
HEWLETT PACKARD

DISC OPERATING SYSTEM

DISC OPERATING SYSTEM

HP 02116-91748

HEWLETT WP PACKARD

11000 Wal fe Road
Cupertino, California

October 1969

© CopylU_ght, 7969, by

HEWLETT-PACKARD COMPANY
Cupertino, California

Printed in the U.S.A.

PREFACE

DISC OPERATING SYSTEM is the programmer's and operator's guide to the

Hewlett-Packard Disc Operating System (DOS) for the HP2116B Computer and

disc or drum memory. DOS is a batch processing system that executes complete

jobs without operator intervention. For a full understanding of DOS, the

reader should be familiar with one of the Hewlett-Packard programming lan­

guages, as presented in the FORTRAN (02116-9015) and ASSEMBLER (02116-9014)

programmer's reference manuals.

The Introduction of this manual explains the software and hardware elements

of the system. Section I presents the system organization, while Sections

II and III cover the complete set of batch and keyboard directives and pro­

gram calls to the system. All facets of DOS programming -- FORTRAN, Assem­

bler, Loader, DEBUG, and Library -- are presented in Section IV. Section V

assembles all the necessary information on input/output, including the plan­

ning of I/O drivers. Procedures for installing and initiating the software

appear in Section VI. The appendices provide tables, summaries, a complete

listing of error messages, and sample job decks.

iii

CONTENTS

iii PREFACE
v CONTENTS

xi INTRODUCTION

1-1 SECTION I
SYSTEM ORGANIZATION

1-1 DISC OPERATING SYSTEM

1-2 Directives

1-3 EXEC Calls

1-3 Input/Output

1-4 Core Layout

1-5 Disc Layout

1-6 DOS Files

1-6 DOS Installation

2-1 SECTION II
DIRECTIVES

2-3 JOB

2-4 EJOB

2-5 ABORT

2-6 PAUSE

2-7 COMMENT

2-8 TYPE

2-9 PROG

2-10 RUN

2-11 TRACKS

2-13 STORE

2-17 SPECIFY SOURCE FILE

2-18 EDIT

2-21 PURGE

2-22 LIST

2-25 FILE DUMP

v

CONTENTS

SECTION II (cont.)

DIRECTIVES

2-27 DISC DUMP

2-28 PROGRAM DUMP

2-31 EQUIPMENT

2-32 LOGICAL UNIT

2-33 UP

2-34 DOWN

2-35 BATCH

2-36 DATE

2-37 GO

3-1 SECTION III

EXEC CALLS

3-2 FORMAT OF THE ASSEMBLY LANGUAGE CALLING SEQUENCE

3-3 FORMAT OF THE FORTRAN CALLING SEQUENCE

3-4 READ/WRITE

3-7 FILE READ/WRITE

3-9 I/O CONTROL

3-11 I/O STATUS

3-13 WORK AREA LIMITS

3-14 WORK AREA STATUS

3-16 PROGRAM COMPLETION

3-17 PROGRAM SUSPEND

3-19 PROGRAM SEGMENT LOAD

3-21 SEARCH FILE NAMES

3-22 TIME REQUEST

4-1 SECTION IV

PROGRAMMING

4-1 LOAD-AND-GO FACILITY

4-2 DOS FORTRAN COMPILER

4-2 Compiler Operation

4-3 PROG,FTN

4-5 PROGRAM STATEMENT

4-6 DATA STATEMENT

vi

t

4-7

4-8

4-9

4-10

4-11

4-11

4-14

4-15

4-16

4-21

4-22

4-22

4-23

4-26

4-28

4-30

4-31

4-33

4-34

4-35

5-1

5-1

5-2

5-4

5-5

5-5

5-6

5-6

5-7

5-7

5-10

CONTENTS

SECTION IV (cont.)

PRO G RAt/M ING

EXTERNAL STATEMENT

PAUSE & STOP

ERR~ LIBRARY RJUTINE

DOS ASSEMBLER

Assembler Operation

PROG,ASMB

DOS Assembly Language

NAM STATEMENT

Segmented Programs

DOS RELOCATING LOADER

Starting the Loader

PROG,LOADR

Operating the Loader

DEBUG Library Subroutine

Loader Example

Loader Error Messages

DOS RELOCATABLE LIBRARY

% Library Routines

Subroutines Unique to DOS

Assembly Language Calling Sequences

SECTION V

INPUT/OUTPUT

SOFTWARE I/O STRUCTURE

The Equipment Table

Logical Unit Numbers

Input/Output Drivers

System I/O

User Program I/O

Interrupt Processing

PLANNING I/O DRIVERS

Initiation Section

Completion Section

vii

CONTENTS

6-1 SECTION VI
INSTALLATION

6-1 DSGEN, THE DOS GENERATOR

6-2 Operating Procedures

6-12 Error Messages (DSGEN)

6-15 DOS INITIATION FROM THE DISC

6-16 CREATING A BACK-UP COPY

6-17 Error Messages (SDUMP)

6-18 Saving System and/or User Files

APPENDICES

A-1 TABLES
B-1 TYPICAL JOB DEC KS
C-1 SAMPLE DSGEN LISTINGS
D-1 RELATION TO OTHER SOFTWARE
E-1 LINE PRINTER FORMATTING
F-1 SUMMARY OF DIRECTIVES
G-1 SUMMARY 0 F EX EC CALLS
H-1 MESSAGES
I-1 MAGNETIC TAPE USAGE

ILLUSTRATIONS

1-2 Figure 1-1. DOS Core Allocation

1-4 Figure 1-2. DOS Disc Storage

4-17 Figure 4-1. Segmented Programs

4-18 Figure 4-2. Main Calling Segment

4-19 Figure 4-3. Segment Calling Segment

4-20 Figure 4-4. Main-to-Segment Jumps

5-9 Figure 5-1. I/O Driver Initiation Section

5-12 Figure 5-2. I/O Driver Completion Section

6-9 Figure 6-1. Core Allocations in DOS

viii

CONTENTS

TABLES

4-29 Table 4-1. Library Subroutines

ix

INTRODUCTION

In the DISC OPERATING SYSTEM (DOS) for the HP2116B Computer and disc storage

unit, software modules are stored permanently on the disc for high-speed

batch processing, eliminating slow and inefficient paper tape loading. In­

put can be set up and executed in serial order to automatically edit, trans­

late, load and execute a set of source programs written in HP FORTRAN (an

extension of ASA BASIC FORTRAN) or HP Assembly Language. A variety of files

can be stored, edited, listed, dumped and used as input to programs.

FEATURES OF DOS

DOS contains the following highlights and features:

a Keyboard and batch processing modes,

Il Software programming aids: FORTRAN Compiler, Assembler, Relocating
Loader, Relocatable Library, Debug Routine, and Source File Editor,

0 Jobs executed in a queue with no operator intervention,

0 Symbolic disc files, with relative addressing,

Q Centralized and device-independent I/O processing,

Q Modular structure,

0 Custom configuration to optimize available memory and I/O.

IXlS HARDWARE CONFIGURATION

The minimum hardware requirements for the DOS system are:

ll An HP2116B Computer with 8K memory, and:

12578A Direct Memory Access

12579A Extended Arithmetic Unit

xi

INTRODUCTION

12591A Memory Parity Check with Interrupt

12539A Time Base Generator

~A Memory Protect Check

1)ri1 ~

ll Disc or Drum Mass Storage Unit(maximum of 4 units, 256 tracks total)

a HP2752A (ASR-33) System Teleprinter

a HP2754B (ASR-35) teleprinter for Batch Input, Punch and List Device

In place of the HP2754B (ASR-35) teleprinter, the user may select for example

the following I/O devices instead for batch operations:

Batch List Device

HP2752A Teleprinter

HP2752A Teleprinter

Line Printer

Batch Input Device Batch Punch Device

Punched Tape Reader Punch Unit

Mark Sense Card Reader Punch Unit

Punched Tape Reader Punch Unit

DOS SOFTWARE MODULES

The following software tapes are supplied to the user:

a DOS Supervisor and sub-modules

a DOS Assembler

a DOS FORTRAN Compiler

a DOS Relocating Loader

a DOS Relocatable Library

a DOS I/O Drivers

a DSGEN, the DOS Generator

DOS Supervisor

The DOS Supervisor consists of a core- and disc-resident protected section

(DISCM) and a disc-resident job processor, JOBPR.

xii

DISCM

Il Interrupt Processor

Il Executive Processor

Il I/O Processor

Il Executive modules

$EX~l thru $EX16

INTRODUCTION

JOB PR

Il Job Processor

Il File Manager

PURGE

DUMP

STORE

LIST

EDIT

NOTE: EX1 through $EX16 may be

either core- or disc-resident

when a system is configured.

NOTE: JOBPR is always disc-resident.

It is called to execute control

commands.

Sys tern Programs

System Programs include DOS FORTRAN, DOS Assembler, and the DOS Relocating

Loader. Both the DOS FORTRAN and the DOS Assembler consist of a main pro­

gram and several segments. The DOS Relocatable Library consists of math,

service and I/O subroutines which may be appended to a user program by the

DOS Relocating Loader.

DOS I/O Drivers

The following I/O Drivers are discussed in Section V:

Name Device

DVROO Teleprinter

DVROl Punched Tape Reader

DVR02 High Speed Punch

DVR12 Line Printer

DVR15 Mark Sense Card Reader

DVR22 3030 Magnetic Tape Unit

DVR30 Disc/Drum

xiii

INTRODUCTION

DSGEN, THE Disc Operating System Generator

DSGEN, the DOS Generator, is an independent program which configures complete

operating systems out of the DOS software modules, user programs, and infor­

mation supplied about the I/O configuration.

xiv

SECTION I
SYSTEM ORGANIZATION

An operating system is an organized collection of programs which increases

the productivity of a computer by providing common functions for all user

programs.

An operating system's function is to aid in the preparation, translation,

loading, and execution of programs. This is accomplished by an auxiliary,

quick access memory, usually a disc or drum. The various translators, load­

ers, and other software are stored permanently on the disc for use only when

needed. Since the programmer requests a compiler from the disc instead of

loading it by hand from paper tape, the overhead time can be significantly

reduced.

DISC OPERATING SYSTEM

The Disc Operating System (DOS) is composed of user disc files and the DOS

Supervisor. The Supervisor consists of two parts: a Disc Monitor (DISCM) and

a Job Processor (JOBPR). DISCM consists of modules which are either core- or

disc-resident and handle I/O transfers, requests from programs, and other

supervisory tasks. The disc-resident JOBPR handles operator and programmer

directions from the batch or keyboard device.

The Disc Operating System affords speed and convenience. Programs can be

input to DOS for automatic translation, loading, and execution. For example,

simple punched cards are able to carry out load-and-go operations in DOS as

follows:

a. DOS reads the FORTRAN Compiler into core from the disc.

b. The Compiler reads the source program from an external device,

such as a card reader, and stores the relocatable binary in­

structions on the disc.

c. DOS reads the Loader into core from the disc.

1-1

SYSTEM ORGANIZATION

d. The Loader reads the relocatable binary programs from the disc and

stores the converted binary instructions on the disc.

e. DOS reads the program in from the disc and runs it.

Di rec ti ves

The DOS Supervisor operates in response to directives input by the progranuner

or operator. Directives are strings of up to 72 characters that specify

tasks to DOS. They are entered in one of the two modes of DOS operation:

keyboard or batch. In keyboard mode, the directives are entered manually

from the teleprinter keyboard. In batch node, directives can be input as

punched cards integrated with the source program into a job deck.

A job is a related set of user tasks and data. In keyboard mode the di­

rectives (tasks) are entered separately from the job data. In batch mode,

they are included in a job deck that can execute without manual intervention.

Jobs may be stacked directly upon one another in a queue.

The DOS directives are used for the following functions:

a Create, edit, list, dump, and purge user files (relocatable,
loader-generated, source and ASCII or binary data).

a Turn on systems programs such as FORTRAN, Assembler, etc.

a Modify the logical organization of the I/O.

a Start and stop a job; type conunents; suspend operations.

a Translate, load and execute a user program.

a Dump core or disc memory.

a Resume execution of suspended programs.

a Set the date; abort programs; transfer to batch rrode (from keyboard
mode); return to keyboard mode (from batch mode).

a Check and set status of disc tracks.

DOS directives are described in detail in Section II.

1-2

SYSTEM ORGANIZATION

EXEC Calls

After being translated and loaded, an executing user program communicates

with DOS by means of EXEC calls. An EXEC call is a JSB instruction which

transfers control to the DOS Supervisor.

The EXEC calls perform the following functions:

a I/O read and write operations,

a User file and work area read and write operations,

a I/O control operations (backspace, EDF, etc.),

a Request I/O status,

a Request status of disc track,

a Request limits of WORK area (temporary disc storage),

a Program completion,

a Program suspension,

a Loading of program segments,

a Request the time.

Section III describes EXEC calls in detail.

Input/Output

All I/O operations and interrupts are channeled through the DISCM section of

the DOS Supervisor. DISCM is always core-resident and maintains ultimate

control of the computer resources. (See SOFTWARE I/O STRUCTURE, Section V.)

I/O programming is device-independent. Programs written in DOS FORTRAN and

DOS Assembly Language specify a logical unit number (with a predefined func­

tion, such as data input) in I/O statements instead of a particular device.

Logical unit numbers are assigned to appropriate devices by the operator, de­

pending upon what is available. Thus, the programmer need not worry about

the type of input or output device performing the actual operation. (See

Loqical Unit Numbers, Section V. l

1-3

SYSTEM ORGANIZATION

Core Layout

When DOS is active, the core memory is divided into a user program area and a

system area (as shown in Figure 1-1). The Disc Monitor program handles all

EXEC calls and, if they are legal, transfers them to the proper module for

processing. The I/O drivL.S handle all actual I/O transfers of information.

If some I/O drivers are disc-resident, they are read into core by the super­

visor when needed. The user program area provides space for execution of

user programs. In addition, large DOS software modules, such as the FORTRAN

Compiler, Assembler, Relocating Loader, and Job Processor, reside on the disc

and execute in the user program area.

MEMORY
PROTECT
BOUNDARY

HIGH CORE

INTERRUPT LOCATION

DOS DISC MONITOR (DISCM)

I /0 DRIVER AREA

USER
PROGRAM

AREA

Figure 1-1. DOS Core Allocation

1-4

CORE- RESIDENT
SECTION OF DOS
SUPERVISOR

OVERLAY AREA
FOR EXECUTION
OF USER PROGRAM
AND SYSTEMS
PROGRAMS
(FTN, ASMB,
LOADER, JOB PR)

SYSTEM ORGANIZATION

Disc Layout

The disc storage is divided logically into three areas: system area, user

area, and work area. (See Figure 1-2.) In any installation, only the system

area has a fixed size. DOS and its software reside permanently in the hard­

ware-protected system area. Users' files of data and object programs reside

in the user area. Work tracks are temporary storage for any executing pro­

gram. The object code, which is generated by translators, is stored into the

job binary area of the work tracks.

DISC MEMORY

SOFTWARE
PROTECTED

HARDWARE
PROTECTED

--- DYNAMIC BOUNDARY
-- STATIC BOUNDARY

Figure 1-2. DOS Disc Storage

1-5

SYSTEM ORGANIZATION

DOS Files

The disc or drum provides quick access and mass storage for user files con­

sisting of source statements, relocatable and loader-generated object programs,

and ASCII or binary data. Each file has a name that is used to reference it.

Programs use the work area of the disc for temporary storage. The system area

contains files of systems programs, Exec modules, and library subroutines

(see LIST, Section II).

DOS Installation

DOS is a series of relocatable binary software modules. Since each module is

and independent, general purpose program, the hardware and software configur­

ation of each DOS is quite flexible. A separate absolute program, DSGEN, ac­

cepts the software modules and generates a configured DOS following dialogue-

type instructions from the user. (See IXJS Generator, Section VI.)

Certain DOS rnodules may be either core- or disc-resident. In a minimum SK

core system, all possible modules are disc-resident; but a 16K memory allows

rrore modules to be core-resident for faster processing.

An absolute copy of the configured DOS is stored on the disc or drum and is

protected from alteration by a hardware protect switch. A core-resident bi­

nary loader transfers DOS from the disc into core to start operations. (See

IXJS Initiation from Disc, Section VI.)

1-6

SECTION II
DIRECTIVES

Directives are the direct line of communication between the keyboard or batch

input device and the Disc Operating System. The operator enters these di­

rectives manually through the keyboard, while the programmer enters them on

punched cards within his job deck. Directives are able to:

a Initiate, suspend, terminate, and abort jobs

a Switch between keyboard and batch rnode,

a Execute, suspend, and resume suspended programs (including compi­

lers, loaders, etc.),

a Print the status of the disc tracks and the I/O tables,

a Create and purge files of source statements, relocatable and loader-

generated binary programs, and ASCII or binary data,

a Edit source statement files,

ll Set up source files for compilers and assemblers,

a List and dump files, dump disc and core,

a Declare I/O devices up and down, and

a Set the date and print comments.

Directives may enter DOS in two modes: keyboard and batch. In either mode,

all directives are listed on the teleprinter. Certain directives are legal

in one mode only; other directives are operable in both. In keyboard mode,

the opera,tor manually inputs the directives through the teleprinter keyboard.

In batch rnode, the programmer prepares the directives on punched cards or

paper tapes and inputs them along with programs, data, etc, in a complete

job.

Directives have the same format, regardless of the mode in which they occur:

":" followed by a directive word (first two characters are significant) and,

if necessary, a list of parameters separated by commas. For example,

: PROG, FTN, 99

2-1

DIRECTIVES

When optional parameters are missing, they must be represented by commas if

the following parameters are to be recognized. The first blank character

not preceded by a comma is the end of the directive. Comments may appear

after this blank; they are ignored by OOS. A "rubout" anywhere in a di­

rective deletes the entire directive, while a "control-A" (striking the"A"

key and the "control" key simultaneously) deletes the previous character.

DOS has two conventions for notifying the operator that directives may be

entered. An asterisk (*) means that DOS is waiting for an operator atten­

tion directive (see below). A "@" with the bell signals that DOS is wait­

ing for further directions. (During some operations, such as editing, there

may be perceptible waits while DOS processes the directive. Further di­

rectives must not be input until the "@" is output.)

The operator attains control of DOS at any time by striking any system

teleprinter key. If the teleprinter is available, DOS prints an asterisk

(*) on it; if it is busy, DOS prints an asterisk as soon as it is free. At

this time, the operator may enter any of the following directives (describ­

ed in detail in this section):

:ABORT
:ON
: EQ

:LU (reports only)

:TYPE
:UP

If the operator types any other directives, DOS prints the following message

and returns to the executing program.

IGNORED

2-2

DIRECTIVES

JOB

Purpose

'Ib initiate a user job and assign it a name for accounting purposes.

Format

:JOB[,name]

where name is a string of up to five characters (starting with an

alphabetic character) which identifies the job.

Comments

When DOS processes the JOB directive, it prints an accounting message on the

system teleprinter and the list device recording the job's name (as speci­

fied in the JOB directive), the current time, and the date (as specified in

the DATE directive):

JOB name date TIME = xxxx MIN. xx.x SECS.

For example,

:JOB, START
JOB START MON 6.16.9 TIME= ~~13 MIN 41.6 SECS.

If an EJOB directive has not been encountered, JOB also acts as the EJOB for

the previous job. In this case, all actions of the EJOB are carried out,

except for returning to keyboard mode from batch mode, before starting the

new job.

Only the first two characters of JOB are significant. DOS skips everything

up to the comma .

2-3

DIRECTIVES

EJOB

Purpose

'Ib tenninate the current job normally and return to keyboard mode.

Fonnat

:EJOB

Comments

EJOB purges the user file, eliminating spaces left by non-pennanent programs.

EJOB outputs a message recording the total job and execution time, then re­

turns to keyboard mode. (See STORE directive and Relocating Loader, Section

IV.) All directives except TRACKS or BA'ICH are ignored until the next JOB

directive.

When the EJOB directive occurs, a message is printed, similar to that of JOB,

giving the total run time of the job and total execution time. For example,

END JOB START RUN= 0007 MIN. 52.6 SEC. EXEC= 0001 MIN. 21.0 SEC.

This message is printed on the system teleprinter and on the standard list

device.

2-4

DIRECTIVES

ABORT

Purpose

'lb terminate the current job before the next JOB or EJOB directive.

\
Format

Comments

:ABORT

ABORT carries out all the operations of an EJOB. All I/O devices are cleared.

When it returns to the batch device, DOS ignores all directives, except TRACKS,

BATCH, or TYPE, until it finds a new JOB directive. An ABORT may be entered

through the keyboard, even if DOS is in batch rrode.

2-5

DIRECTIVES

PAUSE

Purpose

To interrupt the current job and return to the keyboard for

operator action.

Fonnat

: PAUSE

Comments

PAUSE may be entered through the keyboard even when DOS is in batch mode.

PAUSE suspends the current job until the operator inputs a GO directive. Dur­

ing this time the operator may mount magnetic tapes or prepare I/O devices.

(A series of COMMENT directives or a remark in the PAUSE directive itself can

be used to tell the operator what to do during the PAUSE.)

The GO directive returns DOS to the job in the previous mode.

2-6

DIRECTIVES

COMMENT

Purpose

'Ib print a message on the system teleprinter.

Format

:COMMENT Character String

where Character String is a message to be printed on the

teleprinter.

Comments

The programmer may use the COMMENT directive with the PAUSE directive to re­

lay instructions to the operator about setting up magnetic tapes, etc. A

space (but not a comma) is required between the directive word and the com­

ment string.

Examples

:COMMENT PLACE MAGTAPE LABELED 11 INPUT 11 0N THE M.T. UNIT

:COMMENT PUT 11 INPUT 11 PAPERTAPE IN PHOTOREADER

2-7

DIRECTIVES

TYPE

Purpose

To return from batch mode to keyboard mode.

Format

:TYPE

Corrments

Control is returned to the teleprinter keyboard. TYPE may be entered through

the batch device or keyboard device; but when it is entered from the keyboard,

!X)S waits until the current executing program is completed or is aborted be­

fore returning to keyboard mode. If TYPE is entered while already in key­

board mode, the directive is ignored.

2-8

DIRECTIVES

PROG

Purpose

'lb turn on (i.e., load from the disc and begin executing) a program

from the system area or programs from the user file which were gen­

erated through the DOS Relocating Loader.

Fonnat

where name denotes a system program, such as FTN for the DOS FORTRAN

Compiler, ASMB for the DOS Assembler, or LOADR for the

DOS Relocating Loader. A user program is specified via

the file name assigned in the DOS Relocating Loader.

Co1T111ent

P
1

through PS are optional parameters which DOS transfers

to the program named. P
1

through PS must be positive

integers less than 32767.

Consult Section IV for the parameters required by FTN, AS.MB, and LOADR. Add­

itional programs may be added at system generation time if desired. (See

IXJS Generator, Section VI.)

Examples

:PROG,FTN,2,99
:PROG,ASMB,2,6,4
:PROG,LOADR,0,6,~,1,0

2-9

DIRECTIVES

RUN

Purpose

To run a user program.

Fonnat

:RUN,name[,time][,N]

where name is a user file containing the desired program,

Conmen ts

time is an integer specifying the maximum number of minutes

the program may run (set to five minutes if not

specified).

N, if present, tells DOS to allow the program to continue

running even if it makes EXEC calls with illegal re­

quest codes.

Programs which have been relocated during the current job but not stored (see

STORE directive) permanently in a user file, may be run using this directive.

If the program executes longer than the time limit, the current job is abort­

ed and DOS scans to the next JOB directive.

If N is not present in the RUN directive, the current job wili be aborted by

any illegal request codes. The N option is provided so that programs can be

written and tested on DOS ultimately to execute with other HP software which

does not have the same request codes. (See Appendix D, RELATION TO OTHER

SOFTWARE.)

Example

:RUN,ROUT,15

executes program ROUT up to fifteen minutes not allowing illegal request codes.

2-10

DIRECTIVES

TRACKS

Purpose

'lb print the status of the tracks on the disc, and optionally,

to notify DOS of tracks known to be faulty.

Format

where T
1

,T
2

•••• are optional parameters which are used to notify

DOS that faulty tracks exist. Faulty tracks may

be reported only on a fresh start-up from the

disc (following the DATE directive). Track num­

bers are decimal.

Comments

The number of the first track of the work area is printed, followed by the

numbers of any faulty tracks. Each faulty track is listed separately.

The supervisor itself declares tracks down when a parity check on read

occurs.

All tracks in the work area are available as user area tracks when STORE di­

rectives are encountered.

The operator should use TRACKS regularly to keep aware of the disc status, so

that he can set faulty tracks unavailable on fresh starts.

2-11

DIRECTIVES

Examples

The following is an example in which no faulty tracks are reported.

(INPUT)

(OUTPUT)

: TRACKS

lST WORK TRACK= .0.01.0
@ -

(End of directive processing)

In this example, the operator makes tracks l~ to 11 unavailable (only on a

fresh start).

(INPUT)

(OUTPUT)

: TRACKS, 19), 11

1 ST WORK TRACK = 0.012

BAD=

0.01.0

.0.011
@ (End of directive processing)

2-12

DIRECTIVES

STORE

Purpose

To create a user file on the disc. The S'IDRE directive can

create relocatable object program files (type-R),

loader-generated object program files (type-P), source state­

ment files (type-S), ASCII data files (type-A), and binary

data files (type-B).

Format

The format varies according to what type file is being created.

See Comments below for details:

Comments

TYPE - R FILES

TYPE-R

TYPE-P

TYPE-S

TYPE-A

TYPE-B

The directive format is:

: STORE, R, file[,logical unit]

:STORE,P/1fame
1

, name2 , .. •]

: STORE,S ,file ,logical unit

: STORE ,A,file, sectors

: STORE ,B ,file, sectors

:STORE,R,file[,logical unit]

where file is a name consisting of five characters or less.

A user file is created under this name, and relocatable binary programs are

read into it from the logical unit specified or from the job binary area of

2-13

DIRECTIVES

the work tracks if none is specified. The job binary area remains as it was

before the STORE directive. (See Section IV, DOS FORTRAN and DOS ASSEMBLY

LANGUAGE.)

If DOS comes to an end-of-tape, it asks:

DONE?

If there are more tapes, the operator places the next tape in the reader and

replies NO; otherwise, he answers YES.

The file name should not duplicate the name (in the NAM record) of any relo­

catable program within the file being stored if it is to be loaded via the

Relocating Loader. '!he file may be input to the LOS Relocating Loader for

relocation into an executable program. (See Section IV, DOS REWCATING

WADER.)

Examples

: STORE, R ,RINE

(Stores all of the relocatable programs from the job

binary area into the file RINE created for that purpose.)

: STORE,R,JUGG,5

(Stores relocatable programs from logical unit 5, the

standard input device, into the file JUGG.)

TYPE - P FILES

'!he directive format is:

:STORE,P[,name
1

,name
2

,]

where name
1

, name2 ... are programs that the LOS Relocating Loader had relo­

cated into executable format during the current job. Up to 14

programs per directive are allowed. If none are specified, all

programs loaded during the current job are stored. DOS finds

these temporary programs in the user file and converts them to

permanent user files; the program name automatically becomes

the file name.

2-14

-~-

--

DIRECTIVES

Programs loaded during the current job but not stored as files (as shown

above) may be executed normally (RUN or FROG directive) and appear in the user

directory (LIST directive). At the end of a job, however, they are purged

from the directory unless they have been converted to user files by a STORE,P

directive.

Examples

:STORE,P

(Changes all loader-generated programs--core images--in the work

area into permanent user files.)

:STORE,P,ARITH,MATH,TRIG,ALGEB

(Searches the work area for the programs listed and makes them

permanent user files.)

TYPE - S 'FILES

The directive format is:

:STORE,S, file,logical unit

where file is the name of the user file to be filled with source statements

from the logical unit specified. File must not duplicate a name

already present in the user or system files. The source statement

input must be terminated by a double colon (::). If the :: is

omitted, DOS stores the succeeding data on the disc as if it were

source statements.

If DOS comes to an end-of-tape or blank card before finding the::, it asks

DONE?

If there are more tapes or cards, the operator replies NO; otherwise, he

answers YES.

When DOS completes the STORE, it prints

nnnn LINES

where nnnn is the number of statements stored.

2-15

DIRECTIVES

Example

:STORE,S,SOURC,5

(Reads source statements from the standard input device and stores

them in a new file SOURC.)

TYPE - A and TYPE - B FILES

The directive format is:

:STORE,type,file,sectors

where type is either A (for ASCII character data) or B (for binary data), and

file is the name assigned to a file containing the number of sectors

requested. These requests are made prior to executing a program.

The program may store and retrieve data from the file through a

call to EXEC.

It is the programmer's responsibility to store the right kind of data in the

file. The EXEC call must specify the file name and the relative sector with­

in the file. DOS checks that the file name exists and contains the sector

specified.

Example

:STORE,A,ASCII,20

(Creates a file named ASCII,20 sectors in length. A sector

equals 64 words.)

2-16

_.....·

DIRECTIVES

SPECIFY SOURCE FILE

Purpose

To specify the user source file to be used as input by the

assembler and compilers.

Format

~
Comments

:JFILE,file

or compiler is turned on, logical unit 2 (disc) mus

transfers the

source statements from

··------" ~--~ion IV, IXJS FORTRAN and

as they are requested.

Only one program can be translated from a file; any statements beyond the

end of the source program will be ignored. The JFILE assignment is only

changed at the end of the current job or another JFILE directive.

~ I
1/eAP.s. v-.• .. t-, 5'.o-~e• ~7,.,...,..,'f' c.t~ ,......._ A

2-17

DIRECTIVES

EDIT

Purpose

To perform listed edit operations on a user source file.

Fonnat

:EDIT,file,logical unit[,new file]

where file is the name of a source file to be edited according to an

edit list (edit operations plus associated source state­

ments) input on the specified logical unit. If new file

appears, the edited source file is stored in a new file

(with the name new file) and the old file is not purged.

Otherwise, the edited source file is the updated old file.

Position one of a source statement must not be a slash (/) or a

colon (:). The legal edit operations in an edit list are de­

scribed under Comments.

Conmen ts

An edit list consists of several edit operations and, optionally, a series of

associated source statements (i.e., following REPLACE, INSERT). Edit opera­

tions are executed when they are entered. When using the keyboard, the oper­

ator must not enter the next operation until the previous one is completed

(completion is signaled by "@" output on the keyboard).

All edit operations begin with a slash (/), and only the first character

following the slash is required. 'Ihe rest are ignored up to a comma. If a

colon (:) is encountered in column one before the end of the edit list, the

job is aborted. In the edit operation formats, the letters m and n are the

2-18

\

DIRECTIVES

sequence numbers of the source statements to be edited, starting with one.

Letter m signifies the starting statement, and n is the ending statement of

the operation, inclusive. In all cases, n must be greater than or equal to

m; neither can be less than one, nor greater than the last source statement

of the file. The m must be greater than the n of the previous operation.

All edit operations are listed on the system teleprinter as they are executed.

EDIT OPERATIONS

The following operation causes source statements m through n, inclusive, to

be deleted from the file.

/DELETE,m[,n]

If only m is specified, only that one statement will be deleted.

By means of an edit operation, the source statements m through n can be re­

placed by one or more source statements following /REPLACE in the edit list.

/REPLACE,m[,n]

Again, if n is absent, only m is replaced.

The format for the INSERT operation is:

/INSERT,m

The source statements which follow /INSERT in the edit list are inserted in

the file after statement m.

In the END operation,

/END

the edit directive is terminated and IX)S returns to its previous mode for

further directives.

2-19

DIRECTIVES

Examples

If a file named SOURC contains:

Statement 1 ASMB,R,B,L

Statement 2 NAM START

Statement 3 A EQU 30

Statement 4 B EQU 20

Statement 5 START NOP

Statement 6 LOA A

Statement 7 END

and the EDIT directive is:

: EDIT ,SOURC,5

and the edit list, which follows :EDIT on the batch device, is:

then the new file equals:

Statement 1

Statement 2

Statement 3

Statement 4

Statement 5

Statement 6

Statement 7

Statement 8

/R,3

A EQU 100

B NOP

/D,4

/I,6
STA B

/E

ASMB, R ,B,L

2-20

NAM START

A EQU 100

B NOP

START NOP

LOA A

STA B

END

DIRECTIVES

PURGE

Purpose

To remove a user file from the user file area.

Format

:PURGE, file
1

, file
2

, • ••

where file
1

, file
2

, ••• (up to 15 file names per directive) designate

files in the user area. These are purged from the user

area. If a file cannot be found, a message is printed

on the keyboard:

FILE UNDEFINED

Comments

After the files are purged from the disc, the remaining user area files are

repacked for efficiency. If the end of the user area moves below a track

boundary during the purge, the work area becomes a track larger. As each

file is purged, DOS prints its name on the teleprinter.

Example

ORIGINAL CONTENTS OF USER FILE:

DIRECTIVE:

OUTPUT:

Fl ,F2,F3,F4, FLONG, and F5 (at least)

:PURGE,FLONG,Fl,F2,D3,D7,F3,F4,F5

FLONG

F1

F2

D3 UNDEFINED

D7 UNDEFINED

F3

F4

F5

2-21

DIRECTIVES

LIST

Purpose

To list file information recorded in the user or system director­

ies. To list and number the contents of a source file sequential­

ly statement-by-statement.

Format

(System)

(User)

:LIST,X,logical unit[,file
1

, ...]

:LIST,U,1ogica1 unit[,file
1

, ...]

where X specifies the system area directory, and

U specifies the user area directory,

logical unit specifies the list device, and

file
1

, ... names the entries to be listed (if none is

specified, the entire directory is listed).

(Source) :LIST,S,logical unit,file[,m[,n]]

where file names the source file to be listed on the

logical unit specified.

Comments

m and n, if present, specify the first and last statements

to be listed. If n is absent, then all statements

from m on are listed. If neither appear, then the en­

tire field is listed. The restrictions for m and n

are the same as those for the EDIT directive.

DIRECTORY LISTING OUTPUT

The first line is a heading, identifying the information that follows:

NAME TYPE SCTRS DISC ORG PROG LIMITS B.P.LIMITS ENTRY LIBR.

2-22

DIRECTIVES

The following lines are then printed:

name type sctrs trk sec lowerp upperp lowerb upperb entry libr

where name identifies the file,

type tells what kind of file name is,

AD = ASCII data

BO = binary data
User File Only

RB = relocatable binary program

SS = source statements

DR = disc resident I/O driver

LB = library
System File Only

SR = system core-resident program

XS = supervisor module

UM = user main program

US = user program segment
} Either File

sctrs is the number of sectors in the file,

trk is the track origin of the file,

sec is the starting sector of the file within the track specified,

The information below does not appear for types AD, BO, LB, RB and SS.

lower is the lower limit (octal) of the program,
p

upper is
p

the upper limit (octal) of the program,

lowerb is the lower limit (octal) of the program base page links,

upperb is the upper limit (octal) of the program base page links,

entry is the absolute octal address where execution begins, and

libr is the beginning absolute octal address of the first library

routine included in the program.

If the requested file does not exist, a message appears,

file UNDEFINED
RE-ENTER STATEMENT ON TTY

2-23

DIRECTIVES

SOURCE LISTING FORMAT

Each source statement is preceded by a four-digit decimal sequence number.

If the requested file is not a source file, a three-line message appears,

file

ILLEGAL
RE-ENTER STATEMENT ON TTY

The list is terminated by a message on the system teleprinter,

**** LIST END **

Examples

:LIST,X,l
NAME TYPE SCTRS DISC ORG PROG LIMITS B.P. LIMITS ENTRY LIBR.
DVR01 DR 0005 T000 064 10626 11142 00606 00610 10626 11142
DVR15 DR 0005 T000 069 10626 11153 00606 00610 10626 11153
JOBPR UM 0064 T000 074 12000 21425 00610 01075 12000 21425
LOADR UM 0051 T001 053 12000 17512 00610 01211 12000 17512
ASMB UM 0041 T002 019 12000 16424 00610 01153 16270 16424
ASMBD US 0007 T002 060 16433 17135 01153 01154 16746 17135
ASMBl US 0011 T002 067 16672 20012 01153 01157 16672 20012
ASMB2 US 0011 T002 078 16651 20040 01153 01156 16655 20040
ASMB3 US 0003 T003 004 17104 17245 01153 01154 17105 17245
ASMB4 US 0006 T003 007 16672 17314 01153 01154 16672 17314
ASMB5 US 0010 T003 013 16651 17713 01153 01154 16655 17713
LIBRY LB 0173 T003 024
@

:LIST,U,l
NAME TYPE SCTRS DISC ORG PROG LIMITS B.P. LIMITS ENTRY LIBR.
Fl AD 0001 T009 000
F2 BO 0002 T009 001
FLONG AD 0900 T009 003
@

:LI,S,l,DVRLP,316
0316 EQT12 EQU EQTl+ll
0317 1.12 EQU 1.11
0318 C.12 EQU C.11
0319 END
**** LIST END**
@

2-24

DIRECTIVES

FILE DUMP

Puroose

To dump a user file on a specified device in a format

app~opriate to the file content.

Format

:DUMP,1ogica1 unit,file[,s1[,s2]]

where logical unit is the output device to be used for the dump,

file is the user file to be dumped,

Sl and S2 are the first and last relative sectors to be dumped.

If Sl and S2 are not given, the entire file is dumped. If

only Sl is given, then the file, starting with Sl, is dumped.

ColTITien ts

Files may be dumped on list devices or punch devices. The dump format varies

with the type of file and the type of device. See Table 2-1.

Table 2-1

FILE DUMP Formats

File Type Punch Device List Device

ASCII data 64 characters/record 64 characters/record

Binary data 64 words/record 8 octal words/line

Rel. binary programs Relocatable binary 8 octal words/line
records (loadable)

Source statements 1 statement/record 1 statement/line

2-25

DIRECTIVES

Source statements are packed and do not necessarily start on sector boundaries.

Thus, if the Sl and S2 parameters are used, dumping begins with the start of

the first statement beginning in sector Sl, and ends with the last statement

beginning in sector S2 (this will probably end in the following sector).

Files in the system area cannot be dumped. Errors occur when Sl > S2, or

when either Sl or S2 is greater than the length of the file.

Examples

Where L is a source file:

Where DVR is binary file:

:DUMP,l ,DVR,l ,l
001 010400 020000

00000.0 00.0004
000.0.00 0054.0.0
041456 03.0061
012.00.0 .0.0.0.0.0.0
.026.0.0.0 .0.0.0026
.001727 .0.01 222
1602.06 03200.0

@

:DUMP,l,L

A

BB
CCC
DODD

EEEEE
FFFFFF

GGGGGGG
@

164165 04216 051060
.0.00.0.0.0 .0.00.00.0 .0.00.00.0
04.00.02 066352 044456
.020.0.0.0 0.0.0.052 036.0.0.0
.016.0.0.0 .0.0.0266 16.0213
0064.04 .05.0.055 026.0.0.0
.01.0.0 7 4 050.062 0.02001
0003.00 17.0206 0.06.004

2-26

03M40 000313 000000
.0.00.0.0.0 .0.0.0.0.0.0 .00.0.0.0.0
03.0.061 .02.0.0.0.0 .0.0.0.0.0.0
06.0146 171620 .00.00.0.0
01.0.056 .05.0.054 120120
.0.0.0.024 16,0213 .0.0.00.0.0
12120.0 .0260.0.0 .0.00.023
01200.0 .06.0001 126.000

DIRECTIVES

DISC DUMP

Purpose

To dump any sector of the disc storage on the system teleprinter in

either ASCII or octal format.

Format

:SA,track,sector[,number]

:SO,track,sector[,number]

(ASCII)

(Octal)

where track and sector give the starting disc address for the

dump, and

number gives the number of sectors to be dumped. If

number is absent, only one sector is dumped. All

three parameters are decimal numbers.

Comments

The ASCII dump format (:SA) is 64 characters per record. The octal dump

format (:SO) is eight octal numbers per line. Two ASCII characters equal

one computer word (also represented by one octal number). Although :SA dumps

64 characters per record, these do not necessarily appear on one line since

the binary numbers are converted to ASCII characters, some of which might be

line feeds or returns.

Example

: S0,8,0
001 004400 177400 000000 000000 000000 000000 000000 000000

000000 000000 000000 000000 000000 000000 000000 000000
000000 000002 177560 041124 041510 030440 051525 047040
020040 020040 020040 000000 0000~0 000000 000000 000000
000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000 000000 000000
000000 000000 000000 000000 000000 000000 000000 000000

2-27

DIRECTIVES

PROGRAM DUMP

Purpose

To request that a user program be dumped when it completes

execution. 'IWo directives are provided: PDUMP for dumping

on a normal completion, and ADUMP for dumping when the pro­

gram aborts.

Fonnat

:PDUMP[,FWA[,LWA]][,B][,LJ
:ADUMP[,FwA[,LWA]][,B][,L]

where FWA is the first word address, relative to the program

origin,

LWA is the last word address, relative to the program

origin,

B means dump the base page linkage area of the program,

and,

L means dump the library subroutines used by the program.

FWA and LWA are octal numbers that specify the limits of the

program being dumped.

If LWA is missing, the entire program, starting with FWA, is

dumped.

B alone dumps all the main program, plus base page link­

ages, but not the library routines.

L alone dumps only the library routines.

If no parameters are given, everything is dumped.

2-28

DIRECTIVES

Comments

Tbe dump directives, PDUMP and ADUMP, must precede the RUN or

a j~&it.J.y refer to the

flag when it encounters the flag the next

time a program is execute~ . .'.Ihes-e!
~-~

Any parameter foJ:l:o'Wing L is ignored. If FWA is greater ___.-:---·
.is printed.

L !MIT ERROR
RE-ENTER STATEMENT ON TTY

The main program and library subroutines are dumped eight octal words per line,

along with the octal starting address for that line. For example,

adr
8

wd-1 wd-2 wd-3 wd-4 wd-5 wd-6 wd-7 wd-8

ad
8

+10
8

wd-1 wd-2 wd-3 wd-4 wd-5 wd-6 wd-7 wd-8

If present, the base page dump follows the main program and library. Base

page linkages exist for page boundary crossings and subroutines. For each

line, the starting address appears first, followed by four pairs of octal num­

bers. The first number of each pair records the content of the base page

word (an address elsewhere in core). The second number of each pair records

the contents of the address specified by the first item. If the first item

is the address of a subroutine, then the second item contains the last ad­

dress from which the subroutine was called. For example,

Example

pair-1 pair-2 pair-3 pair-4

adr item-1 item-2 item-1 item-2 item-1 item-2 item-1 iterrr2

adr+4
8

item-1 item 2 item-1 item-2 item-1 item-2 iterrrl item-2

:ADUMP,,0,15,B
: RUN ,LOADR
LU 012140
ABRT 01214.0
(Page Eject)

(Set up dump flag)

(Run program)

(Program aborted)

2-29

(Main program dump)

12000 160001 002002 130573
12010 130575 170576 006004

170574 006004 160001 002003
160001 170577 006004 160001

(Page Eject)

(Base page dump)

00570
00574
00600
00604

' 00610
00614

010137 002045 010711 003237 010763 002045 017014
017641 000000 017015 000400 017641 000406 017601
017650 000000 017615 000000 017664 000000 017662
017637 000573 017571 177205 017563 001204 017714
017562 0211 21 017534 021122 017536 021122 017633
017544 037626 017546 037626 017673 000000 017605

und

11 Any parameter fo 11 owing L is ignored. If FWA is
greater than LWA, a message is printed. When the
directive :PDUMP precedes a :RUN or :PROG request,
the program contained in the request will be dumped,
if it runs to normal completion. To dump a program
that is aborted while running, the directive :ADUMP
must precede the :RUN request. To make sure that
a program will be dumped whether it runs normally
or is aborted, both dum_Q_directives must b~-~~cl~r~~ _
prececffng-the :Ruf.fre-q-ues t:- --OnlY- o-ne--of-the requests
will be honored, depending upon whether the, program
runs normally or is aborted. Since DOS sets a flag
when it encounters either dump directive, then clears
the flag after the dump routine is executed, the flag
representing the dump routine that was not executed
will remain set. This flag can cause an unwanted
dump of some program run later under the same :JOB
directive. Either dump flag can be cleared by re­
questing the dump with both FWA and LWA equal to O;
all flags can be cleared by calling a new :JOB
djre~jye.

11

azx __

2-30

026012
170600

000300
000000
000573
017715
160656
000040

--

DIRECT IVES

EQUIPMENT

Purpose

To list one or all entries in the equipment table.

Format

:EQ [,n]

where n, if present, indicates the one entry to be listed. If

n is absent, the entire equipment table is listed.

Comments

Each entry is output in the following format,

EQT nn CH vv DVRmm d r Uu Ss

where nn is the decimal number of the entry,

vv is the octal channel number of the device,

DVRmm is the I/O driver number for the device,

d specifies DMA if equal to D, no DMA if ~.

r specifies core-resident if equal to R, disc-resident if ~,

u is one decimal digit used for sub-channel addressing,

s is the availability status of the device:

Example

~ for not busy, and available,

1 for disabled (down),

2 for busy,

3 for awaiting an available DMA channel.

: EQUIPMENT TABLE
EQT 01 CH 11 DVR00 0 R U0 S0
EQT 02 CH 17 DVR30 D R U0 S0
EQT 03 CH 13 DVR01 0 0 U0 S0
EQT 04 CH 23 DVR15 0 0 U0 S0
@

2-31

LOGICAL UNIT

Purpose

To assign logical unit numbers for a job or to list the device

reference table (logical unit assignments).

Format

where n
1

and n
2

, if both p~esent, assign the device recorded in

equipment table entry n
2

to logical unit number n
1

(both

are decimal numbers). If only n
1

is present, then the

equipment table entry number (see EQUIPMENT directive)

assigned to logical unit number n
1

is output. If no par­

ameters appear, the entire device reference table is

printed.

Comments

Assignments made by :LU for logical units 1 through 9 are only valid during

the current job. At the beginning of each new job, the device reference

table for the first nine logical units is reset to the assignments given when

the system was configured. (See Section VI, DOS Generator). This insures

a standard I/O organization for all users.

Example

: LUN TABLE
LU9)1 EQT9Jl
LU02 EQT02
LU03 EQT00
LU04 EQT01
LU05 EQT03
LU06 EQT01
LU07 EQT04
@

2-32

DIRECTIVES

UP

Purpose

To declare an I/O device ready for use.

Format

:UP, n

where n is the equipment table entry number corresponding to the

device.

Comments

The :UP directive is usually used in response to the following message from

DOS:

where ET indicates end of tape,

NR indicates device not ready, and

n is the equipment entry number.

2-33

DIRECTIVES

DOWN

Purpose

To declare an I/O device unavailable for use.

Format

: DN,n

where n is the equipment table entry number for the device to

be set down.

Comments

The system teleprinter and system disc cannot be set down. Once set down,

a device is unavailable until set UP by the operator.

NOTE:

The directives in the rest of this section pertain to operation in the key­

board mode only.

2-34

Purpose

DIRECTIVES
(KEYBOARD MODE ONLY)

BATCH

To switch from keyboard mode to batch node.

Format

:BATCH,1ogica1 unit

where logical unit is the device to be used as the batch input

device.

Comments

/

See "TYPE" in this section for the opposite procedure of returning from batch

m:>de to keyboard m:>de.

2-35

DIRECTIVES
(KEYBOARD MODE ONLY)

DATE

Purpose

To set the date and time for accounting purposes whenever IDS is

started up.

Format

where

Comments

:DATE,day[,hour,min]

(co,....,..,.A··; r-<.Jt rE'·/1F1•"I

day is any string of ten or less charactersAchosen by the
e /J € ,q_,a-rc> K--
~ (such as 7/l~/69,1~.JULY.69, etc.);

hour and min are the current time in hours and minutes on a

24-hour clock. If not given, they are set to zero.

The DATE directive is legal only following a start-up procedure. (See

Section VI, DOS INITIATION FROM THE DISC.) The directive is not accepted

any other time.

Examples

:DATE,7/10,t9,12,23
:DATE,WEDNESDAY,7,45
: DATE, l 0JUL Yl 969

2-36

--

Purpose

DIRECTIVES
(KEYBOARD MODE ONLY)

GO

To restart a program that has been suspended, and optionally, to

transfer up to five parameters to that program.

Format

where P
1

through P
5

are optional parameters and must be decimal

values between ~ and 32767.

Comments

When a program suspends itself (see Section III, PROGRAM SUSPEND EXEC CALL),

it is restarted by a GO directive. Upon return to a suspended program, the

initial address of the five parameters is located in the B-register. A

FORTRAN program calls the library subroutine RMPAR to transfer the parameters

to a specified 5-word array. The first statement after the suspend call, in

a FORTRAN program, must be the call to RMPAR. For example,

DIMENSION I (5)

CALL RM PAR (I)

An assembly language program should use the B-register upon return from the

suspend to obtain and save the parameters prior to making any EXEC request

or I/O request.

2-37

SECTION Ill

EXEC CALLS

Using EXEC calls, which are the line of communication between an executing

program and OOS, a program is able to:

ll Perform input and output operations,

ll Request status of disc tracks,

ll Terminate or suspend itself,

ll Load its segments,

ll Search for file names, or

ll Obtain the time of day.

An EXEC call is a block of words, consisting of an executable instruction and

a list of parameters defining the request. The execution of the instruction

causes a memory protect violation interrupt and transfers control to OOS.

DOS then determines the type of request (from the parameter list) and, if it

is legally specified, initiates processing of the request. The executable

instruction is a jump subroutine (JSB) to EXEC.

In FORTRAN, EXEC calls are coded as CALL statements. In Assembly Language,

EXEC calls are coded as a JSB, followed by a series of parameter definitions.

For any particular call, the object code generated for the FORTRAN CALL

Statement is equivalent to the corresponding Assembly Language object code.

This section describes the basic formats of FORTRAN and Assembly Language

EXEC calls, then each EXEC call is presented in detail.

3-1

EXEC CALLS

FORMAT OF THE ASSEMBLY LANGUAGE CALLING SEQUENCE

The following is a general model of an EXEC call in Assembly Language:

p
n

EXT

JSB

DEF

DEF

DEF

return

EXEC

EXEC

*+n+l

pl t
p f n

point

(Used to link program to DOS)

(Transfer control to DOS)

(Defines point of return from DOS, n

is number of parameters; may not be

an indirect address)

(Define addresses of parameters which

may occur anywhere in program; may be

multi-level indirect)

(Continue execution of program)

(Actual parameter values)

3-2

EXEC CALLS

FORMAT OF THE FORTRAN CALLING SEQUENCE

In FORTRAN, the EXEC call consists of a CALL Statement and a series of

assignemnt statements defining the variable parameters of the call:

where P
1

through Pn are either values or variables defined

elsewhere in the program. Variables must begin with

Example

a letter I through N, since they are integer variables.

CALL EXEC (7)

or
IRCDE = 7

CALL EXEC (IRCDE)

Equivalent calling sequence

Some EXEC call functions are handled automatically by the FORTRAN compiler or

special subroutines. (Refer to "FORTRAN, " Section IV, DOS PROGRAMMING, and

the specific EXEC calls in this section.)

3-3

EXEC CALLS

READ/WRITE

Purpose

To transfer information to or from an external I/O device or

the work area of the disc. (DOS handles track and disc

switching automatically.)

Assembly Language

EXT EXEC

JSB

DEF

DEF

DEF

DEF

DEF

DEF

DEF

EXEC

*+5 (or 7)

RCODE

CONWD

BUFFR

BUFFL

DTRAK

DSECT

(return poi n t)

RCODE DEC

CONWD OCT

BUFFR BSS

BUFFL DEC

DTRAK DEC

DSECT DEC

1 (or 2)

conwd

n

n (or -2n)

f

g

(Transfer control to DOS)

(Point of return from DOS; 7 is

for disc request)

(Request code)

(Control information)

(Buffer location)

(Buffer length)

(Track number-disc transfer only)

(Sector number-disc transfer only)

(Continue execution)

(l=READ, 2=WRITE)

(conwd is described in Comments)

(Buffer of n words)

(Same n; words (+) or characters (-))

(Work area track number, decimal)

(Work area sector number, decimal)

3-4

FORTRAN

I

EXEC CALLS

I/O transfers to regular devices are programmed by standard
i

FORTRAN READ and WRITE Statements. I/O on the work area of
i

the disc is done with a subroutine BINRY, described in the
i

Comments, or the FORTRAN equivalent of the EXEC call:

I
CALL EXEC (!CODE, ICON, IBUF, IBUFL, ITRAK, ISECT)

Conmen ts

READ/WRITE EXEC calls carry out I/O transfers including those on the work
i

area of the disc. (See FILE READ/WRITE EXEC CALL.)

I
CONWD

The conwd, required in the calling sequence, contains the following fields:

w K v M LOGICAL UNIT #

BITS 15 14 13 12 11 l~ 9 8 7 6 5 4 3 2 l

Field
w

Function
If 1, tells DOS to return to the calling program after

starting the I/O transfer. If W = ~' DOS waits until

the transfer is complete before returning.

K Used with keyboard input, specifies printing the input

as received if K = 1. If K = ~, "no printing" is

specified.

V Used when reading variable length records from punched

tape devices in binary format (M = 1, below). If V = ~'
the record length is determined by buffer length. If

V = 1, the record length is determined by the word count

in the first non-zero character which is read in.

M Determines the mode of data transfer. If M = ~' transfer

is in ASCII character format, and if M = 1, binary format.

(Disc is always binary).

3-5

EXEC CALLS

BINRY

User FORTRAN programs call the FORTRAN disc read/write library routine, BINRY,

to accomplish I/O in the work area. 'Ihe user must specify: an array to be

used as a buffer, the length of the buffer in words (equal to the number of

elements in an integer array. double that for a real array), the disc logical

unit, track number, sector number, and offset in words within the sector.

(If the offset equals ~' the transfer begins on the sector boundary. If the

offset equals N, then transfer skips N words of the sector before starting).

BINRY has two entry points, BREAD and BWRIT, for read and write operations

respectively. An example below gives the calling procedure.

or

DIMENSION IBUF(l~), BUF(2~)

LUN = 2

ITRK = 12

!SECT = 63

IOFF = ~

CALL BREAD (BUF, 4~, LUN, ITRK, !SECT, IOFF),

CALL BWRIT (IBUF I 1,0' LUN I ITRK, !SECT' IOFF)

Waiting and No Waiting

If the program requests the no waiting option in the conwd, it can check for

the end of the I/O operation with the I/O STATUS EXEC call. In the Assembly

Language calling sequence, the buffer length can be given in words (+) or

characters (-). When the transfer is complete, the amount actually trans­

ferred can be learned by the same status call. A positive number of words

or characters, depending upon which were originally requested, is returned.
-

If the WAIT option is used, DOS returns the number of transmitted words or

characters to the B register.

3-6

RCODE

CONWD

BUFFR

BUFFL

FNAME

RSECT

EXEC CALLS

FILE READ/WRITE

Purpose

To transfer information to or from a user file on the disc; the

file must be referenced by name.

Assembly Language

EXT EXEC

JSB EXEC

DEF *+7

DEF RCODE

DEF CONWD

DEF BUFFR

DEF BUFFL

DEF FNAME

DEF RSECT

return point

DEC 14 or 15
OCT conwd

BSS n

DEC n or -2n

ASC 3,xxxxx

DEC m

(Transfer control to DOS)

(Point of return from DOS)

(Request code)

(Control information)

(Buffer location)

(Buffer length)

(File name)

(Relative sector within file)

(Continue execution)

(14 = READ, 15 = WRITE)

(See Comments, READ/WRITE EXEC CALL.)

(Buffer of n words)

(Same n; words (+) or characters (-))

(User file name = xxxxx)

(Relative sector number)

3-7

FORTRAN

!:? ! ,.,, C::- IVt. /I.) .J
qpi !FILE (3)
IFILE(l) = xxxxxB

IFILE(2) = xxxxxB

IFILE(3) = xxxxxB

IRCDE = 14 (or 15)

EXEC CALLS

(First two characters of file name)

(Second two characters)

(Last character and blank)

(Request code)

ICNWD = xxxxxB (conwd)
f) Ir¥> /if\,;~1.:>..,J

~ IBUF(lO)
CALL EXEC (IRCDE,ICNWD,IBUF,10,IFILE,~)

Conmen ts

See the Comments under READ/WRITE EXEC CALL for a description of the conwd

fields needed in the above calling sequences.

'lb read or write on the first sector of a file, m=~; for the last sector,

m=number of sectors in the file -1. To determine the size of a file, use

the SEARCH FILE NAMES EXEC call.

Any type of file may be read, but only ASCII or binary data files may be

written.

3-8

EXEC CALLS

1/0 CONTROL

Purpose

To carry out various I/O control operations, such as backspace,

write end-of-file, rewind, etc.

Assembly Language

EXT EXEC

JSB EXEC (Transfer control to OOS)

DEF *+4 (or 3) (Point of return from OOS)

DEF RCODE (Request code)

DEF CONWD (Control info rma ti on)

DEF PARAM (Optional parameter)

return point (Continue execution)

RC ODE DEC 3 (Request code == 3)

CONWD OCT conwd (See Comments)

PA RAM DEC n (Required for some control functions;

see Comments)

FORTRAN

Use the FORTRAN auxiliary I/O statements or an EXEC calling

sequence.

IRCDE 3
ICNWD = conwd

IPRAM = x

(Request code)

(See Comments)

(Optional; see Comments)

CALL EXEC (IRCDE,ICNWD,IPRAM)
CALL EXEC (IRCDE,ICNWD)

3-9

EXEC CALLS

Comments

CONWD

The control word value (conwd) has two fields:

w FlJ1'~C'!:'IOrJ CODE (see below) LOGICAL UNIT NUMBER

BITS 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

If w

If W

1, DOS returns to the calling program after starting the control request.

0, DOS waits until the control request is complete before returning.

Function Code

000

001

002

003

004

!005

006

007

!010

011

012 }

177

(Octal) Action

Unused

Write end-of-file (magnetic tape)

Backspace one record (magnetic tape)

Forward space one record (magnetic tape)

Rewind (magnetic tape)

Rewind standby (magnetic tape)

Dynamic status (magnetic tape)

Set end-of-paper tape

Generate paper tape leader

List output line spacing

(PARAM or IPRMA required)

Unused

Function code 11
8

, list output line spacing, requires the optional parameter

mentioned in the calling sequences. PARAM (or IPRAM) designates the num­

ber of lines to be spaced on the specified logical unit. A negative para­

meter _specifies a page eject on a line printer or number of lines to be

spaced on the teleprinter. For details of line printer formatting, consult

Appendix E.

3-10

EXEC CALLS

1/0 STATUS

Purpose

To request the status of a particular I/O device, and the

amount transmitted in the last operation.

Assembly Language

RCODE

CONWD

STATS

TLOG

FORTRAN

EXT EXEC

JSB EXEC

DEF *+5

DEF RCODE

DEF CONWD

DEF STATS

DEF TLOG

return point

DEC 13

DEC n

NOP

NOP

IRCDE = 13

ICNWD = n

(Transfer control to DOS)

(Point of return from DOS)

(Request code)

(Logical unit)

(Status returned)

(Transmission log returned)

(Continue execution)

(Request code = 13)

(Logical unit number)

(Status returned here)

(Transmission log returned

(Request code)

(n is decimal logical unit)

CALL EXEC (IRCDE,ICNWD,ISTAT,ITLOG)

3-11

here)

EXEC CALLS

Comments

The status returned is the hardware status of the device specified by the

logical unit. The transmission log contains the amount of information which

was transferred (a positive number of words or characters depending on which

was requested by the call initiating the transfer). The disc is a special

case because transfers are broken up by DOS when the transfer crosses track

boundaries or switches physical disc files. Only the amount transmitted in

the last transfer is recorded in TLOG.

3-12

EXEC CALLS

WORK AREA LIMITS

Purpose

To ascertain the first and last tracks of the work area on the

disc and the number of sectors per track.

Assembly Language

EXT EXEC

JSB EXEC

DEF *+5

DEF RCODE

DEF FTRAK

DEF L TRAK

DEF SIZE

return point

RCODE DEC 17

FTRAK NOP

L TRAK NOP

SIZE NOP

FORTRAN

(Transfer control to DOS)

(Point of return from DOS)

(Request code)

(First track)

(Last track)

(Number of sectors/track)

(Continue execution)

(Request code= 17

(Returns first work track number here)

(Returns last work track number here)

(Returns number of sectors per track here)

1F9vc ;TR t"a~.
Ije'DE = 17 (Request code)

CALL EXEC (IRCDE,IFTRK,ISIZE)

Comments

This call returns the limits of the work area, that area of the disc which

programs use for temporary storage with the READ/WRITE EXEC call. Some tracks

within the work area may be faulty. Therefore, if the program requires con­

secutive tracks, it should check the work area track status. (See WORK AREA

STATUS EXEC call.)

3-13

EXEC CALLS

WORK AREA STATUS

Purpose

To ascertain whether a specified number of consecutive operable

tracks exist in the work area of the disc.

Assembly Language

EXT EXEC

JSB EXEC

DEF *+5

DEF RCODE

DEF NTRAK

DEF RTACK

DEF STRAK

return point

RCODE DEC 16

NTRAK DEC n

TRACK NOP

STRAK NOP

FORTRAN

IRCDE = 16

ICNWD = n

(Transfer control to DOS)

(Point of return from DOS)

(Request code)

(Number of tracks desired)

(Starting track desired)

(Actual starting track)

(Continue execution)

(Request code = 16)

(Consecutive tracks desired)

(Desired track; from LIMITS call)

(Actual starting track available.

~if n tracks not available).

(Request code)

(Consecutive tracks desired)

ITRAK = m (Desired starting track)

CALL EXEC {IRCDE,ICNWD,ITRAK,ISTRK)

3-14

EXEC CALLS

Comments

This call is used with the WORK AREA LIMITS EXEC call to establish the nature

of the work area. The READ/WRITE EXEC call then transmits information to and

from this area, using the track numbers determined by this call. DOS handles

track and disc switching automatically.

DOS checks whether there are n consecutive operable tracks starting at the

track specified. If not, DOS scans through the work area looking for n con­

secutive operable tracks. Upon location of tracks, DOS returns the starting

track number to the program. If DOS does not locate n consecutive tracks, it

returns ~ in TRAK or ITRAK.

3-15

EXEC CALLS

PROGRAM COMPLETION

Purpose

To notify DOS that the calling program is finished and wishes

to terminate.

Assembly Language

EXT EXEC

JSB EXEC

DEF *+2

DEF RCODE

return point

RCODE DEC 6

FORTRAN

(Transfer control to DOS)

(Return point from DOS)

(Request code)

(Request code 6)

The FORTRAN compiler generates a PROGRAM COMPLETION EXEC CALL

automatically when it compiles an END statement.

The programmer may use an EXEC call instead:

!CODE = 6 (Request code)

CALL EXEC(ICODE)

3-16

EXEC CALLS

PROGRAM SUSPEND

Purpose

To suspend the calling program from execution until restarted by

the GO directive.

Assembly Language

EXT EXEC

JSB EXEC

DEF *+2

DEF RCODE

return point

RCODE DEC 7

FORTRAN

(Transfer control to JX)S)

(Point of return from JX)S)

(Request code)

(Continue execution)

(Request Code 7)

The FORTRAN library subroutine PAUSE, which is automatically called

by a PAUSE statement, generates the SUSPEND EXEC call.

The programmer may use an EXEC call instead:

CALL EXEC (7)

3-17

EXEC CALLS

Comments

DOS prints a message on the system teleprinter when it processes the PROGRAM

SUSPEND EXEC call:

name, SUSP

When the operator restarts the program with a GD, the B-Register contains the

address of a five-word parameter array set by the GD request. (The param-

eters equal zero if no values have been given.) In a FORTRAN program, the

library subroutine RMPAR can load these parameters; however, the call to

RMPAR must occur immediately following the SUSPEND EXEC call, as in the fol­

lowing example:

DIMENSION I (5)

CALL EXEC (7)

CALL RM PAR (I)

3-18

(Suspend)

(Return point; get parameters)

-

EXEC CALLS

PROGRAM SEGMENT LOAD

Purpose

To load a segment of the calling program from the disc into

the segment overlay area and transfer execution control to

the segment's entry point. (See Section IV, DOS PROGRAMMING,

for information on segmented programs.)

Assembly Language

EXT EXEC

JSB EXEC
DEF *+3
DEF RCODE
DEF SNAME
return point

RCODE DEC 8

SNAME ASC 3,xxxxx

FORTRAN

IRCDE =:~ f3,,
1

,,.,,,, /,,/ /,,.,,, t; , ,,., ,.,.,,
~!NAME (3)

!NAME (1) = xxxxxB

!NAME (2) = xxxxxB

!NAME (3) = xxxxxB

(Transfer control to DOS)

(Point of return from DOS)

(Request code)

(Segment name)

(Continue execution)

(Request code = 8)

(xxxxx is the segment name)

(First two characters)

(Second two)

(Last character)

CALL EXEC (IRCDE,INAME)

3-19

EXEC CALLS

Comments

In the FORTRAN calling sequence, the name of the segment must be converted

from ASCII to octal and stored in the INAME array, two characters per word.

See OVERLAY SEGMENTS and SEGMENTED PROGRAMS, Section IV, for a description

of segmented programs.

3-20

EXEC CALLS

SEARCH FILE NAMES

Purpose

To check whether a specific file name exists in the directory

of user or system files.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+4
DEF RCODE
DEF FNAME
DEF NSECT
return point

RCODE DEC 18
FNAME ASC 3,xxxxx

NSECT NOP

FORTRAN

IRCDE = 18
P/-' e ,_.J n.uv
~ !NAME (3)
!NAME (l) = xxxxxB

IN AME (2) = xxxxxB

(Transfer control to DOS)

(Return address)

(Request code)

(File name)

(Number of sectors)

(Request code = 18)

(xxxxx is the file name)

(Number of sectors returned here;

~ if not found)

(Request code)

(File name)

(First two characters)

(Next two characters)

IN AME (3) = xxxxxB (Last character and blank)

CALL EXEC {IRCDE,INAME,ISECT)

3-21

EXEC CALLS

TIME REQUEST

Purpose

'lb request the current time.

Assembly Language

EXT EXEC

JSB EXEC
DEF *+3

DEF RCODE
DEF ARRAY
return point

RCODE DEC 11

ARRAY BSS 5

FORTRAN

IRCDE = 11
iJl>?"\EAA/t<>N
OHf !TIME (5)

(Transfer control to DOS)

(Point of return from DOS)

(Request code)

(Time value array)

(Continue execution)

(Request code =11)

(Time .value array)

CALL EXEC (IRCDE,ITIME)

Co 11111e n ts

When DOS returns, the time value array contains the time on a 24-hour clock:

ARRAY or I TIME (1) Tens of milliseconds

ARRAY + 1 or I TIME (2) Seconds

ARRAY + 2 or I TIME (3) Minutes

ARRAY + 3 or I TIME (4) Hours

ARRAY + 4 or I TIME (5) Not used, but must be present

(always = SJ)

3-22

SECTION IV
PROGRAMMING

Section IV describes the operating procedures and formatting conventions of

the four user programming aids of DOS:

Il FDRTRAN Compiler

Il Assembler

Il Relocating Loader

Il Relocatable Library

Using the EDIT directives, the operator creates and edits files of source

programs written in FDRTRAN and Assembly Language. In load-and-go operations

the DOS FORTRAN Compiler and DOS Assembler generate relocatable binary code

onto temporary disc storage. The DOS Relocating Loader can relocate and

merge the code with referenced subroutines of the DOS Relocatable Library.

Once loaded, a program is executed by the FROG or RUN directive.

LOAD-AND-GO FACILITY

The Disc Operating System provides the facility for "load-and-go" which is

defined as compilation or assembly, loading, and execution of a user program

without using intervening object paper tapes. To accomplish this, the com­

piler or assembler generates relocatable object code from source statements

and stores it on the disc in the job binary area of the WORK tracks. Then

separate directives initiate loading (FROG, LOADR) and execution (RUN,program).

DOS stores the object code of several programs and associated subroutines on

the disc. The Relocating Loader locates them on the disc, and relocates

them into executable absolute program units.

4-1

PROGRAMMING

DOS FORTRAN COMPILER

The DOS FORTRAN Compiler, a segmented program, operates under control of the

DOS Supervisor. The compiler consists of a main program (FTN) and four over­

lay segments (FTN¢1, FTN¢2, FTN¢3, FTN¢4). It resides in the protected area

of the disc and is read into core only when needed. The compiler requires

at least a 4K user area of core.

DOS FORTRAN, a problem-oriented programming language, is very similar to

regular HP FORTRAN. Source programs, accepted from either an input device

or a user file, are translated into relocatable object programs, punched on

paper tape, and optionally, stored in the job binary area of the disc. The

object program can be loaded using the DOS Relocating Loader and executed

using the RUN or PROG directive.

Compiler Operation

The DOS FORTRAN compiler is started by a PROG directive. Before entering

the PROG directive, place the source program in the input device, or, if

input is from a source file, specify the file with a JFILE directive.

4-2

Where

PROGRAMMING

PROG,FTN

p
1

logical unit of input device (standard is 5; set to

2 for source file input).

p
2

logical unit of list device (standard is 6).

p
3

logical unit of punch device (standard is 4).

p
4

lines/page on listing (standard is 56).

99 the job binary parameter. If present, the object

program is stored in the job binary area for later

loading. Any requested punch output still occurs.

(The 99 may occur anywhere in the parameter list,

but terminates the list.)

p
1

through p
4

are optional. If not present, the standard operation

is assumed. If 99 is not present, then binary is not placed in the

job binary area.

MESSAGES TO OPERATOR DURING COMPILATION

This message is printed on the operator console when an end-of-tape occurs

on device #n.

I/0 ERR ET EQT #n

EQT #n is unavailable until the operator declares it up.

:UP,n

: GO

Compilation continues after the GO. More than one source tape can be compiled

into one program by loading the next tape before giving the GO.

At the end of compilation, the following message is printed.

$END, FTN

4-3

PROGRAMMING

If the job binary area (where binary code is stored because of a 99 parameter)

overflows, the following message is printed, and compilation continues:

JBIN OVF

There is no further loading into the job binary area.

The compiler terminates if .•.

ll No JFILE is declared, although logical unit 2 has been

given for input. Error E-0019 is printed on the list

device. ($END ,FTN is not printed.)

a There are not enough work tracks for the compiler. The

following message is printed:

#TRACKS UNAVAILABLE

ll Colons occur in the first column of a source program

entered through the batch device. (Blank cards in

the source program are ignored.) The following mes­

sage is printed:

IE nnnnn

where nnnnn is the memory location of the input request.

FORTRAN CONTROL STATEMENT

Besides the standard options described in the FORTRAN manual, two new compiler

options, T and n, are available. A "T" lists the symbol table for each pro­

gram in the compilation. If a "u" follows the address of a variable, that

variable is undefined (the program does not assign a value o it). The A op­

tion includes this T option. If n appears, n is a decimal digit (1 through 9)

which specifies an error routine. The user must supply an error routine, ERRn.

If this option does not appear, the standard library error routine, ERR,0, is

used. The error routine is called when an error occurs in ALOG, SQRT, .R'I'OR,

SIN, COS, .TROI, EXP, .I'I'OI or TAN.

4-4

\

PROGRAMMING

PROGRAM STATEMENT

The program statement includes an optional type parameter.

PROGRAM name [,type]

where name is the name of the program and its main entry point.

When the program is executed using a RUN directive,

this name is used.

type is a decimal digit specifying the program type.

Only types 3 (main) , 5 (segment), and 6 or 7 (library)

are significant in DOS. The type is set to 3 if not given.

Seven more parameters may be included but they are used only

with the HP2005A Real-Time Executive System. Programs can be

compiled on DOS to be run under Real-Time. (Consult the

Real-Time Software Manual.)

I/O LOGICAL UNIT NUMBERS

DOS FORTRAN function assignments for logical unit numbers are different from

regular FORTRAN. (See Section V.)

When preparing input data for the batch device, the user never puts a colon

(:) in column one of a record because the colon in first position signifies

a directive. DOS aborts the job if a directive occurs during data input.

4-5

/

PROGRAMMING

DATA STATEMENT

A new statement, the DATA statement, has been added to DOS

EDRTRAN. DATA sets initial values for variables and array

elements. The format of the DATA statement is:

where k is a list of variables and array elements separated by

commas,

d is a list of constants or signed constants, separated by

commas and optionally preceded by j* (j is an integer

constant).

The elements of d. are serially assigned to the elements of k ..
i i

The form j* means that the constant is assigned j times. The

k. and d. must correspond one-to-one.
i i

Elements of k. may not be from COMMON.
i

Arrays must be defined (i.e., DIMENSION) before the DATA state­

ments in which they appear. DATA statements may occur anywhere

in a program following the specification statements.

Example,

DIMENSION A(3), 1(2)
DATA A(l),A(2),A(3)/t.~,2.~,3.~/I(l},I(2)/2*1/

4-6

PROGRAMMING

EXTERNAL STATEMENT

With the new statement, EXTERNAL, subroutines and functions

can be passed as parameters in a subroutine or function call.

For example, the routine XYZ can be passed to a subroutine

if XYZ is previously declared EXTERNAL. Each program may de­

clare up to five EXTERNAL routines.

The format of the EXTERNAL statement is

EXTERNAL v
1

, v
2

, ••• ,v
5

Where v. is the entry point of a function, subroutine,
1.

EXAMPLE

or library program.

FUNCTION RMX(X,Y,A,B)
RMX=X(A)*Y(B)
END
EXTERNAL XYZ, Fll
Z=Q-RMX(XYZ,Fll,3.56,4.75)

ERROR E-~~18 means too many EXTERNALS.

Note: If a library routine, such as SIN, is used as an EXTERNAL,

the compiler changes the first letter of the entry point

to 11
%

11
• Special versions of the library routines exist

with the first character changed to 11 % 11
• See DOS Relo­

catable Library, in this section.

4-7

PROGRAMMING

PAUSE & STOP

PAUSE causes the following message to be printed.

PAUSE xxxx

Where xxxx is an octal number.

To restart the program, the operator uses a GO directive.

STOP causes the program to terminate after the following

messa'ge.

STOP xxxx

Where xxxx is an octal number.

OVERLAY SEGMENTS

Segmented user programs may be written in FORTRAN, but certain conventions

are required. A segment must be defined as type 5 in the PROGRAM statement.

The segment must be initiated using the PROGRAM SEGMENT LOAD EXEC call from

main or segment. A dummy call to main must appear in each segment. In this

way, the proper linkage is established between the main and its segments.

Chaining of segments is unidirectional. Once a segment is loaded, execution

transfers to it. The segment, in turn, may call another segment using an

EXEC call, but a segment written in FORTRAN cannot return to the main program.

All communication between the main program and segments must be through

COMMON. Segments must not contain DATA Statements.

4-8

--

PROGRAMMING

ERR¢ LIBRARY ROUTINE

ERR~, the error print routine referred to under the FORTRAN

control statement, prints the following message whenever an

error occurs in a library routine:

nn xx

Where nn is the routine identifier, and

xx is the error type.

The compiler generates calls to ERR~ automatically. If the

FORTRAN control statement includes an n option, the call will

be to ERRn, a routine which the user must supply.

Check the FORTRAN manual (Chapter 9.9) for the meaning of error

codes.

REFERENCE ON FORTRAN

For a complete description of the FORTRAN language, read the FORTRAN

programmer's reference manual (02116-9015). Sections 9.5,9.6, and 9.8 are

not pertinent to [X)S FORTRAN.

4-9

PROGRAMMING

DOS ASSEMBLER

The DOS Assembler, a segmented program that executes in the user program

area of core, operates under control of DOS. The Assembler consists of a

main program (ASMB) and six segments (ASMBD, ASMBl, ASMB2, ASMB3, ASMB4,

ASMB5), and resides in the protected system area of the disc.

DOS Assembly Language, a machine-oriented programming language, is very

similar to the HP Extended Assembly Language. Source programs, accepted

from either an input device or a user source file on the disc, are trans­

lated into absolute or relocatable object programs; absolute code is punched

in binary records, suitable for execution only outside of DOS. ASMB can

store relocatable code in the load-and-go area of the disc for on-line

execution, as well as punch it on paper tape. The DOS Relocating Loader

accepts assembly language relocatable object programs from paper tape, the

load-and-go area, and user files.

A source program passes through the input device only once, unless there is

insufficient disc storage space. In the latter case, two passes are re­

quired. There are no magnetic tape assemblies.

4-10

PROGRAMMING

Assembler Operation

The DOS Assembler is started by a FROG directive. However, before entering

the PROG directive, the operator must place the source program in the input

device. If the source program is on the disc, the operator must first speci­

fy the file with a JFILE directive, and set parameter p
1

= logical unit 2

in the PROG directive.

where

PROG,ASMB

logical unit of input device (5 is standard; 2 is used for

source file input indicated by a JFILE directive)

p
2

logical unit of list device (6 is standard)

p
3

= logical unit of punch device (4 is standard)

p
4

lines/page on listing (56 is standard)

99 job binary parameter. If present, the object program is

stored in the job binary area for later loading. Any re­

quested punching still occurs. The 99, which may follow

any parameter in the list, terminates the list.

If the values of p1 through p4 are not set, the standards are used.

4-11

PROGRAMMING

MESSAGES DURING ASSEMBLY

The messages described in this section are printed at the teleprinter console

or in the program listing.

When an end-of-tape occurs on device #n, this message appears on the system

teleprinter:

I/O ERR ET EQT #n

EQT #n is unavailable until the operator declares it up and restarts the

assembler by means of a GO directive:

:UP, n

=~

Thus, more than one source tape can be assembled into one program. The next

tape is loaded each time the input device goes down. The program should be

placed in the input device before entering the GO.

The following message on the system teleprinter signifies the end of assembly:

$END ASMB

If another pass of the source program is required, the message is printed on

the system teleprinter at the end of pass one.

$END ASMB PASS

The operator must replace the program in the input device and type:

:00

If an error is found in the Assembler control statement, the following mes­

sage is printed on the system teleprinter:

$END ASMB CS

The current assembly stops.

4-12

PROGRAMMING

If an end-of-file condition on source input occurs before an END statement

is found, the teleprinter signals:

$END ASMB XEND

The current assembly stops.

If source input for logical unit 2 (disc) is requested, but no file has been

declared (see JFILE, Section II), the system teleprinter signals:

$END ASMB NPRG

If the job binary area, where binary code is stored by a 99 parameter, over­

flows, assembly continues but the following message is printed on the system

teleprinter:

JBIN OVF

However, no binary code is stored in the job binary area.

The next message is associated with each error diagnostic printed in the

program listing during pass 1.

nnn

nnn is the "tape" number on which the error (reported on the next line of

the listing) occurred. A program may consist of more than one tape. The

tape counter starts with one and increments by one whenever an end-of-tape

condition occurs (paper tape) or a blank card is encountered. When the

counter increments, the numbering of source statements starts over at one.

Each error diagnostic printed in the program listing during pass 2 of the

assembly is associated with a different message:

PG PPP

ppp is the page number (in the listing) of the previous error diagnostic.

PG ~~~ is associated with the first error found in the program.

These messages (#nnn and PG ppp) occur on a separate line, just above each

error diagnostic in the listing.

4-13

PROGRAMMING

DOS Assembly Language

The DOS Assembly Language is equivalent to extended assembly language, as

defined in the ASSEMBLER programmer's reference manual (02116-9014). A few

language changes are required to run under DOS; programs must request certain

functions, such as I/O, from the executive. These requests are made using

the EXEC calls described in Section III.

ASSEMBLER CONTROL STATEMENT

The control statement has the same form as that of regular assembly language;

and although only relocatable code can be run under DOS, the DOS Assembler is

able to assemble absolute code if it is specified. Absolute code is never

stored in the job binary area. To get absolute code, the control statement

must include an "A". The "R", however, is not required for relocatable code.

An "X" causes the assembler to generate non-extended arithmetic unit code.

Examples

ASMB,L,B List and Punch Relocatable Binary.

ASMB,R,L,B,X List and Punch Relocatable, non-EAU Binary.

ASMB,T,L List and Print Symbol table.

ASMB,A,B,L List and Punch absolute binary.

4-14

PROGRAMMING

NAM STATEMENT

The NAM psuedo-instruction allows up to eight optional parameters.

(The last seven parameters are used only by programs to be exe­

cuted under the HP2005A Real-Time Executive System.) Only the

first parameter is significant in DOS. If the first parameter

equals 3, the program is a main program; if 5, a program segment;

if 6, a library routine; if 7, a subroutine. If the parameter

equals another number, the assembler and DSGEN will accept it,

but the Relocating Loader will not. (See Section VI for DSGEN

program type codes.)

NAM name [,type]

where name is the name of the program, and

type is the type code.

In addition to the name defined by NAM, each program has one or

more entry [XJints defined by an ENT statement with the exception

of the main program. The transfer address on the END statement

is sufficient for the main program (type. 3). Name is used in

programmer-to-DOS communication, while the entry points are pro­

gram-to-program communication.

ORB STATEMENT

DOS Assembly Language does not contain the ORB statement, since information

cannot be loaded into the protected base page area by user programs. How­

ever, programs can read information from base page using absolute address

operands up to 1777
8

.

INPUT/OUTPUT

DOS has different function assignments for the logical unit numbers. (See

Section V.)

4-15

PROGRAMMING

When preparing input for the batch device, the prograrmner must remember to

never put a colon {:) in column one of a source statement. IX)S aborts the

entire job if a directive (signified by : in column one) occurs during data

input.

The memory protect feature protects the resident supervisor from alteration

and interrupts the execution of a user program under these conditions:

a Any operation that would modify the protected area or jump into it.

a Any I/O instruction, except those referencing the switch register
or overflow.

a Any halt instruction.

Memory protect gives control to IX)S when an interrupt occurs, and IX)S checks

whether it was an EXEC call. If not, the user program is aborted.

Segmented Programs

User programs may be structured into a main program and several segments, as

shown in Figure 4-1. The main program begins at the start of the user pro­

gram area. The area for the segments starts irmnediately following the last

location of the main program. The segments reside on the disc, and are read

into core by an EXEC call, when needed. Only one segment may be in core at

a time. When a segment is read into core, it overlays the segment previously

in core.

The main program must be type 3, and the segments must be type 5. When using

DSGEN to configure the system or loading programs with LOADR, the main pro­

gram must be entered prior to its segments. One external reference from each

segment to the main routine is required for DSGEN to link the segments and

main programs. Also, each segmented program should use unique external ref­

erence symbols. Otherwise, DSGEN or LOADR may link segments and main pro­

grams incorrectly.

4-16

User
Program
Area

MAIN PROGRAM

SEGMENT 1

PROGRAMMING

-r- -......

MAIN PROGRAM

t--------------

SEGMENT
OVERLAY

AREA

CORE MEMORY

DISC MEMORY

, HIGH

SEGMENT 1

NOTE: TRACK, SEGMENT,
AND GAP SIZES ARE
EXAGGERATED.

Figure 4-1. Segmented Programs

4-17

PROGRAMMING

Figure 4-2 shows how an executing program may call in any of its segments from

the disc using the PROGRAM SEGMENT LOAD EXEC request (1-2). DOS locates the

segment on the disc (3-4), loads it into core (5) and begins executing it.

The segment may call in another of the main program's segments using the same

EXEC request (6).

SEGMENT 1

SEGMENT 2

MAIN PROGRAM

DISC

LOW

,..--.. ~-3

a: o_
LL N

.... " w
<(Cl)

u

--•+-- 2

5

Figure 4-2.

DOS
SUPERVISOR

NAM MAIN
EXT EXEC
ENTM

•
•

JSB EXEC

NAM SEG1
EXT EXEC. M

• • •
JSB EXEC

CORE

I
MAIN PROGRAM

l
r

SEGMENTS

l

Main Calling Segment

4-18

1
USER

PROGRAM
AREA

PROGRAMMING

Figure 4-3 shows how DOS processes the request from the segment (7) by locat­

ing the segment on the disc (8-9), loading it into core (10), and beginning

execution of it.

LOW

8

SEGMENT 2 DOS

' SUPERVISOR

9
...
(.!J

...IW

...I Cl)

<(:2:
NAM MAIN I I ~o

a: EXT EXEC LL

7 ENTM
MAIN PROGRAM •

l • USER
PROGRAM

AREA

NAM SEG2 i EXT EXEC, M
DISC 10 • SEGMENTS

• l •
HIGH

CORE

Figure 4-3. Segment Calling Segment

When a main program and segment are currently residing in core, they

operate as one single program. Jumps from a segment to a main program (or

vice versa) can be programmed by declaring an external symbol and referen­

cing it via a JMP instruction. (See Figure 4-4.) A matching entry symbol

must be defined as the destination in the other program. DSGEN associates

4-19

PROGRAMMING

the main programs and segments, replacing the symbolic linkage with actual

absolute addresses (i.e., a jump into a segment is executed as a jump to a

specific address). The programmer should be sure that the correct segment

is in core before any JMP instructions are executed.

Reference on Assembly Language

Consult the ASSEMBLER programmer's reference manual (02116-9014) for a full

description of assembly language. Sections 5.5 and 5.6 of that text do not

apply to DOS.

-,...- ..,....

LOW

EXT Sl

ENT Ml

rt ~Ml JMP Sl

MAIN PROGRAM
1-- ----- -- -~

EXT M1

ENT S1

~ JMP Ml

S1- - - --- ~

(Segments)
HIG H

-L.- ~

CORE MEMORY

Figure 4-4. Main-to-Segment Jumps

4-20

PROGRAMMING

DOS RELOCATING LOADER

The DOS Relocating Loader accepts relocatable object programs which have

been translated by the DOS Assembler or DOS FORTRAN Compiler. It generates

an executable core image of each such program on the disc. The relocatable

programs may enter the loader as

Il Job binary area programs translated during the currerit job,

Il User files,

Il Punched tapes, or

Il Subroutines from the disc-resident Relocatable Library.

Each main program is relocated to the start of the user area and linked to

its external references, such as library routines. Segments will overlay

the area following the main program and its subroutines. Programs may run

under control of the DEBUG library routine. The main program, plus its sub­

routines and its longest segment, can be as large as the user area. With a

RUN or FROG directive, the program is called by name from the disc and ex­

ecuted, or the program is stored as a permanent user file to be run dur~

ing a later job. The loader may be executed only once during each job, so

all load-and-go assemblies or compilations must be done prior to calling the

loader.

4-21

PROGRAMMING

Starting the Loader

The DOS Relocating Loader is initiated by a PROG directive from the batch or

keyboard device.

PROG,LOADR

Format

P
1

determines the relocatable object program input combination:

pl jO for loading from jbin and relocatable library.

2 for loading from jbin, user files, and relocatable

library.

= n for loading from jbin, user files, relocatable

library and paper tape (logical unit n).

p2 list device logical unit.

PJ jO for no DEBUG, -:/- jO for DEBUG.

p4 jO for list of program load map, 'I- jO for none.

PS jO for list of entry point addresses, -:j. ~ for none.

Comments

Selecting the DEBUG option causes DEBUG to be appended to each main program

and segment. The loader sets the primary entry point of each to DEBUG,

rather than the user routine. When the program is run, DEBUG takes control

of the program's execution and seeks instructions from the keyboard.

4-22

PROGRAMMING

RELOCATABLE FILES

A list of relocatable file names follows the PROG directive (unless P
1

equals

¢). In batch rrode, the list starts on the next record and stops at "/E". In

keyboard rrode, the loader prints

ENTER FILE NAME(S) OR /E

then waits for input. After each list of files is entered, the message
-

repeats until a /E is entered. In batch rrode the list of files follows the

PROG directive on the batch input device.

file-name 1, file-name 2, ••• /E

The file list is a series of records containing file names separated by com­

mas, ending with a "/E." All programs in each file are loaded unless a par­

ticular subset of the file is specified:

file-name (prog 1, prog 2 •••)

Only the programs specified within the parenthesis are loaded from the file­

name. The file list is simply a "/E" if no files are to be loaded.

Operating the Loader

SCANNING THE PROGRAMS

The loader scans the relocatable binary programs and maintains two tables-­

one of program names, and another of entry points and externals. Since mains

are matched with segments during the scan, each main program must occur be­

fore the associated segments. Programs from tape are stored on the work

tracks as they are read in.

If the job binary area contains any programs, it is scanned first. User

files given in the file list (if any) are scanned for entries and externals.

4-23

PROGRAMMING

If paper tape input is requested, the following messages are printed,

LOAD TAPE
LOADR SUSP
@

The loader suspends. The operator places a tape in the input device and

types

:GO

When an end-of-tape condition occurs, three messages are printed on the sys­

tem teleprinter:

I/O ERR ET EQT# nn

LOAD TAPE
LOADR SUSP
@

The operator places the next tape in the input device, enters :UP,~, and :GO

to read the next tape. Enter :GO,l to indicate that all tapes have been read

in.

Matching Entries with Externals

After matching all possible entry points and external references in the user

programs, the loader scans the DOS Relocatable Library (disc-resident) look­

ing for entry points to match the undefined external references. If undefin­

ed external references still exist,

UNDEFINED EXTS

is printed and the external references are listed, one per line.

4-24

PROGRAMMING

To load additional programs from paper tape, the operator types:

:G0,0[,n]

where n is the logical unit number of the input device, if different from P
1

of the PROG,LOADR directive.

To continue without fulfilling external references, the operator types:

:GO,l

To specify a file name from the keyboard, the following directive is typed:

:G0,2

RELOCATION

The main and segment names become user file names once the programs are load­

ed. To ensure unique file names, the loader compares all program and segment

names against the names of previous user and system files. If duplicate

names occur, an error message is printed and loading stops.

The loader converts each main program into an absolute core image, stores it

on the disc, places the name in the user directory where it remains during

the current job, and lists the program address map and entry points, if re­

quested. After each main program, any associated segments are loaded in the

same way. When the loader is completely finished, the following message is

printed:

LOADR COMPLETED

During the current job, the absolute core images appear in the user file area

(see LIST directive, Section II) and can be executed by name (see RUN and

FROG directives.) At the end of the job, however they disappear from the

4-25

file area, unless they are made permanent files by means of the STORE direc­

tive.

If no programs are entered, the loader prints the following messages and

terminates:

DEBUG Library Subroutine

NO PROGRAM LOADED
LOADR COMPLETED

DOS DEBUG, a subroutine of the DOS Relocatable Library, allows programmers

to check for logical errors during execution. If the P
3

parameter of the

FROG, LOADR directive equals 1, the loader combines DEBUG with the user pro­

gram being loaded. The primary entry point (the location where execution

begins) is set to DEBUG. Therefore, when the program is executed with a RUN

directive, DEBUG takes control and prints the message:

BEGIN 'DEBUG' OPERATION

The programmer now enters any legal debug operation. DEBUG ignores illegal

requests and prints a message:

ENTRY ERROR

4-26

DEBUG OPERATIONS

B,A

D,A,N
1
[,N)

D,A,N},N)

M,A

R,A

S,A
1

,D
1

S,A
1

,n
1

,Dn

W,O,D
4

X,A

A

PROGRAMMING

Instruction breakpoint at address A. (NOTE: if A

EXEC, a memory protect violation occurs.)

ASCII dump of core address N
1

or from N
1

to N
2

.

Binary dump of core address N
1

or from N
1

to N
2

.

Sets absolute base of relocatable program unit.

JSB

Execute user program starting at A. Execute starting

at next location in user program (used after a break­

point or to initiate the program at the transfer point

in the user program).

Set n
1

in location A
1

.

Set n
1

to Dn in successive memory locations beginning at

location A
1

•

Set A-Register to Dl.

Set B-Register to D2.

Set E-Register (¢=off, non-zero=on).

Set Overflow (¢=off, non-zero=on).

Clear breakpoint at address A.

Abort Debug operation.

4-27

PROGRAMMING

Loader Example

In the following example, DOS is in keyboard mode.

:PROG,LOADR,5,6,0,0,0
ENTER FILE NAME(S)OR/E
/E
LOAD TAPE
LOADR SUSP
@:GO

I/0 ERR ET EQT # 03
LOAD TAPE
LOADR SUSP
@:UP,3
@:GO

I/O ERR ET EQT # 03
LOAD TAPE
LOADR SUSP
@:UP,3
@:GO

I/0 ERR ET EQT # 03
LOAD TAPE
LOADR SUSP
@:UP,3
@:GO

I/0 ERR ET EQT # 03
LOAD TAPE
LOADR SUSP
@:UP,3
@: 00

I/0 ERR ET EQT # 03
LOAD TAPE
LOADR SUSP
@:UP,3
@:GO, 1

Paper tape input is specified.

No files are specified.

Place paper tape in input device.

Return to loader.

End of tape.

Put in next tape.

Declare input device ready.

Repeat tape loading process 4 times.

No more paper tapes.

4-28

PRO GRAMM ING

RELOCATING LOADER

~~

NAME/ENTRY ADDR

QAl 12000 Main program, starting address.

*QAl 12076 Main program, entry point.

QAlA 12200

*QAlA 12201

QAlB 12262

*QAlB 12263

QAlC 12336

*QAlC 12337

QAlD 12364

*QAlD 12365

FRMTR 12431

*. Dl 0. 14612

*.BIO. 14665

*.IOI. 14507

*. IOR. 14462 Subroutine starting addresses and entry

*. IAR. 14546 points. Asterisk signifies entry point.

*. RAR. 14522

*.OTA. 147Hl

.ENTR 15162

*. ENTR 15162

. FLUN 15230

*. FLUN 15230

• PACK 15243

*.PACK 15243

FLOAT 15350

*FLOAT 15350

IFIX 15355

*!FIX 15355

LOA DR COMPLETE End of Loading.

4-29

PROGRAMMING

Loader Error Messages

During its operation the loader may print one of the following error mes­

sages on the keyboard:

Message

L01
L02
L03
L04
L05
L06

L07
L08
L09
Ll0
L 11

Ll 2

Ll3
Ll4
Ll 5

Ll6

Error Messages

Checksum error on tape

Illegal record

Memory overflow

Base page overflow

Symbol table overflow

Duplicate main or segment name (may be caused
by attempting to run the loader twice in one job)

Duplicate entry point

No main or segment transfer address

Record out of sequence

Insufficient directory or work area space

Program name table overflow

User file specified cannot be found

Program name duplication

Non-zero base page length

Segment occurred before main

Program overlay (illegal ORG)

The loader aborts (programmer must start over) on each of these conditions,

and prints a message.

LOADR TERMINATED

PROGRAMMING

DOS RELOCATABLE LIBRARY

The JX)S Relocatable Library is a collection of relocatable mathematics and

service subroutines which are stored on the disc. A program signifies its

need for a subroutine by means of an "external reference"--created by an

EXTERNAL statement in assembly language, automatically in FORTRAN.

Many of the subroutines are equivalent to subroutines of the Hewlett-Packard BCS

RELOCATABLE PROGRAM LIBRARY, but modified internally to run under DOS. For

a list of the library subroutines and their entry points, see Table 4-1.

Subroutine Name

FRMTR

%ANH
%XP
%IN
%OS
%AN
%BS
%LOG
%QRT
%IGN
%LOAT
%FIX
%TAN
roABS
%SIGN

Table 4-1

Library Subroutines

Subroutine Entry Points

.DID.

. BIO .

. IOI.

• !OR •

• IAR •

. RAR .
• OTA.

%ANH
%XP
%IN
%OS
%AN
%BS
%LOG
%QRT
%IGN
%LOAT
%FIX
%TAN
%ABS
%SIGN

4-31

PROGRAMMING

Subroutine Name Subroutine Entry Points

%AND %AND

%OR %OR

%OT %OT

GETAD GETAD, ADRES

TANH TANH

.RTOR • RTOR

TAN TAN

EXP EXP

SICOS SIN, COS ...
SQRT SQRT

SIGN SIGN

ALOG LN, ALOG

• IENT • IENT

ABS ABS

ATAN ARCTA, ATAN

PWR2 PWR2

FDV .FDV

FMP • FMP

FLOAT FLOAT

•• FCM •• FCM

IFIX IFIX

FAD SB .FAD •

• RTOI .RTOI

• ITOI • ITOI

I SIGN I SIGN

!ABS !ABS

CH EBY .CHEB

MANT .MANT

.PACK .PACK

•• DLC •• DLC

.ENTR .ENTR

.FLUN • FLUN

.GOTO .OOTO

IAND IAND

4-32

PROGRAMMING

Subroutine Name Subroutine Entr~ Points

IOR IOR

OVF OVF

.MAP. .MAP

RM PAR RM PAR

PAUSE .PAUS, .STOP

ERR0 ERR0

BIN RV BREAD, BWR IT

DLDST .OLD, • DST

MPV .MPV

DIV .DIV

SREAD %READ, %JFIL, %RDSC

%WRIS %WRIS, %WRIN, %WEOF

%WRIT %WRIT, %WRIF

ASCII CNDEC, CNOCT

$SRCH $SRCH

$ADDR $ADDR

DEBUG $DBP1 , DEBUG

DBKPT $DBP2, $MEMR

PTAPE PT!\PE

% Library Routines

In Table 4-1, some routines start with the character "%". The rest of the

subroutine name is the same as some other subroutine (e.g., SIN becomes %IN).

A subroutine starting with "%" is a call-by-name version of a call-by-value

subroutine that does the same operation. In the call-by-value subroutine,

the actual value of the parameter must be replaced in the A- and B-Registers

as an integral part of the calling sequence. The subroutine searches

the registers for the parameter.

Call-by-name subroutines, on the other hand, expect a list of parameter ad­

dresses following the subroutine call. (The EXEC calls given in Section III

derronstrate the form of a call-by-name subroutine's calling sequence.) In

FORTRAN, using the special EXTERNAL statement, subroutines may be passed as

4-33

PROGRAMMING

parameters to other subroutines. Since the subroutines receiving the par­

ameter cannot know in advance which type (call-by-value or call-by-name)

will be passed, it must assume call-by-name for generality. In FORTRAN,

subroutine parameters are assumed to be the call-by-name type subroutines

and the appropriate calling sequence is generated.

When the FORTRAN compiler encounters SIN or another of the call-by-value

subroutine within an EXTERNAL statement, the compiler knows that the sub­

routine is going to be used as a parameter. Since SIN will be assumed to

be call-by-name, the compiler automatically changes the external reference

to %IN, the call-by-name version of SIN.

ceptions to the% routines).

For Example,

SUBROUTINE SUB (PARAM)
CALL PARAM (A)

RETURN
END

Subroutines Unique to DOS

(NOTE: %WRIS and %WRIT are ex-

(PARAM is a subroutine parameter)

(The call to PARAM is assumed to
be call-by-name)

RMPAR, ERR¢, BINRY, and the %-routines are unique to DOS. RMPAR is ex­

plained in Section II, GO directive. ERR¢ is explained in this section un­

der DOS FORTRAN COMPILER. BINRY is explained in Section IV, READ/WRITE

EXEC CALLS. The % routines are explained above.

4-34

PROGRAMMING

Assembly Language Calling Sequences

The calling sequences for the DOS Relocatable Library subroutines are

identical to those for the regular Relocatable Program Library routines,

with the following exceptions:

For SIN, COS, ALOG, SQRT, EXP, and TAN, the calling sequence is:

OLD

JSB

JSB

Argument

Subroutine name

Error routine (either ERR~ or a user
routine, ERRn, where n = 1 to 9)

normal return point

Before returning to the error routine location, the subroutines place an

ASCII error code in the A- and B-Reg~sters. ERR~ prints this code on the

system teleprinter. A user error routine may handle these errors.

For .RTOR, .RTOI, and .ITO!, the calling sequence is

JSB Subroutine name

DEF Argument one

DEF Argument two

JSB Error-print routine

normal return point

Reference

For further information on the library subroutines, see the PROGRAM LIBRARY

programmer's reference manual (02116-9032).

4-35

SECTION V
INPUT /OUTPUT

In the Disc Operating System, centralized control and logical referencing of

I/O operations effect simple, device-independent programming. Each I/O de­

vice is interfaced to the computer through one or more I/O channels (10
8

through 37
8

) which are linked by hardware to corresponding core locations

for interrupt processing. By means of several user-defined I/C tables,

multiple-device drivers, and program EXEC calls, DOS relieves the programmer

of most I/O problems.

For further details on the hardware input/output organization, consult

Volume One, SPECIFICATIONS AND BASIC OPERATION MANUAL, Model 2116B Computer

(02116-9152).

SOFTWARE I/O STRUCTURE

An Equipment Table records each device's I/O channels, driver entry points,

DMA requirements, and location on disc if disc-resident. A Device Reference

Table (logical unit table) assigns an equipment table number to each of its

entries, thus allowing the programmer to reference changeable logical units

instead of fixed physical units.

An Interrupt Table relates each channel to an entry in the Equipment Table.

A driver is responsible for initiating and continuing operations on all

devices of an equivalent type.

The programmer requests I/O by means of an EXEC call in which he specifies

only the logical unit, control information, buffer location, buffer length,

and type of operation.

5-1

INPUT /OUTPUT

The Equipment Table

The Equipment Table (EQT) has an entry for each device recognized by DOS

(these entries are established by the user when DOS is generated). The EQT

entries reside in the permanent core-resident part of the system and have

this format:

WORD

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

D 1 R

Av

CONTENTS

Driver "Initiation" Section Address
--

Driver "Continuation" Section Address

l Unit #1 Channel #

Equipment Type Code Status

(saved for system use)

(saved for system use)

Request Return Address

Request Code

Current I/O Request Control Word

Request Buffer Address

Request Buffer Length

Temporary or Disc Track #

Temporary or Starting Sector #

Temporary Storage for Driver

Upper Memory Address of Main Driver Area

Upper Memory Address of Driver Linkage Area

Starting Track # Starting Sector #

BITS isl 14 u I 12 1 u T 1)3 I 91 8 1l 61 sJ 41 3 1 2J 11

D

R

Unit #

Channel #

l if DMA channel required.

l if driver type is core-resident.

May be used for sub-channel addressing.

I/O select code for device (lower number if multiboard

interface.)

5-2

)3

}

fa's if

core­

resident

INPUT/OUTPUT

Av ¢ - Unit not busy and available

1 - Unit disabled (down)

2 - Unit busy

3 - Unit waiting for an available DMA channel

Status - Actual or simulated unit status at end of operation.

Equipment Type Code - Identifies type of device and associated software

driver. Assigned equipment type codes in octal are:

1¢-17

10

12

15

20-37

22

Teleprinter

Paper Tape Devices

Punched Tape Reader

High Speed Punch

Unit Record Devices

Reserved for Plotter

Line Printer

Mark Sense Card Reader

Magnetic Tape/Mass Storage and other devices capable
of both input and output

3030 Magnetic Tape

Disc/Drum

For equipment type codes 01 through 17, odd numbers indicate input devices

and even numbers indicate output devices.

When DOS initiates or continues an I/O operation, it places the address of

the EQT entry for the device into the base page communication area (see Ap­

pendix A) before calling the driver routine.

Logical Unit Numbers

Logical unit numbers from 1
10

to 63
10

provide logical addressing of the physi­

cal devices defined in the EQT. These numbers are maintained in the Device

Reference Table (DRT or logical unit table), which is created by the Disc

Operating System Generator (DSGEN) and can be modified by the LU directive.

5-3

INPUT/OUTPUT

Each one-word entry in the DRT contains the EQT entry number of the device

assigned to the logical unit. DOS has the following function assignments for

logical unit numbers.

Logical Unit Number

l

2

3

,4

5

6

7

8

9

1,0

Function

System Teleprinter

System Mass Storage

Auxiliary Mass Storage #1

Standard Punch Device

Standard Input Device

Standard List Device

Reserved for use by DOS

Can be assigned to any device

by user

The user determines the number of logical units when the system is generated.

At the beginning of each JOB, logical units l through 9 are restored to the

values set by DSGEN (System Generator) , where as 10 through 63 are restored

only on a start-up from the disc.

Executing programs use logical unit numbers to specify the type of device for

I/O transfers. In an I/O EXEC call, the program simply specifies a logical

unit number and does not need to know which actual device or which I/O chan­

nel handles the transfer.

The Interrupt Table
The interrupt table contains an entry, established at system generation time,

for each I/O channel in the computer. The entry contains the address of the

EQT entry for the device on the channel.

The interrupt locations in core contain a jump subroutine to $CIC which is

the central interrupt control routine which examines the interrupt table to

decide what action to take. On a power failure interrupt, DOS halts. How­

ever, the user can write his own routine to handle power failure interrupts.

5-4

INPUT /OUTPUT

Input/Output Drivers

The I/O driver routines, either core-or disc-resident, handle the actual

transfer of information between the computer and external devices. When a

transfer is initiated, DOS places the EQT entry addresses into the base page

communication area and jumps to the driver entry point. The driver con­

figures itself for the particular channel (in this way the same driver can

handle several devices of the same type on many channels), initiates the

transfer and returns to DOS. When an interrupt occurs on the channel, in­

dicating continuation or completion of the transfer, DOS again transfers con­

trol to the driver.

DOS currently includes seven standard I/O drivers:

DVR.0.0 Teleprinter

DVRJOl Photo-reader

DVR,02 High speed punch

DVR12 Line Printer

DVR15 Mark Sense Card Reader

DVR22 3030 Magnetic Tape
~ '"- t1 "~ I•

DVR3¢ Disc/drum

The driver name consists of the letters "DVR" added to the equipment type

code. In addition, the programmer can write drivers for special devices,

following the guidelines in this section. The driver is only responsible

for updating the status field in the EQT entry; DOS handles the availability

field.

System I/O

DOS itself initiates many I/O transfers. It reads in directives from the

batch or keyboard device and transfers modules in from the disc. These func­

tions are accomplished by $SYIO, a routine within the DOS Supervisor, which

calls the appropriate driver routine.

5-5

INPUT /OUTPUT

User Program I/0

The user program initiates an I/O transfer by means of an EXEC call--a "JSB

EXEC" as described in Section III. The supervisor recognizes the EXEC call

as an I/O request and sends it along to the I/O supervisor $IORQ which de­

termines if the driver for the requested device is core-resident. If not,

the driver is read into core from the disc.

$IORQ places the address of the EQT entry in the base page communication area

(see Appendix A, TABLES) and transfers control to the driver. The driver

configures itself to I/O operation, the appropriate channel, initiates the

transfer and returns to $IORQ. DOS either returns to the executing user

program or waits until the I/O transfer is complete as requested by the

program.

Interrupt Processing

When an interrupt occurs on the HP2116B computer, control is transferred to

the instruction in the interrupt location corresponding to the device. Each

interrupt location (memory locations 10
8

through 37
8

) contains a "JSB $CIC"

instruction. $CIC, the central interrupt control routine of DOS, then per­

forms the following:

a. Disables interrupt system

b. Saves registers, point of program suspension

c. Clears interrupt flag

d. Determines the type of interrupt

1) If power fail, halts

2) If memory protect, goes to EXEC

3) If time base, goes to CLOCK routine

4) If not a legal I/O channel, returns to suspension point

5) If legal I/O channel, puts EQT entry addresses in base
page communication address and transfers to driver con­
tinuation address

e. Upon return from the I/O driver, turns on interrupt system re­

stores registers and returns to the point of suspension.

5-6

INPUT/OUTPUT

PLANNING I/0 DRIVERS

Before attempting to program an I/O driver, the programmer should be thorough­

ly familiar with Hewlett-Packard computer hardware I/O organization,, inter­

face kits, computer I/O instructions and Direct Memory Access (DMA).

An I/O driver, operating under control of the Input/Output Control ($IORQ)

and Central Interrupt Control ($CIC) modules of DOS, is responsible for all

data transfer between an I/O device and the computer. The device equipment

table (EQT) entry contains the parameters of the transfer, and the base page

communication area contains the number of the allocated DMA channel, if

required.

An I/O driver includes two relocatable, closed subroutines, -- the Initiation

Section and the Completion Section. If nn is the octal equipment type code

of the device, I.nn and C.nn are the entry point names of the two sections

and DVRnn is the driver name.

Initiation Section

The $IORQ module calls the initiation section directly when an I/O transfer is

initiated. Locations EQTl through EQT17 of the base page communication area

contain the addresses of the appropriate EQT entry. CHAN in base page con­

tains the number of the DMA channel assigned to the device, if needed. This

section is entered by a jump subroutine to the entry point, I.nn. On entry,

the A-register contains the select code (channel number) of the device (bits

~through 5 of EQT entry word 3). The driver returns to $IORQ by an in-

direct jump through I.nn.

Before transferring to I.nn, DOS places the request parameters from the user

program's EXEC call into words 7 through 13 of the EQT entry. Word 9, CONWD,

is modified to contain the request code in bits ~ through 5 in place of the

logical unit. See the EQT entry diagram and Section III, READ/WRITE EXEC

CALL, for details of the parameters.

5-7

INPUT /OUTPUT

Once initiated, the driver can use words 10 through 14 of the EQT entry in

any way, but words 1, 2, 3, 5, 6, 7, 8, 9, 15, 16 and 17 must not be altered.

The driver updates the status field in word 4, if appropriate, but the rest

of word 4 must not be altered.

FUNCTIONS OF THE INITIATION SECTION

The initiation section of the driver operates with the interrupt system

disabled. The initiation section is responsible for those functions (as

flow-charted in Figure 5-1):

1. Rejects the request and proceeds to step 5 if:

n the device is inoperable, or

a the request code, or other of the parameters, is illegal.

2. Configures all I/O instructions in the driver to include the

select code (and DMA channel) of the device.

3. Initializes DMA, if appropriate.

4. Initializes software flags and activates the device. All vari­

able information pertinent to the transmission must be saved in

the EQT entry because the driver may be called for another device

before the first operation is complete.

5. Returns to $IORQ with the A-register set to indicate initiation

or rejection and the cause of the reject:

If A ¢, then the operation was initiated.

If A "I ¢, then the operation was rejected with A set as:

1 - read or write illegal for device,

2 - control request illegal or undefined,

3 - equipment malfunction or not ready,

4 - immediate completion (for control requests).

5-8

Return
to

P+1

INPUT /OUTPUT

{A)= 1 or

I.nn

Configure I/O
1 nstructions

for Device

2 reject -<
codes

{A)= 3,

~~~~ct 

YES 

Initialize 
Operating, 
Condit ions, 
Flags, etc. 

Set buffer 
address, length, 
mode, etc. for 

transfer 

Activate 
Dev ice 

Return to 
P+1 

Figure 5-1. I/O Driver Initiation Section 

5-9 



INPUT /OUTPUT 

Completion Section 

COS calls the completion section of the driver whenever an interrupt is 

recognized on a device associated with the driver. Before calling the 

driver, $CIC sets the EQT entry addresses in base page, sets the interrupt 

source code (select code) in the A-register, and clears the I/O interface 

or DMA flag. The interrupt system is disabled. The calling sequence for 

the completion section is: 

Location Action 

Set A-register equal to interrupt source code 

JSB C.nn 

Completion return from C.nn 

(P) 

(P+l) 

(P+2) Continuation or error retry return from C.nn 

The point of return from c.nn 'co $CIC indicates whether the transfer is con­

tinuing or has been completed (in which case, end-of-operation status is 

returned also). 

The completion section of the driver is responsible for the functions below 

(as flow-charted in Figure 5-2): 

1. The driver configures all I/O instructions in the Completion 

Section to reference the interrupting device, and then proceeds 

to step 2. 

2. If both DMA and device completion interrupts are expected and the 

device interrupt is significant, the DMA interrupt is ignored by 

returning to $CIC in a continuation return. 

3. Performs the input or output of the next data item if the device 

is driven under program control. If the transfer is not com­

pleted, the driver proceeds to step 6. 

4. If the driver detects a transmission error, it can re-initiate 

the transfer and attempt a retransmission, A counter for the 

number of retry attempts can be kept in EQT 14. The return to 

CIC must be (P+2) as in step 6. 

5-10 



INPUT/OUTPUT 

5. At the end of a successful transfer or after completing the retry 

procedure, the following information must be set before returning 

to $CIC at (P+l): 

a. Set the actual or simulated device status into 

bits~ through 7 of EQT word 4. 

b. Set the number of transmitted words or characters 

(depending on which the user requested) to the 

B-register. 

c. Set the A-register to indicate successful or 

unsuccessful completion. 

~ successful completion, 

1 device malfunction or not ready, 

2 end-of-tape (information), 

3 transmission parity error. 

6. Clears the device and DMA control on end-of-operation, or sets the 

device and DMA for the next transfer or retry. Returns to $CIC at: 

(P+l) - completion, with the A and B-registers set as in step 5. 

(P+2) - continuation; the registers are not significant. 

5-11 



RETURN 
TO .,.__< 
P+2 

YES 

Re-inltializ 
Conditions 

RETURN 
TO 

P+2 

YES 

INPUT /OUTPUT 

C.nn 

Conf lgure 
I/O Jnstructlons 

for Device 

(B)=# 
words or 

cnaracters 
transferred 

(A)= 
Completion 

Code 

Clear 
Dev ice 
Control 

RETURN 
TO 

P+f 

NO Transfer next RETURN 
.,.... ....... ~Data item, ........ ......,. TO 

update indexes, p + 2 flags, etc. 

Figure 5-2. I/O Driver Completion Section 

5-12 



---

SECTION VI 
INSTALLATION 

The setup and operation of a Disc Operating System involves two essential 

steps and one optional step. DOS must be configured using the DOS Generator 

(DSGEN). It must be initiated from the disc by the core-resident Basic 

Binary Disc Loader (BBDL), and it may be dumped onto tape using the system 

dump (SDUMP) as protection against a disc failure. 

This section describes the three routines -- DSGEN, BBDL, and SDUMP -- that 

are responsible for these processes. 

DSGEN, THE DOS GENERATOR 

DSGEN configures DOS to fit a particular user's core memory size, I/O 

equipment, and programming needs. 

To accomplish this, DSGEN requests certain information from the user. DOS 

then accepts the relocatable program modules to be included in the system, 

determines where they belong in core or on the disc, relocates them into ab­

solute format, and stores them on the disc. DSGEN also creates I/O tables 

by identifying each I/O device and its associated driver routine, and es­

tablishing procedures for interrupt processing on each channel. 

DSGEN is an absolute program, loaded into core by the Basic Binary Disc 

Loader (BBDL) from paper tape. Since DSGEN is independent of the DOS which 

it generates, the I/O operations of DSGEN require special programs called 

SIO Drivers. 

Using other standard Hewlett-Packard software, the user can create a mag­

netic tape or disc file of the relocatable program modules for quick and 

easy configuration. 

DSGEN operates on the same minimum configuration as that required for a DOS. 

6-1 

~- -~------~<~ 



f 

f 

f 

l 

t 

l 
~ 
L 

INSTALLATION 

Operating Procedures 

The operation of DSGEN involves four phases: 

To 

a INITIALIZATION PHASE. DSGEN requests specifications for the DOS, 

including description of available disc space, memory, time base 

generator channel, and program input devices. 

a PROGRAM INPUT PHASE. DSGEN reads in the relocatable programs 

provided with the system and created by the user. 

a PARAMETER INPUT PHASE. Parameters to change EXEC modules or 

drivers from disc to core-resident may be entered. (The programs' 

NAM records are set for a minimum core system). DISCM, DVR30 (disc/ 

drum driver) and DVR00 (teleprinter driver) must be core-resident. 

a DISC LOADING PHASE. DSGEN requests a specification of the base 

page linkage, and begins loading programs onto the disc. Systems 

programs (i.e., the modules of DOS), are loaded first, after which 

DSGEN requests information fq,r the equipment table, device refer­

ence table (logical unit table), and interrupt table and proceeds 

to load the rest of the programs onto the disc. 

execute DSGEN and configure DOS, follow these steps: 

a Turn on all equipment, set the system teleprinter to LINE, and dis-

able the disc protect. (See Drum Memory Interface Kit Manual, 

12610-9001, or Disc Memory Interface Kit Manual, 12606-9001.) 

a Load the DSGEN tape into core using BBDL (the core-resident loader) 

and add the appropriate SIO Drivers. (If the relocatable programs 

are on a magnetic tape or disc file, the file must be created by 

the Prepare Tape System (PTS).) Refer to the MAGNETIC TAPE SYSTEM 

reference manual (5950-9292) for a description of PTS. 

a. Load the SIO Buffered Teleprinter Driver tape using the 
-~------

BBDL. 

b. Set the switch register to 2
8 

and press LOAD ADDRESS. 

c. Set switch register bits 5-0 to the channel number of the 

device associated with the driver. 

6-2 



IN STAL LA TION 

d. Press RUN. 

e. Repeat these steps, if appropriate, for the ~ched~ 
Reader and a-~~_gn;-tic Tape Unit ~ ~~~-- --· --·--

D Set the switch register to 1~~8 , press LOAD ADDRESS, then press 

RUN. DSGEN begins the initialization phase. 

INITIALIZATION PHASE 

During the initialization phase, DSGEN requests information necessary to 

begin generating the DOS. After each question is printed, the operator re­

sponds by giving the required information. 'Ille following dialogue is typical. 

('Ille operator responses are only examples; actual responses should be ap­

propriate to the particular system being generated.) 

DSGEN requests the octal channel number (higher 

priority channel if multi-card) of the system 

disc or drum unit .••...•.•.••.•...•.••.•....•...•..•••• SYS DISC CHNL? 

Operator responds .•..........•...•.••.••...••.•• 2 ¢ 

DSGEN requests the smallest number of sectors (decimal) 

per track on the discs or drums in the system. (Disc 

units are usually 90; drums, 128.) ......•••.•••..••.•.• #SECTORS/TRACK? 

Operator responds .....•....•..••.•••.....•...... 9¢ 

DSGEN requests the number of tracks (decimal) 

on the system disc or drum ••••••••••••••••••••••••••••• SYS DISC SIZE? 

Operator responds ••.•...•.•.•...•..•••...•.••.•• 32 

DSGEN requests the number of hardware protected 

tracks in decimal. ..................................... #PROTECTED TRACKS 

Opera tor responds •••••.••.••••••..••••••...•.... 8 

6-3 



INSTALLATION 

DSGEN requests decimal number of first track 

on disc available to the system. (All system 

tracks must be contiguous, i.e., DOS cannot 

be generated with intervening faulty tracks.) .•..•..•.• FIRST SYSTEM TRACK? 

Operator responds ..•.•..•..•......•.....•.....•. ¢ 

DSGEN requests the starting system sector 

number in decimal. ••..••.•..•.•.••.•...•..•...•..•...• . FIRST SYSTEM SECTOR? 
-rl ' - ' f d •1 
I 11 (' S '1 '\ fe k. , '.'> " i• ') 'f' ~,1 .:Cl " 

Operator responds. (Operator must record tt"-ct<' ep ::o.<',r·ur 't'f, ~-1l-'\(e 

this response and the previous one if he 5 . J r~1· ~ ~ i#(' r <,. •A 5 <' J 

I U) -f I, ("' ,J iS h :'.'\ ./ '(' [' J . 
plans to save the system using SDUMP.) ....•..... 3 

DSGEN requests the I/O channel of the auxiliary 

mass storage device in octal (~if none) ..•.•.•. ..•.••• AUX DISC CHNL? 

Operator res ponds .•.•.••....•....•.•.......•.... 1 

If the previous response is not zero, 

DSGEN requests the number of tracks on the 

auxiliary disc or drum ............•........•.........•• AUX DISC SIZE? 

Operator responds ..•..•.......•....••..•.....•.. 22 

DSGEN requests the I/O channel of the Time 

Base Generator (octal) ...••••••••.•.•..•..•.....••.•..• TIME BASE GEN CHNL? 

Operator responds ..•.••.••••.•.•.•••••...••..•.. 7 ¢ 

DSGEN requests the last word of available core 

memory, in octal •....•..•.••..•.••.•.•..••..••.••..••. • LWA MEM? 

Operator responds .•.•...•.•..•.••.•.••.....••..• 37677 

DSGEN requests the type of input unit for 

relocatable program modules ..•..... ..••••.•.•.••••••.•. PRGM INPT? 

Operator responds with PT (for paper tape), 

TY (for teleprinter), MT (for magnetic 

tape), or DF (for disc file) •.•.••.•••.••.••.••• PT 

6-4 



INSTALLATION 

DSGEN requests the type of input unit for 

relocatable library programs .•.•.••.•.....••...•.•..•••. LIBR INPT? 

Operator responds with PT, TY, MT, or DF ....•..• MT 

DSGEN requests the type of input unit for par-

ameters, describing the relocatable programs .•....••••. PRAM INPT? 

Operator responds with PT or TY ...•..•.••.•.•... TY 

When DSGEN finishes the initialization phase, the computer halts. 

PROGRAM INPUT PHASE 

During the program input phase, DSGEN accepts relocatable programs from the 

Program Input Unit and Library Input Unit specified during the initialization 

phase. The operator selects the input device by setting switch register bits 

~-1 (~~2 for the Program Input Unit, or 1~2 for the Library Input Unit), and 

places the programs in the input device. 

their segments. 

Main programs must enter prior to 

' 

The suggested order of tape input is: 

,-

DOS CORE-RESIDENT SYSTEM (DISCM) 

DOS DISC-RESIDENT EXEC MODULES ($~$EX16) /.,R, /) "-4 ~.~) 
DOS I/0 DRIVERS (DVR00, DVR01, ••• ETC) "2 ( ~ ~ / 
DOS JOB PROCESSOR/FILE MANAGER (JOBPR) 

DOS RELOCATING LOADER (LOADR) 

DOS ASSEMBLER (MAIN CONTROL, SEGMENTD, SEGMENTl, •••• ) 

DOS FORTRAN (MAIN CONTROL, PASS 1,... ) 

DOS RELOCATABLE LIBRARY 

Any user programs to be made a permanent part of DOS. 

Fcr..,..<l-f f<?I"' Le."'w< IO;J. ~ IH t.:brn--1 

6-5 



INSTALLATION 

The opera tor presses RUN. When entering paper tape, the message "*EOT" is 

printed whenever an end-of-tape occurs. The computer halts. 

At this point, the operator has several options: additional programs can be 

input from the same device by repeating the steps above; input can be switch­

ed to the other input device (by setting the switch register bits to ~02 or 

1~2). 

To terminate the program input phase, the user must set switch register bits 

to ~1 2 , and press RUN. If there are no undefined externals, this message is 

printed on the system teleprinter: 

NO UNDEF EXTS 

If there are undefined externals, the following message is printed: 

UNDEF EXTS 

The externals are listed one per line and the computer halts. External 

references are satisfied by loading more programs. The user must set switch 

register bits to 00; (for Program Input Unit) or 10
2 

for the Library Input 

Unit) and press RUN. 

PARAMETER INPUT PHASE 

During the parameter input phase, the operator can change some modules 

from disc to core-resident. 

Each parameter record is of this general form: 

name, type 

where name is the name of the program 

type is the program type code; 

~ - System core-resident 

1 - System disc-resident exec nodules 

3 - User disc-resident main 

6-6 



INSTALLATION 

4 - Disc-resident I/O driver 

5 - User segment 

6, 7 - Library 

>7 - Program deleted from the system 

EXEC modules and drivers that are often used may be changed from disc to 

core-resident. The functions of the EXEC modules are: 

Module Name 

$EX,01 

$EX,02 

$EX,03 

$EX,04 

$EX,05 

$EX,06 

$EX,07 

$EX,08 

$EX,09 

$EX1,0 

$EX11 

$EX12 

$EX13 

$EX14 

$EX15 

$EX16 

Function 

Disc Work Tracks Status 

Disc Work Track Limits 

Program Completion 

Program Suspension 

Program Segment Load 

User File Name Search 

Current Time Processor 

Real-Time Disc Allocation. (See Appendix D.) 

Execution Time :EQ Processor 

Load and Execute Program 

System File Name Search 

System Startup 

Error Message Processor 

Execution Time, :UP, :DN, :LU Processor 

Abort and Post Mortem Dump 

:GO Parameter Processor 

When EXEC modules are made core-resident, certain associated library sub­

routines must also be changed to be core-resident. Several EXEC modules 

use $ADDR: 

$EX,01 

$EX,02 

$EX.~% 

$EX,07 

$EX,08 

6-7 



INSTALLATION 

The following EXEC modules use $SRCH: 

'Ihese EXEC modules use ASCII: 

$EX~5 

$EX~6 

$EX11 

$EX~9 

$EX13 

$EX14 

$EX15 

To end the parameter input phase and continue on to the disc loading phase, 

the operator enters "/E" instead of a parameter record. DSGEN then asks two 

questions before entering the disc loading phase. 

DISC LOADING PHASE 

DSGEN requests the estimated number of system 

linkages required in base page •.•.•..•••..• •...•.•.••.• #SYSTEM LINKS? 

Operator responds with a decimal number. 

(The more modules that are core-resident 

the more links are needed, l~~ should be 

the minimum response.) •..•....•....••...•.••••. • 2¢¢ 

DSGEN requests the estimated number of user 

linkages required in base page •..........•...•......•.. #USER LINKS? 

Operator responds with a decimal number. 

(Since FORTRA~itiquires approximately 

4-¢<(> ~linkages, ~ should be the minimum 

number entered.) .•.•..••.•..•....•..........•..• '# 

Figure 6-1 shows the relative location of the various core areas. Loading 

of the absolute, resident supervisor begins after the establishment of the 

user and system linkage areas. As each program is loaded, DSGEN prints a 

6-8 



INSTALLATION 

--

LOW 
Interrupt Locations 

408 
System Base Page Area 

User Base Page Area 

DOS Supervisor 

DISCM - the core resident 

Core Resident Drivers and EXEC Modules 

Disc Resident EXEC 
Module Overlay Area 

(Optional) 

Disc Resident 1/0 Drivers 
Overlay Area (Optional) 

Memory Protect Boundary 

User Common Area (Optional) 

Disc Resident User 

Program Area 

(Mains & Segments) 

Basic Binary Disc Loader 
HIGH 

Figure 6-1. Core Allocations in DOS 

6-9 



INSTALLATION 

memory map giving the starting locations and, if switch register bit 15 is 

up, the entry points for all main programs and subroutines. (Subroutines are 

indented two spaces, and entry point addresses are preceded by an asterisk.) 

Next, DSGEN generates the three I/O tables: equipment table, device refer­

ence table (logical unit table), and the interrupt table. 

DSGEN requests the equipment table entries ...••••..••.. EQUIPMENT TABLE ENTRY? 

Operator responds with a series of one 

line EQT entries, which are assigned 

EQT numbers sequentially from one as 

they are entered. The EQT entry re­

lates the EQT number to an I/O channel 

and driver, in this format ••.•••••...•••••••.• .• 111,VVRn.11 [,V][,R] [,U] 

where 117 is the I/O channel (lower number if multi-board), 

VVR11n. is the driver name (1111 is the equipment type code). 

v, if present, means DMA channel required, 
'· 

R, ' if present~ means driver is core-resident, 

u, is the physical sub-channel number. 

Operator terminates the equipment 

table entries by typing .•••..••.••.•••••••.•••••. /E 

DSGEN requests the logical unit assignments for 

the device reference table •••••••••••••••.•••••••••••• DEVICE REFERENCE TABLE? 

For each logical unit number, DSGEN prints ..•••••••••• 11=EQT#? 

Operator responds with an EQT entry number (m) 

appropriate to the standard definition of n.. 

Numbers above 9 may be assigned any EQT entry 

desired ......................................... . m 

Operator terminates entry by typing .••••••••••••• /E 

DSGEN requests the interrupt table entries •.••••••...•• INTERRUPT TABLE 

Operator responds with an entry for each I/O 

location which may interrupt, in ascending 

order, and in this format ••••••••••.•••••••.•• • n.1, 112 
FoL ~u!.o i'hAl.."iAPt, -r·;,+· ,_,.,,.u~ ,...; ...,.,._,_ ,- 7 -,;;.,;t;t""'"IT,c::ir,:,LE_ 

,!l/.i.9w;..c,;. ,-.. ,~ ,,,~.I:' ( .-::u::.A--r-1.;:>o.J Ct'' 1•''JtA(,,,, r.a/Jf!. :) iSoA,€0 
6-10 



INSTALLATION 

where nl is the octal channel number between 1~8 and 37
8 

inclusive (must be 

entered in ascending order), and 

nZ is a decimal EQT entry number. 

Operator terminates entry by typing ••••••••••••• /E 

Following the completion of the I/O tables, DSGEN loads the disc-resident 

executive m;)dules (if any), and the disc-resident I/O drivers (if any). 

DSGEN reports the last address (plus 1) of the 

supervisor ••••••••.•••••••••••••••••••••••••••••.••••• LWA SYS XXXXX 

DSGEN requests the first word address of the 

user program area •....•..•.•...•••••••....••••••...••. FWA USER? 

Operator responds with an octal address 

greater than or equal to XXXXX. (This 

option is provided so that user programs 

can start on a page boundary, if 

des ired) ••...••••••••••••••••••••••••••.•••.•••• nnnnn 

DSGEN proceeds to load all user main programs 

and segments onto the disc with memory map 

listings as described for system programs. 

When system generation is complete, DSGEN prints •.•••• SYSTEM STORED ON DISC 

DSGEN then reports the last track used in bits 15 through 8 of the A-Register, 

and the last sector used in bits 7 through ~ of the A-Register. (These must 

be recorded if one plans to use SDUMP to save the system.) At this point, 

the disc protect switch must be enabled to protect the system on the disc. 

(See Drum Memory Interface Kit Manual, 12610-9001, or Disc Memory Interface 

Kit Manual, 12606-9001.) I: /1/ 

____. ---h-4 --
Restart 

i.5 I ©t ~~1 .a~; 

.{ -t .¥ 

During any of the phases, DSGEN can restart that phase if any error occurs. 

The operator sets the switch register equal to 1~~8 , and presses LOAD ADDRESS 

and RUN. 

6-11 



INSTALLATION 

In addition, the parameter input phase can be re-entered at 4¢¢¢
8

, and the 

disc loading phase at 6¢¢¢
8

• 

Error Messages 

The following messages may be printed on the teleprinter during execution of 

DSGEN: 

Message Meaning 

Messages During Initialization ana Input Phase 

ERR¢1 

ERR¢2 

ERR¢3 

ERR¢4 

ERR¢5 name 

ERR~6 

ERR¢7 

ERR¢8 name 

Invalid response to initial­

ization request. 

Checksum error on program 

input. 

Record out of sequence. 

Illegal record type. 

Duplicate entry point. 

Invalid base page length 

(must be zero) . 

Program name or entry point 

table overflow of available 

memory. 

Duplicate program name. 

6-12 

Action 

Request is repeated. Enter 

valid reply. 

Computer halts; reposition 

tape to beginning of record 

and press RUN to reread. 
/~ 

Same as ERR¢2. 

Same as ERRfil2. 

Revise program by reloading 

the entry points (the current 

entry point replaces the pre­

vious entry point). 

Base page area is ignored, 

but memory protect error will 

occur if program is executed. 

Irrecoverable error. Revise 

or delete programs. 

The current program replaces 

the previous program. 



Messages 

Message 

ERR,09 

ERRl,0 

General 

ERR13 

ERR15 

ERR16 

ERR17 

ERR18 

ERR19 

ERR2,0 

INSTALLATION 

During the Parameter Phase 

Meaning 

Parameter name error (no 

such program). 

Parameter type error. 

Messages 

User segment precedes 

user main program. 

More than 63 subprograms 

called by a main program. 

Base page linkage over­

flow. 

Current disc address ex­

ceeds number of available 

tracks. 

Memory overflow (absolute 

code exceeds LWA memory). 

Program overlay (current 

word of absolute code has 

identical location to 

previous). 

Binary DBL record overflow 

of internal table. 

6-13 

Action 

Enter valid parameter 

statement. 

Same as ERR,09. 

Irrecoverable. 

Revise main program(subsequent 

calls to subprograms are 

ignored). 

Diagnostic printed for each 

word required. Revise order 

and composition of program 

loading to reduce linkage 

requirements. 

Irrecoverable error. 

Diagnostic printed for each 

word required (absolute code is 

generated beyond LWA). Revise 

program. 

Current word is ignored 

(the address is printed). 

Records overlay previous DBL 

records (diagnostic printed for 

each overfl.ow record). Revise 

program. 



Message 

ERR21 

ERR22 

ERR23 

INSTALLATION 

Meaning 

Module containing entry 

point $CIC not loaded. 

Read parity/decode disc 

error. A-register bits 

8-14 show track number; 

bits ~-7 show sector 

number. 

EQT not entered for 

disc-resident I/O module. 

Messages During I/0 Table Entry 

ERR24 

ERR25 

ERR26 

ERR27 

ERR28 

ERR29 

ERR31 

ERR35 

_ERR36 

Invalid channel number. 

Invalid driver name or no 

driver entry points. 

Invalid or duplicate D,R,U 

operands. 

Invalid logical unit no. 

Invalid channel number. 

Channel number decreasing. 

Invalid EQT number. 

Base page interrupt loca­

tions overflow into link­

age area. 

Invalid number of charac­

ters in final operand. 

6-14 

Action 

Irrecoverable error. 

After ten attempts to read or 

write the disc sector, the com­

puter halts. To try ten more 

times, press RUN. 

Restart at 4~~~8 . 

Enter valid EQT statement. 

Same as ERR24. 

Same as ERR24. 

Enter valid DRT statement. 

Enter valid INT statement. 

Same as ERR28. 

Same as ERR28. 

Restart Disc Loading Phase. 

Same as ERR28. 

-~ ... --- -



--

INSTALLATION 

DOS INITIATION FROM THE DISC 

The Basic Binary Disc Loader (BBDL), a modified version of the standard Basic 

Binary Loader, resides in the highest-protected 64 words of core and loads 

either absolute format paper tapes or disc-based systems, such as DOS. 

Loading DOS 

a The operator sets the switch register equal to ¢7776¢
8

, and 

presses LOAD ADDRESS. He then sets the loader switch to 

ENABLED, presses PRESET, and presses RUN. 

a When the computer halts with 1¢2¢77
8 

in the T-register, the 

operator sets the loader switch to PROTECTED, sets switch 

register bit¢ to 1, and presses RUN. A halt with 1¢2¢11
8 

in the T-register means that a checksum error occurred. 

1¢2¢55
8 

means an illegal address. If the BBDL itself is de­

stroyed, it can be replaced through the switch register us­

ing the octal listing in Appendix A. 

a When DOS is loaded, it types: 

INPUT FR = FRESH; CO = CONTINUATION 

The operator enters FR if no user files are currently saved on the disc, or 

CO if user files currently exist or have been loaded by SDUMP. 

DOS then prints the following message until the operator types a valid DATE 

directive (see Section II): 

INPUT :DATE,XXXXXXXXXX,H,M 

Following the DATE directive, the only valid directives are TRACKS, BATCH 

and JOB. All others are ignored until a JOB directive is given. If this 

is a fresh start (FR) and there are known faulty tracks in the system (i.e. 

user and work areas of the disc), they should be set at this time using the 

TRACKS directive as shown below: 

where b
1 

through bn are the faulty tracks. 

6-15 



INSTALLATION 

CREATING A BACK-UP COPY 

SDUMP, the System Dump, is an independent utility program that can create 

back-up copies of disc-based systems on punched tape or magnetic tape. The 

back-up copy can later be reloaded onto the disc by SDUMP. 

Because it is an independent program like DSGEN, SDUMP requires the inde­

pendent SIO Drivers. For paper tape storage, the SIO Teleprinter Driver, 

SIO Paper Tape Reader Driver, and SIO Paper Tape Punch Driver are required. 

For magnetic tape storage, the SIO Teleprinter Driver and SIO Magnetic Tape 

Unit Driver are required. The operator loads the SDUMP tape and SIO Driver 

tapes as described for DSGEN. The magnetic tape driver must be loaded after 

SDUMP. --
After loading SDUMP, execution begins at 1~~8 . SDUMP prints out a request 

guide on the teleprinter: 

DUMP= D,T[-S][,T[-S]] ([]=OPTIONAL) 
VERIFY = V 

LOAD = L 
TERMINATE = T 

SDUMP requests the lower-number channel or the 

disc in octal ...•...•...•...•..••••....••.•••.•.•••... DISC CHNL? 

Then SDUMP types ••.••••••...•••••••••••••...•.•..•.••• COMMAND 

The operator replies with V,L,T, 

or D (followed by parameters) ..•••.••.•..•••.. • L 

J ,,, ,, ,< 

D for dumping requires a set of parameters specifying the first and last 
. ~ ~ 

tracks, inclusive, to be dumped. The values are octal. The last track and 

sector are reported by DSGEN after creating DOS and should be recorded then. 

If output is to paper tape, trailer and leader blank tape is produced, and 

two tracks are dumped at a time. If output is to magnetic tape, the entire 

information is dumped, followed by an End-Of-File which is written over by 

subsequent dumps. 

l).J ~.) 5 7 

6-16 



INSTALLATION 

V for verifying, involves placing the dump in the input device, reading it 

in, and checking each record against the contents of the disc. Comparison 

errors are reported. If magnetic tape is verified, only one file is checked. 

L for loading causes the dumped information to be loaded back onto the disc. 

The information is verified after it is output to the disc, and comparison 

errors are reported. 

An illegal command causes the message: 

STATEMENT ERROR 
~~-~N~o~ 

An error i!V\specifying the disc channel, causes the message: 

PARAM ERROR: NON-NUMERIC OR NOT-OCTAL 

If the magnetic tape is used, a rewind is issued during initialization, 

before and after a verify or load operation, and rewind/standby after T for 

termination. 

Error Messages 

The following messages may be printed on the teleprinter by SDUMP: 

Statement 

STATEMENT ERROR 

EOT 

CHANGE INPUT TAPE, HIT RUN 

TURN OFF DISC PROTECT, HIT RUN 

DISC INPUT ERROR 

Action 

Retype input statement in correct 

format. 

The end of the input tape being read 

has been reached; either load the next 

tape or go on to the next phase. 

Two full tracks have been dumped onto 

paper tape; perform the requested action. 

Set the Disc Track Protect Switch off, 

then press RUN. 

Disc Error Diagnostic, for a Parity, De-

code or Abort status after 10 retrys. 

Input sequence repeated on restart. 

6-17 



,.....-- --

Statement 

DISC WRITE ABORT 

TRACK nnn (8) SECTOR mmm (8) 

TAPE/DISC VERIFY ERROR 

TAPE CHECKSUM ERROR 

MT ERROR - READ PARITY 

MT ERROR - EOT, RESTART 

Saving System and/or User Fi1es 

INSTALLATION 

Action 

Disc Error Diagnostic, for an Abort 

status after a write attempt. Sequence 

is repeated if restarted. 

Identification information for th Disc A ....,o 'fApv. 
t i<-llO I. I> 1t~(:;;,Nt:.:JS"' 1 e "' P <£. t "t-~ e:. d I~"' •.:> A._,. 1- OL t..o"'"' · 
EY~er Bie~nee~ie msssa~@s ~8~2~ib2~ ib2 1~• 

nnn is the octal track number and mmm is 

the octal sector number where the error 

occurred. 

Disc and tape records do not agree. 

Disc record is rewritten on restart. 

The checksum in the tape record does not 

match the sum computed by SDUMP. Current 

record is ignored if restarted. 

Magnetic Tape Errors. Error recovery 

procedures are completed by driver. Re­

start to retry sequence. 

The system operator can save the system and/or user files on the disc for 

later use by dumping them on tape with SDUMP. This is desirable when there 

are more than two disc-based software systems to be used with one computer 

(e.g. DOS, RTE System, TSB System) or when there is a need to protect certain 

user files (not hardware-protected by IXJS). 

The operator first determines which tracks and sectors to dump. For the 

system file, track ~' sectors ~' l and 2 must always be saved. In the oper­

ation of DSGEN, the operator should save the responses to the following 

queries: 

FIRST SYSTEM TRACK? 

FIRST SYSTEM SECTOR? 

6-18 



---

INSTALLATION 

If the system area is to be dumped, start dumping with these response values 

after converting them from decimal,to octal. 

When DSGEN is completed, the operator should note the value in the A-register; 

this value indicates the last track and sector of the system. 

To dump only the system area of the disc, the user enters the following two 

SDUMP commands : 

D,0-0,0-2 
D,FT-FS,LT-LS 

Where FT is the first track, 

FS is the first sector, 

LT is the last track, and 

LS is the last sector. 

The first track of the user file is that immediately following the hardware­

protected area of the disc. 'Ib obtain the value of the last track, the 

operator uses a TRACKS directive (see Section II). The last track of the 

user area immediately precedes the first work area track reported by TRACKS. 

Since the track and sector numbers start with zero, if there are 16 protected 

tracks, the user file starts with 16
10 

(20
8

). 'Ib save the user file, the 

following SDUMP command is entered: 

D,uT-0,Lu-s 

where UT is the first user track, 

LU is the last user track, and 

S is the number of sectors/track in octal minus one. 

To dump and verify the entire system and user areas, the operator would use 

the following SDUMP commands: 

COMMAND: 

v,¢-~,¢-2 

COMMAND: 

V, FT-FS,LT-LS 

6-19 



INSTALLATION 

COMMAND: 
V,uT-¢,Lu-s 

COMMAND: 
v 
COMMAND: 
T 

To reload this dump, the operator enters Lin response to COMMAND:. Then 

DOS is initiated from the disc using BBDL and CO is entered for a continu­

ation start (to preserve the user files). 

Entering FR for a fresh start would prevent access to the user file area. 

Therefore, FR is used when only the system area is dumped and restored. When 

only the user area is saved, a CO start must be used when it is restored. 

However, the user area can only be reloaded on a disc containing the system 

area from which it was dumped. 

6-20 



APPENDIX A 
TABLES 

Appendix A contains several useful tables and figures. 

DOS BASE PAGE CONSTANTS 

LOCATION TYPE VALUE 

4.0 DEC -64 

41 DEC -1.0 

42 DEC -9 

43 DEC -8 

44 DEC -7 

45 DEC -6 

46 DEC -5 

47 DEC -4 

5.0 DEC -3 

51 DEC -2 

52 DEC -1 

53 DEC .0 

54 DEC 1 

55 DEC 2 

56 DEC 3 

57 DEC 4 

6j0 DEC 5 

61 DEC 6 

62 DEC 7 

63 DEC 8 

64 DEC 9 

65 DEC 1.0 

66 DEC 17 

67 DEC 64 

7.0 OCT 17 

71 OCT 37 

72 OCT 77 

A-1 



LOCATION 

73 

74 

75 

76 

77 

TABLES 

TYPE 

OCT 

OCT 

OCT 

OCT 

OCT 

VALUE 

177 

377 

1774,0,0 

3777 

1777,0,0 

DOS BASE PAGE SYSTEM COMMUNICATION AREA 

LOCATION 

1,0,0 

1,01 

1,02 

1,03 

1,04-5 

1,06-7 

11,0 

111 

112 

113 

114 

115 

116 

117 

12,0 

121 

122 

123 

124 

125 

12 6-4,0 

141-53 

NAME 

UMLWA 

JBINS 

JBINC 

TBG 

CLOCK 

CLEX 

CXMX 

BATCH 

SYS TY 

DUMPS 

SYSDR 

SYS BF 

SE CTR 

EQTAB 

EQT# 

LUTAB 

LUT# 

JBUF 

JFILS 

JFILC 

RON BF 

EXPG 

CONTENTS 

Last word address of USER useable memory 

Starting track/sector of current job binary 
area 

Current track/sector of current job binary 
area 

Time base generator I/O channel address. 

Current time 

Execution time 

Maximum execution time 

Logical unit # of batch input device 

Logical unit # of system teletype 

Abort/Post Mortem dump flags 

System directory track/sector address 

System buffer track address; User directory 
sector # 

Number of sectors/disc track 

First word address of Equipment Table 

Number of Equipment table entries 

First word address of Logical Unit table 

Number of Logical Unit table entries 

Job input buffer address 

Source file starting track/sector address 

Source file current track/sector address 

System buffer 

Currently executing program directory entry. 

A-2 



LOCATION 

154-57 

16,el 

161-2,el,el 

2,ell 

2.02 

2,el3 

223 

224 

225 

226 

235 

236 

237 

24,el 

241 

242 

243 

244 

245 

246-7 

25,0-1 

252 

253 

NAME 

DISCO 

NXTTS 

TTABL 

INTAB 

INT# 

EQTl 

EQT2 

EQT3 

EQT4 

EQT17 

RQCNT 

RQRI'N 

RQPl 

RQP8 

NAB RT 

XA 

XB 

XEO 

XSUSP 

EXLOC 

EX# 

EXMOD 

EXMAN 

EX BAS 

IODMN 

IO DBS 

TABLES 

CONTENTS 

Disc I/O channel/track number 

Next available user file track/sector 
address 

Track status table 

First word address of interrupt table 

Number of interrupt entries 

EQT1-EQT17 are addresses of current 
Equipment table entry 

Current number of request parameters 

Current request return address 

RQP1-RQP8 are current request parameter 
addresses 

Illegal request code abort/no abort option 

A register contents at time of interrupt 

B register contents at time of interrupt 

E and O registers contents at time of 
interrupt 

Point of suspension at time of interrupt 

Address of Exec module table 

Number of Exec module table entries 

Current resident Exec module address 

Exec module low and high main core addresses 

Exec module low and high base page core 
addresses 

First word address of I/O driver module 
main area 

First word address of I/O driver module 
base page area 

A-3 



LOCATION 

254 

255 

256 

257 

26.0 

261 

262 

263-4 

265 

266 

267 

27flJ-367 

37flJ-413 

414 

415 

416-7 

42flJ-6 

427 

43.0 

431 

432 

433 

434 

435 

436 

437 

44flJ 

441 

442 

443 

444 

445 

446 

NAME 

UMFWA 

UBFWA 

UBL WA 

CHAN 

OPATN 

OPFLG 

SWAP 

JOBPM 

JOB PB 

TBSYG 

RTRK 

$BUF 

DBUFR 

$GOPT 

$IDCD 

$MDBF 

TEMP 

TEMP.0 

TEMPl 

TEMP2 

TEMP3 

TEMP4 

TEMPS 

MSECT 

VADR 

IO DMD 

RCODE 

SXA 

SXB 

SXEO 

sxsus 
SEQTl 

DSCLB 

TABLES 

CONTENTS 

First word address of user main area 

First word address of user base area 

Last word address of user base area 

Current DMA channel number 

Operator/Keyboard attention flag 

Operator communication flag 

Job Processor resident flag 

Job Processor disc address/number of words 
in main 

Job Processor base page number of words 

Track/sector address of system track table 

Real time simulation track number 

System buffer for disc sector 

System disc triplet parameter buffer 

Point of suspension continuation address 

Input request code check 

Exec module data buffer 

System temporary 

System temporary 

System temporary 

System temporary 

System temporary 

System temporary 

System temporary 

Negative of number of sectors/track 

Address of instruction causing memory 
protect violation 

Current resident I/O driver module address 

Current positive request code 

Operator attention restore A register value 

Operator attention restore B register value 

Operator attention restore E and O value 

Operator attention return address 

Operator attention restore EQT table address 

Track/sector address of relocatable library 

A-4 



LOCATION 

447 

450-1 

NAME 

DSCL# 

CHARC 

SYSTEM DIRECTORY 

SYSTEM FILES 

SYSTEM BUFFER 

USER DIRECTORY 

USER FILES 

TABLES 

CONTENTS 

Number of relocatable library routines 

System temporary 

SYSTEM AREA 
(Hardware Protected) 

USER AREA 
(Software Protected) 

I- - - - - - - - - - - - - - --

WORK AREA 

I- - - - - - - - - - - - - - --

JOB BINARY AREA 

- - - - = floating boundary 

Figure A-1. General Disc Layout 

A-5 



SECTOR 1J 

SECTOR 1 

TABLES 

~-~~~CTORY~-y~~------J 
• 
• 

Last Word of Last Directory Entry 

1st File of SYSTEM AREA 

----

Figure A-2. System Directory Format 

SYSTEM BUFFER SECTOR 

1st Directory Entry 

-
Last Word of Last Directory Entry 

1st File of USER Area --
Figure A-3. User Directory Format 

A-6 

TRACK BOUNDARY 



TABLES 

Word 1 F N 

Word 2 A M 

Word 3 E PJ Entry Type 

Word 4 Track Sector 

Word 5 File Length (in sectors) 

Word 6 FWA Program 
,....., 

Word 7 LWA Program 

Word 8 FWA Base Page Linkage Area 

Word 9 LWA Base Page Linkage Area 

Word 11J Program Entry Point 

Word 11 FWA of LIB routine section 
...... 

The 1st five characters (in Words 1 through 3) contain the name of the File. 

> For System Generated 
Binary Programs Only 

The lower character in Word 3 contains the Type Code and •p• bit, as shown below. 

Figure A-4. Directory Entry Format 

A-7 



TYPE 

~ 

1 

2 

3 

4 

5 

6,7 

108 

118 

128 

138 

'P' Bit 

~ No Action 

TABLES 

FILE 

System Resident 

Disc Resident Executive Supervisor Module 

Reserved for System 

User Program,Main 

Disc Resident Device Driver 

User Program, Segment 

Library 

Relocatable Binary 

ASCII Source Statements 

Binary Data 

ASCII Data 

1 Purge this entry at the end of the JOB. This bit is set by 

the LOADER and cleared by a :STORE,P[,file-name] request 

The last directory entry in each sector is followed by a word containing '-1'. 

The last entry in the directory is followed by a word containing zero. 

A-8 



TABLES 

Directory size dependent on number of programs { 

One directory entry for each disc resident module { 

One directory entry for each disc resident module { 

One directory entry { 

Ono d;""'°'Y """"fo• oaoh mo;n ond "9m•nt I 
One directory entry { 

END OF HARDWARE PROTECTED 
FILE AREA 

BOOTSTRAP LOADER 

REAL TIME EXEC OR TIME SHARE SYSTEM LOADER 

DISC MONITOR SYSTEM LOADER 

,..--

REAL TIME OR TIME-SHARE SYSTEM AREA 
(If Present) 

SYSTEM AREA DIRECTORY 

SYSTEM COMMUNICATION, RESIDENT SYSTEM 
LINKAGE, MODULE LINKAGE, and USER LINKAGE 
AREA 

EQUIPMENT TABLE 

DEVICE REFERENCE TABLE 

INTERRUPT TABLE 

CENTRAL INTERRUPT CONTROLLER 

EXECUTIVE SUPERVISOR 

1/0 SUPERVISOR 

DISC DRIVER 

TELEPRINTER DRIVER 

EXEC MODULES - Main and Base Page 

1/0 DRIVER MODULES - Main and Base Page 

: JOB PROCESSOR and/FILE MANAGER 
-Main and Base Page -

USER SYSTEM PROGRAMS 
(Asmb., Ftn., Algol, etc.) 
- Main and Base Page -

RELOCATABLE LIBRARY 

UNUSED HARDWARE FILE 
PROTECTED SECTORS 

-------==] 
Figure A-5. Disc Allocation in System Area 

A-9 



TABLES 

BASIC BINARY DISC LOADER (BBDL) 

Paper Tape Loading 

The operator places the paper tape in the teleprinter reader (or photoreader, 

if available). He sets the switch register equal to ~777~~S' and presses 

LOAD ADDRESS. He then sets the loader switch to ENABLED and presses RUN. 

After BBDL reads the tape, the operator sets the loader switch to PROTECTED. 

BBDL Listing 

Figure A-6 is an octal listing of the Basic Binary Disc Loader that resides 

in the protected, highest 64 words of core. If the loader is destroyed in 

core, it can be replaced through the switch register using this listing. The 

operator simply replaces symbolic items with the value appropriate to the 

configuration. 

B 

0 1 2 3 4 5 

10m7700: 
Om7710: 
Om7720: 

107700 002401 063726 006700 017742 007306 
027703 102077 027700 077754 017742 017742 
067757 047755 002040 027740 017742 040001 

A Om7730: 000040 037754 027720 017742 054000 027702 

L
Om7740: 
Om7750: 
Om7760: 
Om7770: 

102055 027700 000000 006600 1037cc 1023cc 
002041 127742 005767 027744 000000 }Z 0100 
107700 063756 102606 002700 1026qq 001500 
102702 102602 103706 1027nn 067776 074077 

Legend: A + B Memory Address 

m l for SK, 3 for 16K, 5 for 24K, 7 for 32K memory 

nn first disc channel 

qq second disc channel 

cc photoreader or Teleprinter address 

z = 6 for SK, 4 for 16K, 2 for 24K, ~ for 32K memory 

Figure A-6 BBDL LISTING 

A-10 

6 7 

027713 002006 
074000 077757 
177757 037757 
102011 027700 
027745 1064cc 
0200nn 000000 
102602 063777 
024077 177700 



APPENDIX 8 
TYPICAL JOB DECKS 

ASSEMBLE A PROGRAM AND STORE IN FILE 

:JOB,ASMBS 
:PROG,ASMB,5,6,4,56,99 
ASMB,B,L 

NAM TEST,3 

l Source Program 

END ENTER 
: STORE, R,AFILE 
:JOB, NEXT JOB 

LOAD AND EXECUTE A RELOCATABLE FILE 

: JOB,LOADE 
: PROG,LOADR,2 
AFILE 
/E 
:STORE,P, TEST 
: RUN, TEST 
10 

23 
. . . . 

51 
: JOB, NEXT JOB 

Data 

B-1 



TYPICAL JOB DECKS 

STORE, EDIT, COMPILE, LOAD AND RUN A PROGRAM 

: JOB, EVERY 

:STORE,S,SOURC,5 

FTN,B,L 

.. 

PROGRAM ZOOM 

DIM I(lO) 

END$ 

:LIST,S,6,SOURC 

: EDIT ,SOURC ,5 

/I,2 

/E 

: J FILE, SOU RC 

:PROG,FTN,2,6,4,56,99 

: PROG, LOADR 

: RUN,ZOOM 

123. 62 

~0~~1 

: RUN,ZOOM 

321. 5 

0.56 

: JOB,NEXT JCB 

Source Program 

l Edit List 

l Data for first run 

l Data for second run 

B-2 



APPENDIX C 
SAMPLE DSGEN LISTINGS 

A MINIMUM CORE DOS 

SYS DISC CHNL? 

21 

# SECTORS/TRACK? 

90 

SYS DISC SIZE? 

64 

#PROTECTED TRACKS? 

24 

FIRST SYSTEM TRACK? 

0 
FIRST SYSTEM SECTOR? 

3 

AUX DISC CHNL? 

0 

TIME BASE GEN CHNL? 

13 

LWA MEM? 

17677 

PRGM INPT? 

PT 

L IBR INPT? 

PT 

PRAM INPT? 

TY 

*EOT 

*EOT 

*EOT 

C-1 

' 4 



r 
F 

SAMPLE DSGEN LISTINGS 

NO UNDEF EXTS 

ENTER PROG PARAMETERS 

/E 

# SYSTEM LINKS? 
326 

# USER LIN KS? 
4.00 

SYSTEM 

DISCM .02.00.0 
DVR3.0 .05075 
DVR0.0 ,0534.0 

*EQUIPMENT TABLE ENTRY 

12,DVR15 
14,DVR12 
15, DVR.01 
16,DVR.02 
1 7, DVR.0.0, R 
2.0 , DV R.0.0 , R 
21,DVR3,0,D,R 
/E 

*DEVICE REFERENCE TABLE 

1 = EQT #? 
5 

2 = EQT #? 
7 

3 = EQT #? 
0 
4 = EQT #? 

4 

5 = EQT #? 
1 

6 = EQT #? 

C-2 



SAMPLE DSGEN LISTING 

2 

7 = EQT #? 

3 

8 = EQT #? 

6 

9 = EQT #? 

/E 

* INTERRUPT TABLE 
12 '1 
14,2 
15 ,3 
16,4 
17,5 
2.0,6 
/E 

EXEC SUPERVISOR MODULES 

$EX.01 .06365 
$ADDR .06461 

$EX02 .06365 
$ADDR 06433 

$ EX.03 06365 

$ EX.04 .06365 

$EX.05 06365 

$SRCH 06524 

$EX.06 06365 
$SRCH .06422 
$ADDR 06554 

$EX07 06365 
$ADDR 06451 

$EX.08 06365 
$ADDR .06536 

C-3 



SAMPLE DSGEN LISTINGS 

$EX09 06365 
ASCII 06616 

$EX10 06365 

$EX11 06365 
$SRCH 06463 

$EX12 .06365 

$EX13 06365 
ASCII 06752 

$EX14 06365 
ASCII 06627 

$EX15 06365 
ASCII 0667.0 

$EX16 06365 

I/O DRIVER MODULES 

DVRl 2 .07027 

DVRl l .07027 

DVR02 07.027 

DVR01 .07.027 

LWA SYA 07447 

FWA USER? 
07447 
USER SYSTEM PROGRAMS 

LOADR 07447 
JOB PR .07447 

*SYSTEM STORED ON DISC 

C-4 



A MAXIMUM CORE DOS 

SAMPLE DSGEN LISTINGS 

SYS DISC CHNL? 
21 

# SECTORS/TRACK? 

9~ 

SYS DISC SIZE? 
64 

#PROTECTED TRACKS? 
16 

FIRST SYSTEM TRACK? 

~ 

FIRST SYSTEM SECTOR? 
3 

AUX DISC CHNL? 

~ 

TIME BASE GEN CHNL? 
13 

LWA MEM? 
37677 

PRGM INPT? 
PT 

LIBR INPT? 
PT 

PRAM INPT? 
TY 

*EOT 

*EOT 

*EOT 

*EOT 

*EOT 

*EOT 

C-5 



SAMPLE DSGEN LISTINGS 

*EOT 

*EOT 

*EOT 

*EOT 

*EOT 

*EOT 

NO UNDEF EXTS 

ENTER PROG PARAMETERS 

$EX01,0 

$EX,02,.0 

$ EX03, 0 

$EX.04,0 

$EX,05,.0 

$ EX06 ,.0 
$ EX07 ,.0 

$EX08,.0 

$ EX09 ,0 

$ EXl 0 ,.0 

$ EXll ,.0 

$EX12,.0 

$ EXl 3 ,.0 

$ EXl 4 ,,0 

$EX 15 ,,0 

$EX16 ,.0 

$ADDR,.0 

$SRCH,.0 

ASCII ,,0 

DVR15,.0 

DVR12,0 

DVR01 ,.0 

DVR.02, .0 

/E 

# SYSTEM LINKS? 

326 

C-6 



SAMPLE DSGEN LISTINGS 

# USER LINKS? 

400 

SYSTEM 

DISCM 02000 

$EX01 05077 

$EX02 05173 

$EX03 05241 

$EX04 05273 

$EX05 05331 

$EX06 05470 

$EX07 05525 

$EX08 05611 

$EX09 05762 

$EX10 06213 

$EX1 l 06254 

$EX12 06352 

$EX13 06561 

$EX14 07146 

$EX15 07410 

$EX16 07713 

DVR30 10027 

DVR12 10272 

DVRl 5 10667 

ASCII 11307 

$SRCH 11364 

$ADDR 11516 

DVR0f) 11533 

DVR02 12306 

DVR01 12507 

*EQUIPMENT TABLE ENTRY 

l2,DVR15,R 

14,DVR12,R 

15, DVR,01 , R 

l6,DVR02,R 

17,DVR00,R 

C-7 



SAMPLE DSGEN LISTING 

20,DVR00,R 
21 ,DVR30,D,R 
/E 

* DEVICE REFERENCE TABLE 

1 = EQT #? 

5 

2 = EQT #? 

7 

3 = EQT #? 

0 
4 = EQT #? 

4 

5 = EQT #? 

1 

6 = EQT #? 

2 

7 = EQT #? 

3 

8 = EQT #? 

6 

9 = EQT #? 

/E 

*INTERRUPT TABLE 

12' 1 
14,2 
15,3 
16 ,4 
17,5 
20,6 
/E 

EXEC SUPERVISOR MODULES 

(NONE) 

I/0 DRIVER MODULES 

(NONE) 

C-8 



SAMPLE DSGEN LISTING 

LWA SYS 13235 

FWA USER? 

1400.0 

USER SYSTEM PROGRAMS 

LOADR 14.000 
JOB PR 14000 
ASMB 14000 
ASMBD 20500 
ASMBl 20500 
ASMB2 20500 
ASMB3 20500 
ASMB4 20500 
ASMB5 2.0500 
FTN 140.00 
FTN.01 14707 

SREAD 23005 
FTN02 14707 
FTN03 14707 
FTN04 14707 

%WRIT 21253 
FAD SB 21540 
.FLUN 21676 
.PACK 21711 

*SYSTEM STORED ON DISC 

C-9 



APPENDIX D 
RELATION TO OTHER SOFTWARE 

The Hewlett-Packard 2116B is a general-purpose computer; as such, it can 

handle standard HP software when the Disc Operating System is inactive. Every 

computer is shipped with the standard software and documentation appropriate 

to the system configuration. 

In addition, the disc/computer combination may include two disc-based soft­

ware systems simultaneously (although only one can execute in core at a 

time): the Disc Operating System, and another software system (either the 

Time Shared Basic System or the Real-Time Executive System). When loading 

into core from the disc with Basic Binary Disc Loader (BBDL), the operator 

specifies which system to load by setting switch register bit 0 equal to 1 

(for DOS) or~ (for another disc-based system) after the BBDL halts. (See 

Section VI.) 

When the two systems are generated, they must be stored on different areas 

of the disc. This is accomplished by protecting enough tracks to cover both 

systems; first generate the other system onto the initial tracks and then 

generate the DOS onto the remaining protected tracks. In this way, DOS does 

not attempt to write on the other system. 

Another way to use the computer and disc for two or more software systems is 

to dump DOS on magnetic tape using SDUMP (see Section VI) before loading 

another system from magnetic tape. 

D-1 



RELATION TO OTHER SOFTWARE 

In an attempt to make DOS compatible with the Real-Time Executive, DOS simu­

lates the Real-Time EXEC requests as follows (See REAl-TIME SOFTWARE, 02116-

9139): 

READ/WRITE 

I/O CONTROL 

I/O STATUS 

DISC ALLOCATION 

DISC RELEASE 

PROGRAM COMPLETION 

PROGRAM SUSPENSION 

PROGRAM SEGMENT LOAD 

PROGRAM SCHEDULE 

CURRENT TIME 

EXECU·rroN TIME (TIMER) 

Identical for work area of disc and I/O 

devices. 

Identical 

Status word 2 returns transmission log 

instead of Real-Time Equipment Table word 

5. 

Simulates request in work area. 

No action; tracks cannot be released. 

Identical 

Identical 

Identical 

Treated as segment load. 

Word 5 set to 0, other words identical. 

Not accepted. See N option of RUN request. 

D-2 



APPENDIX E 
LINE PRINTER FORMATTING 

When a user program makes a READ/WRITE EXEC call to the line printer (HP2778A 

or HP2778A-Ol), the line printer driver DVR12 interprets the first charac­

ter in the line as a carriage control character and prints it as a space. 

The control characters have the following meanings: 

Character 

blank 

1 

* 
others 

Meaning 

Single space (print on every line), 

Double space (print on every other line), 

Eject page, 

Suppress space (overprint next line), 

Single space. 

Each printed line is followed by an automatic single space unless suppressed 

by the asterisk (*). Double spacing requires an additional single space prior 

tD printinq the next line. If the last line of a page is printed and the fol­

lowing line contains a "l", then a completely blank page occurs. 

When a user program makes an I/O CONTROL EXEC call and the function code 

equals 11
8 

(see Section IV, I/O CONTROL EXEC CALL), then the optional param­

eter word defines a format action tD be taken by the line printer. The par­

ameter word has these meanings: 

Parameter Word (Dec) 

< ~ 

~ tD 55 

56 tD 63 

64 

65 

Meaning 

Page eject, 

Space~ to 55 lines ignoring page boundaries, 

Use carriage control channel equal to the 

word - 55, 

Set automatic page eject mode, 

Clear automatic page eject mode. 

*DVR12 checks for certain program names (FTN, ASMB, LOADR, JOBPR); for these 

programs,it prints the first character of each line and generates a single 

space. 

E-1 



LINE PRINTER FORMATTING 

If the parameter word equals zero, the automatic single space is to be 

suppressed on the next print operation only. 

CARRIAGE CONTROL CHANNELS 

If the parameter word is between 55 and 64, then the printer spaces using 

the standard carriage control channels, which have the following meanings: 

Channel 1 Single space with automatic page eject, 

Channel 2 Skip to next even line with automatic page eject, 

Channel 3 Skip to next triple line with automatic page eject, 

Channel 4 Skip to next 1/2 page boundary, 

Channel 5 Skip to next 1/4 page boundary, 

Channel 6 Skip to next 1/6 page boundary, 

Channel 7 Skip to bottom of the page, 

Channel 8 Skip to top of next page. 

AUTOMATIC PAGE EJECT 

During non-automatic page eject mode, if the parameter word is equal to 56, 

then it is interpreted as equal to 1. Automatic page eject mode applies only 

to single space operations. 

E-2 



APPENDIX F 
SUMMARY OF DIRECTIVES 

DIRECTIVE 

:ABORT 

:ADUMP[,FWA[,LWA]][,B][,LJ 

:BATCH 

:COMMENT string 

:DATE,day[,hour,min] 

: DN,n 

DESCRIPTION 

Terminate the current job. 

Dump a program if it aborts. 

switch from keyboard to batch rrode. 

Print a message. 

Set the date and time. 

Declare an I/O device down. 

:DUMP,log.unit, file[,s
1

[,s
2

]] Dump a user file. 

: ED IT, file, log. uni t[,new] 

:EJOB 

: EQ[ ,n] 

:G0[,P
1

,P
2 

•• • P
5

] 

: JFILE,file 

Edit a source statement file. 

Terminate the current batch and/or job normally. 

List the equipment table. 

Restart a suspended program. 

Specify a source file for the assembler or 

compiler. 

:JOB[,name] Initiate a user job. 

:LIST ,S ,log. uni t,file[ ,m[ ,n]] List a source statement file. 

:LIST,U,log.unit[,file1 , ... ] List the user directory. 

:LIST,X,log.unit[,file
1

, ••• ] List the system directory. 

:LU[,n1 [,n)J Assign or list logical units. 

:PAUSE Interrupt the current job. 

:PDUMP[,FWA[,LWA]][,B][,L] Dump a program after normal completion. 

:PROG,name[,P
1

,P
2 

••• P
5

] Turn on a system or user program. 

:PURGE,file1 ,file2 ,... Delete user files. 

:RUN,name[,time][,N] To run a user program. 

F-1 



SUMMARY OF DIRECTIVES 

DIRECTIVE 

:SA,track,sector[,number] 

:SO,track,sector[,number] 

:STORE,A,file, sectors 

:STORE,B,file, sectors 

:STORE,P[,name
1

, name
2

, ••• ] 

:STORE,R,file [,log.unit] 

:STORE,S,file,log.unit 

:TRACKS[,T
1

,T
2 
... J 

:TYPE 

:UP,n 

DESCRIPTION 

Dump disc in ASCII. 

Dump disc in octal. 

Reserve space for an ASCII data file. 

Reserve space for a binary data file. 

Store loader generated programs. 

Create a relocatable file. 

Create a source statement file. 

Print or set disc track status. 

Return to batch from keyboard mode. 

Declare an I/O device up. 

F-2 



APPENDIX G 
SUMMARY OF EXEC CALLS 

Consult Section III for the complete details on each EXEC call. The general 

format of an EXEC call in assembly language is: 

p 
n 

EXT 

JSB 

DEF 

DEF 

DEF 

return 

EXEC 

EXEC 

*+n+l 

~1 I 
n 

point 

l 

(Used to link program to DOS) 

(Transfer control to DOS) 

(Defines point of return from DOS, n is 

number of parameters; must be a direct 

address) 

(Define addresses of parameters which may 

occur anywhere in program; may be multi-level 

indirect) 

(Continue execution of program) 

(Actual parameter values) 

For each EXEC call, this appendix includes only the parameters (P
1 

through 

P in the format above) of the assembly language calling sequence. 
n 

READ/WRITE: Transfers input or output. 

RCODE DEC 1 or 2 1 = read or 2 = write 

CONWD OCT c (See Section III for control information.) 

BUFFR BSS n (n-word buffer) 

BUFFL DEC n or -2n (buffer length, words ( +) I characters (-).) 

DTRAK DEC p (disc track; optional) 

DSECT DEC q (disc sector; optional) 

G-1 



I/0 CONTROL: 

RCODE DEC 3 

CONWD OCT c 

PARAM DEC n 

PROGRAM COMPLETION: 

RCODE DEC 6 

PROGRAM SUSPEND: 

RCODE DEC 7 

PROGRAM SEGMENT LOAD: 

RCODE DEC 8 

SNAME ASC 3,xxxxx 

TIME REQUEST: 

RCODE DEC 11 

ARRAY BSS 5 

I/O STATUS: 

RCODE DEC 13 

CONWD DEC n 

STATS NOP 

'ILOG NOP 

SUMMARY OF EXEC CALLS 

Carry out control operations. 

(See Section III for control information.) 

(Optional parameter required by some CONWDs.) 

Signal end of program. 

Suspend calling program. 

Load segment of calling program. 

(xxxxx is segment name) 

Request the 24-hour time and day. 

(Time values: tens of milliseconds, seconds, 
minutes, hours, returned in that order.) 

Request device status. 

(Logical unit number) 

(Status returned here) 

(Transmission log returned here) 

G-2 



File READ/WRITE: 

RCODE DEC 14 or 15 

CONWD OCT c 

BUFFR BSS n 

BUFFL DEC n or -2n 

FNAME ASC 3,xxxxx 

RSECT DEC m 

WORK AREA STATUS: 

RCODE DEC 16 

NTRAK DEC n 

TRACK NOP 

STRAK NOP 

WORK AREA LIMITS: 

RCODE DEC 17 

SUMMARY 0 F EX EC CALLS 

Read or Write a user data file. 

(14 = read or 15 = write.) 

(See Section III for control information. ) 

(Buffer of n words. ) 

(Length of buffer in words (+) or 
characters (-) . ) 
(User file name = xxxxx.) 

(Relative sector within file.) 

Ascertain if n contiguous work tracks are 
available. 

(Number of consecutive tracks desired.) 

(Desired first track; from LIMITS call.) 

(Actual starting track, or .0 if n not 
available. ) 

Ascertain first and last tracks of work area. 

FTRAK NOP (Returns first work track number here.) 

LTRAK NOP 

SIZE NOP 

SEARCH FILE NAMES: 

RCODE DEC 18 

FNAME ASC 3,xxxxx 

NSECT NOP 

(Returns last work track number here.) 

(Returns number of sectors per track here.) 

Ascertain if a file name exists in the 
di rectory. 

(xxxxx is the file name. ) 

(Number of sectors in file returned here, or 
.0 if not found. ) 

G-3 



APPENDIX H 
MESSAGES 

During the operation of DOS, certain me~sages may be printed on the system 

teleprinter. These messages may be error reports or simply informative; they 

are generated by various parts of DOS. Appendix H lists these messages alpha­

betically including where they originated, what they mean, and what response, 

if any, the operator must make. Messages that begin with a variable name or 

a non-alphabetic character are listed by the first non-variable, alphabetic 

character. Page references (if any) are given in parentheses. 

Message Source 

BAD CONTROL STATE. 
JOBPR 

BAD DIRECTORY OR SYSTEM 
JOB PR 

BEGIN 'DEBUG' OPERATION 
DEBUG 

CW nnnnn 

DISCM 

DEV ICE #nn DOWN 
JOB PR 

H-1 

Description and References 

Directive just entered is not 

acceptable in DOS. 

Parity error has occurred during 

read from disc of a system pro­

gram, user or system directory, 

or the system buffer. 

Operator may now enter any legal 

DEBUG operations. (4-25) 

In a READ/WRITE EXEC call at 

nnnnn, buffer address plus the 

number of words (or characters) 

to be transferred would wrap 

around the top of core. The job 

is aborted· 

Logical unit nn is unavailable 

(down). An :UP,nn makes nn 

available (up) again. 



SYSTEM MESSAGES 

Message Source 

DISC TRACK ttt ERROR 

DISCM 

DICTIONARY OVERFLOW 

JOB PR 

DONE? JOBPR 

DUPLICATE FILENAME 

JOBPR 

$END ASMB 

ASMB 

$END ASMB CS 

ASMB 

$END ASMB NPRG 

ASMB 

$END ASMB PASS 

ASMB 

$END ASMB XEND 

ASMB 

Description and Reference 

Disc error when attempting to 

read track ttt. 

No room is left for entries in 

the user file dictionary. 

Thirty feed frames (paper tape) or 

an end-of-file (magnetic tape) 

have occurred during input. Op­

erator responds with YES for end 

of input, NO for more input. 

(2-15) 

Doubly defined file name found in 

a :S'IDRE directive, (other than 

S'IDRE,P), or an :EDIT directive 

with a new file. 

Assembly has completed. (4-11) 

Assembly has terminated because 

of an error in the Assembler Con­

trol Statement. (4-11) 

Assembly has terminated because 

no JFILE was found when required. 

(4-12) 

Another pass of the source pro­

gram through the input device is 

required. (4-11) 

Assembly stops because an EOF 

occurred in the source program 

before an END Statement. (4-12) 



SYSTEM MESSAGES 

Message Source 

END FILE 
JOB PR 

$END FTN 
FTN 

Description and References 

During an :EDIT, the master file 

ended before completion of editing 

or a colon occurred in column 1 of a 

source statement. 

Compilation has completed. (4-3) 

END JOB xxxx RUN = xxxx MIN. xx.x SEC EXEC = xxxx MIN. xx.x SEC 
JOB PR 

ENTER FILE NAME(S) OR /E 
LOA DR 

ENTRY ERROR 
DEBUG 

EQT xx CH xx DVRxx D R Ux Sx 

JOB PR 

EXTRA PARAMETERS 
JOB PR 

FI nnnnn 

DISCM 

End of current job. Total job time 

and execution time are reported. 

(2-4) 

Enter list of relocatable program 

files terminated by /E. (4-22) 

DEBUG operation entered was illegal. 

(4-25) 

Equipment table entry printed by 

:EQ. (2-31) 

More than 15 parameters in a 

directive. 

H-3 

In a FILE READ/WRITE EXEC call, the 

file nnnnn cannot be found. Calling 

program is aborted. 



Message 

IB nnnnn 

IE nnnnn 

IGNORED 

*IGNORED 

file 
ILLEGAL 

ILLEGAL DIGIT 

ILLEGAL LUN 

SYSTEM MESSAGES 

Source 

DISCM 

DISCM 

DISCM 

JOB PR 

JOB PR 

JOB PR 

JOB PR 

H-4 

'• 

Description and References 

Illegal buffer address in EXEC call 

at location nnnnn. Program is 

aborted. 

EXEC call at nnnnn read in a :card 

from batch input device. Program is 

aborted. 

Input from system teleprinter or 

batch device during program execution 

cannot be processed. 

All directives following EJOB and 

before next JOB except BATCH, TYPE 

and TRACKS are ignored. 

1) On a source file LIST directive, 

the requested file was not a source 

file. (2-24) 

2) A file name begins with a non­

alphabetic character. 

In a decimal number, digit is other 

than ~-9. In an octal number, digit 

is other than ~-7. 

Logical unit requested is = ~' great­

er than number of logical units in 

the table, or is not the correct 

type (i.e., input for output, etc). 



Message Source 

ILLEGAL PROGRAM TYPE 
JOB PR 

INP ERR 
DISCM 

INPUT:DATE,XXXXXXXXXX,H,M 
DISCM 

INPUT FR=FRESH; CO=CONTINUATION 
DISCM 

I/O ERR NR EQT# mm 

DISCM 

I/0 ERR ET EQT# mm 

DISCM 

I/O ERR PE EQT# mm 

DISCM 

SYSTEM MESSAGES 

Description and References 

Name requested in a RUN or PROG is 

not legal. 

Equipment table entry number of 

logical unit number in EQ, LU, UP or 

DN is illegal. 

When system is initiated from the 

disc, DOS requires a DATE directive. 

(6-15) 

When system is initiated from the 

disc, DOS asks whether start-up is 

fresh (no user files) or continua­

tion (user files on disc). (6-15) 

Device #mm is not ready. DOS re­

turns to program return address with 

status in A, B set to ¢. 

An end-of-tape occurred on device 

#mm. DOS returns to program return 

address with status in A, B set to ¢. 

Parity error on device #mm. DOS 

returns to program return address 

with A set to status, B set to ¢. 

H-5 



Message 

IT nnnnn 

JBIN OVF 

JBIN TRK BAD 

JOB ABORTED! 

SYSTEM MESSAGES 

Source 

DIS CM 

FTN,ASMB 

JOBPR 

JOBPR 

Description and References 

Illegal disc track or sector address 

in EXEC call from location nnnnn. 

Program is aborted. 

Overflow of job binary area during 

assembly or compilation. (4-4,4-12) 

Parity error when reading a program 

from the job binary area. 

Current job is aborted because of: 

1) parity error on disc (in user 

file, work file, system or user di­

rectory system file on system buffer), 

2) :ABORT directive, 3) end-of-file 

during EDIT or source input, 4) dic­

·tionary overflow during a S'IORE, 

5) parity error on job binary track, 

6) no tracks left for writing on the 

disc. 

JOB xxxxx dddddddddd TIME= xxxxMIN.xx.xSECS EXEC= xxxx MIN.xx.x SEC. 
JOBPR 

Lill 

l LOADR 

Ll6 

H-6 

Message printed at the beginning of 

each job. (2-3) 

3tJ 
Loader error messages. (4-~ 



Message 

LIMIT ERROR 

xxxx LINES 

****LIST END**** 

LN nnnnn 

LOADR COMPLETED 

LOADR SUSP 

LOADR TERMINATED 

LOAD TAPE 

Source 

JOBPR 

JOB PR 

JOBPR 

DISCM 

WADR 

LOADR 

LOADR 

LOADR 

SYSTEM MESSAGES 

H-7 

Description and References 

1) Source statement numbers out of 

order in an EDIT; 2) dump limits in­

compatible in PDUMP, ADUMP; 3) sec­

tors illegal in a DUMP; 4) or begin­

ning source statement in LIST is 

greater than final statement number. 

Total number of statements stored by 

a S'IDRE, S directive 

Terminates list of source statements 

generated by a LIST directive. (2~25) 

Logical unit requested by an EXEC 

call at nnnnn is unassigned. Pro­

gram is aborted. 

Loading has completed. (4-24) 

Loader has suspended and is waiting 

for a 00 directive. (4-23) 

Loader has terminated because of an 

error. (4-28) 

In conjunction with LOADR SUSP, this 

message requests that next relocat­

able tape be loaded before GO. (4-23) 



Message 

LU nnnnn 

LUxx EQTxx 

LUN UNASSIGNED 

xxxxx MISSING 

MISSING PARAMETER 

MP nnnnn 

NAME* IGNORED 

NO BIN END 

NO PROGRAM LOADED 

Source 

DISCM 

JOB PR 

JOB PR 

DISCM 

JOBPR 

DISCM 

JOBPR 

JOBPR 

LOADR 

SYSTEM MESSAGES 

H-8 

Description and References 

Illegal logical unit in EXEC call at 

nnnnn. Program is aborted. 

Logical unit table entry; EQT # xx 

is assigned to LU#xx. (2-32) 

Logical unit requested in a direc­

tive is unassigned. 

Segment xxxxx, requested by an EXEC 

call, is not in system or user di­

rectory. Job is aborted. 

A parameter is missing in a direc­

tive. 

Illegal memory protect violation at 

location nnnnn. Program is aborted. 

Illegal JOB name; non-alphabetic 

first character. 

No END record detected when storing 

a relocatable binary program. 

No programs were loaded into the 

LOADR. Loading terminates. (4-23) 



Message Source 

NO SOURCE 

JOBPR 

NO TRACKS AVAILABLE 

JOB PR 

NUMBER OVER FLO 

JOB PR 

OR nnnnn 

DISCM 

PARAMETER ILLEGAL 

JOBPR 

PARITY ERROR/TRK= ttt 

JOBPR 

SYSTEM MESSAGES 

H-9 

Description and References 

No source statements following a /R 

or /I in an EDIT directive. Job is 

aborted. 

No tracks available on disc for 

writing 

An integer is too large. 

I/O operation requested by EXEC call 

at nnnnn is rejected. Program is 

aborted. 

1) no EQT number in EQ directive; 

2) slash missing in EDIT file; 

3) non-source file requested in EDIT 

or JFILE; 

4) illegal type character in S'IORE 

or LIST; 

5) logical unit missing or = ¢; 

6) sector count = ¢ in S'IORE; 

7) character other than B or L in 
--

PD UMP or ADUMP; 

8) logical unit = system teleprinter 

or DISC/DRUM in UP or DN; or 

9) number out of range of table in 

an EQ, LU, UP or DN. 

Parity error during disc read. 



SYSTEM MESSAGES 

Message 

PAUSE xxxx 

Source 

program 

RE-ENTER STATEMENT ON TTY 
JOBPR 

RQ nnnnn 

DISCM 

STOP xxxx 

program 

xxxx SUSP 
DISCM 

lM nnnnn 

DISCM 

# TRACKS UNAVAILABLE 
DISCM 

TRAK # TOO BIG 
JOBPR 

file name UNDEFINED 
JOB PR 

Description and References 

Program has suspended itself. Re­

start with 00. (4-8) 

Follows I!OSt error messsges that do 

cause abort. 

Illegal request code in EX:&:: call at 

nnnnn. Program is aborted. 

Program has terminated. (4-28) 

Program xxxx suspended by EXEC call. 

Enter GO to proceed. 

Maximum execution time exceeded. 

The program is currently at nnnnn 

and is aborted. 

Desired number of contiguous tracks 

(in RT disc-allocation EXEC call) is 

not available. Job aborted unless 

N present in RUN directive. (4-4) 

Track requested is higher than last 

available disc track. (track may be 

in JBIN area. ) 

Undefined file-name in PURGE, LIST, 

RUN or STORE,P. (2-21,2-23) 

H-10 



Message 

UNDEFINED EXTS 

WAIT 

WRONG INPUT 

nn xx 

@ 

* 

1 ST WORK TRAC K""ttt 

BAD= 
bbb 

Source 

WADR 

JOB PR 

JOB PR 

ERR¢ 

Jr..JJ3PR 

DISCM 

JOB PR 

SYSTEM MESSAGES 

} 

Description and References 

Undefined external references exist 

in programs loaded. (4-24) 

DOS is purging the user files or 

moving them, sector by sector, be­

cause of parity error on read. 

Printed every 6 seconds. 

Relocatable binary input furnished 

for a source file request or vice­

versa. 

H-11 

Library routine error code. (4-9) 

DOS is ready for further directions. 

(2-2) 

In TRACK directive, ttt = first 

available work track; bbb = faulty 

tracks. 



----

APPENDIX I 
MAGNETIC TAPE USAGE 

Input/output transfers to and from a HP3¢3¢ magnetic tape unit can be pro­

granuned using the standard READ/WRITE EXEC call. (See Section III.) When 

specifying the data buffer length, the progranuner must know that a buffer 

length of zero (¢) causes the driver to take no action on a write or an ASCII 

read. Only the amount of data that fits within the buffer is transmitted 

to the user on read. A zero (¢) buffer length on binary read causes a for­

ward skip one record. 

In the I/O STATUS EXEC call, bits 7-¢ of the second status word contain the 

status of the magnetic tape unit. The bits have the following meaning 

when they are set (i.e., equal to one): 

BIT MEANING 

7 End-of-file record encountered while reading, forward 

spacing, or backward spacing. 

6 Start-of-tape marker sensed. 

5 End-of-tape marker sensed. 

4 Timing error on last read/write operation. 

3 I/O request rejected by magnetic tape unit. 

2 No write enable ring, or the tape unit is rewinding. 

1 Parity error on last read/write operation. 

¢ Tape unit busy, or in local mode. 

The status bits are stored in the EQT entry; they are updated everytime the 

driver is called. A dynamic status request is processed as soon as the mag­

netic tape EQT entry is available (availability bits equal to ¢¢), and re­

turns the actual status of the device (obtained from the driver) to the call­

ing program in the A-register and to the EQT entry. 

Buffers of less than six words are padded to six words. The maximum buffer 

length is 16,384. 

I-1 



MAGNETIC TAPE USAGE 

ERROR RECOVERY PROCEDURES 

On a read parity error, the driver rereads the record three times before 

setting the parity error status bit and returning to the calling program. 

'Ihe final read attempt is transmitted to the program buffer. 

On a write parity error, the driver continues to retry the write until one 

of these two conditions occurs: 

a) The record is successfully written, or 

b) The end-of-tape is encountered. 

On a write without the write enable ring, the magnetic tape unit is made 

unavailable (magnetic tape not ready). DOS prints a message: 

I/0 ERR NR EQT# n 

and waits for the operator to correct the unit and enter :GO. 

At the end-of-tape there are only two legal forward motion requests: 

a) Write end-of-file, or 

b) Read record. 

All other forward motion requests (write, forward space) cause the unit to be 

made unavailable. In addition, only one of the legal motion requests may be 

made after an end-of-tape. Backward motion requests clear the end-of-tape 

status. 

I-2 



SOFTWARE MANUAL CHANGES 

DISC OPERATING SYSTEM 

(HP 02116-91748) 

Dated October 1968 

Some of the items below pertain not only to the DISC OPERATING 
SYSTEM manual but also to the Manual Change Sheet itself. The highest­
numbered entry is the most current. Therefore, these changes should 
be recorded first. This ensures that earlier entries which have been 
modified are updated on this sheet. Earlier entries which no longer 
apply are deleted. 

11-69 

Change 
Number Description 

2 

3 

4 

5 

Page 2-4, under EJOB, replace the first sentence un­
der "Comments 11 with: 11 EJOB condenses the 
user file by eliminating spaces left by 
non-permanent programs." 

Page 2-15, Type -S Files, in the second paragraph, 
delete the words "or blank card. 11 

Page 6-4, before FIRST SYSTEM SECTOR? add: 11 (The 
system cannot start on track 0 sector 0 
since sectors 0-2 are used for the disc 
loaders.)" 

Page 6-10, at the bottom of the page, add: "(For 3030 
magnetic tape, the entry in the interrupt 
table should be the location of the magnetic 
tape 2 board.)" 

Page H-9, below OR nnnnn, insert the following system 
message: 

OVERFLOW JBIN There is not enough room in the 
user area for starting relocat­
able binary from JBIN area. 

HEWLETT"' PACKARD Software Development Cupertino, California 95014 



Change 
Number 

6 

8 

9 

10 

ll 

12 

13 

14 

15 

Page 2 
HP 02116-91748 

1-70 

Description 

Page xii, in the third line delete 11 12591A 11 and replace it 
with 11 125811\. 11 

Page 2-4, in the first line, delete the word 11 purges 11 and 
replace with the word 11 condenses. 11 

Page 2-15, in the first line of the third paragraph, delete 
the words 11 or blank card. 11 

Page 4-7, change the third DEBUG operation from 11 D,A,N[,N2] 11 

to 11 D, B, N [ , N 2] . 11 

Page 6-16, in the first line of the last paragraph, delete 
the rest of the sentence after the word 11 requires 11 

and insert 11 a parameter specifying the first track 
to be dumped. The end parameter is optional. 11 

Page 6-17, in line nine before the word 11 in 11 insert 11 in 
commµnd or. 11 

Page 6-18, After the error message 11 TRACKnnn(8) SECTORmmm(8) 11 

delete the rest of the sentence after the word 
11 DISC 11 and insert 11 and Tape Error Diagnostics are 
described as follows. 11 

3-70 

Page 1-4, insert after the first paragraph: "A memory protect 
boundary is set between the executive area and a 
user program area. This boundary interrupts whenever 
a user program attempts to execute an I/O instruction, 
(including a HALT) or to modify the executive area. 
Programs to be run in the user area must use EXEC 
calls for input/output, termination, and suspension. 11 

Page 3-8, under the word 11 FORTRAN", in the first and seventh 
lines delete "DIM" and insert "DIMENSION." 

Page 3-13, under the word 11 FORTRAN", insert after "IRCDE 11
, 

II IFTRK 11
• 

HEWLETT-PACKARD, CUPERTINO DIVISION 



Change 
Number 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Page 3 
HP 02116-91748 

3-70 

Description 

Page 3-19, under the word 11 FORTRAN 11 in the second line 
delete 11 DIM" and insert 11 DIMENSION. 11 

Page 3-21, under the word 11 FORTRAN 11 in the second line 
delete 11 DIM and insert 11 DIMENSION. 11 

Page 3-22, under the word 11 FORTRAN 11 in the second line 
delete 11 DIM 11 and insert 11 DIMENSION. 11 

Page H-9, insert after the fourth message the following: 
"OVERFLO JBIN. JOBPR i nsuffi ci ent space in 
job binary area for reloactable code." 

4-70 

Page 1, of the Manual Change Sheet on the title replace 
11 1968 II With 11 1969 • II 

Page 2, of this Manual Change Sheet, delete change number 
7 and change number 8. 

Page 2, of this Manual Change Sheet, change number 15, 
replace 11 IRCDE 11 with 11 IFTRK 11

• Replace 11 IFTRK 11 

with 11 IRCDE 11
• 

Page 3, of this Manual Change Sheet, delete change 
number 19. 

5-70 

Page 2-13, under the second entry should be: 
11

: STORE, P [, name 1 , name 2, ... ] 11 

Page 2-36, under Format, in the second line insert the 
following parethetical expression after 
11 characters 11

• 

11 (commas not permitted); 11 

In the third line, replace 11 user 11 with "operator. 11 

Under EXAMPLES, in the first 1 i ne rep 1 ace 11 10," 
with 11 10/". 

HEWLETT-PACKARD, CUPERTINO DIVISION 



c~ 
Number 

26 

27 

28 

Page 4 
HP 02116-91748 

5-70 

Description 

Page 5-12, in the center of the flowchart, change 11 EQT(5) 11 

to 11 EQT{4) 11
• 

6-70 

Page 2-17, replace the first paragraph under 11 Comments 11 with: 
11 If logical unit 2 is specified as the input device 
when the compiler or assembler is turned on (using 
:PROG) and a :JFILE has been defined, then the 
compiler or assembler reads the source statement 
using a :STORE,S directive. 11 

Page 2-29, under 11 Comments 11 delete the first paragraph and in­
sert the following: 
"Any parameter following L is ignored. If FWA is 
greater than LWA, a message is printed. When the 
directive :PDUMP precedes a :RUN or :PROG request, 
the program contained in the request will be dumped, 
if it runs to normal completion. To dump a program 
that is aborted while running, the directive :ADUMP 
must precede the :RUN request. To make sure that 
a program will be dumped whether it runs normally 
or is aborted, both dump directives must be declared 
preceding the :RUN request. Only one of the requests 
will be honored, depending upon whether the, program 
runs normally or is aborted. Since DOS sets a flag 
when it encounters either dump directive, then clears 
the flag after the dump routine is executed, the flag 
representing the dump routine that was not executed 
will remain set. This fl~g can cause an unwanted 
dump of some program run later under the same :JOB 
directive. Either dump flag can be cleared by re­
questing the dump with both FWA and LWA equal to O; 
all flags can be cleared by calling a new :JOB 
di rec ti ve. 11 

HEWLETT-PACKARD, CUPERTINO DIVISION 



Change 
Number 

29 

30 

Page 5 
HP 02116-91748 

7-70 

Description 
Page 2-17, replace the first paragraph under 11 Comments 11 

with: 
11 If logical unit 2 is specified as the input 
device when the compiler or assembler is turned 
on (using :PROG) and a :JFILE has been defined, 
then the compiler or assembler reads the source 
statements using a :STORE,S directive. 11 

Page 2-29, under 11 Comments 11 delete the first paragraph and 
insert the following: 
11 Any parameter fo 11 owing L is ignored. If FWA 
is greater than LWA, a message is printed. When 
the directive :PDUMP precedes a :RUN or :PROG 
request, the program contained in the request 
will be dumped, if it runs to normal completion. 
To dump a program that is aborted while running, 
the directive :ADUMP must precede the :RUN request. 
To make sure that a program will be dumped whether 
it runs normally or is aborted, both dump directives 
must be declared preceding the :RUN request. Only 
one of the requests will be honored, depending upon 
whether the, program runs normally or is aborted. 
Since DOS sets a flag when it encounters either 
dump directive, then clears the flag after the dump 
routine is executed, the flag representing the dump 
routine that was not executed will remain set. This 
flag can cause an unwanted dump of some program run 
later under the same :JOB directive. Either dump 
flag can be cleared by requesting the dump with both 
FWA and LWA equal to O; all flags can be cleared by 
calling a new :JOB directive. 11 

HEWLETT-PACKARD, CUPERTINO DIVISION 


	00-00
	00-01
	00-02
	00-03
	00-04
	00-05
	00-06
	00-07
	00-08
	00-09
	00-10
	00-11
	00-12
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	0a-01
	0a-02
	0a-03
	0a-04
	0a-05
	0a-06
	0a-07
	0a-08
	0a-09
	0a-10
	0b-01
	0b-02
	0c-01
	0c-02
	0c-03
	0c-04
	0c-05
	0c-06
	0c-07
	0c-08
	0c-09
	0d-01
	0d-02
	0e-01
	0e-02
	0f-01
	0f-02
	0g-01
	0g-02
	0g-03
	0h-01
	0h-02
	0h-03
	0h-04
	0h-05
	0h-06
	0h-07
	0h-08
	0h-09
	0h-10
	0h-11
	0i-01
	0i-02
	chg-01
	chg-02
	chg-03
	chg-04
	chg-05

