HEWLETT”? PACKARD

2100 Computer Systems

TERMINAL CoNTROL SYSTEM
USER’'S GUIDE

TERMINAL CONTROL SYSTEM
USER'S GUIDE

HEWLETT ﬁ PACKARD

Computer Systems

Printed: AUGUST 1973

HP Part No. 5951-7307
Microfiche Part No. 5951-7308

© Copyright, 1973, by HEWLETT-PACKARD COMPANY, 11000 Wolfe Road, Cupertino, California, 95014.
All rights reserved. Printed in the U.S.A.

PREFACE

The desire for instant access to “‘state-of-the-business” information is a dominant force in most
business planning activities. The ability to maintain current status information and to analyze and
update data in many different combinations is recognized as the key to a sound business infor-
mation system.

Managements across the country are combining the capabilities of the computer with modern
programming techniques to achieve more efficient operations, improved use of corporate resources,
tighter control and coordination of operating elements, and faster response to business transactions.
One such programming technique is Hewlett-Packard’s Terminal Control System (TCS).

This User’s Guide describes the overall structure and capabilities of TCS, the hardware and software
requirements, the calling sequences, and the proper methods of using TCS.

A familiarity with HP FORTRAN-IV or HP Assembler Language, and DOS-III is assumed. For
information on these subjects, refer to the following publications (the HP part number is shown in
parentheses):

e HP ASSEMBLER Manual (02116-9014)

® HP FORTRAN-IV Programmer’s Reference Manual (5951-1321)

® HP DOS-III Disc Operating System Manual (02100-90136)

iii

CONTENTS

Page

1 INTRODUCTION 1
2 TCS APPLICATIONS . 3
3 TCS CAPABILITIES 5
4 THE TCS ENVIRONMENT. 7
Software Requirements 7
Hardware Requirements . 1
Hardware Options 9

5 USERINTERFACE 1
TCS Subroutines 1
Initialization 13

OpenFile 15
DeviceUnlock 1le
ReturntoMain 1T

SegmentLoado 17

Status 18

Priority LevelChange 20

Pause 00000 ... 2

Suspend Until I/O Completion 23

Read/Write Without Wait. 23

File Read/Write WithoutWait 26

I/O Control WithoutWait 28

Read/Write WithWait 29

File Read/Write WithWait 31

I/O Control WithWait 38

Buffer Management 85
AllocationofBuffers 86

Release of Buffers 86

Buffer Inquiry 37

6 PROGRAMMING CONSIDERATIONS 89
Input/Output Processing 89

Buffer and Variable Control 41
APPENDIX — Sample Program A1l

section

INTRODUCTION 1

Hewlett-Packard’s Terminal Control System (TCS) provides the user with a modular and efficient
set of software tools which greatly enhances the input/output control, file access, and performance
capabilities of the HP 2100-series computer. TCS is a collection of routines providing a language
interface to a group of terminals and other I/O devices managed through the HP 2100 Disc
Operating System — Version 3 (DOS-III).

TCS minimizes the programming complexity for the user by handling such functions as:

Task (process) management
Message queuing

Dynamic priority scheduling
Device locking

File accessing

Segment loading

Of primary significance is its multiple terminal handling capability. With TCS, the user has available
a single, simple software interface through which he can manage many terminals and other I/O
devices. The FORTRAN user can run his problem program in a real-time, multi-process environment
as though he is using a simple read/write serial processing type system. Once the TCS environment is
established, the user’s impression may be that there is only one terminal on-line while TCS may, in
fact, be managing many terminals for him.

TCS greatly extends the range of applications that can be processed by an HP 2100-series computer.
An indication of the variety of possible applications is provided in section 2 of this manual. A prime
advantage of TCS is the very favorable price/performance ratio it offers when interfacing multiple
terminals and I/O devices to an HP 2100-series computer. Another advantage is that TCS runs under
DOS-III with all its inherent capabilities.

section

TCS APPLICATIONS 2

Applications for multiple terminal systems such as TCS span all user groupings — commercial,
industrial, scientific, military/aerospace —and vary widely in their functions, scope, and require-
ments.

Within the commercial area many different types of applications already exist and new ones are
being developed every day. A few examples are as follows:

Data collection and inventory control systems.
Multiple-warehouse order processing
Reservation processing

Branch banking information systems

Hospital information systems

Pharmacy prescription control

Instant credit checking

Truck or rail system management

Customer account inquiry processing

Information retrieval systems

Management information systems

The industrial area includes process control, on-line production control, automatic inspection
systems, and production data collection systems.

The scientific area principally involves the instrumentation of laboratories for physical and bio-
medical experimentation.

The military/aerospace area involves tactical and strategic command and control, range instrumen-
tation, count-down control, and so forth.

Functionally, the applications for multiple terminal systems may be divided into the following three
fundamental classes:

® DATA ENTRY. Gathering information at a number of locations and passing it to a central
processing point. Data collection systems are widely used to collect information concerning
orders, deliveries, inventory, and other operating information to provide management with
timely and reliable information with a minimum of manual handling and transcription.

® DATA DISTRIBUTION. Disseminating information generated or prdcessed at a central
facility.

e INQUIRY AND FILE UPDATING. Interrogating the central computer files. In this type of
application, the terminal equipment is normally operated on-line; that is, when access is
granted to the central computer, the inquiry is typed at the terminal. The inquiry is
simultaneously entered into the central computer’s memory where the stored program con-
ducts a file search for the requested information. The process is then reversed, that is, the reply
is sent out to the terminal. This type of system may also be used for updating the central
computer’s files.

A primary feature of TCS in its modular design: TCS can easily be adapted to meet the specific
needs of individual users. Consequently, TCS-controlled applications can be utilized to advantage in
any of the above-mentioned areas.

section

TCS CAPABILITIES 3

| e

TCS significantly increases the user’s ability to utilize the resources of the HP 2100-series computer.
TCS overcomes the limitations imposed by some similar systems on the number and type of
peripheral devices, overcomes the problems normally associated with the handling and control of
multiple terminals, and relieves the user of numerous ‘“housekeeping’ tasks.

The more salient capabilities of TCS are as follows:

® PRIORITY SCHEDULING. User programs can be run at any of 16 priority levels. Each user
task can re-specify its priority level at any time.

® NO-WAIT I/O. When a user issues an I/O request without wait, TCS returns control to the
calling program as soon as the I/O request is accepted. The I/O request has then been either
initiated or queued.

® QUEUING OF I/O REQUESTS. The user can issue more than one I/O request for a given
device without having to wait for a previous request to be fulfilled.

® WAIT I/O. When a user issues an I/O request with wait, TCS returns control to the user when
any outstanding I/O request is fulfilled. During the I/O wait time, other user tasks that are
ready are run.

® DEVICE LOCKING. Any user task may issue an I/O request that also locks the device. When
this happens, the requested I/O device is not available to any other task until either the original
task or the main program unlocks the device. All I/O requests made by other tasks to the
device while it is locked are queued in priority sequence and fulfilled after the device is
unlocked. Of course, one of these I/O requests can also lock the device as part of its requested
action.

o OPEN FILE. A user task may, at any time, request that a file be opened. After a file has been
opened, every read/write request to the opened file is performed in one disc access.

® OPEN SEGMENT. Using a TCS Initialization request, the user may specify at the beginning of
his program which segments of disc-resident code his particular application requires. An
“in-core” segment directory is maintained to reduce load times.

e DYNAMIC BUFFER MANAGEMENT. Buffer pools may be specified at any time. Buffers are
allocated and released dynamically in response to requests from the user’s program.

section

THE TCS ENVIRONMENT 4

The TCS environment is illustrated in Figure 1. Note that once TCS has been called the user does
not ordinarily interface directly with DOS-III. Instead, he initiates input/output operations by
issuing requests to TCS which, in turn, interfaces directly with DOS-III. However, the user may
issue calls directly to the DOS-III Executive if he so desires (see the dotted arrow in Figure 1), but
care must be taken when using TCS and DOS-III for controlling the same device; in general this is
not recommended. ’

SOFTWARE REQUIREMENTS

TCS operates under the HP 2100 Disc Operating System — Version 3 (DOS-III). The user writes his
application programs in-either HP Assembly Language or HP FORTRAN.

HARDWARE REQUIREMENTS

The minimum computer hardware required to support TCS is the minimum DOS-III hardware
configuration (refer to the DOS-III reference manual). The amount of core memory required to
support TCS is determined by adding the following core memory requirements together:

® The number of words of memory required by DOS-III.

® The number of words of memory required by TCS (1.5K words).

The number of words of memory required by the user for buffer space.

The number of words of memory required by the user for program space.

HP 2100-SERIES PROCESSOR

USER APPLICATION

(DOS-I11)

MULTIPLE TERMINALS

]

(0

OTHER PERIPHERALS

Printer

Card Reader

4ipy

Tape

Paper Tape

Figure 1. The TCS Environment

HARDWARE OPTIONS

The following HP 2100 computer hardware options are available:

Additional terminals and interface kits
A time base generator

Paper tape readers and punches

Line printers

Magnetic tape units

Card readers

Additional disc drives (the HP 2100 can accommodate a maximum of four HP 7900A/7901A
Disc Drives and a maximum of two HP 2883A Disc Drives)

Additional I/O channels (I/O extenders are available)

section

USER INTERFACE b5

TCS appears to the user as a set of subroutine calls. As illustrated in Figure 2, TCS functions as a
scheduler for processing I/O requests in a fast, efficient manner. I/O calls which the user would
normally make to the DOS-III Executive are made instead to TCS. However, there are certain
requests which must still be made directly to DOS-III (in the form of EXEC calls) instead of to
TCS. These include:

® Dynamic status requests
® Status requests for a particular device
® Work area limit requests
® Requests for time of day

Any valid EXEC calls may be used, but care must be taken when using TCS and EXEC for
controlling the same device. It is permissible to use TCS for terminal requests and EFMP for disc
handling. However, it is not permitted to use both TCS and EFMP for disc handling; the
programmer may use either for that purpose but not both. In general it is not recommended to mix
EXEC and TCS calls to the same device.

TCS SUBROUTINES
The TCS user-callable subroutines may be divided into three functional categories, as follows:
I. In-Core Requests

Initialization

Open File

Device Unlock

Suspend Until I/O Completion
Return to Main

Segment Load

Status

Priority Level Change

Pause

11

1/0 requests.

User call to TCS,

Interpret user call.

In-core requests.

Put request
in queue.

Initiate all possible
1/0 requests.

U N
I v '
' DOS-1II l
| Executive |
I]
|

v

Process the
request.

Schedule next
user task.

Set up return.

Go to user code.

Figure 2. TCS User Interface

12

II. Input/Output Without Wait

° Read/Write
° File Read/Write
° I/0 Control

III. Input/Output With Wait

o Read/Write
° File Read/Write
° I/O Control

The calling sequences are described in detail on the following pages.

Initialization

The three main purposes of this request are:

® to supply TCS with the name and size of the pending queue array

® to supply TCS with the name of the segment directory array

® to specify which disc-resident program segments are required by the user’s main program.

The pending queue is an array in the user area of core memory used by TCS for holding all
necessary information about I/O requests which cannot yet be initiated. The segment directory is a
permanently core-resident array used by TCS for maintaining necessary information about the
required program segments. The program segments specified in the request must previously have

been stored on the disc using DOS-III.

TCS must first be initialized using this request before it will accept any read/write, file read/write,
or I/O control requests. It is only necessary to initialize TCS once during a given run.

The FORTRAN calling sequence is:

CALL TCS (ICOD,IPQ,MAXPQ,INPQ, ISNAM, ISNUM,ISDIR)

where ICOD is the decimal constant 82.
IPQ is the name of the pending queue array.
MAXPQ is the name of a variable which contains a value specifying the maximum number of
entries which the pending queue can accommodate. Each entry in the pending

queue is 9 words long. Therefore, the value supplied must be the overall length of
the pending queue (in words) divided by 9.

13

INPQ is the name of a variable whose value will constantly be set by TCS to reflect the
current number of entries in the pending queue.

ISNAM is the name of an array which contains the names of all program segments which are
required by the user’s main program. Each entry in this array is three words long
and contains the name (as five ASCII characters followed by a space) of one of the
required program segments.

ISNUM is the name of a variable which contains a decimal value specifying the number of
program segments required by the user’s main program (that is, the length of
ISNAM divided by 3). Maximum allowable value = 127.

ISDIR is the name of the segment directory array. Each entry in the segment directory is
11 words long. Therefore, the length of the array is equal to ISNUM multiplied
by 11.

All of the above parameters must be present. If the variable ISNUM has the value zero, then ISNAM
and ISDIR may be dummy parameters.

The assembly language calling sequence is:

JSB TCS
DEF #*+8
DEF ICOD
DEF PQ
DEF MAXPQ
DEF INPQ
DEF ISNAM
DEF ISNUM
DEF ISDIR

ICOD DEC 82
PQ BSS «x

MAXPQ DEC x/9
INPQ BSS 1
ISNAM BSS y

ISNUM DEC y/3
ISDIR BSS =z

where x is the length (in words) of the pending queue array.

y is the length (in words) of the array which contains the names of all program segments
which are required by the user’s main program.

z is the length (in words) of the segment directory array.

14

Open File

This request loads the file directory information for the specified file from disc into core memory.
An open file request may be executed whenever the disc is not busy, but would normally be
executed once at the commencement of main program execution for each file which is to be used.
Up to 16 files may be opened by a user’s program at any given time. If a file has already been
opened with the same reference number (see INUM in the calling sequences below), it will be closed
and the new one will be opened for that reference number.

The FORTRAN calling sequence is:
CALL TCS (ICOD,INAM,INUM)

where ICOD is the decimal constant 84.

INAM is the name of an array which contains (as five ASCII characters followed by a space)
the name of the file which is to be opened.

INUM is a decimal constant within the range 1-16 by which the file is to be referenced by the
user’s program.

The assembly language calling sequence is:

JSB TCS
DEF *+4
DEF ICOD
DEF INAM
DEF INUM

ICOD DEC 84
INAM DEF array-name
INUM DEC reference-#

where array-nameis the name of an array which contains (as five ASCII characters followed by a
space) the name of the file which is to be opened.

reference-#is a decimal value within the range 1-16 by which the file is to be referenced by
the user’s program.

15

Device Unlock

This request unlocks an input/output device. If the device was locked by the main program, then
only the main program can unlock it. If the device was locked by a program segment, then only that
segment or the main program can unlock it.

Note that the device is unlocked as soon as the request is accepted by TCS. Therefore, the request
must not be issued until all outstanding critical I/O has been completed for the calling program by

the particular device.

The FORTRAN calling sequence is:
CALL TCS (ICOD,LU)

where ICOD is the decimal constant 52.

LU is a decimal constant specifying the logical unit number of the device which is to be
unlocked.

The assembly language calling sequence is:

JSB TCS
DEF *+3
DEF ICOD
DEF LU

ICOD DEC 52
LU DEC logical-unit-number

where logical-unit-numberis a decimal value specifying the logical unit number of the device which
is to be unlocked.

16

Return to Main

This request passes control from a user segment to the main program. If a return to main request is
executed in the main program, control merely passes to the next sequential instruction in the main
program. If a return to main request is executed in a user segment which was called by another user
segment, control returns to the main program as though from the user segment which was called by
the main program.

The FORTRAN calling sequence is:
CALL TCS (ICOD)

where ICOD is the decimal constant 54.
The assembly language calling sequence is:

JSB TCS
DEF *+2
DEF ICOD

ICOD DEC 54

Segment Load

This request loads a program segment (from the disc into core memory) and starts it executing in
the minimum possible time. The particular program segment must previously have been stored on
the disc using DOS-III and the segment name must previously have been declared in a TCS
initialization request. A segment load request may be issued either by the main program or by a
program segment.

The FORTRAN calling sequence is:
CALL TCS (ICOD,ISEG,IPRI)

where ICOD is the decimal constant 8.

ISEG is a decimal constant specifying the relative number of the program segment name
within the segment name array supplied in the most recent TCS initialization request.
For example, an ISEG of 1 specifies the first declared program segment, an ISEG of 2
specifies the second declared program segment, and so forth.

17

IPRI is a decimal constant specifying the priority level (0-15) at which the particular pro-
gram segment is to be run. 15 is the highest priority level and O is the lowest. More
than one program segment may be assigned to the same priority level. The IPRI
parameter is optional. If it is omitted, the priority level is set to 0.

The assembly language calling sequence is:

JSB TCS
DEF *+4
DEF ICOD
DEF ISEG
DEF IPRI

ICOD DEC 8
ISEG DEC segment-number
IPRI DEC priority-level

where segment-number is a decimal value specifying the relative number of the program segment
name within the segment name array supplied in the most recent TCS
initialization request. For example, a segment-number of 1 specifies the first
declared program segment, a segment-number of 2 specifies the second
declared program segment, and so forth.

priority-level is a decimal value specifying the priority level (0-15) at which the particular
program segment is to be run. 15 is the highest priority level and O is the

lowest. More than one program segment may be assigned to the same
priority level.

Status

This request causes TCS to return status information to the calling program regarding a previously-
initiated T'CS request. The status request is used for the following two purposes:

° to obtain status information about a completed operation.

® to determine whether or not a TCS request (just issued) was considered valid by TCS.

18

The FORTRAN calling sequence is:
CALL TCS (ICOD ISTAT,IPAR ,ILUN,ITLOG)

where ICOD is the decimal constant 79.

ISTAT is the name of a variable. If status is being returned for a completed operation, the
variable contains the hardware status bits (as defined by DOS-III) for the device
associated with the operation. If status is being returned regarding the validity of a
TCS request, the variable contains one of the following values (note that the
non-zero numbers are negative):

0 = request valid

-1 = program segment cannot be found (initialization requests
only)

-2 = pending queue is full (read/write, file read/write, pause, or
I/O control requests only)

- 3 = the request in question could not be understood by TCS
-4 = invalid segment number (segment load requests only)

-5 = file not opened or invalid record number (file read/write
requests only)

-6 = TCS not initialized (read/write, file read/write, or I/O con-
trol requests only)

-7 = invalid unlock request (the segment trying to unlock the
device is not the segment which locked the device)

IPAR is the name of a variable. If status is being returned for a completed operation, the
variable contains the request identifier (IPRM) which was included in the request
associated with the operation. For error returns, the contents of the variable are
unspecified.

ILUN is the name of a variable. If status is being returned for a completed operation, the
variable contains the logical unit number of the device associated with the operation.

For error returns, the contents of the variable are unspecified.
ITLOG is the name of a variable. If status is being returned for a completed operation, the
variable contains the transmission log (as defined by DOS-III) for the operation. For

error returns, the contents of the variable are unspecified.

IPAR, ILUN, and ITLOG may be omitted. However, if one is present, all three must be present.

19

A status request should be issued after every TCS request to determine whether or not the
particular request was accepted by TCS. If a request is not accepted by TCS, and if it was not
immediately followed by a status request, then the particular request is forever “‘lost”.

The assembly language calling sequence is:

JSB TCS
DEF *+6
DEF ICOD
DEF ISTAT
DEF IPAR
DEF ILUN
DEF ITLOG

ICOD DEC 79
ISTAT BSS
IPAR BSS
ILUN BSS
ITLOG BSS

T

where the contents of ISTAT, IPAR, ILUN, and ITLOG will be set as described for the FORTRAN
calling sequence above.

Priority Level Change

This request specifies the priority level (0-15) at which the calling program is to run. The new
priority level takes effect as soon as the request is accepted by TCS. 15 is the highest priority and O
- is the lowest.

The main program initially runs at priority level 0. Each program segment initially runs at the
priority level specified in the TCS request which loaded it.

I/O requests are assigned the priority level at which the calling program is running at the time the
I/0 request is issued. Once an I/O request is issued, its priority level is permanently established and
will not be affected by subsequent priority level change request.

If control passes to the return address of an I/O request executed at one priority level while the
calling program is running at another priority level, the priority level of the calling program is
changed to that of the completed I/O request (as though a priority level change request was
execufed).

20

The FORTRAN calling sequence is:
CALL TCS (ICOD,IPRI)

where ICOD is the decimal constant 71.
IPRI is a decimal constant within the range 0-15 specifying the new priority level.
The assembly language calling sequence is:

JSB TCS
DEF *+3
DEF ICOD
DEF IPRI

ICOD DEC 71
IPRI DEC priority-level

where priority-level is a decimal constant within the range 0-15 specifying the new priority level.

Pause

This is a dummy input request which causes no I/O activity. It is used for suspending the calling
program until all completed I/O requests of a higher or equal priority level are processed. A pause
request would be necessary, for example, if the calling program is unable to continue execution
because there are no buffers available (refer to ‘“Buffer Management’’ later in this section). When
the calling program is restarted, it may then check the required resource. If the resource is available,
the program can continue execution; if the resource is still unavailable, the program can execute
another pause request. When control eventually returns to the calling program, control passes to the
next sequential instruction.

21

The FORTRAN calling sequence is:

CALL TCS (ICOD,ICON,IB,IBL,IPRM)
where ICOD is the constant 1.

ICON is th tal tant 77.
1s the octal cons Required by TCS; no particular

IB is the constant 1. significance to user.

IBL is the constant 1.

IPRM is the name of a variable which contains a decimal value within the range 0-255. This
value will identify the particular pause request when the user’s program subsequently
executes TCS status requests.

The assembly language calling sequence is:

JSB TCS
DEF #*+6
DEF ICOD
DEF ICON
DEF 1B
DEF IBL
DEF IPARM

ICOD DEC 1
ICON OCT 177
IB DEC 1
IBL DEC 1
IPRM DEC identifier

where identifier is a decimal value within the range 0-255. This value will identify the particular
pause request when the user’s program subsequently executes TCS status requests.

22

Suspend Until I/0 Completion

This request suspends the calling program until any previously-issued I/O request is fulfilled. If the
calling program issues a series of I/O requests (without wait) and then issues a suspend until I/O
completion request, the calling program is suspended until any I/O request is fulfilled. At that time,
the calling program is reactivated and control passes to the return address associated with the
particular I/O request. The only time such an “interrupt” can occur is when the currently-active
program is suspended as the result of an I/O with wait, pause, or suspend until I/O completion
request.

The most significant difference between this request and a pause request is that pause has a return
address (the next sequential instruction) associated with it whereas suspend does not. With a pause
request, control returns to the next sequential instruction after all completed I/O requests of a
higher or equal priority level are processed. With a suspend request, control passes to the return
address associated with the next fulfilled I/O request (thereafter, program flow is unrelated to the
suspend request).

The FORTRAN calling sequence is:
CALL TCS (ICOD)

where ICOD is the decimal constant 53.
The assembly language calling sequence is:

JSB TCS
DEF *+2
DEF ICOD

ICOD DEC 53

Read/Write (Without Wait)

This request causes TCS to initiate an input/output operation. For input operations, the data may be
read from any input device or from the work area of the disc. For output operations, the data may
be sent to any output device or to the work area of the disc. As soon as the request is accepted by
TCS, control passes to the next sequential instruction in the calling program. The I/O operation
may or may not be initiated immediately, depending upon whether or not the specified I/O device
is free. If the device is busy, the request is placed in the pending queue; if the device is free, the
operation is initiated immediately. When the operation is finished, control passes to the return
address specified in the calling sequence.

23

The FORTRAN calling sequence is:
CALL TCS (ICOD,ICON,IBUF,IBUFL,ITRAK,ISECT,IPRM,IRET)

where ICOD is the constant 1 or 2. 1 specifies read and 2 specifies write.

ICON is an octal control word. The format of the control word is as described for the
CONWD parameter of the Read/Write Exec Call in section III of the HP DOS-III
Disc Operating System reference manual (part number 02100-90136) with the
exception that the sign of the control word determines whether or not the specified
device will be locked. If the sign bit is 1, the device will be locked; if the sign bit is
0, the device will not be locked.

IBUF is the name of the input or output buffer array.
IBUFL is a decimal constant specifying the length of the I/O buffer. If IBUFL is positive, it
is interpreted as the number of words; if IBUFL is negative, it is interpreted as the

number of bytes.

*[TRAK is a decimal constant specifying the address of the first track to be read from or
written into in the work area of the disc.

*[SECT is a decimal constant specifying the address of the first sector to be read from or
written into in the work area of the disc. '

IPRM is the name of a variable which contains a decimal value within the range 0-255.
This value will identify the particular I/O operation when the user’s program subse-

quently executes TCS status requests.

IRET is the name of a variable which contains the address to which control is to be passed
when the operation is finished.

*If the data is not to be read from or written into the work area of the disc, then ITRAK and ISECT
may be omitted entirely.

24

The assembly language calling sequence is:

JSB TCS

DEF *+n (n=9 if read/write is from or to the work area of the disc;
DEF ICOD otherwise, n=17)

DEF ICON

DEF IBUF

DEF IBUFL

DEF ITRAK (Included only if the read/write is from or

DEF ISECT to the work area of the disc)

DEF IPRM

DEF IRET

ICOD DEC 1 or 2 (1=read; 2=write)
ICON OCT control-word
IBUF BSS n

IBUFL DEC n (or-2n)

ITRAK DEC track-address (Included only if the read/write is
ISECT DEC sector-address from or to the work area of the

disc)
IPRM DEC identifier
IRET DEF return-address

where control-word is an octal control word. The format of the control word is as described for
the CONWD parameter of the Read/Write Exec Call in section III of the HP
DOS-III Disc Operating System reference manual (part number 02100-90136)
with the exception that the sign of the control word determines whether or
not the specified device will be locked. If the sign bit is 1, the device will be
locked; if the sign bit is 0, the device will not be locked.

track-address is a decimal constant specifying the address of the first track to be read from
or written into in the work area of the disc.

sector-address is a decimal constant specifying the address of the first sector to be read from
or written into in the work area of the disc.

identifier is a decimal constant within the range 0-255. This value will identify the
particular I/O operation when the user’s program subsequently executes TCS

status requests.

return-address is the address to which control is to be passed when the operation is finished.

25

In the buffer-definition psuedo-instruction (IBUF BSS n), the buffer length is specified as the
number of words. In the subsequent psuedo-instruction, the buffer length (IBUFL) is specified
either as the number of words or as the number of bytes (positive value=number of words; negative
value=number of bytes).

File Read/Write (Without Wait)

This request causes TCS to initiate a disc read/write operation in which data is read from or written
into a disc-resident user file. As soon as the request is accepted by TCS, control passes to the next
sequential instruction in the calling program. The read/write operation may or may not be initiated
immediately, depending upon whether or not the specified disc drive is free. If the disc drive is
busy, the request is placed in the pending queue; if the disc drive is free, the operation is initiated
immediately. When the operation is finished, control passes to the return address specified in the
calling sequence.

The FORTRAN calling sequence is:
CALL TCS (ICOD,ICON,IBUF,IBUFL,INUM,ISECT,IPRM,IRET)

where ICOD is the decimal constant 14 or 15. 14 specifies read and 15 specifies write.

ICON is an octal control word. The format of the control word is as described for the
CONWD parameter of the Read/Write Exec Call in section III of the HP DOS-III Disc
Operating System reference manual (part number 02100-90136) with the exception
that the sign of the control word determines whether or not the specified device will
be locked. If the sign bit is 1, the device will be locked; if the sign bit is 0, the device
will not be locked.

IBUF is the name of the input or output buffer array.

IBUFL is a decimal constant specifying the length of the I/O buffer. If IBUFL is positive, it is
interpreted as the number of words; if IBUFL is negative, it is interpreted as the
number of bytes.

INUM is a decimal constant within the range 1-16 specifying which file is to be read from or
written into. This value corresponds to the INUM parameter in the TCS open file
request for the particular file.

ISECT is a decimal constant specifying the relative address of the first sector in the specified
file to be read from or written into (0 through n).

IPRM is the name of a variable which contains a decimal value within the range 0-255. This
value will identify the particular I/O operation when-the user’s program subsequently

executes TCS status requests.

IRET is the name of a variable which contains the address to which control is to be passed
when the operation is finished.

26

The assembly language calling sequence is:

JSB TCS
DEF *+9
DEF ICOD
DEF ICON
DEF IBUF
DEF IBUFL
DEF INUM
DEF ISECT
DEF IPRM
DEF IRET

ICOD DEC 14 or 15 (14=read; 15=write)
ICON OCT control-word
IBUF BSS n
IBUFL DEC n (or -2n)
INUM DEC file-identifier
ISECT DEC sector-address
IPRM DEC request-identifier
IRET DEF return-address

where control-word is an octal control word. The format of the control word is as described for
the CONWD parameter of the Read/Write Exec Call in section III of the HP
DOS-III Disc Operating System reference manual (part number 02100-
90136) with the exception that the sign of the control word determines
whether or not the specified device will be locked. If the sign bit is 1, the
device will be locked; if the sign bit is 0, the device will not be locked.

file-identifier is a decimal constant within the range 1-16 specifying which file is to be
read from or written into. This value corresponds to the INUM parameter
in the TCS open file request for the particular file.

sector-address is a decimal constant specifying the relative address of the first sector in the
specified file to be read from or written into (0 through n).

request-identifier is a decimal constant within the range 0-255. This value will identify the
particular I/O operation when the user’s program subsequently executes

TCS status requests.
return-address is the address to which control is to be passed when the operation is

finished.

27

In the buffer-definition psuedo-instruction (IBUF BSS n), the buffer length is specified as the
number of words. In the subsequent psuedo-instruction, the buffer length (IBUFL) is specified
either as the number of words or as the number of bytes (positive value=number of words; negative
value=number of bytes).

I/0 Control (Without Wait)

This request causes TCS to initiate an input/output control operation. As soon as the request is
accepted by TCS, control passes to the next sequential instruction in the calling program. The 1/O
-control operation may or may not be initiated immediately, depending upon whether or not the
specified I/O device is free. If the device is busy, the request is placed in the pending queue; if the
device is free, the operation is initiated immediately. When the operation is finished, control passes
to the return address specified in the calling sequence.

The FORTRAN calling sequence is:
CALL TCS (ICOD,ICON,IPAR,IPRM,IRET)

where ICOD is the constant 3.

ICON is an octal control word. The format of the control word is as described for the
CONWD parameter of the I/O Control Exec Call in section III of the HP DOS-III Disc
Operating System reference manual (02100-90136) with the exception that the sign of
the control word determines whether or not the specified device will be locked. If the
sign bit is 1, the device will be locked; if the sign bit is 0, the device will not be locked.

IPAR is a device-dependent control constant. This is not required for some devices and may
be omitted if not needed.

IPRM is the name of a variable which contains a decimal value within the range 0-255. This
value will identify the particular I/O operation when the user’s program subsequently

executes TCS status requests.

IRET is the name of a variable which contains the address to which control is to be passed
when the operation is finished.

28

The assembly language calling sequence is:

JSB TCS

DEF *+6

DEF ICOD
DEF ICON
DEF IPAR
DEF IPRM
DEF IRET

ICOD DEC 3

ICON OCT control-word
IPAR DEC n

IPRM DEC identifier
IRET DEF return-address

where control-word is an octal control word. The format of the control word is as described for the
CONWD parameter of the I/O Control Exec Call in section III of the HP
DOS-III Disc Operating System reference manual (02100-90136) with the
exception that the sign of the control word determines whether or not the
specified device will be locked. If the sign bit is 1, the device will be locked; if
the sign bit is 0, the device will not be locked.

n is a device-dependent decimal control constant. This is not required for some
devices and may be omitted if not needed.

identifier is a decimal constant within the range 0-255. This value will identify the
particular I/O operation when the user’s program subsequently executes TCS
status requests.

return-address is the statement label to which control is to be passed when the operation
is finished.

Read/Write (With Wait)

This request causes TCS to initiate an input/output operation. For input operations, the data may
be read from any input device or from the work area of the disc. For output operations, the data
may be sent to any output device or to the work area of the disc. The I/O operation may or may
not be initiated immediately, depending upon whether or not the specified I/O device is free. If the
device is busy, the request is placed in the pending queue; if the device is free, the operation is
initiated immediately. After issuing this request, the calling program is suspended. When control
eventually returns to the calling program, control passes to the next sequential instruction. While
the calling program is waiting for the I/O request to be fulfilled, a previously-initiated I/O request
may be fulfilled. In such a case, control passes to the return address associated with the particular
I/O request. The only time such an ““interrupt’ can occur is when the currently-active program is
suspended as the result of an I/O with wait, pause, or suspend until I/O completion request.

29

The FORTRAN calling sequence is:
CALL TCS (ICOD,ICON,IBUF,IBUFL,ITRAK,ISECT,IPRM)

where ICOD is the constant 1 or 2. 1 specifies read and 2 specifies write.

ICON is an octal control word. The format of the control word is as described for the
CONWD parameter of the Read/Write Exec Call in section III of the HP DOS-III
Disc Operating System reference manual (part number 02100-90136) with the
exception that the sign of the control word determines whether or not the specified
device will be locked. If the sign bit is 1, the device will be locked; if the sign bit is
0, the device will not be locked.

IBUF is the name of the input or output buffer array.

IBUFL is a decimal constant specifying the length of the I/O buffer. If IBUFL is positive, it
is interpreted as the number of words; if IBUFL is negative, it is interpreted as the
number of bytes.

*ITRAK is a decimal constant specifying the address of the first track to be read from or
written into in the work area of the disc.

*[SECT is a decimal constant specifying the address of the first sector to be read from or
written into in the work area of the disc.

IPRM is the name of a variable which contains a decimal value within the range 0-255.
This value will identify the particular I/O operation when:the user’s program
subsequently executes TCS status requests.

*If the data is not to be read from or written into the work area of the disc, then ITRAK and
ISECT may be omitted entirely.

The assembly language calling seQuence is:

JSB TCS

(n=8 if read/write is from or to the work
DEF *+4n

area of the disc; otherwise, n=6)

DEF ICOD

DEF ICON

DEF IBUF

DEF IBUFL |

DEF ITRAK | (Included only if the read/write is from
DEF ISECT or to the work area of the disc)

DEF IPRM

30

ICOD DEC 1 or 2 (1=read; 2=write)
ICON OCT control-word
IBUF BSS n

IBUFL DEC n (or -2n)

ITRAK DEC track-address (Included only if the read/write is from
ISECT DEC sector-address or to the work area of the disc)

IPRM DEC identifier

where control-word is an octal control word. The format of the control word is as described for the
CONWD parameter of the Read/Write Exec Call in section III of the HP
DOS-III Disc Operating System reference manual (part number 02100-90136)
with the exception that the sign of the control word determines whether or
not the specified device will be locked. If the sign bit is 1, the device will be
locked; if the sign bit is 0, the device will not be locked.

track-address is a decimal constant specifying the address of the first track to be read from
or written into in the work area of the disc.

sector-address is a decimal constant specifying the address of the first sector to be read from
or written into in the work area of the disc.

identifier is a decimal constant within the range 0-255. This value will identify the
particular I/O operation when the user’s program subsequently executes TCS
status requests.

In the buffer-definition psuedo-instruction (IBUF BSS n), the buffer length is specified as the
number of words. In the subsequent psuedo-instruction, the buffer length (IBUFL) is specified
either as the number of words or as the number of bytes (positive value=number of words; negative
value=number of bytes).

File Read/Write (With Wait)

This request causes TCS to initiate a disc read/write operation in which data is read from or written
into a disc-resident user file. The I/O operation may or may not be initiated immediately, depending
upon whether or not the disc drive is free. If the disc drive is busy, the request is placed in the
pending queue; if the disc drive is free, the operation is initiated immediately. After issuing this
request, the calling program is suspended. When control eventually returns to the calling program,
control passes to the next sequential instruction. While the calling program is waiting for the I/O
request to be fulfilled, a previously-initiated I/O request may be fulfilled. In such a case, control
passes to the return address associated with the particular I/O request. The only time such an
“interrupt’’ can occur is when the currently-active program is suspended as the result of an I/O with
wait, pause, or suspend until I/O completion request.

31

The FORTRAN calling sequence is:
CALL TCS (ICOD,ICON,IBUF,IBUFL,INUM,ISECT,IPRM)

where ICOD is the decimal constant 14 or 15. 14 specifies read and 15 specifies write.

ICON is an octal control word. The format of the control word is as described for the
CONWD parameter of the Read/Write Exec Call in section III of the HP DOS-III Disc
Operating System reference manual (part number 02100-90136) with the exception
that the sign of the control word determines whether or not the specified device will
be locked. If the sign bit is 1, the device will be locked; if the sign bit is 0, the device
will not be locked.

IBUF is the name of the input or output buffer array.

IBUFL is a decimal constant specifying the length of the I/O buffer. If IBUFL is positive, it is
interpreted as the number of words; if IBUFL is negative, it is interpreted as the
number of bytes.

INUM is a decimal constant within the range 1-16 specifying which file is to be read from or
written into. This value corresponds to the INUM parameter in the TCS open file
request for the particular file.

ISECT is a decimal constant specifying the relative address of the first sector in the specified
file to be read from or written into (0 through n).

IPRM is the name of a variable which contains a decimal value within the range 0-255. This
value will identify the particular I/O operation when the user’s program subsequently
executes TCS status requests.

The assembly language calling sequence is:

JSB TCS
DEF *+8
DEF ICOD
DEF ICON
DEF IBUF
DEF IBUFL
DEF INUM
DEF ISECT
DEF IPRM

ICOD DEC 14 or 15 (14=read; 15=write)
ICON OCT control-word

32

IBUF BSS n
IBUFL DEC n (or -2n)
INUM DEC file-identifier
ISECT DEC sector-address
IPRM DEC request-identifier

where control-word is an octal control word. The format of the control word is as described for
the CONWD parameter of the Read/Write Exec Call in section III of the HP
DOS-III Disc Operating System reference manual (part number 02100-
90136) with the exception that the sign of the control word determines
whether or not the specified device will be locked. If the sign bit is 1, the
device will be locked; if the sign bit is 0, the device will not be locked.

file-identifier is a decimal constant within the range 1-16 specifying which file is to be
read from or written into. This value corresponds to the INUM parameter in
the TCS open file request for the particular file.

sector-address is a decimal constant specifying the relative address of the first sector in the
specified file to be read from or written into (0 through n).

request-identifier is a decimal constant within the range 0-255. This value will identify the
particular I/O operation when the user’s program subsequently executes
TCS status requests.

In the buffer-definition psuedo-instruction (IBUF BSS n), the buffer length is specified as the
number of words. In the subsequent psuedo-instruction, the buffer length (IBUFL) is specified
either as the number of words or as the number of bytes (positive value=number of words; negative
value=number of bytes).

I/0 Control (With Wait)

This request causes TCS to initiate an input/output control operation. The I/O control operation
may or may not be initiated immediately, depending upon whether or not the specified I/O device
is free. If the device is busy, the request is placed in the pending queue; if the device is free, the
operation is initiated immediately. After issuing this request, the calling program is suspended at
least until the request has been fulfilled. When control eventually returns to the calling program,
control passes to the next sequential instruction. While the program is waiting for the I/O control
request to be fulfilled, a previously-initiated I/O request may be fulfilled. In such a case, control
passes to the return address associated with the particular I/O request. The only time such an
“interrupt’ can occur is when the currently-active program is suspended as the result of an I/O with
wait, pause, or suspend until I/O completion request.

33

The FORTRAN calling sequence is:

CALL TCS (ICOD,ICON,IPAR,IPRM)

where ICOD is the constant 3.

ICON is an octal control word. The format of the control word is as described for the
CONWD parameter of the I/O Control Exec Call in section III of the HP DOS-III Disc
Operating System reference manual (02100-90136) with the exception that the sign of
the control word determines whether or not the specified device will be locked. If the
sign bit is 1, the device will be locked; if the sign bit is 0, the device will not be locked.

IPAR is a device-dependent control constant. This is not required for some devices and may be
omitted if not needed.

IPRM is the name of a variable which contains a decimal value within the range 0-255. This
value will identify the particular I/O operation when the user’s program subsequently
executes TCS status requests.

The assembly language calling sequence is:

JSB TCS
DEF *+5
DEF ICOD
DEF ICON
DEF IPAR
DEF IPRM

ICOD DEC 3

ICON OCT control-word
IPAR DEC n

IPRM DEC identifier

where control-word is an octal control word. The format of the control word is as described for the
CONWD parameter of the I/O Control Exec Call in section III of the HP
DOS-III Disc Operating System reference manual (02100-90136) with the
exception that the sign of the control word determines whether or not the
specified device will be locked. If the sign bit is 1, the device will be locked; if
the sign bit is 0, the device will not be locked.

n is a device-dependent decimal control constant. This is not required for some
devices and may be omitted if not needed.

identifier is a decimal constant within the range 0-255. This value will identify the
particular I/O operation when the user’s program subsequently executes TCS
status requests.

34

BUFFER MANAGEMENT

The TCS buffer management subsystem allows the user to dynamically allocate and deallocate
buffers according to his needs. Up to four buffer pools may be established, each containing up to 64
buffers. The buffers within a particular pool must all be the same length. Pools may be initialized or
reinitialized at any time.

The FORTRAN calling sequence for initializing a buffer pool is:
CALL BINIT (IA,LJ,L)

where IA is the name of the buffer pool array.

Iis a decimal constant within the range 1 to 64 specifying the number of buffers in the
pool.

J is a decimal constant specifying the length of each buffer.
L is a constant within the range 1 to 4 identifying the particular buffer pool.
The assembly language calling sequence for initializing a buffer pool is:

JSB BINIT
DEF *+b
DEF IA
DEF

DEF J

DEF

IA BSS pool-length
I DEC #-of-buffers
d DEC buffer-length
L DEC pool-identifier

where pool-length is a decimal constant specifying the length (in words) of the particular buffer
pool.

#-of-buffersis a decimal constant within the range 1 to 64 specifying the number of
buffers in the pool.

buffer-length is a decimal constant specifying the length of each buffer.

pool-identifier is a constant within the range 1 to 4 identifying the pool.

35

Allocation of Buffers

Whenever the user requires a buffer, he requests the buffer management system to allocate a buffer
from a particular pool. The FORTRAN calling sequence for allocating a buffer is:

CALL GBUF (IN,L)

where IN is the name of a variable. The value of this variable is set by the buffer management
system to the number (1 through 64) of the buffer which was allocated. If no buffers are
available, IN is set to -1.

L is a constant within the range 1 to 4 specifying from which pool the buffer is to be
allocated.

The assembly language calling sequence for allocating a buffer is:

JSB GBUF
DEF *+3
DEF IN
DEF L

IN BSS 1
L DEC pool-identifier

where pool-identifier is a constant within the range 1 to 4 specifying from which pool the buffer is
to be allocated.

The value of IN is set by the buffer management system to the number (1 through 64) of the buffer
which was allocated. If no buffers are available, IN is set to -1.

Release of Buffers

Whenever the user no longer needs a particular buffer, he may request the buffer management
system to release the buffer. The FORTRAN calling sequence for releasing a buffer is:

CALL PBUF (IN,L)

where IN is the name of a variable. This should be the same variable which was set by the buffer
management system when the particular buffer was allocated.

L is a constant within the range 1 to 4 specifying the pool to which the buffer belongs.

36

The assembly language calling sequence is:

JSB PBUF
DEF *+3
DEF IN
DEF L

IN BSS 1
L DEC pool-number

where pool-number is a constant within the range 1 to 4 specifying the pool to which the buffer
belongs.

The variable IN must contain the value supplied by the buffer management system when the
particular buffer was allocated.

Buffer Inquiry

It is often desirable to know how many buffers within a particular pool are in use at a given time.
The FORTRAN calling sequence for requesting the current status of a particular pool is:

CALL IBUF (I,L)

where Iis the name of a variable. The variable will be set by the buffer management system to
specify the number of buffers in the pool which are currently allocated to the user’s
program.

L is a constant within the range 1 to 4 specifying the pool in question.
The assembly language calling sequence is:

JSB IBUF
DEF *+3
DEF 1
DEF L

I BSS 1
L DEC pool-identifier

where pool-identifier is a constant within the range 1 to 4 specifying the pool in question.

The variable I will be set by the buffer management system to specify the number of buffers in the
pool which are currently allocated to the user’s program.

37

PROGRAMMING CONSIDERATIONS mém

The considerations to be borne in mind when writing TCS programs may be broadly defined under
two headings:

1. Input/output processing

2. Buffer and variable control

These will now be discussed.

INPUT/OUTPUT PROCESSING

In a situation where many user tasks may be running at the same time two approaches to I/O
queueing are possible:

1. Provide a queue area (pending queue) large enough to hold the maximum possible number of
concurrent I/O requests to devices which are busy or locked.

2. Provide a queue area (pending queue) large enough for the average load and take care of peak
loads by recommended programming methods.

Both approaches may be used with TCS. The sample program uses method 1, this is not always

possible due to various factors (core limitations, undefined future programs, etc.). For this reason a

method of handling possible pending queue problems is outlined below.

1. If a pending queue of 20 entries is assumed then the maximum number of I/O requests placed
into it should not exceed 19. This allows a user program to ‘“pause” if it has other requests to

issue (““pause’ requires one pending queue entry).

2. The user program should then follow the procedure outlined in Figure 3.

39

l

Format 1/0
request.
Does
Yes pending q No
contain 19
?
\
Make pause Make 1/O request
request to to TCS.
4 TCS.

Request

accepted
?

Make status request to

get request identifier. Go to

error
routine.

a

Figure 3. Procedure for Issuing Requests

By means of this method a request is never rejected because of pending queue overflow. If pending
queue overflow does occur then the only action that a user program can take is to set flags for itself
and perform a “suspend till I/O” call until outstanding I/O is complete for it and then examine the
flags and try to proceed from there.

40

All I/O requests and

‘segment load’

‘unlock device’
should be followed by a status request to check that the request has been understood by TCS.

In order to simplify the understanding of with and without wait requests the following two pieces
of code are shown:

1) without wait
ASSIGN 10 TO IRET
CALL TCS (1,20001B,IA,4 I,IRET)
CALL TCS (53)

10 Statement

2) with wait
CALL TCS (1,1,IA,4,])
10 Statement

These two examples perform exactly the same function as far as the user is concerned.

BUFFER AND VARIABLE CONTROL

The major factor to be considered with regard to buffer and variable control is whether overlay
segmentation is being used. If the whole of the user program is core resident then the problem is
greatly simplified, however for this discussion overlay segments will be assumed.

The major problem is to ensure that all buffers which are being used for current input/output
transfers remain core resident. It follows therefore that these buffers must not be embedded within
a program segment if there is any possibility of that segment being overlayed by another. For this
reason it is recommended that all buffers are held in COMMON. The buffer management routines
may then be used to control the buffers.

Because of the fact that segments can be overlayed by other segments any variables which the
segment requires to keep should also be kept in common. To simplify the control of these variables,
it is recommended that one pool of buffers are used as ‘‘data stacks” and that programs keep all
required variables in these data stacks. The ‘“‘request identifier’> which TCS requires with each I/O
call can contain the “data stack’ pointer. In this way a separation of code and data is achieved (as
in the example program) that enables re-entrant overlayable code to be written.

41

APPENDIX

The sample program presented in this appendix illustrates a method of using TCS to perform a
simple function by means of a re-entrant subroutine. The problems associated with re-entrancy are
solved by means of a request identifier which is passed to TCS as part of each I/O request.

The main program in this example merely solicits input from the terminals. Whenever a terminal
input is complete, the subroutine (SSUB) is used to process the input and display the output on the
terminal. When the output is complete, the subroutine returns to the main program which then
requests further input from the terminal. In order for the subroutine to be re-entrant, all variables
used by the subroutine which are particular to a terminal must be saved in a ‘“‘data stack.” In this
way, code and data are separated and re-entrancy may easily be achieved.

One data stack is required for each terminal that the subroutine serves. The allocation of data stacks
is done by the calling program — not by the subroutine. The subroutine may therefore remain
ignorant of how many terminals are active. The data within a data stack must be entered by the
main program in the format expected by the subroutine. This is illustrated in Figure 4. The vertical
array index is passed to the subroutine as the stack pointer. A typical flow of control is as follows
(refer to figure 5):

1. input is requested from all terminals. Main program suspends until an I/O is complete.

2. Terminal #1 responds; main program creates subroutine stack and calls subroutine.

3. Subroutine formats terminal input and requests disc read, passing the stack pointer to TCS.

Because this request is with wait, TCS may now schedule the main program to deal with another

terminal’s completed input.

4. Main program accepts Terminal #2 input, creates another subroutine stack, and calls the
subroutine.

5. Subroutine formats the terminal input and requests a disc read, passing the stack pointer to
TCS.

6. The subroutine could, in theory, have up to 20 disc reads outstanding at any one time.

7. A disc read is completed and the subroutine is rescheduled.

A-l

The subroutine performs a status check to obtain the hardware status and the stack pointer
corresponding to the completed disc read.

The subroutine requests output to the terminal, passing the stack pointer to TCS. This request
is with wait and either the subroutine or the main program could be scheduled to deal with
another complete I/0.

When the terminal output is complete, the subroutine requests status from TCS which restores
the stack pointer for this completed I/0.

11. The subroutine returns to the main program via its data stack.

12. The main program requests input from the terminal and suspends itself.

X+1 X+2 X+3
1 Return Addr Return Addr Return Addr
2 1/0 Buffer # 1/0 Buffer # 1/0 Buffer #
3 # of Chars # of Chars # of Chars
4 LU # LU # LU #
5 For Subroutine For Subroutine For Subroutine
Use Use Use
6 For Subroutine For Subroutine For Subroutine
Use Use Use

The vertical array index (X, X + 1, etc.) is passed to the subroutine.

Figure 4. Data Stacks for Subroutine

A-2

Main program
requests input
and suspends

An input operation is
N complete; main program

creates data stack and
calls subroutine

Subroutine
formats input
and requests a

and suspends

disc read
|
|
|
4 e o
A
|
|
|
Subroutine |
requests — — —
output to |
the terminal |
T A
| |
| |
|
- € - - - .
|
A
|
|
Output to I
terminal |
complete; sub- |
routine returns |
to main program :
|
|
|
y |
|
Main program |
requests input —_

A

NOTE: Whenever the main program is suspended or the subroutine is waiting for an 1/0 request to be
fulfilled, a TCS “interrupt’ can occur. The “interrupt” is triggered by the fulfillment of a pre-
viously-issued 1/O request (control passes to the return address associated with the particular
request). The solid arrows illustrate the main path and the dotted arrows illustrate the various
possible interrupt paths.

Figure 5. Sample Program Flow

A-3

PAGE wa@n} (FTNA==RELEASE 24177B==JULY, 1971)
na0y1 FTN4,L,M

P202 PROGRAM RETY

2003 C

@804 C THIS PROGRAM ILLUSTRATES THE METHODS USED WITH TCS
¥2e5 € TO PROVIDE RE=ENTRANT SUBROUTINES, ASSUME THE FOLLOWING
@206 C PROBLEM, A SYSTEM WITH 2@ TERMINALS WHICH CAN REQUEST
@247 C A RECORD FROM THE DISC TO BE DISPLAYED ON THE TERMINAL,
W0@8 C THE OPERATOR INPUT IS THE RECORD NUMBER,

PPG9 C A COMMON SUBROUTINE WILL BE USED TO OBTAIN THE RECORD
?210 C FROM THE DISC AND OUTPUT IT TO THE TERMINALS,

o211 C

PA12 C ASSUME TERMINAL LU 45 OF 1@ TO 29 INCLUSIVE

0213

enta C

@215 C FIRST DIMENSION THE INPUT BUFFER ARRAY

0216 C

2017 COMMON IN(2,20)

2018 C

@919 C NOW DIMENSION THE OUTRUT BUFFER ARRAY

en2e C

wo21 COMMON ID(128,20)

e@22 C

@023 C NOW DIMENSION A PARAMETER ARRAY

pa24 C

¥225 COMMON IP(6,20)

8826 C

8027 C NOW ODIMENSION A PENDING QUEUE FOR TCS

pw28 C

we29 DIMENSION IPG(180)

pa30 C

@031 C NOW DIMENSION AN ARRAY FOR SUBROUTINE RETURN PARAMETER
0n32 ¢

2033 DIMENSION IK(1)

0R34 C

@@35 C NOW CREATE AN ARRAY HOLDING FILE NAME

2936 C

0037 DIMENSION IF(3)

Pa38 DATA IF/2HFI;2HLE,2H3 /

@239 C |

8040 C NOW INITIATE TCS

241 C

0042 CALL TCS(82,1PG,20,KK,0,0,0)

@043 C

8244 C NOW OPEN THE FILE

0045 C

0046 CALL TCS(84,IF,1)

P47 C

D348 C NOW REQUEST INPUT FROM ALL TERMS

PR49 C

@258 C FIRST SET UP RETURN ADDR

vwas1T C

2252 ASSIGN 7@ TO IRET

ens3 C

A4

nAAs54
6AS5
oas6
eas7
uA58
2a59
pA6?
N6
vu62
PA63
0a64
ene6s
vaes
wae7
0768
0A69
0wa7a
2a71
paze
wa73
@A74
wAa7s
w76
eaz?
wazas
naz9
@asn
na81
wa82
R
naa4
wa8s
nAge6
wasz
@ass
PABY
waga
an91
nag92
2293
PA94
k]
an96
2n97
0A98

* %

PAGE p@@a2 RETY (FTNd==RE|LEASE 24177B==JULY, 1971)

C INITIATE INPUT
‘ D0 1@ 1I=1,20
LU=1+9
10 CALL TCS(1,204008+LU,INCL,1),2,1,IRET)
g NOW SUSPEND UNTIL AN INPUT IS COMPLETE
29‘ CALL TCS(53)
g COME HERE WHEN AN INPUT 18 COMPLETE
g GET STATUS AND PARAMETER
; CALL TCS(79,ISTAT,IPAR,ILU,ILOG)

NOW SET UP TO CALL SUBROUTINE
FIRST SPECIFY RETURN ADDR AND PUT IN SUBROUTINE
STACK

ASSIGN 80 70 11

IP(1,IPAR)=IL

70
c
C FOR THIS EXAMPLE OMIY INPUT VALIDATION ETC
c
c
C

NOW SET INPUT BUFFER INDEX IN PARAM STACK

aoo0n

IP(2,IPAR)=IPAR
NOW SET # OF INPUT CHARS IN STACK

oo0

IP(3,IPAR)=ILOG

NOW SET LU# IN STACK

oo

IP(4,IPAR)=ILU
NOw CALL SUBROUTINE
CALL SSUB(IPAR,IK)

COME HERE AFTER SUBROUTINE TO INITIATE INPUT AGAIN

OO0 oo

2 Iw=IK(1)
CALL TCS(1,204002B+IP(C4,IW),INCL,IW),2,IW,IRET)
GATO 99
END

NO ERRORS®

A-5

PAGE 2203 RETY

PROGRAM KETY
AnAva Qoeeen NOP
A0AR1 A16001X JSB
Aunve 0RPQARA3R DEF
Aan23 w263@2R JMP

COMMON IN(2,20)

COMMON ID(128,29)

COMMON IP(6,20)

DIMENSION IPQC(180)

DIMENSION IK(1)

DIMENSION IF(3)

DATA IF/2HFI,2HLE,2H3 /
nonpa aRnauac DEF
AuRE5S @0pesac DEF
AANR6 PB5059C DEF
Avea7 2v0210R DEF

BSS
Ha274 @ADAR275R DEF

BSS
Bp276 QQn277R DEF
Ap277 043111 ocT
Ap30p 046105 ocT
Aa3vl 231442 0cT

CALL TCS(82,IPG,20,KK,0,
2332 A16002X J8B
AY3V3 PRO313R DEF
Aa324 QARS526R DEF
nQ3INS Y0BALEAR DEF
AR3es puaAad21R DEF
Ap3n7 arnab527R DEF
w318 Q0u538R DEF
An311l Q200530K DEF
pe312 QOA53NR DEF

CALL TCS(B4,1F,1)

An313 216002X JSB
AB314 IPBI2UR DEF
A0315 BOV531R DEF
AR316 QAR277R DEF
P2317 PAAS53R DEF

ASSIGN 7@ TO IRET
An320 P62322R LDA
w321 @poa2nel R3S
AR3z2 NAQ3I6GER DEF
an323 072532R STA

DO 10 I=1,20
Np3z24 w62553R LDA
Ar3z2s5 w72533R STA

LU=T+9
QB326 (62536R LDA
PA327 242533R ADA
AA33B P72535R STA

A-6

(FTN4==RELEASE 24177B=-=JULY, 18971)

CLRIO
x+l

eadnz

paveecC
aaes5ecC
uses50C
k%
Bo264
w4
poney
*+i
043111
nas1es
031449
D,0)
TCS
0wa313
0R526
peple
pasa21
KK
nwas3p
uas53p
pas3n

TCS
%+ 4
weas31
vwee77
©vas553

*+2

ea366
IRET

BB553
I

pas3e6
1
Lu

19

99

70

PAGE @024 RETY
CALL TCS(1,20400B+LU,INCL1,I),2,1,IRET)
2M331 ©V62535R LDA LU
An332 ©842537R ADA 2@537
P333 0B72534R STA 1,001
2p334 @66553R LDB 208553
Au335 pa2400 CLA
B0336 0n16203X JSB , . MAP
AW337 pPBRRA4R DEF 9@2ed4
Ppdda AQAS53R DEF 02553
20341 WQB533R DEF 1
wR342 QOAS20R DEF p@d29
Q0343 @72542R STA A,001
PB344 016002X JSB TCS
AP345 pAN3IS4R DEF x+7
Q0346 PBB553R DEF Q@553
20347 Q0R534R DEF I,001%
PB350 1010540R DEF A,001,1
WYdS51 0ARS520R DEF @e@52¢
20352 00@B533R DEF I
AB353 0@A0532R DEF IRET
P0354 062533R LDA I
20355 ©»42553R ADA ©@B553
AB356 #72533R STA 1
20357 QP304 CMA,INA
A0362 ©n42521R ADA BB521
02361 wv02m21 SSA,RSS
nB362 ©V26326R JMP 060326
CALL TCS(53)
np363 n16002X JSB TCS
np364 02P3I6ER DEF %+2
AB365 0AVS41R DEF w@54%
CALL TCS(79,ISTAT,IPAR,ILU,ILO0G)
PE3I66 Q16m02X JSB TCS
Q@367 QAAI75R DEF x+6
N0370 2AB542R DEF p@542
w2371 202A543R DEF ISTAT
00372 220544R DEF JIPAR
Qu373 0paa545R DEF ILU
An374 2AQ546R DEF ILOG
ASSIGN 80 TO II
AA375 062377R LDA =+2
Q@376 202001 RSS
AA377 QVA455R DEF 0@455
A2402 (B72547R STA I1
IP(1,IPAR)=II
20401 @66553R LDB ©@@553
PR402 pn2400 CLA
20403 Q@1600@3X JSB . .MAP
204024 QOQQU6R DEF @eoeé6
AN4n5 AAES53R DEF 00553
WQ406 00APH44R DEF IPAR
A24@7 0AD523R PDEF @a@523
#0412 @72540R STA A,001

(FTN4==RELEASE 24177B==JULY,

1971)

A-T

82

PAGE pa@d RETY (FIN4==RELEASE 24177B==JULY,
P41l n62547R LDA II
Pud12 172540R STA A,001,1

IP(2,IPAR)3IPAR

AR413 P66553R LDB 1B553
2414 pR2400 CLA

wn415 016023x JSB ,.MAP
Av416 NAAAEQER DEF 4Q0@6
nn4L? Q@onsS20R DEF pas52v
Apd428 pUAB544R DEF IPAR
2Rr421 QUPB23R DEF n@bd23
A0422 @72540R STA A,001
AR423 0762544R LDA IPAR
PB424 172540R STA A,001,1
IP(3,IPAR)=ILOG

Nnaces v66553R LDB @a@s553
And26 ©p024n0 CLA

Pn427 216003X JSB , 4MAP
Av43n PARANGR DEF @naeé
2p431 ©pOA525R DEF @525
2P432 PAB544R DEF IPAR
AR433 0AR523R DEF @523
nPp4a34 072540R STA A,nQ21
B0435 0AB62546R LDA ILODG
0438 172540R STA A,201,1
IP(4,IPAR)=ILU

nA437 B66553R LDB Q#5553
P44 NA2409 CLA

20441 216403X JSB o, .MAP
20442 AAARA6R DEF Q@u@é
AP443 RASSOR DEF p@b50
Pud444 VOB544R DEF IPAR
0445 Qp0OV523R DEF ©w@523
AR446 (P72540R STA A,00Q1
AR447 A62545R LDA ILU
PuabHn 172540R STA A,001,1
CALL SSUBC(IPAR,IK)

AuAab1L 0n16004X JSB SSUB
nB452 0DAM455R DEF x+3
nR453 PVBRB44R DEF IPAR
An454 QOA275R DEF n@275
IwaIK(1)

WR4a55 @62553R LDA 20553
Nr4S56 42552R ADA ©@b552
WR4a57 142274R ADA @0274
NR46A 16¥N00 LDA @,I
Bd61 0A72554R STA IW
CALL TCS(1,20400B+IP(4,IW),INCL,IW),2,IW,IRET)
AR462 wbB6553R LDB 2B553
AP463 002400 CLA

Nra6d pl6AA3IX JSB L, MAP
Ae465 VOVWAQ6R DEF veoee
PRA66 QAUASHAR DEF @@55a

1971)

neo9g

PAGE

nna6?
Aipd7a
anaz
noaze
ne4z3
nua74
Wea75
An476
npazz
HAudan
nesos
Aa5u2
nudad
2504
andas
nesw6
ousn7
a5
nas511
anb12
Ans13
GOTO 99
AnS14
END
AusS1s
PB516
nus17
aas297
pada
aus522
ARrs523
ApdS24
wnd25
nAas26

And3a@
np531

Aas536
Av537

Bud41
npd42

20559

20552
2ubd3

@206 RETY

@RaRa551R
AVAS523R
160000

042537k
R72534R
N66553k
@240

0160A03X
POBAQY AR
VRW553R
AA0551R
aeas20R
7254@R
PL6AB2X
A0A514R
A0Q553R
VARSI 4R
1295402R
AAYS20R
BRUS51R
AAB532R

P26363R

v16005X
wARS24R
2AP523R
aaen@2
aenn24
AR@E200
Q02006
2vR264
2NpN03
pev122

oenane
pan124

oone1
020400

Q20065
aon1y7

nannn4a

177777
veaeny

ENDS

DEF
VEF
LOA
ADA
STA
L0B
CLA
JSB
DEF
DEF
DEF
DEF
STA
JSB
DEF
VEF
PEF
DEF
DEF
DEF
DEF

JMP

JSB
DEF
DEF
ocY
0cT
ocT
ocTY
ocT
ocT
0cT
BS8S
oCcT
ocT
BSS
ucrT
ocT
BSS
oCcT
ucT
BSS
acT
BSS
QCT
ocT

(FTN4==RELEASE 24177B=-=JULY,

IW
08523
Gyl
wR537
1,001
ne553

s s MAP
vwapa4a
BASS3
Iw
nwasae
AL001
TCS
k47
prs53
1.u01
A,001,1
pasa2e
IW
IRET

@R363

EXEC
*+2
nadsa23
Qaunae?
oAvnzAa
waR2e0
Haeev6
pop264
wpened
pon122
wavelL
paveoe
nep124
poea4a
neuwntl
n2n4pe
papay
weRees
wan1y7
2QuVes
paeeed
woen
177777
papany

1971)

A-9

PAGE

SYMBOL TABLE

NAME

®19
®74
e8@
#99
CLRIO
EXEC
1

1D
IF
11
IK
ILOG
1Ly

IP
IPAR
1PQ
IRET
ISTAT
Iw

KK

Ly
Ssus
TCS

A-10

ADDRESS

PRR3I3LIR
VOBIGE6R
WOB455R
NRO3I63R
PopnaLx
PARABSX
PABSIIR
ANvasac
A0L277R
WARd547R
VRB275R
VOR546R
POBS545R
pQan2eaC
nasasac
NBB544R
APAA12R
2NA532R
2PO543R
aAn551R
VA@B527R
ARVS 3SR
aeevAn4ax

pavRY2X

aaaz

RETY (FTN4==RELEASE 24177B==JULY,
USAGE TYPE
STATEMENT NUMBER

STATEMENT NUMBER
STATEMENT NUMBER
STATEMENT NUMBER
SUBPROGRAM
SUBPROGRAM
VARIABLE
ARRAY (%, %)

ARRAY ()
VARIABLE

ARRAY (%)
VARIABLE
VARIABLE
ARRAY (%, %)
ARRAY (%, %)
VARIABLE

ARRAY (x)
VARIABLE
VARIABLE
VARIABLE
VARIABLE
VARIABLE
SUBPROGRAM

SUBPROGRAM

REAL

REAL

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGEk
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL

REAL

1871)

LOCATION

EXTERNAL
EXTERNAL
LOCAL
COMMON
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
COMMON
COMMON
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
EXTERNAL

EXTERNAL

eno1
poaae
paad
naea
0Qes
nAnb6
annz
aape
nae9
0019
eniy
@212
noLl
pA14
2a1d
ee16
ral17
weis
6019
paze
Aazl
waz22
nR23
nez24
pa2s
naee
pez7z
apes
®e29
pede
nod1
0032
BA33
na3a
@n3s
PR3é
naaz
po38
0R39
2046

% %

PAGE o000} (FTNA==RELEASE 24177B==JULY, 1871)
FINA,| ,M
SUBROUTINE SSUB(I,IK)
COMMON IN(2,20),1D(128,20),1IP(6,20)
DIMENSION IK(1)
C I THE STACK MARKER
C I8 IS PASSED FROM THE MAIN (IPAR) AS A STACK POINTER
C
C MOVE THE INPUT TO A BUFFER & CONVERT TO INTEGER
DIMENSION K(2)
K(1)=IN(1,1)
K(2)=IN(2,1)
CALL CODE
KREAD (K, %)J
c
C NOW READ THE RECORD
C
CALL TCS(14,3,ID(1,1),128,1,J,1)
C
C WILL COME HERE WHEN INPUT IS OVER
C CALL STATUS TO GET STACK PUINTER
c
CALL TCS(79,ISTAT,I,LU,IL)
c
C NOW PRINT ON THE TERMINAL
c
CALL TCS(Z,IP(A,I),ID(l'I)aIZSrl)
c
C NOW FIND THE STACK POINTER AGAIN
c
CALL TCS(79,ISTAT,I,Ly,IL)
c
C NOW SET STACK POINTER IN IK FOR THE MAIN
C
IK(1)=1
C
C NON RETURN TO MAIN PROGRAM
C
IRsIP(1,1I)
GOTO0 IR
END
NO ERRORSw

A-11

PAGE 0n@#2 SSuUB

(FTN4==RELEASE 24177B==JULY,

SUBROUTINE SSUB(I,IK)

002 vINARA
720003 016001X
20004 0Q202000R
noRABsd @26014R
COMMON IN(2,20)
DIMENSION IK(1)
DIMENSION K (2)
K(1)=INCL, 1)
Qeané ooenpacC
pean7 ovleadaC
pania pesda5acC
0nell Qeeaizr

20m14 @62210R
U215 042174R
Qea16 042011R
aeA17 ©@72175R
PBP29 ©B662106R
N2l ©ve24pa
eon22 0v16002X
ne023 QQDRO6R
00N24 0RQ210K
20225 1020000R
pee26 QPR170R
neez27 160000
2¥n3@ 172475R
K(2)=IN(24I)
02031 62170R
20032 042174R
A0n33 4201 1R
Npe34 ©72175R
He35 p66210R
A0036 pnzdoe
Aanpd7 Q16auv2x
PB4 PAVAR6R
aAR4l VRAL74AR
Pp@4e 100002R
A0N43 QURl7aR
ARp44 160000
Aamas 172178R
CALL CODE
ppR46 A16083X
A0a47 wvRvASAR
READ (K, %) J
namba ©vb2012R
2ppd1 0nN6404
0252 216004X
neNsS3d paro0a
need54 Q208A57R
aead5 @a160e5x
PReMS56 wRuV176R

A-12

BSS @apaz
NOP

JSB LENTR
DEF x=4
JMP ©@014

yID(128,208),IP(6,20)

DEF v@papcC
DEF vRudeC
VEF ©05651cC
DEF w+1

BSS @epn@2
LDA 62211
ADA p@a174
ADA %m5

STA A,001
LDB razioe
CLA

JSB ,.MAP
DEF @@eeé
DEF p@21p
DEF wvonee,l
DEF wai7e
LRDA @,1

STA A,001,1

LDA 00170
ADA 29174
ADA nepit
STA A,0Q1
LDB pg21wv
CLA

JSB . .MAP
DEF 0ouwo6
DEF 08170
DEF upeeo,l
DEF @@170
LDA @a,]

STA A,u01,1

JSB CODE
DEF x+1

LDA @ag12
CLB,INB
Jss ,DIO,
0CT avuvven
DEF ©Qu@b57
JsB L,I10,
DEF J

1971)

PAGE

CALL TCS(14,3,10¢1,1),128,1,J,1)

Aved SSub

ARVD7 A66210R LDB
Von6a PA2400 CLA
el 016002X Jsg
AuRe2 VAVARTR VEF
prRed KAR21aR PDEF
Avacd 1A0AQAAR DEF
Van6S AARI72R DEF
nane6 ©172175R STA
PAR67 N16006X JSb
a7 wAR1B4R DEF
auR71 wRRBL77R DEF
npn72 0AQ200R DEF
npea73 190178R VEF
2uR74 AAL72R DEF
wpn’5 VRR210R DEF
nAR76 QUAL76R DEF
Aua77 1P0RABAR DEF
CALL TCS(79,ISTAT,I.,LU,
no1en preme6X Jsp
fo1v1 2NPLA7R DEF
AR102 uvAA201LR DEF
We1B3 QUR202R DEF
Pul1pd 100000R DEF
A2185 ©vlP2M3R VEF
2106 NQU204F DEF
CALL TCS(2,IP(4,1),ID(1
Puin7 266210R LOB
ne11n wa24pd CLA
Pa111 016R02X J58
Auil12 QRAALAR DEF
AN113 PODZR5R VEF
Av114 100000K DEF
wA11S 2BY173K DEF
Pn116 B72175R STA
117 066210R L0B
Nu120 ©RN24049 CLA
Pu121 n16002X JSB
AB122 PAARQ7R DEF
AR123 0BVR210R DEF
Pu124 10000@R DEF
20125 0AB01L72R LDEF
P0126 P72206K STA
w127 0160@6X JSB
20130 0DAR136R DEF
bv1d1 0@d170R WEF
#0132 100175R VEF
P6153 100206KR DEF
2134 Q0MA172R DEF
AR135 100000R DEF

(FTN4==RELEASE 241778==JULY,

naz21v

n.MAP
waee7
uazie
nwevew,l
vaize
A.0Q1
TCS
vaiep
wayzz
w20
A,001,1
war7e
pazilo

J
pe000,1
IL)

TCS

6
pazey
ISTAY
naoen, 1
LU

1L

01)012811)

wp210

» s MAP
wapnla@
nwaees
wapee,l
nwai73
A,001
waz1oe

» a MAP
nwonaz
wp2ie
waeae, 1
w172
A,002
TCS

x+6
prL70
A.GRY1,]
A.@ﬁapl
pa17e
wopan,l

1971)

A-13

PAGE

anaa

ssuB

(FTN4==RELEASE 24177B==JULY,

CALL TCS(79,ISTAT,1,LU,IL)

an1356
0137
vwe14m
na141
ne142
ne143
Ruldda
IK(1)=s]
Pn145
WA146
nn147
aa150
2n1d1
Y152
IR=IP(Y,
ne183
o154
G155
Ap156
na157
o160
PB16}
Ru162
Ap163
GOTO IR
neisa
END
K165
ap17a
6171
an172
Auv173
Any174
anL77
An2en
ne2ae1
na2ns

Av2i2

nad4l

A-14

nionabx
Ne@145R
A0@A221R
NRAB202R
1v209R
ARY203K
2Rv204KR

n6221@R
24217 4R
N420A1R
W72175R
16206AR
17217 5K
1)
W662102R
An2400
a16a02x
NN AR
@0Q210R
129002R
20217 3R
160000
A72207R

126207R
126702R
oepnn2
paVun24
noo2e9
nAAAQ6
177777
neea16
P0Rn23
aavLL7
waanca

navang

ENU

%

5

JSB
DEF
DEF
DEF
DEF
DEF
DEF

LDA
ADA
ADA
STA
LDA
STA

L0B
CLA
JSB
DEF
DEF
DEF
DEF
LDA
STA

JMP

JMP
BSS
ocT
ocT
ocT
ocT
ocT
BSS
ocTY
ocT
OcT
BSS
ocT
BSS
ocT

TCS

** 6
vezel
ISTAT
pApeo, 1
Lu

IL

nae1e
ney7a
papal
A.001
pAneR,l
A001,1

nez21e

+ s MAP
vwoeole
wa21op
poeed,1I
0weL73
Q.1

IR

IR,1I

gz, I
waeaez

areen2
pwaeea4
gde2u0
penaed
177777
woone

naeR16
naenad
nep1L7
haeed

naeand
papaz

el

SYMBOL
NAME

CODE
I

1D

IX

IL

IN

IP

IR
ISTAT

Ly
$suB

TCS

PAGE @085

TABLE

ADURESS

wARAA3X
ARV AKR
ApASAc
neuRRIR
Wap20aR
vananac
vedALAC
ana2@7Rr
2NQ202R
Bap176R
APe01ER
PAR203IR
PRV166K

AAQAR6X

SSuB

USAGE

SUBPROGRAM
VARIABLE
ARRAY (%, %)
ARRAY (*)
VARIABLE
ARRAY (%,)
ARRAY (%, %)
VARIABLE
VARLABLE
VARIABLE
ARRAY (%)
VARIABLE
VARIABLE

SUBPROGRAM

(FINA==RELEASE 24177B==JULY,

TYPE

REAL

INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
INTEGEK
INTEGER
INTEGER
INTEGER
INTEGER
INTEGER
REAL

REAL

1871)

LOCATION

EXTERNAL
DUMMY
COMMON
DUMMY
LOCAL,
COMMON
COMMON
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
LOCAL
EXTERNAL

A-15

HEWLETT (hp; PACKARD

HP MANUAL PART NO. 59517307
MICROFICHE PART NO. 59517308

	000
	001
	002
	003
	004
	005
	006
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	xBack

