HEWLETTﬁ PACKARD

HP ASSEMBLER

HP ASSEMBLER
Programmers Reference
Manual

HEWLETT .hp; PACKARD

11000 Wolfe Road
Cupertino, Calif. 95014

HP02116-9014

April 1970

First Edition, Feb. 1968
Revised, April 1970

© Copynight, 1970, by
HEWLETT-PACKARD COMPANY
Cupertino, California

Printed in the U.S.A.

Second Edition

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system (e.g., in memory, disc or core) or
be transmitted by any means, electronic, mechanical, photocopy, re-

cording or otherwise, without prior written permission from the
publisher,

Printed in the U.S.A.

PREFACE

This publication is a reference manual for the programmer using the HP Assembler
or Extended Assembler. It includes both the elements of the language and the
information required to execute either Assembler on the computer.

Other computer publications provided by Hewlett-Packard include:

Basic Control System Programmer’s Reference Manual (02116-9017)
Program Library Routines (02116-9032)

Assembler/Basic Control System Training Manual (02116-9073)
Magnetic Tape System Manual (02116-91752)

Prepare Tape System Manual (02116-91751)

NEW AND CHANGED INFORMATION

All known errors in this manual have been
corrected. Changes in the text are marked
by a horizontal line in the margin.

CONTENTS

INTRODUCTION

\%
CHAPTER 1 GENERAL DESCRIPTION 1-1
1.1 Assembly Processing 1-1
1.2 Symbolic Addressing 1-1
1.3 Program Relocation 1-3
1.4 Program Location Counters 1-3
1.5 Assembly Options 1-4
CHAPTER 2 INSTRUCTION FORMAT 2-1
2.1 Statement Characteristics 2-1
2.2 Label Field 2-3
2.3 Opcode Field 2-5
2.4 Operand Field 2-5
2.5 Comments Field 2-13
CHAPTER 3 MACHINE INSTRUCTIONS 3-1
3.1 Memory Reference 3-1
3.2 Register Reference 3-4
3.3 Input/Output, Overflow, and Halt 3-17
3.4 Extended Arithmetic Unit 3-11
CHAPTER 4 PSEUDO INSTRUCTIONS 4-1
4.1 Assembler Control 4-1
4.2 Object Program Linkage 4-8
4.3 Address and Symbol Definition 4-11
4.4 Constant Definition 4-17
4.5 Storage Allocation 4-23
4.6 Assembly Listing Control 4-23
4.7 Arithmetic Subroutine Calls 4-26
CHAPTER 5 ASSEMBLER INPUT AND OUTPUT 5-1
5.1 Control Statement 5-1
5.2 Source Program 5-2
5.3 Binary Output 5-3
5.4 List Output 5-3
5.5 Operating Instructions 5-4
5.6 Object Program Loading 5-8
5.7 Error Messages 5-9

iii

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

APPENDIX
INDEX

iv

I® m m o O O >

HP Character Set

Summary of Instructions
Alphabetical List of Instructions
Sample Problems

System Input/Output Subroutines
Formatter

Cross Reference Table Generator
Consolidated Coding Sheet

A-1
B-1
C-1
D-1
E-1
F-1
G-1
H-1
Index-1

INTRODUCTION

The Assembler and the Extended Assembler translate symbolic source language
instructions into an object program for execution on the computer. The source
language provides mnemonic machine operation codes, assembler directing pseudo
codes, and symbolic addressing. The assembled program may be absolute or
relocatable.

The source program may be assembled as a complete entity or it may be subdivided
into several subprograms (or a main program and several subroutines), each of
which may be assembled separately. The loader of the Basic Control System loads
the program and links the subprograms as required. The Basic Binary Loader loads
programs in absolute form.

Input for the Assembler is prepared onpaper tape; the Assembler punches the binary
program on paper tape in a format acceptable to the loader.

The minimum equipment configuration required to use the Assembler is as follows:

2116A or 2115A Computer with 4K memory
2752A Teleprinter

The minimum configuration for the Extended Assembler is:

2116A or 2115A Computer with 8K memory
2752A Teleprinter

GENERAL DESCRIPTION 1

1.1
ASSEMBLY
PROCESSING

1.2
SYMBOLIC
ADDRESSING

The Assembler is a two pass system, or, if both punch and
list output are requested, a three pass system on a minimum
configuration. A pass is defined as a processing cycle of the
source program input.

In the first pass, the Assembler creates a symbol table from
the names used in the source statements. It also checks for
certain possible error conditions and generates diagnostic
messages if necessary.

During pass two, the Assembler again examines each state-
ment in the source program along with the symbol table and
produces the binary program and aprogram listing. Additional
diagnostic messages may also be produced.

If only one output device is available and if both the binary
output and the list output are requested, the listing function is
deferred and performed as pass three.

When using the Assembler with a magnetic tape the source
program is written on the tape during the first pass; the tape
is backspaced and the second pass executed.

Symbols may be used for referring to machine instructions,
data, constants, and certain other pseudo operations. A sym-
bol represents the address for a computer word in memory.
A symbol is defined when it is used as a label for a location in
the program, a name of a common storage segment, the label
of a data storage area or constant, the label of an absolute or
relocatable value, or a location external to the program.

Through use of simple arithmetic operators, symbols may be
combined with other symbols or numbers to form an expres-
sion which may identify a location other than that specifically
named by a symbol. Symbols appearing in operand expres-

1-1

1-2

ASSEMBLY
LANGUAGE
SOURCE PROGRAM

ASSEMBLY
LANGUAGE
SOURCE PROGRAM

SYMBOL

ASSEMBLY
LANGUAGE
SOURCE PROGRAM

ASSEMBLER TABLE
PASS 1 LISTING
RELOCATABLE
OR ABSOLUTE
OBJECT PROGRAM
ASSEMBLER
PASS 2 ,
|
| ADDITIONAL OR
| ALTERNATE
- OBJECT
PROGRAM LISTIN
ASSEMBLER PROGRAM
PASS 3 LISTING

HP ASSEMBLER PROCESSING

l.3
PROGRAM
RELOCATION

l.4

sions, but not specifically defined, and symbols that are
defined more than once are considered to be in error by the
Assembler.

Programs may be relocated in core by the Basic Control Sys-
tem loader; the location of the program origin and all sub-
sequent instructions is determined at the time the program is
loaded.

A relocatable program is assembled assuming a starting
location of zero. All other instructions and data areas are
assembled relative to this zero base. When the program is
loaded, the relocatable operands are adjusted to correspond
with the actual locations assigned by the loader.

The starting locations of the common storage area and the
base page portion of the program are always established by
the loader. References to the common area are common re-
locatable. References to the base page portion of the program
are base page relocatable. If a program refers to the common
area or makes use of the base page via the ORB pseudo in-
struction, the program must also be relocatable.

If a program is to be relocatable, all subprograms comprising
the program must be relocatable; all memory reference
operands must be relocatable expressions or literals, or have
an absolute value of less than 100sg.

PROGRAM LOCATION

COUNTERS

The Assembler maintains a counter, called the program loca-
tion counter, that it uses to assign consecutive memory
addresses to source statements.

The initial value of the program location counter is estab-
lished according to the use of either the NAM or ORG pseudo
operation at the start of the program. The NAM operation
causes the program location counter to be set to zero for a
relocatable program; the ORG operation specifies the absolute
starting location for an absolute program.

Through use of the ORB pseudo operation a relocatable pro-
gram may specify that certain operations or data areas be

1-3

105

ASSEMBLY
OPTIONS

1-4

allocated to the base page. If so, a separate counter, called
the base page location counter, is used in assigning these
locations.

Parameters specified with the first statement, the control
statement, define the output to be produced by the Assembler:T

Absolute — The addresses generated by the Assembler
are to be interpreted as absolute locations in memory.
The program is a complete entity; external symbols,
common storage references, and entry points are not
permitted.

Relocatable — The program may be located anywhere in
memory. All operands which refer to memory locations
are adjusted as the program is loaded. Operands, other
than those referring to the first 64 locations, must be re-
locatable expressions. Subprograms may contain external
symbols and entry points, and may refer to common
storage.

Binary output — An absolute or relocatable program is
to be punched on paper tape.

List output — A program listing is produced either during
pass two or pass three.

Table print — List the symbol table at the end of the first
pass.

Selective assembly - Sections of the program may be
included or excluded at assembly time depending on the
option used.

T See Chapter 5 for complete details.

INSTRUCTION FORMAT 2

2.1
STATEMENT
CHARACTERISTICS

Field Delimiters

Character Set

A source language statement consists of a label, an operation
code, an operand, and comments. The label is used when needed
as a reference by other statements. The operation code may
be a mnemonic machine operation or an assembly directing
pseudo code. An operand may be an expression consisting of
an alphanumeric symbol, a number, a special character, or
any of these combined by arithmetic operations. (For the
Extended Assembler, an operand may also be a literal.)
Indicators may be appended to the operand to specify certain
functions such as indirect addressing. The comments portion
of the statement is optional.

The fields of the source statement appear in the following
order:

Label

Opcode

Operand

Comments

One or more spaces separate the fields of a statement. An
end-of-statement mark terminates the entire statement. On
paper tape this mark is a return, , and line feed, @ T
A single space following the end-of-statement mark from the
previous source statement is the null field indicator of the
label field.

The characters that may appear in a statement are as follows:

A through Z
0 through 9
.. (period)

* (asterisk)

T A circled symbol (e.g.,)represents an ASCII code or
Teleprinter key.

2-1

¢-¢

Y04 DNIJOD HTdINVS

(2/1-€T X TT 9ZIS [eMPV)

SSZOW

HEWLETT-PACKARD ASSEMBLER CODING FORM

PROGRAMMER DATE PROGRAM PAGE OF
STATEMENT
Label Operation Operand Comments
1 5 10 15 20 2 £ 35 40 45 50 55 5 70 75 8
-
1 5 10 15 2 25 0 35 40 45 50 55 65 70 75 80
§=ZERO O=ALPHA O 10R 1= ONE 1= ALPHAT LINE TERMINATED BY RETURN / LINE FEED (R/LF)

2=TWO Z=ALPHA Z LINE IS DELETED BY RUBOUT BEFORE R/LF

Statement Length

2.2
LABEL FIELD

Label Symbol

+ (plus)

- (minus)

, (comma)

= (equals)

() (parentheses)

(space)

Any other ASCI characters may appear in the Remarks field
(See Appendix A).

The letters A through Z, the numbers 0 through 9, and the
period may be used in an alphanumeric symbol. In the first
position in the Label field, an asterisk indicates a comment;
in the Operand field, it represents the value of the program
location counter for the current instruction. The plus and
minus are used as operators in arithmetic address expres-
sions. The comma separates several operation codes, or an
expression and an indicator in the Operand field. An equals
sign indicates a literal value. The parentheses are used only
in the COM pseudo instruction.

Spaces separate fields of a statement. They may also be used
to establish the format of the output list. Within a field they
may be used freely when following +, -, ,, or (.

A statement may contain up to 80 characters including blanks,
but excluding the end-of-statement mark. Fields beginning in
characters 73 - 80 are not processed by the Assembler.

The Label field identifies the statement and may be used as a
reference point by other statements in the program.

The field starts in position one of the statement; the first
position following an end-of-statement mark for the preceding
statement. It is terminated by a space. A space in position
one is the null field indicator for the label field; the statement
is unlabeled.

A label must be symbolic. It may have one to five characters
consisting of A through Z, 0 through 9, and the period. The
first character must be alphabetic or a period. A label of
more than five characters could be entered on the source lan-
guage tape, but the Assembler flags this condition as an error
and truncates the label from the right to five characters.

2-3

Examples:

il LDjA N[o[[LIAIBEIL

.IABIcD vAlL[T[o| [L|ABIEIL

1238 VAILI[o| [L|ABE[L

Al 123 v[ALIT|D| [L|AIBEE|L

] vIALT|D| [L|ABIE[L

1].]AlB IIULE[6[AlL] [LIABIEIL] -] [FIZ[RIS[T| [clHIAIRA/C[TE[R
NUMEIR[T|C].

ABIC[1]2]3 I|LILE[GIAIL] IL/AIBEL] |-| TRIUN|C/ATIE[D] [T]O
AB(C/1]2].

Al*[Blc ILLEGIALL] IL/AIBEL] -] |AISITER|TISIK] INoIT

_ ALILIOWED| [TIN| [LIABIE[L

AAB|CIT No!| [LIAIBEEIL! [-[T/HE| [als/SIEMBIL E[R] [AlTITIEMPIT|S
Tlo| [INTEERPIRIEIT, |AIBlc| [AS! |AIN| [0PIERIATII|ON
Clo|DIE].

Each label must be unique within the program; two or more
statements may not have the same symbolic name. Names
which appear in the Operand field of an EXT or COM pseudo
instruction may not also be used as statement labels in the
same subprogram.

Examples:
cloM[[Alclomi([2/o) [, B[c[(]3]0])
L|B EIQU| |1]6/0 VIALLI|D[[L/ABE|L
EXIT] X|L1{,(X[L]2
S|TIARR|T| [LID/A[|L|B VIAIL|T|D| |LIABIEIL
N|2|5 VIAL|IID[ILABEIL
X|L |12 |IILILIEG|AIL| [LIAIBEIL| [-] |UISED] [IN| [EIX|T].
B|C ILILIEGIAL| |LIAIBEIL| |-| [U|SIEID| |I|N |ClOM .
N|2|5 TILILEGJAIL| |LIAIBEIL| |-| PIREVITIOUISIL]Y
DE|FIINED,.
Asterisk An asterisk in position one indicates that the entire statement

is a comment. Positions 2 through 80 are available; however,
positions 1 through 68 only are printed as part of the assembly
listing on the 2752A Teleprinter. An asterisk within the Label
field is illegal in any position other than one.

T The caret symbol, ., indicates the presence of a space.

23
OPCODE FIELD

2.4
OPERAND FIELD

The operation code defines an operation to be performed by
the computer or the Assembler. The Opcode field follows the
Label field and is separated from it by at least one space. If
there is no label, the operation code may begin anywhere after
position one. The Opcode field is terminated by a space im-
mediately following an operation code. Operation codes are
organized in the following categories:
Machine operation codes

Memory Reference

Register Reference

Input/Output, Overflow, and Halt

Extended Arithmetic Unit

Pseudo operation codes

Assembler control

Object program linkage

Address and symbol definition

Constant definition

Storage allocation

Arithmetic subroutine calls

Assembly Listing Control (Extended Assembler)

Operation codes are discussed in detail in Chapters 3 and 4.

The meaning and format of the Operand field depend on the
type of operation code used in the source statement. The field
follows the Opcode field and is separated from it by at least
one space. It is terminated by a space except when the space
follows , + - (or, if there are no comments, by an end-of-
statement mark.

The Operand field may contain an expression consisting of one
of the following:

Single symbolic term
Single numeric term
Asterisk

2-5

Symbolic Terms

Combination of symbolic terms, numeric terms, and the
asterisk jointed by the arithmetic operators + and -.

An expression may be followed by a comma and an
indicator.

Programs being assembled by the Extended Assembler
may also contain a literal value in the Operand field.

A symbolic term may be one to five characters consisting of
A through Z, 0 through 9, and the period. The first character
must be alphabetic or a period.

Examples:

LIDJA] [A[1]2]3[4 vIAlLIZ[p] [1]F] [DlE[FIZINEID

AD[A| [B].[1 vIAILIZ|D| [1IF| |D|EIFITINEE]D]

JMP| EN[TIRlY viA[LIZ[D| [1]F| [DIEIFITNE[D

s|tla| [1]ABlc TILLIEG]ALL lolP[EIRAIND] [FIIIRS|T [CHA[RACITEEIR
NUMER[IIC].] |

sT8| |AB[CIDE|F IILILEE/G|ALL] [olPIERIAND] MORIE| TIHIAN] [FIIIVE
CHARRJA[CITIERS].

A symbol used in the Operand field must be a symbol that is
defined elsewhere in the program in one of the following ways:

As a label in the Label field of a machine operation
As a label in the Label field of a BSS, ASC,DEC, DEX,
OCT, DEF, ABS, EQU or REP pseudo operation

As a name in the Operand field of a COM or EXT pseudo
operation

As a label in the Label field of an arithmetic subroutine
pseudo operation

The value of a symbol is absolute or relocatable depending on
the assembly option selected by the user. The Assembler as-
signs a value to a symbol as it appears in one of the above
fields of a statement. If a program is to be loaded in absolute

Numeric Terms

Asterisk

Expression
Operators

form, the values assigned by the assembler remain fixed. If
the program is to be relocated, the actual value of a symbol is
established on loading. A symbol may also be made absolute
through use of the EQU pseudo instruction.

A symbolic term may be preceded by a plus or minus sign. If
preceded by a plus or no sign, the symbol refers to its associ-
ated value. If preceded by a minus sign, the symbol refers to
the two's complement of its associated value. A single nega-
tive symbolic operand may be used only with the ABS pseudo
operation.

A numeric term may be decimal or octal. A decimal number
is represented by one to five digits within the range 0 to
32767. An octal number is represented by one to six octal
digits followed by the letter B; (0 to 177777B).

If a numeric term is preceded by a plus or no sign, the binary
equivalent of the number is used in the object code. If pre-
ceded by a minus sign, the two's complement of the binary
equivalent is used. A negative numeric operand may be used
only with the DEX, DEC, OCT, and ABS pseudo operations.

In an absolute program, the maximum value of a numeric
operand depends on the type of machine or pseudo instruction.
In a relocatable program, the value of a numeric operand may
not exceed 77B. Numeric operands are absolute. Their value
is not altered by the assembler or the loader.

An asterisk in the Operand field refers to the value in the
program location counter (or base page location counter) at the
time the source program statement is encountered. The
asterisk is considered a relocatable term in a relocatable
program.

The asterisk, symbols, and numbers may be joined by the
arithmetic operators + and - to form arithmetic address ex-
pressions. The Assembler evaluates an expression and pro-
duces an absolute or relocatable value in the object code.

2-1

Evaluation of
Expressions

2-8

L[DlA] [S]YM+6 ADD] [6] [T[o] [TIHIE[VIAILIUE] [O]FT [S[YIM 1

ADA[|S|YM-3 SUBTIRAIC|T| [3| FIRIOM| THE| [VALUIE| |OFF| |S|YM:

JMP[[*1#5 ADD| (5] [T|O| |TIHE| COINITIENTIS| OF| [THE
PROIGRIAM] |LIOICAITIIO|N| ICIOUNITIEIR

SITIB{ |-A+CI-[4 ADD| |-| VAILUE! |O[F| |Al,| [THE| |VIALIUE| OF]| |C
ANNDD| |S[UBTRAICT 4

S|TA| [XITIAI-* SUBTRIACT| |VJALUE| |OF| |PRIOGRAM
LOICATTITION| [CIOUINITIEIR| |FIROM| VIALUE| OF
XTIAL.

An expression consisting of a single operand has the value of that
operand. An expression consisting of more than one operand is
reduced to a single value. In expressions containing more than one
operator, evaluation of the expression proceeds from left to right.
The algebraic expression A-(B-C+5) must be represented in the
Operand field as A-B+C-5. Parentheses are not permitted in
operand expressions for the grouping of operands.

The range of values that may result from an operand expression
depends on the type of operation. The Assembler evaluates ex-
pressions as follows: T

Pseudo Operations modulo 219-1
Memory Reference modulo 210-1
Input/Output 26 - 1 (maximum value)

T The evaluation of expressions by the Assembler is compatable
with the addressing capability of the hardware instructions (e.g.,
up to 32K words through Indirect Addressing). The user must
take care not to create addresses which exceed the memory size
of the particular configuration.

Expression Terms

Absolute and
Relocatable
Expressions

The terms of an expression are the numbers and the symbols
appearing in it. Decimal and octal integers, and symbols de-
fined as being absolute in an EQU pseudo operation are abso-
lute terms. The asterisk and all symbols that are defined in
the program are relocatable or absolute depending on the type
of assembly. Symbols that are defined as external may appear
only as single term expressions.

Within a relocatable program, terms may be program relo-
catable, base page relocatable, or common relocatable. A
symbol that names an area of common storage is a common
relocatable term. A symbol that is allocated to the base page
is a base page relocatable term. A symbol that is defined in
any other statement is a program relocatable term. Within
one expression all relocatable terms must be base page re-
locatable, program relocatable, or common relocatable; the
three types may not be mixed.

An expression is absolute if its value is unaffected by program
relocation. An expression is relocatable if its value changes
according to the location into which the program is loaded. In
an absolute program, all expressions are absolute. In a relo-
catable program, an expression may be base page relocatable,
program relocatable, common relocatable, or absolute (if less
than100g) depending on the definition of the terms composing it.

Absolute Expressions

An absolute expression may be any arithmetic combination of
absolute terms. It may also contain relocatable terms alone,
or in combination with absolute terms. If relocatable terms
do appear, there must be an even number of them; they must
be of the same type; and they must be paired by sign (a nega-
tive term for each positive term). The paired terms do not
have to be contiguous in the expression. The pairing of terms
by type cancels the effect of relocation; the value represented
by the pair remains constant.

An absolute expression reduces to a single absolute value.
The value of an absolute multiterm expression may be nega-
tive only for ABS pseudo operations. A single numeric term
also may be negative in an OCT, DEX, or DEC pseudo
instruction. In a relocatable program the value of an
absolute expression must be less than 100g for instruc-
tions that reference memory locations (Memory Refer-
ence, DEF, Arithmetic subroutine calls).

2-9

2-10

Examples:

If Py and P, are program relocatable terms; B and B2, base
page relocatable; C and C,, common relocatable; and A, an
absolute term; then the following are absolute terms:

A-C1+C> A-P+P> C1-C2+A
A+A P,-P; By-B>
*-P, B,-B,-A -C1+C2+A
By-* -P,+P; -A-P+P;

The asterisk is base page relocatable or program relocatable
depending on the location of the instruction.

Relocatable Expressions

A relocatable expression is one whose value is changed by the
loader. All relocatable expressions must have a positive
value.

A relocatable expression may contain any odd number of relo-
catable terms, alone, or in combination with absolute terms.
All relocatable terms must be of the same type. Terms must
be paired by sign with the odd term being positive.

A relocatable expression reduces to a single positive relo-
catable term, adjusted by the values represented by the abso-
lute terms and paired relocatable terms associated with it.

Examples:

If Py, P,, and P3 are program relocatable terms; B4, B2, and
B3z, base page relocatable; C1,Cz and C3, common relocatable;
and A, an absolute term; then the following are relocatable
terms: :

P;-A Ci-A Bi+A
Pi-Po+P3z C1-C2+C3 Ci+A

*+A *~Py+P; *-A

A+By A+Cy -A-P4+P2+P3
Bi-B2+B3-A Ci-C2+C3-A A+

4+Py =% Py-Po+ -Cy1+C2+C3

Literals

Actual literal values may be specified as operands in re-
locatable programs tobe assembled by the Extended Assembler.
The Extended Assembler converts the literal to its binary
value, assigns an address to it, and substitutes this address
as the operand. Locations assigned to literals are those
immediately following the last location used by the program.

A literal is specified by using an equal sign and a one-
character identifier defining the type of literal. The actual
literal value is specified immediately following this identifier;
no spaces may intervene.

The identifiers are:

=D a decimal integer, in the range -32767 to 32767,
including zero.

=F a floating point number; any 3positive or negative
real number in the range 10~ 8 to 1038, including
Zero.

=B an octal integer, one to six digits, bib2bgbgbsbg,
where by may be 0 or 1, and bg-b7 may be 0 to 7.7

=A two ASCII characters.t

=L an expression which, when evaluated, will result
in an absolute value. All symbols appearing in the
expression must be previously defined.

If the same literal is used in more than one instruction,
only one value is generated, and all instructions using this
literal refer to the same location.

Literals may be specified only in the following memory
reference instructions and pseudo instructions:

ADA ADB AND MPY
LDA LDB XOR DIV
CPA CPB IOR

may use =D, =B, =A, =L

DLD FAD
FMP FSB may use =F
FDV

+ See CONSTANT DEFINITION, Section 4.4.

2-11

Examples:

LDA =D7988 A-Register is loaded with the binary equiv-
alent of 798¢1¢.

IOR =B777 Inclusive or is performed with contents of
A-Register and 7'7'78.

LDA =ANO A-Register is loaded withbinary representa-
tion of ASCII characters NO.

LDB =LZETZ-ZOOM+68 B-Register is loaded with the
value resulting from the absolute expression.

FMP =F39.75 Contents of A- and B-Registers multiplied
by floating point constant 39.75.

Indirect Addressing The HP computers provide an indirect addressing capability

2-12

for Memory Reference instructions. The operand portion of
an indirect instruction contains an address of another location
rather than an actual operand. The secondary location may be
the operand or it may be indirect also and give yet another
location, and so forth. The chaining ceases when a location is
encountered that does not contain an indirectaddress. Indirect
addressing provides a simplified method of address modifi-
cations as well as allowing access to any location in core.

The Assembler allows specification of indirect addressing by
appending a comma and the letter I to any Memory Reference
operand other than one referring to an external symbol. The
actual operand of the instruction maybe given in a DEF pseudo
operation; this pseudo operation may also be used to indicate
further levels of indirect addressing.

Examples:
AlB LIDIA] [SIAM]: [T EJAICH] [TIIME[[THE] [t][sz[TS [EXEICIUTIED],
AlC ADA| [S|aM[»]1 THE! [EIFFFElc|T|Z[VIE] olP[E[RIAIN[D] [O]F| |A/B] [AN|D
AlD 1sz] IslAM AlC| [CIH|ANIGIE] |alC|C/ORIDITIN[GIL]Y!.
S[AM DIEIF| [RO/GEER

A relocatable assembly language program, however, may be
designed without concern for the pages in which it will be
stored; indirect addressing is not required in the source lan-
guage. When the program is being loaded, the Basic Control
System (BCS) provides indirect addressing whenever it detects
an operand which does not fall in the current page or the base
page. The BCS loader substitutes a reference to the base page
and then stores an indirect address inthis referenced location.
References to the same operand from other pages will be
linked through the same location in the base page.

Base Page

Addressing The computer provides a capability which allows the Memory
Reference instructions to address either the current page or
the base page. The Assembler or the BCS loader adjusts all
instructions in which the operands refer to the base page; spe-
cific notation defining an operand as a base page reference is
not required in the source program.

Clear Flag

Indicator The majority of the input/output instructions can alter the
status of the input/output interrupt flag after execution or
after the particular test is performed. In source language,
this function is selected by appending a comma and a letter C
to the Operand field.
Examples:

s[Tic] [zjo7],]c CILIEIRIR FILIAT] [ZI0[7] AFTIER] CONTIRIOIL] |
| BT |T|s| [SEIT
0[T|B| |1|0/5/,/C CILIEIAR| IFILIAIG| |T|0/5| |AFITER| MOVIE
1

2.5

COMMENTS

FIELD The Comments field allows the user to transcribe notes on the

program that will be listed with source language coding on the
output produced by the Assembler. The field follows the
Operand field and is separated from it by at least one space.
The end-of-statement mark, @, or the 80th character
in the entire statement terminates the field. If the listing to

2-13

2-14

be produced on the 2752A Teleprinter, the total statement
length, excluding the end-of-statement mark, should not ex-
ceed 52 characters, the width of the source language portion
of the listing. Statements consisting solely of comments may
contain up to 68 characters including the asterisk in the first
position. On the list output, statements consisting entirely
of comments begin in position 5 rather than 21 as with other
source statements.

If there is no operand present the Comments field should be
omitted in the NAM and END pseudo operations and in the
input/output statements, SOC, SOS, and HLT. If a comment
is used, the Assembler attempts to interpret it as an operand.

MACHINE INSTRUCTIONS 3

3.1

MEMORY
REFERENCE

The HP Assembler language machine instruction codes take the
form of three-letter mnemonics. Each source statement cor-
responds to a machine operation in the object program pro-
duced by the Assembler.

Notation used in representing source language instruction is
as follows:

label Optional statement label

m Memory location -- an expression

I Indirect addressing indicator

sC Select code -- an expression

C Clear interrupt flag indicator

comments Optional comments

[] Brackets defining a field or portion of a
field that is optional
Brackets indicating that one of the set

{ } may be selected.

lit literal

Memory Reference instructions perform arithmetic, logical
and jump operations on the contents of the locations in core
and the registers. An instruction may directly address the
2048 words of the current and base pages. If required, in-
direct addressing may be utilized to refer to all 32, 768 words
of memory. Expressions in the operand field are evaluated
modulo 20,

If the program is to be assembled in relocatable form, the
operand field may contain relocatable expressions or absolute
expressions which are less than 100g in value. If the program
is to be absolute, the operands may be any expressions con-
sistent with the location of the program. Literals may not be
used in an absolute program. Absolute programs must be
complete entities; they may not refer to external subroutines
or common storage.

3-1

Jump and
Increment-Skip

Add, Load, and
Store

3-2

Jump and Increment-Skip instructions may alter the normal
sequence of program execution.

| I 1

label | JMP | m[,I] | comments

Jump to m. Jump indirect inhibits interrupt until the transfer
of control is complete.

label | JSB | m [, I] | comments

Jump to subroutine. The address for label+l is placed into
the location represented by m and control transfers to m+l1.
On completion of the subroutine, control may be returned to
the normal sequence by performing a JMP m, I.

1 | il

label | ISZ | m [,I] | comments

Increment, then skip if zero. ISZ adds 1 to the contents of m.
If m then equals zero, the next instruction in memory is by-
passed.

Add, Load, and Store instructions transmit and alter the con-
tents of memory and of the A- and B-Registers. A literal,
indicated by ‘‘lit’’, may be either =D, =B, =A, or =I type.

1]

label | ADA | {m [,I] | comments
lit
Add the contents of m to A.

] | 1

label | ADB | {m[,I]] | comments
lit
Add the contents of m to B.

1 | [l

label | LDA | m[,I]gl comments
lit

Load A from m.

Logical
Operations

label | LDB | |m
lit

[, 1]2 | comments

Load B from m.

label | STA | m[,I] | comments
Store contents of A in m.

{ 1 |

label | STB | m [, I] | comments

Store contents of B in m.

In each instruction, the contents of the sending location is un-
changed after execution.

The Logical instructions allow bit mampulatlon and the com-
parison of two computer words.

label [AND | m[,1]§| comments

lit
The logical product of the contents of m and the contents of A
are placed in A.

1) Il

label | XOR | m [, I] I comments

lit
The modulo-two sum (exclusive "or') of the bits in m and the
bits in A is placed in A.

label | IOR | 3m[,1]§| comments

lit

The logical sum (inclusive "or') of the bits in m and the bits
in A is placed in A.

label | CPA | m [, I] | comments

lit
Compare the contents of m with the contents of A. If they
differ, skip the next instruction; otherwise, continue.

|
label I CPB I m [, I] l comments
lit
Compare the contents of m with the contents of B. If they
differ, skip the next instruction; otherwise, continue.

3-3

3.2
REGISTER
REFERENCE

Shift-Rotate Group

3-4

The Register Reference instructions include a Shift-Rotate
group, an Alter-Skip group, and NOP (no-operation). With
the exception of NOP, they have the capability of causing
several actions to take place during one memory cycle. Mul-
tiple operations within a statement are separated by a comma.

This group contains 19 basic instructions that can be combined
to produce more than 500 different single cycle operations.

CLE Clear E to zero

ALS Shift A left one bit, zero to least significant bit.
Sign unaltered

BLS Shift B left one bit, zero to least significant bit.
Sign unaltered

ARS Shift A right one bit, extend sign;sign unaltered.

BRS Shift B right one bit, extend sign;sign unaltered.

RAL Rotate A left one bit

RBL Rotate B left one bit

RAR Rotate A right one bit

RBR Rotate B right one bit

ALR Shift A left one bit, clear sign, zero to least
significant bit

BLR Shift B left one bit, clear sign, zero to least
significant bit

ERA Rotate E and A right one bit

ERB Rotate E and B right one bit

ELA Rotate E and A left one bit

ELB Rotate E and B left one bit

ALF Rotate A left four bits

BLF Rotate B left four bits

SLA Skip next instruction if least significant bit in A
is zero

SLB Skip next instruction if least significant bit in B
is zero

No-Operation
Instruction

These instructions may be combined as follows:

[(ALS)] [(ALS]]
ARS ARS
RAL RAL
label %iﬁg - [,CLE] [,SLA] |, < iﬁg >| |comments
ALF ALF
ERA ERA
| \ELA J | | (ELAJ |
(BLS)| [(BLS]
BRS BRS
RBL RBL
label ﬁgig LI [,cLE] [,sLB] |, 1 ggg | |comments
BLF BLF
ERB ERB
| \ELB J | | (ELBJ]

CLE, SLA, or SLB appearing alone or in any valid combination
with each other are assumed to be a Shift-Rotate machine
instruction.

The Shift-Rotate instructions must be given in the order
shown. At least one and up to four are included in one state-
ment. Instructions referring to the A-register may not be
combined in the same statement with those referring to the
B-register.

When a no-operation is encountered in a program, no action
takes place; the computer goes on to the next instruction. A
full memorycycle is used in executing a no-operation instruc-
tion.

label NOP |comments

A subroutine to be entered by a JSB instruction should have a

3-5

Alter-Skip Group

NOP as the first statement. The return address can be stored
in the location occupied by the NOP during execution of the
program. A NOP statement causes the Assembler to generate
a word of zeros.

The Alter-Skip group contains 19 basic instructions that can
be combined to produce more than 700 different single cycle
operations.

CLA Clear the A-Register

CLB Clear the B-Register

CMA Complement the A-Register

CMB Complement the B-Register

CCA Clear, then complement the A-Register (set to
ones)

CCB Clear, then complement the B-Register (set to
ones)

CLE Clear the E-Register

CME Complement the E-Register

CCE Clear, then complement the E-Register

SEZ Skip next instruction if E is zero

SSA Skip if sign of A is positive (0).

SSB Skip if sign of B is positive (0).

INA Increment A by one.

INB Increment B by one.

SZA Skip if contents of A equals zero

SZB Skip if contents of B equals zero

SLA Skip if least significant bit of A is zero

SLB Skip if least significant bit of B is zero

RSS Reverse the sense of the skip instructions. If

no skip instructions precede in the statement,
skip the next instruction.

3.3
INPUT/OUTPUT,
OVERFLOW, AND
HALT

These instructions may be combined as follows:

CLA CLE
label |[{CMA}| [,SEZ] ,{CME [,SSA] [,SLA] [,INA] [,SZA] [,RSS] |comments
CCA CCE
CLB CLE
el [[{CMB}| [,SEZ] ,|{CME [,SSB] [,SLB] [,INB] [,SZB] [,RSS] |comments
lal [
CCB LCCE

The Alter-Skip instructions must be given in the order shown.
At least one and up to eight are included in one statement. In-
structions referring to the A-register may not be combined in
the same statement with those referring to the B-register.
When two or more skip functions are combined in a single
operation, a skip occurs if any one of the conditions exists.
If a word with RSS also includes both SSA and SLA (or SSB and
SLB) a skip occurs only when sign and least significant bit are
both set (1).

The input/output instructions allow the user to transfer data
to and from an external device via a buffer, to enable or dis-
able external interrupt, or to check the status of I/O devices
and operations. A subset of these instructions permits check-
ing for an arithmetic overflow condition.

Input/Output instructions require the designation of a select
code, sc, which indicates one of 64 input/output channels or
functions. Each channel consists of a connect/disconnect con-
trol bit, a flag bit, and a buffer of up to 16 bits. The setting
of the control bit indicates that a device associated with the
channel is operable. The flag bit is set automatically when
transmission between the device and the buffer is completed.
Instructions are also available to test or clear the flag bit for
the particular channel. If the interrupt system is enabled,
setting of the flag causes program interrupt to occur; control
transfers to the interrupt location related to the channel.

3-1

Input/Output

3-8

Expressions used to represent select codes (channel numbers)
must have a value of less than 26. The value specifies the de-
vice or operation referenced. Instructions which transfer data
between the A or B register and a buffer, access the Switch
register when sc = 1. The character C appended to such an
instruction clears the overflow bit after the transfer from the
Switch register is complete.

Prior to any input/output data transmission, the control bit is
set. The instruction which enables the device may also trans-
fer data between the device and the buffer.

label l STC | sc [,C] i comments

Set I/0 control bit for channel specified by sc. STC transfers
or enables transfer of an element of data from an input device
to the buffer or to an output device from the buffer. The exact
function of the STC depends on the device; for the 2752A Tele-
printer, an STC enables transfer of a series of bits. If sc =1,
this statement is treated as NOP. The C option clears the flag
bit for the channel.

label | CLC sc[,C] comments

Clear I/0O control bit for channel specified by sc. When the
control bit is cleared, interrupt on the channel is disabled,
although the flag may still be set by the device. If sc =0,
control bits for all channels are cleared to zero; all devices
are disconnected. If sc = 1, this statement is treated as NOP.

} 1

label | LIA l sc [,C] i comments

Load into A the contents of the I/O buffer indicated by sc.

label | LIB | sc[,C] | comments

Load into B the contents of the I/O buffer indicated by sc.

| | |

label | MIA l sc [,C] | comments

Merge (inclusive "or') the contents of the I/O buffer indicated
by sc into A.

Overflow

label | MIB 1 sc [,C] l comments

Merge (inclusive "or'") the contents of the I/0 buffer indicated
by sc into B.

[l Il ul

comments

label | OTA | sc[,C]
Output the contents of A to the I/0 buffer indicated by sc.

label I OTB]I sc[,C] I comments

Output the contents of B to the I/O buffer indicated by sc.

— il]

label l STF | sc | comments

Sets the flag bit of the channel indicated by sc. If sc =0, STF
enables the interrupt system. A sc code of 1 causes the over-
flow bit to be set.

label | CLF I sc comments

Clear the flag bit to zero for the channel indicated by sc. If
sc =0, CLF disables the interrupt system. If sc =1, the
overflow bit is cleared to zero.

label , SFC | sc comments

Skip the next instruction if the flag bit for channel sc is clear.
If sc =1, the overflow bit is tested.

label I SFS I sc comments

Skip the next instruction if the flag bit for channel sc is set.
If sc = 1, the overflow is tested.

In addition to the use of a select code of 1, the overflow bit
may be accessed by the following instructions:

3-9

Halt

3-10

label | CLO | comments

Clear the overflow bit.

label | STO | comments

Set overflow bit.

} 31 I

label | SOC | [C] | comments

Skip the next instruction if the overflow bit is clear. The C
option clears the bit after the test is performed.

label | SOS | [C] | comments

Skip the next instruction if the overflow bit is set. The C
option clears the bit after the test is pzrformed.

The C option is identified by the sequence ‘‘space C space’’
following either ‘‘SOC’’ or ‘“‘SOS’’. Anything else is treated
as a comment.

label | HLT i{[[sc] [,C]]}i comments
c

Halt the computer. The machine instruction word is displayed
in the T-Register. If the C option is used, the flag bit associ-
ated with channel sc is cleared.

If neither the select code nor the C option is used, the com-
ments portion must be omitted.)

3.4
EXTENDED
ARITHMETIC
UNIT

Ten instructions may be used with the EAU version of
the Assembler or Extended Assembler to increase the
Computer’s overall efficiency. The Computer must include
the Extended Arithmetic Unit option to obtain the resulting
increase in available core storage and decrease in program
run time.

<

]
label] MPY ‘ ;m[,I]; l comments
lit

The MPY instruction multiplies the contents of the A-Register
by the contents of m. The product is stored in registers B
and A. B contains the sign of the product and the 15 most
significant bits; A contains the least significant bits.

4 I 3

label , DIV I 3m[, I]% l comments
lit

The DIV instruction divides the contents of registers B and A
by the contents of m. The quotient is stored in A and the
remainder in B. Initially B contains the sign and the 15 most
significant bits of the dividend; A contains the least significant
bits.

|] |

label I DLD l ;m[, I]z ! comments
lit

The DLD instruction loads the contents of locations m and
m + 1 into registers A and B, respectively.

I Il }

label DST l m[,1] | comments

The DST instruction stores the contents of registers A and
B in locations m and m + 1, respectively.

MPY, DIV, DLD, DST results in two machine words: a word
for the instruction code and one for the operand.

3-11

3-12

The above four instructions are available without the Extended
Arithmetic Unit option as software subroutines.f As a part
of the Extended Arithmetic option, they require less core
storage and can be executed in less time.

The following seven instructions canbeused only on machines
with the Extended Arithmetic Unit. These shift-rotate instruc-
tions provide the capability to shift or rotate the B- and A-
Registers n number of bit positions, where 1< n < 16.

{ 4 |

label ASR

n ‘ comments

The ASR instruction arithmetically shifts the B- and A-
Registers right n bits. The sign bit (bit 15 of B) is extended.

label I ASL | n | comments

The ASL instruction arithmetically shifts the B- and A-
Register left n bits. Zeroes are placed in the least significant
bits. The sign bit (bit 15 of B) is unaltered. The overflow bit
is set if bit 14 differs from bit15 before each shift, otherwise,
exit with Overflow bit cleared.

.] \
label l RRR I n comments

The RRR instruction rotates the B- and A-Registers right n
bits.

label ! RRL | n | comments

The RRL instruction rotates the B- and A-Registers left n
bits.

label LSR n comments

The LSR instruction logically shifts the B- and A-Registers
right n bits. Zeroes are placed in the most significant bits.

i —

label LSL n comments

The LSL instruction logically shifts the B- and A-Registers
left n bits. Place zeroes into the least significant bits.

T See ARITHMETIC SUBROUTINE CALLS, Section 4.7.

SWP

Exchange the contents of the A- and B-Registers. The contents
of the A-Register are shifted into the B-Register and the
contents of the B-Register are shifted into the A-Register.

3-13

PSEUDO INSTRUCTIONS 4

4.1
ASSEMBLER
CONTROL

The pseudo instructions control the Assembler, establish pro-
gram relocatablility, and define program linkage as well as
specify various types of constants, blocks of memory, and
labels used in the program. With the Extended Assembler,
pseudo instructions also control listing output.

The Assembler control pseudo instructions establishandalter
the contents of the base page and program location counters,
and terminate assembly processing. Labels may be used but
they are ignored by the Assembler. NAM records produced
by the Assemblers are accepted by the Real-Time, DOS, and
BCS Loaders.

iNAM | [name] I comments

NAM defines the name of a relocatable program. A relocatable
program must begin with a NAM statement.} A relocat-
able program is assembled assuming a starting location of
zero (i.e., zero relative). The name may be a symbol of one
to five alphanumeric characters the first of which must be
alphabetic or a period. The program name is printed on the
list output. The name is optional andif omitted, the comments
must be omitted also.

iORG l m comments

The ORG statement defines the origin of an absolute program,
or the origin of subsequent sections of absolute or relocatable
programs.

An absolute program must begin with an ORG statement. {
The operand m, must be a decimal or octal integer specifying
the initial setting of the program location counter.

TThe Control Statement, the HED instruction, and comments

may appear prior to the NAM or ORG statements. If the
Control Statement (ASMB,...) does not appear on tape pre-
ceding the program it must be entered from the Teleprinter.

4-1

ORG statements may be used elsewhere in the program to
define starting addresses for portions of the object code. For
absolute programs the Operand field, m, may be any expres-
sion. For relocatable programs, m, must be a program
relocatable expression; it may not be base page or common
relocatable or absolute. An expression is evaluated modulo
2'5 . Symbols must be previously defined. All instructions
following an ORG are assembled at consecutive addresses
starting with the value of the operand.

I ORR | comments

ORR resets the program location counter to the value existing
when an ORG or ORB instruction was encountered.

Example:

NJAM] [RISIE[T! SIE[T] [PILIC] [T[o] [VIAILIVIE] [olF] [z[EIRIO[,] [AlSISITIGIN
RIS[T| [ADIA RISE[T] |AlS| INJAME| [0FF| |P|R/0lGIRIAM .

AD(Al [C[TIRIL ASISUME] [PiLic| |AlT| [FIT|RIS[TI+[2/2]8/0].

oRl6| [FIT|RS[T[+[2912[6] [S|AIVIE] [P|Lc] [VIAILUE[[olF| FlI|RIS|T[+2]2]8/0]

. AND| IS|ElT| [PILlc] [Tlo! [FIIIRIS|T|{+[2[9i2]6].
JMP| [EIVIEINI+1 ASISUME] [PILic] |AlT] IFlZ[R|s[T]+|3l0l0/4
ORR RESEE[T| [PILic! [Tlo| [FlI|RSIT|+]2[2/8]0].

More than one ORG or ORB statement may occur before an
ORR is used. If so, when the ORR is encountered, the pro-
gram location counter is reset to the value it contained when
the first ORG or ORB of the string occurred.

Example:

NAM]_[RISIE]T SIE|T] |PILIC] |T|Of |ZIEIRIO
RIST|[|ADA

LIDA] WY|Z AS|SIUMIE| |PILIC] |AT| FII|RIS|TI+H22/5/0
ORIG6| [FITIR|ST[+/2/5/0/0] SE[T| [PILIC! [To] [FIT[RISITH(25[0]0
LDB| [EIRIA AS|SIUMIE| |PILIC| AT [FIT|R|S[T+|2|7/5/0
ORIG| |FII|R|S|T|+]2/9/0|0] |SIE|T| |PIL|C| |T|O] |FIIR|S|T|+]2/9]0/0
CLE AIS|SUMIE| |PILIC| AT| |FIT|R|S|T;H2|9]2/0
ORR REE|SIEIT] [PILIC] |TIO| |FII|RIS|T[+{2[2/5/0

If a second ORR appears before an intervening ORG or ORB,
the second ORR is ignored.

ORR cannot be used to reset the location counter for locations
in the base page that are governed by the ORB statement.

|ORB | comments

ORB defines the portion of a relocatable program that must be
assigned to the base page by the Assembler. The Label field
if given is ignored, and the statement requires no operand. All
statements that follow the ORB statement are assigned con-
tiguous locations in the base page. Assignment to the base
page terminates when the Assembler detects an ORG, ORR, or
END statement.

When more than one ORB is used in a program. Each ORB
causes the Assembler to resume assigning base page locations
at the address following the last assigned base page location.

An ORB statement in an absolute program has no significance
and is flagged as an error.

4-3

4-4

Example:

Label Operation Operand

5 10 15 2 25

[NAM_]P[RI0]G AIS|S|T]GIN] [ZIERRI0] |A[S] [RIEIL|AIT]TIVIE] [S[TIA[RITIIIN/G
. Lio/C/AT|TION| [FlOR| |PRo/G|RIAM| [PIR0[G|-

ORB A/S|SIT|GIN| JALIL| FIOILILIOWI|NIG| |STIATIEMENT|S

T|0| |BJA[SIE| |PAGEE
I|ARIEA| |B|SS| [1/0/0

ORRR CIOINTII|NUE| MATIN| P[RIOGRAM

ORB RESUME| |ASISITIGNMEINT| ATl NEXT
AVAIILIABLIE| [LIO|CIAITITION] IIN BASIE |PAGI|E

ORIR CIONTITINUE| MAIN| |PIROGRAM

The IFN and IFZ pseudo instructions cause the inclusion of
instructions in a program provided that eitheran ‘‘N’’ or ‘¢Z”’,
respectively, is specified as a parameter for the ASMB control
statement.t¥ The IFN or IFZ instruction precedes the set of
statements that are to be included. The pseudo instruction XIF
serves as a terminator. If XIF is omitted, END acts as a
terminator to both the set of statements and the assembly. IFN
and IFZ may be used only when the source program is trans-
lated by the Extended Assembler which is provided for 8K or

larger machines.
[]

IFN comments

XIF
All source language statements appearing between the IFN and

the XIF pseudo instructions are included in the program if the
character ‘“N’’ is specified on the ASMB control statement.

T See CONTROL STATEMENT, Section 5.1.

All source language statements appearing between the IFZ and
the XIF pseudo instructions are included in the program if the
character ‘‘Z’’ is specified on the ASMB control statement.

i
IFZ comments

XIF
When the particular letter is not included on the control state-

ment, the related set of statements appears on the Assembler
output listing but is not assembled.

Any number of IFN-XIF and IFZ-XIF sets may appear in a
program, however, they may not overlap. An IFZ or IFN
intervening between an IFZ or IFN and the XIF terminator
results in a diagnostic being issued during compilation; the
second pseudo instruction is ignored.

Both IFN-XIF and IFZ-XIF pseudo instructions may beused in
the program; however, only one type will be selected in a single
assembly. Therefore, if both characters ‘“N’’ and‘‘Z’’ appear
in the control statement, the character which islisted last will
determine the set of coding thatis tobe included in the program.

Example:

Label Operation Operand

NIAM (TIRJAVIL
IiF|Z
LID|A] |CIAR
CIMA],IS|ZIA
JIMP[INO[.|GO
LIDA| MIILEES
DIV IS|PEIEID
S[T|A] |GIAS
X|IIF]
IIFIN
LID|A] |PILIANIE
CIMAL, 1S|Z]A
JMP| INO.|G|O
L|DIA] [TIIME
CIPIA] |CIO|S(T
XIF

GlO] [HILT] |77
EIND

4-5

4-6

Program TRAVL will perform computations involving either
or neither CAR or PLANE considerations depending on the pres-
enceorabsenceof Z or N parameters in the Control Statement.

Example:

Label Operation Operand Comments
5 10 15 20 2 30 35 40 45 50

=X
o
c
)

Sl =<
IR
<o [N[<][®

Program WAGES computes a weekly wage value. Overtime
consideration will be includedintheprogramif‘‘Z’’ is included
in the parameters of the Control Statement.

The REP pseudo instruction, available in the Extended Assem-
bler only, causes the repetition of the statement immediately
following it a specified number of times.

label REP n comments

The statement following the REP in the source program is
repeated n times. The n may be any absolute expression.
Comment lines (indicated by an asteriskin character position 1)
are not repeated by REP. If a comment follows aREP instruc-
tion, the comment is ignored and the instruction following the
comment is repeated.

A label specified in the REP pseudo instruction is assigned to
the first repetition of the statement. A label cannot be part of
the instructiontobe repeated; it would resultin a doubly defined
symbol error.

Example:

CLA
TRIPL REP 3
ADA DATA

The above source code would generate the following:

CLA Clear the A-Register;
the content of DATA
TRIPL ADA DATA is tripled and stored
ADA DATA in the A-Register.
ADA DATA
Example:
FILL REP 100B
NOP

The example above loads 100, memory locations with the NOP
instruction. The first location is labeled FILL.

Example:

REP 2
MPY DATA

The above source code would generate the following:

MPY DATA
MPY DATA

1 1 1

IEND l [m] l comments

This statement terminates the program; it marks the physical
end of the source language statements. The Operand field, m,
may contain a name appearing as a statement label in the cur-
rent program or it may be blank. If a name is entered, it
identifies the location to which the BCS loader transfers con-
trol after a relocatable program is loaded. A NOP should be
stored at that location; the loader transfers control via a JSB.

If the Operand field is blank, the Comments field must be blank
also, otherwise, the Assembler attempts to interpret the first
five characters of the comments as the transfer address
symbol.

The Label field of the END statement is ignored.

4-7

4.2
OBJECT PROGRAM
LINKAGE

Linking pseudo instructions provide a means for communica-
tion between a main program and its subroutines or among
several subprograms that are to be run as a single program.
These instructions maybe used only in a relocatable program.

The Label field of this class is ignored in all cases. The
Operand field is usually divided into many subfields, separated
by commas. The first space not preceded by a comma or a
left parenthesis terminates the entire field.

iCOM I name, [(size')] [,name2 [(sizea)],...,namen[(sizen)]] icomments

COM reserves a block of storage locations that may be used
in common by several subprograms. Each name identifies a
segment of the block for the subprogram in which the COM
statement appears. The sizes are the number of words allotted
to the related segments. The size is specified as an octal or
decimal integer. If the size is omitted, it is assumed to be
one.

Any number of COM statements may appear in a subprogram.
Storage locations are assigned contiguously; the length of the
block is equal to the sum of the lengths of all segments named
in all COM statements in the subprogram.

To refer to the common block, other subprograms must also
include a COM statement. The segment names and sizes may
be the same or they may differ. Regardless of the names and
sizes specified in the separate subprograms, there is only one
common block for the combined set. It has the same relative
origin; the content of the nth word of common storage is the
same for all subprograms.

Example:

0/G/1] |CloM] |ADIDIR|1](5])|»A[D|DIRI2|({1]0]) |s |AIDIDIR]3|(]1]0])

o0

LDJA[|AAD+] PIIICIK| [UP| |SIE|CIOND| WOR

AADH1 |-

Organization of common block:

PROG1 PROG2 Common
name name Block
ADDRI1 AAA (location 1)
(location 2)
AAB (location 3)
(location 4)
AAC (location 5)
ADDR2 AAD (location 6)

(location 7)
(location 8)
(location 9)
(location 10)
(location 11)
(location 12)
(location 13)
(location 14)
(location 15)
ADDR3 (location 16)
(location 17)
(location 18)
(location 19)
(location 20)
(location 21)
(location 22)
(location 23)
(location 24)
(location 25)

4-10

The LDA instructions in the two subprograms each refer to
the same location in common storage, location 7.

The segment names that appear in the COM statements can be
used in the Operand fields of DEF, ABS, EQU, or any Memory
Reference statement; they maynot be used as labels elsewhere
in the program.

The loader establishes the origin of the common block; the
origin cannot be set by the ORG or ORB pseudo instruction.
All references to the common area are relocatable.

Two or more subprograms may declare common blocks which
differ in size. The subprogram that defines the largest block
must be the first submitted for loading.

[l] I

I ENT I name, [, namey, ..., name, |

comments

ENT defines entry points to the program or subprogram. Each
name is a symbol that is assigned as a label for some machine
operation in the program. Entry points allow another sub-
program to refer to this subprogram. All entry points must be
defined in the program.

Symbols appearing in an ENT statement may not also appear
in EXT or COM statements in the same subprogram.

The Label field of the ENT instruction is ignored.

l EXT | name; [, namey, ..., name,| | comments

This instruction designates labels in other subprograms which
are referenced in this subprogram. The symbols must be de-
fined as entry points by the other subprograms.

The symbols defined in the EXT statement may appear in
Memory Reference statements, the EQU or DEF pseudo in-
structions. An external symbol must appear alone; it may
not be in a multiple term expression or be specified as
indirect. References to external locations are processed by
the BCS loader as indirect addresses linked through the base

page.

Symbols appearing in EXT statements may not also appear in
ENT or COM statements in the same subprogram. The label
field is ignored.

Example:
PIRIO[GIA] [NJOP] [T[] HEEN l] l
LIDA[{SAMD s|AmD| {AINID| Is|alNip| TAIRIE| [REE|FIEIRIEINICIEID] |T|N
PRIOGIA[»| BU|T| |ARIE| |AICITIUAJLIL)Y
LIO|CAT|I|ONS| |IN| |PRRIO|GB|.
MP| [SAIND
IXT| [S|AM[D[:|SAINDD
INT[[PR[0/G/A
EIND
P|R|0|GB] |N|OP
S|AMD| | |OICIT| |7/6]7
S|AND| | |SITIA] |SIAMD
EINT| |S|AMID|:|S|AN|D
J|SB| |PR|OG|A
EX|T| [PIR|O|GIA
END
4.3
ADDRESS AND
SYMBOL
DEFINITION The pseudo operations in this group assign a value or a word

location to a symbol which is used as an operand elsewhere in
the program.

4-11

4-12

label | DEF I m [,I] l comments

The address definition statement generates one word of mem-
ory as a 15-bit address which may be used as the object of an
indirect address found elsewhere in the source program. The
symbol appearing in the label is that which is referenced; it
appears in the Operand field of a Memory Reference instruc-
tion.

The operand field of the DEF statement may be any positive ex-
pression in an absolute program; in a relocatable program it
may be a relocatable expression or an absolute expressionwith
a value of less than 100g. Symbols that do appear in the Oper-
and field, may appear as operands of EXT or COM statements,
in the same subprogram and as entry points in other sub-
programs.

The expression in the Operand field may itself be indirectand
make reference to another DEF statement elsewhere in the
source program.

Example:
NJAM[[PIR]O[GIN ZIERIO-[REILIATTIZVIE] [S[TIARR[T] [O[F] [PIR[OIG[R[A!
EIXT] [SIINJE],[SIQRIT
clom| |s|cMIA|(]2]o)[,[s|cM[B[(]5]0])
JIS|B| ISIIINE EX[ElCu[TIE| [SIT|NE| [RIOu[T|TNE
LIDA| [X/CIMAL [T PIIICK |UP| [COMMON] WORD! [I|NDII[RIECITIL]Y
MA | [DIEFF| [sicimla SICMIA[|T]s| [A] [1]5/-|BT|T] |AIDIDRIEIS]S
JislB| [xislal+[1 GIET] [S|QuU/ARIE| [RIojo[T| [ulSIIIN[G] TWo|-[LEEVE|L
Q DIEIF| IX/SIQIR], [T INDIIR[EICT| [AIDIDRRIEIS|SIIINIG
QR | [D[EF] [SQR[T SIQR[T|_|1[s [Al [15[-|B[z|T] |AID|D[REIS|S
EIND| [PRIO/GIN
| |
T I I

The DEF statement provides the necessary flexibility to
perform address arithmetic in programs which are to be
assembled in relocatable form. Relocatable programs should
not modify the operand of a memory reference instruction.

In the example below, if TBL and LDTBL are in different
pages, the BCS Loader processes TBL as an indirect address
linked through the base page. The ISZ erroneously increments
the loader provided reference to the base page rather than the
value of TBL.

Example:

Assuming the loader might assign absolute locations compara-
ble to the following octal values: '

Page Loc Opcode Reference
(0) (700) D].EF 4000
(1) (200) L]:DA (0) 700(1)
(1) (300) Is:z (1) 200
(2) (0) | (TBL)

4-13

It can be seen that the ISZ instruction would increment the
quantity 700 rather than the address of the table (40008).

The following assures correct address modification during
program execution.

Example:

Comments.

|-

This sequence might be stored by the loader as:

Page
(1)
(1)

1)

(2)

4-14

Loc Opcode Reference
(200) DEF 4000
(201) LDA 200(I)
(300) ISZ (1) (200)
(0) (TBL)

The value of 4000 is incremented; each execution of LDA will
access successive locations in the table.

label | ABS ‘ m Icomments

ABS defines a 16-bit absolute value to be stored at the location
represented by the label. The Operand field, m, may be any
absolute expression; a single symbol must be defined as abso-
lute elsewhere in the program.

Example:
AlB ERQIU[35 AlS[S[T[GIN/S] [THIE] [VIAILIVEE] [OIF] [3[5
T/o| [THE] |s|YmMiBlolL] |AlB
I
M3!5 ABS| [-|AB M35/ [cloIN[TIAILN[S| |-[3]5].
P{3/5 ABlS| |AB P/3[5 |ClON[TIAIN'S| [3]5].
P[7/0 ABS| |AB[+/AB P/7/0] [cloN[TIA[IIN/S| |7/0].
P|3/0 AlBls| |ABI-|5 P|3/0 |CIONITIAIIIN'S| |30].

label EQU | m |comments

The EQU pseudo operation assigns to a symbol a value other
than the one normally assigned by the program location coun-
ter. The symbol in the Label field is assigned the value
represented by the Operand field. The Operand field may
contain any expression. The value of the operand may be
common, base page or program relocatable as well as abso-
lute, but it may not be negative. Symbols appearing in the
operand must be previously defined in the source program.

The EQU instruction may be used to symbolically equate two
locations in memory; or it may be used to give a value to a
symbol. The EQU statement does not result in a machine
instruction.

4-15

Examples:

50

45

omments,

40

20

Operand

THIE

BOTH

THE| [S[YMBOL|S |J[FIOUR| |AND| |J3+]4

IDENTIIF|Y| THE| |SAIME| |LIO[CIATII|ON|.
ANDD| OJPERATIIION| TS| |PIERIFIORME|D| ION

THIS| [LOCATIIION|.

NAM| [FIAM

DEEF

LIDA] []3

ADA| |ONE

STIA[[v[3[+1

AND]| |J|FIOUR

[WH

J[3

JIFIOUR] [EIQU] |J|3]+]1

Examples:

<t
. [=) Z|»n
] < | ol
- = —
=) =< o o
<t [T —4K72] << [F¥]
[[«) [=) ("] (3]] =
2 xS w olol—| |»
v - =Y [« [TIE= -1 —
m [} -— == —[Sw| [©
8 - < > = CZ]
=) T T[S SR o
2 <T [C] —lnjaz Lo !
— > ~ o nlalo [2]
[=) W <<=
a o wi|T|a <|a- [
3 = Ol << ! (=10
8 [=) [a ~|00 a-
= @ n| - = 7]
[T>)] << ol | [~
o = - |mjw o —4K%]
— n|<T wolo = Lid | o
8 al— [=) >|n|= =
< o ZZ== 2= =
oln o= |[© O = olac
[72) =<t [®) O | o[l |- (SN}
w 2+ [wijac <t <<
Q = (< 0o/ L|g Z| O %2}
— w|— o= =IO [=][e]
L =|m <=0 w| | |
w << Slojx|a win|—| [Oj=
o 2= Jo[—[O Qo[[d[m—
{
=Y
-~ [Ye] -~
. — + +
¢elon <C <t @
o [- - -
[=) [va) [+a) [oa) [T
| < <t <t [F8]
%) [- — o Q= @
5 |= = > <t = Y o) <t
3 (<] - ol - <o - - Al - x| - li[«]l<] =]
s = [3) W — = [FY] [-
o [==)
_]
3 m
<t
- — <</

4-16

4.4
CONSTANT

DEFINITION

The pseudo instructions in this class enter a string of one or
more constant values into consecutive words of the object pro-
gram. The statements may be named by labels so that other
program statements can refer to the fields generated by them.

label I ASC | n, <2n characters> | comments

ASC generates a string of 2n alphanumeric characters in
ASCII code into n consecutive words.f One character is right
justified in each eight bits; the most significant bit is zero.
n may be any expression resulting in an unsigned decimal
value in the range 1 through 28. Symbols used in an expres-
sion must be previously defined. Anything in the Operand field
following 2n characters istreated as comments. If less than 2n
characters are detected before the end-of-statement mark,
the remaining characters are assumed to be spaces, and are
stored as such. The label represents the address of the first
two characters.

Example:

causes the following:

ALPHABETIC
15 14 8 7 6 [0
TTYPY/ 7 B
/ >
% A
EQUIVALENT IN OCTAL NOTATION
15 14 8 7 6 [0)
TTYP ' 7//BK o 2
/ 3 1 o 4
/, 5 A 0O 4 0O

T To enter the code for the ASCII symbols which perform some
action (e.g., and (LF)), the OCT pseudo instruction
must be used.

4-17

4-18

label | DEC I di[,dz2,...,d,] Icomments

DEC records a string of decimal constants into consecutive
words. The constants may be either integer or real (floating
point), and positive or negative. If no sign is specified, posi-
tive is assumed. The decimal number is converted to its
binary equivalent by the Assembler. The label, if given,
serves as the address of the first word occupied by the
constant.

A decimal integer must be in the range of 0 to 2'°-1; it may
assume positive, negative, or zero values. It is converted
into one binary word and appears as follows:

15 14 o

sisN—"s| number

Examples:

Label Operation Operand

Comments.
5 10 15 20 25 30 35 40 45 50

DE|C| 150, |*|3[2/8,!-|3[0/0

15 14 0
INT {O] O 0 0 6 2

of O o] 5 1 (0]

1 7 7 3 2 4

A floating point number has two components, a fraction and
an exponent. The exponent specifies the power of 10 by which
the fraction is mutliplied. The fraction is a signed or un-
signed number which may be written with or without a decimal
point. The exponent is indicated by the letter E and follows a
signed or unsigned decimal integer. The floating point number
may have any of the following formats:

tn.n £n. +.n n.nEzxe <+.nEze +n.Eize znEte

The number is

differ), and stored in two computer words.

tion or the exp

converted to binary, normalized (leading bits
If either the frac-
onent is negative, that part is stored in two's

complement form.

15 14 (o]
Word 1 |s| fraction (most significant bits) |
t———binory point
sign of fraction
15 87 1 0
Word 2 | fraction | exponent |[s]

sign of exponent

The floating point number is made up of a 7-bit exponent with
sign and a 23-bit fraction with sign. The number must be in
the approximate range of 10738 through 10*38 and zero.

are all equivalent to
. 45X101

and are stored in normalized form as:

15 14 0o
loJ1t c0o10000000000 0]

15 8 7 1 0
l[ooooooo0o0jooo00o0 11]0]

4-19

are stored as:

[tjo1o00111000010 10|

[oo111011|/ooo0000 0|0

l[o[1to10001 11101001 1]

[toooo101[1111100]1]

label | DEX ’dl[,dg yeee 5 dp] 'comments

DEX, for the Extended Assembler, records a string of
extended precision decimal constants into consecutive words
within a program. Each such extended precision constant
occupies three words as shown below:

Word 1 S,| Mantissa Y
15 14 0
Word 2 \
7
15 0
Word 3 > Exponent Se

15 817 1 0

4-20

Legend: Sm = Sign of the mantissa (fraction)

Se = Sign of the E xponent*

*NOTE: a value is entered only if normalizing of the
Mantissa is needed.

An extended precision floating point number is made up
of a 39-bit Mantissa (fraction) and sign and a 7-bit ex-
ponent and sign. The exponent and sign will be zero if
the Mantissa does not have to be normalized.

This is the only form used for DEX. All values, whether
they be floating point, integer, fraction, or integer and
fraction, will be stored in three words as just described.

This storage format is basically an extension of that used
for DEC, as previously described:

Examples:
DEX 12,-.45

are stored as:

WORD 1 WORD 2 WORD 3
0110000000000000 ; 0000000000000000 0000000000001000
WORD 1 WORD 2 WORD 3

1000110011001100 1100110011001100 100110111111111

4-21

4-22

label I oCT l 01 [,02...,04] | comments

OCT stores one or more octal constants in consecutive words
of the object program. Each constant consists of one to six
octal digits (0 to 177777). If no sign is given, the sign is
assumed to be positive. If the sign is negative, the two's com-
plement of the binary equivalent is stored. The constants are
separated by commas; the last constant is terminated by a
space. If less than six digits are indicated for a constant, the
data is right justified in the word. A label, if used, acts as
the address of the first constant in the string. The letter B
must not be used after the constant in the Operand field; it is
significant only when defining an octal term in an instruction
other than OCT.

Examples:
olc[T] [+|@
oCciT| (-2
M olcT| [1717],[2|@4@5],|-3l6
oclt| Islal, |7iel7i7iel, =110, [g1 g1
olcT| |1/d7i6/4l2,,17i7I@ 7T
olc|T| [119/7l6 I/LILEElGIAL]:] [Clo|N[TIA[TINIS
olc[T| |-l17l7)7lTiT DIGIIT |9
olclT| [1l77B LLILEEIGIAILI:| [ClONTIAIIIN'S
CHARRIA[CITIER| |B

The previous statements are stored as follows:

1614 0
o] o 0 0 0 0
1 7 7 7 7 6
NuM (o] o 0 1 7 7
o] 2 0 4 | o 5
1| 7 7 7 4 2
o| o 0 0 5 1
ol 7 7 7 7 7
1| 7 7 7 7 7
o| 1 0 1 0 1
1| o 7 6 4 2
L ! 0 ! L THE RESULT OF
X| X X X X X :>>ATTEMFHNGTO
o[o 0 0 0 1 DEFINE AN ILLEGAL
Do [T ol s

4.5
STORAGE
ALLOCATION

4.6
ASSEMBLY
LISTING
CONTROL

The storage allocation statement reserves a block of memory
for data or for a work area.

label BSS | m comments

The BSS pseudo operation advances the program or base page
location counter according to the value of the operand. The
Operand field may contain any expression that results in a
positive integer. Symbols, if used, must be previously de-
fined in the program. The label, if given, is the name as-
signed to the storage area and represents the address of the
first word. The initial content of the area set aside by the
statement is unaltered by the loader.

Assembly listing control pseudo instructions allow the user to
control the assembly listing output during pass 2 or 3 of the
assembly process. These pseudoinstructions may be used only
when the source program is translatedby the Extended Assem-
bler provided for 8K or larger machines (8, 192-word memory
or larger).

UNL comments

Output is suppressed from the assembly listing, beginning with
the UNL pseudo instruction and continuing for all instructions
and comments until either an LST or END pseudo instruction is
encountered. Diagnostic messages for errors encountered by
the Assembler will be printed, however. The source statement
sequence numbers (printed in columns 1-4 of the source
program listing) are incremented for the instructions skipped.

4-23

LST comments

The LST pseudo instruction causes the source programlisting,
terminated by a UNL, to be resumed.

A UNL following a UNL, a LST following a LST, and a LST not
preceded by a UNL are not considered errors by the Assembler.

SUP comments

The SUP pseudo instruction suppresses the output of additional
code lines from the source program listing. Certain pseudo
instructions, because they result inusing subroutines, generate
more than one line of coding. These additional code lines are
suppressed by a SUP instruction untila UNS or the END pseudo
instruction is encountered. SUP will suppress additional code
lines in the following pseudo instructions:

ASC DIV FAD FSB
oCT DLD FDV MPY
DEC DST FMP

The SUP pseudo instruction may also be used to suppress the
listing of literals at the end of the source program listing.

UNS comments

The UNS pseudo instruction causes the printing of additional
coding lines, terminated by a SUP, to be resumed.

4-24

A SUP preceded by another SUP, UNS preceded by UNS, or
UNS not preceded by a SUP are not considered errors by the
Assembler.

SKP comments

The SKP pseudo instruction causes the source program listing
to be skipped to the top of the next page. The SKP instruction
is not listed, but the source statement sequence number is
incremented for the SKP.

SPC n

The SPC pseudo instruction causes the source program listing
to be skipped a specified number of lines. The list output is
skipped n lines, or to the bottom of the page, whichever occurs
first. The n may be any absolute expression. The SPC
instruction is not listed but the source statement sequence
number is incremented for the SPC.

HED m(heading)

The HED pseudo instruction allows the programmer to specify
a heading to be printed at the top of each page of the source
program listing.

The heading, m, a string of up to 56 ASCII characters, is printed
at the top of each page of the source program listing following
the occurrence of the HED pseudo instruction. If HED is
encountered before the NAM or ORG at the beginning of a
program, the heading will be used on the first page of the
source program listing. A HED instruction placed elsewhere
in the program causes a skip to the top of the next page.

The heading specified in the HED pseudo instruction will be
used on every page until it is changed by a suceeding HED
instruction.

The source statement containing the HED willnot be listed, but
source statement sequence number will be incremented.

4-25

4.7
ARITHMETIC

SUBROUTINE CALLS The members of this group of pseudo instructions request

4-26

the Assember to generate calls to arithmetic subroutines*
external to the source program. These pseudo instructions
may be used in relocatable programs only. The Operand
field may contain any relocatable expression or an absolute
expression resulting in a value of less than 100g.

| !]

label MPY I{ m I;I] }l comments
=Dn or =Bn

Multiply the contents of the A-register by the contents of m

or the quantity defined by the literal and store the product in

registers B and A. B contains the sign of the product and the

15 most significant bits; A contains the least significant bits.
| | |

label DIV l { m [,I] }lcomments
=Dn or =Bn
Divide the contents of registers B and A by the contents of m
or the quantity defined by the literal. Store the quotient in A
and the remainder in B. Initially B contains the sign and the 15
most significant bits of the dividend; A contains the least
significant bits.
m [1]

=Fn

Multiply the two-word floating point quantity in registers A
and B by the two-word floating point quantity in locations m
and m+1 or the quantity defined by the literal. Store the two-
word floating point product in registers A and B.

=n

=Fn

label FMP l ‘ comments

l 1
label FDV | ‘ comments

" Divide the two-word floating point quantity in registers A and

B by the two-word floating point quantity in locations m and
m+1 or the quantity defined by the literal. Store the two-
word floating point quotient in A and B.

- *Not intended for use with DEX formatted numbers. For

such numbers JSB’s to Extended Precision Program Library
routines must be used. See the Program Library Pro-

- grammer’s Reference Manual, Table of Contents.

[Il
label FAD ‘ l comments

=[]

=Fn

Add the two-word floating point quantity in registers A and B
to the two-word floating point quantity in locations m and m+1
or the quantity defined by the literal. Store the two-word
floating point sum in A and B.

label FSB |

l comments

Subtract the two-word floating point quantity in m and m+1
or the quantity defined by the literal from the two-word
floating point quantity in registers A and B and store the
difference in A and B.

1
label | DLD |

!
m [,I] [comments

=Fn

Load the contents of locations m and m+1 or the quantity
defined by the literal into registers A and B respectively.

label DST [m [,I] |comments

Store the contents of registers A and B in locations m and m+1
respectively.

Each use of a statement from this group generates two words
of instructions. Symbolically, they could be represented as
follows:

JSB <.arithmetic pseudo operation>
DEF m [, I]

An EXT <. arithmetic pseudo operation>is implied preceding
the JSB operation.
In the above operations, the Overflow bit is set when one of
the following conditions occurs:

Integer overflow

Floating point overflow or underflow
Division by zero.

Execution of any of the subroutines alters the contents
of the E-Register.

4-27

ASSEMBLER INPUT AND OUTPUT 5

50'
CONTROL
STATEMENT

The Assembler accepts as input a paper tape containing a
control statement and a source language program. A relocat-
able source language program may be divided into several
subroutines; the designation of these elements is optional.
The output produced by the Assembler may include a punched
paper tape containing the object program, an object program
listing, and diagnostic messages.

The control statement specifies the output to be produced:

A'SMB’ p19 pz} cet pn

‘“ASMB,’”’ is entered in positions 1-5. Following the comma
are one or more parameters, in any order, which define the
output to be produced. The control statement must be termi-
nated by an end-of-statement mark,

The parameters may be any legal combination of the follow-
ing starting in position 6:

A Absolute: The addresses generated by the Assembler
are to be interpreted as absolute locations in memory.
The program is a complete entity. It may not include
NAM, ORB, COM, ENT, EXT, arithmetic pseudo
operation statements or literals. The binary output
format is that specified for the Basic Binary loader.

R Relocatable: The program may be located anywhere in
memory. Instruction operands are adjusted as neces-
sary. The binary output format is that specified for
the BCS Relocating loader.

B Binary output: A program is to be punched according
to one of the above parameters.

5-1

5.2
SOURCE PROGRAM

5-2

L List output: A program listing is to be produced either
during pass two or pass three (if binary output se-
lected) according to one of the above parameters.

T Table print: List the symbol table at the end of the
first pass. For the Extended Assembler: List
the symbol table in alphabetic order in three sections:
section 1 for one- character symbols, section 2 for
two- and three- character symbols, and section 3
for four- and five- character symbols.

N Include sets of instructions following the IFN pseudo
instruction.

Z Include sets of instructions following the IFZ pseudo
instruction.

Either A or R must be specified in addition to any combin-
ation of B, L, or T.

If a programmer wishes to assemble Pass 1l of a source
program to check for errors, he can specify only an A or R
to be the sole parameter of the Assembler Control Statement,
executing only Pass 1. (This produces Pass lerror messages
without listing the program or providing an obJect tape). Ex-
tended Assembler only.

The Assembler Control Statement must specifically request
Pass 2 operations (list or punch) in order for Pass 2 to
be executed. Lack of Pass 2 option information causes
processing only of Pass 1 errors. If a C option is also
provided, an automatic cross-reference symbol table is
done after Pass 1 when operating in the MTS environment.

The control statement may be on the same tape as the source

program, or on a separate tape; or it may be entered via the

Teleprinter keyboard.

The first statement of the program (other than remarks or
a HED statement) must be a NAM statement for a relocatable
program or an ORG statement for indicating the origin of an
absolute program. The last statement must be an END state-
ment and may contain a transfer address for the start of a
relocatable program. Each statement is followed by an
end-of-statement mark.

5.3
BINARY OUTPUT

5.4
LIST OUTPUT

The punch output is defined by the ASMB control statement.
The punch output includes the instructions translated from the

source program.

It does not include system subroutines re-

ferenced within the source program (arithmetic subroutine
calls, .IOC., .DIO., .ENTR, etc.)

Fields of the object program are listed in the following print

columns.

Columns
1-4

5-6
7-11
12
13-18
19

20
21-72

Content
Source statement sequence number gener-
ated by the Assembler
Blank
Location (octal)
Blank
Object code word in octal
Relocation or external symbol indicator
Blank

First 52 characters of source statement.

Lines consisting entirely of comments (i.e., * in column 1) are

printed as follows:

Columns
1-4
5-T72

Content
Source statement sequence number

Up to 68 characters of comments

A Symbol Table listing has the following format:

Columns
1-5
6
l
8
9-14

Content
Symbol
Blank
Relocation of external symbol indicator
Blank
Value of the symbol

5-3

5.5
OPERATING
INSTRUCTIONS

5-4

The characters that designate an external symbol or type of
relocation for the Operand field or the symbol are as follows:

Character Relocation Base
Blank Absolute
R Program relocatable
B Base page relocatable
C Common relocatable
X External symbol

At the end of each pass, the following is printed:

** NO ERRORS*
or
** pnnn ERRORS*

The value nnnn, indicates the number of errors.

The exact operating procedures for an assembly depend on the
available hardware configuration. The user should know the
assignment of input/output equipment, f and memory size be-
fore initiating an assembly.

One possible allocation of equipment might be as follows:

Assembler Standard Unit Physical Unit
Input/Output Designation Assignment
Binary Output Teleprinter Output 2752A Teleprinter
Table Print List Output 2753A Tape Punch
List Output
Source Program Input 2'737TA Punched Tape
Reader

T As established when configuring the System Input/Output
routines.

Assembly Options

Operating

Procedures.
Paper Tape
System

If there are two output devices as shown above, there are only
two passes; the Binaryand List output are both produced in the
second pass. If only one output device is available, the Binary
output is produced in the second pass; and the List output, in
the third pass.

The Assembler automatically provides a leader and trailer for
binary output tapes. To suppress this leader and trailer, set
Switch 0 to 1 (up) before the start of Pass 2.

In a three-pass assembly, the diagnostic messages and binary
output are written on the same unit. To prevent these mes-
sages from being punched on the binary tape (they still appear
on the printed output), perform the following steps:

1. Set Switch 15 to 1 (up) before start of Pass 2.

2. When the computer halts with the T-Register contain-
ing ''102055", turn the punch unit off, and press Run.

3. When the computer again halts with the T-Register
containing '102055", turn the punch unit on, and press
Run.

4. At the end of Pass 2, set Switch 15 to 0 (down).

Steps 2 and 3 are repeated, each time a diagnostic message
is produced.

The following procedures indicate the sequence of steps for
assembly of a source program using the paper tape system.

A. Set Teleprinter to LINE and check that all equipment to
be used is operable.

5-5

5-6

Load the Assembler using the Basic Binary Loader:f

1. Place Assembler binary tape in the device serving as
the Standard Input unit (e. g., Punched Tape Reader).

2. Set Switch Register to starting address of Basic
Binary Loader (e.g., 007700 for 4K memory, 017700
for 8K memory).

Press LOAD ADDRESS.

Set Loader switch to ENABLED.,
Press PRESET.

Press RUN.

When the computer halts and indicates that the As-
sembler is loaded (T-Register contains 102077), set
Loader switch to PROTECTED.

Set Switch Register to starting address of Assembler:

If control statement is on tape: 1008

2. If control statement is to be entered via Teleprinter:
120
8

Press LOAD ADDRESS.

Place source language tape in unit serving as the Standard
Input unit (e.g., Punched Tape Reader).

Press RUN.

If control statement is not on tape (i. e.,starting address =
1204), enter it via the Teleprinter, following it by @

At end of Pass 1 (T-Register contains 102011), the
Symbol Table, if requested, is on the Standard List
Output unit. To execute Pass 2, replace the source
language tape in the Standard Input unit, turn Teleprinter
punch unit ON, and press RUN.

At the completion of each pass, repeat steps E and F. If
a three-pass assembly is being executed, turnTeleprinter
punch on at completion of Pass 1 and off at completion of
Pass 2.

T The appropriate System Input/Output subroutines (drivers)

are assumed to be included with the Assembler.

During the operation of the Assembler, the following halts may

occur:

T-Register

102011

102023

102040

102054

102055

102057

102066

102077

Explanation

End of first pass.

Write not enabled (MT)

End of second of three
passes.

(only with ASR-33)

EOT on MT

Switch 1 selected dur-
ing list to halt before
printing a line. T

Switch 15 option se-
lected to prevent
punching of printed
messages on binary
output tape. (Only
halts with ASR-33).

End of source
section.

tape

Control statement er-
Tror. Press RUN to
retry.

End of assembly.

Action

Return to Step E.

Irrecoverable

To perform Pass 3, re-
turn to Step E. To omit
Pass 3 and assemble
another program, re-
move output and return
to Step C.

Press RUN. Assembler
continues without MT;
does not rewind

To continue,press RUN.

See preceding instruc-
tions. (Assembly Op-
tions.)

Place next section in
unit serving as Standard
Inputunit and press Run.

Correct control state-

ment and return to Step
E.

Remove output. To as-
semble another pro-
gram, return to Step E.

T To halt Pass 2 at anytime, set Switch 1 up.

5.6
Object Program

Loading

5-8

Several programs may be assembled consecutively without
reloading the Assembler. If some of the object programs are
to be relocatable and others are to be absolute, the programs
that are to be assembled in relocatable form must be processed
first. If relocatable program assemblies follow absolute pro-
gram assemblies, an "R?" error will be diagnosed and the as-
sembler must be reloaded.

If absolute binary output was specified, the Basic Binary
Loader is used to load the object program tape.

If relocatable binary output was specified, the BCS Relocating
Loader is used to load the objectprogramtape. If the program
refers to other Assembler FORTRAN or ALGOL generated
object programs, these tapes are loaded by the Relocating
Loader at the same time. If the program refers to .DIO.
(the FORTRAN Formatter routine), or if it makes use of
Arithmetic pseudo instructions, the Program Library tape
must be submitted for loading also.

Listed below are summaries of procedures for normal loading
of object programs:y

BASIC BINARY LOADER
OPERATING PROCEDURES SUMMARY

A. Place binary object tape in Standard Input unit.

o

Set Switch Register to starting address of Basic Binary
Loader

Press LOAD ADDRESS.

Set Loader switch to ENABLED.
Press PRESET.

Press RUN.

Q@ = EUQ

When the computer halts with T-Register containing
102077, set Loader switch to PROTECTED.

Set Switch Register to starting address of object
program,

Press LOAD ADDRESS.

J. Check that all I/0 devices are ready and loaded for
operation of the program.

K. Press RUN.

w

—
.

TFor complete details, see Basic Control System Programmer’s
Reference Manual.

5.7
ERROR
MESSAGES

BASIC CONTROL SYSTEM LOADER
OPERATING PROCEDURES SUMMARY

A. Load the Basic Control System tape using the Basic
Binary Loader.

B. Set Switch Register to 000002, press LOAD ADDRESS,
and set Switch Register to 000000.

C. Place Assembler generated relocatable object tape in
Standard Input unit.

D. Press RUN. The loader types ‘‘LOAD’’ if it expects
another relocatable or library program.

E. If more than one relocatable object tape is to be loaded,
repeat Steps C and D for each. Otherwise, set Switch
Register to 000004 to load library routines.

F. Place Program Library tape in device serving as
Program Library unit.

G. Press RUN. When the loading operation is complete,
the Loader types ‘“*LST’’. Press RUN. The Loader
types ‘“*RUN’’ indicating the program is ready for
execution.

H. Press RUN to initiate execution.

Errors detected in the source program are indicated by a 1-
or 2-letter mnemonic followed by the sequence number and
the first 62 characters of the statement in error. The
messages are printed on the list output device during the
passes indicated:

For Extended Assembler, error listings produced during
Pass 1 are preceded by a number which identifies the
source input file where the error was found. Pass 2 and
3 error messages are preceded by a reference to the
previous page of the listing where an error message was
written. The first error will refer to page '"0".

5-10

Error
Code

Cs

DD

Pass

Description

Control statement error:

a) The control statement contained a
parameter other than the legal set.

b) Neither A nor R, or both A and R were
specified.

¢) There was no output parameter (B, T
or L.)

Doubly defined symbol: A name defined in
the symbol table appears more than once
as:

a) A label of a machine instruction.

b) A label of one of the pseudo operations:

BSS EQU

ASC ABS

DEC ocCT

DEF Arithmetic subroutine call
DEX

¢) A name in the Operand field of a COM
or EXT statement.

d) A label in an instruction following a
REP pseudo operation.

e) Any combination of the above.
An arithmetic subroutine call symbol ap-

pears in a program both as a pseudo in-
struction and as a label.

Error
Code Pass

EN 1

EN @000 <symbol> start

of 2
(top of
page)

1F 1

IL 1

IL 2or3

Description

The symbol specified in an ENT
statement has already been de-
fined in an EXT or COM state-
ment.

The entry point specified in an
ENT statement does not appear
in the label field of a machine
or BSS instruction. The entry
point has been defined in the
Operand field of an EXT or
COM statement, or has been
equated to an absolute value.

An IFZ or an IFN follows either
an IFZ or an IFN without an
intervening XIF. The second
pseudo instruction is ignored.

Illegal instruction:

a) Instruction mnemonic cannot
be used with type of assembly
requested in control state-
ment. The following are ille-
gal in an absolute assembly:

NAM EXT

ENT COM

ORB Arithmetic sub-
routine calls

b) The ASMB statement has an R
parameter, and NAM has been
detected after the first valid
Opcode.

Illegal character: A numeric
term used in the Operand field
contains an illegal character(e.g.
an octal constant contains other
than +, -, or #-17).

Illegal instruction: ORB in an
absolute assembly.

5-11

5-12

Error
Code

Pass

1,2 0or 3

Description

Illegal operand:

a) An operand is missing for an
Opcode requiring one.

b) Operands are optional and
omitted but comments are in-
cluded for:

END
HLT

¢) An absolute expression in one of
the following instructions from a
relocatable program is greater

than 77g.

Memory Reference
DEF

Arithmetic subroutine calls

d) A negative operand is used with
an Opcode field other than ABS,

DEX, DEC, and OCT.

e) A character other than I follows
a comma in one of the following

statements:

ISZ ADA AND DEF

JMP ADB XOR Arithmetic
JSB LDA IOR Subroutine

LDB CPA calls
STA CPB
STB

f) A character other than C follows
a comma in one of the following

statements:
STC MIB
CLC OTA
LIA OTB
LIB HLT
MIA

Error
Code Pass Description

g) A relocatable expression in the
operand field of one of the follow-

ing:
ABS ASR RRL
REP ASL LSR
SFC RRR LSL

h) An illegal operator appears in an
Operand field (e. g. + or - as the
last character).

i) An ORG statement appearing in a
relocatable program includes an
expression that is base page or
common relocatable or absolute.

j) A relocatable expression contains
a mixture of program, base page,
and common relocatable terms.

k) An external symbol appears in an
operand expression or is followed
by a comma and the letter I.

1) The literal or type of literal is
illegal for the operation code used
(e.g., STA =BT).

m) An illegal literal code has been
used (e.g., LDA =077).

n) An integer expression in one of the
following instructions does not meet
the condition 1£4n<16. The integeris
evaluated modulo 24.

ASR RRR LSR
ASL RRL LSL

0) The value of an ‘L’ type literal is
relocatable.

5-13

Error

Code Pass
NO 17 2: 3
OoP 1,2,3
oP 1,2,0r 3
ov 1,2,0r 3
R? Before 1

5-14

No origin definition: The first state-
ment in the assembly containing a
valid opcode following the ASMB con-
trol statement (and remarks and/or
HED, if present) is neither an ORG nor
a NAM statement. If the A parameter
was given on the ASMB statement, the
program is assembled starting at2000;
if an R parameter was given, the pro-
gram is assembled starting at zero.

Illegal Opcode preceding first
valid Opcode. The statement be-
ing processed does not contain an
asterisk in position one. The
statement is assumed to contain
an illegal Opcode; it is treated as
a remarks statement.

Illegal Opcode: A mnemonic appears
in the Opcode field which is not valid
for the hardware configuration or
assembler being used. A word is
generated in the object program.

Numeric operand overflow: The num-
eric value of a term or expression has
overflowed its limit:

1>N2>16 EAU Shift-Rotate Set
26 -1 Input/Output, Overflow, Halt

2'0-1 Memory Reference (in abso-
lute assembly)

DEF and ABS operands;
data generated by DEC;or
DEX; expressions con-
cerned with program lo-
cation counter.

2.1 ocCT

2'°-1

An attempt is being made to assemble
a relocatable program following the
-assembly of an absolute program.

Error
Code

SO

SY

SY

TP

Pass

1,2,3

2o0r 3

1,2,0r3

Description

There are more symbolsdefined in the
program than the symbol table can
handle.

Illegal Symbol: A Label field contains
an illegal character or is greater than
5 characters. A label with illegal
characters may result in an erroneous
assembly if not corrected. A long
label is truncated on the right to 5
characters.

Illegal Symbol: A symbolic term in
the Operand field is greater than five
characters; the symbol is truncated on
the right to 5 characters.

Too many control statements: A con-
trol statement has been input both on
the teleprinter and the source tape or
the source tape contains more than one
control statement. The Assembler as-
sumes that the source tape control
statement is a label, since it begins in
column 1. Thus, the commas are con-
sidered as illegal characters and the
"label" is too long. The binary object
tape is not affected by this error, and
the control statement entered via the
teleprinter is the one used by the As-
sembler.

An error has occurred while reading
magnetic tape.

5-15

5-16

Error

Code

UN

Pass

1,2,0r 3

Description

Undefined Symbol:

a) A symbolic term in anOperand field

b)

is not defined in the Label field of
an instruction or is not defined in
the Operand field of a COM or EXT
statement.

A symbol appearing in the Operand
field of one of the following pseudo
operations was not defined previ-
ously in the source program:

BSS ASC EQU ORG END

HP CHARACTER SET

ASC 1l CHARACTER FORMAT

by o 0 [0 | | | |
bg 0 3] ' 1 (3] o] ' 1
bs o) | o ' (o) 1 o '
by
b3
b
by

0[0|0|O|NULL[DCO | B 0 @ P
ololo]|] som|DC, | 1 a | e | ""I_*
ojo|1{0jEOA |DC2 " 2 B R j ““U—q
olo]| 1 |i|com|ocs| # | 3 | ¢ | s | | || N
of Jofoleor Il ¢ 4 To "7 [" "1 7¢]
oli{o]1|WRU|ERR]| % | s 3 U N s
o[[lo[Ru[svNc] & | 6 [F | v | AT
O 1|t]|BELL|LEM |(aposy| 7 G w s N
rjoJololFeo| So | (| 8 | w | x [LT]TE"
1lofol Mgl s,) 9 I Y -z“”]
Jolilo] LF | 52 | = | - J |z [ETT]
1o f1{1|Vrag| S3 + . K C 01t
11 jo]o]| FF | Sa |icomma) < L \) ACK
t{1fofr] CR | Ss - = M] aE ®
v{1]1|o]| so | sg > N 4 ERE
Vi) s | oS, / ? o « |1 Toe

Standard 7-bit set code positional order and notation are shown below with b, the high-order
and b, the low-order, bit position.

NULL

b,

EXAMPLE: The code for "R" is: 1

LEGEND
Null/Idle DC,-DGC;
Start of message DC4(Stop)
End of address ERR
End of message SYNC
End of transmission LEM
"Who are you?" So-Ss
"Are you...?" 5
Audible signal
Format effector <
Horizontal tabulation >
Skip (punched card) 4
Line feed -
Vertical tabulation \
Form feed ACK
Carriage return 0]
Shift out ESC
Shift in DEL

Device control reserved for
data link escape

be by b, by b, b,
o 1 0 0 1 0

Device Control

Device control (stop)

Error

Synchronous idle

Logical end of media

Separator (information)

Word separator (space, normally
non-printing)

Less than

Greater than

Up arrow (Exponentiation)

Left arrow (Implies/Replaced by)

Reverse slant

Acknowledge

Unassigned control

Escape

Delete/Idle

BINARY CODED DECIMAL FORMAT

Kennedy 1406/1506 ASCII-BCD Conversion

Symbol BCD ASCII Equivalent ¢\ BCD ASCII Equivalent
(octal code) (octal code) 4 (octal code) (octal code)
(Space) 20 P49 A 61 19
! 52 g41 B 62 192
13 943 C 63 193
$ 53 P44 D 64 194
% 34 045 E 65 105
& 6 P46 F 66 106
' 14 p47 G 67 197
(34 @50 H 78 11¢
) 74 251 | 71 111
* 54 252 J 41 112
+ 6 953 K 42 13
' 33 954 L 43 114
- Ag @55 M 44 115
. 73 @56 N 45 116
/ 21 257 o) 46 117
P 47 120
g 12 peg Q 50 121
1 N 261 R 51 122
2 7] 962 S 22 123
3 g3 263 T 23 124
4 g4 g4 u 24 125
5 o5 265 \'% 25 126
6 26 066 W 26 127
7 o7 967 X 27 13¢
8 19 9790 Y 30 131
9 11 271 Z 31 132
: 15 #72 [75 133
i 56 973 \ 36 134
< 76 74] 55 135
= 13 @75
> 16 276
? 72 @77
@ 14 190

Other symbols which may be represented in ASCII are converted to spaces in BCD (20)

HP 2020A/B ASCII - BCD Conversion

Symbol ASCII BCD Symbol ASCII BCD
(Octal code) (Octal code) (Octal code) (Octal code)
(Space) 4 20 A 101 61
! 41 52 B 102 62
" 42 37 C 103 63
43 13 D 104 64
$ 44 53 E 105 65
% 45 34 F 106 66
& 46 60 1 G 107 617
' 47 36 H 119 70
(50 5 1 111 7
) 51 55 J 112 41
* 52 54 K 113 42
+ 53 60 L 114 43
, 54 33 M 115 44
- 55 40 N 116 45
. 56 73 0] 117 46
/ 57 21 P 120 47
Q 121 50
R 122 51
? o ,lﬁ S 123 22
5 62 92 T 124 23
3 63 3 U 125 24
4 64 4 v 126 25
5 65 5 W 127 26
5 86 %6 X 130 27
7 &7 &7 Y 131 30
8 70 10 z 132 31
o 71 1 [133 75 1
] 135 55 §
: 3,3 ?-,2 1 136 1
< 74 76 - 131 32
= 75 35
> 76 16
? T T2
@ 100 14

T BCD code of 60 always converted to ASCII code 53 (+).

I BCD code of 75 always converted to ASCII code 50 (() and

BCD code of 55 always converted to ASCII code 51 ()).

ASSEMBLER INSTRUCTIONS

Symbols

label

m

I

C

(m, m+1)

comments

Meaning

Symbolic label, 1-5 alphanumeric characters and periods
Memory location represented by an expression
Indirect addressing indicator

Clear flag indicator

Two-word floating point value in m and m+1
Optional comments

Optional portion of field

One of set may be selected

Program Counter

Contents of location

Logical product

Exclusive "or"

Inclusive 'or"

A- register

B- register

E- register

Bit n of A-register

Bit n of B-register

Bit positions in B- and A-register

Complement of contents of register A or B
Two-word floating point value in register A and B
Channel select code represented by an expression
Decimal constant

Octal constant

Repeat count

Integer constant

Literal value

MACHINE INSTRUCTIONS

MEMORY REFERENCE

Jump and Increment-Skip

1SZ

JMP
JSB

m [,T]

m |,]
m |, 1]

Add, Load and Store

ADA
ADB
LDA

LDB

STA
STB

Logical

AND

XOR

IOR

CPA

CPB

{mha
m [,I]
lit

§m L

o)

{m L

lit

REGISTER REFERENCE

Shift-Rotate

CLE
ALS
BLS
ARS
BRS
RAL
RBL

(m) + 1 - m; then if (m) = 0, execute P + 2 otherwise execute
P+1

Jump to m; m -P

Jump subroutinetom: P+1 -m;m+1-P

(m) + (A) - A
(m)+ (B)~- B
(m) - A
(m) -~ B
(A) = m
(B) - m
(m) A (A) - A
(m) ¥ (A) -~ A
(m) vV (A) - A

If (m) # (A), execute P + 2, otherwise execute P + 1

If (m) # (B), execute P + 2, otherwise execute P + 1

0—-E

Shift (A) left-one bit, 0 = A, A ,unaltered
Shift (B) left one bit, 0 ~ B,, B,; unaltered
Shift (A) right one bit, (A) =~ A,

Shift (B) right one bit, (Bj5) ~ B,

Rotate (A) left one bit

Rotate (B) left one bit

Shift-Rotate (Continued)

RAR
RBR
ALR
BLR
ERA
ERB
ELA
ELB
ALF
BLF
SLA

SLB

Rotate (A) right one bit
Rotate (B) right one bit

Shift (A) left one bit, 0 — A 5
Shift (B) left one bit, 0 — B,
Rotate E and A right one bit
Rotate E and B right one bit
Rotate E and A left one bit
Rotate E and B left one bit
Rotate A left four bits
Rotate B left four bits

If (A,) = 0, execute P + 2, otherwise execute P + 1

If (By) =0, execute P + 2, otherwise execute P + 1

Shift-Rotate instructions can be combined as follows:

No-operation

NOP

Alter-Skip

CLA
CLB
CMA
CMB
CCA
CCB
CLE
CME

ALS
ARS
RAL
RAR
ALR
ALF
ERA
ELA

BLS
BRS
RBL
RBR
BLR
BLF
ERB
ELB

ALS \T
ARS
RAL
[,CLE|] [,SLA] RAR
ALF
ERA
|\ ELA /|

[/ BLS \]
BRS
RBL
RBR
BLR
BLF
ERBJ
L\ ELB

[,CLE] [,SLB] S

Execute P + 1

0's—- A
0's—-B

A) -
®) ~

A
B

1's—- A
1's-B
0 —-E

(E) -

E

B-4

Alter-Skip (Continued)

CCE
SEZ
SSA
SSB
INA
INB
SZA
SZB
SLA
SLB
RSS

1-E

If (E) = 0, execute P + 2, otherwise execute P + 1

If (A5) =0, execute P + 2, otherwise execute P + 1

If (B,5) =0, execute P + 2, otherwise execute P + 1
(A)+1 -~ A
B)+1 -8B

If (A) = 0, execute P + 2, otherwise execute P + 1

If (B) = 0, execute P + 2, otherwise execute P + 1

If (A,) =0, execute P + 2, otherwise execute P + 1

If B,) =0, execute P + 2, otherwise execute P + 1

Reverse sense of skip instructions. If no skip instructions precede,
execute P + 2

Alter-Skip instructions can be combined as follows:

[(CLA
CMA
ILCCA

CMB
CCB

'{ CLB

}.

}_

[,SEZ]

[,SEZ]

[(CLE)]
,{CME} [,SSA] [,SLA] [,INA] [,SZA] [,RRS]

[{CCE)

CLE)]
,{CME} [,ssB] [,sLB] [,INB] [,SZB] [,RSS]
 {CCE

INPUT/OUTPUT, OVERFLOW, and HALT

Input/Qutput

STC

CLC
LIA
LIB
MIA
MIB
OTA
OTB
STF

CLF
SFC

SFS

SC

SC
sSC
sc
sc
Sc
scC
SC
sc

sc

ScC

SC

Set control bitg., enable transfer of one element of data be-
tween deviceg, and buffer

sc

Clear control bity,. If sc =0 clear all control bits
(buffersc) ~ A

(bufferg.) -~ B

(buffersc) V (A) - A

(bufferg.) V (B) - B

(A) = bufferg

(B) - buffer g

Set flag bitg.. If sc = 0, enable interrupt system. sc=1sets
overflow bit.

Clear flag bitg.. If sc=0,disableinterrupt system. If sc =1,
clear overflow bit.

If (flag bitgc) = 0, execute P + 2, otherwise execute P + 1.
If sc = 1, test overflow bit.

If (flag bitsc) = 1, execute P + 2, otherwise execute P + 1.
If sec = 1, test overflow bit.

Overflow

CLO
STO
SOC
SOS

Halt

HLT

[sc [,c]]

0 — overflow bit
1 - overflow bit
If (overflow bit) = 0, execute P + 2, otherwise execute P + 1

If (overflow bit) = 0, execute P + 2, otherwise execute P + 1

Halt computer

EXTENDED ARITHMETIC UNIT (requires EAU version of Assembler or

MPY

DIV

DLD

DST

ASR
ASL
RRR
RRL
LSR
LSL

Extender Assembler)

%m[.’”} (A) x (m) = (B, ,and A)

"l
"
{

m|, 1
lit

m

m[,I]
lit
[,1]

T oo ooc T T T

oo
|
%

B, .. and Alsb)/(m) - A, remainder - B

(m)and (m + 1) - A and B

(A)and (B) - mand m + 1

Arithmetically shift (BA) right b bits, B,; extended
Arithmetically shift (BA) left b bits, B,; unaltered, 0's to A
Rotate (BA) right b bits

Rotate (BA) left b bits

Logically shift (BA) right b bits, 0's to Buysp

Logically shift (BA) left b bits, 0's to A

B-6

PSEUDO INSTRUCTIONS

ASSEMBLER CONTROL

NAM [name]
ORG m

ORR

ORB
END [m]

REP r
< statement>

IFN
< statements>
XIF

IFZ
< statements>
XIF

OBJECT PROGRAM LINKAGE

Specifies relocatable program and its name.

Gives absolute program origin or origin for a segment of
relocatable or absolute program.

Reset main program location counter at value existing
when first ORG or ORB of a string was encountered.

Defines base page portion of relocatable program.
Terminates source language program. Produces trans-
fer to program starting location, m, if given.

Repeat immediately following statement r times.

Include statements in program if control statement con-
tains N.

Include statements in program if control statement con-
tains Z.

coM name, [(size,)][,name, [(size,)], . . . ,name,[(size,)]]

ENT name [,name,, .

EXT name, [, name,,

ADDRESS AND SYMBOL DEFINITION

label DEF m[,1]
label ABS m
label EQU m

Reserves a block of common storage locations. name,
identifies segments of block, each of length size.

,name, |

Defines entry points, name;, that may be referred to by
other programs

,name,]

Defines external locations, name; , which are labels of
other programs, referenced by this program.

Generates a 15-bit address which may be referenced in-
directly through the label.

Defines a 16-bit absolute value tobe referenced by the label.
Equates the value, m, to the label.

CONSTANT DEFINITION

ASC n, <2n characters>
DEC d, [,d,, . . . ,d,]

DEXdl [,dz, vee dn]

OCT o, [,0,, - - . ,0,]

STORAGE ALLOCATION

BSS m

Generates a string of 2n ASCII characters.
Records a string of decimal constants of the form:
Integer: +n

Floating point: in.n, #n., +.n, inEze, in.nEze,
+n. Ete, +.nEte
Records a string of extended precision
decimals constants of the form

Floating point: #n, #n.n,
tn., .n,
tnE+e, in.nEze,
tn. E+e, t.nEze

Records a string of octal constants of the form: zoooooo

Reserves a storage area of length, .,

ARITHMETIC SUBROUTINE CALLS REQUESTS*

werr {7
v {"h)
FMP { ml[i,tI] !
v P
FAD {m{i’tl] !
FSB {ml[i’tl] !
DLDY {ml[i’tl] }
DSTY m[,1]

(A) x (m) = (B, ,and Ay,)

(B,,,and A,)/(m) ~ A, remainder ~ B
(AB) x (m, m + 1) ~ AB

(AB)/(m, m + 1) ~ AB

(m, m+ 1) + (AB) ~ AB

(AB)-(m, m + 1) ~ AB

(m)and (m + 1) -~ Aand B

(A)and (B) - mand m + 1

T For configurations including Extended Arithmetic Unit, these mnemonic generate
hardware instructions when the EAU version of the Assembler or Extended Assembler

is used.

*Not intended for use with DEX formatted numbers. For such numbers, JSB Machine

Instructions must be used.

ASSEMBLY LISTING CONTROL

UNL
LST
SKP
SpPC
SUP

UNS
HED

<heading>

Suppress assembly listing output.
Resume assembly listing output.
Skip listing to top of next page.
Skip n lines on listing

Suppress listing of extended code lines (e. g. , as produced
by subroutine calls).

Resume listing of extended code lines.

Print <heading> at top of each page, where <heading>
is up to 56 ASCII characters.

ALPHABETIC LIST OF INSTRUCTIONS C

ABS
ADA
ADB
ALF
ALR
ALS
AND
ARS
ASC
ASL
ASR
BLF
BLR
BLS
BRS
BSS
CCA
CCB
CCE
CLA
CLB
CLC
CLE
CLF
CLO
CMA
CMB

Define absolute value

Add to A

Add to B

Rotate A left 4

Shift A left 1, clear sign

Shift A left 1

““And’’ to A

Shift A right 1, sign carry
Generate ASCII characters
Arithmetic long shift left
Arithmetic long shift right
Rotate B left 4

Shift B left 1, clear sign

Shift B left 1

Shift B right 1, carry sign
Reserve block of storage starting at symbol
Clear and complement A (1’s)
Clear and complement B (1’s)
Clear and complement E (set E = 1)
Clear A

Clear B

Clear I/0 control bit

Clear E

Clear I/0 flag

Clear overflow bit
Complement A

Complement B

CME Complement E

COoOM Reserve block of common storage

CPA Compare to A, skip if unequal

CPB Compare to B, skip if unequal

DEC Defines decimal constants

DEF Defines address

DEX Defines extended precision constants

DIV Divide

DLD Double load

DST Double store

ELA Rotate E and A left 1

ELB Rotate E and B left 1

END Terminate program

ENT Entry point

ERA Rotate E and A right 1

ERB Rotate E and B right 1

EQU Equate symbol

EXT External reference

FAD Floating add

FDV Floating divide

FMP Floating multiply

FSB Floating subtract

HED Print heading at top of each page

HLT Halt

IFN When N appears in Control Statement, assemble
ensuing instructions

IFZ When Z appears in Control Statement, assemble
ensuing instructions

INA Increment A by 1

INB Increment B by 1

IOR Inclusive ‘““or’’ to A

1SZ Increment, then skip if zero

JMP Jump

JSB
LDA
LDB
LIA
LIB
LSL
LSR
LST
MIA
MIB
MPY
NAM
NOP
OoCT
ORB
ORG
ORR
OTA
OTB
RAL
RAR
RBL
RBR
REP
RRL
RRR
RSS
SEZ
SFC
SFS
SKP

Jump to subroutine

Load into A

Load into B

Load into A from I/O channel
Load into B from I/0O channel
Logical long shift left

Logical long shift right

Resume list output (follows a UNL)
Merge (or) into A from I/0O channel
Merge (or) into B from I/0O channel
Multiply

Names relocatable program

No operation

Defines octal constant
Establish origin in base page
Establish program origin
Reset program location counter
Output from A to I/0O channel
Output from B to I/0 channel
Rotate A left 1

Rotate A right 1

Rotate B left 1

Rotate B right 1

Repeat next statement

Rotate A and B left

Rotate A and B right

Reverse skip sense

Skip if E =0

Skip if I/0 flag = 0 (clear)

Skip if I/0 flag = 1 (set)

Skip to top of next page

SLA
SLB
SOC
SOS
SPC
SSA
SSB
STA
STB
STC
STF
STO
SUP
SWP
SZA
SZB
UNL
UNS
XIF
XOR

Skip if LSB of A =0

Skip if LSB of B = 0

Skip if overflow bit = 0 (clear)

Skip if overflow bit = 1 (set)

Space n lines

Skip if sign A=0

Skip if sign B =0

Store A

Store B

Set 1/0 control bit

Set 1/0 flag

Set overflow bit

Suppress list output of additional code lines
Switch the (A) and (B)

Skip if A=0

Skip if B=0

Suppress list output

Resume list output of additional code lines
Terminate an IFN or IFZ group of instructions

Exclusive ‘‘or’’ to A

SAMPLE PROGRAMS D

Following are two sample problems, the second of which implements several options
of the Extended Assembler.

A.

PARTS FILE UPDATE

A master file of parts is updated by a parts usage list to produce a new master parts
file. A report, consisting of the parts used and their cost, is also produced.

The master file and the parts usage file contain four word records. Each record of
the cost report is eleven words long.

The organization of the files is as follows:

Parts Master Files (PRTSM)

Cost/
ltem

Identification lQuantify

Identification field of the Parts Master Files exists in ASCII although the entire re-
cord is read and written in binary.

Parts Usage File (PRTSU)

Identification l Quantity

The parts usage file has been recorded in ASCII.

Parts Cost Report (PRTSC)

Z =
Identification / Quantity used / # for 832*“””

The Parts Cost Report is recorded in ASCII with spacing and editing for printing.

The sample program reads and writes the files, adjusts the new stock levels, and
calculates the cost. External subprograms perform the binary-to-decimal and
decimal-to-binary conversions and handle unrecoverable input/output errors, invalid
data conditions, and normal program termination. Input/output operations are per-
formed using the Basic Control System input/output subroutine, .IOC.

START

READ
PARTS
MASTER

READ

PARTS
MASTER

WRITE
NEW PARTS
MASTER

WRITE
NEW PARTS
MASTER

:

SUBTRACT
USAGE QUANTITY
FROM
MASTER QUANTITY

CALCULATE
COST OF PARTS
USED

WRITE

NEW PARTS
MASTER

SAMPLE PROGRAM
GENERAL FLOW CHART

PAGE

START
PRTSM
PRTSU
PRTSC
EOTS1
EOTS2
MTEMP
UTEMP
SWTMP
SPACS
DLRSG
A

B
«10C.
BCONV
DCONV
ABORT
HALT
DTOBI
DTOBO
BTODI
BTODO
OPEN
SPCFL
bLbD
DST
READU
CKSTU
RJCTU
EOTU
MSGU
READM
CKSTM™
RJCTM
EOTM
MSGM
HLTSW
COMPR
PROCM
PROCC
MPY
CONVM
CONU1
CONU2
CONVC
WRITC
CKSTC
RJCTC
WRITN
CKSTN
RJCTN

0001

DO ww=

AADAABADAIDAIIIIXABIAB BT IBIDAIAITIAAXANXITITOOOOXX X XX

0001
000000
200000
002004
2008010
0208023
200024
000825
2000826
2000827
2808031
P00B33
200000
200001
200001
200002
280003
2000034
280005
000000
200002
2080203
200005
2009202
200003
200006
206007
200013
000020
230235
200040
200251
280063
200070
200105
220110
0802117
800137
200140
2008157
280165
000010
200213
200224
800@235
P02 46
000261
200266
2002176
0008301
200306
208316

**% NO ERRORS*

SAMPLE ASSEMBLER SYMBOL TABLE OUTPUT

ASMBs»Rs>BsL>» T

D-3

PAGE

2001
poo2
9203
2004
@285
poase
2007
2008
P29
2210
2811
2912
0013

2014
2015
2216
2017
2018%
2319
2020
2021
2022 %
BB23*
282 4
0025%*
BO26%
2927
2028
P329%
0330 %*
BB31*
2232
BB33*
@834
8835

8036
2837

2838
#4339
0340
2d41
B0 42
20 43
BB44
8345
20 46
60 47
2048
028 49
208 50
8051
2952
BB53*

2882

28000
200080
200801
200800
20000
P00 4
02210
09823
PBB24
98025
B2B26
20027
280831
#02332
#2833
200800
00001

20002

200902
28003
28004
92885
28086
80007
220810
00811
280912
90813
20014

P00000
P26002R

200000
000000
000000
B26063R
#26301R
200028
PB20600
200000
020049
820040
220844

200000

B16B06X
2222318
B16007X
#00012B
P16007X
8000168
2688338
#700208
B16001X
210001

000154 8B26035R

200816
#0017
200820
28021
g0a22
200623
20024
200825
28826
200227

200004B
200004
B16081X
0400601
202020
026020R
2021200
002020
B26030R
A26063R

SAMPLE ASSEMBLER LIST OUTPUT

NAM UPDTE
START NOP

JMP OPEN

ORB ASSIGN STORAGE & CONSTANTS TO BP
PRTSM BSS 4 MASTER PARTS FILE - BINARY.
PRTSU BSS 4 PARTS USAGE LIST - ASCII.
PRTSC BSS 11 PARTS COST REPORT - ASCII.

EOTS1 JMP READBM
EOTS2 JMP WRITN
MTEMP BSS 1
UTEMP BSS 1
SWTMP BSS 2
SPACS ASC 2,

DLRSG ASC 1, %

A EQU @
B EQU 1
EXT +I0Ce. PERFORM 1/0 OPERATIONS USING BCS
I7/0 CONTROL ROUTINE.
EXT BCONV ENTRY POINT FOR DECIMALC(ASCII)
TO BINARY CONVERSION SUBPROGRAM.
EXT DCONV ENTRY POINT FOR BINARY TO
DECIMAL(ASCII) CONVERSION SuB-
PROGRAM.
EXT ABORT ENTRY POINT FOR SUBPROGRAM WHICH

HANDLES UNRECOVERABLE I/0 ERRORS
OR INVALID DATA.

EXT HALT END OF PROGRAM SUBROUTINE.

COM DTOBI(2),DTOB0,BTODI(2),BTODO(2)
COMMON STORAGE LOCATIONS USED TO
PASS DATA BETWEEN MAIN PROGRAM
AND CONVERSION SUBPROGRAMS.

ORR RESETS PLC AFTER USE OF ORB AT
BEGINNING OF PROGRAM.

OPEN NOP
SPCFL DLD SPACS STORES EDITING CHARACTERS IN
DST PRTSC+2 QUTPUT AREA FOR PARTS COST
DST PRTSC+6 REPORT.
LDA DLRSG
STA PRTSC+8
READU JSB +10C. READ ONE RECORD FROM UWSAGE LIST
OCT 10001 LOCATED ON STANDARD UNIT 1
JMP RJCTU (TELEPRINTER INPUT). PRTSU IS
DEF PRTSU ADDRESS OF STORAGE AREAs AREA IS
DEC 4 4 WORDS LONG.
CKSTU JSB +10C. CHECK STATUS OF UNIT 1.
OCT 40001
SSA
JMP CKSTU IF BUSY, LOOP UNTIL FREE.
RAL
SSA
JMP *+2
JMP READM IF COMPLETE» TRANSFER TO SECTION

WHICH READS MASTER FILE RECORD.

PAGE 0003

2054
8055
@856
@857
8058
20 59*
2060
80861
2062
2063
8064
8065
2066
0067
2968
2069
8070
2071
#872

2073
8274
8275
AB76
8877
2078
2379
2080
2081
2882
2883
2084
2085
2086
0087
2088
aa389
2090
2091
B092x*
2093
2094
2695
8096
2097
2098
2099
31900
2101
9102
8183

208030
20031
99032
220833
00034

ABB35
280836
208037
20040
00041
200 42
209343
DOB44
20245
08346
20047
20050
90051
20852
82853
28054
280855
BBB56
28057
06060
20061
pBB62
900663
280864
88065
28066
20067
#0870
20871
0ae72
28073
20074
80075
208876
288717
20100
82101
201082
091083
20104

#2185
00186
00107
#0118
go111
ga112
28113
20114
#0115
po116
80117

281727
881200
202020
B26048R
82600 4X

206020 RJCTU
826813R
92600 4X
@680623B EOTU
272002R
260624B
B721408R
B16801X
p20082
B26044R
BABB5IR
2000811
042516 MSGU
D420 40
847586
828125
#51501
B435085
220106
B44514
B42440
P26@63R
P16881X READM
218185
B26185R
p000608B
008004
216801X CKSTM
240805
202020
#268176R
721200
202020
#261088R

#9261 48R

201727

861200
082020
826110R
P2600 4X

206820 RJCTM
A26863R
026884X
A62137R EOTM
@72315R
P16801X
820002
826112R
@0B117R
200017
B42516 MSGM

ALFsALF
RAL

SSA

JMP EOTU
JMP ABORT

SSB

JMP READU
JMP ABORT
LbA EOTS1
STA OPEN
LDA EOTS2
STA COMPR
JSB +10C.
OCT 20082
JMP EQOTU+4
DEF MSGU
DEC 9

TEST END OF TAPE STATUS BIT
(ORIGINAL BIT 85).

IF SET, G0 TO EOT PROCEDURE.

IF NOT SET, SOME ERROR CONDITION
(UNRECOVERABLE) EXISTS.

CHECK CAUSE OF REJECT. IF UNIT
BUSY LOOP UNTIL FREE. ANY OTHER
CAUSE IS UNRECOVERABLE ERROR.
IF END OF USAGE FILEs ALTER
PROGRAM SEQUENCE TO BYPASS
SECTIONS THAT READ AND PROCESS
USAGE FILE. PRINT MESSAGE ON
TELEPRINTER INDICATING EOT.

ASC 9,END OF USAGE FILE

JMP READM
JSB .I0C.
OCT 19185
JMP RJCTM
DEF PRTSM
DEC 4

JSB +I0C.
OCT 40085
SSA

JMP CKSTM
RAL

SSA

JMP %+2
JMP COMPR
ALF s ALF
RAL

SSA

JMP EOTM
JMP ABORT

sSB

JMP READM
JMP ABORT
LDA HLTSW
STA CKSTN+7
JSB .I0C.
OCT 20002
JMP EQOTM+2
DEF MSGM
DEC 15

READ A RECORD FROM MASTER PARTS

FILE ON STANDARD UNIT @5(PUNCHED
TAPE READER). PRTSM IS ADDRESS

QF STORAGE AREA3 AREA IS 4 WORDS
LONGs RECORD IS IN BINARY FORMAT
CHECK STATUS OF UNIT 5.

IF BUSY», LOOP UNTIL FREE.

IF COMPLETE, TRANSFER TO EITHER
PROCESSING OR WRITE QUTPUT
DEPENDING ON SETTING OF COMPR.
TEST FOR END OF TAPE.

IF END, GO TO EOT PROCEDURE.

IF NOT, AN UNRECOVERABLE ERROR
EXISTS.

CHECK CONTENTS OF B FOR CAUSE OF
REJECTe. IF UNIT BUSY. LOOP UNTIL
FREEs OTHERWISE I/0 ERROR EXISTS
ALTER PROGRAM SEQUENCE TO HALT
EXECUTION AFTER LAST RECORD IS
WRITTEN PRINT MESSAGE
INDICATING END OF MASTER INPUT.

ASC 15,END OF MASTER PARTS FILE INPUT

PAGE 08204

B104
2185
P106
2107
2108
2189
2110
2111

g112
2113
B114
8115
@116
2117
2118
0119
2120
2121

2122
2123
2124
#2125
A126
2127

8128
2129
2138

2131
2132

2133
2134
8135
8136

8137
2138

2139
0140

D-6

22120
An121
@a122
#2123
22124
@d125
#9126
P2127
92130
90131

#8132
#2133
28134
#2135
208136
88137
20140
8014l

20142
90143
802144
208145
#0146
20147
201508
29151

28152
89153
#0154
82155
20156
08157
BO160
#0161

#8162
28163
28164
P2165
20166
98167
08170
201171

22172
2173
Bo174
82175
PB176
081717
00200
28201

28202
88203
20284
20205
20206
28207
28210
20211

8420 40
P47506
220115
348523
252185
851040
350101
851124
B51440
243111
P46105
220111
247120
852524
0261 40R
8260805X
200000
B16224R
B16213R
2680268
P640258
850001
@26157R
287804
240001
202020
82600 4X
B62156R
872315R
P26301R
B26063R
B16235R
#60002B
2640278
207004
240001
2700028
2160886X
20000 4B
P16007X
2000108B
P16006X
P200d68B
B16607X
8000148
86000238
P16010X
20280278
27823088
2740278
B16246R
216806X
2800278
B16007X
2000218
262212R
#72315R
B26261R

HLTSW
COMPR

PROCM

PROCGC

JMP COMPR
JMP HALT
NOP

JSB CONU1
JSB CONVM
LDA UTEMP
LDB MTEMP
CPA B

JMP PROCM
CMB», INB

ADA B

SSA

JMP ABORT
LDA *+3

STA CKSTN+7
JMP WRITN
JMP READM
JSB CONU2
LDA PRTSM+2
LDB UTEMP+1
CMB» INB

ADA B

STA PRTSM+2
PLD PRTSU

DST PRTSC

DLD PRTSU+2

DST PRTSC+4

LDA PRTSM+3
MPY UTEMP+1

STA SWTMP+1
STB SWTMP
JSB CONVC
DLD SWTMP

DST PRTSC+9
LDA *+3

STA CKSTN+7
JMP WRITC

END OF PROGRAM SUBROUTINE.

CONVERT 1D NUMBER FIELDS OF
MASTER AND USAGE FILES TO BIN.
LOAD THESE FIELDS FROM TEMPORARY
STORAGE.

COMPARE

IF EQUAL, JUMP TO PROCESSING

IF ID NUMBER OF MASTER GREATER
THAN ID NUMBER OF USAGE, DATA IN
USAGE FILE ERRONEOUS. TERMINATE
RUN.

IF ID MASTER LESS THAN ID USAGE,
ALTER SEQUENCE: READ NEXT MASTER
RECORD IMMEDIATELY AFTER WRITING
CURRENT MASTER RECORD.

CONVERT QUANTITY FIELD OF USAGE
FILE TO BINARY AND SUBTRACT FROM
QUANTITY FIELD OF MASTER AND
STORE RESULT.

STORE ID OF PARTS USED IN REPORT
FILE STORAGE AREA.
STORE QUANTITY OF PARTS USED IN

REPORT FILE STORAGE AREA.

COMPUTE COST OF PARTS USEDe.

CONVERT RESULT TO DECIMAL

STORE IN REPORT FILE AREA.

ALTER SEQUENCE: READ NEXT USAGE
RECORD AFTER WRITING CURRENT
MASTER RECORD.

PAGE

2141
21 42
2143

B144

@145
@146
2147
@148
2149
2159

#151

8152
#2153
2154
8155
2156
2157

2158

2159
2160
2161
a162
B163
P164

8165

B166
2167

2168

2169
2170
2171
p172
173
2174
@175
2176
P177
2178
2179
21808
2181
a182
2183
2184
2185
2186
P187
9188

22085

aa212
908213
20214
88215
#8216
20217
20220
80221

28222
20223
80224
20225
P0226
p82217
22239
228231

88232
28233
#8234
#3235
28236
202317
80240
80241
20242
80243
00244
28245
PB246
28247
28250
20251

28252
208253
90254
28255
#0256
28257
20260
Be261

pB262
28263
20264
20265
#0266
22267
@22179
222171

an272
26273
20274
808275
208276
20271
203920
#2301

28302
223083

826013R
200030

B16006X
2208008
B160807X
0020006C
2160802X
062002C
27008258
126213R
202000

0160806X
02000 4B
216087X
2080080aC
216002X
2620062C
078026B
126224R
200000

B16806X
200806B
21608087X
20020690C
B16002X
2620982C
2700278
126235R
200000

2160806X
2008278
P16007X
280083C
016003X
21608086X
2080805C
P1608087X
9200278
126246R
P160081X
028102

B26276R
2000168
9060813

B16001X
849002

202020

B26266R
201200

2020290

22600 4X
0263081R
206020

P26261R
B26004X
816001X
028104

P26316R

CONVM

COoNU1

COoNUu2

CONVC

WRITC

CKSTC

RJCTC

WRITN

JMP
NOP
DLD

DST

JSB
LDA
STA
JMP
NOP
DLD

DST

JsSB
LDA
STA
JMP
NOP
bLD

DST

JsB
LDA
STA
JMP
NOP
DLD

DST

JsB
DLD

DST

JMP
JSB
0CT
JMP
DEF
DEC
JSB
0CT
SSA
JMP
RAL
SsAa
JMP
JMP
SSB
JMP
JMP
JsB
oCT
JMP

READU
PRTSM
DTOBI

BCONV
DTOBO
MTEMP
CONVM, I

PRTSU
DTOBI

BCONV
DTOBO
UTEMP
CONU1»1

PRTSU+2
DTOBI

BCONV
DTOBO
UTEMP+1
CONU2, 1

SWTMP
BTODI

DCONV
BTODO

SWTMP

CONVC>,1I
«10C.
20182
RJCTC
PRTSC
11
«I0C.
40202

CKSTC

ABORT
WRITN

WRITC
ABORT
«I10C.
20104
RJCTN

STORE 1D FIELDS IN COMMON
LOCATIONS TO BE PROCESSEDP BY

CONVERSION SUBPROGRAM. ON
COMPLETIONs STORE RESULTS IN
LOCATIONS USED BY PROCESSING
SECTIONS. CONVM APPLIES TO ID OF
MASTER PARTS FILE3 CONU1l», TO ID
OF USAGEs CONU2, TO QUANTITY OF

USAGE3s AND CONVC, TO COST OF

PARTSC(THIS IS A BINARY TO
DECIMAL CONVERSION).

WRITE ONE RECORD OF PARTS COST
REPORT ON STANDARD UNIT 2
(TELEPRINTER OUTPUT). PRTSC IS
ADDRESS IN STORAGE AREA3 AREA IS
11 WORDS LONGe. RECORD IS IN ASCI
CHECK STATUS OF UNIT 2.

IF BUSYs LOOP UNTIL FREE.

TERMINATE IF ANY I/0 ERROR.

IF COMPLETE, TRANSFER TO WRITN.
IF BUSY, LOOP UNTIL FREE.
TERMINATE ON ANY OTHER REJECT
CONDITION.

WRITE ONE RECORD (BINARY) OF
NEW MASTER PARTS LIST ON UNIT 4
(TAPE PUNCH). PRTSM (INPUT AREA)

D-17

PAGE 8806

2189
2192
8191

2192
2193
8194
8195
2196
2197
p198
2199
0200
2201

8202
*k

28384
88305
28306
203087
20310
96311
eg3i12
28313
82314
@8315
98316
208317
208320

2990008
D200064
B16001X
B40004
802020
B26306R
201200
002020
22600 4X
826013R
006020
B26301R
22600 4X

NO ERRORSx*

CKSTN

RJCTN

DEF
DEC
JSB
ocT
SSA
JMP
RAL
SSA
JMP
JMP
SSB
JMP
JMP
END

PRTSM

.Ioc.
4000 4

CKSTN
ABORT
READU
WRITN

ABORT
START

IS ALSO USED AS QUTPUT AREA.

CHECK STATUS OF UNIT 4.

IF BUSY, LOOP UNTIL FREE.

IF BUSY, LOOP UNTIL FREEs OTHER-
WISE TERMINATE.

B'

Program "Line'" will either calculate the distance between two points or find the
slope of the line connecting the points; then the point equidistant from each point (the
mid-point) is calculated.

Data is input using the formatter library routine four n-digit real numbers at a
time. The first quantity is the X coordinate of the first point; the second quantity is
the Y coordinate of the first point; the third and fourth quantities are the X and Y co-
ordinates of the second point.

The result is output to the teleprinter by the formatter library routine; each quan-
tity cannot be more than an eight digit real number.

‘ START >
\

NPUT MIDPOINT=
TWO POINT X% h%
(TELEPRINTER) 2, 2

IFN r————L'——-—*IFZ

|

Y-y, OUTPUT
S=o 2 p=fx xR -y | A THE RESULT
XXz (TELEPRINTER)
| T
L. I
7
OUTPUT NO
THE RESULT
(TELEPRINTER)
- YES

HALT

GENERAL FLOW CHART

Below is the source program as it is typed up on the teleprinter. After it are the
assembler listings. The first listing results from including the Z option in the control
statement. In the second listing the N option has been included in the control statement.

NOTE: When the complete data tape has been read and the tape reader en-
counters 10 blank feed frames, an EQT message is typed on the teleprinter
and the computer halts. Thus no halt instruction is needed in the program.)

HED LINE FORMULI: DISTANCE, SLOPEs MID-POINT
PROGRAM LINE WILL EITHER CALCULATE THE DISTANCE BETWEEN
TWO POINTS OR FIND THE SLOPE OF THE LINE CONNECTING
THE POINTSs3 THEN THE POINT EQUIDISTANT FROM EACH
POINT (THE MID-POINT) IS CALCULATED.

DATA IS INPUT USING THE FORMATTER LIBRARY ROUTINE
FOUR N-DIGIT REAL NUMBERS AT A TIME. THE FIRST
QUANTITY IS THE X COORDINATE OF THE FIRST POINT; THE
SECOND QUANTITY IS THE Y COORDINATE OF THE FIRST POINT3;
THE THIRD AND FOURTH QUANTITIES ARE THE X AND Y COORDINATES
OF THE SECOND POINT.

THE RESULT IS OUTPUT TO THE TELEPRINTER BY THE
FORMATTER LIBRARY ROUTINE:; EACH QUANTITY CANNOT BE MORE
THAN AN EIGHT DIGIT REAL NUMBER.

' NAM LINE
START NOP
JMP INPUT
EXT «I0C+.>FLOAT>IFIXsSQRT
EXT 'DIO.).IOI.’QDTA.’.RARO
EXT «IOR.,.IAR.
-DATA DEF DATA
«PRIN DEF PRINT
DATA BSS 4
FMT ASC 3,(F8.3)
FMT2 ASC 85(F8.35"5"»F8.3/)
FMT3 ASC 3,(412)
SKP
* INPUT THE FIRST TWO POINTSs FOUR DATA WORDS
INPUT NOP
LDA =BS
CLB»INB
JSB .DIO.
DEF FMT3
DEF *+4
LDA =B4
LDB .DATA
JSB .IAR.
SPC 3
* THE DISTANCE BETWEEN THE TWO POINTS:
IFZ
LDA DATA+2
CMA, INA
ADA DATA
SPC 1
JMP *+5
PRINT REP 4
NOP
SPC 1
STA PRINT
SuUpP

EER R R R R IR R R R

D-10

MPY PRINT
STA PRINT
SPC 1

LDA DATA+3
CMA, INA
ADA DATA+1
STA PRINT+1
MPY PRINT+1
ADA PRINT
SPC 1

JSB FLOAT
JSB S@RT

DST PRINT
XIF

SPC 3

* FIND THE SLOPE OF THE LINE
IFN
LDA DATA+2
CMA, INA
ADA DATA
JMP %x+5

PRINT REP 4
NOP
STA PRINT
SPC 1
LDA DATA+3
CMA, INA
ADA DATA+1
CLB
DIV PRINT
DST PRINT
XIF
SPC 3

* OUTPUT THE RESULT
LDA =B2
CLB
JSB .DIO.
BEF FMT
DEF *+4
DLD PRINT
JSB .IOR.
JSB .DTA.
SPC 3

* FIND THE MID-POINT OF THE LINE SEGMENT:
LDA DATA
ADA DATA+2
CLB
JSB FLOAT
FMP =F.5
DST PRINT
SPC 1
LDA DATA+1
ADA DATA+3
CLB
JSB FLOAT
FMP =F.5
DST PRINT+2
SPC 1
UNL

D-11

D-12

LDA
CLB
JSB
DEF
DEF
L.DA
LDB
JSB
JSB
LST
SPC
UNS

- JMP

END

«DIO.
FMT2
*+5
=B2
«PRIN
«RAR.
«DTA.

w

INPUT
START

PAGE

2001

START
«10C.
FLOAT
IFIX
SQRT
«DIO.
QIOI.
«DTA.
*RAR.
«I0OR.
«IAR.
«DATA
+PRIN
DATA
FMT

FMT2
FMT3
INPUT
PRINT
«MPY
«DST
«DLD
« FMP

2001

XXXXATBDDBDVDIODOOIAXXKXXXXXXXXXT

0002000
000031
000002
002003
PRABD 4
0008005
000006
200007
200010
2000211
200012
PoRB0n2
2000063
200004
00010
200013
Peve23
PPB0B26
200043
090013
POBD14
00215
200016

** NO ERRORSx*

ASMB,R,L>T>2Z

D-13

PAGE

PRB2%*
PPG 3%
200 4*
280 5%
200 6%
200 7*
2008*
2009 *
P210*
201 1%
PO12%
B313%*
P01 4%
2915
2016
2017
2018
PP19
2920
P21
pp22
2023
2824

2025

0026

D-14

p@P2 #B1 LINE FORMULI: DISTANCE, SLOPE, MID-POINT

PROGRAM LINE WILL EITHER CALCULATE THE DISTANCE BETWEEN
TWO POINTS OR FIND THE SLOPE OF THE LINE CONNECTING

THE POINTSs THEN THE POINT EQUIDISTANT FROM EACH

POINT (THE MID-POINT) IS CALCULATED.

DATA IS INPUT USING THE FORMATTER LIBRARY ROUTINE
FOUR N-DIGIT REAL NUMBERS AT A TIME. THE FIRST
QUANTITY IS THE X COORDINATE OF THE FIRST POINT3THE
SECOND QUANTITY IS THE Y COORDINATE OF THE FIRST POINT;
THE THIRD AND FOURTH QUANTITIES ARE THE X AND Y COORDINATES
OF THE SECOND POINT.

THE RESULT IS OUTPUT TO THE TELEPRINTER BY THE
FORMATTER LIBRARY ROUTINEs EACH QUANTITY CANNOT BE MORE
THAN AN EIGHT DIGIT REAL NUMBER.

20000 NAM LINE
00000 000088 START NOP
PPPB1 B26026R JMP INPUT

EXT «I0C.,FLOAT»IFIX,SAQRT
EXT oDIOe¢s+I0Il«5«DTA+s.«RAR.
EXT +IOR.,.IAR.

00002 0P0PP4R .DATA DEF DATA

PO0P3 PPBP43R .PRIN DEF PRINT

PB004 POO0OOD DATA BSS 4

90010 024106 FMT ASC 3, (F8.3)

90011 B34856

PPB12 831451

90013 924106 FMT2 ASC 85(F8.3,'"5"5F8.3/)

PO014 P34056

PPB15 831454

00016 P21054

00017 921054

00020 P43070

20021 P27063

20022 027451

20@23 924064 FMT3 ASC 3, (412D

0024 D44462

00025 024440

PAGE

Bo28*
2829
2230
AB31
2032
2033
PB34
#2035
#9836
2037

2039 *
0040
0041
2042
2943

02 45
2046
2047
2047
0047
0247

23 49
PB5H6
2851
pps2

2054
9055
PB56
2857
P358
2259

2861
nae62
2863
P64

PB66*
2067
2068
2969
2070
2871
2072
2073
P74
P75
2076
Pa77
2078

9003 #@1 LINE FORMULI: DISTANCEs, SLOPE, MID-POINT

INPUT THE FIRST TWO POINTSs FOUR DATA WORDS

20026
aea27
90330
P0031
28032
200233
00034
92035
00036

BO00P® INPUT NOP
P62131R LDA =BS
006404 CLBs INB
P16005X JSB .DIOC.
PPOP23R DEF FMT3
2000 37TR DEF *+4
062132R LDA =B4
P66002R LDB .DATA
p16@12X JSB .IAR.

THE DISTANCE BETWEEN THE TWO POINTS:

280837
P00 40
22041

0042

20043
PBR44
BBB45
00046

28047

PP0B50
20852

20853
00854
PPBSS
A00B56
20057
20061

29062

20063
00064

FIND

IFZ
062006R LDA DATA+2
P03004 CMA, INA
D42004R ADA DATA
226047R JMP *+5

PRINT REP 4
00000 NOP
00000 NOP
0000009 NOP
200000 NOP
P72043R STA PRINT

Sup
#16013X MPY PRINT
@72043R STA PRINT
P62007TR LDA DATA+3
0030084 CMA, INA
P42005R ADA DATA+1
P72044R STA PRINT+1
016013X MPY PRINT+1
042843R ADA PRINT
216002X JSB FLOAT
B16004X JSB SQRT
0160814X DST PRINT

XIF

THE SLOPE OF THE LINE
IFN
LDA DATA+2
CMA, INA
ADA DATA
JMP *+5

PRINT REP 4

NOP
STA PRINT
SPC 1
LLDA DATA+3
CMA, INA
ADA DATA+1

D-15

PAGE 02004 #01

o779

D-16

2080
2881
pB82
PP84% OUTPUT THE RESULT
P985 POB66 BP62133R
0086 0GRO6T BD6400
P87 OPDTO B16005X
2988 PO071 OPOO10R
2089 Q2OT72 OPBPOT6R
2090 BOA73 B16015X
2991 BORTS B16@211X
2092 00076 B16007X
P094*% FIND THE MID-POINT
BP95S 0OROT7 B62004R
PP96 Q0100 P42006R
2997 Q0101 PR6400
2098 00182 B16002X
P99 20103 B16016X
2100 (@010S5S B16014X
2122 @22107 B62005R
2103 00110 P42007R
2104 00111 006400
2105 00112 016002X
2106 020113 016016X
‘P187 ©O115 P16@14X
2119
2121
2122 00130 B26026R
22131 990005
PP132 000004
20133 200002
20134 040000
09135 200000
2123
% NO ERRORS

LINE FORMULI:

CLB
DIV
DST
XIF

LDA
CcLB
JsB
DEF
DEF
DLD
JSB
JSB

DISTANCE,

PRINT
PRINT

B2

«DIO.
FMT
%+ 4
PRINT
‘IORO
«DTA.

OF THE LINE SEGMENT:

LbA
ADA
CLB
JSB
FMP
DST

LDA
ADA
CLB
JSB
FmMP
DST

LST

UNS
JMP

END

DATA
DATA+2

FLOAT
=F.5
PRINT

DATA+1
DATA+3

FLOAT
=F+5
PRINT+2

INPUT

START

SLOPE,

MID-POINT

PAGE

20921
START
OIOC.
FLOAT
IFIX
SART
«DIO.
.IOI'
-DTA.
+RAR.
«IOR.
«IAR.
-DATA
+PRIN
DATA
FMT
FMT2
FMT3
INPUT
PRINT
.DIV
«DST
«DLD
«FMP

2001

XXXXODVDAOVOHTODOIOXXXXXXXXXXT

02000
POoB0o1
PoooB2
00003
200308 4
V00005
PO00A6
000007
P00010
200011
po0G12
oP02002
000003
020004
P02010
0P0B13
2080023
poBR26
200043
000013
0002014
202815
0000216

** NO ERRORS*

ASMBsR>L»TsN

D-17

PAGE

P0B2*
200 3%
000 4%
OB S*
020 6%*
200 7*
200 8%*
B0 *
0B 10%
P011%*
2012%
2013x%
001 4%
2015
0016
217
72018
2019
2020
P021
P22
2823
2024

ge25s

2026

D-18

@002 #01 LINE FORMULI: DISTANCE, SLOPE, MID-POINT

PROGRAM LINE WILL EITHER CALCULATE THE DISTANCE BETWEEN
TWO POINTS OR FIND THE SLOPE OF THE LINE CONNECTING

THE POINTS3 THEN THE POINT EQUIDISTANT FROM EACH

POINT (THE MID-POINT) IS CALCULATED.

DATA IS INPUT USING THE FORMATTER LIBRARY ROUTINE
FOUR N-DIGIT REAL NUMBERS AT A TIME. THE FIRST
QUANTITY IS THE X COORDINATE OF THE FIRST POINT3THE
SECOND QUANTITY IS THE Y COORDINATE OF THE FIRST POINTs
THE THIRD AND FOURTH QUANTITIES ARE THE X AND Y COORDINATES
OF THE SECOND POINT.

THE RESULT IS OUTPUT TO THE TELEPRINTER BY THE
FORMATTER LIBRARY ROUTINE3 EACH QUANTITY CANNOT BE MORE
THAN AN EIGHT DIGIT REAL NUMBER.

00000 NAM LINE

00000 0PPPAB START NOP

P0N01 B26026R JMP INPUT
EXT «I0C.>FLOAT,IFIX,»SQRT
EXT .DIO.J.IOI.,.DTAI’.RAR.
EXT OIORQJ nIARo

00602 POPBD4R DATA DEF DATA

P0003 B0PB43R «PRIN DEF PRINT

00004 000008 DATA BSS 4

0010 24186 FMT ASC 3,(Fg.3)

28011 B34056

PPA12 P31451

PEP13 024186 FMT2 ASC 8,(F8.35'",">F8.3/)

POB14 B34056

POB1S5 B31454

PPB16 821054

0617 021054

POG20 043070

PRA21 V27063

0022 P27451

00023 @24064 FMT3 ASC 3, (412)

00024 P44462

20025 D24440

PAGE @093 #¢1 LINE FORMULI: DISTANCE, SLOPE, MID-POINT

2028%*
2829
2030
2031
2032
2033
2034
0035
2036
8037

PB39*
30 40
2B 41
2@ 42
8243
BB44
2045
0046
2047
2048
2049
2050
2051
2052
2853
0054
2855
2956
2@57
2058
2359
2060
@061
0262
0863
2064

08 66%*
2067
PBe6s8
2069
2870
8071
P@72
2873
2273
2873
PB73
074

@76
o717
va78

INPUT THE FIRST TWO POINTS3 FOUR DATA WORDS

pRB26
pov27
PA2 39
00231
2032
#8033
P0034
08035
02036

PPPARM® INPUT NOP

#62123R LDA =BS5S
006404 CLB, INB
016P05X JSB .DIO.
P00B23R DEF FMT3
209037TR DEF *+4
P62124R LBbA =B4
B66002R LDB .DATA
P16012X JSB .IAR.

THE DISTANCE BETWEEN THE TWO POINTS:

FIND

20837
00040
20041
POB 42

20043
OB 44
00045
00046
0047

00050
20051
000252

IFZ

LDA DATA+2

CMA, INA

ADA DATA

SPC 1

JMP *+5
PRINT REP 4

NOP

SPC 1

STA PRINT

SupP

MPY PRINT

STA PRINT

SPC 1

LDA DATA+3

CMA, INA

ADA DATA+1

STA PRINT+1

MPY PRINT+1

ADA PRINT

SPC 1

JSB FLOAT

JSB SGRT

DST PRINT

XIF

THE SLOPE OF THE LINE

IFN
P62B06R LDA DATA+2
093004 CMA, INA
D 4200 4R ADA DATA
P26047R JMP *+5

PRINT REP 4

000000 -~ NOP
200000 NOP
200000 NOP
000000 NOP
072043R STA PRINT
P62007R LDA DATA+3
003004 CMA, INA
P42005R ADA DATA+1

D-19

PAGE 0004 #01

PP79 0OBOS3 PB6400
o080 PBOBS4 B16013X
POB55 BPBAA3R
2081 0RBS6 V16014X
PPB57 P0PP43R
2082
2984% OUTPUT THE RESULT
PB85 0OO60 B62125R
0086 00B61 OB6400
PA87 ©PBB62 B160805X
P088 00P63 PBBA1IOR
0089 @BB64 BOBDTOR
PP9B BBO65S B16015X
00066 POAA43R
2091 BPPR6T7 P16011X
9092 00870 B16007X
9894*% FIND THE MID-POINT
0895 BPOT1 B62084R
2096 OPBBT2 B42006R
PB97T ©BRT3 P064920
2098 0P0B0T74 916002X
2899 0AATS B16016X
00076 BOO126R
0100 08977 B160614X
#2100 PBBDBA3R
2182 00101 B62865SR
0103 00102 B420067R
0104 00103 006400
0185 02104 016002X
2186 02105 B16016X
2186 DOD126R
P107 00107 @16014X
02110 BOPB45R
2119
g121
122 00122 B26026R
#0123 200005
PO124 000004
D125 00POR2
00126 0400080
02127 200000
2123
x NO ERRORSx

D-20

LINE FORMULTI:

CLB
DIV

DST

XIF

LDA
CLB
JSB
DEF
DEF
DLD

JSB
JSB

DISTANCE,

PRINT

PRINT

B2

.DIO.
FMT
*+4
PRINT

«IOR.
-DTA.

OF THE LINE SEGMENT:

LDA
ADA
CLB
JSB
FMP

DST
LDA
ADA
CLB
JSB
FMP

DST

LST

UNS
JMP

END

DATA
DATA+2

FLOAT
=F«5

PRINT
DATA+1
DATA+3

FLOAT
=F. 5

PRINT+2

INPUT

START

SLOPE>»

MID-POINT

SYSTEM INPUT/OUTPUT SUBROUTINES E

MEMORY
ALLOCATION

N BASE PAGE \\
AVAILABLE
001 07\v~\ MEMORY
00100
00000—— s> S —RESERVED LOCATIONS

The System Input/Output (SIO) subroutines may be used to
perform basic input/output operations for programs in
absolute form., *

These drivers are stored in high memory immediately
preceding the Basic Binary Loader. The Teleprinter driver
must be loaded first; it is stored in the highest portion of
this area. The drivers for the Punched Tape Reader (or
Marked Card Reader), the Tape Punch, and the Magnetic
Tape Unit may then be loaded. The sequence of loading
must fall within this order, depending on your equipment
configuration: Line Printer Driver, Punched Tape Reader
Driver (or Marked Card Reader), Tape Punch Driver, Mag-
netic Tape Driver, and if needed, the MTS Boot.

The drivers are accessed through 15-bit absolute addresses
which are stored in the System Linkage area starting at
location 101g. The allocation of memory is as follows:

07777 OR 17777 BASIC BINARY LOADER
07700 OR 17777

~-<—TELEPRINTER DRIVER
N~ PUNCHED TAPE

\\READER DRIVER
/ \,\TAPE PUNCH DRIVER
MAGNETIC TAPE DRIVER
PR

OGRAM
INTER-P,
AVAILABLE £ ASS LOADER

MEMORY MTS)

7

\

« S—SYSTEM LINKAGE

t The SIO subroutines are designed for use with FORTRAN,
Assembler, Symbolic Editor, etc.; however, they may be
used with any absolute object program.

E-1

OPERATION
AND CALLING
SEQUENCE .
PAPER TAPE
DEVICES

Register
Contents

E-2

All data transmission is accomplished without interrupt con-
trol, and therefore, operations are not buffered by the drivers.
Control is not returned to the calling program until an opera-
tion is completed. Data is transferred to and from buffer
storage areas specified in the user program.

The general form of the paper tape input/output calling sequence
1S DA <buffer length) (words or characters)
LDB (buffer address)

JSB 10fB,I (f is Input/Output function)
(normal return)

When the JSB is performed, the A-Register must contain the
length of the buffer storage area and the B-Register, the ad-
dress of the buffer. Control returns to the location following
the JSB. After an input request is completed, the A-Register
contains apositive integer indicating the number of characters
or words transmitted, or zeros, if an end-of-tape condition
occurred.

The digit supplied for f in the JSB instruction determines the
paper tape input/output function to be performed. The value of
the operand address is the location in the System Linkage that
contains the absolute address of the driver entry point. The
following are available:

101 Input

102 List Output

103 Punch Output

104 Keyboard Input—ASCII data isread from Teleprinter
and printed as it is received.

If the Teleprinter driver alone is loaded, these locations point
to entry points of this driver. If Punched Tape Reader and
Tape Punch drivers are in memory, location 101 points to the
Punched Tape Reader driver and location 103, to the Tape
Punch driver. I the latter are to be used, they must be loaded
after the Teleprinter driver.

OPERATION
AND CALLING
SEQUENCE:
MAGNETIC
TAPE DRIVER

Register
Contents

As with the Paper Tape SIO drivers, all data transmission
is accomplished without interrupt control. Control is not re-
turned to the calling program until an operation is completed.
(Rewind and rewind standby are the only exceptions to this. In
these cases return is made as soon as the command is
accepted.)

The general form of the calling sequence is:

LDA <buffer length)> or <file count)
LDB <{buffer address> or (record count>
JSB 107B,I

OCT <(command code)

{EQF/EOT /SOT return >

{error return)

<{normal return)

NOTE: Location 1078 must contain the address of the
magnetic tape driver.

Before initiating read or write operations, the A-Register must
contain the buffer length. This will be a positive integer if
length is defined in characters and a negative integer if length
is defined in words. The B-Register must contain the buffer
address.

Before initiating tape positioning operations, the A-Register
must contain the number of files that are to be spaced. A
positive integer indicates forward spacing; a negative integer
indicates backward spacing. The B-Register contains the
number of records that are to be spaced. A positive integer
indicates forward spacing; a negative integer indicates back-
ward spacing. The positioning may be defined in terms of any
combination of forward or backward spacing of files and records
(e.g., space forward two files then backspace three records).
If files only or records only are to be spaced, the contents of
the other register should be zeros.

The registers are not used when entering the subroutine to
perform one of the following operations:

E-3

Linkage
Address

MAGNETIC TAPE
OPERATIONS

Read

Write end-of-file Rewind/Standby
Write file gap Status
Rewind

107B is the System Linkage word that contains the absolute
address of the entry point for the Magnetic Tape driver.

On return from a read operation, the A-Register contains a
positive value indicating the number of words or characters
transmitted.

On return from all operations except Rewind and Rewind/
Standby the B-Register contains status of the operation (See
Status).

The magnetic tape driver will performthe following operations.
The pertinent operation is specified by the command code
which appears after the OCT in the calling sequence.

Operation Command Code

Read

Write

Write End-of-File

Rewind (Auto mode)

Position

Rewind/Standby (Local mode)
Gap

Status

SO WND O

One tape record is read into the buffer. The number of
characters or words read is stored in the A-Register. The
value will be equal to the buffer length except when the data
on tape is less than the length of the buffer. One tape record
is read to transfer the number of characters specified into
the buffer. The number of characters in that record (not
the number transferred) will be stored in the A-Register.
If the tape record exceeds the buffer length, the data will
be read into the buffer until the buffer is filled, the remainder
of the record will be skipped. If the length of an input
buffer is an odd number of characters, a read operation will
result in the overlaying of the character following the last
character of the buffer; the subroutine actually transmits
full words only.

Three attempts are made to read the record before return-
ing control to the parity error address.

If an EOT condition exists at the time of entry, the command
will be ignored and control will be returned to the EOT/EOF
address.

If the buffer length specified is 0 control will return to the
normal address without any tape movement.

The input buffer storage area can be as large or as small as
needed. The number of characters in the tape record will be
stored in the A-Register.

The contents of the buffer is written on tape preceded by the
record length. Since a minimum of 7 tape characters (12 on
3030) may be written, short records are padded by the sub-
routine.

If the end-of-tape is detected during the write operation, the
normal return is used. The next write operation, however,
results in a return of control of the EOF/EOT location; no
data is written. If an EOT condition exists at the time of en-
try, the command will be ignored and control will be returned
to the EOT/EOF address.

If the write request length specified is 0 control will return
to the normal address without any tape movement.

If an error is detected during the write operation, the tape
will be back-spaced over the bad record, 3 inches of tape
will be erased, and another attempt will be made. These
attempts will continue until either a good record is made
or until the EOT is detected at which time the control will
return to the error address.

E-5

E-6

Write
End-of-File

Rewind

Position

A standard EOF character (17g for 2020, 23g for 3030) is
written on tape. Control return to the normal location with
the EOF status on the B-Register. No gap is written.

If the end of tape was reached on a previous write command,
control returns to the EOF/EOT location; the character is
written.

This command initiates a rewind operation and then immedi-
ately returns control to the normal location.

The calling sequence for a Rewind operation consists of:

JSB 107B,I
OoCT 3
{(normal return)

The user need not test status on the rewind operation before
issuing the next call.

This is the general command to move the tape. Both file
and record operations may be defined in the same operation.
Either may be specified for forward or backward spacing.
At the completion of the operation the tape will be positioned
ready for reading or writing.

An attempt to space beyond the End-of-Tape or Start-of-Tape
will terminate the positioning operation and return control
to the EOF/EOT/SOT location,

Rewind/
Standby

Status

This causes the tape to be positioned atload point and switches
the device to local status. Control returns to the normal loca-
tion immediately after the operation is initiated.

The calling sequence for a Rewind / Standby operation
consists of:

JSB 107B,I
OCT 5
(normal return)

An attempt to issue another call on this device results in a
halt (102044). The device must be switched to AUTO before
the program can continue.

This command causes a 3-inch gap to be written on the tape.

If the End-of-Tape was reached on a previous write command,
control returns to the EQF/EOT location; the gap is not
written.

This command returns certain status bits in the B-Register.
The driver performs a clear command whenever it is entered
and as a result the only bits that are valid indicators are:

E-7

Start-of-Tape
End-of-Tape
Write Not Enabled

All other commands (except Rewind and Rewind/Standby)
provide valid status replies on return to the program.

The status reply consists only of bits 8-0 and has the
following significance:

Bits 8-0
1 XXXXXXXX

X1 XXXXXXX

XX1XXXXXX

XXX1XXXXX

XXXX1XXXX

XXXXX1XXX

XXxxxx1xXx

XXXXXXX1X

xxxxxxxx1

Condition
Local - The device is in local status

EOF- An End-of-File character (17g for?7
track, 238 for 9) has been detected while
reading, forward spacing, or backspacing.

SOT - The Start-of-Tape marker is under the
photo sense head.

EOT - The End-of-Tape reflective marker is
sensed while the tape is moving forward. The
bit remains set until a rewind command is
given.

Timing - A character was lost.

Reject - a) Tape motion is required and the
unit is busy. b) Backward tape motion is
required and the tape is at load point. c) A
write command is given and the tape reel
does not have a write enable ring.

Write not enabled - Tape reel does not have
write enable ring or tape unit is rewinding.

Parity error - A vertical or longitudinal
parity error occurred during reading or writ-
ing. (Parity is not checked during forward or
backward spacing operations.)

Busy - The tape is in motion or the device
is in local status.

Error Messages

Tape Unit in
Local Status:

Write
Not Enabled:

Following is a table summarizing the tape commands:

. Command Call Return
Operation Code A B A B
Read [} Buffer Buffer Buffer Status

Length | Address or
Record
Length
Write 1 Buffer Buffer Buffer Status
Length Address |Length
Write 2 - - - Status
EOF
Rewind 3 - - - -
(Auto mode
Position 4 Number |Number - Status
of Files, |of
Direc- Records,
tion Direction
Rewind/ 5 - - - -
Standby
(Local
mode)
Gap 6 - - - Status
Status 7 - - Status

The subroutine halts with 102044 in the T-Register.
tape unit to AUTO mode and press RUN to continue.

The subroutine halts with 102011 in the T-Register.

error is irrecoverable.

Switch

The

E-9

Additional
Linkage
Addresses

BUFFER
STORAGE
AREA

Record Formats

E-10

Other locations in the System Linkage area contain the fol-
lowing:

100g Used by the standard software system to store a JMP
to the transfer address.

105g First word address of available memory.

106g Last word address of available memory.

The latter two locations may be accessed by an absolute pro-
gram. The user may store the first word of available memo-
ry in 105 by performing the following:

ORG 105B
ABS < last location of user program +1 >

The last word of available memory is established by the driv-
ers; it is the location immediately preceding the first location
used by the last driver loaded.

The Buffer Address is the location of the first word of data to
be written on an output device or the first word of a block re-
served for storage of data read from an input device. The
length of the buffer area is specified inthe A-Register in terms
of ASCII input or output characters or binary output words.
For binary input, the length of the buffer is the length of the
record which is specified in the first character of the record.
ASCII and binary input record lengths are given as positive in-
tegers. The length of a binary output record is specified as
the two's complement of the number of words in the record.

Inaddition to describing the buffer areain the calling sequence,
(or first word of binary input record), the area must also be
specifically defined in the program, for example with a BSS
instruction.

ASCII Records (Paper Tape)

An ASCII record is a group of characters terminated by an
end-of-record mark which consists of a carriage return,
and a line feed,

For an input operation, the length of the record transmitted to
the buffer is the number of characters designated in the A-
Register, or less if an end-of-record mark is encountered be-
fore the character count is exhausted. The codes for and

are not transmitted to the buffer. An end-of-record mark
preceding the first data character is ignored.

For an output operation, the length of the record is determined
by the number of characters designated in the request. An
end-of-record mark is supplied at the end of each output oper-
ation by the driver.

If a (RUB OUT) code followed by a @ is encountered on

input from the Teleprinter or Punched Tape Reader, the cur-
rent record is ignored (deleted) and the next record trans-
mitted. T

If less than ten feed frames (all zeros) are encountered before
the first data character from the Punched Tape Reader, they

are ignored. Ten feed frames are interpreted as an end-of-
tape condition.

Binary Records (Paper Tape)

A binary record is transmitted exactly as it appears in
memory or on 8-level paper tape. Each computer word is
translated into two tape ‘‘characters’’ (and vice versa) as
follows:

15 87 0

(\/
18t 7aPe cHAR. |15 [14[13]12]11]10] 9 8>
2®marecHar [7]el 51413]2 0

-

For an output operation, the record length is the number of
words designated by the value in the A-Register (the value is
the two’s complement of the number of words). For input
operations, the first word of the record contains a positive
integer in bits 15-8 specifying the length (in words) of the
record including the first word.

T (RUB OUT which appears on the Teleprinter keyboard is
synonymous with the ASCII symbol

E-11

2020 7-LEVEL
TAPE

15 6
computer word [1 O 1 1 OO 1 I | O

3030 9-LEVEL
TAPE

E-12

On input operations if less than ten feed frames precede the
first data character, they are ignored; ten feedframes are in-
terpreted as an end-of-tape condition. On output, the driver
writes four feed frames to serve as a physical record sepa-
rator.

Binary Records (Magnetic Tape)

The Magnetic Tape subroutine reads and writes binary (odd
parity) records only. A record count is supplied by the
driver as the first word of the record. This allows automatic
padding of short records to the minimum record length with
automatic removal of the padded portion of the record on
read.

Each Computer word is translated intothree tape ‘“characters’’
(and vice versa) as follows:

" 10*

#Bits 10 and S are recorded

3rd part of v e ———/ twice, in two tape characters
2nd part of ! P ’
word na oy tst part ot as shown.

TAPE TRACKS

i1st tape character
2nd o "
3rd " "

P =0dd parity bit

Each Computer Word is translated into Two tape '""characters"
by repositioning the bits in the following scheme:

COMPUTER WORD BITS 15 87 0
Istwordcontents {1 000110 05_1 0111101

2nd word contents 01101001%11010010

TAPE TRACK 7653918211111111

ASSIGNMENTS 76539182 g TRACK 4 1S THE
ODD PARITY BIT

TAPE TRACKS 9

1st tape character
2nd tape character
3rd tape character
4th tape character

- - - O]s

1
1
1
0
0

OPERATION AND CALLING SEQUENCE:
MARK SENSE CARD READER

The SIO Mark Sense Card Reader Driver overlays the
Punched Tape Reader Driver exactly, therefore, only one
or the other of these two Drivers may be used in any one
SIO System configuration. Further, the Driver has no
binary read capability; if this ability is needed, the BCS
Mark Sense Card Reader Driver will have to be used.

All data transmission is accomplished without interrupt
control. Execution control is not returned to the calling
program until either a complete card has been read.

The general form of the calling sequence is:

LDA <character count > (positive)
LDB <buffer address>

JSB <101B,I>

< normal return >

Register Contents

Before the JSB is executed, the A-Register must contain
the character count (the buffer length) and the B-Register
must contain the buffer address. Control returns to the
location following the JSB; then the A-Register will contain
the number of characters transmitted not including trailing
blanks, or, if a transmission error was detected, it will
contain all zeroes.

E-13

CALLING

SEQUENCES

FORMATTER F

The Formatter is a library subroutine used by FORTRAN
and ALGOL to input or output data. An assembler program
may access the Formatter routine with a 5 to 9 line calling
sequence depending on the form of the call.

I. Format Definition
INPUT OUTPUT
LDA (unit) LDA (unit)
Formatted CLB,INB CLB
JSB .DIO. JSB .DIO.
DEF (fmt) or ABS 0 DEF (fmt)
DEF (end of list) DEF (end of list)
LDA (unit) LDA (unit)
Binary CLB,INB CLB
JSB .BIO. JSB .BIO.
where
unit refers to the unit reference number of the
’ device to be called
fmt is the label of an- ASC pseudo instruction
which defines the format specification
end of list is the location immediately following the last
parameter of the calling sequence; it is tothis
location that the Formatter returns control.
ABS O is an option for free field input
formatted ..
input/ output is in ASCII code
binary c i e
input/ output is in binary code

II. Element Definition

INPUT OUTPUT
Real Variable JSB .IOR. DLD x
DST x JSB .IOR.
Integer Variable JSB J0I LDA i
STA i JSB 0L
Array LDA array length

LDB array address
JSB .RAR. (real) or .IAR. (integer)

where
X or i are addresses, real or integer, of the data
array length is the number of elements (not the number of

memory locations) in the block of data.
(Maximum length is equivalent to 60 computer
words.)

III. Terminator

INPUT OUTPUT

(none) JSB .DTA.

Symbols such as .DIO., .IOR., etc., are entry points to the
Formatter; all entry points used in the calling sequence must
be declared external with an EXT pseudo code.

Data stored in memory may be converted internally from one
format to another with the following initial call.

LDA =BO

JSB .DIO.

DEF buffer

DEF (fmt)

DEF (end of list)

Element Definition

Terminator
where buffer is the address of the data to be converted.

FORMAT

SPECIFICATIONS Bcelow are listed the format conversion and editing specifica-

tions.

rAw
rEw.d
rFw.d
riw
r@w }

rKw

nX

nHhy. .
rhy. ..

r/
where
r

w
d

h's

Ew

Alphanumeric character

Real number with exponent
Real number without exponent
Decimal integer

Octal integer

Blank field descriptor
Heading and labeling descriptors

Begin new resord

is the number of times the entire format is
repeated

is the number of digits in the format

is the number of digits to the right of the
decimal point (w-d should be greater than or
equal to 4)

is the number of characters or spaces
represents the ASCII characters

translates alphanumeric data to or from
memory. If w is greater than 2 only the last
two characters are processed; if w is 1, the
single character is read into or written from
the right-half of the computer word.

converts data to a real number. On output,data
may consist of integer, fraction, and exponent
subfields.

n n.n n+ee

2zl +

On output, data appears in floating point form.

£.% ...xgExee

F-3

Fw For output operations real numbers in memory
are converted to character form which will
appear right justified in decimal form. Input
is 1identical to the E specification input.

AX...X.X...X

Iw translates decimal integerstoor from memory
A SERNN &

@w and Kw translates. octal integers to or from memory.
DXy ... X4

nHhy. . .h provides for the transfer of any combination of

8-bit ASCII characters, including blanks.

r‘‘hy. . . hy” also transfers ASCII characters; field length
is not specified, quotation marks are not trans-
ferred. '

(For a more detailed description of the Format specifications
see the FORTRAN Programmer’s Reference Manual, Section 7.)

EXAMPLE Below is an example of a calling sequence to the Formatter that
will output the contents of a block data, SOLVE, such that
each number is printed on the teleprinter in the following
manner:

XXXXXX.XX

SOLVE occupies 100q9 memory locations; the data stored there
is in floating point form.

Comments

Operand

50

45

40

15

<T

—

(]

N

A .

| o

o L

< . wy -] -
ol [ell= Ool>|ae g
[—|O el H{S W] J<T |I—
o] 40 23] olxi+loox|o
|~ 1" Juw X[nfo] - M
=lO g/ @OOju|u|dOmn|im
x|l olJdnjuuolojwn |
Ll| < IS ==Y = e)

FIRMT

S|OL|VIE] [B|S[S

F-5

CROSS REFERENCE TABLE GENERATOR G

The Cross Reference Symbol Table Generator routine pro-
cesses an Assembly Language source program and prints a
cross reference list of all symbols appearing inthe program.
The list contains the symbols in alphabetic order. Each is
followed by the 4-digit sequence number of the statement
in which the symbol was defined and the sequence numbers
of all statements referring to the symbol. If the source
program is contained on more than one tape, the tape number
follows the statement sequence number. The tape number
is determined by the order in which the tapes are sub-
mitted to the generator routine; it is not printed for the
first tape. The general format of the list is as follows:

sssss dddd/tt rrrr/tt rrrr/tt rrrr/tt rrer/tt rerer/tt reer/tt

Sssss = symbol
dddd = defining statement number (modulo 2048)
tt = tape number (modulo 31)
rrrr = reference statement numbers (modulo 2048)
Example:

The program;

(0001) NAM TESTT

(0002) BEGIN DLD A

(0003) FMP A

(0004) DST A

(0005) TEST ISZ |

(0006) JMP BEGIN

(0007) HLT 3

(0008) COM A (2),1

(0009) END

yields the cross reference table:
A 0008 0002 0003 0004
BEGIN 0002 0006

| 0008 0005

TEST 0005

OPERATING
PROCEDURES

If the Assembly Language program uses the IFN or IFZ
psuedo-operations, doubly defined symbols may appear in
the cross-reference listing. For literals, the statement
number is always 0000 00 because the literal definition is
not assigned a statement number. Only the first five
characters of the literal, including the =, will become the
symbol that is cross-referenced. As a result, different
literals may be listed under the same entry in the listing
(i.e., =D3156 and =D3157 would be listed under =D315).
Negative literals are all listed under the symbol =D.

The Cross-Reference Symbol Table Generator can operate
with or without a magnetic tape unit. The Generator checks
location 1078 to check whether a magnetic tape driver is
present in core; if one is, the Generator assumes that the
source program is already present on the magnetic tape
(as it would be if it were written by a previous assembly or
edit).

In addition, the Generator can be run stand-alone or as a
part of the Magnetic Tape System. For operating proced-
ures in the Magnetic Tape System, consult the MAGNETIC
TAPE SYSTEM manual (02116-91752),

A. Set Teleprinter toLINE and check that all equipment to be
used is operable.

B. Load Cross Reference Symbol Table Generator using
the Basic Binary Loader. t

1. Place Cross Reference Symbol Table Generator in
the unit serving as the Standard Input unit (e.g.,
Punched Tape Reader).

2. Set Switch Register to starting address of Basic Bi-
nary Loader,

T The appropriate System Input/Output subroutines (drivers)
are assumed to be included with the Cross Reference Table
Generator program.

Press LOAD ADDRESS.

Set Loader switch to ENABLE.
Press FRESET.

Press RUN.

When the computer halts and indicates that the Cross

Reference Symbol Table Generator is loaded (T-

Register contains 102077), set Loader Switch to

PROTECTED.

C. Set Switch Register to starting address of Cross Reference
Table Generator.

I O O A~ W

000100

D. Press LOAD ADDRESS.

E. Place source language tape in unit serving as the
Standard Input unit (e.g., Punched Tape Reader). If
magnetic tape driver is present, source must be on
third file of magnetic tape. If the number of symbols
in the program is large enough to cause a table over-
flow, set switch register bit 15 up (on) to break the
cross-reference into several passes based on charac-
ter ranges. The Generator prints:

** ENTER CHARACTER RANGE:

The operator responds with two ASCII characters
followed by a carriage-return and line feed. This
causes the Generator to cross-reference only the
symbols beginning with the characters between the
two characters specified. Consult Appendix A for
a full list of the characters. For three passes, the
recommended ranges are:

(space) 9
:L

M +
F. Press RUN,

G. Atthe end of each tape other than the last, the com-
puter halts (102057). Repeat E and F.

G-3

G-4

At the end of the last tape (the tape containing the END

statement), the table is printed on the Standard List Out-
put device (e.g., Teleprinter). When the table is printed,
the computer halts. The B-register contains the
number of symbols cross-referenced.

During the operation of the routine, the following may be

printed:

Teleprinter .
Message Explanation
DD symbol A doubly defined sym-
bol has been encoun-
tered. The computer

does not halt.

TABLE The combined number
OVERFLOW of symbols and refer-
ences to them exceeds
the capacity of the rou-

tine.

Action

Correct source pro-
gram after comple-
tion of routine.

Irrecoverable error.
If the Table is nec-
essary, the source
program must be re-
vised.

CONSOLIDATED CODING SHEET

55 | 4 13 12|11 10 9 s 7 6|5 4 3|2 1 0
D/1 | AND 001 0 Z/C - Memory Address >
D/I | XOR 010 0 z/C
D/I | IOR 011 0 z/C
D/I | JsB 001 1 z/C
D/1 | JMP 010 1 z/C
D/1 | 1Sz 011 1 z/C
D/I | AD* 100 A/B Z/C
D/I | cp* 101 A/B Z/C
D/I | LD* 110 A/B Z/C
D/I | ST* 111 A/B Z/C
15 | 14 13 12 | 11 10 9 8 7 6 5 4 3 2 1 0
0 | SRG 000 A/B 0 DJ/E | *LS 000 CLE D/E SL* | *LS 000
*RS 001 *RS 001
R*L 010 R*L 010
R*R 011 R*R 011
*LR 100 *LR 100
ER* 101 ER* 101
EL* 110 EL* 110
*LF 111 *LF 111
NOP 000 . 000 000 000
15 | 14 13 12 | 11 10 9 8 7 6 5 4 3 2 1 0
0 | AsG 000 A/B 1 |cL* o1 |CLE 01 | SEZ Ss* SL* | IN* SZ* RSS
. CM* 10 |CME 10
cC* 11 |CCE 11
15 | 14 13 12 | 11 10 9 8 7 6 5 4 3 2 1 0
1 | 10G 000 A/B 1 H/C HLT 000 <+———— Select Code ————»
1 0 STF 001
1 1 CLF 001
1 0 SFC 010
1 0 SFS 011
1 H/C M 100
1 H/C L 101
1 H/C OT* 110
0 1 H/C STIC 111
1 1 H/C CLC 111
1 0 SsTO 001 000 001
1 1 cCLO 001 000 001
1 H/C SOC 010 000 001
1 H/C SOS 011 000 001
15 | 14 13 12 | 11 10 9 8 7 6 5 4 3 2 1 0
1 | EAU 000 MPY** 000 010 000 000
DIV*+* 000 100 000 000
DLD** 100 010 000 000
DST** 100 100 000 000
ASR 001 000 0 1
ASL 000 000 0 1
LSR 001 000 1 0 ““gber
LSL 000 000 T N
RRR 001 001 o 0
RRL 000 001 0o 0
Notes: * = A or B.

D/1, A/B, Z/C, D/E, H/C coded: 0/1.
**Second word is Memory Address.

INDEX

ABS 2-6,2-7, 2-9, 4-10, 4-15, 5-10

5-12, 5-14
Absolute
Expression 2-9,4-12,4-15,5-12
Output 1-4,5-1
Program 1-3,3-1,4-1,5-1
Symbol 2-6
Value 1-1,1-3,4-15
Arithmetic operators 1-1,2-3,2-7,
2-8,5-13
Arithmetic subroutine call 3-12,4-24,
4-25,5-2,
5-10,5-11,
5-12

ASC 2-6,4-17,5-10,5-16
ASCII -3,4-17,A-1
Asterisk 2- -4

2

Base Page 1-3,2-13,4-2,4-3,4-10,
4-13
Addressing 2-13

Location counter 1-3,2-7,4-1
4-21
Relocatable 1-3,2-9,5-3,5-10

Basic Binary Loader v, §_—__

Basic Control System (BCS) v,1-3,
2-13,4-17,
4-10,5-1,
5-9

Binary output 1-4,5-1,5-2

BSS 2-6,4-21,5-10,5-1

Clear Flag Indicator 2-13,3-1,3-3
Character Set 2-1,2-3,A-1
Coding form 2-2

coMm 2-6,4-8,4-9,4-10,4-11,4-12,

5-1,5-10,5- 11 5-14

1-3,2-9,4-10,
5-3,5-13
Common storage 1-1,1-3,1-4,3-1,
4-8
Configuration v,5-4
Constant
ASCII 4-17

Decimal integer 2-7,4-18
Decimal Floating Pomt 4-18
Octal 2-7,4-20

Control Bit 3-7,3-8

Control statement 1-4,4-1,4-4,5-1,

5-10,5-14

DEC 2-6,2-7,2-9,4-18,5-10,5-12

Decimal constant 4-18

DEF 2-6,2-9,2-12,4-10,4-12,5-10,

5-12,5-14
Delimiters, field 2-1
DEX 2-6, 2-7,2-9,4-20,4-24,5-10,

5125143'7,62
D1agnost1cs 1-1,5-6,5-9

DIV 3-11, 4-24
DLD 3-11, 4-25
DST 3-11, 4-25

END 2-14,4-3,4-7,5-2,5-16

End-of- statement mark 2-1,2-3,2-5,
-13,2-14,5-1

ENT 4-10,4-11,5-1,5-11

Entry Point 1-4,4-10,4-12,5-11

EQU 2-6,2-7,2-9,4-10,4-15,5-10,

5-16
Expression 2-5,2-
EXT 2—4,2—6,4 s
Extended Arithmetic Umt 3-11, B-5
Extended Assembler v,2-11,4-21,

6,2-8,3-1,3-8,5-12
-10,4-11,5-1,5-1

4-24
External references 1-4,2-12,3-1,
4-10,5-10

Index-1

FAD 4-25
FDV 4-24
Flag bit 3-7,3-8,3-9

Floating point number 4-18,4-19,4-24,

4-25

FMP 4-24

FSB 4-25

Halt 3-7,B-10

IFN 4-4

IFZ 4-4

Indicators 2-1,2-4,2-6,2-13,2-14,

3- 1,5 -10

Indirect Addressing 2-1,2-12,3-1,

4-12

Input/Output 2-8,2-14,3-7,3-8,5-2
Instructions
Alter-Skip 3-6
Input/Output 3-7,3-8, B-4
Jump 3-2
Logical 3-3
Memory Reference 3
Overflow 3-7,4-26,B
Register reference 3-4
Shift-Rotate 3-4,3-5
Integer 4-18
Interrupt 3-2,3-7

Label 1-1,2-1,2-3,2-6,4-1,4-8,4-10,

4-17,4-18,4-20,5-10,5-15
List output 1-1,1-4,2-14,4-1,5-1,
5-2

Literals 2-11,3-1

Magnetic tape 1-1,5-6

Memory Reference 1-1,2-5,2-8,2-9,
2-12,2-13,3-1,
4-10,4-13,5-12,
5-14, B-2

Minus sign 2-3,2-5,2-7,5-12,5-13

MPY 3-11,4-2

Index-2

NAM 1-3,2-14,4-1,5-1,5-2,5-11,
5-14

Numeric term 2-5,2-6,2-7,5-14

NOP 3-4,3-5

oCcT 2-6,2-7,2-9,4-20,5-10,5-12,
5-14
Octal number 2-7,4-20
Opcode 2125513
Operand 2-1,2-5,5-10
Operating instructions
magnetic tape 5-6

paper tape 5-4

ORB 1-3,4-2,4-3 -3,4-10,5-1,5-11
ORG 1-3,4-1 1,4 2 4-3,4-10,5-2,
5-13

ORR 4-2,4-3

Parameters 1-4,2-8,5-1,5-2

Parentheses 2-3,2-

Pass 1-1,4-21,5-4

Period 2-1

Plus sign 2-3,2-5,2-7,5-13

Program location counter 1-3,2-3,
2-7,2-9,
4-1,4-3,
4-15,4-24

Program origin 1-3,4-1,5-10

Program relocatable 2-9,5-3

Reference Manuals v
Register Reference 3-4, B-2
Relocatable

Expression 2-9,2-10,4-12,5-12,

-13

Loading 1-3

Output 1-4,5-1

Program 1-3,2-7,2-13,3-1,
4-1,4-7,4-8,4-12,
4-13,5-1

Term 2-6

Value 1-1

REP 4-6

Select code 3-1,3-7,3-8
Source language notation 3-1
Source program 5-2
Spaces 2-1,2-3,2-5,4-8
Statement 2-1

length 2-3
SWP 4-24
Symbol Table 1-1,1-4,5-2,5-3,5-15
Symbolic addressing 1-1
Symbolic term 2-5,2-6,5-15
Symbols 1-1,2-3,2-6,4-10,4-11,

4-15,5-15

Terminator 2-1,2-5,4-5
Terms, expression 2-9,2-10
Transfer address 4-7,5-2

Index-3

CUT ALONG LINE

I

HEWLETT nﬁ PACKARD

READER COMMENT SHEET
HP ASSEMBLER

HP 02116-9014 April, 1970
Hewlett-Packard welcomes your evaluation of this text.
Any errors, suggested additions, deletions, or general com-
ments may be made below. Use extra pages if you like.

FROM PAGE__OF

NAME:
ADDRESS:

NO POSTAGE NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AS SHOWN ON OTHER SIDE AND TAPE

FIRST CLASS
PERMIT NO.141

CUPERTINO
CALIFORNIA

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States Postage will be paid by

SUPERVISOR, SOFTWARE PUBLICATIONS

HEWLETT - PACKARD

CUPERTINO DIVISION
11000 Wolfe Road
Cupertino, California
95014

02116 - 9014

	0000
	0001
	0002
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	G-01
	G-02
	G-03
	G-04
	H-01
	H-02
	I-01
	I-02
	I-03
	replyA
	repyB
	xBack

