
HEWLETT bnp] PACKARD

HP FORTRAN

HP FORTRAN
Programmer's Reference

HP 02116-9015

Manual

. HEWLETT ?P PACKARD

11000 Wolfe Road
Cupertino, Calif. 95014

April, 1970

© Copy!tA...ght, 1970, by

HEWLETT-PACKARD COMPANY
Cupertino, California

Printed in the U.S.A.

Second Edition

First Edition, Feb. 1968
Revised, April 1970

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system (e.g., in memory, disc or core) or
be transmitted by any means, electronic, mechanical, photocopy, re­
cording or otherwise~ without prior written permission from the
publisher.

Printed in the U.S.A.

PREFACE

This publication is a reference manual for the programmer using the HP FORTRAN
Compiler. It includes both the elements of the language and the information required
to operate the Compiler on the computer.

The programmer should also ref er to:

Basic Control System's Programmers Manual (02116-9017)

Program Library Subroutine Manual {02116-9032)

Magnetic Tape System (02116-91752)

Prepare Tape System {02116-91751)

i

NEW AND CHANGED INFORMATION

For this printing, all known errors in the HP FORTRAN book have been corrected.
Changes are shown in the text by a horizontal line in the margin. In addition, the
information on instrument formats in the Appendices has been eliminated.

ii

TABLE OF CONTENTS

INTRODUCTION v

CHAPTER 1 PROGRAM FORM 1-1

1. 1 Character Set 1-1
1. 2 Lines 1-2
1. 3 Coding Form 1-3

CHAPTER 2 ELEMENTS OF HP FORTRAN 2-1

2.1 Data Type Properties 2-1
2.2 Constants 2-2
2.3 Variables 2-3
2.4 Arrays 2-5
2.5 Expressions 2-6
2.6 Statements 2-7

ARITHMETIC EXPRESSIONS AND
CHAPTER 3 ASSIGNMENT STA TE MEN TS 3-1

3.1 Arithmetic Expressions 3-1
3.2 Assignment Statements 3-4
3.3 Masking Operations 3-5

CHAPTER 4 SPECIFICATIONS STATEMENTS 4-1

4.1 Dimension 4-1
4.2 Common 4-2
4.3 Equivalence 4-5

CHAPTER 5 CONTROL STATEMENTS 5-1

5.1 GO TO Statements 5-1
5.2 IF Statements 5-2
5.3 DO Statements 5-3
5.4 CONTINUE 5-9
5.5 PAUSE 5-9
5.6 STOP 5-9
5.7 END 5-10
5.8 END$ 5-10

iii

CHAPTER 6 MAIN PROGRAM, FUNCTIONS, AND
SUBROUTINES 6-1

6.1 Argument Characteristics 6-1
6.2 Main Program 6-2
6.3 Subroutine Program 6-2
6.4 Subroutine Call 6-4
6.5 Function Subprogram 6-5
6.6 Function Reference 6-7
6.7 Statement Function 6-9
6.8 Basic External Functions 6-11
6.9 RETURN and END 6-12

CHAPTER 7 INPUT/OUTPUT LISTS AND FORMAT CONTROL 7-1

7.1 Input/ Output Lists 7-1
7.2 FORMAT Statement 7-4
7.3 FORMAT Statement Conversion Specifications 7-4
7.4 · Free Field Input 7-16

CHAPTER 8 INPUT/ OUTPU'r STATEMENTS 8-1

8.1 Unit-Reference 8-1
8.2 Formatted READ, WRITE 8-2
8.3 Unformatted READ, WRITE 8-3
8.4 Ayxi.liary Input/ Output Statements 8-3

CHAPTER 9 COMPILER INPUT/OUTPUT 9-1

9.1 Control Statement 9-1
9.2 Source Program 9-2
9.3 Binary Output 9-2
9.4 List Output 9-2
9.5 Operating Instruction 9-4
9.5.1 Switch Register Bits 9-10
9.6 Diagnostic 9-11
9.7 Object Program Loading 9-14
9.8 Object Program Diagnostic Messages 9-16

APPENDIX A HP 2116 Character Set A-1

APPENDIX B FORTRAN Statements and Functions B-1

APPENDIX C Assembly Language Subprograms C-1

APPENDIX D Sample Program D-1

iv

INTRODUCTION

The FORTRAN compiler system accepts as input, a source program written according
to American Standard Basic FORTRAN specifications; it produces as output, a re­
locatable binary object program which can be loaded and executed under control of the
HP Basic Control System.

In addition to the ASA Basic FORTRAN language, HP FORTRAN provides a number of
features which expand the flexibility of the system. Included are:

Free Field Input: Special characters included with ASCII input data direct
its formatting; a FORMAT statement need not be specified in the source
program.

Specification of heading and editing information in the FORMAT statement
through use of the " ... " notation; permits alphanumeric data to be read or
written without giving the character count.

Array declaration within a COMMON statement.

Redefinition of its arguments and common areas by a function subprogram.

Interpretation of an END statement as a RETURN statement.

Basic External F\lnctions which perform masking (Boolean) operations.

Two-branch IF statement.

Octal constants.

The paper tape version of the compiler operates in two or four passes depending on the
size of memory. For an 8K system, the compiler produces a source listing and an
intermediate binary tape in the first pass. This intermediate tape serves as input to
the second pass. The second pass produces the relocatable object program tape and a
listingof the program in assembly level language. If only one output deviceis available
the last pass is repeated to produce the listing. For the 4K system, two additional
passes are introduced before the pass producing the relocatable program tape. For
these passes the intermediate binary output of the previous pass becomes the input for
the current pass.

When magnetic tape is available, the compiler uses the third file for storage of inter­
mediate binary code. Pass 1 of FORTRAN writes the intermediate program. At the
end of Pass 1, FORTRAN calls the Inter-Pass Loader; it searches for and loads Pass
2 of FORTRAN. (When not in MTS, Pass 2 must be hand-loaded using BBL.) Pass 2
spaces forward to the third file, processes the intermediate code and produces output
on the punch and list devices as requested.

The minimum equipment configuration required to compile a program on the Computer
is as follows:

2ll6A, 2ll5A, or 2ll4 Computer with 4K memory
2752A Teleprinter

v

FORTRAN
SOURCE PROGRAM

-
__... ..

... ...
I

I OPTIONAL

I
I
I
I
I

I ONE OUTPUT
DEVICE
ONLY

I I
L-~---

FORTRAN t
COMPILER

PASSI

FORTRAN
COMPILER

PASS2

FORTRAN
COMPILER

PASS2
REPEATED

0Pr10NAL r A"0Di'T10'NA'L 1
r- -:.I OUTPUT: I

SOU CE P 0 R R GRAM I I LISTING I I
&... ---1--- --

.... INTERMEDIATE ~ .. BINARY OUTPUT

..... .. RELOCATABLE .. BINARY OBJECT
PROGRAM

.,..____
I r ADoiTiONAL 1 I OUTPUT
L- _..,..OBJECT PROGRAMI

OPTIONAL I LISTING - ...1 , __

-----1M OBJECT PROGRAM
LISTING

tWhen compiling with the magnetic tape system, operator
intervention ceases after Pass 1 has been loaded.

IK MEMORY
FORTRAN COMPILAT~ON PROCESS

vi

,,.
FORTRAN

SOURCE PROGRAM

FORTRAN
...... COMPILER

PASSI

FORTRAN .. COMPILER ..
PASS2

FORTRAN ... COMPILER
PASSJ

FORTRAN .. COMPILER

I OPTIONAL
PASS4

I
I ONE OUTPUT
I I DEVICE

ONLY
I I
I I
I I
L....l_ FORTRAN

COMPILER
PASS4

REPEATED

f'Ao'Oii-10'NA'L 1
OPTIONAL ~I OUTPUT: I

r - ... SOURCE PROGRAM
I I LISTING J

.,,,,. -I
&.... __

I

~ INTERMEDIATE BINARY OUTPUT 1
....

,,.
~ INTERMEDIATE

BINARY OUTPUT 2

... INTERMEDIATE BINARY OUTPUT 3

RELOCATABLE
~ BINARY OBJECT

PROGRAM

I
I r-ADDiTiONAL 1
L+i OUTPUT I

OPTIONAL I OBJECT PROGRAMI
LISTING ..J

&...._ - .,,,,. -

1------...... OBJECT PROGRAM
LISTING

4K MEMORY
FORTRAN COMPILATION PROCESS

t--

1--

1--i

vii

1.1

CHARACTER SET

PROGRAM FORM 1

A FORTRAN program is constructed of characters grouped in­
to lines and statements.

The program is written using the following characters:

Alphabetic:
Numeric:
Special:

=
+

*
I
(
)

$
"

A through Z
0 through 9

Space
Equals
Plus
Minus
Asterisk
Slash
Left Parenthesis
Right Parenthesis
Comma
Decimal Point
Dollar Sign
Quotation mark

Spaces may be used anywhere in the program to improve ap­
pearance; they are significant only within heading data of FOR­
MAT statements and, in lieu of other information, in the first
six positions of a line.

In addition to the above set which is used to construct source
language statements, certain characters have special signifi­
cance when appearing with ASCII input data. They are the fol -
lowing:

space,
I
+ -
• E + -
@

" If

-

Data item delimiters
Record terminator
Sign of item
Floating point number
Octal integer
Comments
Suppress CR-LF (output)

Details on the input data character set are given in Chapter 7.

1-1

1.2
LINES

Statement•

Statement
Labels

Comment•

Control
Statement

1-2

A line is a string of up to 72 char~ers. On paper tape, each
li~is terminated by a return, ~ , followed by a line feed,

. This terminator may be in any position following the
sta ement information or comment contained in the line.

A statement maybe written in an initial line and up to five con­
tinuation lines. The statement may occupy positions 7 through
72 of these lines. The initial line contains a zero or blank in
position 6. A continuation line contains any character other
than zero or space in position 6 and may not contain a C in posi -
tion 1.

A statement may be labeled so that it may be referred to in
other statements. A label consists of one to four numeric digits
placed in any of the first five positions of a line. The number
is unsigned and in the range of 1 through 9999. Imbedded
spaces and leading zeros are ignored. If no label is used, the
first five positions of the statement ~e must be blank. The
statement label or blank follows the ~ @ terminator of
the previous line.

Lines containing comments may be included with the statement
lines; the comments are printed along with the source program
listing. A comment line requires a C in position 1 and may
occupy positions 2 through 72. If more than one line is used,
each line requires a C in~ator. Each comment line is termi­
nated with a @ and ~ .

The first statement of a program is the control statement; it
defines the output to be produced by the FORTRAN compiler.
The following options are available:

Relocatable binary - The program is to be loaded by the
loader of the Basic Control System.

Source Listing output - A listing of the source program is
produced during the first pass of compiler operation.

End Line

1.3
CODING FORM

Object Listing output - A list of the object program is pro­
duced during the last pass of compiler operation.

The control statement must be followed by the @ @ termi­
nator.

Each subprogram is terminated with an end line which consists
of blanks in positions 1 through 6 and the letters E, N, and D
located in any of the positions 7 through 72. The special end
line, END$, signifies the end of five or less progr~s ~ng
compiled at one time. The end line is terminated by ~ ~

The FORTRAN coding form is shown below. Columns 73-80
may be used to indicate a sequence number for a line; they must
not be punched on paper tape. All other columns of the form
conform with line positions for paper tape.

1-3

PROGRAMMER

'
' Lobel ~
' ' 0 ' w " 20

+ I

I

I

j ' I

I I I
I

I u ' !
J

I I I
!

I I l I
i
! J_ I

! I

l T
I l

i

l
I !

I I T I
I

I
l]

I

I I I J I

'
' '

T
I

I I JJ I

· l I
T 11

l
I

i

'

I

I

I

i

20

fl= ZERO O=ALPHAO IORl=ONE

2~rwo

HEWLETT-PACKARD FORTRAN CODING FORM

DATE

25 ;o

' !
I

I I . I

J
I

I ' I

I i I i
T' l I

'
I , I

I

I

I I

I

I i

1

25 ;o

LINE TERMINATED BY RHURN /LINE FEED {R/Lf)
LINE JS DEUTED BY RUBOUT BEFORE R/lf

"

"

PROGRAM

STATEMENT

'° " ;c

I I I

I

I

T I

I I l
i 1

I I

I
I

l
I I

I

I j

I I

I
'° " "'

]PAGE 0'

55 '° 05 '° " 80

T

l
J

I I I l I

' I I I I

'1 11 T l '1 l I

l I I I I I

I i l ! '

l I
' J

I i l I
I i i I I

J i
!

I J_
I

I l
l l 1

i I I l I I

I 1
i i

l
I

!

l

' l '
I

! l
l

J I
l l ! I I

55 '° 05 " " "'

2.1
DATA TYPE
PROPERTIES

ELEMENTS OF HP FORTRAN 2

HP FORTRAN processes two types of data. They differ in
mathematical significance, constant format, and symbolic rep­
resentation. The two types are real and integer quantities.

Integer and real data quantities have different ranges of values.

An integer quantity has an assumed fixed decimal point. It is
represented by a 16-bit computer word with the most signifi­
cant bit as the sign and the assumed decimal point on the right
of the least significant bit.

An integer quantity has a range of -215 to 215 -1.

15 14 0

I~
SIGN

integer

A real quantity has a floating decimal point; it consists of a
fractional part and an exponent part. It is represented by two
16-bit computer words; the exponent and its sign are eight bits;
the fraction and its sign are twenty-four bits.

15 14 0

15

fraction (most significant bits)

SIGN OF FRACTION

8 7 1 0

fraction I exponent 51
SIGN OF EXPONENT

It has a range in magnitude of approximately 10-38 to 1038 and
may assume positive, negative, or zero values. If the fraction
is negative, the number is in two's complement form. A zero

2-1

2.2
CONSTANTS

Integer

Octal

2-2

value is stored as all zero bits. Precision is approximately
seven decimal digits.

A constant is a value that is always defined during execution and
may not be redefined. Three types of constants are used in
HP FORTRAN: integer, octal (treated as integer), and real.
The type of constant is determined by its form and content.

An integer constant consists of a string of up to five decimal
digits. If the range -32768 to 32767 (-215 to 215 -1) is ex­
ceeded, a diagnostic is provided by the compiler.

Examples:

8364 5932
1720 9
1872 31254
125 1
3653 30000

Octal constants consist of up to six octal digits followed by the
letter B. The form is:

n1 n2 n3 n4 n5 n6 B

n1 is 0 or 1

n2 - n6 are 0 through 7

If the constant exceeds six digits, or if a non-octal digit appears,
the constant is treated as zero and a compiler diagnostic is pro­
vided.

Examples:

7677B
3270B
3520B
175B
567B

7631B
5B
75026B
177776B
177777B

\

/

Real

2.3
VARIABLES

Simple Variable

Real constants may be expressed as an integer part, a decimal
point, and a decimal fraction part. The constant may include
an exponent, representing a power of ten, to be applied to the
preceding quantity. The forms of real constants are:

n.n n. .n n.nE±e n.E±e .nE±e

n is the number and e is the exponent to the base ten. The
plus sign may be omitted for a positive exponent. The range
of e is 0 through 38. When the exponent indicator E is fol­
lowed by a + or - sign, then all digits between the sign and the
next operator or delimiter are assumed to be part of the ex­
ponent expression, e.

If the range of the real constant is exceeded, the constant is
treated as zero and a compiler diagnostic message occurs.

Examples:

4.512
4.
. 512
4.0
4. E-10
1.

4. 5E2
. 45E+3
4. 5E-5
0.5
. 5E+37
10000.0

A variable is a quantity that may change during execution; it is
identified by a symbolic name. Simple and subscripted vari­
ables are recognized. A simple variable represents a single
quantity; a subscripted variable represents a single quantity
(element) within an array of quantities. Variables are identi­
fied by one to five alphanumeric characters; the first character
must be alphabetic.

The type of variable is determined by the first letter of the
name. The letters I, J, K, L, M, and N, indicate an integer
(fixed point) variable; any other letter indicates a real (floating
point) variable. Spaces imbedded in variable names are ignored.

A simple variable defines the location in which values can be
stored. The value specified by the name is always the current
value stored in that location.

2-3

Subscripted
Variable

2-4

Examples:

Integer

I
JAIME
K9
MIL
NIT

Real

ALPHA
Gl3
DOG
XP2
GAMMA

A subscripted variable defines an element of an array; it con­
sists of an alphanumeric identifier with one or two associated
subscripts enclosed in parentheses. The identifier names the
array; the subscripts point to the particular element. If more
than two subscripts appear, a compiler diagnostic message is
given.

Subscripts maybe integer constants, variables, or expressions;
they may have the form (exp1, exp2), where exp. is one of the
following: 1

c*v+k v-k
c*v-k v
c*v k
v+k

where c and k are integer constants and v is a simple inte­
ger variable.

Examples:

Integer

I(J, K)
LAD(3, 3)
MAJOR (24*K, 1+5)
NU (K+2)
NEXT (N*5)

Real

A(J)
BACK(M+5, 9)
OP45(4*1)
RADI (IDEG)
VOLTI (I,J)

;

2.4
ARRAYS

Array Structure

An array is an ordered set of data of one or two dimensions; it
occupies a block of successive memory locations. It is identi­
fied by a symbolic name which may be used to refer to the entire
array. An array and its dimensions must be declared at the
beginning of the program in a DIMENSION or COMMON state­
ment. The type of an array is determined by the first letter of
the array name. The letters I, J, K, L, M, and N, indicate
an integer array; any other letter indicates a real array.

E:ach element of an array may be referred to by the array name
and the subscript notation. Program execution errors may
result if subscripts are larger than the dimensions initially
declared for the array, however, no diagnostic messages are
issued.

Elements of arrays are stored by columns in ascending order
of storage locations. An array declared as SAM(3, 3), would
be structured as:

Columns

SAM(l, 1) SAM(l, 2) SAM(l, 3)

Rows SAM(2, 1) SAM(2, 2) SAM(2, 3)

SAM(3, 1) SAM(3, 2) SAM(3, 3)

and would be stored as:

m SAM(l, 1)
m+l SAM(2, 1)
m+2 SAM(3, 1)
m+3 SAM(l, 2)
m+4 SAM(2, 2)
m+5 SAM(3, 2)
m+6 SAM(l, 3)
m+7 SAM(2, 3)
m+8 SAM(3, 3)

The location of an array element with respect to the first ele­
ment is a function of the subscripts, the first dimension, and
the type of the array. Addresses are computed modulo 215 .

2-5

Array Notation

2.5
EXPRESSIONS

2-6

Given DIMENSION A (L, M), the memory location of A (i, j) with
respect to the first element, A, of the array, is given by the
equation:

I.. == A + I i - 1 + L (j - 1) j *s

The-quantity in braces is the expanded subscript expression.
The element size, s , is the number of storage words required
for each element of the array: for integer arrays, s == 1 ; for
real arrays, s == 2 .

The following subscript notations are permitted for array ele­
ments:

For a two-dimensional array, A(d1 , d2):

A(I, J)
A(I)
A

implies A(I, J)
implies A(I, 1)
implies A(l, l)t

For a single-dimension array, A(d)

A(I) implies A(I)
A implies A(l}

The elements of a single-dimension array, A(d), however, may
not be referred to as A(I, J). A diagnostic message is given by
the compiler if this is attempted.

An expression is a constant, variable, function or a combina­
tion of these separated by operators and parentheses, written
to comply with the rules for constructing the particular type of
instruction. An arithmetic expression has numerical value; its
type is determined by the type of the operands.

t In an Input/Output list, the name of a dimensioned array im­
plies the entire array rather than the first element.

\

/

2.6
STATEMENTS

Examples:

A+B-C
X*COS(Y)
RALPH-ALPH

. 4+SIN(ALPHA)
A/B+C-D*F
4+2*IABS(LITE)

Statements are the basic functional units of the language. Exec­
utable statements specify actions; non-executable statements
describe the characteristics and arrangement of data, editing
information, statement functions, and classification of program
units.

A statement may be given a numeric label of up to four digits
(1 to 9999); a label allows other statements to refer to a state­
ment. Each statement label used must be unique within the
program.

2-7

ARITHMETIC EXPRESSIONS AND ASSIGNMENT STATEMENTS 3

3.1

ARITHMETIC
EXPRESSIONS An arithmetic expression may be a constant, a simple or sub­

scripted variable, or a function. Arithmetic expressions may
be combined by arithmetic operators to form complex expres­
sions.

Arithmetic operators are:

+ Addition
Subtraction

* Multiplication
I Division
** Exponentiation

If a is an expression, (a) is an expression.
If a and f3 are arithmetic expressions, then the following are
expressions:

a + f3
a * f3
a** f3

a - f3
+a

a/{3
- a

An arithmetic expression may not contain adjoining arithmetic
operators, 01 op op f3.

Expressions of the form a **f3 and a** (- f3) are valid; a** f3 **'Y
is not valid.

Examples:

PROGRAMMER DATE PROGRAM

c STATEMENT 0
c Loi.I 7
' , '' '° " 20 " 30 35 "

., 50

z
L* 53 3+ 2* *I 5f-I
ftis LE -3 . I 1'11* Hir1 us E* *3 2. E-2
5* JA CK (K 'L +5) - LO uo

3-1

Order or
Evaluation

3-2

In general, the hierachy of arithmetic operation is:

** exponentiation class 1
I division class 2
* multiplication

subtraction class 3 + addition

In an expression with no parentheses or within a pair of paren­
theses, evaluation basically proceeds from left to right, or in
the above order if adjacent operators are in a different class. t

Expressions enclosed in parentheses and function references
are evaluated as they are encountered from left to right.

Examples:

In the examples below, s1, s2, ... , Sn indicate intermediate
results during the evaluation of the expression; the symbol -
can be interpreted as "goes to 11 •

a)

b)

Evaluation of class 1 precedes class 3

A+B**C-D
B**C-s 1 s 1+A-s2
s -D-s 2 3 s3 is the evaluated expression

Evaluation of class 2 precedes class 3

A*B*C/D+E*F-G/H
A*B-s1
s1*C-s 2
s2/D-s3
E*F-s4
s4 + s3-s5
G/H-s5
-s5-s7
s7 + s 5- s8 s8 is the evaluated expression

t When writing an integer expression it is important to remem­
ber not only the left to right scanning process, but also that
dividing an integer quantity by an integer quantity yields a
truncated result; thus 11/3 = 3 . The expression I*J/K may
yield a different result than the expression J/K*I . For ex­
ample, 4*3/2 = 6 ; but 3/2*4 = 4 .

Type of
Expression

c) Evaluation of an expression including a function is
performed.

A+B**C+D+COS(E)
B**C-s1
A+s1-s2
s2 + D-s3
COS(E)- s4
s 4 + s3-s5 s 5 is the evaluated expression

d) Parentheses can control the order of evaluation

A*B/C+D
A*B-s1
s1 /c-s2
s 2 +D-s3

A*B/(C+D)
A*B-s1
C+D-s2
sl /s2- s3

s3 is the evaluated expression

s3 is the evaluated expression

e) If more thanonepair of parentheses or if an exponen­
tial expression appears, evaluation is performed left
to right.

A+B**C-(D*E+F)+(G-H*P)
B**C-s1
s1 + A-s2
D*E-s3
s3 +F-s4
-s4-s5
s5 + s2-s5
H*P-s7
-s7-sa
sa + G-sg
s9 + s6- s10 s 10 is the evaluated expression

With the exception of exponentiation and function arguments,
all operands within an expression must be of the same type. An
expression is either real or integer depending on the type of all
of its constituent elements.

3-3

3.2
ASSIGNMENT
STATEMENTS

Type of
Statement

3-4

If either an integer or real operand is exponentiated by an inte­
ger operand, the resultant element is of the same type as that
of the operand being exponentiated. If both operands are real,
the resultant element is real.

Examples:

J**I
A**I
A**B

integer
real
real

An integer exponentiated by a real operand is not valid.

An arithmetic assignment statement is of the form:

v = e

The variable, v , may be simple or subscripted; e is an ex­
pression. Execution of this statement causes the evaluation of
the expression, e , and the assignment of the value to the var­
iable.

The processing of the evaluated expression is performed ac­
cording to the following table:

Type of v Type of e Assignment rule

Integer Integer Transmit e to v without change.

Integer Real Truncate and tr an sf er as in-
teger to v.

Real Integer Transform integer form of e
to floating decimal and trans-
fer to v.

Real Real Transmit e to v without change.

3.3
MASKING
OPERATIONS

Examples:

PROGRAMMER

c

'

c

Label 2
T

5 6 7 '° " 20 25 JO

A= Bl* *C +D +c OS (E) Transmit without change
SA M(16) =R -s (6 I 2) * (T I U) Transmit without change
N= ~+ 3. *(X* *Y -z) Truncate
BA KE JR= I* J+ K* (L -M IN) Convert to real
N= IZ ZY]AK +L E/ MPD Transmit without change

In HP FORTRAN, masking operations may be performed
using the Basic External Functions IAND, IOR, and NOT (see
Chapter 6). These functions are as follows:

IAND

IOR
NOT

Form the bit-by-bit logical product of two
operands
Form the bit-by-bit logical sum of two operands
Complement the operand

The operations are described by the following table:

Value of Value of
Arguments Function

al a2 !AND (a1 , a2) IOR (a1 , a2) NOT (a1)

1 1 1 1 0
1 0 0 1 0
0 1 0 1 1
0 0 0 0 1

Examples:

PROGRAMMER DATE PROGRAM

c

'

c
0

label ~
5 6 7 10 15 20

i rTA = 112 5l!Z ifs
IB =]11 550fs

] 1 1

IAND (IA, IB) is 70500B
IOR (IA, IB) is 73557B
NOT (IA) is 105270B

STATEMENT

25 30 35 '° 4' 50

1
1
1

3-5

4.1
DIMENSION

SPECIFICATIONS STATEMENTS 4

The Specifications statements, which include DIMENSION,
COMMON, and EQUIVALENCE, define characteristics and
arrangement of the data to be processed. These statements
are non-executable; they do not produce machine instructions
in the object program. The statements must all appear before
the first executable statement in the following order: DIMEN­
SION, COMMON, and EQUIVALENCE.

The DIMENSION statement reserves storage for one or more
arrays.

An array declarator, Vj(ij); defines the name of an array,
Vj , and its associated dimensions, (ij) . The declarator sub­
script, i , may be an integer constant or two integer constants
separated by a comma. The magnitude of the values given for
the subscripts indicates the maximum value that the subscript
may attain in any reference to the array.

The number of computer words reserved for a given array is
determined by the product of the subscripts and the type of the
array name. For integer arrays, the number of words equals
the number of elements in the array. For real arrays, two
words are used for each element; the storage area is twice the
product of the subscripts.

A diagnostic message is printed if an array size exceeds 215 -1
locations.

Examples:

DIMENSION SAM (5, 10), ROGER (10, 10), NILE (5, 20)

Area reserved for SAM
Area reserved for ROGER
Area reserved for NILE

5*10*2 = 100 words
10*10*2 = 200 words

5*20*1 = 100 words

4-1

4.2
COMMON

4-2

The COMMON statement reserves a block of storage that can
be referenced by the main program and one or more subpro­
grams. The areas of common information are specified by the
statement form:

COMMON a1, a 2, ... , an

Each area element, ai , identifies a segment of the block for
the subprogram in which the COMMON statement appears. The
area elements may be simple variable identifiers, array names,
or array declarators (dimensioned array names).

If dimensions for an array appear both in a COMMON statement
and a DIMENSION statement, those in the DIMENSION state­
ment will be used.

Any number of COMMON statements may appear in a subpro­
gram section (preceding the first executable statement). The
order of the arrays in common storage is determined by the
order of the COMMON statements and the order of the area ele­
ments within the statements. All elements are stored contig­
uously in one block.

At the beginning of program execution, the contents of the com­
mon block are undefined; the data may be stored in the block
by input/output or assignment statements.

Examples:

COMMON I (5), A (6), B (4)

Area reserved for I = 5 words
Area reserved for A = 12 words
Area reserved for B = 8 words

Common area

Common
Block

Origin I (1)
I (2)
I (3)
I (4)
I (5)
A (1)
A (1)

25 words

Correspondence of
Common Blocks

A (2)
A (2)
A (3)
A (3)
A (4)
A (4)
A (5)
A (5)
A (6)
A (6)
B (1)
B (1)
B (2)
B (2)
B (3)
B (3)
B (4)
B (4)

Each subprogram that uses the common block must include a
COMMON statement. Each subprogram may assign different
variable andarraynames, anddifferentarraydimensions, how­
ever, if corresponding quantities are to agree, the types should
be the same for corresponding positions in the block.

Examples:

MAIN PROG COMMON I (5), A (6), B (4)

SUBPROGl COMMON J (3), K (2), C (5), D (5)

MAIN PROG Common SUBPROGl
reference Block reference

I (1) integer 1 J (1)
I (2) integer 2 J (2)
I (3) integer 3 J (3)
I (4) integer 4 K (1)
I (5) integer 5 K (2)
A (1) real 1 c (1)
A (1) real 1 c (1)

4-3

4-4

MAIN PROG Common SUBPROGl
reference Block reference

A (2) real 2 c (2)
A (2) real 2 c (2)
A (3) real 3 c (3)
A (3) real 3 c (3)
A (4) real 4 c (4)
A (4) real 4 c (4)
A (5) real 5 c (5)
A (5) real 5 c (5)
A (6) real 6 D (1)
A (6) real 6 D (1)
B (1) real 7 D (2)
B (1) real 7 D (2)
B (2) real 8 D (3)
B (2) real 8 D (3)
B (3) real 9 D (4)
B (3) real 9 D (4)
B (4) real 10 D (5)
B (4) real 10 D (5)

If portions of a common block are not referred to by a particu­
lar subprogram, dummy variables may be used to provide cor­
respondence in reserved areas.

Examples:

MAIN PROG COMMON I (5), A (6), B (4)

SUBPROG2 COMMON J (17), B (4)

MAIN PROG
reference

I {l)
I (2)
I (3)
I (4)
I (5)

Common
Block

integer 1
integer 2
integer 3
integer 4
integer 5

SUBPROG2
reference

J (1)
J (2)
J (3)
J (4)
J (5)

4.3
EQUIVALENCE

MAIN PROG Common SUBPROG2
reference block reference

A (1) real 1 J (6)
A (1) real l J (7) J (17) is adum-
A (2) real 2 J (8) my array. It is
A (2) real 2 J (9) not referenced
A (3) real 3 J (10) in SUBPROG 2
A (3) real 3 J (11) but provides
A (4) real 4 J (12) proper corre-
A (4) real 4 J (13) spondence in
A (5) real 5 J (14) reserved areas
A (5) real 5 J (15) so that SUB-
A (6) real 6 J (16) PROG 2 can re-
A (6) real 6 J (17) fer to array B.
B (1) real 7 B (1)
B (1) real 7 B (1)
B (2) real 8 B (2)
B (2) real 8 B (2)
B (3) real 9 B (3)
B (3) real 9 B (3)
B (4) real 10 B (4)
B (4) real 10 B (4)

The length of the common block may differ in different subpro­
grams, however, the subprogram (or main program) with the
longest common block must be the first to be loaded at execu­
tion time.

The EQUIVALENCE statement permits sharing of storage by
two or more entities. The statement has the form:

in which each k is a list of the form:

Each a is either a variable name or a subscripted variable;
the subscript of which contains only constants. The number of
subscripts must correspond to the number of subscripts for the
related array declarator.

4-5

4-6

All names in the list may be used to represent the same loca­
tion. If an equivalence is established between elements of two
or more arrays, there is a corresponding equivalence between
other elements of the arrays; the arrays share some storage
locations. The lengths may be different or equal.

Examples:

DIMENSION A (5), B (4)

EQUIVALENCE (A (4), B (2))

Array 1
Name

A (1)

A (2)

A (3)

A (4)

A (5)

Array 2
Name

B (1)

B (2)

B (3)

B (4)

Quantity
Element

real 1
real 1
real 2
real 2
real 3
real 3
real 4
real 4
real 5
real 5
real 6
real 6

The EQUIVALENCE statement establishes that the names A (4)
and B (2) identify the fourth real quantity. The statements also
establish a similar correspondence between A (3) and B (1), and
A (5) and B (3).

An integer array/ or variable may be made equivalent to a real
array or variable; equivalence may be established between dif­
ferent types. The variables may be with or without subscripts.

The effect of an EQUIVALENCE statement depends on whether
or not the variables are assigned to the common block. When
two variables or array elements share storage, the symbolic
names of the variables or arrays may not both appear in COM­
MON statements in the same subprogram. The assignment of
storage to variables and arrays declared in a COMMON state­
ment is determined on the basis of their type and the array

declarator. Entities so declared are always contiguous accord­
ing to the order in the COMMON statement. The EQUIVALENCE
statement must not alter the origin of the common block, but
arrays may be defined so that the length of the common block
is increased.

Examples:

c
~
T

c

C LQbel ~

a) Effect of EQUIVALENCE, variables not in common
block:

storage is assigned as follows:

Arrays

I (1)
I (2) K (1)
I (3) K (2)
I (4) K (3)

J (1)
J (2)

K (4)
K (5)

Quantities

integer 1
integer 2
integer 3
integer 4
integer 5
integer 6
integer 7
integer 8

b) Effect of EQUIVALENCE, some variables in common
block:

PROGRAM

' i' 'DIMENfSijCN K{ 5l
25 35 "' "

' EjgUI~ALE~E (I (3 >u fKl 2))

4-7

PROGRAMMER

c Lob,. I

I

4-8

c
0

~

storage is assigned as follows:

Arrays

I (1)
I (2) K (1)
I (3) K (2)
I (4) K (3)
J (1) K (4)
J (2) K (5)

Quantities

integer 1
integer 2
integer 3
integer 4
integer 5
integer 6

common block

c) Effect of EQUIVALENCE on the length of the common
block:

IDA TE PROGRAM

STATEMENT

5 6 7 10 15 20 " 30 35 '° " 50

DI ME NS IO N K (7 > I
r-o MM hN I (4) LI- J C}2 >
EQ UI VA LE NCE (J (IJ)LL K(4))

storage is assigned as follows:

Arrays

I (1)
I (2) K (1)
I (3) K (2)
I (4) K (3)
J {1) K (4)
J (2) K (5)

K (6)
K (7)

Quantities

integer 1
integer 2
integer 3
integer 4
integer 5
integer 6
integer 7
integer 8

common block

The value of the subscripts for an array being made
equivalent to another array should not be such that the
origin of the common block is changed (for example,
EQUIVALENCE (I (3), K(4)).

Arrays

origin - I (1)

I (2)

I (3)

K (l) _origin
changed

K (2)

K (3)

K (4)

Quantities

integer 1

integer 2

integer 3

integer 4

Arrays

I (4) K (5)

J (1) K (6)

J (2) K (7)

Quantities

integer 5

integer 6

integer 7

If contradictory EQUIVALENCE relationships are spec­
ified, a diagnostic message is printed.

Example:

a)

PROGRAMMER

c

c Lobel ~
' 5 ''

b)

c
0

C Label ~

EQ

IEJo

'°
UI

UI

VA

VA

" " 25 JO

LE NCE (jA (2) 8(2))

LE NCE (~ (5 hi 8(3))

l 5 6 7 10 15 20 25 30

EQUll\JALE]NCE ((2)1,]8(2))

DAU PROGRAM

STATEMENT

35 '° 45 50

T
1--+-+--+-+--+-f-H--+-1-t-t~,---+---l--l-l----l-+---+---l----+---l---l-+--l-+++++++++++++-++-+-+-+-+-+--t-t-+-H

EQUIVALENCE (~(3)1, ~(3))
I

E1QU I V1ALENCE (A(5) C(2))
I

4-9

5.1
GOTO
STATEMENTS

CONTROL STATEMENTS 5

Program execution normally proceeds from statement to state­
ment as they appear in the program. Control statements can
be used to alter this sequence or cause a number of iterations
of a program section. Control may be transferred to an exe­
cutable statement only; a transfer to a non-executable state­
ment will result in a program error which is usually recognized
during compilation as a transfer to an undefined label.t With
the DO statement, a predetermined sequence of instructions
can be repeated a number of times with the stepping of a simple
integer variable after each iteration.

Statements are labelled by unsigned numbers, 1 through 9999,
which can be referred to from other sections of the program.
A label up to four digits long precedes the FORTRAN statement
and is separated from it by at least one blank or a zero. Im­
bedded blanks and leading zeros in the label are ignored: 1,
01, 0 1, 0001 are identical.

GO TO statements provide transfer of control.

GOTOk

This statement, an unconditional GO TO, causes the transfer
of control to the statement labelled k .

This statement, a computed GO TO, acts as a many-branched
transfer. The k's are statement labels and i is a simple
integer variable. Execution of this statement causes the state­
ment identified by the label kj to be executed next, where j

t A transfer to a FORMAT statement is not detectable during
compilation; if such an error occurs, no diagnostic message
is produced.

5-1

5.2
IF STATEMENTS

5-2

is the value of i at the time of execution, and 1 .s j .s n. If
i < 1, a transfer to k1 occurs; if i > n , a transfer to kn
occurs.

Examples:

PROGRAMMER

c

C Label B
T

I 5 6 7 10 15

I~ GO TO 5¢¢
r siv;c H1 = 2

3.5 IA = x*1y

l I

I

5j4 ¢ Gp T 0 (s5 , 3 ¢ 3 5 , 4¢) J SJ'!! CH
I

At statement 40, control transfers to statement 10, which is an
unconditional transfer to statement 500. At 540 control trans­
fers to statement 35.

The arithmetic IF statement provides conditional transfer of
control

The e is an arithmetic expression and the k's are statement
labels. The arithmetic IF is a three-way branch. Execution
of this statement causes evaluation of the expression and trans­
fer of control depending on the following conditions:

e < 0, go to k1
e = 0, go to k2
e > 0, go to k3

Examples:

PROGRAMMER

5.3

DO STATEMENTS

.,/

The logical IF statement provides conditional transfer of con­
trol to either of two statements:

The e is an arithmetic expression that may yield a negative
or non-negative (positive or zero) value. Execution of this
statement causes evaluation of the expression and transfer of
control under the following conditions:

e <
e ~

0, go to k1
O, go to k 2

Examples:

0;;::0:;.:.•.•v.:<. IDA TE PROGRAM

c ' STATEMENT

~~"" s
' ,,

" JO 35 '° " so

I IF (I SSW(N);)5c.LJ I 0 ! ! 1 T
IF ;(A+Bl) 2 0 _J_' '2~5 J_ lI !

IF (LANI) 30_,_ 4 0i I I l T l I

'
:T T T I

A DO statement makes it possible to repeat a group of state­
ments.

or

The n is the label of an executable statement which ends the
group of statements. The statement, called the terminal state­
ment, must physically follow the DO statement in the source
program. It may not be a GO TO of any form, IF, RETURN,
STOP, PAUSE, or DO statement.

The i is the control variable; it may be a simple integer var­
iable.

The m's are indexing parameters: m1 is the initial param­
eter; m2 , the terminal parameter; and m3 , the incrementa­
tion parameter. They may be unsigned integer constants or

5-3

5-4

simple integer variables. At time of execution, they all must
be greater than zero. If m3 does not appear (second form),
the incrementation value is assumed to be 1.

A DO statement defines a loop. Associated with each DO state­
meant is a range that is defined to be those executable statements
following the DO, to and including the terminal statement as­
sociated with the DO. Attime of execution, the following steps
occur:

1. The control variable is assigned the value of the initial
parameter.

2. The range of the DO is executed.
3. The terminal statement is executed and the control vari­

able is increased by the value of the incrementation par am -
eter.

4. The control variable is compared with the terminal param­
eter. If less than or equal to the terminal parameter, the
sequence is repeated starting at step 2. If the control var­
iable exceeds the terminal parameter, the DO loop is sat­
isfied and control transfers to the statement following n .
The control variable becomes undefined.

Should mi exceed m2 on the initial entry to the loop, the
range of the DO is executed and control passes to the statement
after n . If a transfer out of the DO loop occurs before the DO
is satisfied, the current value of the control variable is pre­
served. The control variable, initial parameters, terminal
parameter, and incrementation parameters may not be rede­
fined during the execution of the range of the DO loop.

ASSIGN
m1 TO i

EXECUTE STATEMENTS
IN LOOP INCLUDING

STATEMENT n

ADD m3 TO l

AND STORE
IN i

5-5

DO Neats When the range of a DO loop contains another DO loop, the
latter is said to be nested. DO loops may be nested 10 deep.
The last statement of a nested DO loop must be the same as
the last statement of the outer loop or occur before it. If
di, d2, ... , dn are DO statements, which appear in the order
indicated by the subscripts; and if n1, n2, ... , nm are the
respective terminal statements, then nm must appear before
or be the same as nm-1 , nm-1 mustappearbefore or be the
the same as n2, and n2 must appear before or be the same
as n1.

Examples:

.____n2

...._ __ nl

PROGRAMMER

C Label

c
0
N
T

I 5 6 7

. 5 loin lit0 I = I l~u_2

7 DO 90 J = I Jig:u_2

8 CQNT NUE

9 C1uNT INUE

I !2l C!ONT INUE

30

n =n =n 1 2 m

r-----d m

PROGRAMMER

c
0

c Label N
T

I 5 6 7 10

5 DO 1100

8 o]9 I 12l0

I~ DO ~¢

9 cl NtI_ IN

10 c]Q NT IN

PROGRAMMER

c
0

c La,,. I N
T

I 5 6 7 10

5 o]Q 1~0 .

I~ ojg 1~0

.
2~ m ll~l'lJ

.
10~ co NT I~

15 20 " 30

I = lu._ 20

J = I:_,_ 10 ~

K = I 2¢ 2

UE

UE

15 20 25 30

I = I Lt- 310 1. 5

J = 2u._[§

K = 5[_,_ ~ 5~

UE

If one or more nested loops have the same terminal statement,
when the inner DO is satisfied, the control variable for the
next outer loop is incremented and tested against its associated
terminal parameter. Control transfers to the statement fol­
lowing the terminal statement only when all related loops are
satisfied.

DO loops may be nested in common with other loops as long as
their ranges do not overlap.

5-7

5-8

Examples:

PROGRAMMER

c
0

c Lobel N
T

I 5 6 7 10 15 ,. 25 30

5 hln I~ I = I LL 15

I~ JQlQ 5f{J J = ~ ~lflJ Lt.2

.
9 w llN u]E

6~ OlQ l?1Q IB = 111 I~ u.2 .
.
.

7~ co NT IN UE

. .
'----"1 I~~ lg:) ~T IN u~

Invalid, ranges overlap

In a DO n~st, a transfer may be made from an inner loop into
an outer loop, and transfer is permissible outside of the loop.
It is illegal, however, for a GO TO or IF to initiate a transfer
of control from outside of the range of a DO into its range.

5.4

CONTINUE

5.5
PAUSE

5.6
STOP

dl dl dl

[;d2 c2 c~ .__ ...
___.)

"2

"1
.. 4

"1 "1
VALID INVALID

TRANSFERS TRANSFERS

This statement acts as no-operation instruction.

CONTINUE

The CONTINUE statement is most frequently used as the last
statement of a DO loop to provide a loop termination when a
GO TO or IF would normally be the last statement of the loop.
If used elsewhere in the source program, it acts as a do-nothing
instruction and control passes to the next sequential program
statement.

This statement provides a temporary program halt.

PAUSE n
or

PAUSE

n may be up to four octal digits (without a B suffix) in the range
0 to 7777. This statement halts the execution of the program
and types PAUSE on the Standard Teleprinter Output unit. The
value of n , if given is displayed in the A-Register. When
the RUN button is pressed, program execution resumes at the
next statement.

The STOP statement terminates the execution of the program.

STOPn
or

STOP

5-9

5.7
END

5.8
END$

5-10

n may be up to four octal digits (without a B suffix) in the range
0 to 7777. This statement halts the execution of the program
and types STOP on the Standard Teleprinter Output unit. The
value of n , if given, is displayed in the A-Register. If the
RUN button is pressed, the halt operation is repeated.

The END statement indicates the physical end of a program or
subprogram. It has the form:

END name

The END statement is required for every program or subpro­
gram. The name of the program can be included, but it is
ignored by the compiler. The END statement is executable in
the sense that it will effect return from a subprogram in the
absence of a RETURN statement. An END statement may be
labeled and may serve as a junction point.

The END$ statement indicates the physical end of five or less
programs or subprograms that are to be compiled at one time.
If there are four or less programs, the statement is printed on
the source program listing. If there are exactly five, the state­
ment is not printed. If more than five programs are on the
same tape, the END$ may be omitted after the fifth program;
the compiler stops accepting input after the fifth is processed.

MAIN PROGRAM, FUNCTIONS, AND SUBROUTINES 6

6.1
ARGUMENT
CHARACTER·
ISTICS

A FORTRAN program consists of amain program with or with­
out subprograms. Subprograms, which are either functions or
subroutines, are sets of statements that may be written and
compiled separately from the main program.

The main program calls or references subprograms; and sub­
programs may call or reference other subprograms as long as
the calls are non-recursive. That is, if program A calls sub­
program B, subprogram B may not call program A. Further­
more, a program or subprogram may not call itself. A calling
program is a main program or subprogram that refers to
another subprogram.

In addition to multi-statement function subprograms, a function
may be defined by a single statement in the program (statement
function) or it may be defined as part of the FORTRAN Library
(basic external function). A statement function definition may
appear in a main program or subprogram body and is available
only to the main program or subprogram containing it. A state­
ment function may contain references to function subprograms,
basic external functions, or other previously defined statement
functions in the same subprogram. Basic external function
references may appear in the main program, subprogram, and
statement functions.

Main programs, subprograms, statement functions, and basic
external functions communicate by means of arguments (param­
eters). The arguments appearing in a subroutine call or func­
tion reference are actual arguments. The corresponding entities
appearing with the subprogram, statement function, or basic
external function definition are the dummy arguments.

Actual and dummy arguments must agree in order, type, and
number. If they do not agree in type, errors may result in the
program execution, since no conversion takes place and no
diagnostic messages are produced.

6-1

6.2

MAIN PROGRAM

6.3
SUBROUTINE
SUBPROGRAM

6-2

Within subprograms, dummy arguments may be array names
or simple variables; for statement functions, they may be var­
iables only. Dummy arguments are local to the subprogram or
statement function containing them and, therefore, may be the
$ame as names appearing elsewhere in the program. A max­
imum of 63 dummy arguments may be used in a function or
subroutine.

No element of a dummy argument list may appear in a COMMON
or EQUIVALENCE statement within the subprogram. If it does,
a compiler diagnostic results. When a dummy argument repre­
sents an array, it should be declared in a DIMENSION state­
ment within the subprogram. If it is not declared, only the
first element of the array will be available to the subprogram
and the array name must appear in the subprogram without sub­
scripts.

Actual arguments appearing in subroutine calls and function
references may be any of the following:

A constant
A variable name
An array element n:ame
An array name
Any other arithmetic expression

The first statement of a main program may be the following:

PROGRAM name

The name is an alphanumeric identifier of up to five characters.
If the PROGRAM statement is omitted, the compiler assigns
the name "FTN. "

An external subroutine is a computational procedure which may
return none, one, or more than one value through its arguments
or through common storage. No value or type is associated
with the name of a subroutine.

The first statement of a subroutine subprogram gives its name
and, if relevant, its dummy arguments.

SUBROUTINE s {a1, a2, ... , an)

or

SUBROUTINE s

The symbolic name, s, is an alphanumeric identifier of up to
five characters by which the subroutine is called. If the sub­
routine is unnamed the compiler will assign the name of ff. ff

(period). Thea's are the dummy arguments of the subroutine.

The name of the subroutine mustnotappear in any other state­
ment within the subprogram.

The subroutine may define or redefine one or more of its argu­
ments and areas in common so as to effectively return results.
It may contain any statements except FUNCTION, another SUB­
ROUTINE statement, or any statement that directly or indirectly
references the subroutine being defined. It must have at least
one RETURN or END statement which returns control to the
calling program.

Examples:

PROGRAMMER

C Lobel

'

c
0

~

, • slus~Jnur I~~ JI~ (P1, "H)

=z-l-:1.
RE'TU 1N]
END

SUBB~UTI~E MUL(K)
COMM~ MAT(I) PROD(1gj)

5 PR D(l)=M!AT(I)*K

ll="NO

P, Wand Hare the dummy
parameters. Actual values
supplied by a calling pro­
gram are to be substituted
for P and W. The variable
name supplied for H would
contain the result on return
to the calling program.
MUL multiplies the array
supplied for MAT by the
single value supplied for K
to produce values to be
stored in array PROD.

6-3

6.4
SUBROUTINE
CALL

6-4

The executable statement in the calling program for ref erring
to a subroutine is:

or

CALL s

The symbolic name, s , identifies the subroutine being called;
the a' s define the actual arguments. The name may not appear
in any specification statements in the calling program.

If an actual argument corresponds to a dummy argument that
is defined or redefined in the called subprogram, the actual
argument must be a variable name, an array elementname, or
an array name.

The CALL statement transfers control to the subroutine. Exe­
cution of the subroutine results in an association of actual argu­
ments with all appearances of dummy arguments in executable
statement and function definition statements. If the actual argu­
ment is an expression, the association is by value rather than
by name. Following these associations, the statements of the
subprogram are executed. When a RETURN or END statement
is encountered, control is returned to the next executable state­
ment following the CALL in the calling program. If the CALL
statement is the last statement in a DO loop, looping continues
until satisfied.

Examples:
PROGRAMM~R

c

c Label 2
T

' 5 ' '
TO TS

CA Lt=_ JIV (I

I

co jcN .MllV N(10

I
ICA LL [MU 11.. { I (

w "
5. ul 2. ISL u_it\ El

) Lt_ Q (I !2l)

5,, 3))

These calls
arguments f
tines define
vious examp

provide actual
or the subrou­
d in the pre­
le. In subrou­

tine JIV, 15. is substituted
, for W; and
H.

for P; 12.
ABLE, for
For subrout ine MUL, the

sed via COM­
value supplied

data is pas
MON. The
for the dum my argument K

5, 3) of matrix
I of the calling program.
is element (

6.5
FUNCTION
SUBPROGRAM A function subprogram is a computational procedure which

returns a single value associated with the function name. The
type of the function is determined by the name; an integer quan­
tity is returned if the name begins with I, J, K, L, M, or N,
otherwise it will be a real quantity.

The first statement of a function subprogram must have the fol­
lowing form:

The symbolic name, f, is an alphanumeric identifier of up to
five characters by which the function is referenced. If the
function is unnamed the compiler will assign the name of ". "
(period). Thea's are the dummy arguments of the function.

The name of the function must not appear in any non -executable
statement in the subprogram. It must be used in the subpro­
gram, however, at least once as any of the following:

The left-hand identifier of an assignment statement
An element of an input list
An actual parameter of a subprogram reference

The value of name at the time of execution of a RETURN or
END statement in the subprogram is called the value of the
function.

The function subprogram may define or redefine one or more
of its arguments and areas in common so as to effectively
return results in addition to the value of the function. If the
subprogram redefines variables contained in the same expres­
sion as the function reference, the evaluation sequence of the
expression must be taken into account. Variables in the por­
tion of the expression that is evaluated before the function ref­
erence is encountered and the values of variable subscripts
are not affected by the execution of the function subprogram.
Variables that appear following the function reference are mod­
ified according to the subprogram processing.

6-5

a)

b)

c)

d)

6-6

Examples:
HOG RAMMER

c Label
I

PROGRAMMER

c """'' I

PROGRAMMER

< Lobo I
1

PROGRAMMER

C Lobel
I

c
0
N
T

5 6 7 10 15 20 25

c
0
N
T

FUNC~ION IQIV(l~J)
IDIV=I/J
RE.II um
~ND

5 6] 10 15 20 25

FUNCITI~N IREA~ (!~INT)

REAQ < ruNl:!u_ *) IIRIEAD

R~TURN
!END

c s
T

'. 7 10 " 20 " FU NC ION sir IAL L(~ Bit_ Cl

.
c~ LL ~ BF (S CA LL .Lt.A _l_B Ii c)

.

.
R~I TU R~
END

c s
T

s 6 7 10 15 20 25 30

~ANNIA = A*5. 2
ZETA = GAjMMA**2
RET N
END

The function IDIV calculates
the value of I divided by J.
On return to the calling pro­
gram the result provided is
the value of IDIV.

The function ffiEAD reads
a value from the unit IUNT
(specified as an actual
parameter in the calling
program.) mEAD has this
value on return to the call­
ing program.

SCALL is both the functio n
nameand an actual param-
eter of a subroutine call
The value of SCALL is pro-
vided by SUBF and returne d
to the calling program .

The function
defines the
value of GAM­
MA as well as
finding the
value of ZETA.

6.6
FUNCTION
REFERENCE

a)

b)

A function subprogram is referenced by using the name and
arguments in an arithmetic expression:

The type of function depends on the first letter of the name of
the function referenced; the a's are the actual arguments.
The reference may appear any place in an expression as an
operand. The evaluated function will have a single value asso­
ciated with the function name. When a function reference is
encountered in an expression, control is transferred to the
function indicated. Execution of the function results in an as­
sociation of actual arguments with all appearances of dummy
arguments in executable statements and function definition state­
ments. If the actual argument is an expression, this associa­
tion is by value rather than by name. Following these associa­
tions, the statements of the subprogram are executed. When
a RETURN or END statement in the function subprogram is
encountered, control returns to the statement containing the
function reference. During execution the function also may
define or redefine one or more of its arguments and areas in
common.

Example:

~~OG~A.MMf~ 1DATE

c Lot>el

:

T
T

i

l

I

1
I

t

c

~
S 6 ~ lC 15 2C 25 JO

s!ANII u = :KJ** 1:0JrNI < 1]¢1-i_ 5}> ffirJc o:N I I
! l l 111 1 I I I : I

r rr, T ! • Ii I! 1.

: l: T
:T I :

I ,

I I : i

I I

T

The values of 10 and 5
are provided for I and
J: The resulting value
of IDIV would be 2.
The function IREAD
is called with 1 OB as
the unit number. The
value of IREAD would
be the value of the
item read from the
device with unit ref­
erence number 108 .

6-7

6-8

c)
c
0

c lei be I ~

' ' 1' ·~P ~ =13rn-~ *S c1A~ L c 1~ 2~1.19 .1. 8. >

T '
l

I I

i I
I

I '. I : I

The actual param­
eters SCALL are 10.,
9., and 8. The value
of SCALL would de­
pend on the value sup­
plied by the subrou­
tine SUBF.

d) The program,

PROGRAMMER PROGRAM

would result in the following calculation:

RSLT = 5.0 + 7.5 +ZETA

where ZETA would be determined as:

A= .2**2 - .3**3 = .04 - .027 = .013
GAMMA= . 013*5. 2 = . 0676 (GAMMB is not altered)

ZETA= . 0676**2 = . 00456976

RSLT = 5. 0 + 7. 5 + . 00456976
= 12. 50456976

But, the program,

PROGRAMMER PROGRAM

would result in the following calculations for ZETA and GAMMB:

A = . 2**2 - • 3**3 = . 04 - • 027 = . 013
GAMMA= . 013*5. 2 = . 0676 = GAMMB

ZETA= . 0676**2 = . 00456976

RSLT = . 00456976 + 7. 5 + . 0676
= 7. 57216976

6.7
STATEMENT
FUNCTION

When referring to a function which redefines an argument which
appears as a variable elsewhere in the same expression, the
order of evaluation (i.e., the order in which the expression is
stated) is significant.

A statement function is defined internally to the program or
subprogram in which it is referenced and must precede the
first executable statement. The definition is a single statement
similar in form to an arithmetic assignment statement.

The name of the statement function, f , is an alphanumeric
identifier; a single value is associated with the name. The dum­
my arguments, a's , must be simple variables. One to ten
arguments maybe used. The expression, e, may be an arith­
metic expression and may contain references to basic external
functions, previously defined statement functions, or function
subprograms. The dummy arguments must appear in the ex­
pression. Other variables appearing in the expression have
the same values as they have outside the statement function.

The statement function name mustnot appear in any specifica­
tion statements in the program or subprogram containing it.

Statement functions must precede the first executable statement
of the program or subprogram, but they must follow all speci­
fication statements.

A statement function reference has the form:

f is the function name and the a's are the actual arguments.
A function reference with its appropriate actual arguments may
be used to define the value of an actual argument in --a subroutine
call or function subprogram reference.

6-9

6-10

Example:

PROGRAMMER

C Lebel

c
0
N
T

I s 6 7 10 15 20 25

INJR(M_._N) = !M*2+N**2+5

CALL MATX (INJ~(5~2)uJM)

SUBR~UTINE ~ATX (J1~K)

Statementfunction defini­
tion.

Subroutine call using
statement function refer­
ence.

Execution of a statement function reference results in an asso­
ciation of actual argument values with the corresponding dum­
my arguments in the expression of the function definition, and
evaluation of the expression. Following this, the resultant
value is made available to the expression that contained the
function reference and control is returned to that statement.

Example:

Statement function:

PROGRAMMER PROGRAM

c
0
N
T

Function reference:

5 • '

PROGRAM

6.8
BASIC EXTERNAL
FUNCTIONS

Function
Name

Absolute Value

Float

Fix

Tran sf er sign

Exponential
Natural

Logarithm
Trigonometric

Sine
Trigonometric

Cosine
Trigonometric

Tangent
Hyperbolic

Tangent
Square Root
Arctangent
And (Boolean)
Or (Boolean)
Not (Boolean)
Sense Switch

ta is in radians

Certain basic functions are defined as part of the 2116A
FORTRAN Library. When one of these appears as an operand
in an expression, the compiler generates the appropriate call­
ing sequence within the object program.

The types of these functions and their arguments are defined.
The compiler recognizes the basic function and associates the
type with the results. The actual arguments must correspond
to the type required for the function; if not, a diagnostic mes­
sage is issued. The functions available are shown below:

Symbolic No. of Type of
Definition Name Arguments Argument Function

lal ABS 1 Real Real
!ABS 1 Integer Integer

Conversion FLOAT 1 Integer Real
from in-
teger to
real

Conversion !FIX 1 Real Integer
from real
to integer

Sign of a2 SIGN 2 Real Real
times la11 !SIGN 2 Integer Integer

ea EXP 1 Real Real
log (a) , e ALOG 1 Real Real

sine (a)t SIN 1 Real Real

cos (a)t cos 1 Real Real

tan (a)t TAN 1 Real Real

tanh (a) TANH 1 Real Real

(a)l/2 SQRT 1 Real Real
arctan(a) ATAN 1 Real Real
a " a !AND 2 Integer Integer 1 2 a1 v a2 IOR 2 Integer Integer

-, a NOT 1 Integer Integer
Sense Switch !SSW 1 Integer Integer
Register
switch (n)

6-11

6.9

RETURN
AND END

6-12

Examples:

PROGRMI

c

C Lot.el ~
I 5 I> 7 TO \5 20 25 30

I srlGNN=ajs:s(srGINDl
' I s rIGN oT=IAI+Is *C / o- E

T Y =IF L O'ATT!(!N E~T) 1 I
T

I I

I

l PIQWR =!E1XP (x)1
I ! -'-

11 ANiTLG=]]LOG(Y) 1. ;T
l !

! l
i

· l OQHY P=jSIN (AGL) ' , I

. I ~O',HYP'=ICOS (AGL) I i i

i 00,AH 1=TANH(AGLH) I I '

1
• l HFIPR i=l_SQRT (jZj) I I I

I AHC! 1=IATAN (ISjl I I 1
il LPROD=:IAND(IM,N)i 1 I l

I

l
Ti T T IT I '

..:.. LCLMT=:NOT (M) T i T
: I

T
I

I I
I I I

A subprogram normally contains a RETURN statement that indi­
cates the end of logic flow within the subprogram and returns
control to the calling program. It must always contain an END
statement.

In function subprograms, control returns to the statement con­
taining the function reference. In subroutine subprograms,
control returns to the next executable statement following the
CALL. A RETURN statement in the main program is inter­
preted as a STOP statement.

The END statement marks the physical end of a program, sub­
routine subprogram, or function subprogram. If the RETURN
statement is omitted, END causes a return to the calling pro­
gram. The END$ is required in addition to END statements
when five or less subprograms are being compiled at one time.

INPUT/OUTPUT LISTS AND FORMAT CONTROL 7

7.1
INPUT/OUTPUT
LISTS

Data transmission between internal storage and external equip­
ment requires an input/output statement and, for ASCII char­
acter strings, either a FORMAT statement or format control
symbols with the input data. The input/output statement spec­
ifies the input/output process, such as READ or WRITE; the
unit of equipment on which the process is performed; and the
list of data items to be moved. The FORMAT statements or
control symbols provide conversion and editing information be­
tween the internal representation and the external character
strings. If the data is in the form of strings of binary values,
format control is unnecessary.

The input list specifies the names of the variables and array
elements to which values are assigned on input. The output
list specifies the references to the variables, array elements,
and constants whose values are transmitted. The input and
output lists are of the same form. The list elements consist
of variable names, array elements, and array names separated
by commas. The order in which the elements appear in the list
is the sequence of transmission. If FORMAT statements are
used, the order of the list elements must correspond to the
order of the format descriptions for the data items. In array
elements buffer length is limited to a maximum output of 60
computer words.

Subscripts in an input/output list may be of the form (expl'
exp 2), where expi is one of the following:

c*v+k v-k
c*v-k v
c*v k
v+k

where c and k are integer constants and v is a simple in­
teger variable previously defined or defined within an implied
DO loop.

7-1

DO-Implied Lists

7-2

A DO-implied list consists of one or more list elements and
indexing parameters. The general form is

(... (list, i == m1, m 2, m3) ...)

list Any series of arrays, array elements, or
variables separated by commas

i Control variable

m's Index parameters in the form of unsigned
integer constants or predefined integer
variables

Data defined by the list elements is transmitted starting at the
value of mi in increments of m3 until m 2 is exceeded. If
m3 is omitted it is assumed to be one.

An implied DO loop may be used to transmit a simple variable
or a sequence of variables more than one time.

Two-dimensional arrays may appear in the list with values
specified for the range of the subscripts in an implied DO loop.
The general form for an array is:

where,

m's, n's

An array name

Subscripts of the array in one of
the preceding forms

Control variables representing
either of the variable subscripts
ct1 and d2

Index parameters in the form of un­
signed integer constants or predefined
integer variables. If m3 or ns is
omitted, it is construed as 1.

The input/output list may contain nested implied DO loops. Dur­
ing execution, the control variables are assigned the values of
the initial parameters (i1 == m1, i 2 == n1). The first control
variable defined in the list is incremented first. When the first
control variable reaches the maximum value, it is reset; the
next control variable to the right is incremented and the process
is repeated until the last control variable has been incremented.

If the name of a dimensioned array appears in a list without sub­
scripts, the entire array is transmitted.

Examples:

a) The DO-implied list:
((A(I, J), I==l, 20, 2), J=l, 50, 5)
replaces the following:
DO x J=l, 50, 5
DO x I=l, 20, 2
transmit A (I, J)

x CONTINUE

b) Other implied DO loops might be:
((ABLE(5*KID-3, lOO*LID), KID=l, 100), LID=l, 10)
((A(I,J), I=l, 5),J=l, 5) Transmit elements by column
((A(I, J), J =1, 5), I=l, 5) Transmit elements by row.

c) Nested implied DO loops:
((((A(I,J), B(K, L), K==l, 10),L=l, 15), I=l, 20), J=l, 25)
(((A(I,J), B(K),K=l, 10), I=20, 100, 10),K=9, 90, 10)

d) Simple variable transmission:
(A, K=l, 10) Transmits 10 values of A.

e) Dimensioned array transmission:
DIMENSION A(50, 20)

. . . A . . . list element
is equivalent to:
DO x I = 1, 20
DO x J = 1, 50
transmit A(J, I)

x CONTINUE

7-3

7.2
FORMAT
STATEMENT

7.3
FORMAT STATEMENT
CONVERSION
SPECIFICATIONS

7-4

ASCII input/output statements may refer to a FORMAT state­
ment which contains the specifications relating to the internal­
external structure of the corresponding input/ output list ele­
ments.

FORMAT (spec 1, ... , r(specm, ...), specn, ...)

The spec's are format specifications and r is an optional rep­
etition factor which must be an unsigned integer constant.
FORMAT specifications may be nested to a depth of one level.
The FORMAT statement is non-executable and may appear any­
where in the program.

The data elements in the input/output lists may be converted
from external to internal and from internal to external repre­
sentation according to FORMAT conversion specifications.t
FORMAT statements may also contain editing codes.

Conversion Specifications

rEw.d
rFw.d
rlw
r@w (
rKw I
rAw

Real number with exponent
Real number without exponent
Decimal integer

Octal integer
Alphanumeric character

Editing Specification

nX Blank field descriptor

nHh1 h2· · · hn } Heading and labeling descriptors
r"hi h2 ... ~"

r / Begin new record

t If the type of a variable in the input/output list does not corre­
spond to the type specified in the FORMAT statement, the com­
piler insures that the proper conversion from one type to the
other will take place.

Ew.d Output

Both w and n are nonzero integer constants representing the
width of the field in the external character string; n may be
omitted if the width is one. d is an integer constant repre­
senting the number of digits in the fractional part of the string.
r , the repeat count, is an optional nonzero integer constant in­
dicating the number of times to repeat the succeeding basic field
descriptor. Each h is one character.

The E specification converts numbers in storage to character
form for output. The field occupies w positions in the output
record; the number appears in floating point form right justified
in the field as:

~.x1 ... xd E±eet

x1 ... xd are the most significant digits of the value of the data
to be output. ee are the digits in the exponent. Field w must
be wide enough to contain significant digits, signs, decimal
point, E , and exponent. Generally, w should be greater than
or equal to d + 4.

If the field is not long enough to contain the output value, an at­
tempt is made to adjust the value of d (i.e., truncating part
or all of the fraction) so that a number is written in the field.
If the remaining value is still to large for the field, dollar signs
($) are inserted in the entire field. If the field is longer than
the output value, the quantity is right-justified with spaces to
the left.

Examples:

PROGRAMMER

c

c Lgl..,I s
" I ' '' 10 " 20

~R IT E(4Ll_ 5)A A contains +12. 34 or -12. 34
5 FO RIM AT (E 10 . 3) Result is /\/\. 123E+02 or A-. 123E+02

A contains +12. 34 or -12. 34 jwR IT E(4, 5)A
5 FO RIM AT (iE1 I 2. 3) Result is /\/\/\/\. 123E+02 or

_AAA -.123E+02
~RIT E,(4,5)A A contains +12. 34 or -12. 34

5 FORIM ~T { E7 .13) Result is . 12E+02 or -. 1E+02
I 1 I

jwRI T E(4 ,15)A A contains +12.34
j5 FORMAT{ E5. I)

T T I
Result is $$$$$

TThe caret symbol, A , indicates the presence of a space.

7-5

Ew.d Input

7-6

The E specification converts the number in the input field
(specified by w) to a real number and stores it in the appro­
priate storage locations.

The input field may consist of integer, fraction, and exponent
subfields:

integer fraction
I , ,=-1----::i ~exponent

1± ... n. n ... rr±ee

n ~d . El . t
ec1ma porn

The integer subfield begins with a + or - sign, or a digit and
may contain a string of digits terminated by a decimal point, an
E , + , - , or the end of the input field.

The fraction subfield begins with a decimal point and may con­
tain a string of digits terminated by an E , + , - , or the end
of the input field.

The exponent field may begin with a sign or an E and contains
a string of digits. When it begins with E , the + is optional
between E and the string. The value of the string of digits
should not exceed 38. The number mayappear inany positions
within the field; spaces in the field are ignored.

Examples:

+1. 2345E2
123.456+9
-0.1234-6
.12345E-3
1234
+12345
+1234E6

When no decimal point is present in the input quantity, d acts
as a negative power of ten scaling factor. The internal repre­
sentation of the input quantity will be:

(integer subfield) x10-d x10(exponent subfield)

Example:

f-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+--r--+--r--t-t---r--r--r-r Input quantity == A A " 12 3 4 + 5 A A

Conversion performed: 1234x10-8x105
Result: 1. 234

If a d value in the specification conflicts with the a decimal
point appearing in an input field, the actual decimal point takes
precedence.

Example:

Quantity stored:
Input quantity == """""1. 234+5
l.234xlo5

The field width specified by w should always be the same as
the width of the input field. When it is not, incorrect data may
be read, converted and stored. The value of w should include
positions for signs, the decimal point, the letter E , as well as
the digits of the subfields:

Example:

PROGRAMMER

Assuming input data in contiguous fields:

-12. 3El+l234123. 46E-3
I- 7 ---*---5 *--9 -I

The fields read would be:

-12. 3El
+1234
123. 46E-3

7-7

Fw.d Output

7-8

PROGRAMMER

and converted as:

-123.
1. 234
.12346

However, if specifications were:

The fields read would be:

-12. 3El
+123
4123.46

and converted as:

-123
.123
4123.46

The effects of possible FORMAT specification errors such as
the above may not be detected by the system.

Examples:

FORMAT
Specification

E9. 2
E9.4
E4.2

Input
Field

+1. 2345E2
-0.1234-6
1234

Converted
Value

123.45
-.0000001234
12.34

The F specification converts real numbers in storage to char­
acter form for output. The field occupies w positions and will
appear as a decimal number, right justified in the field.

~x ... x.x ... x

Fw.d Input

lw

The x' s are the most significant digits. The number of decimal
places to the right of the decimal point is specified by d . If d
is zero, no digits appear to the right of the decimal point. The
field must be wide enough to contain the significant digits, sign,
and decimal point. If the number is positive, the + sign is sup­
pressed. If the field is not long enough to contain the output
value, an attempt is made to adjust the value of d (i.e. , trun­
cating part or all of the fraction) so that a number is written in
the field. If the remaining value is still too large for the field,
dollar signs ($) are inserted in the entire field. If the field is
longer than the output value, the number is right-justified with
spaces occupying the excess positions on the left.

Examples:

PROGRAMMER

c

'

c

Label 2
T

' ; ' '° " '°
~R IT E{ 4Lt_ 5)~ A contains +12. 34 or -12. 34

5 FO R~ AT (F 10 . 3) Result: """"12. 340 or AAA-12. 340

jwR IT E(4, 5)A A contains +12. 34 or -12. 34
5 FO RIM IAT { F 12 . 3) Result: """"""12. 340 or""""" -12. 340

[wR IT E{ 4,15) A A contains +12. 34
5 FO RM IAT (F'4 . 3) Result: 12.3

~R IT E(4, 5)A A contains +12345. 12
5 FO RIM AT (F 4. 3) Result: $$$$

The F specification input is identical to the E specification
input. Although the fields are generally assumed to contain only
a sign, integer, decimal point, and fraction; they may also con­
tain an exponent subfield. All restrictions for Ew. d input apply.

The Iw specification converts internal values to output char­
acter strings, or input character strings to internal numbers.
The output external field occupies w record positions andap­
pears right justified (spaces on left) as:

~xl ... xd

During input conversion,_ if a value is less than -3276810, the
value is converted to a positive 32767.

7-9

Aw

7-10

The x's represent the decimal digits (maximum of 5) of the in­
teger. When the integer is positive on output, the sign is sup­
pressed. If an output field is too short, dollar signs ($)will be
placed in the output record.

The Iw specification, when used for input, is identical to an
Fw. 0 specification:

Examples:

Result: -123412345$$$$A12345

1--5-+-5+ 4+-6----{
Pl:OGIAMMU

I contains -0123
J contains 12003
K contains 0102
L contains 3

.. ,.

I contains -1234
J contains +12345
K contains +12345
L contains +12345

Input contains:

-A12312AA3A1A23

l-5-+-5+4-111

This specification (not available in the 4Kversion of FORTRAN)
causes alphanumeric data on an external medium to be trans -
lated to or from ASCII form in memory. The associated list
element must be of type integer.

On input, if the field, as indicated by w, is greater than 2, the
first w-2 characters are ignored; only the last two characters
are read. When w equals 2, the two characters are read. If
w equals 1, one character is read and stored in the right half
of a computer word; zero is entered in the left half.

On output, if the field is greater than 2, two characters are
written with right justification in the field; the leading posi­
tions are filled with spaces. If w equals 2, the two characters
are written. If w equals 1, the character in the right half of
the CQmputer word is written.

.~

r@w

rKw

W>2

FIELD

(ignored on input)
spaces on output

MEMORY

Example:

W=2 W=1

(ignored .on output)
zero on input .

Input data: AZZ213-ABCXABC137 - ZZ9 @ (LF)

DIMENSION ID (5)
READ (5, 1,0) I2, 11, ID

10 FORMAT (Al,0, Al, 5A2)

Result: I2 BC
11 .ex
ID AB

Cl
37
-z
Z9

Octal integer values are converted under either the @ or the K
specification. The field is w octal digits in length; the cor­
responding list element must be of type integer. {Not available
in the 4K version of FORTRAN.)

On input, if w is greater than or equal to 6, up to six octal digits
are stored; non-octal digits appearing within the field are ig­
nored. If the value of the octal digits within the field is greater
than 177777, the results are unpredictable. If w is less than
6, or if less than six octal digits are encountered in the field,
the number is right justified in the computer word with zero
fill on the left.

On output, if the field is greater than 6, six octal digits are
written with right justification in the field; the leading positions
are filled with spaces. If w equals 6, the six octal digits are
written. If w is less than 6, the w least significant octal digits
are written.

Example:

10

Input data: 123456-1234562342342342, 396E-,05 CR LF

DIMENSION ID(2), IE(2)
READ (5, 10) IB, IC, ID, IE
FORMAT (@6, @7, 2@5, 2@4)

7-11

nX

7-12

Result: IB 123456
IC 123456
ID ,023423

,042342
IE ,0,0,0,036

.0.0.0.0.05

The X spec if ication may be used to include n blanks in an out­
put record or to skip n characters on input to permit spacing
of input/output quantities. In the specifications list, the comma
following X is optional. AX is interpreted as lX. OX is not
permitted.

Examples:

STATEMENT

1-+-1-+-1-+-~+=.i.:--1=1--'+::+-1-1-:...i=:+!-+-+Ll=+i-1-=+-+--1---+++++--+-+--+-+---+-+--+-+ A con ta ins + 123 . 4
1-+-l---1-'-.i=.1-+-+=~+.-+-:-_µ+::i=+.:'-1=4-'4=-+-+z+-+=+''-Fl-4=+-'+-'+=+-+'-+-+---+-+--+-+ B con ta ins -12. 3 4

Result: A.1234E2AAAAA-12.34AAAAA-123

Input:

PROGRAMMER

Result: I contains 10
A contains 1. 98
B contains 19. 80

I contains -123

PROGRAM

The H specification provides for the transfer of any combina­
tion of 8-bit ASCII characters, including blanks. n is an un­
signed integer specifying the number of characters to the right
of the H that are to be transmitted. The comma following the
H specification is optional. AH is interpreted as lH. OH is
not permitted.

On output, the ASCII data in the FORMAT statement is written
on the unit in the form of comments, titles, and headings.

)

"h 1h h " r 1 2· .. n

Example:
PROGRAMMER PROGRAM

Result: THIS IS AN EXAMPLE

~Rilf~G~,ll[j)
I 0 FORltllAl~(jSIH~E
Cl~H :rjO,~L

I contains 10
A contains 1. 98
B contains 19. 80

I I A
IGtj
$,

r

,B
Jr T 21, lf6H

F5 .12)
' '

SlATEMENT

PR IJCE l$1, F4 • 21..t_

Result: WEIGHT 10 PRICE $1. 98 TOTAL $19. 80

On input, the data is transmitted from the unit to the FORMAT
statement. A subsequent output statement transfers the new
data to the output record.

Examples:

PROGRAMMER ToATE PROGRAM

c
I

c STATEMENT
0

Label N
T

5 ' '
10 15 20 25 30 J5 40 "

RE AD (5 10)
I !21 FO R"'1 AT (3 IH 1111 1111 1111 All 1111 1111 /\II 1111 /I /I /I /I II/I 1111 1111 1111 1111

jWR IT E (6 I 10)

Input: H INPUT ALLOWS VARIABLE HEADERS

Result: H INPUT ALLOWS VARIABLE HEADERS

50

/I)

This specification also provides for the transfer of any combin­
ation of ASCII characters (except the quotation marks). The
number of characters transmitted is the number of positions be­
tween the two quotation marks; field length is not specified. If
r , an optional repeat count, is present, the character string
within the quotation marks is repeated that number of times.
Commas preceding the initial quotation mark and following the
closing quotation are optional.

7-13

New Record

7-14

Examples:

STATEMENT

Lo<>el

Result: THIS ALSO IS AN EXAMPLE

I I I 11 ~ ~~·~·~~~~ 3 .'.,~~!c"lil ! : ! : I ! ! t : I . 1 1 1 I ! ! ! 11111111111111

Result: ABCABCABC

On input, the number of characters within the quotation marks
is skipped on the input field.

The slash, I, terminates the current record and signals the
beginning of a new record of formatted data. It may occur any­
where in the specifications list and need not be separated from
the other list elements by commas. Several records may be
skipped by indicating consecutive slashes or by preceding the
slash with a repetition factor; r-1 records are skipped for r /.
On output the slash is used to skip lines, cards, or tape records;
on input, it specifies that control passes to the next record or
card.

Examples:

lDAH
c
2
1 C Lo<>el

' 11' '~Rrr rE(TsLt';· 0: [[] "']"] Ji'° l 11" l "

. T C ~HP RI C E1i 9 X , l51Hll 0 TA 0, @X fl i i i . 1 1 1
i

0 r 1 I : I j

1 : 1 : 11. ; ! I

i'!!R I TE (6--'- I 0) _;_ l I • : : ~ I l

C5HPRICE,9X,-[5!HfTOTIAL,~X) 1 I:
I , I . I . I II I

Repeat
Specifications

Result:

line 1 /\/\AAA/\M A/\/\AI\/\/\/\/\/\ /\/\/\/\BUDGET

line 2

line 3

line 4 WEIGHT AA AA AA PRICE AAAAAAAAA TOTALAAA/\/\/\l\A

Repetition of the field descriptors (except nH) is accomplished
by precedingthe descriptor witha repeat count, r . If the in­
put/output list warrants, the conversion is interpreted repeti­
tively up to the specified number of times.

Repetition of a group of field descriptors, including nH is ac­
complished by enclosing the group in parentheses and pre­
ceding the left parenthesis with a group repeat count. If no group
repeat count is specified, a value of one is assumed. Grouped
field descriptors may be nested to a depth of one level.

Examples:
PROGRAMMER DATE

can be written as

I jg! FQR}Ni T (3 I 5)

CF6.2 5X1 1 14)

can be written as
l

~R IT E (4, 1R?X> Au BLL I' c, 01, J
I!?) FjC Rllll ltiT (2 <JEla -~ ,5 x' F6 . 2 , 5 x' 1]4)}

I

A nested repetition specification would be:

The group F6. 2, 5X, I4 would be written five
times, and the entire group, once.

PROGRAM

7-15

i

Unlimited Groups

7.4
FREE FIELD
INPUT

Data Item
Delimiters

7-16

FORMAT specifications may be repeated without use of the
repetition factor. If list elements remain after all specifica­
tions in a FORMAT statement are processed, the rightmost
group of repeated (enclosed in parentheses) specifications is
used. If there is no repeated group, processing resumes with
the first specification in the statement. On output, each time
the rightmost parenthesis in the statement, or in the unlimited
group, is reached, the current record is terminated.

By following certain conventions in the preparation of the input
data, a 2116A FORTRAN program may be written without use
of FORMAT statements. Special symbols included with the
ASCII input data items direct the formatting:

space or,
I
+ -
. E + -
@
" "

Data item delimiters
Record terminator
Sign of item
Floating point number
Octal integer
Comments

All other ASCII non-numeric characters are treated as spaces
(and delimiters). Free field input may be used for numeric data
only. Free field input is indicated in the FORTRAN READ
statement by using an asterisk rather than a number of a FOR­
MAT statement.

Any contiguous string of numeric and special formatting char­
acters occurring between two commas, a comma and a space,
or two spaces, is a data item whose value corresponds to a
list element. A string of consecutive spaces is equivalent to
one space. Two consecutive commas indicate that no data item
is supplied for the corresponding list element; the current value
of the list element is unchanged. An initial comma causes the
first list element to be skipped.

Example:

Input data: 1720, 1966
1980 1492

Result: I contains 17 20
J contains 1966
K contains 1980
L contains 1492

2) PROGRAMMER

lab../

Input data: 1266,, 1794, 2000

Result: I contains 1266
J contains 1966
K contains 1794
L contains 2000

Floating Point
Input

Octal Input

Record
Terminator

The symbols used to indicate a floating point data item are the
same as those used in representing floating point data for FOR­
MAT statement directed input:

integer fraction ~
I I r exponent

~~-n-.--'-.-.~n!~ .. iife'

decimal point
.

If the decimal point is not present, it is assumed to follow the
last digit.

Examples:

Input Data: 3.14, 314E-2, 3140-3, . 0314+2, . 314El

All are equivalent to 3. 14

An octal input item has the following format:

@ xl ... xd

The symbol @ defines an octal integer. The x's are octal
digits each in the range of 0 through 7. List elements corre­
sponding to the octal data items must be type integer.

A slash within a record causes the next record to be read im­
mediately; the remainder of the current record is skipped.

Example:

PROGRAMMER
PROGRAM

7-17

List Terminator

Comments

7-18

Input data: 987, 654, 321, 123/DESCENDING@@
456

Result: II contains 987
JJ contains 654
KK contains 321
LL contains 123
MM contains 456

If a line terminates (with a @ @) and a slash has not been
encountered, the input operation terminates even though all list
elements may not have been processed. The current values of
remaining elements are unchanged.

Examples:

c
2
T

5 5 '

Input Data:

A=7. 987 B=5E2 C=4. 6859E-3@@
J=3456@(.@

Result: A contains 7. 987
B contains 5E2
C contains 4. 6859E-3

J, X, Y, Z are unchanged.

All characters appearing between a pair of quotation marks in
the same line are considered to be comments andare ignored.

Examples:

"6.7321"
6.7321

is a comment and ignored
is a real number

8.1
UNIT-REFERENCE

INPUT/OUTPUT STATEMENTS 8

Input/ output statements transfer information between memory
and an external unit. The unit is specified as an integer vari­
able that is defined elsewhere in the program or an integer
constant.

Each statement may include a list of names of variables, ar­
rays, and array elements. The named elements are assigned
values on input and have their values transferred on output.

Records may be formatted or unformatted. A formatted rec­
ord consists of a string of ASCII characters. The transfer of
such a record requires the specification of a FORMAT state­
ment or free field input data. An unformatted record consists
of a string of binary values.

The integer spec if ied for an input/ output unit is a number which
represents a Standard unit assignment or an installation unit
assignment. The physical device referenced depends on tables
established within the Basic Control System.

The Standard unit numbers are as follows:

Number Name

1 Keyboard Input
2 Teleprinter Output
3 Program Library
4 Punch Output
5 Input
6 List Output

Usual Equipment Type

2752A Teleprintert
27 52A Teleprinter
2737A Punched Tape Reader
27 53A Tape Punch
2737 A Punched Tape Reader
2752A Teleprinter

tlf data is to be printed on the Teleprinter as it is read, Unit­
Reference number 1 must be used; printing occurs with no
other number.

8-1

8.2

FORMATIED
READ, WRITE

8-2

Installation unit numbers may be in the range 7-7 48 with the
largest value being determined by the number of units of equip­
ment available at the installation. Each Standard unit may be a
separate device, or a single device may be accessed by several
Standard unit numbers as well as an installation unit number.t

A formatted READ statement is one of the forms:

READ (u, f)k
READ (u, *)k
READ (u, f)

Execution of this statement causes the input of the next ASCII
records from unit u. The information is scanned and converted
according to the FDR MAT spec if ication statement, f, and as­
signed to the elements of list k. If the input is free field, an
asterisk is specified in the READ statement rather than the la­
bel of a FORMAT statement. If the list is absent, the FORMAT
statement should contain editing specifications only.

A formatted WRITE statement may have one of the following
forms:

WRITE (u, f)k
or

WRITE (u, f)

This statement transfers ASCII information from locations given
by names in the list k to output unit u. The values are convert­
ed and positioned as specified by the FORMAT statement f. If
the list is absent, the FDRMA T statement should contain editing
specifications only.

tFor complete details, see Basic Control System Programmer's
Reference Manual.

8.3

UNFORMATIED
READ, WRITE

8.4
AUXILIARY
INPUT /OUTPUT
STATEMENTS

An unformatted READ statement has one of the forms:

READ (u)k
or

READ (u)

This statement tr an sf ers the next binary input record from the
unit u to the elements of list k. The sequence of values re­
quired by the list may not exceed the sequence of values from
the record. If no list is specified, READ (u) skips the next
record.

An unformatted WRITE statement has the form:

WRITE (u)k

Execution of this statement creates the next record on unit u
from the sequence of values represented by the list k.

There are three types of auxiliary input/output statements:

REWIND
BACKSPACE
END FILE

A REWIND statement has the form:

REWIND u

This statement causes the unit u to be positioned at its initial
point. If the unit is currently at this position, the statement
acts as a CONTINUE.

A BACKSPACE statement is as follows:

BACKSPACE u

8-3

8-4

BACKSPACE positions the unit u so that what had been the pre­
ceding record becomes the next record. If the unit is currently
at its initial point, the statement acts as a CONTINUE.

An ENDFILE statement is of the form:

ENDFILE u

Execution of this statement causes the recording of an end-of­
file record on the output unit u. If given for an input unit, the
statement acts as a CONTINUE.

In addition to the three auxiliary input output statements, a
subroutine may be called to perform file and record spacing on
magnetic tape. The subroutine call is as follows:

CALL PTAPTE (u, f, r)

u Unit-Reference number of tape device

f File spacing:

A positive integer specifying the number of
files to be spaced forward.

A negative integer specifying the number of
files to be backspaced.

r Record spacing:

A positive integer specifying the number of
records to be spaced forward.

A negative integer specifying the number of
records to be backspaced.

Both file and record spacing may be specified in the same call
(e.g., space forward 5 files, then backward 2 records). If file
or record spacing is not to be performed, a zero is supplied as
the parameter.

If backspacing would result in spacing beyond the Start-of-Tape
mark, the spacing operation is terminated and program ex­
ecution resumes. If forward spacing results in spacing beyond
the End-of-Tape marker, the message" *EOT" is printed on the
Standard Teleprinter Output unit. When the operator presses
RUN, program execution resumes.

9.1
CONTROL
STATEMENT

COMPILER INPUT AND OUTPUT 9

The FORTRAN Compiler accepts as input, paper tape contain­
ing a control statement and a source language program. The
output produced by the Compiler may include a punched paper
tape containing the object program; a listing of the source lan­
guage program with diagnostic messages, if any; and a listing
of the object program in assembly level language.

The control statement must be the first statement of the source
program; it directs the compiler.

FTN is a free field control statement. Following the comma
are one to three parameters, in any order, which define the
output to be produced. The control s~me~must be termi­
n_ated by an end-of-statement mark, ~ ~ . Spaces em­
bedded in the statement are ignored.

The parameters may be a combination of the following:

B Binary output: A program is to be punched in relo­
catable binary format suitable for loading by the Basic
Control System loader.

L List output: A listing of the source language program
is to be produced during Pass One.

A Assembly listing: A listing of the object program in
assembly level language is to be produced in the last
pass.

T Symbol table only: A listing of the symbol table only
is produced; if both T and A are specified, only the
last used will be decisive.

9-1

9.2
SOURCE
PROGRAM

9.3
BINARY OUTPUT

9.4

LIST OUTPUT

9-2

The sourceprogramfollowsthe control statement. E~h s~­
ment is followed by the end-of-statement mark, C ~ .
Specifications statements must precede executable s tements.
The last statement in each program submitted for compilation
must be an END statement. Up to five source programs may
be compiled at one time. The last program must be followed
by and END$ statement, if less than six programs are to be
compiled.

The control statement, each of the five programs, and the
END$ terminator may be submitted on a single tape or on sep­
arate tapes. If more than five programs are contained on a
tape, the compiler processes the first five and halts with the
T-Register containing 102077 {end of Pass 1). The remaining
programs must be compiled separately.

The punch output produced by the compiler is a relocatable
binary program. It does not include system subroutines in­
troduced by the compiler, or library subroutines referred to
in the program.

If the List Output parameter is specified, the first 72 charac­
ters of each line of the source program is printed on the List
Output device. The END$ is the last statement printed. If
exactly five programs are compiled, however, the END$ is
omitted from the list.

If the Assembly listing parameter is specified, the program is
printed in assembly level language on the List Output device.
The program listing is followed by a Symbol Table for the as­
sembly level program.

The format for the assembly level listing is as follows:

Columns Content

1-5 Zero-relative location (octal) of the instruction

6-7 Blank

Columns

8-13

14

15

16-18

19

20-25

26-27

Content

Object code word in octal

Relocation or external symbol indicator

Blank

Mnemonic operation code

Blank

Operand address in octal or external symbol name.

The indicator ",I" if indirect addressing is used.

The Symbol Table listing has the following format:

Columns

1-5

6

7

8

9-14

Content

Symbol, statement label, or numeric symbol as­
signed by the compiler.

Blank

Relocation indicator

Blank

The zero-relative value of the symbol

The characters that designate an external symbol or type of
relocation for the operand address or a symbol in the Symbol
Table are:

Character Relocation Base

Blank Absolute

R Program relocatable

x External symbol

c Common relocatable

9-3

9.5
OPERATING
INSTRUCTIONS

9-4

The exact operating procedures for a compilation depend on
the available hardware configuration.

One possible allocation of equipment might be as follows:

Compiler Standard Unit Physical Unit
Input/Out;Eut Designation Assignment

Binary output Punch Output Tape Punch

List output List Output Teleprinter, Line Printer

Control Statement Input Teleprinter

Source tape(s) Input Punched Tape Reader,
Marked Sense Cards

If there are two output devices as shown above, there are two
passes (8K memory) or four passes (4K memory). The list
output and an intermediate binary tape are both produced during
the first pass; the assembly listing and the binary output are
both produced during the last pass.

If one output device is available list output and intermediate
binary output are written on the same tape during the first pass
(the Compiler ignores the list output when reading the binary
data during the second pass). The binary output is then pro­
duced in the next to the last pass; and the assembly listing, in
the last pass.
The compiler determines whether a magnetic tape unit is avail­
able by checking location 107. See the Magnetic Tape System
manual for operating procedures in a magnetic tape environ­
ment (non-4K only).
The following procedures indicate the sequence of steps for
compilation of a source program on paper tape:

A. Set Teleprinter to LINE and check that all equipment to be
used is operable. If the Teleprinter is the only output
device, turn ON punch unit.

B. Load FORTRAN Pass 1 using the Basic Binary Loader:

1. Place FORTRAN binary tape in the device serving as
the Standard Input unit (e.g., Punched Tape Reader).

2. Set Switch Register to starting address of Basic Binary I
Loader. ·

c.

D.

E.

F.

G.

H.

I.

3. Press LOAD ADDRESS.

4. Set Loader switch to ENABLED.

5. Press PRESET.

6. Press RUN.

7. When the computer halts and indicates that the FOR­
TRAN tape is loaded (T-Register contains 102077),
set Loader switch to PROTECTED.

If the System Input/Output (SIO) subroutines are on a tape
which is separate from FORTRAN Pass 1, load the tape
using the Basic Binary Loader as in Step B.

Set Switch Register to starting address of FORTRAN
Pass 1: 000100 (non-4K has optional starting address of 50
to enter control .statement through teleprinter).

Press LOAD ADDRESS

Place source language tape in device serving as the Stand-
ard Input unit (e.g., Punched Tape Reader).

Press RUN.

If more than one source tape (halt with T-register = 102057),
repeat Steps F and G for each tape {102002 in 4K).

Perform either of the following depending on memory size:

4K Memory

1. At end of Pass 1 (T-Register contains 102077) load
Pass 2 using the Basic Binary Loader as in Step B.

2. Remove binary output from Standard Punch device and
place in device serving as the Standard Input unit. (If
only one output device, both binary and list output are
on the same tape.)

3. Set Switch Register to: 000100

4. Press LOAD ADDRESS

5. Press RUN

9-5

J

I

I

9-6

6. At end of Pass 2 (T-Register contains 102077), load
Pass 3 using the Basic Binary Loader as in Step B. ·

7. Remove binary output from Standard Punch device and
place in device serving as Standard Input unit.

8. Set Switch Register to: 000100

9. Press LOAD ADDRESS.

10. Press RUN.

11. At end of Pass 3 (T-Register contains 102077), load
Pass 4 using the Basic Binary Loader as in Step B.

12. Remove binary output from Standard Punch device and
place in device serving as Standard Input unit.

13. Set Switch Register to: 000100.

14. Press LOAD ADDRESS.

15. Press RUN.

16. At end of Pass 4, the relocatable binary object tape
is on the Standard Punch unit. Either of the follow­
ing conditions may exist:

a. If the T-Register contains 102077, the compila­
tion is complete. If an assembly listing was re­
quested, it is on the List Output Device.

b. If the T-Register contains 102001, an assembly
listing pass is to be performed:

(1) Place binary output from Pass 3 in device
serving as Standard Input unit. (Turn off
Teleprinter punch unit.)

(2) Press RUN.

(3) At end o(listing pass, T-Register contains
102077.

8K Memory

1. At end of Pass 1 (T-Register contains 102077), load
Pass 2 using the Basic Binary Loader as in Step B.

2. Remove binary output from Standard Punch device and
place in device serving as the Standard Input Unit. (If
only one output device, both binary and list output are
on the same tape.)

3. Set Switch Register to: 000100

4. Press LOAD ADDRESS.

5. Press RUN.

6. At end of Pass 2, the relocatable binary object tape is
on the Standard Punch unit. Either of the following
conditions may exist:

a. If the T-Register contains 102077, the compila­
tion is complete. If an assembly listing was re­
quested, it is on the List Output device.

b. If the T-Register contains 102001, an assembly
listing pass is to be performed:

(1) Place binary output from Pass 1 in device
serving as Standard Input unit. (Turn off
Teleprinter punch unit.)

(2) Press RUN.

(3) At end of listing pass, T-Register contains
102077.

J. The Basic Control System Loader is used to load the ob­
ject programs generated by FORTRAN and any referenced
library routines. Listed below is a summary of proce­
dures for normal loading of relocatable object programs
and library routines (and for the printing of a Memory
Allocation Listing): t

t See Section 9 .8 for details and options.

9-7

9-8

1. Load the Basic Control System tape using the Basic
Binary Loader as in Step B.

2. Set Switch Register to 000002, press LOAD ADDRESS,
and set Switch Register to 000000.

3. Place FORTRAN or Assembler generated relocatable
object tape in device serving as Standard Input unit.

4. Press RUN. The loader types "LOAD" when the tape
is loaded.

5. If more than one relocatable object tape is to be loaded,
repeat Steps J3 andJ4 for each. Otherwise, set Switch
Register to 000004 to load library routines.

6. Place FORTRAN library tape in device serving as
Program Library unit.

7. Press RUN. When the loading operation is complete,
the Loader types "*LST". Press RUN to print Loader
Symbol Table. When the Loader types "*RUN", the
program is ready for execution.

8. Press RUN to initiate execution.

During the operation of the Compiler, the following halts may
occur:

T-Register Explanation

102000 Memory overflow: the
program is too large;
has too many symbols

102001 End of binary object
tape output, start of
assembly listing.

102002 End of source tape.
(4K compiler)

Action

Irrecoverable error;
program must be re­
vised.

If only one output de­
vice, place intermedi­
ate binary output from
previous pass inStand­
ard Input unit and
press RUN.

Place next input tape in
reader.

T-Register

102007

102010

102011

102027

102057

Explanation

For all passes except
first, unrecognizable
record on intermediate
binary tape:
1) Punch error on pre­

vious pass.
2) Wrong tape supplied

as input for pass.

External symbol table
overflow: the number
of symbols exceeds
255.

Checksum error on in -
termediate tape; indi­
cates probable punch
error.

Action

If punch error, restart
with Pass 1.

If wrong tape, restart
current pass:
a) Load FOR TRAN

pass.
b) Set Switch Register

to 000100,
c) Press LOAD AD­

DRESS.
d) Place previous in­

termediate binary
tape in input device.

e) Press RUN.

Irrecoverable error;
program must be re­
vised.

Attempt to re-read
record (binary records
are separated by 4 feed
frames). Otherwise,
restart with Pass 1.

If a magnetic tape is (irrecoverable).
used for intermediate,
indicates MT parity
error or write not en -
ab led

A Magnetic Tape Read Restart.
error has occurred
during Pass 2.

End of source tape. Place next input tape
in reader.

9-9

9.5.1

SWITCH

REGISTER

BITS

9-10

T-Register

102066

102077

Explanation

Tape supply low on
2753A Tape Punch.

Normal end of pass or
compilation.

Action

Load new tape and
press RUN.

Proceed as indicated
in above steps.

For diagnostic messages that might occur during loading see
the Basic Control System Programmer's Reference Manual.
Diagnostics are also issued by the input/output system pro­
vided by FORTRAN and by the FORTRAN library routines
(Section 9. 9).

If bit 0 is set during pass 2 (or pass 4 in 4K), the compiler
suppresses leader and trailer on punch out. I

9.6

DIAGNOSTIC
MESSAGES Errors detected in the source program are indicated by a nu­

meric code inserted before or after the statement in the List
Output.

The format is as follows:

E-eeee: ssss + nnnn

eeee

ssss

nnnn

Error
Code

0001

The error diagnostic code shown below.

The statement label of the statement in which
the error was detected. If unlabeled, 0000 is
typed.

Ordinal number of the erroneous statement
following the last labeled statement. (Com­
ment statements are not included in this
count.)

Description

statement label error:

a) The label is in positions other than 1-5.
b) A character in the label is not numeric.
c) The label is not in the range 1-9999.
d) The label is doubly defined.
e) The label indicated is used in a GO TO, 00, or

IF statement or in an I/O operation to name a
FORMAT statement, but it does not appear in
the label field for any statement in the program
(printed after END).

0002 Unrecognized Statement:

a) The statement being processed is not recognized
as a valid statement.

b) A specifications statement follows an executable
statement.

c) The specification statements are not in the follow-
ing order:

DIMENSION
COMMON
EQUIVALENCE

d} A statement function precedes a specification I
statement.

9-11

9-12

Error
Code Description

0003 Parenthesis error: There are an unequal number of
left and right parentheses in a statement.

0004 Illegal character or format:

a) A statement contains a character other than A
through Z, 0 through 9, or space =+-/ (), . $ ".

b) A statement does not have the proper format.
c) A control statement is missing, misspelled, or

does not have the proper format.
d) An indexing parameter of a DO-loop is not an

unsigned integer constant or simple integer var­
iable or is specified as zero.

0005 Adjacent operators: An arithmetic expression con­
tains adjacent arithmetic operators.

0006 Illegal subscript: A variable name is used both as a
simple variable and a subscripted variable.

0007 Doubly defined variable:

a) A variable name appears more than once in a
COMMON statement.

b) A variable name appears more than once in a
DIMENSION statement.

c) A variable name appears more than once as a
dummy argument in a statement function.

d) A program, subroutine, or function name appears
as a dummy parameter; in a specifications state­
ment of the subroutine or function; or as a simple
variable in a program or subroutine.

D008 Invalid parameter list:

a) The dummy parameter list for a subroutine or
function exceeds 63.

b) Duplicate parameters appear in a statementfunc­
tion.

0009 Invalid arithmetic expression:

a) Missing operator
b) Illegal replacement

0010 Mixed mode expression: integer constants or variables
appear in an arithmetic expression with real constants
or variables.

Error
Code Description

0011 Invalid subscript:

a) Subscript is not an integer constant, integer var­
iable, or legal subscript expression.

b) There are more than two subscripts (i.e., more
than two dimensions.

c) Two subscripts appear for a variable which has
been defined with one dimension only.

0012 Invalid constant:

a)

b)

c)

An integer constant is not in the range of -215 to
215 -1.
A real constant is not in the approximate range of
1038 to 10-38.
A constant contains an illegal character.

0013 Invalid EQUIVALENCE statement:

a) Two or more of the variables appearing in an
EQUIVALENCE statement are also defined in the
COMMON block.

b) The variables contained in an EQUIVALENCE
cause the origin of COMMON to be altered.

c) Contradictory equivalence; or equivalence between
two or more arrays conflicts with a previously
established equivalence.

0014 Table overflow: Too many variables and statement
labels appear in the program.

0015 Invalid DO loop:

a) The terminal statement of a DO loop does not ap­
pear in the program or appears prior to the DO
statement.

b) The terminal statement of a nested DO loop is not
within the range of the outer DO loop.

c) DO loops are nested more than 10 deep.
d) Last statement in a loop is a GO TO, arithmetic

IF, RETURN, STOP, PAUSE, or DO.

9-13

9.7
OBJECT
PROGRAM
LOADING

9-14

Description Error Code

0016 Statement function name is doubly defined.

If absolute binary output was specified, the Basic Binary Loader
is used to load the object program tape.

If relocatable binary output was specified, the BCS Relocating
Loader is used to load the object program tape. If the program
refers to other Assembler or FORTRAN generated object pro­
grams, these tapes are loaded by the Relocating Loader at the
same time. In general, the FORTRAN Library tape must be
submitted for loading also.

Listed below are summaries of procedures for normal loading
of object programs:

BASIC BINARY LOADER
OPERATING PROCEDURES SUMMARY

A. Place binary object tape in Standard Input unit.

B. Set Switch Register to starting address of Basic Binary
Loader (e.g., 007700for4K memory, 017700 for 8K mem­
ory).

C. Press LOAD ADDRESS.

D. Set LOADER switch to ENABLED.

E. Press PRESET.

F. Press RUN.

G. When the computer halts with T-Register containing
102077, set LOADER switch to PROTECTED.

H. Set Switch Register to starting address of object pro­
gram.

I. Press LOAD ADDRESS.

J. Check that all I/ 0 devices are ready and loaded for op­
eration of the program.

K. Press RUN.

BASIC CONTROL SYSTEM LOADER
OPERATING PROCEDURES SUMMARY

A. Load the Basic Control System tape using the Basic Bi­
nary Loader.

B. Set Switch Register to 000002, press LOAD ADDRESS,
and set Switch Register to 000000.

C. Place Assembler (or FORTRAN) generated relocatable
object tape in Standard Input unit.

D. Press RUN. The loader types "LOAD" if it expects an­
other relocatable or library program.

E. If more than one relocatable object tape is to be loaded,
repeat Steps C and D for each. Otherwise, set Switch
Register to 000004 to load library routines.

F. Place FORTRAN Library tape in device serving as Pro­
gram Library unit.

G. Press RUN. When the loading operation is complete, the
Loader types "*LST". Press RUN. The Loader types
"*RUN" indicating the program is ready for execution.
(See the Basic Control System Programmer's Reference
manual for error message.)

H. Press RUN to initiate execution.

9-15

9.8
OBJECT PROGRAM
DIAGNOSTIC
MESSAGES

Teleprinter
Message

During execution of the object program, diagnostic messages
may be printed on the Teleprinter Output unit by the input/ output
system supplied for FORTRAN programs. When a halt occurs,
the A-Register contains a code which further defines the nature
of the error: ·

A-Register Explanation Action

*EQR Unit Number Equipment Error: End
of input tape on 2752A
Teleprinter or 2737 A
Punched Tape Reader;
tape supply low on
2753A Tape Punch. B­
Register contains sta­
tus word of Equipment
Table entry.

Place next tape in in­
put device, or for Tape
Punch, load new reel
of tape. Press RUN.

*FMT 000001

*FMT 000002

9-16

FORMAT error:
a) w or d field does

not contain proper
digits.

b) No decimal point af­
ter w field

c) w-d ~ 4for E speci­
fication.

a) FORMAT specifi­
cations are nested
more than one level
deep.

b) A FORMAT state­
ment contains more
right parentheses
than left parenthe­
ses.

Irrecoverable error;
program must be re­
compiled.

Irrecoverable error;
program must be re­
compiled.

Teleprinter
Message

*FMT

*FMT

*FMT

A-Register

000003

000004

000005

Explanation

a) Illegal character in
FORMAT state-
ment.

b) Format repetition
factor of zero.

c) FORMAT statement
defines more char­
acter POSITIONS
than possible for
device.

Illegal character in
fixed field input item
or number not right­
justified in field.

A number has an illegal
form (e.g., two E's,
two decimal points,
two signs, etc.)

Action

Irrecoverable error;
program must be re­
compiled.

Verify data.

Verify data.

9-17

9-18

During the execution of an object program referring to the
FORTRAN library routines, the following e.rrors codes may be
printed on the Teleprinter Output unit when error conditions are
encountered by the specified subroutine:t

Error Code Subroutine Condition

02 UN ALOG a~ 0

03 UN SQRT a<O

04 UN .RTOR x = 0' y~O

x < 0' Y""-0

05 OR SIN, COS lal > 214

06 UN .RTOI x == 0' i ~ 0

07 OF EXP l~I *log2e ~ 124

08 OF .ITO! il out of range

08 UN . !TOI i=O,j~O

09 OR TAN lal > 214

UN = Floating point underflow

OF = Integer or floating point overflow

OR Out of range

t For complete details, see FORTRAN Library Routines manual.

'· I
I

HP CHARACTER SET A

ASC II CHARACTER FORMAT

~ 0 0 0 0 I I I I

~ 0 0 I I 0 0 I I

b5 0 I 0 I 0 I 0 I

b4

j
b3

1
b2

i ~I
0 0 0 0 NULL DCo ti 0 @ p - - -~I-0 ·o 0 I SOM oc, ! I A Q

-- -
0 0 I 0 EOA DC2 " 2 B R __ u _
0 0 I I EOM DC 3 * 3 c s N

DC4 - -- --A-
0 I 0 0 EOT $ 4 D T (STOP) -U- --S-
0 I 0 I WRU ERR O/o 5 E u N s - A - --,-
0 I I 0 RU SYNC a 6 F v

-S- --G -
0 I I I BELL LEM lAPOSl 7 G w s N - I - --E -
I 0 0 0 FEo So (B H x

-G -

[I 0 0 l~K S1) 9 I y N
I 0 I 0 LF S2 : J z -E-

-D- -
I 0 I I VrAB S3 + ; K [

I I 0 0 FF S4 1coi.t~ < L \ ACK - -rw-I I 0 I CR S5 - = M J - -t-=-
I I I 0 so S5 > N ' ESC - - t-oEL I I I I SI S7 I ? 0

Standard 7-bit set code positional order and notation are shown below with b, the high-order
and b 1 the low-order, bit posiHon.

EXAMPLE: The code for "R" is:

LEGEND

NULL Null/Idle DC,-DC3 Device Control
SOM Start of message DC4(Stop) Device control (stop)
EOA End of address ERR Error
EGM End of message SYNC Synchronous idle
EOT End of transmission LEM Logical end of media
WRU "Who are you?" So-S1 Separator (information)
RU "Are you ... ?"

t, Word separator (space, normally
BELL Audible signal non-printing)
FEo Format effector < Less than
HT Horizontal tabul~tion > Grea.ter than
SK Skip (punched card) + Up arrow (Exponentiation)
LF Line feed Left arrow (Implies/Replaced by)

VTAB Vertical tabulation \ Reverse slant
FF Form feed ACK Acknowledge
CR Carriage return Q) Unassigned control
so Shift out ESC Escape
SI Shift in DEL Delete/Idle
DCo Device control reserved for

data I ink escape

A-1

FORTRAN STATEMENTS AND FUNCTIONS

Executable Statements

Assignment

v = e

Statement Function

f(a1, a 2, ... ,an) = e

Control

CALL s

CALL s (a1, a 2, ... , an)

CONTINUE

DO n i = m 1, m 2, m3

END

END$

GO TOk

GO TO (k1, k2, ... ,kn)' i

IF (e) k1, k2, k3
IF (e) k1, k2
PAUSE; PAUSE n

RETURN

STOP; STOP n

Input/Output

BACKSPACE u

ENDFILE u

READ (u)

READ (u)k

READ (u,f)

READ (u, f)k

B

Page

3-4

6-9

6-4

6-4

5-9

5-3

5-10, 6-12

5-10, 6-12

5-1

5-1

5-2

5-3

5-9

6-12

5-9

8-3

8-3

8-3

8-3

8-2

8-2

B-1

B-2

READ (u, *)k

REWIND u

WRITE (u)k

WRITE (u, f)

WRITE (u, f)k

Nonexecutable Statements

Specification

DIMENSION v1 (i 1), v2(i2), ... , vn(in)

COMMON a 1, a2, ... , an

Format

8-2

8-3

8-3

8-2

8-2

4-1

4-2

4-5

FORMAT (spec1, ... ,r(spec , ...),spec, ...) 7-4
m n

Subprogram

FUNCTION f (a1, a 2, ... , an)

PROGRAM name

SUBROUTINE s

SUBROUTINE s (a1, a 2, ... , an)

6-5

6-2

6-3

6-3

Functions

Function Symbolic No. of
Type of

Name Definition Name Arguments Argument Function

Absolute Value lal ABS 1 Real Real
IABS 1 Integer Integer

Float Conversion FLOAT 1 Integer Real
from in-
teger to
real

Fix Conversion IFIX 1 Real Integer
from real
to integer

Transfer sign Sign of a 2 SIGN 2 Real Real
times la11 ISIGN 2 Integer Integer

Exponential ea EXP 1 Real Real
Natural loge (a) ALOG 1 Real Real

Logarithm
Trigonometric sine (a)t SIN 1 Real Real

Sine
Trigonometric cos (a)t cos 1 Real Real

Cosine
Trigonometric tan (a)t TAN 1 Real Real

Tangent
Hyperbolic tanh (a) TANH 1 Real Real

Tangent
I (a)l/2 Square Root SQRT 1 Real Real

Arctangent arctan (a) ATAN 1 Real Real
And (Boolean) al" a2 IAND 2 Integer Integer
Or (Boolean) al v a 2 IOR 2 Integer Integer
Not (Boolean) 1a NOT 1 Integer Integer
Sense Switch Sense Switch !SSW 1 Integer Integer

Register
Switch (n)

t a is in radians

B-3

FORTRAN
REFERENCE

ASSEMBLY LANGUAGE SUBPROGRAMS c

A FORTRAN program can refer to a subprogram that has been
prepared using Assembler source language. The subprogram
may be treated as a subroutine or as a function. The object
code programs generated by FORTRAN and by the Assembler
are then linked together by the Basic Control System Relocating
Loader when the programs are loaded.

In the FORTRAN program, a subroutine is called using the fol­
lowing statement:

The symbolic name, s, identifies the subroutine and the a' s are
the actual arguments.

If the subprogram is a function, it is referenced by using the
name and the actual arguments in an arithmetic expression:

As a result of either the call or the reference, FORTRAN gen­
erates the following coding sequence:

JSB s/f
DEF*+n+l
DEF a 1
DEF a 2

DEF a
n

Transfers control to subroutine or function
Defines return location
Defines address of a 1
Defines address of a2

Defines address of a
n

The words defining the addresses of the arguments may be di­
rect or indirect depending on the actual arguments. For exam­
ple, an integer constant as an actual argument would yield a
direct reference; an integer variable might yield an indirect
reference.

C-1

DIRECT TRANSFER
OF VALUES

C-2

If the subprogram being referenced isa subroutine, it may re­
turn none, one, or more than one value through its arguments
or through common storage. If the subprogram is a function,
it is assumed to return a single value in the accumulators: a
function of type integer returns a value in the A-Register; a
function of type real returns a value in the A- and B-Registers.

The subprogram may transfer values directly by accessing the
words in the calling sequence or it may make use of the FOR­
TRAN library subroutine . ENTR to aid in the transfer.

Any suitable technique may be used to obtain or deliver values
for the arguments and to return control to the calling program.
If address arithmetic is used in conjunction with an argument
(e.g., to process elements of an array), the base location must
be a direct reference; the location given in the calling sequence
must be checked to determine if it is a direct or indirect ref­
erence. If it is an indirect reference the location to which it
points must also be checked, and so forth.

Example:

PROGRAMMER PROGRAM

'"""' Operation Opecand Comments
I s IO IS 45

N ~ l~M SUB
EINT AIM SUB

IAIM SUB NjgP AjMSUB TO CONT Al N ADDR OF 1" 1*l+N+ I ' H
LD~I A~ SU Bu_l
Sj!JA RE TRN

A CONTAINS VALUE OF 1 " 1*+N~l 1"
RETRN CONTAINS V LUE jQF *+N+I~.

NX TAG ISZ A~ SUB AMSUB C~NTAINS ~IDDR OF LO~A~IION
LOA ~s UB
CP~I RE TRN

QF ARGU~ENffi TEST IF LL ARGU- i
~ENTS PROCESSED IC10IMP]ARE VA~1UE i

JMP RE TR NI I]Q_F f'' *J±JN+ I rNITH ADDR F CURRENT i
LOIC1ATIOIN OF IARGU ENT. IF EQUAL I

PR SAG RETURN TO C]AIL-LING PRIOJURAIM, IF NOT ,I
PR CESS ARGU~ENT AS RE~UI~E[Q. I

LOA ~MSUB,I A CONTAINS LOC~TION vF ARGU~ENT.
LOA ~~I LO~D gNE-~ORD (FIXED PgINT)

VALUE INTO A.

LO~ ~~SUB,I L ~D T~-~ORD (FLOATING POINT)

DLD 0, I VA LUE IN TO ~ AND Bl'' ll I
I I ·-

LD~ A~ SU B, I ST ORE ON E-~o RD VA LUJE IN AR1G U'M ENT
STA OU T~D LO CA TI ON.
LDA w1 VAL i
STA]Qju T~ DI I ' ' '

i
T

LDA ~s UB I I ST ORE T 0-~o RD IN AR GU ME Nff1
STA plu TAD LO CA TI ON s. l i

DLD 2V AL ' i

DST OU TA DI I

LDA A~ SU BLLI A c]Q_ NT AI NS AD DR OF LO CA TI ON OF
SSA AR GU ME NT. TO DE TE RM INE IF REF IS
JMP *+2 IN DI REC • TE ST BIT I 5. IF ON E •
JMP *~5 SET TO ZE RO ~ IT H AN D • I,) HE N LO AD
AND AN MSK A ~I TH RE FE RE NC ED L OC IO N. l
LOA I I RE PE AT TE sl!J ~ I IIJ H NE XT R EF H EN
J~P *-5 DI RE CT REF EN co UN TE RE D' PR QC EEDI

/~N Ms K IQCT ~7 77 77 ~I TH PR OC ES SI NG.

.
JMP NX TAG RE TU RN TH RO UGH HE RE ~H EN NE XT

RE TRN B s 1 AR GU ME NT IS RE QU IR ED. '

/QU TAD BSS I
~1 VAL BSS I
~2 VAL BSS 2 I

END
I

IO 30

The preceding example assumes that each argument is proc­
essed or partially processed before the next is obtained or
delivered. Control returns to the calling program when all
arguments have been picked up or delivered.

i

I
I

I i
' I
'

j_

I

I

I
I

I
I

I
I

I
I

I
I

I
I

I
! I

I I
I

I
I

' I
' I

I
I

I
I

I I
I
I

I
I

I
I

I
I

I
I

I
I

C-3

TRANSFER
VIA .ENTR

C-4

The transfer of values to or from the locations listed in the
calling sequence maybe facilitated through use of the FORTRAN
library subroutine . ENTR. This subroutine moves the addres­
ses of the arguments into an area reserved within the Assembly
language subroutine. The addresses stored in the reserved area
are all direct references; . ENTR performs all the necessary
direct/indirect testing, etc. It also sets the correct return
address in the entry point location.

The general form of the subroutine is:

a
s

NAM s
ENT s
EXT .ENTR
BSS n
NOP

JSB .ENTR
DEF a

(First instruction)

JMP s, I
END

The subroutine name is s.

. ENTR must be declared as external.
Reserves n words of storage for the
addresses of the arguments; this pseudo
instruction must directly precede the
entry point location, s .

Defines first location of area used to
store argument addresses.

Example:

PROGRAMMER

STATEMENT

label Operolion OP" rand Comm~nts
I 5 10 " 20 25 30 " '° " "' NIAIM lAM SUB I

I

E~T Ms UB
EXT .E NTR

~GMTS BSS 5
NjgP

Ntr]R JSB .E
~"'1SUB

DEF GIM IS
P~SA~ PROCESS ARGU~ENTS AS REQUIRE~

PICK UP VALUE OF FIRST ARGU~ENT

D~D !AGJMjTSft]I 'I PICK UP iVIALUE [qF SEICIOIND AjRGUIMENTI

~DA ~IVAL STORk VALUE F~R THIRD ARGUMENT
ST\A ~GMTSf+2, I

OLD 2VAL STOR~ ALUE F ~ FOUIRTH ARGU~Er>,IT I
DST ~GjMTS+3u_I

AMSUB I
~IVAL ~SS
~2VAL 855 2

END
"

Ji
i I

I '
I

PICK UP ~bhR~SS PFI FIF.ttl:!! ~RGµMIEN~

~IETURN TO C~L~ING PROGR~M

l
I

-·-·}...+-!,-4....~\-+-i\-+-i~--l--4__,_.~__,_.-4-1--1--4-4--4-

l
30

C-5

SAMPLE PROGRAM D

Using Simpson's rule, calculate the value of the integral:

a

for the following possible values:

Variable Range of Values

a -6. 99 to +6. 99

b -6. 99 to +6. 99

6X -. 25 to +. 25

Simpson's rule for approximating a definite integral is:

b

J f(x)dx = t:...3x (f(a)+4f(a+6x)+2f(a+26x)+4f(a+36x)+ ... +f(b)

a

The last term is reached when (a+k6x)=b , and when neither a
2 nor a 4 appears in front of the first or last term.

D-1

D-2

START

-- - -, _____,
READ

A, B, AX

LAST TERM
LIMITS

K = (BA-l)

INCREMENT DO: ________ _.,. N = N + 1

TERM=

COS F A+ N*AX
A+ N*AX

SUM= SUM+
C* TERM

c = 4.

YES

YES

SAMPLE PROGRAM
FLOWCHART

c = 4.

SUM= SUM+
TERML

SUM = SUM* A3X

PRINT:
SUM

c = 2.

END

P~OGRAMMER DAH PROGRAM

~
STATEMENT

c Lo~I

' 5 ,,
" '° " JC " '° "

FTN~ u_L~~I : T 1 T I T I I
I

PROG RAM sr.-iPsN T ' ! l IT' I_;_
READ (1 1_,@_) A B DEL TX 1 ~ I

I

10 FOR_M ~T(2E 8. 2__,_E 7. 2) I '
I

;

TE~ L=cos (B) ll6]
siuM= COS(A) /A;

'
I

I Kl= (B -A) ID ELTX J_
I

+ Cl= 4. I ' T l
I=K+1 ' ' I

I

D10 60 'N= 1 11 I I ' T I

FiN= N I I I I I

I!F(IN -Kl20 20 70 I
!

I

20 TIERM =COS(A+FN "DE LTX)!/.(.A+ FJ'J*ID EUT Xl
IIF(T ERM-T ERML) 3'0 '17!2) ,30 I I !

30 S1UM= SUM+C *TER"'1 jT I I

I IF(1C -4·.) 5 ~ ,4,0
40 C=2,.

' GO lTO 60 I

-'-:
50 C=4. i

,60 JCONiT INUE : T

70 SUM= SUM+T ERML
80 SU M= (SUM* DELT

l I ~R I_;_T E(2...1_!9 ~) 1 IS
T 9~ FO RM AT(II s u~ -'" -,

ST10P l
ENID
EN D$ T

I I
!

I

I ' I

i I

11
I

! I I

I

t l I I

'l '
101t1~0NE

'5!0
~

I

I I I

! I i

I :
! I

I

! I
! i

!XU 3. I I 'l
[~M I I

!

J_E18 . 2) ! J_ i I l
: I TJ l

' I
I

l

!
I

I ! T
l

I :)T I
I I I '

! I

I ~
-'-
i

1 I

l I

1
LINE TERMINATED BY RETURN, LINE fEED (R, LFI

LINE IS DEl.ITED BY RUBOUT BEFORE R/Lf

I i !

'
I

I
.

l I

I I i

i I

i

I

I

I I

50

. r
T

i l
I

I
I
I

I

j I I I

I I 'l
T 1

I I

l !

I I

'-'- I

1 i

I

! l
'

I I

I ' I

I I !
I

I
!

I
' i i

i IT i I

I I
' I _j_ i

i
I I
I

I I i
T1 T

I i
i

D-3

D-4

SOURCE PROGRAM LISTING

FTN181L1A
PROGRAM SMPSN
READCl110> A181DELTX

10 FORMATC2E8•21E7•2>
TERML=COSCB>/B
SUM=COSCA>/A
K=CB-A>/DELTX
C=4•
I=K+l
DO 60 N=l1I
FN=N
IFCN-K>20120170

20 TERM=COSCA+FN•DELTX>/CA+FN•DELTX>
IFCTERM-TERML>30170130

30 SUM=SUM+C•TERM
IF<C-4·>50140150

40 C=2 •
GO TO 60

50 C•4•
60 CONTINUE
70 SUM=SUM+TERML
88 SUM=<SUM•DELTX>/3•

WRITEC2198> SUM
90 FORMAT<"SUM="1E8·2>

STOP
END
ENDS

OBJECT PROGRAM LISTING
Assembly Level Language

PAGE 0001 SMPSN

, 000000 BSS 000000
01811 000000 OCT 000000
00181 fll62314R l.DA 000314
00182 106404 OCT 006404
00013 ll6001X JSB .e10.
00004 ll0277R DEF' 000211 .. 1
00005 l88300R DEF' 000300 .. I
00006 816802X JSB ·IOR•
00007 ll6803X JSB ·DST
08018 118246R DEF' 000246
01011 ll6112X JSB ·IOR·
08012 116113X JSB ·DST
10013 881258R DEF' 100251
18814 ll6112X JSB • IOR•

"'" l 5
ll6113X JSB .osT

111816 01H252R 8EF' 008252

""' 17
12631lR JMP 801311·1

11021 124041 OCT 12484flJ
18121 131185 OCT 831105
flJl022 034856 8CT 034056
00023 8318 54 OCT 131054'
1111824 142467 OCT 142467
IHJ025 127162 OCT 827062
01126 124400 OCT 124400
6HHJ27 I l 60lUX JSB •ILD
08138 008250R DEF' 111250
IH831 I l 6005X JSB COS
08032 816006X JSB ·F'DY
01033 flJ00250R DEF' 811151
08034 016013X JSB ·DST
88835 80il254R DEF' 00125 ..
08036 016814X JSB •DLD
80137 010246R DEF 188246
091-48 8l6885X JSB cos
018-41 ll6086X JSB ·F'DV
881-42 8812-46R DEF' 8802-46
08843 8l6883X JSB .osT

"'" 4'4
81f!J256R DEF' 108256

81fU5 I l610'4X JSB eDLD
81146 1812 58 R DEF f1Jf!J0251
191'47 8168f!J7X JSB eF'SB
81850 811246R DEF 888246
11151 116816X JSB eF'DV
•1•52 lle252R IE' 11115e

D-5

00053 816818X JSB I F'I X
00054 072260R STA 000260
00055 016004X JSB ·DLD
00056 000315R DEF' 000315
00057 0 l 6003X JSB ·DST
00060 000261R DEF' 000261
80061 062260R LDA 000260
00062 042314R ADA 000314
00063 072263R STA 000263
00064 062314R LOA 000314
80065 072264R STA 000264
00066 062264R LOA 000264
00067 016011 x JSB F'LOAT
00078 016803X JSB ·DST
08171 88026SR DEF" 81HJ26S
00872 86226 .. R LDA IHUJ26"
00073 00308 .. OCT 80388 ..
80074 042260R ADA 000260
00075 003004 OCT 003004
00076 002020 OCT 002020
00077 126302R JMP 000302.11
00100 002002 OCT 002002
00101 l26303R JMP 000303.1 I
00102 126302R JMP 000302.1 I
00103 016004X JSB oDLD
00104 080265R DEF' 000265
00105 016012X JSB eF'MP
80106 000252R DEF' 000252
80107 016013X JSB •F'AD
80110 000246R DEF' 0002 .. 6
80 1 1 1 016003X JSB ·DST
80112 000271R DEF' 000271
80113 016005X JSB cos
0011 .. 016003X JSB .DST
80115 000273R DEF' 000273
00116 0 l 6004X JSB ·DLD
80117 000265R DEF' 000265
10120 016012X JSB .F'MP
80121 000252R DEF' 000252
80122 016013X JSB ·F'AD
00123 000246R DEF' 000246
80124 016003X JSB ·DST
80125 000275R DEF' 000275
80126 016004X JSB eDLD
80127 000273R DEF' 000273
80130 016006X JSB ·F'DV
80131 000275R DEF' 000275
80132 016003X JSB ·DST
80133 000267R DEF' 000267
00134 016007X JSB eF'SB
00135 00025 .. R DEF' 000254
00136 002020 OCT 002020
00137 126304R JMP 000304.11
0014'9 182112 OCT 082812

D-6

01/JUl 126394'R JMP 898314'• I
00142 126303R JMP 008313• I
00143 016004X JSB .OLD
00144 000261R DEF' 000261
10145 016012X JSB eF'MP
801"6 000267R DEF" 000267
801 "7 0160l3X JSB eF'AO
80150 000256R DEF' 000256
10151 016003X JSB ·DST
li!J0152 000256R DEF' 000256
10153 0 l 6004X JSB ·DLD
10154 000261R DEF' 000261
10155 016007X JSB ·F'SB
80156 000315R DEF' 000315
80157 002020 OCT 002020
80160 126305R JMP 00030511
11161 882112 OCT fH2812
11162 126385R JMP 018 38 5• I
80163 126316R JMP 118316•1
1016"4 816184'X JSB •l>LD
10165 000317R DEF' 008317
10166 016003X JSB ·DST
10167 000261R DEF' 000261
80170 126307R JMP 00030711
00171 016004X JSB ·DLD
80172 000315R DEF' 000315
80173 0 l 6003X JSB ·DST
8017.ti 000261R DEF' 000261
80175 06226/CR LOA 000264
80176 80200" OCT 002004
80177 072264R STA 000264
10200 003004 OCT 00300'4
10201 042263R ADA 000263
f/J0202 002021 OCT 002021
80203 026066R JMP 000066
10204 016004X JSB ·DLD
10205 000256R DEF' 000256
1!10206 016013X JSB ·F'AD
00207 000254R DEF' 000254
80210 016003X JSB ·DST
80211 000256R DEF' 000256
10212 016004X JSB eDLD
80213 000256R DEF' 000256
80214 016012X JSB eF'MP
10215 000252R DEF' 000252
fi!J0216 016006X JSB ·F'DV
10217 000321R DEF' 000321
10220 016003X JSB ·DST
10221 000256R DEF" 000256
10222 062323R LOA 000323
10223 006400 OCT 006400
00224 016001X JSB .010.
00225 1003llR DEF" 00031 l• l
00226 111312R DE, 118312• l

D-7

11227 116114X JSB eDLD
11231 1112S6R DEF' 111256
11231 016002X JSB ·IOR·
11232 01601.1\X JSB ·DTA·
11233 126313R JMP 000313•1
18234 024040 OCT 024041
18235 121123 OCT 021123
18236 052515 OCT 052515
IHJ237 036442 OCT 036442
11240 026105 OCT 026105
18241 034056 OCT 034056
11242 031051 OCT 031051
11243 002400 OCT 0riJ2401
11244 0 l 60 l 5X JSB .sToP
11245 01601 SX JSB ·STOP
18246 000000 BSS 000030
11276 000009 OCT 000001
18277 000020R DEF' 000021
11300 000017R DEF' 000017
00 301 000027R DEF' 000027
llJ0312 lllll3R DEF 811113
18313 llHJl284R DEF 888284
80314 0811-43R DEF 01014'3
11315 111171R DEF 111171
18386 000164R DEF 00016.it
11307 000 l 75R DEF 000175
81310 000212R DEF' 000212
11311 000234R DEF' 00023.it
11312 000233R DEF 000233
11313 000243R DEF' 00024'3
11314 000001 OCT 000011
11315 040000 OCT 040018
11316 000006 OCT 000016
81317 040000 OCT 04001H
11320 000004 OCT 00008.111
11321 060000 OCT 060001
91322 000004 OCT 000004
81323 000002 OCT 000082

TRA SMPSN
••• END

D-8

PAGE 0005 SMPSN

SYMBOL TABLE
SMPSN R 000000
A R 000246
B R 000250
DEL TX R 0002 52
10010 R 000020
10000 R 000017
10001 R 000027
TERML R 000254
SUM R 000256
K R 000260
C R 000261
I R 000263
N R 000264
ll'N R 000265
80020 R 000103
800 70 R 00020 4
TERM R 000267
10030 R 000143
00050 R 000171
10040 R 000164
10060 R 000175
10080 R 000212
80090 R 000234
10002 R 000233
10003 R 000243

OBJECT PROGRAM LISTING
Symbol Table

D-9

SMPSN

02000

LOAD

F'RMTR

02324
00240

cos

04235

SIN

04245

CH EBY

84347

••F'CH

14440

• •DLC

04450

D-10

02323

0423 ..
00730

04244

0-4346

0-4437

04447

04461

BASIC CONTROL SYSTEM
Relocating Loader Memory Allocation

FAD SB

1-4462 84617

FDV

14'620 14'723

FMP

14724 05807

MPY

15010 li!l 5121

el ENT

15121 85155

FLOAT

15156 85162

ePACK

15163 85267

DIV

15271 15362

D-11

DLBST

05363 05-420

IFIX

05421 05455

·STOP

05456 05-476

•ERRR

85477 05517

PWR2

15520 055-43

•FLUN

15544 05556

D-12

•LST

• 1ec. 15434
• SQT • t 5"'05
eME:M. 15401
eBUFR 15602
SMPSN 02001
.010. 03635
elOR· 03505
eDST 05373
eDLD 05363
cos 0"'235
eFDV 04628
eFSB 04465
IFIX 05"'21
FLOAT 05156
eFMP 04724
•FAD 0"'462
·DTA• 03733
·STOP 05-'156
·BIO. 03711
.101. 03532
elAR. 03571
eRAR· 03545
•FLUN 055"'4
·PACK 05163
eMPY 05011
SIN 04245
••FCM 11-'1441
•ERRR 05"'77
•CHEB 04347
el ENT 05121
ePWR2 05528
••DLC 0"'451
·DIV 05278

•LINKS
01723 01777

•RUN

D-13

1.23 ~·72 .25
SUM=-·63E+00
STOP

1.23 2.01 .10
SUM=-·12E-01
STOP

0.34 1.01 ·02
SUM= ·88E+00
STOP

0.00 1.00 .01
SUM= • 57E+36
STOP

1 ·00 I •25 .05
SUM= ·92E-01
STOP

D-14

OBJECT PROGRAM

Input and Output Data

INDEX

Arithmetic expressions 2-6, 3-1
Arithmetic operators 3-1 -
Arguments -

Actual 6-1, 6-2, 6-4, 6-5, 6-7
Dummy 6-1, 6-2, 6-3, 6-5, 6-9
Redefinition 6-3, 6-5

Array 2-3, 2-4, 2-5, 2-6, 4-1, 4-6,
6-2 7-2 -

' ASA Basic FORTRAN v
ASCII

Input data 1-1, 7-1, 8-1
FORMAT specifications 7-10,

7-12
Output data 7 -1

Assembler source program C-1
Assembly level listing · 9-1, 9-2
Assignment statements 3-4 -

BACKSPACE statement 8-3, 8-4
Basic Binary Loader 9-4-
Basic Control System v, 1-2, 8-1, 9-7,

9-8, C-1 -
Basic External Functions 3-5, 6-1,

6-9, 6-11
IAND 3-5
IOR 3T
NOT 3-5

CALL statement 6-4, 6-12, C-1
Calling program 6-1
Character set

FORTRAN 1-1
HP 2116A A-1

Coding Form 1-3, 1-4
Commercial at(@) 1-1, 7-4, 7-11,

7-16, 7-17
COMMON statement 2:..5,4-1,4-2,

4-3 4-6 4-7
' ' ' 6-1, 6-2

Comments 1-2, 7-18
Compiler v, 9-1
Constant

Integer
Octal
Real

2-2,5-3,7-1,7-5,8-1
2-2

2-3
Continuation lines 1-2
CONTINUE statemen-t -5-9, 8-3, 8-4
Control statement, compiler 1-2,9-1

Data item delimiters 7-16
Diagnostics

Compilation 9-8, 9-11
Library 9-19
Object program 9-17
Source program 9-12

DO-Implied list 7-2, 7-3
DO Loop 5-4 5-75-8 5-9 6-4 7-2 ' ' ' ' ' ' 7-3
DO Nest 5-6, 5-7, 7-3
DO Statement 5-3
Dollar sign($) 7-5, 7-9
DIMENSION statement 2-5, 4-1, 4-2,

6-2 -

END, END$ statements 1-3, 5-10,
6-3 6-4 6-5 ' ' End-of-statement mark 1-2 1-3

c @ @) 7-18,9-i
ENDFILE statement 8-3, 8-4
ENTR C-4
EQUIVALENCE statement 4-1, 4-5,

4-6 4-7 ' ' 4-8, 4-9,
6-2

Index-1

Evaluation of expressions 3-2, 6-5,
6-9

Exponent 2-1,7-5,7-6
Expressions 2-6, 3-1, 3-2, 3-3, 3-4,

5-2, 6-2, 6-7, 6-9

Fixed Decimal 2-1
Floating decimal (point) 2-1, 7-17
FORMAT statement 1-1, 5-1, 7-1, 7-4,

Specifications
Aw 7-10
Ew.d input
Ew.d output
Fw.d input
Fw.d output
Iw 7-9
Kw 7-11
nX 7-12
nH 7-12
r@w 7-lJ.

8-1, 8-2, 9-1 -
7-4,7-8,7-12

7-6
7-5

7-9
7-8

r" ... " 7-13
Fraction 2-1, 7-5, 7-6, 7-9
FTN

Control statement 9-1
Program name 6-2-

Free Field input v, 1-1, 7-16, 8-1
Function --

Basic External 3-5, 6-1, 6-9,
6-11

Reference 6-1, 6-7, 6-9, 6-12,
C-1-

Statement 6-1, 6-9
Subprogram 6-1,6-5,6-9

FUNCTION statement 6-3, 6-5

GO TO statements
Computed 5-1
Unconditiona-1 -5-1

Hierarchy of operations 3-2

Index-2

IF statements 5-2, 5-3, 5-8
Three-branch 5-2
Two-branch 5-3

Input/ Output
List 7-1, 7-3
Statements 8-1, 8-3

Integer ·
Array 2-5, 4-6
Constant 2-2, 5-1, 5-3, 7-1,

7-5, 8-1
Quantity 2-1, 7-4, 7-6, 7-9,

7-10
Statement 3-4
Variable- 2-3,4-6, 5-1, 8-1

Labels 1-2, 5-1, 5-2
Library ~1,6-11,9-2,9-8,9-20
Line 1-2
List 7-1, 7-2, 7-16, 7-18, 8-1, 8-2, 9:...2

Main program 6-1, 6-2
Masking operations v, 3-5
Memory Allocation Listing 9-7

Object listing 9-1
Object program v, 6-11, 9-1, 9-7, 9-15,

9-17,C-l
Octal

Constants v, 2-2
Input data 7-17

Operating instructions
Magnetic tape 9-10
Paper tape 9-4

Parameters
Control statement 9-1
Indexing (DO) 5-3, 7-2
Initial (DO) 5-3, 7-3
Subprogram 6-1, 6-5
Terminal (DO) 5-3, 7-3

\

/

Parentheses 3-2, 7-4, 7-16
Pass v,9-1,9-9,9-10
PAUSE statement 5-3, 5-9
PROGRAM statement 6-2

Quotation marks 7-13, 7-18

READ statement
Formatted
Free Field
Unformatted

7-1
8-2
8-2
8-3

Real
Array 2-5, 4-6
Expression 3-3
Quantity 2-1, 2-3, 7-1, 7-8
Statement 3-4
Variable 2-3,4-6

Record 7-4, 7-12, 8-1
Relocatable binary 1-2, 9-1, 9-2, 9-4
Relocation indicator 9-3
Repeat specification 7-15, 7-16
RETURN statement 5-3, 6-3, 6-4, 6-5,

6-7,6-12
REWIND statement 8-3 --

Samples D-1
Slash U) 7-4, 7-17
Source listing 1-2, 9-1
Source program v, 5-3, 9-1, 9-2, C-1
Spaces (blanks) 1-1,2-3,7-12,9-1
Standard units 8T

Input 9-4
List Output 9-2, 9-4
Program library 9-15
Teleprinter output 5-9, 5-10

Statement labels 1-2, 2-7, 5-1, 5-2

STOP statement 5-3, 5-9, 6-12
Statement function 6-1, 6-9
Subprograms

Function 6-1, 6-5, 6-9, 6-12, C-1
Subroutine 6-1, 6-3, 6-12, C-1

Subroutine
Call 6-2, 6-4
Subprogram-6-2, 6-3, 6-12, C-1

SUBROUTINE statement 6-3

Subscripts 2-4, 2-5, 7-1, 7-2
Symbol table 9-2, 9-3
System Input/Output (SIO) 9-5

Type
Arguments 6-1
Array 2-5, 4-1
Expression 2-6, 3-3
Statement 3-4
Variable 2-3

Unlimited groups 7-16
Unit-reference number 8-1

Variables 3-4, 6-4, 6-9
Control 7 -2, 7 -3
Integer 2-3,4-6,5-1,5-3
Real 2-3, 4-6
Simple 2-3, 7-1
Subscripted 2-4

WRITE statement 7-1
Formatted 8T
Unformatted 8-3

Index-3

w·
Z·
:::i.

~:
o·
...I.
<C •
::::>.
u.

FROM

HEWLETT ff PACKARD

READER COMMENT SHEET
HP FORTRAN

HP 2116-9015 April,. 1970
Hewlett-Packard welcomes your evaluation of this text.
Any errors, suggested additions, deletions, or general com­
ments may be made below. Use extra pages if you like.

PAGE_OF_

NAME=-----------------~

ADDRESS=----------------~

NO POSTAGE NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AS SHOWN ON OTHER SIDE AND TAPE

FOLD

FOLD

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States Postage will be paid by

SUPERVISOR, SOFTWARE PUBLICATIONS
HEWLETT - PACKARD

CUPERTINO DIVISION
11000 Wolfe Road

Cupertino, California
95014

FIRST CLASS
PERMIT N0.141

CUPERTINO
CALIFORNIA

FOLD

FOLD

	0000
	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	8-01
	8-02
	8-03
	8-04
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	I-01
	I-02
	I-03
	replyA
	replyB

