
Assembler DOS- III
Reference Manual

en
Q) ·-(_
Q)'
en

HEWLETT f P PACKARD

PART NO. 24307-90014

Assembler
For HP 2000 Computers

Reference Manual

HEWLETT f p PACKARD

HEWLETT-PACKARD COMPANY
11000WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Printed in U.S.A. 7/74

LIST OF EFFECTIVE PAGES

Pages Effective Date

Title July 1974
ii to v July 1974
1-1to1-3 July 1974
2-1 to 2-7 July 1974
3-1to3-10 July 1974
4-1to4-18 July 1974
A-1 to A-3 July 1974
B-1 to B-8 July 1974
C-1 to C-2 July 1974
D-1 to D-3 July 1974
E-1 to E-2 July 1974
I -1 to I -3 . July 197 4

ii

PREFACE

This manual describes the Assembler which is designed to operate under control of the
HP 24307B DOS-III Disc Operating System. The Assembler permits the programmer
to use all supported machine instructions for the HP 21MX Computer.

It is assumed that object programs produced by the Assembler will be executed on an
HP 21MX Computer. However, the object program may be executed on other HP 2100-
Series computers (2114, 2115, 2116, or 2100) if the following machine and pseudo
instructions are not used:

• Word Processing (described in paragraph 3-5)

• Byte Processing (paragraph 3-6)

• Bit Processing (paragraph 3-7)

• Index Register Group (paragraph 3-11)

• DBL and DBR: Define Left Byte and Define Right Byte (paragraph 4-3)

• BYT: Define Octal Byte Constants (paragraph 4-4)

• MIC: Define User Instruction (paragraphs 4-8 through 4-14)

It is assumed that object programs produced by the Assembler will be loaded and exe­
cuted under control of the HP 24307B DOS-III Disc Operating System. However, the
object program may be loaded and executed under control of some other operating
system with the following restrictions:

• ENT pseudo instructions with absolute or common symbols as operands must not be
used.

• 1/0 select codes must not be defined via the ENT pseudo instruction.

• The DBL (Define Left Byte) and DBR (Define Right Byte) pseudo instructions must
not be used.

When assembling programs to be run under control of the Basic Control System (BCS),
the following restrictions also apply:

• Absolute operands greater than 778 are illegal in relocatable programs. However,
such usage will not be diagnosed as errors by the loader; it will instead result in
errors during execution of the object program.

• The ORB (Reset Base Page Origin) pseudo instruction is not available.

This manual is arranged in four sections with six appendices. Section I discusses the
assembly process in general, program relocation, assembly options, and assembler input
and output. Section II describes the source statement format. Section III describes all
of the available machine instructions. Section IV describes all of the available assembler
pseudo instructions. Appendix A describes the Hewlett-Packard character set.
Appendix B summarizes all of the available machine and ps'eudo instructions (including
instruction formats), arranged by instruction type. Appendix C presents a one-sentence
definition of all available machine and pseudo instructions, arranged alphabetically by
mnemonic. Appendix D presents a tabular summary of the binary format of all available
machine instructions. Appendix E describes how to run an assembly under DOS-III.
Appendix F describes all of the assembler error messages. For the programmer's con­
venience, a table of the powers of two is contained on the inside back cover.

iii

CONTENTS

Section I Page Section IV Page
INTRODUCING THE ASSEMBLER PSEUDO INSTRUCTIONS
Assembly Processing 1-1 Assembler Control 4-1
Symbolic Addressing 1-1
Program Relocation 1-1

Object Program Linkage 4-4
Address and Symbol Definition 4-7

Program Location Counter 1-2 Constant Definition 4-10
Assembly Options 1-2 Storage Allocation 4-15
Source Program 1-2 Assembly Listing Control 4-15
Binary Output 1-2 Arithmetic Subroutine Calls 4-16
List Output 1-2 Define User Instruction (21MX only)4-17

"Jump to Microprogram" 4-17
Example 4-17

Section II Page Combining Multiple Mnemonics 4-17
SOURCE STATEMENT FORMAT Example 4-17
Statement Characteristics 2-1 Defining Constants 4-1 7

Field Delimiters 2-1 Example 4-18
Character Set 2-1
Statement Length 2-1

Label Field 2-1
Label Symbol 2-1
Asterisk 2-3

Opcode Field 2-3
Operand Field 2-3

Symbolic Terms 2-3
Numeric Terms 2-4

Appendix A
HP CHARACTER SET

Page

Asterisk 2-4 ASCII Character Format A-1
Expression Operators 2-4
Evaluation of Expressions 2-5

Binary Coded Decimal (BCD) Format A-3

Expression Terms 2-5
Absolute and Relocatable Expressions 2-5

Absolute Expressions 2-5
AppendixB
SUMMARY OF INSTRUCTIONS

Page

Relocatable Expressions 2-5 Machine Instructions B-2
Literals 2-6
Indirect Addressing 2-6
Clear Flag Indicator 2-7

Comments Field 2-7

Memory Reference B-2
Jump and Increment-Skip B-2
Add, Load, and Store B-2
Logical B-2
Word Processing B-2
Byte Processing B-3

Section III Page Bit Processing B-3
MACHINE INSTRUCTIONS Register Reference B-3
Memory Reference 3-1 Shift-Rotate B-3

Jump and Increment-Skip 3-1 No-Operation B-4
Add, Load, and Store 3-1 Alter-Skip B-4
Logical Operations 3-2 Index Register B-5
Word Processing (21MX only) 3-2 Input/Output, Overflow, and Halt B-6
Byte Processing (21MX only) 3-2 Input/Output B-6
Bit Processing (21MX only) 3-3 Overflow B-6

Register Reference 3-4 Halt B-6
Shift-Rotate Group 3-4 Extended Arithmetic Unit B-6
Alter-Skip Group 3-4 Floating Point B-7
Index Register Group (21MX only) 3-5 Pseudo Instructions B-7
No-Operation Instruction 3-7 Assembler Control B-7

Input/Output, Overflow, and Halt 3-7 Object Program Linkage B-7
Input/Output 3-8 Address and Symbol Definition B-8
Overflow 3-9 Constant Definition B-8
Halt ... 3-9 Storage Allocation B-8

Extended Arithmetic Unit (EAU) 3-9 Assembly Listing Control B-8
Floating Point 3-10 Define User Instruction B-8

iv

CONTENTS (continued)

Appendix C Page AppendixE Page
ALPHABETIC LIST OF INSTRUCTIONS C-1 RUNNING ASSEMBLIES UNDER DOS-III

Assembler I/O E-1
Assembler Operation E-1
Messages During Assembly E-2

Appendix D Page Appendix F Page
CONSOLIDATED CODING SHEETS D-1 ASSSEMBLER ERROR MESSAGES F-1

ILLUSTRATIONS

Title Page Title Page

Sample Labels 2-2 Example of Correct Address Modification 4-8
Label Usage Examples 2-2 Loader-Assigned Locations for Figure 4-10 4-8
Symbolic Term Examples 2-2 ABS Examples 4-9
Expression Operator Examples 2-4 EQU Example 4-9
Indirect Addressing Example 2-7 EQU Examples 4-10
Clear Flag Examples 2-7 ASC Example 4-11
ORR Example (with Single ORG) 4-2 DEC Examples (Integer) 4-12
ORR Example (with Multiple ORGs) 4-2 DEC Examples (Floating Point) 4-12
IFN/XIF and IFZ/XIF Example 4-3 DEC Examples (Floating Point) 4-12
IFZ/XIF Example 4-3 DEX Memory Format 4-13
COM Examples 4-5 DEX Examples 4-13
ENT /EXT Examples 4-6 OCT Examples 4-14
DEF Examples 4-7 BYT Examples' 4-15
Example of Incorrect Address Modification 4-7 ASCII Characters and Binary Codes A-1
Loader-Assigned Locations for Figure 4-8 4-8

TABLES

Title Page Title Page

Control Statement Parameters 1-3 Base Set Instruction Codes in Binary D-2
Legend for Figure A-1 A-2 Extended Instruction Group Codes in Binary D-3
HP 7970B BCD-ASCII Conversion A-3

v

l
lBllMll INTRODUCING THE ASSEMBLER! 1 I

The Assembler translates symbolic source language
instructions into an object program for execution on the
computer. The source language provides mnemonic
machine operation codes, assembler-directing pseudo
instructions, and symbolic addressing. The assembled
program may be absolute or relocatable.

The source program may be assembled as a complete
entity or it may be subdivided into several relocatable
subprograms (or a main program and several subroutines),
each of which may be assembled separately. When
relocatable object programs and subprograms are subse­
quently executed, they are loaded and linked to one
another by the relocating loader; absolute object programs
are loaded by the Basic Binary Loader or the Basic Binary
Disc Loader.

The Assembler can read the source input from paper tape,
punched cards, magnetic tape, or from a DOS-III file (or
files) in the User Area of the disc. The Assembler outputs
the resultant object program on the standard punch
output device and/or to the Job Binary Area of the disc in
a format acceptable to the DOS-III Relocating Loader.

1-1. ASSEMBLY PROCESSING

The Assembler is a two pass system. A pass is defined as a
processing cycle of the source program input.

In the first pass, the Assembler creates a symbol table
from the names used in the source statements and (if
requested) prints a symbol table listing on the standard
list output device. It also checks for certain possible error
conditions and prints error messages on the console device
if necessary.

During pass two, the Assembler again examines each
statement in the source program along with the symbol
table and produces the binary object program. It outputs
the object program to the standard punch output device
and/or to the Job Binary Area of the disc. If requested, the
Assembler also prints the object program listing on the
standard list output device. Additional error messages
may also be printed on the console device.

Note: If only one output device is available, and
if both the punch output and list output
are requested, the listing function is
deferred and performed as a third pass.

If the source input is being read from a non-disc device, it
is written on the disc at the start of pass 1; for pass 2, the
source is then read from the disc. However, if there is not
sufficient space available on the disc to do this, the source
input will have to be read through the non-disc device at
the start of pass 2. In such a case, the Assembler prints
$END ASMB PASS on the console device at the end of
pass 1. The operator responds by reloading the source
input into the non-disc device and then entering :GO
through the console device.

1-2. SYMBOLIC ADDRESSING

Symbols may be used for referring to machine
instructions, data, constants, and certain other pseudo
operations. A symbol represents the address for a com­
puter word in memory. A symbol is defined when it is used
as a label for a location in the program, a name of a
common storage segment, the label of a data storage area
or constant, the label of an absolute or relocatable value, or
a location external to the program.

Through use of simple arithmetic operators, symbols may
be combined with other symbols or numbers to form an
expression which may identify a location other than that
specifically named by a symbol. Symbols appearing in
operand expressions, but not specifically defined, and
symbols that are defined more than once are considered to
be in error by the Assembler.

1-3. PROGRAM RELOCATION

Relocatable programs are relocated in core by the relo­
cating loader; the location of the program origin and all
subsequent instructions is determined at the time the
program is loaded.

A relocatable program is assembled assuming a starting
location of zero. All other instructions and data areas are
assembled relative to this zero base. When the program is
loaded, the relocatable operands are adjusted to
correspond with the actual locations assigned by the
loader.

The starting location of the common storage area is always
established by the loader. References to the common area
are common relocatable. If a program refers to the
common area, the program must be relocatable.

If a program is to be relocatable, all subprograms
comprising the program must be relocatable; all memory
reference operands must be relocatable expressions or
literals, or have an absolute value of less than 20008 .

1-1

Introducing the Assembler

1-4. PROGRAM LOCATION
COUNTER

The Assembler maintains a counter, called the program
location conter, that assigns consecutive memory
addresses to source statements.

The initial value of the program location counter is
established according to the use of either the NAM or
ORG pseudo operation at the start of the program. The
NAM operation causes the program location counter to be
set to zero for a relocatable program; the ORG operation
specifies the absolute starting location for an absolute
program.

1-5. ASSEMBLY OPTIONS

The control statement must be the first statement in the
source program and it specifies the desired assembly
options:

"ASMB," is in positions 1-5 of the statement. Following
the comma are one or more parameters, in any order. The
parameters are shown in Table 1-1. If output to the Job
Binary Area is specified in the : PROG ,ASMB directive
(:PROG,ASMB, ... ,99), the control statement may
contain no parameters. This is the only instance in which
the control statement may contain no parameters.

Since they contradict one another, F and X must never
appear in the control statement for the same source pro­
gram. If neither A nor R is specified, R is assumed. If T is
omitted, the symbol table listing will not be printed. If B is
omitted, the object program will not be outputted to the
standard punch output device (it may, however, be
outputted to the Job Binary Area of the disc if so specified
in the :PROG,ASMB DOS-III directive).

The control statement can be altered at assembly time
through the system console device. To do so, add 1001 0 to
the input logical unit number in the : PROG ,ASMB
directive. In such a case, the Assembler responds by
printing the following on the system console device:

ENTER NEW CONTROL STATEMENT

The user then enters the desired control statement
through the system console device. The new control
statement overrides the one contained in the source input.
During Pass 1, the Assembler prints "CONSOLE!"
followed by the new control statement on the list device.
The change does not appear in the source program listing.

1-2

1-8. SOURCE PROGRAM

Following the control statement, the first statement of the
program (other than remarks or a HED statement) must
be a NAM statement for a relocatable program or an ORG
statement for indicating the origin of an absolute program.
The last statement must be an END statement and may
contain a transfer address for the start of a relocatable
program. Each statement is terminated by an end-of­
statement or end-of-record mark if not on cards.

1-7. BINARY OUTPUT

The binary output is defined by the ASMB control
statement. The binary output includes the instructions
translated from the source program. It does not include
system subroutines referenced within the source program
(arithmetic subroutine calls, .IOC., .DIO., .ENTR, etc.)

1-8. LIST OUTPUT

Fields of the object program are listed in the following
print columns:

Columns Content

1-4 Source statement sequence number gener-
ated by the Assembler

5-6 Blank

7-11 Location (octal)

12 Blank

13-18 Object code word in octal

19 Relocation or external symbol indicator

20 Blank

21-72 First 52 characters of source statement

Lines consisting entirely of comments (i.e.,* in column 1)
are printed as follows:

Columns Content

1-4 Source statement sequence number

5-72 Up to 68 characters of comments

The Symbol Table listing at the end of Pass 1 has the
following format:

Columns

1-5

6

7

8

9-14

Symbol

Blank

Content

Relocation of external symbol indicator

Blank

Value of the symbol

Introducing the Assembler

Table 1-1. Control Statement Parameters

PARAMETER MEANING

A Absolute assembly. The addresses generated by the Assembler are to be
interpreted as absolute locations in memory. The program is a complete entity;
external symbols, common storage references, and entry points are not
permitted. Note that an absolute object program cannot be executed under
DOS-Ill.

R Relocatable assembly. The object program may be loaded anywhere in memory.
All operands which refer to memory locations are automatically adjusted as the
program is loaded. Operands referring to memory locations greater than 17778

must be relocatable expressions. Programs may contain external symbols and
entry points, and may refer to common storage.

B Binary output. An absolute or relocatable object program is to be outputted to
the standard punch device.

L List output. A program listing is to be printed on the standard list device.

T Symbol table print. A listing of the symbol table is to be printed on the standard
list output device.

N,Z Selective assembly. Sections of the program are to be included or excluded at
assembly time depending upon the option specified. See the descriptions of the
I FN and I FZ pseudo instructions in Section IV of this manual.

c Cross reference table print. All references to statement labels, external symbols,
and user-defined opcodes are to be listed on the standard list output device after
the end of the assembly.

F Floating point instructions. The floating point machine instructions are to be used
instead of the software simulation routines for the following floating point oper-
ations: FIX, FLT, FDV, FMP, FAD, and FSB.

x No EAU hardware. Signifies that the object program will be executed on a
machine which does not have the Extended Arithmetic Unit (EAU) hardware.
This parameter prevents the use of the following EAU instructions: ASR, ASL,
RRR, RRL, LSR, LSL, and SWP. In addition, it causes all occurrences of the
MPY, DIV, OLD, and DST instructions to be substituted with a call to the
appropriate subroutine in the floating point library.

The characters that designate an external symbol or type
of relocation for the Operand field or the symbol are as
follows:

Character

Blank

R

c
x

Relocation Base

Absolute

Program relocatable

Common relocatable

External symbol

At the end of each pass, the following is printed on both
the console and list device:

The value nnnn indicates the number of errors.

If there are errors, the message PG xxx is printed on the
list device immediately preceding the **nnnn ERRORS*
message, where xxx is the page number where the final
error was detected. The same message appears in the
listing following each error and it points to the page
number where the previous error was detected. The
backwards pointer following the first error in the program
is PG 000.

1-3

A source language statement consists of a label, an oper­
ation code, an operand (or operands) and comments. The
label is used when needed as a reference by other
statements. The operation code may be a mnemonic
machine operation or an assembly directing pseudo code.
An operand may be an expression consisting of an alpha­
numeric symbol, a number, a special character, or any of
these combined by arithmetic operators. An operand may
also be a literal. Indicators may be appended to an operand
to specify certain functions such as indirect addressing.
The comments portion of the statement is optional.

2-1. STATEMENT CHARACTERISTICS

The fields of the source statement appear in the following
order:

1. Label

2. Opcode

3. Operands

4. Comments

2-2. FIELD DELIMITERS

One or more spaces se;>arate the fields of a statement. An
end-of-statement or end-of-record mark terminates the

statement. On paper tape this mark is a return, @, and

line feed,@. t A single space as the first character of a

source statement is the null indicator for the label field.

2-3. CHARACTER SET

The characters that may appear in a statement are as
follows:

A through Z

0 through 9

(period)

* (asterisk)

+ (plus)

- (minus)

, (comma)

(equals)

() (parentheses)

(space)

tA circled symbol (e.g., @)represents an ASCII code or console key.

11u1H.1.
1

• FORMAT I II I

Any other ASCII characters may appear in the Comments
field. (See Appendix A.)

The letters A through Z, the numbers 0 through 9, and the
period may be used in an alphanumeric symbol. In the first
position in the Label field, an asterisk indicates a com­
ment; in the Operand field, it represents the value of the
program location counter for the current instruction. The
plus and minus are used as operators in arithmetic address
expressions. The comma separates several operation
codes, or an expression and an indicator in the Operand
field. An equals sign indicates a literal value. The
parentheses are used only in the COM pseudo instruction.

Spaces separate fields of a statement and operands in a
multi-operand field. They may also be used to enhance the
appearance of the listing. Within a field they may be used
freely when following +, -, ,, or (.

2-4. STATEMENT LENGTH

A statement may contain up to 80 characters including
blanks, but excluding the end-of-statement mark. Fields
beginning in columns 73-80 are not processed by the
Assembler.

2-5. LABEL FIELD

The Label field identifies the statement and may be used
as a reference point by other statements in the program.

The field starts in position one of the statement. It is
terminated by space. A space in position one is the null
field indicator for the label field; the statement is
unlabeled.

2-6. LABEL SYMBOL

A label may have one to five characters consisting of A
through Z, 0 through 9, and the period.

Note: The Assembler allows the use of certain
other characters in the Label field. How­
ever, they are reserved for use in Hewlett­
Packard programs.

2-1

Source Statement Format

.ABCD

.1234
A. 12 3

1. AB

ABC123

A~~BC

ABC

LDA NO LABEL
VALID LABEL
VALID LABEL
VALID LABEL
VALID LABEL
ILLEGAL LABEL - FIRST CHARACTER
NUMERIC.
ILLEGAL LABEL - TRUNCATED TO
ABC12.
ILLEGAL LABEL - ASTERISK NOT
ALLOWED IN LABEL.
NO LABEL -THE ASSEMBLER ATTEMPTS
TO INTERPRET ABC AS AN OPERATION
CODE.

Figure 2-1. Sample Labels

COM ACOM(20),BC(30),ABC

2-2

LB EQU 160
ENT ABC
EXT XL1,XL2

START LDA LB
N25
XL2
BC
N25

ABC

LDA Al234
ADA B. 1
JMP ENTRY
STA lABC

STB ABCDEF

VALID LABEL

VALi D LABEL
VALID LABEL
ILLEGAL LABEL - USED IN EXT.
ILLEGAL LABEL - USED IN COM.
ILLEGAL LABEL - PREVIOUSLY
DEFINED.
VALi D LABEL

Figure 2-2. Label Usage Examples

VALID IF DEFINED
VALID IF DEFINED
VALID IF DEFINED
ILLEGAL OPERAND FIRST CHARACTER
NUMERIC.
ILLEGAL OPERAND MORE THAN FIVE
CHARACTERS.

Figure 2-3. Symbolic Term Examples

The first character must be alphabetic or a period. A label
of more than five characters could be entered on the source
statement, but the Assembler flags this condition as an
error and truncates the label from the right to five
characters. Some examples are shown in Figure 2-1.

Each label must be unique within the program; two or
more statements may not have the same symbolic name.
Names which appear in the Operand field of an EXT or
COM pseudo instruction may not also be used as state­
ment labels in the same subprogram. However, names
appearing in a COM pseudo instruction may be defined as
entry points in an ENT psuedo instruction. Some
examples are shown in Figure 2-2.

2-7. ASTERISK

An asterisk in position one indicates that the entire state­
ment is a comment. Positions 2 through 80 are available;
however, positions 1through68 only are printed as part of
the assembly listing. An asterisk within a label is illegal in
any position.

2-8. OPCODE FIELD

The operation code defines an operation to be performed
by the computer or the Assembler. The Opcode field
follows the Label field and is separated from it iby at least
one space. If there is no label, the operation code may
begin anywhere after position one. The Opcode field is
terminated by a space immediately following an operation
code. Operation codes are organized in the following
categories:

Operation codes are discussed in detail in Sections III and
IV.

Source Statement Format

2-9. OPERAND FIELD

The meaning and format of the Operand field depend on
the type of operation code used in the source statement.
The field follows the Opcode field and is separated from it
by at least one space. It is terminated by a space except
when the space follows , + -(or, if there are no comments,
by an end-of-statement mark. If more than one operand is
required, they are separated from one another by at least
one space.

The Operand field may contain an expression consisting of
one of the following:

~~)!:~El~c~ .. ····. ··.· ..
:: ,:·: ~;~ :'9tiii\piiiati~~ of ;symbolic •. terms, numeric terms,
.::,::;: .. :.a~.<,l.·:t~~ ·fls~e¥lslc:joined by tile. arithmetic oper-
J~~··•·::~?~a~~ts:~·;t:. iipd: < · · · · ·
~~;~.~~.·~~:.~>;~!:·~~·:~ ~·~··~~ ·, ~.:.:-·:: ;· '.~~,h.,,:,. ,·~~ ~~:<;~::o

An expression may be followed by a comma and an
indicator.

Programs may also contain a literal value in the Operand
field.

2-10. SYMBOLIC TERMS

A symbolic term may be one to five characters consisting
of A through Z, 0 through 9, and the period. The first
character must be alphabetic or a period. Some examples
are shown in Figure 2-3.

A symbol used in the Operand field must be a symbol that
is defined elsewhere in the program in one of the following
ways:

.·,·x;~~··~~:·.~:J~b~l;.i!i:ihe L~bell.fleld of a machine oper­

fJ <: ··i;~~~~~. ~~f ~.:·.~~~t:%~r,w~~r .!n~~~cti~~.·. ·
, :.,f/:' · . :.~l~b~~ip:,tJ1:e HaJ~etfi~lct of aJ3S$, ASC, DEC, x·, qc:iVDEF,JiYT,ABS, EQU, DBL, DBR

· ·· .• ••7 ar~: :R~P: psei,id(.- ·<>per~ti<>n · ·

' Asa n~fn~·i~ the Operand field of a COM or EXT
't' ·.' ps~udo, oper~tion .

·: : .•. :.·A:~· ~laheiJ;}:~h~i:c:i~!>el·fi~ldof an arithmetic sub-

,~·i'J)~~!lPf:~~Q: ?~ati~n
The value of a symbol is absolute or relocatable depending
on the assembly option selected by the, user. The
Assembler assigns a value to a symbol as it appears in one
of the above fields of a statement. If a program is to be
loaded in absolute form, the values assigned by the
Assembler remain fixed. If the program is to be relocated,

2-3

Source Statement Format

the actual value of a symbol is established on loading. A
symbol may be assigned an absolute value through use of
the EQU pseudo instruction.

A symbolic term may be preceded by a plus or minus sign.
If preceded by a plus or no sign, the symbol refers to its
associated value. If preceded by a minus sign, the symbol
refers to the two's complement of its associated value. A
single negative symbolic operand may be used only with
the ABS pseudo operation.

2-11. NUMERIC TERMS

A numeric term may be decimal or octal. A decimal
number is represented by one to five digits within the
range 0 to 32767. An octal number is represented by one to
six octal digits followed by the letter B; (0 to 177777B).

If a numeric term is preceded by a plus or no sign, the
binary equivalent of the number is used in the object code.
If preceded by a minus sign, the two's ¢omplement of the
binary equivalent is used. A negative; numeric operand
may be used only with the DEX, DEC, OCT, BYT and
ABS pseudo operations.

In an absolute program, the maximum value of a numeric
operand depends on the type of machine or pseudo
instruction. In a relocatable program, the value of a
numeric operand may not exceed 17778 . Numeric
operands are absolute. Their value is not altered by the
assembler or the loader.

2-12. ASTERISK

An asterisk in the Operand field refers to the value in the
program location counter at the time the source program
statement is encountered. The asterisk is considered a
relocatable term in a relocatable program.

2-13. EXPRESSION OPERATORS

The asterisk, symbols, and numbers may be joined by the
arithmetic operators + and - to form arithmetic address
expressions. The Assembler evaluates an expression and
produces an absolute or relocatable value in the object
code. Some examples are shown in Figure 2-4.

LOA SYM+6
ADA SYM-3

ADD 6 TO THE VALUE OF SYM
SUBTRACT 3 FROM THE VALUE OF SYM

JMP ~~+ 5

STB -A+C-4

STA XTA-~~

2-4

ADD 5 TO THE CONTENTS OF THE
PROGRAM LOCATION COUNTER.

ADD - VALUE OF A, THE VALUE OF C
AND SUBTRACT 4.

SUBTRACT VALUE OF PROGRAM
LOCATION COUNTER FROM VALUE OF
XTA.

Figure 2-4. Expression Operator Examples

2-14. EVALUATION OF EXPRESSIONS

An expression consisting of a single operand has the value
of that operand. An expression consisting of more than
one operand is reduced to a single value. In expressions
containing more than one operator, evaluation of the
expression proceeds from left to right. The algebraic
expression A-(B-C+5) must be represented in the Operand
field as A-B+C-5. Parentheses are not permitted in
operand expressions.

The range of values that may result from an operand
expression depends on the type of operation. The
Assembler evaluates expressions as follows:t

2-15. EXPRESSION TERMS

The terms of an expression are the numbers and the
symbols appearing in it. Decimal and octal integers, and
symbols defined as being absolute in an EQU pseudo
operation are absolute terms. The asterisk and all symbols
that are defined in the program are relocatable or absolute
depending on the type of assembly. Symbols that are
defined as external may appear only as single term
expressions and may not be indirect.

Within a relocatable program, terms may be program
relocatable or common relocatable. A symbol that names
an area of common storage is a common relocatable term.
A symbol that is defined in any statement other than
COM or EQU is a relocatable term. Within one expression
all relocatable terms must be program relocatable or
common relocatable; the two types may not be mixed.

2-16. ABSOLUTE AND RELOCATABLE
EXPRESSIONS

An expression is absolute if its value is unaffected by
program relocation. An expression is relocatable if its
value changes according to the location into which the
program is loaded. In an absolute program, all expressions
are absolute. In a relocatable program, an expression may
be program relocatable, common relocatable, or absolute
(if less than 20008) depending on the definition of the
terms composing it.

Source Statement Format

2-17. ABSOLUTE EXPRESSIONS. An absolute ex­
pression may be any arithmetic combination of absolute
terms. It may contain relocatable terms alone, or in
combination with absolute terms. If relocatable terms
appear, there must be an even number of them; they must
be of the same type; and they must be paired by sign (a
negative term for each positive term). The paired terms do
not have to be contiguous in the expression. The pairing of
terms by type cancels the effect of relocation; the value
represented by a pair remains constant.

An absolute expression reduces to a single absolute value.
The value of an absolute multi-term expression may be
negative only for ABS pseudo operations. A single
numeric term also may be negative in an OCT, DEX,
BYT, or DEC pseudo instruction. In a relocatable program
the value of an absolute expression must be less than
20008 for instructions that reference memory locations
(Memory Reference, DEF, Arithmetic subroutine calls,
etc.).

If P1 and P2 are program relocatable terms; C1 and C2 ,

common relocatable; and A, an absolute term; then the
following are absolute terms:

The asterisk is program relocatable.

2-18. RELOCATABLE EXPRESSIONS. A relocatable
expression is one whose value is changed by the loader. All
relocatable expressions must have a positive value.

A relocatable expression may contain an odd number of
relocatable terms, alone, or in combination with absolute
terms. All relocatable terms must be of the same type.
Terms must be paired by sign with the odd term being
positive.

A relocatable expression reduces to a single positive
relocatable term, adjusted by the values represented by
the absolute terms and paired relocatable terms associated
with it.

tThe evaluation of expressions by the Assembler is compatible with the addressing capability of the hardware instructions (e.g., up to 32K
words through Indirect Addressing). The user must take care not to create addresses which exceed the memory size of the particular
configuration.

2-5

Source Statement Format

If P1 , P2 , and P3 are program relocatable terms; Cp C2
and C3 , common relocatable; and A, an absolute term;
then the following are relocatable terms:

P1,. A Ci -A

P1'.""P:2+P3 C1"'C2+C3

·*+A *-P1+P2

· P2 +.A A+ C1

2-19. LITERALS

:

P1
1
- P2 +*

!
Cr +A

*:A

- A - P1 + P2 + P3

A'+*

-61 + C2 + C3

Literal values may be specified as operands in relocatable
programs. The Assembler converts the literal to its binary
value, assigns an address to it, and substitutes this
address as the operand. Locations assigned to literals are
those immediately following the last location used by the
program.

A literal is specified by using an equal sign and a
one-character identifier defining the type of literal. The
actual literal value is specified immediately following this
identifier; no spaces may intervene. '

The identifiers are:

=D a decimal integer, in the range -32767 to 32767,
including zero. t

=F a floating point number; any positive or negative
real number in the range 10-38 to 1038, including
zero.t

=B an octal integer, one to six digits, b1 b 2b 3b4 b5b6 ,

where b1 may be 0 or 1, and b2 -b7 may be 0 to 7.t

=A two ASCII characters. t

=L an expression which, when evaluated, will result in
an absolute value. All symbols appearing in the ex·
pression must be previously defined.

If the same literal is used in more than one instruction or if
different literals have the same value: (e.g., =BlOO and
=D64), only one value is generated, a;nd all instructions
using these literals refer to the same location.

tSee CONST ANT DEFINITION, Section IV.

2-6

Literals may be specified only in the following memory
reference, register reference, EAU, and pseudo
instructions:

ADA
ADB
ADX
ADY
AND
CBS
CBT
CMW

DLD
FMP

CPA
CPB
DIV
IOR
LDA
LDB
LDX
LDY

FDV
FAD

MBT
MDB
MPY
MVW
SBS
TBS
XOR

FSB

Examples are as follows:

LDA =D7980

IOR =B777

LDA =ANO

}

A-Register is loaded with
the binary equivalent of
798010·

Inclusive OR is performed
with contents of A-Register
and 7778 •

A· Register is loaded with
binary representation of
ASCII characters NO.

LDB =LZETZ-ZOOM+68 B-Register is loaded with
the absolute value resulting
from the expression.

FMP =F39. 75 Contents of A· and B­
Registers multiplied by
floating point constant
39.75.

2-20. INDIRECT ADDRESSING

The HP computers provide an indirect addressing
capability for memory reference instructions. The operand
portion of an indirect instruction contains the address of
another location. The secondary location may be the
operand or it may be indirect also and give yet another
location, and so forth. The chaining ceases when a location
is encountered that does not contain an indirect address.
Indirect addressing provides a simplified method of
address modifications as well as allowing access to any
location in core.

The Assembler allows specification of indirect addressing
by appending a comma and the letter I to any memory
reference operand other than one referring to an external
symbol. The actual address of the instruction may be
given in a DEF pseudo operation; this pseudo operation
may also be used to indicate further levels of indirect
addressing. An example is shown in Figure 2-5.

A relocatable assembly language program, however, may
be designed without concern for the pages in which it will
be stored; indirect addressing is not required in the source
language. When the program is being loaded, the loader
provides indirect addressing whenever it detects an
operand which does not fall in the current page or the base
page. The loader substitutes a reference to a program link
location (established by the loader in either the base page
or the current page*) and then stores an indirect address in
the particular program link location. If the program link
location is in the base page, all references to the same
operand from other pages will be via the same link
location.

2-21. CLEAR FLAG INDICATOR

The majority of the input/output instructions can alter the
status of the input/output interrupt flag after execution or
after the particular test is performed. In source language,
this function is selected by appending a comma and a
letter C to the Operand field. Some examples are shown in
Figure 2-6.

Source Statement Format

2-22. COMMENTS FIELD

The Comments field allows the user to transcribe notes on
the program that will be listed with source language
coding on the output produced by the Assembler. The field
follows the Operand field and is separated from it by at
least one space. The end-of-record mark, the end-of-

statement mark, @@, or the 80th character of a

statement terminates the field. The statement length
should not exceed 52 characters, the width of the source
language portion of the listing. However, statements
consisting solely of comments may contain up to 68
characters including the asterisk in the first position. On
the list output, statements consisting entirely of
comments begin in position 5 rather than 21 as with other
source statements. Any characters beyond the above
limits will not appear on the listing.

If there is no operand present, the Comments field should
be omitted in the NAM and END pseudo operations and in
the input/output statements, SOC, SOS, and HLT. If a
comment is used, the Assembler attempts to interpret it as
an operand. This limitation applies also to multi-operand
instructions.

AB
AC
AD

LDA SAM,I
ADA SAM,I
ISZ SAM

EACH TIME THE ISZ IS EXECUTED,
THE EFFECTIVE OPERAND OF AB AND
AC CHANGE ACCORDINGLY.

SAM DEF ROGER

Figure 2-5. Indirect Addressing Example

STC 107,C

OTB 105,C

CLEAR FLAG 107 AFTER CONTROL
BIT IS SET
CLEAR FLAG 105 AFTER MOVE

Figure 2·6. Clear Flag Examples

*Refer to the description of the :PROG,LOADR directive in HP 24307B DOS-III Disc Operating System (24307-90006).

2-7

The Assembler language machine instruction codes take
the form of three-letter mnemonics. Each source state­
ment corresponds to a machine operation in the object
program produced by the Assembler.

Notation used in representing source language instruction
is as follows:

label

m

I

SC

c
comments

[]

{ }

lit

Optional statement label

Memory location - an expression

Indirect addressing indicator

Select code - an expression

Clear interrupt flag indicator

Optional comments

Brackets defining a field or portion of a
field that is optional

Brackets indicating that one of the set
may be selected.

literal

3-1. MEMORY REFERENCE

The memory reference instructions perform arithmetic,
logical, jump, word manipulation, byte manipulation, and
bit manipulation operations on the contents of memory
locations and the registers. An instruction may directly
address the 204810 words of the current and base pages. If
required, indirect addressing may be used to refer to all
32,76810 words of memory. Expressions in the Operand
field are evaluated modulo 21 o.

If the program is to be assembled in relocatable form, the
Operand field may contain relocatable or absolute
expressions; however, absolute expressions must be less
than 20008 in value. If the program is to be assembled in
absolute form, the Operand field may contain any
expression which is consistent with the location of the
program. Literals may not be used in absolute programs.
Absolute programs must be complete entities; they may
not refer to external subroutines or to common storage.

3-2. JUMP AND INCREMENT-SKIP

Jump and Increment-Skip instructions may alter the
normal sequence of program execution.

liiHM/1
INSTRUCTIONS :

1 111 I

label JMP I m [,I] comments

Jump to m. Jump indirect inhibits interrupt until the
transfer of control is complete.

label JSB I m [,I] comments

Jump to subroutine. The address for label+ 1 is placed into
the location represented by m and control transfers to
m+ 1. On completion of the subroutine, control may be
returned to thenormal sequence byperformingaJMPm, I.

label ISZ I m [,I] I comments

Increment, then skip if zero. ISZ adds 1 to the contents of
m. If m then equals zero, the next instruction in memory is
skipped.

3-3. ADD, LOAD AND STORE

Add, Load, and Store instructions transmit and alter the
contents of memory and of the A- and B-Registers. A
literal, indicated by "lit", may be either =D, =B, =A, or
=L type.

label I ADA I 1 : [,I]) I comments

Add the contents of m to A.

label I ADB I l: [,I]) I comments

Add the contents of m to B.

label I LOA I l: [,I]) I comments

Load A with the contents of m.

label I LOB I l: [,I]) I comments

Load B with the contents of m.

3-1

Machine Instructions

label ST A I m [,I] I comments

Store contents of A in m.

label STB I m [,I] I comments

Store contents of B in m.

In each instruction, the contents of the sending location is
unchanged after execution.

3-4. LOGICAL OPERATIONS

The logical instructions allow bit manipulation and the
comparison of two computer words.

label I AND I 1 : [,I I) I comments

The logical product ("AND") of the contents of m and the
contents of A are placed in A. ·

label XOR I m [,I])
lit

comments

The modulo-two sum (exclusive "or") df the bits in m and
the bits in A is placed in A.

label I IOR I 1: [,I]) I comments

The logical sum (inclusive "or") of the bits in m and the
bits in A is placed in A.

label I CPA I 1 : [,I]) I comments

Compare the contents of m with the contents of A. If they
differ, skip the next instruction; otherwise, continue.

label I CPB I 1 : [,I]) I comments

Compare the contents of m with the contents of B. If they
differ, skip the next instruction; otherwise, continue.

3-5. WORD PROCESSING (21MX ONLY)

The word processing instructions allow the user to move a
series of data words from one array in memory to another
or to compare (word-by-word) the contents of two arrays in
memory.

3-2

label MVW I literal)
m [,I] comments

Move words. The A-register contains the starting (lowest)
word address of the source array. The B-register contains
the starting (lowest) word address of the destination
array. The number of words to be moved is specified by
literal or by the value contained in m [,I]. The specified
number of words are moved from the source array into the
destination array. As each word is moved, the A- and
B-registers are incremented by one. The source array is not
altered.

label CMW I literal) comments
m [,I]

Compare words. The A-register contains the starting
(lowest) word address of array #1. The B-register cqntains
the starting (lowest) word address of array #2. The number
of word comparisons to be performed is specified by literal
or by the value contained in m [,I]. The two arrays are
compared word-by-word beginning at the specified
addresses. The operation is finished when an inequality is
detected or when the specified number of word
comparisons have been performed. When the operation is
finished, the A-register contains the word address of the
last word in array #1 which was compared; the B-register
contains the starting address of array #2 incremented by
the "count" parameter (literal or the value in m [,I]). If the
two arrays are equal, execution proceeds at the next
sequential source language instruction (P+3). If array #1
is "less than" array #2, execution proceeds at instruction
P+4. If array #1 is "greater than" array #2, execution
proceeds at instruction P+5. The two arrays are not
altered.

3-6. BYTE PROCESSING (21MX ONLY)

The byte processing instructions allow the user to copy a
data byte from memory into the A- or B-register, copy a
data byte from the A- or B-register into memory, copy a
series of data bytes from one array in memory to another,
compare (byte-by-byte) the contents of two arrays in
memory, or scan an array in memory for particular data
bytes.

A byte address is defined as two times the word address of
the memory location containing the particular data byte.
If the byte location is the low order half of the memory
location (bits 0-7), bit 0 of the byte address is set; if the
byte location is the high order half of the memory location
(bits 8-15), bit 0 of the byte address is clear.

label I LBT I comments

Load byte. The B-register contains the byte address of the
byte to be loaded. The specified byte is copied from
memory into bits 0-7 of the A-register (bits 8-15 of the
A-register are set to zeros). The B-register is then
incremented by one. The memory location is not altered.

label SBT comments

Store byte. The B-register contains the byte address into
which the byte is to be stored. Bits 0-7 of the A-register are
copied into the specified memory byte location (bits 8-15 of
the A-register are ignored). The B-register is then
incremented by one. The A-register is not altered.

label MBT I literal }
m [,I]

comments

Move bytes. The A-register contains the starting (lowest)
byte address of the source array. The B-register contains
the starting (lowest) byte address of the destination array.
The number of bytes to be moved is specified by literal or
by the value contained in m [,I]. The specified number of
bytes are moved from the source array into the destination
array. As each byte is moved, the A- and B-registers are
incremented by one. The source array is not altered.

label CBT I literal } comments
m [,I]

Compare bytes. The A-register contains the starting
(lowest) byte address of array #1. The B-register contains
the starting (lowest) byte address of array #2. The number
of byte comparisons to be performed is specified by literal
or by the value contained in m [,I]. The two arrays are
compared byte-by-byte beginning at the specified
addresses. The operation is finished when an inequality is
detected or when the specified number of byte
comparisons have been performed. When the operation is
finished, the A-register contains the byte address of the
last byte in array #1 which was compared; the B-register
contains the starting byte address of array #2 incremented
by the "count" parameter (literal or the value in m [,I]). If
the two arrays are equal, execution proceeds at the next
sequential source language instruction (P+3). If array #1
is "less than" array # 2, execution proceeds at instruction
P+4. If array #1 is "greater than" array #2, execution
proceeds at instruction P+5. The two arrays are not
altered.

label SFB comments

Scan for byte. The A-register contains a test byte in bits
0-7 and a termination byte in bits 8-15. The B-register

Machine Instructions

contains the starting (lowest) byte address of the array to
be scanned. The array is compared byte-by-byte against
both the test and termination bytes starting at the
specified address. The operation is finished when a
positive comparison is detected or when the end of
memory is reached. If the test byte is detected, execution
proceeds at the next sequential source language
instruction (P+ 1) and the B-register contains the address
of the test byte in the array. If the termination byte is
detected, execution proceeds at instruction P+2 and the B­
register contains the address plus one of the termination
byte in the array. If the end of memory is detected, exe­
cution proceeds at instruction P+2 and the B-register con­
tains all zeros. The A-register and the array are not
altered.

3-7. BIT PROCESSING (21MX ONLY)

The bit processing instructions allow the user to
selectively test, set, or clear bits in a memory location
according to the contents of a mask. In the descriptions
below, addr 1 and addr2 may be operand expressions.

label TBS I literal }
addrl[,I]

addr2[,I] comments

Test bits. literal is a test mask, addrl[,I] is the address of a
memory location containing a test mask, and addr2[,I] is
the address of a memory location containing the bits to be
tested. The bits in addr2[,I] which correspond to the "1"
bits in the mask are tested. All other bits in addr2[,I] are
ignored. If all the applicable bits in addr2[,I] are set, exe­
cution proceeds at the next sequential source language
instruction (P+3). If any of the applicable bits in addr2[,I]
are clear, execution proceeds at instruction P+4.

label SBS I literal }
addrl[,I] addr2[,I] comments

Set bits. literal is a mask, addrl[,I] is the address of a
memory location containing a mask, and addr2[,I] is the
address of a memory location containing the bits to be set.
The bits in addr2[,I] which correspond to the "1" bits in
the mask are set. All other bits in addr2[,I] are not
affected. Functionally, the SBS instruction is a ''logical
OR" operation.

I literal } addr2[,I]
addrl[,I]

comments

Clear bits. literal is a mask, addrl[,I] is the address of a
memory location containing a mask, and addr2[,I] is the
address of a memory location containing the bits to be
cleared. The bits in addr2[,I] which correspond to the "1"
bits in the mask are cleared. All other bits in addr2[,I] are
not affected.

3-3

Machine Instructions

3-8. REGISTER REFERENCE

The register reference instructions include a shift-rotate
group, an alter-skip group, an index register group, and
NOP (no operation). For the shift-rotate and alter-skip
groups, the instruction mnemonics within each group may
be combined into a single source statement to cause
multiple operations to be executed during one memory
cycle. In such cases, successive mnemoniCs within a single
source statement are separated from one another by a
comma.

3-9. SHIFT-ROTATE GROUP

This group contains 19 basic instructions that can be
combined to produce more than 500 different single cycle
operations.

CLE

ALS

Clear E to zero

Shift A left one bit, zero to least significant bit.
Sign unaltered

BLS Shift B left one bit, zero to least significant bit.

ARS

BRS

RAL

RBL

RAR

RBR

ALR

BLR

ERA

ERB

ELA

ELB

ALF

BLF

SLA

SLB

3-4

Sign unaltered

Shift A right one bit, extend sign; sign unaltered

Shift Bright one bit, extend sign; sign unaltered

Rotate A left one bit

Rotate B left one bit

Rotate A right one bit

Rotate B right one bit

Shift A left one bit, clear sign,
significant bit

Shift B left one bit, clear sign,
significant bit

Rotate E and A right one bit

Rotate E and B right one bit

Rotate E and A left one bit

Rotate E and B left one bit

Rotate A left four bits

Rotate B left four bits

zero to least

zero to least

Skip next instruction if least significant bit in A
is zero

Skip next instruction if least significant bit in B
is zero

These instructions may be combined as follows:

label

label

ALS
ARS
RAL
RAR
ALR
ALF
ERA
ELA

BLS
BRS
RBL
RBR
BLR
BLF
ERB
ELB

ALS
ARS
RAL
RAR

[,CLE] [,SLA] , ALR

[,CLE] [,SLB] ,

ALF
ERA
ELA

BLS
BRS
RBL
RBR
BLR
BLF
ERB
ELB

comments

comments

CLE, SLA, or SLB appearing alone or in any valid combi­
nation with each other are assumed to be a shift-rotate
machine instruction.

The shift-rotate instructions must be given in the order
shown. At least one and up to four are included in one
statement. Instructions referring to the A-register may
not be combined in the same statement with those
referring to the B-register.

3-10. ALTER-SKIP GROUP

The alter-skip group contains 19 basic instructions that
can be combined to produce more than 700 different single
cycle operations.

CLA

CLB

CMA

CMB

CCA

CCB

CLE

CME

CCE

SEZ

SSA

SSB

Clear the A-Register

Clear the B-Register

Complement the A-Register

Complement the B-Register

Clear, then complement the A-Register (set to
ones)

Clear, then complement the B-Register (set to
ones)

Clear the E-Register

Complement the E-Register

Clear, then complement the E-Register

Skip next instruction if E is zero

Skip if sign of A is positive (0)

Skip if sign of B is positive (0)

INA

INB

SZA

SZB

SLA

SLB

RSS

Increment A by one

Increment B by one

Skip if contents of A equals zero

Skip if contents of B equals zero

Skip if least significant bit of A is zero

Skip if least significant bit of B is zero

Reverse the sense of the skip instructions. If no
skip instructions precede in the statement, skip
the next instruction

These instructions may be combined as follows:

""" [I ~:)] '·'"' w~ l J , ,,,A" ,<CA"·'" Al '·'"'" ··"• oomm••••

""-' [\ ~: l] (,<EZ([u~ l J (,«R(('LB Jl,<NB((·"" lf "''l oomm"'"

The alter-skip instructions must be given in order shown.
At least one and up to eight are included in one statement.
Instructions referring to the A-register may not be
combined in the same statement with those referring to
the B-register. When two or more skip functions are
combined in a single operation, a skip occurs if any one of
the conditions exists. If a word with RSS also includes
both SSA and SLA (or SSB and SLB), a skip occurs only
when sign and least significant bit are both set (1).

3-11. INDEX REGISTER GROUP (21MX ONLY)

This group contains 32 instructions which perform various
operations involving the use of index registers X and Y.
An instruction may directly address the 204810 words of
the current and base pages. If required, indirect
addressing may be used (except where noted otherwise) to
refer to all 32,76810 words of memory. Expressions in the
Operand field are evaluated modulo 210 .

label I CAX comments

Copy A to X. The contents of the A-register are copied into
the X-register. The A-register is not altered.

label I CBX I comments

Copy B to X. The contents of the B-register are copied into
the X-register. The B-register is not altered.

label CAY comments

Copy A to Y. The contents of the A-register are copied into
the Y-register. The A-register is not altered.

Machine Instructions

label CBY I comments

Copy B to Y. The contents of the B-register are copied into
the Y-register. The B-register is not altered.

label CXA I comments

Copy X to A. The contents of the X-register are copied into
the A-register. The X-register is not altered.

label CXB I comments

Copy X to B. The contents of the X-register are copied into
the B-register. The X-register is not altered.

label CY A I comments

Copy Y to A. The contents of the Y-register are copied into
the A-register. The Y-register is not altered.

label CYB I comments

Copy Y to B. The contents of the Y-register are copied into
the B-register. The Y-register is not alt~red.

label XAX comments

Exchange A and X. The contents of the A-register are
copied into . the X-register and the contents of the
X-register are copied into the A-register.

label XBX comments

Exchange B and X. The contents of the B-register are
copied into the X-register and the contents of the
X-register are copied into the B-register.

label I XAY comments

Exchange A and Y. The contents of the A-register are
copied into the Y-register and the contents of the
Y-register are copied into the A-register.

label XBY comments

Exchange B and Y. The contents of the B-register are
copied into the Y-register and the contents of the
Y-register are copied into the B-register.

3-5

Machine Instructions

label ISX I comments

Increment X and skip if zero. The contents of the
X-register are incremented by one and then tested. If the
new value in X is zero, the next sequential instruction
(P+ 1) is skipped and execution proceeds at instruction
P+2; if the new value in X is non-zero, fi)Xecution proceeds
at instruction P+ 1.

label ISY I comments

Increment Y and skip if zero. The contents of the
Y-register are incremented by one and .then tested. If the
new value in Y is zero, the next seq~ential instruction
(P+l) is skipped and execution proceeds at instruction
P+2; if the new value in Y is non-zero, execution proceeds
at instruction P+ 1.

label DSX I comments

Decrement X and skip if zero. The contents of the
X-register are decremented by one and then tested. If the
new value in X is zero, the next sequential instruction
(P+l) is skipped and execution proceeds at instruction
P+2; if the new value in Xis non-zero, execution proceeds
at instruction P+ 1.

label DSY I comments

Decrement Y and skip if zero. The contents of the
Y-register are decremented by one and :then tested. If the
new value in Y is zero, the next seqhential instruction
(P+ 1) is skipped and execution proceeds at instruction
P+2; if the new value in Y is non-zero, execution proceeds
at instruction P+ 1.

label LDX I m [,I]) comments
literal

Load X from memory. The contents of the specified
memory location are copied into the X-register. Indirect
addressing may be used. The memory location is not
altered.

label LDY I m [,I]) comments
literal

Load Y from memory. The contents of the specified
memory location are copied into the Y-register. Indirect
addressing may be used. The memory location is not
altered.

3-6

label STX m [,I] comments

Store X into memory. The contents of the X-register are
copied into the specified memory location. Indirect
addressing may be used. The X-register is not altered.

label STY m [,I] I comments

Store Y into memory. The contents of the Y-register are
copied into the specified memory location. Indirect
addressing may be used. The Y-register is not altered.

label LAX I m [,I] comments

Load A from memory indexed by X. The contents of the
specified memory location are copied into the A-register.
Indirect addressing may be used. The address of the
memory location is computed by adding the contents of
the X-register to m or to m,I. Note that indirect
addressing (if specified) is performed first and then the
address is indexed. The X-register and the memory
location are not altered.

label LBX m [,I] comments

Load B from memory indexed by X. The contents of the
specified memory location are copied into the B-register.
Indirect addressing may be used. The address of the
memory location is computed by adding the contents of
the X-register to m or to m,I. Note that indirect
addressing (if specified) is performed first and then the
address is indexed. The X-register and the memory
location are not altered.

label LAY m [,I] comments

Load A from memory indexed by Y. The contents of the
specified memory location are copied into the A-register.
Indirect addressing may be used. The address of the
memory location is computed by adding the contents of
the Y-register tom or to m,I. Note that indirect addressing
(if specified) is performed first and then the address is
indexed. The Y-register and the memory location are not
altered.

label LBY m [,I] comments

Load B from memory indexed by Y. The contents of the
specified memory location are copied into the B-register.
Indirect addressing may be used. The address of the
memory location is computed by adding the contents of
of the Y-register to m or to m,1. Note that indirect
addressing (if specified) is performed first and then the
address is indexed. The Y-register and the memory
location are not altered.

label I SAX I m [,I] I comments

Store A into memory indexed by X. The contents of the
A-register are copied into the specified memory location.
Indirect addressing may be used. The address of the
memory location is computed by adding the contents of
the X-register to m or to m,I. Note that indirect
addressing (if specified) is performed first and then the
address is indexed. The A-register and the X-register are
not altered.

label SBX I m [,I] I comments

Store B into memory indexed by X. The contents of the
B-register are copied into the specified memory location.
Indirect addressing may be used. The address of the
memory location is computed by adding the contents of
the X-register to m or to m,I. Note that indirect
addressing (if specified) is performed first and then the
address is indexed. The B-register and the X-register are
not altered.

label SAY I m [,I] I comments

Store A into memory indexed by Y. The contents of the
A-register are copied into the specified memory location.
Indirect addressing may be used. The address of the
memory location is computed by adding the contents of
the Y-register tom or to m,I. Note that indirect addressing
(if specified) is performed first and then the address is
indexed. The A-register and the Y-register are not altered.

label I SBY I m [,I] I comments

Store B into memory indexed by Y. The contents of the
B-register are copied into the specified memory location.
Indirect addressing may be used. The address of the
memory location is computed by adding the contents of
the Y-register tom or to m,I. Note that indirect addressing
(if specified) is performed first and then the address is
indexed. The B-register and the Y-register are not altered.

label I ADX I m [,I] comments

Add memory to X. The contents of the specified memory
location are algebraically added to the contents of the
X-register. Indirect addressing may be used. The memory
location is not altered.

label I ADY I m [,I] comments

Add memory to Y. The contents of the specified memory
location are algebraically added to the contents of the
Y-register. Indirect addressing may be used. The memory
location is not altered.

Machine Instructions

label JLY m [,I] I comments

Jump and load Y. Control transfers unconditionally to the
specified memory location and the address P+2 is loaded
into the Y-register. Indirect addressing may be used. This
instruction is used for calling subroutines. The sub­
routines use the Y-register to access parameters and to
return control (by way of the JPY instruction) to the
calling program.

label JPY m comments

Jump indexed by Y. Control transfers unconditionally to
the specified memory location. Indirect addressing may
not be used. The address of the memory location is com­
puted by adding the contents of the Y-register tom. This
instruction is used for returning control from subroutines
to the calling program (assuming that they were entered
by way of JL Y instructions).

3-12. NO-OPERATION INSTRUCTION

When a no-operation is encountered in a program, no
action takes place; the computer goes on to the next
instruction. A full memory cycle is used in executing a
no-operation instruction.

label NOP I comments

A subroutine to be entered by a JSB instruction should
have a NOP as the first statement. The return address can
be stored in the location occupied by the NOP during exe­
cution of the program. A NOP statement causes the
Assembler to generate a word of zero.

3-13. INPUT/OUTPUT, OVERFLOW,
AND HALT

The input/output instructions allow the user to transfer to
and from an external device via a buffer, to enable or
disable external interrupt, or to check the status of I/O
devices and operations. A subset of these instructions
permits checking for an arithmetic overflow condition.

Input/output instructions require the designation of a
select code, sc, which indicates one of 6410 input/output
channels or functions. Each channel consists of a
connect/disconnect control bit, a flag bit, and a buffer of
up to 16 bits. The setting of the control bit indicates that a

3-7

Machine Instructions

device associated with the channel is operable. The flag bit
is set automatically when transmission between the device
and the buffer is completed. Instructions are also available
to test or clear the flag bit for the particular channel. If the
interrupt system is enabled, setting Qf the flag causes
program interrupt to occur; control transfers to the
interrupt location related to the channel.

Note: When Memory Protect is enabled, exe­
cution of all I/O instructions except those
which reference the switch register (select
code 01) or the overflow bit is prohibited.

Expressions used to represent select codes (channel
numbers) must have a value of less than 26 • The value
specifies the device or operation referenced. Instructions
which transfer data between the A or B register and a
buffer, access the switch register when sc = 1. The select
code (sc) may be a label which was previously defined as
an external symbol by an EXT pseudo-instruction. In such
a case, the entry point referred to by the EXT pseudo­
instruction must be an absolute value less than 64 10 (any
other value will change the instruction). The character C
appended to such an instruction clears the overflow bit
after the transfer from the switch register is complete.

3-14. INPUT /OUTPUT

Prior to any input/output data transmission, the control
bit must be set. The following instruction accomplishes
this and may also transfer data between the device and the
buffer.

label STC I sc [,CJ I comments

Set 1/0 control bit for channel specified by sc. STC
transfers or enables transfer of an elem~nt of data from an
input device to the buffer or to an output device from the
buffer. The exact function of the STC depends on the
device; for the 2752A Teleprinter, an S'rC enables transfer
of a series of bits. If sc = 1, this statement is treated as
NOP. The C option clears the flag bit for the channel.

label I CLC I sc [,CJ comments

Clear 1/0 control bit for channel specified by sc. When the
control bit is cleared, interrupt on the channel is disabled,
although the flag may still be set by the device. If sc = 0,
control bits for all channels are cleared to zero; all devices
are disconnected. If sc = 1, this statemment is treated as
NOP.

label LIA sc [,CJ I comments

Load into A the contents of the 1/0 buffer indicated by sc.

3-8

label LIB sc [,C) comments

Load into B the contents of the 1/0 buffer indicated by sc.

label MIA I sc [,CJ I comments

Merge (inclusive "or") the contents of the 1/0 buffer indi­
cated by sc into A.

label MIB I sc [,CJ I comments

Merge (inclusive "or") the contents of the 1/0 buffer indi­
cated by sc into B.

label OTA I sc [,CJ I comments

Output the contents of A to the 1/0 buffer indicated by sc.

label OTB I sc [,CJ I comments

Output the contents of B to the 1/0 buffer indicated by sc.

label STF I SC comments

Sets the flag bit of the channel indicated by sc. If sc = 0,
STF enables the interrupt system. A sc code of 1 causes
the overflow bit to be set.

label CLF I SC comments

Clear the flag bit to zero for the channel indicated by sc. If
sc = 0, CLF disables the interrupt system. If sc = 1, the
overflow bit is cleared to zero.

label SFC SC I comments

Skip the next instruction if the flag bit for channel sc is
clear. If sc = 1, the overflow bit is tested.

label SFS sc I comments

Skip the next instruction if the flag bit for channel sc is
set. If sc = 1, the overflow is tested.

3-15. OVERFLOW

In addition to the use of a select code of 1, the overflow bit
may be accessed by the following instructions:

label I CLO I comments

Clear the overflow bit.

label I STO comments

Set overflow bit.

label I SOC [C] comments

Skip the next instruction if the overflow bit is clear. The C
option clears the bit after the test is performed.

label I SOS [C] comments

Skip the next instruction if the overflow bit is set. The C
option clears the bit after the test is performed.

The C option is identified by the sequence "space C space"
following either "SOC" or "SOS". Anything else is treated
as a comment.

3-16. HALT

label HLT I [sc [,C]]) comments
[C]

Halt the computer. The machine instruction word is
displayed in the T-Register. If the C option is used, the
flag bit associated with channel sc is cleared.

If neither the select code nor the C option is used, the
comments portion must be omitted.

3-17. EXTENDED ARITHMETIC UNIT
(EAU)

If the computer on which the object program is to be run
contains an EAU, this group of instructions may be used
to increase the computer's overall efficiency.

Machine Instructions

The user specifies whether or not an EAU will be available
via a parameter in the control statement (see paragraph
1-3). If an EAU will not be available, the instructions
ASR, ASL, R'RR, RRL, LSR, LSL, and SWP cannot be
used in the source program (they will be flagged as errors)
and the instructions MPY, DIV, DLD, and DST will result
in calls to arithmetic subroutines (see paragraph 4-7).

label I MPY I 1 ~[,I]) I comments

The MPY instruction multiplies the contents of the A­
Register by the contents of m. The product is stored in
registers B and A. B contains the sign of the product and
the 15 most significant bits; A contains the least signifi­
cant bits.

label I DIV I 1 ~[,I]) I comments

The DIV instruction divides the contents of registers B
and A by the contents of m. The quotient is stored in A
and the remainder in B. Initially B contains the sign and
the 15 most significant bits of the dividend; A contains the
least significant bits.

label I OLD I 1 ~[,I]) I comments

The DLD instruction loads the contents of locations m and
m + 1 into registers A and B, respectively.

label I DST M [,I] I comments

The DST instruction stores the contents of registers A and
B in locations m and m + 1, respectively.

MPY, DIV, DLD, DST results in two machine words: a
word for the instruction code and one for the operand.

The following seven i11structions provide the capability to
shift or rotate the B- and A-Registers n number of bit
positions to the right or left, where 1 :Sn :S 16.

label I ASR n comments

The ASR instruction arithmetically shifts the B- and
A-Registers right n bits. The sign bit (bit 15 of B) is
extended.

3-9

Machine Instructions

label ASL I n I comments

The ASL instruction arithmetically shifts the B- and
A-Register left n bits. Zeroes are placed in the least
significant bits. The sign bit (bit 15 of B) is unaltered. The
overflow bit is set if bit 14 differs from bit 15 before each
shift; otherwise, exit with overflow bit cleared.

label RRR I n comments

The RRR instruction rotates the B- and A-Registers right
n bits.

label RRL I n comments

The RRL instruction rotates the B- and A-Registers left n
bits.

label LSR n I comments

The LSR instruction logically shifts the B- and
A-Registers right n bits. Zeroes are placed in the most
significant bits.

label LSL n comments

The LSL instruction logically shifts the B- and
A-Registers left n bits. Place zeroes into the least
significant bits.

SWP I
Exchange the contents of the A- and B-Registers. The
contents of the A-Register are shifted into the B-Register
and the contents of the B-Register are shifted into the
A-Register.

3-18. FLOATING POINT

The instructions in this group are used for performing
arithmetic operations on floating point operands. The user
specifies whether or not floating point machine
instructions are available via a parameter in the control
statement (see paragraph 1-3). If the floating point
machine instructions are not available, the instructions in
this group result in calls to arithmetic subroutines (see

3-10

paragraph 4-7). The Operand field may contain any
relocatable expression or absolute expression resulting in a
value of less than 2000 8 .

comments

Multiply the two-word floating point quantity in registers
A and B by the two-word floating point quantity in
locations m and m+ 1 or the quantity defined by the literal.
Store the two-word floating point product in registers A
and B.

label I FDV I 1 :F~I] l I comments

Divide the two-word floating point quantity in registers A
and B by the two-word floating point quantity in locations
m and m+ 1 or the quantity defined by the literal. Store the
two-word floating point quotient in A and B.

label I FAD I 1 :F~l l I comments

Add the two-word floating point quantity in registers A
and B to the two-word floating point quantity in locations
m and m+ 1 or the quantity defined by the literal. Store the
two-word floating point sum in A and B.

label I FSB I { : F~I I l I comments

Subtract the two-word floating point quantity in m and
m+ 1 or the quantity defined by the literal from the
two-word floating point quantity in registers A and Band
store the difference in A and B.

label I FIX comments

Convert the floating-point number contained in the A- and
B-registers to a fixed-point number. The result is returned
in the A-register. After the operation is completed, the
contents of the B-register are meaningless.

label I FLT I comments

Convert the fixed-point number contained in the
A-register to a floating-point number. The result is
returned in the A- and B-registers.

l

i@WI
...___ ____ P_s E_u_o_o_1_N_s1_R_u_c_11_o_N s ________ I iv

1

The pseudo instructions control the Assembler and its
listed output, establish program relocatability, and define
program linkage as well as specify various types of
constants, blocks of memory, and labels used in the
program.

4-1. ASSEMBLER CONTROL

The Assembler control pseudo instructions establish and
alter the contents of the base page and program location
counters, and terminate assembly processing. Labels may
be used but they are ignored by the Assembler. NAM
records produced by the Assemblers are accepted by the
DOS, DOS-M, DOS-III and BCS loaders.

I NAM I name[,type][,link] I comments

NAM defines the name and type of a relocation program.
name is the program's name. type defines the program
type as follows:

3 = main program

4 = disc-resident driver

5 = program segment

6 = library routine

7 = subroutine

link specifies base page or current page linking by the
loader. link = 0 specifies current page linking by the
relocating loader. link =I= 0 specifies base page linking. If
link is not specified the Assembler sets it =I= O; i.e., base
page linking is the default condition for the program.

If type equals any other number, the Assembler and
DOS-III DSGEN will accept it but the DOS-III
Relocating Loader will not. name must not be the same as
an existing DOS-III file name. A relocatable program is
assembled assuming a starting location of zero (i.e., zero
relative). The name may be a symbol of one to five alpha­
numeric characters the first of which must be alphabetic or
a period. The program name is printed on the list output.
A relocatable program must begin with a NAM
statement. t

I ORG I m comments

The ORG statement defines the origin of an absolute
program, or the origin of subsequent sections of absolute
or relocatable programs.

An absolute program must begin with an ORG
statement. t The operand m, must be a decimal or octal
integer specifying the initial setting of the program
location counter.

ORG statements may be used elsewhere in the program to
define starting addresses for portions of the object code.
For absolute programs the Operand field, m, may be any
expression. For relocatable programs, m, must be a
program relocatable expression; it may not be common
relocatable or absolute. An expression is evaluated modulo
215 • Symbols must be previously defined. All instructions
following an ORG are assembled at consecutive addresses
starting with the value of the operand.

l ORR I comment

ORR resets the program location counter to the value
existing when ORG instruction was encountered. An
example is shown in Figure 4-1.

More than one ORG statement may occur before an ORR
is used. If so, when the ORR is encountered, the program
location counter is reset to the value it contained when the
first ORG of the string occurred. An example is shown in
Figure 4-2.

If a second ORR appears before an intervening ORG the
second ORR is ignored.

tThe Control Statement, the HED instruction, and comments may appear prior to the NAM or ORG statements.

4-1

Pseudo Instructions

4-2

NAM RSET
FIRST ADA

SET PLC TO VALUE OF ZERO, ASSIGN
RSET AS NAME OF PROGRAM.

ADA CTRL ASSUME PLC AT FIRST+2280.
ORG FIRST+2926 SAVE PLC VALUE OF FIRST+2280

AND SET PLC TO FIRST+2926.

JMP EVEN+l
ORR

ASSUME PLC AT FIRST+3004
RESET PLC TO FIRST+2280.

Figure 4-1. ORR Example (with Single ORG)

NAM RSET
FIRST ADA

SET PLC TO ZERO

LDA WYZ ASSUME PLC AT FIRST+2250
ORG FIRST+2500 SET PLC TO FIRST+2500

LDB ERA ASSUME PLC AT FIRST+2750
ORG FIRST+2900 SET PLC TO FIRST+2900

CLE
ORR

ASSUME PLC AT FIRST+2920
RESET PLC TO FIRST+2250

Figure 4-2. ORR Example (with Multiple ORGs)

The IFN and IFZ pseudo instructions cause the inclusion
of instructions in a program provided that either an "N"
or "Z", respectively, is specified as a parameter for the
ASMB control statement. t The IFN or IFZ instruction
precedes the set of statements that are to be included. The
pseudo instruction XIF serves as a terminator. If XIF is
omitted, END acts as a terminator to both the set of
statements and the assembly.

IFN I comments

XIF

All source language statements appearing between the
IFN and the XIF pseudo instructions are included in the
program if the character "N" is specified on the ASMB
control statement.

All source language statements appearing between the
IFZ and the XIF pseudo instructions are included in the
program if the character "Z" is specified on the ASMB
control statement.

IFZ I comments

XIF

NAM TRAVL

IFZ
LDA CAR
CMA,SZA
JMP NO.GO
LDA MILES
DIV SPEED
STA GAS
XIF

IFN
LDA PLANE
CMA,SZA
JMP NO.GO
LDA TIME
CPA COST
XIF

NO.GO HLT 77

END

Figure 4-3. IFN /XIF and IFZ/XIF Example

tSee "Assembly Options" in Section I of this manual.

Pseudo Instructions

When the particular letter is not included on the control
statement, the related set of statements appears on the
Assembler output listing but is not assembled.

Any number of IFN-XIF and IFZ-XIF sets may appear in
a program, however, they may not overlap. An IFZ or IFN
intervening between an IFZ or IFN and the XIF
terminator results in a diagnostic being issued during
compilation; the second pseudo instruction is ignored.

Both IFN-XIF and IFZ-XIF pseudo instructions may be
used in the program; however, only one type will be
selected in a single assembly. Therefore, if both characters
"N" and "Z" appear in the control statement, the
character which is listed last will determine the set of
coding that is to be assembled. Some examples are shown
in Figures 4-3 and 4-4.

In Figure 4-3, the program TRA VL will perform compu­
tations involving either or neither CAR or PLANE
considerations depending on the presence or absence of Z
or N parameters in the Control Statement.

In Figure 4-4, the program WAGES computes a weekly
wage value. Overtime consideration will be included in the
program if "Z" is included in the parameters of the Control
Statement.

NAM WAGE

JSB HOUR
MPY TIMEl
IFZ
JSB OVTIM
MPY TIME2

TIME 1 DEC 40
TIME2 BSS 1

END

Figure 4-4. IFZ/XIF Example

4-3

Pseudo Instructions

The REP pseudo instruction causes the repetition of the
statement immediately following it a specified number of
times.

label I REP n I comments

The statement following the REP in the source program is
repeated n times. Then may be any absolute expression.
Comment lines (indicated by an asterisk in character
position 1) are not repeated by REP. If a comment follows
a REP instruction, the comment is ignored and the
instruction following the comment is repeated.

A label specified in the REP pseudo instruction is assigned
to the first repetition of the statement. A label should not
be part of the instruction to be repeated; it would result in
a doubly defined symbol error.

Example:

CLA
TRIPL REP

ADA
3
DATA

The above source code would generate the following:

CLA

TRIPL ADA

Example:

FILL

ADA
ADA

REP
NOP

DATA
DATA
DATA

lOOB

Clear the A-Register;
the content of DAT A is
tripled and stored in the
A-Register.

The example above loads 1008 memory locations with the
NOP instruction. The first location is labeled FILL.

Examplp·

REP
MPY

2
DATA

The above source code would generate the following:

MPY
MPY

DATA
DATA

END I [ml I comments

This statement terminates the program; it marks the
physical end of the s6urce language statements. The
Operand field, m, may contain a name appearing as a
statement label in the current program or it may be blank.
If a name is entered, it identifies the location to which the
loader transfers control after a relocatable program is
loaded. A NOP should be stored at that location when

4-4

executing the program under BCS because the loader
transfers control via a JSB. The DOS-III Relocating
Loader transfers control via a JMP.

If the Operand field is blank, the Comments field must be
blank also, otherwise, the Assembler attempts to interpret
the first five characters of the comments as the transfer
address symbol.

The label field of the END statement is ignored.

4-2. OBJECT PROGRAM LINKAGE

Linking pseudo instructions provides a means for com­
munication between a main program and its subroutines
or among several subprograms that are to be run as a
single program. These instructions may be used only in a
relocatable program.

The Label field of this class is ignored in all cases. The
Operand field is usually divided into many subfields,
separated by commas. In the case of the COM pseudo
instruction, the first space not preceded by a comma or a
left parenthesis terminates the entire field.

COM name, [(size 1)J [.name 2 [(slze 2)j, ... ,name0 [(sizenlll comments

COM reserves a block of storage locations that may be
used in common by several subprograms. Each name
identifies a segment of the block for the subprogram in
which the COM statement appears. The sizes are the
number of words allotted to the related segments. The size
is specified as an octal or decimal integer. If the size is
omitted, it is assumed to be one.

Any number of COM statements may appear in a sub­
program. Storage locations are assigned contiguously; the
length of the block is equal to the sum of the lengths of all
segments named in all COM statements in the
subprogram.

To refer to the common block, other subprograms must
also include a COM statement. The segment names and
sizes may be the same or they may differ. Regardless of
the names and sizes specified in the separate subprograms,
there is only one common block for the combined set. It
has the same relative origin; the content of the nth word of
common storage is the same for all subprograms. An
example is shown in Figure 4-5.

The LDA instructions in the two subprograms each refer
to the same location in common storage, location 7.

Pseudo Instructions

PROGl COM ADDR1(5),ADDR2(10),ADDR3(10)

LDA ADDR2+1

END

PICK UP SECOND WORD OF SEGMENT
ADDR2+1

PROG2 COM AAA(2),AAB(2),AAC,AAD(20)

LDA AAD+l

Organization of common block:

PROG1
name

ADDR1

ADDR2

ADDR3

PICK UP SECOND WORD OF SEGMENT
ADD+ 1.

PROG2 Common
name Block

AAA (location 1)
(location 2)

AAB (location 3)
(location 4)

AAC (location 5)
AAD (location 6)

(location 7)
(location 8)
(location 9)
(location 10)
(location 11)
(location 12)
(location 13)
(location 14)
(location 15)
(location 16)
(location 17)
(location 18)
(location 19)
(location 20)
(location 21)
(location 22)
(location 23)
(location 24)
(location 25)

Figure 4-5. COM Examples

4-5

Pseudo Instructions

The segment names that appear in the COM statements
can be used in the Operand fields of QEF, ABS, EQU,
ENT or any memory reference statement; they may not be
used as labels elsewhere in the program.

The loader establishes the origin of the common block; the
origin cannot be set by the ORG pseudo instruction. All
references to the common area are relocatable.

Two or more subprograms may declare common blocks
that differ in size. The subprogram that defines the largest
block must be the first submitted for loading.

I ENT I name 1 [,name2 , ... ,namenl I comments

ENT defines entry points to the program or subprogram.
Each name is a symbol that is assigned as a label for some
machine operation in the program. Entry points allow
another subprogram to refer to this subprogram. All entry
points must be defined in the program.

PROGA NOP

Symbols appearing in an ENT statement may not also
appear in an EXT statement in the same subprogram.
Labels defined as absolute by EQU statements or defined
by COM statements may be declared as entry points.

I EXT I name 1 [,name2 , .. .,namenl I comments

This instruction designates labels in other subprograms
that are referenced in this subprogram. The symbols must
be defined as entry points by the other subprograms.

The symbols defined in the EXT statement may appear in
memory reference statements, certain I/O statements or
EQU or DEF pseudo instructions. An external symbol
must appear alone; it may not be in a multiple term
expression or be specified as indirect. References to
external locations are processed by the loader as indirect
addresses linked through the base page.

Symbols appearing in EXT statements may not also
appear in ENT or COM statements in the same sub­
program. The label field is ignored. Examples of the use of
EXT and ENT are shown in Figure 4-6.

LDA SAMD SAMD AND SAND ARE REFERENCED IN
PROGA, BUT ARE ACTUALLY
LOCATIONS IN PROGB.

JMP SAND
EXT SAMD,SAND
ENT PROGA
END

PROGB NOP

SAMD OCT- 767
SAND STA SAMD

ENT SAMD,SAND

JSB .PROGA

EXT PROGA

END

Figure 4-6. ENT /EXT Examples

4-6

4-3. ADDRESS AND SYMBOL
DEFINITION

The pseudo operations in this group assign a value, a word
address, or a byte address to a symbol which is used as an
operand elsewhere in the program.

label I DEF I m [,I] I comments

The address definition statement generates one word of
memory as a 15-bit address which may be used as the
object of an indirect address found elsewhere in the source
program. The symbol appearing in the label is that which
is referenced; it appears in the Operand field of a Memory
Reference instruction.

The operand field of the DEF statement may be any
positive expression in an absolute program; in a
relocatable program it may be a relocatable expression or
an absolute expression with a value of less than 20008 .

Symbols that do appear in the Operand field may appear
as operands of EXT or COM statements, in the same
subprogram and as entry points in other subprograms.

The expression in the Operand field may itself be indirect
and make reference to another DEF statement elsewhere
in the source program. Some examples are shown in Figure
4-7.

The DEF statement provides the necessary flexibility to
perform address arithmetic in programs which are to be
assembled in relocatable form. Relocatable programs

Pseudo Instructions

should not modify the operand of a memory reference
instruction. Figure 4-8 illustrates what not to do. If TBL
and LDTBL are in different pages, the Loader processes
TBL as an indirect address linked through the base page.
The ISZ erroneously increments the Loader-provided link
to the base page rat.her than the value of TBL. Assuming
that the loader assigns the absolute locations shown in
Figure 4-9, the ISZ will index the contents of location
2000 8 which is a LDA 700,I, and change it to LDA 701,I.
Now we will use whatever happens to be in 701 rather than
the link we intended to use which is in 700. We change the
link instead of its contents.

LDTBL LDA TBL

ISZ LDTBL

TBL BSS 100

Figure 4-8. Example of Incorrect Address Modification

NAM PROGN ZERO-RELATIVE START OF PROGRAM.
EXT SINE,SQRT
COM SCMA(20),SCMB(50)

JSB SINE EXECUTE SINE ROUTINE

LDA XCMA,I PICK UP COMMON WORD INDIRECTLY.

XCMA DEF SCMA SCMA IS A 15-BIT ADDRESS.

JSB XSQ, I GET SQUARE ROOT USING TWO-LEVEL
XSQ DEF XSQR,I INDIRECT ADDRESSING.

XSQR DEF SQRT SQRT IS A 15-BIT ADDRESS.
END PROGN

Figure 4-7. DEF Examples

4-7

Pseudo Instructions

ABSOLUTE OPERAND
LOCATION (PAGE) &

INSTRUCTION PAGE OF CODE OPCODE LOCATION

(Loader-assigned indirect
link on base page) (O) (700) DEF 4000

LDTBL LOA TBL (1) (2000) LOA (0) 700 (I)

ISZ LDTBL (1) (3000) ISZ (1) 2000

TBL BSS 100 (2) (4000) BSS

Figure 4-9. Loader-Assigned Locations for Figure 4-8

The example shown in Figure 4-10 assur~s correct address
modification during program execution., Assume that the
sequence shown in Figure 4-10 is assigned (by the loader)
the absolute locations shown in Figure 4-11. The LDA
2000,I picks up the contents of the location pointed to by
ITBL (location 40008). The ISZ 2000 indexes the pointer
DEF 4000 to point to 4001. The next LDA will reference
location 4001, DEF TBL+ 1. This is what we intend.

label I ABS I m I comments

ABS defines a 16-bit absolute value to be stored at the
location represented by the label. The Operand field, m,
may be any absolute expression; a single symbol must be
defined as absolute elsewhere in the program. Examples
are shown in Figure 4-12.

INSTRUCTION PAGE

ITBL DEF TBL (1)

LOA ITBL,I (1)

ISZ ITBL (1)

TBL BSS 100 (2)

ITBL DEF TBL
LDTBL LDA ITBL,I

ISZ ITBL

TBL BSS 100

Figure 4-10. Example of Correct Address Modification

ABSOLUTE OPERAND
LOCATION (PAGE) &
OF CODE OPCODE LOCATION

(2000) DEF 4000

(2001) LOA (1) 2000,1

(3000) ISZ (1) 2000

4000 BSS

Figure 4-11. Loader-Assigned Locations for Figure 4-10

4-8

AB EQU 35 ASSIGNS THE VALUE OF 35
TO THE SYMBOL AB

M3 5 ABS -AB M35 CONTAINS -3 5.
P35 ABS AB P35 CONTAINS 3 5.
P70 ABS AB+AB P70 CONTAINS 7 0.
P30 ABS AB-5 P30 CONTAINS 3 0.

Figure 4-12. ABS Examples

label I EQU I m I comments

The EQU pseudo operation assigns to a symbol a value
other than the one normally assigned by the program
location counter. The symbol in the Label field is assigned
the value represented by the Operand field. The Operand
field may contain any expression. The value of the operand
may be common, base page or program relocatable as well
as absolute, but it should not be negative. Symbols
appearing in the operand must be previously defined in the
source program.

The EQU instruction may be used to symbolically equate
two locations in memory, or it may be used to give a value
to a symbol. The EQU statement does not result in a
machine instruction. Some examples are shown in Figures
4-13 and 4-14.

NAM FAM

J3 DEF

LDA J3
ADA ONE
STA J3+1

Pseudo Instructions

label DBL m comments

label DBR m comments

Define Left Byte and Define Right Byte (21MX only). The
DBL and DBR pseudo instructions each generate one
word of memory which contains a 16-bit byte address. For
DBL, the byte address being defined is the left half (bits
8-15) of word location m; for DBR, it is the right half (bits
0-7). Indirect addressing may not be used. A byte address
is defined as two times the word address of the memory
location containing the particular byte. If the byte location
is the left half of the memory location (bits 8-15), bit 0 of
the byte address is clear; if the byte location is the right
half of the memory location (bits 0-7), bit 0 of the byte
address is set. In an absolute program, m may be any
positive expression. In a relocatable program, m may be
any absolute expression with a value less than 100 or any
relocatable expression. The generated word may be
referenced (via label) in the Operand field of LD A and
LDB instructions elsewhere in the source program for the
purpose of loading byte addresses into the A- and
B-registers.

CAUTION

Care must be taken when using the label
of a DBL or DBR pseudo instruction as an
indirect address elsewhere in the source
program. The programmer must keep
track of whether he is using word
addresses or byte addresses.

JFOUR EQU J3+1 THE SYMBOLS JFOUR AND J3+1 BOTH IDENTIFY
THE SAME LOCATION. THE "AND" OPERATION
IS PERFORMED ON THIS LOCATION.

MWH AND JFOUR

Figure 4-13. EQU Example

4-9

Pseudo Instructions

NAM STOTB

COM TABLA(lO) DEFINES A 10 WORD TABLE, TABLA.

TABLB EQU TABLA+5

Examples:

BYTl
BYT2

A
B

DBL
DBR

WORDl NOP

LDA TABLB+l

NAM REG

EQU 0
EQU 1

LDA B

WORDl
WORDl

NAMES WORDS 6 THROUGH 10 OF
TABLA AS TABLB.

LOADS CONTENTS OF ?TH WORD
COMMON INTO A. THE STATEMENT LDA
TABLA+6 WOULD PERFORM THE SAME
OPERATION

DEFINES SYMBOL A AS 0 (LOCATION
OF A-REGISTER), AND SYMBOL B AS
1 (LOCATION OF B-REGISTER).

LOADS CONTENTS OF B-REGISTER
INTO A-REGISTER.

Figure 4-14. EQU Examples

If WORDl has the relocatable address 20028 , then BYTl
will contain the relocatable value 4004 8 and BYT2 will
contain the relocatable value 40051 .

label I ASC I n, <2n characters> I comments

ASC generates a string of 2n alphanumeric characters in
ASCII code into n consecutive words. t One character is
right justified in each eight bits; the most significant bit is
zero. n may be any expression resulting in an unsigned
decimal value in the range 1 through 28. Symbols used in
an expression must be prefiously defined. Anything in the
Operand field following 2n characters is treated as
comments. If less than 2n characters are detected before
the end-of-statement mark, the remaining characters are
assumed to be spaces, and are stored as such. The label
represents the address of the first two characters. An
example is shown in Figure 4-15.

4-4. CONSTANT DEFINITION

The pseudo instructions in this class enter a string of one
or more constant values into consecutive words of the
object program. The statements may be named by labels
so that other program statements can refer to the fields
generated by them.

label DEC I d1 [.d2 , ... ,dnl I comments

DEC records a string of decimal constants into
consecutive words. The constants may be either integer or
real (floating point), and positive or negative. If no sign is
specified, positive is assumed. The decimal number is

-fTo enter the code for the ASCII symbols which perform some action (e.g., CR and LF), the OCT pseudo instruction must be used.

4-10

Pseudo Instructions

TTYP ASC 3,ABCDE

causes the following:

ALPHABETIC

15 14 8 7 6 0

TTYP A B

c D

E (space)

EQUIVALENT IN OCTAL NOTATION

15 14 8 7 6 0

0 2

3 0 4

5 0 4 0

Figure 4-15. ASC Example

converted to its binary equivalent by the Assembler. The
label, if given, serves as the address of the first word
occupied by the constant.

A decimal integer must be in the range of 0 to 2 1 5 ; it may
assume positive, negative, or zero values. It is converted
into one binary . word and appears as follows:

Some examples are shown in Figure 4-16.

A floating point number has two components, a fraction
and an exponent. The exponent specifies the power of 10
by which the fraction is multiplied. The fraction is a signed
or unsigned number which may be written with or without
a decimal point. The exponent is indicated by the letter E
and follows a signed or unsigned decimal integer. The
floating point number may have any of the following
formats:

±n.n ±n. ±n.nE±e ±.nE±e ±n.E+e ±nE±e

The number is converted to binary, normalized (leading
bits differ), and stored in two computer words. If either the
fraction or the exponent is negative, that part is stored in
two's complement form.

4-11

Pseudo Instructions

INT DEC 50,+328,-300,+32768,-32768

causes the following (octal representation)

15 14

INT 0 0 0 0 6

0 0 0 5 1

1 7 7 3 2

1 0 0 0 0

1 0 0 0 0

Note: The values ±215 (±32768) are both converted to 1000008 .

Figure 4-16. DEC Examples (Integer)

DEC .45El
DEC 45.00E-l
DEC 4500E-3
DEC 4.5 DEC -.695,400E-4

are all equivalent to are stored as:

.45x101 I 1 Io 0 0 1 0 0

and are stored in normalized form as: lo 0 0 , Io 0

15 14 0

I 0I1 0 0 1 0 0 0 0 0 0 0 0 0 0 ol I o I 1 0 0 0 0 1 1

I 1 0 0 0 0 0 1 I 1
15 8 7 0

lo 0 0 0 0 0 0 o)o o o a o 1 1 Io I

0

2

0

4

0

0

0 0 0 ol
0 0 0 0 o lo I

0 0 1 I
0 0 I 1 I

Figure 4-17. DEC Examples (Floating Point) Figure 4-18. DEC Examples (Floating Point)

4-12

The floating point number is made up of a 7-bit exponent
with sign and a 23-bit fraction with sign. The number must
be in the approximate range of 10-38 and zero. Examples
are shown in Figures 4-17 and 4-18.

label I DEX I d1 [,d2 , ... ,dn1 I comments

DEX records a string of extended prec1s1on decimal
constants into consecutive words within a program. Each
such extended precision constant occupies three words as
shown in Figure 4-19.

An extended precision floating point number is made up of
a 39-bit mantissa (fraction) and sign and a 7-bit exponent
and sign. The exponent and sign will be zero if the
mantissa does not have to be normalized.

This is the only form used for DEX. All values, whether
they be floating point, integer, fraction, or integer and
fraction, will be stored in three words as just described.
This storage format is basically an extension of that used
for DEC, as previously described. Some examples are
shown in Figure 4-20.

label OCT I o 1 [,o2 , ••• ,onl I comments

OCT stores one or more octal constants in consecutive
words of the object program. Each constant consists of
one to six octal digits (0 to 177777). If no sign is given, the
sign is assumed to be positive. If the sign is negative, the
two's complement of the binary equivalent is stored. The
constants are separated by commas; the last constant is

DEX 12,-.45

are stored as:

WORD1

Pseudo Instructions

terminated by a space. If less than six digits are indicated
for a constant, the number is right justified in the word. A
label, if used, acts as the address of the first constant in
the string. The letter B must not be used after the
constant in the Operand field; it is significant only when
defining an octal term in an instruction other than OCT.
Some examples are shown in Figure 4-21.

Word 1 I Sm I Mantissa ~ I
15 14 0

Word 2

15 0

Word 3 ~1 Exponent H
15 8 7 1 0

Legend: Sm Sign of the mantissa (fraction)

Se Sign of the Exponent

Note: A value is entered only if normalizing
of the mantissa is needed.

Figure 4-19. DEX Memory Format

WORD 2 WORD3

0110000000000000 I 0000000000000000 0000000000001000

WORD1 WORD 2 WORD3

1000110011001100 1100110011001100 1001101111111111

Figure 4-20. DEX Examples

4-13

Pseudo Instructions

NUM

OCT +O
OCT -2
OCT 177,20405,-36
OCT 51,77777,-1,10101
OCT 107642,177077
OCT 1976
OCT -177777
OCT 177B

The above statements are stored as follows:

15 14

0 0 0 0

1 7 7 7

NUM 0 0 0 1

0 2 0 4

1 7 7 7

0 0 0 0

0 7 7 7

1 7 7 7

0 1 0 1

1 0 7 6

1 7 7 0

x x x x

0 0 0 0

x x x x

0

7

7

0

4

5

7

7

0

4

7

x

0

x

ILLEGAL: CONTAINS
DIGIT 9
ILLEGAL : CONTAINS
CHARACTER B

0

6

7

5

2

1

7

7

1

2

7

x

1

x

0

....._____ The result of attempting to

/define an illegal constant is
./ - unpredictable

Figure 4-21. OCT Examples

4-14

label BYT b 1 ,b 2 , ... bn I comments

Define Octal Byte Constants (21MX only). The BYT
pseudo instruction generates octal constants in consecu­
tive byte locations of memory. Each constant in the
Operand field (b 1 ,b2 , ... bn) consists of one to three octal
digits, must be within the range 0 through 377, and may
be preceded by a plus (+) or minus (-) sign. If a constant is
not signed, it is assumed to be positive. If a constant is
negative, the two's complement of the binary equivalent
(truncated to eight bits) is stored. If the Operand field
contains an odd number of constants, bits 0-7 of the final
word generated will be clear (zeros). Since the constants
are assumed to be octal, the letter "B" must not be used.
Some examples are shown in Figure 4-22.

4-5. STORAGE ALLOCATION

The storage allocation statement reserves a block of
memory for data or for a work area.

label I BSS I m I comments

The BSS pseudo operation advances the program or base
page location counter according to the value of the
operand. The Operand field may contain any expression
that results in a positive integer. Symbols, if used, must be
previously defined in the program. The label, if given, is
the name assigned to the storage area and represents the
address of the first word. The initial content of the area set
aside by the statement is unaltered by the loader.

ALF BYT 50,377,-10,2,-312

causes the following (octal representation):

15 14

ALF 0 2

1 7

0 3

Pseudo Instructions

4-6. ASSEMBLY LISTING CONTROL

Assembly listing control pseudo instructions allow the
user to control the assembly listing Output during pass 2
of the assembly process.

UNL comments

List output is suppressed from the assembly listing,
beginning with the UNL pseudo instruction and
continuing for all instructions and comments until either
an LST or END pseudo instruction is encountered.
Diagnostic messages for errors encountered by the
Assembler will be printed, however. The source statement
sequence numbers (printed in columns 1-4 of the source
program listing) are incremented for the instructions
skipped.

LST I comments

The LST pseudo instruction causes the source program
listing, terminated by a UNL, to be resumed.

A UNL following a UNL, an LST following an LST, and
an LST not preceded by a UNL are not considered errors
by the Assembler.

SUP I comments

The SUP pseudo instruction suppresses the output of
additional code lines from the source program listing.
Certain machine and pseudo instructions generate more
than one line of coding. These additional code lines are

0

4 3 7 7

4 0 0 2

3 0 0 0

Figure 4-22. BYT Examples

4-15

Pseudo Instructions

suppressed by an SUP instruction until a UNS or the
END pseudo instruction is encountered. SUP will
suppress additional code lines in the following machine
and pseudo instructions:

r

!DX DJS LAY ML~ SBY
.. ADY DLD LBX MP SJP
··ASC ·DST LBY MSA SJS
:ayt FAD LDX MSi;3 STX

CBS FDV LDY MVW STY
car FMP~ MBT oct TBS
:c:Mw FSB MCA SAX UJP
DEC JLY MOB SAt UJS
DIV JPY. MDB SB~ XMM
DJP •. LAX MLA SB· XMS

l

The SUP pseudo instruction may also be used to suppress
the listing of literals at the end of the source program
listing.

UNS comments

The UNS pseudo instruction causes the printing of
additional coding lines, terminated by an SUP, to be
resumed.

An SUP preceded by another SUP, UNS preceded by
UNS, or UNS not preceded by an SUP are not considered
errors by the Assembler.

SKP comments

The SKP pseudo instruction causes the source program
listing to be skipped to the top of the next page. The SKP
instruction is not listed, but the source statement
sequence number is incremented for the SKP.

SPC I n

The SPC pseudo instruction causes the source program
listing to be skipped a specified number of lines. The list
output is skipped n lines, or to the bottom of the page,
whichever occurs first. The n may be any absolute
expression. The SPC instruction is not listed but the
source statement sequence number is incremented for the
SPC.

HED I m(heading)

The HED pseudo instruction allows the programmer to
specify a heading to be printed at the top of each page of
the source program listing.

4-16

The heading, m, a string of up to 56 ASCII characters, is
printed at the top of each of the source program listing
following the occurrence of the HED pseudo instruction. If
HED is encountered before the NAM or ORG at the
beginning of a program, the heading will be used on the
first page of the source program listing. A HED
instruction placed elsewhere in the program causes a skip
to the top of the next page .

The heading specified in the HED pseudo instruction will
be used on every page until it is changed by a succeeding
HED instruction.
The source statement containing the HED will not be
listed, but the source statement sequence number will be
incremented.

4-7. ARITHMETIC SUBROUTINE
CALLS

If an X appears in the control statement for the source
program, the Assembler generates calls to arithmetic
subroutines external to the source program for the
following instructions: MPY, DIV, DLD, and DST. The
instruction formats and functions are as described in
paragraph 3-17 of Section III in this manual.

If an F does not appear in the control statement for the
source program, the Assembler generates calls to
arithmetic subroutines external to the source program for
the following instructions: FMP, FDV, FAD, FSB, FIX,
and FLT. The instruction formats and functions are as
described in paragraph 3-18 of Section III in this manual.

Each use of a statement from this group generates two
words of instructions. Symbolically, they could be
represented as follows:

.J.:f.'IL
PEF mLIJ

An EXT <.arithmetic pseudo operation> is implied
preceding the JSB operation.

In the above operations, the overflow bit is set when one of
the following conditions occurs:

• Integer overflow

• Floating point overflow or underflow

• Division by zero.

Execution of any of the subroutines alter the contents of
the E-Register.

4-8. DEFINE USER INSTRUCTION
(21MX ONLY)

I MIC I opcode,fcode,pnum I comments

This pseudo instruction provides the user the capability of
defining his own instructions. opcode is a three-character
alphabetic mnemonic, fcode is an instruction code, and
pnum declares how many (0-7) parameter addresses are to
be associated with the newly-defined instruction. Both
fcode and pnum may be expressions which generate an
absolute result. A user-defined instruction must not
appear in the source program prior to the MIC pseudo
instruction which defines it. When the user-defined
mnemonic is used later in the source program, the
specified number of parameter addresses (pnum) are
supplied in the Operand field of the user-defined
instruction separated from one another by spaces. The
parameter addresses may be any addressable values,
relocatable and/or indirect.

Note: All three operands (opcode, fcode, and
pnum) must be supplied in the MIC
pseudo instruction in order for the
specified instruction to be defined. If
pnum is zero, it must be expressly
declared as such (not omitted).

4-9. "JUMP TO MICROPROGRAM"

The MIC pseudo instruction is primarily intended to
facilitate the passing of control from an assembly
language program to a user's microprogram residing in
Read-Only-Memory (ROM) or Writable Control Store
(WCS). Ordinarily, to do this the user must include an
OCT lOlxxx or OCT 105xxx statement (where xxx is 140
through 737) at the point in the source program where the
jump is to occur. If parameters are to be passed, they are
usually defined as constants (via OCT or DEF statements)
immediately following the OCT 105xxx statement. With
the MIC pseudo instruction, the user can define a source
language instruction which passes control and a series of
parameter addresses to a microprogram. If it is desired to
pass additional parameters to a microprogram beyond
those pointed to by the user-defined instruction, they must
be defined as constants (via OCT or DEF statements)
immediately following each use of the user-defined
instruction.

4-10. EXAMPLE

Assume that the first two parameters to be passed from
the assembly language program to the user's micro­
program reside in the memory locations PARM 1 and
P ARM2 and that the third parameter resides in the
memory location pointed to by ADR,I. Also assume that
the octal code for transferring control to the particular
microprogram is 1052408 •

Pseudo Instructions

The following statement defines a source language
instruction which passes control and three parameter
addresses to the microprogram:

Whenever it is desired to pass control from the assembly
language program to the microprogram, the following
user-defined instruction may be used in the source
program:

4-11. COMBINING MULTIPLE MNEMONICS

Another use of the MIC pseudo instruction is to assign a
single mnemonic to a multiple instruction (shift-rotate or
alter-skip) statement.

4-12. EXAMPLE

Instead of using the source statement:

the user may define a single mnemonic as follows:

where 01472B is the octal instruction code for the
four-mnemonic statement shown above. Whenever XYZ is
subsequently used as an instruction mnemonic in the
source program, it is the equivalent of using the source
statement:

4-13. DEFINING CONSTANTS

The MIC pseudo instruction may also be used for defining
constants (opcode = mnemonic, fcode = constant, and
pnum = 0). Whenever the defined mnemonic is used as an
instruction mnemonic in the source program the

4-17

Pseudo Instructions

Assembler automatically replaces it with the specified
constant.

4-14. EXAMPLE

The following statement defines the constant 1010 and
assigns it the mnemonic TEN:

4-18

MIC TEN,10:0

Whenever TEN appears as an instruction mnemonic later
in the source program, the value 1010 is automatically
inserted in that location by the Assembler.

1

11U'HI
~~~~~~H_P_C_H_A_RA_C_T_E_R_S_ET~-' A I 

A-1. ASCII CHARACTER FORMAT 

b7 0 0 0 0 

~ 
0 0 1 1 

5 0 1 0 1 

B 

~ ~ 
b4 b3 b2 b1 

0 1 2 3 

"' "' "' "' 
t 

0 0 0 0 0 NUL OLE SP 0 

0 0 0 1 1 SOH DC1 ! 1 

0 0 1 0 2 STX DC2 " 2 

0 0 1 1 3 ETX DC3 # 3 

0 1 0 0 4 EQT DC4 $ 4 

0 1 0 1 5 ENO NAK % 5 

0 1 1 0 6 ACK SYN & 6 

0 1 1 1 7 BEL ETB I 7 

1 0 0 0 8 BS CAN ( 8 

1 0 0 1 9 HT EM ) 9 

1 0 1 0 10 LF SUB * : 

1 0 1 1 11 VT ESC + 

1 1 0 0 12 FF FS I < 

1 1 0 1 13 CR GS - = 

1 1 1 0 14 so RS > 

1 1 1 1 15 SI us I ? 

Figure A-1. ASCII Characters and Binary Codes 

Standard 7-bit set code positional order and notation are 
shown below with b7 the high-order and b1 the low-order, 
bit position. Example: 

1 1 1 1 
0 0 1 1 

0 1 0 1 

4 5 6 7 

@ p ' p 

A Q a q 

B R b r 

c s c s 

D T d t 

E u e u 

F v f v 

G w g w 

H x h x 

I y i y 

J z j z 

K [ k { 

L \ I I 
I 

M ] m } 

N t n ,...., 

0 ~ 0 DEL 

A-1 



HP Character Set 

Table A-1. Legend for Figure A-1 

NUL Null DC1 Device Control 1 

SOH Start of Heading DC2 Device Control 2 

STX Start of Text DC3 Device Control 3 

ETX End of Text DC4 Device Control 4 

EOT End of Transmission NAK Negative Acknowledgement 

ENO Enquiry SYN Synchronous Idle 

ACK Positive Acknowledgement ETB End of Transmission Block 

BEL Bell (Audible signal) CAN Cancel 

BS Backspace EM End of Medium 

HT Horizontal Tabulation SUB Substitute 

LF Line Feed ESC Escape 

VT Vertical Tabulation FS File Separator 

FF Form Feed GS Group Separator 

CR Carriage Return RS Record Separator 

so Shift Out us Unit Separator 

SI Shift In SP Space 

DLE Data Link Escape DEL Delete 

A-2 



HP Character Set 

A-2. BINARY CODED DECIMAL (BCD) FORMAT 

Table A-2. HP 7970B BCD-ASCII Conversion 

ASCII ASCII 
BCD EQUIVALENT BCD EQUIVALENT 

SYMBOL (OCTAL CODE) (OCTAL CODE) SYMBOL (OCTAL CODE) (OCTAL CODE) 

(space) 20 040 @ 14 100 

! 52 041 A 61 101 

" 37 042 B 62 102 

# 13 043 c 63 103 

$ 53 044 D 64 104 

% 57 045 E 65 105 

& t 046 F 66 106 
I 35 047 G 67 107 

( 34 050 H 70 110 

) 74 051 I 71 111 

* 54 052 J 41 112 

+ 60 053 K 42 113 

33 054 L 43 114 

- 40 055 M 44 115 

73 056 N 45 116 

I 21 057 0 46 117 

0 12 060 p 47 120 

1 01 061 Q 50 121 

2 02 062 R 51 122 

3 03 063 s 22 123 

4 04 064 T 23 124 

5 05 065 u 24 125 

6 06 066 v 25 126 

7 07 067 w 26 127 

8 10 070 x 27 130 

9 11 071 y 30 131 

: 15 072 z 31 132 

I 56 073 [ 75 133 

< 76 074 \ 36 134 

= 17 075 ] 55 135 

> 16 076 t 77 136 

? 72 077 ~ 32 137 

tThe ASCII code 046 is converted to the BCD code for a space (20) when writing data onto a 7-track tape. 

A-3 



SUMMARY OF INSTRUCTIONS 1rar1 
Symbols Meaning 

label 

m 

I 

c 
(m,m+l) 

comments 

[ ] 

{ } 
p 

( ) 

/\ 

¥ 

v 

A 

B 

E 

b 

(A/B) 

(AB) 

SC 

d 

0 

r 

n 

lit 

msb 

lsb 

Symbolic label, 1-5 alphanumeric characters and periods 

Memory location represented by an expression 

Indirect addressing indicator 

Clear flag indicator 

Two-word floating point value in m and m+l 

Optional comments 

Optional portion of field 

One of set may be selected 

Program Counter 

Contents of location 

Logical product 

Exclusive "or" 

Inclusive "or" 

A-register 

B·register 

E-register 

Bit n of A-register 

Bit n of B-register 

Bit positions in B· and A-register 

Complement of contents of register A or B 

Two-word floating point value in register A and B 

Channel select code represented by an expression 

Decimal constant 

Octal constant 

Repeat count 

Integer constant 

Literal value 

Most significant bits 

Least significant bits 

B-1 



Summary of Instructions 

B-1. MACHINE INSTRUCtlONS 

B-2. MEMORY REFERENCE 

B-3. Jump and Increment-Skip 

ISZ m [,I] 

JMP m [,I] 

JSB m [,I] 

B-4. Add, Load and Store 

ADA { m [,I] } 
lit 

ADB { m [,I] } 
lit 

LDA { m [,I] } 
lit 

LDB { m [,I] } 
lit 

STA m [,I] 

STB m [,I] 

B-5. Logical 

AND { m [,I] } 
lit 

XOR { m [,I] } 
lit 

IOR { m [,I] } 
lit 

CPA { m [,I] } 
lit 

CPB { m [,I] } 
lit 

B-6. Word Processing 

MVW { m [,I] } 
lit 

CMW { m [,I] } 
lit 

B-2 

(m) +-+m: then if (m) = 0, execute P + 2 otherwise execute P + 1 

Jump to m; m -+P 

Jump subroutine tom: P + 1-+m; m + 1-+P 

(m) + (A)-+A 

(m) + (B)-+B 

(m)-+A 

(m)-+B 

(A)-+m 

(B)-+m 

(m) /\ (A)-+A 

(m)-V(A) -+A 

(m)V(A)-+A 

If (m) =I= (A), execute P + 2, otherwise execute P + 1 

If (m) =I= (B ), execute P + 2, otherwise execute P + 1 

Move (m) words from array (A)--+- array (B) 

Compare (m) words of array (A) against (m) words of array (B ); if the two arrays are 
equal, execute P + 3, if array (A) is less than array (B), execute P + 4, if array (A) is 
greater than array (B ), execute P + 5 



B-7. Byte Processing 

LBT 

SBT 

MBT { m [,I] } 
lit 

CBT { m [,I] } 
lit 

SFB 

B-8. Bit Processing 

TBS { m [,I] } 
lit 

SBS { m [,I] } 
lit 

CBS { m [,I] } 
lit 

n [,I] 

n [,I] 

n [,I] 

Summary of Instructions 

B contains a 16-bit byte address; ((B))~A0 _ 7 ; o's to As-ts 

B contains a 16-bit byte address; (A0 _ 7)~(B) 

A and B contain 16-bit byte addresses; move (m) bytes from array (A) ~array (B) 

A and B contain 16-bit byte addresses; compare (m) bytes of array (A) against (m) 
bytes of array (B); if the two arrays are equal, execute P + 3; if array (A) is less than 
array (B ), execute P + 4; if array (A) is greater than array (B ), execute P + 5 

A0 _ 7 contain the test byte, As _1 5 contain the termination byte, and B contains a 16-
bit byte address; scan array (B ); if test byte found, execute P + 1, B contains 
address of test byte; if termination byte found, execute P + 2, B contains address of 
termination byte; if neither is found, execute P + 2, B contains zero 

Compare all "set" bits in (m) against corresponding bits in (n); if all bits tested are 
set, execute P + 3; if any of the bits tested are clear, execute P + 4 

Set all bits in (n) which correspond to "set" bits in (m) 

Clear all bits in (n) which correspond to "set" bits in (m) 

B-9. REGISTER REFERENCE 

B-10. Shift-Rotate 

CLE o~E 

ALS Shift (A) left one bit, 0 ~A0, A 15 unaltered 

BLS Shift (B) left one bit, 0 ~B0 , B 15 unaltered 

ARS Shift (A) right one bit, (A 15 ) ~A 1 4 

BRS Shift (B) right one bit, (B 15 ) ~B 14 

RAL Rotate (A) left one bit 

RBL Rotate (B) left one bit 

RAR Rotate (A) right one bit 

RBR Rotate (B) right one bit 

ALR Shift (A) left one bit, o~A15 

BLR Shift (B) left one bit, o~B15 

ERA Rotate E and A right one bit 

ERB Rotate E and B right one bit 

ELA Rotate E and A left one bit 

ELB Rotate E and B left one bit 

ALF Rotate A left four bits 

BLF Rotate B left four bits 

SLA If (A 0 ) = 0, execute P + 2, otherwise execute P + 1 

SLB If (B 0 ) = 0, execute P + 2, otherwise execute P + 1 

B-3 



Summary of Instructions 

Shift-Rotate instructions can be combined as follows: 

ALS ALS 
ARS ARS 
RAL RAL 
RAR 

[,CLE] [,SLA] 
RAR 

ALR ' ALR 
ALF ALF 
ERA ERA 
ELA ELA 

BLS BLS 
BRS BRS 
RBL RBL 
RBR 

[,CLE] [,SLB] 
RBR 

BLR ' BLR 
BLF BLF 
ERB ERB 
ELB ELB 

B-11. No-Operation 

B-12. 

B-4 

NOP Execute P + 1 

Alter-Skip 

CLA 

CLB 

CMA 

CMB 

CCA 

CCB 

CLE 

CME 

CCE 

SEZ 

SSA 

SSB 

INA 

INB 

SZA 

SZB 

SLA 

SLB 

RSS 

O's__,,.A 

O's--"'B 

(A)--"'A 

(B)--"'B 

l's--"'A 

0--"'E 

(E)--"'E 

1--"'E 

If (E) = 0, execute P + 2, otherwise execute P + 1 

If (A 15 ) = 0, execute P + 2, otherwise execute P + 1 

If (B 15 ) = 0, execute P + 2, otherwise execute P + 1 

(A)+ l--"'A 

(B) + l--"'B 

If (A) = 0, execute P + 2, otherwise execute P + 1 

If (B) = 0, execute P + 2, otherwise execute P + 1 

If (A 0 ) = 0, execute P + 2, otherwise execute P + 1 

If (B 0 ) = 0, execute P + 2, otherwise execute P + 1 

Reverse sense of skip instructions. If no skip instructions precede, execute P + 2 



Summary of Instructions 

Alter-Skip instructions can be combined as follows: 

[{ 
C
CCCLMAAA}] [,SEZ] [{CLE}] , g~: [,SSA] [,SLA] [,INA] [,SZA] [,RRS] 

[{ cgcLMB: } J [,SEZ] [{CLE } J , g~: [,SSB] [,SLB] [,INB] [,SZB] [,RSS] 

B-13. Index Register 

CAX 

CBX 

CAY 

CBY 

CXA 

CXB 

CYA 

CYB 

XAX 

XBX 

XAY 

XBY 

ISX 

ISY 

DSX 

DSY 

LDX 
m [,I] 
lit 

LDY 
m [,I] 
lit 

STX m [,I] 

STY m [,I] 

LAX m [,I] 

LBX m [,I] 

LAY m [,I] 

LBY m [,I] 

SAX m [,I] 

SBX m [,I] 

SAY m [,I] 

SBY m [,I] 

ADX m [,I] 

ADY m [,I] 

JLY m [,I] 

JPY m 

(A)-+X 

(B)-+X 

(A)-+Y 

(B)-+Y 

(X)-+A 

(X)-+B 

(Y)-+A 

(Y)-+B 

(A)-+X and (X)-+A 

(B)-+X and (X)-+B 

(A)-+ Y and (Y) -+A 

(B)-+Y and (Y)-+B 

(X) + 1-+X, then test new (X); if (X) = 0, execute P + 2, otherwise execute P + 1 

(Y) + 1-+Y, then test new (Y); if (Y) = 0, execute P + 2, otherwise execute P + 1 

(X) · 1-+X, then test new (X); if (X) = 0, execute P + 2, otherwise execute P + 1 

(Y) · 1 ~ Y, then test new (Y); if (Y) = 0, execute P + 2, otherwise execute P + 1 

(m)-+X 

(m)-+Y 

(X)-+m 

(Y)-+m 

(m + (X))-+A 

(m + (X))-+B 

(m + (Y))-+A 

(m + (Y))-+B 

(A)-+m + (X) 

(B)-+m + (X) 

(A)-+m + (Y) 

(B)-+m + (Y) 

(m) + (X)-+X 

(m) + (Y)-+Y 

Jump to m; P + 2 -+ Y 

Jump tom+ (Y) 

B-5 



Summary of Instructions 

B-14. INPUT/OUTPUT, OVERFLOW, AND HALT 

B-15. Input/Output 

STC sc [,C] Set control bitsc• enable transfer of one element of data between devicesc and buffersc 

CLC sc [,C] Clear control bitsc· If sc = 0 clear all control bits 

LIA sc [,C] (buffer5c) ~A 

LIB 

MIA sc [,C] (buffer5c) (A) ~A 

MIB sc [,C] (buffer 5c) (B) ~B 

OTA sc [,C] (A)~buffer5c 

OTB sc [,C] (B) ~buffersc 

STF sc Set flag bitsc· If sc = 0, enable interrupt system. sc = 1 sets overflow bit. 

CLF sc Clear flag bitsc· If sc = 0, disable interrupt system. If sc = 1, clear overflow bit. 

SFC sc If (flag bitsd = 0, execute P + 2, otherwise execute P ..: · 1. If sc = 1, test overflow bit. 

SFS sc If (flag bit 5c) = 1, execute P + 2, otherwise execute P + 1. If sc = 1, test overflow bit. 

B-16. Overflow 

CLO o~overflow bit 

STO 1 ~overflow bit 

soc [C] If (overflow bit) = 0, execute P + 2, otherwise execute P + 1 

sos [C] If (overflow bit) = 0, execute P + 2, otherwise execute P + 1 

B-17. Halt 

HLT [sc [,C]] Halt computer 

B-18. EXTENDED ARITHMETIC UNIT 

MPY { m [,I] } 
lit (A) x (m) ~ (B±msb and Atsb) 

DIV { m [,I]} 
lit 

(B±msb and Atsb)/(m) ~A, remainder ~B 

DLD { m [,I]} 
lit 

(m) and (m + l)~A and B 

DST { m [,I]} 
lit 

(A) and (B)~m and m + 1 

ASR b Arithmetically shift (BA) right b bits, Bis extPnded 

ASL b Arithmetically shift (BA) left b bits, Bis unaltered, O's to Atsb 

B-6 



Summary of Instructions 

RRR b Rotate (BA) right b bits 

RRL b Rotate (BA) left b bits 

LSR b Logically shift (BA) right b bits, O's to Bmsb 

LSL b Logically shift (BA) left b bits, o's to A1sb 

B-19. FLOATING POINT 

FMP { m [,I] } 
lit 

(AB) x (m, m + 1)-+AB 

FDV { m [,I] } 
lit 

(AB)/(m, m + 1)-+AB 

FAD { m [,I] } 
lit 

(m, m + 1) + (AB)-+AB 

FSB { m [,I] } 
lit 

(AB) - (m, m + 1)-+AB 

FIX (AB) converted from floating-point to fixed-point; result-+A 

FLT (A) converted from fixed-point to floating-point; result -+AB 

B-20. PSEUDO INSTRUCTIONS 

B-21. ASSEMBLER CONTROL 

NAM 

ORG 

ORR 

END 

REP 
<statement> 

IFN 
<statements> 

XIF 

IFZ 
<statements> 

XIF 

[name] Specifies relocatable program and its name. 

m Gives absolute program origin or origin for a segment of relocatable or absolute program. 

[m] 

r 

Reset main program location counter at value existing when first ORG or ORB of a string 
was encountered. 

Terminates source language program. Produces transfer to program starting location, m, 
if given. 

Repeat immediately following statement r times. 

Include statements in program if control statement contains N. 

Include statements in program if control statement contains Z. 

B-22. OBJECT PROGRAM LINKAGE 

COM name1[(size 1 )][,name2 [(size2 )], •.• ,namen[(sizen)11 

Reserves a block of common storage locations. name1 identifies segments of block, each of 
length size. 

ENT name 1 [,name2' ... ,namen1 

Defines entry points, name1 , that may be referred to by other programs. 

B-7 



Summary of Instructions 

EXT name1 [,name2 , ... ,name0 ] 

Defines external locations, name 1, which are labels of other programs, referenced by this 
program. 

B-23. ADDRESS AND SYMBOL DEFINITION 

label DEF m [,I] Generates a 15-bit address which may be referenced indirectly through the label. 

label ABS m Defines a 16-bit absolute value to be referenced by the label. 

label EQU m Equates the value, m, to the label. 

label DBL m Defines a 16-bit byte address (left half, bits 8-15, of word location m) to be referenced by 
the label. 

label DBR m Defines a 16-bit byte address to be referenced by the label. The byte address is for the right 
half (bits 0-7) of word location m. 

B-24. CONSTANT DEFINITION 

ASC n, <2n characters> Generates a string of 2n ASCII characters. 

BYT b [,b , ... ,b0 ] 

Records a string of decimal constants of the form: 

Integer: ±n 
Floating point: ±n.n, ±n., ±.n, ±nE±e, ±n.nE±e, ±n.E±e, ±.nE±e 

Records a string of extended precision decimals constants of the form 

Floating point: ±n, ±n.m, ±n., ±.n, 
±nE±e, ±n.nE±e, ±n.E±e, ±.nE±e 

Records a string of octal constants of the form: ±000000 

Records a string of octal byte constants of the form: ±nnn (where nnn is 0 through 3778 ). 

B-25. STORAGE ALLOCATION 

BSS m Reserves a storage area of length, m. 

B-26. ASSEMBLY LISTING CONTROL. 

UNL 

LST 

SKP 

Suppress assembly listing output. 

Resume assembly listing output. 

Skip listing to top of next page. 

SPC n Skip n lines on listing. 

SUP Suppress listing of extended code lines (e.g., as produced by subroutine calls). 

UNS Resume listing of extended code lines. 

HED <heading> Print <heading> at top of each page, where <heading> is up to 56 ASCII characters. 

B-27. DEFINE USER INSTRUCTION 

B-8 

MIC opcode,fcode,pnum Defines a source language instruction. opcode = three-character alphabetic 
mnemonic, fcode = instruction code, and pnum declares how many parameter 
addresses are to be associated with the newly-defined instruction. 



ALPHABETIC LIST OF INSTRUCTl_ONS 1ra~!.!, 

ABS 

ADA 

ADB 

ADX 

ADY 

ALF 

ALR 

ALS 

AND 

ARS 

ASC 

ASL 

ASR 

BLF 

BLR 

BLS 

BRS 

BSS 

BYT 

CAX 

CAY 

CBS 

CBT 

CBX 

CBY 

CCA 

CCB 

CCE 

CLA 

CLB 

CLC 

CLE 

CLF 

CLO 
CMA 
CMB 
CME 

CMW 

Define absolute value 

Add to A 

Add to B 

Add memory to X 

Add memory to Y 

Rotate A left 4 

Shift A left 1, clear sign 

Shift A left 1 

"And" to A 

Shift A right 1, sign carry 

Generate ASCII characters 

Arithmetic long shift left 

Arithmetic long shift right 

Rotate B left 4 

Shift B left 1, clear sign 

Shift B left 1 

Shift B right 1, carry sign 

Reserve block of storage starting at symbol 

Defines octal byte constants 

Copy A to X 

Copy A to Y 

Clear bits 

Compare bytes 

Copy B to X 

Copy B to Y 

Clear and complement A ( 1 's) 

Clear and complement B ( 1 's) 

Clear and complement E (set E = 1) 

Clear A 

Clear B 

Clear I/O control bit 

Clear E 

Clear I/O flag 

Clear overflow bit 

Complement A 

Complement B 

Complement E 

Compare words 

COM 
CPA 

CPB 

CXA 

CXB 

CYA 

CYB 

DBL 

DBR 

DEC 

DEF 

DEX 

DIV 

DLD 

DST 

DSX 

DSY 

ELA 

ELB 

END 

ENT 

ERA 

ERB 

EQU 
EXT 

FAD 

FDV 

FMP 

FSB 

HED 

HLT 

IFN 

IFZ 

INA 

INB 

IOR 

Reserve block of common storage 

Compare to A, skip if unequal 

Compare to B, skip if unequal 

Copy X to A 

Copy X to B 

Copy Y to A 

Copy Y to B 

Defines left byte (bits 8-15) address 

Defines right byte (bits 0-7) address 

Defines decimal constants 

Defines address 

Defines extended precision constants 

Divide 

Double load 

Double store 

Decrement X and skip if zero 

Decrement Y and skip if zero 

Rotate E and A left 1 

Rotate E and B left 1 

Terminate program 

Entry point 

Rotate E and A right 1 

Rotate E and B right 1 

Equate symbol 

External reference 

Floating add 

Floating divide 

Floating multiply 

Floating subtract 

Print heading at top of each page 

Halt 

When N appears in Control Statement, 
assemble ensuing instructions 

When appears in Control Statement, 
assemble ensuing instructions 

Increment A by 1 

Increment B by 1 

Inclusive "or" to A 

C-1 



Alphabetic List of Instructions 

ISX Increment X and skip if zero RRR Rotate A and B right 

ISY Increment Y and skip if zero RSS Reverse skip sense 

ISZ Increment, then skip if zero 
SAX Store A into memory indexed by X 

JLY Jump and load Y 
SAY Store A into memory indexed by Y 

JMP Jump 
SBS Set bits 

JPY Jump indexed by Y 
SBT Store byte 

JSB Jump to subroutine SBX Store B into memory indexed by X 
LAX Load A from memory indexed by X SBY Store B into memory indexed by Y 
LAY Load A from memory indexed by Y SEZ Skip if E = 0 
LBT Load byte SFB Scan for byte 
LBX Load B from memory indexed by X SFC Skip if 1/0 flag = 0 (clear) 
LBY Load B from memory indexed by Y SFS Skip if 1/0 flag = 1 (set) 
LDA Load into A SKP Skip to top of next page 
LDB Load into B SLA Skip if LSB of A = 0 
LDX Load X from memory SLB Skip if LSB of B = 0 
LDY Load Y from memory soc Skip if overflow bit = 0 (clear) 
LIA Load into A from 1/0 channel sos Skip if overflow bit = 1 (set) 
LIB Load into B from 1/0 channel SPC Space n lines 
LSL Logical long shift left SSA Skip if sign A = 0 
LSR Logical long shift right SSB Skip if sign B = 0 
LST Resume list output (follows a UNL) STA Store A 
MBT Move bytes STB Store B 
MIA Merge (or) into A from 110 channel STC Set 1/0 control bit 
MIB Merge (or) into B from 1/0 channel STF Set 1/0 flag 
MIC Defines jump to user microcode STO Set overflow bit 
MPY Multiply STX Store X into memory 
MVW Move words STY Store Y into memory 
NAM Names relocatable program SUP Suppress list output of additional code lines 
NOP No operation SWP Switch the (A) and (B) 
OCT Defines octal constant SZA Skip if A = 0 
ORB Establish origin in base page SZB Skip if B = 0 
ORG Establish program origin TBS Test bits 
ORR Reset program location counter UNL Suppress list output 
OTA Output from A to 1/0 channel UNS Resume list output of additional code lines 
OTB Output from B to 1/0 channel XAX Exchange A and X 
RAL Rotate A left 1 XAY Exchange A and Y 
RAR Rotate A right 1 XBX Exchange B and X 
RRL Rotate B left 1 XBY Exchange B and Y 
RBR Rotate B right 1 XIF Terminate an IFN or IFZ group of in-
REP Repeat next statement structions 

RRL Rotate A and B left XOR Exclusive "or" to A 

C-2 



CONSOLIDATED CODING SHEETS lfH:M[~ 

Table D-1 presents the binary codes for the base set instructions while Table D-2 presents those for the extended 
instruction group. 

D-1 



Consolidated Coding Sheets 

Table D-1. Base Set Instruction Codes in Binary 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Oii AND 001 0 ZIC Memory Address 
0/1 XOR 010 0 ZIC 
Oii IOR 011 0 ZIC 
Oii JSB 001 1 ZIC 
Oii JMP 010 1 ZIC 
Oii ISZ 011 1 ZIC 
Oii AD* 100 AIB ZIC 
Oii CP* 101 AIB ZIC 
Oii LO* 110 AIB ZIC 
Oii ST* 111 AIB ZIC 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 SRG 000 A/B 0 D/E *LS 000 tCLE D/E :j:SL* *LS 000 

A/B 0 D/E *RS 001 D/E *RS 001 

A/B 0 D/E R*L 010 D/E R*L 010 

A/B 0 D/E R*R 011 D/E R*R 011 

A/B 0 D/E *LR 100 D/E *LR 100 

A/B 0 D/E ER* 101 D/E ER* 101 

A/B 0 D/E EL* 110 D/E EL* 110 
A/B 0 D/E *LF 111 D/E *LF 111 
NOP 000 000 000 000 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 ASG 000 A/B 1 CL* 01 CLE 01 SEZ SS* SL* IN* SZ* RSS 
A/B CM• 10 CME 10 
A/B CC* 11 CCE 11 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 IOG 000 1 HIC HLT 000 Select Code 
1 0 STF 001 
1 1 CLF 001 
1 0 SFC 010 
1 0 SFS 011 

A/B 1 HIC Ml* 100 
A/B 1 HIC LI* 101 
A/B 1 HIC OT* 110 

0 1 H/C STC 111 
1 1 HIC CLC 111 

1 0 STO 001 000 001 
1 1 CLO 001 000 001 
1 HIC soc 010 000 001 
1 HIC sos 011 000 001 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 EAG 000 MPY** 000 010 000 000 
DIV*• 000 100 000 000 
OLD** 100 010 000 000 
DST** 100 100 000 000 

ASR 001 000 0 1 
ASL 000 000 0 1 
LSR 001 000 1 0 number 
LSL 000 000 1 0 of 
RRR 001 001 0 0 bits 
RRL 000 001 0 0 

Notes: * = A or B, according to bit 11. tCLE: Only this bit is required. 
0/1, A/B, ZIC, DIE, H/C coded: 0/1. :j:SL *: Only this bit and bit 11 (A/Bas 
..,Second word is Memory Address. applicable) are required. 

D-2 



Consolidated Coding Sheets 

Table D-2. Extended Instruction Group Codes in Binary 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 

SAX/SAY /SBX/SBY 1 0 0 0 IA/Bl 0 1 1 1 1 1 0 lxivl 0 0 0 

CAX/CAY /CBX/CBY 1 0 0 0 IA/Bl 0 1 1 1 1 1 0 lx1vl 0 0 1 

LAX/LAY /LBX/LBY 1 0 0 0 IA/Bl 0 1 1 1 1 1 0 lxivl 0 1 0 

STX/STY 1 I 0 0 0 11 0 1 1 1 1 1 0 fx1vl 0 1 1 

CXA/CYA/CXB/CYB 1 I 0 0 0 IA/Bl 0 1 1 1 1 1 0 lx1vl 1 0 0 

LOX/LOY 1 0 0 0 1 0 1 1 1 1 1 0 I xiv I 1 0 1 

ADX/ADY 1 0 0 0 0 1 1 1 1 1 0 lxivl 1 1 0 

XAX/XA Y /XBX/XBY 1 0 0 0 IA/Bl 0 1 1 1 1 11 0 lx1vl 1 1 1 

ISX/ISY /DSX/DSY 1 0 0 0 1 0 1 1 1 1 1 1 lx1vl 0 0 I 110 I 

JUMP INSTRUCTIONS 1 0 0 0 1 0 1 1 1 1 1 WA 0 1 0 

JLY = 0 
JPY = 1 

BYTE INSTRUCTIONS 1 0 0 0 1 0 1 1 1 1 1 1 0 ~ 
LBT = 0 1 1 
SBT = 1 0 0 
MBT= 1 0 1 

CBT = 1 1 0 
SFB = 1 1 

BIT INSTRUCTIONS 1 0 0 0 1 0 1 1 1 1 1 1 1~ 
SBS = 0 1 1 
CBS = 1 0 0 
TBS = 1 0 1 

WORD INSTRUCTIONS 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 WA 
CMW= 0 
MVW= 1 

D-3 



!RUNNING ASSEMBLIES UNDER 11m1Tll DOS-Ill I E I 

The Assembler, a segmented program that executes in the 
main-memory User Program Area, operates under control 
of DOS-III. The Assembler consists of a main program 
(ASMB) and six segments (ASMBD, ASMBl, ASMB2, 
ASMB3, ASMB4, ASMB5 ), and resides on the disc. The 
main program is read into main memory when called by a 
PROG directive. 

Source programs, accepted from either an input device or a 
user source file (or files) on the disc, are translated into 
absolute or relocatable object programs; absolute code is 
punched in binary records, suitable for execution only 
outside of DOS-III. ASMB can store relocatable code in 
the Job Binary Area of the disc for on-line execution, as 
well as punch it on paper tape. 

A source program passes through the input device only 
once, unless there is insufficient disc storage space. In the 
latter case, DOS-III informs the user that two passes are 
required. 

E-1. ASSEMBLER 1/0 

The Assembly Language 1/0 EXEC calls should specify 
the proper logical unit numbers for the DOS-III 
configuration. 

When preparing input for the batch device, the 
programmer must remember to never put a colon (:) in 
column one of the source statement. DOS-III aborts the 
current program if a directive (signified by : in column 
one) occurs during data input. 

If the memory protect hardware option is present (and 
enabled), it protects the resident supervisor from 
alteration. It interrupts the execution of a user program 
under these conditions: 

• Any operation that would modify the protected area or 
jump into it. 

• Any 1/0 instruction, except those referencing the 
switch register or overflow register. 

• The halt instruction. 

Memory protect gives control to DOS-III when an 
interrupt occurs, and DOS-III checks whether it was an 
EXEC call. If not, the user program is aborted. 

E-2. ASSEMBLER OPERATION 

The DOS-III Assembler is initiated with a PROG 
directive. However, before entering the PROG directive, 
the operator must place the source program in the input 
device. If the source program is on the disc, the operator 
must first specify the file with a JFILE directive, and set 
parameter p

1 
= 2 in the PROG directive. The PROG 

directive for Assembler should take the following form: 

where: 

pl 
logical unit number of input device (default is 5; set to 
2 for source file input indicated by a JFILE directive) 

P2 
logical unit number of list dedvice (default is 6) 

P3 
logical unit number of punch device (default is 4) 

P4 
lines/page on the source listing (default is 56) 

99 
the job binary parameter. If present, the object 
program is stored in the Job Binary Area for later 
loading. Any requested punch output still occurs. (The 
99 may occur anywhere in the parameter list, but 
terminates the list.) 

All parameters are optional. However, parameters P1 
through P4 are positional (if present they must appear in 
the order shown above). If any of the parameters P 1 
through P4 are omitted, the associated (trailing) comma 
may also be omitted and the default value is assumed. If 
the 99 is omitted, the binary output is not placed in the 
Job Binary Area. 

E-1 



Running Assemblies Under DOS-III 

E-3. MESSAGES DURING ASSEMBLY 

When the end of a source tape is encountered, the 
following is output on the system console: 

J/O. ERR ET EQT #n 

EQT #n is unavailable until the operator declares it up: 

:UP,n· 

:GO 

Compilation continues after the :GO. More than one 
source tape can be compiled into one program by loading 
the next tape before giving the : GO. 

The following message on the system console signifies the 
end of assembly: 

$END ASMB 

If another pass of the source program is required, this 
message is output at the end of pass one. 

. $END. ASMB PASS 

The operator must replace the program in the input device 
and enter: 

:GO 

If an error is found in the Assembler control statement, 
the following message is output on the system console: 

$END . ASMB CS 

and the current assembly stops. 

E-2 

If an end-of-file condition on source input occurs before an 
END statement is found, the console signals: 

. $ENDASMB XEND. 

and the current assembly stops. 

If source input from logical unit 2 (disc) is requested, but 
no file has been declared, the system console signals: 

$END ASMB NPRG 

and the current assembly stops. 

If the Job Binary Area, where binary code is stored by a 99 
parameter, overflows, assembly continues but the 
following message is output on the system console: 

JBIN OVF 

However, no further binary code is stored in the Job 
Binary Area. 

The next message is printed on a separate line just above 
each error diagnostic printed in the program listing during 
pass 1. 

# nnn 

nnn is the "tape" number on which the error (reported on 
the next line of the listing) occurred. A program may con­
sist of more than one tape. The tape counter starts with 
one and increments by one whenever an end-of-tape 
condition occurs (paper tape) or a blank card is 
encountered. When the counter increments, the numbering 
of source statements starts over at one. 

Each error diagnostic printed in the program listing 
during pass 2 of the assembly is associated with a different 
message (printed on a separate line just above each 
diagnostic): 

PG.ppp 

ppp is the page number (in the listing) of the previous 
error diagnostic. PG 000 is associated with the first error 
found in the program. 



Error 
Code 

cs 

DD 

llHHMO MESSAGES I F I 

Errors detected in the source program are indicated by a 1- or 2-letter mnemonic fol­
lowed by the sequence number and the first 62 characters of the statement in error. The 
messages are printed on the list output device during the passes indicated. A message 
specifying the number of errors detected is printed on the system console device at the end 
of each pass. 

Error listings produced during Pass 1 are preceded by a number which identifies the 
source input file where the error was found. Pass 2 error messages are preceded by a 
reference to the previous page of the listing where an error message was written. The first 
error will refer to page "O". The error count at the end of Pass 2 is preceded by the page 
number in the listing where the final error was encountered. 

Pass 

1 

1 

Description 

Control statement error: 

a) The control statement contained a parameter other than the legal set. 

b) Both A and R were specified. 

c) There was no output parameter (B, T, or L) and the Job Binary parameter was not 
specified. 

Doubly defined symbol: A name defined in the symbol table appears more than once as: 

a) A label of a machine instruction. 

b) A label of one of the pseudo operations: 

BSS DBL 
BYT DBR 
ASC EQU 
DEC ABS 
DEF OCT 
DEX Arithmetic subroutine call 

c) A name in the Operand field of a COM or EXT statement. 

d) A label in an instruction following a REP pseudo operation. 

e) Any combination of the above. 

An arithmetic subroutine call symbol appears in a program both as a pseudo instruction 
and as a label. 

EN 1 The symbol specified in an ENT statement has already been defined in an EXT 
statement. 

EN UNDEF <symbol> 2 The entry point specified in an ENT statement does not appear in the label field of a 
machine or BSS instruction. The entry point has been defined in the Operand field of an 
EXT statement (or has been equated to an absolute value of zero - this is not an error, 
but is noted). 

F-1 



Assembler Error Messages 

F-2 

Error 
Code 

IF 

IL 

M 

Pass Description 

1 An IFZ or an IFN follows either an IFZ or an IFN without an intervening XIF. The 
second pseudo instruction is ignored. 

1 Illegal instruction: 

a) Instruction mnemonic cannot be used with type of assembly requested in control 
statement. The following are illegal in an absolute assembly: 

NAM EXT 
ENT COM 
Arithmetic subroutine calls 

b) The ASMB statement has an R parameter, and NAM has been detected after the 
first valid Opcode. 

1 or 2 Illegal character: A numeric term used in the Operand field contains an illegal character 
(e.g. an octal constant contains other than +, -, or 0-7). This code may also appear 
following an M error for missing operands. 

1 or 2 Illegal operand: 

a) Operand is missing for an Opcode requiring one. 

b) Operands are optional and omitted but comments are included for: 

END 
HLT 

c) Operand is an external symbol or an indirect address for: 

DBL 
DBR 

d) An absolute expression in one of the following instructions from a relocatable pro­
gram is greater than 17778 • 

Instructions referencing memory locations 

DEF, DBL, and DBR 
Arithmetic subroutine calls 

e) A negative operand is used with an Opcode other than ABS, DEX, DEC, OCT, 
and BYT. 

f) A character other than I follows a comma with operands which can be indirect. 

g) Operand is an indirect address when used with JPY. 

h) Using a literal as the second operand in the following instructions: 

TBS 
SBS 
CBS 

i) A character other than C follows a comma in certain 1/0 instructions. 

j) A relocatable expression in the Operand field of one of the following: 

ABS ASR RRL 
REP ASL LSR 
SPC RRR LSL 

k) An illegal operator appears in an Operand field (e.g. + or - as the last character). 

1) An ORO statement appearing in a relocatable program includes an expression that is 
common relocatable or absolute. 

m) A relocatable expression contains a mixture of program and common relocatable 
terms. 

n) An external symbol appears in an operand expression or is specified as indirect. 



Error 
Code 

NO 

OP 

OV 

so 

SY 

UN 

Pass 

Assembler Error Messages 

Description 

o) The literal, literal code, or type of literal is illegal for the operation code used (e.g., 
STA= B7). 

p) An integer expression in one of the following instructions does not meet the condition 
1:Sn:S16. The integer is evaluated modulo 24 • 

ASR 
ASL 

RRR 
RRL 

LSR 
LSL 

q) The value of an 'L' type literal is relocatable. 

1 or 2 No origin definition: The first statement in the assembly containing a valid opcode 
following the ASMB control statement (and remarks and/or HED, if present) is neither 
an ORG nor a NAM statement. If absolute, the program is assembled starting at 2000; if 
relocatable, the program is assembled starting at zero. 

1 or 2 Illegal Opcode preceding first valid Opcode. The statement being processed does not con­
tain an asterisk in position one. The statement is asumed to contain an illegal Opcode; it 
is treated as a remarks statement. 

Illegal Opcode: A mnemonic appears in the Opcode field which is not valid. A word is 
generated in the object program. 

1 or 2 Numeric operand overflow: The numberic value of a term or expression has overflowed 
its limit: 

12:N2: 16 Shift-Rotate Set 

26-1 Input/Output, Overflow, Halt 

210 -1 Memory Reference (in absolute assembly) 

2 15 Data generated by DEC or DEX 

21 5 -1 DEF and ABS operands and expressions concerned with program location 
counter. 

216 -1 OCT 

There are more symbols defined in the program than the symbol table can handle. 

1or2 Illegal Symbol: A Label field contains an illegal character or is greater than 5 characters. 
A label with illegal characters may result in an erroneous assembly if not corrected. A 
long label is truncated on the right to 5 characters. 

Illegal Symbol: A symbolic term in the Operand field is greater than five characters; the 
symbol is truncated on the right to 5 characters. 

Too many control statements: The source file contains more than one control statement. 
The Assembler assumes that the second control statement is a label, since it begins in 
column 1. Thus, the commas are considered as illegal characters and the "label" is too 
long. The binary object program is not affected by this error. The first control statement 
processed is the one used by the Assembler. 

1 or 2 Undefined Symbol: 

a) A symbolic term in an Operand field is not defined in the Label field of an instruction 
or is not defined in the Operand field of a COM or EXT statement. 

b) A symbol appearing in the Operand field of one of the following pseudo operations 
was not defined previously in the source program: 

BSS ASC EQU ORG END 

F-3 



2 ± n IN DECIMAL 

2n n 2-n 

0 1.0 
2 1 0.5 
4 2 0.25 

8 3 0.125 
16 4 0.0625 
32 5 0.03125 

64 6 0.01562 5 
128 7 0.00781 25 
256 8 0.00390 625 

512 9 0.00195 3125 
1 024 10 0.00097 65625 
2 048 11 0.00048 82812 5 

4 096 12 0.00024 41406 25 
8 192 13 0.00012 20703 125 

16 384 14 0.00006 10351 5625 

32 768 15 0.00003 05175 78125 
65 536 16 0.00001 52587 89062 5 

131 072 17 0.00000 76293 94531 25 

262 144 18 0.00000 38146 97265 625 
524 288 19 0.00000 19073 48632 8125 

1 048 576 20 0.00000 09536 74316 40625 

2 097 152 21 0.00000 04768 37158 20312 5 
4 194 304 22 0.00000 02384 18579 10156 25 
8 388 608 23 0.00000 01192 09289 55078 125 

16 777 216 24 0.00000 00596 04644 77539 0625 
33 554 432 25 0.00000 00298 02322 38769 53125 
67 108 864 26 0.00000 00149 01161 19384 76562 5 

134 217 728 27 0.00000 00074 50580 59692 38281 25 
268 435 456 28 0.00000 00037 25290 29846 19140 625 
536 870 912 29 0.00000 00018 62645 14923 09570 3125 

1 073 741 824 30 0.00000 00009 31322 57461 54785 15625 
2 147 483 648 31 0.00000 00004 65661 28730 77392 57812 5 
4 294 967 296 32 0.00000 00002 32830 64365 38696 28906 25 



ABS, 4-8 
Absolute Expressions, 2-5 
ADA, 3-1 
ADB, 3-1 
Add Instructions, 3-1 
Address Definition Pseudo Instruction, 4-7 
Address Expressions, 2-4 
Addressing 

Indirect, 2-6 
Symbolic, 1-1 

ADX, 3-7 
ADY, 3-7 
ALF, 3-4 
Alphabetic List of Instructions, C-1 
ALR, 3-4 
ALS, 3-4 
Alter-Skip Instructions, 3-4 
AND, 3-2 
Arithmetic Subroutine Calls, 4-16 
ARS, 3-4 
ASC, 4-10 
ASL, 3-10 
ASMB Statement, 1-2 
ASR, 3-9 
Assembler Control Pseudo Instructions, 4-1 
Assembler Error Messages, F-1 
Assembly Listing Control Pseudo Instructions, 4-15 
Assembly Options, 1-2 
Asterisk, 2-3, 2-4 

Binary Output, 1-2 
Bit Processing Instructions, 3-3 
BLF, 3-4 
BLR, 3-4 
BLS, 3-4 
BRS, 3-4 
BSS, 4-15 
BYT, 4-15 
Byte Processing Instructions, 3-2 

CAX, 3-5 
CAY, 3-5 
CBS, 3-3 
CBT, 3-3 
CBX, 3-5 
CBY, 3-5 
CCA, 3-4 
CCB, 3-4 
CCE, 3-4 
Character Set, 2-1, A-1 
CLA, 3-4 
CLB, 3-4 

INDEX 

CLC, 3-8 
CLE, 3-4 
Clear Flag Indicator, 2-7 
CLF, 3-8 
CLO, 3-9 
CMA, 3-4 
CMB, 3-4 
CME, 3-4 
CMW, 3-2 
COM, 4-4 
Comments Field, 2-7 
Consolidated Coding Sheets, D-1 
Constant Definition Pseudo Instructions, 4-10 
Control Statement, 1-2 
Counter, Program Location, 1-2 
CPA, 3-2 
CPB, 3-2 
CXA, 3-5 
CXB, 3-5 
CYA, 3-5 
CYB, 3-5 

DBL, 4-9 
DBR, 4-9 
DEC, 4-10 
DEF, 4-7 
Define User Instruction Pseudo Instruction, 4-17 
Delimiters, Field, 2-1 
DEX, 4-13 
DIV, 3-9 
DLD, 3-9 
DST, 3-9 
DSX, 3-6 
DSY, 3-6 

EAU Instructions, 3-9 
ELA, 3-4 
ELB, 3-4 
ENT, 4-6 
ERA, 3-4 
ERB, 3-4 
Error Messages, Assembler, F-1 
EQU, 4-9 
Evaluation of Expressions, 2-5 
Expression Operators, 2-4 
Expression Terms, 2-5 
Expressions 

Absolute, 2-5 
Evaluation of, 2-5 
Relocatable, 2-5 

EXT, 4-6 
Extended Arithmetic Unit Instructions, 3-9 

I-1 



FAD, 3-10 
FDV, 3-10 
Field Delimiters, 2-1 
FIX, 3-10 
Flag, I/O Interrupt, 2-7 
Floating Point Instructions, 3-10 
FLT, 3-10 
FMP, 3-10 
FSB, 3-10 

Halt Instruction, 3-9 
HLT, 3-9 

IFN, 4-3 
IFZ, 4-3 
INA, 3-5 
INB, 3-5 
Increment-Skip Instructions, 3-1 
Index Register Instructions, 3-5 
Indicator, Clear Flag, 2-7 
Indirect Addressing, 2-6 
Input/Output Instructions, 3-7 
Instructions 

Add, 3-1 
Alter-Skip, 3-4 
Bit Processing, 3-3 
Byte Processing, 3-2 
EAU, 3-9 
Extended Arithmetic Unit, 3-9 
Floating Point, 3-10 
Halt, 3-9 
Increment-Skip, 3-1 
Index Register, 3-5 
Input/Output, 3-7 
I/O, 3-7 
Jump, 3-1 
Load, 3-1 
Logical Operations, 3-2 
Memory Reference, 3-1 
No-Operation, 3-7 
Overflow, 3-9 
Register Reference, 3-4 
Shift-Rotate, 3-4 
Store, 3-2 
Word Processing, 3-2 

Interrupt Flag, I/O, 2-7 
I/O Instructions, 3-7 
1/0 Interrupt Flag, 2-7 
IOR, 3-2 
ISX, 3-6 
ISY, 3-6 
ISZ, 3-1 

I-2 

JLY, 3-7 
JMP, 3-1 
JPY, 3-7 
JSB, 3-1 
Jump Instructions, 3-1 

Label Field, 2-1 
Label Symbol, 2-1 
LAX, 3-6 
LAY, 3-6 
LBT, 3-3 
LBX, 3-6 
LBY, 3-6 
LDA, 3-1 
LDB, 3-1 
LDX, 3-6 
LDY, 3-6 
Length, Statement, 2-1 
LIA, 3-8 
LIB, 3-8 
List Output, 1-2 
Listing Control Pseudo Instructions, 4-15 
Literals, 2-6 
Load Instructions, 3-1 
Location Counter, 1-2 
Logical Operations, 3-2 
LSL, 3-10 
LSR, 3-10 
LST, 4-15 

MBT, 3-3 
Memory Reference Instructions, 3-1 
MIA, 3-8 
MIB, 3-8 
MIC, 4-17 
MPY, 3-9 
MVW,3-2 

NAM, 4-1 
No-Operation Instruction, 3-7 
NOP, 3-7 
Numeric Terms, 2-4 

Object Program Linkage Pseudo Instructions, 4-4 
OCT, 4-13 
Opcode Field, 2-3 
Operand Field, 2-3 
Operators, Expression, 2-4 
Options, Assembly, 1-2 



ORG, 4-1 
ORR, 4-1 
OTA, 3-8 
OTB, 3-8 
Output 

Binary, 1-2 
List, 1-2 

Overflow Instructions, 3-9 

Passes, 1-1 
Program, Source, 1-2 
Program Location Counter, 1-2 
Program Relocation, 1-1 
Pseudo Instructions 

Address Definition, 4-7 
Arithmetic Subroutine Calls, 4-16 
Assembler Control, 4-1 
Assembly Listing Control, 4-15 
Constant Definition, 4-10 
Define User Instruction, 4-17 
Listing Control, 4-15 
Object Program Linkage, 4-4 
Storage Allocation, 4-15 
Symbol Definition, 4-7 

RAL, 3-4 
RAR, 3-4 
RBL, 3-4 
RBR, 3-4 
Register Reference Instructions, 3-4 
Relocatable Expressions, 2-5 
Relocation, Program, 1-1 
REP, 4-4 
RRL, 3-10 
RRR, 3-10 
RSS, 3-5 
Running Assemblies Under DOS-III, E-1 

SAX, 3-7 
SAY, 3-7 
SBS, 3-3 
SBT, 3-3 
SBX, 3-7 
SBY, 3-7 
SEZ, 3-4 
SFB, 3-3 
SFC, 3-8 
SFS, 3-8 
Shift-Rotate Instructions, 3-4 
SKP, 4-16 

SLA, 3-4, 3-5 
SLB, 3-4, 3-5 
SOC, 3-9 
sos, 3-9 
Source Program, 1-2 
SPC, 4-16 
SSA, 3-4 
SSB, 3-4 
STA, 3-2 
Statement 

Characteristics, 2-1 
Length, 2-1 

STB, 3-2 
STC, 3-8 
STF, 3-8 
STO, 3-9 
Storage Allocation Pseudo Instruction, 4-15 
Store Instructions, 3-2 
STX, 3-6 
STY, 3-6 
Summary of Instructions, B-1 
SUP, 4-15 
SWP, 3-10 
Symbol, Label, 2-1 
Symbol Definition Pseudo Instructions, 4-8 
Symbols, 1-1 
Symbolic Addressing, 1-1 
Symbolic Terms, 2-3 
SZA, 3-5 
SZB, 3-5 

Terms 
Numeric, 2-4 
Symbolic, 2-3 
Expression, 2-5 

TBS, 3-3 

UNL, 4-15 
UNS, 4-16 

Word Processing Instructions, 3-2 

XAX, 3-5 
XAY, 3-5 
XBX, 3-5 
XBY, 3-5 
XIF, 4-3 
XOR, 3-2 

1-3 



HEWLETT~PACKARD 

SALES & SERVICE OFFICES 
AFRICA, ASIA, AUSTRALIA 
AMERICAN SAMOA 
Calculators Only 
~c3ane~xs~wms Inc. 

Pago Pago Bayfront Road 

~:i~:3~~~~ 3 96799 
Cable: OCEANIC-Pago Pago 

ANGOLA 
Telectra 

Eml~~~a~e~~~; de 
Eldctricos, S.A.R.L. 

~ai~;r~g:t~I ~i~~~ues. 42-l°DT.
0 

Luanda 
Tel: 35515/6 
Cable: TELECTRA Luanda 

AUSTRALIA 
Hewlett-Packard Australia 

Ply. Ltd. 
31-41 Joseph Street 
Blackburn, Victoria 3130 
P.O. Box 36 
Doncaster Eaet. Victoria 3109 
Tel: 89-6351 
Telex: 31-024 
Cable: HEWPARD Melbourne 
Hewlett-Packard Australia 

Pty Ltd. 
31 Bridge Street 
Pymble 
New South Wales, 2073 
Tel: 449-6566 
Telex: 21561 
Cabl.e: HEWPARD Sydney 
Hewlett-Packard Australia 

1 sfltre~~tii11 Road 
Perk1kle, 5063. S.A. 
Tel: 272-5911 
Telex: 82536 ADEL 
Cable: HEWPARD ADELAIDE 
Hewlett-Packard Australia 

14~ii~t~g Highway 
Nedland1. W.A. 6009 
Tel: 86-5455 
Telex: 93859 PERTH 
Cable: HEWPARD PERTH 
Hewlett-Packard Australia 

:\Ltd. 
12 ollongong Street 
Fy1hwlck, A .. T. 2609 
Tel: 95-3733 
Telex: 62650 Canberra 
Cable: HEWPARD CANBERRA 
Hewlett Packard Australia 

Ply. ltd. 
5th Floor 
Teachers Union Building 
495-499 Boundary Street 
Spring Hill, 4000 Queensland 
Tel: 29-1544 
Telex: 42133 BRISBANE 

CANADA 
ALBERTA 
Hewlett-Packard (Canada) ltd. 
11620A - 168 Street 
EdmontonT5M 3T9 
Tel: (403) 452-3670 
TWX: 610·831-2431 EDTH 

~~-1:~-r~;~'.~ (~~~;d1a62ltd. 
~:I~=~~) Tf ~ -1l61,2 
Twx; 610-821-6141 

GUAM 
Medical/Pocket Calculators Only 

1~YaTa~eg~if~i~~~~~o~c21 o 
P.O. Box 8947 

~:1'."6~~'JMs911 
Cable: EAlMED Guam 

HONG KONG 
Schmidt & Co.(Hong Kong) Ltd. 
P.O. Box 297 
Connalight Centre 
39th Floor 
Connaught Road. Central 

~~:n~-~~~~1-5 
Telex: 74766 SCHMC HX 
Cable: SCHMIDTCO Hong Kong 

INDIA 
Blue Star Ltd. 

~;~~~ie~i~i~d~rag~d. 
~e~:"2~a?o ~~ 020 
Telex: 2156 
Cable: BLUEFROST 
Blue Star Ltd. 
Sahas 
414/2 Vir Savarkar Marg 
Prabhadevi 

~e~".:~8!a i~o p2s 
Telex: 4093 
Cable: FROSTBLUE 
Blue Star Ltd. 
Band Box House 
Prabhadevi 

~ef".l~at b~o 025 
Telex: 37~1 
Cable: BLUESTAR 
Blue Star Ltd. 
14/40 Civil Lines 

f :i:nf~a ~~a 001 
Telex: 292 
Cable: BLUESTAR 
Blue Star Ltd. 
7 Hare Street 
P.O. Box 506 
Calcutta 700 001 
Tel: 23-0131 
Telex:. 7655 
Cable: BLUESTAR 
Blue Star Ltd. 
7th & 8th Floor 
Bhandari House 
91 Nehru Place 
New Delhi 110024 
Tel: 634770 & 635166 
Telex: 2463 
Cable: BLUESTAR 
Blue Star ltd. 
Blue Star House 
11 /11 A Magarath Road 

~::n~;:5e 560 025 
Telex: 430 
Cable: BLUESTAR 

BRITISH COLUMBIA 

~~fl:ttt0ar~~a;~ Jfr~~~da) Ltd. 
Vancouver V6A 3R2 
Tel: (604) 254-0531 
TWX: 610-922-5059 VCR 

Blue Star Ltd. 
Meeakshi Mandiran 
xxx/1678 Mahatma Gandhi Rd 
Cochin 682 016 Kerala 
Tel: 32069, 32161. 32282 
Telex: 046-514 
Cable: BLUESTAR 
Blue Star Ltd 
1-1-117/1 
Sarojini Devi Road 
Secunderabad 500 003 
Tel: 70126, 70127 
Cable: BLUEFROST 
Telex: 459 
Blue Star Ltd. 
2/34 Kodambakkan High Road 
Mldraa 600034 
Tel: 82056 
Telex: 041-379 
Cable: BLUESTAR 
Blue Star Ltd. 
Nathraj Mansions 
2n.d Floor Bistupur 
Jamahedpur 831 001 
Tel: 7383 
Cable: BLUESTAR 
Telex: 240 

tNDONESIA 
BERCA Indonesia P.T. 
P.O. Box 496 
1st Floor JL, Cikini Raya 61 
Jakarta 
Tel: 56038. 40369. 49886 
Telex: 42895 
Cable: BERCACON 
BERGA Indonesia P.T. 
63 JL. Raya Gubeng 

~~r~~~K~ 
ISRAEL 
Electronics & Engineering Div. 

of Motorola Israel Ltd. 
16, Kremenetski Street 
P.O. Box 25016 
Tel-Aviv 
Tel: 03-389 73 
Telex: 33569 
Cable: BASTEL Tel-Aviv 

JAPAN 
Yokogawa-Hewlett-Packard Ltd 
Ohashi Building 
1-59-1 Yoyogi 
Shibuya-ku, Tokyo 
Tel: 03-370-2281/92 
Telex: 232-2024YHP 
Cable: YH~MARKET TOK 23-724 
Yokogawa-Hewlett-Packard Ltd. 
Nissei lbaraki Building 
2-8 Kasuga 2-chrome. lbaraki-shi 
Oaaka,567 
Tel: (0726) 23-1641 
Telex 5332-385 YHP OSAKA 
Yokogawa-Hewlett-Packard Ltd 
Nakamo Building 
24 Kami Sasajima-cho 

~:1kai0~2)"~~i-~~fYa . 450 

MANITOBA 
Hewlett-Packard (Canada) ltd. 
513 Century St. 
St. James 
Winnipeg R3H OL8 
Tel: (204} 78&-7581 
TWX: 610-671-3531 

CENTRAL AND SOUTH AMERICA 
ARGENTINA 
Hewlett-Packard Argentina 
S.A. 
Av. Leandro N. Alem 822 • 12" 
1001Bueno1 Alrea 
Tel: 31-6063,4,5,6 and 7 
Telex: Public Booth N° 9 
Cable: HEWPACK ARG 

BOLIVIA 
Stambuk & Mark (Bolivia) Ltda. 
Av. Mariscal, Santa Cruz 1342 
Le Paz 
Tel: 40626, 53163, 52421 
Telex: 3560014 
Cable: BUKMAR 

BRAZIL 
Hewlett-Packard do Brasil 
l.E.C. Lida. 
Avenida Rio Negro, 980 

~'l:Oil::rueria Seo Paulo 
Tel: 429-2148/9:429-2118/9 
Hewlett-Packard do Brasil 
l.E.C. ltda. 

~~~~~J!airs. ~:-Rs 
Tel: (0512) 22·2~. 22-5621
Gable: HEWPACk polio Alegre

Hewlett-Packard do Brasil
l.E.C. ltda.
Rua Siqueira Campos, 53. 4°

~~i~o~P~CJ~a1!ne1ro-GB
Tel: 257-80-94-DDD (021)
Telex: 391·212-1905 HEWP-BR
Cable: HEWPACK

Rio de Janeiro

CHILE

~f1~~~~ ~8~~6?1~o~tda.
Casilla 2118

~:in~SJ'6~3 1

Telex: 3520001 CALMET
Cable: CALMET Santiago

Medical Only
General Machinery Co .. ltda.

~~~f1~~%~ici 
~:i~~1~P2~. 31124 
Cable: GEMCO Santiago 

COLOMBIA 
lnstrumentacion 
Henrik A. Langebaek & Kier S.A. 
Carrera 7 No. 48-75 
Apanado Mreo 6287 
Bogota, I D.E. 
Tel: 69-88-77 
Cable: MAIS Bogota 
Telex: 044-400 

COSTA RICA 
Cientifica Costarricense S .A. 
Calle Central. Avenidas 1 y 3 
Apartado 10159 
San Jose 
Tel: 21·86-13 
Cable: GALGUR San Jose 

ECUADOR 
Medical Only 
A.F. Viscalno Companla Ltda. 
Av. Rio Amazonas No. 239 
P.O. Box 2925 
Quito 
Tel: 242-150.247-033/034 
Cable: Astor Quito 

Yokogawa-Hewlett-Packard Ltd. 
Tanigawa Building 
2-24-1 Tsuruya-choo 
Kanagawa-ku 
Yokohama, 221 
Tel: 045-312-1252 
Telex: 382-3204 YHP YOK 
Yokogawa-Hewlett-Packard ltd. 
Mito Mitsui Building 
105. 1-chrome. San-no-maru 
Miio. lbaragi 310 
Tel:: 0292-25-7470 
Yokogawa-Hewlett-Packard ltd. 
Inoue Building 
1348-3. Asahi-cho. 1-chome 
At1ugl, Kanagawa 243 
Tel: 0462-24·0452 
Yokogawa-Hewlett-Packard Ltd. 
Inoue Building 
1348-3, Asahi-cho. 1-chome 

~:i''01l~2~~;.')p.t5'2a 243 

Yokogawa-Hewlett-Packard ltd. 
Kimura Building 
3rd Floor 20 
2-chome, Tsukuba 

~e~:"O:W~~~:6s5~~ma 360 

KENYA 
Technical Engineering Services 

(E.A.)ltd. 
P.O. Box 18311 
Nairobi 
Tel: 557726/556762 
Cable: PROTON 

~~~:~~~nn~r Aeradio(E.A. )ltd .. 
P.O. Box 19012
Nairobi Airpon
Nairobi
Tel: 336055/56
Telex: 22201t223Q1
KOREA

~&~s~n%~~~~0n~c~l;i. '2;6~
2-KA , C .. P.O. Box 2775
Taepyung-Ro, Chung-Ku
Seoul
Tel: (24) 2410-9
Telex: 22575
MALAYSIA
Teknik Mutu Sdn. Bhd.
2 Lorong 13i6A
Section 13
Petaling Jaya,Sela~or

i:l~x~u~I: ~~~5ur-5 994

Protel Engineering
P.O. Box 1917
Lot 259, Satok Road
~~1~hJ~%Q Sarawak

MOZAMBIQUE
A.N. Goncalves. Lta.
162, 1° Apt. 14 Av. 0. Luis
Caixa Postal 107
Lourenco Marques
Tel: 27091, 27114
Telex: 6-203 Negon Mo

NOVA SCOTIA
Hewlett-Packard (Canada) ltd
800 Windmill Road
P 0. Box 9331
Dartmouth B2Y 3Z6
Tel: (902) 469-7820
TWX: 610-271-4482 HFX

Calculators Only
Computadoras y Equipos
Electrdnicos
P.O. Box 2695
990 Toledo (y Cordero)
Quito
Tel: 525-982
Telex: 02-2113 Sag1ta Ed
Cable: Sagita-Quito

EL SALVADOR
lnstrumentacion y Procesamiento

Electronico de el Salvador
Bulevar de los Heroes 11-48
San Salvador
Tel: 252787

GUATEMALA
IPESA
Avenida La Aelorma 3-48.
Zona 9
Guatemala City
Tel: 63627. 64786
Telex: 4192 Teletro. Gu

NEW ZEALAND
Hewlett-Packard (N.Z.) ltd.
4-12 Cruickshank Street
Kilbirnie. Wellington 3
Mailing Address: Hewlett-Packard

(N.Z.) ltd.
P.O. Box 9443
Counney Place
Wellington
Tel: 877-199
Telex: NZ 3839
Cable: HEWPACK Wellington
Hewlett-Packard (N.Z.) ltd
Pakuranga Professional Centre
267 Pakuranga Highway
Box 51092

f:ik~6~~6~~
Telex NZ 3839
Cable: HEWPACK.Auckland
Analytical/Medical Only
Medical Supplies N.Z. ltd.
Scientific Division
79 Carlton Gore Rd .. Newmarket
P 0. Box 1234
Auckland
Tel: 75-289
Telex: 2958 MEOISUP
Cable: DENTAL Auckland
Analytical/Medical Only
Medical Supplies N .Z. ltd
P.O. Box 1994
147-161 Tory St

fe~1~5?~~
Telex: 3858
Cable: DENTAL. Wellington
Analytical/Medical Only
Medical Supplies N.Z Ltd
P 0. Box 309
239 Stanmore Road
Christchurch
Tel: 892-019
Cable: DENTAL. Christchurch
Analytical/Medical Only
Medical Supplies N.Z. ltd.
303 Great King Street
P.O. Box 233
Dunedin
Tel: 88-817
Cable: DENTAL. Dunedin

NIGERIA
The Electronics

Instrumentations ltd
N6B/770 Oyo Road
Oluseun House
P.M.B. 5402
Ibadan
Tel: 61577
Telex: 31231 TEil Nigeria
Cable THETEIL Ibadan
The Electronics lnstrumenta·

lions ltd
144 Agege Motor Road. Mushin
P 0. Box 6645
Lagos
Cable: THETEIL Lagos

ONTARIO
Hewlett-Packard (Canada) ltd
1785 Woodward Dr
Ottawa K2C OP9

i~x(6Jn.m:mg
Hewlett-Packard (Canada) ltd
6877 Goreway Drive

~~8(!~~i~YWlo 1
MS

TWX 610-492-4246

MEXICO
Hewlett-Packard Mexicana.
S.A. de CV
Torres Adalid No 21. ff Piso
Col. del Valle
Mexico 12. D.F
Tel: (905) 543-42-32
Telex: 017-74-507

Hewlett-Packard Mexicana.
S.A. de C.V.
Ave. Constitucion No. 2184
Monterrey. N.L
Tel: 48-71-32. 48-71-84
Telex: 038-843

NICARAGUA
Roberto Teran G.
Apanado Postal 689
Edificio Teran

~~n~~=. 23412.23454
Cable: ROTERAN Managua

PANAMA
Electronico Balboa. S A
P.O. Box 4929
Calle Samuel Lewis
Culdad de Panama
Tel: 64-2700
Telex: 3431103 Curunda.

Canal Zone
Cable: ELECTRON Panama

PAKISTAN
Mushko & Company. ltd.'
Oosman Chambers
Abdullah Haroon Road
Karachl-3
Tel: 511027. 512927
Telex: KA894
Cable: COOPERATOR Karachi
Mushko & Company. ltd
38B. Satellite Town

~~w4~1CJ~d1
Cable: FEMUS Rawalpindi

PHILIPPINES
The Online Advanced Svstems

Corporation
Filcapital Bldg
11th Floor. Ayala Ave.
Makat1. Rizal
Tel: 85-34-91. 85-35-81
Telex: 3274 ONLINE
RHODESIA
Field Technical Sales
45 Kelvin Road North
P.O. Box 3458

~:iu~~~211 (5 lines)
Telex: AH 4122

SINGAPORE
Hewlett-Packard Singapore

(Pte I ltd
Blk. 2. 6th Floor. Jalan

Bukit Merah
Redhill Industrial Estate
Alexandra P 0 Box 58.
Singapore 3
Tel: 633022
Telex: H PSG RS 21486
Cable: HEWPACK. Singapore

SOUTH AFRICA
Hewlett-Packard South Africa

(Ply.). ltd

~~~~:~nBa~r~~~~it2°1°14 
Hewlett-Packard House 
Daphne Street. Wendywood. 
Sandton. Transvaal 2144 
Tel: 802-104016 
Telex: SA43-4782JH 
Cable: HEWPACK JOHANNESBURG 
Hewlett-Packard South Africa 

p ~Pt~Jx i~dci 
Howard Place. Cape Province. 7450 
Pine Park Center. Forest Drive. 
Plnelands. Cape Province. 7405 
Tel: 53-7955 thu 9 
Telex 5 7 -0006 
Hewlett-Packard South Africa 

p~pidx 5%99 
Overpon. Durban 4067 
641 Ridge Road. Durban 
Durban. 4001 
Tel: 88-7478/9 
Telex: 6-7954 
Cable: HEWPACK 

QUEBEC 
Hewlett-Packard (Canada) ltd 
275 Hymus Blvd 
Pointe Claire H9A 1G7 
Tel: (514) 697·4232 
TWX: 610-422-3022 
TLX: 05-821521 HPCL 

PARAGUAY 
Z.J. Melamed S.R.L 
Divisidn: Aparatos y Equ1pos 

Medicos 
Divisidn: Aparatos y Equ1pos 

Cientlficos y de lnvestigacidn 
P.O. Box 676 
Chile-482. Edificio Victoria 
Asuncion 
Tel: 4·5069. 4-6272 
Cable: RAMEL 

PERU 
Companla Electro Mddica S.A. 
Los Flamencos 145 
San Isidro Casilla 1030 
Lima 1 
Tel: 41-4325 
Cable: ELMED Lima 

PUERTO RICO 
Hewlett-Packard Inter-Americas 
Pueno Rico Branch Ottice 
Calle 272. Urb. Country Club 
Carolina 00639 
Tel: (809) 762-735517455/7655 
Telex: HPIC-PR 3450514 

TAIWAN 
Hewlett-Packard Far East ltd .. 
Taiwan Branch 
~~cCh1~n~1~~\~~rwest Road 
Taipei 
Tel: 3819160-4 (5 Lines) 
Telex: 21824 HEWPACK 
Cable: HEWPACK TAIPEI 
Hewlett-Packard Far East ltd 
Taiwan Branch 
68-2. Chung Cheng 3rd. Road 
Kaohsiung 
Tel: (07) 242318-Kaohsiung 
Analytical Only 
San Kwang Instruments Co .. Ltd .. 
No. 20. yung Sui Road 
Taipei. 100 
Tel: 3715171-4 (5 lines) 
Telex: 22894 SANKWANG 
Cable: SANKWANG TAIPEI 

TANZANIA 

~r~:~:li~~~r Aeradio rE .A. 1. ltd 
P.O. Box 861 
DareHalaam 
Tel: 21251 Ext. 265 
Telex 41030 

THAILAND 
UNI MESA Co .. ltd 
Elcom Research Building 
Bangiak Sukumv1t Ave 

~e~n~3k2~~7. 930338 
Cable UNIMESA Bangkok 

UGANDA 

~f~l~:li~nn~r Aeradio(E A 1. ltd .. 
P 0. Box 2577 
Kampala 
Tel: 54388 
Cable INTAERIO Kampala 

ZAMBIA 
R.J. Tilbury (Zambia) ltd 
P.O. Box 2792 
Lusaka 
Tel: 73793 
Cable AAJAYTEE. Lusaka 

OTHER AREAS NOT LISTED, CONTACT: 
Hewlett-Packard Intercontinental 
3200 Hillview Ave 
Palo Alto. California 94304 
Tel (415) 493-1501 
TWX: 910-373-1267 
Cable: HEWPACK Palo Alto 
Telex.· 034-8300. 034-8493 

FOR CANADIAN AREAS NOT LISTED: 
Contact Hewlett-Packard (Canada) 
ltd. in Mississauga 

URUGUAY 
Pablo Ferrando S.A 
Comerc1al e Industrial 
Avenida Italia 2877 
Casilla de Correo 370 
Montevideo 
Tel: 40-3102 
Cable: RADIUM Montevideo 

VENEZUELA 
Hewlett-Packard de Venezuela 
C.A. 
Apartado 50933. Caracas 105 
Edificio Segre 
Tercera Transversal 
Los Auices Norte 
Caracas 107 
Tel: 35-01-07. 35-00-84. 

35·00-65. 35-00-31 
Telex: 25146 HEWPACK 
Cable: HEWPACK Caracas 

FOR AREAS NOT LISTED, CONTACT: 
Hewlett-Packard 
Inter-Americas 
3200 Hillview Ave 
Palo Alto. California 94304 
Tel: (415) 493-1501 
TWX: 910-373-1260 
Cable HEWPACK Palo Alto 
Telex 034-8300. 034-8493 



EUROPE, NORTH AFRICA AND MIDDLE EAST 
AUSTRIA Hewlett-Packard France Hewlett-Packard GmbH 

~i~i~~-~~~kard ltaliana S p A 
UN/PAN Calculators Only Hewlett-Packard Ltd. 

Hewlett-Packard Ges.m.b.H Agence Regionale Technisches Buero Munchen Zak/ad Ooswiadczalny Hewlett-Packard Espanola S.A. Lygon Court 
Handelskai 52 P6ricentre de la C6pi~re Unterhachinger Strasse 28 Via d'Aghiardi, 7 Budowy Aparatury Naukowej Gran Via Fernando El Catdlico. 67 Dudley Road 
P 0. box 7 Chemin de la Cepi~re. 20 /SAR Center 1-56100 Plu U 1 . Krajowej Rady E-Valencla-8 GB-Halesowen. Worcs 
A-1205 Vienna F-31300 Toulouse-Le Mlrall D-8012 Ottobrunn Tel (050) 2 32 04 Narodowe1 51155 Tel: 326 67 28/326 85 55 Tel: (021) 550 9911 
Tel: (0222) 35 16 21 to 27 Te/:(61) 40 11 12 b:~,~~~9M~lc3~s~1 ~unchen Telex: 32046 via Milano 00-800 Warsaw SWEDEN 

Telex: 339105 
cable: HEWPAK Vienna Cable: HEWPACK 51957 Hewlett-Packard ltaliana S.p.A. Tel: 20 62 21 Telex: 75923 hewpak a Telex: 510957 Telex: 0524985 Via G. Armellini 10 Telex: 81 46 48 Hewlett-Packard Sverige AB Hewlett-Packard Ltd. 
BELGIUM Hewlett-Packard France Hewlett-Packard GmbH 1-00143 Roma Zaklady Naprawcze Sprzetu ~~~~hetsvagen 3 Wedge House 

799, London Road Hewlett-Packard Benelux ~~~~~~rtR~~i~~~~ de 
Technisches Buero Berlin Tel: (06) 54 69 61 Medycznego S-161 20 Bromma 20 GB-Thornton Haath SA./N.V Keith Strasse 2-4 Telex: 61514 Plac Komuny Parysk1ej 6 Tel: (08) 730 05 50 

~~'.r1Mii2~1~3 Avenue de Col-Vert. 1. Marseille-Marignane D-1000 Ber/In 30 Cable: HEWPACKIT Roma 90-007 Lodz Cable: MEASUREMENTS 
~Groenkraaglaan) F-13721Marlgnane Tel: (030) 24 90 86 Hewlett-Packard ltaliana S.p.A. Tel: 334-41. 337-83 Stockholm Telex: 946825 -1170 Brussels Tel: (91) 89 12 36 Telex: 18 3405 hpbln d Via San Ouintino. 46 Telex: 10721 
Tel: (02) 672 22 40 Cable: HEWPACK MARGN GREECE 1-10121 Torino PORTUGAL 

Hewlett-Packard Sverige AB Hewlett-Packard Ltd. Telectra-Empresa Tecnica de Cable: PALOBEN Brussels Telex: 410770 
~g~t~~mK;~a~;r~~:s 

Tel: (011) 52 82 64/54 84 68 
EQuipamentos Electricos S.a.r.I. ~~~~\'sj~t~~:..a Frolunda 

c/o Makro Telex: 23 494 paloben bru Hewlett-Packard France Telex: 32046 via Milano 
~u5 Fjf~;i~g3~a Fonseca 103 South Service Wholesale Centre 

CYPRUS ~8~1cv~~~i~~a~~chester GR-Athene 126 Medical/Calculators Only Tel: (031) 49 09 50 Wear Industrial Estate 

~§~r8~~~~rios & Xenopoulos Rd. 
Tel: 3237731 Hewlett-Packard ltaliana S.p.A. P-Llabon 1 Telex 10721 Via Bromma Otfice Washington BOite Postale Cable: RAKAR Athens ~~5~~~c~:t~~~~a 43 G/C b:1~1~1 %~c6r°R~2usbon SWITZERLAND ¥:i:~e;;hTn~~~·4~~~~ ~r5afi'sa P.O. Box 1152 F-35014 Rennes Cedex Telex: 21 59 62 rkar gr 

~i~,~~:i~is~;d2bSchweiz) AG CY-Nicosia Tel: (99) 36 33 21 
~r~'f'J~g1. on1y 

Te/:(095) 37 05 04 Telex: 12598 Cable: HEWPACK 74912 Hewlett-Packard Ltd Tel:· 45628/29 Telex 740912 Hewlett-Packard ltaliana S.p.A Medical only P.O. Box 307 10, Wesley St. Cable: KYPRONICS PANDEHIS G. Papathanass1ou & Co Via Amerigo Vespucci. 9 Mundinter CH-8952 Schlleren-Zurlch Telex: 3018 Hewlett-Packard France GB-Caatleford 
Agence R6gionale Marni 17 1-80142 Napo/I lntercambio Mundial de Comercio Tel: (01) 730 52 40 West Yorkshire WF10 1AE GR - Athena 103 Tel: (081) 33 77 11 S.a.r.I. Cable: HPAG CH CZECHOSLOVAKIA 74, Allee de la Robertsau Tel: 522 1915 Hewlett-Packard ltaliana S.p.A ~viNo~e2~%~iar 138 Telex; 53933 hpag ch Tel: (09775) 50402 

~rz~i~~y~~~~~~~ ~a~~~i~~icich ~~n:) ~~~~~~2~ Telex: 557355 Cable: INTEKNIKA Athens Via E. Masi. 9/B Hewlett-Packard (Schweiz) AG 
CSSR-25097 Telex: 890141 Telex: 21 5329 INTE GR 

~:in~rn~h,831 P - Llabon Chateau Bloc 19 Hewlett-Packard Ltd 
Bechovlce u Prahy Cable: HEWPACK STRBG Medical Only Tel: (19) 53 21 31/7 

~~: 1,mtoo Lo1'2~n-Ganeva 1, Wallace Way 
1el:899341 Technomed Hellas Ltd KUWAIT 

Cable: INTERCAMBIO Lisbon GB-Hltchln Hewlett-Packard France 52.Skoufa Street Cable: H WPACKAG Geneva Herts Telex: 121333 
~~~~r~e V~~%i~~ale GR - Athens 135 Al-Khaldiya Trading & RUMANIA Telex: 27 333 hpag ch Tel: (0462) 52824/56704 

DOR Tel: 362 6972. 363 3830 Contracling Co Hewlett-Packard Reprezentanta Telex: 825981 Entwicklungslabor der TU Dresden 201. rue Colbert Cable:etalak athens P.O. Box 830 BD.N. Balcescu 16 SYRIA
Forschungsinstitut Meinsberg Entree A2 Telex: 21-4693 ETAL GR Kuwait Bucharest Medical/Calculator only USSR
DDR-7305 F-59000 Lille Tel: 42 49 10 Tel: 158023/138885 Sawah & Co. Hewlett-Packard

Waldheim/Meinsberg Tel: (20) 51 44 14 HUNGARY Cable: VISCOUNT Telex: 10440 Place Azme Representative Otfice USSR
Tel: 37 667 Telex: 820744 MTA LUXEMBURG 1.1.R.U.C B.P. 2308 Pokrovsky Boulevard 4/17-KV 12
Telex: 518741 GERMAN FEDERAL Mtlszerugy1 es Mer~slechnikai Hewlett-Packard Benelux lntreprinderea Pentru SYR-Damascua Moscow 101000
Firma Forgber REPUBLIC

Szolgalata S.A./N.V. lntretinerea Tel: 16367, 19697. 14268 Tel:294-2024
Schlegelstrasse 15 Lenin Krt. 67 Avenue du Col-Ven. 1. Si Repararea Utilajelor de Calcul Cable: SAWAH, Damascus Telex: 7825 hewpak su
1040 Berlin Hewlett-Packard GmbH 1391 Budapest VI

~Groenkraaglaan) B-dul prol. Dimitrie Pompei 6 TURKEY
Tel: 28 27 411 Vertriebszentrale Frankfurt Tel: 42 03 38 -1170 Brussels Buchareat-Sectorul 2 ie~ki~x E;:ii~neering Bureau

YUGOSLAVIA
Telex: 112889 Bernerstrasse 117 Telex: 22 51 14 Tel: (02) 672 22 40 Tel: 12 64 30 Iskra-standard/Hewlett-Packard

Posttach 560 140 Cable: PALOBEN Brussels Telex: 01183716 Beyoglu Miklosiceva 38Nll DENMARK D-6000 Frankfurt 56 ICELAND Telex 23 494 TR-latanbul ~~~~~~~J~'2a16 74 Hewlett-packard NS Tel: (0611) 50 04-1 Medical Only SAUDI ARABIA Tel: 49 40 40 Datavej 52 Cable: HEWPACKSA Frankfurt Elding Trading Company Inc. MOROCCO Modern Electronic Establishment Cable: TELEMATION Istanbul Telex: 31300 DK-3460 Blrker11d Telex: 04 13249 hptfmd Hafnarhvoli - Tryggvatotu Ge rep King Abdul Aziz str. (Head otfice) Telex: 23609 Tel: (02) 81 66 40 Hewlett-Packard GmbH IS-Reykjavik 190, Blvd. Brahim Roudani P 0 Box 1228
Medical only Cable: HEWPACK AS Technisches Buero Bilblingen Tel: 1 58 20 Ca1ablanca Jedd ah

Telex: 166 40 hpas Herrenbergerstrasse 11 O Cable: ELDING Reykjavik Tel: 25-16-76/25-90-99 Tel: 31173-332201 E.M.A SOCIALIST COUNTRIES
Hewlett-Packard NS ?~i:%~£~f~s?-~n, Wtirttemberg

Cable: Gerep-Casa Cable: ELECTRA Muhendislik Kollektif Sirketi NOT SHOWN PLEASE
Navervej 1 IRAN Telex 23739 P.O. Box 2728 (Service center) Adakale Sokak 41/6 CONTACT:

Hewlett-Packard Iran Ltd. TR-Ankara Hewlett-Packard Ges.m.b.H DK-8600 Silkeborg Cable: HEPAK Bilblingen No. 13, Fourteenth St. NETHERLANDS f~ri~~96-66232 Tel: 175622 P.O. Box 7 Tel: (06) 82 71 66 Telex: 07265739 bbn
Telex: 166 40 hpas Hewlett-Packard GmbH

Miremad Avenue Hewlett-Packard Benelux N. V Cable: RAOUFCO Analytical only A-1205 Vienna, Austria
Cable HEWPACK AS Technisches Buero Dusseldorf

P.O. Box 41/2419 Van Heuven Goedhartlaan 121 Yilll)az Ozyurek Tel: (0222) 35 16 21 to 27
IA-Tehran P.O. Box 667 SPAIN Milli Mudafaa Cad No. 16/6 Cable: HEWPAK Vienna FINLAND Emanuel-Leutze-Str.1 (Seestern) Tel: 851082-7 NL- Amstelveen 1134 Hewlett-Packard Espanola. S.A. Kizilay Telex: 75923 hewpak a Hewlett-Packard OY D-4000 D1.i"sseldorf Telex: 213405 HEWP IR Tel: (020) 47 20 21 Jerez No. 3 TR-Ankara NahkahOusuntie 5 Tel: (0211) 59 71-1 Cable: PALOBEN Amsterdam E-Medrld 16 Tel: 25 03 09 MEDITERRANEAN AND

P.O. Box 6 Telex: 085/86 533 hpdd d IRELAND Telex: 13 216 hepa nl Tel (1) 458 26 00 (10 lines) Telex: 42576 Ozek tr MIDDLE EAST COUNTRIES
SF-00211 Helsinki 21 Hewlett-Packard GmbH Hewlett-Packard Ltd. NOT SHOWN PLEASE CONTACT:
Tel: 6923031 Technisches Buero Hamburg King Street Lane NORWAY Telex: 23515 hpe UNITED KINGDOM Hewlett-Packard S .A.
Cable: HEWPACKOY Helsinki Wendenstrasse 23 GB-Wlnner1h,Wokingham Hewlett-Packard Norge NS Hewlett-Packard Espanola, S.A. Hewlett-Packard Ltd Mediterranean and Middle
Telex: 12-1563 ?;~0,i~ra2~~~r~3 1 Berks, RG11 5AR Nesveien 13 Milanesado 21-23 King Street Lane East Operations

t~i~~o~~~113 4r 74 Box 149 E-Barcelona 17 GB-Wlnnerah, Wokingham 35, Kolokotroni Street FRANCE Cable: H~WPACKSA Hamburg N-1344 Hallum Tel: (3) 203 6200 (5 lines) Berks. RG11 SAR Platia Kefallariou Hewlett-Packard France Telex: 21 63 032 hphh d ITALY Tel: (02) 53 83 60 Telex: 52603 hpbe e Tel: (0734) 78 47 74 GR-Kifissia-Athen1, Greece Ouartier de Courtaboeuf
Hewlett-Packard GmbH Hewlett-Packard ltaliana S.p.A. Telex 16621 hpnas n Hewlett-Packard Espanola, S.A ~=~':i~ma~9 London

Tel: 8080337/359/429 Boite Postale No. 6 80817 41/742/743/744 F-91401 Or1ay Cedex Technisches Buero Hannover Casella postale 3645 POLAND Av Ramdn y_Cajal. 1-!1'
Telex: 21-6588 Tel: (1) 907 78 25 Am Grossmarkt 6 1-20100 Milano Biuro lnformacji Technicznej lEdificio Sevilla I)

Hewlett-Packard Ltd. Cable: HEWPACKSA Athens D-3000 Hannover 91 Tel: (2) 6251 (10 lines) Hewlett-Packard -Seville 5 Cable: HEWPACK Orsay
Tel: (0511) 46 60 01 Cable: HEWPACKIT Milano U1 Stawki 2 6P Tel: 64 44 54/58 "The Grattons" Telex: 600048
Telex: 092 3259 Telex: 32046 00-950WarHW ~:i~~~~-m~a{id-fscano1a s.A

Stamford New Road FOR OTHER AREAS
Hewlett-Packard France

Hewlett-Packard GmbH Hewlett-Packard ltaliana S.p.A. Tel: 39 67 43 GB-Altrlncham NOT LISTED CONTACT
"Le SaQuin" Cheshire WA14 IDO Hewlett-Packard S.A
Chemin des Mou1lles Technisches Buero Nuremberg Via Pietro Maroncelli 40 Telex: 81 24 53 hepa pl E-Bilbao-1 Tel: (061) 9289021 7. rue du Bois-du-Lan
Boite Postale No. 12 Neumeyer Str. 90 f~~~i~i'l>~~~~~) Tel: 23 83 06/23 82 06

¥:,~::' :;&8 Manchester P.O. Box
F-69130 Ecully ?;~5,ii~rrst3~e~~18s CH-1217 Meyrin 2 - Geneva
Tel: (78) 33 81 25. Tel (49) 66 48 88 Switzerland
Cable: HEWPACK Eculy Telex: 0623 860 Telex: 41612 Hewpacki Tel: (022) 41 54 00
Telex: 310617

UNITED STATES
ALABAMA ~~lld(~~~r~~~-6165 ILLINOIS MICHIGAN NEW YORK OREGON UTAH
8290 Whitesburg Dr.. S.E 5201 Toi/view Dr 23855 Research Drive 6 Automalion Lane 17890 SW Lower Boones 2160 South 3270 West Street
P 0. Box 4207 646 W. North Market Blvd Rolllnf: Meadows 60008 Farml~ton Hills 48024 Computer Park Ferry Road ~:It (~0~84~7~7~i119 Huntsville 35802 Sacramento 95834 i~x'39f6-~~:~~~ Tel: (31 476-6400 ~~~(5ra)1 ~~i~1550 Tualatin 97062 Tel: (205) 881-4591 Tel: (916) 929-7222 TWX: 81 -242-2900 Tel: (503) 620-3350 VIRGINIA Medical Only 9606 Aero Drive INDIANA MINNESOTA 201 South Avenue

PENNSYLVANIA ~bdici~x0~~778 228 W Valley Ave . P.O. Box 23333 7301 North Shadeland Ave. 2400 N. Prior Ave ~:i1.i~~~~-~31~601 Room 220 San Diego 92123 ~~? 1rriiwfJ~~18~6°
Roseville 55113

TWX 516-248-0012
111 Zeta Drive No. 7 Koger Exec. Center

~~r(J3~N~-~5~~9 Tel: (714) 279-3200 Tel: (612) 636-0700 Pittsburgh 15238 Suite 212
TWX: 810-260-1797 TWX 910-563-3734 39 Saginaw Drive Tel: (412) 782-0400 Norfolk 23502 COLORADO Rochester 14623 TWX 710-795-3124 Tel:(804) 497-1026/7 ARIZONA 5600 South Ulster Parkway IOWA MISSISSIPPI

WJPm-~~uii~ 1021 8th Avenue P.O. Box 9854 ~1i3:e~i~~g33~a St Englewood 80110 1902 Broadway "Jackson King of Prussia Industrial Park 2914 Hungary Springs Road Tel: (303) 771-3455 Iowa City 52240 Medical Service only Kin~ of Prussia 19406 Tel: (602) 244-1361 Tel: (319) 338-9466 Tel: (601) 982-9363 5858 East Molloy Road

f~x2m-~i5:~gn
Richmond 23228

2424 East Aragon Rd CONNECTICUT Night (319) 338-9467 Syracuse 13211 Tel: (804) 285-3431
Tucson 85706 12 Lunar Drive MISSOURI Tel: (315) 454-2486

WASHINGTON Tel (602) 294-3148 New Haven 06525 KENTUCKY 11131 Colorado Ave 1 Crossways Park West SOUTH CAROLINA Bellefield Otfice Pk. Tel: (203) 389-6551 Medical Only Kansas Cit~ 64 137 6941-0 N. Trenholm Road
"ARKANSAS TWX: 710-465-2029 Atkinson SQuare Tel: (8166 76 -8000 ~f(g~6lr~2:~JiJo Columbia. 29260 1203-114th Ave. S.E.
Medical Service Only 3901 Atkinson Dr. TWX 91 -771-2087 Tel: (803) 782-6493 Bellevua 98004

FLORIDA TWX: 710-990-4951 Tel: (206) 454-3971 P.O. Box 5646 Suite 207 148 Weldon Parkway Brady Station P 0 Box 24210 Loulsvllle 40218 NORTH CAROLINA TENNESSEE TWX: 910-443-2446
2806 W. Oakland Park Blvd Tel: (502) 456-1573 renmii 5~;-'r4~~· 63043 P.O. Box 5188 Little Rock 72205 Ft. Lauderdale 33307 "Knoxville "WEST VIRGINIA Tel:)501) 664-8773 Tel: (305) 731-2020 LOUISIANA TWX 910-764-0830 1923 North Main Street Medical Services only Medical/Analytical Only

P.O Box 840 High Point 27262 Tel: (615) 523-5022 Charleaton CALIFORNIA "Jacksonville NEBRASKA Tel: (919) 885-8101
~~~~e~a~~ 09~mthorpe Ave ~e~di(~aJ41eni~e633~ 

3239 Williams Boulevard 
~jri~~r~yn~oad 1473 Madison Avenue 

Tel: (304) 345-1640 
Kenner 70062 OHIO 

~n~m·2~~~~:72 
WISCONSIN Tel: (714) 870-1000 

P.O. Box 13910 
Tel (504) 721-6201 Suite 110 16500 Sprague Road 9004 West Lincoln Ave. 

3939 Lankershim Boulevard 6177 Lake Ellenor Dr MARYLAND Omaha 68106 Cleveland 44130 West Aiiis 53227 

~~~~ 1~)~r~f~8~ 91604 Orlando 32809 6707 Whitestone Road Tel: (402) 392-0948 Tel: (216) 243-7300 Nashville Tel: (414) 541-0550 TWX: 810-423-9431 Tel: (305) 859-2900 Balllmore 21207 NEW JERSEY 330 Progress Rd. re~~\ia; s1e~i~~5~~~ TWX 910-499-2170 Tel: (301) 944-5400 
6305 Arizona Place

P.O. Box 12826
TWX: 710-062-9157 W. 120 Century Rd Dayton 45449 Pensacola 32575 Paramus 07652

i~x' 5m.m:~m
TEXAS

~~s ,~1~~~rgop,45 Tel: (904) 434-3081 ~g~~~~11~h%1s~oad t~P?n.§~:~g~~ P.O. Box 1270
GEORGIA 1041 Kingsmill Parkway 201 E. Arapaho Rd. TWX 910-328-6147 Tel: (301) 948-6370 Richardson 75080

"Los Angeles P 0 Box 105005 TWX 710-828-9684 NEW MEXICO Col umbua 43229 tel: (214) 231-6101 FOR U.S. AREAS NOT LISTED:
Tel: (213) 776-7500 Atlanta 30348 P.O. Box 11634 Tel: (614) 436-1041

P 0 Box 27409 Contact the regional office Tel (404) 955-1500 MASSACHUSETTS Station E 3003 Scott Boulevard TWX 810-766-4890 32 Hartwell Ave t 1300 Lomas Blvd .. N.E OKLAHOMA 6300 Westpark Drive nearest you: Atlanta, Georgia
North Hollywood, California ... Santa Clara 95050

Medical Service Only Lexi~ton 02173 f~~{~jr~u2~1~W3 P 0 Box 32008 Suite 100
Rockville. Maryland ... Rolling Meadows, Tel (408) 249-7000 Tel (6 76 861-8960 Oklahoma City 73132 Houston 77027

TWX 910-338-0518 ·Augusta 30903
TWX 71 -326-6904 rwx: 910-989-1185 Tel (405) 721-0200 Tel: (713) 781-6000 Illinois. Their complete

Tel: (404) 736-0592 addresses are listed above.
HAWAII t 56 Wyatt Drive 205 Billy Mitchell Road

Laa Cruces 88001 San Antonio 78226 ·service Only 2875 So. King Street Tel (505) 526-2485 Tel: (512) 434-8241
Honolulu 96814 TWX 910-983-0550

1177 Tel: (808) 955-4455

PART NO. 24307-90014
Printed in U.S.A. 7/74

HEWLETT f P PACKARD

Sales and service from 172 offices in 65 countries.
5303 Stevens Creek Blvd., Santa Clara, California 95050

	000
	001
	002
	003
	004
	005
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	A-01
	A-02
	A-03
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	D-01
	D-02
	D-03
	E-01
	E-02
	F-01
	F-02
	F-03
	G-01
	I-01
	I-02
	I-03
	X-01
	X-02
	xBack

