
HEWLETT"' PACKARD

2100 Computer Systems

TERMINAL CONTROL SYSTEM
USER'S GUIDE

TERMINAL CONTROL SYSTEM

HP Part No. 5951-7307
Microfiche Part No. 5951-7308

USER'S GUIDE

HEWLETT. PACKARD

Computer Systems

Printed: AUGUST 1973

©Copyright, 1973, by HEWLETT-PACKARD COMPANY, 11000 Wolfe Road, Cupertino, California, 95014.
All rights reserved. Printed in the U.S.A.

PREFACE
..,, .. ,,,.. ---------------------------------

The desire for instant access to "state-of-the-business" information is a dominant force in most
business planning activities. The ability to maintain current status information and to analyze and
update data in many different combinations is recognized as the key to a sound business infor­
mation system.

Managements across the country are combining the capabilities of the computer with modern
programming techniques to achieve more efficient operations, improved use of corporate resources,
tighter control and coordination of operating elements, and faster response to business transactions.
One such programming technique is Hewlett-Packard's Terminal Control System (TCS).

This User's Guide describes the overall structure and capabilities of TCS, the hardware and software
requirements, the calling sequences, and the proper methods of using TCS.

A familiarity with HP FORTRAN-IV or HP Assembler Language, and DOS-III is assumed. For
information on these subjects, refer to the following publications (the HP part number is shown in
parentheses):

• HP ASSEMBLER Manual (02li6-9014)

• HP FORTRAN-IV Programmer's Reference Manual (5951-1321)

• HP DOS-III Disc Operating System Manual (02100-90136)

iii

CONTENTS -£'.._ _______________________________ _

Page

1 INTRODUCTION 1

2 TCS APPLICATIONS 3

3 TCS CAP ABILITIES 5

4 THE TCS ENVIRONMENT. 7

Software Requirements 7
Hardware Requirements 7
Hardware Options 9

5 USER INTERFACE 11

TCS Subroutines . 11

Initialization 13
Open File 15
Device Unlock . 16
Return to Main 17
Segment Load . 17
Status . 18
Priority Level Change 20
Pause 21
Suspend Until I/O Completion 23
Read/Write Without Wait . 23
File Read/Write Without Wait . 26
I/0 Control Without Wait 28
Read/Write With Wait . 29
File Read/Write With Wait 31
I/0 Control With Wait . 33

Buffer Management . . 35

Allocation of Buffers 36
Release of Buffers 36
Buffer Inquiry . 37

6 PROGRAMMING CONSIDERATIONS 39

Input/Output Processing . 39
Buffer and Variable Control 41

APPENDIX - Sample Program A-1

v

section

INTRODUCTION 1 ..,.,. _____________________________________ _

Hewlett-Packard's Terminal Control System (TCS) provides the user with a modular and efficient
set of software tools which greatly enhances the input/output control, file access, and performance
capabilities of the HP 2100-series computer. TCS is a collection of routines providing a language
interface to a group of terminals and other I/0 devices managed through the HP 2100 Disc
Operating System - Version 3 (DOS-III).

TCS minimizes the programming complexity for the user by handling such functions as:

• Task (process) management

• Message queuing

• Dynamic priority scheduling

• Device locking

• File accessing

• Segment loading

Of primary significance is its multiple terminal handling capability. With TCS, the user has available
a single, simple software interface through which he can manage many terminals and other I/0
devices. The FORTRAN user can run his problem program in a real-time, multi-process environment
as though he is using a simple read/write serial processing type system. Once the TCS environment is
established, the user's impression may be that there is only one terminal on-line while TCS may, in
fact, be managing many terminals for him.

TCS greatly extends the range of applications that can be processed by an HP 2100-series computer.
An indication of the variety of possible applications is provided in section 2 of this manual. A prime
advantage of TCS is the very favorable price/performance ratio it offers when interfacing multiple
terminals and I/O devices to an HP 2100-series computer. Another advantage is that TCS runs under
DOS-III with all its inherent capabilities.

1

section

TCS APPLICATIONS 2

Applications for multiple terminal systems such as TCS span all user groupings - commercial,
industrial, scientific, military/aerospace - and vary widely in their functions, scope, and require­
ments.

Within the commercial area many different types of applications already exist and new ones are
being developed every day. A few examples are as follows:

• Data collection and inventory control systems.

• Multiple-warehouse order processing

• Reservation processing

• Branch banking information systems

• Hospital information systems

• Pharmacy prescription control

• Instant credit checking

• Truck or rail system management

• Customer account inquiry processing

• Information retrieval systems

• Management information systems

The industrial area includes process control, on-line production control, automatic inspection
systems, and production data collection systems.

The scientific area principally involves the instrumentation of laboratories for physical and bio­
medical experimentation.

The military /aerospace area involves tactical and strategic command and control, range instrumen­
tation, count-down control, and so forth.

Functionally, the applications for multiple terminal systems may be divided into the following three
fundamental classes:

• DATA ENTRY. Gathering information at a number of locations and passing it to a central
processing point. Data collection systems are widely used to collect information concerning
orders, deliveries, inventory, and other operating information to provide management with
timely and reliable information with a minimum of manual handling and transcription.

3

• DATA DISTRIBUTION. Disseminating information generated or processed at a central
facility.

• INQUIRY AND FILE UPDATING. Interrogating the central computer files. In this type of
application, the terminal equipment is normally operated on-line ; that is, when access is
granted to the central computer, the inquiry is typed at the terminal. The inquiry is
simultaneously entered into the central computer's memory where the stored program con­
ducts a file search for the requested information. The process is then reversed, that is, the reply
is sent out to the terminal. This type of system may also be used for updating the central
computer's files.

A primary feature of TCS in its modular design: TCS can easily be adapted to meet the specific
needs of individual users. Consequently, TCS-controlled applications can be utilized to advantage in
any of the above-mentioned areas.

4

section

TCS CAPABILITIES 3

TCS significantly increases the user's ability to utilize the resources of the HP 2100-series computer.
TCS overcomes the limitations imposed by some similar systems on the number and type of
peripheral devices, overcomes the problems normally associated with the handling and control of
multiple terminals, and relieves the user of numerous "housekeeping" tasks.

The more salient capabilities of TCS are as follows:

• PRIORITY SCHEDULING. User programs can be run at any of 16 priority levels. Each user
task can re-specify its priority level at any time.

• NO-WAIT I/0. When a user issues an 1/0 request without wait, TCS returns control to the
calling program as soon as the 1/0 request is accepted. The I/0 request has then been either
initiated or queued.

• QUEUING OF I/O REQUESTS. The user can issue more than one I/0 request for a given
device without having to wait for a previous request to be fulfilled.

• WAIT I/O. When a user issues an 1/0 request with wait, TCS returns control to the user when
any outstanding 1/0 request is fulfilled. During the 1/0 wait time, other user tasks that are
ready are run.

• DEVICE LOCKING. Any user task may issue an I/0 request that also locks the device. When
this happens, the requested 1/0 device is not available to any other task until either the original
task or the main program unlocks the device. All 1/0 requests made by other tasks to the
device while it is locked are queued in priority sequence and fulfilled after the device is
unlocked. Of course, one of these 1/0 requests can also lock the device as part of its requested
action.

• OPEN FILE. A user task may, at any time, request that a file be opened. After a file has been
opened, every read/write request to the opened file is performed in one disc access.

• OPEN SEGMENT. Using a TCS Initialization request, the user may specify at the beginning of
his program which segments of disc-resident code his particular application requires. An
"in-core" segment directory is maintained to reduce load times.

• DYNAMIC BUFFER MANAGEMENT. Buffer pools may be specified at any time. Buffers are
allocated and released dynamically in response to requests from the user's program.

5

section

THE TCS ENVIRONMENT 4 .r--------------------------------

The TCS environment is illustrated in Figure 1. Note that once TCS has been called the user does
not ordinarily interface directly with DOS-III. Instead, he initiates input/output operations by
issuing requests to TCS which, in turn, interfaces directly with DOS-III. However, the user may
issue calls directly to the DOS-III Executive if he so desires (see the dotted arrow in Figure 1), but
care must be taken when using TCS and DOS-III for controlling the same device; in general this is
not recommended.

SOFTWARE REQUIREMENTS

TCS operates under the HP 2100 Disc Operating System -Version 3 (DOS-III). The user.writes his
application programs in either HP Assembly Language or HP FOR TRAN.

HARDWARE REQUIREMENTS

The minimum computer hardware required to support TCS is the minimum DOS-III hardware
configuration (refer to the DOS-III reference manual). The amount of core memory required to
support TCS is determined by adding the following core memory requirements together:

• The number of words of memory required by DOS-III.

• The number of words of memory required by TCS (l.5K words).

• The number of words of memory required by the user for buffer space.

• The number of words of memory required by the user for program space.

7

8

r--
1
I
I
I
I
I
I
I
I L __

MULTIPLE TERMINALS

HP 2100-SERIES PROCESSOR

USER APPLICATION

TCS

----t--------t----
(DOS-Ill)

Figure 1. The TCS Environment

DISC
FILE

OTHER PERIPHERALS

Printer

Card Reader

(.:;\
\:::L_

Paper Tape

HARDWARE OPTIONS

The following HP 2100 computer hardware options are available:

• Additional terminals and interface kits

• A time base generator

• Paper tape readers and punches

• Line printers

• Magnetic tape units

• Card readers

• Additional disc drives (the HP 2100 can accommodate a maximum of four HP 7900A/7901A
Disc Drives and a maximum of two HP 2883A Disc Drives)

• Additional 1/0 channels (I/O extenders are available)

9

section

USER INTERFACE 5

TCS appears to the user as a set of subroutine calls. As illustrated in Figure 2, TCS functions as a
scheduler for processing I/O requests in a fast, efficient manner. I/0 calls which the user would
normally make to the DOS-III Executive are made instead to TCS. However, there are certain
requests which must still be made directly to DOS-III (in the form of EXEC calls) instead of to
TCS. These include:

• Dynamic status requests
• Status requests for a particular device

• Work area limit requests

• Requests for time of day

Any valid EXEC calls may be used, but care must be taken when using TCS and EXEC for
controlling the same device. It is permissible to use TCS for terminal requests and EFMP for disc
handling. However, it is not permitted to use both TCS and EFMP for disc handling; the
programmer may use either for that purpose but not both. In general it is not recommended to mix
EXEC and TCS calls to the same device.

TCS SUBROUTINES

The TCS user-callable subroutines may be divided into three functional categories, as follows:

I. In-Core Requests

• Initialization

• Open File

• Device Unlock

• Suspend Until I/0 Completion

• Return to Main

• Segment Load

• Status

• Priority Level Change

• Pause

11

12

User call to TCS.

1/0 requests. In-core requests.
-----i Interpret user call. i------

Put request
in queue.

Initiate all possible
1/0 requests.

r-- - - - - --,
I I

I
I

•
DOS-Ill
Executive

I
I
I

L-------'

Schedule next
user task.

,,
Process the
request.

Set up return.

Go to user code.

Figure 2. TCS User Interface

II. Input/Output Without Wait

• Read/Write

• File Read/Write

• 1/0 Control

III. Input/Output With Wait

• Read/Write

• File Read/Write

• 1/0 Control

The calling sequences are described in detail on the following pages.

Initialization

The three main purposes of this request are:

• to supply TCS with the name and size of the pending queue array

• to supply TCS with the name of the segment directory array

• to specify which disc-resident program segments are required by the user's main program.

The pending queue is an array in the user area of core memory used by TCS for holding all
necessary information about 1/0 requests which cannot yet be initiated. The segment directory is a
permanently core-resident array used by TCS for maintaining necessary information about the
required program segments. The program segments specified in the request must previously have
been stored on the disc using DOS-III.

TCS must first be initialized using this request before it will accept any read/write, file read/write,
or 1/0 control requests. It is only necessary to initialize TCS once during a given run.

The FORTRAN calling sequence is:

CALL TCS (ICOD,IPQ,MAXPQ,INPQ, ISNAM, ISNUM,ISDIR)

where !COD is the decimal constant 82.

IPQ is the name of the pending queue array.

MAXPQ is the name of a variable which contains a value specifying the maximum number of
entries which the pending queue can accommodate. Each entry in the pending
queue is 9 words long. Therefore, the value supplied must be the overall length of
the pending queue (in words) divided by 9.

13

INPQ is the name of a variable whose value will constantly be set by TCS to reflect the
current number of entries in the pending queue.

ISNAM is the name of an array which contains the names of all program segments which are
required by the user's main program. Each entry in this array is three words long
and contains the name (as five ASCII characters followed by a space) of one of the
required program segments.

ISNUM is the name of a variable which contains a decimal value specifying the number of
program segments required by the user's main program (that is, the length of
ISNAM divided by 3). Maximum allowable value= 127.

ISDIR is the name of the segment directory array. Each entry in the segment directory is
11 words long. Therefore, the length of the array is equal to ISNUM multiplied
by 11.

All of the above parameters must be present. If the variable ISNUM has the value zero, then ISNAM
and ISDIR may be dummy parameters.

The assembly language calling sequence is:

JSB TCS

DEF *+8

DEF ICOD

DEF PQ

DEF MAXPQ

DEF INPQ

DEF ISNAM

DEF ISNUM

DEF ISDIR

ICOD DEC 82

PQ BSS x

MAXPQ DEC x/9

INPQ BSS 1

ISNAM BSS y

ISNUM DEC y/3

ISDIR BSS z

where xis the length (in words) of the pending queue array.

14

y is the length (in words) of the array which contains the names of all program segments
which are required by the user's main program.

z is the length (in words) of the segment directory array.

Open File

This request loads the file directory information for the specified file from disc into core memory.
An open file request may be executed whenever the disc is not busy, but would normally be
executed once at the commencement of main program execution for each file which is to be used.
Up to 16 files may be opened by a user's program at any given time. If a file has already been
opened with the same reference number (see INUM in the calling sequences below), it will be closed
and the new one will be opened for that reference number.

The FORTRAN calling sequence is:

CALL TCS (ICOD,INAM,INUM)

where /COD is the decimal constant 84.

/NAM is the name of an array which contains (as five ASCII characters followed by a space)
the name of the file which is to be opened;

INUM is a decimal constant within the range 1-16 by which the file is to be referenced by the
user's program.

The assembly language calling sequence is:

JSB TCS

DEF *+4

DEF !COD

DEF !NAM

DEF INUM

!COD DEC 84

!NAM DEF array-name

INUM DEC reference-#

where array-name is the name of an array which contains (as five ASCII characters followed by a
space) the name of the file which is to be opened.

reference-# is a decimal value within the range 1-16 by which the file is to be referenced by
the user's program.

15

Device Unlock

This request unlocks an input/output device. If the device was locked by the main program, then
only the main program can unlock it. If the device was locked by a program segment, then only that
segment or the main program can unlock it.

Note that the device is unlocked as soon as the request is accepted by TCS. Therefore, the request
must not be issued until all outstanding critical 1/0 has been completed for the calling program by
the particular device.

The FORTRAN calling sequence is:

CALL TCS (ICOD,LU)

where !COD is the decimal constant 52.

LU is a decimal constant specifying the logical unit number of the device which is to be
unlocked.

The assembly language calling sequence is:

JSB TCS

DEF *+3

DEF ICOD

DEF LU

ICOD DEC 52

LU DEC logical-unit-number

where logical-unit-number is a decimal value specifying the logical unit number of the device which
is to be unlocked.

16

Return to Main

This request passes control from a user segment to the main program. If a return to main request is
executed in the main program, control merely passes to the next sequential instruction in the main
program. If a return to main request is executed in a user segment which was called by another user
segment, control returns to the main program as though from the user segment which was called by
the main program.

The FORTRAN calling sequence is:

CALL TCS (ICOD)

where !COD is the decimal constant 54.

The assembly language calling sequence is:

Segment Load

JSB TCS

DEF *+2

DEF ICOD

ICOD DEC 54

This request loads a program segment (from the disc into core memory) and starts it executing in
the minimum possible time. The particular program segment must previously have been stored on
the disc using DOS-III and the segment name must previously have been declared in a TCS
initialization request. A segment load request may be issued either by the main program or by a
program segment.

The FORTRAN calling sequence is:

CALL TCS (ICOD,ISEG,IPRI)

where !COD is the decimal constant 8.

ISEG is a decimal constant specifying the relative number of the program segment name
within the segment name array supplied in the most recent TCS initialization request.
For example, an ISEG of 1 specifies the first declared program segment, an ISEG of 2
specifies the second declared program segment, and so forth.

17

IPR! is a decimal constant specifying the priority level (0-15) at which the particular pro"
gram segment is to be run. 15 is the highest priority level and 0 is the lowest. More
than one program segment may be assigned to the same priority level. The IPRI
parameter is optional. If it is omitted, the priority level is set to 0.

The assembly language calling sequence is:

JSB TCS

DEF *+4

DEF ICOD

DEF ISEG

DEF IPRI

ICOD DEC 8

ISEG DEC segment-number

IPRI DEC priority-level

where segment-number is a decimal value specifying the relative nu:QJ.ber of the program segment
name within the segment name array supplied in the most recent TCS
initialization request. For example, a segment-number of 1 specifies the first
declared program segment, a segment-number of 2 specifies the second
declared program segment, and so forth.

Status

priority-level is a decimal value specifying the priority level (0-15) at which the particular
program segment is to be run. 15 is the highest priority level and 0 is the
lowest. More than one program segment may be assigned to the same
priority level.

This request causes TCS to return status information to the calling program regarding a previously­
initiated TCS request. The status request is used for the following two purposes:

• to obtain status information about a completed operation.

• to determine whether or not a TCS request (just issued) was considered valid by TCS.

18

The FORTRAN calling sequence is:

CALL TCS (ICOD,ISTAT,IPAR,ILUN,ITLOG)

where !COD is the decimal constant 79.

!STAT is the name of a variable. If status is being returned for a completed operation, the
variable contains the hardware status bits (as defined by DOS-III) for the device
associated with the operation. If status is being returned regarding the validity of a
TCS request, the variable contains one of the following values (note that the
non-zero numbers are negative):

0 request valid

-1 program segment cannot be found (initialization requests
only)

-2 pending queue is full (read/write, file read/write, pause, or
I/0 control requests only)

- 3 "" the request in question could not be understood by TCS

- 4 invalid segment number (segment load requests only)

- 5 file not opened or invalid record number (file read/write
requests only)

-6 TCS not initialized (read/write, fiJe read/write, or I/O con­
trol requests only)

-7 invalid unlock request (the segment trying to unlock the
device is not the segment which locked the device)

!PAR is the name of a variable. If status is being returned for a completed operation, the
variable contains the request identifier (IPRM) which was included in the request
associated with the operation. For error returns, the contents of the variable are
unspecified.

ILUN is the name of a variable. If status is being returned for a completed operation, the
variable contains the logical unit number of the device associated with the operation.
For error returns, the contents of the variable are unspecified.

ITLOG is the name of a variable. If status is being returned for a completed operation, the
variable contains the transmission log (as defined by DOS-III) for the operation. For
error returns, the contents of the variable are unspecified.

IPAR, ILUN, and ITLOG may be omitted. However, if one is present, all three must be present.

19

A status request should be issued after every TCS request to determine whether or not the
particular request was accepted by TCS. If a request is not accepted by TCS, and if it was not
immediately followed by a status request, then the particular request is forever "lost".

The assembly language calling sequence is:

JSB TCS

DEF *+6

DEF ICOD

DEF ISTAT

DEF IPAR

DEF ILUN

DEF IT LOG

ICOD DEC 79

ISTAT BSS 1

IPAR BSS 1

ILUN BSS 1

ITLOG BSS 1

where the contents of !STAT, !PAR, ILUN, and ITLOG will be set as described for the FORTRAN
calling sequence above.

Priority Level Change

This request specifies the priority level (0-15) at which the calling program is to run. The new
priority level takes effect as soon as the request is accepted by TCS. 15 is the highest priority and 0
is the lowest.

The main program initially runs at priority level 0. Each program segment initially runs at the
priority level specified in the TCS request which loaded it.

I/0 requests are assigned the priority level at which the calling program is running at the time the
l/0 request is issued. Once an I/0 request is issued, its priority level is permanently established and
will not be affected by subsequent priority level change request.

If control passes to the return address of an I/0 request executed at one priority level while the
calling program is running at another priority level, the priority level of the calling program is
changed to that of the completed I/O request (as though a priority level change request was
executed).

20

The FORTRAN calling sequence is:

CALL TCS (ICOD,IPRI)

where !COD is the decimal constant 71.

IPR! is a decimal constant within the range 0-15 specifying the new priority level.

The assembly language calling sequence is:

JSB TCS

DEF *+3

DEF ICOD

DEF IPRI

ICOD DEC 71

IPRI DEC priority-level

where priority-level is a decimal constant within the range 0-15 specifying the new priority level.

Pause

This is a dummy input request which causes no 1/0 activity. It is used for suspending the calling
program until all completed 1/0 requests of a higher or equal priority level are processed. A pause
request would be necessary, for example, if the calling program is unable to continue execution
because there are no buffers available (refer to "Buffer Management" later in this section). When
the calling program is restarted, it may then check the required resource. If the resource is available,
the program can continue execution; if the resource is still unavailable, the program can execute
another pause request. When control eventually returns to the calling program, control passes to the
next sequential instruction.

21

The FORTRAN calling sequence is:

CALL TCS (ICOD,ICON ,IB,IBL,IPRM)

where !COD is the constant 1.

ICON is the octal constant 77.

IB is the constant 1.

!BL is the constant 1.

Required by TCS; no particular
significance to user.

IPRM is the name of a variable which contains a decimal value within the range 0-255. This
value will identify the particular pause request when the user's program subsequently
executes TCS status requests.

The assembly language calling sequence is:

JSB TCS

DEF *+6

DEF ICOD

DEF ICON

DEF IB

DEF IBL

DEF IP ARM

ICOD DEC 1

ICON OCT 77

IB DEC 1

IBL DEC 1

IPRM DEC identifier

where identifier is a decimal value within the range 0-255. This value will identify the particular
pause request when the user's program subsequently executes TCS status requests.

22

Suspend Until 1/0 Completion

This request suspends the calling program until any previously-issued 1/0 request is fulfilled. If the
calling program issues a series of 1/0 requests (without wait) and then issues a suspend until 1/0
completion request, the calling program is suspended until any 1/0 request is fulfilled. At that time,
the calling program is reactivated and control passes to the return address associated with the
particular 1/0 request. The only time such an "interrupt" can occur is when the currently-active
program is suspended as the result of an 1/0 with wait, pause, or suspend until 1/0 completion
request.

The most significant difference between this request and a pause request is that pause has a return
address (the next sequential instruction) associated with it whereas suspend does not. With a pause
request, control returns to the next sequential instruction after all completed 1/0 requests of a
higher or equal priority level are processed. With a suspend request, control passes to the return
address associated with the next fulfilled 1/0 request (thereafter, program flow is unrelated to the
suspend request).

The FORTRAN calling sequence is:

CALL TCS (ICOD)

where !COD is the decimal constant 53.

The assembly language calling sequence is:

Read/Write (Without Wait)

JSB TCS

DEF *+2

DEF ICOD

ICOD DEC 53

This request causes TCS to initiate an input/output operation. For input operations, the data may be
read from any input device or from the work area of the disc. For output operations, the data may
be sent to any output device or to the work area of the disc. As soon as the request is accepted by
TCS, control passes to the next sequential instruction in the calling program. The 1/0 operation
may or may not be initiated immediately, depending upon whether or not the specified 1/0 device
is free. If the device is busy, the request is placed in the pending queue; if the device is free, the
operation is initiated immediately. When the operation is finished, control passes to the return
address specified in the calling sequence.

23

The FORTRAN calling sequence is:

CALL TCS (ICOD,ICON ,IBUF ,IBUFL,ITRAK,ISECT ,IPRM,IRET)

where !COD is the constant 1or2. 1 specifies read and 2 specifies write.

ICON is an octal control word. The format of the control word is as described for the
CONWD parameter of the Read/Write Exec Call in section III of the HP DOS-III
Disc Operating System reference manual (part number 02100-90136) with the
exception that the sign of the control word determines whether or not the specified
device will be locked. If the sign bit is 1, the device will be locked; if the sign bit is
0, the device will not be locked.

IBUF is the name of the input or output buffer array.

IBUFL is a decimal constant specifying the length of the I/O buffer. If IBUFL is positive, it
is interpreted as the number of words; if IBUFL is negative, it is interpreted as the
number of bytes.

*ITRAK is a decimal constant specifying the address of the first track to be read from or
written into in the work area of the disc.

*!SECT is a decimal constant specifying the address of the first sector to be read from or
written into in the work area of the disc.

IPRM is the name of a variable which contains a decimal value within the range 0-255.
This value will identify the particular I/0 operation when the user's program subse­
quently executes TCS status requests.

IRET is the name of a variable which contains the address to which control is to be passed
when the operation is finished.

*If the data is not to be read from or written into the work area of the disc, then ITRAK and !SECT
may be omitted entirely.

24

The assembly language calling sequence is:

ICOD

ICON

IBUF

IBUFL

ITRAK

!SECT

IPRM

IRET

JSB TCS

DEF *+n

DEF ICOD

(n=9 if read/write is from or to the work area of the disc;
otherwise, n=7)

DEF ICON

DEF IBUF

DEF IBUFL

DEF IT RAK } (Included only if the read/writ.e is from or
DEF ISECT to the work area of the disc)

DEF IPRM

DEF IRET

DEC 1 or 2 (l=read; 2=write)

OCT control-word

BSS n

DEC n (or -2n)

DEC track-address)
(Included only if the read/write is

DEC sector-address
from or to the work area of the
disc)

DEC identifier

DEF return-address

where control-word is an octal control word. The format of the control word is as described for
the CONWD parameter of the Read/Write Exec Call in section III of the HP
DOS-III Disc Operating System reference manual (part number 02100-90136)
with the exception that the sign of the control word determines whether or
not the specified device will be locked. If the sign bit is 1, the device will be
locked; if the sign bit is 0, the device will not be locked.

track-address is a decimal constant specifying the address of the first track to be read from
or written into in the work area of the disc.

sector-address is a decimal constant specifying the address of the first sector to be read from
or written into in the work area of the disc.

identifier is a decimal constant within the range 0-255. This value will identify the
particular I/O operation when the user's program subsequently executes TCS
status requests.

return-address is the address to which control is to be passed when the operation is finished.

25

In the buffer-definition psuedo-instruction (IBUF BSS n), the buffer length is specified as the
number of words. In the subsequent psuedo-instruction, the buffer length (IBUFL) is specified
either as the number of words or as the number of bytes (positive value=number of words; negative
value=number of bytes).

File Read/Write (Without Wait)

This request causes TCS to initiate a disc read/write operation in which data is read from or written
into a disc-resident user file. As soon as the request is accepted by TCS, control passes to the next
sequential instruction in the calling program. The read/write operation may or may not be initiated
immediately, depending upon whether or not the specified disc drive is free. If the disc drive is
busy, the request is placed in the pending queue; if the disc drive is free, the operation is initiated
immediately. When the operation is finished, control passes to the return address specified in the
calling sequence.

The FORTRAN calling sequence is:

CALL TCS (ICOD,ICON ,IBUF ,IBUFL,INUM,ISECT,IPRM,IRET)

where !COD is the decimal constant 14 or 15. 14 specifies read and 15 specifies write.

26

ICON is an octal control word. The format of the control word is as described for the
CONWD parameter of the Read/Write Exec Call in section III of the HP DOS-III Disc
Operating System reference manual (part number 02100-90136) with the exception
that the sign of the control word determines whether or not the specified device will
be locked. If the sign bit is 1, the device will be locked; if the sign bit is 0, the device
will not be locked.

IBUF is the name of the input or output buffer array.

IBUFL is a decimal constant specifying the length of the I/0 buffer. If IBUFL is positive, it is
interpreted as the number of words; if IBUFL is negative, it is interpreted as the
number of bytes.

INUM is a decimal constant within the range 1-16 specifying which file is to be read from or
written into. This value corresponds to the INUM parameter in the TCS open file
request for the particular file.

!SECT is a decimal constant specifying the relative address of the first sector in the specified
file to be read from or written into (0 through n).

IPRM is the name of a variable which contains a decimal value within the range 0-255. This
value will identify the particular I/O operation when-the user's program subsequently
executes TCS status requests.

IRET is the name of a variable which contains the address to which control is to be passed
when the operation is finished.

The assembly language calling sequence is:

where

JSB TCS

DEF *+9

DEF ICOD

DEF ICON

DEF IBUF

DEF IBUFL

DEF INUM

DEF ISECT

DEF IPRM

DEF IRET

ICOD DEC 14 or 15 (14=read; 15=write)

ICON OCT control-word

IBUF BSS n

IBUFL DEC n (or -2n)

INUM DEC file-identifier

ISECT DEC sector-address

IPRM DEC request-identifier

IRET DEF return-address

control-word is an octal control word. The format of the control word is as described for
the CONWD parameter of the Read/Write Exec Call in section III of the HP
DOS-III Disc Operating System reference manual (part number 02100-
90136) with the exception that the sign of the control word determines
whether or not the specified device will be locked. If the sign bit is 1, the
device will be locked; if the sign bit is 0, the device will not be locked.

file-identifier is a decimal constant within the range 1-16 specifying which file is to be
read from or written into. This value corresponds to the INUM parameter
in the TCS open file request for the particular file.

sector-address is a decimal constant specifying the relative address of the first sector in the
specified file to be read from or written into (0 through n).

request-identifier is a decimal constant within the range 0-255. This value will identify the
particular I/0 operation when the user's program subsequently executes
TCS status requests.

return-address is the address to which control is to be passed when the operation is
finished.

27

In the buffer-definition psuedo-instruction (IBUF BSS n), the buffer length is specified as the
number of words. In the subsequent psuedo-instruction, the buffer length (IBUFL) is specified
either as the number of words or as the number of bytes (positive value=number of words; negative
value=number of bytes).

I/O Control (Without Wait)

This request causes TCS to initiate an input/output control operation. As soon as the request is
accepted by TCS, control passes to the next sequential instruction in the calling program. The I/O
control operation may or may not be initiated immediately, depending upon whether or not the
specified I/0 device is free. If the device is busy, the request is placed in the pending queue; if the
device is free, the operation is initiated immediately. When the operation is finished, control passes
to the return address specified in the calling sequence.

The FORTRAN calling sequence is:

CALL TCS (ICOD,ICON ,IPAR,IPRM,IRET)

where !COD is the constant 3.

28

ICON is an octal control word. The format of the control word is as described for the
CONWD parameter of the I/0 Control Exec Call in section III of the HP DOS-III Disc
Operating System reference manual (02100-90136) with the exception that the sign of
the control word determines whether or not the specified device will be locked. If the
sign bit is 1, the device will be locked; if the sign bit is 0, the device will not be locked.

!PAR is a device-dependent control constant. This is not required for some devices and may
be omitted if not needed.

IPRM is the name of a variable which contains a decimal value within the range 0-255. This
value will identify the particular I/0 operation when the user's program subsequently
executes TCS status requests.

IRET is the name of a variable which contains the address to which control is to be passed
when the operation is finished.

The assembly language calling sequence is:

JSB TCS

DEF *+6

DEF ICOD
DEF ICON
DEF IPAR
DEF IPRM
DEF IRET

ICOD DEC 3

ICON OCT control-word

IPAR DEC n

IPRM DEC identifier

IRET DEF return-address

where control-word is an octal control word. The format of the control word is as described for the
CONWD parameter of the I/0 Control Exec Call in section III of the HP
DOS-III Disc Operating System reference manual (02100-90136) with the
exception that the sign of the control word determines whether or not the
specified device will be locked. If the sign bit is 1, the device will be locked; if
the sign bit is 0, the device will not be locked.

n is a device-dependent decimal control constant. This is not required for some
devices and may be omitted if not needed.

identifier is a decimal constant within the range 0-255. This value will identify the
particular I/0 operation when the user's program subsequently executes TCS
status requests.

return-address is the statement label to which control is to be passed when the operation
is finished.

Read/Write (With Wait)

This request causes TCS to initiate an input/output operation. For input operations, the data may
be read from any input device or from the work area of the disc. For output operations, the data
may be sent to any output device or to the work area of the disc. The I/0 operation may or may
not be initiated immediately, depending upon whether or not the specified I/O device is free. If the
device is busy, the request is placed in the pending queue; if the device is free, the operation is
initiated immediately. After issuing this request, the calling program is suspended. When control
eventually returns to the calling program, control passes to the next sequential instruction. While
the calling program is waiting for the I/0 request to be fulfilled, a previously-initiated I/0 request
may be fulfilled. In such a case, control passes to the return address associated with the particular
I/0 request. The only time such an "interrupt" can occur is when the currently-active program is
suspended as the result of an I/0 with wait, pause, or suspend until I/0 completion request.

29

The FORTRAN calling sequence is:

CALL TCS (ICOD,ICON ,IBUF ,IBUFL,ITRAK,ISECT ,IPRM)

where !COD is the constant 1 or 2. 1 specifies read and 2 specifies write.

ICON is an octal control word. The format of the control word is as described for the
CONWD parameter of the Read/Write Exec Call in section III of the HP DOS-III
Disc Operating System reference manual (part number 02100-90136) with the
exception that the sign of the control word determines whether or not the specified
device will be locked. If the sign bit is 1, the device will be locked; if the sign bit is
0, the device will not be locked.

IBUF is the name of the input or output buffer array.

IBUFL is a decimal constant specifying the length of the I/0 buffer. If IBUFL is positive, it
is interpreted as the number of words; if IBUFL is negative, it is interpreted as the
number of bytes.

*ITRAK is a decimal constant specifying the address of the first track to be read from or
written into in the work area of the disc.

*!SECT is a decimal constant specifying the address of the first sector to be read from or
written into in the work area of the disc.

IPRM is the name of a variable which contains a decimal value within the range 0-255.
This value will identify the particular I/0 operation when· the user's program
subsequently executes TCS status requests.

*If the data is not to be read from or written into the work area of the disc, then ITRAK and
ISECT may be omitted entirely.

The assembly language calling sequence is:

JSB TCS

DEF *+n
(n=S if read/write is from or to the work
area of the disc; otherwise, n=6)

DEF ICOD

DEF ICON

DEF IBUF

DEF IBUFL

DEF ITRAK } (Included only if the read/write is from
DEF ISECT or to the work area of the disc)

DEF IPRM

30

ICOD DEC 1 or 2 (l=read; 2=write)

ICON OCT control-word

IBUF BSS n

IBUFL DEC n (or -2n)

ITRAK DEC track-address l (Included only if the read/write is from
ISECT DEC sector-address or to the work area of the disc)

IPRM DEC identifier

where control-word is an octal control word. The format of the control word is as described for the
CONWD parameter of the Read/Write Exec Call in section III of the HP
DOS-Ill Disc Operating System reference manual (part number 02100-90136)
with the exception that the sign of the control word determines whether or
not the specified device will be locked. If the sign bit is 1, the device will be
locked; if the sign bit is 0, the device will not be locked.

track-address is a decimal constant specifying the address of the first track to be read from
or written into in the work area of the disc.

sector-address is a decimal constant specifying the address of the first sector to be read from
or written into in the work area of the disc.

identifier is a decimal constant within the range 0-255. This value will identify the
particular I/O operation when the user's program subsequently executes TCS
status requests.

In the buffer-definition psuedo-instruction (IBUF BSS n), the buffer length is specified as the
number of words. In the subsequent psuedo-instruction, the buffer length (IBUFL) is specified
either as the number of words or as the number of bytes (positive value=number of words; negative
value=number of bytes).

File Read/Write (With Wait)

This request causes TCS to initiate a disc read/write operation in which data is read from or written
into a disc-resident user file. The I/0 operation may or may not be initiated immediately, depending
upon whether or not the disc drive is free. If the disc drive is busy, the request is placed in the
pending queue; if the disc drive is free, the operation is initiated immediately. After issuing this
request, the calling program is suspended. When control eventually returns to the calling program,
control passes to the next sequential instruction. While the calling program is waiting for the I/O
request to be fulfilled, a previously-initiated I/0 request may be fulfilled. In such a case, control
passes to the return address associated with the particular I/0 request. The only time such an
"interrupt" can occur is when the currently-active program is suspended as the result of an I/0 with
wait, pause, or suspend until I/O completion request.

31

The FORTRAN calling sequence is:

CALL TCS (ICOD,ICON,IBUF,IBUFL,INUM,ISECT,IPRM)

where !COD is the decimal constant 14 or 15. 14 specifies read and 15 specifies write.

ICON is an octal control word. The format of the control word is as described for the
CONWD parameter of the Read/Write Exec Call in section III of the HP DOS-III Disc
Operating System reference manual (part number 02100-90136) with the exception
that the sign of the control word determines whether or not the specified device will
be locked. If the sign bit is 1, the device will be locked; if the sign bit is 0, the device
will not be locked.

IBUF is the name of the input or output buffer array.

IBUFL is a decimal constant specifying the length of the I/O buffer. If IBUFL is positive, it is
interpreted as the number of words; if IBUFL is negative, it is interpreted as the
number of bytes.

INUM is a decimal constant within the range 1-16 specifying which file is to be read from or
written into. This value corresponds to the INUM parameter in the TCS open file
request for the particular file.

!SECT is a decimal constant specifying the relative address of the first sector in the specified
file to be read from or written into (0 through n).

IPRM is the name of a variable which contains a decimal value within the range 0-255. This
value will identify the particular I/0 operation when the user's program subsequently
executes TCS status requests.

The assembly language calling sequence is:

32

JSB TCS

DEF *+8

DEF ICOD

DEF ICON

DEF IBUF

DEF IBUFL

DEF INUM

DEF ISECT

DEF IPRM

ICOD DEC 14 or 15 (14=read; 15=write)

ICON OCT control-word

where

IBUF BSS n

IBUFL DEC n (or -2n)

INUM DEC file-identifier

ISECT DEC sector-address

IPRM DEC request-identifier

control-word is an octal control word. The format of the control word is as described for
the CONWD parameter of the Read/Write Exec Call in section III of the HP
DOS-III Disc Operating System reference manual (part number 02100-
90136) with the exception that the sign of the control word determines
whether or not the specified device will be locked. If the sign bit is 1, the
device will be locked; if the sign bit is 0, the device will not be locked.

file-identifier is a decimal constant within the range 1-16 specifying which file is to be
read from or written into. This value corresponds to the INUM parameter in
the TCS open file request for the particular file.

sector-address is a decimal constant specifying the relative address of the first sector in the
specified file to be read from or written into (0 through n).

request-identifier is a decimal constant within the range 0-255. This value will identify the
particular I/0 operation when the user's program subsequently executes
TCS status requests.

In the buffer-definition psuedo-instruction (IBUF BSS n), the buffer length is specified as the
number of words. In the subsequent psuedo-instruction, the buffer length (IBUFL) is specified
either as the number of words or as the number of bytes (positive value=number of words; negative
value=number of bytes).

l/O Control (With Wait)

This request causes TCS to initiate an input/output control operation. The I/O control operation
may or may not be initiated immediately, depending upon whether or not the specified I/0 device
is free. If the device is busy, the request is placed in the pending queue; if the device is free, the
operation is initiated immediately. After issuing this request, the calling program is suspended at
least until the request has been fulfilled. When control eventually returns to the calling program,
control passes to the next sequential instruction. While the program is waiting for the I/O control
request to be fulfilled, a previously-initiated I/0 request may be fulfilled. In such a case, control
passes to the return address associated with the particular I/O request. The only time such an
"interrupt" can occur is when the currently-active program is suspended as the result of an I/0 with
wait, pause, or suspend until I/O completion request.

33

The FORTRAN calling sequence is:

CALL TCS (ICOD,ICON ,IPAR,IPRM)

where !COD is the constant 3.

ICON is an octal control word. The format of the control word is as described for the
CONWD parameter of the I/0 Control Exec Call in section III of the HP DOS-III Disc
Operating System reference manual (02100-90136) with the exception that the sign of
the control word determines whether or not the specified device will be locked. If the
sign bit is 1, the device will be locked; if the sign bit is 0, the device will not be locked.

!PAR is a device-dependent control constant. This is not required for some devices and may be
omitted if not needed.

IPRM is the name of a variable which contains a decimal value within the range 0-255. This
value will identify the particular I/0 operation when the user's program subsequently
executes TCS status requests.

The assembly language calling sequence is:

JSB TCS

DEF *+5

DEF ICOD

DEF ICON

DEF IPAR

DEF IPRM

ICOD DEC 3

ICON OCT control-word

IPAR DEC n

IPRM DEC identifier

where control-word is an octal control word. The format of the control word is as described for the
CONWD parameter of the I/0 Control Exec Call in section III of the HP
DOS-III Disc Operating System reference manual (02100-90136) with the
exception that the sign of the control word determines whether or not the
specified device will be locked. If the sign bit is 1, the device will be locked; if
the sign bit is 0, the device will not be locked.

34

n is a device-dependent decimal control constant. This is not required for some
devices and may be omitted if not needed.

identifier is a decimal constant within the range 0-255. This value will identify the
particular I/0 operation when the user's program subsequently executes TCS
status requests.

BUFFER MANAGEMENT

The TCS buffer management subsystem allows the user to dynamically allocate and deallocate
buffers according to his needs. Up to four buffer pools may be established, each containing up to 64
buffers. The buffers within a particular pool must all be the same length. Pools may be initialized or
reinitialized at any time.

The FORTRAN calling sequence for initializing a buffer pool is:

CALL BINIT (IA,I,J,L)

where IA is the name of the buffer pool array.

I is a decimal constant within the range 1 to 64 specifying the number of buffers in the
pool.

J is a decimal constant specifying the length of each buffer.

L is a constant within the range 1 to 4 identifying the particular buffer pool.

The assembly language calling sequence for initializing a buffer pool is:

JSB BINIT

DEF *+5

DEF IA

DEF I

DEF J

DEF L

IA BSS pool-length

I DEC #-of-buffers

J DEC buffer-length

L DEC pool-identifier

where pool-length is a decimal constant specifying the length (in words) of the particular buffer
pool.

#-of-buffers is a decimal constant within the range 1 to 64 specifying the number of
buffers in the pool.

buffer-length is a decimal constant specifying the length of each buffer.

pool-identifier is a constant within the range 1 to 4 identifying the pool.

35

Allocation of Buffers

Whenever the user requires a buffer, he requests the buffer management system to allocate a buffer
from a particular pool. The FORTRAN calling sequence for allocating a buffer is:

CALL GBUF (IN,L)

where IN is the name of a variable. The value of this variable is set by the buffer management
system to the number (1 through 64) of the buffer which was allocated. If no buffers are
available, IN is set to -1.

Lis a constant within the range 1 to 4 specifying from which pool the buffer is to be
allocated.

The assembly language calling sequence for allocating a buffer is:

JSB GBUF

DEF *+3

DEF IN

DEF L

IN BSS 1

L DEC pool-identifier

where pool-identifier is a constant within the range 1 to 4 specifying from which pool the buffer is
to be allocated.

The value of IN is set by the buffer management system to the number (1 through 64) of the buffer
which was allocated. If no buffers are available, IN is set to -1.

Release of Buffers

Whenever the user no longer needs a particular buffer, he may request the buffer management
system to release the buffer. The FORTRAN calling sequence for releasing a buffer is:

CALL PBUF (IN,L)

where IN is the name of a variable. This should be the same variable which was set by the buffer
management system when the particular buffer was allocated.

L is a constant within the range 1 to 4 specifying the pool to which the buffer belongs.

36

The assembly language calling sequence is:

JSB PBUF

DEF *+3

DEF IN

DEF L

IN BSS 1

L DEC pool-number

where pool-number is a constant within the range 1 to 4 specifying the pool to which the buffer
belongs.

The variable IN must contain the value supplied by the buffer management system when the
particular buffer was allocated.

Buff er Inquiry

It is often desirable to know how many buffers within a particular pool are in use at a given time.
The FORTRAN calling sequence for requesting the current status of a particular pool is:

CALL IBUF (I,L)

where I is the name of a variable. The variable will be set by the buffer management system to
specify the number of buffers in the pool which are currently allocated to the user's
program.

L is a constant within the range 1 to 4 specifying the pool in question.

The assembly language calling sequence is:

JSB IBUF

DEF *+3

DEF I

DEF L

I BSS 1

L DEC pool-identifier

where pool-identifier is a constant within the range 1 to 4 specifying the pool in question.

The variable I will be set by the buffer management system to specify the number of buffers in the
p')ol which are currently allocated to the user's program.

37

section

PROGRAMMING CONSIDERATIONS 6

The considerations to be borne in mind when writing TCS programs may be broadly defined under
two headings:

1. Input/output processing

2. Buffer and variable control

These will now be discussed.

INPUT/OUTPUT PROCESSING

In a situation where many user tasks may be running at the same time two approaches to I/O
queueing are possible:

1. Provide a queue area (pending queue) large enough to hold the maximum possible number of
concurrent I/O requests to devices which are busy or locked.

2. Provide a queue area (pending queue) large enough for the average load and take care of peak
loads by recommended programming methods.

Both approaches may be used with TCS. The sample program uses method 1, this is not always
possible due to various factors (core limitations, undefined future programs, etc.). For this reason a
method of handling possible pending queue problems is outlined below.

1. If a pending queue of 20 entries is assumed then the maximum number of I/0 requests placed
into it should not exceed 19. This allows a user program to "pause" if it has other requests to
issue ("pause" requires one pending queue entry).

2. The user program should then follow the procedure outlined in Figure 3.

39

Make pause
request to
TCS.

Make status request to
get request identifier.

Yes

Format 1/0
request.

No

Make 1/0 request
to TCS.

Yes

Figure 3. Procedure for Issuing Requests

No
>---Goto

error
routine.

By means of this method a request is never rejected because of pending queue overflow. If pending
queue overflow does occur then the only action that a user program can take is to set flags for itself
and perform a "suspend till I/0" call until outstanding I/O is complete for it and then examine the
flags and try to proceed from there.

40

All I/0 requests and

'segment load'

'unlock device'

should be followed by a status request to check that the request has been understood by TCS.

In order to simplify the understanding of with and without wait requests the following two pieces
of code are shown:

1) without wait

ASSIGN 10 TO IRET

CALL TCS (l,20001B,IA,4,I,IRET)

CALL TCS (53)

10 Statement

2) with wait

CALL TCS (1,1,IA,4,I)

10 Statement

These two examples perform exactly the same function as far as the user is concerned.

BUFFER AND VARIABLE CONTROL

The major factor to be considered with regard to buffer and variable control is whether overlay
segmentation is being used. If the whole of the user program is core resident then the problem is
greatly simplified, however for this discussion overlay segments will be assumed.

The major problem is to ensure that all buffers which are being used for current input/output
transfers remain core resident. It follows therefore that these buffers must not be embedded within
a program segment if there is any possibility of that segment being overlayed by another. For this
reason it is recommended that all buffers are held in COMMON. The buffer management routines
may then be used to control the buffers.

Because of the fact that segments can be overlayed by other segments any variables which the
segment requires to keep should also be kept in common. To simplify the control of these variables,
it is recommended that one pool of buffers are used as "data stacks" and that programs keep all
required variables in these data stacks. The "request identifier" which TCS requires with each I/0
call can contain the "data stack" pointer. In this way a separation of code and data is achieved (as
in the example program) that enables re-entrant overlayable code to be written.

41

APPENDIX

The sample program presented in this appendix illustrates a method of using TCS to perform a
simple function by means of a re-entrant subroutine. The problems associated with re-entrancy are
solved by means of a request identifier which is passed to TCS as part of each I/O request.

The main program in this example merely solicits input from the terminals. Whenever a terminal
input is complete, the subroutine (SSUB) is used to process the input and display the output on the
terminal. When the output is complete, the subroutine returns to the main program which then
requests further input from the terminal. In order for the subroutine to be re-entrant, all variables
used by the subroutine which are particular to a terminal must be saved in a "data stack." In this
way, code and data are separated and re-entrancy may easily be achieved.

One data stack is required for each terminal that the subroutine serves. The allocation of data stacks
is done by the calling program - not by the subroutine. The subroutine may therefore remain
ignorant of how many terminals are active. The data within a data stack must be entered by the
main program in the format expected by the subroutine. This is illustrated in Figure 4. The vertical
array index is passed to the subroutine as the stack pointer. A typical flow of control is as follows
(refer to figure 5):

1. input is requested from all terminals. Main program suspends until an I/0 is complete.

2. Terminal #1 responds; main program creates subroutine stack and calls subroutine.

3. Subroutine formats terminal input and requests disc read, passing the stack pointer to TCS.
Because this request is with wait, TCS may now schedule the main program to deal with another
terminal's completed input.

4. Main program accepts Terminal #2 input, creates another subroutine stack, and calls the
subroutine.

5. Subroutine formats the terminal input and requests a disc read, passing the stack pointer to
TCS.

6. The subroutine could, in theory, have up to 20 disc reads outstanding at any one time.

7. A disc read is completed and the subroutine is rescheduled.

A-1

8. The subroutine performs a status check to obtain the hardware status and the stack pointer
corresponding to the completed disc read.

9. The subroutine requests output to the terminal, passing the stack pointer to TCS. This request
is with wait and either the subroutine or the main program could be scheduled to deal with
another complete I/0.

10. When the terminal output is complete, the subroutine requests status from TCS which restores
the stack pointer for this completed I/0.

11. The subroutine returns to the main program via its data stack.

12. The main program requests input from the terminal and suspends itself.

x X+1 X+2 X+3

1 Return Addr Return Addr Return Addr

2 1/0 Buffer# 1/0 Buffer# 1/0 Buffer#

3 #of Chars #of Chars #of Chars

4 LU# LU# LU#

5 For Subroutine For Subroutine For Subroutine
Use Use Use

6 For Subroutine For Subroutine For Subroutine
Use Use Use

The vertical array index (X, X + 1, etc.) is passed to the subroutine.

Figure 4. Data Stacks for Subroutine

A-2

Main program
requests input
and suspends

..
An input operation is
complete; main program
creates data stack and
calls subroutine

I
I
I

Subroutine
formats input
and requests a
disc read

IE---------------------~ IE---------1
~

Subroutine

I
I
I
I

requests
output to
the terminal

1---~

T
I
I

I
I

..f.

~--------------------~

I
I
I

~-------,

+
Output to
terminal
complete; sub­
routine returns
to main program

•

I
if\

Main program
requests input
and suspends

--~~

...

NOTE: Whenever the main program is suspended or the subroutine is waiting for an 1/0 request to be
fulfilled, a TCS "interrupt" can occur. The "interrupt" is triggered by the fulfillment of a pre­
viously-issued 1/0 request (control passes to the return address associated with the particular
request). The solid arrows illustrate the main path and the dotted arrows illustrate the various
possible interrupt paths.

Figure 5. Sample Program Flow

A-3

PAGE 0001

0001 FTN4,l. 1 M
0002 PROGRAM RETY
0003 c

CFTN4••RELEASE 24177B••JULY, 1971)

0004 C THIS PROGRAM ILLUSTRATES THE METHODS USED WITH TCS
0005 c TO PROVIDE RE~ENTRANT suaROUTINES. ASSUME TME FOLLOWING
0006 C PROSL.EM, A SYSTEM WITH 20 TERMINALS WHIC~ CAN REQUEST
0007 C A RECORD FROM THE DISC TO BE DISPLAYED ON THE TERMINAL,
0008 C THE OPERATOR INPUT IS THE RECORD NUMBER,
0009 C A COMMON SUBROUTINE WILL BE USED TO OBTAIN THE RECORD
0010 C FROM THE DISC ANO OUTP~T IT TO THE TERMINALS,
0011 c
0012 C ASSUME TERMINAL LU #S OF 10 TO 29 INCLUSIVE
0013 c
0014 c
0015 C FIRST DIMENSION THE INPUT BUFFER ARRAY
0016 c
0017
0018
0019
0020
kj021
0022
0023
0024
0025
0026
0027
0028
002g
0030
0031
0032
0033
0034
0035
0036
0037
0038
003Q
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
005"11
0051

c
c
c

c
c
c

c
c
c

c
c
c

c
c
c

c
c
c
c
c
c

c
c
c
c
c

COMMON IN(2,20)

NOW OIMENSION THE OUTPUT BUFFER ARRAY

COMMON 10(128,20)

NOW DIMENSION A PARAMETER ARRAY

COMMON IP(6,20)

NOW OIMENSION A PENO ING QUC:UE FOR TCS

DIMENSION IPQ (180)

NOW DIMENSION AN ARRAY FOR SUBROUTINE

DIMENSION I1<(1)

NOW CREATE AN ARRAY MOLD I NG Fll..E NAME

DIMENSION IF(3)
OATA IFl2Hfli2HLE,2H3 I

NOW INITIATE TCS

CALL. TCS(82,IPQ 1 20,KK,0 1 0,0)

NOW OPEN THE Fil,.C:

CALL TCS(84,IF,1)

NOl'l REQUEST INPUT F'ROM AL.L TERMS

FIRST SET UP RETURN AODR

0052 ASSIGN 70 TO IRET
0rtJ53 c
A-4

RETURN PARAMETER

PAGE 0002 RETV (FTN4•~RELEASE 24177B~·JULY, 197\)

0054 C INITIATE INPUT
0055 c
0056 00 10 1•1,20
0057 ~U•I+Q
0058 10 CALL TCSC1,204008+LU,IN(l,I),2,I,IRET)
0059 c
0060 C NOW SUSPEND UNTIL AN INPUT 15 COMPLETE
0Pl61 c
0~52 99 CALL TCS(53)
0063 c
0064 C COME HERE WHEN AN INPUT IS COMPLETE
0065 c
0066 C GET STATUS ANO PARAMETER
0067 c
0P168 70 CALL TCSC79,ISTAT,lPAR,ILU,ILOG)
0069 c:
007~ C FOR THIS EXAMPLE OMIT INPUT VALIDATION ETC
0071 C NOW SET UP TO CALL SUBROUTINE
0072 C FIRST SPECIFY RETURN AODR ANO PUT IN SUBROUTINE
0073 C STACK
0074 ASSIGN 80 TO II
0075 IPC1,IPAR)•Il

c
c

0076
0077
~Vl78

0079
0080
0~81
~082
0"183
0084
~085
0086
V1087
0088
01('18Q
00SiV'I
0091
0092 c

NOW SET INPUT BUFFER INDEX IN PARAM STACK
c

IPC2 1 1PAR)•IPAR
c
{: NOW SET # OF INPUT CHARS IN STACI(
c

lP(3,IPAR)cIL,OG
c
c NOW SET LU• IN STACK
c

IP(4,IPAR)=IL.U
c
c NOW t:A~l SUBROUTINE
c

CAl..L SSUB(IPAR,IK)

0093 C COME HERE AFTER SUBROUTINE TO INITIATE INPUT AGAIN
0094 c
~095 80 I~=IK(l)
0096 CALL TCSC1,20400B+IPC4 1 IW),IN(1,IW),2 1 IW 1 IRET)
00Q7 GOTO 99
0098 ENO

*• NO ERRORS•

A-5

PAGE 0003 RETY

PROGRAM RETY
00000 000000
00001 01ti001X
000!tl2 000.003R
00003 026302R

COMMON INC2,20)
COMMON 10(128,20)
COMMON IP(6,20)
DIMENSION IPQ(180)
DIMENSION IKl1)
DIMENSION IFC3)

(FTN4••RtLEASE 241776••JUL.Y 1 1911)

NOP
JSB CLRIO
DEF •+1
JMP 00302

UATA If/2HFI 1 2HLE 1 2H3 I
00004 000000C DEF 00000C
00005 000050C DEf 00050C
00006 005050C DEF 05050C
0~007 000010R DEF •+1

H0274 ~00275R
tjSS 012l264
DEF ••1
BSS 00012l1

00276 000277R OEF ••1
0~277 043111 OCT 043111
00300 046105 OCT 046105
00301 031440 OCT 031440

CALL TCS(82 1 IPQ,20 1 KK,0,0,0)
00302 016002X JSB TCS
00303 000313R DEF 00313
00304 000526R DEF 00526
00305 000010R DEF 00010
00305 000521R OEf 00521
0~307 000527R DEF KK
00310 00~530R Off 00530
00311 000530R Off 00530
00312 000530R DEF 00530

CAL.~ TCS(84,IF,1)
Pll-1313 016002X
00314 000320R
00315 000531R
00316 000277R
00317 000553R

ASSIGN 70 TO IRET
00320 062322R
00321 002001
00322. 000366R
00323 072532R

00 10 1=1,20
00324 062553R
00325 072533R

LU•I+Q
00326
00327
00330

A-6

062536R
042533R
072535R

JSB
DEF
OEF
OEF
DEF

res
•+4
00b31
00277
00553

L.0/l •+2
RSS
L>Ef 00366
STA IRET

L.DA 00553
STA I

L.OA 00!:>36
ADA I
STA LU

(FTN4•~RELEASE 24177B~~JULY, 1971)

10 CALL TCS(1,20400B+LU,INC1,I),2,I,IRET)
00331 062535R LOA LU
00332 042537R ADA 00537
00333 072534R STA l.001
00334 066553R LOB 00553
0~335 ~02400 CLA
00336 016003X JSB .,MAP
00337 000004R DEF 00004
0~340 ~00553R DEF 00553
00341 ~00533R DEF l
00342 000520R DEF 00520
00343 072540R STA A,001
00344 016002X JSB TCS
~0345 000354R DEF •+7
00346 000553R DEF 0~553
00347 000534R DEF 1~001
00350 100540R DEF A,001,I
~0351 000520R OEf 00520
00352 000533R DEF I
00353 000532R DEF IRET
00354 062533R ~DA I
00355 042553R ADA 00553
00356 072533R STA l
00357 0~3004 CMA,INA
00360 042521R ADA 00521
00361 002021 SSA~RSS
~0362 026326R JMP 00326

99 CALL TCS(53)
~0363 016002X JSB TCS
00364 000366R DEf *+2
00365 000541R DEF 00541

70 CALL TCS(79,ISTAT,IPAR 1 lLU,ILOG)
00366 016002X JSB TCS
00367 000375R DEF *+6
00370 000542R DEF 00542
00371 000543R DEF !STAT
00372 000544R DEF IPAR
00373 000545R DEF l~U
00374 000546R DEF ILOG

ASSIGN 80 TO II
00375 062377R LOA *+2
0~376 002001 RSS
~0377 000455R Df.F 00455
00400 072547R STA II

IPC1,IPARl=II
~0401 066553R LOB 00553
00402 002400 CLA
00403 016003~ JSB ,.MAP
00404 0000~6R UEF 00006
00405 0~0553R UEF 00553
00406 000544R DEF IPAR
00407 000523R DEF 00523
00410 072540R STA A.001

~7

PAGE 0005 RETV CFTN4••RELEASE 24177B••JULV, 1971l

00411 062547R LOA II
0~412 172540R STA A.00111

IPC2,IPAR)•IP4R
00413 066553R LOB 00553
00414 002400 CLA
00415 ~1600JX JSB ,.MAP
0041b 000006R OEF 00006
00417 000520R D~F 00520
0042~ 0~0544R OEF IPAR
~0421 000523R DEf 00523
0~422 072540R STA A,001
00423 062544R LOA !PAR
00424 172540.R STA A.001,I

IP(3,IPAR)=IL.OG
00425 06o553R L.08 00553
0~426 002400 CLA
00427 016003X JSB ,,MAP
00430 000006R DEF 00006
00431 000525R DEF 00525
00432 000544R DEF IPAR
00433 0A0523R OEF 00523
00434 072540R STA A,001
00435 062546R LOA ILOG
0043d 172540R STA A.001 1 1

IP(4,IPAR)•Il..U
~0437 066553R LOB 00553
00440 0~2400 CLA
00441 016003X JS~ ,.MAP
00442 ~00006R DEF 00006
00443 000550R DEF 00550
00444 ~00544R DEF !PAR
00445 000o23R DEF 00523
00446 ~72540R STA A1 001
00447 062545R LOA ILU
0045~ 172540R STA A1 001rl

CALL SSUBCIPAR,IK)
00451 016004X JSB SSUB
~0452 000455R DEF •+3
00453 0.00544R Otf IPAR
0~454 000275R DEF 00275

80 lW=Ir<(1)
00455 062553R LOA 00o~3
00456 042552R ADA 00552
00457 042274R ADA 00274
0046~ 160000 LOA 0,I
0~4~1 072551R STA IW

CALL TCSC1,20400B+lPC4,IW),IN(1,IW),2,IW,IRET)
00462 066553R 1..06 00553
00463 002400 CLA
00464 016003X JSB ,.MAP
00465 000006R DEF 00006
00466 000550R DEF 00550

A-8

PAGE 121006 RETV CFTN4.,•RELEASE 24177B"""'JIJL. Y 1 1971)

00467 000551R DEF IW
00470 0011J523R UEF 00523
00471 160000 LOA 0,I
00472 0425371< AOA 00537
00473 072534~ STA I• '101
00474 066553k L.08 00553
0047!5 002400 CLA
00476 016003X JSS ,,.MAP
0~,477 0000fc'.!4R DEF !00004
(IJllJ50~ 0011l553R DEF 00f553
00501 i7!00551R DEF IW
00502 000520R DEF ~0520
00503 072540R STA A,ld01
1!10504 0161!!02X JSB TCS
1.!10505 000514k OEF •+7
00506 000553R OEf' 00553
0'1507 000534R DEF' I .001
0051 ill 100540R L)E f' A11001,I
l!J0511 00!d520R DEF 00520
00512 000551R UEF HI
00513 000532R DEF IRET

Go·ro 99
00514 026363R JMP 00363

ENO
0!ll515 !b16005X JS8 EXEC
0051t5 0VJ0520R DEF ••2
00517 000523R DEF 00523
00520 000002 OCT 0000~2
00521 000024 OCT 000024
00522 000200 OCT 000200
00523 000006 OCT 000006
00524 0t')0264 OCT 000264
00525 0Cll0003 OCT 00~003
00!)26 000122 OCT 000122

SSS 00k)01
00530 00001210 OCT 000000
~0531 000124 OCT 000124

BSS 00004
00536 000011 OCT 000011
00537 020400 oc·r 020400

BSS 00001
00541 000065 OCT 001de!65
00542 000117 UCT 0iiJ01l7

BSS 0000!>
00550 000004 oc·r 000004

BSS 00001
00502 177777 OCT 177777
005~3 000001 OCT 000001

L~099 ENOS

A-9

PAtiE 0007 RETV CFTN4~~RELEASE 24177B~~JUL.Y 1 197 0

SYMBOL TABL.E

NAME ADDRESS USAGE TYPE LOCATION

ft10 000331R STATEMENT NUMBER

4D70 000366R STATEMENT NUMBER

.-aei 000455R STATEMENT NUMBER

t'99 000363R STATEMENT NUMBER

CL.RIO 000001X SUBPROGRAM REAL EXTERNAL

EXEC 000005X SUBPROGRAM REAL EXTERNAL

I 000533R VARIABLE INTEGER L.OCAt..

IO 000050C ARRAYC*1*) INTEGER COMMON

lF 000277R ARRAY(*) INTEGER LOCAi,.

ll 000547R VARIABLE INTEGER 1..0CAL.

I I< 000275R ARRAY(•) INTEGER L.OCAI,.

!LOG 000546R VAIUABL.E INTEGER LOCAL.

IL.U 000545R VARIABL,E INTEGER LOCAL

IN 000000C ARRAY(•,•) INTEGER COMMON

IP 005050C ARRAY(•,11) INTEGER COMMON

IPAR 000544R VARIABLE INTEGER LOCAL.

IPQ 000010R ARRAY(*) INTEGER L.OCAL.

IRf T 000532R VARIABL.E INTEGER LOCAi,.

I STAT 0P10543R VARIABL.E INTEGER L.OCAL.

IW 000551R VARIABLE INTEGER 1..0CAL.

KI(000527R VARIABL.E INTEGER L.OCAL.

1.U 000~35R VARIABL.E INTEGER L.OCAL.

ssue 000004X SUBPROGRAM REAL EXTERNAL

TCS 0000fll2X SUBPROGRAM REAL EXTERNAL.

A-10

PAGE 0001 (FTN4~•RELEASE 241776••JULY, 1971)

0001 F'TN4,L,M
0002 SUBROUTINE SSUB(I,JK)
0003 COMMON IN(2 1 20),10(128,20),IP(6,20)
0004 DIMENSION IK(1J
0005 C I T~~ STACK MARKER
0006 C IS IS PASSED FROM THE MAIN (IPAR) AS A STACK POINTtR
0'1107 c
0008 C MOVE THE INPUT TO A BUFFER & CONVERT TO INTEGER
0009 DIMENSION KC2)
0010 ~(1)•1N(1,l)
0011 K(2)•1NC2,l)
0012 CALL CODE
~013 READ(K,•)J
0014 c
0015 C NOW READ THE RECORD
0Vi16 c
0~17 CALL TCS(14,3,IDC1,1)1128 1 1 1 J,l)
14018 c
0019 C WI~L COM~ HERE ~HEN INPUT IS OVER
0020 C CALL STATUS TO GET STACK POINTER
0021 c
0022 CALL TCS(79,ISTAT,l 1 LU,ILl
0023 c
0024 C NO~ PRINT ON THE TtRMINAL
0025 c
0026 CALL TCSC2 1 IP(4 1 l),IOC1 1 I),128,I)
0027 c
0028 C NOw FINO THE STACK POINTER AGAIN
0029 c
0030 CALL TCS(79,ISTAT,I,LU 1 IL'
0031 c
0032 C NOW SET STACK POINTER IN lK FOR THE MAIN
0033 c
0034 IK(1)=1
0035 c
0036 C NON RETURN TO MAIN PROGRAM
0037 c
0038 1R~IP(1 1 l)
0039 GOTO IR
004vJ ENO

** NO ERRORS*

A-11

PAGE 0002 SSUB CFTN4·~RELEASE 24177B••JULV, 1971)

SUBROUTINE SSU6(1,IK)
BSS 00002

00002 000000 NOP
000a3 015001X JSB .ENTR
00004 000000R DEF ••4
00005 026014R JMP 00014

COMMON INC2,20),10(128,20),IP(6,20)
DIMENSION IK(1)
DIMENSION K(2)
t<(1)=IN(1,I)

00006 000000C
00007 0000f">0t
00010 0050~0C
00011 000012R

00014 062210R
00015 042174H
00016 042011R
00017 072175R
00020 066210R
00021 002400
00022 016002)(
00023 000006R
00024 000210ft
00025 100000R
00026 000170R
00027 160000
00030 172175R

K (2) =IN (2,iI)
00031 062t70R
00032 042174R
00033 042011R
00034 0721751<
00035 066210R
000315 002400
0'1037 01 fH'll(l2X
00040 000006R
00041 rtl00170R
00042 10ftll00etR
00QJ43 000170R
00044 160000
0id045 172175R

CAL.L CODE
00046 016003)(
00047 k'!0005~R

REAOCK,•)J
A0P!50 0620t2R
00001 006404
00052 016004X
~0053 00000(11
00054 000057R
00055 015005)(
00056 00017 6R

A-12

DEF
DEF.
DEF
DEF
i;ss
L.DA
ADA
ADA
STA
L.06
CL.A
JSti
DEF
DEF
DEF
OEF
L.OA
STA

LOA
AOA
ADA
STA
L.OB
CL.A
JSB
DEF
DEF
DEF
OEF'
L.DA
STA

00"100C
[(l0fl!50C
05050C
*+1
00002
00210
00174
••5
A,001
00210

,.MAP
00006
00210
00000,1
00170
0,1
A1 0011l

00170
00174
00011
A,001
0021~

• II MAP
00006
00170
00000,1
00170
0,X
A,001,I

JSB CODE
DEF •• 1

L.OA 00012
CL.8, INB
JSB ,OIO,
OCT Pl0000A
DEF' 00057
JSB ,I!O,
DEF J

PAGE 0~03 SSUl:i CFTN4••RELEASE 24177B••JULY, 1971)

CALL TCS(1~ 1 3,1D(1,l),128,1,J,l)
0~0~7 066210~ LOB 00210
00060 0A2400 CLA
00~b1 016002X JS6 .,MAP
00062 000~07R DEF 00007
000b3 000210R OEF ~0210
~~064 100000R OEF 00000,l
00065 000172R DEF 00172
0~~66 072175R STA A,001
00001 01600sx JSb res
0~~70 000100R DEF ~0100
00071 000177R DEF 00177
~0~72 0A0200R O~F ~0200
~0073 l00175R UEf A,001,I
0~074 0~0172R DEF 0017~
00075 ~00210R DEF 00210
00076 000176R DEF J
00077 100000R DEF 00000 1 1

CALL TCS(79,lSTAT,lrLU,ILl
0010~ 016006X JSB TCS
0~101 0~0107R DEF •+6
001~2 ~00201R Off 002~1
00103 000202R OEF ISTAT
0~104 100000R DEF 00000,l
00105 ~00203R UEf LU
0010ij 000204~ DEF lL

CALL TCS(2,IP(4,l),ID(1,1) 1 12B,J)
00107 066210R LO~ 00210
~011~ 002400 ClA
00111 016002X JS6 ~,MAP
0~112 000010R UEr 00010
00113 000205~ OEf 00205
~~114 100~00R DEF ~000011
~0115 000173k OEF 00173
0~116 072175R STA A.~01
00117 066210R LO~ ~0210
00120 002400 CLA
00121 016002X JSB ••MAP
00122 000007R DEF 00007
00123 000210R DEF ~0210
00124 100000R DtF 0~000 1 1
00125 000172H Dff 00172
00126 072206k STA A.002
00121 010006X JSB res
00130 0~0136R DEF ••6
00131 000170R OEr 00170
~0132 100175R DEF A.001,r
00133 100206R DEF A,002,I
00134 000172R DEF 0~172
~0135 100A00R DEF 00000,I

A-13

PAGE 0004 SSUB CFTN4••RELEASE 241778••JULY, 1971)

CALL TCS(79,ISTAT,l,LU,IL)
00136 0161106)(JSB TCS
00137 00014t>R ·~ DEF •+6
W0140 000201R DEF 00201
00141 000202R OEf I STAT
00142 100000R DEF 00000,1
00143 0002031'(DEF LU
0k'.l 144 0002041'< OEf IL

Il<Ct)•I
00145 062210R LOA 00210
!H:'!146 042174R A[)A 00174
00147 042001R ADA 00001
001ti[}I 072175R STA A,001
00151 162000R L.OA 00000,1
00152 172175R STA A,001,l

IR::IPC1dl
00153 066210R t..DB 00210
00154 ~02400 CLA
00155 016002X JSB ,,MAP
i;,0156 0~001171R DEF 00010
00157 000210R DEF 00210
Ql0160 100000R DEF 00000,1
0etH51 000173R OEF 00173
00162 160000 LDA 0,I
~vit63 072207R STA IR

GOTO IR
00164 126207R JMP IR,I

END
0IO 165 126Cll02R JMP 1110002,I

BSS '1)0002
00170 000002 OCT 000002
00171 000024 OCT 000024
00172 000200 OCT 000200
0k1173 000006 OCT 000006
0V1174 177777 OCT 177777

l::ISS 00002
00171 000016 OCT 000016
00200 000003 OCT 000003
~~0201 000117 OCT 000117

t3SS 00003
00205 1!100004 OCT 000004

BSS 00002
00210 0QHrn01 OCT 000001

0041 ENO $

A-14

PAGE Q\005 SSUB (FlN4• .. Rt.LE:ASE 24177ti••JULY, 1971)

5YMBOL TABLE ,.
NAME ADORE.SS USAGE 1'YPE LOCATION

COUE 000e!03X SUl:H'ROGRAM REAL EXTEKNAL

I ~000001< VARIABLE INl'EGER DUMMY

10 0\.:H'l050C ARRAY(•,•) INTEGER COMMUN

l K f.:'101!Jl'J01 R ARRAY(•) INTEGER DUMMY

IL 0002ft14R VARIABLE 1N1EGER LOCAL.

IN rll(l!~00~C ARRAY(•,•) lNTEGE!-1 COMMON

IP ~~b0b0C ARl-<AY(•,•) LNTEGEk COMMON

IR e!Vl0207R VARIABL.E INTEGER L.OCAL

ISTAi 0firn202R VARlABL.E INTEGER LOCAL.

J 000176R VARIAbL.E INTEGER LOCAi..

K 000012R ARRAY(•) INTEGER LOCAL

LU 0002~3R VARIABLE INTEGER L.OCAL.

SSUB 0001ti6F< VARIABL.E REAL LOCAL.

TCS 000006)(SUBPROGRAM REAL EXTERNAL.

A-15

HP MANUAL PART NO. 5951-7307

MICROFICHE PART NO. 5951-7308

HEWLETT~ PACKARD

	000
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	xBack

