction, you
should supply this information by coding the DeB parameter after the
DUMMY parameter. When a DD statement that overrides a procedure DD

section IV: The DD Statement -- DUMMY Parameter 127

statement contains the DUMMY parameter, all of the parameters coded on
the procedure DD statement are nullified.

When you want input or output operations performed on the data set,
replace the DD statement that contains the DUMMY parameter with a DD
statement that contains all of the parameters required to define this
data set:. When a procedure DD statement contains the DUMMY parameter,
you can nullify it by coding the DSNAME pararr.eter on the overriding DD
statement. However, be sure the data set name is not NULLFILE.
Assigning the name NULLFILE in the DSNAME parameter has the same effect:
as coding DUMMY.

If you code DUMMY on a DD statement and a later DD statement in the
same job refers to this DD statement when requesting unit affinity
CUNIT=AFF=ddname) or volume affinity CVOLUME~REF=*.stepname.ddname), the
data set defined on the later DD statement is assigned a dummy status.

Examples of the DUMMY Parameter

1. //OUTPUT3
//

DD DUMMY,DSNAME=X.Y.Z,UNIT=2311,
SPACE=CTRK,C10,2»,DISP=C,CATLG)

This DD statement defines a dummy data set. The parameters coded
with the DUMMY parameter are not used.

2. //IN DD DUMMY, DCB=CBLKSIZE=800,LRECL=400,RECFM=FB)

This DD statement defines a dummy data set. The DCB parameter is
coded to supply information for the data control block that was not~
supplied in the DCB macro instruction.

x

3. If you are calling a cataloged procedure that contains the following
DD statement in STEP4

//IN DD DUMMY,DSNAME=ELLN,DISP=OLD,VOL=SER=11257,UNIT=2314

you can nullify the effects of the DUMMY parameter by coding:

//STEP4.IN DD DSNAM~=ELLN

4. If you are calling a cataloged procedure that contains the following
DD statement in STEP1

//TAB DD DSNAME=APP.LEV12,DISP=OLD

you can make this DD statement define a dummy data set by coding:

//S'l'EP1.TAB DD DUMMY

5. If you are calling a cataloged procedure that contains the followin.g
DD statement in a procedure step named LOCK

//MSGS DD SYSOUT=A

you can make this DD statement define a dummy data set by coding:

//LOCK.MSGS DD DUMMY,DISP=NEW

128 JCL Reference

The AFF Parameter

AFF=ddname

ddname
the name of an earlier DD statement in the same job step that
requests processing of a data set on a separate channel from the
one on which certain other data sets are being processed.

Rules for Coding

1. The DD statement that the AFF parameter refers to must contain the
SEP parameter.

2. If channel sepa~ation is critical, use the UNIT parameter to
specify a particular ct.annel, using an absolute unit address or
group name. (How to specify a particular channel is described in
the chapter "The UNIT Parameter.")

3. The AFF, SEP, DDNAME, and SYSOUT parameters are mutually exclusive
parameters; therefore, when SEP, DDNAME, or SYSOUT is coded, do not
code the AFF parameter.

OPTIMIZING CHANNEL USAGE

The devices that the system allocates for data sets used in a job step
are attached to channels. These channels transmit the data in the data
sets from the device to the cPU. When two or more data sets are to be
used i~ a job step, processing time may be shortened if the system
transmits data over separate channels.

Requesting Channel Separation

The SEP and AFF parameters can be used to request channel separation.
You list in the SEP parameter the names of uF to eight earlier DD
statements that define data sets from which channel separation is
desired. (The SEP parameter is described in the chapter "Th~ SEP
Parameter", which appears later in this section.) Coding the AFF
parameter is a shortcut method of requesting channel separation, since
you list only one ddname and that ddname refers to an earlier DD
statement in the same job step that contains the SEP parameter. The AFF
parameter tells the system that you want the data set defined on this DD
statement to have the same channel separation as the data set defined on
the named DD statement. The AFF parameter does not tell the system that
these two data sets are to be assigned to the same channel -- the system
will decide that based on what devices are available for allocation.

In PCP, if the system finds it impossible in the current environment
to satisfy the channel separation request, the request is ignored.

In MFT and MVT, if the system finds it imFossible in the current
environment to satisfy the channel separation request, the system may
try to alter the current environment through some operator action. The
operator is given the option of bringing a device online, cancelling the
channel separation request, or cancelling the job. In certain
environments, the operator may also be able to tell the system to wait

Section IV: The DD statement -- AFF Parameter 129

for devices to become free. If you make a nonspecific request for a
direct access volume and request channel separation, your request for
separation ~ay be ignored. This happens when the algorithm used to
allocate data sets to devices is not able to select the device that
would permit the desired channel separation.

Requests for channel separation are ignored for any data sets that
have been allocated devices by the automatic volume recognition (AVR)
option.

:[f it is essential that data be transrr.itted via a particular channel,
you can specify an absolute unit address or group name (if the group of
devices is associated with one channel> in the UNIT paran:eter.

:[f neither the SEP nor AF'F parameter is coded, any available channel,
consistent with the UNIT parameter requirement, is assigned by the
system.

Example of the AFF Parameter

1. //STEP1
//INPUT1
//INPUT2
//
//BUF
//OU'l'PUT

EXEC
DD
DD

DD
DD

PGM=CONVERT
DSNAME=A.B.C,DISP=OLD
DSNAME=FILE,DISP=OLD,UNI'I=2400,
VOLUME=SER=54333
UNIT=2400,SEP=(INPUT1,INPU'I2)
DSNAME=ALPHA,UNIT=TAPE,DISP=(,KEEP),AFF=BUF

The system attempts to assign the data sets defined by the DD
statements EUF and OUTPUT to a channel other than tht ones assigned
to the data sets defined by the DD statements INFUT1 and INPUT2.

x

The data sets defined by the DD statements BUF and OUTPUT ~ay or may
not be assigned to the same channel. The parameter
SEP=(INPUT1,INPUT2) could have been coded instead of AFF=BUF.

130 JCL Reference

The DCB Parameter

DCB=(list of attributes>
DCB=(dsname I

*.ddname
*.stepname.ddname
*.stepname.procstepname.ddname

list of attributes

[,list of attributes]>

those DCB keyword subparameters that describe the data set and are
needed to complete the data control block. DCB keyword
subparameters are listed in this chapter under "Glossary of DCB
Subparameters."

dsname
specifies that the system is to copy DCB information from the data
set label of a cataloged data set named "dsname." The cataloged
data set must reside on a direct access volume and the volume must
be mounted before execution of the job step.

*.ddname
specifies that the system is to copy DCB information from an
earlier DD statement in the same job step named "ddname."

*.stepname.ddname
specifies that the system is to copy DCB information from a DD
statement named "ddname," which appears in an earlier job step
named "stepname."

*.stepname.procstepname.ddname
specifies that the system is to copy DCE information from a DD
statement named "ddname," which appears in a procedure step named
"procstepname"i the procedure step is part of a cataloged procedure
that was called by an earlier jobstep named "stepname."

Rules for Coding

1. separate each DCB keyword subparameter with a comma.

2. If the DCB parameter value consists of only one keyword
subparameter, a data set name, or a backward reference, you need
not enclose it in parentheses.

3. All DCB subparameters, except BLKSIZE and BUFNO, are mutually
exclusive with the DDNAME parameter; therefore, when the DDNAME
parameter is coded, do not code any DCE subparameters except
BLKSIZE and BUFNO. The DCB sutparameters BLKSIZE and BUFNO have
meaning when coded with the DDNAME parameter.

Completing the Data Control Block

Each data set that is to be read or wri ttE~n must have a data control
block associated with it. The data control block is originally
constructed in the processing program by a DCB macro instruction. This
data control block can be completed when the DCB macro instruction is
issued or at execution time through the DCB parameter on the DD
statement and the data set label, if one exists.

Section IV: The DD statement -- DCb Parameter 131

When more than one source is used to complete the data control block,
a merging process takes place (see Figure 4): first, informati-on coded
with the DCB macro instruction is placed in the data control block;
then, information coded on the DD statement is placed in unfilled
sections of the data control block; and, finally, information in the
data set label, if one exists, is placed in still unfilled sections of
the data control block. (DCB information may also be provided by
default options assumed in the OPEN macro instruction and by your
program. either before the data set is opened, by using the DCBD macro
instruct:ion, or in the DCB exit routine. Refer to the chapter
"Interface With the Operating Systerr-" in Supervisor and' Data Management:
service~ publication and Supervisor and Data Management Macro
Instructions publication for details.)

DC> Statement

Data Set Label

D

C

DD Statement
Fills Field

~___ Label Completes

----------~~
Figure 4. How the Data Control Block Is Filled

DCB Macro Instruction

Step 1

DCB Area

A Step 2

DCB Area

A Step 3

The DCB macro instruction includes information about the data that is
unlikely to change each time the processing program is executed. Also,
it includes any information that is not related to the DCB parameter and.
the data set label (e.g., MACRF, DDNAME, EXLST).

132 JCL Reference

-"'-

DCB Parameter

The DCB parameter is coded on the DD statement and includes all the
information that is not specified by any other source. How to specify
DCB information on the DD statement is described in "Specifying DCB
Information on the DD Statement."

Data set Label

If the data set already exis·t:s and has standard labels, certain
information is contained in the label that. can be used to complete the
data control block. For tape, the data set label can con~ain the data
set's record format, block size, logical record length, tape recording
density, and, for seven-track tape, tape recording technique. For
direct access, the data set label can contain the data set's
organization, record format, block size, logical record length, and if
the data contains keys, the key length and relative key position.

Specifying DeB Information on the DD Statement
The DCB parameter must be coded on the DD statement unless the data
control block is completed by other SOUrCE!S. There are several ways of
specifying DCB information on the DD statE!ment. You can:

• Supply all pertinent DCB keyword subparameters on the DD statement.

• Tell the system to copy DCB information from the data set label of
an existing cataloged data set.

• Tell the system to copy DCB information from an earlier DD statement
in the same job.

SUPPLYING DCB KEYWORD SUBPARAMETERS

The DCB information required to complete t:he data control block can be
listed as keyword subparameters in the DCB parameter; stibparameters are
separated by ·commas. If the processing pr.ogram and the DCB parameter
supply the same subparameter, the subparameter on the DD statement is
ignored. Valid DCB keyword subparameters and the values that can be
assigned to them are listed :in this chapter under "Glossary of DCB
Subparameters."

COPYING DCB INFORMATION FROM A DATA SET LABEL

To save time in coding the DeB parameter, you can tell the system to
copy the DCB information from the data set label of a cataloged data set
on a currently mounted direct access volume. The data set must have
standard labels. A permanently resident volume is the most likely place
from which to copy such information because it is always mounted. Code
in the DCB parameter the data set name of the cataloged data set. The
name you code cannot contain special chara:cters, except for periods used
in a qualified name.

The following DCB keyword subparameters can be copied from the data
set label: DSORG, RECFM, OPTCD, BLKSIZE, LRECL, KEYLEN, and RKP. The
volume sequence number and expiration date of the cataloged data set are
also copied unless you specify these in the DD statement. If you code
any DCB keyword subparameters following the name of the cataloged data
set, these subparameters override any of the corresponding subparameters
that were copied. Valid DCB keyword subparameters and the values that
can be assigned to them are listed in this chapter under "Glossary of
DCB Subparameters."

Section IV: The DD statement -- DCB Parameter 133

COPYING DCB INFORMATION FROM AN £ARLIER DD STATEMENT

Another way to save time in coding the DCB ~ararr,eter is to tell the
system to copy the DCB information from an earlier DD statement in the
same job. The earlier DO statement can be contained in the same job
step" an earlier job step or cataloged procedure step. If you code any
DCB keyword subparameters following the reference to the DO statement,
these subparameters override any of the corresponding subparameters thait
were copied. If the DD statement defines an existing data set and
contains the DCB parameter, the system copies those subparameters from
the earlier DD statement that were not previously specified for the
existing data set. Valid DCB keyword subparameters and the values that
can be assigned to them are listed below.

Glossary of DCB Subparameters

This glossary lists the keyword subparameters that you can code in the
DCB parameter on a DO statement, their definitions, and the values that
can be assigned to them. Across from each subparameter is a list of the
access methods that use the subparameter.

certain required subpararr.eters cannot be coded in the DCB parameter,
but must be coded in the DCB macro instructicn. These subparameters are
described in the supervisor and Data Management Macro Instructions
publication.

BFALN={~} Can be used with BDAM, BISAM,
BPAM, ESAM, EXCP, QISAM, QSAM

Specifies the boundary alignment of each buffer as follows:

F each buffer starts on a fullword boundary that is not also a
doubleword boundary.

D each buffer starts on a doubleword boundary.

If not specifed by any source, doubleword boundary alignment CD) is
assumed.

Note for QSAM: Buffer alignment information must be supplied from
the same source as the type of buffering (EFTEK) information or
both must be omitted.

BITEK:/!
Can be used with EXCP, ~SAM, BTAM

Specifies the type of buffering to be used by the control program
as follows:

For EXCP:

S simple buffering.
E exchange buffering.

134 JCL Reference

For QSAM:

simple buffering. S
E exchange buffering (track overflow cannot be specified in the

RECFM subparameter). Exchange buffering cannot be used with
variable-length blocked or spanned records.

A -- record area buffering. In the locate mode with
variable-length spanned records, the control program reads and
wri tes entire logical records ra'ther than segments.

If neither is specified by any source, simple buffering (S) is
assumed.

Note for QSAM: The type of buffering information must be supplied
from the same source as the boundary .alignment (BF'ALN) information
or both must be omitted.

For BTAM:

D -- dynamic buffering. If dynamic buffering is specified, a
buffer pool must be defined.

For BDAM or BSAM:

R -- record buffering. For writing records in the create BDAM
mode, this specification allows a logical record to span one
or more tracks. For reading a data set, segments without keys
are offset in the buffer by the key length. This means that
the actual data starts in the same place in the buffer by the
key length. This means that the actual data starts in the
same place in the buffer for each read.

BLKSIZE=block size Can be used with EDAM, BPAM,
BSAM, QISAM (output only),
QSAM

Specifies the maximum length, in bytes, of a block. The maximum
length that can be specified is 32,760.

• If RECFM=F, then BLKSIZE must be 2 logical record length.

• If RECFM=FB, then BLKSIZE must be an integral multiple of the
logical record length.

• If RECFM=V, then BLKSIZE must be 2 (maximum block size + 4).

• If RECFM=VB, then BLKSIZE must be n times (logical record length
+ 4); where n is the number of logical records in the block.

Note for QISAM: The block size that is specified must be at least
10 bytes less than the number of data bytes available on one track
of the allocated direct access device. Elock size information is
required only when creat.ing a data set containing blocked records.

Note for BDAM, BPAM, BSAM, QSAM: If you code the BLKSIZE
subparameter in the DCB macro instruction or on a DL statement that
defines an existing data set and the data set has standard labels,
the subparameter overrides the block size specified in the label.

Note for BSAM and QSAM with RECFM=F~: If the BLKSIZE sUbparameter
on a DD statement for a SYSOUT data set (an output data set being
routed through the output stream) is not an integral multiple of
and larger than the logical record length (LRECL), the block size

Section IV: The DD statement -- DCB Parameter 135

will be adjusted to the nearest lower mUltiple of the logical
record length (LRECL).

BUFL=buffer length Can be used with EDAM, BISAM,
BPAM, BSAM, EXCP, QISAM, QSAM

Specifies the length, in bytes, of each buffer in the buffer pool.
The maximum length is 32,760 bytes. Requirements for supplying
buffer length information vary with the different data
organizations and access methods as follows:

BDAM -- required only if dynamic buffering is specified in the
MACRF subparameter of the DCB roaC.ro instruction.

BPA~1, BSAM, and QSAM -- optional. If omitted and the control
program acquires buffers automatically, the block size and
key length information is used to establish buffer length.
If card image is specified (MODE=C), BUFL=160 must be
specified.

BISAM and QISAM -- not required if the control program acquires
buffers automatically or if dynamic buffering is specified,.
(For BISAM, dynamic buffering is s~ecified in the MACRF
subparameter of the DCB macro instruction).

BUFNO=number of buffers Can be used with BDAM, BISAM,
BPAM, BSAM, BTAM, EXCP, QISAM,
QSAM

specifies the number of buffers to be assign'ed to the data control
block; the maximum number is 255, but the actual number allowed may
be less than 255 because of limits established when the system was
generated. Requirements for coding the BUFNO subparameter are as
follows:

Method of Obtaining the
J3uffer Pool

BUILD macro instruction (BDAM,
BISMo1, BPAM, QISAM, QSAM)

GETPOOL macro instruction (BDAM,
BISM~, BPAM, BSAM, QISAM, QSAM)

Automatically (BPAM and BSAM)

Automatically (QISAM and QSAM)

Dynamic buffering (BDAM and BISAM)

Requirement for Indicating
Nu~ber of Buffers

Must be specified.

Control program uses the
number specified in the
GETPOOL macro instruction.

Must be specified.

Optional; if not specified,
two buffers are obtained.

Optional; if not specified,
two buffers are obtained.

BUFRQ=nurnber of buffers Can be used with QTAM

specifies the number of buffers to be requested in advance for the
GET macro instruction.- The maximum number is 255. If not
specified by any source or if a value cf less than 2 is specified,
2 is assumed. For information on calculating BUFRQ, refer to the
publication IBM System/360 Operating System: Telecommunications
Access Method Message Control, GC30-2005.

136 JCL Reference

CODE= Can be used with BSAM, EXCP, ~SAM

specifies the paper tape code in which the data is punched.

A USASCII (8 track).
B Burroughs (7 track).
C National Cash Register (8 track).
F Friden (8 track).
I IBM BCD perforated tape and transmission code (8 track).
N No conversion required.
T Teletype (5 track).

If not specified by any source, I is assu~ed.

The subparameters CODE, KEYLEN, MODE, PRTSF, [TACK, and TRTCH are
mutually exclusive subparameters. Therefore, if CODE is coded, do
not code any of these other subparaIlieters.

CPRI= {~} Can be used with QTAM

Specifies the relative priority to be given to sending and
receiving operations, as follows:

R -- receiving has priority over sending. An output message is
sent on a given line only during a polling interval.

E -- receiving and sending have equal priority. After each full
polling sequence on a given line, all output messages queued
for that line are transmitted.

S -- sending has priority over receiving. For nonswitched lines
after QTAM polls a terminal on a line, the line is made
available for outgoing messages, and the next terminal ·is
polled only when t.here are no output mess.ages in the queue for
the line. For Auto Poll lines, the line is made available for
outgoing messages after a message ending in bOT is received by
a terminal on the line, or when the end of the polling list is
reached. S must be specified for IBM 2740 communications
Terminals Types I and VI, and if the line group includes IBM
2740 Model 2 terminals.

If this subparameter is not specified by any source, CPRI=S is
assumed.

This subparameter must be omitted if this line group consists of
switched lines.

For WTTA lines:

R or E -- output messages are sent when there is no traffic over
the line, after all EOT character has been received, or after a
time-out has occurred.

S -- output messages axe sent when 1~here is no traffic over the
line, after an EOT or EOM character has been received, or
after a time-out has occurred.

Section IV: The DD statement -- DCB Parameter 137

CYJ.JOFL=number Can be used with ~ISAM
(output only)

DEN=

Specifies the number of tracks on each cylinder to hold the records
that overflow from other tracks on that cylinder. The maximum
number is 99 ..

Can be used with BSAM, EXCP, QSAM

specifies the magnetic tape density in number of bits-per-inch used
to write a data set, as follows:

r----T-------T-------,
IDEN=17 trackl9 trackl
~----+-------+-------i
I 0 I 200 I I
I 1 I 556 I I
I 2 I 800 I 800 I
I 3 I I 1600 I L ____ i _______ ~ _______ J

If not specified by any source, 800 bits-per-inch is assumed for
7-track tape, 800 bits-per-inch for 9-track tape without dual
density, and 1600 bits-per-inch for 9-track tape with dual density
or phase-encoded drives.

For 7-track tape, all information on the reel must be written in
the same density (i.e., labels, data, tapemarks). Do not specify
DEN for a SYSOUT data set.

DSORG=data set organization Can be used with EDAM, BISAM,
BPAM, BSAM, BTAM, EXCP, GAM,
QISAM, QSAM, Q~AM

Specifies the organization of the data set and whether the data set
contains any location-dependent information that would make the
data set unmovable (U). The values that can be used are as
follows:

DA -- Direct access
DAU -- Direct access unmovable
CQ -- Direct access message queue or the checkpoint for a

message control program. If this sutparameter is not
specified by any source, the telecommunications job, when
executed, is terminated.

CX communications line group
GS -- Graphic data control block
IS -- Indexed sequential
ISU -~ Indexed sequential unmovable
MQ -- Data control block governing mes~age transfer to or frou:

a telecommunications message processing queue. If this
subparameter is not specified by any source, the
telecommunications job, when executed, is terminated.

PO -- Partitioned organization
POU -- partitioned organization unmovatle
PS -- Physical sequential
PSU -- Physical sequential unmoval::le

The values used with each access method are listed below.

138 JCL Reference

OSORG must always be coded in the DCB Rlacro instruction, and, w~th
certain access methods, must be coded on the DD statement.

BDAM -- DA or DAU (PS or PSU whE~n creating the data set). The
DSORG subparameter must be 'coded on the DD statement
that defines the data set. when creating the data
set, the DSORG subparameter must be coded as DA or DAU
on the DO statement that. defines the data set and PS
or PSU in the DCB macro instruction.

BISAM -- IS; must lbe coded on the DD statement.
BPAM PO or POU
BSAM PS or PSU
BTAM CX
EXCP PS, PO, DA, or IS
GAM -- GS
QISAM -- IS or ISU (ISU can be specified only when creating

the data set). The DSORG subparameter must be coded

QSAM
QTAM

on the DD statement that defines the data set.
PS or PSU
MQ, CQ, or CX

EROPT={ACC}
SKP
ABE

Can be used with QSAM

specifies the option to be executed :if an error occurs in writing
or reading a record, as follows:

ACC Accept the block causing the error.
SKP Skip the block causing the error (implies RELSE).
ABE Cause abnormal end of task.

If the subparameter is not specified by any source, ABE is assumed.

GNCP=number Can be used with GAM

specifies the maximum number of input/output macro instructions
that will be issued before a WAIT macro instruction. The value of
GNCP must be from 1 to 99 at execution time. If the value of GNCP
is not specified by any source, a value of 1 is assumed.

HIARCHY= {~} Can be used with EDAM, BISAM,
BPAM, BSAM, EXCP, QISAM, QSAM

specifies the storage hierarchy in which the buffer pool is to ne
formed as follows:

o forms the pool from available space in processor storage.

1 forms the pool from available space in IBl"l 2361 Core
storage.

If the HIARCHY subparameter is not specified by any source, and if
a hierarchy designation is not supplied by the GETPOOL macro
instruction, hierarchy 0 is assumed.

The buffer pool is formed within the indicated hierarchy, or in the
case of MFT or MVT, in the user partition or region in that
hierarchy. If space is unavailable within the hierarchy specified,
the task is abnormally terminated.

Section IV: The OD statement -- DeB Parameter 139

INTVL=number Can be used with QTAM

Specifies the polling interval (i.e., the number of seconds of
intentional delay between passes through a polling list) for the
lines in this line group. After all the terminals in a polling
list for a given line have been polled (beginning to end), a delay
equal to the number of seconds specified in this subparameter
occurs before polling is restarted at the beginning of the list.
The number specified must not be greater than 255.

If this subparameter is not specified by any source, INTVL=O is
assumed. This subparameter must be omitted if the line group
consists of switched lines, WTTA lines, or if the Auto Poll feature
is used.

KEYLEN=number Can be used with BDAM, BPAM,
BSAM, EXCP, QISAM (output only)

specifies the length, in bytes, of the keys used in the ~ata set.
Except for QISAM, the keys are associated with blocks on direct
access devices; the keys for indexed sequential data sets are
associated with records. The maximum key length is always 255
bytes.

The subparameters KEYLEN, CODE, MODE, PRTSP, STACK, and TRTCH are
mutually exclusive subparameters. Therefore, if KEYLEN is coded,
do not code any of these other subparameters.

Note for EDAM: If standard labels are used, the key length
information can be supplied from the data set label for an existing
data set. If a key length is not supplied by any source, no input
or output requests that require a key may be issued.

Note for BPAM and BSAM: If standard labels are used, the key
length information can be supplied frow the data set label for an
existing data set. If a key length is not supplied by any source
before the OPEN macro instruction is issued, a length of zero (no
keys) is assumed.

Note for 'QISAM: For an existing data set with standard labels, the
key length can only be supplied from the data set label.

LIMCT=number Can be used with BDAM

Spe,cifies the number o:f blocks, if relative block addressing is
used, or the number of tracks, if relative track addressing is
used, that are to be searched for a block or available space when
the extended search option (OPTCD=E) is s~ecified. The number may
equal or exceed the number of blocks or tracks in the data set, in
which case the entire data set is searched.

If the extended search option is not specified, the LIMCT
sUbparameter is ignored.

LRECL=number Can be used with BPAM, BSAM,
QISAM (output only), QSAM

Specifies the actual or maximum length, in bytes, of a logical
record. The record length is required for fixed-length and
variable-length records; for variable-length records, the maximum
record length should be specified. The length cannot exceed the

140 JCL Reference

block size (BLKSIZE) value except for variable-length spanned
records ..

• If RECFM=V or VB, then LRECL must be equal to the maximum
record length + 4.

• If RECFM=F or FE, then LRECL must be equal to the logical
record length.

• If RECFM=U, then LRECL should be ondtted.

Note for BPAM: The record length is required for fixed-length
records only.

Note for BSAM: The record length can be omitted from all sources,
in which case the block size specification (BLKSIZE) is used. For
variable-length spanned records (VS or VBS) processed under BS&~,
if logical record exceeds 32,756, specify LRECL=X.

Note for QISAM: For unblocked records, with a relative key
position (RKP) of zero, the record length includes only the data
portion of the record. The record length can be specified only
when creating the data set.

Note for QSAM: For variable-length spanned records (VS or VBS)
processed under QSAM (locate mode), if logical record exceeds
32,756, specify LRECL=X.

MODE= {~} Can be used with BSAM, EXCP, QSAM

Specifies the mode of operation to be used with a card reader, a
card punch, or a card-read punch, as follows:

C -- the card image (column binary) mode.
E -- the EBCDIC mode.

If this information is not supplied by any source, E is assumed.

The subparameters MODE, CODE, KEYLEN, PRTSP, and TRTCH are mutually
exclusive subparameters. Therefore, if MODE is coded, do not code
any of these other subparameters.

NCP=number Can be used with BISAM, BP~l,
BSAM

specifies the maximum number of READ or WRITE macro instructions
issued before a CHECK macro instruction is issued. The maximum
number allowed is 99, based on limits established when the system
was generated. If chained scheduling is used, NCP must be
specified as more than 1.

If not specified by any source, 1 is assumed.

NTM=number Can be used with QISAM

Specifies the number of tracks to be used for a cylinder index.
When the specified number of tracks has been filled, a master index
is created. This information is required only when the master
index option (OPTCD=M) is selected.

If not specified by any source and OPTCE=M is specified, the master
index option is ignored.

Section IV: The DD statement -- DCB Parameter 141

OPTeD= A
B
C
E
F
H
I
L
M
0
R
T
U
W
Y
Z

Can be used with EDAM, LPAM,

BSAM, EXCP, QISAM (output only),
QSAM

specifies the option~l services to be performed by the control
pr09ram. All optional services must .De requested by the same
source. The characters may be coded in any order and, when used in
combination, no commas are permitted between characters.

A -- Actual device addresses are tc be presented ("block
address" operand) in R~AD and WRITE macro instructions.
For EDAM, R requests the same option a5 A, and either can
be coded.

B -- Requests that end-of-file recognition be disregarded for
tapes.

C Requests that chained scheduling be used.

E An extended search (more than one track) is to be
performed for a block or available space. (The LIMCT
subparameter must also be specified; otherwise, this
option is ignored.)

F -- Feedback may be requested in R~AD and wRITE macro
instructions and the device address returned is to be of
the form presented to the control program.

H Requests hopper empty exit for Optical Readers (BSAM).

I Requests that the control prograro use the independent
overflow areas for overflow records.

L -- Requests that the control prcgram delete records that
have a first byte of all cnes: records so roarked may De
deleted when space is required for new records. Do not
specify this option for blocked records if hKP=O.

M -- Requests that master indexes be created as required,
according to the information in the NT~ subparaweter.
This option is ignored if the subpararroeter ~TM=number is
not specified.

o Requests online correction fer Grtical Readers (QSAM).

R For BDAM, actual device addresses are to be presented
("block address" operand) in ~bAD and w~ITE macro
instructions.

For QISAM, requests the control program to place
reorganization criteria information in the RO~G1, HORG2,
and RORG3 fields of the data control block. This option

142 JCL Reference

'l1li'"

I

,.--

T

is provided whenever the OPTeD subparameter is omitted
from all sources.

Requests user totaling facility.

U Only for 1403 printers with the Universal character Set
feature: Unblocks data checks and allows analysis by an
appropriate error analysis (SYNAD) routine. If D is
omitted, data checks are blocked (not recognized as
errors).

W -- Requests a validity check for write operations on direct
access devices. If the device is a 2321 data cell,
validity checking is always performed, whether requested
or not.

Y -- Requests that the control program use the cylinder
overflow areas for overflow records.

Z -- Only for input on magnetic tape: Requests the control
program to shorten its normal error recovery procedure.
when Z is specified, a data check is. considered permanent
after five unsuccessful a1:tempts to read a record. This
option is available only if selected at system
generation. It should be used only when a tape is known
to be faulty and there is no need to process every
record. The error analysis (SYNAD) routine should keep a
count of the number of permanent errors, and should
terminate processing if the number becomes excessive.

Only certain options can be selected with each access method, as
follows:

For BDAM:

A or R E F W

For BPAM:

C W WC

For BSAM and QSAM:

B C T U W Z DC WC ZC

For EXCP:

Z

For QISAM:

I L M R W Y

For QSAM:

0

For BSAM:

H

PRTSp=m Can be used with BSAM, EXCP,
QSAM

Section IV: The nn Statement -- DCB Parameter 143

Specifies the line spacing on a printer as 0, 1, 2, or 3 lines
between printout. This subparameter is valid only if control·
characters are not present (A or M is not specified in the RECFf-iJ
subparameter).

If not supplied by any source, 1 is assumed.

The subparameters PRTSP, CODE, KEYLEN, MODE, STACK, and TRTCH are
mutually exclusive subparameters. Therefore, if PRTSP is coded, do
not code any of these other subpararreters.

RECFM=type Can be used with EDAM, EPAM,
BSAM, EXCP, QISAM (output only),
QSAM

Specifies the format and characteristics of the records in the data
set. The format and characteristics must be completely described
by one source.

If t.his su1:pa.rameter is omitted, an undefined-length record is
assumed with no optional features provided, except for QISAM where
variable-length records are assumed, and QTAM where a message
segment is assumed.

Both the record format and characteristics are specified using the
characters defined below. The allowable combinations of characters
are indicated for the associated access methods; the characters
must be coded in the order shown.

Charas~er Definitions

A The record contains USASI control characters.
B The records are blocked.
F The records are of fixed length.
G The message data provided in the work unit is a

complete message.
M The records contain machine code control

characters.
R The message data provided in the work unit is a

complete record.
S For fixed-length records, the records are

written as standard blocks, i.e., no truncated
blocks or unfilled tracks within the data set,
with the exception of the last block or track.

T

U
V

For variable-length records, a record may
span more than one block. Exchange buffering
(BFTEK=E) cannot be specified.

For QTAM, the message data provided in the work
unit is a message segment.
The records may be written onto overflow tracks
if required. Exchange buffering (BFTEK=E) or
chained scheduling (OPTCD=C) cannot be used.
The records are of undefined length.
The records are of variable length.

Only certain characters and combinations of characters can be
selected with each access method. The allowable combinations of
characters are indicated for the associated access methods; the
characters must be coded in the order shown.

For BDAM:

144 JCL Reference

For BPAM:

[T] [~J

~T] [~J
F [~T] [~]

For BSAM and QSAM:

u [T] [~]
B
S
T

v BS
BT
ST ~] BST

B
S
T

F BS
BT
ST [~] BST

Note: A or M cannot bE~ specified if the PRTSP subparameter is
specified.

For QISAM:

{~ [B]}
[B]

For QTAM:

REPOS={~} Can be used only with EXCP.

specifies repositioning for tape devices.

Y -- Repositioning. A bit will be set to indicate that the user is
keeping an accurate block count, and, if a permanent error
occurs, Dynamic Device Reconfiguration (DDR) can use the block
count to reposition.

N -- No repositioning. DDR will not attempt repositioning.

Sectic)n IV: The DD Statement -- DCB parameter 145

RKP=number Can be used withQISAM (output
only)

specifies the position of the first byte of the record key,
relative to the beginning of each record. (The beginning byte of a
record is addressed as 0.)

If RKP=O is specified for blocked fixed-length records, the key
begins in the first byte of each record, and the delete option
(OPTCD=L) must not be specified. If RKP=O is specified for
unblocked fixed-length records, the key is not written in the data
field; the delete option can be specified.

Fo]: variable-length records, the relative key position must be 4 or
grE~ater, when the delete option (OPTCD=L) is not specified. The
relative key position must be 5 or qreater if the delete opiion is
spE~cif ied •

If this information is not specified by any source, a relative key
posi,tion of zero is assumed.

SOWA=number Can be used with QTAM

Specifies the size, in bytes, of the user-provided input work
areas. The value must be less than 32,768 and must include the
4-byte user prefix.

If this subparameter is not specified by any source, the
telecommunications job, when executed, is terminated.

STACK={~} Can be used with ESAM, EXCP, QSAM

specifies the stacker bin to receive the card, and is either 1 or
2.

If not specified by any source, 1 is assumed.

The subparameters STACK, CODE, KEYI.EN, PR'ISP, and T:t<TCH are
mutually exclusive subparameters. Therefore, if STACK is coded, do
not code any of these other subpararreters.

Can be used with ESAM, EXCP, QSAM

Specifies the recording technique for seven-track tape.

C Data conversion feature is to be used, with odd parity
and no translation.

E Even parity, with no translation and no conversion.
T Odd parity and no conversion, and BCD to ~ECDIC

translation is required when reading; EBCDIC to BCD
translation when writing.

ET -- Even parity and no conversicn, and BCD to EBCDIC
translation is required when reading; EECDIC to BCD
translation wnen writing.

If this subparameter is not specified by any source, odd parity and
no translation or data conversion is assumed.

146 JCL Reference

The subparameters TRTCH, CODE, KEYLEN, MODE, PRSTP, and STACK are
mutually exclusive subparamete·rs. Therefore, if TRTCB is coded, do
not code any of these other subpararoeters.

Examples of the DeB Parameter

1.

2.

3.

4.

//DDl
//
//

DD DSNAME=ALP,DISP=(,KEEP),VOLUME=SER=44321,
UNIT=2400,DCB=(RECFM=FB,LRECL=240,BLKSIZE=960,
DEN=l,TRTCH=C)

This DD statement defines a new data set and contains the
information necessary to complete the data control block.

//DD2
//
//DD3
//

DD DSNAME=BAL,DISP=OLD,DCB=(RECFM=F,LRECL=80,
BLKSIZE=80)

DD DSNAME=CNANN,DISP=(,CATLG,DELETE),UNIT=2400,
LABEL=(,NL),VOLUME=SER=663488,DCB=*.DD2

The statement named DD3 defines a new data set and requests the
system to copy the DCB subparameters from the DD statement named
DD2, which is in the same job step.

//DD4
//

DD DSNAME=JST,DISP=(NEW,KEEP),UNIT=2311,
SPACE=(CYL, (12,2»,DCB=(A.B.C,KEYLEN=8)

This DD statement defines a new data set and requests the system to
copy DCB information from the data set label of the cataloged data
set named A.B.C. If the data set label contains a key length
specification, it is overridden since KEYLEN is coded on the DD
statement.

//DD5
//

DD DSNAME=SAME, DISP=OLD, UNIT:=2311,
DCB=(*.STEP1.PROCSTP5.DD8,BUFNO=5)

x
x

x

x

x

x

This DD statement defines an existing data set and requests the
system to copy the DCB subparameters fro~ the DD statement named
DD8, which is contained in the procedure step named PROCSTP5. 'The
cataloged procedure was called by the jot step named STEP1. If any
of the DCB subparameters coded on the procedure DD statement have
been previously defined for this data set, they are ignored. If the
BUFNO subparameter has not been previously specified for the data
set, then five buffers arc assigned to the data control block.

Section IV: The DD Statement -- DCB Parameter 147

The DDl\lAME Parameter

DDNAME=ddname

ddname
the name of a following DD statement in the same job step that
defines this data set.

Rules for Coding
1. The only parameters that can be coded with the DDNAME parameter are

the DCB subparameters BI .. KSIZE and BUE'NC. For PCP, if the BLKSIZE
or BUFNO subparameter is coded and the DDNAME parameter refers to a
DD statement that defines data in the input stream (DO * or DD DATA
statement), the subparameter is ignored.

2. The DDNAME parameter cannot appear on a DD statement named JOBLIB.

3. You can code the DDNAME parameter up to five times in a job step or
procedure step. However, each time the DDNAME parameter 'is coded.
it must refer to a different ddname.

4. If the data set, which will be defined later in the job step, is to
be concatenated with other datasets w the DD statements that define
these other data sets must immediately follow the DD statement that
includes the DDNAME parameter.

What the DDNAME Paralneter Does

The DDNAME parameter allows you to postpone defining a data set until
later in the same job step. In the case of cataloged procedures, this
parameter allows you to postpone defining a data set in the procedure
until the procedure is called by a job step.

The DDNAME parameter is most often used in cataloged procedures and
in job steps that call procedures. It is used in cataloged procedures
to postpone defining data in the input stream until a job step calls the
procedure. (Procedures cannot contain DD statements that define data in
the input stream, i.e., DD * or DD DATA statements). It is used in job
steps that call procedures to postpone defining data in the input stream
on an overriding DD statement until the last overriding DD statement for
a procedure step. (Overriding DO statements must appear in the same
order as the corresponding DD statements in the procedure, but in PCP a
statement that defines data in the input stream must be the last
overriding DD statement for a procedure step.)

When You Code the DDNAME Paranleter

When the system encounters a DD statement that contains the DDNAME
parameter, it saves the ddname of that statement. The system also
temporarily saves the name specified in the DDNAME parameter so that it
can relate that name to the ddname of a later DD statement. Once a DD
statement with that corresponding name is ~ncountered, the name is no
longer saved. For example, if the systenl encounters this st~tement

//XYZ DD DDNAME=PHOB

the system saves XYZ and, temporarily, PHOB. Until the ddname FHOB is
encountered in the input stream, the data set is a dummy data set.

section IV: The DD Statement -- DDNAME Parameter 149

When the system encounters a statement whose ddname has been
temporarily saved, it does two things. It uses the information
contained on this statement to define the data set; it associates this
information with the name of the statement that contained the DDNAME
parameter. The value that appeared in the DDNAME parameter is no 10ngeJr::
saved by the system. To continue the above example, if the system
encounters this statement

//PHOB DD DSNAME=NIN,DISP=(NEW,KEEP),UNIT=2400

the system uses the data set name and the disposition and unit
information to define the data set; it also associates the ddname of thE~
statement that contained the DDNAME parameter with this information. In
this example, the ddname used is XYZ; the ddname PHOB is no longer
saved. The data set is now defined, just as it would be if you had
coded

//XYZ DD DSNAME=NIN,DISP=(NEW,KEEP),UNIT=2400

The system associates the ddname of the statement that contains the
DDNAMB parameter with the data set definition information. It does not
use the ddname of the later statement that defines the data set.
Therefore, any references to the data set, before or after the data set
is defined, must refer to the DO statement that contains the DDNAME
parameter, not the DO statement that defines the data set. The
following sequence of control statements illustra,tes this:

//OD1 DO OONAME=LATER

//LATER DD OSN=SET12,DISP=(NEW,KEEP),UNIT=2311,VOLUME=SER=46231,
// SPACE=(TRK,(20,S»

//DD12
//

OD DSN=SET13,DISP=(NEW,KEEP),VOLUME=REF=*.DD1,
SPACE=(TRK, (40,5»

x

When you want to concatenate data sets, the unnamed DD statements
must follow the DD statement that contains the DDNAME parameter, not the
DD statement that defines the data set. The following sequence o~
control statements illustrates this:

//DDA
//
//

DD DSNAME=DEFINE
DD DSN=A~B.C,DISP=OLD

DD DSN=SEVC,DISP=OLD,UNIT=2311,VOL=SER=S2226

//DEFINE DD *
data

/*

You can use the DDNAME parameter up to five times in a job step or
procedure step. However, each time the DDNAME parameter is coded, it
must refer to a different ddname.

150 JCL Reference

THE DCB SUBPARAMETERS BLKSIZE AND BUFNO

Two DCB subparameters can be coded with the DDNAME parameter -- BIKSIZE
and BUFNO. This allows you to assign these DCB characteristics to the
data set defined in the referenced DD sta.tement. When the DCE
subparameters BLKSIZE and BUFNO are coded both on the DD statement that
contains the DDNAME parameter and on the referenced DD statement, the
subparameters coded on the fornler are ignored.

For MFT and MVT, these subparameters viould most often be coded with
the DDNAME parameter when the referenced DD statement defines data in
the input stream. Data in the input stream for MFT and MVT is written
onto a direct access device" and the records are blocked as they are
written. The input reader procedure norrr.ally assigns a block size and
number of buffers for blocking. Coding 1:he BLKSIZE subparameter allows
you to specify that you want shorter blocks. Coding the BUFNO
subparameter allows you to specify that you want fewer buffers. You
cannot specify that you want larger blocks or Hare buffers than would be
assigned by the input reader procedure. (When a job is submitted via
remote job entry and the BUFNO subparameter is coded, the EUFNO
subparameter is ignored.)

Examples of the DDNAME Parameter

1.

2.

//STEP1
//DD1
//DD2

EXEC
DD
DO

PGM=PROGRAM8
DONAME=INPUT
OSNAME=W:ELL,DISP=OLD

The above statements make up the statements for a procedure step
named STEP1, which is the first step of a procedure named MENT. The
following statements illustrate how you would define DD1 as a data
set in the input stream:

//STPA EXEC
//STEP1.INPUT

/*

//ST4
//D01
//OD2
//D03
//DD4
//D05
//ST5
//006

data

EXEC
DD
DD
DD
DD
DD
EXEC
DD

PROC=MEN'r
DD *

PGM=FIFTY
DDNAME=DD5
UNIT=2400
UNIT=2400
SYSOUT=B
DSNAME=ADDN,DISP=(,PASS>,UNIT=2400
PGM=FINE
DSNAME=*.ST4.0D1,DISP=(OLD,KEEP)

The DO statement named DD5 defines the data set for thE statement
named DOl. The 00 statement of the second job step wants the system
to obtain the data set name, unit and volume inforItation of this
data set. This is done by referring to the DD statement that
contains the DDNAME parameter.

section IV: The DD statement -- ODNAME Parameter 151

3.

4.

5.

6.

//STEP8
//OD1
//
//
//SKIP

EXEC
OD
DO
DD
DD

PGM=BLOCK
DDNAME=SKIP
DSNAME=A.B.C,OISP=OLD
OSNAME=LEV.FIVE,DISP=OLO
DSNAME=SEF,DISP=OLD,UNIT=2311,VOLUME=SER=111111

The OD statement named SKIP defines the data set for the statement
named DD1. The two data sets, A.B.C. and LEV.FIVE, are
concatenated with the data set named SEF.

//STEPX EXEC
//DD1 DO
//002 DO
//D03 DO
//LATER OD

PGM=PROG12
DDNAME=LATER,DCB:::(BLKSIZE=1600,BUFNO=2)
UNIT=2400
SYSOUT=F

*

data

/*

The 00 statement named .LATER defines the data set for the statement
named DD1. If the job is run in MFT or MVT, the DCB subparameters
coded with the DONAME parameter are used to block the input data; in
PCP, the DCB subparameters are ignored.

//STEPX EXEC
//DnA DI)
//ODB DD

PGM=B403
DSNAME=SEL,DISP=OLD,VOLUME=SER=X3220,UNIT:::2400
SYSOUT:::B

The above statements make up the statements for a procedure step
named STEPX, which is the first step of a procedure named TYPE. The
following statements illustrate how you would use the DDNAME
parameter when overriding both of the DD statements and the first
overriding DO statement is to define data in the input stream:

//CALL EXEC PROC=TYPE
//STEPX.DDA DD ODNAME=IN
//STEPX.DDB DD SYSOUT=G
//STEPX.IN DD *

data

/*

//MAR EXEC PGM=DEPT12
//CAR01 DD DDNAME=CARD4
//CARD2 DD UNIT=2400
//CARD3 OD DSNAME=NINE.SCR,DISP=OLD
//COGH EXEC PGM=DEPT13

The DD statement named CARD1 contains the DDNAME parameter. This
statement defines a dummy data set since there is no DD statement
named CARD4 in the step.

152 JCL Reference

________________ 1 __

'._-

The DISP Parameter

NEW

OLD

SHR

MOD

DISP= (~NEW~ OLD
SHR
MOD

,DELETE
,KEEP
,PASS
,CATLG
, UNCA'ILG ~

DELETE J)
,KEEP
,CATLG
,UNCATLG

specifies that the data set is to be created in this job step.

specifies that the data set existed before this job step.

specifies that the data set existed before this job step and can be
used simultaneously (sha.fed) by another job, since it wjll only be
read.

specifies that the read/write mechanism is to be positioned after
the last record in the data set, and, if the system cannot find
volume information for the data set, specifies that the data set is
to be created.

,DELETE

,KEEP

,PASS

specifies that the data set is no longer needed and its space on
the volume is to be released at the end of this job step for use by
other data sets.

specifies that the data set is to be kept at the end of this job
step on the volume.

specifies that the data set is to be passed for use by a subsequent
job step in the same job.

,CATLG
specifies 'that the data set is to be kept at the end of this job
step and an entry pointing to the data set is to be placed in the
system catalog.

,UNCATLG
specifies that the data set is to be kept at the end of this jab
step but the entry pointing to the data set in the system catalog
is to be removed.

specifies that a disposition is not explicitly specified for the
data set, but a conditional disposition follows. A new data set is
to be deleted and a data set that existed before execution of the
job is to be kept at the end of this job step.

,DELETE

,KEEP

specifies that the data set is no longer needed and its space on
the volume is to be released for use by other data sets i,f this
step abnormally terminates.

specifies that the data set is to be kept on the volume if this
step abnormally terminates.

Section IV: The DD Statement -- DISP Parameter 153

,CATLG
specifies that an entry pointing to the data set is to be placed in
the system catalog if this step abnormally terminates.

,UNCATLG
specifies that the entry pointing to the data set in the system
catalog is to be removed if this step abnormally terminates.

Rules for Coding

1. If only the first subparameter is coded, you need not enclose it in
paren"theses.

2. If the data set is new, you can omit the subparameter NEW.
HowE'ver, if you specify a disposition or conditional disposition,
you must code a comma to indicate the absence of NEW.

3. You can omit the DISP parameter if a data set is created and
deleted during a job step.

4. If you do not want to change the automatic disposition processing
performed by the system, you need not code the second subparameter.
(When the second subparameter is not coded, the system
automatically keeps data sets that did exist before the job and
automatically deletes data sets that did not exist before the job.)
If you omit the second subparameter and code a conditional
disposition, you must code a comma to indicate the absence of the
second sUbparameter.

5. The DISP, SYSOUT, and DDNAME parameters are mutually exclusive
parameters; therefore, when SYSOUT or DDNAME is coded, do not code
the DISP parameter.

WHAT THE DISP PARAMETER DOES

The DISP parameter describes to the system the status of a data set and
indicates what is to be done with the data set after termination of the
job step that processes it or at the end of the job. You can indicate
in the DISP parameter one disposition to apply if the step terminates
normally after execution and another to apply if the step terminates
abnormally (conditional disposition).

Specifying the Data Set's Status

A data set is either a new data set or an existing data set. What you
plan to do with the data set determines which status you code as the
first subparameter of the DISP parameter. Ther are four different
subparameters that can be coded. These subparameters allow you to tell
the system:

• The
• The
• The

SHR.
• The

data set
data set
data set

data set

is to be created in the job step -- NEW.
existed before this job step -- OLD.
can be used by other concurrently executing jobs --

is to be lengthened with additional output -- MOD.

154 JCL Heference

--".-

When you Specify NEW as the Data Set's Status

Specifying NEW as the first subparameter of the DISP parameter tells the
system that the data set is t~o be created in the job step and may be
used by the processing program to contain output data. If you omit the
subparameter NEW, the system assumes the data set is to be created in
the job step. (If you omit the subparameter NEW and specify a
disposition or conditional dispositicn, you reust code a corr~a to
indicate the absence of NEW.> When the status of a data set is NEW, you
must code on the DD statement all of the parameters necessary to define
the data set.

When You Specify OLD as the Data Set's Status

Specifying OLD as the first subparameter of the DISP parameter tells the
system that the data set existed before this job step.

When You Specify SHR as the Data Set's Status

Specifying SHR as the first subparareeter of the DISP parameter tells the
system that the data set resides on a direct access volum~ and other
jobs that are executing concurrently with this job step may
simultaneously use (share) the data set. When SHR is specified, any jcb
step that uses the data set should only read the data set.

The subparameter SHR need only be coded if you are operating under
MFT or MVT. If you code DISP=(SHR,DELETE) the system assumes OLD
instead of SHR. If SHR is coded and you are oFerating under PCP, the
system assumes the data set's status is OLD. Once you specify SH~ for a
data set, every reference to that data sei: within the jot must specify
SHR or the data set can no longer be used by concurrently executing
jobs.

when You Specify MOD as the Data Set's Status

Specifying MOD as the first subparameter of the DISP parameter tells the
system that when the data se-t is opened for output, the read/write
mechanism is to be positioned after the last record in the data set.
MOD is specified when you want to add records to a data set with
sequential, indexed sequential, or partitioned organization. MOD should
not be specified for data sets with direc·t organization. When lw'lOD is
specified and the number of volumes required to lengthen the data set
may exceed the number of units requested, specify a volume count in the
VOLUME parameter. This ensures that the data set can be extended to new
volumes.

When MOD is specified, the system firs-t assumes the data set exists.
However, if the system cannot find volume information for the data set
-- on the DD statement, in the system catalog, or passed with the data
set from a previous step -- the system then assumes that the data set
does not exist and the data set is created for the job step. Specifying
MOD for a new sequential data set causes the read/write mechanism to be
positioned after the last record in the data set each time it is opened
for output.

If MOD is specified and volume information exists, the first volume
of a multivolume data set will be mounted unless DEFER is specified in
the UNIT parameter or (for tape data sets only> the VOLUME=REF parameter
is used.

Section IV: The DD statement -- DISP Parameter 155

When you lengthen a data set that has standard labels, DCB
information in the data control block must agree with the DCB
information contained in the data set label. Conflicting DCB
information. specifically conflicting block sizes, may make the data set
unusable by later jobs. Therefore, do not code the DCB information
contained in the data set label on the DDstatement. If this DCB
information is coded in the DCB macro instruction, be sure it agrees
with the information contained in the data set label.

If you extend a data set that has fixed block stanoard (FBS) records
and the last block was a truncated one, an end-of-data set condition
occurs when the truncated block is encountered. If an attempt is made
to read t:he data set backward on magnetic tape, processing is terminated
immediatE~ly (with an end-of-data set condition> upon reading the
truncated block.

SpecifyiJng a Disposition for the Data Set

The second subparameter of the DISP parameter tells the system what is
to be done with the data set at the end of the job step. If you want
the data set to assume the same attributes it had before the job, you
need not code the second subparameter of the DISP parameter. However,
if a conditional dispostion is specified, you must code a comma to
indicate the absence of the second subparameter. when the second
subparameter is not coded, data sets that existed before the job
continue to exist and data sets that were created in the job step are
deleted. If you create a nontemporary data set in the job and assign a
disposition of PASS to it, the data set is deleted at termination of the
job step that receives the passed data set and does not assign a
disposition to it. (The passed nontemporary data set is deleted at job
termination if the data set is never received by a later job step.)

~rhe system ignores the disposition you have coded and automatically
keeps existing data sets and deletes new data sets when the step is
abnormally terminated before the step begins execution, e.g., primary
direct access space cannot be obtained.

sometimes the system does not perform disposition processing. The
system does no disposition processing of data sets when:

• The job step is bypassed because of an error that is found during
interpretation of control statements, e.g., a control statement
containing errors is read.

o The job step is bypassed because a return code test is satisfied.

• The job step makes a nonspecific request for a tape volume and the
data set is never opened. There 1S cne exception to this: If the
data set is defined as a new generation data set, the system
performs the requested disposition.

• The job step requests that the mountinq of a direct access volume be
deferred and the data set is never opened.

Except for the cases mentioned above, the specified disposition is in
effect for the data set if the job step terminates normally or
abnormally and you have not specified a conditional disposition as the
third subparameter of the DISP parameter.

156 JCL Reference

There are five dispositions that can ce sfecified for a data set.
These dispositions allow you to:

• Delete a data set -- DELETE.
• Keep a data set -- KEEP.
• Pass a data set to a later job step -- PASS.
• catalog a data set -- CATLG.
• Uncatalog a data set -- UNCATLG.

When You Specify DELETE as the Dispositio~

Specifying DELETE as the second subparawet:er of the DISP parameter tells
the system that you want the data set's space on the volume released at
the end of the job step. If the data set resides on a tape volume, the
tape is rewound and the volume is available for use by other data sets
at the end of the job step. If the data Bet resides on a direct access
volume, the system removes the volume table of contents entry associated
with the data set and the da·ta set' s space is available for use by other
data sets at the end of the job step. However, if the direct access
data set's expiration date or retention period has not expired, the
system does not delete the data set. You can use the IEbPROGM utility
program to remove the volume table of contents entry.

If you are deleting a cataloged data set, the entry for the data set
in the system catalog is also removed, provided the system obtained
volume information for the data set from -the catalog, i. e., the volume's
serial number was not coded on the DD sta·tement. If the system did not
obtain volume information from the catalog, the data set is still
deleted but its entry in the catalog remains. In this case, you rray use
the IEHPROGM utility program to delete the entry.

~hen You Specify KEEP as the Disposition

Specifying KEEP as the second subparameter of the DISP parameter tells
the system that you want the data set kept intact until a subsequent job
step or job requests that the data set be deleted or until the
expiration date is passed. (You can specify a retention period or
expiration date in the LABEL parameter when the data set is created. If
neither is coded in the LABEL parameter, a retention period of zero days
is assumed by the system.)

When You specify PASS as the Disposition

Specifying PASS as the second subparameter of the DISP parameter tells
the system that the data set is to be passed after it is used in a job
step. This permits another job step in t.he sarre job to use this data
set without having retrieval and disposit~ion processing done by the
system. A passed data set may be referrE!d to cnce in a later job step.
You continue to code PASS each time the data set is referred to until
the last time it is used in the job. At this tirr.e, you assign it a
final disposition. If you do not assign the data set a final
disposition, the system deletes the data set if it was created in the
job and keeps the data set if it existed before the job.

When the data set is not in use, the volume that contains the passed
data set remains mounted; therefore, you need not code RETAIN in the
VOLUME parameter of a DD statement that specifies a disposition of PASS.
If the system must remove the volume that contains tbe passed data set,
it ensures through messages to the operat:or that the volume is remounted
before the data set is used again.

Section IV: The DD statement -- DISP Parameter iS7

When a subsequent job step wants to use the passed data set, you must
include a DD statement for the step. On this DD stateroent, you must
always code the CSNAME and DISP parameters.

• The DSNAME parameter identifies the data set. Either code the data
set's name or make a backward reference to any earlier DD statement
in the job that defines the data set.

• The DISP parameter specifies the data set's status and disposition.
(If a later job step is to use this data set, specify a disposition
of PASS; if this is the last job step that uses this data set,
specify the data set's final dis~osition.)

The other parameters you might code are UNIT, LAEEL, and DCB.

• Code the UNIT parameter if you want more than one device allocated
to the data set.

• Code the LAB£L parameter if the data set does net have standard
labels.

• Code the DCB parameter if the data set does not have standard labels
and the first CD stattment that defines the passed data set contains
the DCB parameter.

If several data sets used in the job have the same name, you can only
pass one of these data sets at a time. A jOb step must refer to a
passed data set and assign a disposition of other than PASS to the data
set before another data set with the same name can be passed.

Specifying CATLG as the second subparameter of the DISP parameter tells
the system to create an index entry in the systero catalog that points to
this data set. The disposition CATLG also implies a disposition of
KEEP. Once the data set is cataloged, you can retrieve the data set in
later job steps and jobs by coding the DSNAME parameter and a status of
other than NEW in the DISP parameter.

You can specify a disposition of CATLG for an already cataloged data
set. This should be done when you are lengthening the data set with
additional output (a status of MOD is coded) and the data set may exceed
one volume. If the system obtained volume information for the data set
from the catalog and you code DISP=(MOD,CATLG), the system updates the
entry to include the volume serial numbers of any additional volumes.

If the data set's name is enclosed in apostrophes, the data set rrust
not be assigned a disposition of CA~LG. If the data set you want
cataloged has a qualified name, e.g., A.E.C., you must first create all
but the lowest level of the name as indexes in the catalog. This is
done using the IEHPROGM utility program. Once the indexes are
establisned, you can request that a data set with a qualified name be
cataloged,.

when You Specify UNCATLG as the Disposit:J.on

Specifyinq UNCATLG as the second subpararreter of the DIS~ parameter
tells the system that you want the data set's entry in the system
catalog rE~moved at the end of the job step, UNCATLG does not tell the
system to delete the data set. Later jobs that use this data set must
provide on the DD statement all of the parameters necessary to define
the data set~

158 JCL Reference

--

Specifying a Conditional Disposition for the Data Set

The third subparameter of the DISP paramet:er tells the system what is to
be done with the data set if the step abnormally terminates. If you do
not specify a conditional disposition and the step abnormally
terminates, the system uses the disposition specified as the second
subparameter of the DISP parameter to determine what is to be dene with
the data set. (There are a few exceptions and they are neted under
"Specifying a Disposition for the Data Set:.") If a passed data set has
not been received and a job step abnormally terminates, the passed data
set assumes the conditional disposition specified the last time it was
passed. In this case, conditional disposition processing is done at job
termination, not at step termination.

There are four conditional dispositions. When a job step abnormally
terminates, these conditional dispositions allow you to:

• Delete a data set -- DELETE.
• Keep a data set -- KEEP.
• catalog a data set -- CATLG.
• Uncatalog a data set -- UNCATLG.

When You specify DELETE as the Conditional DisEosition

Specifying DELETE as the third subparameter of the DISP parameter tells
the system that if the step abnormally terminates you want the data
set's space on the volume released. DELETE is the only valid
conditional disposition that can be specified for a data set assigned a
temporary name or no name. If the data set resides on a tape volurre,
the tape is rewound and the volume becomes available for use by other
data sets at the end of the job step. If the data set resides on a
direct access volume, the system removes t:he volume table of contents
entry associated with the data set and the data set's space is available
for use by other data sets at the end of t:he job step. However, if the
direct access data set's expiration date or retention period has net
expired, the system does not delete the data set. You can use the
IEHPROGM utility program to remove the volume table of contents entry.

If the data set is cataloged, its entry in the system catalog is also
removed, provided the system obtained volume information for the data
set from the catalog, i.e., the volume'S serial number was not coded on
the DD statement. If the system did not obtain volume information from
the catalog, the data set is still deleted but its entry in the catalog
remains. In this case, you Irlay use the IEBPROGl"; utility program to
delete the entry.

When You Specify KEEP as the Conditional Disposition

Specifying KEEP as the third subparameter of the DISP parameter tells
the system that if the step abnormally terminates you want the data set
kept intact until a subsequent job request:s that the data set be deleted
or until the expiration date has passed. (You can specify a retention
period or expiration date in the LABEL parameter when the data set is
created. If neither is coded in the LAEEL pararo€ter, a retention period
of zero days is assumed by the system.>

Note: A scratch volume will be rewound, unloaded, and a KEEP message
issued to the operator during abnorrr,al termination of a jet step when:
(1) a temporary data set written on the scratch volume has been assigned
a nontemporary name, and (2) a conditional disposition of KEEP has been
assigned to the data set.

section IV: The DD ~tatement -- LIS~ Parameter 159

When You specify CATLG as the Conditional Disposition

specifying CATLG as the third subparameter of the DISP parameter tells
the system that if the step abnormally terminates you want the system to
create an entry in the system catalog that points to this data set. The
conditional disposition of CATLG also imr:;lie's a conditional disposition
of KE~P. Once the data set is cataloged, you can retrieve the data set
in later job steps and jobs by coding the DSNAME pararreter and a status
of other than NEW in the DISP parameter.

If the data set's name is enclosed in apostrophes, the data set must
not be assigned a conditional disposition of CATLG. If the data set has
a qualifi.ed name, e.g., A.B.C., you must have created all but the lowes1:
level of the name as indexes in the catalog ~efore asking that the
system catalog the data set. This is done using the IEHPROGM utility
program.

When You Specify UNCATLG as the Conditional Disposition

Specifying UNCATLG as the third subparameter of the DISP parameter tell~)
the system that if the step abnormally terminates you want the data
set's ent:ry in the system catalog removed, UNCATLG does not tell the
system to delete the data set. Later jobs that use this data set must
provide on the DD statement all of the parameters necessary to define
the data set.

Disposition Processing Chart

The system performs disposition processing of data sets at step
termination. This processing is based on whether the step terrrinated
normally or abnormally, the data set's status, the requested
disposition, and the conditional disposition. Table 1 shows the
disposition processing performed by the system based on these factors.
(You may want to remove this page from the pUblication and place it in Cl

convenient location, so that you and other programmers can refer to it.)

160 JCL Reference

en
ro
()

rt
f-'.
o
~

H
~

8
:::J"
ro
tj
tj

cr:
rt
p.:
rt
(t
;l
ro
~
rt

b
H
en
'L1

tn
OJ
I'i
OJ
!:1
ro
it
ro
I'i

f->
0"\
f->

(
Tab.l.e 1. Disposition Processing Chart

Action Taken
Status Requested Disposition Conditional Disposition at Normal

End of Step 1

none none deleted

KEEP none kept

DELETE none deleted

CATLG none cataloged

PASS none passed

NEW or MOD
5 PASS any except

UNCATLG6 passed
any except requested
PASS KEEP disposition
any except requested
PASS DELETE disposition
any except requested
PASS CATlG disposition

none none kept

KEEP none kept

DELETE none deleted

CATlG none cataloged

UNCATLG none uncataloged

PASS none passed
OLD or MOD PASS any passed

or SHR

any except requested
PASS KEEP disposition
any except requested
PASS DELETE disposition
any except requested
PASS CATlG disposition
any except requested
PASS UNCATLG disposition

Footnotes:

1 See list of exceptions in right-hand column.
2 I n the following cases I the data set is not allocated to the job step and I therefore I no

disposition processing is performed: a JCl error is encountered; a return code test causes
the job step to be bypassed; the job is cance lied before data set allocation i the system
cannot allocate this data set to the job step.

3
This is the disposition processing that is performed when the job is cancelled after data
set allocation or a processing program error occurs.

4
This is the disposition processing that is performed when this data set has been allocated
to the step but the system cannot allocate some other data set to the job step.

5
For MOD, a data set is considered to be a new data set if volume information is not
avai lable to the system.

6
A conditional disposition other than DELETE is invalid for a data set that is assiqned a
temporary name or no name. The system assumes DELETE.

t ~

Action Taken at Abnormal End of Step
1

,
Action Taken at when Step Fai Is Due to :
End of Job

A2 B3 C
4

deleted deleted deleted

deleted kept deleted

deleted deleted deleted

deleted cataloged deleted

deleted passed passed deleted

conditional
deleted passed passed di~osition

de leted kept kept

deleted deleted deleted

deleted cataloged cataloged

kept kept kept

kept kept kept

kept deleted kept
I kept cataloged kept

kept uncataloged kept

kept passed passed kept
kept passed passed conditional

disposition

kept kept kept

kept deleted deleted

kept cataloged cataloged

kept uncataloged uncataloged

List of Exceptions:

1. When a nontemporary data set is passed and the receiving step does not assign it a disposition,
the system will, upon termination of this step, do one of two things. I f the data set was new
when it was initially passed, it wi II be deleted. If the data set was old when initially
passed I it wi II be kept. Temporary data sets are deleted.

2. If a job step makes a nonspecific request for a tape volume and the data set is never opened,
no disposition processing is performed.

3. If a job step requests that the mounting of a direct access volume be deferred and the data set
is never opened, no disposition processing is performed.

4. If automatic step restart is to occur, all data sets in the restart step with a status of OLD or
MOD, and all data sets being passed to steps following the restart step, are kept. All data
sets in the restart step with a status of NEW are deleted.

5. If automatic checkpoint restart is to occur, all data sets currently in use by the job are kept.
6. When dedicated data sets are used in a job step, any disposition assigned to them is internally

changed to PASS or KEEP to prevent deletion of the dedicated data sets.

~--

--

Examples of the DISP PaI'ameter

1. //OD
//

OD OSNAME=099.GROUP.SIX,UNIT=2311,VOLUME=SLR~11ll11,

DISP=(NEW,CA~LG,OELETE),SPACE=(TRK,(5,l»
x

2.

3.

This DD statement defines a new data set and requests the system to
create an index entry in the system catalog that points to this data
set if the step terminates normally. It also requests the systerr to
delete the data set, instead of cataloging it, if the step
abnormally terminates. Eecause the data set's name is qualified,
the IEHPROGM utility program must be used to create the indexes in
the catalog for D99 and GROUP before you request the syste~ to
catalog the data set.

//002
//

OD OSNAME=FIX, UNIT=2400-l, VOLUlY1E=SER=44 88 9,
DISP=(OLD"DELETE)

This DD statement defines an Existinq data set anu implies that the
data set is to be kept if the step terminates nor~ally. (For an
existing data set, the system assumes it is to keef: the data set if
no disposition is specified.) The statement requests the system to
delete the data set if the step abnormally terminates.

//STEPl EXEC PGM=FILL

x

//DD1 DO DSNAME=SWITCH.LEVELl8.GRCUP12,UNIT=2311, X
//
//STEP2
//OD2
//DD3
//STEP3
//DD4

EXEC
DO
DD
EXEC
DD

VOLUME=SER=LOCAT3,SPACE=(TRK, (80,l~»,DISP=(,PASS)
PGM=CHAR
DSNAME=XTRA,DISP=OLD
DSNM-'.lE=* .. STEPl. DDl, OISP= (CLC, PASS ,DELETE)
PGM=T B.H!Vi
DSNM-'lE=* .. STEP2. DD3, DISP= (OLD, DELET.E)

The DD statement named DDl in STEPl defines a new data set and
requests that the data set be passed. If STEPl abnormally
terminates, the data set is deleted since it is a new data set ana a
conditional disposition was not specified. The DD statement named
DD3 in STEP2 receives the passed data set and requests that the data
set be passed. If STEP2 abnormally terrr.inates, the data set is
deleted because of the conditional di~iposition of DELETE. The D.:J
statement named DD4 in STEP3 receives the passed data set and
requests that the data set be cataloqed at the end of the step. If
STEP3 abnormally termina1:es, the data set is deleted tecause of the
conditional disposition of DELETE.

section IV: The DD statement -- DISP Fara~eter 163

The DSNAME Parameter

dsname

{
DSNAME}=
DSN dsnameCmember na~e)

dsnarneCgeneration number)
dsnarneCarea name)
&&dsname
&&dsname(member name)
&&dsnarneCarea name)
*.ddname
*.stepname.ddname
*.stepname.procstepname.ddnarne

identifies a data set name.

dsnameCmember name)
identifies a nontemporary partitioned data set narr'e and the narre of
a member within that data set.

dsnameCgeneration number)
identifies a generation data group by its name and a generation
data set by its generation number Ca zero or signed integer.)

dsnameCarea name)
identifies a nontemporary indexed sequential data set name and an
area of that data set (INDEX, PRIME, or OVFLOW.)

&&dsname
specifies the name you want assigned -to a temporary data set.

&&dsname(member name)
specifies the name you want assigned to a temporary partitioned
data set and to a member within that data set.

&&dsname(area name)
specifies the name you want assigned to a temporary indexed
sequential data set and identifies an area of that data set CINDEX,
PRI~, or OVFLOW.)

*.ddname
specifies that the data set name is to be copied from the naffied DD
statement, which is an earlier DD statement in the job step.

*.stepname.ddname
specifies that the data set narre is to ce copied fro~ an earlier DD
statement named ddname, which appears in an earlier step named
stepname in the same job.

*.stepname.procstepname.ddname
specifies that the data set name is to be copied from an earlier I;D
statement in a cataloged procedure. Stepname is the name of the
job step that calls the procedure, procstepname is the name of the
procedure step that includes the named DD statement, and ddnaroe is
the name of the DD statement that con1:ains the data set name.

Rules for Coding

1. An unqualified data set name may consist of 1 of 8 characters. The
first character must be an alphabetic or national (~,i,#)
character; the remaining characters can be any alphameric or
national characters, a hyphen, or a plus zero (12-0 punch). A

Section IV: The DD Statement -- DSNAMB Parameter 165

temporary data set name can consist of 1 through 8 characters,
excluding the ampersands; the first character following an
ampersand must be an alphabetic or national character.

2" A qualified name may consist of up to 44 characters including
periods. For each eight characters or less there must be a period,
and the character following a period must be an alphabetic or
national (@,$,#) character.

3.. You need not code the DSNAME parameter if the data set is created
and deleted in the job, i.e., if the data set is temporary.

4. The DSNAME and DDNA~~ parameters are mutually exclusive parameters;
therefore, when the DDNAMB parameter is coded, do not code the
DSNAME parameter.

IDENTIFYING THE DATA SET

when you create a data set, you use t.he DSNA.tV.l; pararreter to assign a
name to the data set. The data set name is part of the inforrration
stored with the data set on a volume. Later, when another job step or
job wants to use the data set, it identifies the data set name in the
DSNAM£ parameter; the system uses the data set narre to locate the data
set on the volume.

How you code the DSNAlv'lE parameter depends on the type of data set and
whether the data set is nontemporary or temporary.

Creating or Retrieving a Nontemporary Data Set

If the data set is nontemporary, you can identify:

• A permanent data set ty coding DSNAME=dsname.
• A member of a nontemporary partitioned data set by coding

DSNAME=dsname(member name).
• A generation of a nontemporary generation data group by coding

DSNJ~ME=dsname (number) •
• An area of a nontemporary indexed sequential data set by coding

DSNAMF=dsname(area name).

Nontemporary Data set~

When a nontemporary data set is created, it is assigned a name in the
DSNAME parameter and is assigned a disposition of KEEP or CATLG. (A
data set assigned a disposition of KEEP rray be assigned a disposition of
CATLG by a later job step or job.) ~he name you assign to a
nontemporary data set must be specified in the DSNAME pararreter by all
other steps and jobs that want to use the data set.

A nontemporary data set name can be either a unqualified or qualifi4:!d
name. An unqualified data set name consists of 1 through 8 characters.
The first character must be an alphabetic or national (@,#,$) characte:r;
the remaining characters can be any alphameric or national characters, a
hyphen, or a plus zero (12-0 punch).

A qualified data set name consists of 1 through 44 characters
(including periods), except when the qualified name identifies a
generation data group. In this case, the data set name may consist of
only 1 through 35 characters (including periods). For each eight
characters or less there must be a period, and the first character of
the name and the character following a period must be an alphabetic or
national (@,#,$) character.

166 JCL Reference

If you assign a qualified name to a data set that is to be cataloged,
all but the lowest level of the name must already exist as indexes in
the system catalog before you can request the system to catalog the data
set. An index level is created by using 1::he IEHPROG:£Ii~ utility program.
Once the indexes are established, the data set can be cataloged.

When you request a data set that is cataloged on a control voluffie
other than the system catalog, the system attempts to mount this control
volume if it is not already mounted. AftE~r the system obtains the
pointer to this data set, the control volume may then be demounted by
the system if the unit on which it was mounted is required by another
volume. If you plan to delete, uncatalo9w or recatalog the data set,
the volume must be mounted during disposition processing (at the end of
the job step) in order for the pointer to be deleted or revised. You
can ensure that the volume remains mounted by requesting the operator to
issue a MOUNT command for this volume before the job step is initiated.
If you do not use the MOUNT command to mount the volulfle and if the
volume is not mounted during disposition processing, then, after the job
has terminated, use the IEHPROGM utility program to delete or revise the
pointer in the control volumE~. (In order for the system to mount a
control volume, the control volume must bE! logically connected to the
system catalog. This is donE~'using the CONNECT function of the IEHPROGM
utility program, which is described in the Utilities publication.)

Members of a Partitioned Data set

A partitioned data set consists of independent groups of sequential
records, each identified by a member name in a directory. When you want
to add a member to a partitioned data set or retrieve a member, you
specify the partitioned data set name and follow it with the member
name. The member name is enclosed in parentheses and consists of 1 to 8
characters. The first character must be an alphabetic or national
(@,$,#) character; the remaining characters can be any alphameric or
national characters.

Generations of a Generation Data Group

A generation data group is a collection of chronologically related data
sets that can be referred to by the same data set name. When you want
to add a generation to a generation data group or retrieve a generation,
you specify the generation data group name and follow it with the
generation number. The generation number is enclosed in parentheses and
the number is a zero or a signed integer. A zero represents the most
current generation of the group; a negative integer (e.g., -1)
represents an older generation; a positive integer (e.g., +1) represents
a new generation that has not as yet been cataloged.

To retrieve all generations of a generation data group (up to 255
generations), code only the group name in the DSNAME parameter and the
DISP parameter.

A complete discussion of creating and retrieving generation data sets
is contained in "Appendix D: Creating and Retrieving Generation Data
Sets" in this publication.

Areas of an Indexed sequential Data Set

The areas used for an indexed sequential data set are the index, prime,
and overflow areas. When you are creating the data set and define any
of these areas on a DD statement, you must identify the data set name
and follow it with the area name you are defining. The area name is
enclosed in parentheses and is either PRIME, INDEX, or OVFLOW. If you

section IV: The DD Statement -- DSNAME Parameter 167

are using only one DD statement to define the entire data set, code
DSNAME=dsname or DSNAME=dsname(PRIME). When you retrieve the data set,
you code only the data set name; you do not include the term PRIME,
INDEX, or OVFLOW. For detailed information on how to create and
retrieve indexed sequential data sets, refer to nAppendix C: Creating
and Retrieving Indexed Sequential Data Sets" in this publication.

Creating or Retrieving a Temporary Data Set

If the data set is temporary, you can identify:

• A temporary data set by coding DSNAME=&&dsname.

• A member of a temporary partitioned data set by coding
DSNAME=&&dsname(member name).

• An area of a temporary indexed sequential data set by coding
DSNAME=&&dsname(area name).

Temporary Data Set§

Any data set that is created and deleted within the same job is a
temporary data set. A DD statement that defines a temporary data set
need not include the DSNAME parameter; the system generates one for you.

If you do include the DSNAME parameter, the temporary data set name
can consist of 1 through 8 characters and is preceded by two ampersands
(&&). The character following the ampersands must be an alphabetic or
national (~r#,$) character: the remaining characters can be any
alphameric or national characters. (A temporary data set name that is
preceded by only one ampersand is treated as a temporary data set name
as long as no value is assigned to it either on the EXEC statement for
this job step when it calls a procedure, or on a PROC statement within
the procedure. If a value is assigned to it by one of these means, it
is treated as a symbolic parameter. Symbolic parameters are discussed
in Appendix A.)

The system generates a qualified name for the temporary data set,
which begins with SYS and includes the jobname, the temporary name
assigned in the DSNAME parameter, and other identifying characters.

If you attempt to keep or catalog a temporary data set (you specify a
disposition of KEEP or CATLG in the DISP parameter), the system changes
the disposition to PASS and the data set is deleted at job termination.
However, this change is not made for a data set on a tape volume when
the following conditions exist: (1) the data set is new; (2) the data
set is not assigned a name; and (3) DEFER is specified in the UNIT
parameter. The data set is deleted at job termination, but the system
tells the operator to keep the volume on which the data set resided
during the job.

Members of a Temporary Partitioned Data· Set

When you want to add a member to a temporary partitioned data set or
retrieve a member during the job, you specify the partitioned data set's
temporary name and follow it with the member name. The u!ember name is
enclosed in parentheses and consists of 1 to 8 characters. The first
character must be an alphabetic or national (~,$,#) character; the
remaining characters can be any alphameric or national characters.

168 JCL Reference

Areas of a Temporary Indexed sequential Data set

The areas used for an indexed sequential data set are the index, prime,
and overflow areas. When you are creating a teroporary indexed
sequential data set and define any of these areas on a DD statement, you
must identify the data sets's temporary name and follow it with the area
name you are defining. The area name is enclosed in parentheses and is
either PRIME, INDEX, or OVFLOW. If you are using only one DD statement
to define the entire temporary data set, code DSNAME=&&dsname or
DSNAME=&&dsname(PRIME). If you want to retrieve the tem~orary data set
in the same job, you code only the data set's temporary name: you do not
include the term PRIME, INDEX, or OVFLOW. For information on how to
create and retrieve indexed sequential da-ta sets, refer to "Appendix c:
Creating and Retrieving Indexed Sequential Data Sets" in this
publication.

Using a Dedicated Data Set

If your installation provides dedicated data sets in a system with MVT,
you can use these data sets to contain your data instead of creating
your own temporary data sets. The use of dedicated data sets eliminates
some of the time required to schedule a job step since the data sets are
already allocated.

To use a dedicated data set, code DSNAME=&&name or DSNAME=&name on a
DD statement, along with all other parameters required to define your
temporary data set, e.g., UNIT, SPACE, DCB. Replace the term "name"
with the ddname of the DD statement in the initiator cataloged procedure
that defines the dedicated data set you want to use. If the system
cannot assign you this dedicated data set, the parameters coded on your
DD statement are used to create a terrpora:ry data set. (For detailed
information on dedicated data sets, refer to the chapter "system Reader,
Initiator and writer Cataloged Procedures" in the publication System
Programmer's Guide.)

Copying the Data Set Name From an Earlier DD Statements

The name of a data set that is used several times in a job, whether
specified in the DSNAME parameter or assigned by the system, can be
copied after its first use in the job. This allows you to easily change
data sets from job to job and eliminates your having to assign narres to
temporary data sets. To co~y a data set name, refer to an earlier D~
statement that identifies the data set. When the earlier DD staterrent
is contained in an earlier job step, you code DSNAME=*.stepname.ddname;
when the earlier DD statemen-t is contained in the same job ste~, you
code DSNAME=*.ddname: when the earlier DD statement is contained in a
cataloged procedure step called by an earlier job step, you code
DSNAME=*.stepname.procstepname.ddname.

Specifying the DSNAME Parameter in Apostrophes

Sometimes, it may be necessary or desiral::le to specify a data set name
that contains special characters. If the narre contains special
characters, you must enclose the name in apostrophes (5-8 punch), e.g.,
DSNAME='DAT+S'. If one of the special characters is an apostrophe, you
must identify it by coding two consecutive apostrophes (two 5-8 punches)
in its place, e.g., DSNAME='DAY"SEND'. A data set name enclosed in
apostrophes can consist of 1 through 44 characters.

Section IV: The DD Statement -- DSNAM£ Parameter 169

There are cases when your data set naree must contain required special
characters, which tell the system something about the data set (e.g., &~;
in DSNAME=&&name are required special characters that tell the system
that this is a temporary data set). In these cases, the data set name
mus·t not be enclosed in apostrophes because the system will not
recognize the required special characters aa having any special
significance. The following data set names contain special characters
that tell the system something about the data set and, therefore, canno~
be enclosed in apostrophes:

• DSNA¥.lE=name (member name)
• OSNA~~=name(area name)
• DSNMlE=name (generation number)
• DSNAME=&&name
• OSNAME=*.stepname.ddname

Keep the following rules in mind:

1. If the data set is to be cataloged, the data set name cannot be
enclosed in apostrophes.

2. If the data set name begins with a blank character, the data set is
assigned a temporary data set name by the system.

3. If the data set name ends with a blank character, the blank is
ignored.

4. If the only special character is a period or a hy~hen, you need not
enclose the data set name in apostrophes.

Examples of the DSNAME Parameter

1.

2.

//DDl
//

DD DSNAME=ALPHA,OISP=(,KEEP),
UNIT=2400,VOLUME=SER=389984

This DD statement defines a new data set whose name is ALPHA. Latex
job steps or jobs may retrieve this data set by supplying the data
set name in the OSNAME parameter, unit information in the UNIT
parameter, and volume information in the VOLUME parameter.

//002
//

00 DSNAME=PDS (PROG12) , OISP= (OLD, KEEP) , UNI'I'=2311,
VOLUME=SER=882234

x

This DD statement retrieves a member of a partitioned data set named
POSe

3. //DD3 DD DSNAME=&&WORK,UNIT=2400

4.

This DD statement defines a temporary data set. Since the data set
is deleted at the end of the job step, the DSNAME parameter could be
omitted ..

//STEPl
/ /DOL~
//
//STEP2
/ /DD~)

EXEC
DD

EXEC
DD

PGM=CREATE
DSNAME=&&ISDATA(PRIME),DISP=(,PASS),UNIT=(2311,2), X
SPACE=(CYL, (10"2),,CONTIG),VOLUME=SER=(33489,33490)
PGM=OPcR
DSNAME=*.STEP1.DD4,OISP=(OLD,DELETE)

The DD statement named DD4 in STEPl defines a temporary indexed
sequential data set whose name is ISDATA. This DD statement is used
to define all of the areas of an indexed sequential data set. The
DD statement named DDS in ST~P2 retrieves the data set by referring
to the earlier DD statement that defines the data set. Since the
temporary data set is passed when it is defined in STEP1, STEP2 can
retrieve the data set.

170 JCL Reference

__ 0

The LABEL Parameter

LABEL= ([data set sequence number] ,SL
,SUL
,NSL
,NL
,ELP

r, PASSWORD'l f,'" IN l (i:]~rEXPDT=yydddl)
~~ J~OU:l "-/o~ErI'PD=nnnn J

data set sequence number

,SL

,SUL

,NSL

,NL

,ELP

specifies the relative position of a data set on a tape volume.

specifies that the data set has standard labels.

specifies that the data set has both standard and user labels.

specifies that the tape data set has nonstandard labels.

specifies that the tape data set has nc labels.

specifies that the system is not to perform label processing for
the tape data set.

specifies that the data set has standard labels and another
subparameter follows.

,PASSWORD

,IN

,OUT

specifies that the new data set is accessible by later jobs only
through use of a password, i.e., the data set is to be password
protected.

specifies that another subparameter follows and, for a new data
set, the data set is not; to be password protected.

specifies that the data set is to be processed for input only.

specifies that the data set is to be processed for output only.

specifies that either the RETPD or EXPD~ subparameter follows and
one or more subparameters precede it.

EXPDT=yyddd
specifies the date when the data set can be deleted or overwritten
by another data set. Assign a 2-digit year number and a 3-digit
day number.

RETPD=nnnn
specifies the length of time ~n days that the data set must be
kept. Assign the numbeI: of days that must pass before the data set
can be deleted or overwritten by another data set.

section IV: The DO Statement -- LAEEL Parameter 171

Rules for Coding

1~ All the subparameters except the last subparameter in the LABEL
parameter are positional subparameters. Therefore, if you want to
omit a subparameter, you must indicate its absence with a comma.

2.. If the only subparameter you want to specify is the data set
sequence number, RETPD or EXPDT, you can omit the parentheses and
commas and code LABEL=data set sequence nu~ber, LABEL=RETPD=nnnn,
or LAEEL=EXPDT=yyddd.

3. If the data set has standard labels, you can omit the subparameter
SL.

4. When you are defining a data set that resides or will reside on a
direct access volume, only SUL or SL can te specified as the second
subparameter ..

~. The LABEL, DDNAME, and SYSOUT parameters are mutually exclusive
parameters; therefore, if DDNAME or SYSOUT is coded, do not code
the LA EEL parameter.

DATA SET LAEELS

Labels are used by the operating system to identify volumes and the data
data sets they contain, and to store data set attributes. Data sets
residing on magnetic tape volumes usually have data set labels. If data
set labels are present, they precede each data set on the volume. Data
sets residing on direct access volumes always have data set labels.
These data set labels are contained in the volume table of contents at
the beginning of the direct access volume.

A data set label way be a standard or nonstandard label. Standard
labels can be processed by the systew; nonstandard labels must be
processed by nonstandard label processing routines, which the
installation includes in the system. Data sets on direct access volumes
must have standard labels. Data sets on tape volumes usually have
standard' labels, but can have nonstandard labels or no labels.

Tape label definitions and associated tape label processing are
included in the Tape Labels publication. Direct access label
definitions and associated direct access label processing are described
in "Appendix A: Direct Access Labels" in the Supervisor and Data
Management.services publication.

When to Code the LABEL Parameter

The LABEL parameter must be coded if:

• You are processing a tape data set that is not the first data set on
the reel; in this case, you must indicate the data set sequence
number.

• The data set labels are not standard labels; you must indicate the
label type.

• You want to specify what type of labels a data set is to have when
it is written on a scratch volume; you ~ust indicate the label type.

172 JCL Reference

--'

• The data set is to be password protected; you must specify PASSwORD
when you create the data set.

• The data set is to be processed only for input or output and this
conflicts with the processing method indicated in the OPEN macno
instruction; you must s}:ecify IN, for infut, or OUT, for output\.

• The data set is to be kept for some period of time; you must
indicate a retention period (RETPD) or expiration date (BXPDT).

THE DATA SET SEQUENCE NUMBER SUBPARAMETER

When you want to place a data set on a tape volurre that already contains
one or more data sets, you must specify where the data set is to be
placed, i.e., the data set is to be the seccnd, third, fourth, etc.,
data set on the volume. The data set sequence number causes the ta~e to
be positioned properly so that the data set can be written on the tape
or retrieved.

The data set sequence number subparameter is a positional
subparameter and is the first subparameter that can ce coded. The data
set sequence number is a 1- to 4-digit number. The system assurr.es 1,
i.e., this is the first data set on the reel, if you omit this
subparameter or if you code o.

When you request the system to bypass label processing (ELP is coded
as the label type in the LAEEL parameter) and the tape volume contains
labels, the system treats anything between tapemarks as a data set.
Therefore, in order for the tape with labels to be positioned properly,
the data set sequence number must reflect all labels and data sets that
precede the desired set. section I of the Tape Labels publication
illustrates where tapernarks appear.

THE LABEL TYPE SUBPARAMET~R

The label type subparameter tells the system what type of labels is
associated with the data set. Tne label ty~e subpararr-eter is a
positional subparameter and must be coded second, after the data set
sequence number subparameter. You can ouit this subparaweter if the
data set has standard labels.

The label type subparameter is specified as:

• SL -- if the data set has standard labels.
• SUL -- if the data set has both standard and user labels.
• NSL -- if the data set has nonstandard labels.
• NL -- if the data set has no labels.
• BLP -- if you want label processing bypassed.

SL or SUL is the only label type that can be specified for data sets
that reside on direct access volumes.

When SL or SUL is specified, or the label type subpararr.eter is
omitted and the data set has standard labels, the systt:m can ensure that
the correct tape or direct access volume is mounted. When you specify
NSL, installation-provided nonstandard label processing routines IToUSt
ensure that the correct tape volume is Irounted. When you specify NL or
ELP, the operator must ensure that the correct tape volume is rrounted.
If you specify NL, the data set must have nc standard labels.

For cataloged and passed data sets, label type information is not
kept. Therefore, any time you refer to a cataloged or passed data set

Section IV: Th~ DD Statement -- LABEL Fararreter 173

that has other than standard labels, you rr.ust code the LABEL parameter
and specify the label type.

BLP is not a label type, but a request to the systerr to bypass label
processinq. This specification allows you to use a blank tape or
overwrite a seven-track tape that differs from your current parity or
density specifications. Bypass label processing is an option of the
operating system. In PCP, the option is selected during systew
generation; in MFT and MVT the option is specified as a PARM field value
in the reader cataloged procedure. If the option is not selected and
you have coded BLP, the system assurres NL.

Note for BLP: When you request the system to bypass label processing
and the tape volume has labels, the system treats anything between
tapemarks as a data set. Therefore, in order for a tape with labels to
be positioned properly II the data set sequence nurr,ner subparameter of the
LABEL parameter must be coded and the subparameter must reflect all
labels and data sets that precede the desired data set. section I of
the Tape -.babels publication illustrates where tapemarks appear.

The label type subpararneter can also be specified when you make a
nonspecific volume request for a tape volume (i.e., no volume serial
numbers are specified on the DD statement) and you want the data set to
have a certain type of labels. If the volume that is rrounted does not
have the corresponding label type you desire, you may be able to chanse
the label type.

When you specify NL or NS~ and the operator mounts a tape volume that:
contains standard labels, you may use the volurr,e provided: (1) the
expiration date of the existing data set on the volume has passed; (2)
the existing data set on the volume is not password protected; and (3)
you make a nonspecific volume request.. All of these conditions rr,ust be
met. If they are not, the system requests the operator to mount anothel~
tape volume.

When you specify SL and the operator rrounts a tape volume that
contains other than standard labels, the system requests the operator to
identify the volume serial number and its new owner before the standard
labels are written.

THE PASSWORD SUBPARAMETER

The PASSWORD subparameter tells the system that you want the data set
password protected. A data set that is ~assword protected cannot be
used by any other job step or job unless the operator can supply the
system with the correct password for the data set.

The PASSWORD subparameter is a positional subparameter and must be
coded third, after the data set sequence number subparameter and the
label type subparameter or the commas that indicate their absence. If
you want the data set password protected, specify PASSWORD when the data
set is created. password protected data sets rrust have standard labels.

TfiE I~ AND OUT SUBPARAMETERS

Tne basic sequential access rrethod (BSAM) permits a specification of
INOUT or OUTIN in the OPEN macro instruction as the processing method.
If you have specified either of these processing methods in the OPEN
macro instruction and want to override it, you may be able to do so by
coding either the IN or OUT subpararreter. For FOkTRAN users, the IN and
OUT subparameters provide a means of specifying how the data set is to
be processed, i.e., for input or output.

174 JCL Reference

When INOUT is specified in the OPEN macro instruction and you want
the data set processed for input only, you can specify the IN
subparameter. When the IN subparameter is coded, any attempt by the
processing program to process the data se"t for output is treated as an
error.

When OUTIN is specified in the OPEN macro instruction and you want
the data set processed for output only, you can specify the OUT
subparameter. When the OUT subparameter is coded, any attempt by the
processing program to process the data set for input is treated as an
error.

The IN and OUT subpararoeters are ~ositional subparameters. If either
is coded, it must appear as the fourth subparameter, after the data set
sequence number subparameter, the label type subparameter, and the
PASSWORD subparameter, or the commas that indicate their absence.

THE RETPD AND EXPDT SUBPARAMETERS

when it is necessary that a data set be kept for some period of tirre,
you can tell the system how long it is to be kept when you create the
data set. As long as the time period has not expired, a data set that
resides on a direct access volume cannot be deleted by or overwritten by
another job step or job. (If it is necessary to delete such a data set,
you can use the IEHPROGM utility program to delete the data set. The
IEHPROGM utility program is described in the utilities publication.)

There are two different ways to specify a time period: (1) tell the
system how many days you want the data set kept, the RETPD subparameter,
or (2) tell the system the exact date after which the data set need no
longer be kept, the EXPDT subparameter.

If you code the RETPD subparameter, you sFecify a 1- to 4-digit
number, which represents the number of days the data set is to be kept.
If you code the EXPDT subpaI:ameter, you specify a 2-digit year numbe~
and a 3-digit day number (e.g., January 1 would be 001, July 1 would be
182), which represents the date after whi.ch the data set need no longer
be kept. When neither the RETPD or EXPDT subparameter is specified for
a new data set, the system assumes a retention period of zero days.

The RETPD or EXPDT subpal~ameter must follow all other subparameters
of the LABEL parameter. If no other subparameters are coded, you can
code LABEL=RETPO=nnnn or LABEL=EXPDT=yyddd.

Examples of the LABEL :Parameter

1. //DDl DD DSNAME=HERBI,DISP=(NEW,KEEP),UNIT=TAPE,
// VOLUME=SER=T2,LABEL=(3,NSL,RETFD=188)

x

This DD statement defines a new data set. The LABEL parameter tells
the system: (1) this data set is to be the third data set on the
tape volume; (2) this data set has nonstandard labels; and (3) this
data set is to be kept for 188 days.

2. //OD2 OD DSNAME=A.B.C,DISP=(,CATLG,DELETE),UNIT=2400-2, x
// LABEL=(,NL)

This 00 statement defines a new data set and requests the system to
catalog it. The catalog entry for this data set will not indicate
that the data set has no labels. Therefore, each time this data set
is referred to by a nn statement, the statement must include
LABEL= (, NL) •

section IV: The DD statement -- LABEL Parameter 175

3. //DD3 DD DSNAME=SPECS,UNIT=2400,VOLUME=SER=10222,

4.

// DISP=OLD,LABEL=4

This DD statement defines an existinq data set. The LABEL parameter
indicates that the data set is the fourth data set on the tape
volume.

//STEPl
//DDX
//
//STEP2
//DDY

EXEC PGM=FIV
DD DSNAME=CLEAR,DISP=(OLD,PASS),UNIT=2400-4,

VOLUME=3ER=1257,LABEL=(,NSL)
EXEC PGM=BOS
DD DSNAME=*.STEP1.DDX,DISP=CLD,LABEL=(,NSL)

The DD statement named DDX in STEPl defines an existing data set
that has nonstandard labels and requests the system to pass the data
set. The DD statement named DDY in STEP2 receives the passed data
set. unit and volume information is not s~Ecified sincE this
information is available to the system; the label type is not
abailable to the system ano must be coded.

116 JCL Reference

--

The OUTLIM Parameter--MFT, MVT

OUTLIM=number

number
the limit for the number of logical records you want included
in the output data set being rout.ed through the output stream.
The maximum number that can be specified is 16777215.

Rules for Coding

1. The OUTLIM parameter has no meaning in systerrs with PCP; it has
meaning in syste~s with MF~ or MVT only if the System
Management Facilities option with system, jot, and step data
collection was selected at system generation.

2. The OUTLIM parameter is ignored unless S~SOUT is coded in the
operand field of the same DD stat:ement.

3. The value specified for OUTLIM can be any nurrber from 1 throuoh
16777215.

4. If OUTLIM is not specified or if OUTLIM=O is specified, no
output limiting is done.

What the OUTLIM Parameter Does

The OUTLIl"1 parameter allows you to specify a limit for the nurrber of
logical records you want included in 1:he output data set being
routed through the output stream. When the numter specified is
reached, an exit provided by the System Management Facilities o~tion
is taken to a user supplied routine that determines whether to
cancel the job or increase the lindt. If the exit routine is not
supplied, the job is cancelled.

Determining the Outpu.t Limit

The limit for the number of logical records you ~ant as output must
include a system overhead factor. Generally, the value you add to
the limit is eight times the blockinq factor for your data. (E·or
those programmers who need a more precise value, the system overhead
is the number of EXCPs issued each time the OP~N or CLOSE rracro
instruction is issued for the data set.)

References:

1. For information on coding the SYSOUT parameter on the DD
statement, refer to the section nThe SYSOUT PARAMETER MFT,
MVT" in this publication.

2. A discussion of the System ManaGement Facilities option is
contained in the publicaticn Concepts and Facilitie~.
Information on user exit routines to be used with the System
Management Facilities option is contained in the publication
System programmer's Guide.

Example of the OUTLIM Parameter

1. //OUTPUT DD SYSOUT=F,OUTLIM=1000
The limit for the number of logical records is 1000.

Section IV: DD statement -- The OUTLIM Parameter 177

The SEP Parameter

SEP=(ddname, •••)

ddname
the names of up to eight earlier DD statements in the same job
step.

Rules for Coding

1. Each ddname must be separated by a comma.

2. If only one ddname is coded, you need not enclose it in
parentheses.

3. If channel separation is critical, use the UNIT pararr,eter to
specify a particular channel, using an absolute address or group
name. (How to specify a particular channel is described in the
chapter "The UNIT Parameter.")

4. The SEP, AFF', DDNAME, a.nd SYSOUT parameters are mutually exclusive
parameters; therefore, when AFF, DDNAME, or SYSOUT is coded, do not
code the SEP parameter~

OPTIMIZING CHANNEL USAGE

'Ihe devices that the system allocates for data sets used in a job step
are attached to channels. ~rhese channels transmit the da ta in the data
sets from the device to the CPU. When two or rrore data sets are to be
used in a job step, processing time may be shortened if the system
transmits data over separate channels.

Requesting Channel Separation

The SEP and AFF parameters can be used to request channel separation.
You list in the SEP parameter the names of up to eight earlier DD
statements in the job step that define data sets from which channel
separation is desired. Coding the AFF parameter is a shortcut method of
requesting channel separation, since you refer to an earlier DD
statement in the same job step that contains the SEP parameter. (The
AFF parameter is described in the chapter "The AFF Parameter.")

In PCP, if the system finds it imFossible in the current environment
to satisfy the channel separation request, the request is ignored.

In MFT and MVT, if the system finds it imFossible in the current
environment to satisfy the channel separaticn request, tbe system may
try to alter the current environment through some operator action. The
operator is given the option of bringing a device online, cancelling the
channel separation request, or cancellinq the job. In certain
environments, the operator nay also be able to tell the system to wait
for devices to become free. If you make a nonspecific request for a
direct access volume and request channel seFaration, your request for
separation may be ignored. This happens when the algorithm used to
allocate data sets to devices is not able to select the device that
would permit the desired channel separation.

Section IV: The DD statement -- SEP Pararreter 179

Requests for channel separation are ignored for any data sets that
have been allocated devices by the automatic volume recognition (AVR)
option.

If it is essential that data be transmitted via a particular channel,
you can specify an absolute unit address or group name (if the group of
devices is associated with one channel) in the UNIT parameter.

If neither the SEP nor AFF parameter is coded, any available channel,
consistent with the UNIT parameter requirement, is assigned by the
system.

Example of the SEP Parameter

1. //STEPl
//001
//002
//
//D03
//004
//

EXEC
DO
DO

00
00

PGM=STARTS
OSNAME=X.Y.Z,OISP=OLO
DSNAME=&&WORK,OISP=(,PASS),UNIT=2311, X
SPACE=(CYL, (3,1»
OSNAME=NABS,OISP=OLD,VOLUME=SER=7110,UNIT=2311
OSNAME=PARE,OISP=CLO,VOLUME=SER=E59, X
UNIT=2311,SEP=(D02,003)

The system attempts to assign the data set defined by the DO
statement named OD4 to a channel other than the ones assigned to the
data sets defined by the 00 statements C02 and OD3. Since the SEP
parameter did not include the ddname 001, the data set defined by
DDl and the data set defined by D04 mayor may not be assigned to
the same channel.

180 JCL Reference

.........

The SPACE Parameter

SPACE = (\ TRK I' (primary qUantity [~secondary qUantity] [,?irectory J)[,RLSE] ['CONTlG] [, ROUND])
CYL L'..). ,Index (~, ,MXIG
blocklength fALX

r,j
l_,

SPACE=(ABSTR, (primary quantity,address [, ?irElctory]))
,Index

SPACE=(ABSTR,(primary quantity,address ,directory»
,index

TRK
specifies that space is to be allocated by track.

CYL
specifies that space is to be allocated by cylinder.

block length
specifies the average block length of the data. The system
computes how many tracks to allocate.>

primary quantity
specifies how many tracks or cylindeI~s are to be allocated, or how
many blocks of data are to be contained in the data set.

,secondary quantity

" i!\

specifies how many more tracks or cylinders are to be allocated if
additional space is required, or how many more blocks of data may
be included if additional space is required.

specifies that the system is not to allccate adaitional space if it
is required, and either a directory space requirement or index
space requirement follows.

,directory
specifies the number of 256-byte records that are to be contained
in the directory of a partitioned data set.

,index

,RLSE

specifies the number of cylinders that are required for the index
of an indexed sequential data set.

specifies that space allocated to the data set that is not used is
to be released.

specifies that space allocated to the data set that is not used is
not to be released and another subparameter follows.

,CONTIG

,lVJXIG

specifies that space allocated to the data set must te contiguous.

specifies that the space allocated to the data set rr.ust be the
largest area of contiguous space on -the volume and the space must
be equal to or greater than the space requested.

section IV: The DD Statement -- SPACE Parameter 181

,ALX
specifies that up to five different contiguous areas of space are
to be allocated to the data set and each area must be equal to or
greater than the space requested.

specifies that CONTIG, MXIG, or ALX is not specified and the ROUND
subparameter follows.

,ROUND

ABSTR

specifies that space is requested by specfying tne average block
length of the data and the space allocated to the data set must be
equal to one or more cylinders.

specifies that the data set is to be placed at a specific location
on t:he volume.

primary quantity
specifies the number of tracks to be allocated to the data set.

address
specifies the track number of the first track to De allocated.

,directory
specifies the number of 256-byte records that are to be contained
in the directory of a partitioned data set.

,index
specif ies the number of tracks that are r:equired for the index of
an indexed sequential data set. The number of tracks must be equal
to one or more cylinders.

Rules for Coding

1. The SPACE parameter has no meaning for tape volu~es; however, if a
data set is assigned to a device class that ccntains both direct
access devices and tape devices, e.q., UNIT=SYSS~, the SPACE
parameter should be coded.

2. If you do not code secondary, directory, or index quantities, you
need not enclose the primary quantity in parentheses.

3. Code the second format of the SPACE paraweter when you want a data
set placed in a specific position on a direct access device.

4. The SPACE, SPLIT, SUBALLOC, and DDNAME parameters are mutually
exclusive parameters; therefore, if SPLIT, SUBALLOC, or DDNAME is
coded, do not code the SPACE parameter.

REQUESTING SPACE FOR A DATA SET

Every data set that is to be written on a direct access volume must be
allocated space on the volurre before the data set can £e written. Thpre
are three different parameters that can be used to request space -­
SPACE, SPLIT, SUBALLOC -- and they are mutually exclusive. The SPLIT
and SUBALLOC parameters are discussed in the chapters "The SPLIT
parameter" and "The SUBALLOC Parameter," respectively.

182 JCL Reference

-"...-

SPECIFYING THE SPACE PARAMETER

Space for data sets is allocated before the JOb step is executed. It a
request for space cannot be satisfied, the job is terminated.

There are two different ways to code the gPACE pararreter. One way
tells the system how much space you want and lets the system assign
specific tracks. The other way tells the systerr the specific tracks you
want.

Letting the System Assign Specific Tracks
When you want the system to assign specific tracks, you rrust specify in
the SPACE parameter:

• The unit of measurement the system should use for allocating space:
specify TRK, for tracks, CYL, for cylinders, or the average block
length of the data, for blocks.

• The amount of space to be allocated: specify the primary quantity as
a number of tracks, cylinder, or block.s.

Optionally, you can specify in the SPACE parameter:

• That additional space is to be allocated to the data set if it is
required: specify a secondary quantity of tracks, cylinders, or
blocks.

• The size of a directory or index area: specify the number of
records required for a directory or the nurrber of cylinders
required for an index.

• That unused space is to be released; specify the RLSE
subparameter.

• The format of the space allocated to the data set; specify the
CONTIG, MXIG, or ALX subparameter.

• That space is to begin with a cylinder; specify the ~OUND
subparameter.

When a Disk Operating system (DOS) volume is mounted for use in an
IBM System/360 Operating System, you can let the system assign specific
tracks on the DOS volume for a new data set. (There are restrictions on
the use of an existing DOS data set in an IEM System/3bO operating
system: these restrictions are described in the chapter nMaintaining the
Catalog and the Volume Table of Contents" in system Programmer's Guide.)

SPECIFYING THE UNIT OF MEASUREMENT

The first subparameter of the SPACE parameter identifies the unit of
measurement to be used in allocating the data set and can be specified
as:

• TRK if you want space allocated by track.

• CYL if you want space allocated by cylinder. CYL rrust be
specified if you are creating an indexed sequential data set.

• a number of bytes which represents the average clock length of the
data -- if you want the system to compute and allocate the least
number of tracks required to contain the blocks.

section IV: The DD Statement -- SPACE Parameter 183

since the next subparameter (prirrary quantity) tells the system how
many of these units you require, specify the unit that makes it most
convenient for you to express your space requirement. A request for
cylinders (CYL) ~rovides the most efficient performance.

When you request space in units of blocks, the average block length
cannot exceed 65,535. If the blocks have keys, code the DCB
subparameter KEYLEN on the CD statement and specify the key length,
i.e., DCB=KEYLEN=key length.

SPECIFYING A PRIMARY QUANTITY

The primary quantity tells the system how many tracks or cylinders are
to be allocated to the data set or how many blocks of data will be
written. When the first subparameter of the SPACE parameter specifies
the average block length, the system computes the number of tracks (or
cylinders if the ROUND subparameter is coded) required based on the
number of blocks specified as the primary quantity.

There must be enough available space on one volume to satisfy the
primary quantity. If you request that a particular volume be ~sed and
there is not enough available space on that volume to satisfy the space
request, the job step is terminated. If you make a nonspecific volume
request, i.e., no volume serial numbers are specified on the DD
statement, the system selects a mounted volume or causes a volume to be
mounted and then determines if there is enough space available on the
volume to satisfy the request for space. If there is not enough space
availabl,e, the system selects another volume.

The system attempts to allocate the primary quantity in contiguous
tracks or cylinders. If contiguous space is not available, the system
satisfies the space request with up to five noncontiguous blocks
(extents) of space. You can override these system actions by coding the
CONTIG, MXIG, or ALX subparameter; these subparameters are discussed
later.

SPECIFYING A SECONDARY QUANTITY

The secondary quantity (incremental quantity) tells the system that you
want additional space allocated to the data set if it is required. You
specify as the secondary quantity how many more tracks or cylinders you
want allocated or how many more blocks of data may be written. (When
you request space in units of blocks, the system corr,putes the number of
tracks required for the primary quantity based on the average block
length that you specified in the SPACE paraweter. The system computes
the number of tracks required for the secondary quantity based on what
is specified in the DCB subparameter ELKSIZE. Therefore, include the
DCB subparameter BLKSIZE on the DD statement, i.e., DCE=BLKSIZE=maxirr,urr,
block length.) Specifying a secondary quantity is optional.

If you do specify a secondary quantity and the data set requires
additional space, the system allocates this space based on the quantity
you specified. The system attempts to allocate the secondary quantity
in contiguous tracks or cylinders. If contiguous space is not
available, the system atterrpts to allocate the secondary quantity in up
to five noncontiguous blocks (extents) of space.

Each time the data set requires more space, the system allocates the
secondary quantity. This space is allocated on the same volume on which
the primary quantity was allocated until: (1) there is not enough space
available on the volume to allocate the secondary quantity, or (2) a
total of 16 extents have been allocated to the data set. If either of
these conditions is satisfied, the system must allocate the secondary

184 JCL Reference

--

quantity on another volume. however, thiB can be done only if you
request more than one volume in the VOLUME ~araroeter (for a nonspecific
volume request, code PRIVATE;: for a specific volume request, request
more volumes than devices).

If a data set has used all the primary space allocated to it, a later
job step or job can lengthen the data set with additional output only if
a secondary quantity was specified when the data set was created and
only if there is enough space available on the volume. If a later job
step or job is lengthening a data set and specifies a secondary
quantity, this quantity overrides, for tne duration of the step, any
secondary quantity specified when the data set was created.

For indexed sequential data sets, a secondary quantity cannot be
requested. Any secondary quantity requested for a checkpoint data set
is ignored.

The secondary quantity is a positional subparameter. If you specify
a secondary quantity, the quantity must follow the primary quantity. If
you do not specify a secondary quantity and specify the size of an index
or directory as the next subparameter, you must code a corrma to indicate
the absence of a secondary quantity.

REQUESTING SPACE FOR A DIRECTORY OR INDEX

If the data set you are creating is a partitioned data set, you must
request the system to alloca1:e space for a directory. A directory
consists of 2~6-byte records, and you specify, in the SPACE parameter,
how many of these records the directory is to contain. 'These records
contain entries for the members of the partitioned data set. You can
determine how many records you should request for the directory by
referring to the chapter "processing a Partitioned Data ~et" in the
supervisor and Data Management Services publication.

If the data set you are creating is an indexed sequential data set,
you can tell the system, in 1:he SPACE parameter, how many cylinders to
allocate for the index. (The alternate way to request sfJace for the
index is to include, as one of the DD statements used to define an
indexed sequential data set, a DD statement that defines the index and
specifies the number of cylinders required for the index as the primary
quantity.)

The system can differentiate between a specification of the number of
records for a directory and 1:he number of cylinders for an index by
examining the DCB parameter on the DD stat:ement. Any CD statement that
defines an indexed sequential data set must include the DCB subparameter
DSORG=IS or DSORG=ISU. When neither is specified, the system assumes
you are requesting space for a directory.

RELEASING UNUSED SPACE -- RLSE

The RLSE subparameter allows you to request the system to delete unused
space when the data set is closed. If you requested space in units of
tracks, any unused tracks are released. If you requested space in units
of cylinders, any unused cylinders are released. If you requested space
in units of blocks, any unused tracks or cylinders, whicnever the system
allocated to the data set, are released.

If you code the SPACE parameter on a DD statement that defines an
existing data set and include the RLSE subpararneter, the data set's
unused space is released.

section IV: The DD Statement -- SPAC£ Parameter 185

The RLSE subparameter is a positicnal sutFarameter. If you omit the
~LSE subparameter and another subparameter follows, in6icate the absence
of the RLSE subparameter with a comrra.

The RLSE subparameter is ignored when the TYPE=T option is coded in
tne CLOSE macro instruction.

SPECIFYING THE FORMAT OF ALLOCATED SPACE -- CONTIG, ~XIG, OR ALX

~he system attempts to allocate space in contiguous tracks or cylinders.
If contiquous space is not available, the system sati~fies the space
request 'Hi th up to five noncontiguous blecks of space. You can override
these syst.em actions by coding the CCNTIG, MXIG, or ALX subparameter.

The CONTIG (contiguous) sUbparameter tells the system that the space
it allocates to a data set rr.ust be centiquous. If the request cann-ot be
satisfied, the job is terminated. If secondary space is allocated to
the data set, it may not be contiguous to the original s~ace allocated
to the dat.a set.

The MXIG (maximum contiguous) subparameter tells the system to
allocate the largest area of contiguous space available on the volume.
The area must be at least as larqe as the primary quantity requested.
The MXIG subparameter cannot be specified fer an indexed sequential data
set .•

The ALX (all extents) subparameter tells the system to allocate up to
five different areas of contiguous space. Each area is to be at least
as large as the primary quantity you requested. The system allocates as
many areas as are available. The ALX sutpararreter cannot be specified
for an indexed sequential data set.

Whichever of these subparameters you cnoose roust follow either the
RLSE subparameter or the comma that indicates its absence. If you do
not specify one of these sutparameters and the RCUND subparameter
follows, indicate the absence of the CONTIG, MXIG, and ALX subparameters
with a comma.

ALLOCATING WHOLE CYLINDERS -- ROUND

When you request space in units of blocks, you can request that the
allocated space be equal to one or ~ore cylinders. To request this,
code ROUND as the last subparameter in the SFACE pararl.eter. The systerr.
computes the number of tracks required to held the blocks, and ensures
that the space begins on the first track of a cylinder and ends on the
last track of a cylinder.

Assigning Specific Tracks

You can place a data set in a specific position on a direct access
volume by specifying in the SPACE parameter:

• ABSTH as the first subparameter.
• How many tracks you want allocated.
• The relative track number of the beginning track on which you want

the data set ~laced.

If the data set is a partitioned data set, you must also specify how
many records you want allocated for a directory. If the data set is an
indexed sequential data set, you can also indicate how many tracks are

186 JCL Reference

._----------,-_ _ .. -

--

required for the index. (The number of tracks you specify must be equal
to one or more cylinders, and any other DD statement used to define the
indexed sequential data set must specify ABS~R in the SPACE parameter.
If either of these conditions is not met, the job is terminated.>

To determine the relative track number, count the first track of the
first cylinder on the volume as 0, and count through tht tracks on each
cylinder until you reach the track on which you want your data set to
start. (Track 0 cannot be requested.) The system automatically
converts the relative track number to an address; this address varies
with different devices. For indexed sequential data sets, the relative
track number must correspond to the first track on a cylinder.
Capacities of a number of direct access devices are listed in "Data Set
Disposition and Space Alloca·tion" in the supervisor and Data Management
Services publication.

If the tracks you request have already been allocated to another data
set, the job is terminated.

Since a secondary quantity cannot be coded with the ABSTR
subpararneter, the absolute track allocation technique cannot be used to
create a multivolume data set.

Examples of the SPACE Parameter

1. //DDl DD DSNAME=&&TEMP,UNIT=MIXED,SPACE=(CYL,10)

2.

This DD statement defines a temporary data set and requests the
system to assign any available tape or direct access volume
(UNIT=MIXED specifies a group name of units that consists of ta~€
and direct access devices). If a tape volume is assigned, the SPACE
parameter is ignored; if a direct access voluree is assigned, the
SPACE parameter is used to allocate space to the data set. The
SPACE parameter includes only the required subpararreters (i.e., the
type of units and a primary quantity), and requests the systerr to
allocate 10 cylinders.

//DD2
//
//

DD DSNAME=ELLN,DISP=(,KEEP),UNIT=2314,
VOLUME=SER=11257,SPACE=(1024,(100,25»",RCUND),
OCB=BLKSIZE=2048

x
x

This DO statement defines a new data set that is to be written on a
direct access volume. The SPACE parameter requests the system to
compute the space required for the primary quantity; the system
computes the space required based on an average clock length of 1024
bytes, and up to 100 blocks of data will be written. If more space
is required, the system is to compute how rruch additional space to
allocate; the system. computes the space required based on a maxirr.un
block length of 2048 bytes (specified in the BLKSIZE subparameter),
and up to 25 blocks of data will be written. Since the ROUND
subparameter is coded, the systerr ensures that the allocated space
begins on the first track of a cylinder and ends on the last track
of a cylinder.

3. //DD3 DD DSNAME=PDS12,DISP=(,KEEP),UNIT=2311, x
// VOLUME=SER=26143,SPACE=(TRK, (200"10),,CONTIG)

This OD statement defines a new parti-ticned data set. The system
allocates 200 tracks to the data set and 10 2~6-byte records for a
directory. Since the CONTIGsubparameter is coded, the system
allocates 200 contiguous tracks on the volume.

Section IV: The DD staterrent -- SPAC~ Parameter 187

4. //DD4
//

DD DSNAME=INDSEQ(INDEX),UNIT=2314,DCB=DSORG=IS,
DISP=(,KEEP),SPACE=(AESTR, (20,20»

This DD statement defines the index area for a new indexed
sequential data set. The SPACE pararreter allocates 20 tracks (for a
2314, 20 tracks equal 1 cylinder), beginning with the twentieth
track on the volume (the twentieth track on the volume is the
beginning of the second cylinder).

188 JCL Reference

The SPLIT Parameter

SPLIT= {n,CYL, (primary quantity [, secondary quantity]»
n

n

{percent,block length, (primary quantity[,secondary quantity]»
percent

the nUff-ber of tracks per cylinder you want allocated to the first
data set.

CYL
specifies that space is to be allocated by cylinder.

primary quantity
specifies how many cylinders are to .be allocated for use by all the
associated data sets.

,secondary quantity

n

specifies how many rrore cylinders are to be allocated to a data set
if additional space is required.

the nuwber of tracks per cylinder you want a~located to the data
set defined on the DJ statement.

percent
the percentage of tracks per cylinder you want allocated to the
first data set, a number from 1 through 99.

block length
specifies the average block length of the data. The system
c~mputes how many cylinders to allocate.

primary quantity
specifies the total nurr.ber of blocks to be allocated for use by all
the associated data sets.

,secondary quantity
specifies how many more blocks are to be allocated to a data set if
additional space is required.

percent
the percentage of tracks per cylinder you want allocated to the
data set defined on the DD statement.

Rules for Coding

1. The first DD statement that contains the SPLIT pararr.eter must
contain volume and unit information. You need not code volume and
unit information on the following DD statements that contain the
SPLIT parameter.

2. If a secondary quantity is not specified, you need not enclose the
primary quantity in parentheses.

3. The SPLIT, SPACE, SUBALLOC, DDNAME, and SYSOUT parameters are
mutually exclusive parameters; therefore, if SPACt" SUBALLOC,
DDNAME, or SYSOUT is coded, do not code the SPLIT parameter.

Section IV: The DD Statement -- SPLIT Parameter 189

RE~2UESTING SPACE FOR A DATA SET

Every data set that is to be written on a direct access volume must be
allocated space on the voluree before the data set can le written. There
are three different pararr.eters that can be used to request space -­
SPLIT, SPACE, SUBALLOC -- and they are mutually exclusive. The SPACE
and SUBALLOC parameters are discussed in the chapters "The SPACE
Parameter" and "The SUBALLOC Parameter," res~€ctively.

Specifying the SPLIT Parameter

The SPLIT parameter is specified when data sets defined in a job step
require space on the same volume, and you want to miniwize access-arrr
movement by having the data sets share cylinders. The device on which
the volume is mounted is said to be operatinq in a s~lit cylinder rroJe
when the SPLIT parameter is specified. In this IT.ode, two or more data
sets are stored so that portions of each data set occufY tracks within
every allocated cylinder.

The cylinders allocated to the data sets rrust be on one volume. If
there ar~~ not enough cylinders available on the volume to satisfy the
request, the job is terminated. The SPLIT r;ararr·eter cannot be used to
allocate space for direct, partitioned, and indexed sequEntial data
sets. If the SPLIT parameter is used to allocate space for data sets
that are to reside on a drum storage volume, space is allocated for the
data sets, but the data sets are net stored using the s~lit cylinder
mode. The space occupied by a data set residing on a cylinder that has
been split is not available for reallocation until all data sets sharinq
the cylinder have been deleted.

The data sets that are to share cylinders are defined by a sequence
of DD statements. The first DD statement in the sequence specifies the
total amount of space required for all the data sets and the portion of
that space required by this data set. Each succeeding DD statement in
the sequence requests a portion of the total space.

In the SPLIT parameter, there are two ways to request the total
amount of space for data sets that are to share cylinders. You can
request the space in units of cylinders or in units of blocks,

HEQUESTING SPACE IN UNITS OF CYLINDE~G

When you request space in units of cylinders, the first DL statewent 01
the sequence specifies in thL SPLIT pararreter:

• The numter of tracks ~er cylinder to De allocated to this data set;
specify a number.

~ S~ace is to be allocated in units of cylinder~; s~eclfy CYL.

~ How many cylinders are to be allocated for use by all the data sets;
specify the prirrary quantity as a nurrber of cylinders.

Optionally, you can specify:

0) 'I'.CJat additional cylinder~ arc to be alloc3ted to a data set if
adaitional space is roquired; s~ecify the seccndary quantity as a

number of cylinders.

Each succeeding DD statement in the sequence specifies only the
number of tracks per cylinder to be allocated to the data set.

190 JCL Reference

If a secondary quancity (incrementa~ quantity) is specitied in tne
SPLIT parameter on the first DD statement in the sequence, any data set
that exceeds its allocated space is alloca1:ed additional space in the
amount of the secondary quantity. This additicnal srace is allocated
only to the data set that requires it and the space is not split with
the other data sets. If a secondary quantity is not sr-ecified and a
data set exceeds its allocated space, the job step is terreinated.

REQUESTING SPACE IN UNITS OF BLOCKS

When you request space in units of blocks, the first DD statement of the
sequence specifies in the SPLIT parameter:

• The percentage of tracks per cylinder to be allocated to this data
set; specify a number from 1 to 99.

• Tne average block length of the data in tbe data sets; specify the
average block length in bytes.

• How many blocks are to be allocated for use by all the data sets;
specify the primary quantity as a nurrber of blocks.

Optionally, you can specify:

• That additional blocks are to be allocated to a data set if
additional space is required; specify the 3econdary quantity as a
nUIDner of blocks.

Each succeeding DD statement in the sequence specifies only the
percentage of tracks per cylinder to be allccated to the data set.

When you request space in units of blocks, the system computes for
you how many cylinders are required. The average block length cannot
exceed 65,535 bytes. If the blocks have keys, code the DCB subparameter
K~YLEN on the DD statement and specify the key length, i.e.,
DCB=KEYLEN=key length.

If a secondary quantity (incremental quantity) is specified in the
S~LIT parameter all the first DD statement in the sequtnce, any data set
that exceeds its allocated space is allocated additional space. The
secondary quantity is specified as a number of olocks, and the syste~
computes how many cylinders to allocate cased on this nun·t;er. This
additional space is allocated only to the data set that requires it ano
the space is not split with the other data sets. If a secondary
quantity is not specified and a data set exceeds its allocated space,
the job step is terminated.

Section IV: The CD Staterrent -- SFLIT Parameter 191

Examples of the SPLIT Parameter

1. / /S'IEP1
//DD1
//
//DD2
//DD3

EXEC PGM=CREATE
DD DSNAME=QUEST,DISP=(,KEEP),UNIT=2311,

VOLUME=SER=757500,SPLIT=(3,CYL, (30,1»
DD DSNAME=APP,DISP=(,KEEP),SPLIT=4
DD DSNAME=SET,DISB=(,KEE~),SPLIT=3

X

This job step contains a sequence of DD statements that define new
data sets and request that these data sets share the same cylinders.
Tne first DD statement of the sequence, naffied DD1, sfecifies: (1)
three tracks per cylinder are to be allocated to this data set; (2)
space is to be allocated in units of cylinders; (3) thirty cylinders
are to be allocated for use by all the data sets; and (4) any data
set that exceeds the space allocated to it should te allocated
another cylinder. The DD statement named CD2 requests that the
system allocate 4 tracks per cylinder to this data set. The DD
statement named DD3 requests that the system allocate 3 tracks per
cylinder to this data set.

2. / /S'I'KP2 EXEC PGM=PAGE
//DDX DL DSNAME=ISSA,DISP=(,KEEP),UNIT=2314, X
// VOLUME=SER=49463,SPLIT=(18,1024, (700»
//DDY DD DSNAME=SEL12,DISP==(,KEEP) ,SPLIT=48
//DDZ DD DSNAME=SEVE,DISP=(,KEEP),SPLIT=34

This iob step contains a sequence of DD staterrents that define new
data sets and request that these data sets share the same cylinders.
The first DD statement of the sequence, named DDX, specifies in thE
SPLIT parameter: (1) 18 per cent of the tracks per cylinder are to
be allocated to this data set; (2) the system is to corrpute how many
cylinders are to be allocated for use by all the data sets based on
an average block length of 1024 bytes and 700 blocks are required.
The DD statement named DDY requests that the system allocate 48 per
cent of the iracks per cylinder to tnis data set. The DD statement
named DDZ requests that the system allocate 34 per cent of the track
per cylinder to this data set. since the first DL statement in the
sequence does not specify a secondary quantity, the job is
abnormally terminated when any of the data sets exceeds its
allocated space.

192 JCL Reference

The SUBALLOC Parameter

SUBALLOC =(1 TRK I ' (primary quantity [,secOndary qUantity] [,directory]) I,ddname I)
CYL , ,stepname .ddname
blocklength ,stepname .procstepname .ddname

TRK
speciifes that space is to be allocated by track.

CYL
specifies that space is to be allocated by cylinder .

.block length
sp~cifies the average block length of the data. The system
computes how many tracks to allocate.

f:rimary quantity
specifies how many tracks or cylinders are to be allocated, or how
many blocks of data are to be contained in the data set.

,secondary quantity
specifies how many more tracks or cylinders are to be allocated if
the additional space is required, or hew many more blocks of data
may be included if additional space is required.

specifies that the system is not to allocate additional space if it
is required, and a directory space requirement follows.

,directory
specifies the number of 256-byte records that are to be contained
in the directory of a partitioned data set.

,ddname
specifies that the system must allocate space from the data set
defined on the earlier DD statement named "ddnarre" that appears in
the same job step.

,stepname.ddname
specifies that the system must allocate space froID the data set
defined on the DD statement named "ddname", which is contained in
an earlier job step named "stepname" that is part of the same job.

,stepname.procstepname.ddname
specifies that the system must allocate space from the data set
defined on the DD statement "ddname," which is contained in an
earlier procedure step named "procstepname"; the procedure step is
part of a cataloged procedure called by an earlier job step named
"stepname" that is part of the same job.

section IV: The DD statement -- SUEALLOL Parameter 193

Rules for Coding

1. Before you can use the SUBALLOC parameter, you rrust define a new
data set and request enough space in the SPACE parameter to contain
all of the data sets.

2. When you code the SUPALLOC pararreter, crrit the VCLUME and UNIT
parameters.

3. The SUBALLOC, SPACE, SPLIT, DDNAME, and S~SOUT ~arameters are
mutually exclusive parameters; therefore, when SPACE, SPLIT,
DDNA~E, or SYSOUT is coded, do not cooe tne ~UBALLOC ~ara~eter.

REQUESTING SPACE FOR A DATA SET

£.;very dat.a set that is to be written on a direct access volume must .ce
allocated space on the voluITe before the data set can be written. There
are three different parameters that can te used to request space -­
SUBALLOC, SPACE, SPLIT -- and they are mutually exclusive. The SPACE
and SPLIT parameters are discussed in the chapters "The SFACE parameter"
and "The SPLIT Parameter," respectively.

Specifying the SUBALLOC Parameter
The SUBALLOC parameter allows you to place a series of data sets on onL
volume and in a certain sequence, in a contiguous area of space. This
area of space is first allocated to one data set, then later DD
statements defining new data sets in the saRE jon may request parts of
this space. This is called suballocation. sutallocation is used to
minimize access-arm movement when data sets are processed serially. Th~;
SUBALLOC parameter cannot be used to allocate space for an indexe~
sequential data set.

To use suballocation, you must first define a data set on a DD
statement and use the SPACE parameter to request space. This data set
must be used only for suballocation purposes, i.e., the data set should
contain no data. The space you request must be ldrge enough to contain
all of the data sets and the space must be contiguous. On this sane DD
statement, you can request more than one device in the UNIT paraneter or
more than one volume in the VOLUM~ parameter. This al~ows a
suballocated data set for wnicn a secondary quantity was reguestea in
the SUBALLOC parameter to be continued on another vclune if the data set
exceeds it.s primary quantity.

Once this data set has been defined, other data set~ defined in the
job can use the previously allocated space t:y specifying the SUBALLOC
parameter. Each DD statement that specifies the SUBALLOC parameter
causes the new data set to be assigned tc the next ar~a of unused space
from the original data set.

You must specify in tne SUBALLOC pararreter:

• The unit of measurement the system should use for allocating space;
specify T~K, for tracks, CYL, for cylinders, or tne average block
length of the data, for blocks.

• ~he amount of space to be allocated; specify the ~riaary quantity as
a number of cylinders, tLacks, or blocks.

• Where in tne job the oriqinal data set is defined" slPcify tne naID~
of the DD statement that defines the data set and the name of the
job step in which the CD statement appears.

194 JCL Reference

.....

optionally, you can specify in the SUBALLOC parameter:

• That additional space is to be allocated to the data set if it is
required; specify a secondary quantity of tracks, cylinders, or
blocks.

• The size of a directory; specify thE~ number of records required
for a directory.

SPECIFYING THE UNIT OF MEASUREMENT

The first subparameter of the SUBALLOC parameter identifies to the
system the unit of measurement to be used in suballocating space fer the
data set and can be specified as:

~ TRK -- if you want space suballocated by track.
• CYL -- if you want space suballocated by cylinder.
• a number of bytes, which represents the average block length of

the data -- if you want the system 1:0 compute and allocate. the
least number of tracks required to contain the blocks.

Since the next subparameter tells the system how many of these units
you require, specify the unit that makes it most convenient for you to
express your space requirement. A reques1: for cylinders (CYL) provides
the most efficient performance.

When you request space in units of blocks, the average clock length
cannot exceed 05,535 bytes. If the blocks have keys, you must specify
the key length in the DCB subparameter KEYLEN=n •

SPECIFYING A PRIMARY QUANTITY

The primary quantity tells the system how many tracks or cylinders are
to be suballocated for the data set or how many blocks of data will be
written. If there is not enough space available in the original data
set to satisfy the primary quantity request, the job is terminated.
When the first subparameter of the SUBALLOC parameter specifies the
average block length, the system con,putes the number of tracks required
based on the number of blocks specified as the primary quantity.

IDENTIFYING THE ORIGINAL DATA SET

.since you want space suballocated from a particular data set, you rrust
identify this data set each time space is to be suballocated for a new
data set. You identify this data set by referring the system to the DD
statement that originally defines the data set. This DD statement must
be contained in the same job, and can appear in the saffie job step, an
earlier job step, or in a procedure step that is part of a cataloged
procedure called by an earlier job step. Code as the last subpararreter
in ,the SUBALLOC parameter:

• ddname -- if the DD statement appears in the same jOb step.

• stepname.ddname -- if the DD statement appears in an earlier job
step •

• stepname. procstepname. ddname -- if the DD statement a{:];;ears in a
procedure step that is part of a cataloged procedure called by an
earlier job step.

section IV: The DD Statement -- SUBALLOC Parameter 195

SPECIFYING A SECONDARY QUANTITY

The secondary quantity (incremental quantity) tells th~ system that you
want additional space allocated to the data set if it is required. You
specify as the secondary quantity how many more tracks or cylinders you
want allocated or how many rrore blocks of data may be written. (When
you request space in units of blocks, the system corr,putes the number of
tracks required for the primary quantity based on the average block
length that you specified in the SPACE pararreter. The system computes
the number of tracks required for the secondary quantity based on what
is specified in the DCB subpararneter BLKSIZE. Therefore, include the
DCB subparameter BLKSIZE on the DD statement, i.e., DCB=BLKSIZE=maxirrurr
block length.) Specifying a secondary quantity is optional.

If you specify a secondary quantity and the data set requires
additional space, the system allocates this space based on the quantity
you specified. This additional space is allocated from available space
on the volume, not from the space in the original data set frorr which
the system suballocated space for this data set. If more than one
device or volume was requested on the same DC statement that requested
space for suballocation, the data set can be continued onto another
volume.

A data set may use all the space allocated to it and a later JOb step
or job may then try to lengthen the data set with additional output. In
this case, the data set can be lengthened only if a secondary quantity
was specified when the data set was created and only if there is enough
space available on the volume. If a later job step or job is
lengthening a data set and specifies a secondary quantity, this quantity
overrides, for the duration of the step, any secondary quantity
specified when the data set was created.

The secondary quantity is a positional subpararreter. If you specify
a secondary quantity, the quantity must follow the primary quantity. If
you do not specify a secondary quantity and specify the size of a
directory as the next subparameter, you must code a conma to indicate
the absence of a secondary quantity.

REuUESTING SPACE FOR A DIRECTORY

If the data set you are creating is a partitioned data set, you must
request ,that the system allocate space for a directory. A directory
consists of 256-byte records and you specify hew ~any ef these records
the directory is to contain. These records contain entries for the
members of the partitioned data set. You can deterIl'ine how many records
you should request for the directory by referring to the chapter
"processing a Partitioned Data Set" in the Supervisor and Data
.t>lanagement Service§ publication.

If you request space for a directory in the SUBALLOC farameter, the
request must follow the secondary quantity or the comma that indicates
its absence.

196 JCL Reference

..... -

Examples of the SUBALLOC Parameter

1.

2.

//S'IEPl
//DDl
//
//STEP2
//DD2
//
//DD3
//
//DD4
//

EXEC PGM=P1<~P

DD DSNAME=DUM,DISP=(,KEEF),UNIT=2302,
VOLUME:=SER=ALLDS, SPACE= (CYL, ~O, , CON'1IG)

EXEC PGM=BSPED
DD DSNAME=SFEC50,DISP=(,~EEP),

SUBALLOC={CYL, (20,1),STEP1.DD1)
DD DSNAME=SFEC51,DISP=(,KEEP),

SUBALLOC=(TRK, (44,7),STEF1.DD1)
DD DSNAMB=SFEC52,DISP=(,KEEF),

SUBALLOC=(CYL,25,STEP1.DD1)

X

X

x

X

The data set from which space is to be suballocated is defined on
the DD statement named CDl in STEP1. Fifty cylinders are allocated
to the data set and the cylinders are contiguous. TIle DD staterr'ents
named DD2, DD3, and DD4 in STEP2 request a ~ortion of this space in
the SUBALLOC parameter by referring the system to the data set
defined on the DD staterrent named DDl in STEP1. The order of the
data sets on the volurre, because of the request tor sutallocation,
will be DUM, SPECSO, SPECS1, and SPEC52.

//STEPX EXEC
//DD5 DD
//
//DD6 DD
//
//STEPY EXEC
//DD7 DD
//

PGN=GAxV
DSNAME=SIMP,DISP=(,KEEP),UNIT=2311,
VOLUME=SER=315046,SPACE=(CYL,lOO"CONTIG)
DSNAME=FIELD,DISP=(,KEEP),
SUBALLOC=(1024, (800,60),DDS)
PGM=BERSS
DSNAME=PDS,DISP=(,KEEP),
SUBALLOC=(CYL, (75,,8) ,STEPX.DDS)

X

x

x

The data set from which space is to be suballocated is defined on
the DD statement named DDS in STEPX. One hundred cylir.ders are
allocated to the data set and the cylinders are contiguous. The DD
statement named DD6 requests a portion of this space in units of
blocks. The system computes how many ·tracks or cylinders are
required for the data set. The DD statement named DD7 in STEPY also
requests a portion of the space allocated to the data set defined on
the DD statement named DDS in STEPX. The DD statement named DD7
defines a partitioned data set and requests the system to allocate 8
2S6-byte records for a directory .

section IV: The DD Statement -- SUBALLOC Parameter 197

The SYSOUT Parameter"·PCP

SYSOUT=classname

classname
the class associated with the output device to which you want to
write your output data set.

Rules for Coding

1. The classname can be any alpharreric character (A-Z, 0-9).

2. The DCB pararr'eter can be coded with the SYSOUT paraH,eter to
complete the data control block. Besides the mutually exclusive
parameters listed below, other parameters coded with the SY3CUT
parameter are ignored.

3. 'l'he DISP, DDNAlv'jE, AFF, SEP, VOLUI:J:E, LABEL, SFLI'l, and SUBALLOC
parameters and the SYSCUT parameter are ~utually exclusive
parameters; therefore, if any of these parameters are coded, do not
code the SYSOUT parameter.

Advantages to Coding the SYSOUT Parameter

When you want a data set printed on an output listing or in the form ot
punched cards, you can code the UNI~ parameter and identify the unit
record device you want or code the SYSOUT parameter and specify the
class that corresponds to the type of unit record device you want.
There are advantages to coding the SYSOU~ pararreter:

1. The unit is selected by the operator and can be identified to the
system while your job step is executing. If a unit record device
is temporarily not available, the 0I;erator can select an availatle
tape unit and the output data set is written on a tape volume.
Later, the operator has the data set written to the desired unit
record device.

2. The output data set and systerr messages reSUlting frcrr the job can
be printed in chronological order on a single output listing.

THE CLASSNAME

When you code the SYSOUT para~eter, you indicate a classnawe. A
classname is an alphameric character (A-Z, 0-9) that corresponds to a
type of unit record device. Each installation specifies what classnaroes
correspond to what unit record devices during system generation.
Therefore, when you specify a classname, the of era tor knows what type of
unit record device you wantu and he ensures that the device is
available. If the device is not available and the operator causes the
output data set to be written on a tape voluwe, he ensures that the Jata
set is later written to the device you want.

The classname A is considered to be the standard output class and
corresponds to a printer. ~rhe standard output class is used by the
system to write system messages resulting from a job. Therefore, if you
want your output data set and system messages reSUlting irom the jot: to
appear as a single listing, you sin,ply code SYSOUT=A.

Section IV: Tne DD staterrent -- S~SCUT Farameter 199

JOB SEPARATORS

Your output data set is preceded by a jot separator if your installation
incorporated routines to write job separators. A job separator is a
series of three listing pages or three punched cards that SEparates the
output data sets of different jobs. These jobs wrote their output data
sets to the same class. Each page or card contains the name of the job
whose data follows, and identifies the output class. Job separators
make it easier for the operator to separate the data produced by your
job from the data of other jobs.

Examples of the SYSOUT Parameter for PCP

1. //DDl DD SYSOUT=M

This DD statement requests use of a particular type of unit record
device. If the unit is not already available, the of era tor makes
the unit available while the job step is executing or causes you to
write the output data set on a tape volume. If the data set is
written on a tape VOlume, the operator has the data set written to
the desired unit at a later time.

2. //DD2 DD SYSOUT=A

This DD statement requests use of the printer that corresponds to
the standard output class. The processing program writes the data
set and the system writes the system messages on the same output
listing.

3. //DD3 DD SYSOUT=G,DCB=PkTSP=2

This DD statement requests use of a particular type of unit record
device. Since the DCB subparameter PRTSP indicates line spacing for
a printer, the classname G should correspond to a printer.

200 JCL rleference

The SYSOUT Parameter· .. MFT, MVT

SYSOUT~(classnaroe [:pro9raro naroe] [,form number])

classname
the class associated with the output device to which you want your
output data set written.

,program name
the member name of a program in the system library that is to write
your output data set, instead of the system output writer, to a
unit record device.

specifies that the system output writer is to write your output
data set to a unit record device, and a form number follows.

,form number
specifies that the output data set should be printed or punched on
a special output form.

Rules for Coding

1. The classname can be any alphameric character (A-Z, 0-9).

2. The form number is 1 to 4 alphameric and national «i), 4>, #)

characters.

3. If a program name and form number are orritted, you need not enclose
the classname in parentheses.

4. The UNIT, SPACE, OUTLIM, and DCB parameters can be coded with the
SYSOUT parameter. Besides the mutually exclusive parameters listed
below, other parameters coded with the SYSOUT parameter are
ignored.

5. The DISP, DDNAME, AFF, SEP, VOLUME, LAEEL, SPLIT, and SUBALLOC
parameters and the SYSOUT parameter are mutually exclusive
parameters; therefore, if any of these parameters are coded, do not
code the SYSOUT paramet.er-

Advantages to Coding the SYSOUT Parameter

When you want a data set printed on an output listing or in the forrr of
punched cards, you can code the UNIT parameter and identify the unit
record device you want, or code the SYSOUT parameter and specify the
class that corresponds to the type of unit record device you want.
There are advantages to coding the SYSOUT parameter:

1. You can write your output data set to a direct access device and a
system output writer writes the data set to a unit record device at
a later time. This allows greater flexibility in scheduling print
and punch operations, and improves operating system efficiency.
You can also write your output data set directly to a unit record
or magnetic tape device.

section IV: The DD Statement -- SYSOUT Parameter 201

2. The output data set and system messaqes resulting fron, the job can
be assigned to the same type of unit record device. This is
accomplished by specifying the same classnarre in the SYSOUT and
MSGCLASS parameters. (The MSGCLASS parameter is coded on the JOB
stai:ement.)

3. When you want the output data set printed or puncbe~ on a special
output form, you can specify the form nuwter in the SYSOUT
parameter and let the system inform the operator at the time the
data set is to be written what forJP is to l::e usee.

'It-IE CLASS NAME

When you code the SYSOUT parameter, you indicate a classname. A
classnaJPE~ is an alphameric character (A-Z, 0-9) that corresponds to a
type of unit record device. Each installation specifies what classnames
correspond to what unit record devices. Therefore, when yeu specify a
classname, the operator knows what type of unit record device you want
and he ensures that a system output writer is available to write your
output data set to the desired unit record device.

In MFT and MVT, the system determines where systew messages resulting
from a job are to be written based on what is coded in the MSGCLASS
parameter on the JOB staterrent. If the MSGCLASS raraw~ter is not coded,
system messages associated with your job are routed to the default
output class specified in the PARivj field of the input reader procedure.
The default for the MSGCLASS par3meter is A unless chdnged by your
installat:ion. Class A corresponds to a ~rintEr. If you want your
output data set and the system messages resulting fron, the job wri tt€n
to the same unit record device, you simply cede the sa~e classname in
both the MSGCLASS and SYSOUT parameters, or errit the MSGCLASS parameter
and code your installation's default output class in the SYSOU'I
paramete:r.

THE PROGHAM NAME

The system provides system output writers, which transfer your output
data set from a direct access volume to the desired unit record device.
If there is a special installation program to handle this transfer, you
can use this program, instead of a system output writer, by specifying
the program's name as the second subpararreter in the SYSOUT parameter.
The program must be a member of the system library (SYS1.LINKLIB).

If you do not code a program name and code a form number as the last
subparameter in the SYSOUT parameter, you must code a corrma to indicate
the absence of a program name.

THE FORM L~UMBER

Each installation provides standard forms to contain frinted or puncned
output. If there is a special output form yeu want to use, you can
specify the form number as the last subparamEter in the SYSOUT
parameter. The system issues a roessaqe to the operator at the time the
data set is to be printed or punched, which informs him of the forn to
be used. If you do not want system messages resulting from the job to
appear on the special form, assign a classname in the l>'iSGCLASS pararr.ete:r
on the JOB statement that is different from tne classname assigned in
the SYSOUT parameter.

202 JCL Reference

CODING OTHER PAR&~ETERS WITH THE SYSOUT PARAMETE~

The UNIT, SPACE, OUTLIM and DCB parameters can be coded ~ith the SYSOU~
parameter. The DDNAME, DISE , AFF, SEP, VOLUME, LABEL, S~LIT, and
SUBALLOC parameters are mutually exclusive ~ith thE SYSOUT pararreter;
any other parameters that you code with the SYSOUT paramEter are
ignored.

In MFT and MVT, you can write output data sets destined for unit
records devices to a direct access device instead of immEdiately writinq
the data set to the desired unit record device. Later, a system output
writer writes the data set to the desired unit record device. In tbe
UNIT parameter, you can request what type of direct access device you
want for writing the output data set, how many devices you want (up to a
maximum of five), and unit separation from other data sets defined in
the job step. In the SPACE parameter, you can specify ho~ much space
should be allocated to the data set and that unused sp~ce is to be
released. If you omit the UNIT parameter, the system assigns a device;
if you omit the SPACE parameter, the system assigns the amount of space
to be allocated. These values are part of the PARlVl paraI,eter field in
the input reader procedure used to read the input stream.

In ~FT and MVT, you can also write an output data set directly to the
desired unit record or magnetic tape device. when direct system output
is desired, the operator selects a unit reccrd or magnetic tape device
for a class by issuing a START DSO (direct system output) command. In
addition to the SYSOUT parameter, the DCB and DCS ~araweters can be
coded. If the SYSOUT subparameters other than classname are coded, the
specified information is ignored. The UNIT and SPAC~ ~arameters are
also ignored if direct system output procE~ssing is used. Since the type
of processing to be used may not always be known, it is advisable to
code these parameters in case an intermediate direct access device is
used.

The DCB parameter can be coded with tne SYSCUT parailleter to corrpletE
the data control block associated with tne cutput data set. The
information contained in this data control block is used when the data
set is written to the direct access device and read ty the system output
writer. However, the output writer'S own DeE attributes are use~ when
the data set is written to the desired unit record device.

The OUTLIM parameter allows you to specify a limit for the numLer of
logical records you want included in the ()ut[ut data set beinq routed
through the output stream. The OUTLIM parameter has meaning only in
systems with the System Management Facilities option with systerr, JOD,
and step data collection. Unless the SYSOUT pararreter is coded in the
operand field of the same DD statement, the OUTLIM parameter is ignoreJ.

JOB SEPARATORS

Your output data is preceded by a job se~arator if your installation
incorporated routines to write job separators. A job separator is a
series of three listing pages or three punched cards that separates th€
output data sets of differen"t jobs. The output data sets froIT. these
jobs were written to the same unit. Lac~ page or card contains the name
of the job whose data follows, and identifies the output class. Job
separators make it easier for the operatcr tc separate the data produced
by your job from the data of other jobs.

section IV: The DD Statement -- SYSCUT Fararr-eter 203

Examples of the SYSOUT Parameter for MFT and MVT

1. IIDDl DD SYSOUT=P

2.

This DD statement specifies that the data set is to be written to
the unit record device corresponding to class P. since the UNIT and
SPACE parameters are not coded, the system obtains device and space
allocation information from the input reader procedure. A

//JOB50 JOE
//S'IEPl EXEC
//DI:X DD

,'c. BROwN',MSGCLASS=C
PGM=S:t:T
SYSOUT=C,DCB=(BUFNO=4,OPTCD=W)

The DO statement named DDX specifies that the data set is to be
written to the unit record device corresfonding to class C. The DCB
parameter is coded to complete the data control block associated
wi th -this data set. Since the classnames in the SYSOU'I parameter
and the f-1SGCLASS parameter, on the JCB statement, are the same, the

CODING OTHER PARAMETERS WITH THE SYSOUT FARAi"'E'IER WRI'I'IEN '10 THE
SAME UNIT RECORD DEVICE.

3. //DD5 DD SYSOUT=A,UNIT=2314,SPACE=(CYL, (12,1),RLSE)

This DD statement specifies that the data set is tc be written to
the unit record device corresponding to the standard output class A.
The system assigns a 2314 unit and allocates 12 cylinders to the
data set, rather than obtaining device and space allocation

4. //CC6 DD SYSOUT= (F , ,7402)

This DD statement specifies that the data set is to ce written to
the unit record device corresponding to class F and the output data
set is to be printed on a special form. The form number is 7402.

204 JCL Reference

The UCS Parameter

UCS= (character set code [FOLD] (• VERIF xl)

character set code

,FOLD

identifies the special character set you want for printing the data
set.

specifies that you want the chain or train corresponding to the
desired character set loaded in the fold rrede.

specifies that the chain or train is net to be loaded in the fold
mode and the VERIFY sutparameter follows.

,VERIFY
specifies that the operator is to verify that the correct chain or
train is mounted before the data set is printed.

Rules for Coding

1. The character set code can be 1 through 4 characters.

2. If the FOLD and VERIFY 5ubparameters are omitted, you need not
enclose the character set code in parentheses.

3. If the UCS parameter is coded and the data set is not written to a
1403 printer with the universal character set (UCS) feature, the
UCS parameter is ignored.

4. The UCS and DDNAI"lli parameters and the DCB subpararr,eters RKP,
CYLOFL, and INTVL are mutually exclusive parameters; therefore, if
the DDNAME parameter or cne of the DeB subpararreters RKP, CYLOFL,
or INTVL is coded, do not code the ues parameter.

Special Character Sets

During system generation, the universal character set (Ues) feature can
be requested for a 1403 print:er. with this feature, an output data set
written to the 1403 printer can be printed using a special character
set.

In the ucs parameter you specify what character set you want to use;
the operator ensures that the corresponding chain or train is ITounted on
the 1403 printer. In order to use a particular special character set,
an image of the character set must be contained in SYS1.SVCLIB and the
chain or train corresponding to the character set must be available for
use. IBM provides standard special character sets 'and tne installation
may provide user-designed special character sets. How to include the
images for these special character sets in SYS1.SVCLIB is discussed in
the System Programmer's Guid~.

If you omit the ues pararreter and the data set is written to a 1403
printer with the ues feature, a default character set is used. If the
chain or train mounted on the printer does net correspond to a default
character set, the operator is requested to identify a default character
set and mount the corresponding chain or t.rain.

Section IV: The DD statement -- ues Parameter 205

Note: When the UCS parameter is coded with the SYSOU'l parameter and the
data set is first written te tape, the UCS specification is not kept.
Therefore, when the operator writes the data set fro~ the tape to a 1403
printer, you data set may nat be written using the desired character
set.

IDENTIFYING ThE CHARACTEH SET

The first subpararr.eter of the UCS parameter identifies the character se-t
you want for printing your data set. Each character SLt has a unique 1-
through 4-byte code.

The codes for the IBM standard special character sets are:

AN -- alphameric
EN -- alphameric
PCAN -- alphameric*
PCHN -- alphameric*
PN -- alphameric (PL/I)
QNC -- alphameric (PL/I-corrmercial)*
QN alphameric (PL/I-scientific)*
RN FORTRAN-COBOL (commercial)*
SN text printing*
TN text printinq
XN high-speed alpharr,eric
YN high-speed alphameric*

*Preferred character set

For each user-designed special character set, the installation
assigns a unique code. If you want to use one of these, specify the
corresponding code in the ucs parameter. Yeu can use the space that
follows to list the codes assigned to user-designed special character
sets available at your installation.

206 JCL Reference

..........

REQUESTING FOLD MODE

FOLD can be coded as the second subpararreter oftbe UCS parameter anJ
requests the fold mode. The fold mode is descrioed in the publication
IB~ 2821 Control Unit, GA24-3112. The fold node is lliost often requested
when uppercase and lowercase data is to be ~rinted only in uppercase.

The FOLD subparameter is a ~ositicnal sutfara~eter. If you omit the
FOLD subparameter and code the VEHIFY subparaweter, you rr.ust code a
comma to indicate the absence of FOLD.

~EQUE3TING OPERATOR VERIFICATION

VERIFY can be coded as the last subparareeter of the UC;:; parmeter and
requests that the operator visually verify that the character set irraae
corresponds to the graphics of the chain or train that was mounted.
When VERIFY is coded, the character set image is displayed on the
printer so that the operator can make the verification before the data
set is printed.

Examples of the ues Pal~ameter

1. //DD1 DD UNIT=1403,UCS=(YN"VERIFY)

This DD statement defines an output data set that is to be written
to a 1403 printer. The UCS parameter requests that the data set be
written using the chain or train corres~onding to the special
character set with the code tN. Since VEHIFY is coded, the
character set image is displayed on the printer before the data set
is printed.

2. //DD2 DD SYSOUT=G,UCS=PCHN

This DD statement defines an output data set that is to be written
to the unit record device that corresponds with class G. If th~
device is a 1403 printer with the universal character set, the
request in the UCS parameter for the special character set with the
code PCEN is recognized. Otherwise, the Des pararoeter is ignored.

section IV: The DD statement -- DCS Fararreter 207

The UNIT Parameter

UNIT=([uni~ address]
devl.ce type
group name

[,SEP=(ddname,···)l)

UNIT=AFF=ddname

unit address
identifies a particular unit by its address, which consists of the
channel, control unit, and unit numters.

device type
identifies a particular type of device.

group name
identifies a particular group of devices. The group name and the
devices that make up a group are specified during system
generation.

,unit count

,I?

indicates the number of devices you want assigned to the data set.

specifies that each volume on which the data set resides is to te
assiqned a device.

specifies that only one device is required and another sutparamet€r
follows. (If the DEFER subparameter is not coded but the SEP
parameter is coded, this comma isopticnal.)

,DEFEr<.

,SEP=

specifies that the systelli should assign a device(s) tc the data set
but the volume(s) on which the data set resides should not be
mounted until the data set is opened.

indicates that this data set is to De assigned a different direct
access device than the devices assiqned to certain other data sets,
i.e., unit separation.

(ddname, •••)

AFF=

the names of up to eight earlier DD statewents in the jot step that
define data sets from which you want unit separation.

indicates that the system should assign tne data set to the same
device(s) as assigned to another data set, i.e., unit affinity.

ddname
the name of an earlier DD statement in the job step that defines a
data set with which you want unit affinity.

Rules for Coding

1. If the only subparameter coded in the UNIT para~eter is the first
subparameter, you need not enclose it in parentheses.

section IV: The DD Statement -- UNIT Parameter 209

2. If the SEP subparameter is the only sul:r::arameter }'OU are coding in
the UNIT parameter, code UNIT=(,SEP=(ddnarre, ..• ».

3. If the list of ddnames consists of only one ddname, you need not
enclose it in parentheses.

4. You need not code the unit count subparaTheter if you want only one
device assigned to the data set.

~. The UNIT and DDNAME pa.rameters are mutually exclusive parameters;
therefore, if DDNAME is coded, do not code the UNIT parameter.

Providing Unit Information

Before the data set can be used as input to a processing program or
wri tten as output by a processing prograrr" the volume on which a data
set resides or will reside must be mounted on an input/output device.
The UNIT parameter provides the system with the inforrration it needs to
assign a device to the data set.

In order for the system to assign a device, you must provide in the
UNIT parameter:

• The specific unit you want:
description of the device:

Optionally, you can:

code the unit address; or a general
code the device type or group name.

• Specify how many devices you want assigned to the data set when
more than one device is required. You can code the unit count and
specify how many devices are required, or in certain cases, irr.ply
how many devices are required by coding P.

• Request the system to assign a device to a data set and not to
cause the volume on which the data set resides to be mounted until
the data set is opened.

• Request the system to assign a data set to a device other than the
devices assigned to data sets defined in the same job step; code
the keyword subparameter SEP and identify the data sets from which
you want unit separation.

Another way to provide unit inforroation is to request unit affinity
with another data set by coding UNIT=AFF=ddname. The system obtains
unit information from the named DD statement.

Except in a few cases, the UNIT parameter is always coded on a DD
statement that defines a data set that requires one or more devices. In
the following cases, the system obtains the required unit information
from other sources. Therefore, you need not code the UNIT parameter:

• When the data set is cataloged. For cataloged data sets, the system
obtains unit and volume information from the catalog. However, if
VOLUME=SER=serial number is coded on a DD statement that defines a
cataloged data set, the system does not look in the catalog. In
this case, you must code the UNIT parameter. If the VOLUME
parameter is not coded but you request a device in the UNIT
parameter, the request is ignored.

• When the data set is passed from a previous job step. For passed
data sets, the system obtains unit and volume information froIT an
inte:rnal table. However, if VOLUME=SER=serial nurrber is coded on a

210 JCL Reference

-

DD statement that defines a passed data set, the system does not
look in the internal table. In this case, you rrust code the UNIT
parameter. If the VOLUME parameter is not coded but you request a
device in the UNIT parameter, the request is ignored.

• When the data set is to use the same volumes assigned to an earlier
data set, i.e., VOLUME=REF=reference is coded. In this case, the
system obtains unit and volume inforrr'.ation from the earlier DD
statement that specl.fied the volume serial number or from the
catalog. If you request a device in the UNIT parameter, the request
is ignored •

• When the data set is to share space or cylinders with an earlier
data set, i.e., SUBALLCC or SPLIT is coded. In this case, the
system obtains unit and volume information from the earlier DD
statement that specifies the total amount of space required for all
the data sets. If the VOLUME parameter is coded, it is ignored. If
you request a device in the UNIT parameter, the request is ignored.

In all of these cases, you can code the UNIT parameter when you want
more devices assigned.

IDENTIFYING ThE DEVICE

You must identify to the system the specific device you want or the type
of device you want. To identify a specific device, you must specify a
unit address. When a unit address is coded, the system assigns you that
unit.

There are two ways to identify the type of device you want: specify
a device type, which corresponds to a particular set of device features,
or specify a group name, which identifies a group of devices that may be
different models. When a device type is coded, the system assigns an
available device of that type. When a group name is coded, the system
assigns an available device that is part of that group. In all cases,
the block size specified for the data cannot exceed the maximum block
size permitted for the assigned device.

unit Address

To identify a device by its unit address, you specify the 3-byte address
of the unit. The address is made up of t~he channel, control unit, and
unit numbers. For example, UNIT=180 indicates you want channel 1,
control unit 8, and unit o.

To request a specific bin on a specific 2321, you should code
UNIT=address/bin, where nbinn is a number from 0 through 9. For
example, UNIT=293/5 indicates you want channel 2, control unit 9, device
3, and bin 5. If you code UNIT=293, you are requesting one of the
available bins on that unit.

In MFT and MVT, you should not identify a device by its address
unless it is absolutely necessary. Specifying a unit address limits
unit assignment and may result in a delay of the job if the unit is
being used by another job.

Device Type

uevice types correspond to particular set of features of input/output
devices. When you code a device type, you allow the system to assign
any available device of that device type~ For example, if the device
type you want is a 2302 Disk Storage Drive, you code UNIT=2302. The

Section IV: The DD statement -- UNIT Parameter 211

system assigns an available 2302. If only cne device in the system is
of that device type, the system assigns that device. If there is rrore
than one device in the system of that device ty~€. there is a certain
degree of device independence.

The device types that can be coded and th~ir descri~ticns are listed
below. (You can code only those device types that were defined during
system generation.)

2400

2400-1

2400-2

2400- 3

2400-4

DIRECT ACCESS

2301

2302

2303

2311

2314

2321

UNI'r RECCRD ------_.,,-

1052

1275

1285

1287

Device
-~-.--.-

2400 series Nine-Track ~agnetic Tape Drive that can De
allocated to a data set written or to re written in
800 bpi when the dual-densi ty feature is not inst-alled
on the drive or in 1bOO bri when the dual-density
feature is installed on the drive.

2400 series Magnetic Tape Drive witn Seven-Track
Compatibility ana withcut Data Conversion.

2400 series Magnetic Tape Drive with Seven-Track
compatibility and Data Conversion.

2400 series Nine-Track Magnetic Tape Drive that can be
allocated to a data set written or to be written in
1600 bpi density.

2400 series Nine-Track Magnetic Tape Drive havina an
800 and 1600 bpi density capability.

Device ------

2301 Drum Storage Unit.

2302 Disk otoraqe Drive.

2303 DrUH storage Unit.

2311 Disk Storage Drive.

2314 Storage Facility.

any bin mounted on a 2321 data cell drive.

.cevice ----

1052 PrintEr-Keynoard.

1275 Optical Reader Sorter (available tnrouqh
World Trade branch offices only)

1285 Optical Reader

1287 Optical Reader

1288 1288 Optical Reader

212 JCL Reference

,.....

1403 1403 Printer or 1404 Printer (continuous form only).

1419 1419 Magnetic Character Reader

1442 1442 Card Read Punch.

1443 1443 Printer.

2495 2495 Tape cartridge Reader

2501 2501 Card Reader.

2520 2520 Card Read Punch.

2540 2540 Card Read Punch (read feed).

2540-2 2540 Card Read Punch (punch feed).

2671 2671 Paper Tape Reader.

GRAPHIC

Device TY2e Device

1053 1053 Model 4 Printer.

2250-1 2250 Display Unit, Model 1.

2250-3 2250 Display Unit, Model 3.

2260-1 2260 Model 1 Display Station (Local Attachment).

2260-2 2260 Model 2 Display station (Local Attachment).

2280 2280 Film Recorder.

2282 2282 Film Recorder/Scanner.

Grou,2 Name

A group name is 1 through 8 alphameric characters and identifies a
device or a group of devices. The group of devices can consist of
devices of th~ same type or different direct access and tape device
types. Group names are established during system generation.

When you code a group name, you allow the system to assign any
available device that is included in the group. (If a group consists of
only one device, the system assigns that device.) For example, if
all 2301 and 2303 Drum storage units are included in the group narred
DRUM and you code UNIT=DRUM, the system assigns an available 2301 or
2303 device.

A group may consist of more than one device type. In this case, you
sliould not code this group's group name when you are defining an
existing data set, since the volume(s} on which the data set resides may
require a different device than the one assigned by the system, i.e., a
tape volume must be assigned to a tape device, not a direct access
device.

When the automatic volume recognition feature is included in the
system and you specify a group name, this feature will assign devices to
volumes already mounted, but will net request mounting of any volume
that is not mounted.

Section IV: The DD statement -- UNIT Parameter 213

UNIT COU,.'J'l'

The unit count subparameter indicates how many devices you want assigned
to a data set. If you do not code this subparameter, or code 0, the
system assigns one device. (If you receive a passed data set or refer
tne system to a cataloged data set or earlier LD statement for volume
and unit information (VOLUME=REF=reference), the systere assigns one
device, even if more devices were requested in an earlier DD statement.)
Only in one case may the system assign more than one device: when two
DD statements in a step request use of the sa~e volume. If either of
these two DD statements requests any other volume(s), the system assians
an additional device.

For operating efficiency, you can request mUltiple devices for a
multivolume data set or for a data set that may require additional
volumes. When each required volume is mounted on a separate device,
time is not lost during execution of the jar step while the operator
demounts and mounts volumes. The maximum nUIrl:~er of devices that can be
requested per DD statement is 59.

In the following cases, you should always code the unit count
subparameter when the data set may be ext~nded to a new volume:

• If the data set resides on a permanently resident or reserved
volume. In these two cases, the volurr.e cannot re den,ounted in orde:r
t.o mount another volume.

• If the data set is assigned space through suballocation. Code the
unit count subparameter on the DD statement that requests the space
to be suballocated.

The unit count subparameter is a fositional surparaweter, and it
shares the same position as the subparareeter P. If neither of these
subparameters is coded and the DEFER or SEP subparameter follows, code a
comma to indicate the absence of the unit count subparameter and the
suoparameter P. (If the DEFw subparameter is not coded but the SEP
parameter is coded, you may omit the canna.)

PARALLEL MOUNTING

Requesting parallel mounting has the same effect as specifying a unit
count, i .. e., more than one device is assigned to the data set. When
parallel mounting is requested, the system counts the numner of volune
serial numbers specified on the DD statement and assigns to the data se1:
as many devices as there are serial numbers. (For cataloged data sets,
the system counts the number of volume serial numbers contained in the
catalog.) You request parallel mounting by coding the letter P in place
of the unit count subparameter.

The subparameter P is a positional subpararneter, and it shares the
same position as the unit count subparameter. If neither of these
subparameters is coded and the DEFER or SEP subparameter follOWS, code a
comma to indicate the absence of the subparameter P and the unit count
subparameter. (If the DEFER subparameter is not coded but the SEP
subparameter is coded, you may omit the comma.)

DEFERRED MOUNTING

The DEFER subparameter requests the system to assign the required units
to a data set and to defer the mounting of the volume(s) on which the
data set resides until the processing program attempts to open the data
set. ThE~ DEFER subparameter should only be coded on DD statements that
define data sets residinq on removable volurres. The DEFER sutparameter

214 JCL Reference

cannot be coded on a DD statE:~ment that defines an indexed sequential
data set or that defines a new data set that is to be written on a
direct access volume, because space cannot be allocated to the data set.

If you request deferred rrounting of a volume and the data set on that
volun",e is never opened by the processing program, the volume is not
mounted durinq the execution of the job step. If a ldter job step
refers to that data set, the system may assign a different device to the
data set than was originally assigned to it.

UNIT SEPARATION

When you make nonspecific volume requests for data sets defined in a job
step, the system assigns volumes to the data sets. If the DD staterr,ents
that define these data sets request the same type of device, the system
may assign more than one data set to the saffie device.

If you do not want a data set to be assigned to the same device that
is assigned to other data sets, you can request this in the SEP
subparameter. A request for unit separation has ~eaning only for direct
access devices.

The SEP subparameter a~pears as the last subpararoeter in the UNIT
parameter. To identify the data sets that should not be assigned the
same device as this data set, follow SEP= with a list of up to eight
ddnames of the DD statements that define these data sets. The listed DD
statements must precede this statement and must be contained in the same
job step. The list of ddnarres must be enclosed in parentheses, unless
there is only one ddname. If one of the listed DD statements defines a
dummy data set, the system ignores the unit separation request for that
data set. .

In PCP, the system ignores a unit sepa:cation request 1f the request
conflicts with another unit separaticn request, or if sufficient devices
are not available to satisfy the request. In MFT and MVT, the system
issues a message to the operator if a request for unit separation cannot
be satisfied. The operator decides if the systerr- should wait for
devices to become available, if the unit separation request should be
ignored, or if the job should be cancelled.

Unit Affinity
To conserve the number of devices used in a jOb step, you can request
that an existing data set be assigned to the same device or devices· as
assigned to a data set defined earlier in t.he job step. When two data
sets are assigned the same device, the data sets are said to have unit
affinity. When the data sets reside on different volumes, unit affinity
implies deferred mounting for one of the volumes, since both volumes
cannot be mounted on the sarre device at the same time.

You request unit affinity by coding UNIT=AFF=ddname on a DD
statement. The ddname is the name of an earlier DD statement in the
same job step, and the system obtains unit inforrration from this
statement. The data set defined on the DD statement that requests unit
affinity is assigned the same device or devices as the data set defined
on the named DD statement. If the ddname refers to a DD statement that
defines a dummy data set, the data set defined on the CD statement
requesting unit affinity is assigned a dummy status.

When unit affinity is requested for two data sets that reside on
different 2321 volumes, the data sets are assigned the same device but
may be assigned different bins.

section IV: The DD statement -- UNIT Parameter 215

Examples of the UNIT Parameter

1. //DD1 DD DSNAME=AAG3,DISP=C,KEEP),
// VOLUME=SER=13230,UNIT=2400

This DD stateIDent defines a new data set and requests the system to
assign any 2400 9-Track Tape Drive to the data set.

2. //DD2 DD DSNAME=X.Y.Z,DISP=OLD,UNIT=C,2)

This DD statellient defines a cataloged data set and requests the
system to assign two devices to the data set. The device type is
obtained from the cataloq.

3. //DD3 DD DSNAME=COLLECT,DISP=CLD,

4.

// VOLUME=3ER=1095,UNIT={DISh"DEFER)

This DD state~ent defines an existinq data set that resides on a
direct access volume and requests the system to assign any device
that is part of the group named DISK. Since DEF~R is coded, the
volume is not mounted until the data set is opened.

//STEP1
//DDA
//DDB
//DDC

EXEC
DD
DD
DD

PGM=XTRA
UNIT=2311,SPACE=(1024, (150,20»
UNIT=2311,SPACE=(1024, (100,10»
UNIT= (2311 ,SEP= (DDA,D[;B» ,SJ?AC.t= (2048, (300,30»

x

x

The DD statements in this jOb step define temporary data sets. The
DD statement named DDe requests the system to assign tbe data set t:o
a different device than is assigned to eitber of the data sets
defined on the DD statements named DDA and DDB.

5. / /S'l'EP2
//DDX
//
//DDY
//DDZ
//

EXEC
DD

DD
DD

PGM=POINT
DSNAME=EST,DISP=MOD,VOLUM~=SER=(42569,42570),
UNIT= (2311,2)
DSNAME=ERAS,DISP=OLD,U~IT=2400-2

DSNAME=RECK,DISP=OLD,
V0LUME=SER=(406S3,13262),UNIT=AFF=DDX

The DD statement named LDZ requests that tbe systerr. assign the sarre
unit to this data set as it assiqns to tbe data set defined on the
statement named DDX. Since DDX requests t~o devices, these two
devices are assigned to the data set defined on DLZ.

216 JCL Reference

X

x

The VOLUME Parameter

10gtUME I ~([PRIVATE] [;RETAINJ [",volume sequence number] [,volume count] :[,-J:[SER=(serial number, ..•) J)
L!~ (.!I L __ J REF"'cIsname

REF=* .ddname
REF=* .stepname .ddname
RE F=* . stepname. procstepname. ddname

PRIVATE

indicates that no output data set can be allocated to thi 1
unless the volume i~ specifically requested, and the vOlu~ev~s~~
be demounted after l.ts.last use in the job step, unless RETAIN is
coded or the data set 18 passed.

,RETAIN
indicates that this volume is not to be derr:ounted after its last
use in the job step.

indicates that the volume does not need to be considered a private
volume and the volume sequence number or volume count sUbparameter
follows.

,volume sequence number
specifies which volume of an existing multivolume data set you want
to begin processing with.

indicates that you want to begin processing of an existing
multivolume data set with the first volume, and the volume count
subparameter follows.

,volume count

SER=

specifies the maximum nurr.ber of volumes an output data set
requires.

specifies that either the SER or REF subparameter follows and one
or more subparameters precede it.

indicates that the serial numbers of the volumes on which tne data
set resides or will reside follow.

(serial number, ••• >

l<EF=

the serial numbers of the volumes on which the data set resides or
will reside.

indicates that the serial numbers of the volumes on which the data
set resides or will rE?side are identified on an earlier DD
statement in the job or in the catalog.

dsname
the name of a cataloged or passed data set. The system locates the
information about the data set and assigns your data set to the
same volumes as are assigned to the cataloged or fassed data set.

section IV: The DD Statement -- VOLUM~ Parameter 217

*.ddnaroe svstem must obtain the vOl.ume ser.ial numbers
specifies that the ~ job step.
froITi an earlier DD statement named "ddname" 1n tile salr:e

*.stepname.ddname - . h volume serial numbers
spE'cifies that the system must obtaln t e '.;as defined in an earlier
fr~m a DD statement nawed "ddnaroe," which"
iob step named nstepname.

n

*.stepname.procstepname.ddname. . 1 b
~ ecifies that the system must obtaln the volume ~erla. num :~~lier
~~~m a DD statement named "ddnaroe," which was defln~d In.an 
~rocedure step named "procstepname"; t~e p~ocedure steP

d
ls part of 

a procedure that was called by an earller Job step name 
"st.epnaroe. n 

Rules for Coding 

1~ 

2 .. 

4. 

5. 

The volume sequence nun-ber subparameter can be 1 to 4 digits. 

The volume count subparameter is a numcer from 1 through 255. 

If the only subparameter you are coding is PHIVATB, you need not 
enclose it in parentheses. 

If the only subparameter you are coding is SER or REF, code 
VOLUME=SER=(serial number, ••. ) or VOLUME=REF=reference. 

If the list of volume serial numbers consists of only one serial 
nUm1)er, you need not enclose the serial number in parentheses. 

6. The VOLUME, DDNAME, and SYSOUT parameters are mutually exclusive 
parameters: therefore, if DDNAME or SYSCUT is coded, do not code 
the VOLUME parameter. 

Providing Volume Information 

A volume can be a tape reel, a disk pack, a data cell, a drum, or part 
of an IBM 2302 Disk Storage device served by one access mechanism. The 
VOLUME parameter provides information aeout the volun~e or volumes on 
which an input data set resides or on which an output data set will 
reside. 

Before a data set can be read or written, the volume on which the 
data set resides or will reside must be mounted. For an existing data 
set, you must identify the volume or volumes on which the data set 
resides by making a specific volume request. For a new data set, you 
can make a specific volume request or let the systew select a volume for 
you by making a nonspecific volume request. 

A specific volume request informs the system of the volurre's serial 
number. Any of the following implies a specific volurre request: 

1. The data set is passed from an earlier step or is cataloged. 
2. VOLUHE=SER=serial nurr,be.r is coded on the DD statement. 
3. VOLUME=REF=reference is coded on the DD statement, referring to an 

earlier specific volume request. 

218 JCL Reference 

.oifIIIl1iIM 

.~. 



-

When you make a specific volume request, you can code the PRIVATE 
sUbparameter or the PRIVATE and RE1AIN subparameters in the VOLUMb 
parameter. For passed data sets, you can also code the volume count 
subpararr.eter. For cataloged data sets, you can also code the sequence 
number and volume count subparameters. 

~onspecific V9lum~ Reguest 

A nonspecific volume request can be made only if you are defining a new 
data set. When you make a nonspecific volume request, the system Ir'ay 
assign your data set to a volume that is already mounted or may cause a 
volume to be mounted. What the system does depends on the volurre state 
of the volumes that are already rrounted. The volume states that mounted 
volumes can assume and how they affect volume selection are described 
under "Volume states" at the end of this chafter. 

When you make a nonspecific volume request, you can code the PRIVATE 
subparameter, or the PRIVATE and RETAIN subparameters, and the volurre 
count subparameter in the.VGLUME parameter. 

~RE PRIVATE SUB PARAMETER 

When you make a specific or nonspecific volume request, you can code 
PRIVATE as the first subpararneter in the VOLUME paraneter. The volume 
assigned is called a private volume. A private volume cannot be 
assigned to any data set for which a nonspecific volurre request is made. 
In addition, a private volume is demounted after its last use in the job 
step unless RETAIN or PASS is coded or the volume is a permanently 
resident or reserved volume. (permanently resident and reserved volumes 
are described under "Volume states" at the end of this chapter.) 

If PRIVATE is the only subpararneter coded in the VOLUME pararreter, 
you need not enclose it in parentheses. 

When PRIVATE Is Not Coded 

What occurs when PRIVATE is not coded depends on the type of volume 
request and whether a direct access or tape device is requested. 

Specific request for a direct access volume: If PRIVATE is not coded 
and you make a specific request for a direct access volume, the volume 
assigned is called a public volume. A public volume remains mounted 
after its last use in a step so that it can be used again without the 
need to remount it. . 

Nonspecific request for a direct access volume: If PHIVATE is not coded 
and you make a nonspecific request for a direct access volume and the 
data set is temporary, the system assigns a volume called a public 
volume. If PRIVATE is not coded and you make a nonspecific request for 
a direct access volume and the data set is nontemporary, the system 
assigns a volume called a storage volume. Public and storage volumes 
remain mounted after their last use in a stef so that they can be used 
aaain without the need to remount them. If it is possible that the data 
set may require more space than was requested for it, request more than 
one volume in the volume count subparameter of the VOLUM~ parameter and 
more than one device in the unit count subparameter of the UNIT 
parameter. 

Specific request for a tape volume: If PRIVATE is not coded and you 
make a specific request for a tape volume, the system treats it as a 
request for a private volume. (How this affects the volume is described 
in the previous topic "The PRIVATE Subparameter.") 

section IV: The DD Statement -- VOLUM~ Parameter 219 



Nonspecific reque:s~fo~_ .. _~ ___ t~J?~~..Y.2].._um.e: If p-L~IVArlE is not coded and you 
make a nonspecific request for a tafe volume and the data set is 
nontemporary, the system treats it as a request for a private volume. 
(As mentioned earlier, the system always considers certain requests to 
be specific. For tape volumes, the system also considers the followinq 
to be a specific request: a status of OLD or SHR and a disposition of 
other than DELETE coded in the DISP parameter.) HOW a rEquest for a 
private volume affects the volmre is descril:ed in the previous topic 
"The PRIVATE Subparameter." 

If PRIVATE is not coded and you make a nonspecific request for a tape 
volume and the data set is .!.emporau, the systerr, assigns a volume called 
a scratch volume. A scratch volume remains mounted after its last use 
in a step so that it can be assigned again without the need to rewcunt 
it. If it. is possible that the data set may exceed one volume, request 
more than one volume in the volume count subparameter of the VCLUIJ;E 
parameter and more than one device in the unit count subrarameter of thE~ 
UNIT parameter. 

When PRIVATE is not coded, and the volume sequence nurr:l:er or volume 
count subparameter is COded, you must code a conrra to indicate the 
absence of PRIVATE. 

ThE R~TAIN SUB PARAMETER 

If you have coded PRIVATE as the first subparameter in the VOLUME 
paramete]~, you may want to code kETAIN as the second subparameter. 
RETAIN oVErrides the system action of demounting a private volurre after 
its use in a job step. Instead, the volume remains mcunted until after 
it is used in a subsequent step or at the end of the job, whichever 
occurs first. If the data set resides on more than one volume and tne 
volumes are mounted in sequential order, only tht:: last volume is 
retained .. 

The RETAIN subpararneter need not be coded when the data set is to be 
passed; the system automatically retains the volurres en which the data 
set resides. 

If the RETAIN subparameter is not coded and the volume sequence 
number or voluwe count sutparameter follc~s, code a comrra to indicate 
the absence of R~TAIN. 

ThE VOLUME SEQUENCE NUMBER SUBPARAMETE~ 

when you are reading or lengthening an existinq multivclu~e data set, 
you can begin processing witn other than the first volume of the data 
set by coding a volume sequence number. The sequence number can range 
from 1 to 255. A volume sequence number is normally coded when volume 
Jerial numbers are not specified on the DD statement (i.e., you are 
retrievinq a cataloged data set or VCLUM~=("seq#,R~F=ref€rence) is 
coded). If both a volume sequence number and volume serial nurrbers are 
coded in the VOLUME pararreter, you will begin processing with the volume 
that corresponds with the volume sequence number. 

The vol ume sequence nUIT,ber is a positional subparelT,eter and must 
follow the PRIVATE and R~TAIN subpararneters or tne comITas that indicate 
their absence. If the volume sequence numner subpararreter is not coded 
and the volume count subpararneter follows, code a corrma to indicate the 
absence of a sequence number. 

220 JCL Reference 

...... , 



--

THE VOLUME COUNT SUBPARAMETEK 

The volume count subparameter tells the system the maximum nurober of 
volumes an output data set may require. The number can range from 1 
through 255. When you make a nonspecific volume request and the data 
set may exceed one volume, request more than one volurre in the volume 
count subparameter and code PRIVATE or request the same number of 
devices as volumes. When you make a specific volume request and the 
data set may require use of more volumes than there are serial numbers, 
specify in the volume count subparameter the total nurrber of volumes 
that may be used. By reques·ting multiple volumes in the volume count 
subparameter, you can ensure that the data set can be written on more 
than one volume if it exceeds one volume. 

If you make a nonspecific volume request and the volurre count exceeds 
the number of direct access devices requested in the UNIT parameter, you 
should code PRIVATE, e.g., UNIT=(2311,4),VOLUME=(PRIVA~E",6). When 
PRIVATE is coded and all the mounted volumes are used, the system 
aemounts one of the volumes and then mounts another voluwe in its place 
so that processing can continue. When PRIVATE is not coded and all tte 
mounted volumes are used, the system does not demount any of the 
vol umes; therefore, the job step abnormally terminates. .For tape 
devices, the PRIVATE subparameter is unnecessary: additional volumes are 
mounted as they are required. 

Tne volume count subparameter is a positional sub~arameter. If you 
orr,it this subparameter, you code a comma to indicate its absence only if 
PRIVATE, RETAIN, or the volume sequence number subparameter is coded and 
the SER or REF subparameter follows. 

SUPPLYING VOLUME SERIAL NUMBERS (SER) 

To retrieve an existing data set, other than a cataloged or passed data 
set, you must supply the system with the serial numbers of the volumes 
on which the data set resides. When you are creating a data set, you 
can supply the system with the serial nurrbers of the volumes on which 
the data set will reside or let the system assign volumes to the datd 
set. One of the ways to supply the system with serial nurrbers is to 
code the serial numbers on the DD statement. You can specify a maximum 
of 255 volume serial numbers per DD statement and a maximuIP of 409~ 
volume serial numbers per job step. 

A volume serial number must be 1 to 6 characters in length. If 
volume serial number is not 6 characters, it will be ~added with 
trailing blanks. It can contain any alphameric and national (#,$,@) 
characters, and the hyphen. You must enclose any volun:e serial number 
that includes special characters, other than a hyphen, in apostrophes 
whenever you code t~at number in the VOLUME ~arameter. When using 
various typewriter heads or printer chains, difficulties in volume 
serial recognition may arise if you use other than alphameric 
characters. Each volume at an installation should havE a different 
serial number regardless of the volurre type, e.g., tape, diSk: the 
volume'S serial number should be posted on the outside of the volurre. 

The SER subparameter appears as the last sutparameter in the VOLUME 
parameter. Follow SER= with the volume serial nurrbers. The serial 
numbers must be enclosed in parentheses, unless there is only one serial 
nl~ber. If SER is the only subparameter you are coding, you can code 
VOLUME=SER=(serial number, ••. ) or VOLUME=SER=serial number. 

SCRTCH should not be used as a volume serial number, because it is 
used to notify the operator to mount a ncn-s~ecific volume. For Optical 
~eaders, if no volume serial number is speci£ied, VOLUME=SER=OCRINP is 
assumed. 

section IV: The DD Staterrent -- VOLUME Parameter 221 



REFERH.ING THE SYSTEM TO AN EARLIER SPECIFIC VOLUME RE'QUES'I (REF) 

Another way to supply the system with volume serial numbers is to refer 
the system to either a cataloqed data set or a data set that is defined 
earlier in the job. When you do this, the system obtains volume 
information, including volume serial numbers, and unit information from 
the source you refer it to. 

To refer the system to a cataloged data set or to a data set passed 
earlier in the job that has not been assigned a temporary data set name, 
you code :REF' as the last subparameter in the VOLU~E parameter. Follow 
R~F= with the data set name of the cataloged or passed data set. The 
data set name you code cannot contain special characters, except for 
periods used in a qualified name. 

To refer the system to a data set defined earlier in the job that was 
not passed or was passed but assigned a temporary name, you code REF= as 
the last subparameter in the VOLUME ~ararreter. Follow REF= with a 
backward reference to the DD statement that contains tne volune serial 
numbers. This backward reference must be one of the following: 

1. *.ddna~~. Use this form of backward reference when the DD 
statement you are referring to is contained in the same job step. 

2. *. s'te:.£!lame. ddname. Use this form of backward reference when the DD 
statement you are referring to is contained in an earlier job step. 

3. *.stepname.procstepname.ddname. Use this form of backward 
reference when the DD statement you are referring to is contained 
in a cataloged procedure step that is part of a procedure called by 
an earlier job step. 

In any case, if the ddname refers to a DD statement that defines a dummy 
data set, the DD statement requesting use of the volumes assigned to 
that data set is assigned a dummy status. 

When you refer the system to a data set that resides on more than onle 
tape voll~le, the system assigns only the last volume. When you refer 
the system to a data set that resides on more than one direct access 
volume, the system assigns all of the volumes. In either case, you can 
code the volume count subparameter if additional volumeS may be 
required. 

If REF is the only subparameter you are coding, you can code 
VOLUME=REF=reference. 

V olurne States 

Every mounted volume is assigned several attributes by the systenl. The 
attributes assigned to a mounted volume define the state of the volume; 
the volume state controls when a volume is demounted and controls volume 
sharing. Volume sharing is the allocation of a volume to two or more 
data sets defined in the same job step, or, in a multiprogramming 
environment, the allocation of a direct access volume to two or more 
data sets defined in different job steps that are executing 
concurrently. 

The attributes that are assigned both to a tape or direct access 
volume are the mount attribute and the use attribute. The nonsharable 
attribute can also be assigned to a direct access volume. These 
attributes are described in the next two to~ics. 

222 JCL Reference 



THE MOUNT AND USE ATTRIBUTES 

Every volume is assigned a mount and use attribute. The mount attribute 
controls volume demounting. The use attribute is one of the factors 
that controls allocation of mounted volurres to data sets. The mount and 
use attributes are: 

r--------------------T-------, 
I Mount I Use I 
~--------------------+-------~ 
I I I 
IPermanently residentlPublic I 
I Reserved IPrivatel 
I Removable IStoragel 
I I Scratch I L ____________________ ~ _______ J 

The following lists the mount attributes and describes how this 
attribute and a use attribute are assigned to a volume. 

1. Permanently resident volumes cannot be demounted. Only direct 
access volumes can be permanently resident. While all direct 
access volumes can be designated as J?erroanently resident in a 
special member of SYS1.PARMLIB named PRESRES, the following voluroes 
are always permanently resident: 

• All volumes that cannot be physically demounted, such as a 2301 
Drum Storage volume. 

• The volume from which 1:.he system is loaded (the IPL volume). 

• The volume containing 1:.he system data sets SYS1.LINKLIB, 
SYS1.PROCLIB, and SYS1.SYSJOBQE. 

A permanently resident volume can be assigned the use attribute of 
public, private, or storage. The use attribute is assigned to the 
volume in the PRESRES member in SYS1.PAR~LIB, or is public by 
default. 

2. keserved volumes remain mounted until an UNLOAD command is issued. 

3. 

Both direct access and ta.pe volumes can be reserved volumes. A 
volume becomes reserved as a result of a ~OUNT commamd or a PRESRES 
entry. A volume is usually designated as a reserved volume to 
avoid repeated mounting and demounting of the volume when it is to 
be used by a group of related jobs. 

A reserved direct access volume can be assigned the use attribute 
of public, private, or storage. The use attribute is assigned to 
the volume either in the PRESRES member in SYS1.PARMLIB or in a 
parameter of the MOUNT command, depending cn how the volume becomes 
reserved. 

A reserved tape volume is always assigned the use attribute of 
private. 

Removable volumes are those volumes that are neither permanently 
resident nor reserved. Removable volumes are derrounted either 
after their last use in a job step or when the unit on which the 
volume is mounted is required for another volume. which occurs 
depends on the use attribute assigned to the volurre. 

A removable direct access volume can be assigned the use attribute 
of public or private. The use attribute of public is assigned when 
the PRIVATE subparameter is not coded. The use attribute of 
private is assigned when the PRIVATE subparameter is coded. 

Section IV: The DD Statement -- VOLUME Parameter 223 



A removable _~_~ volume can be assiqned the use attribute of 
scratch or private. The use attribute of scratch is assigned when 
the PRIVATE subparameter is not coded, a nonspecific volurre request 
is made, and the data set is teThFOrary. The use attribute of 
private is assigned when the PRIVATE subparameter is coded, a 
specific volume request is made, or the data set is nontemporary. 

224 JCL Reference 



Table 2 summarizes what type of vcluree can be assigned when you make 
a specific or nonspecific volume request for a temporary or nonterr·porary 
data set, how these attributes are assigned, and how the volume is 
demounted. 

Table 2. Combinations of Mount and Use Attritutes 
r--------------T-----------T------------T------------------T-----------, 
I I Temporary I~ontemporaryl I I 
I I Data set I Data Set I I I 
I ~-----------~------------~ I How I 
I Volume state I Type of Volume Request I How Assigned I Demounted I 
~--------------+-----------T-·-----------+------------------+-----------~ 
I Fublic/ I I I I I 
I permanently I Nonspecific I Specific IPRESRES Entry or I Always I 
I Resident 1 lor Specificl lby default I mounted I 
~--------------+-----------+-.-----------+------------------+-----------~ 
I Private/ ISpecific I Specific IPRESRES Entry IAlways I 
I permanently I I 1 Imounted I 
I Resident 1 I I I I I 
~--------------+-----------+-.-----------+------------------+-----------~ 
I Storage/ INonspecificlNonspecific IFRESRbS Entry IAlways I 
I permanently lor specific lor Specific I I mounted I 
I Resident1 I I I I I 
~--------------+-----------+------------+------------------+-----------~ 
I Public/ I Nonspecific I Specific IPRESRES Entry or I UNLOAD I 
I Reserved1 lor Specific I I MOUi.~T command I corr.mand I 
~--------------+-----------+-------------+------------------+-----------~ 
I Private/ ISpecific I specific IPRESRES Entry or I UNLOAD I 
IReserved (Tapel I IMOUNT command I command I 
I and direct I I I (Only ~OUNT I I 
laccess) I I Icommand for tape.) I I 
t--------------+-----------+------------+--·----------------+-----------~ 
!storage/ INonspecificlNonspecific IPRE3Rl!;S Entry or I UNLOAD I 
I Reserved1 lor Specificlor specific IMOUNT command I command I 
~~-------------+-----------+-------------+------------------+-----------~ 
I Fublic/ I Nonspecific I Specific IVOLUME=PRIVAT~ is IWhen unit I 
I Removable 1 lor Specificl Inot coded on the lis required I 
I I I IDD statement Iby another I 
I I I I I volume.. I 
t--------------+-----------+-------------+------------------+-----------~ 
I Private/ I Specific I Specific IVOLUME=PRIVATE is IAfter its I 
I Removable I I Icoded on the DD luse, unless I 
I (Tape and I I I statement IRETAIN or I 
Idirect access) I I I (Specific request IPASS is I 
I I I lor a nontemporary Icoded, in I 
I I I Idata set for tape Iwhich case, I 
I I I lalso causes this I volume I 
I I I lassignment.) I demounted I 
I I I I I a t job I 
I I I I I termination I 
t--------------+-----------+--·----------+------------------+-----------~ 
IScratch (Tape INonspecificlNonspecific IAny tape data set IWhen unit I 
lonly) lor Specific lor Specific I (Scratch volurre lis required I 
I I I Ibecomes private Iby another I 
I I I lif VOLUME=PRIVAT~ Ivolume. I 
I I I lis coded, specific I I 
I I I Irequest is made, I I 
I I I lor da ta set is I I 
I I I I nonterrporary. ) I I 
t--------------~-----------~--·----------~------------------~-----------~ 
11 Direct access volumes only. I L ______________________________________________________________________ J 

section IV: The DD Statement -- VOLUM.t:; Parameter 225 



NONSHARABLE ATTRIBUTE 

The nonsharable attribute is assigned by the system to direct access 
volumes t:hat may require demounting during execution of the step that 
requested the volume. When a volume 1S assigned the nonshara£le 
attribute, the volume cannot be assigned to a data set defined in the 
same step for which a nonspecific request is Thade or to any data set 
defined in another step that is being executed concurrently. 

The nonsharable attribute is never assigned to a permanently resident: 
or reserved volume or to a volume that was mounted to satisfy a 
nonspecific request for a public volume. Except for these cases just 
descr ibed, the nonsharable attribute is always assigned to a volurr.e when 
the following occurs: 

1. You make a specific volume request and request wore volumes than 
devices. 

2. You request unit affinity with an earlier data set defined in the 
job step. (The volumes on which the data sets reside must be on 
different volumes.) 

3. You request deferred mounting of the volume on which the data set 
resides. 

4. You make a nonspecific request for a private volume. 

SATISFYING SPECIFIC VOLUME HEQUESTS 

In the following cases the system can satisfy a request for a specific 
volume that is already mounted: 

1. The volume is permanently resident or reserved. The use attribute 
of the volume does not affect assignment of the volume and the use 
attribute is not changed. 

2. The direct access volume is a removable volurre that has not been 
assigned the nonsharable attribute and is being used by a 
concurrently executing step. (If your request would make the 
volume nonsharable, the system waits te assign yeu that volume 
until all other job steps using the volume have terrrinated.) The 
volume remains private if its use attribute is private. The volumle 
becomes private if the use attribute is public and the request is 
for a private volume. The voluIIie remains public if its use 
attribute is public and the request is for a public volume. 

3. The direct access volume is a removable public volume and is not in 
use. The use attribute (private or pu£lic) assigned to the volume 
when it is allocated is determined by the presence or absence of 
the PRIVATE subparameter. 

4. The tape volume is a scratch volume and is not in use. The use 
attribute of private is assigned to the volume. 

SATISFYING NONSPECIFIC VOLUME REQUES~S 

There are four types of nonspecific volurr,e requests that can be made: 

1. You can request a private volume for a temporary data set. 
2. You can request a private volume for a nontemporary data set. 
3. You can request a public volume for a temforary data set. 
4., You can request a storage volume for a nontemporary data set. 

How the system satisfies these different types of requests are described 
below. Since the system satisfied the first two types of requests in 
the same way, these two requests are described Tngeth~r. 

226 JCL Reference 



1. when you make a nonspecific volume request for a ~rivate direct 
access or tape voluIPe, t.he system assigns a volume that is mounted 
but not in use or requests the operator to rrount a vclume. The 
operator should mount a volume whose space is unused. This allows 
you to have control over all s~ace on the volume. Once mounted, 
the volume is assigned the use attribute of private. 

2. When you make a nonspecific volume request for a public direct 
access volume that is to contain a temForary data set, the system 
assigns a public or storage volume that is already mounted, or 
requests the operator to mount a removable volume. If a mounted 
volume is selected, its use attribute is not affected. If a 
removable volume is mounted, it is assigned the use attribute of 
public. 

When you make a nonspecific volume request for a public tape volume 
that is to contain a temporary data set, the system assigns a 
scratch volume that is already Ir'ounted, ,or it requests the operator 
to mount a tape volume. Once mounted, the volume is assigned the 
use attribute of scratch. 

3. when you make a nonspecific volume request for a public direct 
access volume that is to contain a non temporary data set, the 
system assigns a storage volume if ene is rrounted. Otherwise, the 
request is treated as a non3pecific volu~e request for a private 
volume. 

~hen you make a nonspecific volume request for a public tap~ volume 
that is to contain a nontemporary data set, the request is treated 
as a nonspecific volume request for a private volume. 

Examples of the VOLUME Parameter 

1. //DD1 
// 

OD DSNAME=STEP,UNIT=2311,DISP=OLD, 
VOLUME=CPRIVATE",SER=548863) 

This DD statement defines an existing data set and informs the 
system that the data set l:esides on the volume whose serial number 
is 548863. Since PRIVATE is coded in the VOLUME ~arameter, the 
system will not assign the volume to any data set for which a 
nonspecific volume request is made and will cause the volurre to De 
demounted after its use in the job step. 

2. //ODB 
// 

DO DSNAME=CCMM,DISP=(NEW,KEEP),SPACE=(CYL,C30,2», 
VOLUME=CPRIVATE",2),UNIT=2311 

The DO statement named DDB defines a new data set for which the 
system is to assign a volt~e. since only one device is requested 
CUNIT=2311) and the volume count is 2, PRIVATE is coded to ensure 
that the additional volume can be mounted if required. 

3. //DD2 
// 

DO DSNAME=QUE~',OISP=CMOD,KEEP),UNIT=C2400,2), 
VOLUME=(",4,SER=C96341,96342» 

x 

x 

x 

This OD statement defines an existing data set, which resides on the 
volumes whose serial numbers are 96341 and 96.342, and requests that 
a total of 4 volumes be used to process the data set if required. 

4. //003 OD DSNAME=&OUT,DISP=NEW,UNIT=2400 

This DD statement defines a temporary data set and, by omission of 
the VOLUME parameter, requests the system to assign a suitable 
volume to the data set. 

section IV: The DD Statement -- VOLUM~ Parameter 227 





Section V: The Command Statement 

Corr~ands are issued to communicate with and control the system. All 
commands may be issued to the system via the operator's console; sone 
commands may be also issued via a corrmand staterr,ent in the input stream. 
In most cases, the operator issues the command. If you include a 
command statement as part of your job centrel statements, the command, 
except SET and START in PCP, is usually executed as soon as it is read. 
(Disposition of commands read from an input streaR is specified as a 
PARM parameter field in the cataloged procedure for the input reader.) 
Since a command is usually executed as seon as it is read, in MFT and 
MVT it is not likely that the command will be synchronized with the 
execution of the job step to which it pertains. Therefore, you should 
tell the operator which commands you want issued and when they should De 
issued, and let him issue them. 

A command statement may appear irnn"tediately befere a JOB statement, an 
EXEC statement, a null statement, or another command staterroent. 

The Command Statement Format 

(1/ command operand comments 

The command statement consists of the characters // in columns 1 and 2, 
and three fields -- the operation (command), operand, and comroents 
fields. 

Rules for Coding 

Code the command statement in the following oraer: 

1. Code // in columns 1 and 2. 

2. Follow // with one or IToore clanks. 

3. Code the command. 

4. Follow the command with one or more olanks. 

section V: 1he Comrrand Statement 229 

Cornman 



5. Code any required operands followinq the blank or blanks. Separate 
each operand with a comma. 

6. Follow the operands with one or more blanks. 

7. Code any comments following the blank or blankS. 

'i~~~~hJo;;v~9[6hi~~;J;G~~B~~~Thi~hlliiL~ffO;-'-~"~ '~~'~-:i~:~-'~' ~"~'~-;;:I;I°;;r:JIT;~:~~ 
j I, ]),l1S,P,LA,'1'j ~~+~;B"-l.J8.K'_LL~:L+R-~EAlS:j(~~~]), ,aGI bS,,s,UIE.h , ' 1 '_~-l.-l.+---,--L-L.~ 

8. The com~and statement cannot be continued. 

Commands That Can Be Entered Through the Input Stream 

The commands that can be entered through the inrut strearr. in PCP, MFT, 
or MVT are listed below, with a brief explanation of what each command 
requests the system to do. Most command stateIllents consist of an 
operation (command) field and an operand field, which includes options 
associated with the command. The operand field is not described here; a. 
complete discussion of the coromands and operands is presented in the 
operator's Guide publication. 

PCP 

In PCP, the following corrmands can be entered through the input stream. 

DISPLAY: The DISPLAY comman~ causes a console display of certain system 
status information. 

MOUNT: The MOUNT command tells the system to assign a device so a 
particular volume can be mounted on it. This device can then be 
assigned by the system to any job step that requires that volume. 

SET: The SET command is used to establish the values of certain 
variables, such as the time of day and the date. 

START: The S'IART command tells the systerr to start either an input 
reader or an output writerD 

S'IOP: The STOP command tells the system to stop the console display 
effected by the DISPLAY command, or to stop an output writer. 

UNLOAD: The UNLOAD command tells the systerr, tc remove the volume 
previously rrounted after a MOUNT comrrand was issued. 

VARY: The VARY command tells the system to place an I/O device into an 
onlTne or offline status. 

230 JCL Reference 



_ .... In MFT, the following commands can be entered through the input strearr. 

CANCEL: The CANCEL command tells the system to immediately terrrinate 
the scheduling or execution of a job, to cancel a job on the queue, or 
to stop the writing of an output data set currently being processed by 
an output writer. 

DISPLAY: The DISPLAY corr~and causes a console display of certain system 
status information. 

HOLD: The HOLD command causes the system to terrporarily prevent one job 
or all jobs from being selected for processing. 

LOG: The LOG command is used to enter information into the system log. 

MODIFY: The MODIFY command tells the system to change the 
characteristics of a functioning output writer. 

MOUNT: The MOUNT command tells the system to assign a device so a 
particular volume can be mounted on it. 'rhis device can then be 
assigned by the system to any job step that requires that volume. 

RELEASE: The RELEASE command tells the systero to resurre job selection, 
which had been suspended by the HOLD comn:and or TYPRUN=HOLD on the JOB 
statement. 

R£PLY: The REPLY command is used to reply to messages froIT. the system 
or from a processing program that requests information. 

RbSET: The RESET command tells the system to change the class or 
priority, or both, of a job in an input, hold, or system output qUEue. 

SBT: The SET command is used to establish the values of certain 
variables, such as the time of day and the date. 

START: The $TART command tells the system to start a particular system 
process, e.g., an input reader, graphic job processor, initiator, etc. 

STOP: The STOP command tells the system to stop a system process that 
had been previously started by a START command, or to stop the console 
display effected by the DISPLAY command. 

SWAP: The SWAP command allows Dynamic Device Reconfiguration of two 
volumes. 

UNLOAD: The UNLOAD command tells the sys"tem to remove the volume 
previously mounted in response to a MOUNT command. 

VARY: The VARY command tells the system to place an I/O device or path 
into an online or offline status. 

WRITELOG: The WRITELOG command tells the system to have the system 
output writer write out the contents of the system log. 

MVT 

In MVT, the following commands can be entered through the input strearr. 

CANCEL: The CANCEL command tells the system to immediately terminate 
the scheduling or execution of a job, to cancel a job on the queue, or 
to stop the writing of an output data set currently being processed by 
an output writer. 

section V: The Command Statement 231 

Cornman 



DISPLA~: The DISPLAY command causes a console display of certain system 
status information. 

HOLD: The BOLD command causes the systerr to temporarily prevent one job 
or al~ jobs from being selected for ~rocessing. 

LOG: The LOG command is used to enter inforrration intc the system log. 

lViODIFY: The MODIFY command tells the systeIT to change the 
characteristics of a functioning initiator or output writer. 

MOUN~: The MOUNT command tells the system to assign a device so a 
particular volume can be mounted on it. This device can then be 
assigned by the system to any job step that requires that volume. 

RELEASE: The RELEASE command tells the system to reSUThe job selection, 
which had been suspended by the HOLD command or TYPRUN=HOLD on the JOB 
statement. 

REPL!: The REPLY command is used to reply to messages from the system 
or from a processing program that requests information. 

RESET: The RESET command tells the system to change the class or 
priority, or both, of a job in an input, hold, or system output queue. 

SLT: The SET corrmand is used to establish the values of certain 
variables, such as the time of day and the date. 

START: The START command tells the systerr to start a particular system 
process, e.g., an input reader, graphic job processor, initiator, etc. 

STOP: The STOP command tells the system to stop a system process that 
had been previously started by a START command or to stop the console 
display effected by the DISPLAY command. 

SWAP: The SWAP command allows Dynamic Device Reconfiguration of two 
volumes. 

UNLOAL: T'he UNLOAD command tells the system to remove the volume 
previously mounted in response to a MOUNT command. 

VARY: The VARY comroand tells the system to place an I/O device or path 
into an online or offline status. In a Model 65 multiprocessing system 
(M65MP), this command is used to place I/O devices, paths, CPU, channel, 
and storage units in online or offline status. 

WRITELOG: The WRITELOG command tells the system to have the system 
output writer write out the contents of the system log. 

Example of the Command Statement 

1. // START INIT",AB START AN INITIATOR FeR MFT 

This command tells the system to start an initiator. The characters 
A and B indicate that the initiator is to select for execution only 
jobs of job classes A and B. 

232 JCL Reference 



Section VI: The Comment Statement 

The comment statement can bE used to contain information that may be 
helpful to yourself or another person that may be running your job or 
reviewing your output listing. 

The comment statement may appear anywhere except before the JOB 
statement. A comment statement cannot bE continued using continuation 
conventions; however, it can be followed by one or more coroment 
statements. 

The Comment Statemen't Format 

(//*coroments 

The comment statement consists of the characters //* in columns 1, 2, 
and 3, and the comments field. 

Rules for Coding 
Code the comment statement in the following order: 

1. Code //* in columns 1, 2, and 3. 

2. Code the comroents in columns 4 through 80. 

3. If all of the comments cannot be included on this coroment 
statement, follow it with another comment stdtement. 

OUTPUT LISTINGS 

In the MSGLEVEL parameter, you can request an output listing of all the 
control statements processed in your job. If you do, you can identify 
comment statements by the appearance of *** in columns 1, 2, and 3. 

Example of the Comment Statement 
1. //*THE COMMENT STATEMENT CANNOT BE CONTINUED, 

//*BUT IF YOU HAVE A LOT TO SAY, YOU CAN FOLLOW A 
//*COMMENT STATEMENT WITH ONE OR MOR~ CCMM~NT 
//*STATEMENTS. 

sebtion VI: The Cornrrent statement 233 

-





Section VII: The Delimiter Statement 

When you submit data through an input stream, you must indicate to the 
system the beginning of the data and the end of the data. The beginning 
of the data is indicated by a DD * or DD DA~A statement. In PCP, the 
end of the data is indicated by a delimi t:er statement. In MFT and JY1VT, 
the delimiter statement is not required if the data is preceded with a 
DD * statement. 

The Delimiter Statement Format 

(/* comments 

The delimiter statement consists of the characters /* in columns 1 and 2 
and the comments field. 

Rules for Coding 
Code the delimiter statement in the following order: 

1. Code /* in columns 1 and 2. 

2. Follow /* with one or more blanks. 

3. Code any desired comments. 

4. The comments cannot be continued. 

Example of the Delimiter Statement 
1. //JOB54 

//STBPA 
//DD1 

JOB,'e BROWN',MSGLEVEL=(2,O) 
EXEC PGM=SERS 
DD * 

data 

/* END OF DATA FOR THIS STEP 

section VII: The Delilld ter Statement 235 



~ ... 



Section VIII: The Null Statement 

The null statement can be placed at the end of a job's control 
statements and data or at the end of all the statements in an input 
stream. The null statement tells the system that the job just read 
should be placed on the queue of jobs ready for processing. If there 
are any control statements or data between a null statement and the next 
JOB statement r these are flushed by the s,i'stem. 

If you do not follow your job's central statements and data with a 
null statement, the system places your job on the queue when it 
encounters another JOB statement in the input stream. If your job is 
the last job in the input stream and a null statement does not follow 
it, the system recognizes that this is the last job in the input strearr 
and it places your job on the queue. 

The Null Statement Format 

The null statement consists only of the characters // in columns 1 and 
2. The remainder of the sta"tement must be blank. 

Example of the Null Statement 

1. //MYJB 
//STEP1 
//STEP2 
//001 
//DD2 

/* 
// 

JOB 
EXEC 
EXEC 
DD 
DD 

data 

,'C BROWN',MSGLEVEL=(1 q l) 
PROC=FIELD 
PGM=XTRA 
UNIT=2400 

* 

section VIII: The Null statement 237 



~ .. 



Section IX: The PEND Statement 

The PEND statement is used to mark tbe end of an in-stream procedure. 
The name field of the PEND statement can contain a naroe. If comments 
are to be used, a blank must separate the operation field from the 
comment field. The PEND statement tray not be continued. 

The PEND Statement Format 

(/ /name PEND comments 

The PEND statement consists of the characters // in column 1 and 2 and 
four fields -- the name field, the operation (FEND) field, and the 
comments field. 

Rules for Coding 

Code the PEND statement in the following order: 

1. Code II in columns 1 and 2. 

:1 i~~{~7r8 r9~QiDm~~~I?J~;~'~~~;;~~~E-~;;;~1~I~@d:'I~~?;~~~;~~¥5]~¥;Ei;;;r1l1?;~~;Il~~~~~~;; 
! I, I" i"" I L-LLLL . .L_L-L.Ll..-"-L.L-'--.LJ.-"-LJ_J--'-L..LL_L_L-'--'---Ll.....LL~LL_J .. -' __ LJ-"--LL...L_LL~j-Li __ LL.LL.L~.L 1 .. L .. L , .L 1 , 

2. Follow II with a 1- to 8-character name or one or more blanks. 

3. If a name is coded, 
Follow the name with one or more blanks. 

4. Code PEND. 

[,~~~;{ffi~~~~~~fu~~~t~~~lfu~;~1~~~;;!I~~1~;i~~1~~~J£~;~;;E~~~~;~~-;;E~~itb-~~[~T~L21~j~g~~f7Tsl;:~1 
1 

V-~I((),C 1P,£.tI,/),.-LLL~~~.....J..~.--L.L...L~-LL-L_~-'--~_'-.L..I .. LL--'-J~-Li-"-'-+-..l......J.....I_.L-' .. .l. Lt-L 1 I.J.~ .1 l.l , 

5. Follow PEND with one or more blanks. 

6. Code any desired comments following the blank or blanks. 

:---~ ~io~-I--2!=30-------;------3i:"'40-. -~1;::50-~ 51:-60 -. 1-~61--7o·--r:-----71-~8(). i 
fl l?j3:3[5I§. 78 90 I W 4 5 6 7T81~IQlIT~.~J4TI?]~[fIT'J"91QlII?IR4J.5I@lli"Lolilll~1I~T6J?r8[09m~J~~r~TIill:IN~1QTII~~H"lliI§=7l}1.~9.n]2j:~}6]t~i'j:ol 
VJ,C,N,!JIP,/UJ,C ! ~E,"j), LJ-l_;rJ/~-"uc.~lftl.~~t?:.~,SuT.:J1J£...~~~l',U,c~-'--'-LLJLLL-'-+-;LL.' J._L-'..I. .L-+~L,_,-j, , 

A PEND statement cannot be continued. 

Section IX: The Pend statement 239 



Examples of the PEND Statement 

1.IIPROCEND1 PEND THIS STATEMENT IS REQUIRED FOR INSTREAM 

This PEND statement contains a comment. 

2.11 PEND 

A PEND statement can contain only the coded operation field preceded by 
II and one or more blanks and followed by blanks. 

240 JCL Reference 



Section X: The PROe Statement 

The PROC statement is the first control statement in an in-stream 
procedure. Optionally, the PROC statement can also be the first control 
statement in a cataloged procedure. If a PROC statement is included in 
a cataloged procedure, it is used to assign default values for symbolic 
parameters in the procedureu In an in-streaffi procedure, the PROC 
statement is used to mark the beginning of the procedure and can be used 
to assign default values to symbolic parameter in the procedure. A 
default value appearing on a PROC statement can be overridden by 
assigning a value to the same symbolic parameter on the EXEC statement 
that calls the procedure. 

The PROC Statement Format 

Ilname PROC operands comments 

The PROC statement consists of the characters II in columns 1 dnd 2 and 
four fields -- the name field, the operation (~ROC) field, the operand 
field, and the comments field. 

Rules for Coding 

code the PROC statement in ·the following order: 

1. code II in columns 1 and 2. 

2. Follow II with a 1- to 8-character name or one or more blanks. 
A name is required for in-stream procedures. 

1/.I£,x,AAMh. , I ' , , , I , , , , I ' , , , I , , , , I ' , , , I , , , , I ' , , , I , , , , I ' , , , I , , , , I ' , .. L .. Ll-L..J.....L.L...f.-L-JL......I..-J.......J.....J.....J......l.....y 

3. If a name is coded, follow the name with one or more blanks. 

4. Code PROC • 

..1,LEX'pIAM]), J>(f,Q,c, , I , , , t I ' , , , I , , , , I ' , , , I , , , , I ' , , , I .L I I I I ' I I I I , , , I I ,..J.......L .. .l-.. L I I I I I I .L .. .I ...... .L.LL.-'-~ 

5. Follow PROC with one or more blanks. 

Section X: The PROC Statement 241 



b. Code the symbolic parameters and their default values following the 
blank or blanks. Separate each symbolic ~arameter and its default 
value with a comma. In a cataloged procedure, this field is not 
optional. In an in-stream procedure, this field is optional; if no 
operands are included, comments may not be coded. 

7. Follow the operands with one or ITore blanks. 

8. Code any desired comments following the blank or blanks. 

r 

~1-lo~T~ ..11-':20 .• 1···· .. 21-30 . ·f··· .31-40. j .... 41-50 .... j' ..... 51-60 .1~61:':'i6--~~-i1=e-6-~-
1~~4j5l§J1ill:I~IQ[i1"?j~"I[!iL~71I:lI~I9 (l£I~I~1~16.17rIlI9~10 U213l415r6r7[8r9JoLIJ2I~HI5L617r819]o 112r3J415T617[8I9Jomg:I~B~l§IilllilQTIlli1 56? §. 9 0 

, Llgj'&.PJ.A!j~i!&9j!., }.JltLMlB,Eg l=JJ ~lL4LLJ:t,?"I~1~AlKL'il = Lb.,£,'fJEI L/f'tP,AI.s};'~L~JZ~..1,,~~O.l-'L;P-1gu~O!r, N,CLIL.L ,:1. B ~ .x. , ! L-..-". 

9. The PRoe statement can be continued onto another statement. 

If PRoe statement is to be included in a cataloged procedure, it mus·t 
appear as the first control statement. For an in-stream procedure, the 
PRoe statement is required; it must appear as the first control 
statement of the in-stream procedure. 

Assignirlg a Value on a PROe Statement to a Symbolic Parametel:' 
To assign a value on a PRoe statement to a symbolic parameter, code: 

symbolic parameter=value 

omit the ampersand that precedes the symbolic parameter in the 
procedure. 

You can also nullify a symbolic parameter on the PRoe statement. 
Code: 

symbolic parameter= 

omit the ampersand that precedes the symbolic parameter and do not 
follow the equal sign with a value. 

There are some things you should keep in mind as you assign values to 
symbolic parameters: 

1. The value you assign can be any length, but it cannot be continued 
onto another statement. 

2. If the value contains special characters, enclose the value in 
apostrophes (the enclosing apostrophes are not considered part of 
the value). If the special characters include apostrophes, each 
must be shown as two consecutive apostrophes. 

242 JeL Reference 



3. If you assign more than one value to a symbolic parameter on the 
PROC statement, the first value enccuntered is assigned. 

4. If the symbolic para~et€r is concatenated with some other 
information (e.g., &JOBNO.321), this information and the value you 
assiqn to the symbolic parameter cannot exceed a combined total of 
120 characters. 

Example of the PROC Statement 

1. //DEF 
//NOTIFY 
//DDl 
// 
//DD2 
// 

PROC 
EXEC 
DD 

DD 

STATUS=OLD,LIBRARY=SYSLIB,NUMBER=777777 
PGM=ACeUM 
DSNAME=MGMT,DISP=(&SIATUS,~EEP),UNIT=2400, 

VOLUME=SER=888888 
DSNAME=&LIBRARY,DISP=(OLD,REEP),UNIT=2311, 
VOLUME=SER=&NUMBER 

x 

X 

Three symbolic parameters are defined in this cataloged procedure: 
&STATUS, &LIBRARY, and ~;NUMBER. Values are assigned to the symtolic 
parameters on the PRoe statement. These values are used when the 
procedure is called and values are not assigned to the symbolic 
parameters by the programmer. 

2. //CARDS PRoe 

This FRoe statement can be used to mark the beginning of an 
in-stream procedure named CARDS. 

Section X: The FROe statement 243 

-





Section XI: Appendixes 

Appendlxe 

--' 
Secticn XI: Appendixes 245 





Appendix A: Cataloged and In-stream Procedures 

A cataloged procedure is a set of job control statements that has been 
assigned a name and placed in a partitioned data set known as the 
procedure library. (The IBM-supplied procedure library is named 
SYS1.PROCLIB; at your installation, there may be additional procedure 
libraries, which would have different names.) An in-strearo procedure is 
a set of job control statements in the form of cards that have been 
placed in the input stream of a card reader. An in-stream procedure can 
be executed any number of times during the job in which it appears. 
Doth cataloged and in-stream procedures can consist of one or more 
steps; each step is called a procedure step. kach procedure step 
consists of an EXEC statement and DD statements. The ~XEC statement 
identifies to the system what program is to be executed. The DD 
statements define the data sets to be used by the prooram. 

You can use a cataloged procedure by coding the procedure name on an 
ExEC statement. You can use an in-strearr procedure by coding the 
procedure name that is on the PROC statement on an EXEC statement. with 
both cataloged and in-strearr: procedures, you can follow this EXEC 
statement with DD statements that modify the procedure for the duration 
of the job step. 

Appendix A consists of two chapters. The first chaFter "Using 
cataloged and In-stream Procedures" describes how to call a procedure, 
how to assign values to symbolic paraTheters, how to override parameters 
on the EXEC and DD statement, and how to add DD statements to a 
procedure. The second chaptE~r "Writing Procedures: Cataloged and 
In-stream" describes the makeup of a procedure, how to use symbolic 
parameters, how to place a set of job control statements in the 
procedure library, and how to modify a procedure. 

Appen~ix A: Cataloged and In-stream ProcedUres 247 

Appendix A 





Using Cataloged and In-stream Procedures 

How to Call a Cataloged Pl'ocedure 
To use a cataloged procedure, submit a JOB statement followed by an ~XEC 
statement. On the EXEC statement you identify the cataloged procedure 
in one of two ways: 

1. Code, as the first operand, the name assigned to the procedure; or 
2. Code FROC= followed by the name assigned to the procedure as the 

first operand. 

When you call a procedure, the system finds the control statements in 
the procedure library and then executes the programs identified on the 
EXEC statements in the procedure. 

Besides identifying the procedure on the EXEC statement, you can 
assign values to symbolic parameters and override parameters that are 
coded on the EXEC statements contained in the ~rocedure. You follow the 
EXEC statement with DD statements when you want to override DD 
statements in the procedure or add DD statements to the procedure. 

When a cataloged procedure is written as part of the system output 
listing (i.e., MSGLEVEL=(l,O) 11 MSGLEVEL=(l,l), or MSGLE.VEL=l is coded on 
the JOB statement), the procedure statements can be easily identified. 
An XX appears in columns 1 and 2 of a procedure statement that you did 
not override; X/ appears in columns 1 and 2 of a procedure statement 
that you did override; Xx* appears in columns 1 through 3 of a procedure 
statement, other than a comment statement, that the systerr considered to 
contain only comments; and *** appears in columns 1 through 3 of a 
comment statement. In addition, if the procedure contains symcolic 
parameters, the output listinq will show the symbolic parameters and the 
values assigned to them. 

How to Call an In-stream Procedure 
To use an in-stream procedure, include the procedure, beginning with a 
FROC statement and ending with a FEND staterrent, with the job control 
language for your job. The in-stream procedure can appear immediately 
following the JOB statement, ,the JOBLIB DD statement, or the SYSCHK DD 
statement. The in-stream procedure cannot appear before the JOB 
statement or after the EXEC statement that calls it. An in-streaw 
procedure can appear after a SYSIN DD * statement; however, this is not 
advisable because the SYSIN DD * statement causes the input reader tc 
obtain direct access space for a system input data set. 

To call the procedure, you identify the in-stream procedure on an 
EXEC statement in one of two ways: 

1. code, as the first operand, the name on the PROC statement of the 
procedure; or 

2. Code FROC= followed by the name on the PRec statewent of the 
procedure. 

When you call an in-stream procedure, the system finds the control 
statements that have been written on a direct access device and then 
executes the programs identified on the EXEC statements of the 
procedure. 

Appendix A: cataloged and In~Stream Procedures -- Using Procedures 249 

Appendix A 



Besides identifying the procedure on the EX~C state~ent, you can 
assign values to symtolic parameters and override pararreters that are 
coded on the ~XEC statements contained in the procedure. You follow the 
EXEC statement with DD statements when you want to override DD 
statements in the procedure or add DD statements to the procedure. 

When an in-stream procedure is written as part of the system output 
listing (i.e., MSGLEVEL=(l,O), MSGLEVEL=(l,l), MSGLEVEL=l, or ~SGLEVEL=2 
is coded on the JOB statement), the procedure statements can be easily 
identified. An ++ appears in columns 1 and 2 of a procedure statement 
that you did not override; +// appears in colurrns 1 and 2 of a procedure 
statement that you did override; ++* appears in colu~n 1 through 3 of a 
procedure statement, other than a corrment statement, that the system 
considered to contain only comments; and *** appears in columns 1 
through 3 of a comment statement. In addition, if tne procedure 
contains symbolic parameters and you assign values to these on the EXEC 
statement that calls the procedure, the output listing will show the 
symbolic parameters and the values assigned to them. 

Assigning Values to Symbolic Parameters 
The cataloged or in-stream procedure you call roay contain symbolic 
parameters. A symbolic pararreter is characterized by a name preceded by 

I an ampersand (&) and appears in the operand field of a cataloged or 
in-stream procedure statement or a DD staterrent used to override a LD 
statement in the procedure. A symbolic parameter stands as a symbol fOl: 
a paraffieter, a subparameter, or a value. Symbolic parameters are used 
so that the procedure can be modified easily when it is called by a job 
step. 

The following are examples of symbolic parameters: 

/ /STEPl EXEC PGM=COB, PARJ.Vi=' Pl, &P_~, P3' 

//Du1 DD DSNAME==FIX,UtH'I=&DEVICE,SPACE=(CYL, (&SPACB,10» 

//DD2 DD DSNAME==CHAG,UNIT=2400,DCB=ELKSIZE=&LENGTH 

Symbolic parameters must either be assigned values or nullified 
before the procedure is executed. There are two ways that a symbolic 
parameter can be assigned a value: 

1. You assign a value to the symbolic parameter on the EXEC statement 
that calls the procedurE. 

2. ThE PROC statement, which can arpear as the first statement in a 
cataloged procedure and must appear as the first statement in an 
in-stream procedure, assigns a default value to the symbolic 
parameter. 

Any default value assigned to a syrrbolic parameter on the FROC staternent~ 
is overridden when you assign a value to the same symbolic parameter on 
the EXEC st~tement that calls the procedure. 

If cataloged procedures contain symbolic parameters, the installation 
should provide you with a list of the syrrbolic parameters used, what 
meaning is associated with each symbolic parameter, ana what default 
value has been assigned to each of the syrobclic parameters on the FROC 
statement.. (The PROC statement is optional for catalog procedures; 
therefore, there may be no default values assigned to the symbOlic 
parameters used in a catalog procedure.) You need this information to 
determine what the symbolic parameter re~resents and to decide whether 
to use the default value or to assign a value to the symbolic parameter 
on the EXEC statement that calls the procedure. 

250 JCL Reference 



\ -

To assign a value to a symbolic parameter, you code on the EXEC 
statement that calls the procedure: 

symbolic pararneter=value 

Omit the ampersand that precedes the symbolic paraffieter. For exarrple, 
if the symbolic parameter &NUMBER appears on a CD statement in the 
procedure, code NUMBER=value on the EXEC statement that calls the 
procedure. Any value you assign to a synibolic parameter is in effect 
only during the current execution of the procedure. 

There are some things you should keep in mind as you assign values to 
symbolic parameters: 

1. The value you assign can be any length, but it cannot be continuea 
onto another statement. 

2. If the value contains spE:cial characters, enclose the value in 
apostrophes (the enclosing apostrophes are not considered part of 
the value). If the special characters include apostrophes, each 
must be shown as two consecutive apostrophes. 

3. If, on the EXEC statement, you assiqn more than one value to a 
symbolic parameter, the first value encountered is used. 

4.. If the symbolic parameter is concatenated with sorre other 
information (e.g., &JCBNO.321) , this inforrration and the value you 
assign to the symbolic parameter cannot exceed a corrbined total of 
120 characters. 

NULLIFYING A SYMBOLIC PARAMETER 

Besides assigning values to symbolic Fararr.eters, you can nullify a 
symbolic parameter, i.e., tell the system 1:0 ignore the syrobolic 
parameter. 

To nullify a symbolic parameter, code on the £X.2:C statement that 
calls the procedure: 

symbolic fararreter= 

Omit the ampersand that precedes the symbolic parameter in the procedure 
and do not follow the equal sign with a value. 

For example, if a 00 statement in a procedure named TIMES is 

//008 00 UNIT=1403,UCS=&UCSINFO 

and you want to nullify the symbolic parameter &UCSINFO, you would code: 

//CALL EXEC TIMES,UCSINFO= 

Appendix A: cataloged and In-Strearr Procedures -- Using Procedur~s 2~1 

Appendix A 



Example of Assigning Values to Symbolic Parameters 

1. ThE~ following are the first four statements of a cataloged 
procedure nawed ASSEMBLE that contains symbolic parameters. The 
FROC statement assigns a default to the syrrbolic rarameter &OBJ~CT 
and nullifies the symbolic parameter &I-1ST. Notice that the 
symbolic parameter &DEPT is not assigned a value on the PROC 
statement; therefore, the job step that calls this procedure must 
assign a value to &DEP~. 

//DEF 
//ASM 
// 
//SYSLIB 
// 

PROC 
EXEC 

DD 
DD 

OBJECT=NODECK,LIST= 
PGM=IEUASM,PARM=('LINECNT=50', 
&LIST.LIST,&OBJECT) 
DSNAt·lE=SYS1. ~lACL.IB, DISF=OLD 
DSNAME=LIBRARY.&DEP~.MACS,DISP=OlD 

When you call this procedure, you can assign values to the syn:bolic 
parameters by coding: 

//STEP3 EXEC ASSEMBLE,DEPT=D82,OBJEC~=DEC~ 

x 

The value assigned to &OBJECT in this EX~C statement overrides the value 
assigned to &OBJECT in the PROC statement. Since no value is assigned 
to &LIST in this EXEC statement, LIST is nullified -- because that is 
the default specified in the PROC statement. 

While the procedure is being executed, the first four statewents of 
this procedure would appear as shown below. 

//DEF 
//ASM 
// 
//SYSLIB 
// 

PROC 
EXEC 

DD 
DD 

OBJECT=NODECK,LIST= 
PGM=IEUASM,PARM=('LINECN1=50', 
LIST,DECK) 
DSNAMB=SYS1.MACLIB,DISP=OLD 
DSNAM~=LIBRARY.D82MACS,DISP=OLD 

The above example applies to in-stream procedures as well as cataloged 
procedures. However, you must refer to the name on the ~ROC statement 
of the in-stream procedure when calling the procedurt. 

The following is an in-stream procedure that contains symbolic 
parameters. The PROC statement marks the beginning of the in-strean 
procedure and in this example assigns defaults to symbolic parameters 
&D, &U, &v, and &S. The procedure is named INSTREAM. 

/ / IN,sTREAI'-~ 
// 
//IN1 
//SYSPRINT 
//SYSUT1 
//SYSLIN 
//Sy,sLMOD 
// 

PROC 

EXEC 
DD 
DD 
DD 
DD 
Pf~ND 

D='(NEW,CATLG) ',U=2311,V='SER=6665S', 
S='(TRK, (1,1,1»' 
PGM=IE~L,PARM='XREF,LIS~,NCAL' 
SYSOUT=A 
DSNAME=UTC, DISP=OLD, UNIT=2311, VOLUl-'iE=SER=66651 
DSNAME=UTE,DISP=OLD,UNIT=2311,VOLUME=SER=66652 
DSNAME=&&LOAD,DISP=&D,UNIT=&U,VOLUME=&V, SPACE=&S 

When you call this procedure, you must code the name on the PROC 
statemen·t on the EXEC statement. You can assign values to the symbolic 
parameters by coding: 

//CALL EXEC INSTREAl"'l,D=' (NEW,PASS> ',V='S:t.R=66653' 

The values assigned to &D and &V in this EXEC statement override the 
values assigned to these ayrrbolic parameters in the PROC statement. 

Since no value is assigned to &U OR &S, the defaults specified on the 
PROC statement are used when the procedure is executed. 

252 JCL Reference 

--_ .. -.....• _-----_.------,-------' 

x 

~ .. 



""-

While the procedure is being executed, it would appear as shown 
below. 

//INSTREAM 
// 
//INl 
//SYSPRINT 
//SYSUTl 
//SYSLIN 
//SYSLMOD 
// 

PROC 

EXEC 
DD 
DD 
DD 
DD 

D='(NEW,CATLG)',U=2311,V='SER=66b5~', 
S=' (TRK, (1,1,1» 
PGM=IEWL,PARM='XREF,LIS~,NCAL' 

SYSOU~'=A 

DSNAME=UTC,DISP=OLD,UNIT=2311,VOLUME=SER=66651 
DSNAME=UTE,DISP=OLD,UNIT=2311,VOLUME=SER=66652 
DSNAME=&&LOAD,DISP=(NEW,PASS),UNIT=2311, 
VOLUME=SER=66653,SPACE=(TRK,(1,1,1» 

Tbe PEND statement is printed bu-t is not executed. 

Overriding, Adding, and Nullifying Parameters on an EXEC Statement 

You can override, add, or hullify parameters coded on EXEC statements 
contained in a cataloged or in-stream procedure. You make these' changes 
on the EXEC statement that calls the procedure. You cannot, however, 
change the PGM parameter. The changes you ~ake are in effect during the 
current execution of the procedure. 

OVERRIDING EXEC STATEMENT PARAMETERS 

To override an EXEC statement parameter in a procedure, identify on the 
B~EC statement that calls the procedure the parameter you are 
overriding, the name of the EXEC statement on which the parameter 
appears, and the change to be made. The format required to override a 
parameter is: 

parameter.procstepname=change 

For example, if one of the EXEC statements in the procedure named fILL 
is: 

//STEP3 EXEC PGJ.vl=DEF,REGION=100K 

and you want to change REGION=100K to REGION=80K, you would code: 

//CALL EXEC FILL,REGION.STEP3=80K 

You can change more than one EXEC statement pararr-eter in the 
procedure. For example, if one of the EXEC statements in the procedure 
name JKW is: 

//STEP2 EXEC PGM=OUT,TIME=(2,30),RBGIO~=120K 

and you want to change TIME=(2,30) to TIM~=4 and hEGIO~=120K to 
REGION=200K, you would code: 

//STEP3 EXEC JKW,TIME.STEP2=4,REGION.S~EP2=200K 

Appendix A: Cataloged and In-Stream Procedures -- Using Procedures 2~3 

Appendix 



If you want to change different parameters that a~pear on different 
LXEC statements in the procedure, you must code all oVE~rriding 
paraweters for one procedure step before those for the next step. For 
example, if the first three EXEC statements in a frocedure named DART 
Cire: 

//STEP1 EXEC PG~=JCTSB,PARM='*14863',REGICN=100~ 
//STEP2 EXEC PGM=JCTitC,hEGION=80K 
//STEP3 EXEC PGM=JCTQD,COND=(8,LT),1I~E=3 

You want to make the following modifications: 

1. Override the PARM pararreter on the first EXEC statement. 
2. Override the REGION parameter on the first EXEC statement. 
3. Override the REGION parameter on the second SXEC statement. 
4. Override the TIME pararreter on the third ~XFC staterrent. 

The BXEC statement that calls the procedure would aFpear as: 

//STEPC EXEC DART,PARM.STEP1~·*B6348·, 

// REGION.STEP1=120K~hBGION.STEP2~100K, 

// TI~E.STEP3=(4,30) 

X 

X 

You can code an EXEC statement parameter and orrit the term 
"procstepname." When you do this, the procedure is modified as follows: 

• If the PARM parameter is coded, it applies only to tile first 
procedure step. If a PARM parameter appears in a later EXEC 
statement, it is nullified. 

• If the TIME parameter is coded, it applies to the total procedure. 
If the TIME parameter appears on any of the ~XEC statements in the 
procedure, it is nullified. 

• If any other parameter is coded, it applies to every step in the 
procedure. If the parameter appears on an EX~C statement, it is 
overridden; if the parameter does not appear on an EXEC state~ent, 
it is added. 

For exarrple, assume the EA.:c.C statements in a procedure narned RYIN 
are: 

//STE.?l EXEC 
//STEP2 EXEC 
//STEP3 EXEC 

PGM=SECT,PARM=140947,REGICN=100K 
PGM=PARA,PARM=105600,COND=EVEN 
PGM=SENT,PARM=L1644,REGICN=dOK 

You want to make the following modifications tc the procedure: 

1. Override the PARM parameter in the first procedure step, and 
nullify all other PARM parameters in the procedure. 

2. Assign the same region size to all ste~s in the procedure. 

The EXEC statement that calls the procedure would appear as: 

//SPAA EXEC RYIN,PARM=L1644,REGION=136K 

While 1:he procedure named RYIN is being executed, these three EXEC 
statements would appear as: 

//ST~.Pl 

//STE1?2 
//STEP3 

EXEC 
EXEC 
EXEC 

254 JCL Reference 

PGM=SECT,PARM=L1644,REGICN=136K 
PGM=PARA,COND=EVEN,REGION=136K 
PGM=SENT,REGION=136K 

.... : 



ADDING EXEC STATEMENT PARAMETERS 

~o add a parameter to an EXEC state~ent in the ~rocedure, identify on 
the EXEC statement that calls the procedure the pararoeter }OU are 
adding, the name of the EXEC staterrent to which you want to add the 
parameter, and the value you are assigning to the pararreter. 1he forrrat 
required to add a parameter is: 

parameter.procstepnaroe=value 

Parameters you are adding and overriding for a step roust te coded before 
those parameters you are adding and overriding for tnc next step. 

For example, if the first two EXEC statements of a rrocedure naned 
GLEAN are: 

//STEP1 EXEC PGM=FAC,COND=(S,LT) 
//STEP2 EXEC PGM=UP,PAHN=377bS~ 

You want to make the followins modifications to tne procedure: 

1. Override the COND parameter on the tirst EXLC staterrent. 
2. Add the ROLL parameter to the first EXEC statement. 
3. Add the REGION paramEter to the second EXLC statLrrent. 

The EXEC statement that calls the procedure would a~pear as: 

//STPA EXEC GLEAN,CONL.STLP1=(12,LT), 

// ROLL.STEP1=(NO,NO},REGIO~.STEP2=SS~ 

NULLIFYING EXEC STATEMEN'I' PAIUWiETERS 

To nullify a parameter on an EXEC statement in the procedure, identify, 
on the EXEC statement that calls the procedure, the parameter you want 
to nullify and the name of the EXEC statement on which the pararreter 
appears. The format required to nullify a ~ararreter is: 

pararreter.procsternarre= 

Parameters that you are nullifying, overridinq, and adding to d step 
must be coded before those for the next ste~. 

For example, if the first two\::XEC staterrents of a ~roctdure named 
GINN are: 

//STEP1 
//STEP2 

EXEC 
EXEC 

PGM=INV,PARM='146,899',HD=~ 
PGM=DET,FA~M=XYA34,COND=(SO,GT) 

You want to make the following modifications to the procedure: 

1. Nullify the PAR~ parameter on the first EXEC statement. 
2. Add the COND parameter to the first EXEC statement. 
3. Override the COND parameter on the seccnd EXEC statErrent. 

The EXEC statement that calls the procejure would appear as: 

//STLPY EXEC GINN,PARM.STEP1~,COND.STEF1=(2j,E~), 

// CCND.STEP2=(80,GE) 

X 

x 

Appendix A: cataloged and In-strearr Procedures -- Using Procedures 25~ 

Appendix A 



Example of Overriding, Adding, and Nullifying Parameters on an EXI::C 
Statemen't 

1. You want to call the following cataloged procedure nallied ESbAP: 

//STEPA 
//DDA 
//DDB 
//STEPB 
//DDC 
//DDD 
//DDE 

EXEC 
DD 
DD 
EXEC 
DD 
DD 
DD 

PGM=FLIER,PARM=7121190,ACCT=(4805,UNASGN) 
DSNAME=LIBRAKY.GROUP67,DISP=CLD 
DSNAME=STAND.FIVE,DISP=CLD 
PGM=VERSE,DPRTY=(11,13),PAR~=780684,RD=R 
UNIT=2311,SPACE=(TRK, (10,2» 
DSNAME=COL,DISP=OLD 
DDNAML=IN 

You want to make the following modifications to the procedure: 

1. Add the NEGION parameter to both EXLC statements. 
2. Add the DPRTY parameter to the first EX¥C statereent. 
3. Override the ACCT parameter on the lirst EXEC statement. 
~. aullify the RD parameter on the seccnd EXhC staterrent. 
5. Add the COND parruneter to the second EXEC statement. 

The EXEC staterrent that calls the procedure wouli appear as: 

//MINC EXEC ESEAP,REGION=86K,DPRTY.ST~PA=(11,13), 

// ACCT.STEPA=(4805,7554),RL.STEPB=,CCND.STEPB=(bO,LE) 

rrhe two EXEC statements in the procedure would appear as shown below 
while the procedure is being executed. These ffiodifications do not 
appear on an output listing. 

//STEPA 
// 
//STEPB 

EXEC PGM=~LIER,PAR~=7121190,ACCT=(480~,75S4), 
REGION=86K,DP~TY=(11,13) 

EXl!.;C PGI'1=VERSE, DP.KTY= (11,13) ,.t<.EGION=8 oK, COND= (b 0, Lf:) 

2. You want to call the following in-stream procedure narred INLINE: 

//INLINE PROC 

X 

X 

//S'IEP1 
//DD1 
//DD2 
//STEP2 
//DD3 
//DD4 

EXEC 
DD 
DD 
EXEC 
DD 
DD 

PGM=COMP,ACCT=(7037,2361),n~GION=80K 

DSNAME=INFORM,DISP=OLD,UNIT=2311,VCLU~L=SER=75250 
DSNAME=LCJ~C,DISP=OLD,UNIT=2311,VCLU~~=SBR=7b250 

~GM=ChECKS,PARM=212334,COND=(50,L~),BCCT=(2001,OS39) 

DSNAME=PAY,DISP=CLD,UNIT=2311,VCLU~E=SbR=MEMORY 

DSNAML=Il\iCR):;AS, DISP=OLD, UtdT=2311, VOL UlI/lE= S.r..R= 33333 
// PEND 

You want to make the followin~ modifications to the procedure: 

1. Add DP~TY parameter to both EXEC staterrents. 

2. Nullify the REGION paramet~r on the first EX~C statement. 

3. Override the ACCT parameter on the second EXEC stdt~rrent. 

The bXbC statement that calls the procedure would app~ar as: 

//CALLER EXEC INLINL,DPRTY~(11,13) ,NEGICN.STbP1=,ACCl'.STbP2=(4710, 

// ~390) 

256 JCL Reference 



The two EXEC statements in the procedure would appear as shown below 
while the procedure is being executed. These modifications do not 
appear on an output listing. 

//STEPl EXEC PGM=COMI) , ACCT= (7037 , 2361) , DPRTY= (11,13) 

/ /S'I'EP2 EXEC PGM=CHECK,PARI'-1=212334,CCHD=(50,LE) ,DPRTY=(11, 13) 

// ACCT=(4710,5390) 

Overriding, Adding, and Nullifying Parameters on a DD Statement 

You can override, add, or nullify parameters coded on a DD statement 
contained in a cataloged procedure. You make these changes at the time 
the procedure is called; these changes are in effect during the current 
execution of the procedure. Use one DD statement to override, add, and 
nullify parameters on the sa.me DD statement in the procedure. 

OVERRIDING DD STATEMENT PARA.IYJETERS 

To override a parameter on a DD statement in the procedure, you must 
include a DD statement following the EXEC statement that calls the 
procedure. The ddname of this DD statement must identify the DD 
statement that contains the parameter you are overriding and the 
procedure step in which the DD statement appears. Code, in the operand 
field of this DD statement, the parareeter you are overriding a.nd the 
change; or code a mutually exclusive parameter that is to take the place 
of a parameter. The format required for a DD statement following the 
EXEC statement is: 

//procstepname.ddname DD parameter=change 
or 

//procstepname.ddname DD mutually exclusive parameter=value 

For example, if one of the DD statements in a procedure step narred 
STEP4 is: 

//DD2 DD DSNAME=ABIN,DISP=OLD,VOLUME=SER=54896,UNIT=2400 

and you want to change UNIT=2400 to UNIT=180, you would code: 

//STEP4.DD2 DD UNIT=180 

When you code a mutually exclusive parameter on an overriding DD 
statement, the system replaces the parameter on the specified DD 
statement with the mutually exclusive parameter. For Example, the 
parameters SYSOUT and DISP are mutually exclusive parameters. If one of 
the DD statements in a procedure step named PRINT is: 

//DD8 DD SYSOUT=C 

and you do not want the data set printed, you could code: 

//PRINT.DD8 DD DUMMY,DISP=(NEW,DELETE) 

You have replaced the SYSOu'r parameter with the DISP parameter anc added 
the DUMMY parameter. (The DUMMY pararoeter causes this DD statement to 
define a durr~y data set.) 

Appendix A: cataloged and In-Streare Procedures -- Using Procedures 257 

Appendix 



You can change more than one parameter that appears on a OD statement 
in tne procedure. For example, if one of the DD staterrents in a 
procedure step named STEP~ is: 

/ /DDX DD DSNlWlE=FIES, DISP=OLL, UNIT=2400-2, VOLUME=REF=*. STEP2. DDC 

and you want this DD statement to define a new data set, you would code: 

//STEP5.DDX DD DSNAME=RVA1,DISP=(NEW,KE£P) 

If you want to change parameters that appear on different DD 
statements in the sawe procedure step, tbe overriding DD statements must 
be in the same order in the input stream as the corresponding OD 
statements in the procedure step. For example, if the first step of a 
procedure named AJG is: 

//STEPl 
//001 
// 
//D02 
//DD3 

EXEC 
OD 

DD 
DD 

PGOC=MGR,REGION=80K 
DSNAME=LCNE,DISP=(NEW,OELETE), 
UNIT=2400,VOLUME=SER=568998 
UNIT=TAPE 
UNIT=2311,DISP=(,PASS1,SPACE=(TRK, (20,2» 

You want to make the following modifications to the procedure: 

1. Change the UNIT parameter on the first DD statement. 
2. Change the VOLUME parameter on the first DD statement. 
3. Change the SPACE parameter on the third DD statement. 

The statements in the input stream would appear as: 

//CATP 
//STEP1.ODl 
//STEP1.DD3 

EXEC 
DD 
DD 

AJG 
UNIT=2400-3,VOLUME=SER=WORK18 
SPACE=(CYL,(4,1» 

If you want to change parameters that appear in different procedure 
steps in the cataloged procedure you are calling, the overriding OD 
statemen1:s must be in the same order as are the procedure steps. 

The DCB parameter: If you want to change so~e of the subparameters in 
the DCB parameter, you need not recode the entire DeB Farameter. 
Instead, code only those subparameters that you are changing and any 
mutually exclusive subparameters that are to replace particular 
subparameters. For example, if one of the DD statements in a procedure 
step named NED is: 

//DD3 DD DSNA~E=PER,DISP=(,KEEP),UNIT=2311,SPACE=(TRK, (88,5», 
// DCB=(EUFNO=1,BLKSIZE=80,RECFM=F,BUFL=80) 

and you want to change BLKSI~E=80 to BLKSIZE=320 and BUFL=80 to 
BUFL=320, you would code: 

//NED.DD3 DD DCB=(BLKSIZE=320,BUFL=320) 

The DCE subparameters BUFNO and RECF~ remain unchanged. 

2~8 JCL Reference 

X 

x 

~.; 



ADDING DO STATEMENT PARAMETERS 

To add a parameter to a 00 statement in the procedure, you must include 
a DD statement following the EXEC statement that calls the procedure. 
The ddname of this DO statement must identify the 00 state~ent to which 
you are adding a parameter and the procedure step in which the DD 
statement appears. Code, in the operand field of this DL statement. the 
parameter you are adding. 'The format required for a DD statement 
following the EXEC statement is: 

//procstepname.ddname OD parameter=value 

For example, if one of the DO statements in a ~rocedure step named 
STPTWO is: 

//ODM DD DSNAME=TYPE,OISP=(,KEEP),UNIT=2400 

and you want to add the VOLUME parameter, you would code: 

//STPTWO.DDM DD VOLUME=SER=569433 

If you want to add parameters or change ~ararreters that appear on 
different DD statements, the overriding OD statements rrust be in the 
same order in the input stream as the corres~onding DD statements in the 
procedure. 

NULLIFYING DO STATEMENT PARAMETERS 

There may be parameters on a DO statement that you de not want to 
override, but you want thE system to ignore. Also, when you modify a DO 
statement in a procedure by overriding certain ~arameters or adding 
parameters, there may be some parameters remaining that no longer have 
meaning for your data set definition but would effect ~recessing of the 
data set. To temporarily remove these parameters, you can nullify therr. 
(If you are replacing a parameter with a mutually exclusive parameter, 
do not nullify the ~arameter that is being replaced.) 

To nullify a parameter on a DO statement in the procedure, you must 
include a DO statement following the EXEC statement that calls the 
procedure. The ddname of this DO statement must identify the DO 
statement that contains the parameter you are nullifying and the 
procedure step in which the DO statement ap~ears. Code in the operand 
field of this DO statement the parameter you are nullifying followed by 
an equal sign; do not follow the equal sign with a value. The forrr.at 
required for a DD statement followirig the EXbC statement is: 

//procstepname.ddname DD parameter= 

For example, if one of the DO statements in a procedure step narred 
SALLS is: 

//DDP DO 
// 

DSNAME=STEP,DISP=OLD,UNIT=2314, 
VOLUME=SER=556978 

x 

and you are overriding the DSNAME. OISP, and UNIT parameters, adding the 
DCB parameter, and want the VOLUME parameter ignored, you would code: 

//SALLS.DDP DD DSNAME=&&TEMP,DISP=C,PASS>,UNIT=2400-2, x 
// DCB=(DEN=2,~RTCB=BT) ,VOLUME= 

Appendix A: Cataloged and In-Stream Procedures -- Using Procedures 2~9 

Appendix A 



To nUllify the DCB parameter, each DCB sUbfarameter must be nullified 
individually. For example, if a DD statement contains 
DCB=(REC.E'M=FBA,BLKSIZE=160,I.RECL=80), then DCB=(RECFM=,BLKSIZ:E=,LRECL=) 
must be coded on the overriding DD statement in order to nullify the DeB 
parametel: • 

To nullify a DUMMY parameter, code the DSNAME parameter on the 
overriding DD statement, but do not use the data set name NULLFILE. 
(Coding DSNAME=NULLFILE has the same effect as coding the DUMMY 
parameter. ) 

caution: When you are overriding a procedure DD statement that contains 
the SPACE parameter and the overriding DD statement defines an existinq 
data set" be sure to nullify the SPACE parameter. When a secondary 
quantity is coded on the procedure DD staterr.ent, the system uses this 
value to assign additional space to the data set instead of the 
secondary quantity you may have specified when the data set was created. 
Also, the RLSE subparameter, when specified on the procedure statement, 
causes the system to release any of the existing data set's unused 
space. 

If you want to nullify, add, or override parameters that appear on 
different DD statements, the overriding CD statements must be in the 
same order in the input stream as the corresponding DlJ statements in thE:: 
procedure. 

Example of Overriding, Adding, and Nullifying ParametEtrs on a I)D 
Statement 

1. You ~7ant to call the following procedure named SALL: 

//STPl EXEC 
//DDll DD 
/ /D.D12 DD 
//D:J13 DD 
/ /S'TP2 EXEC 
//DD21 DD 
//C022 DD 
// 
//£D23 DD 

PGM=GLF14 
DSNAME=XTRA.LEVEL,DISF=OLD 
DSNAME=CONDS,DISP=(,PASS),UNIT=2400 
DUMJ."1Y, DSNAlVjE=LAST, VOLUME=.HEF=*. DDll, DISP= ( , CATLG) 
PGM=FAIR 
DSNAME=*.STP1.DD12,DISP=(OLD,DELETE) 
DSNAM~=JETZ,DISP=(NEW,KEEF),UNIT=2311, X 
S~ACE=(CYL, (3,1) ,RLSE) 
SYSOUT=G 

You want to modify the procedure as follows: 

1. Chanqe the data set name on the statement named DD12 from CONDS to 
C849S. 

2. Add the VOLUME parameter to the statement named DD12. 

3. Nullify the DUMMY parameter on the statement named CD13. 

4. Chanqe the disposition on the statement named DD2l irom DELETE to 
KEEP. 

~. Define an existing data set on the statement named DD22. 

6. Add the parameter UNIT on tne statement named DD23. 

7. Add the parameter SPACE on the statement nareed DD23. 

260 JCL Heference 



The EXEC statement that calls the procedure and the overriding DD 
statements that follow it would appear as: 

//CALL 
//STP1.DD12 
//STP1.DD13 
//STP2.DD21 
//STP2.DD22 
// 

EXEC 
DD 
DD 
DD 
DD 

//STP2.DD23 DD 

SALL 
DSNAME=C8495,VOLU~E=SER=979354 

DSNAME=LAST 
DIS:.t?=(OLD,KEEP) 
SPACE=,DSNAME=GR1833,DISP=OLD,LABEL=(,NL), 
VOLUME=SER=577632 
UNIT=2314,SPACE=(TRK, (130,15» 

The cataloged procedure would appear as shown below while the 
procedure is being executed. These modifications do not a~pear on an 
output listing. 

//STP1 EXEC 
//DD11 DD 
//DD12 DD 
// 
//DD13 DD 
//STP2 EXEC 
//DD21 DD 
//DD22 DD 
// 
//DD23 DD 

2. You want to 

//CARDS PROC 
//STEPA EXEC 
//DDA1 DD 
//DDA2 DD 
// 
//STEPB EXEC 
//DDBl DD 
//DDB2 DD 
//DDB3 DD 
// PEND 

PGM=GLF'14 
DSN~iE=XTRA.LEVEL,DISP=OLD 

DSNAME=C8495,DISP=(,PASS),UNIT=2400, 
VOLUME=SER=979354 
DSNAME=LAST, VCLUME=~EF=*. DD11, DISP= ( , CA'ILG) 
PGM=FAIR 
DSNAME=*.STP1.DD12,DISP=(OLD,KEEP) 
DSNAME=GR1833,DISP=OLD,UNI1=2311,LABEL=(,NL), 
VOLUME=SER=577632 
SYSOUT=G,UNIT=2314,SPACE=(TRK, (150,15» 

call the following in-stream procedure named CARDS: 

PGt-'l=FIGURE 
DSNAME=NUMBERS,DISP=OLD 
DSNAME=PROCESS,DISP=(,PASS),UNIT=2311, 
SPACE=(TRK,(l,l,l» 
PGM=RESULT 
DSNAME=VSC,DISP=OLD 
DSNAME=*. STEPA.DDA2,DISP= (CLD,KEEP) 
SYSOUT=C 

You want to modify the procedure as follows: 

1. Change the data set name on the DDAl statement from NUMBERS to 
NAMES. 

2. Add the VOLUME parameter to the DDA2 statement. 

3. Add the parameters UNIT and SPACE on the DDB3 statement. 

The EXEC statement that calls the procedure and the overriding DD 
statements that follow it would appear as: 

//CALL 
//STEPA.DDA1 
//STEPA.DDA2 
//STEPB.DDB3 

EXEC 
DD 
DD 
DD 

CARDS 
DSNAME=NAMES 
VOLUME=SER=5858 
UNIT=2311,SPACE=(TRK, (150,15» 

x 

x 

Appendix A: Cataloged and In-Stream Procedures -- Using Procedures 261 

Appendix A 



The in-stream procedure would appear as shown below while the 
procedure is being executed. These modifications do not appear on an 
output listing. The PROC statement is processed only when it contains 
symbolic parameters. 

I/STEPA 
IIDDAl 
I/IiDA2 
1/ 
IISTEPE 
IIDDBl 
IIDDB2 
I/Dr::B3 

EXEC 
DD 
DD 

EXEC 
DD 
DD 
DD 

PGiYj=FIGURf. 
DSNAM~~NAMLS,DISP=OLD 

DSNAME=PROCESS,DISP=(,PASS),UNIT=2311, 
SPACE=(TRK, (1,1,1» ,VCLUM~S=SER=58~8 
PGM=RESULT 
DSNAME=VSC,DISP=OLD 
DSNAMF=*.STBPA.DDA2,DISP=(OLD,KEEP) 
SYSOU~=C,UNIT=2311,SPACE=(TRK, (150,15» 

Overriding DD Statements That Define Concatenated Data Sets 

When a concatenation of data sets is defined in a cataloged procedure 
and you attempt to override the concatenation with one D~ statement, 
only thE~ first (named) DD statement is overridden. To override others, 
you must. include an overriding DD statement for each DD statement; the 
DD statE~ments in the input stream must be in the same order as the DD 
statements in the procedure. The second and subsequent overriding 
statements must not be narr:ed. If you do not wish to change one of the 
concatenated DD statements, leave the operand field blank on the 
corresponding DD statement in the input stream. (This is the only caSE' 
where a blank operand field for a DD statement is valid.> 

For example, suppose you are calling a procedure that includes the 
following sequence of DD statements in STEPC: 

IIDD4 
II 
II 
II 

r::D DSNAME=A.B.C,DISP=OLD 
DD DSNAME=STRP,DISP=OLD,UNIT=2311,VOL=SER=X12182 
DD DSNAME=TYPE3,DISP=OLD,UNIT=2311,VOLUME=SEN=BL142 
DD DSNAME=A.B.D,DISP=OLD 

If you want to override the DD statements that define the data sets 
named STRP and A.B.D, the sequence of DD statements in the input stre~l 
would appear as: 

I /s~rEPC. DD4 
II 
1/ 
1/ 

DD 
DD DSNAME=INV.CLS,DISP=OLD 
DD 
DD DSNAME=PAL8,DISP=OLD,UNIT=2311,VOL=SER=125688 

Adding DD Statements to a Procedure 

You can add DD statements to a procedure when you call the procedure. 
These additional DD statements are in effect only while the procedure is 
being executed. 

To add a DD statement to a procedure step, follow the EXEC statement 
that calls the procedure and any overriding DD statements for that step 
with the additional DD statement. The ddname of this DD statement roust 
identify the procedure step to which this statement is to be added and 
must be assigned a name that is different fron, all the ddnames in the 
procedure step. The format required for a DD statement following the 
EXEC statement is: 

Ilprocstepname.ddname DD parameters 

262 JCL Reference 



is: 
For exa~rle, if the first step of a cataloged ~rocedure named ~AR~ 

//STEPl 
//DDB 
// 
//DDN 

EXEC PGM=DATE 
DD DSNAME:=BPS(MEMG),DISP=CLD, 

UNIT=2311,VOLUME=SER=554982 
DD UNIT=SYSC)E 

You want to make the following modifications to the ~rocedure: 

1. Change the UNIT parameter on the statement named DDN. 
2. Add a DD statement. 

The statements in the input stream would a~rear as: 

//PROC 
//STEP1.DDN 
//STEP1.DDO 

EXEC 
DD 
DD 

MART 
UNIT=180 
UNIT=181 

In PCP, if you are adding more than one DL statement to a procedure 
step and one of the statements is a DD * or DD DA1A statement, the DC * 
or DD DATA statement must be last. 

Example of Adding DD Statements to a Procedure 

1. You want to call the following procedure named 0995A: 

//SA 
//DDAl 
//DDA2 
//DDA3 
//SB 
//DDBl 
//DDB2 
//DDB3 
// 

EXEC 
DD 
DD 
DD 
EXEC 
DD 
DD 
DD 

PGM=ANALY 
DSNAME=PROJ.C843,DISP=OLD 
DDNAMB=SYSIN 
SYSOU'I=B 
PGM=MANMC3 
UNIT=2400 
UNIT=2400 
DSNAME=X54,VOLUME=SER=(36544,36545), 
UNIT=(2400,2),DISP=(OLD,KE~P) 

You want to modify the procedure as follows: 

1_. Supply the data set definition for the DVA2 staterrent by adding a 
DD statement. 

2. Change the SYSOUT parameter on the DDA3 statement to UNI'I=1403. 
3. Add a DD statement to the step named SB. 

The EXEC statement that calls the procedure and the overriding and 
additional DD statements that follow it would arp~ar as: 

//PROCED 
//SA.DDA3 
//SA.SYSIN 

/* 
//SB.DDB4 

EXEC 
DD 
DD 

data 

DD 

D995A 
UNIT=1403,DISP=NEW 

* 

UNIT=(2400"SEP=(DDE1,CDE2» 

x 

x 

Appendix A: Cataloged and In-stream Procedure~ -- U~ing Procedures 263 

Appendix A 



The cataloged procedure would appear as shown below while the 
procedure is being executed. These modifications do not appear on 
output listing. 

//SA 
//DDAl 
//DDA2 
//DDA3 
//SE 
//DDB1 
//DDB2 
//DDB3 
// 
//DDB4 

EXEC 
DD 
DD 
DD 
EXEC 
DD 
DD 
DD 

DD 

PGZV1=ANAL Y 
DSNAME=PRCJ.C843,DISP=CLD 

* 
UNIT=1403,DISP=NEW 
PGM=MANM03 
UNIT=2400 
UNIT=2400 
DSNAME=X54,VOLUME=SER=(36544,36545), 
UNIT=(2400,2),DISP=(OLD,KEEP) 
UNIT=(2400"SEP=(DDB1,DDB2» 

2. You want to call the following in-strearr. procedure named wO.kK: 

//WORK 
//ST.l?l 
//DD1 
//DD2 
// 

FROC 
EXEC 
DD 
DD 
PENL 

PGM=PROD 
DSNAME=PROJECT,DISP=OLD 
CDNAME=SYSIN 

x 

You want to modify the procedure by supplying the data set definition 
for the DD2 statement by adding a DD statement. 

The EXEC statement that calls the procedure and the additional DD 
statement that follows it would appear as 

//AD0 EX~C WORK 
//STP1.SYSIN CD * 

data 

/* 

The in-stream procedure ~ould appear as shown below while the 
procedure is being executed. These modifications do not appear on the 
output listing. 

/ /S'I'P 
//D])l 
//DD2 

EXEC 
DD 
DD 

264 JCL Reference 

PGt-j=PROD 
DSNAME=~RCJECT,DISP=OLD 

* 



Writing Procedures: Cataloged and In-stream 

Why Catalog Job Control Statements 

Applications performed at your installation on a regular basis and 
applications that require many control statements can t.e simplified whEn 
the control statements for these applications are cataloged. Once the 
job control statements for an application are cataloged on the procedure 
library, any programmer who wants to perform the application need only 
submit a JOB and EXEC statement. On the EXEC statement, he refers the 
system to the control statements required to perform the application. 
If there are modifications the programmer wants to make for the duration 
of the job step, he assigns values to symbolic pararoeters on the ~X~C 
statement and follows the EXEC statement with OVerriding DD statements. 

Why Use In-stream Procedures 

In-stream procedures appear within the job stream instead of in the 
procedure library. Like cataloged procedures, they eliminate the 
necessity of repeating the same set of control staterr,ents in a job. An 
in-stream procedure can be executed any numt.er of times during a job in 
which it appears and fifteen uniquely named in-stream procedures can 
appear in one job. In-stream procedures can be modified just as 
cataloged procedures. They also provide you with a means of testing 
procedures before adding them to the procedure lit.rary as cataloged 
procedures. Because an in-stream procedure may exist in the form of 
cards, it can be considered a "portable procedure" in that it can easily 
be moved from one input stream to another. 

THE CONTENTS OF CATALOGED AND IN-STREAM PROCEDURES 

Cataloged and in-str'eam procedures contain one or more EXEC statements, 
each followed by associated DD statements~ Each EXEC statement 
identifies the program to be executed, and the DD statements that follow 
define the input, output, and work data sets to be used t.y the program. 
Each EXEC statement and its associated DD statements are called a 
procedure step. 

Cataloged and in-stream procedures cannot contain: 

1. EXEC statements that refer to other cataloged procedures. 
2. JOB, delimiter, or null statements. 
3. DD statements with the ddname JOBLIB~ 
4. DD statements with * or DATA coded in the operand field. 

A cataloged procedure can contain a DD statement with the ddname 
STEPLIB. If a procedure step requires use of a program in a private 
library other than SYS1.LINKLIB, you define that library on this DC 
statement. If the DD statement is not overridden when the procedure is 
called, it makes the private library availatle to the step. (For 
information on the STEPLIB DD statement, see the chapter "Special 
Ddnames" in section IV of this publication.) 

For ease in modifying a cataloged procedure, you can include symt.olic 
parameters in the procedure. How to use symbolic parameters is 
described next. 

Appendix A: Cataloged and In-stream Procedures -- Writing Procedures 265 

Appendix A 



USING 3YMBOLIC PARAEETEdS IN A PROCEDURE 

Wnen you prepare the control statements that yeu flan to catalog or use 
as an in-stream procedure, you can include symbolic para~eters. A 
symbolic parameter is characterized by a name preceded by an ampersand 
C&) and appears in the operand field of a cataloged procedure statement. 
A symbolic parameter stands for a parameter , a subparameter, or a 
value. 

Symbolic parameters allow a programmer who calls the procedure to 
easily modify the procedure for the duration of the jot step. When the 
programmer calls the procedure, he assigns values to the symbolic 
parameters on the EXEC statement. When you frepare control statements 
that you plan to catalog, you can include a PROC staterrent and assign 
default values to any of the symbolic parameters that are included. 
When you prepare control statements to be used as an in-streaw 
procedure, you must include a PRoe statement which can be used to assign 
default values to any of thE symbolic parameters that are included. 

A symbolic parameter is one to seven alpbarreric and national (8,@,$) 
cnaracters preceded by a sinqle arr:persand. The first character must be 
alphabetic or national_ since a sinale ampersand defines a sywbolic 
parameter, you code double ampersands when you are not defining a 
symbolic parameter. For example, if you want to pass 543&LEV to a 
processing prograrr by means of the PARM parameter on an EXEC statement, 
you must code FARM=' 54&&L.t,V I. The system treats the double ampersands 
as if a single ampersand has been coded, and only one arrpersand appears 
in the results. 

The following are examples of symbolic parameters: 

//STEP1 EXEC PGM=COB,PAru-1='Pl,!k~,P3' 

//DD1 DD DSNAME=&&FIX,UNIT=&DEVICE,SPACE=CCYL, (&SFACE,10» 

//DD2 DD DSNAME=&&CHAG,UNIT=2400,DCB=BLKSIZE=&LENGTH 

Keyword parameters that can be coded on an EXEC statement cannot be 
used to define symbolic parameters. For example, &PGM and &REGION 
cannot be used as symbolic parameters. 

Any parameter, subparameter, or value in the procedure that may vary 
each time the procedure is called is a good candidate for definition as 
a symbolic parameter. For example, if different values can be passed to 
a processing program by ffieans of the PARM paraffieter on one of the EXEC 
statements, you might define the PARM parameter field as one or more 
symbolic parameters, PARtv'}=&ALLVALS or PARI~=&DECK&CODE. 

If 5~nbolic parameters are defined in the cataloged or in-stream 
procedures used at your installation, the definitions should be 
consistent. For example, every time the prcgraITmer is to assign his 
department number to a sywbolic parameter, no matter which procedure he 
is calling, the symbolic parameter could be defined as &DEPT. In 
different procedures you could code ACCT=C43877,&DEPT) and 
DSNAMF,=LIRRARY.&DEPT.MACS. The programrrer would assign his department 
number on the EX.EC statement that calls the procedure whenever &DEPT 
appears in a ~rocedure. O:E course, in order for the programmer to know 
that he is to assign his department number to the symbolic parameter 
&DEPT, the installation must make this information available to all the 
programmers that may be using the cataloqed procedures. 

You can define two or more symbolic parameters in succession without 
including a comma to delimit the symbolic pararreters, for example, 
&Pl&P2. You can also define a portion of a ~arameter, subparameter, or 
value as a symbolic parameter. You do this by placing the symbolic 

266 JCL Reference 



--

parameter before, after, or in between the information that is not 
variable. 

If you place a symbolic parameter after serre informatien that does 
not vary, it is not necessary to code-a-deliroiter. The system 
recognizes a sym~olic parameter when it encounters the single ampersand. 

If you place a symbolic parameter before sorre inforrration that does 
not vary, a period may be required followi~g the symbolic pararreter to 
distinguish the end of the symbolic pararr.eter and the beginning of the 
information that does not vary. A period is required following the 
symbolic parameter when: 

1. The character following the symbolic parameter is an alphabetic or 
numeric character. 

2. The character following the symbolic parameter is a left 
parenthesis or a period. 

In these cases, the system recognizes the period as a delirriter, and the 
period does not appear after a value is assigned to the symbolic 
parameter. (A period will appear after a value is assigned to the 
symbolic parameter when two consecutive ~eriods are ceded.) 

The following examples are valid ways of combining syrrobolic 
parameters and information that does not vary. 

Placing a symbolic parameter after inforrr.ation that does not vary: 

1. LIBRARY (&MEMBER) 

2. USERLIB.&LEVEL 

Placing a symbolic parameter before information that does not vary: 

1. '&OPTION+1S' 

2. &PASS.A43B8 
The period is required because an alphabetic character follows the 
symbolic parameter. 

3. &URNO.S4328 
The period is required because a numeric character follows the 
symbolic parameter. 

4. &LIBRARY.(MEMG) 
The period is required because a left parenthesis follows the 
symbolic parameter. 

5e &FILL •• GROUP5 
A period is to appear in the results; therefore, two consecutive 
periods are coded. 

When a value is assigned to the symbolic parameter, this value and 
the parameter, subparameter, or value that this is a fortion of cannot 
exceed 120 characters. 

The programmer who calls a procedure assigns values to the symnclic 
parameters contained in the ~rocedure. ne can also nullify symbolic 
~ararneters. A delimiter, such as a leading comma or a trailing corrITa, 
next to a symbolic parameter is not auterratically removed when the 
symbolic parameter is nullified. For example, if the operand field 
contains VOLUME='-:)ER=(111111.,&KEY), the comma preceding &:KEY is not 
removed when &KEY is nullified. If the symtolic parameter that is 
nullified is a pcsi tional pa:r'ameter, a comma must reRain to indicate its 

Appendix A: cataloged and In-stream Procedures -- Writing Procedures 267 

Appendix A 



absencE~. In other cases, a delimiter that is not removed when the 
symbolic parameter is nullified rray cause a syntax error. To help the 
programmer who nullifies a symbolic parameter avoid this error 
condition, define those symbolic parameters that may be nullified 
without: the ctelin,iter. For example, you could code 
VOLUML=S£R=(llllll&K~Y). The delimiter is incluJed when a value is 
assigned to the symbolic parameter. For example, the programmer would 
code KEY=' ,222222'. 

A cataloged or in-stream procedure statement may utilize DDNA~E and 
DCB parameters to define data in the input stream. Such a statement 
srlould not contain symbolic parameters when the autOIt:atic SYSIN batching 
reader is used. (Information on the cataloged procedure for the 
automatic SYS~N hatching reader is contained in the chapter "System 
Reader, Initiator, and writer Cataloged Procedures" in tne System 
Pl:oqrammer_' s Guide publication.) 

The PROC statement: When establishing cataloged or in-stream procedures 
tnat contain symbolic parameters it is generally good practice to assign 
default values to the symbolic parameters. 1riese default values are 
used if the programmer who calls the procedure does not assiqn values to 
one or more of the symbolic parameters. 

You assign default values on a FRee statement. Th~ PROC statement is 
optional in cataloged procedures; if it is used, the FROC statement must 
be the first statement in the procedure. Th~ PROC statewent is 
described in section X of this publication. The PEND statement which is 
used to mark the end of an in-stream procedure is described in Section 
IX. 

ADDING AND MODIFY ING CA'I'ALOGED Pl<OCEDU!<ES 

You add procedures to the procedure libra:r:'y by using tl1e Il:BUPDTE 
utility program. You also us~ this utility rrogram to permanently 
modify existing proedures. liow to use this utility program for adding 
and ffiodifying cataloged procedures is descri~ed in the chapter "The 
lEBUPDTE Program" in the ptilities publication. 

If you use MFT or MVT when you add a cataloged procedure to the 
procedure library, that procedure cannot be tx€cutea before the job that 
adds it to the procedure library terminates. If you use MFT or MVT when 
you 11lOdify an existing cataloged procedure, the o~erator niust be 
notified. What the operator must do before he allows the job to be 
executed is described in tne chapter "How to Eun Jobs That Update System 
Data Sets" in the Q~rato~l~uide pUblication. 

268 JCL .Keference 

"".,,,,,,,,,,.,,""'-"',,,,, ........... _, .... _ ....... , ---



Appendix B: Using the Restart Facilities 

When a job step abnormally terminates, you may have to resubmit the job 
for execution. This means lost computer time and a delay in obtaining 
the desired results. To reduce these effects, you can use the restart 
facilities. 

If a job step abnormally "terminates or if a system failure occurs in 
a system with MFT or MVT, the restart facilities allow you to request 
that the job step be restarted either at the beginning of the step (step 
restart) or within the step (checkpoint restart). Furthermore, restart 
can occur automatically afteor abnormal termination, or it can be 
deferred until the job is resubmitted. 

Restarts 

For automatic step restart to occur, the RD parameter Ifust request it on 
the JOB statement or on the EXEC statement associated with the step that 
abnormally terminates. (The RD parameter on the JOB statement is 
described in section II of this publication; the RD parameter on the 
EXEC statement is described in section III.) Automatic checkpoint 
restart can occur only if a CHKPT macro instruction is executed in the 
processing program prior to abnormal terrrination. 

If restart is deferred until the job is resubmitted, the RESTAl~'T 
parameter must be coded on the JOB statement of the resubmitted job. 
('The RESTART parameter is described in section II of this publication.) 
The RESTART parameter identifies the step or the step and the checkpoint 
at which execution is to be resumed. A deferred restart may be 
initiated regardless of how the resubmitted job was previously 
terminated (normally or abnormally) and regardless of whether an 
automatic restart occurred during the original execution. 

AUTOMATIC STEP RESTART 

If an abnormally terminated step is to be automatically restarted, the 
RD parameter must be coded as RD=R or RD=RNC. Execution resumes at the 
beginning of the abnormally terminated step. 

AUTOMATIC CHECKPOINT RESTART 

After an automatic checkpoint restart, execution resumes at the 
instruction immediately following the last CHKPT macro instruction that 
was successfully executed in the abnormally terminated step. An 
automatic checkpoint restart cannot occur if you suppress the action of 
the CHKPT macro instruction; you do this by codingORD=NC or RD=RNC. 
Also, an automatic checkpoint restart cannot occur if you code RD=NR; 
nowever, RD=NR allows the CHKPT macro instruction to establish a 
checkpoint. 

DEFERRED STEP RESTART 

To perform a deferred step restart, the R~START parameter must identify 
the step at which execution is to be resumed. steps preceding the 
restart step are interpreted but are not initiated. 

Appendix B: Using the Restart Facilities 269 

Appendix B 



since dispostion processing occurred during tne original execution of 
the job, you may have to rr·odify control stateroents associated with the 
restart step before you resubmit the job. Modifications may be required 
in two cases: 

1. A data set was defined as N~W durinq the original execution. If it 
was created durinq the original execution, you must change the data 
set's status to OLD, define a new data set, or delete the data set 
before resubmitting the job. 

2. A data set was passed and was to be received by the restart step or 
a step following the restart step. If the passed data set is not 
cataloged, you must supply, in the receiving step, velume serial 
numbers, device type, data set sequence nuITtoer, and label type. 
(Label type cannot be retrieved from the catalog.) 

To limit the number of modifications required before you resubroit the 
job, you can assign conditional dispositions during the original 
execution. (Data sets assigned a temporary name or no name can only be 
assigned a conditional disposition of DELETE.) If deferred step restar1: 
will be performed, conditional dispositions should be used: 

• To delete all new data sets created by the restart step. 

• To keep all old data sets used by the restart ste~, other than those 
passed to the step. (If a nontemporary data set is defined as 
DI3P==(OLD,DELETE), it is very im~ortant that you assign a 
conditional disposition of KEEP.) 

• To catalog all data sets passed from steps preceding the restart 
step to the restart step or to steps following the restart step. 

Additional changes can be made to your centrol statements before 
reSUbmitting the job. For example, you can vary device and volume 
configurations and request step restart on an alternate system with the 
same configuration as used originally. You can also make changes to 
your data. 

DEFERkED CHECKPOINT RESTART 

ro perform a deferred checkpoint restart, the RESTART parameter must 
identify the step and the checkpoint at which execution is to be 
resumed. The SYSCHK DD statement, which defines the checkpoint data 
set, must also be included. (The SYSCBK DD statement is described in 
the chapter "special Ddnames" in section IV. 

An int.ernal representation of your statements is kept as control 
information within the system. Some of the control information for the 
restart step or steps following the restart step may have to be modified 
before execution can be resumed at a checkpoint. The following 
modifications for the restart step are automatically made by the system v 
using information contained in the check~oint entry: 

• The status of data sets used by the step is changed from NEW to OLD .. 
(If a new data set was assigned a nonspecific volume and had not 
been opened before the checkpoint was established, this change is 
not made.) 

• If nonspecific volumes were requested for a data set used in the 
rtstart step, the assigned device type and volume serial numbers are 
made part of the control information. 

• For a multivolume data set, the volurre being processed when the 
checkpoint was established is mounted. 

270 JCL Reference 



The only required modification that you must make to a control 
statement is to supply certain inforrr:ation about a data set that was 
being passed by a step preceding the restart step to a step following 
the restart step. You must supply, in the receiving step, volume serial 
numbers, device type, data set sequence numbEr, and label type. You 
will not have to make these modifications if, during the original 
execution, you assigned a conditional disposition of CATLG to such data 
sets. If the data is cataloged, the system can retrieve this 
information from the catalog. (Label type cannot be retrieved froIT: the 
catalog.) You should also use conditional dispositions to keep all data 
sets used by the restart step. Data sets assigned a temporary name or 
no name can only be assigned a conditional disposition of DELETE. 
Therefore, if you plan a deferred checkpoint restart, you should not 
define you data sets as temporary. (For any nontemrorary data set that 
may be deleted, it is very important that you assign a conditional 
disposition of KEEP.) 

Before resubmitting the job for checkpoint restart, you can rr:aKe 
otner modifications to control statements as~ociated with the restart 
step or steps following the restart step. The following items apply to 
the step in which restart is to occur: 

• The DD statements in the restart step can be altered, but the 
statements must have the same names as used originally. You can 
also include additional DD statements. 

• If a data set was open at the time a checkpoint was established and 
restart is to begin at that checkpoint, DD statements in the restart 
step can define the sam-= data set. If there is no need to process a 
data set after rEstart, you can define the data set by coding the 
DUMMY parameter or DSNAME=NULLFILb on a ~D statement provided that: 
(1) the basic sequential access method (BSAM) or the queued 
sequential access method (QSAM) was being used to process the data 
set when the checkpoint was established, (2) the data set is not the 
checkpoint data set that is being used to restart the job step, and 
(3) the job step is not restarted from a checKpoint tnat was 
established in an end-of-volume exit routine for tne data set. The 
name of the DD statemen"t must be the sane as the one used for the 
data set during the oric:dnal execution of YO'.Jr proaram. 

• If DUMMY is not specified, the DD statements ~ust define the same 
data sets. Also, the data sets roust not have been meved on the 
volume or onto another volumE. 

• If a data set was not open when the cneck~oint was established and 
is not needed during restart, you can re~laee the rararoeters used to 
define the data set with the DUM~Y pararo~ter. 

e ~ou can alter the data in the restart step. If you omit the data, a 
delimiter statement (/*) is not required, unless the data was 
preceded by a DD DATA statement. 

Modifications you might want to IT:ake to centrol statements followinq 
the restart step are: varying device and volume configurations, 
altering data, and possibly, requesting eheckreint rcstalt on an 
alternate system with the same configuration as used originally. If the 
parameters PGM, COND, SUBALLOC, and VOLUMB=k~F refer to steps preceding 
the restart step, you must resolve these references before resubrrittinq 
the job. (A backward reference of VOLUM£=REF is allowed if the 
referenced statement includes VOLUME=sER=(serial numLer).) 

Appendix B: Using the ~estart Facilities 271 

Appendix 



Examples of Using the Restart Facilities 

1. The following control statements illustrate the preparations that 
would be made for either an automatic step or checkpoint restart 
before the job is submitted for the first tirr,e. 

//STMRG3 
//ST1:.Pl 
//INPUT 
// 
//OUTPUT 
// 
//WORKl 
//WOHK2 
//Cl:IKPT 
//STEP2 
/ /lwj£RGl 
//MERG2 
// 
//RBSULTS 
// 

JOB 
EXEC 
D.D 

DD 

DD 
DD 
DD 
EXEC 
DD 
DD 

DD 

54321,A.USER,MSGLEVEL=(1,O),RD=H 
PGM=SIMPSORT 
DSN=SORTIN,VOL=SER=100468,UNI'I=2400, 
DISP=(OLD,DELETE) 
DSN=INV(+l) ,UNIT=2311,VOL=SER=555334, 
SPACE=(320n, (200,100»,DISP=(NEW,CA'ILG) 
UNIT=2400,DISP=(NEW,DELETE) 
UNIT=2400,DISP=(NEW,DELETE) 
UNIT=2400,DISP=(NBW,DELETE) 
PGM=MYl-lERGE 
DSN=INV(+l),DISP=CLD 
DSN=M5,VCL=SE~=(092501,092502,092~03), 
UNIT=(2400,3),DISP=(CLD,KEEPl 
DSN=M6,UNI'I=2400,VOL=S~R=(l00101,100102, 

100103),DISP=(NEW,KEEP) 

X 

X 

x 

x 

here, the RD parameter requests step restart for any abnormally 
terminated job step. In ST~Pl, the DD statement CHKPT defines 2 

checkpoint data set. For this step, once a CHKPT macro instruction 
is executed, only automatic check~oint restart is performed. An 
automatic checkpoint restart cannot occur in STEP2 since a 
checkpoint data set is not defined. 

2. The following control statements illustrate the preparations that 
would be made for either an automatic or deferred step restart 
before the job is submitted for the first time. 

/ /STt-lRG3 JOB 
//STEPl EXEC 
//INPUT DD 
// 
//OUTPUT DD 
// 
//WO_~Kl DD 
//W01<K2 DD 
//STEP2 EXEC 
/ /IvfERGl DD 
//ME;RG2 DD 
// 
//R:t;SULTS DD 
// 

S4321,A.USER,MSGL~VEL=(1,O),RD=R 

PGM=SIMPSORT 
DSN=SORTIN,VOL=SErl=l00468,UNI'I=2400, X 
DISP=(OLD,DELETE,KEEP) 
DSN=I1W(+1) ,UNIT=2311,VOL=SER=55S334, X 
SPACE=(3200, (200,lOO»,DISP=(NEW,CATLG,DELETE) 
UNIT=2400,DISP=(N£W,DELETE) 
UNIT=2400,DISP=(N~W,CEL~TE) 

PGM=MYt-'lERGl:; 
DSn=INV(+l),DI,sP=CLD 
DSN=M5,VOL=SER=(092501,092502,092503), X 
UNIT=(2400,3),DISP=(CLD,KEEP) 
DSN=M6,UNIT=2400,VOL=SER=(l00101,l00102, X 
100103),DISP=(NEW,KEEP,DELETE) 

If you are resubmitting this job for step restart, you must code 
tne RESTART parameter on the JOB statement and identify the step at 
which execution is to be resumed. If execution is to be resumed 
with STEP2, the MERGl DD statement must be changed to refer to the 
generation data set by means of its present relative generation 
nurrber, i.e., DSN=INV(O). 

272 JCL rteference 



....... 

3. The following control statements illustrate the Freparations that 
would be made for an automatic step or checkpoint restart or a 
deferred checkpoint restart before the job is submitted for the 
first time. 

//STNRG3 
//STEPl 
//INPUT 
// 
//OUTPUT 
// 
//WORKl 
//WORK2 
//CHKPT 
//STEP2 
//MERGl 
//MERG2 
// 
//RESULTS 
// 

JOB 
EXEC 
DD 

DD 

DD 
DD 
DD 
EXEC 
DD 
DD 

DD 

54321, A. USEl<, !YJSGL.t;VEL= (1,0) , RLl=J:« 
PGM=SIMPSORT 
OSN=S01<TIN,VOL=SEH=1004b8,UNIT=2400, X 
DISP=(OLD,DELETE,KEEP) 
DSN=INV(+1),UNIT=2311,VOL=SER=555334, X 
SPACE=(3200, (200,100»,DISP=(N~W,CATLG,KEEP) 
DSN=A,UNIT=2400,DISP=(NEW,DELETE,CATLG) 
DSN=B,UNIT=2400,DISP=(NEW,DELET~,CA~LG) 
DS~=C,UNIT=2400,DISP=(NEW,DELETE,CATLG) 
PGM=MYr-1ERGE 
DSN=INV(+l),DISP=OLO 
DSN=M5wVOL=SE~=(092501,092502,092~03), X 
UNIT=(2400,3),DISF=(CLD,KEBP) 
DSN=M6,UNIT=2400,VOL=SER=(100101,100102, X 
100103),DISP=(NEW,KEEP) 

bither an automatic checkpoint restart or a deferred checkpoint 
restart can occur in STBPl if the step abnormally terminates. To 
perform a deferred checkpoint restart, the RESTAR'l' parameter rr:ust 
be coded on the JOB statement and a SYSCtiK DO statement IToUst be 
included before resubmitting the job. Only autorratic step restart 
can occur in STEP2. The data sets that would norrrally be defined 
as temporary have been defined as nonterr:porary data sets so 
conditional dispositions can be assigned to them • 

Appendix B: Using the Restart Facilities 273 

Appendix B 





Appendix C: Creating and Retrieving Indexed 
Sequential Data Sets 

Indexed sequential (ISAM) data sets are created and retrieved using 
special subsets of DD statement parameters and subpararr,eters. Each data 
set can occupy up to three different area3 cf space: 

1. Prime area -- This area contains data and related track indexes. 
It exists for all indexed sequential data sets. 

2. Overflow area This area contains overflow from the prime area 
when new data is added. It is optional. 

3. Index area -- This area contains master and cylinder indexes 
associated with the data set. It exists for any 
indexed sequential data set that has a prime area 
occupying more than one cylinder. 

Indexed sequential da.ta sets must reside on direct access volumes. The 
data set can reside on more than one volume and the device types of the 
volumes may in some cases differ. 

Creating an Indexed Sequential Data Set 

One to three DD statements can be used to define a new indexed 
sequential data set. When you use three DD statements to define the 
data set, each DD statement defines a different area and the areas must 
be defined in the following order: 

1. Index area. 
2. Prime area. 
3. Overflow area. 

Wnen you use two DD statements to define the data set, the areas must be 
defined in the following order: 

1. Index area. 1. Prime area. 
or 

2. Prime area. 2. Overflow area~ 

When you use one DD statement to define the data set, you are defining 
the prime area and, optionally, the index area. 

When more than one DD statement is used to define the data set, 
assign a ddname only to the first DD statement.; the nan,e field of the 
other statements must be blank. 

The only DD statement paranteters that can be coded when defining a 
new indexed sequential data set are the DSNAMb, UNIT, VOLUMB, LABEL, 
DCB, DISP, SPACE, SEP, and AFF parameters. when to code each of these 
parameters and what restrictions apply are described in the following 
paragraphs. 

Appendix C: Creating and Retrieving Indexed Sequential Data sets 275 

Appendix 



T~E DSNAME PARAMETER 

T~e DSNAME parameter is required on any DD statement that defines a new 
temporary or nonternporary indexed sequential data set. To identify the 
area you are defining, you follow the DSNAME pararreter with the area: 
DSNAME=nameCINDEX), DSNAME=nameCPRIM~), or DSNAME=nameCOVFLOW). If you 
are using only one DD statement to define the data set, code 
DS~AM£=name (PRI~E) or DS.l~AME=name. 

When reusing previously allocated space to create an ISAM data set, 
the DSNAME parameter rrust contain the name of the old data set to be 
overlaid. 

THE UNIT PARAMETE~ 

Tne UNIT parameter is required on any DD statement that defines a new 
indexed sequential data set unless VCLUMB=HEF=reference is coded. You 
must request a direct access device in the UNIT pararr-eter and must not 
request DEFER. 

If there are separate DD statements defining the prime and inde~ 
areas, you must request the same number of di:r~ct access devices for the 
E..!:im~ area as there are volurr.es specified in the VOLU!-H-:; parameter. "lou 
may request only one direct access volume for an index area and one for 
an overflow area. 

A DD statement for the index area or overflow area can request a 
device type different than the type requested on the other statements. 

Another way to request a device is to code uNIT=AF}=ddnarr.e; where the 
named DD statement requests the Jirect access device or device type you 
want. 

T.i::lE VOLUME PARAMETER 

Tne VOLUME parameter is reguireri only if you want an area of the datd 
set written on a specific volume or the pr~me area requires use of more 
than one volume. (If the prime area and index arEa are defined on the 
same staterr.ent, you cannot request more than one volume on the DD 
statement.) ~ither supply the volurre serial nurrber or numbers in the 
VOLUME parameter or code VOLUME=REF=referencE. In all cases, the VOLU~k 
parameter can be used to request a private volurre CFHIVATE) and to 
retain the private volume (RETAIN). 

The first volume to be allocated for the prime area of an indexed 
sequential data set cannot be the volume frcrr which the system is loaded 
(the IPL volume). 

ThE LABEL PARAMETER 

The LABEL parameter need only be coded to specify a I"Etention period 
CbXPDT or RETPD) or password protection CPASSWO~D). 

276 JCL Reference 



TtiE DCB PARAMETER 

The DCB parameter must be coded on every DD statement that defines an 
indexed sequEntial data set. At minimum, th€ DCB paraweter must contain 
DSORG=IS or DSORG=ISU. other DCB subparameters can re coded to complete 
the data control block if it has not been completed by the processing 
program. When more than one DD statement is used to define the data 
set, code all the DCB subparameters on the first DD statement. Code 
DCrl=*.ddname on the remaining statement or statements; doname is the 
name of the DD statement that contains the DCb subparameters. 

~.]nen reusing previously allocated space and recreating an ISA1\'l data 
set, desired changes in the DCB parameter rr,ust be coded on the DD 
statement. Although you are creating a new data set, some DCB 
3ubparameters cannot be changed if you want to use the s~ace the old 
data set used. The r::c:a subparameters, you can change are: BFALN, 
BLKSIz.E, CYLOFL, DSORG, hIARCHY, KEYL.t.:N, LRECL, NCP, N'IM, OPTCD, l<.ECFjV:, 
and RKP. 

TrlE DISP PARAMETb~ 

If you are creating a new da-ta set and not reusing preallocated space, 
the DISP parameter need only be coded if you want to keep, DISF=(,KEbP), 
catalog, DISP=(,CATLG), or pass, DISP=(,PASS), the data set. If you are 
reusing previously allocated space and recreating an ISA~ data set, code 
DISP=CLD and MACRF=(PL) or (PM). The newly created data set will 
overlay the old one. 

In order to catalog the data set ~hen DISP=(,CATLG) is coded, the 
data set must be defined on only one DD statement. If the data set was 
defined on more than one DD statement and the volumes on which the data 
set now resides correspond to the same device type, you can use the 
IEHPROGM utility program to catalog the data set. Refer to the chapter 
"The IEHPROGM Program" in the Utilities ~ublication for details. 

Trl£ SPACE PARAMETER 

The SPAC~ parameter is r~quired on any DD statement that defines a new 
indexed sequential data set. Use either the recommended nonspecific 
allocation technique or the more restricted arsolute track (ABSTR) 
technique. If more than one DD statement is used to define the data 
set, all must request space using the sarr,e technique. 

Nonspecific Allocation Technigue 

You must request the prirrary quantity in cylinders (CYL). When the DD 
staterr,ent that defines the prime area requests more than one volullie, 
each volume is assigned the number of cylinders requested in the SPACE 
paranleter. 

One of the subparameters of the SPACE parameter, the "index" 
subparameter, is used to indicate how many cylinders are required for an 
index. When one DD statement is used to define the ~rime and index 
areas and you want to explicitly state the size of the index, code the 
"index" subparameter. 

The CONTIG sUbparameter can be coded in the SPACE pararr,eter. 
nowever, if CONTIG is coded on one of the statements, it Rust re coded 
on all of them. 

You cannot request a secondary quantity for an indexed sequential 
data set. Also, you cannot code the subpararreters RLSE, MXIG, ALX, and 
ROUND. 

Appendix C: Creating and Retrieving Indexed Sequential Data sets 277 



Absolute Track Technique 

The number of tracks you request must be equal to one or Thore whole 
cylinders. The address of the beginning track must correspond with tbe 
first track of a cylinder other than the first cylinder en the volume. 
When the DD statement that defines the prime area requests If;ore than one 
volume, space is allocated for the prime area beginning at the specified 
address and continuing through the volurre and onte the next volume until 
the request is satisfied. (This can only be done if the volurre table of 
contents of the second and all succeeding vclumes is contained within 
the first cylinder of each volume.) 

One of the subpararneters of the SPACE parameter, the "index" 
subparameter, is used to indicate how many tracks are required for an 
index. The number of tracks specified must be equal to one or more 
cylinders. When one DD statement is used to define the prime and index 
areas and you want to explicitly state the size of the index, code the 
"index" subparameter. 

TtiE S£P OR AFF PARAMETER 

The SEP or AFF parameter is coded only if you want channel separation 
from the area or areas defined on the preceding statement or statements 
in the group. In order for the areas to be written using separate 
channels, you must also request devices by their actual address, e.g., 
UNIT=19Q,. 

Note: If the indexed sequential data set is to reside on more than one 
volume and an error is encountered as the vclumes are being allocated to 
the data set, follow this procedure before resubrritting the jot: Use 
the IEhPROGM utility program to scratch the data set labels on any of 
the volumes to Which the data set was successfully allccated. This 
utility program is described in the chapter "The IEHPROG~ Prograrr" in 
the ytilitie~ publication. 

Area Arrangement of an Indexed Sequential Data Set 

When you create an indexed sequential data set, the arrangement of the 
areas is based on two criteria: 

1. The number of DD statements used to define the data set. 
2. what area each DD statement defines. 

An additional criterion is used when you do not include a DD statement 
that defines the index area: 

3. Is an index size coded in the SPACE parameter of the DD statement 
that defines the prime area? 

Table 3 illustrates the different arrangements that can result based 
on the criteria listed above. In addition, 'lable 3 indicates what 
restrictions apply on the number and types of devices that can be 
requested. 

278 JCL Reference 



Table 3. Area Arrangement of Indexed Sequential Data Sets 
r---------------------------------------T-----------------T-------------, 
I CRITERIA I I I 
t------------T---------------T---------~ I I 
I I I I~ES~~ICTIONS O~ I RESULTING I 
li.Number of 12.Area defined 13.Index IDEVICE TYPES AND IARRANGEMENT I 
I DD I on a DD I size INUMB~R OF DEVICES 10F I 
I stctementsl statement I coded? I.r<E<;U.t,S'IED. IAREAS I 
r------------+---------------t---------t-----------------+-------------~ 
I I I I I I 

I

I 3 I INDEX I I None I separate I 
I I PRIlV.!E I I I index, pr ime, I 
I I OVFLOW I I land overflow I 
I I I I I area s • I 
r------------+---------------+---------+--·---------------+-------------~ 
I I I I I I 
I 2 I INDEX I I None I separate I 
I I PRIME I I I index and I 
I I I I Iprime I 
I I I I I area s . 1 I 
r------------+---------------+---------+-----------------+-------------~ 
I I I I I I 

II 2 I PRIME I No I None I separate I 
I I OVFLOW I I Iprime and I 
I I I I I overflow I 
I I I I I areas. An I 
I I I 1 lindex area is I 
I I I 1 lat the end ofl 
I I I I Ith~ overflow I 
I I I I I area. I 
r------------+---------------+---------+-----------------+-------------~ 
I I I 1 I I 
1 2 I PRIME I Yes IThe statement lseparate I 
I I OVFLOW I Idefining the Iprime and I 
I I I Iprime area cannotloverflow I 
I I I Irequest more thanlareas. An I 
I I I lone device. I index area is I 
I I I 1 lembedded in I 
I I I I Ithe prime I 
I I I I I area. I 
r------------+---------------+---------t-----------------t-------------~ 
I I I I I I 
1 1 I PRIME I No I None IPrime area I 
I I I I Iwith index I 
I I I I I area at its I 
I I I I I End. 2 I 
r------------+---------------+---------+-----------------+-------------~ 
I I I I I I 
I 1 I PRIME I Yes Icannot request IPrime area I 
I I I Imore than one Iwith embedded I 
I I I I device. I index area. I r------------i---------------i---------i--------------___ i _____________ ~ 
11If both areas are on volumes that correspond to the same device I 
I type, an overflow area is E~stablished if cne of the cylinders I 
I allocated for the index area is only partially used. The overflow I 
I area is established in the unused ~ortion of that cylinder. I 
12If the unused ~ortion of the index area is less than one cylinder, I 
I it is used as an overflow area. I L _______________________________________________________________________ J 

Appendix C: Creating and Hetrieving Indexed Sequential Data Sets 279 

Appendix C 



Retrieving an Indexed Sequential Data Set 
If all areas of an existing indexed sequential data set reside on 
volumes of the same device type, you can retrieve the entire data set 
with one DD statement. If the index or overflow resides on a volume of 
a different device type, you must use two DD statements. If the index 
and overflow reside on volumes of different device types, you roust use 
tHree DD statements to retrieve the data set. 

The only DD statement pararr:eters that can te coded when retrieving an 
indexed sequential data set are the DSNAME, UNIT, VOLU~E, DCB, and DISP 
~araroeters. When to code each of these parameters and what restrictions 
apply are described in the following paragraphd. 

'I!fB Di.3NAML: PARAM1!.TEI-( 

'Tne D~)NAML parameter is always required. Identify the data set by its 
narre, but do not include the terrr, INLEX, PRIM}, or OVFLOW. If the data 
set was passed from a previous step, identify it ~y a backward 
rE::ference. 

'Ill.t; UNIT PARAr·~ETER 

Tbe UNI,}' parameter must bE coded unless tne data set IesiCies on one 
volume and was passed. You identify in the UNIT raraneter the device 
type and how many of these devices are required. 

If the data set resides on wore than one volume and the volumes 
correspond to the same device type, you need only one LD statement to 
retrieve the data set. Request one device in the UNIT parameter ~er 
volume. If the index or overflow area of the data set resides on a 
different type of volwne than the other areas, you Trust use two DD 
statements to retrieve the data set. On ene DD statement, request tne 
device type required to retrieve the index or overflow area. On the 
otner DD statement, request the device type and tne nurrber of devices 
required to retrieve the prime area and the cverflow area if the 
overflow area resides on the same device type. 1f the index and the 
overflow areas reside on different device ty~es frore tile prime area, a 
third DD statement is needed. 

Tt1.8 VOLUlvlE PARAMl. 'rEf< 

lne VOLUME parameter must be coded unless the data set resides on one 
volume and was passed from a previous step. Identify in the VOLUME 
parameter the serial numbers of the volumes en which tbe data set 
resides. Code the serial numbers in the sarec order as tney were coded 
on the DD statements used to create the datd set. 

TH~ DCB PARAMETEk 

The DCB parameter must b~ coded unless the data set was passed froIT a 
previous step. The DCB parameter must always contain DSCRG=IS or 
DSORG=ISU.. Other DCB subparameters can be coded to corr.plete the data 
control block if it has not Deen corr.pleted ty the processing program. 

THE DISP PARAi"1ETER 

Tne DISP parameter must always be coded. The first su.cparameter of the 
DISP parameter must be MOD or OLD. You can, optionally, assign a 
disposition as tne second sUbparameter. 

280 JCL keference 



Example of Creating and Retrieving an Indexed Sequential Data Set 

1. 'The following job step includes the DD statements that could be 
used to create an indexed sequential data set. ~ach area of the 
indexed sequential data set is defined cn a serarate DD statement. 

//OUTPUT4 
//GROUP1 
// 
// 
// 
// 
// 
// 
// 
// 

EXEC PGM=INCLUDE 
DD DSNAME=PART86(INDEX),DISP=(,KEEP),DNI~=2301, 

VOLUME=SER=538762,SPACE=(CYL,10"CONTIG), 
CCB=(DSORG=IS,RECFM=F,LRECL=80,RKP=1,KEYLEN=8) 

DD DSNAMlli=PART86(PRIME),DISP=(,KEEP),UNI~=(2311,2), 
VOLUME=SEH=(538763,538764), 
SPACE=(CYL, (25) "CONTIG) ,DCB=*.GROUP1 

DD DSNAME=PART86(OVFLOW),DISP=(,KEEP),UNIT=2311, 
VOLUME=SER=538765,SPACE=(CYL,15"CO~TIG), 
DCB=*.GROUP1 

The following job step includes the DD statements required to 
retrieve the indexed sequential data set created above. 

//INPUT12 
//RET4 
// 
// 
// 

EXEC PGM=ADD 
DD DSNAMB=PART86,DCB=DSORG=IS,UNIT=2301, 

DISP=OLD,VOLUME=SER=538762 
DD DSNAM:E=PART86,DCB=DSORG=IS,UNIT=(2311,3), 

DISP=OLD,VOLUME=SER=(538763,538764,838765) 

x 
X 

X 
X 

X 
X 

x 

x 

Two DD statements are required to retrieve the data set because the 
index area resides on a volume of a different device type than the 
volumes on which the prime and overflow areas reside. 

App~ndix C: Creating and Retrieving Indexed Sequential Data Sets 281 

Appendix C 





Appendix D: Creating and Retrieving 
Generation Data Sets 

A generation data set is one of a collection of successive, historically 
related, cataloged data sets known as a generation data group. The 
system keeps track of each data set in a generation data group as it is 
created so that new data sets can be chronologically ordered and old 
ones easily retrieved. 

To create or retrieve a generation data set, you identify the 
generation data group name in the DSNAME parameter ano. follow the group 
name with a relative generation number. When cr~ating a generation data 
set, the r.elative generation number tells the system \tIhether this is the 
first data set being added during the job, the second, the third, etc. 
When retrieving a generation data set, the relative generation number 
tells the system how many data sets have been added to the group since 
this data set was added. 

A generation data group can consist of cataloged sequential, 
partitioned, indexed sequential (if the data set is defined on one D0 
statement), and direct data sets residing on tape volurres, direct access 
volumes, or both. Generation data sets can have like or unlike DCB 
attributes and data set organizations. If the attributes and 
organizations of all generations in a group are identical, the 
generations can be retrieved together as a single data set (up to 255 
data sets can be retrieved in this \tIay). 

Before You Define the First Generation Data Set 
Before you define the first generation data set, you Il,USt build a 
generation data group index. This index provides lower-level entries 
for as many generation data sets (up to 255) as you wculd like to have 
in your generation data group. The system uses these lower-level 
indexes to keep track of the chronological order of the generation data 
sets. The index must reside on the system residence volume, or an 
alternate control volume. You use the IEHPRCG~ utility program to build 
your index; this program is described in the chapter "~he IEHPROGM 
Program" in the Utilities publication. 

Another requirement of generation data groups is that a data set 
label must exist on the same volume as the index. The system uses this 
label to refer to DCB attributes when you define a new generation data 
set. There are t\tlO ways to satisfy this requirement: (1) create a 
model data set label before you define the first generation data set; or 
(2) use the DCB parameter to refer the system to an existing cataloged 
data set each time you define a new generation data set. 

creating a Model Data Set Label 

To create a model data set label, you must define a data set and request 
that it be placed on the same volume as the generation data group index. 
This ensures that there is always a data set label on the same volurre as 
the index to which the system can refer. 

The name you assign to the data set may be the same or different than 
the name assigned to the generation data group. (If you assign the sarre 
name for both, the data set associated with the model data set label 
cannot be cataloged.) You may request a space allocation of zero tracks 
or cylinders. The DCB attributes you can supply are DSO~G, OPTCD, 
BLKSIZE, LRECL, KEYLEN, and HKP. 

Appendix D: Creating and Retrieving Generation Data sets 283 

Appendix D 



This is an example of creating a nodel data set label: 

//DD1 DD DSNAME=PAY.WEEK,DISF=(NEW,KE~P),UNI1=2311, 

// VOLUME=SER=SYSRLS,SPACE=(T~K,O),DCB=(RECF~=FB, 

// LRECL=240,BLKSIZE=9bO) 

x 
X 

You need not create a model data set label for every generation data. 
group whose indexes reside on the sarre volume. Instead, you may create 
one model data set label to be used by any number of generation data 
groups. If you create only on~ model, you should not supply any DCB 
attribut:es. when you create a generation data set, you specify the narr:e 
of the model in the DCB parameter and follow the name with a list of all 
the DCB subparameters required for the new generation data set, i.e., 
DCB=(dsname,list of attributes}. 

If there is a cataloged data set that resides on tne same volume as your 
generation data group index and you are sure that data set will exist as 
lonq as you are adding data sets to your generation data group, you neEd 
not create a model data set label. When you create a generation data 
set, you specify the name of the cataloged data set in the DCB 
parameter, i.e., DCB=dsname. If all the DCB attributes are not 
contained in the label of the cataloged data set, or if you want to 
override certain attributes, follow the data set name with these 
attributes, i.e., DCB=(dsname,list of attributes). 

Creating a Generation Data Set 

When defining a new generation data set, you always code the DSNfu~E, 
DISP, and UNIT parameters. Other parameters you might code are the 
VOLUME, SPACE, LABEL, and DCB parameters. 

THE DSNAME PARAMETER 

In the DSNAME parameter, you code the name of the generation data group 
followed by a number enclosed in parentheses. This nurrber must be 1 or 
greater. If this is the first data set you are adding to a particular 
generation data group during the job, code +1 in parentheses. Each time 
during the job you add a data set to the same generation data group, 
increase the number by one. 

Any t~ime you refer to this data set later in the job, you use the 
same relative generation n~ber as was used earlier. At tne end of the 
job, the system updates the relative generation numbers of all 
generations in the group to reflect the additions. 

TnE DISP PARA~ETER 

~Jew generations are assigned a status of NEw and a disposition of CATLG 
in the DISP parameter, i.e., DISP=(NEW,CATLG). If the disposition is 
not specified in the DISP parameter, the system assumes a disposition of 
CATLG. 

284 JCL Reference 



TI1E UNIT PARAMETER 

The UNIT parameter is required on any DD staterrent that defines a new 
generation data set unless VOLUME=REF=reference is coded. In the UN~T 
parameter, you identify the type and nurocer ef devices yeu want (tapL or 
di:rect access). 

Another way to request a device is to code UNIT=AFF=ddname; where the 
named DD statement requests the device or device type you want. 

'IHE VOLUME PARAI'-1ETER 

You may assign a volume in the VOLUME parameter or let the system assign 
one for you. The VOLUME para~eter can also be uaed to request a private 
volume (PRIVATE), to retain t~he private volume Cf{ETAIN), and to indicate 
that more volumes may be required (volume ceunt). 

THE SPACE PARAMETER 

The SPACE parameter is coded only when the generation data set is to 
reside on a direct access volume. The SPLIT or SUBALLOC parameter can 
be coded in place of the SPACE parameter if the data set's organization 
permits the use of these parameters. 

THE LABEL PARAMETER 

You can specify label type, password protection (PASSWCRV), and a 
retention period (EXPDT or RETPD) in the LAE~L parameter. If the data 
set will reside on a tape velURe and is not the first data set on the 
volume, specify a data set sE~quence number. 

ThB DCB PARAt-1£TER 

A model data set label that has the same name dS the grouf name TIlay 
exist. If this is so, and if the label centains all the attributes 
required to define this generation, you need not code the DCB pararretez. 
If all the attributes are not~ contained in the lacel, or if you want to 
override certain attributes, code these attributes in the DCB paraITe~er, 
i.e., DCB=(list of attributes). 

If a model data set label has a different narre than the group name 
and if the label contains all. the attributes required to define this 
generation data set, only the name of the data set associated with the 
model data set label need bE coded. Code the na~e in the DeB pararreter, 
i.e., DCB=dsname. If all the attributes are not contained in the label, 
or if you want to override certain attributes, follow the 6ata set narre 
with these attributes, i.e., DCB~(dsname,list of attrirutes). 

If a model data set label does not exist, you aust code the name of a 
cataloged data set that resides on the same volUlite as the generation 
data group index, i.e., DCB=dsnarne. If all tne attributes are not 
contained in the label for this data set, or if you want to override 
certain attributes, follow the data set name with these attributes, 
i.e., DCB=(dsname,list of attributes). 

Appendix D: Creating and Hetrievin0 Generation Data Sets 285 

Appendix D 



Retrieving a Generation Data Set 

To retrieve a generation data set, you always code the DSNAME and DISP 
parameters. Other parameters you rr.ight code are the UNIT, LABEL, and 
DeB parameters. 

THL DSNAME PARAMETER 

In the DSNAME parameter, you code the name of the genEration data group 
followed Dy a number enclosed in parentheses. Tne nunter you code 
depends on ho~ many new generation data sets havE been added to the 
qroup since this generation data set was added. If nene have been added 
~rior to the job, code a zero (0). If one has been added prior to the 
iob, code (-1). Decrement the nurrber by 1 until you determine the 
present relative generation number of the data set, then code this 
number. 

A~y time you refer to this data set later in the job, you use the 
same relative generation number as was used earlier, even if another 
generation has been added during the job. 

If you want to retrieve all generations of a o,eneration data group as 
a single data set, you specify the generation data group name without a 
q(:!neration number, e.g., DSNAN.t:=WEEKLY.PAYRCLL. You can retrieve all 
generations as a single data set only if the attributes and 
organizations of all generations are identical. 

~ri~ 0lSP PARA~ETER 

~ne DISP parameter must always be coded. 
0ISP parameter must be aLL, SHR, or MOD. 
disposition as the second subparameter. 

'LIli. UNIT PARAMETER 

The first subparameter of the 
You can, optionally, assign a 

Code the UNIT parameter when you want more than one device assigned to 
the aata set. Code the number of devices you want in the unit count 
sUDparameter, or, if the data set resides on more than one volume and 
you want as many devices as there are volumes, code P in Flace of the 
unit count subparameter. 

Trt~ LABEL PARAMETER 

Code the LAEEL parameter when the data set has other than standard 
labels. 

I'J~l.t.: DCB PARAIv;LTEH 

CaGe the DCB parameter when the data set has other than standard labels 
and DCB information is required to cOIDFlete the data control block. 

Resubmitting a Job for Restart 

certain rules apply when you refer to generation data sets in a job 
resubroitted for restart (the RESTART parameter is coded on the JOB 
statement). 

280 JCL Keference 



For step restart: If step restart is performed, generation data sets 
that were created and cataloged in steps preceding the restart step rrust 
not be referred to in the restart step or in steps following the restart 
step ny means of the same relative generation numbers that were used to 
creat~ them. Instead, you roust refer to a generation data set by means 
of its present relative generation number. For example, if the last 
generation data set created and cataloged was assigned a generation 
number of +2, it would be referred to as 0 in the restart step and in 
0teps following the restart step. In this case, the generation data set 
assigned a generation number of +1 would be referred tc as -1. 

For checkpoint restart: If generation data sets created in the restart 
step were kept instead of cataloged (i.e., DISP=(NEW,CATLG,KEEP) was 
coded), you can, during checkpoint restart, refer to these data sets and 
generation data sets created and cataloged in steps preceding the 
restart step by means of the same relative generation numbers that were 
used to create them. 

Heference 

1. Generation data sets can be created and retrievEd using utility 
programs. How to do this is described in "Appendix E: Generation 
Data Groups" in the utilities publication. Also described in this 
appendix is how to put indexed sequential data sets in a qeneration 
data group. 

Example of Creating and Retrieving Generation Data Sets 

1. The following job step includes the DD statements that could be 
used to add three data sets to a generation data grcup. 

//STEPA EXEC PGM=PROC~SS 

//DD1 DD DSNAME=A.B.C(+1),DISP=(NEW,CATLG),UNI'I=2400, X 
// VOL=SER=13846,LABEL=(,SUL) 
//DD2 DD DSNAME=A.B.C(+2),DISP=(OLD,CATLG),UNI'I=2311, X 
// VOL=SER=10311 
//DD3 DD DSNAME=A.B.C(+3),DISP=(NEW,CPTLG),UNI~=2301, X 
// VOL=SER=28929,S?ACE=(480,(150,20»,DCE=(LRECL=120, X 
// BLKSIZE=480) 

The first two DD statements do not include the DeB parameter; 
therefore, a model data set label must exist on the same voluree as 
the generation data group index and must have the same name as the 
generation data group (A.B.C). Since the DCB pararreter is coded 
on the third DD statement, the attributes LRECL and BLKSIZE, along 
with the attributes included in the model data set label, are 
used. 

The following job includes the DD statements required to retrieve 
the generation data sets defined above when no other data sets 
have been added to the generation data group. 

//JWC JOB CLASS=B 
//STEP1 EXEC PGM=REPORT9 
//DDA DD DSNAME=A.B.C(-2),DISP=OLD,LABEL=(,SUL) 
//DDB DD DSNAME=A.B.C(-1),DISP=OLD 
//DDC DD DSNAME=A.B.C(O),DISP=OLD 

Appendix D: Creating and Retrieving Generation Data Sets 287 

Appendix D 





Appendix E: Default Parameter Values 
Supplied in the Input Reader Procedure 

As your control statements are read and interpreted in systems with MFT 
and MVT, the input reader assigns default values to specific parameters 
tnat are not coded and checks for violations of certain restrictions. 
The default values for specific paraITeters and the restrictions are 
specified in the cataloged procedure for the input reader. 

The input reader is controlled by a reader/interpreter cataloged 
procedure supplied by IBM or the installaticn. The default parameter 
values and restrictions will probably differ in the IBM-supplied and the 
installation-supplied procedures. 

How to Keep Track of the Default Values and Restrictions 

Table 4 lists the parameters for which default values are assigned when 
they are not coded on specific control statements. The default values 
assigned to these parameters when an IBM-su~flied cataloged procedure is 
used are also listed. Space is left in the right-hand portion of the 
table so you can write in tne default values that will be assigned when 
an installation-supplied procedure is used. Table 4 also lists those 
restrictioris that must be checked as the control statements are read and 
tells which apply when an IBM-supplied procedure is used. Space is left 
in the right-hand portion of the table so yeu can write in which of 
these restrictions apply when a installation-supplied ~rocedure is used. 

The page on which Table 4 appears may be removed from the publicatien 
and placed in a convenient location, so that yeu and other programmers 
can refer to it. 

Appendix E: Default Parameter Values Supplied in the Input Reader Procedure 289 

Appendix E 





---

Table 4. Default Values and Restrictions Supplied in the Input Beader 
Procedures 

r-----------------------------------------------------------------------, 
I Default Pararreter Values I 
r----------------T------------T-------------T--------------------------~ 
I I I I Installation-Supplied I 
I Parameter I Statement IIB~~-S~pplied t------------T-------------~ 
I I I INane: IName: I 
r----------------+-------------+-------------+------------+-------------~ 
I ivJSGL-EVEL I JOB I (0,1) I I I 
I J?RTY I JOB 11 I I I 
I~EGION IJOB and EXECl50K I I I 
I TIME IEXEC 130 rrinutes I I I 
I.kOLL I JOB and EXEC I (Yf~S, NO) I I I 
I UNIT (note 2) IDD ISYSDA I I I 
ISPACE (note 2) IDD I (ThK,(~0,10»1 I I 
IBLKSIZE (note 3) IDD I (note 1) I I I 
I BUFNO (note 3) I DD I (note 1) I I I 
~----------------~-------------~-------------~------------~-------------~ 
I Restrictions I 
r----------------T-------------T-------------T--------------------------~ 
I I I I Installation-Supplied I 
IParameter or I Statement IIBM-Supplied t------------T-------------~ 
ISubparameter I I INaITe: IName: I 
r----------------+-------------+-------------+------------+-------------~ 
I Accounting I I I I I 
I Information IJOB Inot required I I 1 
IProgrammer's I 1 I I I 
I Name I JOB Inot required I I I 
I.dLP (note 4) I DD I Nl. assumed I I I 
r----------------~------------~-------------~------------~-------------~ 

I 
1 

Notes: 

1. The default value differs in each of the three IP~-supplied 
procedures, as follows: 

r------------------T-----------------------------------------, 
I I Prccedure Narr;e 1 
I r-------------T--------------T-----------~ 
I I ~DR I RDR400 I RDH3200 I 
I ~-------------+--------------+-----------~ 
1 DLKSIZE I 80 1 400 I 3200 I 
1 BU FNO 1 2 I 2 I 1 I L __________________ ~ ______________ ~ ______________ ~ ___________ J 

I 
12. The default values for the UNIT and SPACE parameters are used when 

you do not include these parameters on a DL staterrent that defines 
a data set being routed through an output stream (i.e., the SYSOUT 
parameter is coded on the DD statement). 

I 
1 
I 
I I 
13. The default values for the DC I'.) subpararreters BLKblZ.;.' and BUl'hO dre I 
I used when you do not include these subpararneters on a DD staterrentl 
I that defines data in the input stream (i.e., DD * or DD DATA I 
I staterrent). I 
I I 
14. HLP is a subparameter in the LABEL parameter that reyuests that 1 
I tape label processing be bypassed. 1 L ______________________________________________________________________ J 

Appendix E: Default Parameter Values Supplied in the Input Header Procedure 291 

Appendix E 





Appendix F: A Checklist 

When you create or retrieve a data set, the system requires certain 
information. This information is supplied on the DD statement that 
defines the data set. 

This appendix can be used as a checklist: As you code your DD 
statements, find the function you are performing in the left-hand column 
of Table 5. Across from the function are two separate lists of 
parameters. These parameters describe the information that you must 
supply to the system and the information that you may have to supply. 
You can compare your DD statement with what is listed to make sure all 
the required information is available to the system. 

Following Table 5 are examples of the DD statements that might be 
used when performing functions described in the table. Each example is 
keyed by number to a particular block within the table. If you do not 
understand why a parameter is listed for the function, either look at 
the example that corresponds t:o the number within the block or refer to 
the parameter description in section IV of this publication .• 

Table 5. A Checklist (Part 1 of 3) 
r-----------------------------------T-----------------------T-----------, 
1 1 I Information 1 
1 FUNCTION: JInformation That Is IThat May 1 
I Creating a Data Set IAlways Required IBe RequiredJ 
~----------------------------------~-----------------------~-----------~ 
1 Temporary Data sets 1 
~-----------------------------------T-----------------------T-----------~ 
1 Creating a Data Set I UNIT CD 1 DCB 01 
1 on a Unit Record Device 1 1 ucs I 
~-----------------------------------+-----------------------+-----------1 
I Creating a Data Set on 1 UNIT 01 DCB 01 
I a Tape Volume 1 1 VOLUME 1 
1 1 1 LABEL 1 
~----------------------------------+-----------------------+-----------~ 
1 Creating a Data Set in 1 SYSOUT 01 DCB 01 
1 the Output Stream for I 1 1 
1 PCP Systems 1 1 1 
~----------------------------------+-----------------------+-----------1 
I Creating a Data Set in 1 SYSOUT 01 DCB 01 
I the Output Stream for 1 1 UNIT I 
I MFT or MVT Systems 1 I SPACE 1 
r----------------------------------+-------------------+-----------1 
1 Creating A Data Set I UNIT GDI DCB ~I 
1 on a Direct Access 1 SPACE I VOLUME I 
I Volume 1 1 LABEL I 
r------------------------------·-----~----------------------~----------1 
I Nontemporary Data Sets I 
r----------------------------------T-----------------------T-----------~ 
I Creating a Data Set 1 UNIT QVI LABEL ~I 
I on a Tape Volume 1 DSNAME 1 DCB I 
1 I DISP I VOLUME I 
~-----------------------------.---~-+-----------------------+----------1 
I Creating a Generation I DISP ~I DCB ~I 
I Data Set on a Tape 1 UNIT 1 LABEL 1 
1 Volume 1 DSNAME 1 VOLUME I L ____________________________ . _____ ~ _______________________ ~ ___________ J 

(Part 1 of 3) 

Appendix F: A Checklist 293 

Appendix F 



Table 5. A Checklist (Part 2 of 3) 
r------~---------------------------T----------------------T----------~-, 

I I ,Information, 
I Creating a Nontemporary I Information That Is IThat May I 
I Data Set (con't) IAlways Required IBe Required I 
~------~----------------------------+---------------------+----------~-~ 
I Creating a Sequential I UNIT ~I LABEL @)I 
, Data Set on a Direct Access I DSNAME I DCB , 
I Volume (BSAM or QSAM) 'DISP I VOLUME I 
I ISPACE,SPLIT,orSUBALLOC I I 
~----------------------------------+-----------------------+----------.-~ 
, Creating a Data Set With I UNIT @I LABEL @V, 
, Direct Organization on a J DSNAME , VOLUME , 
I Direct Access Volume (BDAM) I DISP I I 
, I SPACE or SUBALLOC, I 
I I DCB , I 

~----------------------------------+-----------------------+----------.-~ 
I Creating a Partitioned J UNIT ~l LABEL @~, 
I Data Set on a Direct Access I DSNAME I VOLUME I 
I Volume (BPAM) I DISP I DCB I 
I , SPACE or SUBALLOC I I 
~------.----------------------------+----------------------+---------.-~ 
I Creating a New Member I DISP @ I UNIT ~) I 
I for a Partitioned Data , DSNAME , VOLUME I 
I Set I 'I 
~----------------------------------+-----------------------+----------.-~ 
I Creating a Data Set With I UNIT @I VOLUME ~~l 
, Indexed Sequential Organi- I DSNAME 'LABEL I 
I zation on a Direct Access I DISP I I 
I Volume (QISMl) I DCB I I 
I I SPACE I I 
~---------------------------------+-----------------------+----------.-~ 
I Creating a Generation I SPACE ~I DCB ~~I 
I Data Set on a Direct I DISP I LABEL I 
I Access Volume I UNIT I VOLUME , 
, I DSNAME , I 
~----------------------------------~-----------------------~----------.-~ 
'FUNCTION: I 
, Retrieving a Data Set , 
~----------------------------------T-----------------------T----------·-~ 
, Retrieving a Cataloged I DSNAME GVl DCB @~I 
, Data Set I DISP 'LABEL I 
, , I UNIT I 

~------.---------------------------+----------------------+----------.-~ 
I Retrieving a Noncataloged I DSNAME @ I LABEL @V I 
I Data Set on a Tape I UNIT I DCB I 
I Volume I VOLUME I I 
I I DISP I I 
~----------------------------------+----------------------+----------.-~ 
I Retrieving a Noncataloged I UNIT @VI LABEL @)I 
I sequential Data Set on a I VOLUME , I 
I Direct Access Volume I DSNAME I , 
I (BSAM or QSAM) I DISP I I 
~----------------------------------+----------------------+----------.-~ 
I Retrieving a Noncataloged I UNIT ~I LABEL ~~I 
I Data Set with Direct I VOLUME I I 
I Organization on a Direct I DSNAME I I 
I Access Volume (BDAM) I DISP I I 
~------.--------------.--------------+-----------------------+----------.-~ 
I Retrieving a Member of I DISP ~I UNIT ~~I 
I a Partitioned Data Set I DSNAME I VOLUME I 
I (BPAM) I I I L ____________________ . ______________ ~ _______________________ ~ _________ ._J 

(Part 2 of 3) 

294 JCL Reference 



~ 

Table 5. A Checklist (Part 3 of 3) 
r---------------------------'-------T----------------------~-----------, 
I I I Information I 
I I Information That Is IThat May I 
I Retrieving a Data set IAlways Required IBe Required I 
~----------------------------------+-----------------------t-----------1 
I Retrieving a Data Set J DSNAME GVI J 
I Wi th Indexed Sequential I UNIT I I 
I Organization on a Direct I VOLUME I I 
I Access Volume (QISAM or I DCB I I 
I BISAM) I DISP I I 
~----------------------------------+-----------------------t-----------~ 
I Retrieving a Passed I DSNAME @ I LABEL @I 
I Data Set I DISP I DCB I 
I I I VOLUME I 
I I I UNIT I 
t---------------------------·-------t-----------------------t-----------~ 
I Retrieving a Generation I DSNAME @ I DCB @ I 
I Data Set I DISP I LABEL I 
I II UNIT I L ___________________________ • _______ ~ _______________________ ~ ___________ J 

Examples 

CD //DDA 

CD //DDB 

CD //DDC 

0) //DDD 

@ //DDE 

® //DDF 

0) //DDG 

0 //DOH 

0 //DDI 

@ //DDJ 
// 

@ //DDK 

@ //DDL 
// 

@ //DDM 

@ //DDN 
// 

DD UNIT=1404 

DD UNIT=1403,UCS=PCAN,DCB=PRTSP=2 

DD UNIT=2400 

00 UNIT=2400-1,DCB=DEN=1,VOLUME=SER=14187,LABEL=2 

DD SYSOUT==L 

DD SYSOUT=G,DCB=PRTSP==2 

DD SYSOUT=(M,,7956) 

OD SYSOUT=B,UNIT=2301,SPACE=(80,300),DCB=BLKSIZE=640 

DD UNIT=SYSDA,SPACE=(TRK, (20,5» 

DO UNIT=2311,SPACE=(CYL,(2,1»,DCB=(RECFM=S,LRECL=X), 
LABEL=(,SUL),VOLUME=SER=190853 

DO UNIT=2400,DSNAME=OUT,OISP=(NEW,KEEP) 

DD UNIT=2400-2,DSNAME=WLK18,DISP=(,KEEP),LABEL=<,NL), 
OCB=TRTCH=C,VOLUME=SER=1540 

DO DISP=(,CATLG),UNIT=2400,DSNAME=WEEK.PAY(+1) 

DD DISP=(,CATLG),UNIT=2400-1,DSN==YEAR.MON(+l), 
LABEL= (, sOL) , DCB==A,. B. C" VOLUME=SER=GOG18 

x 

x 

x 

Appendix F: A Checklist 295 

Appendix 



@ IIDDO DD UNIT=2311,DSNAME=LNG,DISP=(,KEEP),SPACE=(TRK, (12,2» 

@ IIDDP DO UNIT=2314,DSNAME=CLB,DISP=(,CATLG). X .. 
II SPACE=(1024,(100.25»,LABEL=(,SUL"EXPDT=70180), X 
II VOL=SER=S12148,DCB=(BLKSIZE=240,RECFM=FB,LRECL=60) 

@ IIDDQ DD UNIT=2311,DSNAME=JCD,DISP=(NEW,KEEP), X 
II SPACE=(CYL,(8,l»,DCB=DSORG=DA 

@ IIDDR DD UNIT=2302,DSN=MT12"DISP=(,PASS), X 
II SPACE=(1024,(200,10»,DCB=(DSORG=DA,BLKSIZE=200, X 
II KEYLEN=4,RECFM=F),LABEL=(,SUL),VOLUME=SER=49878 

@ IIDDS DD UNIT=2302" DSNAME=PDS14, DISP= (NEW, KEEP) , X 
II SUBALLOC=(CYL,(20,1,3),STEP1.DD1) 

@ IIDDT DD UNIT=2314,DSNAME=AHTRY,DISP=(,CATLG), X 
II SPACE= (CYL, (8,,2,2» , LABEL= (" PASSWORD) , X 
II VOLUME=SER=158491,DCB=(RECFM=F,LRECL=80) 

@ IIDDU DD DSNAME=AHTRY(SET4),DISP=OLD 

@ IIDDV DD UNIT=2302,VOLUME=SER=X13912,DISP=OLD, X 
II DSNAME=SHTR(MEMB2) 

@ IIDDW DD UNIT=2311,DSN~iE=DAT(PRIME),DISP=(NEW,KEEP), X 
II DCB=DSORG=IS,SPACE=(CYL,(5,,1» 

@ IIDDX DD UNIT=2302,DSN=ISQ(PRIME),DISP=(,KEEP),DCB=(DSORG=IS, X 
II BLKSIZE=240,CYLOFL=1,OPTCD=MYLR,RECFM=FB,LRECL=60, X 
II RKP=19,KEYLEN=10),SPACE=(CYL,2),VOL=SER=535861, X 
II LABEL=EXPDT=70301 
II DD UNIT=2302,DSN=ISQ(OVFLOW),DISP=(,KEEP),DCB=*.DDX, X 
II SPACE=(CYL,1),VOL=SER=538267,LABEL=EXPDT=70301 

@ IID])Y DD DSNAME=PAY .. WEEK(+1),DISP=(,CATLG),UNIT=2314, X 
II SPACE=(TRK,(3,2» 

@) /ID])Z DD DSN=INV.FORM8(+2),DISP=(,CATLG),UNIT=2311, X 
// VOLUME=SER=SA2103,LABEL=(,SUL),DCB=(MODEL2,RECFM=F, X 
II LRECL=80),SPACE=(CYL,(2,l» 

@ I/DD1 DD DSNAME=A.B .. C,DISP=OLD 

@ /IDD2 DD DSN=KELL12, DISP=OLD" LABEL= ( , NSL) , UNIT= (, P) , .x 
II DCB= (BUFNO=4, HIARCHY=l) 

@ /IDD3 DD DSNAME=FILE18,UNIT=2400,DISP=OLD,VOL=SER=96977 

@ I/DD4 DD DSNAME=MILS. UNIT=24 00- 2, DISP= (OLD, PASS) , VOL=SER=9818, X 
/1 LABEL= (,NSL), DCB= (BLKSIZE=1600,LRECL=8 0) 

@ I/DD5 DD DSNAME=GLOSS,DISP=OLD,UNIT=2311,VOLUME=SER=P14992 

@ I/DD6 DD DSNAME=LAB14,UNIT=2301,DISP=OLD,VOLUME=SER=H69568, X .~ 

II LABEL=(,SUL"IN) 

296 JCL Reference 



@ //DD7 DD DSNAME=SERNOS,DISP=OLD,UNIT=2311,VOLU~m=SER=X20 

§ //DD8 DD DSN=BOLS,DIS.P=OLD,VOLUME=SER=W5898,UNIT=2302, X 
-~ .. // LABEL= (, SUL) 

@ //DD9 DD DSN=PGM(A81),DISP=OLD 

@ //DD10 DD DSNAME=LIBS(PROJ6),UNIT=2301,DISP=OLD,VOL=SER=D4762 

@ //DDl DD DSNAME=IND31,UNIT=(2311,2),DISP=OLD,VOLUME=SER(C2021, X 
// C2022),DCB=DSORG=IS 

@ //DD12 DD DSNAME=CHAN,DISP=(OLD,KEEP) 

® //DD13 DD DSNAME=*.STEP1.CREATE,DISP=(OLD,DELETE),LABEL=(,NL), X 
// UNIT=(,2),VOLUME=(PRIVATE,,4),DCB=*.STEP1.CREATE 

® //DD14 DD DSNAME=PAY.WEEK(-3),DISP=OLD 

@ //DD15 DD DSN=INV. FORM 0 (0), DISP=OLD, LABEL= (,SUL) , UNI'T= (, P) , X 
// DCB=(BLKSIZE=240,RECFM=FB,LRECL=60) 

Appendix F 

-~ 

Appendix F: A Checklist 297 





* parameter: This parameter is coded as 
the first parameter on a DD statement that 
precedes data in the input stream. 

ACCT parameter: This parameter is used to 
supply accounting information for a job 
ptep to an installation accounting routine 
and is coded on an EXEC statement. 

AFF parameter: This parameter is used to 
request the same channel separation from 
certain data sets as was requested earlier 
in the job step. The AFF parameter is 
coded on a DD statement. 

alias: An alternate name that may be used 
to refer to a member of a partitioned data 
set. 

allocation: The process of assigning a 
resource to a job step. 

automatic restart: A restart of a job 
after a job step abnormally terminates. 
The restart takes place during the current 
run, that is, without resubmitting the job. 

automatic volume recognition (AVR): A 
feature that allows the operator to mount 
labeled volumes on available input/output 
devices before those volumes are required 
by a job step. 

auxiliary storage: Data storage other than 
main storage; secondary storage. 

backward reference: A facility of the job 
control language tha.t permits you to copy 
information or refer to DD statements: that 
appear earlier in the job. 

catalog: 
1. The collection of all data set indexes 

maintained by data management. Each 
entry contains a data set name and 
volume and unit information about the 
data set. 

2. To place an entry for a data set. in 
the catalog. To specify this on a 
control statement, code 
DISP=(status,CATLG) on the DD 
statement that defines the data set 
you want cataloged. A cataloged data 
set is easy to retrieve. 

cataloged data set: A data set that is 
represented in an index or hierarchy of 
indexes in the system catalog, the indexes 
provide the means for locating the data 
set. 

Section XI: Glossary 

cataloqed procedure: A set of job control 
statements that has been assigned a name 
and placed in a partitioned data set known 
as the procedure library. To use a 
cataloged procedure, code the procedure 
name on an EXEC statement. 

checkpoint/restart: A facility of the 
operating system that can minimize time 
lost in reprocessing a job step that 
abnormally terminated. The CHKPT macro 
instruction, the RESTART parameter cn the 
JOB statement, and the RD parameter on the 
JOB or EXEC statement are associated with 
this facility. 

cneckpoint restart: A restart within a job 
step. The restart may be automatic 
(depending on an eligible completion code 
and the operator's consent) or deferred, 
where deferred involves resubmitting the 
job and coding the RESTART parameter on the 
JOB statement of the resubmitted job. 

CLASS parameter: This parameter is used to 
assign a job class to your job and is coded 
on a JOB statement. In multiprogramming 
systems, jobs within a job class are 
initiated according to their priority 
numbers. 

command statement: A job statement that is 
used to issue corr~ands to the system 
through the input stream. 

comment statement: A job control statement 
used to contain information that may be 
helpful to yourself or another person that 
may be running your job or reviewing your 
output listing. 

concatenated data sets: A group of input 
data sets that are treated as one data set 
for the duration of a job step. 

COND parameter: This parameter is used to 
test return codes issued by the processing 
programs; any test that is satisfied causes 
the job to be terminated or a job step to 
be bypassed. The COND parameter is coded 
on a JOB or EXEC statement. 

control volume: A volume that contains one 
or more indexes of the cata.log. 

data control block (DCB): A control block 
used to contain certain attributes required 
by an access method to store or retrieve a 
data set. The DCB parameter is one means 
of supplying attributes. 

Section XI: Glossary 299 

-



DJ1.TA pararr,eter: This parameter is coded as 
the first parameter on a DD statement that 
precedes data in the input stream when the 
data contains job control statements. 

data set: An organized collection of 
related data in one of several prescribed 
arrangements. The information required to 
store and retrieve this data is defined on 
a DD stat:ement. 

data set control block: A data set label 
for a dat:a set on a direct access volume. 

data set label: A collection of 
information that describes the attributes 
of a data set. The data set label for a 
data set is normally on the same volume as 
the data set it describes. 

DC!!: See data control block. 

DCB parameter: This parameter is used to 
supply attributes about the data set that 
are needed to complete the data control 
block. The DCB parameter is coded on a DD 
statement .• 

DD (data definition> statement: A job 
control statement that defines a data set 
that is being created or retrieved in a job 
step. DD statements follow an EX~C 
statement .• 

ddname (dlat:a definition name): A name 
assigned to a DD statement. This name 
corresponds to the ddname appearing in a 
data control block. 

DDNAME parameter: This parameter is used 
to postpone the definition of a data set 
until later in the same job step and is 
coded on a DD statement. 

deferred restart: A restart that is 
performed when a job is resubmitted and the 
RESTART parameter is coded on the JOB 
statement of the resubmitted job. 

delimiter statement: A job control 
statement used to mark the end of data. 
The characters /* appear in columns 1 and 2 
of this control statement. 

device ty~: A number that corresponds to 
a type of input/output device. Coding the 
device type in the UNIT parameter is one 
way of indicating what input/output device 
you want allocated to a job step. 

direct access device: An auxiliary storage 
device in which the access time is 
effectively independent of the location of 
the data set. 

direct data set: A data set whose records 
are in random order on a direct access 
volume. Each record is stored or retrieved 

300 JCL Reference 

according to its actual address or its 
address relative to the beginning of the 
data set. 

directory: A series of 256-byte records at 
the beginning of a partitioned data set 
that contains an entry for each member in 
the data set. 

DISP parameter: This parameter is used to 
describe the status of the data set and 
indicates what should be done with the data 
set after termination of the job step that 
processes it, or at the end of the job. 
The DISP parameter is coded on a DD 
statement. 

dispatching priority: The number assigned 
to a task, which in a multi task 
environment, determines the order in which 
the tasks may use main storage and CPU 
resources. 

DPRTY Farameter: This parameter is used to 
assign a dispatching priority to a job step 
and is coded on an EXEC statement. 

DSN parameter: This parameter is used to 
assign a name to a new data set or to 
identify an existing data set and is coded 
on a DD statement. Coding DSN is the same 
as coding DSNAME. 

DSNAME parameter: This parameter is used 
to assign a name to a new data set or to 
identify an existing data set and is coded 
on a DD statement. Coding DSNAME is the 
same as coding DSN. 

DUMMY Faramete~: This parameter is used to 
tell the system that the processing program 
should be executed, but no input or output 
operations should be performed on a 
particular data set. The DUMMY parameter 
is coded as the first parameter on a DD 
statement. 

dynamic storage: That portion of main 
storage that is subdivided into partitions 
or regions for use by the programs 
associated with job steps and some sysbem 
tasks. 

EXEC (execute) statement: A job control 
statement that marks the beginning of a job 
step and identifies the program to be 
executed or the cataloged or in-stream 
procedure to be used. 

extent: A contiguous area of storage on- a 
direct access volume in which a data se"t 
resides. A data set may reside in more 
than one area of storage on one or more 
volumes. 



F format: A data set format in which the 
logical records are the same length. 

fixed-length record: A record havinq the 
same length as all other records with which 
it is logically or physically associated. 

qeneration data group: A collection of 
data sets that are kept in chronological 
order; each data set is called a 
generation. The DSNAME parameter is used 
to define the generation you are creating 
or retrieving. 

qeneration data set: One generation of a 
generation data group. 

group name: A 1- to 8-character nam«:! that 
identifies a device or a collection of 
devices. Coding a group name in the UNIT 
parameter is one way of indicating what 
type of input/output device you want 
allocated to a job step. 

index: 
--C--A table in the catalog used to locate 

data sets. 
2. A table used to locate the reco:cds of 

an indexed sequential data set. 

indexed sequential data set: A data set on 
one or more direct access volumes whose 
records contain a key portion, and the 
location of each record depends on the 
contents of the key portion. The location 
of each record is computed through the use 
of an index. 

initiation: The process of selecting a job 
step for execution and allocating 
input/output devices for the job step. 

input job queue: A queue of summary 
information of job control statements 
maintained by the job scheduler, from which 
it selects the jobs and job steps to be 
processed. 

input stream: The sequence of control 
statements and data submitted to the 
operating system on an input device 
especially activated for this purpose by 
the operator. 

In-stream procedures: A set of job control 
statements, beginning with a PROC statement 
and ending with a PEND statement, that have 
been placed in the input stream. An 
in-stream procedure can be executed any 
number of times during the job in which it 
appears. 

jQ~: A total processing application that 
consists of one or more processing programs 
required to perform the application. A job 
is identified by a JOB statement. 

JOB statement: A job control statement 
that marks the beginning of a job, and when 
jobs are stacked in the input stream, marks 
the end of the control statements for the 
preceding job. 

job class: An alphabetic character of A 
through 0 that characterizes the type of 
job you are sUbwitting. -Each job class is 
defined by the installation; you indicate 
the type of job you are submitting in the 
CLASS parameter on the JOB statement. In 
multiprogramming systems, jobs within a job 
class are initiated according to their 
priori-ty numbers. 

job control language: A high-level 
programming language used to code job 
cont~ol statements, which describe a job to 
the operating system and inform the system 
of how the job is to be processed. 

job control statement: Anyone of the 
control statements in the input stream that 
identifies a job or defines its 
requirements. 

job library: Set private library. 

job management: A general term that 
collectively describes the functions of the 
job scheduler and master scheduler. 

job processing: The reading of control 
statements and data from an input stream, 
the initiating of job steps defined in 
these statements, and the writing of system 
output messages. 

job scheduler: A control prograrr function 
that controls input streams and system 
output, obtains input/output devices for 
jobs and job steps, and regulates the use 
of the computing system by jobs. The job 
scheduler is made up of the 
reader/interpreter, initiator/terminator, 
and output writer. 

job step: The unit of work associated with 
one processing program or one cataloged 
procedure, and related data. A job 
consists of one or more job steps. 

JOBLIE: A special ddname that when 
specified on a DD statement indicates to 
the system that you are defining a private 
library. 

jobname: The name assigned to a JOB 
statement; it identifies the job to the 
system. 

Section XI: Glossary 301 



K: 1024 .aytes. 

~word: A symbol that identifies a 
parameter or subparameter. 

keyword paramete~: A parameter that 
consists of a keyword followed by an equal 
sign, followed by a single value or a list 
of subparameters. Keyword parameters must 
follow positional parameters in the operand 
field of a job control statement, but the 
keyword parameters may appear in any order. 

LABEL parameter: This parameter is used: 
(1) to describe the data set label 
associated with the data set; (2) to 
describe the sequence number of a data set 
that does not reside first on a reel; (3) 
to assign a retention period; (4) to assign 
password protection; and (5) to override 
the OPEN macro instruction (BSAM only). 
The LABEL parameter is coded on a DD 
statement .. 

. librar-y: 
1. In general, a collection of 

information associated with a 
particular use, and the location of 
which is identified in a directory of 
some type. In this context, see link 
library, private library, system 
library. 

2. Any partitioned data set. 

limit prioriEY: A priority associated with 
every task in an MVT system, representing 
the highest dispatching priority that the 
task may assign to itself or to any of its 
subtasks. 

link librc~: A partitioned data set named 
SYS1. LINKI~IB. Each member is a processing 
program and is called in the PGM parameter 
on the EXEC statement or in the ATTACH, 
LINK, LOAD, and XCTL macro instructions. 

129ical recor9: A record that is defined 
in terms of the information it contains 
rather than by its physical traits. You 
may have t~o specify the length of the 
logical re~ord to complete the data control 
block; one way to specify this is in the 
LRECL subparameter of the DCB parameter. 

main stora~~: All addressable storage from 
which inst~ructions can be executed or from 
which data can be loaded directly into 
registers. 

main stora~e hierarchy s~ort: An option 
that divides main storage into two blocks 
known as hierarchies; hierarchy 0 is 
assigned to processor storage and hierarchy 
1 to the IBM 2361 Core storage unit. 

302 JCL Reference 

ma§ter scheduler: The part of the control 
program that responds to operator commands 
and returns required information. 

member: An independent, sequentially 
organized data set identified by a unique 
name in a data set directory. 

MFT (Ir,ultiprograrominq with a fixed number 
of tasks): A control program that provides 
priority scheduling of a fixed number of: 
tasks. A priority scheduler is used in 
MFT. 

MSGCLASS parameter: This parameter is used 
to assign an output class to the system 
messages for your job and is coded on a JOB 
statement. 

MSGLEVEL parameter: This parameter is used 
to indicate what jot control staterrents and 
allocation/termination messages you want 
displayed as output from your job and is 
coded on a JOB statement • 

multiprogramming: Executing more than one 
jot step concurrently. 

mutually exclusive: The term applied to 
two parameters that cannot be coded on the 
sarre job control statement. 

MVT (multiproqrarrminq with a variable 
number of tasks): A control program that 
provides priority scheduling of a variable 
number of tasks. A priority scheduler is 
used in MVT. 

MVT with Model 65 multiprocessing: An 
extension of MVT. 'Ihis control program is 
used with the Model 65 mUltiprocessing 
(M65MP) system. 

M65MP: See MVT with Model 65 
multiprocessing. 

narn~: A 1- to 8-character term, beginning 
with an alphabetic or national (*, @, $) 
character, that identifies a data set, a 
control statement, a program, or a 
cataloged procedure. 

nopspecific volume reguest: A request f.or 
volumes that allows the system to select 
suitable volumes. This type of request can 
only be made when defining an output data 
set. 

nontemForary data set: A new data set that 
exists after the job that created it 
terminates. 

null statement: A job control statement 
used to mark the end of a job's control 
statements and data. 



OUTLIM parameter: This parameter is used 
to specify the maximum number of logical 
records you want included for the output 
data set being routed through the output 
stream. The OUTLIM parameter is coded on a 
DD statement that must also contain the 
SYSOUT parameter. 

output class: An alphabetic or numeric 
character that characterizes the type of 
output data to be written to a unit record 
device. Each output class is defined by 
the installation. For system messages, you 
indicate the type of output data in the· 
MSGCLASS parameter on a JOB statement; for 
output data sets, you indicate the type of 
output data in the SYSOUT parameter on a DD 
statement. 

output listing: A form that is printed at 
the end of your job that may contain job 
control statements used by your job, 
diagnostic messages about your job, data 
sets created by your job, or a dump. 

output'stream: Diagnostic messages and 
other output data issued by the operating 
system or the processing program on output 
devices especially activated for this 
purpose by the operator. 

output writer: A part of the job scheduler 
that writes output data sets onto a system 
output device, independently of the 
programs that produced the data sets. 

PARMparameter: This parameter is used to 
supply a processing program with 
information it requires at the time the 
program is executed and is coded on an EXEC 
statement. 

parameter: A charac~er string that is 
recognized as having meaning by the 
reader/interpreter., For most of these 
character strings, variable information is 
provided to give a constant value for a 
specific process or purpose. 

partition: In systems with MFT, a 
subdivision of the dynamic area of main 
storage set aside for a job step or a 
system task. 

partitioned data set: A collection of 
independent groups of sequential records on 
a direct access volume, each of which is 
called a member. Each member has a unique 
name and is listed in a directory at the 
beginning of the data set. 

PCP (primary control program): A control 
program that provides sequential scheduling 
of jobs. 

I PEND statement: A job statement used to 
mark the end of an in-stream procedu:re. 

PGM parameter: ~his parameter appears as 
the first parameter on an EXEC statement 
when you want to execute a particular 
program. 

physical record: A record that is defined 
in terms of physical qualities rather than 
by the information it contains (logical 
record). 

positional parameter: A parameter that 
must precede all keyword paraIr,eters in the 
operand field of a job control statement. 
positional parameters must appear in a 
specified order. 

primary quantity: The initial amount of 
space on a direct access volume that you 
request in the SPACE, SPLIT, or SUBALLOC 
parameter. 

priority: A rank assigned to each job step 
that determines the order in which job 
steps are selected for execution and 
requests for resources are satisfied. 

priority scheduler: A scheduler used with 
MFT and MVT. Priority schedulers process 
complete jobs according to their initiation 
priority within job classes. priority 
shcedulers can accept input data from more 
than one input stream. 

private: The term applied to a mounted 
volume that the system cannot allocate to 
an output data set for which a nonspecific 
volume request is made. A private voluIr,e 
is demounted after its last use in a job 
step. 

private library: A partitioned data set 
whose members are not used often enough to 
warrant their inclusion in the link -
library. To execute a program that resides 
on a private library, you must define that 
library on a DD statement that has the 
ddname JOBLIB or STEPLIB. 

PROe'parameter: This parameter appears as 
the first parameter on an EXEC statement 
when you want to call a particular 
cataloged or in-stream procedure. 

PROC statement: A job control statement 
used in cataloged or in-stream procedures. 
'It can be used to assign default values for 
symbolic parameters contained in a 
procedure. For in-stream procedures, it is 
used to mark the beginning of the 
procedure. 

procedure step: That unit of work 
associated with one processing program and 
related data within a cataloged procedure. 
A cataloged procedure consists of one or 
more procedure steps. 

section XI: Glossary 303 

Glossary 



processin~program: Any program capable of 
operating in the problem program mode. 
This includes IBM-distributed language 
processors, application programs, service 
and utility programs, and user-written 
programs. 

PRTY paramete~: This parameter is used to 
indicate the job"s initiation priority 
within its job class and is coded on a JOB 
statement. 

public: The term applied to a mounted 
volume that the system can allocate to an 
output data set for which a nonspecific 
volume request is made. A public volume 
remains mounted until the device on which 
it is mounted is required by another 
volume. 

qualified name: A data set name that is 
composed of mUltiple names separated by 
periods (e.g., A.B.C.). For a cataloged 
data set, each name corresponds t~o an index 
level in t~he catalog. 

RD paramete~: This parameter is used to 
define the type of restart that can occur 
and is coded on a JOB or EXEC statement. 

reader/int~erpreter: A job scheduler 
functi~n that analyzes an input stream of 
job control statements. 

record: A general term for any unit of 
data that is distinct from all others. 

region: In systems with MVT, a subdivision 
of the dynamic area of main storage set 
aside for a job step or a system task. You 
can specify in the REGION parameter on the 
JOB statement or EXEC statement how large 
this area of main storage should be. 

REGION parameter: This parameter is used 
to specify how much contiguous main storage 
is required to execute a job step and can 
be coded on a JOB or EXEC statement. If 
main storage hierarchy support is included 
in the system, the REGION parameter is also 
used to identify the hierarchy or 
hierarchies in which the storage is to be 
allocated. 

res~: Any facility of the computing 
system or operating system required by a 
job or task and includes main storage, 
input/output devices, the CPU, data sets, 
and control and processing programs. 

restart: The process of resuming a job 
after it abnormally terminates. When a 
restart is performed, processing is 
continued either at the beginning of a job 
step that caused the abnormal termination 
or at a checkpoint within this job step. 

304 JCL Reference 

RE§TART parameter: This parameter is used 
to identify the step or the step and the 
checkpoint within the step at which 
execution of a job is to be resumed and is 
coded on the JOB statement of a resubmi t:ted 
job that is to use the checkpoint/restart 
facilities. 

ROLL pararreter: This parameter is used to 
specify a job step"s ability to be rolled 
out or to cause rollout of ancther job step 
and is coded on a JOB or EXEC statement. 

rollout/rollin: An optional MVT control 
program feature that allows the temporary 
assignment of additional main storage to a 
job step. 

scheduler: See jo~ scheduler. 

secondary guantity: The additional amount 
of space on a direct access volume that you 
want allocated to a data set if the prilfary 
quantity requested in the SPACE, SPLIT, or 
SUBALLOC parameter is not sufficient. 

secondary storage: See auxiliary storage. 

SEP parameter: This parameter is used to 
request channel separation from specific 
data sets defined earlier in the job step 
and can be coded on a DD statement. 

sequential data set: A data set whose 
records are organized on the ~asis of their 
successive physical positions, such as they 
are on magnetic tape. 

SPACE parameter: This parameter is used to 
indicate how much space should be allocated 
on a direct access volume for a new data 
set and is coded-on a DD statement. 

specific volume request: A request for 
volumes that informs the system of the 
volume serial numbers. 

SPLIT parameter: This parameter is used to 
allocate space to two or more new data s,ets 
that are to share cylinders. The SPLIT 
parameter is coded on a DD statement. 

STEPLIB: A special ddname that when 
specified on a DD statement indicates to 
the system that you are defining a priva-te 
library. 

stepname: The name assigned to an EXEC 
statement: it identifies a job step within 
a iob. 

step restart: A restart at the beginniro~ 
of a job step that abnormally terminates. 
The restart may be automatic (depending I:>n 
an eligible completion code and the 
operator"s consent) or deferred, where 
deferred involves-resubmitting the job and 



coding the RESTART parameter on the JOB 
statement of the resubmitted job. 

storage volume: The main function of a 
storage volume is to contain nontemporary 
data sets for which a nonspecific volume 
request was made and PRIVATE was not coded 
in the VOLUME parameter. A direct access 
volume becomes a storage volume when so 
indicated in a MOUNT command or in a member 
of SYS1.PARMLIB named PRESRES. 

SUBALLOC parameter: This parameter is used 
to place a series of a new data sets in one 
area of contiguous space on a direct access 
volume and in a certain sequence. The 
SUBALLOC parameter is coded on a DD 
statement. 

subparameter: One of the items of variable 
information that follows a keyword 
parameter and can be either positional or 
keyword. 

symbol: In the IBM System/360 Operating 
System, any group of eight or less 
alphameric and national characters that 
begins with an alphabetic or national 
(#,@,$) character. 

symbolic parameter: A symbol preceded by 
an ampersand that appears in a cataloged 
procedure. Values are assigned to symbolic 
parameters when the procedure in which they 
appear is called. 

SYSABEND: A special ddname that whe,n 
specified on a DD statement tells the 
system you are defining a data set on which 
a dump can be written if the step 
abnormally terminates. The dump provided 
includes the system nucleus, the processing 
program storage area, and possibly a trace 
table. 

SYSCHK: A special ddname that when 
specified on a DD statement that prE!cedes 
the first EXEC statement in the job tells 
the system you are defining a data set that 
contains checkpoint entries. This DD 
statement is included in a job that is 
being resubmitted for execution and 
execution is to begin at a particular 
checkpoint. 

SYSCTLG: The name of a system data set 
that contains the name and location of 
cataloged data sets. 

SYSIN: A name conventionally used as the 
data definition name of a data set in the 
input stream. 

SYSOUT parameter: This parameter is used 
to assign an output class to an output· data 
set and can be coded on a DD statement. 

system data sets: The data sets that make 
up the IEM Systere/360 Operating System. 

system generation: The process of 
producing an operating system made up of 
standard and optional corrponents. 

system input devic~: A device specified as 
a source of an input stream. 

system library: One of the collection of 
all cataloged data sets at an installation. 

system management facilities: An optional 
control program feature that provides the 
means of gathering and recording 
information that can be used to evaluate 
system usage. 

system rressage~: Messages issued by the 
system that pertain to a problem prograrr. 
These messages appear on an output listing 
and may include such messages as error 
messages, disposition messages, and 
allocation/de-allocation messages. 

~tem output device: An output device, 
shared by all jobs, onto which specified 
output data is written. 

SYSUDUMP: A special ddname that when 
specified on a DD statement tells the 
system you are defining a data set on which 
a dump can be written if the step 
abnormally terminates. The dump provided 
is the processing program storage area. 

SYS1.LINKLIB: The name of a partitioned 
data set that contains the IBM-supplied 
processing programs and part of the 
nonresident portion of the control program. 
It may also contain user-written programs. 

SYS1.PROCLIB: The name of a p~rtitioned 
system data set that contains cataloged 
procedures. 

SYS1.SYSJOBQE: A system data set that 
contains information about the input and 
output streams, and contains the input and 
output.queues. 

task: The smallest unit of work that can 
be-Performed under the control program. 

terr,porary data set: A new data set that is 
created and deleted in the same job. 

termination: The process of performing 
disposition processing, as specified in the 
DISP parameter, de-allocating input/output 
devices, and supplying control informaticn 
for w.ri ting job output on a systerr output 
unit. 

Section XI: Glossary 305 



TIME pararnete~: This parameter is used to 
assign a time limit on how long the job or 
a particular job step can use the CPU and 
is coded on a JOB or EXEC statement, or 
both. 

time-slicilli1: The sharing or the CPU by 
certain tasks for an equal, predetermined 
length of time. 

~YPRUN parameter: This parameter is used 
co hold a job for execution until the 
operator issues a RELEASE command and is 
coded as TYPRUN=HOLD on a JOB statement. 

UCS parameter: This parameter is used to 
describe the--character set you want to use 
for printing an output data set on a 1403 
printer. The UCS parameter is coded on a 
DD statement. 

unit address: A 3-byte number, made up of 
the channel, control unit, and unit 
numbers, that identifies a particular 
device. Coding a unit address in the UNIT 
parameter is one way of indicating what 
input/output device you want allocated to 
the job step. 

UNIT parameter: This parameter is used to 
describe what device and how many devices 
you want assigned to a data set. The UNIT 
parameter can be coded on a DD statement. 

306 JCL Reference 

V format: A data set format in which 
~ogical records are of varying length and 
include a length indicator; and in which V 
format logical records may be blocked, with 
each block containing a block length 
indicator. 

VOL parameter: This parameter is used to 
identify the volume(s) on which a data set 
resides or will reside and is coded on a DD 
statement. coding VOL is the same as 
coding VOLUME. 

volume: That portion of an auxiliary 
storage device that is accessible to a 
single read/write mechanism. 

VO:r-UME parameter: This parameter is used 
to identify the volume(s) on which a data. 
set resides or will reside and is coded on 
a DD statement. Coding VOLUME is the same 
as coding VOL. 

volume table of contents (VTOC): A table 
in a direct access volume that describes 
each data set on the volume. 

-



Indexes to systems reference library 
manuals are consolidated in the publication 
IBM System/360 Operating System: Systems 
Reference Library Master Index, Form 
C28-6644. For additional information about 
any subject listed below, refer to other 
publications listed for the same subject in 
the Master Index. 

Where more than one page reference is 
given, the major reference is first. 

(} 

use 17 
[) 

use 17-18 

use 18 
& 266-265,168 
&& 168 

purpose 23 
* parameter on DD statement 119-122 

examples of 121-122 
glossary 299 
with MFT, MVT 120 

coding BLKSIZE subparameter 120-121 
coding BUFNO subparameter 120-121 

with PCP 120 
read by automatic SYSIN batching reader 

120 
* subparameter in the RESTART parameter 55 
*** 233,249,21 
/ 

purpose 23 
//* 233,21 

I :;/ 2~~0 ++* 250 

ABEND dumps 114-115 
Absolute track technique 186-187 

for ISAM data set 278 
ABSTR subparameter in the SPACE parameter 

186 
for ISAM data set 277 

Accounting information 
(see accounting information parameter 

and ACCT parameter) 
Accounting information parameter on JOB 
statement 33-34 

continuing 33 
example of 34 
format of 33 
requirement for coding 33,291 
rules for coding 33 
special characters in 33,24 

ACCT parameter on EXEC statement 77 
examples of 77 
format of 77 
glossary 299 
overriding the 77 

ACCT parameter on EXEC statement 
(continued) 

rules for coding 77 
special characters in 77,24 

Adding 

Index 

DD statements to cataloged procedure 
262-264 

parameters to 
DD statements in cataloged procedures 

258-25' 
EXEC statements in cataloged 

procedures 255 
Address, unit 211 
Address subparameter in the SPACE 

parameter 186-187 
AFF parameter on DD statement 129-130 

examples of 130 
format of 129 
glossary 299 
requesting channel separation 129-130, 

179 
rules for coding 129 

Affini.ty 
channel (see channel separation) 
uni.t 215 

Alias 71 
glossary 299 

Allocation 
glossary 299 

Alphameric character set 23 
ALX sllbparameter in the SPACE parameter 

186 
Apostrophes 

data set name in 169 
purpose 24 

Appendixes 245-297 
Area arrangement for ISAM data set 278-279 
Area name 275-276 
Areas of ISAM data set 275 
ASB reader 

* parameter read by 120 
DATA parameter read by 124 
restriction on use of.symbolic 

parameters 267-268 
Attributes, DCB 134-147 
Automatic checkpoint restart 47,87,269 

disposition processing with 48,86 
Automatic restart 

(see also automatic checkpoint restart; 
automatic step restart) 

glossary 299 
Automatic step restart 47,87,269 

disposition processing with 48,86 
Automatic SYSIN batching reader 

* parameter read by 120 
DATA parameter read by 124 
restrictions on use of symbolic 

parameters 267-268 
Automatic volume recognition (AVR) 

channel separation requests 180,130 
glossary 299 
specifying a group name 213 

Index 307 



Auxiliary storage 
glossary 299 

Average block length 
in SPACE parameter 183-184 
in SPLI'r parameter 191 
in SUBALLOC parameter 195,196 

AVR (see automatic volume recognition) 

Backward reference 22 
to a concatenation 22 
in DCB parameter 134,22 
with deferred restart 56 
in DSNAME parameter 169,22 
glossary 299 
in PGM parameter 71-72,22 
in VOLUME parameter 221·- 222,22 

BDAM data set 
creating 294 
retrieving 294 

BFALN, DCB subparameter 134 
BFTEK 134-135 

BFTEK, DCB subparameter 134-135 
BFALN 134 

BISAM data set (see indexed sequential data 
set) 

Blank 
purpose 23 

BLKSIZE, DeB subparameter 135 
coded with 

* parameter 120-121 
DATA parameter 124-125 
DDNAME parameter 151-152 
SPACE parameter 184 
SUBALLOC parameter 196 

default for data in input stream 291 
Block length subparameter 

in SPACE parameter 183-184 
in SPLIT parameter 191 
in SUBALLOC parameter 195,196 

Blocking data in the input stream 
120-121,124-125 

default 291 
Blocks, directory, in a BPAM data set 

(see directory> 
BLP subparameter in the LABEL parameter 
173-174 

restriction on use 
BPAM data set 

(see also directory; 
creating 294 
retrieving 294 

Braces 
use 17 

Brackets 
use 17-,18 

BSAM data set 
creating 293-294 
retrieving 294 

BUFL, DCB subparameter 
BUFNO, DCB subparameter 

coded with 

291 

member name) 

136 
136 

* parameter 120-121 
DATA parameter 124-125 
DDNAME: parameter 151 

default for data in input stream 291 

308 JCL Reference 

BUFRQ, DCB subparameter 136 
Bypass label processing 173-174 

restriction on use 291 
Bypassing I/O operations on a data set 

127-128 
Bypassing a job step 80 

catalog 
glossary 299 

Cataloged data set 
creating 160 
generation data set 283-287 
glossary 299 
providing 

label type information for 173 
unit information for 214,210 
retrieving 294 

Cataloged procedure 247-268 
adding to procedure library 268 
assigning values to symbolic paramete:I"s 

250-251 
calling 249,75 
contents of 265 
DD statement 

adding DD statements 262-263 
adding parameters to 259 
nullifying parameters 259-260 
overriding concatenated data sets 262 
overriding parameters on 257-258 

EXEC statement 
adding parameters to 255 
nullifying parameters on 255 
overriding parameters to 253-254 

glossary 299 
modifying 268 
using 249-264 
using the DDNAME parameter in 149 
writing 265-268 

CATLG subparameter in the DISP parameter 
158,159-160 

Channel affinity (see channel separation) 
Channel separation 

requesting 179,129 
Character set 

alphameric 23 
national 23 
special 23 

Character set code, specifying 206 
Checkid subparameter in the RESTART 
parameter 55 

special characters in 55,24 
Checkpoint data set 116-117 

specifying a secondary quantity for 185 
Checkpoint restart 

automatic 47,87,269 
deferred 55-57,270-271 
glossary 299 

Checkpoint/restart facilities 
checkid 55 
checkpoint data set 116-117 
checkpoint restart (see checkpoint 

restart) 
deferred checkpoint restart 

55-57,270-271 
deferred step restart 55-57,269-270 
glossary 299 



Checkpoint/restart facilities 
(continued) 

RD parameter on EXEC statement 87-89 
RD parameter on JOB statement 47-49 
RESTART parameter on JOB statement 

55-57 
step restart (see step restart) 
SYSCHK DD statement 116-117 

CHKPT macro instruction 47-49,55- 57,87-89 
Class 

:job 37 
message 41 
system output 199-204 

CLASS parameter on JOB statement 37 
assigning a job class 37 
default 37 
examples of 37 
format of 37 
glossary 299 
rules for coding 37 

Classnames 
for output streams 199,202 

CODE, DCB subparameter 137 
mutually exclusive with 

KEYLEN 140 
MODE 141 
PRTSP 143 
STACK 146 
TRTCH 146-147 

Coding form 24-25 
Coding special characters 23-24 
Comma 

purpose 23 
Command statement 299-232 

commands for 
MFT 231 
MVT 231-232 
PCP 230 

example of 232 
format of 229 
glossary 299 
rules for coding 229-230 

Commands, operator 230-232 
Comment statement 233 

example of 233 
format of 233 
glossary 299 
rules for coding 233 

Comments field 19 
continuation of 21 
example of 19 

Concatenated data set 
glossary 299 
overriding 262 

Concatenating data sets 22 
example of 23 

Concatenation 
of data sets 22-23 
of private libraries 109,112 

COND parameter on EXEC statement 7'9-81 
examples of 81 
format of 79 
glossary 299 
overriding 81 
rules for coding 79-80 
use of 

bypassing a job step 80 
executing a job step 80-81 

COND parameter on JOB statement 39-40 
examples of 40 
format of 39 
glossary 299 
rules for coding 39 
use of 39 

conditional disposition of a data set 
160-162 

CA'rLG 160 
for deferred restart 270,271 
DELETE 159 
KEEP 159 
UNCATLG 160 

CONTIG subparameter in the SPACE parameter 
186 

Continuing control statements 
comments field 21 
operand field 20-21 

Control volume 167 
CPRI, DCB subparameter 137 
CPU time limit 61,97 
Creating data sets 

non temporary 
to be cataloged 158 
direct organization 294 
generation data set on direct access 

volume 284-285 
generation data set on tape volume 

284-285 
indexed sequential orqanization 

275-278 
new member for a partitioned data set 

294 
partitioned data set 294 
sequential data set on direct access 

volume 294 
on tape volume 293 

temporary 
on direct access volume 293 
output stream 293 
on tape volume 293 
on unit record device 293 

CYL subparameter 
in SPACE parameter 183-184 
in SPLIT parameter 190 
in SUBALLOC parameter 195 

Cylinders 
sharing 189-192 

CYLOFL, DCB subparameter 138 

Data control block 
completing the 131-134 
glossary 299 

Data definition statement 101-227 
(see also DD statement) 

Data in the input stream 
defininq 119-126,149 

DATA parameter on UD statement 123-126 
examples of 125-126 
format of 123 
glossary 300 
with MFT, MVT 124-125 

codinq BLKSIZE subparameter 124-125 
codinq BUFNO subparameter 124-125 

with PCP 124 
read by automatic SYSIN batchinq reader 

124 

InJex 309 



Execution 
of a cataloged procedure 75,249 
of a processing program 71-73 

EXPDT subp.arameter in the LABEL parameter 
175 

Expiration date 175 
(see also retention period) 
effect on 

DELETE subparameter 157-158,159 
KEEP subparameter 157,159 

Extending a data set (see lengthening a 
data set) 

Extent 184 
qlossary 300 

F format 144 
qlossary 301 

Fields 18-19 
comments 19 
examples of 19 
name 18 
operand 18 
operation 18 

Fixed-length record 
qlossary 301 

FOLD subparameter in the UCS parameter 207 
Form number subparameter in the SYSOUT 
parameter 202 

Format of 
command statement 
comment statement 
DD statement 101 
delimiter statement 
EXEC statement 65 
.JOB statement 27 
null statement 237 
PEND statement 239 
PROC statement 241 
publication 15 

Generation data group 
creating 283-284 
qlossary 301 
index 283 
name 283 

Generation data set 
creating 284-285 

229 
233 

235 

with deferred restart 286-287,56 
qlossary 301 
name of 283 
retrieving 286 

Generation number, relative 283 
GNCP, DCB subparameter 139 
Graphic devices, list of 213 
Group name 213 

qlossary 301 

HIARCHY, DCB subparameter 139 
Hierarchy 0 53-54,93-94 
Hierarchy 1 53-54,93-94 
HOLD subparameter in the TYPRUN parameter 

63 
Hold~ng a job 63 

312 JCL Reference 

Identifying the data set (see DSNAME) 
IEFBR14 program 72 
IN subparameter in the LABEL parameter 
174-175 

Incremental quantity (see secondary 
quantity) 

Index 
glossary 301 
requesting space for 

277-278,185,186-187 
Index area 275 
Indexed sequential data set 273-279 

area arrangement of 278-279 
creating 275-278 

example of 281 
glossary 301 
lengtheninq 155 
name 

non temporary 166 
temporary 168 

requesting space for index 
277-278,185,186-187 

retrieving 280 
example of 281 

unit restrictions for 279 
Initiation 

glossary 301 
Initiation priority 45 
Input data set 

concatenating 22-23 
identifying the data set 166-169 
IN subparameter 174-175 
providing 

unit information 210-211 
volume information 218,219 

specifying 
conditional disposition of 159-160 
disposition of 156-159 
status of 154-156 

Input job queue 
glossary 301 

Input stream 119,123 
defining data in the 119-126 
glossary 301 

Input work queue 37 
In-stream procedures 247-268 

assigning values to symbolic parameters 
250 

calling 249 
contents of 265 
DD statement 

adding DD statements 262-263 
adding parameters to 259 
nullifying parameters 259-260 
overriding parameters on 257-258 

EXEC statement 
adding parameters to 255 
nullifying parameters on 255 
overriding parameters to 253-254 

glossary 301 
modifying 268 
using 264 
writing 265-268 

INTVL, DCB subparameter 140 
ISAM data set (see indexed sequential dat~a 
set) 



Job 
glossary 301 

Job class 37 
default 37 
glossary 301 
priority 45 

Job control language 
glossary 301 

Job control statement 
glossary 301 

Job library 108-113 
Job management 

glossary 301 
Job processing 

glossary 301 
Job scheduler 

glossary 301 
Job separators 200,203 
JOB statement 27-63 

examples of 29 
fields in 27 
format of 27 
glossary 301 
keyword parameters on 37-63,28 
positional parameters on 33-35,28 

Job step 
glossary 301 

Jobclass subparameter in the CLASS 
parameter 37 

JOBLIB DD statement 108-110,72 
(see also STEPLIB) 
concatenating private libraries 109 
examples of 110 
glossary 301 
parameters to code when 

cataloged 108-109 
not cataloged 108-109 

rules for coding 108 
Jobname 

K 

assigning a 31 
examples of 31 
glossary 301 

glossary 302 
KEEP subparameter in the DISP parame-ter 
157,159 

Kept data set 
retrieving 294-295 

KEYLEN, DCB subparameter 140 
coded with 

SPACE parameter 184 
SPLIT parameter 191 
SUBALLOC parameter 195 

mutually exclusive with 
CODE 137 
MODE 141 
PRTSP 143 
STACK 146 
TRTCH 146-147 

Keyword 
glossary 302 

Keyword parameters 
on DD statement 124-227,102-103,104-105 
on EXEC statement 77-99,66 
glossary 302 
on JOB statement 37-63,28 
rules for coding 19 

LABEL parameter on DD statement 171-176 
coded on SYSCHK DD statement 116,117 
coded when 

creating generation data set 285 
creating ISAM data set 276 
retrieving generation data set 286 
retrieving passed data set 158 

data set sequence number subparameter 
173 

examples of 175-176 
EXPDT subparameter 175 
forma t of 171 
glossary 302 
IN subparameter 174-175 
label type subparameter 173-174 
OUT subparameter 174-175 
PASSWORD subparameter 174 
RETPD subparameter 175 
rules for coding 172 
when to code 172-173 

Labels types 173-174 
Labels 

data set 172 
direct access 172 
nonstandard (NSL) 173,174 
standard (SL) 173,174 
standard and user (SUL) 173 
tape 172 

Lengthening a data set 
space requirements 

SPACE parameter 185 
SUBALLOC parameter 196 

specifying status 154 
volume sequence number subparameter 220 

Libraries, concatenating private 109,112 
Library 

glossary 302 
private 108-113,72 
procedure 75,247 
system 72 
temporary 71 

LIMCT, DCB subparameter 140 
OPTCD=E 142 

Limit priority 
glossary 302 

Link library 72 
glossary 302 

Logical record 
glossary 302 

LRECL, DCB subparameter 140 

Main storage 
acquiring additional 59-60,95-96 
glossary 302 
REGION parameter on EXEC statement 

91-95 
REGION parameter on JOB staten,ent 51-54 

Main storage hierarchy support 53-54,93-q~ 

glossary 302 
Master scheduler 

glossary 302 
Member 

glossary 30:i 
Member name, assigning a 167,168 
MFT (multiprogramming with a fixed numl:wr 
of tasks) 

glossary 302 

InJex 313 

Index 



MOD subparameter in the DISP parameter 155 
MODE, DCB subparameter 141 

mutually exclusive with 
CODE 137 
KEYLEN 140 
PRTSP 143 
TRTCH 146-147 

Model data set label 283-284 
Mount attlcibutes 223-225 
Mounting 

deferred 214 
parallel 214 

MSGCLASS parameter on JOB statement 41 
assigning an output class 41 
coded with SYSOUT parameter 41,202 
default 41 
exampl1es of 41 
format of 41 
glossary 302 
rules for coding 41 

MSGLEVEL parameter on JOB statement 43-44 
default 43,291 
examples of 44 
format of 43 
glossar-y 302 
restart in MFT, MVT 48,88 
rules for coding 43 

Multiprogramming 
glossar-y 302 

Mutually exclusive parameters 
glossar-y 302 
overriding with 257 

MVT (multiprogramming with a variable 
number of tasks) 

glossary 302 
MXIG subparameter in the SPACE parameter 
186 

Name 
glossary 302 

Name field 18 
example of 19 

National character set 23 
NC subparameter in the RD parameter 48,88 
NCP, DCB subparameter 141 
New output data set 

creating 293-294 
NEW subparameter in the DISP parameter 155 
NL subparameter in the LABEL parameter 
173,174 

Nonsharable attribute 226 
Nonspecific volume request 219 

for direct access volume 184,219 
glossary 302 
satisfying a 226-227 
for tape volume 174,219 

Nonstandard labels 
label type subparameter 173,174 
processing routines for 173 

Nontemporary data set 
creating 293-294 
glossary 302 

NR subparameter in the RD parameter 48,88 
NSL subparameter in the LABEL parameter 
173,174 

314 JCL Reference 

NTM, DCB subparameter 141 
OPTCD=M 142 

Null statement 
example of 237 
forma t of 237 
glossary 302 

NULLFILE 128,260 
Nullifying 

DCB subparameters 259 
DD statement parameters 259-260 
DUMMY parameter 128,260 
EXEC statement parameters 245 

OLD subparameter in the DISP parameter 155 
ONLY subparameter in the COND parameter 

80-81 
Operand field 18 

blank 262 
example of 19 
keyword parameters 19 
positional parameters 19 
subparameters 19 

Operation field 18 
example of 19 

Operator commands 230-232 
Operator subparameter in the COND 
parameter 39,80 

OPTCD, DCB subparameter 142-143 
OUT subparameter in the LABEL parameter 

174-175 
OUTLIM parameter 177 

coded with SYSOUT parameter 177 
determining the output limit 177 
example 177 
glossary 303 
rules for coding 177 

Output of 
allocation messages 43 
allocation recovery messages 43 
disposition messages 43 
job control statements 43 

Output class 
glossary 303 
for system messages 41 

Output class subparameter in the MSGCLA:3S 
parameter 41 

Output data set 
allocating space for 181-197 
creating 293-294 
lengthening 155 
OUT subparameter 174,175 
printed using UCS feature 205-207 
providing 

unit information 210-211 
volume information 218 

routed through output stream 199-204 
specifying 

conditional disposition 159-160 
disposition 156-158 
status 154-156 

output listing 
glossary 303 

Output stream 
glossary 303 
routing data sets through the 199-204 



output writer 201-202 
qlossary 303 

Overflow area 275 
Overriding 

concatenated data sets 262 
DCB subparameters 258 
DD statement parameters 257-258 
EXEC statement parameters 253-2~i4 

with mutually exclusive paramete17s 257 
PARM parameter 254 
TIME parameter 254 

P subparameter in the UNIT parameter 214 
Parallel mounting 214 
Parameter 

glossary 303 
Parentheses 

to enclose a subparameter list 19 
inclusion in variables 24 

PARM parameter on EXEC statement 8~)-86 

examples of 86 
format of 85 
glossary 303 
overriding the 85,254 
rules for coding 85 
special characters in 85,24 

Partition 
glossary 303 

Partitioned data set 
concatenating 22 
creating 294 
executing programs in a 71-73,108-113 
glossary 303 
lengthening 155 
name 

nontemporary 166 
temporary 168 

retrieving a member of 294 
space for directory 

in SPACE parameter 185,186 
in SUBALLOC parameter 196 

PASS subparameter in the DISP parameter 
157-158 

Passed data set 
providing 

data set name 157 
DCB information 158 
disposi.tion 157 
label type 173,157 
unit information 210,158 

retrieving 295 
Password protection 174 
PASSWORD subparameter in the LABEL 
parameter 174 

PCP (primary control program) 
glossary 303 

permanently resident volume 223 
PGM parameter on EXEC statement 71-73 

backward references 71-72,22 
examples of 72-73 
executing programs from 

private library 108-113 ,72 
system library 72 
temporary library 71 

format of 71 
glossary 303 

Physical record 
glossary 303 

positional parameters 
on DD statement 119-128,102 
on EXEC statement 71-75,66 
glossary 303 
on JOB statement 33-35,28 
rules for coding 19 

Postponing definition of a data set 
DDNAME parameter 149-152 

PRESRES entry 223 
Primary quantity 

glossary 303 
in SPACE parameter 184,186-187 
in SPLIT parameter 190-191 
in SUBALLOC parameter 195 

Prime area 275 
Priority 

glossary 303 
initiation 45 
job 45 
job class 45 
step 83 

Priority parameter 
(see PRTY) 

Priority scheduler 
glossary 303 

Priva1:e 
glossary 303 

Private libraries 108-113 ,71-72 
concatenating 109,112 
executing programs from 108-113,71-72 
glossary 303 

PRIVATE subparameter in the VOLUME 
parameter 219-220 

Private volume 219,223-225 
PROC parameter on EXEC statement 75,249 

examples of 75 
format of 75 
glossary 303 

PROC statement 241-243 
assigning values to symbolic parameters 

on 242-243 
example of 243 
format of 241 
glossary 303 
rules for coding 241-242 

Procedure 
(see cataloged procedure) 

Procedure library 75,247 
Procedure name 75,247 
Procedure step 247 

glossary 303 
Processing program 

glossary 304 
Processor storage 53-54,93-95 
Program 

calling a 71-73 
Program name 71 

subparameter in the SYSOUT parameter 
202 

programmer's name parameter on JOB 
statement 35 

examples of 35 
format of 35 
requirement for coding 291 
rules for coding 35 
special characters in 35,24 

Index 315 



PRTSP, DCB subparameter 143 
mutually exclusive with 

CODE 131 
KEYLEN 140 
MODE 141 
STACK 146 
TRTCH 146-141 

PRTY paramet.er on JOB statement 45 
default 45,291 
examples of 45 
format of 45 
qlossary 304 
rules for coding 45 
time-slicing in MVT 45 

Public 
qlossary 304 

Public volume 219,223-225 

QISAM data set 
(see IS.AM data set) 

Qualified name 
assigning a 166-161 
qlossary 304 

R subparameter in the RD parameter 48,88 
RD parameter on EXEC statement 81-89 

defining restart 88 
(~xamples of 89 
format of 81 
qlossary 304 
overriding the 88 
restart facilities 81 
rules for coding 81 

RD parameter on JOB statement 41-49 
defining restart 48 
examples of 49 
format of 41 
qlossary 304 
restart facilities 41 
rules for coding 41 

Reader procedure 
defaults supplied in the 289-291 

Reader/interpreter 
qlossary 304 

RECFM, DCB subparameter 144-145 
Record 

qlossary 304 
REF subparameter in the VOLUME parameter 

221-222 
References, backward (see backward 
references) 

Region 
qlossary 304 

REGION parameter on EXEC statement 91-95 
qlossary 304 
with main storage hierarchy support 

93-95 
acquiring additional main storage 94 
default 93-94,291 
examples of 94-95 
format of 93 
overriding the 94 
rules for coding 93 

316 JCL Reference 

REGION parameter on EXEC statement 
(continued) 

without main storage hierarchy suppon: 
91-92 
acquiring additional main storage 91 
default 91,291 
examples of 92 
format of 91 
overriding the 91 
rules for coding 91 

REGION parameter on JOB statement 51-54 
glossary 304 
with main storage hierarchy support 

53-54 
acquiring additional main storage ~)4 

default 53-54,291 
examples of 54 
format of 53 
rules for coding 53 

without main storage hierarchy suppon: 
51-52 
acquiring additional main storage ~)1 
default 51,291 
examples of 51-52 
format of 51 
rules for coding 51 

Relational operators in the COND parameter 
39,80 

Relative generation number 283 
Relative track number 186-181 
Releasing unused space (see RLSE) 
Remote job entry 

restriction on use of BUFNO subparame1:er 
with * parameter 120 
with DATA parameter 124 
with DDNAME parameter 151 

Removable volume 223-225 
REPOS, DCB subparameter 145 
Reserved volume 223-225 
Resource 

glossary 304 
Restart 

glossary 304 
types of 269-211 

Restart definition (RD parameter) 
on EXEC statement 81-89 
on JOB statement 41-49 

Restart facilities 
examples of 212-213 
RD parameter on EXEC statement 81-88 
RD parameter on JOB statement 41-48 
RESTART parameter on JOB statement 5~) 

I REPOS, DCB subparameter 
RESTART parameter on JOB statement 55-57 

examples of 56-51 
format of 55 
glossary 304 
rules that apply when 

defining generation data set 56 
making backward reference 56 

rules for coding 55 
RETAIN subparameter in the VOLUME 

parameter 220 
Retention period 115 

effect on 
DELETE subparameter 151-158,159 
KEEP subparameter 151,159 



-..-

RETPD subparameter in the LABEL parameter 
175 

Retrieving data sets 294-295 
cataloged 294 
generation data set 286,295 
indexed sequential data set 280,295 
member of partitioned data set 294 
non cataloged 

data set with direct organization 294 
sequential data set on direct access 

volume 294 
on a tape volume 294 

passed data set 157-158,295 
Return code 39,80 
Return code test 39,80 

effect on disposition processing 156 
RKP, DCB subparameter 146 
RLSE subparameter in the SPACE parameter 
185-186 

effect on existing data set 185 
when overriding 260 

RNC subparameter in the RD parameter 48,88 
ROLL parameter on EXEC statement 97·-98 

default 97,291 
examples of 98 
format of 97 
glossary 304 
overriding the 97 
rules for coding 97 

ROLL parameter on JOB statement 59-60 
default 59,291 
examples of 60 
format of 59 
glossary 304 
rules for coding 59 

Rollout/rollin 59,97 
glossary 304 

ROUND subparameter in the SPACE parameter 
186 

Scheduler 
glossary 304 

Scratch volume 220,223-225 
Secondary quantity 

glossary 304 
when overriding 260 
in SPACE parameter 184-185 
in SPLIT parameter 190-191 
in SUBALLOC parameter 196 

secondary storage 
glossary 304 

section I: Programming Notes 17-25 
section II: The JOB Statement 27-63 
Section III: The EXEC Statement 65-- 99 
section IV: The DD Statement 101-227 
section V: The Command Statement 229-232 
section VI: The Comment Statement 233 
section VII: The Delimiter statement 235 
Section VIII: The Null Statement 237 
Section IX: The PEND Statement 239 
section X: The PROC Statement 241-243 
Section XI: Appendixes 245-297 
Section XII: Glossary 299-306 

section XIII: Control statement Foldout 
Charts 323-327 

SEP parameter on DD statement 179-180 
examples of 180 
forma t of 179 
glossary 304 
requesting channel separation 179 
rules for coding 179 

SEP subparameter in the UNIT parameter 215 
separation 

channel 179-180,129-130 
unit 215 

Sequence number 
data set 173 
volume 220 

sequential data set 
concatenating 22 
creatinq 293-294 
glossary 304 
lengthening 157-159 
retrieving 294 

SER subparameter in the VOLUME parameter 
221 

Sharing 
cylinders 189-192 
data set 155 

SHR subparameter in the DISP parameter 155 
SL subparameter in the LABEL parameter 

173,174 
SOWA, DCB subparameter 146 
SPACE parameter on DD statement 181-188 

(see also SPLIT; SUBALLOC) 
assigning specific tracks 186-187 
coded on 

SYSABEND DD statement 114 
SYSUDUMP DD statement 114 

coded when 
creating generation data set 285 
creating ISAM data set 277 

coded with SYSOUT parameter 202-204,291 
examples of 187-188 
forma t of 181 
glossary 304 
letting system assign specific tracks 

183-186 
allocating whole cylinders 186 
releasing unused space 185-186 
requesting space for directory 

185,186 
requesting space for index 

185,186-187 
specifying format 186 
specifyinq primary quantity 184 
specifying secondary quantity 184-185 
unit of measurement 183-184 

requesting space 182-186 
rules for coding 182 

Special character set 23 
with UCS parameter 205 
usinq 23-24 

Special-ddnames 107-117 
Specific volume request 218-219 

for direct access volume 219,184 
glossary 304 
satisfying a 226 
for tape volurr,e 219-220 

Split cylinder mode 190 

Index 317 



SPLIT parameter on DD statement 189-192 
(see also SPACE; SUBALLOC) 
coded on 

SYSABEND DD statement 114 
SYSUDUMP DD statement 114 

examples of 192 
format of 189 
glossary 304 
cequesting space 190-191 
cules for coding 189 

STACK, DCB subparameter 146 
mutually exclusive with 

CODE 137 
KEYLEN 140 
PRTSP 143 
TRTCB 146-147 

States, volume 222-227 
Status subparameter in the DISP parameter 

154-156 
Step dispatching priority (see DPRTY) 
Step restart 

automatic 47,87,269 
deferred 55-57,269-270 
glossary 304 

STEPLIB DD statement 111-113,71-72 
(see also JOBLIB) 
concatenating private libraries 112 
examples of 112-113 
glossary 304 
paramet.ers to code when 

cataloged 111 
not cataloged or not passed 111-112 
passE!d 112 

rules for coding 111 
Stepname 

assigning a 69 
examples of 69 
glossary 304 

Storage volume 223-225 
glosSaI"y 305 

Stream, input, data sets in the 119-126 
Stream, output, routing data sets through 
the 199-·204 

SUBALLOC parameter on DD statement 193-197 
(see also SPACE; SPLIT) 
coded on 

SYSABEND DD statement 114 
SYSUDUMP DD statement 114 

examples of 197 
format of 193 
glossal:y 305 
requesting space 194-196 
rules for coding 194 

Suballocation 194 
Subparamet:er 

glossal:y 305 
rules for coding 19 

SUL subparameter in the LABEL parameter 
173 

suppressing 
CHKPT r1acro instruction 47,87 
automatic restarts 47,87 

Symbol 
glossary 305 

Symbolic parameters 265-267,249-251 
assigning default values to 241-243 
assigning values to 249-250 
defining 265-267 

318 JCL Reference 

Symbolic Parameters (continued) 
definition of 265-266,20 
examples of 266,249 
glossary 305 
nullifying 250-251 
PROC statement 241-243,266 

SYSABEND DD statement 114-115 
(see also SYSUDUMP) 
examples of 115 
glossary 305 
storing the dump 114 
writing the dump to unit record device 

114 
SYSCHK DO statement 116-117 

with deferred restart 56,270 
examples of 117 
glossary 305 
parameters to code when 

cataloged 116 
not cataloged 117 

rules for coding 116 
SYSCTLG 

glossary 305 
SYSIN as a ddname 120 

glossary 305 
SYSOUT parameter on DO statement 199-201~ 

coded on 
SYSABEND DO statement 114 
SYSUDUMP DD statement 114 

glossary 305 
for ~~T, MVT 201-204 

examples of 203-204 
format of 201 
rules for coding 201 
specifying classname 202 
specifying DCB parameter 203-204 
specifying form number 204 
specifying MSGCLASS parameter 202 
specifying program name 202 
specifying SPACE parameter 

203,291,289 
specifying UNIT parameter 203,291 

for PCP 199-200 
examples of 200 
format of 199 
rules for coding 199 
specifying classname 199 
specifying DCB parameter 199 

System data set 
glossary 305 

system generation 
glossary 305 

System input devices 
glossary 305 

system library 72 
glossary 305 

System management facilities 
glossary 305 
with TIME parameter 61-62,97-98 

system messages 
glossary 305 
output class 41 

System output device 
glossary 305 

SYSUDUMP DO statement 114-115 
(see also SYSABEND) 
examples of 115 
glossary 305 



SYSUDUMP DD statement (continued) 
storing the dump 114 
writing the dump to unit r€cord device 

114 
SYS1.LINKLIB 72 

glossary 305 
SYS1.PROCLIB 75,249 

glossary 305 
SYS1.SYSJOBQE 

glossary 305 

Tape devices, list of 212 
Task 

glossary 305 
Teleprocessing 

what to code in ROLL parameter ~)9, 95 
Temporary data set 

creating 293 
glossary 305 

Temporary library 71 
Termination 

glossary 305 
Time limit 

CPU 61,97 
wait state 61-62,97 

TIME parameter on EXEC statement 97-99 
affect of JOB limit 98 
CPU time limit 

default 97,291 
with SMF 97 
wi thout SMF 97 

eliminating timing 98 
examples of 98-99 
format of 97 
glossary 306 
overriding the 98,254 
rules for coding 97 
wait-state time limit 

with SMF 97 
without SMF 97 

1440 98 
TIME parameter on JOB statement 61-62 

affect of JOB time limit 98 
CPU time limit 

with SMF 61 
without SMF 61 

eliminating timing 62 
examples of 62 
format of 61 
glossary 306 
rules for coding 61 
wait-state time limit 

with SMF 61-62 
without SMF 62 

1440 62 
Time-slicing 

glossary 306 
in MFT 83-84 
in MVT 45,83-84 
for a job 45 
for a step 83-84 

Timing 
CPU 97,61 
eliminating 62,98 

Track number, relative 186-187 

TRK subparameter 
in SPACE parameter 183 
in SUBALLOC parameter 195 

TRTCH, DCB subparameter 146-147 
for checkpoint data set 116,117 
mutually exclusive with 

CODE 137 
KEYLEN 140 
MODE 141 
PRTSP 143 
STACK 146 

TYPRUN parameter on JCB statement 63 
example of 63 
format of 63 
glossary 306 
rules for coding 63 

UCS parameter on DD statement 205-207 
examples of 207 
format of 205 
glossary 306 
identifying character set 206 
requesting 

fold mode 207 
operator verification 207 

rules for coding 205 
special character sets 205 

UNCATLG subparameter in the DISP parameter 
158,160 

Unit address 211 
glossary 306 

Unit affinity 215 
nonsharable attribute 226 

Unit count subparameter in the UNIT 
parameter 213-214 

UNIT parameter on DD statement 209-216 
coded on 

JOBLIB DD statement 109 
STEPLIB DD statement 112 
SYSABEND DD statement 114 
SYSCHK DD statement 117 
SYSUDUMP DD statement 114 

coded when 
creating generation data set 284-285 
creating ISAM data set 276 
retrieving generation data set 286 
retrieving ISAM data set 280 
retrieving passed data set 157 

examples of 215-216 
format of 209 
glossary 306 
identifying the device 211-213 
providing unit information 210-215 
rules for coding 209-210 
specifying 

deferred mounting 214 
parallel mo].ulting 214 
SYSOUT parameter 202-204,291 
unit affinity 215 
unit count 213-214 
unit separation 215 

with suballocation 194 
Unit record devices 

list of 212:-213 
writing dumps to 114 

Unit separati~n 215 

Index 319 



Universal character set (see UCS) 
Unqualified name, assigning 166 
Use attributes 222-225 

V format 
glossary 306 

VERIFY subparameter in the UCS parameter 
207 

VOL parameter on DD statement (see VOLUME 
parameter) 

volume 
glossary 306 
permanently resident 223 
private 219,223-225 
public 219,223-225 
removable 223-225 
reserved 223-225 
scratch 220,223-225 
storage 223-225 

Volume COLmt subparameter in the VOLUME 
parameteI' 221 

VOLUME paI'ameter on DD statement 217- 227 
backward reference 221-222,22 
coded on 

JOBLIB DD statement 109 
STEPLIB DD statement 112 
SYSABEND DD statement 114 
SYSCHK DD statement 116,117 
SYSUDUMP DD statement 114 

coded when 
creating generation data set 285 
creating ISAM data set 276 
retrieving ISAM data set 280 

examples of 227 
format of 217 
glossary 306 
providing volume information 218-222 
referring to specific request 221-222 
rules for coding 218 

320 JCL Reference 

VOLUME parameter on DD statement 
( con tin ued) 

specifying 
PRIVATE subparameter 219 
RETAIN subparameter 220 
volume sequence number subparameter 

220 
volume count subparameter 221 

with suballocation 194 
supplying serial numbers 221 

I Volume sequence number subparameter 
VOLUME parameter 220 

for checkpoint entry 116 
Volume serial number 221 

for checkpoint entry 116,117 
special characters in 221,24 

Volume states 222-227 
Volume table of contents (VTOC) 

glossary 306 
VOLUME=REF 

backward references 221-222,22 

wait state time limit 
with SMF 61-62,97 
without SMF 62,97 

XI 249 
XX 249 
xx* 249,21 

1440 62,98 
2321 data cell drive 

unit address 211 
unit affinity 215 

2361 core storage 53,93 

in the 



( 

Section XII: Control Statement Foldout Charts 

/ /Name Operation 

//jobname JOB 

Legend: 

The JOB Statement 
Operand 

([account number] [,additianal accounting information",.]) 

[programmer '5 name] 

[CLASS=jobclass] 

[COND=(kode ,operator),., .)] 

[MSGCLASS=output class] 

[PRTY =pri ori tyJ 

[
REGION=OvalueK I ~valuelK]~ 

Iva lueOK \ J 

[RESTART=(I~tepname I C,checkid])l 
stepname. procstepname\ J 

[TIME={ ;~~~utes,seConds)}J 

[TYPRUN=HOLD] 

P Pas; tiona I paramete'-. 
K Keyword para-neter. 
1 } Choose one. 
[J Optional; if !rare t+Ol one iine is en:lose·j, :::::-:ccse c"',e a" none. 

:::~art 1 

P/K Comments 

P Can be made mandatory 

P Can be made mandatory 

K Assign A-O, For MFT and MVT. 

K Maximum of 8 tests 

K Assign A-Z ,0-9, For MFT and MVT. 

K 

K Assign 0-13. For MFT and MVT. 

K Restart definition 

• K For MVT 

K For deferred restart 

K Rollout/rollin. For MVT. 

K Assigns job CPU time limit. 
For MFT and MVT. 

K Holding a job in job queue, 
For MFT and MVT. 

Section XII: control stateroent Foldout Charts 321 



//Name Operation 

//[stepnameJ EXEC 

Legend: 

Positionol parameter. 
KE'vword oorameTer, 

Choose one. 

The EXEC Statement 
Operand 

{

program name } 
PGM= * .stepname.ddname 

, .stepname.procstepname.ddname 
[PROC=] procedure name 

IACCT=(accounting information, ••• ) ] 
LACCT. procstepname=(accounting information, ••• ) 

~
code ,operator) ] 

COND=( (code ,operator ,stepname) , ••• [,] EVEN ) 
(code ,operator ,stepname .procstepname) [ON LyJ 

~
code,operator) J 

(aND .procstepname=( (code ,operator ,stepname) , .•. [,] [EVEN J) 
(code, opere tor ,stepname .procstepname) ON L Y 

[
DPRTY=(value1,value2) J 
DPRTY. procstepname=(va lue 1, va lue2) 

IPARM=value ] 
LPARM. procstepnome=va lue 

fRD = :NC 

I' NC 

I, NR 

[D .procstepname= 

R 
RNC 
NC 
NR 

[

REGION=({VaIUeK }[,value]K]) ] 
valueOK 

REG I ON. procstepname=({valueK }[. value] K]) 
valueoK 

[

ROLL=({YES}{I YES}) ] 
NO ,NO 

ROLL. procstepname=({~~}{; ~~ F 

[

TIME={lm i nutes, seconds)} ] 
1440 

TIME. orocstepnome={lmi nutes, seconds)} 
1440 

Optional; ii reore th~n one line is enclosed, choose one or none. 

Chart 2 

P/K Comments 

P Identifies program or 
cata loged procedure 

K Accounting inFormation for step 

K Maximum of 8 tests, or 7 tests 
if EVEN or ONLY is coded 

K Assign values of 0-15. For MVT. 

K Parentheses or apostrophes 
enclosing volue may be required 

K Restart deFinition 

K For MVT 

K Rollout/rollin. For MVT. 

K Assigns step CPU time lirr.it. 
For MFT and MVT. 

322 JCL Reference 

Chart 2 



The D D Statement 
I - . I .. P/K Comments I 

1-__ ;_'I_N_a_m_e __ ~i_u_pe_r_a_tl_o_n~I __________________ v __ ·_p_e_ra_n_a ________________________ -+ __ ---------,---,---,----i 
// [~~~;s::pnamJ DD i [~ATAJ 

ddname J 

Legend: 

P Positional parameter. 

K Keyword parameter. 

{\ -Choose one. 

[DUMMY] 

[AFF=cdnameJ 

[
DCB~(list of attributes) 

dsname 

DCB=( * .ddname l .. 't"p~mo.pm""pcom" .dd "om, 
*. stepname .ddname 

[PDNAME=ddnameJ 

[ !DELETE 1 ] DISP=<[~~6J :~!~~ [:~~~~TE]) 
SHR ,CATLG ,CATLG 
MOD ,UNCATLG ,UNCATLG 

, 

dsname 
dsname(member name) 
dsname(generation number) 

-

) 
dsname(area name) 

~DSNAME!= &&dsname 
lDSN ~ \ &&dsname(member name) ) 

I &&dsname(area name) I 
* .ddname J 

L 
I * .stepname.ddname 
\ * .stepname.procstepname.ddname 

[

LABEl=([data set seq #] [:tbs~l [,PASSWORD] [liN ] [,J [EXPDT=YYddd J] , N L, lOUT RETPD=nnnn 
,BLP 

[SEP=(ddname, •.• )] 

[1 
ITRK I l,CONTIGl j] 1 SPACE=( CYl ,(primaryf,secOndary] r,~irectOry])['RLSEl ,MXIG [,ROUND]) 

blocklength l t,ndex, J ,AlX 

2 SPACE=(ABSTR, (primary quantity ,address [,?irectory] )) 
,Index 

[] Enclosing subporometer, indicates that subporameter is optional; if more than one line is enclosed, choose one or none. 

[] Enclos; e.g entire parameter, indicates that aaromerer may be optionai, dependi"g on what type of data set you are defining. 

Chart 3 

K 

K 

K 

K 

K 

K 

K 

K 

! I 

I 

To defi ne a data set in the input strea", 

To bypass I/O operations on a data set 
iBSAM and OSAM) 

One way" 'e~uest channel separatian 

To complete the data control block. See 
Glossary of DeB Subparameters. 

To postpone the definition of a data set 

To assign a status, disposition, and 
canditional disposition to the data set 

To assign a name to a new data set or to 
identify an existing data set. An 
unqualified name is 1-8 characters, 
beginning with an alphabetic or national 
character. 

To supply label informatian 

One way to request channel separation. 
Code up to 8 ddnames. 

1 To assign space on a direct access volume 
for a new data set 

2 To assign specific tracks on a direct access 
volume for a new data set 

The DD Statement (can't) 
I--------_---~-------------------------------------------

','Name Ooe'otior; , 

II [ddname 1 
~"ccs+epnarrle • 

cdname 

DD 

Opera'1d 

(n, CYL ,(primary quantity [,secondary quantity] )) ] 

~percent, block length , (primary quantity [,secandcry cuantity)]) 
percent 

[ ITRK I i,ddname I] 
SUBALLOC=( CYL ,(primary f,secondar)'] [directory]) ,stepname.ddname ) 

block length l ' stepname. procstepname .ddname 

flSYSOUT=classname ] 
l2SYSOUT=(clossname [:program name] [form number] ),[OUTLIM=number] 

[UCS=(Character set code [: FOLD] [, VERIFY])] 

[ 

UNIT=( r~:~i::~~~s;] [:~nit count] [,DEFER] [,SEP=(ddname, ••• )]) ] 

l~roup name , 

UNiT=AFF=ddname 

[ [

SER=<serial number, .. .} 
REF=dsname 

~VOlUME H [PRIVATE] [,RETAI NJ [, volume seq #J[ ,volume count] [,J REF=* .ddname 
lVOL \ " REF=* .stepname.ddname 

REF=* • stepname. procstepname 

Section X] 



le DO Statement 
perand 

Jl 
~ J 

ldname 

W'ORD ] [,IN] [,J [EXPDT=YYddd J] ,OUT RETPD=nnnn 

[

CONTIGJ j] ldary] f,~irectarYJ)['RLSEl ,MXIG [,ROUND]) 
to ndex , J,.A. LX 

lSS I" ,directoryl)) 
L,index J 

lepending on what 'ype of data set yav :ore deFi ni ng. 

P/K Comments 

To defi ne a data set in the input stream 

To bypass I/O operations on a data set 
(BSAM and QSAM) 

K One way'" request channel separation 

K To complete the data control block. See 
Glossary of OCB Subparameters. 

K To postpone the definition of a data set 

K To assign a status, disposition, and 
conditional disposition to the data set 

K To assign a name to a new data set or to 
identify an existing data set. An 
unqualified name is 1-8 characters, 
beginning with an alphabetic or national 
character. 

K To supply label information 

K One way to request channel separation. 

K 

Code up to 8 ddnames. 

1 To assign space on a direct access volume 
for a new data set 

2To assign specific tracks oro a direct access 
vo I urne for a new data set 

//Name Operation 

II [ddoomo 1 DD 
procstepnarne. 

ddname 

I 

I ! 

I 
• I 

I I 
I 

I I 
I I 

The DO Statement (con1t) 

Operand P/K I Comments 
I 

[sPLiTO 
(n,CYL,(primary quantity [,secondary quantity])) 

] 
K To assign space on a direct access volume 

n For a new data set. Data sets share cylinders. 
(percent, blocklength, (primary quantity [, secondary quantity)]) 
percent 

[ rK I I,ddoomo I ] SUBALLOC=( CYL ,(primary [secondary] [directory]) ,stepname.ddname ) K To request part of the space on a di rect 

block length , ,stepname.procstepname.ddname access volume assigned earlier in the job 

l'SYSOUhIO"oomo ] K To route a data set through the output 

2SYSOUT=(classname [:program name] [form number] ),[OUTLlM=number] stream. For classname, assign A-Z or 
0-9. 1 For PCP. 2 For MFT and MVT. 

[UCS=(Character set code [:FOLD ] [VERIFY])] K To request a special character set for a 
1403 printer 

r! r:OOit 
odd,o" 1I'"0it ~ootl 11 

UNIT=( device type,P LDEFER][,SEP=(ddname, ••• )]) K To provide the system with unit information 

arouo name L' J 

UUNIT=A~vF=d~name J )J 

[ [ 5 ER~;o"ol oombo".,.1 ] j REF=dsname 
~VOLUME ~=( [PRIVATE] [,RETAIN] [,volume seq #J[ ,volume count] [,] REF=* .ddname ) K To provide the system with volume information 

VOL " REF=*.stepname.ddname 
R EF=* • stepname. procstepname. dd name 

I 

I 
t 

I I 
I 

I 
: 

Chart 3 

Section XII: Control Statement Foldout Charts 323 



GC28-6704-0 

International Business Machines Corporation 
Data Processing Division. 
112 East Post Road, White Plains, N.Y.IOBOI 
IUSA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
I International] 

v 
Vl 

l-
n , 
;;0 

~ 
CD 

ro 
::J 
o 
CD 

Vl 

~ 
o 
I 

W 

~ 



READER'S COMMENT FORM 

IBM System/360 Operating System 
Job Control Language Reference 

• Is the material: 
Easy to read? . 
Well organized? 
Complete? 
Well illustrated? 
Accurate? 
Suitable for its intended audience? 

• How did you use this publication? 
D As an introduction to the subject 
D For additional knowledge 

Other 

• Please check the items that describe your position: 
D Customer personnel D Operator 
D IBM personnel D Programmer 
D Manager D Customer Engineer 
D Systems Analyst D Instructor 

Order No. GC28·-6704-0 

Yes No 
o D 
D D 
D D 
D D 
D 0 
o D 

D Sales Representative 
D Systems Engineer 
D Trainee 
Other 

• Please check specific criticism (s), give page number ( s), and explain below: 
D Clarification on page ( s ) 0 Deletion on page ( s ) 
o Addition on page ( s ) 0 Error on page ( s ) 

Explanation: 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



GC28-6704-0 

YOUR COMMENTS, PLEASE ... 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers and operators of IBM systems. Your answers to the questions on the back 
of this form, together with your comments, will help us produce better publications for 
your use. Each reply will be carefully reviewed by the persons responsible for writing 
and publishing this material. All comments and suggestions become the property of IBM. 

Note: Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 

Fold 

[

---B ~ SIN E S S REP L Y M A I L 

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 
------------------

Attention: Programming Systems Publications 

Department 058 

Fold 

POSTAGE WILL BE PAID BY •.• 

IBM Corporation 

P.O. Box 390 

Poughkeepsie, N.Y. 12602 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y. 10601 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
[International] 

Fold 

FIRST CLASS ] 
PERMIT NO. 81 
POUGHKEEPSIE, N.Y. 

Fold 

Vl 

~ 

[~ 
"­
W 
0-
o 
o 
Vl 

L_ 
() 
r­
;;0 
C1) 

iii' 
iil 
~ 
o 
C1) 

'. 



... 

READER'S COMMENT FORM 

IBM System/360 Operating System 
Job Control Language Reference 

• Is the material: 
Easy to read? . 
Well organized? 
Complete? 
Well illustrated? 
Accurate? 
Suitable for its intended audience? 

• How did you use this publication? 
D As an introduction to the subject 
D For additional knowledge 

Other 

• Please check the items that describe your position: 
D Customer personnel D Operator 
D IBM personnel D Programmer 
D Manager D Customer Engineer 
D Systems Analyst D Instructor 

Order No. GC28-6704-0 

Yes No 

o D 
D D 
D D 
D D 
D D 
D D 

D Sales Representative 
D Systems Engineer 
D Trainee 
Other 

• Please check specific criticism ( s ), give page number ( s ), and explain below: 
D Clarification on page ( s ) D Deletion on page ( s ) 
D Addition on page ( s ) D Error on page ( s ) 

Explanation: 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



GC28-6704-0 

YOUR COMMENTS, PLEASE ... 

This manual is part of a. library that serves as a reference source for systems analysts, 
programmers and opera.tors of IBM systems. Your answers to the questions on the back 
of this form, together with your comments, will help us produce better publications for 
your use. Each reply will be carefully reviewed by the persons responsible for writing 
and publishing this material. All comments and suggestions become the property of IBM. 

Note: Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 

Fold 

C--B U ~-;~~~ S - ~ E PLY M A I L 

1'10 POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 
--."--.~-----------------

Attention: Programming Systems Publications 

Department 058 

Fold 

POSTAGE WILL BE PAID BY ••• 

IBM Corporation 

P.O. Box 390 

Poughkeepsie, N.Y. 12602 

International Business Machines Corporation 
Data Processing DivisioI11 
112 East Post Road, White Plains, N.Y. 10601 
IUSA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
I International J 

Fold 

FIRST CLASS 
PERMIT NO. 81 
POUGHKEEPSIE, N.Y. 

Fold 

VI 

~ 
ro-
~, ~, 

~ 
0 

0 
VI 

L 
() 
r-
:;:0 
(1) 

iii' 
in 
:::l 
0 
(1) 

Vl 
W 
0-
0 
I 

W 

~ 

~ 
:::l 

r0-
c... 

:::l 

C 
'VI 
> 
O· 
n 
".) 
00 
I 

0-

" 12 
I 

0 


