
HEWLETT" PACKARD

HP ASSEMBLER

H P ASSEMBLER
Programmer$ Reference

Manual

HP02116-9014

11000 Wolfe Road
Cupertino, Calif. 95014

April 1970

© CopyJt,[ght, 1970, by
HEWLETT-PACKARD COMPANY
Cupertino, California

Printed in the U.S.A.

Second Edition

First Edition, Feb. 1968
Revised, April 1970

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system (e.g., in memory, disc or core) or
be transmitted by any means, electronic, mechanical, photocopy, re ..
cording or otherwise, without prior written permission from the
publisher,

Printed in the U.S.A.

PREFACE

This publication is a reference manual for the programmer using the HP Assembler
or Extended Assembler. It includes both the elements of the language and the
information required to execute either Assembler on the computer.

Other computer publications provided by Hewlett-Packard include:

Basic Control System Programmer's Reference Manual (02116-9017)
Program Library Routines (02116-9032)
Assembler/Basic Control System Training Manual (02116-9073)
Magnetic Tape System Manual (02116-91752)
Prepare Tape System Manual (02116-91751)

i

NEW AND CHANGED INFORMATION

All known errors in this manual have been
corrected. Changes in the text are marked
by a horizontal line in the margin.

CONTENTS

INTRODUCTION v

CHAPTER 1 GENERAL DESCRIPTION 1-1

1.1 Assembly Processing 1-1
1. 2 Symbolic Addressing 1-1
1.3 Program Relocation 1-3
1. 4 Program Location Counters 1-3
1. 5 Assembly Options 1-4

CHAPTER 2 INSTRUCTION FORMAT 2-1

2.1 Statement Characteristics 2-1
2.2 Label Field 2-3
2.3 Opcode Field 2-5
2.4 Operand Field 2-5
2.5 Comments Field 2-13

CHAPTER 3 MACHINE INSTRUCTIONS 3-1

3.1 Memory Reference 3-1
3.2 Register Reference 3-4
3.3 Input/Output, Overflow, and Halt 3-7
3.4 Extended Arithmetic Unit 3-11

CHAPTER 4 PSEUDO INSTRUCTIONS 4-1

4.1 Assembler Control 4-1
4.2 Object Program Linkage 4-8
4.3 Address and Symbol Definition 4-11
4.4 Constant Definition 4-17
4.5 Storage Allocation 4-23 I 4.6 Assembly Listing Control 4-23
4.7 Arithmetic Subroutine Calls 4-26

CHAPTER 5 ASSEMBLER INPUT AND OUTPUT 5-1

5.1 Control Statement 5-1
5.2 Source Program 5-2
5.3 Binary Output 5-3 I 5.4 List Output 5-3
5.5 Operating Instructions 5-4
5.6 Object Pro gram Loading 5-8
5.7 Error Messages 5-9

iii

APPENDIX A HP Character Set A-1
APPENDIX B Summary of Instructions B-1
APPENDIX c Alphabetical List of Instructions C-1

APPENDIX D Sample Problems D-1

APPENDIX E System Input/Output Subroutines E-1

APPENDIX F Formatter F-1

APPENDIX G Cross Reference Table Generator G-1

APPENDIX H Consolidated Coding Sheet H-1
INDEX Index-1

iv

INTRODUCTION .

The Assembler and the Extended Assembler translate symbolic source language
instructions into an object program for execution on the computer. The source
language provides mnemonic machine operation codes, assembler directing pseudo
codes, and symbolic addressing. The assembled program may be absolute or
relocatable.

The source program may be assembled as a complete entity or it may be subdivided
into several subprograms (or a main program and several subroutines), each of
which may be assembled separately. The loader of the Basic Control System loads
the program and links the subprograms as required. The Basic Binary Loader loads
programs in absolute form.

Input for the Assembler is prepared onpapertape; the Assembler punches the binary
program on paper tape in a format acceptable to the loader.

The minimum equipment configuration required to use the Assembler is as follows:

2116A or 2115A Computer with 4K memory
2752A Teleprinter

The minimum configuration for the Extended Assembler is:

2116A or 2115A Computer with 8K memory
2752A Teleprinter

v

1.1
ASSEMBLY
PROCESSING

1.2
SYMBOLIC
ADDRESSING

GENERAL DESCRIPTION 1

The Assembler is a two pass system, or, if both punch and
list output are requested, a three pass system on a minimum
configuration. A pass is defined as a processing cycle of the
source program input.

In the first pass, the Assembler creates a symbol table from
the names used in the source statements. It also checks for
certain possible error conditions and generates diagnostic
messages if necessary.

During pass two, the Assembler again examines each state­
ment in the source program along with the symbol table and
produces the binary program and aprogramlisting. Additional
diagnostic messages may also be produced.

If only one output device is available and if both the binary
output and the list output are requested, the listing function is
deferred and performed as pass three.

When using the Assembler with a magnetic tape the source
program is written on the tape during the first pass; the tape
is backspaced and the second pass executed.

Symbols may be used for ref erring to machine instructions,
data, constants, and certain other pseudo operations. A sym­
bol represents the address for a computer word in memory.
A symbol is defined when it is used as a label for a location in
the program, a name of a common storage segment, the label
of a data storage area or constant, the label of an absolute or
relocatable value, or a location external to the program.

Through use of simple arithmetic operators, symbols may be
combined with other symbols or numbers to form an expres­
sion which may identify a location other than that specifically
named by a symbol. Symbols appearing in operand expres-

1-1

1-2

-,,.
"""" ASSEMBLY

LANGUAGE
SOURCE PROGRAM

.......... -

.......... """'
ASSEMBLY
LANGUAGE

SQY.!!.CE PROGRAM -

ASSEMBLY
LANGUAGE

SOURCE PROGRAM

-

ASSEMBLER

PASS 1

ASSEMBLER
PASS 2

ASSEMBLER
PASS 3

I-
SYMBOL

---- TABLE
LISTING

-~ ...i

RELOCATABLE
OR ABSOLUTE
OB~CT PROGRAM

.......... -

I
I
I ADDITIONAL OR
I ALTERNATE
L- OBJECT

PROGRAM LISTIN

PROGRAM
LISTING

HP ASSEMBLER PROCESSING

1.3
PROGRAM
RELOCATION

1.4

sions, but not specifically defined, and symbols that are
defined more than once are considered to be in error by the
Assembler.

Programs may be relocated in core by the Basic Control Sys­
tem loader; the location of the program origin and all sub­
sequent instructions is determined at the time the program is
loaded.

A relocatable program is assembled assuming a starting
location of zero. All other instructions and data areas are
assembled relative to this zero base. When the program is
loaded, the relocatable operands are adjusted to correspond
with the actual locations assigned by the loader.

The starting locations of the common storage area and the
base page portion of the program are always established by
the loader. References to the common area are common re­
locatable. References to the base page portion of the program
are base page relocatable. If a program refers to the common
area or makes use of the base page via the ORB pseudo in­
struction, the program must also be relocatable.

If a program is to be relocatable, all subprograms comprising
the program must be relocatable; all memory reference
operands must be relocatable expressions or literals, or have
an absolute value of less than 1008 •

PROGRAM LOCATION
COUNTERS The Assembler maintains a counter, called the program loca­

tion counter, that it uses to assign consecutive memory
addresses to source statements.

The initial value of the program location counter is estab­
lished according to the use of either the NAM or ORG pseudo
operation at the start of the program. The NAM operation
causes the program location counter to be set to zero for a
relocatable program; the ORG operation specifies the absolute
starting location for an absolute program.

Through use of the ORB pseudo operation a relocatable pro­
gram may specify that certain operations or data areas be

1-3

1.5
ASSEMBLY
OPTIONS

1-4

allocated to the base page. If so, a separate counter, called
the base page location counter, is used in assigning these
locations.

Parameters specified with the first statement, the control
statement, define the output to be produced by the Assembler: t

Absolute - The addresses generated by the Assembler
are to be interpreted as absolute locations in memory.
The program is a complete entity; external symbols,
common storage references, and entry points are not
permitted.

Relocatable - The program may be located anywhere in
memory. All operands which refer to memory locations
are adjusted as the program is loaded. Operands, other
than those referring to the first 64 locations, must be re­
locatable expressions. Subprograms may contain external
symbols and entry points, and may refer to common
storage.

Binary output - An absolute or relocatable program is
to be punched on paper tape.

List output - A program listing is produced either during
pass two or pass three.

Table print - List the symbol table at the end of the first
pass.

Selective assembly - Sections of the program may be
included or excluded at assembly time depending on the
option used.

t See Chapter 5 for complete details.

2.1
STATEMENT
CHARACTERISTICS

Field Delimiters

Character Set

INSTRUCTION FORMAT 2

A source language statement consists of a label, an operation
code, an operand, and comments. The label is used when needed
as a reference by other statements. The operation code may
be a mnemonic machine operation or an assembly directing
pseudo code. An operand may be an expression consisting of
an alphanumeric symbol, a number, a special character, or
any of these combined by arithmetic operations. (For the
Extended Assembler, an operand may also be a literal.)
Indicators may be appended to the operand to specify certain
functions such as indirect addressing. The comments portion
of the statement is optional.

The fields of the source statement appear in the following
order:

Label

Opcode

Operand

Comments

One or more spaces separate the fields of a statement. An
end-of-statement mark terminates the entire statement. On
paper tape this mark is a return, ((j!), and line feed, (LF) . t
A single space following the end-of-statement mark from the
previous source statement is the null field indicator of the
label field.

The characters that may appear in a statement are as follows:

A through Z

0 through 9

,, (period)

* (asterisk)

t A circled symbol (e.g. , @)represents an ASCII code or
Teleprinter key.

2-1

N
I

N PROGRAMMER

"''"'

J'•ZERO

Operation

O"'A.LPHAO

0P"rand

"

I OR 1-0NE

2•TWO

20

I"'AlPHAI
i!=ALPHAi!

HEWLETT-PACKARD ASSEMBLER CODING FORM

DATE

LINE TERMINATED BY RETURN /LINE FEED (R/LF)
LJNE IS DELeTED BY RUBOUT BEFORE R/LF

STATEMENT

Comments

PAGE

70 75

Statement Length

2.2
LABEL FIELD

Label Symbol

+ (plus)

(minus)

(comma)

= (equals)

() (parentheses)

(space)

Any other ASCII characters may appear in the Remarks field
(See Appendix A).

The letters A through Z, the numbers 0 through 9, and the
period may be used in an alphanumeric symbol. In the first
position in the Label field, an asterisk indicates a comment;
in the Operand field, it represents the value of the program
location counter for the current instruction. The plus and
minus are used as operators in arithmetic address expres­
sions. The comma separates several operation codes, or an
expression and an indicator in the Operand field. An equals
sign indicates a literal value. The parentheses are used only
in the COM pseudo instruction.

Spaces separate fields of a statement. They may also be used
to establish the format of the output list. Within a field they
may be used freely when following +, -, , , or (.

A statement may contain up to 80 characters including blanks,
but excluding the end-of-statement mark. Fields beginning in
characters 73 - 80 are not processed by the Assembler.

The Label field identifies the statement and may be used as a
reference point by other statements in the program.

The field starts in position one of the statement; the first
position following an end-of-statement mark for the preceding
statement. It is terminated by a space. A space in position
one is the null field indicator for the label field; the statement
is unlabeled.

A label must be symbolic. It may have one to five characters
consisting of A through Z, 0 through 9, and the period. The
first character must be alphabetic or a period. A label of
more than five characters could be entered on the source lan­
guage tape, but the Assembler flags this condition as an error
and truncates the label from the right to five characters.

2-3

Asterisk

2-4

Examples:

label Operation
I 5 10

16.IJ L DA
.ABCD
.1234
A.123

1 • AB

ABC123

A*BC

Operand

15
Comments

" 35 .., 5-0

NO LABEL
VALID LABEL
VALID Ll~BEL
VALID LABEL
VALID LABEl!::
ILLEGAL LABEL - FIRST CHARACTER
NUMERIC. :
ILLEGAL LABEL - TRUNCATED TO :
ABC12. :
ILLEGAL LABEL - ASTERISK NOT :
ALLO~ED IN LABEL. i
NO LABEL -THE ASSEMBLER ATTE]MPTSi
TO INTERPRET ABC AS AN OPERATION!
CODE. i

Each label must be unique within the program; two or more
statements may not have the same symbolic name. Names
which appear in the Operand field of an EXT or COM pseudo
instruction may not also be used as statement labels in the
same subprogram.

Examples:

Lobol Operation Operand Comments
I 5 10 15 20 " 30 35 40 45 50

COM AC OM (2 0) 'B c (30) I
I

LB EQU 1 6 0 VA LID LA BEL
EXT XL 1 ' XL2

ST ART LOA LB VA LID LA BEL
N25 VA LID LA BEL
XL2 ·I LL EG AL LA BEL - us ED IN EX T.
BC IL LE GAL LA BEL - us ED IN lM. co
N25 IL LE GAL LA BEL - PR EV IO us LY

DE FI NE D.

I

I
I

!

An asterisk in position one indicates that the entire statement
is a comment. Positions 2 through 80 are available; however,
positions 1 through 68 only are printed as part of the assembly
listing on the 2752A Teleprinter. An asterisk within the Label
field is illegal in any position other than one.

t The caret symbol, /\, indicates the presence of a space.

2.3
OPCODE FIELD

2.4
OPERAND FIELD

The operation code defines an operation to be performed by
the computer or the Assembler. The Opcode field follows the
Label field and is separated from it by at least one space. If
there is no label, the operation code may begin anywhere after
position one. The Opcode field is terminated by a space im­
mediately following an operation code. Operation codes are
organized in the following categories:

Machine operation codes

Memory Reference

Register Reference

Input/Output, Overflow, and Halt

Extended Arithmetic Unit

Pseudo operation codes

Assembler control

Object program linkage

Address and symbol definition

Constant definition

Storage allocation

Arithmetic subroutine calls

Assembly Listing Control (Extended Assembler)

Operation codes are discussed in detail in Chapters 3 and 4.

The meaning and format of the Operand field depend on the
type of operation code used in the source statement. The field
follows the Opcode field and is separated from it by at least
one space. It is terminated by a space except when the space
follows , + - (or, if there are no comments, by an end-of­
statement mark.

The Operand field may contain an expression consisting of one
of the following:

Single symbolic term

Single numeric term

Asterisk

2-5

Symbolic Terms

I

2-6

Combination of symbolic terms, numeric terms, and the
asterisk jointed by the arithmetic operators + and -.

An expression may be followed by a comma and an
indicator.

Programs being assembled by the Extended Assembler
may also contain a literal value in the Operand field.

A symbolic term may be one to five characters consisting of
A through Z, 0 through 9, and the period. The first character
must be alphabetic or a period.

Examples:

"'"'' Operation Operand COll'lm8nts

' 10 " 20 " 30 " 40 " so

LOA A1 234 VA LID IF DE FI NED I
I

ADA B . 1 VA LID IF DE FI NED I
I

JMP EN TRY VA LID IF DE FI NED '· I

STA 1 A BC IL LE GAL OP ER AND FI RST CH AR AC TER I
I

NU ME RI c. I
I

STB AB CD EF IL LE GAL OP ER AND MO RE TH AN FI VE I
I

CH AR AC TE RS. I

'
I
I

I
I

I
I

I
I

I
I

I
I

I

A symbol used in the Operand field must be a symbol that is
defined elsewhere in the program in one of the following ways:

As a label in the Label field of a machine operation

As a label in the Label field of a BSS, ASC, DEC, DEX,
OCT, DEF, ABS, EQU or REP pseudo operation

As a name in the Operand field of a COM or EXT pseudo
operation

As a label in the Label field of an arithmetic subroutine
pseudo operation

The value of a symbol is absolute or relocatable depending on
the assembly option selected by the user. The Assembler as­
signs a value to a symbol as it appears in one of the above
fields of a statement. If a program is to be loaded in absolute

I

Numeric Terms

Asterisk

Expression
Operators

form, the values assigned by the assembler remain fixed. If
the program is to be relocated, the actual value of a symbol is
established on loading. A symbol may also be made absolute
through use of the EQU pseudo instruction.

A symbolic term may be preceded by a plus or minus sign. If
preceded by a plus or no sign, the symbol refers to its associ­
ated value. If preceded by a minus sign, the symbol refers to
the two's complement of its associated value. A single nega­
tive symbolic operand may be used only with the ABS pseudo
operation.

A numeric term may be decimal or octal. A decimal number
is represented by one to five digits within the range 0 to
32767. An octal number is represented by one to six octal
digits followed by the letter B; (0 to 177777B).

If a numeric term is preceded by a plus or no sign, the binary
equivalent of the number is used in the object code. If pre­
ceded by a minus sign, the two's complement of the binary
equivalent is used. A negative numeric operand may be used
only with the DEX, DEC, OCT, and ABS pseudo operations.

In an absolute program, the maximum value of a numeric
operand depends on the type of machine or pseudo instruction.
In a relocatable program, the value of a numeric operand may
not exceed 77B. Numeric operands are absolute. Their value
is not altered by the assembler or the loader.

An asterisk in the Operand field refers to the value in the
program location counter (or base page location counter) at the
time the source program statement is encountered. The
asterisk is considered a relocatable term in a relocatable
program.

The asterisk, symbols, and numbers may be joined by the
arithmetic operators + and - to form arithmetic address ex­
pressions. The Assembler evaluates an expression and pro­
duces an absolute or relocatable value in the object code.

2-7

I

Evaluation of
Expressions

2-8

Examples:

Label Operati°"' Operand Comments
I 5 10 15 "' 25 JO 35 " " 50

LOA SY M+6 ADD 6 TO THE VA LUE OF SYM I
I

ADA SY M-3 SU B[RA CT 3 FR OM THE VA LUE OF SY Ml

.
JMP *+5 ADD 5 TO THE co NT EN TS OF THE . PR OG RAM LO CA TI ON co UN TE R • .
STB -A +c -4 ADD - VA LUE OF A, THE VA LUE OF c

AND SU BT RA CT 4. I
I . I
I . I
I

STA XT A-* SU BT RA ~T VA LUE OF PR OG RAM I
I

LO CA TI ON co UN TER FR M VA LUE OF I
I

XT A. I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

An expression consisting of a single operand has the value of that
operand. An expression consisting of more than one operand is
reduced to a single value. In expressions containing more than one
operator, evaluation of the expression proceeds from left to right.
The algebraic expression A-(B-C+5) must be represented in the
Operand field as A-B+C-5. Parentheses are not permitted in
operand expressions for the grouping of operands.

The range of values that may result from an operand expression
depends on the type of operation. The Assembler evaluates ex­
pressions as follows: t

Pseudo Operations
Memory Reference
Input/Output

modulo 21 5-1
modulo 210_1
26 - 1 (maximum value)

t The evaluation of expressions by the Assembler is compatable
with the addressing capability of the hardware instructions (e.g.,
up to 32K words through Indirect Addressing). The user must
take care not to create addresses which exceed the memory size
of the particular configuration.

Expression Terms

Absolute and
Relocatable
Expressions

The terms of an expression are the numbers and the symbols
appearing in it. Decimal and octal integers, and symbols de­
fined as being absolute in an EQU pseudo operation are abso­
lute terms. The asterisk and all symbols that are defined in
the program are relocatable or absolute depending on the type
of assembly. Symbols that are defined as external may appear
only as single term expressions.

Within a relocatable program, terms may be program relo­
catable, base page relocatable, or common relocatable. A
symbol that names an area of common storage is a common
relocatable term. A symbol that is allocated to the base page
is a base page relocatable term. A symbol that is defined in
any other statement is a program relocatable term. Within
one expression all relocatable terms must be base page re­
locatable, program relocatable, or common relocatable; the
three types may not be mixed.

An expression is absolute if its value is unaffected byprogram
relocation. An expression is relocatable if its value changes
according to the location into which the program is loaded. In
an absolute program, all expressions are absolute. In a relo­
catable program, an expression may be base page relocatable,
program relocatable, common relocatable, or absolute (if less
than 100s) depending on the definition of the terms composing it.

Absolute Expressions

An absolute expression may be any arithmetic combination of
absolute terms. It may also contain relocatable terms alone,
or in combination with absolute terms. If relocatable terms
do appear, there must be an even number of them; they must
be of the same type; and they must be paired by sign (a nega­
tive term for each positive term). The paired terms do not
have to be contiguous in the expression. The pairing of terms
by type cancels the effect of relocation; the value represented
by the pair remains constant.

An absolute expression reduces to a single absolute value.
The value of an absolute multiterm expression may be nega-
tive only for ABS pseudo operations. A single numeric term 1 also may be negative in an OCT, DEX, or DEC pseudo
instruction. In a relocatable program the value of an
absolute expression must be less than 1008 for instruc-
tions that reference memory locations (Memory Refer-
ence, DEF, Arithmetic subroutine calls).

2-9

2-10

Examples:

If P 1 and P2 are program relocatable terms; B 1 and B 2, base
page relocatable; C 1 and C2 , common relocatable; and A, an
absolute term; then the following are absolute terms:

A-C1+C2 A-P1+P2 C1-C2+A

A+A P1-P2 B1-B2

*-P1 B1-B2-A -C1+C2+A

B1-* -P1 +P2 -A-P1 +P2

The asterisk is base page relocatable or program relocatable
depending on the location of the instruction.

Relocatable Expressions

A relocatable expression is one whose value is changed by the
loader. All relocatable expressions must have a positive
value.

A relocatable expression may contain any odd number of relo­
catable terms, alone, or in combination with absolute terms.
All relocatable terms must be of the same type. Terms must
be paired by sign with the odd term being positive.

A relocatable expression reduces to a single positive relo­
catable term, adjusted by the values represented by the abso­
lute terms and paired relocatable terms associated with it.

Examples:

If P 1, P2, and P 3 are program relocatable terms; B1, B2, and
B3, base page relocatable; C 1, C2 and C3, common relocatable;
and A, an absolute term; then the following are relocatable
terms:

P1-A C1-A B1+A

P1 -P2+P3 C1 -C2+C3 C1 +A

*+A *-P1+P2 *-A

A+B1 A+C1 -A-P1 +P2+P3

B1-B2+B3-A C1-C2+C3-A A+*

+P1- P1 -P2+* -C1+C2+C3

Literals Actual literal values may be specified as operands in re­
locatable programs to be assembled by the Extended Assembler.
The Extended Assembler converts the literal to its binary
value, assigns an address to it, and substitutes this address
as the operand. Locations assigned to literals are those
immediately following the last location used by the program.

A literal is specified by using an equal sign and a one­
character identifier defining the type of literal. The actual
literal value is specified immediately following this identifier;
no spaces may intervene.

The identifiers are:

=D

=F

=B

=A

=L

a decimal integer, in the range -32767 to 32767,
including zero. t

a floating point number; any _positive or negative
real number in the range 10-38 to 1038, including
zero. t

an octal integer, one to six digits, blb2b3b4b5b5,
where bl may be 0 or 1, and b2-b7 may be 0 to 7. t

two ASCII characters. t

an expression which, when evaluated, will result
in an absolute value. All symbols appearing in the
expression must be previously defined.

If the same literal is used in more than one instruction,
only one value is generated, and all instructions using this
literal refer to the same location.

Literals may be specified only in the following memory
reference instructions and pseudo instructions:

ADA
LDA
CPA

DLD
FMP
FDV

ADB
LDB
CPB

FAD
FSB

AND
XOR
IOR

MPY
DIV

may use =F

may use =D, =B, =A, =L

t See CONSTANT DEFINITION, Section 4.4.

2-11

Examples:.

LDA =D798~ A-Register is loaded with the binary equiv­
alent of 798~1~.

IOR =B777

LDA =ANO

Inclusive or is performed with contents of
A-Register and 777 8.

A-Register is loaded with binary representa­
tion of ASCII characters NO.

LDB =LZETZ-ZOOM+68 B-Register is loaded with the
value resulting from the absolute expression.

FMP =F39. 75 Contents of A- and B-Registers multiplied
by floating point constant 39. 75.

Indirect Addressing The HP computers provide an indirect addressing capability
for Memory Reference instructions. The operand portion of
an indirect instruction contains an address of another location
rather than an actual operand. The secondary location may be
the operand or it may be indirect also and give yet another
location, and so forth. The chaining ceases when a location is
encountered that does not contain an indirectaddress. Indirect
addressing provides a simplified method of address modifi­
cations as well as allowing access to any location in core.

2-12

I

~B
AC
AD

The Assembler allows specification of indirect addressing by
appending a comma and the letter I to any Memory Reference
operand other than one referring to an external symbol. The
actual operand of the instruction maybe given in a DEF pseudo
operation; this pseudo operation may also be used to indicate
further levels of indirect addressing.

Examples:

Lobel Operation Operand Commen!J
5 10 " 20 ls JO JS 40 45 " LOA SA MI I EA CH TI ME THE ISZ IS EX EC UT ED,

ADA SA Md THE EF FE CT IVE OP ER AND OF AB AND
ISZ SAM AC CH AN GE AC co RD IN GL y,

.
SAM DEF RO GER

I

I

Base Page
Addressing

Clear Flag
Indicator

2.5
COMMENTS
FIELD

I

A relocatable assembly language program, however, may be
designed without concern for the pages in which it will be
stored; indirect addressing is not required in the source lan­
guage. When the program is being loaded, the Basic Control
System (BCS) provides indirect addressing whenever it detects
an operand which does not fall in the current page or the base
page. The BCS loader substitutes a reference to the base page
and then stores an indirect address in this referenced location.
References to the same operand from other pages will be
linked through the same location in the base page.

The computer provides a capability which allows the Memory
Reference instructions to address either the current page or
the base page. The Assembler or the BCS loader adjusts all
instructions in which the operands refer to the base page; spe­
cific notation defining an operand as a base page reference is
not required in the source program.

The majority of the input/ output instructions can alter the
status of the input/ output interrupt flag after execution or
after the particular test is performed. In source language,
this function is selected by appending a comma and a letter C
to the Operand field.

Examples:

Label Operation Operond C°"'""'nts
s JO JS 20 " 30 35 '°

., so

STC IO 7~C CL EAR FL AG IO? AF TER co NT ROL I
I

BIT IS SET I
I

OTB I05 c CL EAR FL AG I05 AF TER MO VE I
I

I
I

l

The Comments field allows the user to transcribe notes on the
program that will be listed with source language coding on the
output produced by the Assembler. The field follows the
Operand field and is separated from it by at least one space.
The end-of-statement mark, @ @,or the 80th character
in the entire statement terminates the field. If the listing to

2-13

2-14

be produced on the 2752A Teleprinter, the total statement
length, excluding the end-of-statement mark, should not ex­
ceed 52 characters, the width of the source language portion
of the listing. Statements consisting solely of comments may
contain up to 68 characters ·including the asterisk in the first
position. On the list output, statements consisting entirely
of comments begin in position 5 rather than 21 as with other
source statements.

If there is no operand present the Comments field should be
omitted in the NAM and END pseudo operations and in the
input/ output statements, SOC, SOS, and HLT. If a comment
is used, the Assembler attempts to interpret it as an operand.

3.1
MEMORY
REFERENCE

MACHINE INSTRUCTIONS 3

The HP Assembler language machine instruction codes take the
form of three-letter mnemonics. Each source statement cor­
responds to a machine operation in the object program pro­
duced by the Assembler.

Notation used in representing source language instruction is
as follows:

label

m

I

SC

c
comments

[]

{}
lit

Optional statement label

Memory location -- an expression

Indirect addressing indicator

Select code -- an expression

Clear interrupt flag indicator

Optional comments

Brackets defining a field or portion of a
field that is optional

Brackets indicating that one of the set
may be selected.

literal

Memory Reference instructions perform arithmetic, logical
and jump operations on the contents of the locations in core
and the registers. An instruction may directly address the
2048 words of the current and base pages. If required, in­
direct addressing may be utilized to refer to all 32, 768 words
of memory. Expressions in the operand field are evaluated
modulo 210 •

If the program is to be assembled in relocatable form, the
operand field may contain relocatable expressions or absolute
expressions which are less than 1008 in value. If the program
is to be absolute, the operands may be any expressions con­
sistent with the location of the program. Literals may not be
used in an absolute program. Absolute programs must be
complete entities; they may not refer to external subroutines
or common storage.

3-1

Jump and
Increment-Skip

Add, Load, and
Store

3-2

Jump and Increment-Skip instructions may alter the normal
sequence of program execution.

label I JMP I m [,I] I comments

Jump tom. Jump indirect inhibits interrupt until the transfer
of control is complete.

label I JSB I m [, I] I comments

Jump to subroutine. The address for label+l is placed into
the location represented by m and control transfers to m+l.
On completion of the subroutine, control may be returned to
the normal sequence by performing a JMP m, I.

label I ISZ m [, I] I comments

Increment, then skip if zero. ISZ adds 1 to the contents of m.
If m then equals zero, the next instruction in memory is by­
passed.

Add, Load, and Store instructions transmit and alter the con­
tents of memory and of the A- and B-Registers. A literal,
indicated by ''lit", may be either =D, =B, =A, or =I type.

label I ADA I ~ m [, IJl I comments
/lit ~

Add the contents of m to A.

label I ADB I Im [, I]/ I
/ ut \

comments

Add the contents of m to B.

label I LDA I j m [, I]/ I
/ ut \

comments

Load A from m.

Logical
Operations

label I LDB I ~m [, rH I
/lit ~

comments

Load B from m.

label I STA I m [,I] I comments

Store contents of A in m.

label I STB I m [, I] I comments

Store contents of Bin m.

In each instruction, the contents of the sending location is un­
changed after execution.

The Logical instructions allow bit manipulation and the com­
parison of two computer words.

label I AND I ~ m [, I] l I comments
1lit ~

The logical product of the contents of m and the contents of A
are placed in A.

label I XOR I ~ m [, I]l I comments
J lit ~

The modulo-two sum (exclusive "or") of the bits in m and the
bits in A is placed in A.

label I IOR comments

The logical sum (inclusive "or") of the bits in m and the bits
in A is placed in A.

label J CPA 1 ja't[, I]! J comments

Compare the contents of m with the contents of A. If they
differ, skip the next instruction; otherwise, continue.

label J CPB 1 jm [,I]! J comments

Compare the contents of m with the contents of B. If they
differ, skip the next instruction; otherwise, continue.

3-3

3.2
REGISTER
REFERENCE The Register Reference instructions include a Shift-Rotate

group, an Alter-Skip group, and NOP (no-operation). With
the exception of NOP, they have the capability of causing
several actions to take place during one memory cycle. Mul­
tiple operations within a statement are separated by a comma.

Shift-Rotate Group This group contains 19 basic instructions thatcan be combined
to produce more than 500 different single cycle operations.

3-4

CLE Clear E to zero

ALS Shift A left one bit, zero to least significant bit.
Sign unaltered

BLS Shift B left one bit, zero to least significant bit.
Sign unaltered

ARS Shift A right one bit, extend sign; sign unaltered.

BRS Shift B right one bit, extend sign;sign unalterec;l.

RAL Rotate A left one bit

RBL Rotate B left one bit

RAR Rotate A right one bit

RBR Rotate B right one bit

ALR Shift A left one bit, clear sign, zero to least
significant bit

BLR Shift B left one bit, clear sign, zero to least
significant bit

ERA Rotate E and A right one bit

ERB Rotate E and B right one bit

ELA Rotate E and A left one bit

ELB Rotate E and B left one bit

ALF Rotate A left four bits

BLF Rotate B left four bits

SLA Skip next instruction if least significant bit in A
is zero

SLB Skip next instruction if least significant bit in B
is zero

No-Operation
Instruction

These instructions may be combined as follows:

ALS ALS
ARS ARS
RAL RAL

label
RAR

[,CLE] CSLA]
RAR

comments ALR ' ALR
ALF ALF
ERA ERA
ELA ELA

BLS BLS
BRS BRS
RBL RBL

label RBR
[,CLE] [, SLB]

RBR
comments BLR ' BLR

BLF BLF
ERB ERB
ELB ELB

CLE, SLA, or SLB appearing alone or in any valid combination
with each other are assumed to be a Shift-Rotate machine
instruction.

The Shift-Rotate instructions must be given in the order
shown. At least one and up to four are included in one state­
ment. Instructions referring to the A-register may not be
combined in the same statement with those referring to the
B- register.

When a no-operation is encountered in a program, no action
takes place; the computer goes on to the next instruction. A
full memory cycle is used in executing a no-operation instruc­
tion.

label I NOP I comments

A subroutine to be entered by a JSB instruction should have a

3-5

Alter-Skip Group

3-6

NOP as the first statement. The return address can be stored
in the location occupied by the NOP during execution of the
program. A NOP statement causes the Assembler to generate
a word of zeros.

The Alter-Skip group contains 19 basic instructions that can
be combined to produce more than 700 different single cycle
operations.

CLA

CLB

CMA

CMB

CCA

CCB

CLE

CME

CCE

SEZ

SSA

SSB

INA

INB

SZA

SZB

SLA

SLB

RSS

Clear the A-Register

Clear the B-Register

Complement the A-Register

Complement the B-Register

Clear, then complement the A-Register (set to
ones)

Clear, then complement the B-Register (set to
ones)

Clear the E-Register

Complement the E-Register

Clear, then complement the E-Register

Skip next instruction if E is zero

Skip if sign of A is positive (0).

Skip if sign of B is positive (0).

Increment A by one.

Increment B by one.

Skip if contents of A equals zero

Skip if contents of B equals zero

Skip if least significant bit of A is zero

Skip if least significant bit of B is zero

Reverse the sense of the skip instructions. If
no skip instructions precede in the statement,
skip the next instruction.

3.3
INPUT/OUTPUT,
OVERFLOW, AND
HALT

These instructions may be combined as follows:

labol ~g~J] [,SEZ) [m;;.1] [,.,A) [,SLA] [,INA] [,SZA] [,RBS) o~m"'t'

labol [rn~ l] [,BEZ] [rn* l] [,SSB] [, SLBJ [, JNB] [, SZB] [, RSSJ oommont>

The Alter-Skip instructions must be given in the order shown.
At least one and up to eight are included in one statement. In­
structions referring to the A-register may not be combined in
the same statement with those referring to the B- register.
When two or more skip functions are combined in a single
operation, a skip occurs if any one of the conditions exists.
If a word with RSS also includes both SSA and SLA (or SSB and
SLB) a skip occurs only when sign and least significant bit are
both set (1).

The input/ output instructions allow the user to transfer data
to and from an external device via a buffer, to enable or dis­
able external interrupt, or to check the status of 1/0 devices
and operations. A subset of these instructions permits check­
ing for an arithmetic overflow condition.

Input/ Output instructions require the designation of a select
code, sc, which indicates one of 64 input/ output channels or
functions. Each channel consists of a connect/ disconnect con­
trol bit, a flag bit, and a buffer of up to 16 bits. The setting
of the control bit indicates that a device associated with the
channel is operable. The flag bit is set automatically when
transmission between the device and the buffer is completed.
Instructions are also available to test or clear the flag bit for
the particular channel. If the interrupt system is enabled,
setting of the flag causes program interrupt to occur; control
transfers to the interrupt location related to the channel.

3-7

Input/Output

3-8

Expressions used to represent select codes (channel numbers)
must have a value of less than 26. The value specifies the de­
vice or operation referenced. Instructions which transfer data
between the A or B register and a buffer, access the Switch
register when sc = 1. The character C appended to such an
instruction clears the overflow bit after the transfer from the
Switch register is complete.

Prior to any input/ output data transmission, the control bit is
set. The instruction which enables the device may also trans­
fer data between the device and the buffer.

label I STC I sc [, C] I comments

Set I/O control bit for channel specified by sc. STC transfers
or enables transfer of an element of data from an input device
to the buffer or to an output device from the buffer. The exact
function of the STC depends on the device; for the 2752A Tele­
printer, an STC enables transfer of a series of bits. If sc = 1,
this statement is treated as NOP. The C option clears the flag
bit for the channel.

label I CLC I sc [, C] I comments

Clear I/O control bit for channel specified by sc. When the
control bit is cleared, interrupt on the channel is disabled,
although the flag may still be set by the device. If sc = 0,
control bits for all channels are cleared to zero; all devices
are disconnected. If sc = 1, this statement is treated as NOP.

label I LIA I sc [, C] I comments

Load into A the contents of the I/O buffer indicated by sc.

label I LIB I sc [, C] I comments

Load into B the contents of the I/O buffer indicated by sc.

label I MIA I sc [, C] I comments

Merge (inclusive "or") the contents of the I/O buffer indicated
by sc into A.

Overflow

label I MIB I sc [, C] l comments

Merge (inclusive "or") the contents of the I/O buffer indicated
by SC into B.

label \ OTA \ sc [, C] I comments

Output the contents of A to the I/O buffer indicated by sc.

label I OTB I sc [, C] I comments

Output the contents of B to the I/O buffer indicated by sc.

label I STF I SC I comments

Sets the flag bit of the channel indicated by sc. If sc = O, STF
enables the interrupt system. A sc code of 1 causes the over­
flow bit to be set.

label I CLF I SC I comments

Clear the flag bit to zero for the channel indicated by sc. If
sc = 0, CLF disables the interrupt system. If sc = 1, the
overflow bit is cleared to zero.

label I SFC I SC I comments

Skip the next instruction if the flag bit for channel sc is clear.
If sc = 1, the overflow bit is tested.

label I SFS SC I comments

Skip the next instruction if the flag bit for channel sc is set.
If sc = 1, the overflow is tested.

In addition to the use of a select code of 1, the overflow bit
may be accessed by the following instructions:

3-9

Halt

3-10

label I CLO I comments

Clear the overflow bit.

label I STO I comments

Set overflow bit.

label I SOC I [C] I comments

Skip the next instruction if the overflow bit is clear. The C
option clears the bit after the test is performed.

label I SOS [CJ comments

Skip the next instruction if the overflow bit is set. The C
option clears the bit after the test is performed.

The c option is identified by the sequence ''space C space" I
following either ''SOC" or "SOS". Anything else is treated
as a comment.

label I HLT I{[sc [, CJJ}I comments
[c J

Halt the computer. The machine instruction word is displayed
in the T-Register. If the C option is used, the flag bit associ­
ated with channel sc is cleared.

If neither the select code nor the C option is used, the com­
ments portion must be omitted.

3.4
EXTENDED
ARITHMETIC
UNIT

Ten instructions may be used with the EAU version of
the Assembler or Extended Assembler to increase the
Computer's overall efficiency. The Computer must include
the Extended Arithmetic Unit option to obtain the resulting
increase in available core storage and decrease in program
run time.

label J MPY jm(, I] l
/ lit f

comments

The MPY instruction multiplies the contents of the A-Register
by the contents of m. The product is stored in registers B
and A. B contains the sign of the product and the 15 most
significant bits; A contains the least significant bits.

label DIV j m[, I] l
I ut)

comments

The DIV instruction divides the contents of registers B and A
by the contents of m. The quotient is stored in A and the
remainder in B. Initially B contains the sign and the 15 most
significant bits of the dividend; A contains the least significant
bits.

label DLD jm[, I] l
I lit f

comments

The DLD instruction loads the contents of locations m and
m + 1 into registers A and B, respectively.

label DST m['I] comments

The DST instruction stores the contents of registers A and
B in locations m and m + 1, respectively.

MPY, DIV, DLD, DST results in two machine words: a word
for the instruction code and one for the operand.

3-11

3-12

The above four instructions are available without the Extended
Arithmetic Unit option as software subroutines. t As a part
of the Extended Arithmetic option, they require less core
storage and can be executed in less time.

The following seven instructions can be used only on machines I
with the Extended Arithmetic Unit. These shift-rotate instruc-
tions provide the capability to shift or rotate the B- and A­
Registers n number of bit positions, where 1 s n $ 16.

label ASR n comments

The ASR instruction arithmetically shifts the B- and A­
Registers right n bits. The sign bit (bit 15 of B) is extended.

label ASL n comments

The ASL instruction arithmetically shifts the B- and A­
Register left n bits. Zeroes are placed in the least significant
bits. The sign bit (bit 15 of B) is unaltered. The overflow bit
is set if bit 14 differs from bit 15 before each shift, otherwise,
exit with Overflow bit cleared.

label RRR n comments

The RRR instruction rotates the B- and A-Registers right n
bits.

label RRL n comments

The RRL instruction rotates the B- and A-Registers left n
bits.

label LSR n comments

The LSR instruction logically shifts the B- and A-Registers
right n bits. Zeroes are placed in the most significant bits.

label LSL n comments

The LSL instruction logically shifts the B- and A-Registers
left n bits. Place zeroes into the least significant bits.

t See ARITHMETIC SUBROUTINE CALLS, Section 4. 7.

SWP

Exchange the contents of the A- andB-Registers. The contents
of the A-Register are shifted into the B-Register and the
contents of the B-Register are shifted into the A-Register.

3-13

4.1
ASSEMBLER
CONTROL

PSEUDO INSTRUCTIONS 4

The pseudo instructions control the Assembler, establish pro­
gram relocatablility, and define program linkage as well as
specify various types of constants, blocks of memory, and
labels used in the program. With the Extended Assembler,
pseudo instructions also control listing output.

The Assembler control pseudo instructions establish and alter
the contents of the base page and program location counters,
and terminate assembly processing. Labels may be used but
they are ignored by the Assembler. NAM records produced
by the Assemblers are accepted by the Real-Time, DOS, and
BCS Loaders.

I NAM I [name] 1 comments

NAM defines the name of a relocatable program. A relocatable
program must begin with a NAM statement. t A relocat­
able program is assembled assuming a starting location of
zero (i. e., zero relative). The name may be a symbol of one
to five alphanumeric characters the first of which must be
alphabetic or a period. The program name is printed on the
list output. The name is optional and if omitted, the comments
must be omitted also.

I ORG I m I comments

The ORG statement defines the origin of an absolute program,
or the origin of subsequent sections of absolute or relocatable
programs.

An absolute program must begin with an ORG statement. t
The operand m, must be a decimal or octal integer specifying
the initial setting of the program location counter.

tThe Control Statement, the HED instruction, and comments
may appear prior to the NAM or ORG statements. If the
Control Statement (ASMB, ...) does not appear on tape pre­
ceding the program it must be entered from the Teleprinter.

4-1

I

l

FI

4-2

ORG statements may be used elsewhere in the program to
define starting addresses for portions of the object code. For
absolute programs the Operand field, m, may be any expres­
sion. For relocatable programs, m, must be a program
relocatable expression; it may not be base page or common
relocatable or absolute. An expression is evaluated modulo
215 • Symbols must be previously defined. All instructions
following an ORG are assembled at consecutive addresses
starting with the value of the operand.

I ORR I comments

ORR resets the program location counter to the value existing
when an ORG or ORB instruction was encountered.

Example:

.... , Operation Qpe...,d Comments

' 10 15 20 " JO " 40 " 50

NAM RS ET SET PLC TO VA LUE OF ZE RO, AS SI GNI
RST ADA RS ET AS NA !ME OF PR OG RA M. I

I

I
I

I
I

I
I

ADA CT RL AS SU ME PLC AT FI RS T+ 22 80.
ORG FI RS T+ 29 26 SA VE PLC ~A LUE OF FI RS T+ 22 80

AND SET PLC TO FI RS iI + 29 26.

JMP EV EN +1 AS SU ME PLC AT FI RS T+ 30 04
ORR RE SET PLC TO FI RS T+ 22 80. I

I

I
I

I
I

I
I

I
I

'

More than one ORG or ORB statement may occur before an
ORR is used. If so, when the ORR is encountered, the pro­
gram location counter is reset to the value it contained when
the first ORG or ORB of the string occurred.

Example:

lab&I Operation

1 5 10
Operand

15

NAM RSET
FIRST ADA

Comment\
40 45

SET PLC TO ZERO

LDA YZ ASSUME PLC AT FIRST+2250
l-l-+-+-+-+-~O~R~Gi--f-JFHiriRHS~Tri+~2~5~0~0riS4E~T~~PL4C"+-+T~O""HF~I~R~S~T~+~2~5~0~0:++++++-t--1-++~

I I

LDB ERA ASSUME PLC AT FIRST+2750
ORG FIRST+2900 SET PLC TO FIRST+2900

CLE ASSUME PLC AT FI 1RSTl+l29201
ORR RESET PLC tO FIRST+2250

l
T I

If a second ORR appears before an intervening ORG or ORB,
the second ORR is ignored.

ORR cannot be used to reset the location counter for locations
in the base page that are governed by the ORB statement.

I ORB I comments

ORB defines the portion of a relocatable program that must be
assigned to the base page by the Assembler. The Label field
if given is ignored, and the statement requires no operand. All
statements that follow the ORB statement are assigned con­
tiguous locations in the base page. Assignment to the base
page terminates when the Assembler detects an ORG, ORR, or
END statement.

When more than one ORB is used in a program. Each ORB
causes the Assembler to resume assigning base page locations
at the address following the last assigned base page location.

An ORB statement in an absolute program has no significance
and is flagged as an error.

4-3

I

IA

4-4

Example:
Lobo I Operi:1tlon Operand Comments

5 10 15 20 25 30 " " 45 5-0

NAI~ PR OG AS SI GN ZE RO AS RELATIVE STA R]] IN G'
LO CA TI ON FOR PR OG RA M PR OG · . .

ORB AS SI GN ALL FO LL o~ ING ST AT EM EN TS
TO BA SE p~ GE.

REA BSS 100 .
.

ORR co NT IN UE ~A IN PR OG R~ M·

.
ORB RE SU ME AS SI GN ME NT AT NE XT . AV AI LA BLE LO CA TI ON IN BA SE PA GE.

ORR co NT IN UE MA IN PR OG RA M.

I

I
I

I
I

I

The IFN and IFZ pseudo instructions cause the inclusion of
instructions in a program provided that either an "N" or "Z",
respectively, is specified as a parameter fortheASMB control
statement. t The IFN or IFZ instruction precedes the set of
statements that are to be included. The pseudo instruction XIF
serves as a terminator. If XIF is omitted, END acts as a
terminator to both the set of statements and the assembly. IFN
and IFZ may be used only when the source program is trans­
lated by the Extended Assembler which is provided for SK or
larger machines.

! IFN comments

XIF

All source language statements appearing between the IFN and
the XIF pseudo instructions are included in the program if the
character "N" is specified on the ASMB control statement.

t See CONTROL STATEMENT, Section 5. 1.

All source language statements appearing between the IFZ and
the XIF pseudo instructions are included in the program if the
character "Z" is specified on the ASMB control statement.

IFZ comments

XIF

When the particular letter is not included on the control state­
ment, the related set of statements appears on the Assembler
output listing but is not assembled.

Any number of IFN-XIF and IFZ-XIF sets may appear in a
program, however, they may not overlap. An IFZ or IFN
intervening between an IFZ or IFN and the XIF terminator
results in a diagnostic being issued during compilation; the
second pseudo instruction is ignored.

Both IFN-XIF and IFZ-XIF pseudo instructions may beused in
the program; however, only one type will be selected in a single
assembly. Therefore, if both characters "N" and "Z" appear
in the control statement, the character which is listed last will
determine the set of coding that is to be included in the program.

Example:
Label Operation

1 5 10
OP" rand

15

NA/M TRAVL

I FZ
LDA CAR
CIMA sz A
J[MP NO. GO
L DA MI LES
DIV SPEED
ST A GAS
XIF

IFN
LDA PLANE
CMA SZA
JMP NO.GO
LDA TIME
CPA COST
XIF

NO. GO HLT 77

END

Comments
20 40 45

4-5

I

TI
TI

4-6

Program TRA VL will perform computations involving either
or neither CAR or PLANE considerations depending on the pres­
ence or absence of Z or N parameters in the Control Statement.

Example:

Label Op11ratian Operand Cornmenh

' 10 15 20 25 30 " '° 45 " NAM ~A GE I
I . I
I . I
I .

JSB HO UR
MPY TI ME1
I FZ
JSB ov T I]M
MPY TI ME2 .
.
.

ME 1 DEC 40
ME2 BSS 1

END

Program WAGES computes a weekly wage value. Overtime
consideration will be includedintheprogramif"Z" is included
in the parameters of the Control Statement.

The REP pseudo instruction, available in the ExtendedAssem­
bler only, causes the repetition of the statement immediately
following it a specified number of times.

label REP n comments

The statement following the REP in the source program is
repeated n times. The n may be any absolute expression.
Comment lines (indicated by an asterisk in character position 1)
are not repeated by REP. If a comment follows aREP instruc­
tion, the comment is ignored and the instruction following the
comment is repeated.

A label specified in the REP pseudo instruction is assigned to
the first repetition of the statement. A label cannot be part of
the instruction to be repeated; it would result in a doubly defined
symbol error.

Example:

TRIPL
CLA
REP
ADA

3
DATA

The above source code would generate the following:

CLA

TRIPL ADA
ADA
ADA

Example:

FILL REP
NOP

DATA
DATA
DATA

lOOB

Clear the A-Register;
the content of DATA
is tripled and stored
in the A-Register.

The example above loads 1008 memory locations with the NOP
instruction. The first location is labeled FILL.

Example:

REP 2
MPY DATA

The above source code would generate the following:

MPY DATA
MPYDATA

I END I [m] comments

This statement terminates the program; it marks the physical
end of the source language statements. The Operand field, m,
may contain a name appearing as a statement label in the cur­
rent program or it may be blank. If a name is entered, it
identifies the location to which the BCS loader transfers con­
trol after a relocatable program is loaded. A NOP should be
stored at that location; the loader transfers control via a JSB.

If the Operand field is blank, the Comments field must be blank
also, otherwise, the Assembler attempts to interpret the first
five characters of the comments as the transfer address
symbol.

The Label field of the END statement is ignored.

4-7

I

4.2
OBJECT PROGRAM
LINKAGE

4-8

Linking pseudo instructions provide a means for communica­
tion between a main program and its subroutines or among
several subprograms that are to be run as a single program.
These instructions maybe used only in a relocatable program.

The Label field of this class is ignored in all cases. The
Operand field is usually divided into many subfields, separated
by commas. The first space not preceded by a comma or a
left parenthesis terminates the entire field.

lcoM I name 1 [(size 1)] [,name 2 [(size2)], ••• ,name 0 [(size 0)]] lcomments

COM reserves a block of storage locations that may be used
in common by several subprograms. Each name identifies a
segment of the block for the subprogram in which the COM
statement appears. The sizes are the number of words allotted
to the related segments. The size is specified as an octal or
decimal integer. If the size is omitted, it is assumed to be
one.

Any number of COM statements may appear in a subprogram.
Storage locations are assigned contiguously; the length of the
block is equal to the sum of the lengths of all segments named
in all COM statements in the subprogram.

To refer to the common block, other subprograms must also
include a COM statement. The segment names and sizes may
be the same or they may differ. Regardless of the names and
sizes specified in the separate subprograms, there is only one
common block for the combined set. It has the same relative
origin; the content of the nth word of common storage is the
same for all subprograms.

I

PR

PR

Example:
Label Op1tration Ofl""'nd

' 10 " 20 " OG1 COM AD DR 1 (5) ,A DD R2 (1 0)

LOA ~D DR 2+1 PI CK UP
AD DR 2 +1 .

END

.
OG2 COM AA A(2) 'A AB (2) ' AA CI

LOA AA D+1 PI CK UP
AA D+ 1 .

Organization of common block:

PROGl
name

ADDRl

ADDR2

ADDR3

PROG2
name

AAA

AAB

AAC
AAD

JO " 1A DD R3 (1 0)

SE co ND lY_,10 RD

AA D(20)

SE co ND ~o RD

Common
Block

(location 1)
(location 2)
(location 3)
(location 4)
(location 5)
(location 6)
(location 7)
(location 8)
(location 9)
(location 10)
(location 11)
(location 12)
(location 13)
(location 14)
(location 15)
(location 16)
(location 17)
(location 18)
(location 19)
(location 20)
(location 21)
(location 22)
(location 23)
(location 24)
(location 25)

Commenh
40 .,

"

OF SE GM ENT

OF SE GM ENT

4-9

4-10

The LDA instructions in the two subprograms each refer to
the same location in common storage, location 7.

The segment names that appear in the COM statements can be
used in the Operand fields of DEF, ABS, EQU, or any Memory
Reference statement; they may not be used as labels elsewhere
in the program.

The loader establishes the or1gm of the common block; the
origin cannot be set by the ORG or ORB pseudo instruction.
All references to the common area are relocatable.

Two or more subprograms may declare common blocks which
differ in size. The subprogram that defines the largest block
must be the first submitted for loading.

I ENT I name 1 [, name2' ... , namen] I comments

ENT defines entry points to the program or subprogram. Each
name is a symbol that is assigned as a label for some machine
operation in the program. Entry points allow another sub­
program to refer to this subprogram. All entry points must be
defined in the program.

Symbols appearing in an ENT statement may not also appear
in EXT or COM statements in the same subprogram.

The Label field of the ENT instruction is ignored.

I EXT I name 1 [, name2' ... , namen] I comments

This instruction designates labels in other subprograms which
are referenced in this subprogram. The symbols. must be de­
fined as entry points by the other subprograms.

The symbols defined in the EXT statement may appear in
Memory Reference statements, the EQU or DEF pseudo in­
structions. An external symbol must appear alone; it may
not be in a multiple term expression or be specified as
indirect. Ref er enc es to external locations are processed by
the BCS loader as indirect addresses linked through the base
page.

4.3
ADDRESS AND
SYMBOL
DEFINITION

Symbols appearing in EXT statements may not also appear in
ENT or COM statements in the same subprogram. The label
field is ignored.

Example:

Lobe(Operation

l 5 10

PROGA NOP
Operand ,,

L DA SAMO

JMP SAND
EXT SAMO,SAND
ENT PR OGA
END

PROGB NOP

SAMO OCT 767
SAND STA SAMO

Comment.
40 45

SAMO AND SAND ARE REFERENCED IN I
PROGA, BUT ARE ACTU~LLY T
LOCATIONS IN PROGB.

j

f-4-+-+--l-l--1-+-+-1-+++-++-+++++++++++-++-++-H41-+-l-+-1-+-1-+-l-+-l-+-1-1--1-+-l-+-IH~

ENT SAMD1SAND

JSB PROGA

EXT PROGA

END

I
I

The pseudo operations in this group assign a value or a word
location to a symbol which is used as an operand elsewhere in
the program.

4-11

4-12

I

xc

label I DEF I m [,I] I comments

The address definition statement generates one word of mem­
ory as a 15-bit address which may be used as the object of an
indirect address found elsewhere in the source program. The
symbol appearing in the label is that which is referenced; it
appears in the Operand field of a Memory Reference instruc­
tion.

The operand field of the DEF statement may be any positive ex­
pression in an absolute program; in a relocatable program it
may be a relocatable expression or an absolute expression with
a value of less than lOOa. Symbols that do appear in the Oper­
and field, may appear as operands of EXT or COM statements,
in the same subprogram and as entry points in other sub­
programs.

The expression in the Operand field may itself be indirect and
make reference to another DEF statement elsewhere in the
source program.

Example:

Lobel Operorion Oi>"mnd Comment.
5 JO 15 20 25 "" J5 '° '5 50

NAM PR OGN ZE RO -R EL AT IVE ST ART OF PR OG RA M. I
I

EXT SI NE ,s ORT T:
COM SC MA (2 0) IS CM 8 (5 0) I

I

I
I

I
I

SI
t

JSB SI NE EX EC UTE NE RO UT I NE I I
I

t
I

I
I

L DA xc MA I I PI CK UP co MM ON . h'! ORD IN DI RE'C TL y, I
I

I
I . I
I

MA DEF SC MA SC M~ rs A 1 5 -8 IT AD DR ES s. I
I

I

JSB XS Qd GET SQ UA RE RO OT us ING T]YI 0- LE VE L
XSQ DEF XS QR I I IN DI RE CT AD DR ES S1I NG.

I

!
XS QR DEF SQ RT SQ RT IS A 1 5 -B IT AD DR ES s. I

END PR OGN I
I

I I
I

l 1 -+
Jl

I
'

I I
' I '

I

LO

The DEF statement provides the necessary flexibility to
perform address arithmetic in programs which are to be
assembled in relocatable form. Relocatable programs should
not modify the operand of a memory reference instruction.

In the example below, if TBL and LDTBL are in different
pages, the BCS Loader processes TBL as an indirect address
linked through the base page. The ISZ erroneously increments
the loader provided reference to the base page rather than the
value of TBL.

Example:

Lobel Oper<1ticn Operand Comment.
5 10 15 "' 25 30 35 " 45 5-0

TBL LOA TBL

I SZ LO TBL .
I

TBL BSS 100

Assumingthe loader might assign absolute locations compara­
ble to the following octal values:

Page

(O)

(1)

(1)

(2)

Loe

(700)

(200)

(300)

(0)

Opcode

DEF

LDA

ISZ

Reference

4000

(0) 700(1)

(1) 200

(TBL)

4-13

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I
I

I

4-14

I

IT
LO

It can be seen that the ISZ instruction would increment the
quantity 700 rather than the address of the table (40008).

The following assures correct address modification during
program execution.

Example:

"'""' Operation Operand Cotrvnent5

' 10 " 20 2S 30 3S "' 4S so

BL DEF TBL
TBL LOA IT BL I I

.
ISZ IT BL .
.

TBL BSS 1 00

This sequence might be stored by the loader as:

Page

(1)

(1)

(1)

(2)

Loe

(200)

(201)

(300)

(0)

Opcode

DEF

LDA

ISZ

Reference

4000

200(1)

(1) (200)

(TBL)

I

AB

The value of 4000 is incremented; each execution of LDA will
access successive locations in the table.

label I ABS I m I comments

ABS defines a 16-bit absolute value to be stored at the location
represented by the label. The Operand field, m, may be any
absolute expression; a single symbol must be defined as abso­
lute elsewhere in the program.

Example:

Lobel Operation o,.,..,.,
Commants

' JO " 20 " 30 35 40 " 50

EQU 35 AS SI G NS THE VA LUE OF 35
TO THE SY MB OL AB

I
I

I
I

I
I

[M3 5 l.BjBS -AB M35 co NT AI NS -3 5. I
I

~B P35 ABS P35 co NT AI NS 35.
P70 ABS AB +AB P70 co NT AI NS 70.
P30 ABS AB -5 P30 co NT AI NS 30.

label I EQU I m I comments

The EQU pseudo operation assigns to a symbol a value other
than the one normally assigned by the program location coun­
ter. The symbol in the Label field is assigned the value
represented by the Operand field. The Operand field may
contain any expression. The value of the operand may be
common, base page or program relocatable as well as abso­
lute, but it may not be negative. Symbols appearing in the
operand must be previously defined in the source program.

I

'
I
I

I
I

I
I

I
I

I

The EQU instruction may be used to symbolically equate two
locations in memory; or it may be used to give a value to a
symbol. The EQU statement does not result in a machine
instruction.

4-15

Examples:

Label OperatiM Operand Comments
I 5 10 15 20 25 ., 35 40 45 50

NAM FAM I
I

I
I

I
I

I
I

J3 DEF I
I

I
I

I
I . I I
I

LDA J3 THE SY MB OLS JF OUR AND J 3 +1 BO TH I
I

ADA ONE ID EN TI FY THE SA ME LO CA TI ON. THE I
I

STA J3 +1 AND OP ER AT ION IS PE RF OR MED ON I
I

JF OUR EQU J3 +1 TH IS LO CA TI ON. I I
I

I
I

I
I

I
I

M~H AND JF OUR I I

l I
I
I

I
i I

I
I

Examples:

Lobel Operation Operand Comments
I 5 10 15 20 25 30 35 40 45 50

NAM ST OTB

COM TA BL A (1 ~ l DE FI NES A 1 9J ORD TA BL EI TA BL A .

. I

TA BLB EQU TA BL A+5 NA MES WO RDS 6 TH RO UGH 1¢ OF
TA BLA AS TA BL B'.

I

.
LOA TA BL B +1 LO ADS co NT EN TS OF 7TH WO RD

co MM ON IN TO A. THE ST AT EM ENT L DA
TA BL A+6 '11_0 ULD PE RF ORM THE SA ME I

I

OP ER AT ION I
I

I
I

NAM REG I
I

l
I
I

I

t

A EQU 9J DE FI NES SY MB OL A AS 9J (L oc AT ION
B EQU 1 OF A- RE GI ST ER) I AND SY MB OL B AS

1 (LO CA TI ON 01F B- RE GI ST ER).

LOA B LO ADS co NT EN TS OF B- RE GI ST ER
IN TO A- RE GI ST ER· l

I I

I I '

4-16

4.4
CONSTANT
DEFINITION The pseudo instructions in this class enter a string of one or

more constant values into consecutive words of the object pro­
gram. The statements may be named by labels so that other
program statements can refer to the fields generated by them.

label I ASC I n, <2n characters> I comments

ASC generates a string of 2n alphanumeric characters in
ASCII code into n consecutive words. t One character is right
justified in each eight bits; the most significant bit is zero.
n may be any expression resulting in an unsigned decimal
value in the range 1 through 28. Symbols used in an expres­
sion must be previously defined. Anything in the Operand field
following 2n characters is treated as comments. If less than 2n
characters are detected before the end-of-statement mark,
the remaining characters are assumed to be spaces, and are
stored as such. The label represents the address of the first
two characters.

Example:

"

causes the following:

ALPHABETIC
15 14 8 7 6 0

TTYP~ A

~
B

I
c D
E A

EQUIVALENT IN OCTAL NOTATION
15 14 8 7 6 0

TTYP~ ~ 0 1

~l
0 2

I
0 3 0 4

0 5 4 0

t To enter the code for the ASCII symbols which perform some
action (e.g., @ and @),the OCT pseudo instruction
must be used.

4-17

4-18

label DEC I comments

DEC records a string of decimal constants into consecutive
words. The constants may be either integer or real (floating
point), and positive or negative. If no sign is specified, posi­
tive is assumed. The decimal number is converted to its
binary equivalent by the Assembler. The label, if given,
serves as the address of the first word occupied by the
constant.

A decimal integer must be in the range of O to 2 15 -1; it may
assume positive, negative, or zero values. It is converted
into one binary word and appears as follows:

15 14 0

s1GN.--s-j s I number

Examples:

Label Operation Operand Conmen I$

1 5 10 15 20 25 ,. -40 "45

I N T D E C 5 Olt + 3 2 81..t - 3 0 0

causes the following (octal representation)

15 14 0

INT 0 0 0 0 6 2

0 0 0 5 1 0

1 7 7 3 2 4

A floating point number has two components, a fraction and
an exponent. The exponent specifies the power of 10 by which
the fraction is mutliplied. The fraction is a signed or un­
signed number which may be written with or without a decimal
point. The exponent is indicated by the letter E and follows a
signed or unsigned decimal integer. The floating point number
may have any of the following formats:

±n. n ±n. ±. n ±n. nE±e ±. nE±e ±n. E±e ±nE±e

I

The number is converted to binary, normalized (leading bits
differ), and stored in two computer words. If either the frac­
tion or the exponent is negative, that part is stored in two's
complement form.

15 14 0

Word 1 fraction (most significant bits)

~--binary point
sign of fraction

15 8 7 1 0

Word 2 I fraction I exponent :±] I
sign of exponent

The floating point number is made up of a 7-bit exponent with
sign and a 23-bit fraction with sign. The number must be in
the approximate range of 10-aa through 1o+aa and zero.

Examples:

Label Operation Operand Comments

' 10 " 20 " 30 " "" " " DEC .4 5E1 I
I

DEC 45 .0 OE - 1 I
I

DEC 45 00 E-3 I
I

DEC 4.5 I
I

I
I

I
I

are all equivalent to

. 45X101

and are stored in normalized form as:

15 14 0

lol1 o o 1 o o o o o o o o o o ol

15 8 7 1 0

loo o o o o o ojo o o o o 1 1 lol

4-19

4-20

Lobol
I

0f191'<1tion o,....,..
Comments

5 10 15 20 25 ,. 35 40 " 50

DEC 69 51. 14 0 OE -4

are stored as:

1 o o o o 1 o 1 ol

lo o 1 1 o 1 lo o o o o o olol

lo I 1 o 1 o o o 1 1 o o , , I
1 1 00111

label I DEX I dl [,d2 , ... , dn] I comments

DEX, for the Extended Assembler, records a string of
extended precision decimal constants into consecutive words
within a program. Each such extended precision constant
occupies three words as shown below:

Word 1 s
m Mantissa

15 14 0

Word 2

Word 3 ------)• Exponent Se

15 8 7 1 0

I
I

I
I

I
I

!

Legend:

*NOTE:

S = Sign of the mantissa (fraction)
m

S = Sign of the Exponent* e

a value is entered only if normalizing of the
Mantissa is needed.

An extended precision floating point number is made up
of a 39-bit Mantissa (fraction) and sign and a 7-bit ex­
ponent and sign. The exponent and sign will be zero if
the Mantissa does not have to be normalized.

This is the only form used for DEX. All values, whether
they be floating point, integer, fraction, or integer and
fraction, will be stored in three words as just described.
This storage format is basically an extension of that used
for DEC, as previously described:

Examples:

DEX 12,-.45

are stored as:

WORD 1 WORD 2 WORD 3

0110000000000000 0000000000000000 0000000000001000

WORD 1 WORD 2 V\'ORD 3

1000110011001100 1100110011001100 100110111111111

4-21

4-22

1

label OCT I 01 [, 02' ••• , On] I comments

OCT stores one or more octal constants in consecutive words
of the object program. Each constant consists of one to six
octal digits (0 to 177777). If no sign is given, the sign is
assumed to be positive. If the sign is negative, the two's com­
plement of the binary equivalent is stored. The constants are
separated by commas; the last constant is terminated by a
space. If less than six digits are indicated for a constant, the
data is right justified in the word. A label, if used, acts as
the address of the first constant in the string. The letter B
must not be used after the constant in the Operand field; it is
significant only when defining an octal term in an instruction
other than OCT.

Examples:

Lobol Operation o Comment.

' 10 " 20 " 30 " 40 " " OCT t r6 I

OCT -2
NUM OCT 17 7Lt_ 2!6 4!6 5Lt_ -36

OCT 51 Lt_7 77 77 Lt_ - 1 Lt_ 10 1~1
OCT 10 76 42 LI_ 1 77 077
OCT 19 76 IL LE GA L : co NT Al NS
OCT -1 77 777 DI G IC! 9
OCT 1778 IL LE GA L: co NT AI NS

CH AR AC TER B

The previous statements are stored as follows:

1514

0 0 0

1 7 7

NUM 0 0 0

0 2 0

1 7 7

0 0 0

0 7 7

1 7 7

0 1 0

t 0 7
1 7 7

x x x
0 0 0

x x x

0 0

7 7

1 7

4 0

7 4

0 5

7 7

7 7

1 0

6 4
0 7

x x
0 0

x x

0

6

7

5

2

1

7

7

1

2

7

x ,
x

0

[!
THE RESULT OF
ATTEMPTING TO
DEFINE AN ILLEGAL
CONSTANT IS UN­
PREDICTABLE

,.
I
I

I
I

I
I

I

4.5
STORAGE
ALLOCATION

4.6
ASSEMBLY
LISTING
CONTROL

The storage allocation statement reserves a block of memory
for data or for a work area.

label BSS m comments

The BSS pseudo operation advances the program or base page
location counter according to the value of the operand. The
Operand field may contain any expression that results in a
positive integer. Symbols, if used, must be previously de­
fined in the program. The label, if given, is the name as­
signed to the storage area and represents the address of the
first word. The initial content of the area set aside by the
statement is unaltered by the loader.

Assembly listing control pseudo instructions allow the user to
control the assembly listing output during pass 2 or 3 of the
assembly process. These pseudo instructions may be used only
when the source program is translated by the Extended Assem­
bler provided for SK or larger machines (8, 192-word memory
or larger).

UNL comments

Output is suppressed from the assembly listing, beginning with
the UNL pseudo instruction and continuing for all instructions
and comments until either an LST or END pseudo instruction is
encountered. Diagnostic messages for errors encountered by
the Assembler will be printed, however. The source statement
sequence numbers (printed in columns 1-4 of the source
program listing) are incremented for the instructions skipped.

4-23

4-24

LST comments

The LST pseudo instruction causes the source program listing,
terminated by a UNL, to be resumed.

A UNL following a UNL, a LST following a LST, and a LST not
preceded by a UNL are not considered errors by the Assembler.

SUP comments

The SUP pseudo instruction suppresses the output of additional
code lines from the source program listing. Certain pseudo
instructions, because they result in using subroutines, generate
more than one line of coding. These additional code lines are
suppressed by a SUP instruction until a UNS or the END pseudo
instruction is encountered. SUP will suppress additional code
lines in the following pseudo instructions:

ASC
OCT
DEC

DIV
DLD
DST

FAD
FDV
FMP

FSB
MPY

The SUP pseudo instruction may also be used to suppress the
listing of literals at the end of the source program listing.

UNS comments

The UNS pseudo instruction causes the printing of additional
coding lines, terminated by a SUP, to be resumed.

A SUP preceded by another SUP, UNS preceded by UNS, or
UNS not preceded by a SUP are not considered errors by the
Assembler.

SKP comments

The SKP pseudo instruction causes the source program listing
to be skipped to the top of the next page. The SKP instruction
is not listed, but the source statement sequence number is
incremented for the SKP.

SPC n

The SPC pseudo instruction causes the source program listing
to be skipped a specified number of lines. The list output is
skipped n lines, or to the bottom of the page, whichever occurs
first. The n may be any absolute expression. The SPC
instruction is not listed but the source statement sequence
number is incremented for the SPC.

HED m(heading)

The HED pseudo instruction allows the programmer to specify
a heading to be printed at the top of each page of the source
program listing.

The heading, m, a string of up to 56 ASCII characters, is printed
at the top of each page of the source program listing following
the occurrence of the HED pseudo instruction. If HED is
encountered before the NAM or ORG at the beginning of a
program, the heading will be used on the first page of the
source program listing. A HED .instruction placed elsewhere
in the program causes a skip to the top of the next page.

The heading specified in the HED pseudo instruction will be
used on every page until it is changed by a suceeding HED
instruction.

The source statement containing the HED willnotbe listed, but
source statement sequence number will be incremented.

4-25

I

I

4.7
ARITHMETIC I
SUBROUTINE CALLS The members of this group of pseudo instructions request

the Assember to generate calls to arithmetic subroutines*
external to the source program. These pseudo instructions
may be used in relocatable programs only. The Operand
field may contain al!Y relocatable expression or an absolute
expression resulting in a value of less than 1008.

4-26

label MPY

Multiply the contents of the A-register by the contents of m
or the quantity defined by the literal and store the product in
registers B and A. B contains the sign of the product and the
15 most significant bits; A contains the least significant bits.

I

label DIV I{ =~~r =Bn } I comments I
Divide the contents of registers B and A by the contents of m
or the quantity defined by the literal. Store the quotient in A
and the remainder in B. InitiallyB contains the sign and the 15
most significant bits of the dividend; A contains the least
significant bits.

label FMP comments

Multiply the two-word floating point quantity in registers A
and B by the two-word floating point quantity in locations m
and m+l or the quantity defined by the literal. Store the two­
word floating point product in registers A and B.

label FDV comments

_Divide the two-word floating point quantity in registers A and
B by the two-word floating point quantity in locations m and
m+l or the quantity defined by the literal. Store the two­
word floating point quotient in A and B.

*Not intended for use with DEX formatted numbers. For I
such numbers JSB's to Extended Precision Program Library
routines must be used. See the Program Library Pro­
grammer's Reference Manual, Table of Contents.

label FAD m ~1] comments

=Fn
Add the two-word floating point quantity in registers A and B
to the two-word floating point quantity in locations m and m+l
or the quantity defined by the literal. Store the two-word
floating point sum in A and B.

label FSB comments

=Fn

Subtract the two-word floating point quantity in m and m+l
or the quantity defined by the literal from the two-word
floating point quantity in registers A and B and store the
difference in A and B.

label DLD m [,I] I comments
=Fn

Load the contents of locations m and m+l or the quantity
defined by the literal into registers A and B respectively.

label DST m [,I] I comments

Store the contents of registers A and Bin locations m and m+l
respectively.

Each use of a statement from this group generates two words
of instructions. Symbolically, they could be represented as
follows:

JSB <.arithmetic pseudo operation>
DEF m [,I]

An EXT<. arithmetic pseudo operation> is implied preceding
the JSB operation.

In the above operations, the Overflow bit is set when one of
the following conditions occurs:

Integer overflow
Floating point overflow or underflow
Division by zero.

Execution of any of the subroutines alters the contents
of the E-Register.

4-27

5.1
CONTROL
STATEMENT

ASSEMBLER INPUT AND OUTPUT 5

The Assembler accepts as input a paper tape containing a
control statement and a source language program. A relocat­
able source language program may be divided into several
subroutines; the designation of these elements is optional.
The output produced by the Assembler may include a punched
paper tape containing the object program, an object program
listing, and diagnostic messages.

The control statement specifies the output to be produced:

ASMB, p1, p2, ••• , Pn

"ASMB," is entered in positions 1-5. Following the comma
are one or more parameters, in any order, which define the
output to be produced. The control statement must be termi­
nated by an end-of-statement mark, (QB) (LF).

The parameters may be any legal combination of the follow­
ing starting in position 6:

A Absolute: The addresses generated by the Assembler
are to be interpreted as absolute locations in memory.
The program is a complete entity. It may not include
NAM, ORB, COM, ENT, EXT, arithmetic pseudo
operation statements or literals. The binary output
format is that specified for the Basic Binary loader.

R Relocatable: The program may be located anywhere in
memory. Instruction operands are adjusted as neces­
sary. The binary output format is that specified for
the BCS Relocating loader.

B Binary output: A program is to be punched according
to one of the above parameters.

5-1

5.2
SOURCE PROGRAM

5-2

L List output: A program listing is to be produced either
during pass two or pass three (if binary output se­
lected) according to one of the above parameters.

T Table print: List the symbol table at the end of the
first pass. For the Extended Assembler: List
the symbol table in alphabetic order in three sections:
section 1 for one- character symbols, section 2 for
two- and three- character symbols, and section 3
for four- and five- character symbols.

N Include sets of instructions following the IFN pseudo
instruction.

Z Include sets of instructions following the IFZ pseudo
instruction.

Either A or R must be specified in addition to any combin­
ation of B, L, or T.

If a programmer wishes to assemble Pass 1 of a source
program to check for errors, he can specify only an A or R
to be the sole parameter of the Ass em bl er Control Statement,
executing only Pass 1. (This produces Pass 1 error messages
without listing the program or providing an object tape). Ex­
tended Assembler only.

The Assembler Control Statement must specifically request
Pass 2 operations (list or punch) in order for Pass 2 to
be executed. Lack of Pass 2 option information causes
processing only of Pass 1 errors. If a C option is also
provided, an automatic cross-reference symbol table is
done after Pass 1 when operating in the MTS environment.

The control statement may be on the same tape as the source
program, or on a separate tape; or it may be entered via the
Teleprinter keyboard.

The first statement of the program (other than remarks or
a HED statement) must be a NAM statement for a relocatable
program or an ORG statement for indicating the origin of an
absolute program. The last statement must be an END state­
ment and may contain a transfer address for the start of a
relocatable program. Each statement is followed by an
end-of-statement mark.

5.3
BINARY OUTPUT

5.4
LIST OUTPUT

The punch output is defined by the ASMB control statement.
The punch output includes the instructions translated from the
source program. It does not include system subroutines re­
ferenced within the source program (arithmetic subroutine
calls, . IOC., . DIO., . ENTR, etc.)

Fields of the object program are listed in the following print
columns.

Columns

1-4

5-6

7-11

12

13-18

19

20

21-72

Content

Source statement sequence number gener­
ated by the Assembler

Blank

Location (octal)

Blank

Object code word in octal

Relocation or external symbol indicator

Blank

First 52 characters of source statement.

Lines consisting entirely of comments (i.e., *in column 1) are
printed as follows:

Columns

1-4

5-72

Content

Source statement sequence number

Up to 68 characters of comments

A Symbol Table listing has the following format:

Columns

1-5

6

7

8

9-14

Symbol

Blank

Content

Relocation of external symbol indicator

Blank

Value of the symbol

5-3

5.5
OPERATING
INSTRUCTIONS

5-4

The characters that designate an external symbol or type of
relocation for the Operand field or the symbol are as follows:

Character

Blank

R

B

c
x

Relocation Base

Absolute

Program relocatable

Base page relocatable

Common relocatable

External symbol

At the ~nd of each pass, the following is printed:

** NO ERRORS*
or

** nnnn ERRORS*

The value nnnn, indicates the number of errors.

The exact operating procedures for an assembly depend on the
available hardware configuration. The user should know the
assignment of input/ output equipment, t and memory size be­
fore initiating an assembly.

One possible allocation of equipment might be as follows:

Assembler
Input/ Output

Binary Output

Table Print}

List Output

Source Program

Standard Unit
Designation

Teleprinter Output

List Output

Input

Physical Unit
Assignment

2752A Teleprinter

2753A Tape Punch

2737A Punched Tape
Reader

t As established when configuring the System Input/Output
routines.

Assembly Options If there are two output devices as shown above, there are only
two passes; the Binary and List output are both produced in the
second pass. If only one output device is available, the Binary
output is produced in the second pass; and the List output, in
the third pass.

Operating
Procedures:

Paper Tape
System

The Assembler automatically provides a leader and trailer for
binary output tapes. To suppress this leader and trailer, set
Switch 0 to 1 (up) before the start of Pass 2.

In a three-pass assembly, the diagnostic messages and binary
output are written on the same unit. To prevent these mes­
sages from being punched on the binary tape (they still appear
on the printed output), perform the following steps:

1. Set Switch 15 to 1 (up) before start of Pass 2.

2. When the coi;nputer halts with the T-Register contain­
ing "102055", turn the punch unit off, and press Run.

3. When the computer again halts with the T-Register
containing "102055", turn the punch unit on, and press
Run.

4. At the end of Pass 2, set Switch 15 to 0 (down).

Steps 2 and 3 are repeated, each time a diagnostic message
is produced.

The following procedures indicate the sequence of steps for
assembly of a source program using the paper tape system.

A. Set Teleprinter to LINE and check that all equipment to
be used is operable.

5-5

5-6

B. Load the Assembler using the Basic Binary Loader: t

1. Place Assembler binary tape in the device serving as
the Standard Input unit (e. g., Punched Tape Reader).

2. Set Switch Register to starting address of Basic
Binary Loader (e.g., 007700 for 4K memory, 017700
for SK memory).

3. Press LOAD ADDRESS.

4. Set Loader switch to ENABLED.

5. Press PRESET.

6. Press RUN.

7. When the computer halts and indicates that the As­
sembler is loaded (T-Register contains 102077), set
Loader switch to PROTECTED.

C. Set Switch Register to starting address of Assembler:

D.

E.

F.

G.

H.

I.

1. If control statement is on tape: 1008
2. If control statement is to be entered via Teleprinter: I

1208

Press LOAD ADDRESS.

Place source language tape in unit serving as the Standard
Input unit (e.g., Punched Tape Reader).

Press RUN.

If control statement is not on tape (i.e., starting address =
120 8), enter it via the Teleprinter, following it by@@.

At end of Pass 1 (T-Register contains 102011), the
Symbol Table, if requested, is on the Standard List
Output unit. To execute Pass 2, replace the source
language tape in the Standard Input unit, turn Teleprinter
punch unit ON, and press RUN.

At the completion of each pass, repeat steps E and F. If
a three-pass assembly is being executed, turn Teleprinter
punch on at completion of Pass 1 and off at completion of
Pass 2.

t The appropriate System Input/Output subroutines (drivers)
are assumed to be included with the Assembler.

During the operation of the Assembler, the following halts may
occur:

T-Register Explanation Action

102011 End of first pass. Return to Step E.

102023

102040

102054

102055

102057

102066

102077

Write not enabled (MT) Irrecoverable

End of second of three
passes.
(only with ASR-33)

EOT on MT

Switch 1 selected dur­
ing list to halt before
printing a line. t

Switch 15 option se­
lected to prevent
punching of printed
messages on binary
output tape. (Only
halts with ASR-33).

To perform Pass 3, re­
turn to Step E. To omit
Pass 3 and assemble
another program, re­
move output and return
to Step C.

Press RUN. Assembler
continues without MT;
does not rewind

To continue, press RUN.

See preceding instruc­
tions. {Assembly Op­
tions.)

End of source tape Place next section in
section. unit serving as Standard

Inputunitand press Run.

Control statement er­
ror. Press RUN to
retry.

End of assembly.

Correct control state­
ment and return to Step
E.

Remove output. To as­
semble another pro­
gram, return to Step E.

t To halt Pass 2 at anytime, set Switch 1 up.

5-7

5.6
Object Program
Loading

5-8

Several programs may be assembled consecutively without
reloading the Assembler. If some of the object programs are
to be relocatable and others are to be absolute, the programs
that are to be assembled in relocatable form must be processed
first. If relocatable program assemblies follow absolute pro­
gram assemblies, an "R?" error will be diagnosed and the as­
sembler must be reloaded.

If absolute binary output was specified, the Basic Binary
Loader is used to load the object program tape.

If relocatable binary output was specified, the BCS Relocating
Loader is used to load the object program tape. If the program
refers to other Assembler FORTRAN or ALGOL generated
object programs, these tapes are loaded by the Relocating
Loader at the same time. If the program refers to .DIO.
(the FORTRAN Formatter routine), or if it makes use of
Arithmetic pseudo instructions, the Program Library tape
must be submitted for loading also.

Listed below are summaries of procedures for normal loading
of object programs:t

BASIC BINARY LOADER
OPERATING PROCEDURES SUMMARY

A. Place binary object tape in Standard Input unit.

B. Set Switch Register to starting address of Basic Binary I
Loader

C. Press LOAD ADDRESS.

D. Set Loader switch to ENABLED.

E. Press PRESET.

F. Press RUN.

G. When the computer halts with T-Register containing
102077, set Loader switch to PROTECTED.

H. Set Switch Register to starting address of object
program.

I. Press LOAD ADDRESS.

J. Check that all I/ 0 devices are ready and loaded for
operation of the program.

K. Press RUN.

t For complete details, see Basic Control System Programmer's
Reference Manual.

5.7
ERROR
MESSAGES

BASIC CONTROL SYSTEM LOADER
OPERATING PROCEDURES SUMMARY

A. Load the Basic Control System tape using the Basic
Binary Loader.

B. Set Switch Register to 000002, press LOAD ADDRESS,
and set Switch Register to 000000.

C. Place Assembler generated relocatable object tape in
Standard Input unit.

D. Press RUN. The loader types "LOAD" if it expects
another relocatable or library program.

E. If more than one relocatable object tape is to be loaded,
repeat Steps C and D for each. Otherwise, set Switch
Register to 000004 to load library routines.

F. Place Program Library tape in device serving as
Program Library unit.

G. Press RUN. When the loading operation is complete,
the Loader types "*LST". Press RUN. The Loader
types "*RUN" indicating the program is ready for
execution.

H. Press RUN to initiate execution.

Errors detected in the source program are indicated by a 1-
or 2-letter mnemonic followed by the sequence number and
the first 62 characters of the statement in error. The
messages are printed on the list output device during the
passes indicated:

For Extended Assembler, error listings produced during
Pass 1 are preceded by a number which identifies the
source input file where the error was found. Pass 2 and
3 error messages are preceded by a reference to the
previous page of the listing where an error message was
written. The first error will refer to page "0".

5-9

5-10

Error
Code

cs

DD

Pass

1

1

Description

Control statement error:

a) The control statement contained a
parameter other than the legal set.

b) Neither A nor R, or both A and R were
specified.

c) There was no output parameter (B, T
or L.)

Doubly defined symbol: A name defined in
the symbol table appears more than once
as:

a) A label of a machine instruction.

b} A label of one of the pseudo operations:

BSS
ASC
DEC
DEF
DEX

EQU
ABS
OCT
Arithmetic sub routine call

c) A name in the Operand field of a COM
or EXT statement.

d) A label in an instruction following a
REP pseudo operation.

e) Any combination of the above.

An arithmetic subroutine call symbol ap­
pears in a program both as a pseudo in­
struction and as a label.

I

Error
Code

EN

EN ,0,0,0,0 (symbol)

IF

IL

IL

Pass

1

start
of 2
(top of
page)

1

1

2 or 3

Description

The symbol specified in an ENT
statement has already been de­
fined in an EXT or COM state­
ment.

The entry point specified in an
ENT statement does not appear
in the label field of a machine
or BSS instruction. The entry
point has been defined in the
Operand field of an EXT or
COM statement, or has been
equated to an absolute value.

An IFZ or an IFN follows either
an IFZ or an IFN without an
intervening XIF. The second
pseudo instruction is ignored.

Illegal instruction:

a) Instruction mnemonic cannot
be used with type of assembly
requested in control state­
ment. The following. are ille­
gal in an absolute assembly:

NAM EXT
ENT COM
ORB Arithmetic sub­

routine calls

b) The ASMB statement has an R
parameter, and NAM has been
detected after the first valid
Opcode.

Illegal character: A numeric
term used in the Operand field
contains an illegal character(e.g.
an octal constant contains other
than + , -, or fd - 7).

Illegal instruction: ORB in an
absolute assembly.

5-11

5-12

Error
Code

M

Pass

1, 2 or 3

Description

Illegal operand:

a) An operand is missing for an
Opcode requiring one.

b) Operands are optional and
omitted but comments are in­
cluded for:

END
HLT

c) An absolute expression in one of
the following instructions from a
relocatable program is greater
than 778•

Memory Reference
DEF
Arithmetic subroutine calls

d) A negative operand is used with
an Opcode field other than ABS,
DEX, DEC, and OCT.

e) A character other than I follows
a comma in one of the following
statements:

ISZ
JMP
JSB

ADA
ADB
LDA
LDB
STA
STB

AND
XOR
IOR
CPA
CPB

DEF
Arithmetic
Subroutine

calls

f) A character other than C follows
a comma in one of the following
statements:

STC MIB
CLC OTA
LIA OTB
LIB HLT
MIA

I

Error
Code Pass Description

g) A relocatable expression in the
operand field of one of the follow­
ing:

ABS
REP
SPC

ASR
ASL
RRR

RRL
LSR
LSL

h) An illegal operator appears in an
Operand field (e. g. + or - as the
last character).

i) An ORG statement appearing in a
relocatable program includes an
expression that is base page or
common relocatable or absolute.

j) A relocatable expression contains
a mixture of program, base page,
and common relocatable terms.

k) An external symbol appears in an
operand expression or is followed
by a comma and the letter I.

1) The literal or type of literal is
illegal for the operation code used
(e.g., STA =B7).

m) An illegal literal code has been
used (e.g., LDA =077).

n) An integer expression in one of the
following instructions does not meet
the condition l~n~16. The integer is
evaluated modulo 24.

ASR
ASL

RRR
RRL

LSR
LSL

o) The value of an 'L' type literal is
relocatable.

5-13

5-14

Error
Code

NO

OP

OP

ov

R?

Pass

1, 2, 3

1,2,3

1, 2, or 3

1, 2, or 3

Before 1

Description

No origin definition: The first state­
ment in the assembly containing a
valid opcode following the ASMB con­
trol statement (and remarks and/or
HED, if present) is neither an ORG nor
a NAM statement. If the A parameter
was given on the ASMB statement, the
program is assembled starting at 2000;
if an R parameter was given, the pro­
gram is assembled starting at zero.

Illegal Opcode preceding first
valid Opcode. The statement be­
ing processed does not contain an
asterisk in position one. The
statement is assumed to contain
an illegal Opcode; it is treated as
a remarks statement.

Illegal Opcode: A mnemonic appears
in the Opcode field which is not valid
for the hardware configuration or
assembler being used. A word is
generated in the object program.

Numeric operand overflow: The num­
eric value of a term or expression has
overflowed its limit:

l~N~l6 EAU Shift-Rotate Set

26 -1 Input/ Output, Overflow, Halt

215_1

216_1

Memory Reference (in abso­
lute assembly)
DEF and ABS operands;
data generated by DEC; or
DEX; expressions con -
cerned with program lo­
cation counter.
OCT

An attempt is being made to assemble
a relocatable program following the

· assembly of an absolute program.

Error
Code

so

SY

SY

TP

Pass

1

I, 2, 3

2 or 3

1,2,or3

Description

There are more symbols defined in the
program than the symbol table can
handle.

Illegal Symbol: A Label field contains
an illegal character or is greater than
5 characters. A label with illegal
characters may result in an erroneous
assembly if not corrected. A long
label is truncated on the right to 5
characters.

Illegal Symbol: A symbolic term in
the Operand field is greater than five
characters; the symbol is truncated on
the right to 5 characters.

Too many control statements: A con­
trol statement has been input both on
the teleprinter and the source tape or
the source tape contains more than one
control statement. The Assembler as­
sumes that the source tape control
statement is a label, since it begins in
column 1. Thus, the commas are con­
sidered as illegal characters and the
"label" is too long. The binary object
tape is not affected by this error, and
the control statement entered via the
teleprinter is the one used by the As­
sembler.

An error has occurred while reading
magnetic tape.

5-15

I

I

5-16

Error ,
Code

UN

Pass

1, 2, or 3

Description

Undefined Symbol:

a) A symbolic term in an Operand field
is not defined in the Label field of
an instruction or is not defined in
the Operand field of a COM or EXT
statement.

b) A symbol appearing in the Operand
field of one of the following pseudo
operations was not defined previ­
ously in the source program:

BSS ASC EQU ORG END

HP CHARACTER SET A

ASC II CHARACTER FORMAT

b, 0 0 0 0 I I I I

b6 0 0 I I 0 0 I I

b5 0 I 0 I 0 I 0 I

b4

1
b3

1 b2

i 't1
0 0 0 0 NULL DCo t> 0 (jj) p - - --r-0 0 0 I SOM oc, ! I A Q - -- -
0 0 I 0 EOA DC2 " 2 B R __ u_ - --
0 0 I I EOM DC3 ... 3 c s N

OC4 - ----A-
0 I 0 0 EOT $ 4 D T (STOP) -U- --S-
0 I 0 I WRU ERR O/o 5 E u N s

- A - --,-
0 I I 0 RU SYNC a 6 F v -S- --G -
0 I I I BELL LEM (APos> 7 G w s N - I - --E -
I 0 0 0 FEo So (8 H x

'!YS.
-G - rn I 0 0 I s,) 9 I y N

I 0 I 0 LF S2 .. : J z -E-
D- -

I 0 I I VTAe S3 + ; K [

I I 0 0 FF S4 1ooi.Mo> < L \ ACK - - t---=--1
I I 0 I CR S5 - = M J CD - - f---'='--1
I I I 0 so S& > N t ESC

- -t--
I I I I SI S7 I ? 0 +- DEL

Standard 7-bit set code positional order and notation are shown below with b, the high-order
and b, the low-order, bit position.

EXAMPLE: The code for "R" is:
b,
1

LEGEND

NULL Null/Idle DC,-DC3
SOM Start of message DC4(Stop)
EOA End of address ERR
EOM End of message SYNC
EOT End of transmission LEM
WRU "Who are you?" So-S1
RU "Are you •.. ?"

Ii
BELL Audible signal
FEo Format effector <
HT Horizontal tabulation >
SK Skip (punched cord) +
LF line feed +-

VTAe Vertical tabulation ' FF Form feed ACK

CR Carriage return CD
so Shift out ESC

SJ Shift in DEL

DCo Device control reserved for
data link escape

b5
1

Device Control
Device control (stop)
Error
Synchronous idle
logical end of media
Separator (i(lformation)
Word separator (space, normally

non-printing)
less than
Greater than
Up arrow (Exponentiation)
Left arrow (lmpl ies/Replaced by)
Reverse slant
Acknowledge
Unassigned control
Escape
Delete/Idle

A-1

BINARY CODED DECIMAL FORMAT

Kennedy 1406/1506 ASCil-BCD Conversion

Symbol
BCD ASCII Equivalent Symbol

BCD ASCII Equivalent
(octal code) (octal code) (octal code) (octal code)

(Space) 2% ~% A 61 1%1
! 52 %41 B 62 1¢2

13 %43 c 63 1%3
$ 53 %44 D 64 1%4
% 34 %45 E 65 1%5
& 6% ,046 F 66 1%6
I 14 ~7 G 67 1,07
(34 %50 H 7,0 11%
) 74 %51 I 71 111

* 54 ¢52 J 41 112
+ 6,0 %53 K 42 113

I 33 %54 L 43 114

- 4% %55 M 44 115
. 73 ~56 N 45 116

I 21 %57 0 46 117
p 47 12¢

.0 12 %6% Q 50 121
1 <ti ,061 R 51 122
2 92 %62 s 22 123
3 f,13 %63 T 23 124
4 ¢4 %64 u 24 125
5 f.15 %65 v 25 126
6 ¢6 %66 w 26 127
7 <J7 %67 x 27 13,0
8 1% %7% y 30 131
9 11 ,071 z 31 132

: 15 ,072 [75 133
; 56 ,073 \ 36 134
< 76 ,074] 55 135
= 13 ,075
> 16 ,076
? 72 ,077
@ 14 1%%

Other symbols which may be represented in ASCII are converted to spaces in BCD (20)

A-2

Symbol

(Space)
'
!!

$
%
&
'
(
)

*
+

' -
.
I

,0
1
2
3
4
5
6
7
8
9

'
<
=
>
?
@

HP 2020A/B ASCII - BCD Conversion

ASCII BCD Symbol ASCII BCD
(Octal code) (Octal code) (Octal code) (Octal code)

4,0 2,0 A 1,01 61
41 52 B 1,02 62
42 37 c 1,03 63
43 13 D 1,04 64
44 53 E 1,05 65
45 34 F 1,06 66
46 60t G 1,07 67
47 36 H 11,0 70
5,0 75 I 111 71
51 55 J 112 41
52 54 K 113 42
53 6,0 L 114 43
54 33 M 115 44
55 4,0 N 116 45
56 73 0 117 46
57 21 p 12,0 47

Q 121 50
6,0 12 R 122 51
61 ,l'Jl s 123 22
62 ,02 T 124 23
63 1)3 u 125 24

64 1)4 v 126 25

65 1)5 w 127 26
66 1)6 x 13,l'J 27
67 1)7 y 131 30
7,0 1,0 z 132 31
71 11

75 t [133
72 15 J 135 55 t
73 56 T 136 77

137 32 74 76

75 35
76 16
77 72

1,0,0 14

t BCD code of 60 always converted to ASCII code 53 (+).

t BCD code of 75 always converted to ASCII code 50 (()and

BCD code of 55 always converted to ASCII code 51 ()).

A-3

Symbols

label

m

I

c
(m, m+l)

comments

[]

{ }
p

()

/\

¥

v
A

B

E

An

Bn

b

(A/B)

(AB)

SC

d

0

r

n

lit

ASSEMBLER INSTRUCTIONS

Meaning

Symbolic label, 1-5 alphanumeric characters and periods

Memory location represented by an expression

Indirect addressing indicator

Clear flag indicator

Two-word floating point value in m and m+l

Optional comments

Optional portion of field

One of set may be selected

Program Counter

Contents of location

Logical product

Exclusive "or"

Inclusive "or"

A- register

B- register

E- register

Bit n of A-register

Bit n of B-register

Bit positions in B- and A-register

Complement of contents of register A or B

Two-word floating point value in register A and B

Channel select code represented by an expression

Decimal constant

Octal constant

Repeat count

Integer constant

Literal value

B

B-1

B-2

MACHINE INSTRUCTIONS

MEMORY REFERENCE

Jump and Increment-Skip

ISZ

JMP

JSB

m l,Il

m [,I]

m 1,Ij

Add, Load and Store

ADA { m f,I] }
lit

ADB {m[,IJ}
lit

LDA { m [,I] }
lit

LDB {m[,IJ}
lit

STA m [,I]

STB m [,I]

Logical

AND {m[,I]t
lit

XOR { m [,IJ}
lit

IOR { m [,I] }
lit

CPA { m [,Il}
lit

CPB {m[,I]}
lit

REGISTER REFERENCE

Shift-Rotate

CLE

ALS

BLS

ARS

BRS

RAL

RBL

(m) + 1- m; then if (m) = 0, execute P + 2 otherwise execute
p + 1

Jump tom; m -P

Jump subroutine tom: P + 1 -m; m + 1- P

(m) + (A) - A

(m) + (B) - B

(m) - A

(m) - B

(A) - m

(B) - m

(m) /\ (A) - A

(m) V (A) - A

(m) V (A) - A

If (m) f. (A), execute P + 2, otherwise execute P + 1

If (m) f. (B), execute P + 2, otherwise execute P + 1

0-E
Shift (A) left-0ne bit, 0 - A0 , A 15 unaltered

Shift (B) left one bit, 0 - B0 , B15 unaltered

Shift (A) right one bit, (A 15) - A14

Shift (B) right one bit, (B 15) - B14

Rotate (A) left one bit

Rotate (Bl left one bit

Shift-Rotate (Continued)

RAR

RBR

ALR

BLR

ERA

ERB

ELA

ELB

ALF

BLF

SLA

SLB

Rotate (A) right one bit

Rotate (B) right one bit

Shift (A) left one bit, 0 - A 15

Shift (B) left one bit, 0 - B 15

Rotate E and A right one bit

Rotate E and B right one bit

Rotate E and A left one bit

Rotate E and B left one bit

Rotate A left four bits

Rotate B left four bits

If (A 0) = 0, execute P + 2, otherwise execute P + 1

If (B 0) = 0, execute P + 2, otherwise execute P + 1

Shift-Rotate instructions can be combined as follows:

No-operation

NOP

Alter-Skip

CLA

CLB

CMA

CMB

CCA

CCB

CLE

CME

ALS
ARS
RAL
RAR
ALR
ALF
ERA
ELA

BLS
BRS
RBL
RBR
BLR
BLF
ERB
ELB

Execute P + 1

O's - A

O's - B

(A) - A

(B) - B

l's - A

l's - B

0 - E

(E) - E

[,CLE] [,SLAJ

[,CLE] [, SLB]

ALS
ARS
RAL
RAR

' ALR
ALF
ERA
ELA

BLS
BRS
RBL
RBR

' BLR
BLF
ERB
ELB

B-3

B-4

Alter-Skip (Continued)

CCE

SEZ

SSA

SSB

INA

INB

SZA

SZB

SLA

SLB

RSS

1-E

If (E) = O, execute P + 2, otherwise execute P + 1

If (A 15) = 0, execute P + 2, otherwise execute P + 1

If (B 15) = 0, execute P + 2, otherwise execute P + 1

(A)+ 1 - A

(B) + 1 - B

If (A) = 0, execute P + 2, otherwise execute P + 1

If (B) = 0, execute P + 2, otherwise execute P + 1

If (A 0) = 0, execute P + 2, otherwise execute P + 1

If (B 0) = 0, execute P + 2, otherwise execute P + 1

Reverse sense of skip instructions. If no skip instructions precede,
execute P + 2

Alter-Skip instructions can be combined as follows:

[, SEZJ [,SSA] [,SLA] [,INA] [,SZA] (,RRS)

[, SEZJ [,SSB] [,SLBJ [,INB] (,SZBJ [,RSSJ

INPUT/OUTPUT, OVERFLOW, and HALT

Input/Output

STC

CLC

LIA

LIB

MIA

MIB

OTA

OTB

STF

CLF

SFC

SFS

SC

SC

SC

SC

SC

SC

SC

SC

SC

SC

SC

SC

[,CJ

[,CJ

[,CJ

[,CJ

[,CJ

[,CJ

[,CJ

[,CJ

Set control bitsc , enable transfer of one element of data be~
tween device5c and buffer sc

Clear control bitsc. If sc = 0 clear all control bits

(buffersc) - A

(buffer sc) - B

(buffer SC) v (A) - A

(buffersc) V (B) - B

(A) - buffersc

(B) - buffer SC

Set flag bitsc. If sc = 0, enable interrupt system. sc = 1 sets
overflow bit.

Clear flagbitsc· If sc=O,disableinterruptsystem. If sc =1,
clear overflow bit.

If (flag bitsc) = 0, execute P + 2, otherwise execute P + 1.
If sc = 1, test overflow bit.

If (flag bitsc) = 1, execute P + 2, otherwise execute P + 1.
If si:: = 1, test overflow bit.

Overflow

CLO

STO

soc
sos

Halt

[CJ

[C]

0 - overflow bit

1 - overflow bit

If (overflow bit) = 0, execute P + 2, otherwise execute P + 1

If (overflow bit) = 0, execute P + 2, otherwise execute P + 1

HLT [sc [, C]] Halt computer

EXTENDED ARITHMETIC UNIT (requires EAU version of Assembler or

MPY

DIV

DLD

DST

ASR

ASL

RRR

RRL

LSR

LSL

{m[,I]}
lit

5m[,IJ}
l lit

{m[,IJ}
lit

{m[,IJ}

b

b

b

b

b

b

Extender Assembler)

(A) x (m) - (B±msb and A rsb)

(B±msb and Alsb)/(m) - A, remainder - B

(m) and (m + 1) - A and B

(A) and (B) - m and m + 1

Arithmetically shift (BA) right b bits, B 15 extended

Arithmetically shift (BA) left b bits, B15 unaltered, O's to Arsb

Rotate (BA) right b bits

Rotate (BA) left b bits

Logically shift (BA) right b bits, O's to Bmsb

Logically shift (BA) left b bits, O's to Arsb

B-5

B-6

PSEUDO INSTRUCTIONS

ASSEMBLER CONTROL

NAM
ORG

ORR

ORB

END

REP
<statement>

IFN
<statements>

XIF

IFZ
<statements>

XIF

[name]

m

[m]

r

OBJECT PROGRAM LINKAGE

Specifies relocatable program and its name.

Gives absolute program origin or origin for a segment of
relocatable or absolute program.

Reset main program location counter at value existing
when first ORG or ORB of a string was encountered.

Defines base page portion of relocatable program.

Terminates source language program. Produces trans­
fer to program starting location, m, if given.

Repeat immediately following statement r times.

Include statements in program if control statement con­
tains N.

Include statements in program if control statement con­
tains Z.

COM name 1 [(size 1)][,name2 [(size 2)], ••• ,namen[(sizen)]]

Reserves a block of common storage locations. namei
identifies segments of block, each of length size.

ENT name 1 [,name 2 , • • • , namen]

Defines entry points, name; , that may be referred to by
other programs

EXT name 1 [, name 2 , ••• , namen]

ADDRESS AND SYMBOL DEFINITION

label

label

label

DEF

ABS

EQU

m[,I]

m

m

Defines external locations, name 1 , which are labels of
other programs, referenced by this program.

Generates a 15-bit address which may be referenced in­
directly through the label.

Defines a 16-bit absolute value to be referenced by the label.

Equates the value, m, to the label.

CONSTANT DEFINITION

ASC n, < 2n characters>

DEC d 1 [,d 2 , ••• ,dn]

Generates a string of 2n ASCII characters.

Records a string of decimal constants of the form:

Integer: ±n

Floating point: ±n. n, ±n. , ±. n, ±nE±e, ±n. nE±e,
±n. E±e, ±. nE±e

Records a string of extended precision
decimals constants of the form

Floating point: ±n, ±n, n,
±n., ±,n,
±nE+e, ±n. nE±e,
±n. E+e, ±, nE±e

OCT 0 1 [, o2 , • • • , On] Records a string of octal constants of the form: ±000000

STORAGE ALLOCATION

BSS m Reserves a storage area of length, m.

ARITHMETIC SUBROUTINE CALLS REQUESTS*

MPYt {m[,I]}
lit

(A) x (m) - (B::1:msb and A1sb)

mvt {m[, I]}
lit (B::l:msband Alsb)/(m) - A, remainder -

FMP {m[,IJ}
lit

(AB) x (m, m + 1) - AB

FDV {m[,I]}
lit

(AB)/(m, m + 1) - AB

FAD {m[,IJ} (m, m + 1) + (AB) - AB
lit

FSB {m[,I]} (AB)-(m, m + 1) - AB
lit

DLDt {m[,I]}
lit

(m) and (m + 1) - A and B

DSTt m[,I] (A) and (B) - m and m + 1

B

t For configurations including Extended Arithmetic Unit, these mnemonic generate
hardware instructions when the EAU version of the Assembler or Extended Assembler
is used.

*Not intended for use with DEX formatted numbers. For such numbers, JSB Machine
Instructions must be used. B-7

B-8

ASSEMBLY LISTING CONTROL

UNL

LST

SKP

SPC

SUP

UNS

n

Suppress assembly listing output.

Resume assembly listing output.

Skip listing to top of next page.

Skip n lines on listing

Suppress listing of extended code lines (e. g. , as produced
by subroutine calls).

Resume listing of extended code lines.

HED <heading> Print <heading> at top of each page, where <heading>
is up to 56 ASCII characters.

ALPHABETIC LIST OF INSTRUCTIONS

ABS

ADA

ADB

ALF

ALR

ALS

AND

ARS

ASC

ASL

ASR

BLF

BLR

BLS

BRS

BSS

CCA

CCB

CCE

CLA

CLB

CLC

CLE

CLF

CLO

CMA

CMB

Define absolute value

Add to A

Add to B

Rotate A left 4

Shift A left 1, clear sign

Shift A left 1

"And" to A

Shift A right 1, sign carry

Generate ASCII characters

Arithmetic long shift left

Arithmetic long shift right

Rotate B left 4

Shift B left 1, clear sign

Shift B left 1

Shift B right 1, carry sign

Reserve block of storage starting at symbol

Clear and complement A {l's)

Clear and complement B {l's)

Clear and complement E (set E = 1)

Clear A

Clear B

Clear I/ 0 control bit

Clear E

Clear I/ 0 flag

Clear overflow bit

Complement A

Complement B

c

C-1

CME Complement E

COM Reserve block of common storage

CPA Compare to A, skip if unequal

CPB Compare to B, skip if unequal

DEC Defines decimal constants

DEF Defines address

I DEX Defines extended precision constants

DIV Divide

DLD Double load

DST Double store

ELA Rotate E and A left 1

ELB Rotate E and B left 1

END Terminate program

ENT Entry point

ERA Rotate E and A right 1

ERB Rotate E and B right 1

EQU Equate symbol

EXT External reference

FAD Floating add

FDV Floating di vi de

FMP Floating multiply

FSB Floating subtract

HED Print heading at top of each page

HLT Halt

IFN When N appears in Control Statement, assemble
ensuing instructions

IFZ When Z appears in Control Statement, assemble
ensuing instructions

INA Increment A by 1

INB Increment B by 1

IOR Inclusive "or" to A

ISZ Increment, then skip if zero

JMP Jump

C-2

JSB Jump to subroutine

LDA Load into A

LDB Load into B

LIA Load into A from I/ 0 channel

LIB Load into B from I/O channel

LSL Logical long shift left

LSR Logical long shift right

LST Resume list output (follows a UNL)

MIA Merge (or) into A from I/ 0 channel

MIB Merge (or) into B from I/O channel

MPY Multiply

NAM Names relocatable program

NOP No operation

OCT Defines octal constant

ORB Establish origin in base page

ORG Establish program origin

ORR Reset program location counter

OTA Output from A to I/O channel

OTB Output from B to I/O channel

RAL Rotate A left 1

RAR Rotate A right 1

RBL Rotate B left 1

RBR Rotate B right 1

REP Repeat next statement

RRL Rotate A and B left

RRR Rotate A and B right

RSS Reverse skip sense

SEZ Skip if E = 0

SFC Skip if I/O flag= 0 (clear)

SFS Skip if I/ 0 flag = 1 (set)

SKP Skip to top of next page

C-3

C-4

SLA

SLB

soc
sos
SPC

SSA

SSB

STA

STB

STC

STF

STO

SUP

SWP

SZA

SZB

UNL

UNS

XIF

XOR

Skip if LSB of A = 0

Skip if LSB of B = 0

Skip if overflow bit = 0 (clear)

Skip if overflow bit = 1 (set)

Space n lines

Skip if sign A = 0

Skip if sign B = 0

Store A

Store B

Set I/O control bit

Set I/O flag

Set overflow bit

Suppress list output of additional code lines

Switch the (A) and (B)

Skip if A= 0

Skip if B = 0

Suppress list output

Resume list output of additional code lines

Terminate an IFN or IFZ group of instructions

Exclusive "or" to A

I

SAMPLE PROGRAMS D

Following are two sample problems, the second of which implements several options
of the Extended Assembler.

A.

PARTS FILE UPDATE

A master file of parts is updated by a parts usage list to produce a new master parts
file. A report, consisting of the parts used and their cost, is also produced.

The master file and the parts usage file contain four word records. Each record of
the cost report is eleven words long.

The organization of the files is as follows:

Parts Master Files (PRTSM)

Identification Quantity 1f!:/

Identification field of the Parts Master Files exists in ASCII although the entire re­
cord is read and written in binary.

Parts Usage File (PRTSU}

I Identification I Quantity

The parts usage file has been recorded in ASCII.

Parts Cost Report (PRTSC}

Quantity used
Cost

for Quantity

The Parts Cost Report is recorded in ASCII with spacing and editing for printing.

The sample program reads and writes the files, adjusts the new stock levels, and
calculates the cost. External subprograms perform the binary- to - decimal and
decimal-to-binary conversions and handle unrecoverable input/output errors, invalid
data conditions, and normal program termination. Input/ output operations are per­
formed using the Basic Control System input/ output subroutine, . IOC.

D-1

START

WRITE

READ
PARTS
MASTER

NEW PARTSl+-----'C:
MASTER

D-2

SUBTRACT
USAGE QUANTITY

FROM
MASTER QUANTITY

CALCULATE
COST OF PARTS

USED

SAMPLE PROGRAM
GENERAL FLOW CHART

END

SAMPLE ASSEMILER SYMBOL TABLE OUTPUT

PAGE 0001

0001 ASMB,R,s .. L,T
START R 000000
PRTSM B 000000
PR TSU B 000004
PRTSC B 000010
EOTSl B 000023
EOTS2 B 000024
MTEMP B 000025
UTEMP B 000026
SWTMP B 000027
SPA CS B 000031
-DLRSG B 000033
A 000000
B 000001
• IOC• x 00fit001
BCONV x 000002
DCONV x 000003
ABORT x 000004
HALT x 000005
DTOBI c 000000
DTOBO c 000002
BTOD! c 000003
BTODO c 000005
OPEN R 000002
SPCFL. R 000003
DLD x 011111006
DST x 000007
READU R 000013
CKSTU R 000020
RJCTU R 000035
EOTU R 000040
MSGU R 000051
RE:ADM R 0B0063
CKSTM R 000070
RJCTM R 000105
EOTM R 000110
MSGM R 000117
HLTSW R 000137
COMPR R 000140
PROCM R 000157
PROCC R 0001&5
MPY x 000010
CONVM R 000213
CONUl R 000224
CONU2 R 000235
CONVC R 000246
WRI TC R 000261
CKSTC R 000266
RJCTC R 000276
WRITN R 000301
CKSTN R 000306
RJCTN R 000316
** NO ERRORS*

D-3

PAGE 0002

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013

0014
0015
0016
0017
0018*
0019
0020*
0021
0022*
0023*
0024
0025*
0026*
0027
0028
0029*
0030*
0031*
0032
0033*
0034
0035

0036

0037

0038
0039
0340
0041
0042
012143
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053*

D-4

00000
00000 000000
00001 026002R
00000
00000 000000
00004 000000
00010 000000
00023 026063R
00024 026301R
0002 5 000000
00026 000000
00027 000000
00031 020040
00032 020040
00033 020044
00000
00001

00002

00002 000000
00003 016006X
00004 0000318
00005 016007X
00006 0000129
00007 016007X
00010 0000168
00011 0600338
00012 0700208
00013 016001X
00014 010001
00015•026035R
00016 000004B
00017 000004
00020 016001X
00021 040001
00022 002020
00023 026020R
00024 001200
0002 5 002020
00026 026030R
00027 026063R

SAMPLE ASSEMBLER LIST OUTPUT

NAM UPDTE
START NOP

JMP OPEN
ORB

PRTSM BSS 4
PRTSU BSS 4
PRTSC BSS 11
EOTSl JMP READM
EOTS2 JMP WR I TN
MTEMP BSS 1
UTEMP BSS 1
SWTMP BSS 2
SPACS ASC 2•

DLRSG ASC l • $
A EQU 0
B EQU 1

EXT .roe.

EXT BCONV

EXT DCONV

EXT ABORT

ASSIGN STORAGE & CONSTANTS TO BP
MASTER PARTS F'ILE - BINARY·
PARTS USAGE LIST - ASCII•
PARTS COST REPORT - ASCII•

PERFORM 1/0 OPERATIONS USING BCS
110 CONTROL ROUTINE.
ENTRY POINT FOR DECIMALCASCII>
TO BINARY CONVERSION SUBPROGRAM·
ENTRY POINT FOR BINARY TO
DECIMALCASCII> CONVERSION SUB­
PROGRAM.
ENTRY POINT FOR SUBPROGRAM WHICH
HANDLES UNRECOVERABLE 1/0 ERRORS
OR INVALID DATA•

EXT
COM

HALT END OF PROGRAM SUBROUTINE.
DTOBIC2>10TOB01BTOOIC2>1BTODOC2>

ORR

OPEN NOP
SPCF'L OLE> SPACS

DST PRTSC+2

DST PRTSC+6

LDA DLRSG
STA PRTSC+8

READU JSB .1oc.
OCT 10001
JMP RJCTU
DEF PRTSU
DEC 4

CKSTU JSB .ioc.
OCT 40001
SSA
JMP CKSTU
RAL
SSA
JMP *+2
JM? READM

COMMON STORAGE LOCATIONS USED TO
PASS DATA BETWEEN MAIN PROGRAM
AND CONVERSION SUBPROGRAMS.
RESETS PLC AFTER USE OF' ORB AT
BEGINNING OF' PROGRAM·

STORES EDITING CHARACTERS IN

OUTPUT AREA FOR PARTS COST

REPORT•

READ ONE RECORD F'ROM USAGE LI ST
LOCATED ON STANDARD UNIT 1
<TELEPRINTER INPUT>. PRTSU IS
ADDRESS OF' STORAGE AREAJ AREA IS
4 WORDS LONG.
CHECK STATUS OF' UNIT l•

IF BUSY1 LOOP UNTIL FREE.

IF COMPLETE, TRANSFER TO SECTION
WHICH READS MASTER FILE RECORD.

PAGE 0003

0954
0055
0056

"" 57 less
0059•
121060
8061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072

0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
8083
0084
0085
0086
0087
0088
0089
0090
0091
0092•
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103

00030 011727
00031 081210
80032 002020
81H33 02604110R
8903411 826004X

00035 006020 RJCTU
00036 02,60 I 3R
00037 026004X
00040 060023B EOTU
00041 072002R
00042 06002.ltB
00043 072140R
0004.ilJ 016001X
00045 020002
00046 02604.ltR
00047 000051R
000 50 001101 1
00051 042516 MSGU
080 52 042040
00053 047506
l!HH54 020125
IH055 051501
00056 043505
00057 020106
00,'60 044514
00861 042-440
00062 026063R
00063 016001X REAGM
00864 010105
00065 026105R
liJ0066 001000B
00067 000fH4
00070 016001X CKSTM
00071 040005
00072 002020
00073 026070R
0007'4 001200
0007 5 8820211
00076 026100R
01HJ77 fit26140R
00100 .0'41 727
00U1Jl 001200
00102 002020
00183 026110R
80111'4 026004X

110105 006020 RJCTM
00106 026063R
00107 026004X
00110 062137R EOTM
00111 072315R
00112 016001X
00113 820002
0011"1 026112R
0011 5 0081 I 7R
00116 000017
00117 042516 MSGM

ALY.ALF'
RAL
SSA
JMP EOTU
JMP ABORT

SSB
JMP REA0U
JMP ABORT
LDA EOTSl
STA OPEN
LDA EOTS2
STA COMPR
JSB .1oc.
OCT 20002
JMP EOTU+4
DEF' MSGU
DEC 9
ASC 9• END OF'

JMP READM
JSB • Ioc.
OCT 10105
JMP RJCTM
DEF PRTSM
DEC A\
JSB .1oc.
OCT 110005
SSA
JMP CKSTM
RAL
SSA
JMP *+2
JMP COMPR
ALF".ALF'
RAL
SSA
JMP EOTM
JMP ABORT

SSB
JMP READM
JMP ABORT
LDA HLTSW
STA CKSTN+7
JSB .1oc.
OCT 20002
JMP EOTM+2
DEF" MSGM
DEC 15

TEST END OF' TAPE STATUS BIT
<ORIGINAL BIT 05>•

IF SET. GO TO EOT PROCEDURE·
IF' NOT SET. SOME ERROR CONDITION
<UNRECOVERABLE> EXISTS•
CHECK CAUSE OF REJECT. IF UNIT
BUSY LOOP UNTIL !'REE· ANY OTHER
CAUSE IS UNRECOVERABLE ERROR.
If END Of USAGE F"ILE• ALTER
PROGRAM SEQUENCE TO BYPASS
SECTIONS THAT READ AND PROCESS
USAGE F"ILE• PRINT MESSAGE ON
TELEPRINTER INDICATING EQT.

USAGE F"ILE

READ A RECORD F'ROM MASTER PARTS
F'ILE ON STANDARB UNIT 05CPUNCHED
TAPE READER>• PRTSM IS ADDRESS
OF' STORAGE AREAJ AREA IS 4 WORDS
LONG. RECORD IS IN BINARY FORMAT
CHECK STATUS OF' UNIT s.

IF' BUSY• LOOP UNTIL F'REE•

IF' COMPLETE. TRANSFER TO EITHER
PROCESSING OR WRITE OUTPUT
DEPENDING ON SETTING OF' COMPRe
TEST F'OR END OF' TAPE·
IF' END. GO TO EOT PROCEDURE•
IF' NOT. AN UNRECOVERABLE ERROR
EXISTS.
CHECK CONTENTS OF' B F'-OR CAUSE OF'
REJECT. IF' UNIT BUSY• L©OP UNTIL
!'REE, OTHERWISE I/O ERROR EXISTS
ALTER PROGRAM SEQUENCE TO HALT
EXECUTION AFTER LAST RECORD IS
WRITTEN PRINT MESSAGE
INDICATING END OF MASTER INPUT•

ASC 15• END Of MASTER PARTS FILE INPUT

D-5

PAGE 0004

00120 842040
00121 047 506
00122 020115
00123 040523
00124 052105
00125 051040
00126 050101
00127 051124
00130 0 51 440
00131 043111
001.32 046105
00133 020111
00134 047120
00135 052524

1104 00136 026140R JMP COM PR
0105 00137 026005X HLTSW JMP HALT END OF PROGRAM SUBROUTINE.
0106 00140 00000" COMPR NOP
0107 00141 016224R JSB CONUl CON\IERT ID NUMBER FIELDS OF
0108 00142 016213R JSB CON\IM MASTER AND USAGE FILES TO BIN•
0109 001-43 0600268 LDA UTEMP LOAD THESE FIELDS FROM TEMPORARY
0110 00144 06-402 SB L.9B MTEMP STORAGE.
0111 00145 050001 CPA B COMPARE
0112 80146 026157R JMP PROCM IF EQUAL..t JUMP TO PROCESSING
0113 00147 007004 CMB.tINB IF ID NUMBER OF MASTER GREATER
0114 00150 040001 ADA 8 THAN ID NUMBER OF USAGE. DATA IN
0115 fHl 51 002020 SSA USAGE FILE ERRONEOUS• TERMINATE
0116 00152 026004X JMP ABORT RUN•
0117 00153 062156R LDA •+3 IF ID MASTER LESS THAN ID USAGE.
0118 00154 072315R STA CKSTN+7 ALTER SEQUENCES READ NEXT MASTER
0119 00155 026301R JMP WR I TN RECORD IMMEDIATELY AFTER WRITING
0120 IHl 56 026063R JMP READM CURRENT MASTER RECORD·
0121 00157 016235R PROCM JSB CONU2 CONVERT QUANTITY FIELD OF USAGE
0122 00160 0600028 LDA PRTSM+2 FILE TO BINARY AND SUBTRACT FROM
0123 00161 0640278 LDB UTEMP+l QUAN TI TY FI ELD OF MASTER AND
0124 00162 007004 CMB.INB STORE RESULT•
0125 00163 040001 ADA B
0126 00164 0700028 STA PRTSM+2
0127 00165 016006X PROCC DLD PRTSU STORE IO OF PARTS USED IN REPORT

00166 0000048
0128 00167 016007X DST PRTSC FILE STORAGE AREA•

00170 0000108
0129 00171 016006X OLD PRTSU+2 STORE QUANTITY OF PARTS USED IN

00172 0000068
0130 00173 016007X DST PRTSC+4 REPORT rILE STORAGE AREA·

00174 0000148
0131 00175 060003B LOA PRTSM+3 COMPUTE COST OF PARTS USED·
0132 00l76 016010X MPY UTEMP+l

00177 0000270
0133 00200 0700308 STA SWTMP+l
0134 00201 0740278 STB SWTMP
0135 00202 016246R JSB CONVC CONVERT RESULT TO DECIMAL.
0136 00203 016006X OLD SWTMP

00204 0000278
0137 00205 016007X DST PRTSC+9 STORE IN REPORT FILE AREA•

00206 0000218
0138 00207 062212R Lll>A •+3 ALTER SEQUENCES READ NEXT USAGE
0139 00210 072315R STA CKSTN+7 RECORD AFTER WRITING CURRENT
0140 00211 026261R JMP WRITC MASTER RECORD·

D-6

PAGE 0005

0141 IH212 026013R JMP REA DU
0142 00213 000000 CONVM NOP
01"3 00214 016006X DLB PRTSM STORE ID F'I ELDS IN COMMON

00215 000000B
0144 00216 016007X DST DTOBI LOCATIONS TO BE PROCESSED BY

00217 000000C
0145 00220 016002X JSB BCONV CONVERSION SUBPROGRAM. ON
0146 00221 062002C LDA DTOBO COMPLETION.11 STORE RESULTS IN
0147 00222 0700258 STA MTEMP LOCATIONS USED BY PROCESSING
01 48 00223 126213R JMP CONVM.11I SECTIONS. CONVM APPLIES TO ID OF
0149 00224 000000 CONUl NOP MASTER PARTS FILEJ CONUl.11 TO ID
0150 00225 016006X DLD PRTSU OF USAGEJ CONU2.11 TO QUAN TI TY OF

00226 000004B
0151 00227 016007X DST DTOBI USAGEJ AND CONVC.11 TO COST OF

00230 000000C
0152 00231 0 l 6002X JSB BCONV PARTS<THIS IS A BINARY TO
0153 00232 062002C LDA DTOBO DECIMAL CONVERSION>•
0154 00233 0700268 STA UTEMP
0155 00234 126224R JMP CONUl.11I
0156 00235 000000 CONU2 NOP
0157 00236 016006X DLD PRTSU+2

00237 0003068
0158 00240 016007X DST DTOBI

00241 000000C
0159 00242 016002){ JSB BCONV
0160 002"3 062002C LDA IHOBO
0161 00244 0700278 STA UTEMP+l
1162 00245 126235R JMP CONU2.11 I
0163 002"6 000000 CONVC NOP
0164 00247 016006){ DLD SWTMP

00250 000027B
0165 00251 016007X DST BTODI

00252 000003C
0166 00253 016003X JSB DCONV
0167 00254 016006X OLD BTODO

01255 000005C
0168 00256 016007X DST SWTMP

00257 000027B
0169 00260 126246R JMP CONVC.11I
0170 00261 016001X WR ITC JSB .Ioc. WRITE ONE RECORD OF PARTS COST
0171 00262 020102 OCT 20102 REPORT ON STANDARD UNIT 2
0172 00263 026276R JMP RJCTC <TELEPRINTER OUTPUT>• PRTSC IS
0173 00264 0000108 DEF PRTSC ADDRESS IN STORAGE AREAJ AREA IS
0174 01!J265 000013 DEC 11 1 1 WORDS LONG. RECORD IS IN ASCI
0175 00266 016001X CKSTC JSB .Ioc. CHECK STATUS OF UNIT 2·
0176 00267 040002 OCT "0002
0177 00270 002020 SSA
0178 00271 026266R JMP CKSTC IF BUSY.11 LOOP UNTIL FREE•
0179 00272 001200 RAL
0180 00273 002020 SSA
0181 00274 026004X JMP ABORT TERMINATE Ir ANY I/O ERROR•
0182 00275 026301R JMP WR I TN If COMPLETE.11 TRANSFER TO WRITN•
0183 00276 006020 RJCTC SSB Ir BUSY. LOOP UNTIL FREE.
0184 00277 026261R JMP WRITC TERMINATE ON ANY OTHER REJECT
0185 00300 026004X JMP ABORT CONDITION•
0186 00301 016001X WRITN JSB • IOC • WRITE ONE RECORD CBINARY> Or
0187 00302 020104 OCT 20104 NEW MASTER PARTS LIST ON UNIT 4
0188 00303 026316R JMP RJCTN CTAPE PUNCH>• PRTSM <INPUT AREA>

D-7

PAGE 0006

0189 00304 0000008 DEF' PRTSM IS ALSO USED AS OUTPUT AREA.
0190 00305 000004 DEC 4
0191 00306 016001X CKSTN JSB .Ioc. CHECK STATUS OF' UNIT "'-
0192 00307 040004 OCT 40004
0193 00310 002020 SSA
0194 00311 026306R JMP CKSTN IF' BUSY.r LOOP UNTIL F'REE·
0195 00312 001200 RAL
0196 00313 002020 SSA
0197 00314 026004X JMP ABORT
0198 00315 026013R JMP READU
0199 00316 006020 RJCTN SSB IF' BUSY, LOOP UNTIL F'REE.r OTHER-
0200 00317 026301R JMP WRITN WISE TERMINATE•
0201 00320 026004X JMP ABORT
0202 END START
** NO ERRORS*

D-8

B.

Program "Line" will either calculate the distance between two points or find the
slope of the line connecting the points; then the point equidistant from each point (the
mid-point) is calculated.

Data is input using the formatter library routine four n-digit real numbers at a
time. The first quantity is the X coordinate of the first point; the second quantity is
the Y coordinate of the first point; the third and fourth quantities are the X and Y co­
ordinates of the second point.

The result is output to the teleprinter by the formatter library routine; each quan­
tity cannot be more than an eight digit real number.

START

INPUT
TWO POINT

(TELEPRINTER)

IFN ---

L ___ , __ _J

OUTPUT
THE RESULT

(TELEPRINTER)

IFZ

MIDPOINT=

OUTPUT
THE RESULT

(TELEPRINTER)

YES

HALT

GENERAL FLOW CHART

NO f:\
~~

D-9

Below is the source program as it is typed up on the teleprinter. After it are the
assembler listings. The first listing results from including the Z option in the control
statement. In the second listing the N option has been included in the control statement.

NOTE: When the complete data tape has been read and the tape reader en­
counters 10 blank feed frames, an EQT message is typed on the teleprinter
and the computer halts. Thus no halt instruction is needed in the program.)

HED LINE FORMULI: DISTANCE, SLOPE, MID-POINT
* PROGRAM LINE WILL EITHER CALCULATE THE DISTANCE BETWEEN
* TWO POINTS OR FIND THE SLOPE OF THE LINE CONNECTING
* THE POINTS; THEN THE POINT EQUIDISTANT FROM EACH
* POINT CTHE MID-POINT> IS CALCULATED.

* DATA IS INPUT USING THE FORMATTER LIBRARY ROUTINE
* FOUR N-DIGIT REAL NUMBERS AT A TIME· THE FIRST
* QUANTITY IS THE X COORDINATE OF THE FIRST POINT;THE
* SECOND QUANTITY IS THE Y COORDINATE OF THE FIRST POINT;
* THE THIRD AND FOURTH QUANTITIES ARE THE X AND Y COORDINATES
* OF THE SECOND POINT.
* THE RESULT IS OUTPUT TO THE TELEPRINTER BY THE
* FORMATTER LIBRARY ROUTINE; EACH QUANTITY CANNOT BE MORE
* THAN AN EIGHT DIGIT REAL NUMBER.

NAM LINE
START NOP

JMP INPUT
EXT .1oc.,FLOAT .. IFIX,SQRT
EXT .DI0.,.101.,.DTA.,.RAR.
EXT .IQR.,.JAR •

• DATA DEF' DATA
.PRIN
DATA
FMT
FMT2
FMT3

DEF' PRINT
BSS 4
ASC 3,cFs.J>
ASC s,cFs.3 .. ·•,",F'803/)
ASC 3.oC4I2>
SKP

* INPUT THE FIRST TWO POINTS; FOUR DATA WORDS
INPUT NOP

LOA =BS
CLB.oINB
JSB .DIO.
DEF FMT3
DEF' *+4
LOA =B4
LOB .DATA
JSB .JAR.
SPC 3

* THE DISTANCE BETWEEN THE TWO POINTS:
IFZ
LOA DATA+2
CMA.oINA
ADA DATA
SPC 1
JMP *+5

PRINT REP 4
NOP
SPC 1

D-10

STA PRINT
SUP

MPY PRINT
STA PRINT
SPC l
LDA DATA+3
CMA,INA
ADA DATA+l
STA PRINT+l
MPY PRINT+!
ADA PRINT
SPC 1
JSB FLOAT
JSB SQRT
DST PRINT
XIF
SPC 3

* FIND THE SLOPE OF THE LINE
IFN
LOA DATA+2
CMA,INA
ADA DATA
JMP *+5

PRINT REP 4
NOP
STA PRINT
SPC
LOA DATA+3
CMA,INA
ADA DATA+l
CLB
DIV PRINT
DST PRINT
XIF
SPC 3

* OUTPUT THE RESULT
LOA =82
CLB
JSB .010.
DEF FMT
DEF *+4
OLD PRINT
JSB • IOR.
JSB .OTA.
SPC 3

* FIND THE MID-POINT OF THE LINE SEGMENT:
LOA DATA
ADA OATA+2
CLB
JSB FLOAT
FMP =F.5
DST PRINT
SPC 1
LOA DATA+l
ADA DATA+3
CLB
JSB FLOAT
FMP =F.5
DST PRINT+2
SPC 1
UNL

D-11

LDA =82
CLB
JSB .DJO.
DEF' F'MT2
DEF' *+5
LDA =82
LOB .PRIN
JSB .RAR.
JSB .oTA.
LST
SPC 3
UNS
JMP INPUT
END START

D-12

PAGE 0001

0001 ASMB .. R .. L .. T .. Z
START R 000000
• IOC. x 000001
FLOAT x 000002
IF"! X x 000003
SQRT x 000004
.010. x 000005
.IOI. x 000006
.OTA. x 000007
.RAR. x 000010
• IOR. x 000011
• IAR. x 000012
.DATA R 000002
.PRIN R 000003
DATA R 000004
F"MT R 000010
F"MT2 R 000013
F"MT3 R 000023
INPUT R 000026
PRINT R 000043
.MPY x 000013
.osT x 000014
.DLD x 000015
oF"MP x 000016
** NO ERRORS*

D-13

PAGE 0002 #01 LINE FORMULI: DISTANCE, SLOPE, MID-POINT

0002*
0003*
0004*
0005*
0006*
0007*
0008*
0009*
0010*
0011 *
0012*
0013*
0014*
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024

0025

0026

D-14

PROGRAM LINE WILL EITHER CALCULATE THE DISTANCE BETWEEN
TWO POINTS OR FIND THE SLOPE OF THE LINE CONNECTING
THE POINTSJ THEN THE POINT EQUIDISTANT FROM EACH
POINT <THE MID-POINT> IS CALCULATED.

DATA IS INPUT USING THE FORMATTER LIBRARY ROUTINE
FOUR N-DIGIT REAL NUMBERS AT A TIME. THE FIRST
QUANTITY IS THE X COORDINATE Of THE FIRST POINTJTHE
SECOND QUANTITY IS THE Y COORDINATE Or THE FIRST POINTJ
THE THIRD AND FOURTH QUANTITIES ARE THE X ANO Y COORDINATES
Or THE SECOND POINT.

THE RESULT IS OUTPUT TO THE TELEPRINTER BY THE
FORMATTER LIBRARY ROUTINEJ EACH QUANTITY CANNOT BE MORE
THAN AN EIGHT DIGIT REAL NUMBER.

00000 NAM LINE
00000 000000 START NOP
00001 026026R JMP INPUT

00002
00003
00004
00010
00011
00012
00013
00014
00015
00016
00017
00020
00021
00022
00023
00024
00025

000004R
000043R
000000
024106
034056
031451
024106
034056
031454
021054
021054
043070
027063
027451
024064
044462
024440

.DATA
oPRIN
DATA
FMT

fMT2

FMT3

EXT .Ioc.,FLOAT,IfIX,SQRT
EXT .DIO.,.IOl.,.oTA.,.RAR.
EXT .IQR.,.IAR.
DEf DATA
DEf PRINT
BSS 4
ASC J,Cf8·3>

ASC 3,(412>

PAGE 0003 #01 LINE FORMULI: DISTANCE, SLOPE, MID-POINT

0028*
0029
0030
0031
0032
0033
0034
0035
0036
0037

0039*
0040
0041
0042
0043

0045
0046
0047
0047
0047
0047

0049
0050
0051
0052

0054
0055
0056
0057
0058
0059

0061
0062
0063
0064

0066*
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078

INPUT THE FIRST TWO POINTSJ FOUR DATA WORDS
00026 000000 INPUT NOP
00027 062131R LDA =B5
00030 006404 CLB,INB
00031 016005X JSB .010.
00032 000023R DEF FMT3
00033 000037R DEF *+4
00034 062132R LOA =B4
00035 066002R LOB .DATA
00036 016012X JSB .JAR.

THE DISTANCE BETWEEN THE TWO POINTS:
IFZ

00037 062006R LOA DATA+2
00040 003004 CMA,INA
00041 042004R ADA DATA

00042 026047R JMP *+5
PRINT REP 4

00043 000000 NOP
00044 000000 NOP
00045 000000 NOP
00046 000000 NOP

00047 072043R STA PRINT
SUP

00050 016013X MPY PRINT
00052 072043R STA PRINT

00053 062007R LOA DATA+3
00054 003004 CMA,INA
00055 fiJ42fiJ05R ADA DATA+l
00056 072044R STA PRINT+l
00057 016013X MPY PRINT+!
00061 042043R ADA PRINT

00062 016002X JSB FLOAT
00063 016004X JSB SQRT
00064 016014X DST PRINT

XIF

FIND THE SLOPE OF THE LINE
IFN
LDA DATA+2
CMA,INA
ADA DATA
JMP *+5

PRINT REP 4
NOP
STA PRINT
SPC 1
LDA DATA+3
CMA,INA
ADA DATA+l

D-15

PAGE 0004 #01 LINE rORMULI: DISTANCE, SLOPE, MID-POINT

0079
0080
0081
0082

0084*
0085
0086
0087
0088
0089
0090
0091
0092

0094*
0095
0096
0097
0098
0099
0100

0102
01-03
0104
0105
0106
0107

0119

0121

OUTPUT THE RESULT
00066 062133R
00067 006400
00070 016005X
00071 000010R
00072 000076R
00073 016015X
00075 016011X
00076 016007X

FIND THE MID-POINT
00077 062004R
00100 042006R
00101 006400
00102 016002X
00103 016016X
00105 016014X

00107 062005R
00110 042007R
00111 006400
00112 016002X
00113 016016X
00115 016014X

0122 00130 026026R
00131 000005
00132 000004
00133 000002
00134 040000
00135 000000

0123
** NO ERRORS*

D-16

CLB
DIV PRINT
DST PRINT
Xlr

LOA =82
CLB
JSB .010.
DEF rMT
DEF *+4
OLD PRINT
JSB • IOR.
JSB .OTA.

Or THE LINE
LOA DATA
ADA OATA+2
CLB
JSB FLOAT
rMP =r·5
DST PRINT

LOA DATA+l
ADA DATA+3
CLB
JSB FLOAT
rMP =r•5
DST PRINT+2

LST

UNS
JMP INPUT

END START

SEGMENT:

PAGE 0001

0001 ASMB,R,L,T,N
START R 000000
• IOC. x 000001
FLOAT x 000002
II'! X x 000003
SQRT x 000004
·DIO. x 000005
• I 0 I. x 000006
·DTA. x 000007
.RAR • x 000010
• IOR. x 000011
• IAR. x 000012
.DATA R 000002
.PRIN R 000003
DATA R 000004
FMT R 000010
FMT2 R 000013
FMT3 R 000023
INPUT R 000026
PRINT R 000043
.DIV x 000013
.DST x 000014
.OLD x 000015
.FMP x 000016
** NO ERRORS*

D-17

PAGE 0002 #01 LINE F'ORMULI: DISTANCE, SLOPE, MID-POINT

0002*
0003*
0004*
0005*
0006*
0007*
0008*
0009*
0010*
0011 *
0012*
0013*
0014*
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024

0025

0026

D-18

PROGRAM LINE WILL EITHER CALCULATE THE DISTANCE BETWEEN
TWO POINTS OR F'IND THE SLOPE OF' THE LINE CONNECTING
THE POINTSJ THEN THE POINT EQUIDISTANT FROM EACH
POINT <THE MID-POINT> IS CALCULATED.

DATA IS INPUT USING THE FORMATTER LIBRARY ROUTINE
F'OUR N-DIGIT REAL NUMBERS AT A TIME. THE F'IRST
QUANTITY IS THE X COORDINATE OF' THE F'IRST POINTJTHE
SECOND QUANTITY IS THE Y COORDINATE OF' THE FIRST POINTJ
THE THIRD AND FOURTH QUANTITIES ARE THE X AND Y COORDINATES
OF' THE SECOND POINT.

THE RESULT IS OUTPUT TO THE TELEPRINTER BY THE
FORMATTER LIBRARY ROUTINE; EACH QUANTITY CANNOT BE MORE
THAN AN EIGHT DIGIT REAL NUMBER.

00000 NAM LINE
00000 000000 START NOP
00001 026026R JMP INPUT

00002
00003
00004
00010
00011
00012
00013
00014
00015
00016
00017
00020
00021
00022
00023
00024
00025

000004R
000043R
000000
024106
034056
031451
024106
034056
031454
021054
021054
043070
027063
027451
024064
044462
024440

.DATA

.PRIN
DATA
F'MT

F'MT2

F'MT3

EXT .Ioc.,F'LOAT,IF'IX,SQRT
EXT
EXT

.DI0.,.101.,.DTA RAR.

.IOR.,.IAR.
DEF'
DEF'
BSS 4

DATA
PRINT

ASC 31CF'B·3>

ASC 3.1<4I2>

PAGE 0003 #01 LINE FORMULI: DISTANCE, SLOPE, MID-POINT

0028*
0029
0030
0031
0032
0033
0034
0035
0036
0037

0039*
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064

0066*
0067
0068
0069
0070
0071
0072
0073
0073
0073
0073
0074

0076
0077
0078

INPUT THE FIRST TWO POINTSJ FOUR DATA WORDS
00026 000000 INPUT NOP
00027 062123R LDA =85
00030 006404 CLB,INB
00031 016005X JSB .DIO.
00032 000023R DEF FMT3
00033 000037R DEF *+4
00034 062124R LDA =84
00035 066002R LDB .DATA
00036 016012X JSB .JAR.

THE DISTANCE BETWEEN THE TWO POINTS:

FIND

00037
00040
00041
00042

00043
00044
00045
00046
00047

00050
00051
00052

IFZ
LOA DATA+2
CMA,INA
ADA DATA
SPC 1
JMP *+5

PRINT REP 4
NOP
SPC 1
STA PRINT
SUP
MPY PRINT
STA PRINT
SPC 1
LOA DATA+3
CMA,INA
ADA DATA+l
STA PRINT+l
MPY PRINT+t
ADA PRINT
SPC 1
JSB FLOAT
JSB SQRT
DST PRINT
XIF

THE SLOPE OF THE LINE
I FN

062006R LOA DATA+2
003004 CMA,INA
042004R ADA DATA
026047R JMP *+5

PRINT REP 4
000000 - NOP
000000 NOP
000000 NOP
000000 NOP
072043R STA PRINT

062007R LOA DATA+3
003004 CMA,INA
042005R ADA DATA+l

D-19

PAGE 0004 #01 LINE F'ORMULI: DISTANCE, SLOPE ..

0079 00053 006400
0080 00054 016013X

00055 000043R
0081 00056 016014X

00057 000043R
0082

0084* OUTPUT THE RESULT
0085 00060 062125R
0086 00061 006400
0087 00062 016005X
0088 00063 000010R
0089 00064 000070R
0090 00065 016015X

00066 000043R
0091 00067 016011X
0092 00070 016007X

0094* F"IND THE MID-POINT
0095 00071 062004R
0096 00072 042006R
0097 00073 006400
0098 00074 016002X
0099 00075 016016X

00076 000126R
0100 00077 016014X

00100 000043R

0102 00101 062005R
0103 00102 042007R
0104 00103 006400
0105 00104 016002X
0106 00105 016016X

00106 000126R
0107 00107 016014X

00110 000045R

0119

0121
0122 00122 026026R

00123 000005
00124 000004
00125 000002
00126 040000
00127 000000

0123
** NO ERRORS*

D-20

CLB
DIV PRINT

DST PRINT

XIF

LOA =82
CLB
JSB .010.
DEF' F'MT
DEF' *+4
OLD PRINT

JSB • IOR.
JSB .OTA.

OF' THE LINE SEGMENT:
LOA DATA
ADA DATA+2
CLB
JSB F'LOAT
F'MP =F'.5

DST PRINT

LOA DATA+l
ADA DATA+3
CLB
JSB F'LOAT
F'MP = F'. 5

DST PRINT+2

LST

UNS
JMP INPUT

END START

MID-POINT

SYSTEM INPUT /OUTPUT SUBROUTINES E

MEMORY
ALLOCATION

The System Input/ Output (SIO) subroutines may be used to
perform basic input/ output operations for programs in
absolute form. 'f'

These drivers are stored in high memory immediately
preceding the Basic Binary Loader. The Teleprinter driver
must be loaded first; it is stored in the highest portion of
this area. The drivers for the Punched Tape Reader (or
Marked Card Reader), the Tape Punch, and the Magnetic
Tape Unit may then be loaded. The sequence of loading
must fall within this order, depending on your equipment
configuration: Line Printer Driver, Punched Tape Reader
Driver (or Marked Card Reader), Tape Punch Driver, Mag­
netic Tape Driver, and if needed, the MTS Boot.

The drivers are accessed through 15-bit absolute addresses
which are stored in the System Linkage area starting at
location !Ola. The allocation of memory is as follows:

BASIC BINARY LOADER

TELEPRINTER DRIVER

F===============~~-.....PUNCHED TAPE
READER DRIVER

TAPE PUNCH DRIVER

MAGNETIC TAPE DRIVER

INTER - PASS LOADER

(MTS)

SYSTEM LINKAGE

RESERVED LOCATIONS

'f' The SIO subroutines are designed for use with FORTRAN,
Assembler, Symbolic Editor, etc.; however, they may be
used with any absolute object program.

E-1

I

OPERATION
AND CALLING
SEQUENCE:
PAPER TAPE
DEVICES

Register
Contents

E-2

All data transmission is accomplished without interrupt con­
trol, and therefore, operations are not buffered by the drivers.
Control is not returned to the calling program until an opera­
tion is completed. Data is transferred to and from buffer
storage areas specified in the user program.

The general form of the paper tape input/ output calling sequence
is·

· LDA (buffer length) (words or characters)

LDB (buffer address)

JSB lOffi,I (f is Input/ Output function)

(normal return)

When the JSB is performed, the A-Register must contain the
length of the buffer storage area and the B-Register, the ad­
dress of the buffer. Control returns to the location following
the JSB. After an input request is completed, the A-Register
contains apositive integer indicating the number of characters
or words transmitted, or zeros, if an end-of-tape condition
occurred.

The digit supplied for f in the JSB instruction determines the
paper tape input/ output function to be performed. The value of
the operand address is the location in the System Linkage that
contains the absolute address of the driver entry point. The
following are available:

101 Input
102 List Output
103 Punch Output
104 Keyboard Input-ASCII data is read from Teleprinter

and printed as it is received.

If the Teleprinter driver alone is loaded, these locations point
to entry points of this driver. If Punched Tape Reader and
Tape Punch drivers are in memory, location 101 points to the
Punched Tape Reader driver and location 103, to the Tape
Punch driver. If the latter are to be used, they must be loaded
after the Teleprinter driver.

OPERATION
AND CALLING
SEQUENCE:
MAGNETIC
TAPE DRIVER

Register
Contents

As with the Paper Tape SIO drivers, all data transmission
is accomplished without interrupt control. Control is not re­
turned to the calling program until an operation is completed.
(Rewind and rewind standby are the only exceptions to this. In
these cases return is made as soon as the command is
accepted.)

The general form of the calling sequence is:

LDA (buffer length) or <file count)

LDB <buffer address) or (record count)

JSB 107B,I

OCT <command code)

(EOF/EOT /SOT return>

(error return)

(normal return)

NOTE: Location 107 8 must contain the address of the
magnetic tape driver.

Before initiating read or write operations, the A-Register must
contain the buffer length. This will be a positive integer if
length is defined in characters and a negative integer if length
is defined in words. The B-Register must contain the buffer
address.

Before initiating tape positioning operations, the A-Register
must contain the number of files that are to be spaced. A
positive integer indicates forward spacing; a negative integer
indicates backward spacing. The B-Register contains the
number of records that are to be spaced. A positive integer
indicates forward spacing; a negative integer indicates back­
ward spacing. The positioning may be defined in terms of any
combination of forward or backward spacing offiles and records
(e.g., space forward two files then backspace three records).
If files only or records only are to be spaced, the contents of
the other register should be zeros.

The registers are not used when entering the subroutine to
perform one of the following operations:

E-3

Linkage
Address

MAGNETIC TAPE
OPERATIONS

Read

E-4

Write end-of-file
Write file gap
Rewind

Rewind/Standby
Status

107B is the System Linkage word that contains the absolute
address of the entry point for the Magnetic Tape driver.

I

On return from a read operation, the A-Register contains a I
positive value indicating the number of words or characters
transmitted.

On return from all operations except Rewind and Rewind/ I
Standby the B-Register contains status of the operation (See
Status).

The magnetic tape driver will perform the following operations.
The pertinent operation is specified by the command code
which appears after the OCT in the calling sequence.

Operation

Read
Write
Write End-of-File
Rewind (Auto mode)
Position
Rewind/Standby (Local mode)
Gap
Status

Command Code

0
1
2
3
4
5
6
7

One tape record is read into the buffer. The number of
characters or words read is stored in the A-Register. The
value will be equal to the buffer length except when the data
on tape is less than the length of the buffer. One tape record
is read to transfer the number of characters specified into
the buffer. The number of characters in that record (not
the number transferred) will be stored in the A-Register.
If the tape record exceeds the buffer length, the data will
be read into the buffer until the buffer is filled, the remainder
of the record will be skipped. If the length of an input
buffer is an odd number of characters, a read operation will
result in the overlaying of the character following the last
character of the buffer; the subroutine actually transmits
full words only.

I

I

Write

Three attempts are made to read the record before return­
ing control to the parity error address.

If an EQT condition exists at the time of entry, the command
will be ignored and control will be returned to the EOT/EOF
address.

If the buffer length specified is 0 control will return to the
normal address without any tape movement.

The input buffer storage area can be as large or as small as
needed. The number of characters in the tape record will be
stored in the A-Register.

The contents of the buffer is written on tape preceded by the
record length. Since a minimum of 7 tape characters (12 on
3030) may be written, short records are padded by the sub­
routine.

If the end-of-tape is detected during the write operation, the
normal return is used. The next write operation, however,
results in a return of control of the EOF /EOT location; no
data is written. If an EOT condition exists at the time of en­
try, the command will be ignored and control will be returned
to the EOT /EO F address.

If the write request length specified is 0 control will return
to the normal address without any tape movement.

If an error is detected during the write operation, the tape
will be back-spaced over the bad record, 3 inches of tape
will be erased, and another attempt will be made. These
attempts will continue until either a good record is made
or until the EOT is detected at which time the control will
return to the error address.

E-5

E-6

Write
End-of-File

Rewind

Position

A standard EOF character (178 for 2020, 23a for 3030) is
written on tape. Control return to the normal location with
the EOF status on the B-Register. No gap is written.

If the end of tape was reached on a previous write command,
control returns to the EOF/EOT location; the character is
written.

This command initiates a rewind operation and then immedi­
ately returns control to the normal location.

The calling sequence for a Rewind operation consists of:

JSB 107B,I
OCT 3
(normal return)

The user need not test status on the rewind operation before
issuing the next call.

This is the general command to move the tape. Both file
and record operations may be defined in the same operation.
Either may be specified for forward or backward spacing.
At the completion of the operation the tape will be positioned
ready for reading or writing.

An attempt to space beyond the End-of-Tape or Start-of-Tape

I

will terminate the positioning operation and return control I
to the EOF/EOT/SOT location.

Rewind/
Standby

Gap

Status

This causes the tape to be positioned at load point and switches
the device to local status. Control returns to the normal loca­
tion immediately after the operation is initiated.

The calling sequence for a Rewind /Standby
consists of:

JSB 107B,I
OCT 5
(normal return)

operation

An attempt to issue another call on this device results in a
halt (102044). The device must be switched to AUTO before
the program can continue.

This command causes a 3-inch gap to be written on the tape.

If the End-of-Tape was reached on a previous write command,
control returns to the EOF /EOT location; the gap is not
written.

This command returns certain status bits in the B-Register.
The driver performs a clear command whenever it is entered
and as a result the only bits that are valid indicators are:

E-7

I

E-8

Start-of-Tape
End-of-Tape
Write Not Enabled

All other commands (except Rewind and Rewind/Standby)
provide valid status replies on return to the program.

The status reply consists only of bits 8-0 and has the
following significance:

Bits 8-0

lxxxxxxxx

xlxxxxxxx

xxlxxxxxx

xxxlxxxxx

xxxxlxxxx

xxxxxlxxx

xxxxxxlxx

xxxxxxxlx

xxxxxxxxl

Condition

Local - The device is in local status

EOF- An End-of-File character (178 for 7
track, 238 for 9) has been detected while
reading, forward spacing, or backspacing.

SOT - The Start-of-Tape marker is under the
photo sense head.

EOT - The End-of-Tape reflective marker is
sensed while the tape is moving forward. The
bit remains set until a rewind command is
given.

Timing - A character was lost.

Reject - a) Tape motion is required and the
unit is busy. b) Backward tape motion is
required and the tape is at load point. c) A
write command is given and the tape reel
does not have a write enable ring.

Write not enabled - Tape reel does not have
write enable ring or tape unit is rewinding.

Parity error - A vertical or longitudinal
parity error occurred during reading or writ­
ing. (Parity is not checked during forward or
backward spacing operations.)

Busy - The tape is in motion or the device
is in local status.

I

I

I

Error Messages

Tape Unit in
Local Status:

Write
Not Enabled:

Following is a table summarizing the tape commands:

Operation Command Call Return
Code A B A B

Read 0 Buffer Buffer Buffer Status
Length Address or

Record
Length

Write 1 Buffer Buffer Buffer Status
Length Address Length

Write 2 - - - Status
EOF

Rewind 3 - - - -
(Auto mod~
Position 4 Number Number - Status

of Files, of
Di rec- Records,
ti on Direction

Rewind/ 5 - - - -
Standby
(Local
mode)
Gap 6 - - - Status

Status 7 - - Status

The subroutine halts with 102044 in the T-Register. Switch
tape unit to AUTO mode and press RUN to continue.

The subroutine halts with 102011 in the T-Register. The
error is irrecoverable.

E-9

I

I

I
I

Additional
Linkage
Addresses

BUFFER
STORAGE
AREA

Record Formats

E-10

Other locations in the System Linkage area contain the fol­
lowing:

100a Used by the standard software system to store a JMP
to the transfer address.

105a First word address of available memory.

1068 Last word address of available memory.

The latter two locations may be accessed by an absolute pro­
gram. The user may store the first word of available memo­
ry in 105 by performing the following:

ORG 105B
ABS <last location of user program +1 >

The last word of available memory is established by the driv­
ers; it is the location immediately preceding the first location
used by the last driver loaded.

The Buffer Address is the location of the first word of data to
be written on an output device or the first word of a block re­
served for storage of data read from an input device. The
length of the buffer area is specified in the A-Register in terms
of ASCII input or output characters or binary output words.
For binary input, the length of the buffer is the length of the
record which is specified in the first character of the record.
ASCII and binary input record lengths are given as positive in­
tegers. The length of a binary output record is specified as
the two's complement of the number of words in the record.

In addition to describing the buff er area in the calling sequence,
(or first word of binary input record), the area must also be
specifically defined in the program, for example with a BSS
instruction.

ASCII Records (Paper Tape)

An ASCII record is a group of characters terminated by an
end-of-record mark which consists of a carriage return, @,
and a line feed, @

For an input operation, the length of the record transmitted to
the buffer is the number of characters designated in the A­
Register, or less if an end-of-record mark is encountered be­
fore the character count is exhausted. The codes for @ and
@are not transmitted to the buffer. An end-of-record mark

preceding the first data character is ignored.

For an output operation, the length of the record is determined
by the number of characters designated in the request. An
end-of-record mark is supplied at the end of each output oper­
ation by the driver.

If a (RUB OUT) code followed by a ©:ID@ is encountered on
input from the Teleprinter or Punched Tape Reader, the cur­
rent record is ignored (deleted) and the next record trans­
mitted. t

If less than ten feed frames (all zeros) are encountered before
the first data character from the Punched Tape Reader, they
are ignored. Ten feed frames are interpreted as an end-of­
tape condition.

Binary Records (Paper Tape)

A binary record is transmitted exactly as it appears in
memory or on 8-level paper tape. Each computer word is
translated into two tape "characters" (and vice versa) as
follows:

15

'
1st TAPE CHAR.

2nd TAPE CHAR.

87 0

v----'---- ~---r-·
15 14 13 12 11 10 9 8
7 6 5 4 3 2 1 0

For an output operation, the record length is the number of
words designated by the value in the A-Register (the value is
the two's complement of the number of words). For input
operations, the first word of the record contains a positive
integer in bits 15-8 specifying the length (in words) of the
record including the first word.

t (RUB out) which appears on the Teleprinter keyboard is
synonymous with the ASCII symbol ~

E-11

2020 7-LEVEL
TAPE

On input operations if less than ten feed frames precede the
first data character, they are ignored; ten feedframes are in­
terpreted as an end-of-tape condition. On output, the driver
writes four feed frames to serve as a physical record sepa­
rator.

Binary Records (Magnetic Tape)

The Magnetic Tape subroutine reads and writes binary (odd
parity) records only. A record count is supplied by the
driver as the first word of the record. This allows automatic
padding of short records to the minimum record length with
automatic removal of the padded portion of the record on
read.

Each Computer word is translated into three tape "characters"
(and vice versa) as follows:

15 II 10* 6 5* 0
computer word 110110011101100011

3030
TAPE

E-12

9-LEVEL

~\....______, *Bits 10 and 5 are recorded
3rd part of~\.___~ t I · t t h t word 2nd part of~ w ce, in wo ape c arac ers,

word 1st oart of as shown.
word

TAPE TRACKS P 6 _,,......_,.,,..., P =Odd parity bit

1st tape charocter 0 I 0 I I 0
2nd 11 " I O I I I O
3rd 11 0 I I 0 0 0

Each Computer Word is translated into Two tape "characters"
by repositioning the bits in the following scheme:

COMPUTER WORD BITS 15 B 7 0

1st word contents 1 0 0 0 1 1 0 0 1 0 1 1 1 1 0 1

2nd word contents 0 1 1 0 1 0 0 1 1 1 O 1 O O 1 O

TAPE TRACK ~ ! i ~ i ~ ~ ! ~ 111111 ! 11
ASSIGNMENTS I 7 6 5 3 9 1 B 2 \

TAPE TRACKS 9 4

1st tape character 1 0 1 0 0 0 0 0 1
2nd tape character 1 0 1 0 1 1 1 1 1
3rd tape character 1 0 0 1 1 1 0 1 0
4th tape character 0 1 1 1 0 1 1 0 0 , _______ _..

TRACK 4 IS THE
ODD PARITY BIT

OPERATION AND CALLING SEQUENCE:
MARK SENSE CARD READER

The SIO Mark Sense Card Reader Driver overlays the
Punched Tape Reader Driver exactly, therefore, only one
or the other of these two Drivers may be used in any one
SIO System configuration. Further, the Driver has no
binary read capability; if this ability is needed, the BCS
Mark Sense Card Reader Driver will have to be used.

All data transmission is accomplished without interrupt
control. Execution control is not returned to the calling
program until either a complete card has been read.

The general form of the calling sequence is:

LDA <character count> (positive)
LDB <buffer address>
JSB <101B,I>

< normal return >

Register Contents

Before the JSB is executed, the A-Register must contain
the character count (the buffer length) and the B-Register
must contain the buffer address. Control returns to the
location following the JSB; then the A-Register will contain
the number of characters transmitted not including trailing
blanks, or, if a transmission error was detected, it will
contain all zeroes.

E-13

CALLING
SEQUENCES

FORMATTER F

The Formatter is a library subroutine used by FORTRAN
and ALGOL to input or output data. An assembler program
may access the Formatter routine with a 5 to 9 line calling
sequence depending on the form of the call.

I. Format Definition

Formatted

Binary

where

unit

fmt

end of list

ABS 0

formatted
input/ output

binary
input/ output

INPUT OUTPUT

LDA (unit) LDA (unit)
CLB,INB CLB
JSB .DIO. JSB .DIO.
DEF (fmt) or ABS 0 DEF (fmt)
DEF (end of list) DEF (end of list)

LDA (unit) LDA (unit)
CLB,INB CLB
JSB .BIO. JSB .BIO.

refers to the unit reference number of the
device to be called

is the label of an . ASC pseudo instruction
which defines the format specification

is the location immediately following the last
parameter of the calling sequence; it is tothis
location that the Formatter returns control.

is an option for free field input

is in ASCII code

is in binary code

F-1

F-2

II. Element Definition

INPUT OUTPUT

Real Variable JSB .IOR. DLD x
DST x JSB .IOR.

Integer Variable JSB .IOI LDA i

Array

where

x or i

STA

LDA
LDB
JSB

i

array length
array address

JSB .IOI.

.RAR. (real) or .IAR. (integer)

array length

are addresses, real or integer, of the data

is the number of elements (not the number of
memory locations) in the block of data.
(Maximum length is equivalent to 60 computer
words.)

III. .Terminator

INPUT OUTPUT

(none) JSB .DTA.

Symbols such as .DIO., .IOR., etc., are entry points to the
Formatter; all entry points used in the calling sequence must
be declared external with an EXT pseudo code.

Data stored in memory may be converted internally from one
format to another with the following initial call.

LDA =BO
JSB .DIO.
DEF buffer
DEF (fmt)
DEF (end of list)

Element Definition

Terminator
where buffer is the address of the data to be converted.

FORMAT
SPECIFIC AT I 0 NS Below are listed the format conversion and editing specifica­

tions.

rAw
rEw.d
rFw.d
rlw

~~ l

where

r

w
d

n
h's

Aw

Ew

Alphanumeric character
Real number with exponent
Real number without exponent
Decimal integer

Octal integer

Blank field descriptor

Heading and labeling descriptors

Begin new resord

is the number of times the entire format is
repeated
is the number of digits in the format
is the number of digits to the right of the
decimal point (w-d should be greater than or
equal to 4)
is the number of characters or spaces
represents the ASCII characters

translates alphanumeric data to or from
memory. If w is greater than 2 only the last
two characters are processed; if w is 1, the
single character is read into or written from
the right-half of the computer word.

converts data to a real number. On output, data
may consist of integer, fraction, and exponent
subfields.

+ + N n ... n. n ... n E ee

On output, data appears in floating point form.

~. x1 • • • Xct E ± ee

F-3

EXAMPLE

F-4

Fw

Iw

@wand Kw

"h h " r 1 · · · n

For output operations real numbers in memory
are converted to character form which will
appear right justified in decimal form. Input
is identical to the E specification input.

~x ••• x.x ..• x

translates decimal integers to or from memory

translates- octal integers to or from memory.

provides for the transfer of any combination of
8-bit ASCII characters, including blanks.

also transfers ASCII characters; field length
is not specified, quotation marks are not trans­
ferred.

(For a more detailed description of the Format specifications
see the FORTRAN Programmer's Reference Manual, Section 7.)

Below is an example of a calling sequence to the Formatter that
will output the contents of a block data, SOLVE, such that
each number is printed on the teleprinter in the following
manner:

xxxxxx.xx

SOLVE occupies 10010 memory locations; the data stored there
is in floating point form.

lobe I Operotion Operand Commenh

' 5 " " 20 25 30 3' '° " 50

EXT . D IO . RA R. DT A. ' I• I • I

FR MT ASC 5 (2X FB . 2) I
I

so LVE BSS 100 I
I

. I
I . I
I . I

LDA = B 5
C LB
JSB . D I 0 .
DEF FR MT
DEF *+5
LDA = D 50 I

LDB so LVE I
I

JSB . R AR. ' I
I

JSB .D I A. I
I

I
I

I
I

I I

F-5

CROSS REFERENCE TABLE GENERATOR G

The Cross Reference Symbol Table Generator routine pro- I
cesses an Assembly Language source program and prints a
cross reference list of all symbols appearing in the program.
The list contains the symbols in alphabetic order. Each is
followed by the 4-digit sequence number of the statement
in which the symbol was defined and the sequence numbers
of all statements referring to the symbol. If the source
program is contained on more than one tape, the tape number
follows the statement sequence number. The tape number
is determined by the order in which the tapes are sub-
mitted to the generator routine; it is not printed for the
first tape. The general format of the list is as follows:

sssss dddd/tt rrrr/tt rrrr/tt rrrr/tt rrrr/tt rrrr/tt rrrr/tt

SSS SS =
dddd =

tt =
rrrr =

symbol
defining statement number (modulo 2048}
tape number (modulo 31}
reference statement numbers (modulo 2048}

Example:

The program;

(0001)
(0002)
(0003)
(0004)
(0005)
(0006)
(0007)
(0008)
(0009)

NAM TESH
BEGIN OLD A

FMP A
DST A

TEST ISZ I
JMP BEGIN
HLT 3
COM A (2),1
END

yields the cross reference table:

A
BEGIN
I
TEST

0008
0002
0008
0005

0002
0006
0005

0003 0004

G-1

I

OPERATING
PROCEDURES

G-2

If the Assembly Language program uses the IFN or IFZ
psuedo-operations, doubly defined symbols may appear in
the cross-reference listing. For literals, the statement
number is always 0000 00 because the literal definition is
not assigned a statement numl1er. Only the first five
characters of the literal, including the =, will become the
symbol that is cross-referenced. As a result, different
literals may be listed under the same entry in the listing
(i.e., =D3156 and =D3157 would be listed under =D315).
Negative literals are all listed under the symbol =D.

The Cross-Reference Symbol Table Generator can operate
with or without a magnetic tape unit. The Generator checks
location 1078 to check whether a magnetic tape driver is
present in core; if one is, the Generator assumes that the
source program is already present on the magnetic tape
(as it would be if it were written by a previous assembly or
edit).

In addition, the Generator can be run stand-alone or as a
part of the Magnetic Tape System. For operating proced­
ures in the Magnetic Tape System, consult the MAGNETIC
TAPE SYSTEM manual (02116-91752).

A. Set Teleprinter to LINE and check that all equipment to be
used is operable.

B. Load Cross Reference Symbol Table Generator using
the Basic Binary Loader.t

1. Place Cross Reference Symbol Table Generator in
the unit serving as the Standard Input unit (e.g.,
Punched Tape Reader).

2. Set Switch Register to starting address of Basic Bi­
nary Loader.

t The appropriate System Input/Output subroutines (drivers)
are assumed to be included with the Cross Reference Table
Generator program.

3. Press LOAD ADDRESS.

4. Set Loader switch to ENABLE.

5. Press PRESET.

6. Press RUN.

7. When the computer halts and indicates that the Cross
Reference Symbol Table Generator is loaded (T­
Register contains 102077), set Loader Switch to
PROTECTED.

C. Set Switch Register to starting address of Cross Reference
Table Generator.

000100

D. Press LOAD ADDRESS.

E. Place source language tape in unit serving as the
Standard Input unit (e.g., Punched Tape Reader). If
magnetic tape driver is present, source must be on
third file of magnetic tape. If the number of symbols
in the program is large enough to cause a table over­
flow, set switch register bit 15 up (on) to break the
cross-reference into several passes based on charac­
ter ranges. The Generator prints:

** ENTER CHARACTER RANGE:

The operator responds with two ASCII characters
followed by a carriage-return and line feed. This
causes the Generator to cross-reference only the
symbols beginning with the characters between the
two characters specified. Consult Appendix A for
a full list of the characters. For three passes, the
recommended ranges are:

F. Press RUN.

(space) 9
:L
M +-

G. At the end of each tape other than the last, the com -
puter halts (102057). Repeat E and F.

G-3

G-4

H. At the end of the last tape (the tape containing the END
statement), the table is printed on the Standard List Out­
put device (e.g. , Teleprinter). When the table is printed,
the computer halts. The B-register contains the
number of symbols cross-referenced.

During the operation of the routine, the following may be
printed:

Teleprinter
Message

DD symbol

TABLE
OVERFLOW

Explanation

A doubly defined sym­
bol has been encoun­
tered. The computer
does not halt.

The combined number
of symbols and refer­
ences to them exceeds
the capacity of the rou­
tine.

Action

Correct source pro­
gram after comple­
tion of routine.

Irrecoverable error.
If the Table is nee -
essary, the source
program must be re­
vised.

CONSOLIDATED CODING SHEET H

15 14 13 12 11 10 9 B 7 6 5 4 3 2 1 0

D/l AND 001 0 Z/C Memory Address
D/I XOR 010 0 Z/C
D/I IOR 011 0 Z/C
D/I JSB 001 1 Z/C
D/I JMP 010 1 Z/C
D/I ISZ 011 1 Z/C
D/I AD* 100 A/B Z/C
D/I CP* 101 A/B Z/C
D/I LD* 110 A/B Z/C
D/I ST* 111 A/B Z/C

15 14 13 12 11 10 9 B 7 6 5 4 3 2 1 0

0 SRG 000 A/B 0 D/E *LS 000 CLE D/E SL* *LS 000
*RS 001 *RS 001
R*L 010 R*L 010
R*R 011 R*R 011
*LR 100 *LR 100
ER* 101 ER* 101
EL* 110 EL* 110
*LF 111 *LF 111

NOP 000 - 000 000 000

15 14 13 12 11 10 !) 8 7 6 5 4 3 2 1 0

0 ASG 000 A/B 1 CL* 01 CLE 01 SEZ SS* SL* IN* SZ* RSS
CM* 10 CME 10
CC* 11 CCE 11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 JOG 000 A/B 1 H/C HLT 000 Select Code
1 0 STF 001
1 1 CLF 001
1 0 SFC 010
1 0 SFS 011
1 H/C MI* 100
1 H/C LI* 101
1 H/C OT* 110

0 1 H/C STC 111
1 1 H/C CLC 111

1 0 STO 001 000 001
1 1 CLO 001 000 001
1 H/C soc 010 000 001
1 H/C sos 011 000 001

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 EAU 000 MPY** 000 010 000 000
DIV** 000 100 000 000
DLD** 100 010 000 000
DST** 100 100 000 000
ASR 001 000 0 1
ASL 000 000 0 1 number LSR 001 000 1 0
LSL 000 000 1 0 of -
RRR 001 001 0 0 bits

RRL 000 001 0 0

Notes: *=A or B.
D/l, A/B, Z/C, D/E, H/C coded: 0/1.
**Second word is Memory Address.

H-1

INDEX

ABS 2-6 2-7 2-9 4-10 4-15 5-10 ' ' ' ' __ ,
5-12 5-14

'

Absolute
Expression 2-9, 4-12, 4-15, 5-12
Output 1-4, 5-1
Pro gram 1-3, 3 -1, 4 -1, 5-1
Symbol 2-6
Value 1-1, 1-3,4-15

Arithmetic operators 1-1, 2-3, 2-7,
2-8,5-13

Arithmetic subroutine call 3-12, 4-24,
4-25, 5-2,
5-10, 5-11,
5-12

ASC 2-6,4-17,5-10,5-16
ASCII 2 -3, 4 -1 7, A-1
Asterisk 2-1, 2-4, 2-5, 2-6, 2-7, 2-10,

2-14

Base Page 1-3, 2-13, 4-2, 4-3, 4-10,
4-13

Addressing 2-13
Location counter 1-3,2-7,4-1

4-21
Relocatable 1-3, 2-9, 5-3, 5-10

Basic Binary Loader v, 5-8
Basic Control System (BCS) v, 1-3,

2-13,4-7,

Binary output 1-4, 5-1, 5-2
BSS 2-6, 4-21, 5-10, 5-16

4-10, 5-1,
5-9

Clear Flag Indicator 2-13, 3-1, 3-3
Character Set 2-1, 2-3,A-1
Coding form 2-2
COM 2-6,4-8,4-9,4-10,4-11,4-12,

5-1, 5-10, 5-11, 5-14

Comma 2-3, 2-6, 2-12, 2-13, 3-4,4-8
Common relocatable 1-3,2-9,4-10,

5-3,5-13
Common storage 1-1, 1-3, 1-4, 3-1,

4-8
Configuration v, 5-4
Constant

ASCII 4-17
Decimal integer 2-7, 4-18
Decimal Floating Point 4-18
Octal 2-7, 4-20

Control Bit 3-7, 3-8
Control statement 1-4, 4-1, 4-4, 5-1,

5-10, 5-14
DEC 2-6, 2-7, 2-9, 4-18, 5-10, 5-12
Decimal constant 4-18
DEF 2-6, 2-9, 2-12, 4-10, 4-12, 5-10,

5-12,5-14
Delimiters, field 2-1
DEX 2-6, 2-7, 2-9, 4-20, 4-24, 5-10,

5-12, 5-14. B-T,C°-2.
Diagnostics 1-1, 5-6, 5-9
DIV 3-11, 4-24
DLD 3-11, 4-25
DST 3-11, 4-25

END 2-14,4-3,4-7,5-2,5-16
End-of-statement mark 2-1, 2-3, 2-5,

2-13, 2-14, 5-1
ENT 4 -10, 4 -11, 5 -1, 5 -11
Entry Point 1-4, 4-10, 4-12, 5-11
EQU 2-6, 2-7, 2-9, 4-10, 4-15, 5-10,

5-16
Expression 2-5,2-6,2-8,3-1,3-8,5-12
EXT 2 -4, 2 -6, 4 -10, 4 -11, 5 -1, 5 -10
Extended Arithmetic Unit 3-11, B-5
Extended Assembler v,2-11,4-21,

4-24
External references 1-4,2-12,3-1,

4-10, 5-10

Index-1

I

FAD 4-25
FDV 4-24
Flag bit 3-7, 3-8, 3-9
Floating point number 4-18, 4-19, 4-24,

4-25
FMP 4-24
FSB 4-25

Halt

IFN
IFZ

3-7 B-10 , __

Indicators 2-1, 2-4, 2-6, 2-13, 2-14,
3-1, 5-10

Indirect Addressing 2-1, 2-12, 3-1,
4-12

Input/Output 2-8, 2-14, 3-7, 3-8, 5-2
Instructions

Alter-Skip 3-6
Input/Output 3-7, 3-8, B-4
Jump 3-2
Logical 3-3
Memory Reference 3-1
Overflow 3-7, 4-26, B-4
Register reference 3-4
Shift-Rotate 3-4, 3-5

Integer 4 -18
Interrupt 3-2, 3-7

Label 1-l ,_2-1, 2-3, 2-6, 4-1, 4-8, 4-10,
4-17,4-18,4-20,5-10,5-15

List output 1-1, 1-4, 2-14, 4-1, 5-1,
5-2

Literals 2 -11, 3 -1

Magnetictape 1-1,5-6
Memory Reference 1-1, 2-5, 2-8, 2-9,

2-12, 2-13, 3-1,
4-10, 4-13, 5-12,
5-14, B-2

Minus sign 2-3, 2-5, 2-7, 5-12, 5-13
MPY 3-11, 4-24

Index-2

NAM 1-3, 2-14, 4-1, 5-1, 5-2, 5-11,
5-14

Numeric term
NOP 3-4 3-5

2-5 2-6 2-7 5-14 ' ,_,
,_

OCT 2-6,2-7,2-9,4-20,5-10,5-12,
5-14

Octalnumber 2-7,4-20
Opcode 2-1, 2-5, 5-13
Operand 2-1, 2-5, 5-10
Operating instructions

magnetic tape 5-6
paper tape 5-4

ORB 1-3,4-2,4-3,4-10,5-1,5-11
ORG 1-3,4-1,4-2,4-3,4-10,5-2,

5-13
ORR 4-2, 4-3

Parameters 1-4, 2-8, 5-1, 5-2
Parentheses 2-3, 2-8
Pass 1-1,4-21,5-4
Period 2-1
Plus sign 2-3,2-5,2-7,5-13
Pro gram location counter 1-3, 2-3,

2-7,2-9,
4-1, 4-3'
4-15, 4-24

Program origin 1-3, 4-1, 5-10
Program relocatable 2-9, 5-3

Reference Manuals
Register Reference
Relocatable

v
3-4 B-2 _,

Expression 2-9, 2-10, 4-12, 5-12,
5-13

Loading 1-3
Output 1-4, 5-1
Program 1-3,2-7,2-13,3-1,

Term
Value

REP 4-6

2-6
1-1

4-1, 4-7' 4-8, 4-12,
4-13, 5-1

I

Select code 3-1, 3-7, 3-8
Source language notation 3-1
Source program 5-2
Spaces 2-1, 2-3, 2-5, 4-8
Statement 2-1

length 2-3
SWP 4-24
Symbol Table 1-1, 1-4, 5-2, 5-3, 5-15
Symbolic addressing 1-1
Symbolic term 2-5, 2-6, 5-15
Symbols 1-1, 2-3, 2-6, 4-10, 4-11,

4-15, 5-15

Terminator 2 -1, 2 -5, 4-5
Terms, expression 2-9, 2-10
Transfer address 4-7, 5-2

Index-3

w·
Z·
::::i.
C!1 •
z·
o·
..J.
<(.
I-.
::> •
c.J •

HEWLETT' PACKARD

READER COMMENT SHEET
HP ASSEMBLER

HP 02116-9014 April, 1970
Hewlett-Packard welcomes your evaluation of this text.
Any errors, suggested additions, deletions, or general com·
ments may be made below. Use extra pages if you like.

FROM PAGE~OF~

. · NAME:~~~~~~~~~~~~~~~~~

ADDRESS:~-------------------------------

NO POSTAGE NECESSARY IF MAILED IN U.S.A.

FOLD ON DOTTED LINES AS SHOWN ON OTHER SIDE AND TAPE

FOLD

FOLD

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States Postage will be paid by

SUPERVISOR, SOFTWARE PUBLICATIONS
HEWLETT - PACKARD

CUPERTINO DIVISION
11000 Wolfe Road

Cupertino, California
95014

FIRST CLASS
PERMIT N0.141

CUPERTINO
CALIFORNIA

FOLD

FOLD

02116 - 9014

	0000
	0001
	0002
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	D-12
	D-13
	D-14
	D-15
	D-16
	D-17
	D-18
	D-19
	D-20
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	G-01
	G-02
	G-03
	G-04
	H-01
	H-02
	I-01
	I-02
	I-03
	replyA
	repyB
	xBack

