HEWLETT lhp PACKARD

HP FORTRAN

HP FORTRAN
Programmer’s Reference
Manual

hp. PACKARD

- HEWLETT [hﬁ,

11000 Wolfe Road
Cupertino, Calif. 95014

HP 02116-9015

April, 1970

First Edition, Feb. 1968
Revised, April 1970

© Copyrnight, 1970, by
HEWLETT-PACKARD COMPANY
Cupertino, California

Printed in the U.S.A.

Second Edition

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system (e.g., in memory, disc or core) or
be transmitted by any means, electronic, mechanical, photocopy, re-
cording or otherwise, without prior written permission from the
publisher,

Printed in the U.S.A.

PREFACE

This publication is a reference manual for the programmer using the HP FORTRAN
Compiler. It includes both the elements of the language and the information required
to operate the Compiler on the computer.
The programmer should also refer to:
Basic Control System's Programmers Manual (02116-9017)
Program Library Subroutine Manual (02116-9032)
Magnetic Tape System (02116-91752)

Prepare Tape System (02116-91751)

NEW AND CHANGED INFORMATION

For this printing, all known errors in the HP FORTRAN book have been corrected.
Changes are shown in the text by a horizontal line in the margin. In addition, the
information on instrument formats in the Appendices has been eliminated.

ii

TABLE OF CONTENTS

INTRODUCTION
CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER 5

PROGRAM FORM
1.1 Character Set
1.2 Lines

1.3 Coding Form

ELEMENTS OF HP FORTRAN

2.1 Data Type Properties
2.2 Constants

2.3 Variables

2.4 Arrays

2.5 Expressions

2.6 Statements

ARITHMETIC EXPRESSIONS AND
ASSIGNMENT STATEMENTS

3.1 Arithmetic Expressions
3.2 Assignment Statements
3.3 Masking Operations

SPECIFICATIONS STATEMENTS
.1 Dimension

.2 Common

.3 Equivalence

RGN

CONTROL STATEMENTS

GO TO Statements
IF Statements

DO Statements
CONTINUE
PAUSE

STOP

END

END$

(32N, NS IS, IS IS IS IS, |
0 =JO U WD

v
—

)bb-lhuh
Q1 D =

U'IU101CJ'IC.IJ‘IU10'IU1
=t et OO O WDN =

o o

iii

CHAPTER 6

CHAPTER 7

CHAPTER 8

CHAPTER 9

APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

iv

MAIN PROGRAM, FUNCTIONS, AND
SUBROUTINES

Argument Characteristics
Main Program

Subroutine Program
Subroutine Call

Function Subprogram
Function Reference
Statement Function

Basic External Functions
RETURN and END

[o2 o>l erNererNeorlereor o
OO Uk wWwbhH

INPUT/OUTPUT LISTS AND FORMAT CONTROL

Input/Output Lists
FORMAT Statement

-3 =3 =3 3
[JUN O

Free Field Input
INPUT/OUTPUT STATEMENTS

.1 Unit-Reference

.2 Formatted READ, WRITE

.3 Unformatted READ, WRITE

.4 Ayxiliary Input/Output Statements

O 0 0 @

COMPILER INPUT/OUTPUT

Control Statement

Source Program

Binary Output

List Output

Operating Instruction

Switch Register Bits

Diagnostic

Object Program Loading

Object Program Diagnostic Messages

.
oy

O=JDNCTO ih WO

.

HP 2116 Character Set
FORTRAN Statements and Functions
Assembly Language Subprograms

Sample Program

FORMAT Statement Conversion Specifications

(o2}
1
[uary

e X X K R o R R R
1
= O =3 O DN DN

[\C

-3
]
[y

O W W W © W W© O
1
=R D NN

1
[y
(=2]

g aw »
B R e

INTRODUCTION

The FORTRAN compiler system accepts as input, a source program written according
to American Standard Basic FORTRAN specifications; it produces as output, a re-
locatable binary object program which can be loaded and executed under control of the
HP Basic Control System.

In addition to the ASA Basic FORTRAN language, HP FORTRAN provides a number of
features which expand the flexibility of the system. Included are:

Free Field Input: Special characters included with ASCII input data direct
its formatting; a FORMAT statement need not be specified in the source
program.

Specification of heading and editing information in the FORMAT statement
through use of the "..." notation; permits alphanumeric data to be read or
written without giving the character count.

Array declaration within a COMMON statement.

Redefinition of its arguments and common areas by a function subprogram.
Interpretation of an END statement as a RETURN statement.

Basic External Functions which perform masking (Boolean) operations.
Two-branch IF statement.

Octal constants.

The paper tape version of the compiler operates in two or four passes depending on the
size of memory. For an 8K system, the compiler produces a source listing and an
intermediate binary tape in the first pass. This intermediate tape serves as input to
the second pass. The second pass produces the relocatable object program tape and a
listingof the program in assembly level language. Ifonly one output deviceis available
the last pass is repeated to produce the listing. For the 4K system, two additional
passes are introduced before the pass producing the relocatable program tape. For
these passes the intermediate binary output of the previous pass becomes the input for
the current pass. "

When magnetic tape is available, the compiler uses the third file for storage of inter-
mediate binary code. Pass 1 of FORTRAN writes the intermediate program. At the
end of Pass 1, FORTRAN calls the Inter-Pass Loader; it searches for and loads Pass
2 of FORTRAN. (When not in MTS, Pass 2 must be hand-loaded using BBL.) Pass 2
spaces forward to the third file, processes the intermediate code and produces output
on the punch and list devices as requested.

The minimum equipment configuration required to compile aprogram onthe Computer
is as follows:

2116A, 2115A, or 2114 Computer with 4K memory
2752A Teleprinter

oPTIONAL ¥ ~ADDITIONAL

p—— OUTPUT: |
, SOURCE PROGRAM
| I” " ustiNnG !

FORTRAN FORTRAN T L _ -

SOURCE PROGRAM COMPILER —

PASSI
INTERMEDIATE
BINARY OUTPUT
RELOCATABLE
BINARY OBJECT
PROGRAM
FORTRAN
——» CcOoMPILER
PASS2 ——
| ! [ADDITIONAL
OUTPUT
I L— —plopsect PROGRAM]
| OPTIONAL| LISTING _
-
| OPTIONAL ~ —
I *n
| j ONEOuTPUT
DEVICE
| ONLY
i
b
I
| | FORTRAN
b4 —— —P] COMPILER —p OBJEEITS;’IRSSRAM-
PASS2
REPEATED \/

TWhen compiling with the magnetic tape system, operator
intervention ceases after Pass 1 has been loaded.

8K MEMORY
FORTRAN COMPILATION PROCESS

vi

[TAobimoNaL. 1
OPTIONAL y ~ OUTPUT:
r = Psource Procraml

LISTING
- _1

-
FORTRAN PR TR P S——
COMPIL
SOURCE PROGRAM OMPI
INTERMEDIATE
BINARY OUTPUT 1
FORTRAN
L | comPILER INTERMEDIATE
PASS? BINARY OUTPUT 2
N
FORTRAN
> INTERMED IATE
e —P BINARY QUTPUT 3
N
RELOCATABLE
—{ BINARY OBJECT
PROGRAM
FORTRAN
——»| COMPILER
| PASS4 |
| OPTIONAL I I aooirional !
‘ L_J ourrur
| [oNe outeut OPTIONAL y OBJECT PROGRAM|
| | DEViCE I usiNg
ONLY -
| “_ _ -
|
;! FORTRAN
=l 3] compiLer OBJECT PROGRAM
PASS4 LISTING
REPEATED
4K MEMORY

FORTRAN COMPILATION PROCESS

vii

PROGRAM FORM 1

A FORTRAN program is constructed of characters grouped in-
to lines and statements.

1.1
CHARACTER SET

Alphabetic:
Numeric:
Special:

A N LR o |

$

"

The program is written using the following characters:

A through Z
0 through 9

Space

Equals

Plus

Minus

Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

Decimal Point
Dollar Sign
Quotation mark

Spaces may be used anywhere in the program to improve ap-
pearance; they are significant only within heading data of FOR-
MAT statements and, in lieu of other information, in the first
Six positions of a line.

In addition to the above set which is used to construct source
language statements, certain characters have special signifi-

cance when appearing with ASCII input data.

lowing:
space,

4 -

JE + -
@

" 1"
o e

~r—

They are the fol-

Data item delimiters
Record terminator

Sign of item

Floating point number
Octal integer

Comments :
Suppress CR-LF (output)

Details on the input data character set are given in Chapter 7.

1-1

1.2
LINES

Statements

Statement
Labels

Comments

Control
Statement

1-2

A line is a string of up to 72 characters. On paper tape, each
line is terminated by a return, , followed by a line feed,
@ This terminator may be in any position following the
statement information or comment contained in the line.

A statement may be written in an initial line and up to five con-
tinuation lines. The statement may occupy positions 7 through
72 of these lines. The initial line contains a zero or blank in
position 6. A continuation line contains any character other
than zero or space in position 6 and may not contain a C in posi-
tion 1.

A statement may be labeled so that it may be referred to in
other statements. A label consists of one to four numeric digits
placed in any of the first five positions of a line. The number
is unsigned and in the range of 1 through 9999. Imbedded
spaces and leading zeros are ignored. If no label is used, the
first five positions of the statement line must be blank. The
statement label or blank follows the @ terminator of
the previous line.

Lines containing comments may be included with the statement
lines; the commentsare printed along with the source program
listing. A comment line requires a C in position 1 and may
occupy positions 2 through 72. = more than one line is used,
each line requires a C indicator. Each comment line is termi-
nated with a CR) and @

The first statement of a program is the control statement; it
defines the output to be produced by the FORTRAN compiler.
The following options are available:

Relocatable binary — The program is to be loaded by the
loader of the Basic Control System.

Source Listing output — A listing of the source program is
produced during the first pass of compiler operation.

End Line

1.3
CODING FORM

Object Listing output — A list of the object program is pro-
duced during the last pass of compiler operation.

The control statement must be followed by the @ @ termi-
nator.

Each subprogramis terminated with an end line which consists
of blanks in positions 1 through 6 and the letters E, N, and D
located in any of the positions 7 through 72. The special end
line, ENDS$, signifies the end of five or less programs being
compiled at one time. The end line is terminated by ég @

The FORTRAN coding form is shown below. Columns 73-80
may be used to indicate a sequence number for a line; they must
not be punched on paper tape. All other columns of the form
conform with line positions for paper tape.

1-3

-1

(2/1-€1 X 1T 9218 1BNJOV)

Y04 DNIdOD HTdINVS

1SZOW

HEWLETT-PACKARD FORTRAN CODING FORM

PROGRAMMER l DATE PROGRAM PAGE oF
c
S STATEMENT

€ Label N

! 5 6 7 10 15 2 2 £y 3s 0 45 50 55 70 75 80
i
|
|
!
t
|
|
|
|
+
t
i

1 5 10 15 20 25 E) “© 45 50 70 75 80
=200 O=ALPHA O 108 1= ONE I= ALPHAT LINE TERMINATED BY RETURN / LINE FEED (R/LF)
2=Tw0 2= ALPHA Z LINE IS DELETED BY RUBOUT BEFORE R/LF

ELEMENTS OF HP FORTRAN 2

HP FORTRAN processes two types of data. They differ in
mathematical significance, constant format, and symbolic rep-
resentation. The two types are real and integer quantities.

2.'

DATA TYPE
PROPERTIES Integer and realdata quantities have different ranges of values.

An integer quantity has an assumed fixed decimal point. It is
represented by a 16-bit computer word with the most signifi-
cant bit as the sign and the assumed decimal point on the right
of the least significant bit.

An integer quantity has a range of 215 to 215 -1.

1514 0

[s| integer |

SIGN

A real quantity has a floating decimal point; it consists of a
fractional part and an exponent part. It is represented by two
16-bit computer words; the exponentand its sign are eight bits;
the fraction and its sign are twenty-four bits.

15 14 0

s| fraction (most significant bits)

LSIGN OF FRACTION
15 87 10

fraction exponent |[s

SIGN OF EXPONE NT—J

It has a range in magnitude of approximately 10'38 to 1038 and
may assume positive, negative, or zero values. If the fraction
is negative, the number is in two's complement form. A zero

2-1

2.2
CONSTANTS

Integer

Octal

value is stored as all zero bits. Precision is approximately
seven decimal digits.

A constant is a value that is alwaysdefined during execution and
may not be redefined. Three types of constants are used in
HP FORTRAN: integer, octal (treated as integer), and real.
The type of constant is determined by its form and content.

An integer constant consists of a string of up to five decimal
digits. If the range -32768 to 32767 (-215 to 219 -1) is ex-
ceeded, a diagnostic is provided by the compiler.

Examples:
8364 5932
1720 9
1872 31254
125 1
3653 30000

Octal constants consist of up to six octal digits followed by the
letter B. The form is:

n1n2n3n4n5n6B
n, isOor 1

ny — ng are 0 through 7

If the constant exceeds six digits, or if a non-octal digit appears,
the constant istreated as zero and a compiler diagnostic is pro-
vided.

Examples:

7677B 7631B
3270B 5B
3520B 75026B
175B 177776B
567B 177777B

23
VARIABLES

Simple Variable

Real constants may be expressed as an integer part, a decimal
point, and a decimal fraction part. The constant may include
an exponent, representing a power of ten, to be applied to the
preceding quantity. The forms of real constants are:

n.n n. .n n.nE+e n.Eze .nEte

n is the number and e is the exponent to the base ten. The
plus sign may be omitted for a positive exponent. The range
of e is 0 through 38. When the exponent indicator E is fol-
lowed by a + or - sign, then all digits between the sign and the
next operator or delimiter are assumed to be part of the ex-
ponent expression, e.

If the range of the real constant is exceeded, the constant is
treated as zero and a compiler diagnostic message occurs.

Examples:
4,512 4,5E2
4, . 45E+3
.512 4,5E-5
4.0 0.5
4. E-10 .SE+37
1. 10000.0

A variable is a quantity that may change during execution; it is
identified by a symbolic name. Simple and subscripted vari-
ables are recognized. A simple variable represents a single
quantity; a subscripted variable represents a single quantity
(element) within an array of quantities. Variables are identi-
fied by one to five alphanumeric characters; the first character
must be alphabetic.

The type of variable is determined by the first letter of the
name. The lettersI, J, K, L, M, and N, indicate an integer
(fixed point) variable; any other letter indicates a real (floating
point) variable. Spaces imbedded in variable namesare ignored.

A simple variable defines the location in which values can be
stored. The value specified by the name is always the current
value stored in that location.

2-3

Subscripted
Variable

Examples:

Integer Real

I ALPHA
JAIME G13

K9 DOG
MIL XP2
NIT GAMMA

A subscripted variable defines an element of an array; it con-
sists of an alphanumeric identifier with one or two associated
subscripts enclosed in parentheses. The identifier names the
array; the subscripts point to the particular element. If more
than two subscripts appear, a compiler diagnostic message is
given.

Subscripts maybe integer constants, variables, or expressions;
they may have the form (exp1 R expz), where exp; is one of the
following:

c*v+k v-k
c*v-k v
c*xy k
v+k

where ¢ and k are integer constants and v is a simple inte-
ger variable.

Examples:
Integer Real
1(J, K) A(J)
LAD(3, 3) BACK(M+5,9)
MAJOR (24*K, I+5) OP45(4*I)
NU (K+2) RADI (IDEG)
NEXT (N*5) VOLTI (1,d)

2.4
ARRAYS

Array Structure

An array is an ordered set of data of one or two dimensions; it
occupies a block of successive memorylocations. It is identi-
fied by a symbolic name which may be used to refer to the entire
array. An array and its dimensions must be declared at the
beginning of the program in a DIMENSION or COMMON state-
ment. The type of an array is determined by the first letter of
the array name. The letters1, J, K, L, M, and N, indicate
an integer array; any other letter indicates a real array.

Eachelement of anarray may be referred to by the array name
and the subscript notation. Program execution errors may
result if subscripts are larger than the dimensions initially
declared for the array, however, no diagnostic messages are
issued.

Elements of arrays are stored by columns in ascending order
of storage locations. An array declared as SAM(3, 3), would
be structured as:

Columns

SAM(1,1) | SAM(1,2) | SAM(L,3)
Rows | SAM(2,1) | SAM(2,2) | SAM(2,3)
SAM(3,1) | SAM(3,2) | SAM(3,3)

and would be stored as:

m SAM(1,1)
m+1 SAM(2,1)
m+2 SAM(3,1)
m+3 SAM(1, 2)
m+4 SAM(2, 2)
m+5 SAM(3, 2)
m+6 SAM(L, 3)
m+T7 SAM(2, 3)
m+8 SAM(3, 3)

The location of an array element with respect to the first ele-
ment is a function of the subscripts, the first dimension, and
the type of the array. Addresses are computed modulo 21

2-5

Array Notation

2.5
EXPRESSIONS

2-6

Given DIMENSION A (L, M), the memory location of A (i, j) with
respect to the first element, A, of the array, is given by the
equation:

¢t = A+|i-1+LG-1D]*s

The- quantity in braces is the expanded subscript expression.
The element size, s, isthenumber of storage words required
for each element of the array: for integer arrays, s = 1 ; for
real arrays, s = 2.

The following subscript notations are permitted for array ele-
ments:

For a two-dimensional array, A(d1 , d2):
A(1,J) implies A(I,J)

A(I) implies A(I, 1)

A implies A(1, 1)

For a single-dimension array, A(d)

A(I) implies A(I)
A implies A(1)

The elements of a single-dimension array, A(d), however, may
not be referred to as A(I,J). A diagnostic message is given by
the compiler if this is attempted.

An expression is a constant, variable, function or a combina-
tion of these separated by operators and parentheses, written
to comply with the rules for constructing the particular type of
instruction. Anarithmetic expression has numerical value; its
type is determined by the type of the operands.

tIn an Input/Output list, the name of a dimensioned array im-
plies the entire array rather than the first element.

2.6
STATEMENTS

Examples:

A+B-C .4+SIN(ALPHA)
X*COS(Y) A/B+C-D*F
RALPH-ALPH 4+2*IABS(LITE)

Statements are the basic functionalunits of the language. Exec-
utable statements specify actions; non-executable statements
describe the characteristics and arrangement of data, editing
information, statementfunctions, andclassification of program
units.

A statement may be given a numeric label of up to four digits
(1 to 9999); a label allows other statements to refer to a state-
ment. Each statement label used must be unique within the
program.

2-7

ARITHMETIC EXPRESSIONS AND ASSIGNMENT STATEMENTS 3

3.1

ARITHMETIC

EXPRESSIONS An arithmetic expression may be a constant, a simple or sub-
scripted variable, or a function. Arithmetic expressions may
be combined by arithmetic operators to form complex expres-
sions.

Arithmetic operators are:

+ Addition

- Subtraction

* Multiplication
/ Division

*

* Exponentiation

If o is an expression, («) is an expression.
If o and B are arithmetic expressions, then the following are

expressions:
@+ B a-B /B
@ * B +a -a
a xx B

An arithmetic expression may not contain adjoining arithmetic
operators, a op op 8.

Expressions of the form o**g and a**(-g) arevalid; o**g**y
is not valid.

Examples:
1z
L[*5/3(3]+2[**{1|5-|T
ABILIE|-|3]. || |4XHOUSIE */*/3]2|. E|-]2
si*|u]AlCkK](K], [L[+/s])|-{LiojuD

3-1

Order or

Evaluation In general, the hierachy of arithmetic operation is:
*ok egpor}entiation class 1
4 ?rﬁifilgﬁgation class 2
L IR s

Inan expression with no parentheses or within a pair of paren-
theses, evaluation basically proceeds from left to right, or in
the above order if adjacent operators are in a different class.

Expressions enclosed in parentheses and function references
are evaluated as they are encountered from left to right.

Examples:

In the examples below, sj, Sg,..., Sp indicate intermediate
results during the evaluation of the expression; the symbol —
can be interpreted as ''goes to''.

a) Evaluation of class 1 precedes class 3

A+B**C-D
B**C—gs
S,+A —s

s,-D—s

9 3 Sg is the evaluated expression

b) Evaluation of class 2 precedes class 3

A*B*C/D+E*F-G/H
A¥B—s1

sl*C —-S p)

SZ/D—'S 3

E*F-*S4

S4 + S3—~Sg

G/H —~5Sg

-SG —Sn

S, + S_.—+S S

7 5~ Sg g is the evaluated expression

T When writing an integer expression itis important to remem-
ber not only the left to right scanning process, but also that
dividing an integer quantity by an integer quantity yields a
truncated result; thus 11/3 = 3 . The expression I*J/K may
yield a different result than the expression J/K*I . For ex-
ample, 4*3/2 = 6 ; but 3/2%4 = 4.

3-2

Type of
Expression

c)

d)

e)

Evaluation of an expression including a function is
performed.

A+B**C+D+COS(E)
B**C —g
A+s1 — Sg
+ D-»s
&OS(E)-‘ S4
Sy t Sg—~Sg Sg is the evaluated expression

Parentheses can control the order of evaluation

A*B/C+D
1 /C—s

s2 +D——s3 s3 is the evaluated expression

A*B/(C+D)
A*B S
C+D—>s2
sy / Sy~ Sy Sg is the evaluated expression

If more than one pair of parentheses or if an exponen-
tial expression appears, evaluation is performed left
to right.

A+B**C-(D*E+F)+(G-H*P)
B**C—s1
sy + A—»sz
D*E—'S3
S3 +F-S4
84— 85
S5 + S2 —>56
H*P“’S7
-Sm—S

7
sg + G8—>s9

Sq + Sg— S10 510 is the evaluated expression

With the exception of exponentiation and function arguments,
all operands within an expression must be of the same type. An
expression is either real or integer depending on the type of all
of its constituent elements.

3-3

3.2

ASSIGNMENT
STATEMENTS

Type of
Statement

3-4

If either aninteger or real operand is exponentiated by an inte-
ger operand, the resultant element is of the same type as that
of the operand being exponentiated. If both operands are real,
the resultant element is real.

Examples:
J*¥T integer
A**¥] real
A**B real

An integer exponentiated by a real operand is not valid.

An arithmetic assignment statement is of the form:

vV = e

The variable, v, may be simple or subscripted; e is an ex-
pression. Execution of this statement causes the evaluation of

the expression, e, andtheassignmentof the value to the var-
iable.

The processing of the evaluated expression is performed ac-
cording to the following table:

Type of v Type of e Assignment rule
Integer Integer Transmit e to v without change.
Integer Real Truncate and transfer as in-
teger to v.

Real Integer Transform integer form of e
to floating decimal and trans-
fer to v.

Real Real Transmit e to v without change.

Examples:

TTTT T =B CH o+ ICosENT TTT 1 Transmit without change
siaM(6] [=IR-[s|(|6}, [2]) [*[([T]/|u] Transmit without change
IN[=WI+3. % X]exY|-Z]) Truncate
BIAKE|R=|T[*|J|+[K*|(|L|-MI/IN) Convert to real
N=[LZIZIY +L AKE|/MOID Transmit without change
3.3
MASKING
OPERATIONS In HP FORTRAN, masking operations may be performed

using the Basic External Functions IAND, IOR, and NOT (see
Chapter 6). These functions are as follows:

IAND Form the bit-by-bit logical product of two

operands
IOR Form the bit-by-bit logical sum of two operands
NOT Complement the operand

The operations are described by the following table:

Value of Value of
Arguments Function
ay a, IAND (a1 , az) IOR (a,1 , a2) NOT (al)
1 1 1 1 0
1 0 0 1 0
0 1 0 1 1
0 0 0 0 1
Examples:
s I7A = 725 5 7]78 20 25 30 35 40 45 50
1B =| [7]I5)5 ¢le

IAND (IA, IB) is 705008
IOR (IA, IB) is 735578
NOT (IA) is 105270B

3-5

4.1
DIMENSION

SPECIFICATIONS STATEMENTS 4

The Specifications statements, which include DIMENSION,
COMMON, and EQUIVALENCE, define characteristics and
arrangement of the data to be processed. These statements
are non-executable; they do not produce machine instructions
in the object program. The statements must all appear before
the first executable statement in the following order: DIMEN-
SION, COMMON, and EQUIVALENCE.

The DIMENSION statement reserves storage for one or more
arrays.

DIMENSION vy (i), Vg (12), cees Vp (in)

An array declarator, vj (ij) ; defines the name of an array,
vj , and its associated dimensions, (ij) . The declarator sub-
script, i, maybe aninteger constant or two integer constants
separated by a comma. The magnitude of the values given for
the subscripts indicates the maximum value that the subscript
may attain in any reference to the array.

The number of computer words reserved for a given array is
determined by the product of the subscripts and the type of the
array name. For integer arrays, the number of words equals
the number of elements in the array. For real arrays, two
words are used for each element; the storage area is twice the
product of the subscripts.

A diagnostic message is printed if an array size exceeds 215 _4
locations.

Examples:

DIMENSION SAM (5, 10), ROGER (10, 10), NILE (5, 20)

Area reserved for SAM 5%10*%2 = 100 words
Area reserved for ROGER 10*%10*2 = 200 words
Area reserved for NILE 5*%20*1 = 100 words

4-1

4.2
COMMON

4-2

The COMMON statement reserves a block of storage that can
be referenced by the main program and one or more subpro-
grams. The areas of common informationare specified by the
statement form:

COMMON a4, ag,..., a
1 2_ n

Each area element, a;, identifies a segment of the block for
the subprogram in which the COMMON statement appears. The
area elements may be simple variable identifiers, arraynames,
or array declarators (dimensioned array names).

If dimensionsfor anarrayappear both in a COMMON statement
and a DIMENSION statement, those in the DIMENSION state-
ment will be used.

Any number of COMMON statements may appear in a subpro-
gram section (preceding the first executable statement). The
order of the arrays in common storage is determined by the
order of the COMMON statements and the order of the area ele-
ments within the statements. All elements are stored contig-
uously in one block.

At the beginning of program execution, the contents of the com-
mon block are undefined; the data may be stored in the block
by input/output or assignment statements.

Examples:

COMMON 1 (5), A (6), B (4)
Area reserved for I = 5 words
Area reserved for A = 12 words
Area reserved for B = _8_ words
Common area 25 words

Common

Block
Origin I(1)

1(2)

I(3)

I(4)

1(5)

A (1)

A (1)

Correspondence of
Common Blocks

A (2)
A (2)
A (3)
A (3)
A (4)
A (4)
A (5)
A (5)
A (6)
A (6)
B (1)
B (1)
B (2)
B (2)
B (3)
B (3)
B (4)
B (4)

Each subprogram that uses the common block must include a
COMMON statement.
variable and array names, and differentarraydimensions, how-
ever, if corresponding quantities are to agree, the types should
be the same for corresponding positions in the block.

Examples:

MAIN PROG COMMON I (5), A (6), B (4)

SUBPROG1 COMMON J (3), K (2), C (5), D (5)

MAIN PROG

reference

I (1)
I (2)
I (3)
I (4)
I (5)
A (1)
A (1)

Common

Block

integer 1
integer 2
integer 3
integer 4
integer 5
real 1

real 1

SUBPROG1

reference

J (1)
J (2)
J (3)
K (1)
K (2)
C (1)
C (1)

Each subprogram may assign different

4-3

MAIN PROG Common SUBPROG1

reference Block . reference
A (2) real 2 C (2)
A (2) real 2 C (2)
A (3) real 3 C (3)
A (3) real 3 C (3)
A (4) real 4 C (4)
A (4) real 4 C (4)
A (5) real 5 C (5)
A (5) real 5 C (5)
A (6) real 6 D (1)
A (6) real 6 D (1)
B (1) real 7 D (2)
B (1) real 7 D (2)
B (2) real 8 D (3)
B (2) real 8 D (3)
B (3) real 9 D (4)
B (3) real 9 D (4)
B (4) real 10 D (5)
B (4) real 10 D (5)

If portions of a common block are not referred to by a particu-
lar subprogram, dummy variables may be used to provide cor-
respondence in reserved areas.

Examples:
MAIN PROG COMMON I (5), A (6), B (4)

SUBPROG2 COMMON J (17), B (4)

MAIN PROG Common SUBPROG2
reference Block reference
I(1) integer 1 J (1)
1(2) integer 2 J (2)
I(3) integer 3 J (3)
I(4) integer 4 J (4)

I(5) integer 5 J (5)

4.3
EQUIVALENCE

MAIN PROG Common SUBPROG2
reference block _reference _
A (1) real 1 J (6)
A (1) real 1 J (7) J (17)isadum-
A (2) real 2 J (8) myarray. It is
A (2) real 2 J (9) not referenced
A (3) real 3 J (10) in SUBPROG 2
A (3) real 3 J (11) but provides
A (4) real 4 J (12) proper corre-
A (4) real 4 J (13) spondence in
A (5) real 5 J (14) reservedareas
A (5) real 5 J (15) so that SUB-
A (6) real 6 J (16) PROG 2canre-
A (6) real 6 J (17) ferto array B.
B (1) real 7 B (1)
B (1) real 7 B (1)
B (2) real 8 B (2)
B (2) real 8 B (2)
B (3) real 9 B (3)
B (3) real 9 B (3)
B (4) real 10 B (4)
B (4) real 10 B (4)

The length of the common block may differ in different subpro-
grams, however, the subprogram (or main program) with the
longest common block must be the first to be loaded at execu-
tion time.

The EQUIVALENCE statement permits sharing of storage by
two or more entities. The statement has the form:

EQUIVALENCE (kl), (k2), ceey (kn)
in which each k is a list of the form:

Ay, Bgyeens B

Each a is either a variable name or a subscripted variable;
the subscript of which contains only constants. The number of
subscripts must correspond to the number of subscripts for the
related array declarator.

4-5

4-6

All names in the list may be used to represent the same loca-
tion. If an equivalence is established between elements of two
or more arrays, there is a corresponding equivalence between
other elements of the arrays; the arrays share some storage
locations. The lengths may be different or equal.

Examples:
DIMENSION A (5), B (4)

EQUIVALENCE (A (4), B (2))

Array 1 Array 2 Quantity

Name Name Element
A1) real 1
real 1
A (2) real 2
real 2
A (3) B (1) real 3
real 3
A (4) B (2) real 4
real 4
A (5) B (3) real 5
real 5
B (4) real 6
real 6

The EQUIVALENCE statement establishes that the names A (4)
and B (2) identify the fourth real quantity. The statements also
establish a similar correspondence betweenA (3) and B(1), and
A (5) and B (3).

An integer array/or variable may be made equivalent to a real
array or variable; equivalence may be established between dif-
ferent types. The variables may be with or without subscripts.

The effect of an EQUIVALENCE statement depends on whether
or not the variables are assigned to the common block. When
two variables or array elements share storage, the symbolic
names of the variables or arrays may not both appear in COM-
MON statements in the same subprogram. The assignment of
storage to variables and arrays declared in a COMMON state-
ment is determined on the basis of their type and the array

declarator. Entities sodeclared are always contiguousaccord-
ing to the order in the COMMON statement. The EQUIVALENCE
statement must not alter the origin of the common block, but
arrays may be defined so that the length of the common block
is increased.

Examples:

a) Effect of EQUIVALENCE, variables not in common

block:
PROGRAMMER _ JDAT(I PROGRAM
T JPEMENSITION TE] 04D T, [BT KDY T [T T T
|| [EQUVALIENCE] [([T[¢[3]],] [Ki([2D]

storage is assigned as follows:

Arrays Quantities
I(1) integer 1
I1(2) K(1) integer 2
I1(3) K (2) integer 3
1(4) K (3) integer 4
K (4) integer 5
K (5) integer 6
J (1) integer 7
J (2) integer 8

b) Effect of EQUIVALENCE, some variables in common

block:

PROGRAMMER 8 DATE I PROGRAM
DIMENSITION] [K|(]5]) - - - " - -
COMMON_[Ti({aD],| WI(]2
EQUIlVALENCE| [([T{([3)],] [Ki(t[2h]

storage is assigned as follows:

Arrays Quantities
I(1) integer 1)

I(2) K1) integer 2

I(3) K(2) integer 3

I (4) K@) integer 4 [common block
J (1) K (4) integer 5

J(2) K (5) integer 6)

c) Effect of EQUIVALENCE on the length of the common

block:
DIIMENSTION] K T(I7D !
clommolN. 1] [(laD],[[ulc2)
EQ!U!I!VALE‘NIC‘E (DL | K[CaD])

storage is assigned as follows:

Arrays Quantities
I(1) integer 1
I(2) K(1) integer 2
I (3) K(2) integer 3
I (4) K(3) integer 4 y common block
J (1) K 4) integer 5
J (2) K (5) integer 6
K (8) integer 7
K (7) integer 8

The value of the subscripts for an array being made
equivalent to another array should not be such that the
origin of the common block is changed (for example,
EQUIVALENCE (I (3), K(4)).

Arrays Quantities
. origin .
K (1) changed integer 1
origin - I (1) K (2) integer 2
I1(2) K(3) integer 3
I1(3) K(4) integer 4

Example:

a)

Arrays

I (4)
J (1)
J (2)

K (5)
K (6)
K (7)

Quantities

integer 5
integer 6

integer 7

If contradictory EQUIVALENCE relationships are spec-
ified, a diagnostic message is printed.

PROGRAMMER

DATE

PROGRAM

o —~Z0N

< Label
] 5

STATEMENT

40 45 50

b)

PROGRAMMER

DATE

PROGRAM

T

<3
€ Label 13
1 5 6

8
4

STATEMENT

40 45 50

5.1

GO TO
STATEMENTS

CONTROL STATEMENTS S

Program execution normally proceeds from statement to state-
ment as they appear in the program. Control statements can
be used to alter this sequence or cause a number of iterations
of a program section. Control may be transferred to an exe-
cutable statement only; a transfer to a non-executable state-
ment willresultin a program error which is usually recognized
during compilation as a transfer to an undefined label.f = With
the DO statement, a predetermined sequence of instructions
canbe repeated anumber of times with the stepping of a simple
integer variable after each iteration.

Statements are labelled by unsigned numbers, 1 through 9999,
which can be referred to from other sections of the program.
Alabelupto four digits long precedes the FORTRAN statement
and is separated from it by at least one blank or a zero. Im-
bedded blanks and leading zeros in the label are ignored: 1,
01, 0 1, 0001 are identical.

GO TO statements provide transfer of control.

GO TO k

This statement, an unconditional GO TO, causes the transfer
of control to the statement labelled k .

GO TO (kl’ k2’ ooy kn), i

This statement, a computed GO TO, acts as a many-branched
transfer. The k's are statement labels and i is a simple
integer variable. Execution of this statement causes the state-
ment identified by the label kj to be executed next, where j

T A transfer to a FORMAT statement is not detectable during
compilation; if such an error occurs, no diagnostic message
is produced.

5-1

5.2
IF STATEMENTS

is the value of i at the time of execution, and 1 < j<n. If
i < 1, a transfer to k1 occurs; if i > n, a transfer tok
occurs. n

Examples:
12| lclof [Tlol Is
I[SWCH =] [2
35 |A =] XY
4@ |6o| To [(5,[1 @, 15],28D,| [TSWCH
5@ g [vSWCH |=] [T|sSWCH| [+ |i
54| (60| Tjo |(125],138, 35/,/48)],| |J/SWMCH
T I I

At statement 40, control transfers to statement 10, which is an
unconditional transfer to statement 500. At 540 control trans-
fers to statement 35.

The arithmetic IF statement provides conditional transfer of
control

IF () k;, ky, k,

The e is anarithmetic expression and the k's are statement
labels. The arithmetic IF is a three-way branch. Execution

of this statement causes evaluation of the expression and trans-
fer of control depending on the following conditions:

e
e
e

0, go to k1
0, gotok
0, go to k3

v I A

Examples:

PROGRAMMER . DATE PROGRAM

€ Label

1

STATEMENT

=200

5 10 15 20 25 30 35 40 45 50

5.3
DO STATEMENTS

The logical IF statement provides conditional transfer of con-
trol to either of two statements:

IF (e) ky, K,

The e is an arithmetic expression that may yield a negative
or non-negative (positive or zero) value. Execution of this
statement causes evaluation of the expression and transfer of
control under the following conditions:

, gotok

e < 0
e 2 0, gotok2

Examples:

PRTGRANMAER IDAVE IPROGRAM

STATEMENT

[T (Issw(N))5L,] 18

—~l~1.

IF (|A+B)2[@, 25

|
IF (LANI)Z’)Q),' 4'_@

A DO statement makes it possible to repeat a group of state-
ments.

DOni = m;, m,, Mg

or

DOni = my, m2

The n is the label of an executable statement which ends the
group of statements. The statement, called the terminal state-
ment, must physically follow the DO statement in the source
program. It may not be a GO TO of any form, IF, RETURN,
STOP, PAUSE, or DO statement.

The i is the control variable; it may be a simple integer var-
iable.

The m's are indexing parameters: m; is the initial param-

eter; mo , theterminal parameter; and mg , the incrementa-
tion parameter. They may be unsigned integer constants or

5-3

5-4

simple integer variables. At time of execution, they all must
be greater than zero. K mg does not appear (second form),
the incrementation value is assumed to be 1.

A DO statement defines a loop. Associated with each DO state-
meant is a range that is defined to be those executable statements
following the DO, to and including the terminal statement as-
sociated with the DO. Attime of execution, the following steps
occur:

1. The control variable is assigned the value of the initial
parameter.

2. The range of the DO is executed.

3. The terminal statement is executed and the control vari-
able is increased by the value of the incrementation param-
eter.

4. The control variable is compared with the terminal param-
eter. If less than or equal to the terminal parameter, the
sequence is repeated starting at step 2. If the control var-
iable exceeds the terminal parameter, the DO loop is sat-
isfied and control transfers to the statement following n .
The control variable becomes undefined.

Should m; exceed mg on the initial entry to the loop, the
range of the DO is executed and control passes to the statement
after n . Ifatransfer out of the DO loop occurs before the DO
is satisfied, the current value of the control variable is pre-
served. The control variable, initial parameters, terminal
parameter, and incrementation parameters may not be rede-
fined during the execution of the range of the DO loop.

ENTER
LOOP

ASSIGN
my TO i

EXECUTE STATEMENTS
IN LOOP INCLUDING
STATEMENT n

ADD m, TO 1

AND STORE
INi

COMPARE
is m,

5-5

DO Nestis

When the range of a DO loop contains another DO loop, the
latter is said to be nested. DO loops may be nested 10 deep.
The last statement of a nested DO loop must be the same as
the last statement of the outer loop or occur before it. If
dy, dg,...,d, are DO statements, which appear in the order
indicated by the subscripts; and if ny, ng,. ..,n are the
respective terminal statements, then ny, must appear before
or be the same as ny,-1, npy-1 mustappear before or be the
the same as ng, and noy must appear before or be the same
as n,.

1
Examples:
d2 71 ool | 9l 10! 1=] [1].[1lal,]2
d_ QD(? 8d K | [1,[tlg,l2
n_ 80 C(%)NTINUE
n, 9P C(:)NTINUE
n 17 C(:)NTINIUIE

" e T R T TTTTTT
_.____d2 8{ DO [I|p@ | [=| [1],/1192,3
——d 19| DO | 98 K [= |I|,2/8,2
nm 9@ C(:)NTINUE
n]=n2 IQIQ) CéNTINIUIE
d : mlsééo \68 11 [F L8 111
d, 17 D; oo o = 2,
__.dm 29| DO |09 K |=! 5,/5@,5
177 C;NTINUE

i L L

If one or more nested loops have the same terminal statement,
when the inner DO is satisfied, the control variable for the
nextouter loopis incremented and tested against its associated
terminal parameter. Control transfers to the statement fol-
lowing the terminal statement only when all related loops are
satisfied.

DO loops may be nested in common with other loops as long as
their ranges do not overlap.

5-7

5-8

Examples:

dy 5| plo [1lae |1l =] [i[,hl5
_d2 19| DO | 5@ VI |=| 21,128 ,12
n, 5@ ICONTIINUE
——d, 6@l 00 | [7o] [K |z [1],]1]4],[2
n3 7@ ICONTIINUVE
n I'gg |CONTIINU
d
1
el2d
S 3 Invalid, ranges overlap
N ny
™

In a DO nest, a transfer may be made from an inner loop into
an outer loop, and transfer is permissible outside of the loop.
It is illegal, however, for a GO TO or IF to initiate a transfer
of control from outside of the range of a DO into its range.

5.4

CONTINUE

5.5
PAUSE

5.6
STOP

d dy —d;

____d2 d2 ___d2
\\
I ’l .
Ny N2 k)
——b ‘.__...
M " n
VALID INVALID

TRANSFERS TRANSFERS

This statement acts as no-operation instruction.
CONTINUE

The CONTINUE statement is most frequently used as the last
statement of a DO loop to provide a loop termination when a
GO TO or IF would normally be the last statement of the loop.
If used elsewhere in the source program, it acts as a do-nothing
instruction and control passes to the next sequential program
statement.

This statement provides a temporary program halt.

PAUSE n
or
PAUSE

n may be up to four octal digits (without a B suffix) in the range
0 to 7777. This statement halts the execution of the program
and types PAUSE on the Standard Teleprinter Output unit. The
value of n, if given is displayed in the A-Register. @ When
the RUN button is pressed, program execution resumes at the
next statement.

The STOP statement terminates the execution of the program.

STOP n
or
STOP

5.8
END$

5-10

n may be up tofour octal digits (without a B suffix) in the range
0 to 7777. This statement halts the execution of the program
and types STOP on the Standard Teleprinter Output unit. The
value of n, if given, is displayed in the A-Register. If the
RUN button is pressed, the halt operation is repeated.

The END statement indicates the physical end of a program or
subprogram. It has the form:

END name

The END statement is required for every program or subpro-
gram. The name of the program can be included, but it is
ignored by the compiler. The END statement is executable in
the sense that it will effect return from a subprogram in the
absence of a RETURN statement. An END statement may be
labeled and may serve as a junction point.

The END$ statement indicates the physical end of five or less
programs or subprograms that are to be compiled at one time,
If there are four or less programs, the statement is printed on
the source program listing. If there are exactly five, the state-
ment is not printed. If more than five programs are on the
same tape, the END$ may be omitted after the fifth program,;
the compiler stops accepting input after the fifth is processed.

MAIN PROGRAM, FUNCTIONS, AND SUBROUTINES 6

6.1

ARGUMENT
CHARACTER -
ISTICS

A FORTRAN program consists of a main program with or with-
out subprograms. Subprograms, which are either functions or
subroutines, are sets of statements that may be written and
compiled separately from the main program.

The main program calls or references subprograms; and sub-
programs may callor reference other subprograms as long as
the calls are non-recursive. That is, if program A calls sub-
program B, subprogram B may not call program A. Further-
more, a program or subprogram may not call itself. A calling
program is a main program or subprogram that refers to

another subprogram.

In addition to multi-statement function subprograms, afunction
may be defined by a single statementin the program (statement
function) or it may be defined as partof the FORTRAN Library
(basic external function). A statement function definition may
appear in a main program or subprogrambody andis available
only to the main program or subprogram containing it. A state-
ment function may contain references to function subprograms,
basic external functions, or other previously defined statement
functions in the same subprogram. Basic external function
references may appear in the main program, subprogram, and
statement functions.

Main programs, subprograms, statement functions, and basic
external functions communicate by means of arguments (param-
eters). The arguments appearing in a subroutine call or func-
tion reference are actual arguments. The corresponding entities
appearing with the subprogram, statement function, or basic
external function definition are the dummy arguments.

Actual and dummy arguments must agree in order, type, and
number. I they do not agree in type, errors may result in the
program execution, since no conversion takes place and no
diagnostic messages are produced.

6-1

6.2
MAIN PROGRAM

6.3

SUBROUTINE
SUBPROGRAM

Within subprograms, dummy arguments may be array names
or simple variables; for statement functions, they may be var-
iables only. Dummy arguments are local to the subprogram or
statement function containing them and, therefore, may be the
same as names appearing elsewhere in the program. A max-
imum of 63 dummy arguments may be used in a function or
subroutine.

No element of a dummy argument list may appear in a COMMON
or EQUIVALENCE statement within the subprogram. If itdoes,
a compiler diagnostic results. When a dummy argument repre-
sents an array, it should be declared in a DIMENSION state-
ment within the subprogram. If it is not declared, only the
first element of the array will be available to the subprogram
and the array name mustappear inthe subprogram without sub-
scripts.

Actual arguments appearing in subroutine calls and function
references may be any of the following:

A constant

A variable name

An array element nane

An array name

Any other arithmetic expression

The first statement of a main program may be the following:
PROGRAM name

The name is an alphanumeric identifier of up to five characters.
If the PROGRAM statement is omitted, the compiler assigns
the name "FTN. "

An external subroutine is a computational procedure which may
return none, one, or more than one value through its arguments
or through common storage. No value or type is associated
with the name of a subroutine.

The first statement of a subroutine subprogram gives its name
and, if relevant, its dummy arguments.

SUBROUTINE s (al, CIVRRR an)

or
SUBROUTINE s

The symbolic name, s, is an alphanumeric identifier of up to
five characters by which the subroutine is called. If the sub-
routine is unnamed the compiler will assign the name of ''."
(period). The a's are the dummy arguments of the subroutine.

The name of the subroutine mustnotappear in any other state-
ment within the subprogram.

The subroutine may define or redefine one or more of its argu-
ments andareas in common so asto effectively return results.
It may contain any statements except FUNCTION, another SUB-
ROUTINE statement, or any statement that directly or indirectly
references the subroutine being defined. It must have at least
one RETURN or END statement which returns control to the
calling program.

Examples:
SUBRIOU[TIINE] VLM (P[,W.H] P,W and H are the dummy
ZI=S|. | *WHPI¥H3 parameters. Actual values
H=Z-13. supplied by a calling pro-
RETURN gram are to be substituted
ENP for P and W. The variable
name supplied for H would
contain the result on return
to the calling program.
SUBRIOUTINE| MUIL|(K)) MUL multiplies the array
COMMON| MAIT|(|18)[, PROD|(|18), supplied for MAT by the
DO 5| I1=/1],| [I/g single value supplied for K
S| PRODI(L)) =MATI(|T|)*K to produce values to be
RETURN stored in array PROD.
EN+D

6-3

6.4

SUBROUTINE
CALL

6-4

The executable statement in the calling program for referring
to a subroutine is:

CALL s (al, 3-2, ey an)

or
CALL s

The symbolic name, s, identifies the subroutine being called;
the a's define the actual arguments. The name may notappear
in any specification statements in the calling program.

If an actual argument corresponds to a dummy argument that
is defined or redefined in the called subprogram, the actual
argument must be a variable name, an array elementname, or
an array name.

The CALL statement transfers control to the subroutine. Exe-
cution of the subroutine results in an association of actual argu-
ments with all appearances of dummy arguments in executable
statement and function definition statements. If the actualargu-
ment is an expression, the association is by value rather than
by name. Following these associations, the statements of the
subprogram are executed. When a RETURNor END statement
is encountered, controlis returned tothe next executable state-
ment following the CALL in the calling program. If the CALL
statement is the last statement in a DO loop, looping continues
until satisfied.

Examples:

PROGRAMMER

=200

< Label
! 5

ClALL] 0TV (B[L1 [,RBLEN] These calls provide actual
“arguments for the subrou-

tines defined in the pre-

vious example. In subrou-

tine JIV, 15. is substituted

clomvon N([1g) .| [a(1igd for P; 12., for W; and

ABLE, for H.

For subroutine MUL, the

data is passed via COM-

iclalLiL] MulL[(|T/([5, 3D MON. The value supplied

for the dummy argument K

[is element (5,3) of matrix

I of the calling program.

6.5
FUNCTION

SUBPROGRAM

A function subprogram is a computational procedure which
returns a single value associated with the function name. The
type of the function is determined by the name; an integer quan-
tity is returned if the name begins with I, J, K, L, M, or N,
otherwise it will be a real quantity.

The first statement of a function subprogram must have the fol-
lowing form:

FUNCTION { (aq, Qgy e ey an)

The symbolic name, f, is an alphanumeric identifier of up to
five characters by which the function is referenced. If the
function is unnamed the compiler will assign the name of "."
(period). The a's are the dummy arguments of the function.

The name of the function mustnotappear in any non-executable
statement in the subprogram. It must be used in the subpro-
gram, however, at least once as any of the following:

The left-hand identifier of an assignment statement
An element of an input list
An actual parameter of a subprogram reference

The value of name at the time of execution of a RETURN or
END statement in the subprogram is called the value of the
function.

The function subprogram may define or redefine one or more
of its arguments and areas in common so as to effectively
return results in addition to the value of the function. If the
subprogram redefines variabies contained in the same expres-
sion as the function reference, the evaluation sequence of the
expression must be taken into account. Variables in the por-
tion of the expression that is evaluated before the function ref-
erence is encountered and the values of variable subscripts
are not affected by the execution of the function subprogram.
Variables that appear following the function reference are mod-
ified according to the subprogram processing.

6-5

Examples:

PROGRAMMER

& —Z0n

FIUNICITTION [ID|IV[(]I],]J]) The function IDIV calculates

IDIVI=1)/|J ' the value of I divided by J.

*E"':-lé U On return to the calling pro-
| gram the result provided is
1 the value of IDIV.

FUNCTITION [IREAD] [(TTUNTD The function IREAD reads
: a value from the unit JTUNT

(specified as an actual

parameter in the calling

R[?AD(LUNT), ¥) LREAD program.) IREAD has this
value on return to the call-

ing program.

PROGRAMMER

*«—Z0n

€ Lobel
1 5

FIUNICIT/TION| [SiclalLL] (]Al,1B[,]c) SCALL isboth the function

name and an actual param-

eter of a subroutine call.

The value of SCALL is pro-

C‘?LL SUBF|(SCALL, A ,BL, C) vided by SUBF and returned

to the calling program.

RETURN
END
|
FUNICITTION [ZETAl(BETIA, DELITIA], [GAMMA)N The function
Al =] BE[T|A*[*2|-DEL [T|a**(3 v defines the
GAMMA |=| |Af*5|.12 value of GAM-
ZETAl = |GIAMMA **2 MA as well as
25;“’ |N finding the
T 1 value of ZETA.

6.6
FUNCTION

REFERENCE

b)

A function subprogram is referenced by using the name and
arguments in an arithmetic expression:

f (al, COPRRRE an)

The type of function depends on the first letter of the name of
the function referenced; the a's are the actual arguments.
The reference may appear any place in an expression as an
operand. The evaluated function will have a single value asso-
ciated with the function name. When a function reference is
encountered in an expression, control is transferred to the
function indicated. Execution of the function results in an as-
sociation of actual arguments with all appearances of dummy
arguments in executable statements and function definition state-
ments. If the actual argument is an expression, this associa-
tion isby value rather than by name. Following these associa-
tions, the statements of the subprogram are executed. When
a RETURN or END statement in the function subprogram is
encountered, control returns to the statement containing the
function reference. During execution the function also may
define or redefine one or more of its arguments and areas in
common.

Example:
PROGRAMMER [DATE
SANTIU= KFHT DIV (1 @ 5D FIICION] | The valuesof 10and 5
! areprovided for I and
l il L ' | . J:Theresulting value

___ of IDIV would be 2.

The function IREAD

‘ - ! 1
SAND|U= TADHIRE D('l?ﬂa)i

is called with 10B as

— — —— theunit number. The
= value of IREAD would

be the value of the

item read from the

device with unit ref-

erence number 108.

6-17

C) PROGRAMMER

] DATE

0 —Z00

C Label
1

[[IRLPHEBETAXSCIALLL(TIZ

[ARCAR §,) The actual param-

etersSCALLare 10.,
: ' 9., and 8. The value
: of SCALL would de-
pend on the value sup-
plied by the subrou-

t tine SUBF.
d) The program,
PROGRAMMER _ DATE J PROGRAM
i GaMMB=]s!. ig] []
! RSLhk@AN@§+7.5+ZETA(.2,.3,GAMNP)

would result in the following calculation:
RSLT =5.0+7.5+ ZETA
where ZETA would be determined as:

A= .2%k2 - [3%*3 = ,04 - .027 =.013
GAMMA = .013*5.2 = . 0676 (GAMMB is not altered)
ZETA = .0676**2 = . 00456976

RSLT =5.0 + 7.5 + .00456976
= 12.50456976

But, the program,

PROGRAMMER I DATE J PROGRAM

STATEMENT

o =Z0n

c Lobel
1

5 7 10

GlAMMB=[5]. lg]
RISILIT|=ZE[T/Al(

20 25 30 35 40 45 50

1]
a

>
2
03]

H7|.5HG

[]
.2,.3,GAMMB

would result in the following calculations for ZETA and GAMMB:

A= .2%%2 - [3**3 = .04 - .027 =.013
GAMMA = .013*%5.2 = . 0676 = GAMMB
ZETA = .0676**2 = , 00456976

RSLT = .00456976 + 7.5 + . 0676
= 7.57216976

6.7
STATEMENT
FUNCTION

When referring to afunction which redefines an argument which
appears as a variable elsewhere in the same expression, the
order of evaluation (i.e., the order in which the expression is
stated) is significant.

A statement function is defined internally to the program or
subprogram in which it is referenced and must precede the
first executable statement. The definition is a single statement
similar in form to an arithmetic assignment statement.

f(a'l’ az,..., an) = e

The name of the statement function, f, is an alphanumeric
identifier; a single value is associated with the name. The dum-
my arguments, a's, must be simple variables. One to ten
arguments may be used. The expression, e, may be an arith-
metic expression and may contain references to basic external
functions, previously defined statement functions, or function
subprograms. The dummy arguments must appear in the ex-
pression. Other variables appearing in the expression have
the same values as they have outside the statement function.

The statement function name mustnot appear in any specifica-
tion statements in the program or subprogram containing it.

Statement functions must precede the first executable statement
of the program or subprogram, but they must follow all speci-
fication statements.

A statement function reference has the form:

f (al, Ay eees a,n)

f is the function name and the a's are the actual arguments.
A function reference with its appropriate actual arguments may
be used todefine the value of an actual argument in-a subroutine
call or function subprogram reference.

. 6-9

6-10

s
8

INJRI(M, IND| =] M2 HNX**245 Statement function defini-
. tion.

CALL{ MATXI [(ITINJRI(]S],12D){,M) Subroutine call wusing
. statement function refer-

‘ence.

Execution of a statement function reference results inan asso-
ciation of actual argument values with the corresponding dum-
my arguments in the expression of the function definition, and
evaluation of the expression. Following this, the resultant
value is made available to the expression that contained the
function reference and control is returned to that statement.

Example:

Statement function:

PROGRAMMER I DATE PROGRAM

STATEMENT

7 I 15 40 45 50

P
- Y

AECNANENE Nl A e AN 2t i | AR N AR
T T iy rrrrrrrrrrrrrrrrroyrrrrrrrrerrTr T P

Function reference:

PROGRAMMER J DATE | PROGRAM

STATEMENT
c Lobel
1 5

o ~ZONn
3
bl
8
8

40 45 50

O~
>
[
(@)
I
py]
>

qM+Aces* BF

A
3
;
L

6.8

BASIC EXTERNAL

Cértain basic functions are defined as part of the 2116A

FUNCTIONS
FORTRAN Library. When one of these appears as an operand
in an expression, the compiler generates the appropriate call-
ing sequence within the object program.
The types of these functions and their arguments are defined.
The compiler recognizes the basic function and associates the
type with the results. The actual arguments must correspond
to the type required for the function; if not, a diagnostic mes-
sage is issued. The functions available are shown below:
Function ' Definition | SYmbolic No. of Type of
Name Name Arguments | Argument| Function
Absolute Value la| ABS 1 Real Real
IABS 1 Integer Integer
Float Conversion | FLOAT 1 Integer Real
from in-
teger to
real
Fix Conversion | IFIX 1 Real Integer
from real
to integer
Transfer sign Sign of ag SIGN 2 Real Real
times |a1| ISIGN 2 Integer Integer
Exponential e? EXP 1 Real Real
Natural loge (a) ALOG 1 Real Real
Logarithm '
Trigonometric sine (a)t SIN 1 Real Real
Sine
Trigonometric cos (a)t Ccos 1 Real Real
Cosine
Trigonometric tan (a)t TAN 1 Real Real
Tangent
Hyperbolic tanh (a) TANH 1 Real Real
Tangent 1/2
Square Root (a) SQRT 1 Real Real
Arctangent arctan(a) ATAN 1 Real Real
And (Boolean) a; ~oa, IAND 2 Integer Integer
Or (Boolean) aj v a, IOR 2 Integer Integer
Not (Boolean) 1a NOT 1 Integer Integer
Sense Switch Sense Switch | ISSW 1 Integer Integer
Register
switch (n)

ta is in radians

6-11

6.9

RETURN
AND END

6-12

Examples:

PROGRAMMER * | oate [PROGRAM

STATEMENT
€ Label
1 5

o ~Z0n
e
G
3
2
8
3

40 45 50

NIN=

LloA

N|D'=

N

1Z

[mil2){2)hil[2)[0)

DB oo n|——

AL

OWR

Blo= === <O D]~

NTL

OOHY[P

O[0|l®

AOHY

O00AH

HF PR

ARC

LPR

[w]

—
(@}
)
2

s

wlalnlulwfow{olujajaln]a]n
[2]
O v
w
)
[2]
—

PRIO
LSUM
M

=]

LCL
T

A subprogramnormally contains a RETURN statement that indi-
cates the end of logic flow within the subprogram and returns
control tothe calling program. It must always contain an END
statement.

In function subprograms, control returns to the statement con-
taining the function reference. In subroutine subprograms,
control returns to the next executable statement following the
CALL. A RETURN statement in the main program is inter-
preted as a STOP statement.

The END statement marks the physical end of a program, sub-
routine subprogram, or function subprogram. If the RETURN
statement is omitted, END causes a return to the calling pro-
gram. The ENDS$ is required in addition to END statements
whenfive or less subprograms are being compiled at one time,

INPUT/OUTPUT LISTS AND FORMAT CONTROL 7

74

INPUT/OUTPUT
LISTS

Datatransmission between internal storage and external equip-
ment requires an input/output statement and, for ASCII char-
acter strings, either a FORMAT statement or format control
symbols with the input data. The input/output statement spec-
ifies the input/output process, such as READ or WRITE; the
unit of equipment on which the process is performed; and the
list of data items to be moved. The FORMAT statements or
control symbols provide conversion and editing information be-
tween the internal representation and the external character
strings. I the data is in the form of strings of binary values,
format control is unnecessary.

The input list specifies the names of the variables and array
elements to which values are assigned on input. The output
list specifies the references to the variables, array elements,
and constants whose values are transmitted. The input and
output lists are of the same form. The list elements consist
of variablenames, array elements, and array names separated
by commas. The order in which the elements appear in thelist
is the sequence of transmission. If FORMAT statements are
used, the order of the list elements must correspond to the
order of the format descriptions for the data items. In array
elements buffer length is limited to a maximum output of 60
computer words.

Subscripts in an input/output list may be of the form (expl,
expz), where exp; is one of the following:

ckxv+k v-k

c*v-k v
c*v k
v+k

where ¢ and k are integer constants and v is a simple in-
teger variable previously defined or defined within an implied
DO loop.

7-1

DO-Implied Lists A DO-implied list consists of one or more list elements and
indexing parameters. The general form is

(... (list, i=m,, m,, m3)...)

list Any series of arrays, array elements, or
variables separated by commas

i Control variable

m's Index parameters in the form of unsigned
integer constants or predefined integer
variables

Data defined by the list elements is transmitted starting at the
value of mj in increments of m, until m, is exceeded. If
m3 is omitted it is assumed to be one.

An implied DO loop may be used to transmit a simple variable
or a sequence of variables more than one time.

Two-dimensional arrays may appear in the list with wvalues
specified for the range of the subscripts in an implied DO loop.
The general form for an array is:

((a(dlydz), 11 =m1) mz) m3), 12 =n1’ nz, n3)

where,
a An array name
d,, d Subscripts of the array in one of
1’ 72 .

the preceding forms

il’ 12 Control variables representing
either of the variable subscripts
d1 and d2

m's, n's Index parameters in the form of un-
signed integer constants or predefined
integer variables. If mg or ng is
omitted, it is construed as 1.

-2

The input/output list may contain nested implied DO loops. Dur-
ing execution, the control variables are assigned the values of
the initial parameters (il = my, ig = nl). The first control
variable defined in the list is incremented first. When the first
control variable reaches the maximum value, it is reset; the
next control variable tothe right is incremented and the process
is repeated until the last control variable hasbeenincremented.

If the name of a dimensioned array appearsin a list without sub-
scripts, the entire array is transmitted.

Examples:

a) The DO-implied list:
((A(Ir J): I=1, 20, 2); J=1, 50, 5)
replaces the following:
DO x J=1, 50, 5
DO x I=1, 20, 2
transmit A (I, J)
x CONTINUE

b) Other implied DO loops might be:
((ABLE(5%KID-3, 100*LID), KID=1, 100), LID=1, 10)
(A@1,J), I=1,5),dJ=1,5) Transmit elementsby column
((A(1,J),J=1,5), 1=1,5) Transmit elements by row.

¢) Nested implied DO loops:
((((A(I’ J), B(K, L)) K=1, 10)aL=17 15),1=1, 20)’ J=1, 25)
((a@,dJ),B(K),K=1,10), 1=20, 100, 10), K=9, 90, 10)

d) Simple variable transmission:
(A, K=1, 10) Transmits 10 values of A.

e) Dimensioned array transmission:
DIMENSION A(50, 20)

... A... list element
is equivalent to:
DO xI = 1,20
DO xJ = 1,50
transmit A(J,I)
x CONTINUE

7.2

FORMAT
STATEMENT

73

FORMAT STATEMENT
CONVERSION
SPECIFICATIONS

7-4

ASCII input/output statements may refer to a FORMAT state-
ment which contains the specifications relating to the internal-
external structure of the corresponding input/output list ele-
ments.

FORMAT (specl, .+, r(specy,...), specy,...)

The spec's are format specifications and r is an optional rep-
etition factor which must be an unsigned integer constant.
FORMAT specifications may be nested to a depth of one level.
The FORMAT statement is non-executable and may appear any-
where in the program.

The data elements in the input/output lists may be converted
from external to internal and from internal to external repre-
sentation according to FORMAT conversion specificationsfr
FORMAT statements may also contain editing codes.

Conversion Specifications

rEw.d Real number with exponent
rFw.d Real number without exponent
riw Decimal integer

r@w }

rKw Octal integer

rAw Alphanumeric character

Editing Specification

nX Blank field descriptor

nHhp hy...hy, Heading and labeling descriptors
r'hy hy...h "
r/ Begin new record

T If the type of avariable in the input/output list does not corre-
spond to the type specified in the FORMAT statement, the com-
piler insures that the proper conversion from one type to the
other will take place.

Ew.d Output

Both w and n arenonzero integer constants representing the
width of the field in the external character string; n may be
omitted if the width is one. d is an integer constant repre-
senting the number of digits in the fractional part of the string.
r , the repeat count, is an optional nonzero integer constant in-
dicating the number of times to repeat the succeeding basic field
descriptor. Each h is one character.

The E specificationconverts numbers in storage to character
form for output. The field occupies w positions in the output
record; the number appears in floating point form right justified
in the field as:

AXq. Xy Exeel

X1...Xq are the most significant digits of the value of the data
to be output. ee arethedigitsin the exponent. Field w must
be wide enough to contain significant digits, signs, decimal
point, E , and exponent. Generally, w should be greater than
or equal to d + 4.

If the field is not long enough to contain the output value, an at-
tempt is made to adjust the value of d (i.e., truncating part
or all of the fraction) so that a number is written in the field.
If the remaining value is still to large for the field, dollar signs
(8) are inserted in the entire field. If the field is longer than
the output value, the quantity is right-justified with spaces to
the left.

Examples:
TTTT] WRITE(@L DA T 1] A contains +12.34 or -12.34
S| [FORMATI(E1|0.3]) | Result is aa.123E+02 or A-.123E+02
WRITIE[(4l, 5))A A contains +12.34 or -12.34
5| FORMAT(E/1[2].3)| | Result is aaaa.123E+02 or
AAAN -, 123E+02
WRIITIEI(4], 5]) A A contains +12.34 or -12. 34
5| IFIORMATI(IE[7].13)) Result is .12E+02 or -.1E+02
WRITE(|4],5])A A contains +12.34
5| FORMAT([ES]. 1)) Result is $$$$$

TThe caret symbol, A , indicates the presence of a space.

7-5

Ew.d Input

7-6

The E specification converts the number in the input field
(specified by w) to a real number and stores it in the appro-
priate storage locations.

The input field may consist of integer, fraction, and exponent
subfields:

integer fraction

l I _~exponent
't ...n.n...ntee

E

decimal point

The integer subfield beginswith a + or - sign, or a digit and
may contain a string of digits terminated by adecimal point, an
E, +, -, or the end of the input field.

The fraction subfield begins with a decimal point and may con-
tain a string of digitsterminated byan E, +, -, or the end
of the input field.

The exponent field may begin with a sign or an E and contains
a string of digits. When it begins with E , the + is optional
between E and the string. The value of the string of digits
should not exceed 38. The number mayappear inany positions
within the field; spaces in the field are ignored.

Examples:

+1.2345E2
123.456+9
-0.1234-6
.12345E-3
1234
+12345
+1234E6

When no decimal point is present in the input quantity, d acts
as a negative power of ten scaling factor. The internal repre-
sentation of the input quantity will be:

(integer subfield) x10~9 x10(exponent subfield)

Example:

PROGRAMMER

o ~ZO0O

€ Lobel
5 7

TTTT T FORMATICENRLED] [T 1T Input quantity = aaal234+5aa

||||||||||||

Conversion performed: 1234x10~8x10%
Result: 1.234

If a d value in the specification conflicts with the a decimal
point appearingin an input field, the actual decimal point takes
precedence.

Example:

PROGRAMMER

~Z00

€ lavei
1

[T []F[gRMAIT;(EM2LEN [T] Input quantity = Anannal.234+5
Quantity stored: 1.234x105

The field width specified by w should always be the same as
the width of the input field. When it is not, incorrect data may
be read, converted and stored. The value of w should include
positions for signs, the decimal point, the letter E , as wellas
the digits of the subfields:

Example:
[T IREAD(IS], 12D Al 18].]Ic
19 IFORMAT|([E7]. 12, IEl8]. 3], [El9].]2])

Assuming input data in contiguous fields:

-12.3E1+1234123. 46E-3
|«=— 7 —%—5 *——9 —|

The fields read would be:
-12.3E1

+1234
123. 46E-3

-1

and converted as:
-123.

1.234
. 12346

However, if specifications were:

PROGRAMMER l DATE PROGRAM

STATEMENT

o~ ~ZOO

€ Label
1 10 15 20 25 30 35 40 45 50

|~

10

ORMATI(EI7]. 2] JE[4].[3],[El7].]12]) [1]

| T

The fields read would be:

-12.3E1
+123
4123. 46

and converted as:
-123

.123
4123.46

The effects of possible FORMAT specification errors such as
the above may not be detected by the system.

Examples:
FORMAT Input Converted
Specification Field Value
E9.2 +1.2345E2 123. 45
E9.4 -0.1234-6 -.0000001234
E4.2 1234 12.34
Fw.d Output The F specificationconvertsreal numbers in storage to char-

acter form for output. The field occupies w positions and will
appear as a decimal number, right justified in the field.

AX...XeX...X

Fw.d Input

Iw

The x's are the most significant digits. The number of decimal
placesto the right of the decimal point is specified by d . I d
is zero, no digitsappear to the right of the decimal point. The
field must be wide enough to contain the significant digits, sign,
anddecimal point. If the number ispositive, the + sign is sup-
pressed. If the field is not long enough to contain the output
value, an attempt is made toadjust the value of d (i.e., trun-
cating part or all of the fraction) sothat a number is written in
the field. If the remaining value is still too large for the field,
dollar signs ($) are inserted in the entire field. If the field is
longer than the output value, the number is right-justified with
spaces occupying the excess positions on the left.

Examples:

PROGRAMMER

€ Lobel

Ear4elal

5

\;JR[ITEM,) A contains +12.34 or -12.34

5| [FORMATI([F[1lol.13)] | Result: Asaan12.340 or Aaa-12.340

RI|TIE/(4],[5]) A A contains +12.34 or -12.34

5 [FIORMATI|(|F]1]2].3]) Result: AAaaAn12.340 oraaaaa -12. 340
WRI TIE(4], 5]) A A contains +12. 34

5| [FORMATI(Fi4].]3)) Result: 12.3
WRITIEI(|4],5() A A contains +12345. 12

5 FO‘RMAT(Flal.13]) Result: $$$3$

The F specification input is identical to the E specification
input. Although thefieldsare generally assumed to contain only
a sign, integer, decimal point, and fraction; they mayalso con-
tainan exponent subfield. All restrictions for Ew.d inputapply.

The Iw specification converts internal values to output char-
acter strings, or input character strings to internal numbers.
The output external field occupies w record positions and ap-
pears right justified (spaces on left) as:

_/lxl. . .xd

During input conversion, if a value is less than —3276810, the
value is converted to a positive 32767.

7-9

Aw

7-10

The x's represent the decimal digits (maximum of 5) of the in-
teger. When the integer is positive on output, the sign is sup-
pressed. I an output field is too short, dollar signs ($) will be
placed in the output record.

The Iw specification, when used for input, is identical to an
Fw.0 specification.

Examples:
SROGRAMMER _ 1:»15
T WRITEEL LK, L I contains -1234
I (2)! FEO‘RM!I-\T(15],'15,[1]4,[16) J contains +12345

K contains +12345
L contains +12345

Result: -1234123453$3$112345

f— 5—sle— 5—sfe- 4-ofe—6—]

, DATE

12 FJIOIIRM NS RAERGAERENL Input contains:
-A12312AA3A1423

I contains -0123 5 s .y

J contains 12003 =5 —p—s—f-a~11|

K contains 0102
L contains 3

This specification (not available inthe 4Kversionof FORTRAN)
causes alphanumeric data on an external medium to be trans-
lated to or from ASCII form in memory. The associated list
element must be of type integer.

On input, if the field, as indicated by w, is greater than 2, the
first w-2 characters are ignored; only the last two characters
are read. When w equals 2, the two characters are read. If
w equals 1, one character is read and stored in the right half
of a computer word; zero is entered in the left half.

On output, if the field is greater than 2, two characters are
written with right justification in the field; the leading posi-
tions are filled with spaces. If w equals 2, the two characters
are written. If w equals 1, the character in the right half of
the computer word is written.

row
rKw

wW>2 w=2 W=1
| | | I
FIELD : ! : {
/ 1 L4 | & 4 14 4
. 7 7
(lgnored on input)
spaces on output
v : v v I v 1| v
MEMORY]
: . /|
(ignored on ouiput)
zero on input
Example:

Input data: AZZ213-ABCXABC137 - ZZ79

DIMENSION ID (5)
READ (5, 1) 12, I1, ID
10 FORMAT (Ald, Al, 5A2)

Result: 12 BC
I1 gX

ID AB

C1

37

-7

Z9

Octal integer values are converted under either the @ or the K
specification. The field is w octal digits in length; the cor-
responding list element must be of type integer. (Not available
in the 4K version of FORTRAN.)

Oninput, if w is greater than or equal to 6, up to sixoctal digits
are stored; non-octal digits appearing within the field are ig-
nored. If the value of the octal digits within the field is greater
than 177777, the results are unpredictable. If w is less than
6, or if less than six octal digits are encountered in the field,
the number is right justified in the computer word with zero
fill on the left.

On output, if the field is greater than 6, six octal digits are
written with right justification in the field; the leading positions
are filled with spaces. If w equals 6, the six octal digits are
written. If w is less than 6, the w least significant octal digits
are written.

Example:

Input data: 123456-1234562342342342, 396E-§5 CR LF

DIMENSION ID(2), IE(2)
READ (5, 10) IB, IC, ID, IE
10 FORMAT (@6, @7, 2@5, 2@4)

7-11

nX

nHhyhy..hy,

7-12

Result; IB 123456
IC 123456

ID P23423

342342

IE pppp36

gp0085

The X specification maybe usedtoinclude n blanksinan out-
put record or to skip n characters on input to permit spacing
of input/output quantities. Inthe specificationslist, the comma
following X isoptional. AX isinterpretedas 1X. 0X is not
permitted.

Examples:
PROGRAMMER DATE l PROGRAM
WRIITIE[(/6],]1]@) A, B], I A contains +123. 4
1% de[AT (EBI.13,5X], Fl6|. 21,5, 114) B contains -12.34

I contains -123
Result: A.1234E2AAAAA=-12,34 AAAAA-123
Input:

WEIGHTAA10 AAPRICEAA$1.98 AATOTALAA$19. 80

PROGRAMMER

l DATE I PROGRAM

<
1

I3

s STATEMENT
Label b
s

5 7

10 15 20 25 30 35 40 45 50
EIAD](

~ |
O =
X
Pl
Pt [y
b
b 1>
4
M
N
ST
p=4
-
4]
[}

B
17| FlorMIA 17

.
| I I I

Result: I contains 10
A contains 1.98
B contains 19. 80

The H specificationprovides for the transfer of any combina-
tion of 8-bit ASCII characters, including blanks. n is an un-
signed integer specifying the number of characters to the right
of the H that are to be transmitted. The comma following the
H specification is optional. AH is interpreted as 1H. OH is
not permitted.

On output, the ASCII data in the FORMAT statement is written
on the unit in the form of comments, titles, and headings.

e I ”
r h|h2...hn

Example:

PROGRAMMER _ DATE bOGKAM
WRITE(6’|I¢) 30 J 35 40 45 50
17 FOlRMAT(ZO[H THI|S| [1is| |aAN] [EX[AMPILE[)
I [
Result: THIS IS AN EXAMPLE
WRITE (6], 1|@D]1],1a],B |
11| FORMATI(BHWETIGHT | [112[,/1\@H | PIRTICE| | $[,IFl4]. 2],
c[1 g+ ;T!o:T;A!L! SAGEREDEER

L

I contains 10
A contains 1.98
B contains 19. 80

Result:

WEIGHT 10 PRICE $1.98 TOTAL $19.80

On input, the data is transmitted from the unit to the FORMAT

statement.

data to the output record.

Examples:

A subsequent output statement transfers the new

PROGRAMMER

DATE PROGRAM

C Lobel
1 5

o ~Z00

STATEMENT

EA

M0 |~

g

OR

1
ATI((3] E{HAAAAA[ATAAAAINAANA[AA|AAJA AN A AJAATA A A

(5,112
|
|

40

E(18],]!|2])

Input:

Result:

H INPUT ALLOWS VARIABLE HEADERS

H INPUT ALLOWS VARIABLE HEADERS

This specificationalso provides for the transfer of any combin-
ation of ASCII characters (except the quotation marks). The
number of characterstransmitted is the number of positionsbe-
tween the two quotation marks; field length is not specified. If
r , an optional repeat count, is present, the character string
within the quotation marks is repeated that number of times.
Commas preceding the initial quotation mark and following the

closing

quotation are optional.

7-13

New Record

7-14

Examples:

AAMMER DATE . ! PROGRAM

Looel

STATEMENT

o =Z0N

16 15 2 25 30 35 40 45 50

T WRIFE (8], (8] !
|6!FDRMAT(TH1IS! AlLslol [1]s] AN [ExjaMP|LE)

Result: THIS ALSO IS AN EXAMPLE

WRITE(6, 180 || T
g FORMAT(3"|ABC)| | | | RN RN

Result: ABCABCABC

On input, the number of characters within the quotation marks
is skipped on the input field.

The slash, /, terminates the current record and signals the
beginning of a new record of formatted data. It mayoccur any-
where in the specifications list and need not be separated from
the other list elements by commas. Several records may be
skipped by indicating consecutive slashes or by preceding the
slashwitha repetitionfactor; r-1 recordsare skipped for r/.
On output the slash is used to skiplines, cards, or tape records;
on input, it specifies that control passes to the next record or
card.

Examples:
TTWRITECS, 180 [[] AN
| @] FORMAT([22[x, 6HBJUDGE[T|/|///'6HWETIGH[T ,6X],
C|5HPRII CE|, 9|X, SHTIOTAL,BXD] [||
i 1 : ‘

or L “1

WRITEE(6,!|3)

I @] FORMAT (22X, 6HBlUDGET|, 3/6HWETGH[T , 6 X,

Cl5HPR|ICE, 9|X,5HTOTAL ,[8X)) ‘ i
. . ’ 1

Result:

line 1 AAAAAAAA AAAAA AAAAA AAAA BUDGET
line 2

line 3

line 4 WEIGHT AAAAAA PRICE AAAAANNANAN TOTAL/\M/\N\/\/\

Repeat

Specifications Repetition of the field descriptors (except nH) is accomplished
by preceding the descriptor witha repeat count, r . If the in-
put/output list warrants, the conversion is interpreted repeti-
tively up to the specified number of times.

Repetition of a group of field descriptors, including nH is ac-
complished by enclosing the group in parentheses and pre-
ceding the left parenthesis with a group repeat count. If nogroup
repeat count is specified, a value of one is assumed. Grouped
field descriptors may be nested to a depth of one level.

Examples:
PROGRAMMER _ DATE J:ROGRAM
WRIITIE[(4], [1]g) (1], [J], K
18] FIoRMAT!([15,15],1/5)]

]
-
=
m
H
[$IS)
—
[
X

S
E IR
>
(e
=
o
=
<

RITE (14,1|@)A,B[, 1,
E8[. B/,|5X[, Fi6|.12],/5X], 1[4])

S
il
o
X
<
D
=]
N~

A nested repetition specification would be:
PR e 315 S B S []

The group F6.2, 5X, I4 would be written five
times, and the entire group, once.

x

Unlimited Groups

7.4

FREE FIELD
INPUT

Data Item
Delimiters

7-16

FORMAT specifications may be repeated without use of the
repetition factor. If list elements remain after all specifica-
tions in a FORMAT statement are processed, the rightmost
group of repeated (enclosed in parentheses) specifications is
used. If there is no repeated group, processing resumes with
the first specification in the statement. On output, each time
the rightmost parenthesis in the statement, or in the unlimited
group, is reached, the current record is terminated.

By following certain conventions in the preparation of the input
data, a 2116A FORTRAN program may be written without use
of FORMAT statements. Special symbols included with the
ASCII input data items direct the formatting:

space or, Data item delimiters
Record terminator

+ - Sign of item

. E + - Floating point number

@ Octal integer

A Comments

All other ASCII non-numeric characters are treated as spaces
(and delimiters). Free field input may be used for numeric data
only. Free field input is indicated in the FORTRAN READ
statement by using an asterisk rather than a number of a FOR-
MAT statement.

Any contiguous string of numeric and special formatting char-
acters occurring between two commas, a comma and a space,
or two spaces, is a data item whose value corresponds to a
list element. A string of consecutive spaces is equivalent to
one space. Two consecutive commas indicate that nodata item
is supplied for the corresponding list element; the current value
of the list element is unchanged. An initial comma causes the
first list element to be skipped.

Example:
1) PROGRAMMER 2) PROGRAMMER ;
T RERORSL AR [T IREADICEL R oL
Input data: 1720, 1966 Input data: 1266, ,1794, 2000
1980 1492
Result: I contains 1720 Result: I contains 1266
J contains 1966 J contains 1966
K contains 1980 K contains 1794

L contains 1492 L contains 2000

Floating Point
input

Octal Input

Record
Terminator

The symbols used to indicate a floating point data item are the
same as those used in representing floating pointdata for FOR-
MAT statement directed input:

integer fraction
| | /_\exponent
tn...n'n...nzee'

.n.
n \ E
de

cimal point

If the decimél point is not present, it is assumed to follow the
last digit.

Examples:
PROGRAMMER < Jw MEMWPKOGW
T REASICS] ORI 6 B [T T

Input Data: 3.14, 314E-2, 3140-3, .0314+2, .314El

All are equivalent to 3. 14

An octal input item has the following format:
@ . SERRS
The symbol @ defines an octal integer. The x's are octal

digits each in the range of 0 through 7. List elements corre-
sponding to the octal data items must be type integer.

A slash within a record causes the next record to be read im-
mediately; the remainder of the current record is skipped.

Example:

PROGRAMMER DATE PROGRAM

STATEMENT

C

S
€ Lobel S
s

5 7 10 x 25

T RERRI, AL K, L W T

LI LI

List Terminator

Comments

7-18

Input data: 987, 654, 321, 123/DESCENDING CB) €5
456

Result: II contains 987
JJ contains 654
KK contains 321
LL contains 123
MM contains 456

If a line terminates (with a)and a slash hasnot been
encountered, the input operationterminates even thoughall list
elements may not have been processed. The current values of
remaining elements are unchanged.

Examples:

PROGRAMMER ‘[DHE 1 PROGRAM

STATEMENT

“zon

€ Lobel
1

30 5 40 45 50

R B R A

T
Input Data:

=7.987_ B= =4.6859E-
?=g4g67@3@%m C=4.6859E-3 CRLD

Result: A contains 7.987
B contains 5E2

C contains 4.6859E-3

J, X, Y, Z are unchanged.

All characters appearing between a pair of quotation marks in
the same line are considered to be comments andare ignored.

Examples:
"6.7321" is a comment and ignored
6.7321 is a real number

8.1
UNIT-REFERENCE

INPUT/OUTPUT STATEMENTS 8

Input/output statements transfer information between memory
and an external unit. The unit is specified as an integer vari-
able that is defined elsewhere in the program or an integer
constant.

Each statement may include a list of names of variables, ar-
rays, and array elements. The named elements are assigned
values on input and have their values transferred on output.

Records may be formatted or unformatted. A formatted rec-
ord consists of a string of ASCII characters. The transfer of
such a record requires the specification of a FORMAT state-
ment or free field input data. An unformatted record consists
of a string of binary values.

The integer specified for an input/output unit is a number which
represents a Standard unit assignment or an installation unit
assignment. The physical device referenced depends on tables
established within the Basic Control System.

The Standard unit numbers are as follows:

Number Name Usual Equipment Type
1 Keyboard Input 2752A TeleprinterT
2 Teleprinter Output 2752A Teleprinter
3 Program Library 2737A Punched Tape Reader
4 Punch Output 2753A Tape Punch
5 Input 2737TA Punched Tape Reader
6 List Output 2752A Teleprinter

tIf data is to be printed on the Teleprinter as it is read, Unit-
Reference number 1 must be used; printing occurs with no
other number.

8-1

8.2

FORMATTED
READ, WRITE

Installation unit numbers may be in the range 7 -T4g with the
largest value being determined by the number of units of equip-
ment available at the installation. Each Standard unitmay be a
separate device, or a single device may be accessed by several
Standard unit numbers as well as an installation unit number.}

A formatted READ statement is one of the forms:

READ (u, f)k
READ (u, *)k
READ (u, f)

Execution of this statement causes the input of the next ASCII
records from unit u. The information is scanned and converted
according to the FORMAT specification statement, f, and as-
signed to the elements of list k. If the input is free field, an
asterisk is specified inthe READ statement rather than the la-
bel of a FORMAT statement. If the list is absent, the FORMAT
statement should contain editing specifications only.

A formatted WRITE statement may have one of the following
forms:

WRITE (u, f)k
or
WRITE (u, f)

This statement transfers ASCII informationfrom locations given
by names in the list k to output unit u. The valuesare convert-
ed and positioned as specified by the FORMAT statement f. If
the list is absent, the FORMAT statement should contain editing
specifications only.

TFor complete details, see Basic Control System Programmer's
Reference Manual.

8.3

UNFORMATTED
READ, WRITE

8.4

AUXILIARY
INPUT/OUTPUT
STATEMENTS

An unformatted READ statement has one of the forms:

READ (u)k
or
READ (u)

This statement transfers the next binary input record from the
unit u to the elements of list k. The sequence of values re-
quired by the list may not exceed the sequence of values from
the record. If no list is specified, READ (u) skips the next
record.
An unformatted WRITE statement has the form:

WRITE (u)k

Execution of this statement creates the next record on unit u
from the sequence of values represented by the list k.

There are three types of auxiliary input/output statements:
REWIND
BACKSPACE
ENDFILE
A REWIND statement has the form:
REWIND u
This statement causes the unit u to be positioned at its initial
point. If the unit is currently at this position, the statement
acts as a CONTINUE.
A BACKSPACE statement is as follows:

BACKSPACE u

8-3

8-4

BACKSPACE positions the unit u so that what had beenthe pre-
ceding record becomes the next record. If the unit is currently
at its initial point, the statement acts as a CONTINUE.

An ENDFILE statement is of the form:
ENDFILE u

Execution of this statement causes the recording of an end-of-
file record on the output unit u. If given for an input unit, the
statement acts as a CONTINUE.

In addition to the three auxiliary input output statements, a
subroutine may be called to perform file and record spacing on
magnetic tape. The subroutine call is as follows:

CALL PTAPTE (u,f, r)
u Unit-Reference number of tape device

f File spacing:

A positive integer specifying the number of
files to be spaced forward.

A negative integer specifying the number of
files to be backspaced.

r Record spacing:

A positive integer specifying the number of
records to be spaced forward.

A negative integer specifying the number of
records to be backspaced.

Both file and record spacing may be specified in the same call
(e.g., space forward 5 files, then backward 2 records). If file
or record spacing is notto be performed, a zero is supplied as
the parameter.

If backspacing would result in spacing beyond the Start-of-Tape
mark, the spacing operation is terminated and program ex-
ecution resumes. If forward spacing results in spacingbeyond
the End-of-Tape marker, the message '""*EOT" is printed on the
Standard Teleprinter Output unit. When the operator presses
RUN, program execution resumes.

9.1
CONTROL

STATEMENT

COMPILER INPUT AND OUTPUT 9

The FORTRAN Compiler accepts as input, paper tape contain-
ing a control statement and a source language program. The
output produced by the Compiler may include a punched paper
tape containing the object program;a listing of the source lan-
guage program with diagnostic messages, if any; and a listing
of the object program in assembly level language.

The control statement must be the first statement of the source
program; it directs the compiler.

FTN, py, Py, Pg

FTN is a free field control statement. Following the comma
are one to three parameters, in any order, which define the
output to be produced. The control statement must be termi-
nated by an end-of-statement mark, . Spaces em-
bedded in the statement are ignored.

The parameters may be a combination of the following:

B Binary output: A program is to be punched in relo-
catable binary format suitable for loading by the Basic
Control System loader.

L List output: A listing of the source language program
is to be produced during Pass One.

A Assembly listing: A listing of the object program in
assembly level language is to be produced in the last
pass.

T Symbol table only: A listing of the symbol table only
is produced; if both T and A are specified, only the

last used will be decisive.

9-1

9.2

SOURCE
PROGRAM

9.3
BINARY OUTPUT

9.4
LIST OUTPUT

9-2

ment is followed by the end-of-statement mark,
Specifications statements must precede executable s atements
The last statement in each program submitted for compilation
must be an END statement. Up to five source programs may
be compiled at one time. The last program must be followed
by and END$ statement, if less than six programs are to be
compiled.

The source program follows the control statement. E@h state-

The control statement, each of the five programs, and the
ENDS$ terminator may be submitted on a single tape or on sep-
arate tapes. If more than five programs are contained on a
tape, the compiler processes the first five and halts with the
T-Register containing 102077 (end of Pass 1). The remaining
programs must be compiled separately.

The punch output produced by the compiler is a relocatable
binary program. It does not include system subroutines in-
troduced by the compiler, or library subroutines referred to
in the program.

If the List Output parameter is specified, the first 72 charac-
ters of each line of the source program is printed on the List
Output device. The END$ is the last statement printed. If
exactly five programs are compiled, however, the END$ is
omitted from the list.

If the Assembly listing parameter is specified, the program is
printed in assembly level language on the List Output device.
The program listing is followed by a Symbol Table for the as-
sembly level program.

The format for the assembly level listing is as follows:

Columns Content
1-5 Zero-relative location (octal) of the instruction
6-7 Blank

Columns
8-13
14
15
16-18
19
20-25

26-217

Content

Object code word in octal

Relocation or external symbol indicator

Blank

Mnemonic operation code

Blank

Operand address in octal or external symbol name.

The indicator '",I" if indirect addressing is used.

The Symbol Table listing has the following format:

Columns

1-5

6
7
8

9-14

Content

Symbol, statement label, or numeric symbol as-
signed by the compiler.

Blank
Relocation indicator
Blank

The zero-relative value of the symbol

The characters that designate an external symbol or type of
relocation for the operand address or a symbol in the Symbol

Table are:
Character Relocation Base
Blank Absolute
R Program relocatable
X External symbol
c Common relocatable

9-3

9.5
OPERATING
INSTRUCTIONS

The exact operating procedures for a compilation depend on
the available hardware configuration.

One possible allocation of equipment might be as follows:

Compiler Standard Unit Physical Unit
Input/Output Designation Assignment
Binary output Punch Output Tape Punch
List output List Output Teleprinter, Line Printer
Control Statement Input Teleprinter
Source tape(s) Input Punched Tape Reader,

Marked Sense Cards

If there are two output devices as shown above, there are two
passes (8K memory) or four passes (4K memory). The list
output and an intermediate binary tape are both produced during
the first pass; the assembly listing and the binary output are
both produced during the last pass.

If one output device is available list output and intermediate
binary outputare written on the same tape during the first pass
(the Compiler ignores the list output when reading the binary
data during the second pass). The binary output is then pro-
duced in the next to the last pass; and the assembly listing, in
the last pass.

The compiler determines whether a magnetic tape unit is avail -
able by checking location 107. See the Magnetic Tape System
manual for operating procedures in a magnetic tape environ-
ment (non-4K only).

The following procedures indicate the sequence of steps for
compilation of a source program on paper tape:

A. Set Teleprinter to LINE and check that all equipment to be
used is operable. If the Teleprinter is the only output
device, turn ON punch unit,

B. Load FORTRAN Pass 1 using the Basic Binary Loader:

1. Place FORTRAN binary tape in the device serving as
the Standard Input unit (e.g., Punched Tape Reader).

2. SetSwitch Register to starting address of Basic Binary
Loader.

3. Press LOAD ADDRESS.

4, Set Loader switch to ENABLED.

5. Press PRESET.

6. Press RUN.

7. When the computer halts and indicates that the FOR-
TRAN tape is loaded (T-Register contains 102077),
set Loader switch to PROTECTED.

If the System Input/Output (SIO) subroutines are on a tape

which is separate from FORTRAN Pass 1, load the tape

using the Basic Binary Loader as in Step B.

Set Switch Register to starting address of FORTRAN

Pass 1: 000100 (non-4K has optional starting address of 50
to enter control statement through teleprinter).

Press LOAD ADDRESS

Place source language tape in device serving as the Stand-
ard Input unit (e.g., Punched Tape Reader).

Press RUN.

If more thanone source tape (haltwith T-register = 102057),
repeat Steps F and G for each tape (102002 in 4K).

Perform either of the following depending on memory size:
4K Memory

1. At end of Pass 1 (T-Register contains 102077) load
Pass 2 using the Basic Binary Loader as in Step B.

2. Removebinaryoutput from Standard Punch device and
placein device serving as the Standard Input unit. (If
only one output device, both binary and list output are
on the same tape.)

3. Set Switch Register to: 000100

4, Press LOAD ADDRESS

5. Press RUN

9-5

10.

11.

12.

13.
14.
15.
16.

At end of Pass 2 (T-Register contains 102077), load
Pass 3 using the Basic Binary Loader as in Step B.

Remove binary ou-tput from Standard Punch device and
place in device serving as Standard Input unit.

Set Switch Register to: 000100

Press LOAD ADDRESS.
Press RUN.

At end of Pass 3 (T-Register contains 102077), load
Pass 4 using the Basic Binary Loader as in Step B.

Remove binary output from Standard Punch device and
place in device serving as Standard Input unit.

Set Switch Register to: 000100.
Press LOAD ADDRESS.
Press RUN,

At end of Pass 4, the relocatable binary object tape
is on the Standard Punch unit. Either of the follow-
ing conditions may exist:

a. If the T-Register contains 102077, the compila-
tion is complete. If an assembly listing was re-
quested, it is on the List Output Device.

b. If the T-Register contains 102001, an assembly
listing pass is to be performed:

(1) Place binary output from Pass 3 in device
serving as Standard Input unit. (Turn off
Teleprinter punch unit.)

(2) Press RUN.

(3) At end of listing pass, T-Register contains
102077.

8K Memory

1. At end of Pass 1 (T-Register contains 102077), load
Pass 2 using the Basic Binary Loader as in Step B.

2. Removebinaryoutput from Standard Punch device and
place indevice serving as the Standard Input Unit. (If
only one output device, both binary and list output are
on the same tape.)

3. Set Switch Register to: 000100
4, Press LOAD ADDRESS.
5. DPress RUN.

6. At end of Pass 2, the relocatable binary object tape is
on the Standard Punch unit. Either of the following
conditions may exist:

a. If the T-Register contains 102077, the compila-
tion is complete. If an assembly listing was re-
quested, it is on the List Output device.

b. If the T-Register contains 102001, an assembly
listing pass is to be performed:

(1) Place binary output from Pass 1 in device
serving as Standard Input unit. (Turn off
Teleprinter punch unit.)

(2) Press RUN.

(3) At end of listing pass, T-Register contains
102077,

J. The Basic Control System Loader is used to load the ob-
jectprograms generated by FORTRAN and any referenced
library routines. Listed below is a summary of proce-
dures for normal loading of relocatable object programs
and library routines (and for the printing of a Memory
Allocation Listing):

T See Section 9.8 for details and options.

9-8

8.

Load the Basic Control System tape using the Basic
Binary Loader as in Step B.

Set Switch Register to 000002, press LOAD ADDRESS,
and set Switch Register to 000000.

Place FORTRAN or Assembler generated relocatable
object tape in device serving as Standard Input unit.

Press RUN. The loader types "LOAD'" when the tape
is loaded.

If more than one relocatable object tape is to be loaded,
repeat StepsJ3andJ4 for each. Otherwise, setSwitch
Register to 000004 to load library routines.

Place FORTRAN library tape in device serving as
Program Library unit.

Press RUN. When the loading operation is complete,
the Loader types "*LST'". Press RUN to print Loader
Symbol Table. When the Loader types "*RUN", the
program is ready for execution.

Press RUN to initiate execution.

During the operation of the Compiler, the following halts may

occur:
T-Register Explanation Action

102000 Memory overflow: the Irrecoverable error;
program is too large; program must be re-
has too many symbols- vised.

102001 End of binary object If only one output de-
tape output, start of vice, placeintermedi-
assembly listing. ate binary outputfrom

previous pass inStand-
ard Input unit and
press RUN.

102002 End of source tape. Place next input tape in
(4K compiler) reader.

T-Register

102007

102010

102011

102027

102057

Explanation

For all passes except

first, unrecognizable

recordonintermediate

binary tape:

1) Puncherror on pre-
vious pass.

2) Wrong tape supplied
as input for pass.

External symbol table
overflow: the number
of symbols exceeds
255.

Checksum error on in-
termediate tape; indi-
cates probable punch
error,

If a magnetic tape is
used for intermediate,
indicates MT parity
error or write not en-
abled

A Magnetic Tape Read
error has occurred
during Pass 2.

End of source tape.

Action

If puncherror, restart
with Pass 1.

If wrong tape, restart
current pass:

a) Load FORTRAN
pass.

b) Set Switch Register
to 000100.

c) Press LOAD AD-
DRESS.

d) Place previous in-
termediate binary
tape in input device.

e) Press RUN.

Irrecoverable error;
program must be re-
vised.

Attempt to re-read
record (binary records
are separated by 4 feed
frames). Otherwise,
restart with Pass 1.

(irrecoverable).

Restart.

Place next input tape
in reader.

9-9

T-Register Explanation Action

102066 Tape supply low on Load new tape and
2753A Tape Punch. press RUN.

102077 Normal end of pass or Proceed as indicated
compilation. in above steps.

For diagnostic messages that might occur during loading see
the Basic Control System Programmer's Reference Manual.
Diagnostics are also issued by the input/output system pro-
vided by FORTRAN and by the FORTRAN library routines

(Section 9. 9).

9.5.1

SWITCH

REGISTER

BITS If bit 0 is set during pass 2 (or pass 4 in 4K), the compiler
suppresses leader and trailer on punch out.

9-10

9.6

DIAGNOSTIC
MESSAGES

Errors detected in the source program are indicated by a nu-
meric code inserted before or after the statement in the List

Output.

The format is as follows:

E-eeee:
eeee

SSSs

nnnn

Error
Code

S$Sss + nnnn
The error diagnostic code shown below.

The statement label of the statement in which
the error was detected. If unlabeled, 0000 is

typed.

Ordinal number of the erroneous statement
following the last labeled statement. (Com-
ment statements are not included in this
count.)

Description

0001 Statement label error:

a)
b)
c)
d)
e)

The label is in positions other than 1-5.

A character in the label is not numeric.

The label is not in the range 1-9999,

The label is doubly defined.

The label indicated is used in a GO TO, DO, or
IF statement or in an I/O operation to name a
FORMAT statement, but it does not appear in
the label field for any statement in the program
(printed after END).

0002 Unrecognized Statement:

a)
b)
c)

d)

The statement being processed is not recognized
as a valid statement.
A specifications statement follows an executable
statement.
The specification statements are not in the follow-
ing order:

DIMENSION

COMMON

EQUIVALENCE

A statement function precedes a specification
statement.

9-11

9-12

Error

Code

0003

0004

0005

0006

0007

0008

0009

0010

Description

Parenthesis error: There are an unequal number of
left and right parentheses in a statement.

Illegal character or format:

a) A statement contains a character other than A
through Z, 0 through 9, or space =+-/(),.$".

b) A statement does not have the proper format.

c) A control statement is missing, misspelled, or
does not have the proper format.

d) An indexing parameter of a DO-loop is not an
unsigned integer constant or simple integer var-
iable or is specified as zero.

Adjacent operators: An arithmetic expression con-
tains adjacent arithmetic operators.

Illegal subscript: A variable name is used both as a
simple variable and a subscripted variable.

Doubly defined variable:

a) A variable name appears more than once in a
COMMON statement.

b) A variable name appears more than once in a
DIMENSION statement.

¢) A variable name appears more than once as a
dummy argument in a statement function.

d) A program, subroutine, or functionnameappears
as a dummy parameter;in a specifications state-
ment of the subroutine or function; or as a simple
variable in a program or subroutine.

Invalid parameter list:

a) The dummy parameter list for a subroutine or
function exceeds 63.

b) Duplicate parameters appear in a statementfunc-
tion.

Invalid arithmetic expression:

a) Missing operator
b) TIllegal replacement

Mixed mode expression: integer constants or variables
appear in anarithmetic expression with real constants
or variables.

Error
Code

0011

0012

0013

0014

0015

Description

Invalid subscript:

a)
b)

c)

Subscript is not an integer constant, integer var-
iable, or legal subscript expression.

There are more than two subscripts (i.e., more
than two dimensions.

Two subscripts appear for a variable which has
been defined with one dimension only.

Invalid constant:

a)
b)

c)

A{15integer constant is not in the range of —215 to
219 -1,

A real constantis not in the approximate range of
1038 to0 10738,

A constant contains an illegal character.

Invalid EQUIVALENCE statement:

a)

b)

c)

Two or more of the variables appearing in an
EQUIVALENCE statement are also defined in the
COMMON block.

The variables contained in an EQUIVALENCE
cause the origin of COMMON to be altered.
Contradictory equivalence; or equivalence between
two or more arrays conflicts with a previously
established equivalence.

Table overflow: Too many variables and statement
labels appear in the program.

Invalid DO loop:

a)

b)

c)
d)

The terminal statement of a DO loop does not ap-
pear in the program or appears prior to the DO
statement.

The terminal statement of a nested DO loop is not
within the range of the outer DO loop.

DO loops are nested more than 10 deep.

Last statement in a loop is a GO TO, arithmetic
IF, RETURN, STOP, PAUSE, or DO.

9-13

9.7
OBJECT
PROGRAM
LOADING

9-14

Error Code Description

0016 * Statement function name is doubly defined.

If absolute binary output was specified, the Basic Binary Loader
is used to load the object program tape.

If relocatable binary output was specified, the BCS Relocating
Loader is used toload the object program tape. If the program
refers to other Assembler or FORTRAN generated object pro-
grams, these tapes are loaded by the Relocating Loader at the
same time. In general, the FORTRAN Library tape must be
submitted for loading also.

Listed below are summaries of procedures for normal loading
of object programs:

BASIC BINARY LOADER
OPERATING PROCEDURES SUMMARY

A. Place binary object tape in Standard Input unit.

@

Set Switch Register to starting address of Basic Binary
Loader (e. g., 007700 for 4K memory, 017700 for 8K mem-

ory).

Press LOAD ADDRESS.

Set LOADER switch to ENABLED.
Press PRESET.

Press RUN.

When the computer halts with T-Register containing
102077, set LOADER switch to PROTECTED.

Set Switch Register to starting address of object pro-
gram.
I. Press LOAD ADDRESS.

J. Check that all I/O devices are ready and loaded for op-
eration of the program.

K. Press RUN.

@ =00

2

BASIC CONTROL SYSTEM LOADER
OPERATING PROCEDURES SUMMARY

. Load theBasic Control System tape using the Basic Bi-
nary Loader.

. Set Switch Register to 000002, press LOAD ADDRESS,
and set Switch Register to 000000.

. Place Assembler (or FORTRAN) generated relocatable
object tape in Standard Input unit.

. Press RUN. The loader types "LOAD" if it expects an-
other relocatable or library program.

. If more than one relocatable object tape is to be loaded,
repeat Steps C and D for each. Otherwise, set Switch
Register to 000004 to load library routines.

. Place FORTRAN Library tape in device serving as Pro-
gram Library unit.

. Press RUN. When the loading operation is complete, the
Loader types '"*LST'". Press RUN. The Loader types
"*RUN" indicating the program is ready for execution.
(See the Basic Control System Programmer's Reference
manual for error message.)

. Press RUN to initiate execution.

9-15

9.8

OBJECT PROGRAM
DIAGNOSTIC
MESSAGES

Teleprinter
Message

*FMT

*FMT

9-16

During execution of the object program, diagnostic messages
may be printed on the Teleprinter Output unit by the input/output
system supplied for FORTRAN programs. When a halt occurs,
the A-Register contains a code which further defines the nature
of the error:

A-Register
*EQR Unit Number

Explanation

Equipment Error: End
of input tape on 2752A
Teleprinter or 2737TA
Punched Tape Reader;
tape supply low on
2753A Tape Punch. B-
Register contains sta-
tus word of Equipment
Table entry.

FORMAT error:

a) w or d field does
not contain proper
digits.

b) Nodecimal point af-
ter w field

c) w-d < 4for E speci-
fication.

a) FORMAT specifi-
cations are nested
more than one level
deep.

b) A FORMAT state-
ment contains more
right parentheses
than left parenthe-
ses.

Action

Place next tape in in-
put device, or for Tape
Punch, load new reel
of tape. Press RUN.

Irrecoverable error;
program must be re-
compiled.

Irrecoverable error;
program must be re-
compiled.

Teleprinter

Message A-Register Explanation Action

*FMT 000003 a) Illegal character in Irrecoverable error;
FORMAT state- program must be re-
ment. compiled.

b) Format repetition
factor of zero.

c¢) FORMAT statement
defines more char-
acter POSITIONS
than possible for
device.

*FMT 000004 Illegal character in Verify data.
fixed field input item
or number not right-
justified in field.

*FMT 000005 Anumber hasanillegal Verify data.
form (e.g., two E's,
two decimal points,
two signs, etc.)

9-17

During the execution of an object program referring to the
FORTRAN library routines, the following errors codes may be
printed on the Teleprinter OQutput unit when error conditions are
encountered by the specified subroutine:¥

Error Code Subroutine Condition
02 UN ALOG ag0
03 UN SQRT a<0
04 UN .RTOR x=0,y<0
x<0, y=0
05 OR SIN, COS lal > 2%
06 UN .RTOI x=0, ic<0
07 OF EXP]?.I *logze >124
08 OF .ITOI il out of range
08 UN . ITOI i=0, j<0
09 OR TAN lal > 214
UN = Floating point underflow
OF = Integer or floating point overflow
OR = Out of range

T For complete details, see FORTRAN Library Routines manual.

9-18

HP CHARACTER

SET

ASC 11l CHARACTER FORMAT

by 0 0 0 o ! ! ! !
be) [1 1 [¢] o ! !
bs [| [¢] | 0 | o !
by
b3
[T
by

ojo|o|o|NULL|DCo | B 0 @ P
o[ofo| i |som[DC, | | ! A Q | _jIT
olo| 1 |o|EOA|DC2 | 2 B R | _ju_]
ofo|i[i|eom|pcs| #w | 3 [¢ S L |_l.N_
o |ofo|EOT [2% ¢ 4 D T _u____:_
oli{ofli/wru|err] % | 5 | € | u N_| S
o{1[1]o]| RU |sYNC| & 6 F v j‘s‘:___f;_
O t |1]|BELL|LEM [(apos)| 7 G w _S_J..N_
1{ololo]| FEq | So (8 H X _:;___-g_.
1{ofof Mgl s,) 9 I Y N -4
1{of1|o| LF | S2 * : J z -E”_-l
tJol v v|Vras| S3 | + | , K1 C :D_“- _
"f1]ojo]| FF Sa jicoumay < L \ ACK
11 Joj1| CR Ss - = M J 1C (D
1 r|o| so | se > N ' Esc
vlvfey] s1 | s, / ? o « [4 [oec

Standard 7-bit set code positional order and notation are shown below with b, the high-order

and b, the low-order, bit position.

b,
EXAMPLE: The code for "R" is: 1
LEGEND
NULL Null/Idle DC,-DC,
SCM Start of message DC4(Stop)
EOA End of address ERR
ECM End of message SYNC
EOT End of transmission LEM
WRU "Who are you?" So=Ss
RU "Are you...?" n
BELL Audible signal
FEo Format effector <
HT Horizontal tabulation >
SK Skip (punched card))
LF Line feed -
Vias Vertical tabulation \
FF Form feed ACK
CR Carriage return 0]
SO Shift out ESC
Si Shift in DEL
DCo Device control reserved for

data link escape

b
0

be
0

bS
1

b, b

a by b,
0o o

1

1

Device Control

Device control (stop)

Error

Synchronous idle

Logical end of media

Separator (information)

Word separator (space, normally
non-printing)

Less than

Greater than

Up arrow (Exponentiation)

Left arrow (Implies/Replaced by)

Reverse slant

Acknowledge

Unassigned control

Escape

Delete/Idle

FORTRAN STATEMENTS AND FUNCTIONS B

Page
Executable Statements
Assignment
v =2¢ 3-4
Statement Function
f(al, COPRRE ,an) = e 6-9
Control
CALL s 6-4
CALL s (al, CIVRRY ,an) 6-4
CONTINUE 5-9
DOni = m,, m,, mg 5-3
END 5-10,6-12
END$ 5-10,6-12
GO TO k 5-1
GO TO (kl’ k2’ ce ’kn)’ i 5-1
IF (e) kl’ k2, k3 5-2
IF (e) kl’ k2 5-3
PAUSE; PAUSE n 5-9
RETURN 6-12
STOP; STOP n 5-9
Input/Output
BACKSPACE u 8-3
ENDFILE u 8-3
READ (u) 8-3
READ (u)k 8-3
READ (u,f) 8-2
READ (u, f)k 8-2

READ (u, *)k
REWIND u
WRITE (u)k
WRITE (u, f)
WRITE (u, f)k

Nonexecutable Statements
Specification
DIMENSION Vl(il)’ vz(iz), ceey

COMMON a,, a,,...,a
1’ 72 n

EQUIVALENCE (k,), (ky), ...,

Format

FORMAT (specl, el r(specm,
Subprogram

FUNCTION f (al, COVRRE ,an)

PROGRAM name
SUBROUTINE s
SUBROUTINE s (al, COPRRRPE)

v (i)

nn

(k)

n

cel), spec_, .

2

8-2
8-3
8-3
8-2
8-2

4-1

4-2

4-5

6-5
6-2
6-3
6-3

Functions

Function Definition Symbolic No. of Type of
Name Name Arguments | Argument Function
Absolute Value |a| ABS 1 Real Real
IABS 1 Integer Integer
Float Conversion FLOAT 1 Integer Real
from in-
teger to
real
Fix Conversion IFIX 1 Real Integer
from real
to integer
Transfer sign Sign of ag SIGN 2 Real Real
times Iall ISIGN 2 Integer Integer
Exponential ed EXP 1 Real Real
Natural log, (a) ALOG 1 Real Real
Logarithm
Trigonometric | sine (a)f SIN 1 Real Real
Sine
Trigonometric | cos(a)f COoSs 1 Real Real
Cosine
Trigonometric | tan (a)f TAN 1 Real Real
Tangent
Hyperbolic tanh (a) TANH 1 Real Real
Tangent 1/2
Square Root (a) SQRT 1 Real Real
Arctangent arctan (a) ATAN 1 Real Real
And (Boolean) aj A ag IAND 2 Integer Integer
Or (Boolean) |ajvag IOR 2 Integer Integer
Not (Boolean) 7a NOT 1 Integer Integer
Sense Switch Sense Switch| ISSW 1 Integer Integer
Register
Switch (n)

T a is in radians

FORTRAN
REFERENCE

ASSEMBLY LANGUAGE SUBPROGRAMS C

A FORTRAN program canrefer to a subprogram that has been
prepared using Assembler source language. The subprogram
may be treated as a subroutine or as a function. The object
code programs generated by FORTRAN and by the Assembler
are thenlinked together by the Basic Control System Relocating
Loader when the programs are loaded.

In the FORTRAN program, a subroutine is called using the fol-
lowing statement:

CALL s (al, COPRE ,an)

The symbolic name, s, identifies the subroutine and the a's are
the actual arguments.

If the subprogram is a function, it is referenced by using the
name and the actual arguments in an arithmetic expression:

f(al, Qg ,an)

As a result of either the call or the reference, FORTRAN gen-
erates the following coding sequence:

JSB s/t Transfers control to subroutine or function
DEF*4n+1 Defines return location

DEF ay Defines address of ay

DEF ag Defines address of ay

DEF an Defines address of an

The words defining the addresses of the arguments may be di-
rector indirect depending on the actual arguments. For exam-
ple, an integer constant as an actual argument would yield a
direct reference; an integer variable might yield an indirect
reference.

DIRECT TRANSFER
OF VALUES

If the subprogram being referenced isa subroutine, it may re-
turn none, one, or more than one value through its arguments
or through common storage. If the subprogram is a function,
it is assumed to return a single value in the accumulators: a
function of type integer returns a value in the A-Register; a
function of type real returns a value in the A- and B-Registers.

The subprogram may transfer values directly by accessing the
words in the calling sequence or it may make use of the FOR-
TRAN library subroutine . ENTR to aid in the transfer.

Any suitable technique may be used to obtain or deliver values
for the arguments and to return control to the calling program.
If address arithmetic is used in conjunction with an argument
(e.g., to process elements of an array), the base location must
be adirectreference; the location given in the calling sequence
must be checked to determine if it is a direct or indirect ref-
erence. If it is an indirect reference the location to which it
points must also be checked, and so forth.

Example:
IPROGRAMMER [DME — PROGRAM
NAM [AMS[UB
ENT| [AMS|UB F
AMS|UB| NlOP AMsUB| [Tlo] [cloNTIAT N [aDDRR] [ofF| ™ PFRNR]™ ||
LDa| [amMsluB[,[1] A [CONTIA[INIS| IVIALUEE! [OF| ["PHNKH™]-
s|TA| [RETRN RE[TIRN [ClON[TIA[IINS| VAILIVE] BIF] PN
N[x[T]AlG| [1/S/Z|]aMS|UB AMs|uB! [CION[TIATNS| |ADID|R| [OFF| [LOIC/A[TIT/ON
LDjA| [aMsiUB oF| ARGIUMENT].| [TE/ST| |T[F| AlLLL| [AR|GlU-
clPA| [RE[TRRN MENIT'S| PIROICES|SE[D]:| [CIOMPARIE| [VAILIUE
JMP| IREITIRN|, 1] TolF| " [*+Nli/1]"] WITH| A|DID|R| [OFF] ICURIRENT
LiolclalTI/ojN o] |ARGIUMENT!.| [T[F] ElQUAL]
PIRISIAIG RE[TURN [Ti0] [CALILIING| [PIROGR/AM, | [I|F! [NO[T],
PRIOCES|S| |ARGUMEN(T, |AlS| REQUIIRED.
LDja[[aMsiuB|, [T Al [CION[TIAILNIS| L|OC/A[TIT|ON] 10F| ARGUMENNT
Lpla] 14,1 LiojaD] loN[El-WORID! [([FIT|XED] [PIO[INT)
VIAILUE] [TIN[T]O] [A
LDlal lamsluBl,!T| |Liolab| [Twol-WoRpp! [([FiLloaTIIN|G] PlOITINT)

[n
1Z1 1T — a Zo
wj | TR < Ll
= [e)[TH[N][e) Ijw [11
) wiZl_ (&) <
[C) 1 Zlc[O 1o w 1
14 [[o) ZZ| . =
P4 =Z =l wolu|a]
wil = T =W 2
p=4 = < o] - u
—) oW - = [@) T
[O) OlZ|V] ~O[F|w .
B I O I Y o J=—=]alolx|a a
el =) < = Z [Jww wijul
o] wlel—d Z[— 4[4
< z Ol [[a) Z [1
fa) S — FlolTlw D] - o o)
2 o (uw HOF[O[O [¢]
< o o ool = Z[=o[Z Tl
[a (=] NI Z|— Ol
=4 NN) o <|Olw ['d Wl)
| = = oW [» oln
o 1 . [clulnulw l—
= wl - olv Z | wwwwfo T
= 22 =z == N[E[-ae[O =
— [e][e) =|O <20 a =2
— — FlWW[O[T [Fa 2w
w Wi w |- ZI S|l lag]lo s
) x g o< (@]] =T j) o)
] olo olo ololal-=/ajxe|— =o
= ~|O =0 xxiZw L [t = wia
> N 2]] dg/—un[dxal=S [P~
— — —| — —
- - - -~ - N~
ool Jo [[=) =) [as) X N~ [G)
DA olqa|g o] [N~ g
— N[> N[> n B[S =]~ [
- 23— =2 DoN[D] = +H 4[Z] - 1~ x
= g/ o=0 =dlelEdle) < * ¥ IO * [S Z——l—|n
a g g ol g aAlalolaa - o Olnlnnal |
] oA+ A=Y= %) Jaln[Z[=[Z2][o (&) = NnnZ
[a) JolJun Jonlalo Jon =2l d> |0 |o|[o[muw
4 Zlo[J[J
n radai«a
=->>
= w{D[—]N
rjol==

40

30

essed or partially processed before the next is obtained or

The preceding example assumes that each argument is proc-
delivered.

Control returns to the calling program when all

arguments have been picked up or delivered.

C-3

TRANSFER
VIA .ENTR

The transfer of values to or from the locations listed in the
calling sequence may be facilitated through use of the FORTRAN
library subroutine . ENTR. This subroutine movesthe addres-
ses of the arguments into an area reserved within the Assembly
language subroutine. The addresses stored inthe reservedarea
are all direct references; . ENTR performs all the necessary
direct/indirect testing, etc. It also sets the correct return
address in the entry point location.

The general form of the subroutine is:

NAM s The subroutine name is s.

ENT s

EXT .ENTR .ENTR must be declared as external.
a BSS n Reserves n words of storage for the
S NOP addresses of the arguments; this pseudo

instruction must directly precede the
entry point location, s.

JSB .ENTR
DEF a Defines first location of area used to
(First instruction) store argument addresses.

JMP s, 1
END

Example:

| PROGRAMMER

DATE

PROGRAM

STATEMENT

Comments

N AMS
ENT| [aMsiuB
EXT| . [ENTR

GMTIS| [B[S[S| |5

AMsluB| INloP
JsB| |. ENTR
DEF| |AGMTS

PR'SAG CE AR|GIUMEN AS| REQU[IREDD
LDa] |AeMTIS|, |1 K VIALIUE! [oF| FIIR[S|T |ARIGUMENIT
DILD| |AlGMTISH/1],]T ck ALUE SEICOND| [ARGUMEINT
LDl WIVIAL ORE LUE! FloR| THIRD| ARGUMENT
STA| JAGMTISR2[,|T
DILID[W2|V/AlL ORE UE| FOR| FOURTH AR EN(T
DisiT| laleMTisHH3], [T
LDA| [AGMTIS}H+|4 CK ADDRE/SS| lOF| FIIFTH GUMENT
JMP| |aMs|uBl, |1 UR 0 [caLLT PROGR/AM

wi i valLl BIsis] [1

w2valL| [Bisls| |2

L END| [

30

40

SAMPLE PROGRAM D

Using Simpson's rule, calculate the value of the integral:
b
/ COS X dx
X
a

for the following possible values:

Variable Range of Values
-6.99 to +6.99
-6.99 to +6.99

AX -.25 to +.25

Simpson's rule for approximating a definite integral is:

b
f f(x)dx = ATX (f(a)+4f(a+ox)+2f(a+24X)+4f (a+34X)+. . . +f(b)

a

The last term is reached when (a+kax)=b , and when neither a
2 nor a 4 appears in front of the first or last term.

START

¢

READ
A, B, AX

LAST TERM
LIf(v\ITS
_(B=-A

K="%

INCREMENT DO:
N=N+1

N >K?

NO

TERM =
COS F (A + N*AX

A+ N*AX

Y

SUM = SUM +
TERML

SUM = SUM* A3x

PRINT:
YES
c=2
NO
C=4.

SAMPLE PROGRAM

FLOWCHART

END

1szow

PROGRAMMER] DATE l PROGRAM

FITNL e, A T INRERERERRERRER NN
’ PROGIRAM SMPSN | L i
READ|(1,14) A,B[,DELTX ' T

19| FORMAT (2E/8 .2, E[7.2) B

TERML=COS|(B) /B

T T

SuM=[cOS (A]) /A | , ‘

K=(B[FA) /DELTX

C=4. L ' ! L

T=KHt C : o J

r
|
——t

TF(N-K) 24|, 29,

r
+ T 7 ; :

29| |TER =COS(A+FN*OEQTX)/(A+FNWDELTX)
IF (TERM-TIERML) [39|, /79|, 30 - Ll
30| [SUM=|SUM+Ci*TERM P !

IF(cCl-4..)5@,49 |59
agllc=2.] i

GO |T0O 6@ L !

5@ IC=4.

6@ ICONT|IINUE

70| [SuM=[sum+T[ERML] | | N

- 84| [SuM=[(SUM¥DELTIX)!

)
WRITIE(2,912 S|UM
9@ [FORMAT("sjum="|,E

i d |

1 5 10 15 20 25 kY ES 40

9= ZERO © = ALPHA O 108 1= ONE 1= ALPHA T LINE TERMINATED BY RETURN " LINE FEED (R, LF)
2=TWO Z=ALPHA Z LINE IS DELETED BY RUBOUT BEFORE R/LF

SOURCE PROGRAM LISTING

FTN»BsLsA

20
30
40
50

60
78

920

PROGRAM SMPSN
READ(1,10) AsB,DELTX
FORMAT(2E8«2sE7.2)
TERML=C0OS(B)>/B
SUM=COS(A) /A
K=(B-A)/DELTX

C=4.

I=K+1

DO 60 N=1,1

FN=N

IF(N-K)208,20, 70
TERM=COSC(A+FN*DELTX)/(A+FN*DELTX)
IFCTERM-TERML) 30, 70, 30
SUM=SUM+C*TERM
IFCC-4.)50, 40, 50
C=2.

GO TO 60

C=4.

CONTINUE
SUM=SUM+TERML
SUM=(SUM*DELTX)> /3.
WRITE(2,90) SUM
FORMAT("SUM=",EB8.2)
STOP

END

ENDS

PAGE 0001

20000
00008
20001
20082
200083
0000 4
#0005
20006
20007
00010
008011
28912
200813
00014
20015
20016
88017
80020
90021
90022
000823
20024
20025
008026
28827
00030
200831
908032
90033
009034
98035
208836
20037
000 40
2008 A1
080 42
80043
000 44
20843
208 46
20047
90050
20051
90052

200000

2080000

962314R
00640 4

916001X
180277R
180300R
816002X
216003X
900246R
2160082X
0160083X
000258R
216002X
2160083X
080252R
126381R
0240490

931185

034056

831054

042467

827062

824400

016004X
P802506R
B160085X
B16006X
#080250R
#16003X
880254R
01600 4X
BB0246R
0160085X
B16006X
P00246R
916083X
B9B256R
816004X
280250R
016007X
B00246R
216086X
800252R

SMP SN

BSS
ocT
LDbA
oCcT
JsB
DEF
DEF
JsSB
JSB
DEF
JSB
JsB
DEF
JsB
JsB
DEF
JMP
ocT
oCcT
oCT
ocT
ocT
ocT
ocT
Jsa
DEF
JSB
JsSB
DEF
JSB
DEF
JsB
DEF
JSB
JSB
DEF
JSB
DEF
JsB
DEF
JsB
DEF
JSB
BEF

OBJECT PROGRAM LISTING
Assembly Level Language

200000
200000
900314
006404
+DI0.
20027751
00030051
«I0R.
«DST
990246
«I0OR.
«DST
090250
«IOR.
«DST
290252
900301, 1
9240 40
231185
034056
831054
BA2467
9271062
024400
+DLD
208250
cos
«FDV
208238
«DST
200254
+DLD
000246
cos
+FDV
208246
«DST
980256
+DLD
2008250
+FSB
9008246
+FDV
008252

POBS3
PBO54
98055
#0056
808s7
00060
80061
#0062
#0063
200864
00065
82066
00067
00070
20071
0872
09073
00074
#0075
902076
00077
00100
02101
90102
20103
22104
90105
#0186
90107
90110
20111
eo112
92113
00114
80115
#0116
92117
00120
#9121
#9122
80123
90124
#0125
208126
80127
20130
90131
80132
80133
90134
#0135
20136
82137
00140

#16018X
B72260R
216004X
#0831 5R
816003X
000261R
#62260R
042314R
B72263R
862314R
B72264R
06226 4R
216011X
016003X
P0B265SR
862264R
203004

B42260R
003004

002020

126302R
802002

126383R
126302R
016004X
#8826 SR
216012X
#0092 52R
B16013X
POAA246R
#16803X
P0O271R
016005X
9160803X
@80273R
016004X
#0026 5R
B16012X
8002 52R
216013X
@0PP246R
P1608083X
@PB275R
A16804X
#9B273R
B16006X
B80B275R
#16883X
00826 7R
016807X
P0B254R
0020280

12630 4R
002002

JEB
STA
JSB
DEF
JSB
DEF
LDA
ADA
STA
LDA
STA
LDA
JSB
JSB
DEF
LDA
oCcT
ADA
OCT
OCT
JMP
oCT
JMP
JMP
JsB
DEF
JSB
DEF
JSB
DEF
JSB
DEF
JSB
JSB
DEF
JSB
DEF
JSB
DEF
JSB
DEF
JSB
DEF
JSB
DEF
JSB
DEF
JSB
DEF
JSB
DEF
oCcT
JMP
ocT

IFIX
000260
«DLD
200315
«DST
000261
000260
B00314
000263
P02314
PPB264
POAB264
FLOAT
«DST
808265
200264
20300 4
POB260
203004
202020
09030251
282002
20030351
P00302,1
«DLD
8008265
«FMP
9908252
+FAD
B00246
«DST
900271
cos
«DST
2080273
«DLD
2008265
+FMP
800252
«FAD
800246
«DST
990275
«DLD
990273
+FDV
208275
«DST
200267
+FSB
800254
002020
20030451
902002

20141

80142

#0143
80144
90145
89146
00147
80150
80151

#0152
#0153
08154
80155
009156
98157
#0160
29161
28162
96163
08164
80165
80166
80167
20170
80171
#0172
99173
92174
#0175
#2176
80177
80200
80201

00202
902083
20204
90205
BB206
882087
80210
80211

#0212
90213
90214
90215
#8216
80217
98220
29221

en222
80223
08224
28225
28226

12638 4R
126303R
0160804X
POB261R
f16012X
008267TR
916013X
PPB256R
016003X
POB256R
91680 4X
P0B261R
B16007X
@00315R
002020

12638 5R
802002

126385R
126306R
016004X
B20317R
2168083X
#028261R
126307R
2160804X
B8831SR
B160803X
P0B261R
P62264R
002004

87226 4R
003804

P 42263R
202021

P26066R
P16004X
PPB256R
216013X
20B254R
016003X
BP0B256R
016008 4X
@08256R
P16012X
#08B252R
B16006X
PB88321R
016003X
P20256R
#62323R
006400

916001X
166311R
186312R

JMP
JMP
JSB
DEF
JSB
DEF
JSB
DEF
JSB
DEF
JSB
DEF
JSB
DEF
OCT
JMP
oCcT
JMP
JMP
JSB
DEF
JsB
DEF
JMP
JSB
DEF
JSB
DEF
LDA
OCT
STA
oCT
ADA
ocT
JMpP
JSB
DEF
JSB
DEF
JSB
DEF
JSB
DEF
JSB
DEF
JsB
DEF
JsB
DEF
LDA
OCT
JSB
DEF
DEF

90030451
P99 38351
+DLD
200261
«FMP
00267
+FAD
200256
«DST
200256
«DLD
200261
+FSB
808315
002020
90038551
2020082
20038551
9BB306-1
+DLD
200317
«DST
PBB261
PPB307s1
«DLD
PPB315
200261
800264
00200 4
900264
20300 4
2008263
2802021
200066
+DLD
280256
+FAD
800254
«DST
200256
+DLD
208256
«FMP
800252
+FDV
2008321
«DST
280256
800323
806400
«DIO.
280311,1
8088312,1

80227
80230
80231
80232
00233
80234
80235
80236
80237
892 40
80241
902 42
90243
00244
#0245
80246
80276
80277
00300
20301
00302
#0303
80304
#0385
00306
99307
80310
20311
00312
99313
#0314
#9315
#8316
80317
99320
80321
90322
#0323

*x%x% END

D-8

91600 4X
@80256R
216002X
#16014X
126313R
924840
p21123
952515
036442
926105
034056
931051
902400
#16015X
#16015X
200000
900000
POOO20R
90001 7R
000027R
#80183R
90020 4R
9081 43R
@881 7IR
200164R
600175R
P0B212R
PB0B23 4R
PPB233R
P88243R
000001
040000
2009006
040009
000004
060000
90000 4
2000802

JsB
BEF
JSB
JSB
JMP
ocT
oCcT
ocT
OCT
ocT
OCT
OCT
OCT
JSB
JSB
BSS
oCT
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
ocT
oCT
oCT
ocT
ocT
OCT
oCcT
OCT
TRA

+DLD
888256
+IOR.
.DTA.
80831351
0240 40
821123
#52515
B36442
826105
2340856
931051
902400
«STOP
«STOP
?00030
0000008
900020
200017
8000827
8991083
008204
000143
200171
008164
802175
p00212
000234
9008233
000243
2008001
0400080
000006
0400080
000004
060000
000004
006002
SMP SN

PAGE 8085 SMPSN

SYMBOL

SMP SN
A

B
DELTX
800180
18000
100601
TERML
Sum

K

c

1

N

FN
00020
00070
TERM
80030
802050
800 40
90060
80080
80090
19082
100083

DAADADA DI ADAADAAAAAAAA DDA ANDIDDD

TABLE

200000
90808246
90082508
2000252
000020
P800817
0080827
900254
#0B256
200260
900261
2008263
200264
200265
900103
200204
200267
200143
000171
PBB164
888175
fe8212
080234
880233
200243

OBJECT PROGRAM LISTING
Symbol Table

SMP SN

22000 02323

LOAD

FRMTR

82324 94234
08240 20730

Cos

84235 84244

SIN

PA4245 94346

CHEBY

04347 04437

e «FCM

04440 B4447

«eDLC

B4450 B4461

D-10

BASIC CONTROL SYSTEM
Relocating Loader Memory Allocation

FADSB

B4462 B4617

FDV

84620 04723

FMP

84724 05007

MPY

95010 85120

«IENT

#5121 BS155

FLOAT

#5156 85162

+PACK

85163 85267

DIV

852786 #5362

D-11

DLBST

#5363

IFIX

05421

*«STOP

85456

« ERRR

05477

PWR2

85520

«FLUN

#5544

D-12

05420

#5455

05476

#5517

#5543

85556

*LST

«10C.
«SQTe.
eMEM.
«BUFR
SMP SN
«DIO.
«IO0OR.
«DST
+DLD

cos

«FDV

+FSB

IFIX

FLOAT
«FMP

+FAD

+DTA.
«STOP
+BIO.
+101.
«IAR.
*RAR.
+FLUN
+PACK
«MPY

SIN

e oFCM
« ERRR
+CHEB
+IENT
+PWR2
eeDLC
DIV

*#*LINKS
91723

*RUN

15434
15405
15400
15602
02000
83635
83505
85373
85363
04235
04620
04465
#5421
85156
4724
04462
83733
#5456
03718
83532
93571
93545
05544
05163
05010
P4245
04440
85477
04347
95121
85528
B4450
05270

81777

D-13

1.23 4.72
SUM=-.63E+00
STOP

1.23 201
SUM=-.12E-01
STOP

P.34 1.01
SUM= .88E+00
STOP

9.00 1.00
SUM= .ST7TE+36
STOP

1.00 1.25
SUM= .92E-01
STOP

D-14

25

10

02

21

«@5

OBJECT PROGRAM
Input and Output Data

INDEX

Arithmetic expressions 2-6,3-1
Arithmetic operators 3-1
Arguments o
Actual 6-1,6-2,6-4,6-5,6-7
Dummy 6-1,6-2,6-3,6-5,6-9
Redefinition 6- 3 6-5
Array 2-3,2-4,2- 5_6 4-1,4-6,
6-2,7-2 —
ASA Basic FORTRAN v
ASCII
Input data 1-1,7-1,8-1
FORMAT specifications 7-10,
7-12
Output data 7-1
Assembler source program C-1
Assembly level listing 9-1,9-2
Assignment statements 3-4

BACKSPACE statement -3,8-4

Basic Binary Loader -4
Basic Control System v,1-2,8-1,9-7,
9 -8,C-1
Basic External Functions 3-5,6-1,
6-9,6-11
IAND 3-5
IOR 3-5
NOT 3-5

CALL statement 6-4,6-12,C-1
Calling program -1
Character set

FORTRAN 1-1

HP 2116A A-

Coding Form 1-3,1-4
Commercial at (@ 1-1,7-4,7-11,
7-16,7-17
COMMON statement 2-5,4-1,4-2,
4-3,4-6,4-1,
6-1, 6-2

Comments 1-2,7-18
Compiler v,9-1

Constant
Integer 2-2,5-3,7-1,7-5,8-1
Octal 2-2
Real 2-3

Continuation lines 1-2
CONTINUE statement 5-9,8-3,8-4
Control statement, compiler 1-2,9-1

Data item delimiters 7-16
Diagnostics
Compilation 9-8,9-11
Library 9-19
Object program
Source progra
DO-Implied list 7-
DO Loop 5-4,5-7,5-
7-3
DO Nest 5-6,5-7,7-3
DO Statement 5-3
Dollar sign (§) 7-5,7-9
DIMENSION statement

9-17
9-12
3
5-

, 1=
8

’

-9,6-4,7-2,

END, END$ statements

End-of-statement mark 1
(@) 7-
ENDFILE statement 8-3,8-4
ENTR C-4 T
EQUIVALENCE statement

Index-1

Evaluation of expressions 3-2,6-5,

6-9
Exponent 2-1,7-5,7-6
Expressions 2 6,3-1,3-2,3-3,3-4,
5-2,6- 2,6 7,6-9
Fixed Decimal 2-1
Floating decimal (point) 2-1,7-17
FORMAT statement 1-1,5-1,7-1,7-4,
8-1,8-2,9-1
Specifications 7-4,7-8,7-12
Aw 7-10

Ew.d input 7-6
Ew.d output 7-5
Fw.d input 7-9
Fw.d output 17-8

Iw 7-9

Kw 7-11

nX 7-12

nH 7-12

r@w 7-11

r” " _7__—1".3‘
Fraction 2 1 7-5,7-6,7-9

FTN
Control statement 9-1
Program name 6-2

Free Field input v,1-1,7-16,8-1

Function
Basic External 3-5

6-1

Reference

Statement 6-
Subprogram
FUNCTION statemen

o+ O -

GO TO statements
Computed 5-1
Unconditional 5-1

Hierarchy of operations 3-2

Index-2

IF statements 5-2,5-3,5-8
Three-branch 5-2
Two-branch 5-3

Input/Output
List 7-1,7-3
Statements 8-1,8-3
Integer

Array 2-5,4-6
Constant 2-2,5-1,5-3,7-1,
,8

7-5,8-1
Quantity 2-1,7-4,7-6,7-9,
7-10
Statement 3-4

Variable 2-3,4-6,5-1,8-1

Labels 1-2, 5-1,
Library 6-1,6-1
Line -2

List 17-1,7-2,7-16,7-18,8-1,8-2,9-2

Main program 6-1,6-2
Masking operations v, 3-5
Memory Allocation Listing 9-7

Object listing 9-1
Object program v,6-11,9-1,9-7,9-15,
: 9-17,C-1
Octal
Constants ,2-2

v
Input data 7-17
Operating instructions
Magnetic tape 9-10

Paper tape 9-4

Parameters
Control statement
Indexing (DO)
Initial (DO) 5-
Subprogram -1,6-5
Terminal (DO) 5-3,7-3

Parentheses 3-2,7-4,7-16
Pass v,9-1,9-9,9-10
PAUSE statement 5-3,5-9

PROGRAM statement 6

Quotation marks 7-13,7-18

READ statement 17-1
Formatted 8-2
Free Field 8-2
Unformatted ~ 8-3

Real
Array 2-5,4-6
Expression 3-3
Quantity 2-1,2-3,7-1,7-8
Statement 3-4
Variable 2-3,4-6

Record 7-4,7-12,8-1

Relocatable binary 1-2,9-1,9-2,9-4

Relocation indicator 9-3

Repeat specification -15,7-16

RETURN statement

REWIND statement 8-3

Samples D-1
Slash (/) T7-4,7-17
Source listing 1-2,9-1
Source program v,5-3,9-1,9-2,C-1
Spaces (blanks) 1-1,2-3,7-12,9-1
Standard units 8-
Input 9-4
List Output 9-2,9-4
Program library 9-15
Teleprinter output 5-9,5-10
Statement labels 1-2,2-7,5-1,5-2

STOP statement 5-3
Statement function 6
Subprograms
Function 6-1,6-
Subroutine 6-1, 6-
Subroutine
Call 6-2,6-4
Subprogram 6-2,6-3
SUBROUTINE statement 6

Subscripts 2-4,2-5,7-1,7-2
Symbol table 9 2, 9 3
System Input/ Output (S10) 9-5

Type
Arguments 6-1
Array 2-5,4-1
Expression 2-
Statement 3-
Variable 2-3

6,3-3

Unlimited groups 7-16
Unit-reference number 8-1

Variables 3-4,6-4,6-9

Control -2,7-3

Integer 2-3,4-6,5-1,5-3
Real 2-3,4- 6

Simple —3 -3,7-1
Subscripte 2-4

WRITE statement 7-1
Formatted
Unformatted

Index-3

CUT ALONG LINE

READER COMMENT SHEET
HP FORTRAN

HP 2116-9015 April, 1970

Hewlett-Packard welcomes your evaluation of this text.
Any errors, suggested additions, deletions, or general com-
ments may be made below. Use extra pages if you like.

FROM PAGE_OF __
NAME:

ADDRESS:

NO POSTAGE NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AS SHOWN ON OTHER SIDE AND TAPE

FIRST CLASS
PERMIT NO.141
CUPERTINO

CALIFORNIA
L]
|
S
L
L]
L]
A
N
L]
L]
L
L
L]
I
L}
L}

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States Postage will be paid by

SUPERVISOR, SOFTWARE PUBLICATIONS

HEWLETT - PACKARD
CUPERTINO DIVISION
11000 Wolfe Road

Cupertino, California
95014

	0000
	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	8-01
	8-02
	8-03
	8-04
	9-01
	9-02
	9-03
	9-04
	9-05
	9-06
	9-07
	9-08
	9-09
	9-10
	9-11
	9-12
	9-13
	9-14
	9-15
	9-16
	9-17
	9-18
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	I-01
	I-02
	I-03
	replyA
	replyB

