l

HEWLETT

p, PACKARD

| &

HP Assembler |

Programmer’s Reference Manual

ot

i

HP Assembler

Programmer’s Reference Manual

i

HEWLETT @E PACKARD

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Printed in U.S.A. 8/75

Part No. 02116-9014

PREFACE

This publication is the reference manual for the Hewlett-Packard Assembly
Language for the 2100 family of computers. Since Hewlett-Packard provides
assemblers with all of its operating systems, this manual covers only the
specifications of assembly language, not operating procedures for the
assemblers. The user should refer to the appropriate system manual or

operator's guide listed below:

SOFTWARE OPERATING PROCEDURES

SIO0 SUBSYSTEMS module (5951~1390)

DISC OPERATING SYSTEM (02116~91748)
MOVING-HEAD DISC OPERATING SYSTEM (02116~-91779)
MAGNETIC TAPE SYSTEM (02116-91752)

In addition, the Formatter and other relocatable subroutines that can be called
by relocatable assembly language programs are described in full in the RELOCATABLE
SUBROUTINES manual (02116-91780). Interaction between relocatable programs
and operating systems is described in:

BASIC CONTROL SYSTEM (02116-9017)

MOVING-HEAD DISC OPERATING SYSTEM (02116-91779)

DISC OPERATING SYSTEM {02116-91748)
MAGNETIC TAPE SYSTEM (02116~-91752)

Interaction between absclute programs and SIO drivers is described in an

appendix to this book.

iiji

NEW AND CHANGED INFORMATION

All known errors in this manual have been corrected.
In addition, the Assembler operating procedures
(formally in Section V) are now contained in the
SOFTWARE OPERATING PROCEDURES, SIO SUBSYSTEMS
module (5951-1390).

iv

CONTENTS

111 PREFACE

v NEW AND CHANGED INFORMATION
v CONTENTS

vi INTRODUCTION

1-1 SECTION I
GENERAL DESCRIPTION

1-1 Assembly Processing

1-1 Symbolic Addressing

1-3 Program Relocation

1-3 Program Location Counters
1-4 Assembly Options

2-1 SECTION II
INSTRUCTION FORMAT

2-1 Statement Characteristics
2-4 Label Field

2-5 Opcode Field

2-6 Operand Field

2-16 Comments Field

3-1 SECTION III
MACHINE INSTRUCTIONS

3-1 Memory Reference

3-4 Register Reference

3-8 Input/Output, Overflow, and Halt
3-11 Extended Arithmetic Unit

4-1 SECTION IV
PSEUDO INSTRUCTIONS

4-1 Assembler Control

4-8 Object Program Linkage

4-11 Address and Symbol Definition
4-17 Constant Definition

CONTENTS

SECTION IV (cont.)
PSEUDO INSTRUCTIONS

4-23 Storage Allocation
4-23 Assembly Listing Control
4-26 Arithmetic Subroutine Calls

5-1 SECTION V
ASSEMBLER INPUT AND OUTPUT

5-1 Control Statement

5-2 Source Program

5-3 Binary Output

5-3 List Output
APPENDICES

A-1 HP Character Set

B-1 Summary of Instructions

C-1 Alphabetical List of Instructions
D-1 Sample Problems

E-1 System Innut/OQutput Subroutines
F-1 Consolidated Coding Sheet
G-1 Assembler Error Messages

INDEX

vi

INTRODUCTION

The Assembler and the Extended Assembler translate symbolic source language
instructions into an object program for execution on the computer. The source
language provides mnemonic machine operation ccdes, assembler directing pseudo
codes, and symbolic addressing. The assembled program may be absolute or

relocatable.

The source program may be assembled as a complete entity or it may be subdivided
into several relocatable subprograms (or a main program and several subroutines),
each of which may be assembled separately. The relocating loader loads the

program and Links the subprograms as required. The Basic Binary Loader or Basic

Binary Disc Loader loads absolute programs.

Input for the Assembler is prepared on paper tape or cards; the Assembler

punches the binary program on paper tape in a format acceptable to the locader.

vii

SECTION |
GENERAL DESCRIPTION

ASSEMBLY PROCESSING

The Assembler is a two pass system, or, if both punch and list output are
requested, a three pass system on a minimum configuration. A pass is de-

fined as a processing cycle of the source program input.

In the first pass, the Assembler creates a symbol table from the names used
in the source statements. It also checks for certain possible error condi-

tions and generates diagnostic messages if necessary.

During pass two, the Assembler again examines each statement in the source
program along with the symbol table and produces the binary program and a

program listing. Additional diagnostic messages may also be produced.

If only the output device is available and if both the binary output and the
list output are requested, the listing function is deferred and performed as

pass three.
When using the Assembler with a mass storage device the source program is

written on the device during the first pass; the second pass of the source

is read from the mass storage.

SYMBOLIC ADDRESSING

Symbols may be used for referring to machine instructions, data, constants,

and certain other pseudo operations. A symbol represents the address for a

computer word in memory. A symbol is defined when it is used as a label for
a location in the program, a name of a common storage segment, the label of

a data storage area or constant, the label of an absolute or relocatable

value, or a location external to the program.

GENERAL DESCRIPTION

ASSEMBLY ASSEMBLER SYMBOL
LANGUAGE }——] T e TABLE
SOURCE PROGRAM PASS 1 LISTING
RELOCATABLE
OR ABSOLUTE
OBJECT PROGRAM
ASSEMBLY A M R
LANGUAGE SiisngE
SOURCE PROGRAM I
|
I ADDITIONAL OR
I ALTERNATE
- OBJECT
PROGRAM LISTIN
AL?-\?\IEGTJ%%E ASSEMBLER PROGRAM
SOURCE PROGRAM PASS 3 LISTING

Figure 1-1. HP Assembler Processing

GENERAL DESCRIPTION

Through use of simple arithmetic operators, symbols may be combined with
other symbols or numbers to form an expression which may identify a location
other than that specifically named by a symbol. Symbols appearing in oper-
and expressions, but not specifically defined, and symbols that are defined

more than once are considered to be in error by the Assembler.

PROGRAM RELOCATION

Relocatable programs may be relocated in core by the relocating loader; the
location of the program origin and all subsequent instructions is determined

at the time the program is loaded.

A relocatable program is assembled assuming a starting location of zero. All
other instructions and data areas are assembled relative to this zero base.
When the program is loaded, the relocatable operands are adjusted to corre-

spond with the actual locations assigned by the loader.

The starting locations of the common storage area and the base page portion
of the program are always established by the loader. References to the com-
mon area are common relocatable. References to the base page portion of the
program are base page relocatable. If a program refers to the common area
or makes use of the base page via the ORB pseudo instruction, the program

must also be relocatable.

If a program is to be relocatable, all subprograms comprising the program
must be relocatable; all memory reference operands must be relocatable ex-

pressions or literals, or have an absolute value of less than 1008.

PROGRAM LOCATION COUNTERS

The Assembler maintains a counter, called the program location counter, that

assigns consecutive memory addresses to source statements.

GENERAL DESCRIPTION

The initial value of the program location counter is established according
to the use of either the NAM or ORG pseudo operation at the start of the
program. The NAM operation causes the program location counter to be set
to zero for a relocatable program; the ORG operation specifies the absolute

starting location for an absolute program.

Through use of the ORB pseudo operation a relocatable program may specify
that certain operations or data areas be allocated to the base page. If so,
a separate counter, called the base page location counter, is used in as-

signing these locations.

ASSEMBLY OPTIONS

Parameters specified with the first statement, the control statement, de-

fine the output to be produced by the Assembler:+

Absolute - The addresses generated by the Assembler are to be in-

locations in

terpreted as

memory ., The nroagrar
memory . ne p !

is a complete entity; external symbols, common storage

references, and entry points are not permitted.

Relocatable - The program may be located anywhere in memory. 2ll
operands which refer to memory locations are adjusted as
the program is loaded. Operands, other than those refer-
ring to the first 64 locations, must be relocatable ex-
pressions. Subprograms may contain external symbols and

entry points, and may refer to common storage.

Binary output - An absolute or relocatable program is to be punched

on paper tape.

List output - A program listing is produced either during pass two

or pass three.

tSee Section V for complete details.

GENERAL DESCRIPTION

Table print - List the symbol table at the end of the first pass.

Selective assembly - Sections of the program may be included or
excluded at assembly time depending on the option

used.

SECTION |

I
INSTRUCTION FORMAT

A source language statement consists of a label, an operation code, an
operand, and comments. The label is used when needed as a reference by
other statements. The operation code may be a mnemonic machine operation
or an assembly directing pseudo code. An operand may be an expression con-
sisting of an alphanumeric symbol, a number, a special character, or any of
these combined by arithmetic operations. (For the Extended Assembler, an
operand may also be a literal.) Indicators may be appended to the operand
to specify certain functions such as indirect addressing. The comments por-

tion of the statement is optional.

STATEMENT CHARACTERISTICS

The fields of the source statement appear in the following order:

Label
Opcode
Operand

Comments

Field Delimiters

One or more spaces separate the fields of a statement. An end-of-statement
mark terminates the entire statement. On paper tape this mark is a return,
, and line feed, @ .T A single space following the end-of-statement
mark from the previous source statement is the null field indicator of the

label field.

*A circled symbol (e.g.,) represents an ASCII code or Teleprinter key.

INSTRUCTION FORMAT

4174 O438 LNOBNY A8 031313Q S INIT Z VHAW = 7 omML=C

(4778 G334 NI/ N¥NLIY AS GILYNIWEIL INIT IYHAW =1 INO =1 ¥0 | O VHAW = 0 o¥Iz =4

08 s¢ 0s 59 [33 o5 s¥ ov 23 ot sz oz st ot S 1

I
[S¢ [23 09 5 05 1 or st [23 0z st ol s t
suawwe puoiadg vopoiad0 15901
INIWILV LS
30 19vd WY¥OO¥d % ava Sszéoox;

WHO4 DNIGO0D H3M1aN3SSV AHVAOVd-L13TM3H

M0255

Sample Coding Form (Actual Size 11 x 13-1/2)

Figure 2-1.

INSTRUCTION FORMAT

Character Set

The characters that may appear in a statement are as follows:
A through Z
0 through 9
. (period)

* (asterisk)

+ (plus)

- (minus)
; (comma)
= (equals)

{) (parentheses)

(space)

Any other ASCII characters may appear in the Remarks field. (See Appendix A.)

The letters A through Z, the numbers O through 9, and the period may be used
in an alphanumeric symbol. In the first position in the Label field, an as-
terisk indicates a comment; in the Operand field, it represents the value of
the program location counter for the current instruction. The plus and
minus are used as operators in arithmetic address expressions. The comma
separates several operation codes, or an expression and an indicator in the
Operand field. An equals sign indicates a literal value. The parentheses

are used only in the COM pseudo instruction.

Spaces separate fields of a statement. They may also be used to establish

the format of the output list. Within a field they may be used freely when

foliowing +, -, ,, or {.

STATEMENT LENGTH

A statement may contain up to 80 characters including blanks, but excluding
the end-of-statement mark. Fields beginning in characters 73 - 80 are not

processed by the Assembler.

INSTRUCTION FORMAT

LABEL FIELD

The Label field identifies the statement and may be used as a reference

point by other statements in the program.

The field starts in position one of the statement; the first position fol-
lowing an end-of-statement mark for the preceding statement. It is termin-
ated by a space. A space in position one is the null field indicator for

the label field; the statement is unlabeled.

Label Symbol

A label must be symbolic. It may have one to five characters consisting of

A through Z, 0 through 9, and the period. The first character must be alpha-
betic or a period. A label of more than five characters could be entered on
the source language tape, but the Assembler flags this condition as an error

and truncates the label from the right to five characters.

Examples:

T L|DJA N0l LA[BEIL ! !

.|ABICID vALID| [LABE|L

1234 VALID| LIABE|L

Al.[1]2]3 vIALT/D| ILIABE|L
VALID| ILABE|L |

1].7AB TILLEGIAL [LABEL, -| [FI|RS|[T CHARACTER
NUMER|T(C]. :

AlBIc[12]3 ILLEGAL [LABEL -] ITRIUNICATED] [T O
ABCl12|. ;

A*[BlC IILLEE/GALL] LABEL! - [AS|TERTISK INOT

, ALLIOWED| [IIN] ILABE|L!. !

AABCT No| [LIABEIL| -[THE] |A|SISEEMBIL ER 'AlTTEMP[TS
70! [INTIERPRRIET ABICl A'S |AN ‘OPERATI|ON
CIODE . ; | N

TThe caret symbol,. , indicates the presence of a space.

INSTRUCTION FORMAT

Each label must be unique within the program; two or more statements may not
have the same symbolic name. Names which appear in the Operand field of an
EXT or COM pseudo instruction may not also be used as statement labels in

the same subprogram.

Examples:
cloM]alcloM (2lo])].[B[C[(]3]0])
LIB ElQu| [1]6/0 VIALID| [LABEIL
EXT [XLi1l, X2
S|TIART| [LiD|A] LB VIAILIZD| [LIABEIL
N[25 VALLIID| [LIABEIL
X|L[2 TILLE[GlAlL] [L{ABEEIL] [-| IUISEEID[Z]N] EX|T
BIC IILLEGIALL [LIAIBEL| -| USED| [IIN [CloM
N[215 TILLEIGIAIL] [LIAIBEIL] -] PIRIEV|[TIOU[SIL]Y
DIE/F|I|NIEID|.
| i
Asterisk

An asterisk in position one indicates that the entire statement is a comment.
Positions 2 through 80 are available; however, positions 1 through 68 only
are printed as part of the assembly listing on the 27522 Teleprinter. A2An

asterisk within the Label field is illegal in any position other than one.

OPCODE FIELD

The operation code defines an operation to be performed by the computer or
the Assembler. The Opcode field follows the Label field and is separated

from it by at least one space. If there is no label, the operation code may

2-5

INSTRUCTION FORMAT

begin anywhere after position one. The Opcode field is terminated by a space
immediately following an operation code. Operation codes are organized in

the following categories:

Machine operation codes
Memory Reference
Register Reference
Input/Output, Overflow, and Halt
Extended Arithmetic Unit
Pseudo operation codes
Assembler control
Object program linkage
Address and symbol definition
Constant definition
Storage allocation
Arithmetic subroutine calls
Assembly Listing Control (Extended Assembler)

Operation codes are discussed in detail in Sections III and IV.

OPERAND FIELD

The meaning and format of the Operand field depend on the type of operation code
used in the source statement. The field follows the Opcode field and is separated
from it by at least one space. It is terminated by a space except when the space

follows, + - (or, if there are no comments, by an end-of-statement mark.

The Operand field may contain an expression consisting of one of the following:

Single symbolic term

Single numeric term

Asterisk

Combination of symbolic terms, numeric terms, and the asterisk jointed by

the arithmetic operators + and -.

2-6

INSTRUCTION FORMAT

An expression may be followed by a comma and an indicator.

Programs being assembled by the Extended Assembler may also contain a

literal value in the Operand field.

Symbolic Terms

A symbolic term may be one to five characters consisting of A through Z, O

through 9, and the period. The first character must be alphabetic or a

period.
Examples:
LIDA[[ATT213 VAILTD] T [DEFTINED) V
Al [Bl.]1 vALID| iIIF ID|EFINE|D
JMP| ENTRY| | = |VALID| IF D|EFINED i
sitial [1/aABc [| | |TLLEG|AL ‘oP[ERAND| IFTIRS|T ICHAIRAICTER
| NUMERIIC.| | [|
s|TB| |ABICDE|F ILILIEGALL] loP[ERIAND] MORE| THAN] FIIIVE
CHARA|CITER[S

A symbol used in the Operand field must be a symbol that is defined else-

where in the program in one of the following ways:
As a label in the Label field of a machine operation

As a label in the Label field of a BSS, AsSC, DEC, DEX, OCT, DEF,

ABS, EQU or REP pseudo operation
As a name in the Operand field of a COM or EXT pseudo operation

As a label in the Label field of an arithmetic subroutine pseudo

operation

INSTRUCTION FORMAT

The value of a symbol is absolute or relocatable depending on the assembly
option selected by the user. The Assembler assigns a value to a symbol as
it appears in one of the above fields of a statement. If a program is to be
loaded in absolute form, the values assigned by the assembler remain fixed.
If the program is to be relocated, the actual value of a symbol is estab-
lished on loading. A symbol may also be made absolute through use of the

EQU pseudo instruction.

A symbolic term may be preceded by a plus or minus sign. If preceded by a
plus or no sign, the symbol refers to its associated value. If preceded by
a minus sign, the symbol refers to the two's complement of its associated
value. A single negative symbolic operand may be used only with the ABS

pseudo operation.

Numeric Terms

A numeric term mav be decimal or octal. A decimal number is represented by
one to five digits within the range O to 32767. An octal number is repre-
sented by one to six octal digits followed by the letter B; (0 to 177777B).

If a numeric term is preceded by a plus or no sign, the binary equivalent of
the number is used in the object code. If preceded by a minus sign, the
two's complement of the binary equivalent is used. A negative numeric oper-

and may be used only with the DEX, DEC, OCT, and ABS pseudo operations.

In an absolute program, the maximum value of a numeric operand depends on
the type of machine or pseudo instruction. In a relocatable program, the
value of a numeric operand may not exceed 77B. Numeric operands are abso-

lute. Their value is not altered by the assembler or the loader.

INSTRUCTION FORMAT

Asterisk

An asterisk in the Operand field refers to the value in the program location
counter (or base page location counter) at the time the source program state-
ment is encountered. The asterisk is considered a relocatable term in a re-

locatable program.

Expression Operators

The asterisk, symbols, and numbers may be joined by the arithmetic operators
+ and - to form arithmetic address expressions. The Assembler evaluates an

expression and produces an absclute or relocatable value in the object code.

Examples:
LIDIA] [SYM+/6 ADID] [6] [TIO] [TIHE] [VIAILIUE| OF] [S)Y M| :
ADA| [SYM-3 SUBTIR|AICIT 13| FIRIoM [THE [v/AILUE| |oIF] [S{ymi
JMP| [*+5 ADD| 5] [TI0] [TIHE| COINTEENT|S| [oF [THE
PROGRIAM LIO[CAITT 0N ICIOUNITIEIR .
STB| [-A+C -4 ADD | VALU[E OF |A,| [THE| [VAL|UE loF| c
AND SUBTRACT 4 ‘
STA| [XTA-* |SUBTR|ACT VIALUE [OF PRIOGRAM
ﬁ ‘ R F

ROM VALUE |OF

INSTRUCTION FORMAT

Evaluation of Expressions

An expression consisting of a single operand has the value of that operand.
An expression consisting of more than one operand is reduced to a single
value. In expressions containing more than one operator, evaluation of the
expression proceeds from left to right. The algebraic expression A-(B-C+5)
must be represented in the Operand field as A-B+C-5. Parentheses are not

permitted in operand expressions for the grouping of operands.

The range of values that may result from an operand expression depends on

the type of operation. The Assembler evaluates expressions as follows:T

Pseudo Operations modulo 215—1

10
Memory Reference modulo 27 -1
Input/Output 26 - 1 (maximum value)

The terms of an expression are the numbers and the symbols appearing in it.
Decimal and octal integers, and symbols defined as being absolute in an EQU
pseudo operation are absolute terms. The asterisk and all symbols that are
defined in the program are relocatable or absolute depending on the type of
assembly. Symbols that are defined as external may appear only as single

term expressions.

Within a relocatable program, terms may be program relocatable, base page
relocatable, or common relocatable. A symbol that names an area of common
storage is a common relocatable term. A symbol that is allocated to the

base page is a base page relocatable term. A symbol that is defined in any

TThe evaluation of expressions by the Assembler is compatible with the ad-
dressing capability of the hardware instructions (e.g., up to 32K words
through Indirect Addressing). The user must take care not to create ad-
dresses which exceed the memory size of the particular configuration.

INSTRUCTION FORMAT

other statement is a program relocatable term. Within one expression all
relocatable terms must be base page relocatable, program relocatable, or

common relocatable; the three types may not be mixed.

Absolute and Relocatable Expressions

An expression is absolute if its value is unaffected by program relocation.
An expression is relocatable if its wvalue changes according to the location
into which the program is loaded. In an absolute program, all expressions

are absolute. In a relocatable program, an expression may be base page re-
locatable, program relocatable, common relocatable, or absolute (if less

than 1008) depending on the definition of the terms composing it.

ABSOLUTE EXPRESSIONS

An absolute expression may be any arithmetic combination of absolute terms.
It may also contain relocatable terms alone, or in combination with abso-
lute terms. If relocatable terms do appear, there must be an even number of
them; they must be of the same type; and they must be paired by sign (a
negative term for each positive term). The paired terms do not have to be
contiguous in the expression. The pairing of terms by type cancels the ef-

fect of relocation; the value represented by the pair remains constant.

An absolute expression reduces to a single absolute value. The value of an
absolute multiterm expression may be negative only for ABS pseudo operations.
A single numeric term also may be negative in an OCT, DEX, or DEC pseudo in-
struction. In a relocatable program the value of an absolute expression
must be less than lOO8 for instructions that reference memory locations

(Memory Reference, DEF, Arithmetic subroutine calls).

INSTRUCTION FORMAT

Examples:

If Pl and P2 are program relocatable terms; B1 and Bz, base page relocatable;

Cl and C2, common relocatable; and A, an absolute term; then the following

are absolute terms:

A-C; + C, A-P +P C,-C,+A
A+ A P, - P, B, - B,

* - Py B, - B, - A -C; +C, + A
B, - * - P +P, -A -P) +P,

The asterisk is base page relocatable or program relocatable depending on

the location of the instruction.

RELOCATABLE EXPRESSIONS

A relocatable expression is one whose value is changed by the loader. All

relocatable expressions must have a positive value.

A relocatable expression may contain any odd number of relocatable terms,
alone, or in combination with absolute terms. All relocatable terms must
be of the same type. Terms must be paired by sign with the odd term being

positive.

A relocatable expression reduces to a single positive relocatable term,
adjusted by the values represented by the absolute terms and paired re-

locatable terms associated with it.

Examples:
If Pl, P2, and P3 are program relocatable terms; Bl' B2, and B3 base page
relocatable; Cl' C2 and C3, common relocatable; and A, an absolute term;

then the following are relocatable terms:

INSTRUCTION FORMAT

P - -
1 A Cl A B_+A
B_-P_+P C.-C_+C C.+A
1 2 3 1 2 73 1
* * — K -
+A P1+P2 A
A+B A+ -A-P +P +
1 Cl A Pl P2 P3
B.-B_+B_~ -C_+C_- *
1 B2 B3 A cl 02 c3 A A+
+p % -p § -
1 Pl P2 Cl+cz+c3
Literals

Actual literal values may be specified as operands in relocatable programs
to be assembled by the Extended Assembler. The Extended Assembler converts
the literal to its binary value, assigns an address to it, and substitutes
this address as the operand. Locations assigned to literals are those im-

mediately following the last location used by the program.

A literal is specified by using an equal sign and a one-character identi-
fier defining the type of literal. The actual literal value is specified

immediately following this identifier; no spaces may intervene.
The identifiers are:

=D a decimal integer, in the range -32767 to 32767, including
zero.t

=F a floating point number; any positive or negative real number
in the range 10“38 to 1038, including zero.T

=B an octal integer, one to six digits, b.b_b.b b_b

17273456
where bl may be 0 or 1, and b2—b7 may be 0 to 7.7
=A two ASCII characters.T
=1, an expression which, when evaluated, will result in an absolute
value. All symbols appearing in the expression must be pre-

viously defined.

T See CONSTANT DEFINITION, Section 4.

INSTRUCTION FORMAT

If the same literal is used in more than one instruction, only one value is
generated, and all instructions using this literal refer to the same loca-

tion.

Literals may be specified only in the following memory reference instruc-

tions and pseudo instructions:

ADA ADB AND MPY

LDA LDB XOR DIV may use =D, =B, =A, =L

CPA CPB IOR

DLD FAD

FMP FSB may use =F

FDV

Examples:

LDA =D798¢ A-Register is loaded with the binary equivalent of

798 .
ng

IOR =B777 Inclusive OR is performed with contents of A-Register
and 7778.

LDA =ANO A-Register is loaded with binary representation of

ASCII characters NO.

LDB =LZETZ-ZOOM+68 B-Register is loaded with the value resulting
from the absolute expression.

FMP =F39.75 Contents of A- and B-Registers multiplied by float-

ing point constant 39.75.

Indirect Addressing

The HP computers provide an indirect addressing capability for memory ref-
erence instructions. The operand portion of an indirect instruction con-

tains an address of another location rather than an actual operand. The

2-14

INSTRUCTION FORMAT

secondary location may be the operand or it may be indirect also and give

vet

is encountered that does not contain an indirect address.

another location, and

forth. The

n
o]

Indirect address-

ing provides a simplified method of address modifications as well as allow-

ing access to

The Assembler
comma and the
ferring to an

be given in a

any location in core.

allows specification of indirect addressing by appending a
letter I to any memory reference operand other than one re-
external symbol. The actual operand of the instruction may

DEF pseudo operation; this pseudo operation may also be used

to indicate further levels of indirect addressing.

Examples:
AB LIDIA] [S/AM[,[1 EACH |TIME TWgLﬁﬁz 1] [EXEE[CIU[TEEDL] |
A|C AIDAA] [SIAMI» I THE| E|FFIECTIIVIE OPER/AND| [OFF| |AB| JAN[D
AlD SAM AlC! ICH|ANIGIE! JAICICIOR|DIINIGL]Y!. !

A relocatable assembly language program, however, may be designed without
concern for the pages in which it will be stored; indirect addressing is

not required in the source language. When the program is being loaded, the

loader provides indirect addressing whenever it detects an operand which

does not fall in the current page or the base page. The loader substitutes

a reference to the base page and then stores an indirect address in this

referenced location. References to the same operand from other pages will

be linked through the same location in the base page.

INSTRUCTION FORMAT

Base Page Addressing

The computer provides a capability which allows the memory reference in-
structions to address either the current page or the base page. The Assem-
bler or the loader adjusts all instructions in which the operands refer to
the base page; specific notation defining an operand as a base page reference

is not required in the source program.

Clear Flag Indicator

The majority of the input/output instructions can alter the status of the
input/output interrupt flag after execution or after the particular test is
performed. In source language, this function is selected by appending a

comma and a letter C to the Operand field.

Examples:
sTic] [Tloi7l,lc cLIEAR] [FiLiAl6] Ti0l7! |AIFITIER] ICloNITIRIOIL
BIT |I|S |SEIT |
o[TiB| |Tlol5],IC CILEAR| FILIAG IOPKAFTER MO\VIE
L
T

COMMENTS FIELD

The Comments field allows the user to transcribe notes on the program that
will be listed with source language coding on the output produced by the
Assembler. The field follows the Operand field and is separated from it by
at least one space. The end-of-statement mark, @ , or the 80th char-
acter in the entire statement terminates the field. 1If the listing is to be

produced on the 2752A Teleprinter, the total statement length, excluding

2-16

INSTRUCTION FORMAT

the end-of-statement mark, should not exceed 52 characters, the width of
the source language portion of the listing. Statements consisting solely
of comments may contain up to 68 characters including the asterisk in the
first position. On the list output, statements consisting entirely of com-

ments begin in position 5 rather than 21 as with other source statements.

If there is no operand present, the Comments field should be omitted in the
NAM and END pseudo operations and in the input/output statements, SOC, SOS,
and HLT. If a comment is used, the Assembler attempts to interpret it as

an operand.

SECTION i
MACHINE INSTRUCTIONS

The HP Assembler language machine instruction codes take the form of three-
letter mnemonics. Each source statement corresponds to a machine operation

in the object program produced by the Assembler.

Notation used in representing source language instruction is as follows:

label Optional statement label

m Memory location -- an expression

I Indirect addressing indicator

sc Select code -- an expression

C Clear interrupt flag indicator

comments Optional comments

[1] Brackets defining a field or portion of a field
that is optional

{1 Brackets indicating that one of the set may be
selected.

lit literal

MEMORY REFERENCE

Memory reference instructions perform arithmetic, logical and jump opera-
tions on the contents of the locations in core and the registers. An in-~
struction may directly address the 2048 words of the current and base pages.
If required, indirect addressing may be utilized to refer to all 32,768

words of memory. Expressions in the Operand field are evaluated modulo 210.

If the program is to be assembled in relocatable form, the Operand field

may contain relocatable expressions or absolute expressions which are less
than lOO8 in value. If the program is to be absolute, the operands may be
any expressions consistent with the location of the program. Literals may
not be used in an absolute program. Absolute programs must be complete en-

tities; they may not refer to external subroutines or common storage.

3-1

MACHINE INSTRUCTIONS

Jump and Increment-Skip

Jump and Increment-Skip instructions may alter the normal sequence of pro-

gram execution.

] 1]
label | JoMP | m [,I] | comments

Jump to m. Jump indirect inhibits interrupt until the transfer of control

is complete.

] | |
label | JsB | m [,I] | comments

Jump to subroutine. The address for label+l is placed into the location
represented by m and control transfers to m+l. On completion of the sub-
routine, control may be returned to the normal sequence by performing a

JMP m, I.

| | |
label | 1Isz | m [,I] | comments

Increment, then skip if zero. ISZ adds 1 to the contents of m. If m then

equals zero, the next instruction in memory is bypassed.

Add, Load and Store

Add, Load, and Store instructions transmit and alter the contents of memory
and of the A- and B-Registers. A literal, indicated by "1lit", may be either
=D, =B, =A, or =I type.

| | |

label I ADA l o [,I]} [' comments
lit

Add the contents of m to A.

MACHINE INSTRUCTIONS

| | |
label [ADB | {m [,I1 ‘ comments
lit

Add the contents of m to B.

label | ILDA | m [,I]. | comments
{15 !

Load A from m.

| | 1
label | 1DB | m [,I]. | comments
{1it
Load B from m.
]
label | sTA m [,I] comments

Store contents of A in m.

!
label | s | m [,I] | comments

Store contents of B in m.

In each instruction, the contents of the sending location is unchanged

after execution.

Logical Operations

The logical instructions allow bit manipulation and the comparison of two

computer words.

1 | !
label | AND |{m [,I]}I comments

litc

The logical product of the contents of m and the contents of A are placed

in A.

MACHINE INSTRUCTIONS

| | |
label l XOR | m [,I] [comments

{lit }

The modulo-two sum (exclusive "or") of the bits in m and the bits in A is

placed in A.

] | |
label | IOR | m [,I] | comments

{1it }

The logical sum (inclusive "or") of the bits in m and the bits in A is

placed in A.

I | |
label | cpa | m [,I]. | comments

156)

Compare the contents of m with the contents of A. If they differ, skip the

next instruction; otherwise, continue.

| | I
label l CPB] [,I] | comments

m
{1:¢ 3

Compare the contents of m with the contents of B. If they differ, skip the

next instruction; otherwise, continue.

REGISTER REFERENCE

The register reference instructions include a shift-rotate group, an alter-
skip group, and NOP (no-operation). With the exception of NOP, they have
the capability of causing several actions to take place during one memory

cycle. Multiple operations within a statement are separated by a comma.

3-4

MACHINE INSTRUCTIONS

Shift-Rotate Group

This group contains 19 basic instructions that can be combined to produce

more than 500 different single cycle operations.

CLE Clear E to zero

ALS Shift A left one bit, zero to least significant bit. Sign
unaltered

BLS Shift B left one bit, zero to least significant bit. Sign
unaltered

ARS Shift A right one bit, extend sign; sign unaltered.

BRS Shift B right one bit, extend sign; sign unaltered.

RAL Rotate A left one bit

RBL Rotate B left one bit

RAR Rotate A right one bit

RBR Rotate B right one bit

ALR Shift A left one bit, clear sign, zero to least significant
bit

BLR Shift B left one bit, clear sign, zero to least significant
bit

ERA Rotate E and A right one bit

ERB Rotate E and B right one bit

ELA Rotate E and A left one bit

ELB Rotate E and B left one bit

ALF = Rotate A left four bits

BLF Rotate B left four bits

SLA Skip next instruction if least significant bit in A is =zero

SLB Skip next instruction if least significant bit in B is zero

These instructions may be combined as follows:

_ _ _ -
(ALS \ (ALS \
ARS ARS
RAL RAL
RAR RAR
label < ALR > [,CLE] [,SLA] ,< ALR ; comments
ALF ALF
ERA ERA
{ELA” i | ELa) |

MACHINE INSTRUCTIONS

[(BLS) [/BLs\ |
BRS BRS
RBL RBL
RBRs RBR

label < BLR [,CLE] [,SLB] |, < BLR > comments

BLF BLF
ERB ERB

| \ELB/ | - \ELB/

CLE, SLA, or SLB appearing alone or in any valid combination with each other

are assumed to be a shift-rotate machine instruction.

The shift-rotate instructions must be given in the order shown. At least
one and up to four are included in one statement. Instructions referring
to the A-register may not be combined in the same statement with those re-

ferring to the B-register.

No-Operation Instruction

When a no-operation is encountered in a program, no action takes place; the
computer goes on to the next instruction. A full memory cycle is used in

executing a no-operation instruction.

| |
label | NOP | comments

A subroutine to be entered by a JSB instruction should have a NOP as the
first statement. The return address can be stored in the location occupied
by the NOP during execution of the program. A NOP statement causes the

Assembler to generate a word of zeros.

Alter-Skip Group

The alter-skip group contains 19 basic instructions that can be combined to

produce more than 700 different single cycle operations.

CLA Clear the A-Register

CLB Clear the B-Register

MACHINE INSTRUCTIONS

CMA Complement the A-Register

CMB Complement the B-Register

cca Clear, then complement the A-Register (set to ones)

CCB Clear, then complement the B-Register (set to ones)

CLE Clear the E-Register

CME Complement the E-Register

CCE Clear, then complement the E-Register

SEZ Skip next instruction if E is zero

SSA Skip if sign of A is positive (0)

SSB Skip if sign of B is positive (0)

INA Increment A by one

INR Increment B by one

SZA Skip if contents of A equals zero

SZB Skip if contents of B equals zero

SLA Skip if least significant bit of A is zero

SLB Skip if least significant bit of B is zero

RSS Reverse the sense of the skip instructions. If no skip
instructions precede in the statement, skip the next in-
struction

These instructions may be combined as follows:

CLA CLE 1

label CMA [,SEZ] ;4 CME [,ssa] [,sLa] [,INA] [,szA] [,RSS] comments
CCA CCE
CLB CLE

label CMB [,SEZ] ; < CME [,sSB] [,sLB] [,INB] [,SZB] [,RSS] comments
CCB CCE

The alter-skip instructions must be given in the order shown. At least one
and up to eight are included in one statement. Instructions referring to
the A-register may not be combined in the same statement with those refer-
ring to the B-register. When two or more skip functions are combined in a
single operation, a skip occurs if any one of the conditions exists. If a
word with RSS also includes both SSA and SLA (or SSB and SLB), a skip occurs

only when sign and least significant bit are both set (1).

MACHINE INSTRUCTIONS

INPUT/OUTPUT, OVERFLOW, AND HALT

The input/output instructions allow the user to transfer data to and from
an external device via a buffer, to enable or disable external interrupt,
or to check the status of I/0O devices and operations. A subset of these in-

structions permits checking for an arithmetic overflow condition.

Input/output instructions require the designation of a select code, sc,
which indicates one of 64 input/output channels or functions. Each channel
consists of a connect/disconnect control bit, a flag bit, and a buffer of
up to 16 bits. The setting of the control bit indicates that a device as-
sociated with the channel is operable. The flag bit is set automatically
when transmission between the device and the buffer is completed. Instruc-
tions are also available to test or clear the flag bit for the particular
channel. If the interrupt system is enabled, setting of the flag causes
program interrupt to occur; control transfers to the interrupt location

related to the channel.

Expressions used to represent select codes (channel numbers) must have a
value of less than 26. The value specifies the device or operation refer-
enced. Instructions which transfer data between the A or B register and a
buffer, access the Switch register when sc = 1. The character C appended
to such an instruction clears the overflow bit after the transfer from the

switch register is complete.

Input/Output

Prior to any input/output data transmission, the control bit is set. The
instruction which enables the device may also transfer data between the de-

vice and the buffer.

| | |
label ' STC ! sc [,C] 1 comments

Set I/0 control bit for channel specified by sc. STC transfers or enables

transfer of an element of data from an input device to the buffer or to an

MACHINE INSTRUCTIONS

output device from the buffer. The exact function of the STC depends on the
device; for the 2752A Teleprinter, an STC enables transfer or a series of
bits. If sc = 1, this statement is treated as NOP. The C option clears the
flag bit for the channel.

| | |
label | ccc | sc [,cl | comments

Clear I/O control bit for channel specified by sc. When the control bit is
cleared, interrupt on the channel is disabled, although the flag may still

be set by the device. If sc = 0, control bits for all channels are cleared
to zero; all devices are disconnected. If sc = 1, this statement is treat-

ed as NOP.

| | |
label | L1a | sc [,C] | comments

Load into A the contents of the I/O buffer indicated by sc.

! i |
-

label] LIB | sc [,C] f comments

Load into B the contents of the I/O buffer indicated by sc.

| ! |
label | Mm1A | sc [,C] | comments

Merge (inclusive "or") the contents of the I/O buffer indicated by sc into A.

|] |
label | MIB | sc [,C] | comments

Merge (inclusive "or") the contents of the I/O buffer indicated by sc into B.

| | |
label | ota | sc [,C] | comments

Output the contents of A to the I/O buffer indicated by sc.

3-9

MACHINE INSTRUCTIONS

| il]
label | oTB | sc[,C] | comments

Output the contents of B to the I/O buffer indicated by sc.

| | |
label STF | sc | comments

Sets the flag bit of the channel indicated by sc. If sc = 0, STF enables

the interrupt system. A sc code of 1 causes the overflow bit to be set.

! | !
label | CLF | sc | comments

Clear the flag bit to zero for the channel indicated by sc. If sc = 0,
CLF disables the interrupt system. If sc = 1, the overflow bit is cleared

to zero.

| ! |
label | SFC | sc | comments

Skip the next instruction if the flag bit for channel sc is clear. If

sc = 1, the overflow bit is tested.

|] |
label | SFS | sc | comments

Skip the next instruction if the flag bit for channel sc is set. If

sc = 1, the overflow is tested.

Overflow

In addition to the use of a select code of 1, the overflow bit may be ac-

cessed by the following instructions:

| |
label ‘ CLO | comments

Clear the overflow bit.

3

10

MACHINE INSTRUCTIONS

| |
label [ﬁ STO comments

Set overflow bit.

| | |
label | socC | [c] | comments

Skip the next instruction if the overflow bit is clear. The C option clears

the bit after the test is performed.

| | |
label | sos | [Cl | comments

Skip the next instruction if the overflow bit is set. The C option clears

the bit after the test is performed.

The C option is identified by the sequence "space C space" following either

"SOC" or "SOS". Anything else is treated as a comment.

| | |
label | HLT | {[sc [,C]}}I comments

[cl]

Halt the computer. The machine instruction word is displayed in the T-
Register. If the C option is used, the flag bit associated with channel sc

is cleared.

If neither the select code nor the C option is used, the comments portion

must be omitted.

EXTENDED ARITHMETIC UNIT

Ten instructions may be used with the EAU version of the Assembler or Ex-
tended Assembler to increase the computer's overall efficiency. The computer
must include the Extended Arithmetic Unit option to obtain the resulting in-

crease in available core storage and decrease in program run time.

MACHINE INSTRUCTIONS

| | |
label | MpY I{m[$I14 | comments

1lit

The MPY instruction multiplies the contents of the A-Register by the con-
tents of m. The product is stored in registers B and A. B contains the
sign of the product and the 15 most significant bits; A contains the least

significant bits.

| | |
label | DIV | I | comments

1it

The DIV instruction divides the contents of registers B and A by the con-
tents of m. The quotient is stored in A and the remainder in B. Initially
B contains the sign and the 15 most significant bits of the dividend; A con-

tains the least significant bits.

|] |

ters A and B, respectively.

e ! |
label | DST ' m[,I] | comments

The DST instruction stores the contents of registers A and B in locations

m and m + 1, respectively.

MPY, DIV, DLD, DST results in two machine words: a word for the instruction

code and one for the operand.

The above four instructions are available without the Extended Arithmetic
Unit option as software subroutines.t As a part of the Extended Arith-
metic option, they require less core storage and can be executed in less

time.

1]

T See ARITHMETIC SUBROUTINE CALLS, Section 4.

MACHINE INSTRUCTIONS

The following seven instructions can be used only on machines with the
Extended Arithmetic Unit. These shift-rotate instructions provide the capa-
bility to shift or rotate the B- and A-Registers n number of bit positions,

where 1 <n < 1lé.

! | !
label [ASR] n I comments

The ASR instruction arithmetically shifts the B~ and A-Registers right n

bits. The sign bit (bit 15 of B) is extended.

! | |
label I ASL ‘ n] comments

The ASL instruction arithmetically shifts the B- and A-Register left n bits.
Zeroes are placed in the least significant bits. The sign bit (bit 15 of
B) is unaltered. The overflow bit is set if bit 14 differs from bit 15 be-

fore each shift; otherwise, exit with overflow bit cleared.

| 1 |
label | RRR | n | comments

The RRR instruction rotates the B- and A-Registers right n bits.

|] |
label | RRL | n | comments

The RRL instruction rotates the B- and A-Registers left n bits.

il | !
label] LSR rv n | comments

The LSR instruction logically shifts the B- and A-Registers right n bits.

Zeroes are placed in the most significant bits.

| ! |
label | LSL | n | comments

The LSL instruction logically shifts the B- and A-Registers left n bits.

Place zeroes into the least significant bits.

3-13

MACHINE INSTRUCTIONS

] | |
SWP l I

Exchange the contents of the A- and B-Registers. The contents of the A-
Register are shifted into the B-Register and the contents of the B-Register

are shifted into the A-Register.

FLOATING-POINT INSTRUCTIONS

Floating-point instructions provide a means of performing calculations on
floating~point values. Computers with the hardware floating~-point option
should use assemblers and libraries with floating-point capabilities. The
floating-point assembler generates calls to the appropriate hardware function
instead of the library subroutines. If the computer does not have the hard-~
ware floating~point option, then non-floating~point assemblers and libraries

should be used.

1
FAD ! m[I,] 1 comments
lit

FAD performs an addition between a floating-point number stored in the A- and
B-registers and a floating-point number stored in memory locations m and m + 1

The result is returned in the A~ and B-registers.

FSB l m[1,] | comments
1lit

The FSB instruction subtracts a floating-point value in memory locations
m + 1 from a floating-point value in the A- and B-registers. The result is

returned in the A~ and B-registers.

FMP | m[I,] | comments
lit

The FMP instruction multiplies a floating~point value in memory locations m

P SRR 2 Ve S U gy S T
cat

ne A- and B-registers. The result

t
[

AR | 1+ 1
and m + 1 with a £1

is returned in the A- and B-registers.

FDV I m[I,J ' comments
1lit

The FDV instruction divides the floating-point value in memory locations m
and m + 1 into the value stored in the A~ and B-registers. The result is

returned in the A- and B~registers.

B

FIX comments

The FIX instruction converts -a floating-point number contained in the A~ and
B-registers to a fixed point number. The result is returned in the A-register.

The contents of the B-register are meaningless.

FLT comments

The FLT instruction converts a fixed-point wvalue contained in the A-register

to a floating-point value. The result is returned in the A- and B-registers.

SECTION IV
PSEUDO INSTRUCTIONS

The pseudo instructions contrcl the Assembler, establish program relocatability,
and define program linkage as well as specify various types of constants, blocks
of memory, and labels used in the program. With the Extended Assembler, pseudo

instructions also control listing output.

ASSEMBLER CONTROL

The Assembler control pseudo instructions establish and alter the contents of
the base page and program location counters, and terminate assembly processing.
Labels may be used but they are ignored by the Assembler. NAM records produced
by the Assemblers are accepted by the DOS, DOS-M and BCS loaders.

il ! i
f NAM] [namel ! comments

NaM defines the name of a relocatable program. A relocatable program must begin
with a NAM statement.T A relocatable program is assembled assuming a starting
location of zero (i.e., zero relative). The name may be a symbol of one to five
alphanumeric characters the first of which must be alphabetic or a period. The
program name is printed on the list output. The name is optional and if omitted,

the comments must be omitted also

|]
f’ ORG | m [comments

The ORG statement defines the origin of an absolute program, or the origin of

subsequent sections of absoclute or relocatable programs.

7 The Control Statement, the HED instruction, and comments may appear prior to
the NAM or ORG statements. If the Control Statement (ASMB,...) does not
appear on tape preceding the program, it must be entered from the teleprinter.

PSEUDO INSTRUCTIONS

An absolute program must begin with an ORG statement.t The operand m, must
be a decimal or octal integer specifying the initial setting of the program

location counter.

ORG statements may be used elsewhere in the program to define starting ad-
dresses for portions of the object code. For absolute programs the Operand
field, m, may be any expression. For relocatable programs, m, must be a
program relocatable expression; it may not be base page or common relocat-
able or absolute. An expression is evaluated modulo 215. Symbols must be
previously defined. All instructions following an ORG are assembled at con-

secutive addresses starting with the value of the operand.

1
I ORrRr r COMMENT

ORR resets the program location counter to the value existing when an ORG

or ORB instruction was encountered.

Example:
NIAM| RSEE[T [SIE[T] IPlLic] [Tlo] [VIAILUIE] [ofF' JzIERIO[,] [AISIS[TIGN
FIIIRISIT| |ADA RISET [AlS| INAME| [0FF| PRIO/GIRIAM
ADA[ICTRIL ASISUMIE| [PILIC| AT| FITIRISIT|+22/8!0.
ORG| |[FIIRST{+219/2/6] |SAVIE| PILC| |VALUE[|0IF] FITIIRIS|T|+2/2/8/0
. AN SIEIT| PILICI [TIO| [FIIIRIS|T|+2/926].
JMP| [EVIEN+/1 A|SISIUMIE| IPILIC| AT| FII|R|ST|+|3/0/04
ORIR REE|SIE|T| |P|LC| |TIO| [FII|RIS|T|+]2[2/80.

* The Control Statement, the HED instruction, and comments may appear prior
to the NAM or ORG statements. If the Control Statement (ASMB,...) does
not appear on tape preceding the program, it must be entered from the
teleprinter.

PSEUDO INSTRUCTIONS

More than one ORG or ORB statement may occur before an ORR is used. If so,
when the ORR is encountered, the program location counter is reset to the

value it contained when the first ORG or ORB of the string occurred.

Example:
NAM [RISIE[T, SIET PILC] TTIo] [ZEEIRo!
FITIRISIT] [AlD/A
L|pja| W[z Als'sluME! PILICl AT FITIRiSIT+22/5/0
oRG| [FIIRS T 25000 SE[T| IPILIc| [T|o] FITRIST+25/0/0
LB [ERA ASSUME [PLIC| AT FIIRSTH2750
ORG| [FI[RST[+290/0| SET_[PLIC_T/0 FIIRSTi+29]00
° ‘ L |
- T | |
CLE ASISUME| PLC| AT| FTRSTH2920
| [JoRRI [| | RESET/ PLC |0 FIIRST+2[250 |
H% E [i 1 ! |
_\r 1 \’l l il

If a second ORR appears before an intervening ORG or ORB, the second ORR is

ignored.

ORR cannot be used to reset the location counter for locations in the base
page that are governed by the ORB statement.

| |
r ORB | comments

ORB defines the portion of a relocatable program that must be assigned to the
base page by the Assembler. The Label field (if given) is ignored, and the
statement requires no operand. All statements that follow the ORB statement
are assigned contiguous locations in the base page. Assignment to the base

page terminates when the Assembler detects an ORG, ORR, or END statement.

PSEUDO INSTRUCTIONS

When more than one ORB is used in a program, each ORB causes the Assembler

to resume assigning base page locations at the address following the last

assigned base page location.

An ORB statement in an absolute program has no significance and is flagged

as an error.

Example:

INAM _[PRO/G ASISI[GIN| |ZIER[O] AlS| [REE[L/ATIT[VIE| [SITARTINIG
Llo/CA[T{I/oN| IFOR| [PRRj0/GIRIAM [PRIOG].

ORB ASISIIGIN| ALLL| FIOLLIOWIING| STATEMENT|S
TO BA[SE| PAIGE

I|AR[EA| [BSS| [1/0/0 |
ORR CONTIINUE MAIN PIRIOGRAM
ORiB RESUME, ASSIIGNMENT, AT NEXT
. AVAILIABLE |LIOCATITION IIN| BASIE| PAGIE.
ORR CIONTI|NUVE] MATIN| PIRIOGRIAM -

The IFN and IFZ pseudo instructions cause the inclusion of instructions in a
program provided that either an "N" or "Z", respectively, is specified as a
parameter for the ASMB control statement.t The IFN or IFZ instruction pre-
cedes the set of statements that are to be included. The pseudo instruction
XIF serves as a terminator. If XIF is omitted, END acts as a terminator to
both the set of statements and the assembly. IFN and IFZ may be used only
when the source program is translated by the Extended Assembler which is pro-

vided for 8K or larger machines.

tSee CONTROL STATEMENT, Section 5.

PSEUDO INSTRUCTIONS

IFN comments

XIF

All source language statements appearing between the IFN and the XIF pseudo
instructions are included in the program if the character "N" is specified

on the ASMB control statement.

All source language statements appearing between the IFZ and the XIF pseudo
instructions are included in the program if the character "Z" is specified

on the ASMB control statement.

I1FZ comments

When the particular letter is not included on the control statement, the
related set of statements appears on the Assembler output listing but is

not assembled.

Any number of IFN-XIF and IFZ-XIF sets may appear in a program, however,
they may not overlap. An IFZ or IFN intervening between an IFZ or IFN and
the XIF terminator results in a diagnostic being issued during compilation;

the second pseudo instruction is ignored.

Both IFN-XIF and IFZ-XIF pseudo instructions may be used in the program;
however, only one type will be selected in a single assembly. Therefore, if
both characters "N" and "Z" appear in the control statement, the character
which is listed last will determine the set of coding that is to be included

in the program.

PSEUDO INSTRUCTIONS

Example:

Label Operation Operand Comments

B

> o|HOINIP>
D
Nno

w|m
-

MNPp<[POrXri>N
D[] 2ZIn[O

XInO| [O] [
===l F4E4d =1l B

>
=
m

OH2Z|n]|To
OH|OIN|T
wnixl:
—A(M[

o

AR R E
e EIEIFIEHEI=IRIE
AT [>|o>[>=

<z
Q
(%]
[@]

Program TRAVL will perform computations involving either or neither CAR or
PLANE considerations depending on the presence or absence of Z or N parame-

ters in the Control Statement.

PSEUDO INSTRUCTIONS

Example:
NaM| WAGIE
JIsiB| [HIO[UR
MP(Y| [TII|ME[1
1FiZ
JIsBl |oVvIT|IM
MPY| [TIIME|2
TITIME 1] [DIE[C| [4/0
T|IME 2| [BIS|S| |1
END

Program WAGES computes a weekly wage value. Overtime consideration will be

included in the program if "Z" is included in the parameters of the Control

Statement.

The REP pseudo instruction, available in the Extended Assembler only, causes
the repetition of the statement immediately following it a specified number

of times.

| | |
label [REP | n | comments

The statement following the REP in the source program is repeated n times.
The n may be any absolute expression. Comment lines (indicated by an as-
terisk in character position 1) are not repeated by REP. If a comment fol-
lows a REP instruction, the comment is ignored and the instruction following

the comment is repeated.

A label specified in the REP pseudo instruction is assigned to the first
repetition of the statement. A label cannot be part of the instruction to

be repeated; it would result in a doubly defined symbol error.

PSEUDO INSTRUCTIONS

Example:
CLA

TRIPL REP 3
ADA DATA

The above source code would generate the following:

CLA Clear the A-Register; the content of DATA is
TRIPL ADA DATA tripled and stored in the A-Register.
ADA DATA
ADA DATA
Example:
FILL REP 100B
NOP

The example above loads 1008 memory locations with the NOP instruction. The

first location is labeled FILL.
Example:

REP 2

MPY DATA

The above source code would generate the following:

MPY DATA
MPY DATA

- |
[EnD | [m] | comments

This statement terminates the program; it marks the physical end of the
source language statements. The Operand field, m, may contain a name appear-
ing as a statement label in the current program or it may be blank. If a
name is entered, it identifies the location to which the loader transfers
control after a relocatable program is loaded. A NOP should be stored at

that location; the loader transfers control via a JSB.

PSEUDO INSTRUCTIONS

If the Operand field is blank, the Comments field must be blank also,
otherwise, the Assembler attempts to interpret the first five characters

of the comments as the transfer address symbol.

The Label field of the END statement is ignored.

OBJECT PROGRAM LINKAGE

Linking pseudo instructions provides a means for communication between a
main program and its subroutines or among several subprograms that are to be
run as a single program. These instructiong may be used only in a relocat-

able program.
The Label field of this class is ignored in all cases. The Operand field is

usually divided into many subfields, separated by commas. The first space

not preceded by a comma or a left parenthesis terminates the entire field.

COM | name, [sizel)] [,name2 [sizez)],...,namen[(sizen)]]T'comments

COM reserves a block of storage locations that may be used in common by sev-
eral subprograms. Each name identifies a segment of the block for the sub-
program in which the COM statement appears. The sizes are the number of
words allotted to the related segments. The size is specified as an octal

or decimal integer. If the size is omitted, it is assumed to be one.

Any number of COM statements may appear in a subprogram. Storage locations
are assigned contiguously; the length of the block is equal to the sum of

the lengths of all segments named in all COM statements in the subprogram.

To refer to the common block, othér subprograms must also include a COM
statement. The segment names and sizes may be the same or they may differ.
Regardless of the names and sizes specified in the separate subprograms, there
is only one common block for the combined set. It has the same relative or-
igin; the content of the nth word of common storage is the same for all

subprograms.

PSEUDO INSTRUCTIONS

Label Operation

»
H
&
-3

>0
o
o
(X

>0
p o)
o
+

Organization of common block:

PROG1 PROG2
name name

ADDR1 AMA

ADDR2 AAD

ADDR3

Common
Block

(location
{(location
(location
(location
(location
(location
(location
(location
(location
(location
(location
(location
(location
(location
(location
(location
(location
(location
(location
(location
(location
(location
(location
(location
(location

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11
12)
13)
14)
15)
l6)
17)
18)
19)
20)
21)
22)
23)
24)
25)

il ComnGii s

The segment names that appear in the COM statements can be used in the
Operand fields of DEF, ABS, EQU, or any memory reference statement; they may

not be used as labels elsewhere in the program.

The loader establishes the origin of the common block; the origin cannot be
set by the ORG or ORB pseudo instruction. All references to the common area

are relocatable.
Two or more subprograms may declare common blocks that differ in size. The
subprogram that defines the largest block must be the first submitted for

loading.

,;;:;namen] | comments

ENT defines entry points to the program or subprogram. Each name is a symbol
that is assigned as a label for some machine operation in the program. Entry
points allow another subprogram to refer to this subprogram. 2ll entry points

must be defined in the program.

Symbols appearing in an ENT statement may not also appear in EXT or COM state-

ments in the same subprogram.

|] !

l EXT 1 name, [,namez,...,namen] [7 comments

This instruction designates labels in other subprograms that are referenced
in this subprogram. The symbols must be defined as entry points by the other

subprograms .

The symbols defined in the EXT statement may appear in memory reference state-

ments, the EQU or DEF pseudo instructions. An external symbol must appear

4

11

PSEUDO INSTRUCTIONS

alone; it may not be in a multiple term expression or be specified as indirect.
References to external locations are processed by the BCS loader as indirect

addresses linked through the base page.

Symbols appearing in EXT statements may not also appear in ENT or COM state-

ments in the same subprogram. The label field is ignored.

Example:
PIRIOIGIA] INJOFF] [T]] |
L|DA| [SAMD s/AMD| [AN[D| [S|AND| A[RE RE|FEEREIN|CED I|N
PR|OGIA[s| |BlUTT| ARE| |ACTUALLY
LO|CATIIONS| |IN| PRIOGB|.
JMP| |SAND
EXT[[SAMD[,|SAND
ENT| |PROIGA i
EIND ?
P|RIO|GB| [N|OP
* |
slAMD] | |oc[T] (767 |
S|AND| | |STIA| |[SAMD

ADDRESS AND SYMBOL DEFINITION

The pseudo operations in this group assign a value or a word location to a

symbol which is used as an operand elsewhere in the program.

| | !
label } DEF ‘ m{,I] comments

The address definition statement generates one word of memory as a 15-bit
address which may be used as the object of an indirect address found elsewhere
in the source program. The symbol appearing in the label is that which is

referenced; it appears in the Operand field of a Memory Reference instruction.

The operand field of the DEF statement may be any positive expression in an
absolute program; in a relocatable program it may be a relocatable expression
or an absolute expression with a value of less than 1008. Symbols that do
appear in the Operand field may appear as operands of EXT or COM statements,

in the same subprogram and as entry points in other subprograms.

The expression in the Operand field may itself be indirect and make reference

to another DEF statement elsewhere in the source program.

Example:
NJAM[JPR[0/GIN ZIEIRIO-IREJLIA[TITIVIE] [S[TIAIR[T] [OF] [PIRIO[GIRIAM.
EIXT! [SIINE[,|S|QRIT
clomM| [sicMia(]2]o))],Is|cmBI(5]0])
- :
JISB| [SIINEE EIXE(ClUITEE] [ST|NE RIOU[TIIINE
% | I L
: 1 | NERREY |
LIDIA] [XICIMAT, |1 PIIIC/K |[uP| COMMON, WORD| [IINDIRIECTL)Y
x|cCMA | [D[EF] [S/cMAl | | SICMA| |I/S| A [1/5-BI|T [ADDRES]S
: ?] o [i ! i i
I o ‘
JiSBl IXislal+ [T GET [S|QUARE] 'ROlOT] UISINIG Twol-|LEVEIL
X|Sla DE INDIRIECT| ADDRESISING.| 1 [

ND{ |PRIO

PSEUDO INSTRUCTIONS

The DEF statement provides the necessary flexibility to perform address arith-
metic in programs which are to be assembled in relocatable form. Relocatable

programs shcould not modify the operand of a memory reference instruction.

In the example below, if TBL and LDTBL are in different pages, the Loader
processes TBL as an indirect address linked through the base page. The ISZ
erroneously increments the loader-provided reference to the base page rather

than the wvalue of TBL.

Example:
LDTBIL| [LIDA] [TBL | 1]
1|SZ| LDTBIL

Assuming the loader might assign absolute locations comparable to the follow-

ing octal wvalues:

Page Loc Opcode Reference
(0) (700) D@F 400
(1) (200) L;A (0) 700(I1)
(L) (300) I%Z (1) 200
(2) (0) (TBL)

4-14

PSEUDO INSTRUCTIONS

It can be seen that the ISZ instruction would increment the quantity 700

rather than the address of the table (4000R).

The following assures correct address modification during program execution.

Example:
I] TLBML 5 ;mE; - T|BIL T) -) - TTIT]
L(D(T|B|L L?A IITBIL|, (I
15Z] 1TBL
T|BLL B;S 11000 }L | ’ E

This sequence might be stored by the loader as:

Page Loc Opcode Reference
(1) (200) DEF 4000
(1) (201) LPA 200 (1)
(1) (300) 1Sz (1) (200)
(2) (0) (TBL)

PSEUDO INSTRUCTIONS

The value of 4000 is incremented; each execution of LDA will access sucessive

locations in the table.

| | |
label | ABS l m ‘ comments

ABS defines a 16-bit absolute value to be stored at the location represented
by the label. The Operand field, m, may be any absolute expression; a single

symbol must be defined as absolute elsewhere in the program.

Example:
AlB EQU| |35 ASS|I|G|NS| THE VIAL|UE| [OF] 3[5
T|0| ITHIE] |SYMBIOL AB
M35 ABS| |-/AB M35 ICIONTAIINS -3|5/.
P|13\5 ABS| |AB P35 ICIONTAIINS 35|.
P|710 AB|S| |AB+AB P7|0| \CIONITAIINS |70.
P|3/0 ABS| |AB-I5 P|3/0| CIONTAIINS |30f.
: , | il ﬁ
B A
| | |
label l EQU ’ m | comments

The EQU pseudo operation assigns to a symbol a value other than the one nor-
mally assigned by the program location counter. The symbol in the Label field
is assigned the value represented by the Operand field. The Operand field
may contain any expression. The value of the operand may be common, base page
or program relocatable as well as absoclute, but it may not be negative.
Symbols appearing in the operand must be previously defined in the source

program.
The EQU instruction may be used to symbolically equate two locations in mem-

ory, or it may be used to give a value to a symbol. The EQU statement does

not result in a machine instruction.

4-16

Examples:

[NJAM] [FIAM
JI3 DEF !
| : o N RIRER L
! LIDA| |43 ; THE S|YMBOL|S| [UFOUR AND| J3+/t BO[TH
| ADA| |ONE IDENT|IFY THE SAME LOCATION. THIE
: STA| [3+1 AND OPERAT|I/ON: I|S PERFFIORME|D ON
JIFOUR EQU J3+1 | THIS |[LOCAT|IION. ‘
: - ‘ |
MwH | JAND| JFOUR
Examples:

TIABLB| [EQU| [TABLAHS5 = INAMES| W
T T T TABLA A

LDA] TABLBj+1 LOADS| CONTENTS |OF 7TH WOR

COMMON INTIO A. [THE S[TATEM

TABLA[*6 WOULD PERFORM THE

QPQRATION
NAM| REG
A | [EQU| 8 DEFINES SYMBOL |A AS | (LO N
B | EQU| |t . |OF A-[REGIS|TER):| AND |SYMBO S
RERREE e 1 (LOCIATION| OF B|-REGI|STER)|.
‘LDAl B " ILOADS| CONTIENTS [OF B-[REGIS

| INTO |A-REGISTER|-

PSEUDO INSTRUCTIONS

CONSTANT DEFINITION

The pseudo instructions in this class enter a string of one or more constant
values into consecutive words of the object program. The statements may be
named by labels so that other program statements can refer to the fields

generated by them.

|] |

label } AscC ‘ n, <2n characters> comments

ASC generates a string of 2n alphanumeric characters in ASCII code into n
consecutive words.T One character is right justified in each eight bits;

the most significant bit is sero. n may be any expression resulting in an
unsigned decimal value in the range 1 through 28. Symbols used in an expres-
sion must be previously defined. Anything in the COperand field following 2n
characters is treated as comments. If less than 2n characters are detected
before the end-of-statement mark, the remaining characters are assumed to be
spaces, and are stored as such. The label represents the address of the first

two characters.

Example:

—
-
=<
R
>
(-3
re Y K
W
>
[o3)
ol
(=]
m

causes the following:

ALPHABETIC

15 14 8 7 6 (6]
TTYPY/ A /) B
— D
/.,

EQUIVALENT IN OCTAL NOTATION
15 14 8 7 6 0

TTYP’//101/102

7

1 0] 3 1 o) 4

/C 1 0] 5 /% o 4 o)

T To enter the code for the ASCII symbols which perform some action (e.g.,
CR and LF), the OCT pseudo instruction must be used.

4-18

PSEUDO INSTRUCTIONS

[.d4d ,...,dn] comments

DEC records a string of decimal constants into consecutive words. The con-
stants may be either integer or real (floating point), and positive or negative.
If no sign is specified, positive is assumed. The decimal number is converted
to its binary eguivalent by the Assembler. The label, if given, serves as

the address of the first word occupied by the constant.

A decimal integer must be in the range of 0 to 215 -1; it may assume positive,
negative, or zero values. It is converted into one binary word and appears

as follows:

15 14

sisN—">s| number

L_O

causes the following (octal representation)

15 14 0
INT |O| O 0 0 6 2

o o 0 5 (0]

1 7 7 3 2 4

A floating point number has two components, a fraction and an exponent. The
exponent specifies the power of 10 by which the fraction is multiplied. The
fraction is a signed or unsigned number which may be written with or without
a decimal point. The exponent is indicated by the letter E and follows a

signed or unsigned decimal integer. The floating point number may have any

of the following formats:

+n.n +n. +n.nkEt+e +.nEte tn.Ete +nE+e

PSEUDO INSTRUCTIONS

The number is converted to binary, normalized (leading bits differ), and stored
in two computer words. If either the fraction or the exponent is negative, that

part is stored in two's complement form.

15 14 0
Word 1 | s fraction (most significant bits)|
A
t_ binary point
sign of fraction
15 8 7 10
Word 2 | fraction | exponent [é]

sign of exponent

The floating point number is made up of a 7-bit exponent with sign and a 23-bit

. -3
fraction with sign. The number must be in the approximate range of 10 and zero.

Examples:
DEEC| [.45E1 | il
[pfEic| |4i5].00[E- |1 | |
DE(C| |45/00E|-3,
DEIC| 4.5 ‘ |

are all equivalent to

.45xlOl

and are stored in normalized form as:

15 14 0
b[10 0100000000000

15 8 7 10
booooooofooo0o0 01 1[0

4-20

PSEUDO INSTRUCTIONS

Label Operation Operond Comments

[T T{Tolele] |- elo 5], 40l0FE[-4l || T T

are stored as:

l1lo1oo01 141000010 10|

loo1 11011000000 0|0]

l0oj[1t01 00011110101 1]

[toooo101[1111100]1]

label ‘ DEX ‘ a. [(,d, ,... , 41 ’ comments
1 2 n

DEX, for the Extended Assembler, records a string of extended precision dec-
imal constants into consecutive words within a program. Each such extended

precision constant occupies three words as shown below:

Word 1 S,| Mantissa 3
15 14 0

Word 2)
15 0

Word 3 3 Exponent Se
15 8" 1 0

PSEUDO INSTRUCTIONS

Legend: Sm = Sign of the mantissa (fraction)

[4)]
]

Sign of the Exponent

NOTE: A value is entered only if normalizing of the mantissa 1Is
needed.

An extended precision floating point number is made up of a 39-bit mantissa
(fraction) and sign and a 7-bit exponent and sign. The exponent and sign

will be zero if the mantissa does not have to be normalized.

This is the only form used for DEX. All values, whether they be floating
point, integer, fraction, or integer and fraction, will be stored in three
words as just described. This storage format is basically an extension of

that used for DEC, as previously described:

Examples:
DEX 12,-.45
are stored as:
WORD 1 WORD 2 WORD 3
0110000000000000 0000000000000000 0000000000001000
WORD 1 WORD 2 WORD 3
1000110011001100 1100110011001100 1001101111111111
| |
label ‘ OCT 1 o, [+o5r--+, 01 comments
1 2 n

OCT stores one or more octal constants in consecutive words of the object
program. Each constant consists of one to six octal digits (0 to 177777).

If no sign is given, the sign is assumed to be positive. If the sign is
negative, the two's complement of the binary equivalent is stored. The
constants are separated by commas; the last constant is terminated by a space.
If less than six digits are indicated for a constant, the data is right

justified in the word. A label, if used, acts as the address of the first

4-22

PSEUDO INSTRUCTIONS

constant in the string. The letter B must not be used after the constant
in the Operand field; it is significant only when defining an octal term in

an instruction other than OCT.

Examples:
oc[T] [+d
ocCT| |-2
N[UM oCT| [177,2|04085 ,[-36

ocT| s, 7rlrirT, -1, 10184

ocT| [147l6l4l2, 4771877 §

OCT| 1976 ILLEGJAL .| CONTAINS

OCT| A7 7777 . DIGIT |9

OCIT| 1778 | ILLEGIAL:| CIONTAIINS

;CHARACTER B :
The previous statements are stored as follows:
1514 0
0] 0 0 0] 0 o}
1 7 T 7 7 6
NUM |0 0 0 1 T 7
0] 2 0] 4 o 5
1 T 7 7 4 2
0] 0 0] 0 5 1
0 7 T T 7 T
1 T e T T 7
0] 1 o) 1 0 1
1 0 7 6 4 2
L f L 0 7 L THE RESULT OF
X] X X X X X ATTEMPTING TO
0 0 lo} 0 o) 1 DEFINE AN ILLEGAL
CONSTANT IS UN-

X| X X X X X PREDICTABLE

PSEUDO INSTRUCTIONS

STORAGE ALLOCATION

The storage allocation statement reserves a block of memory for data or for

a work area.

| | |
label ' BSS ! m ' comments

The BSS pseudo operation advances the program or base page location counter
according to the value of the operand. The Operand field may contain any
expression that results in a positive integer. Symbols, if used, must be
previously defined in the program. The label, if given, is the name assigned
to the storage area and represents the address of the first word. The initial

content of the area set aside by the statement is unaltered by the loader.

ASSEMBLY LISTING CONTROL

Assembly listing control pseudo instructions allow the user to control the
assembly listing Output during pass 2 or 3 of the assembly process. These
pseudo instructions may be used only when the source program is translated
by the Extended Assembler provided for 8K or larger machines (8,192-word

memory or larger).

UNL comments

Output is suppressed from the assembly listing, beginning with the UNL pseudo
instruction and continuing for all instructions and comments until either an
LST or END pseudo instruction is encountered. Diagnostic messages for errors
encountered by the Assembler will be printed, however. The source statement
sequence numbers (printed in columns 1-4 of the source program listing) are

incremented for the instructions skipped.

4-24

P T o T o P

LST comments

The LST pseudo instruction causes the source program listing, terminated by

a UNL, to be resumed.

A UNL following a UNL, a LST following a LST, and a LST not preceded by a UNL

are not considered errors by the Assembler.

SUP comments

The SUP pseudo instruction suppresses the output of additional code lines
from the source program listing. Certain pseudo instructions, because they
result in using subroutines, generate more than one line of coding. These
additional code lines are suppressed by a SUP instruction until a UNS or

the END pseudo instruction is encountered. SUP will suppress additional code

lines in the following pseudo instructions:

ASC DIV FAD FSB
ocT DLD FDV MPY
DEC DST FMP

The SUP pseudo instruction may also be used to suppress the listing of literals

at the end of the source program listing.

UNS comments

The UNS pseudo instruction causes the printing of additional coding lines,

terminated by a SUP, to be resumed.

PSEUDO INSTRUCTIONS

A SUP preceded by another SUP, UNS preceded by UNS, or UNS not preceded by a

SUP are not considered errors by the Assembler.

SKP | - comments

The SKP pseudo instruction causes the source program listing to be skipped
to the top of the next page. The SKP instructicn is not listed, but the

source statement sequence number is incremented for the SKP.

SPC n

The SPC pseudo instruction causes the source program listing to be skipped
a specified number of lines. The list output is skipped n lines, or to the
bottom of the page, whichever occurs first. The n may be any absolute ex-
pression. The SPC instruction is not listed but the source statement se-

quence number is incremented for the SPC.

HED m(heading)

The HED pseudo instruction allows the programmer to specify a heading to be

printed at the top of each page of the source program listing.

The heading, m, a string of up to 56 ASCII characters, is printed at the top
of each page of the source program listing following the occurrence of the
HED pseudo instruction. If HED is encountered before the NAM or ORG at the
beginning of a program, the heading will be used on the first page of the
source program listing. A HED instruction placed elsewhere in the program

causes a skip to the top of the next page.

The heading specified in the HED pseudo instruction will be used on every

page until it is changed by a suceeding HED instruction.

4-26

PSEUDO INSTRUCTIONS

The source statement containing the HED will not be listed, but source

statement sequence number will be incremented.

ARITHMETIC SUBROUTINE CALLS

The members of this group of pseudo instructions request the Assembler to
gener te calls to arithmetic subroutines* external to the source program.
These pseudo instructions may be used in relocatable programs only. The
Operand field may contain any relocatable expression or an absolute expres-

sion resulting in a value of less than 1008.

label t MPY m[,I] comments

=Dn or =Bn

Multiply the contents of the A-register by the contents of m or the quantity
defined by the literal and store the product in registers B and A. B contains
the sign of the product and the 15 most significant bits; A contains the least

significant bits.

label DIV m{,I] comments

=Dn or =Bn

Divide the contents of registers B and A by the contents of m or the quanity
defined by the literal. Store the quotient in A and the remainder in B.
Initially B contains the sign and the 15 most significant bits of the dividend;

A contains the least significant bits.

label FMP m[,I] comments

* Not intended for use with DEX formatted numbers. For such numbers JSB's
to double precision subroutines must be used. See RELOCATABLE SUBROUTINES
Manual.

PSEUDO INSTRUCTIONS

Multiply the two-word floating point quanity in registers A and B by the two-
word floating point quantity in locations m and m+l or the quantity defined
by the literal. Store the two-word floating point product in registers A

and B.

label FDV m[,I] comments

Divide the two-word floating point quantity in registers A and B by the two-
word floating point quantity in locations m and mt+l or the quantity defined by

the literal. Store the two-word floating point quotient in A and B.

label FAD m[,I] comments

Add the two-word floating point quantity in registers A and B to the two-
word floating point quantity in locations m and m+l or the quantity defined

by the literal. Store the two-word floating point sum in A and B.

label FSB m[,I] comments

Subtract the two-word floating point guantity in m and m+l or the quantity
defined by the literal from the two-word floating point quantity in registers

A and B and store the difference in A and B.

| | I
label ‘ DLD ’ m[,I] comments

=Fn

Load the contents of locations m and m+l or the quantity defined by the

literal into registers A and B respectively.

~ T ~——

PSEUDO INSTRUCTIONS

Store the contents of registers A and B in locations m and m+l respectively.

Each use of a statement from this group generates two words of instructions.

Symbolically, they could be represented as follows:

JSB <.arithmetic pseudo operation>

DEF m [,I]

An EXT <.arithmetic pseudo operation> is implied preceding the JSB operation.

In the above operations, the overflow bit is set when one of the following

conditions occurs:

Integer overflow
Floating point overflow or underflow

Division by zero.

Execution of any of the subroutines alters the contents of the E-Register.

SECTION V
ASSEMBLER INPUT AND OUTPUT

The Assembler accepts as input a paper tape containing a control statement
and a source language program. A relocatable source language program may be
divided into several subroutines; the designation of these elements is
optional. The output produced by the Assembler may include a punched paper
tape containing the object program, an object program listing, and diagnos-

tic messages.

CONTROL STATEMENT

The control statement specifies the output to be produced:

ASMB,p,/Por--- /P
i Z n

"ASMB," is entered in positions 1-5. Following the comma are one or more
parameters, in any order, which define the output to be produced. The con-

trol statement must be terminated by an end-of-statement mark, CR LF .

The parameters may be any legal combination of the following starting in

position 6:

A Absolute: The addresses generated by the Assembler are to
be interpreted as absolute locations in memory. The program
is a complete entity. It may not include NAM, ORB, COM, ENT,
EXT, arithmetic pseudo operation statements or literals. The
binary output format is that specified for the Basic Binary

loader.

ASSEMBLER INPUT AND OUTPUT

R Relocatable: The program may be located anywhere in memory.
Instruction operands are adjusted as necessary. The binary

output format is that specified for the Relocating loader.

B Binary output: A program is to be punched according to one

of the above parameters.

L List output: A program listing is to be produced either during
pass two or pass three (if binary output selected) according

to one of the above parameters.

T Table print: List the symbol table at the end of the first
pass. For the Extended Assembler: List the symbol table in
alphabetic order in three sections: section 1 for one-
character symbols, section 2 for two- and three-character

symbols, and section 3 for four- and five-character symbols.

N Include sets of instructions following the IFN pseudo
instruction.

Z Include sets of instructions following the IFZ pseudo
instruction.

F Accepted by the Assembler to provide compatibility with DOS or
DOS-M Assembler programs. F causes no action in any other assem-

blers.

Either A or R must be specified in addition to any combination of B, L, or T.

If a programmer wishes to assemble Pass 1 of a source program to check for
errors, he can specify only an A or R to be the sole parameter of the Assembler
Control Statement, executing only Pass 1. (This produces Pass 1 error messages
without listing the program or providing an object tape). Extended Assembler

only.

ASSEMBLER INPUT AND OUTPUT

~

The Assembler control statement must specifically request pass 2 operations
(list or punch) in order for pass 2 to be executed. Lack of pass 2 option
information causes processing only of pass 1 errors. If a C option is also
provided, an automatic cross-reference symbol table is done after pass 1

when operating in the MTS environment.

The control statement may be on the same tape as the source program, or on

a separate tape; or it may be entered via the teleprinter keyboard.

SOURCE_PROGRAM

The first statement of the program (other than remarks or a HED statement)
must be a NAM statement for a relocatable program or an ORG statement for
indicating the origin of an absolute program. The last statement must be
an END statement and may contain a transfer address for the start of a
relocatable program. Each statement is followed by an end-of-statement

mark.

BINARY QUTPUT

The punch output is defined by the ASMB control statement. The punch out-
put includes the instructions translated from the source program. It does
not include system subroutines referenced within the source program (arith-

metic subroutine calls, .IOC., .DIO., .ENTR, etc.)

ASSEMBLER INPUT AND OUTPUT

LIST QUTPUT

Fields of the object program are listed in the following print columns.

Columns Content

1-4 Source statement sequence number generated by
the Assembler

5~-6 Blank

7-11 Location (octal)

12 Blank

13-18 Object code word in octal

19 Relocation or external symbol indicator
20 Blank

21-72 First 52 characters of source statement.

Lines consisting entirely of comments (i.e., * in column 1) are printed as

follows:
Columns Content
1-4 Source statement sequence number
5-72 Up to 68 characters of comments

A Symbol Table listing has the following format:

Columns Content

1-5 Symbol

6 Blank

7 Relocation of external symbol indicator
8 Blank

9-14 Value of the symbol

ASSEMBLER INPUT AND OUTPUT

The characters that designate an external symbol or type of relocation for

the Operand field or the symbol are as follows:

Character Relocation Base
Blank Absolute
R Program relocatable
B Base page relocatable
C Common relocatable
X External symbol

At the end of each pass, the following is printed:

**NO ERRORS¥*
or

**nnnn ERRORS*
The value nnnn indicates the number of errors.
Note: For complete operating instructions for the HP

Assembler or Extended Assembler, consult SOFIWARE
OPERATING PROCEDURES, SIO SuBSYsTEMS module, (5951-1390).

APPENDIX A
HP CHARACTER SET

ia i

ASCII CHARACTER FORMAT

by ° o ° ° f l i 1
be) 0 | 1 o] 0 ! !

be o ; 5) °] 0 '

b
by
Nl
VY

cjlojolo/nuLiDce | B T 0o | @ [p
oj{o|o|t,SOM DC, | 1 | A Q —I-T-T“
tolo|1]/0 EDA DC2 " 2 8 R __:—::lIJ:<
ofo|1{1 EOM:DCs| # | 3 | C s N
0| |0f{01IEQT '(5019891 $ 4 D T __u:::;
O/ 1 |OJI WRU ERR| % | 5 | E | U | N | S |
{0/ /10 RUSYNC| & | 6 | F | Vv Aé-q._é-
ol 1 [BELLTLEM (apos)| 7 6w | S_j . N_
110 00 FEg So | I 8 H X jll;_.,_g_<
| oioi: HE sx| St) 9 1 I Y N
ilol1io! LF ! S5 * : : J z _E-.-_i_-
ro {1 Vias | S3 | + . LKk ¢ N
11010 FF Sa jcomma) < L 1\ ACK |
i' 11‘0%[0!?\ Ss% - = M T jji :‘W
LIL'#‘%‘OL SO Ssl i>%N !’i_l-r—l'ssc‘
I_nqullllsl 57I/I?jol‘_1 DEL |

Standard 7-bit set code positional order and notation are shown below with

b7 the high-order and bl the low-order, bit position.

Example: The code for "R" is: 1 0] 1 0 0

HP CHARACTER SET

LEGEND
NULL Null/Idle DCl—DC3 Device Control
oM Start of message .
S art o J DC (Stop) Device control (stop)
4

EOA End of address
EOM End of message ERR Error
EOT End of transmission SYNC Synchronous idle
WRU "Who are you?" LEM Logical end of media
RU "Are you...?" SO-—S7 Separator (inform-
BELL Audible signal ation

b
FE Format effector Word separator (spactle,

o normally non-printing)

HT Horizontal tabulation

< Less than

i d d
SK Skip (punched card) . Greater than
L Li feed C
¥ ine tee 0 Up arrow (Exponentiation)
v ical tabulation
VTAB ertica a atio « Left arrow (Implies/
R d
FF Form feed N eplaced by)
CR Crrriage return Reverse slant
Ack

50 Shift out ACK cknowledge

(:) i d
ST Shift in Unassigned control
DCO Device control reserved for ESC Escape

data link escape DEL Delete/Idle

HP CHARACTER SET

BINARY CODED DECIMAL FORMAT

BCD ASCII Equivalent BCD ASCII Eguivalent
Symbol (octal code) (octal code) Symbol (octal code) (octal code)
(Space) 20 249 A 61 191
! 52 g41 B 62 192
13 @43 C 63 143
S 53 ga4 D 64 194
% 34 a45 E 65 145
& Y] @46 F 66 196
' 14 47 G 67 137
(34 a59 H 79 11g9
) 74 @51 I 71 111
* 54 @52 J 41 112
+ Y} @53 K 4?2 113
, 33 #54 L 43 114
- 49 @55 M 44 115
. 73 @56 N 45 1lle
/ 21 @57) 46 117
P a7 129
[} 12 dod 0 5@ 121
1 g1 g6l R 51 122
2 @2 762 S 22 123
3 @3 @63 T 23 124
4 Za @64 U 24 125
5 @5 ges v 25 126
6 Z6 @66 W 26 127
7 @7 267 X 27 139
8 19 373 Y 33 131
9 11 271 Z 31 132
: 15 @72 [75 133
; 56 273 \ 36 134
< 76 274] 55 135
= 13 @75
> 16 g76
? 72 @377
@ 14 198

Other symbols which may be represented in ASCII are converted to spaces
in BCD (20)

HP CHARACTER SET

HP 2020A/B ASCII-BCD Conversion

ASCIT BCD ASCII BCD
Symbol (Octal code) (Octal code) Symbol (Octal code) (Octal code)
(Space) 4% 20 A 191 61
! 41 52 B 192 62
" 42 37 C 143 63
43 13 D 194 64
S 44 53 E 145 65
% 45 34 F 1g6 66
& 46 60 T G 137 67
! 47 36 H 119 73
(59 75 I 111 71
) 51 55 J 112 41
* 52 54 K 113 42
+ 53 6d L 114 43
’ 54 33 M 115 44
- 55 49 N 116 45
. 56 73 0 117 46
/ 57 21 P 120 47
0 121 50
R 122 51
@ og 12 S 123 22
1 6l @1 T 124 23
2 62 @2 U 125 24
3 A3 33 \Y 126 25
4 64 @4 W 127 26
5 65 75 X 130 27
6 66 ge Y 131 3d
7 o7 a7 Z 132 31
8 70 10 .
9 71 11 [133 75 T
] 135 55
A 136 77
: 72 15 < 137 32
; 73 56
< 74 76
= 75 35
> 76 16
? 77 72
@ 10@ 14

T BCD code of 60 always converted to ASCII code 53 (+).

T BCD code of 75 always converted to ASCII code 50 (() and

BCD code of 55 always converted to ASCII code 51 ()).

APPENDIX B
ASSEMBLER INSTRUCTIONS

-2

Symbols Meaning

label Symbolic label, 1-5 alphanumeric characters and periods
m Memory location represented by an expression

I Indirect addressing indicator

c Clear flag indicator

(m,m+1) Two-word floating point value in m and m+l

comments Optional comments

[] Optional portion of field

{ } One of set may be selected

P Program Counter

() Contents of location

A Logical product

Y Exclusive "or"

vV Inclusive "or"

A A-register

B B-register

E E-register

An Bit n of A-register

Bn Bit n of B-register

b Bit positions in B- and A-register

(A/B) Complement of contents of register A or B

(AB) Two-word floating point value in register A and B
sc Channel select code represented by an expression
d Decimal constant

o) Octal constant

r Repeat count

n Integer constant

lit Literal value

INSTRUCTIONS

MACHINE INSTRUCTIONS

MEMORY REFERENCE

Jump and Increment-Skip

IsZ m [,I] (m) + 1 > m: then if (m) = 0, execute P + 2
otherwise execute P + 1

JgMP m [,I] Jump to m; m > P

JSB m [,I] Jump subroutine tom: P+ 1 > m; m + 1 > P

Add, Load and Store

m [,I]
ADA { 1it } (m) + (A) > A
ADB {m [,1] (m) + (B) > B
1lit
m [,I]
LDA { lit } (m) > A
ym [,I]Q
LDB { lit (m) + B
STA m [,I] (8) > m
STB m [,I] (B) > m
Logical

(m) AND (A) »~ A

g
—
~

H
fu—

(m) XOR (A) ~ A

(m) IOR (A) ~ A

g
—
-

H
—

If (m) # (A), execute P + 2, otherwise
execute P + 1.

If (m) # (B), execute P + 2, otherwise

CPB
execute P + 1.

[
O
)
P R P, . PN
=}
~
-
onead
N——~ N~ ~—— N N

MACHINE INSTRUCTIONS (cont.)

REGISTER REFERENCE

Shift-Rotate

CLE 0~ E
ALS shift (A) left one bit, 0 - AO, AlS unaltered
BLS Shift (B) left one bit, 0 -+ BO' B15 unaltered
£ . . 5
ARS Shift (A) right one bit, (AIS) Al4
BRS Shift (B) right one bit, (B._.) - B,
i5 14
RAL Rotate (A) left one bit
RBL Rotate (B) left one bit
RAR Rotate (A) right one bit
RBR Rotate (B) right one bit
ALR shift (A) left one bit, 0 > A15
BLR shift (B) left one bit, 0 - B15
ERA Rotate E and A right one bit
ERB Rotate E and B right one bit
ELA Rotate E and A left one bit
ELB Rotate E and B left one bit
ALF Rotate A left four bits
BLF Rotate B left four bits
SLA If (AO) = 0, execute P + 2, otherwise execute P + 1
SLB If (BO) = 0, execute P + 2, otherwise execute P + 1

INSTRUCTIONS

MACHINE INSTRUCTIONS (cont)

Shift~Rotate instructions can be combined as follows:

[(aLs)] [(ans Y]
ARS ARS
RAL RAL
RAR RAR
LE SLA
< ALR } [,CLE] [,SLA] < ALR >
ALF ALF
ERA ERA
|\ B2) | | \era)
" BLs \] (BLs)
BRS BRS
RBL RBL
RBR RBR
{ RER [,CLE] [,SLB] A EBR)
BLF BLF
ERB ERB
\ ELB |ELB
No-operation
NOP Execute P + 1
Alter-Skip
CLA O's - A
CLB O's > B
CMA (A) > A
CMB (B) - B
CCA 1l's > A
CCB 1's ~ B
CLE 0 - B
CME (E) > E
CCE 1~ E
SEZ If (E) = 0, execute P + 2, otherwise execute P + 1
SSA If (Als) = 0, execute P + 2, otherwise execute P + 1
SSB If (BlS) = 0, execute P + 2, otherwise execute P + 1

INSTRUCTIONS

MACHINE INSTRUCTIONS (cont)

(Alter-skip (cont)

INA (A) + 1 -2

INB (B + 1+ B

SZA If (A) = 0, execute P + 2, otherwise execute P + 1

SZB If (B) = 0, execute P + 2, otherwise execute P + 1

SLA If (AO) = 0, execute P + 2, otherwise execute P + 1
SLB If (BO) = 0, execute P + 2, otherwise execute P + 1

RSS Reverse sense of skip instructions. If no skip
instructions precede, execute P + 2

Alter-Skip instructions can be combined as follows:

[(cra)] [(cLE }]
CMA [,SEZ] CME [,sSA] [,sLA] [,INA] [,szAl [,RRS]
CCA;J "{CcCE
[(cLB)] CLE
CMB [,SEZ] |,KCME [,ssB] [,sLB] [,INB] [,SZB] [,RSS]
| cc CCE

INPUT/OUTPUT, OVERFLOW, and HALT

Input/Output

sSTC sc [,C] Set control bits , enable transfer of one
element of data getween deviceSc and bufferSc

CLC sc [,C] Clear control bit . If sc = 0 clear all

. c

control bits.

LIA sc [,C] (buffersc) > A

LIB sc [,C] (buffersc) - B

MIA sc [,C] (buffersc) (A) > A

MIB sc [,Cl] (buffersc) (B) ~ B

OoTA sc [,C] (A) - buffersC

OTB sc [,C] (B) ~ bufferSc

INSTRUCTIONS

MACHINE INSTRUCTIONS (cont)

Input/Output (cont)

STF

CLF

SEC

SFS

Overflow

CLO
STO

SoC

S0S

HALT

HLT

EXTENDED

DIV

DLD

DST

ASR

ASL

sc Set flag bitsc. If sc = 0, enable interrupt
system. sc =1 sets overflow bit.
sc Clear flag bitsc. If sc = 0, disable interrupt
system. If sc = 1, clear overflow bit.
sc If (flag bit) = 0, execute P + 2, otherwise
execute P + I. If sc = 1, test overflow bit.
sc If (flag bit) = 1, execute P + 2, otherwise
execute P + I. If sc = 1, test overflow bit.
0 - overflow bit
1l > overflow bit
[C] If (overflow bit) = 0, execute P + 2, otherwise
execute P + 1
[C] If (overflow bit) = 0, execute P + 2, otherwise
execute P + 1
[sc [,C]] Halt computer

ARITHMETIC UNIT (requires EAU version of Assembler or

Extender Assembler)

m{,I]
lit (A) x (m) = (Btmsb and A|sb)
ml,I] (B and A)/(m) > A, remainder - B
lit +msb |sb ’
ml, 1] (m) and (m + 1) ~ A and B
lit
m[fl} (A) and (B) *mand m + 1
lit
b Arithmetically shift (BA) right b bits, B15
extended
b Arithmetically shift (BA) left b bits, B15

unaltered, 0's to A,
| sb

INSTRUCTIONS

MACHINE INSTRUCTIONS (cont)

EXTENDED ARITHMETIC UNIT (cont)

RRR
RRL
LSR

LSL

ASSEMBLER CONTROL

NAM
ORG

ORR

ORB
END

REP
<statement>

IFN
<statements>
XIF

IFZ
<statements>
XIF

[name]

m

[m]

Rotate (BA) right b bits
Rotate (BA) left b bits
Logically shift (BA) right b bits,
O's to B
msb

Logically shift (BA) left b bits, o's to A sb

PSEUDO INSTRUCTIONS

Specifies relocatable program and its name.

Gives absolute program origin or origin for a
segment of relocatable or absolute program.

Reset main program location counter at value

existing when first ORG or ORB of a string was
encountered.

Defines base page portion of relocatable program.

Terminates source language program. Produces
transfer to program starting location, m, if given.

Repeat immediately following statement r times.

Include statements in program if control state-
ment contains N.

Include statements in program if control state-
ment contains Z.

INSTRUCTIONS

PSEUDO INSTRUCTIONS (cont)

OBJECT PROGRAM LINKAGE

CoM name. [(size)] [,name_[(size.)],...,name [(size)]]
1 1 2 2 n n
Reserves a block of common storage locations.
name, identifies segments of block, each of
leng%h size.

ENT name_ [,name_, ... ,name]
1 2 n

Defines entry points, namel, that may be referred

to by other programs.

EXT namel[,name ..,namen]

2"

Defines external locations, name_, which are
labels of other programs, referenced by this
program.

ADDRESS AND SYMBOL DEFINITION
label DEF m{,I] Generates a 15-bit address which may be refer-
enced indirectly through the label.

label ABS m Defines a 16-bit absclute value to be referenced
by the label.

label EQU m Equates the value, m, to the label.

PSEUDO INSTRUCTIONS (cont)

CONSTANT DEFINITION

ASC n, <2n characters> Generates a string of 2n ASCII characters.
DEC dl [,d2,...,dn] Records a string of decimal constants of
the form:

Integer: +n
Floating point: +n.n, +n., +.n, +nEte,
tn.nE+e, tn.Eje, t.nE+e
DEX 4 [,d2,...,dn] Records a string of extended precision
decimals constants of the form

Floating point: +n, +n.m,

+n., +.n,

+nE+e, +n.nkE+e,

+n.E+e, +.nE+te

OCT o, [,02,...,On] Records a string of octal constants of
the form: +000000

STORAGE ALLOCATION

BSS m Reserves a storage area of length, m.

INSTRUCTIONS

PSEUDO INSTRUCTIONS (cont)

ARITHMETIC SUBROUTINE CALLS REQUESTS*

m{,I]
MPY+ { 1it } (a) x (m) - (Bjmsb and Alsb)

DIVY (B and A]sb)/(m) -+ A, remainder - B

+msb

FMP (AB) x (m, m + 1) - AB

FAD (m, m + 1) + (AB) - AB
FSB (AB) - (m, m + 1) > AB
(m) and (m + 1) - A and B

.,
i)
R S SV R
el
i)
Ui

DST+ m[,I] () and (B) > mand m + 1

tFor configurations including Extended Arithmetic Unit, these mnemonics
generate hardware instructions when the EAU version of the Assembler or
Extended Assembler is used.

*Not intended for use with DEX formatted numbers. For such numbers, JSB
Machine Instructions must be used.

B-10

INSTRUCTIONS

PSEUDO INSTRUCTIONS (cont)

ASSEMBLY LISTING CONTROL

UNL Suppress assembly listing output.

LST Resume assembly listing output.

SKP Skip listing to top of next page.

SPC n Skip n lines on listing.

SUP Suppress listing of extended code lines

(e.g., as produced by subroutine calls).
UNS Resume listing of extended code lines.

HED <heading> Print <heading> at top of each page,
where <heading> is up to 56 ASCII characters.

ASC
ASL
ASR
BLF
BLR
BLS
BRS
BsSS
Cca
CCB
CCE
CLA
CLB
CLC
CLE
CLF
CLO

Define absolute value

Add to A

Add to B

Rotate A left 4

Shift A left 1, clear sign
Shift A left 1

"and" to A

shift A right 1, sign carry
Generate ASCII characters
Arithmetic long shift left
Arithmetic long shift right
Rotate B left 4

shift B left 1, clear sign
Shift B left 1

Shift B right 1, carry sign
Reserve block of storage starting at symbol
Clear and complement A (1's)
Clear and complement B (1l's)
Clear and complement E (set E = 1)
Clear A

Clear B

Clear I/O control bit

Clear E

Clear 1I/0 flag

Clear overflow bit

Complement A

Complement B

Complement E

Reserve block of common storage
Compare to A, skip if unequal

Compare to B, skip if unequal

INSTRUCTIONS

ALPHABETIC LIST OF INSTRUCTIONS (cont)

DEC Defines decimal constants

DEF Defines address

DEX Defines extended precision constants

DIV Divide

DLD Double load

DST Double store

ELA Rotate E and A left 1

ELB Rotate E and B left 1

END Terminate program

ENT Entry point

ERA Rotate E and A right 1

ERB Rotate E and B right 1

EQU Equate symbol

EXT External reference

FAD Floating add

FDV Floating divide

FMP Floating multiply

FSB Floating subtract

HED Print heading at top of each page

HLT Halt

IFN When N appears in Control Statement, assemble
ensuing instructions

IFZ When Z appears in Control Statement, assemble
ensuing instructions

INA Increment A by 1

INB Increment B by 1

IOR Inclusive "or" to A

I1sZ Increment, then skip if zero

JMP Jump

JSB Jump to subroutine

LDA Load into A

LDB Load into B

ALPHABETIC LIST OF INSTRUCTIONS (cont)

LIA Load into A from I/O channel
LIB Load into B from I/0 channel
LSL Logical long shift left

LSR Logical long shift right

LST Resume list output (follows a UNL)
MIA Merge (or) into A from I/O channel
MIB Merge (or) into B from I/0 channel
MPY Multiply

NAM Names relocatable program

NOP No operation

OCT Defines octal constant

ORB Establish origin in base page
ORG Establish program origin

ORR Reset program location counter
OTA Output from A to I/O channel
OTB Output from B to I/O channel
RAL Rotate A left 1

RAR Rotate A right 1

RBL Rotate B left 1

RBR Rotate B right 1

REP Repeat next statement

RRL Rotate A and B left

RRR Rotate A and B right

RSS Reverse skip sense

SEZ Skip if E = 0

SFC Skip if I/O flag = 0 (clear)

SFS Skip if I/O flag = 1 (set)

SKP Skip to top of next page

SLA Skip if LSB of A = 0

SLB Skip if LSB of B = 0

SOC Skip if overflow bit = 0 (clear)
S0S Skip if overflow bit = 1 (set)

Cc-3

INSTRUCTIONS

ALPHABETIC LIST OF INSTRUCTIONS (cont)

SPC Space n lines

SSA Skip if sign A = 0

SSB Skip if sign B = 0

STA Store A

STB Store B

STC Set I/0 control bit

STF Set I/0 flag

STO Set overflow bit

SUP Suppress list output of additional code lines
SWP Switch the (A) and (B)

SZA Skip if A =0

SZB Skip if B =0

UNL Suppress list output

UNS Resume list output of additional code lines
XIF Terminate an IFN or IFZ group of instructions
XOR Exclusive "or" to A

APPENDIX D
SAMPLE PROGRAM

Pollowing are two sample problems, the second of which implements several

options of the Extended Assembler.

PARTS FI

A master file of parts is updated by a parts usage list to produce a new
master parts file. A report, consisting of the parts used and their cost,

is also produced.

The master file and the parts usage file contain four word records. Each

record of the cost report is eleven words long.

The organization of the files is as follows:

Parts Master Files (PRTSM)

Cost/

Identification |Quantity ltem

Identification field of the Parts Master Files exists in ASCII although the

entire record is read and written in binary.

Parts Usage File (PRTSU)

Identification Quantity

The parts usage file has been recorded in ASCII.

Parts Cost Report (PRTSC)

[ldentificution / Quantity used / # for SﬁﬁL,ify

The Parts Cost Report is recorded in ASCII with spacing and editing for

printing.

SAMPLE PROGRAMS

SAMPLE PROGRAMS (cont)

The sample program reads and writes the files, adjusts the new stock levels,
and calculates the cost. External subprograms perform the binary-to-decimal
and decimal-to-binary conversions and handle unrecoverable input/output
errors, invalid data conditions, and normal program termination. Input/output
operations are performed using the Basic Control System input/output sub-

routine, .IOC.

READ |}
PARTS
MASTER

READ
PARTS
MASTER

WRITE
INEW PARTS
MASTER

WRITE

YNEW PARTS‘
\ MASTER'

SUBTRACT
USAGE QUANTITY
FROM
MASTER QUANTITY

CALCULATE
COST OF PARTS
USED

WRITE
COSsT
REPORT

WRITE
NEW PARTS
MASTER

SAMPLE PROGRAM

GENERAL FLOW CHART

D-3

SAMPLE PROGRAMS

SAMPLE ASSEMBLER SYMBOL TABLE OUTPUT
PAGE 080491

8001 ASMB>RsBsL>T
START R 000000
PRTSM B 800008
PRTSU B 002004
PRTSC B 0200019
EOTS1 B 000923
EOTS2 B 900924
MTEMP B 000025
UTEMP B 0200026
SWTMP B @608827
SPACS B 900831
DLRSG B 998833
A 200000
B 200001
«I0C. X 800091
BCONV X 280802
DCONV X 000003
ABORT X 200004
HALT X 880005
DTOBI C 900000
DTOBO C 200202
BTODI C 200003
BTODO C 20020805
OPEN R @08002
SPCFL R 0000023
bLD X 880096
DST X 2060007
READU R 0080013
CKSTU R 0028020
RJCTU R 880035
EOTU R 000040
MSGU R 02000851
READM R 080863
CKSTM R 900079
RJCTM R 008105
EOTM R 0020110
MSGM R 0008117
HLTSW R 908137
COMPR R 2001 40
PROCM R 000157
PROCC R 000165
MPY X 0080010
CONVM R 008213
CONU1 R 880224
CONU2 R 808235
CONVC R 982246
WRITC R 008261
CKSTC R 0002266
RJCTC R 02002276
WRITN R 0008391
CKSTN R 008306
RJCTN R 2008316

** NO ERRORS*

PAGE

p2e:
aa92
2233
P00 4
@8BS
2886
2837
2008
8329
2010
2811
po12
8213

2014
92315
2016
2017
2318x%
P19
P23 *
2021
PO22*
B023*
2824
A0B25%
BB26%*
28027
P28
20829 %
PB38+*
2031 *
2832
B833%
334
8835

@336
8937

2038
#9839
020 49
PB Al
28 42
P20 43
PB4a4
29245
28 46
28 47
20 48
A3 49
#0250
2051
P8 52
BB53*

20822

AARARA
PR 2a Ay

38009
22881
00308
208000
20804
22010
20023
08024
28025
PBB26
80027
2060831
#8332
#0333
820800
208091

@ooa2

#0282
200083
PB0024
20805
20006
290817
60810
82211
poo12
20013
20014

030200
#26062R

200000
ol gl 1o do)
6002006
B26B63R
B26301R
A0B006
00000
200000
820040
220040
220044

00060

B16086X
20008318
P16807X
#889128B
B16887X
PBPB168B
#6808338
2780208
B16001X
210801

20015 226835R

200216
8ee17
02320
pae21
ggp22
20023
28624
28125
28826
20027

209008 4B
300004
B16031X
04006021
2022020
B26020R
201200
202020
826830R
P26B63R

SAMPLE ASSEMBLER LIST OUTPUT

START

PRTSM
PRTSU
PRTSC
EOTS1
EOTS2
MTEMP
UTEMP
SWTMP
SPACS

DLRSG
A
B

OPEN
SPCFL

READU

CKSTU

AAM
iviais

NOP
JMP
ORB
BSS
BSS
BSS
JMP
JMP
BSS
BSS
BSS
ASC

ASC
EQU
EQU
EXT

EXT

EXT

EXT

EXT
CcOoM

ORR

NOP
bLb

DST
DST

LDA
STA
JsSB
OCT
JMp
DEF
DEC
JsB
0CT
SSA
JMP
RAL
SsA
JMP
JMP

uenpTE

OPEN)
ASSIGN STORAGE & CONSTANTS TO BP

4 MASTER PARTS FILE - BINARY.

4 PARTS USAGE LIST - ASCII.

11 PARTS COST REPORT - ASCII.

READM

WRITN

1

1

2

2,

1 &

2

1

«10C. PERFORM I/70 OPERATIONS USING BCS
1/0 CONTROL ROUTINE.

BCONV ENTRY POINT FOR DECIMALCASCII)
TO BINARY CONVERSION SUBPROGRAM.

DCONV ENTRY POINT FOR BINARY TO
DECIMALC(ASCII)> CONVERSION SUB-
PROGRAM.

ABORT ENTRY POINT FOR SUBPROGRAM WHICH

HANDLES UNRECOVERABLE 1/0 ERRQORS
OR INVALID DATA.
HALT END OF PROGRAM SUBROUTINE.
DTOBI(2),DTOB0,BTODI(2),BTODOC2)
COMMON STORAGE LOCATIONS USED TO
PASS DATA BETWEEN MAIN PROGRAM
AND CONVERSION SUBPROGRAMS.
RESETS PLC AFTER USE OF ORB AT
BEGINNING OF PROGRAM.

SPACS STORES EDITING CHARACTERS IN
PRTSC+2 QUTPUT AREA FOR PARTS COST
PRTSC+6 REPORT.

DLRSG

PRTSC+8

«I0C. READ ONE RECORD FROM USAGE LIST
10001 LOCATED ON STANDARD UNIT 1

RJCTU (TELEPRINTER INPUT). PRTSU IS
PRTSU ADDRESS OF STORAGE AREAs AREA IS
4 4 WORDS LONG.

«I10C. CHECK STATUS OF UNIT 1.

40001

CKSTU IF BUSY, LOOP UNTIL FREE.

*+2

READM IF COMPLETE»> TRANSFER TO SECTION

WHICH READS MASTER FILE RECORD.

PAGE

P854
8855
2056
8857
@058
BB 59
2060
2861
P62
2063
2064
3365
PB66
BB67
2068
2869
2070
2871
2872

2073
2074
8075
2076
0877
2078
2079
2880
2081
2882
2983
2084
2885
2686
0087
2088
8389
2090
8091
2092
2093
2094
PB95
2096
2097
20898
PA99
2100
2101
21082
2183

#0223

008030
206831
P2a32
#6833
22034

BB@B35
20036
#8037
00240
20041
20042
202843
BB 44
20345
00d 46
20047
26050
88051
#0852
P00 53
280854
28055
PBBS6
80857
206860
800461
ABa62
20063
22064
80965
#0d66
20067
0070
20971
28072
28073
PB074
80875
28976
Paa77
20100
20101
20182
80103
20104

80105
22106
82187
82110
#0111
29112
83113
Pat114
6a115
PB116
00117

201727
801280
892020
8260 40R
82600 4X

206022
B26013R
A26004X%
8680238
272002R
P6dd24B
B72140R
B16001X
p20002
@260 44R
880051R
@eaa11
842516
2420 48
B47586
820125
@515081
B43585
220106
Ba4s51 4
042440
P26063R
P16001X
818185
@26185SR
0000088
228004
D16001X
2400085
202020
B26078R
201200
002020
#26100R
8261 40R
21727
P0120880
082020
826110R
82600 4X

206020
B26063R
B26804X
#62137R
P72315R
A160081X
820002
@26112R
BAB117R
262017
242516

SAMPLE ASSEMBLER LIST OUTPUT

RJCTU

EOTU

MSGU

READM

CKSTM

RJCTM

EOTM

MSGM

ALF»
RAL
SSA
JMP
JMP

SSB
JMP
JMP
LDA
STA
LDA
STA
JSB
0CT
JMP
DEF
DEC
ASC

JMP
JSB
oCcT
JMpP
DEF
DEC
JSB
0CT
SsA
JMP
RAL
SSA
JMP
JMP
ALF,
RAL
SSA
JMP
JMP

SSB
JMP
JMP
LDA
STA
JSB
ocT
JMP
DEF
DEC
ASC

ALF

EOTU
ABORT

READU
ABORT
EOTS1
OPEN
EQTS2
COMPR
«10C.
20002
EOTU+ 4
MSGU
9

TEST END OF TAPE STATUS BIT
(ORIGINAL BIT 25).

IF SET, GO TO EOT PROCEDURE.

IF NOT SET, SOME ERROR CONDITION
(UNRECOVERABLE) EXISTS.

CHECK CAUSE OF REJECT. IF UNIT
BUSY LOOP UNTIL FREE. ANY OTHER
CAUSE IS UNRECOVERABLE ERROR.
IF END OF USAGE FILE, ALTER
PROGRAM SEQUENCE TO BYPASS
SECTIONS THAT READ AND PROCESS
USAGE FILE. PRINT MESSAGE ON
TELEPRINTER INDICATING EOT.

9, END OF USAGE FILE

READM
«I0C.
12105
RJCTM
PRTSM
4

«10C.
40085

CKST™M

x+2
COMPR
ALF

EOTM
ABORT

READM
ABORT
HLTSW
CKSTN+7
«I10C.
20002
EOTM+2
MSGM

15

15, END OF

D-6

READ A RECORD FROM MASTER PARTS
FILE ON STANDARD UNIT @S(PUNCHED
TAPE READER). PRTSM IS ADDRESS
OF STORAGE AREAs AREA IS 4 WORDS
LONG. RECORD IS IN BINARY FORMAT
CHECK STATUS OF UNIT 5.

IF BUSY, LOOP UNTIL FREE.

IF COMPLETE, TRANSFER TO EITHER
PROCESSING OR WRITE OUTPUT
DEPENDING ON SETTING OF COMPR.
TEST FOR END OF TAPE.

IF END» GO TO EOT PROCEDURE.

IF NOT» AN UNRECOVERABLE ERROR
EXISTS.

CHECK CONTENTS OF B FOR CAUSE OF
REJECT. IF UNIT BUSYs LOOP UNTIL
FREE, OTHERWISE I/0 ERROR EXISTS
ALTER PROGRAM SEQUENCE TO HALT
EXECUTION AFTER LAST RECORD IS
WRITTEN PRINT MESSAGE
INDICATING END OF MASTER INPUT.

MASTER PARTS FILE INPUT

PAGE

B104
2185
p1o6
2107
P188
g189
21108
a111

ari12
P113
B114
2115
116
8117
8118
119
8120
g121

g122
p123
B124
2125
a126
2127

8128
p129
2130

2131
8132

#4133
P134
8135
8136

@137
2138

8139
2140

8304

23122
ae121
88122
aoa123
20124
#8125
pa126
pB127
#0130
98131
28132
#2133
B2134
88135
68136
88137
20140
A01 41
29142
20143
B2144
20145
08146
89147
001502
Bo151
28152
#9153
#0154
#0155
28156
88157
BB160
po161
BB162
BB163
20164
83165
22166
P2167
6a178
208171
9172
82173
BB174
Ba175
@8176
oa177
89200
2082081
#0202
90203
29204
882085
PB206
28207
20210
86211

A423 42
B47586
220115
843523
852185
8510408
250181
@51124
851449
243111
B46105
228111
247120
852524
#261406R
826080 5X
2020020
B16224R
#16213R
B698268
26408258
850231
@26157R
PB7804
043001
20820820
B2600 4X
P62156R
#72315R
B26301R
B260B63R
#16235R
d680028B
8640278
207004
840001
2708628
D16866X
PO020 48
P16007X
2030108
B816006X
2000268
B16887X
80020148B
86006038
P16010X
29pe278
8780308
8740278
B16246R
216006X
280806278
B16007X
A08n218B
862212R
B72315R
B26261R

SAMPLE ASSEMBLER LIST OUTPUT

HLTSW
COMPR

PROCM

PROCC

JMP COMPR
JMP HALT
NOP

JSB CONU1
JSB CONWM
LDA UTEMP
LbB MTEMP
CPA B

JMP PROCM
CMB, INB

ADA B

SSA

JMP ABORT
LDA *+3

STA CKSTN+7
JMP WRITN
JMP READM
JSB CONU2
LDA PRTSM+2
LDB UTEMP+1
CMB, INB

ADA B

STA PRTSM+2
DLD PRTSU

DST PRTSC
DLD PRTSU+2
DST PRTSC+4

LDA PRTSM+3
MPY UTEMP+1

STA SWTMP+1
STB SWTMP
JSB CONVC
DLD SWTMP

DST PRTSC+9
LDA *#+3

STA CKSTN+7
JMP WRITC

D~7

END OF PROGRAM SUBROUTINE.

CONVERT ID NUMBER FIELDS OF
MASTER AND USAGE FILES TO BIN.
LOAD THESE FIELDS FROM TEMPORARY
STORAGE.

COMPARE

IF EQUAL., JUMP TO PROCESSING

IF ID NUMBER OF MASTER GREATER
THAN ID NUMBER OF USAGE», DATA IN
USAGE FILE ERRONEQUS. TERMINATE
RUN.

IF ID MASTER LESS THAN ID USAGE,»
ALTER SEQUENCE:t READ NEXT MASTER
RECORD IMMEDIATELY AFTER WRITING
CURRENT MASTER RECORD.

CONVERT QUANTITY FIELD OF USAGE
FILE TO BINARY AND SUBTRACT FROM
QUANTITY FIELD OF MASTER AND
STORE RESULT.

STORE ID OF PARTS USED IN REPORT
FILE STORAGE AREA.
STORE QUANTITY OF PARTS USED IN

REPORT FILE STORAGE AREA.

COMPUTE COST OF PARTS USED.

CONVERT RESULT TO DECIMAL

STORE IN REPORT FILE AREA.

ALTER SEQUENCE: READ NEXT USAGE
RECORD AFTER WRITING CURRENT
MASTER RECORD.

PAGE 0005
#8141 088212
#2142 808213
D143 006214

84215
8144 00216

80217
8145 00226
3146 00221
8147 98222
8148 @0223
B149 20224
2150 08225

#0226
9151 00227

20230
@152 00231
8153 80232
2154 88233
@155 0B234
@156 @0235
@157 088236

#0237
#2158 60248

906241
#8159 00242
@160 BB243
A1é61 00244
B162 ©BB245
B163 BB246
P164 00247

202508
#8165 80251

28252
@166 00253
B167 00254

#8255
@168 00256

88257
8169 00260
B1780 080261
2171 008262
2172 08263
173 008264
0174 020265
175 00266
8176 88267
2177 Q0278
2178 208271
8179 90272
21880 98273
8181 80274
8182 89275
8183 00276
8184 90277
2185 08390
d186 80301
2187 00382
2188 00323

#260213R
200000

216006X
#030008
B16807X
2060080C
B16082X
B62082C
87008258
126213R
002000

B168086X
80200048
216007X
2008000C
P16802X
#620082C
97808268
126224R
pBo000

@16806X
2008368
2160807X
2000800C
8168082X
862802C
9780278
20000882

d168086X
2820278
P16007X
280083C
016003X
B16006X
280808 5C
816007X
2880278
126246R
#160801X
028192

B26276R
9000108
980013

B16001X
840002

282028

P26266R
201200

P02020

92600 4X
B26301R
0060820

026261R
226083 4X
@16381X
6202104

B26316R

SAMPLE ASSEMBLER LIST OUTPUT

CONVM

CONU1

conu2

CONVC

WRITC

CKSTC

RJCTC

WRITN

JMP
NOP
DLD

DST

JsB
LDA
STA
JMP
NOP
DLD

DST

JSB
LDA
STA
JMP
NOP
bLD

bDST

JSB
LDA
STA
JMiP
NOP
DLD

BST

JSB
DLD

DST

JMP
JSB
oCT
JMP
DEF
DEC
JSB
ocT
SSA
JMP
RAL
Ssa
JMP
JMP
SsB
JMP
JMP
JSB
oCT
JMP

READU
PRTSM
DTOBI

BCONV
BTOBO
MTEMP
CONVM, I

PRTSU
DTOBI

BCONV
DTOBO
UTEMP
CONU15 1

PRTSU+2
DTOBI1

BCONV
DTOBO
UTEMP+1

CONUZ, 1
SWTMP
BTODI

DCONV
BTODO

SWTMP

CONVC»1I
«10C.
28182
RJCTC
PRTSC
11
.Ioc.
40002

CKSTC

ABORT
WRITN

WRITC
ABORT
«I0C.
20104
RJCTN

D-8

STORE ID FIELDS IN COMMON
LOCATIONS TO BE PROCESSED BY

CONVERSION SUBPROGRAM. ON
COMPLETION, STORE RESULTS IN
LOCATIONS USED BY PROCESSING
SECTIONS. CONVM APPLIES TO ID OF
MASTER PARTS FILEs CONUl» TO ID
OF USAGE3 CONU2, TO QUANTITY OF

USAGE3 AND CONVCs TO COST OF

PARTSCTHIS IS A BINARY TO
DECIMAL CONVERSION).

WRITE ONE RECORD OF PARTS COST
REPORT ON STANDARD UNIT 2
(TELEPRINTER OUTPUT)e. PRTSC IS
ADDRESS IN STORAGE AREA3s AREA IS
11 WORDS LONG. RECORD IS IN ASCI
CHECK STATUS OF UNIT 2.

IF BUSY, LOOP UNTIL FREE.

TERMINATE IF ANY I/0 ERROR.

IF COMPLETE, TRANSFER TO WRITN.
IF BUSY, LOOP UNTIL FREE.
TERMINATE ON ANY OTHER REJECT
CONDITION.

WRITE ONE RECORD (BINARY) OF
NEW MASTER PARTS LIST ON UNIT 4
(TAPE PUNCH)>e. PRTSM (INPUT AREA)

PAGE

2189
2198
8191
a192
2193
B194
2195
P196
8197
2198
2199
2200
8291
8222

2006

28334
802305
28336
20307
20318
66311
Aa312
#3313
28314
88315
02316
@B8317
38320

2000008
PABBA4
B160801X
842004
802820
B26306R
601200
802029
P2600 4X
P260813R
006020
P263081R
B26034X

** NO ERRORSx*

CKSTN

RJCTN

DEF
DEC
JSB
ocT
SSA
JMP
RAL
SSA
JMP
JMP
SSB
JMP
JMP
END

PRTSM

«I0C.
40004

CKSTN
ABORT
READU
WRITN

ABORT
START

IS ALSO USED AS OUTPUT AREA.

CHECK STATUS OF UNIT 4.

IF BUSY, LOOP UNTIL FREE.

IF BUSY», LOOP UNTIL FREE> OTHER-
WISE TERMINATE.

SAMPLE PROGRAMS

CALCULATING DISTANCE

Program "Line" will either calculate the distance between two points oxr find
the slope of the line connecting the points; then the point equidistant from

each point (the mid-point) is calculated.

Data is input using the formatter library routine four n-digit real numbers
at a time. The first quantity is the X coordinate of the first point; the
second quantity is the Y coordinate of the first point; the third and fourth

quantities are the X and Y coordinates of the second point.

The result is output to the teleprinter by the formatter library routine;

each guantity cannot be more than an eight-digit real number.

(START)

[i

NPUT MIDPOINT=
TWO POINT X Y%
2, 2

OUTPUT
THE RESULT
(TELEPRINTER)

OuUTPUT
THE RESULT
(TELEPRINTER)

GENERAL FLOW CHART

D-10

Below is the source program as it
are the assembler listings. The f
option in the control statement.

included in the control statement.

is typed up on the teleprinter. After it
irst listing results from including the 2

In the second listing the N option has been

NOTE :

E 2N B N B

* K X

START

«DA
PR
DAT
FMT
FmMT
FMT

*
INP

When the complete data tape has been read and the tape
reader encounters 10 blank feed frames, an EQT message
is typed on the teleprinter and the computer halts.
Thus no halt instruction is needed in the program.

HED LINE FORMULI: DISTANCE, SLOPE, MID-POINT
PROGRAM LINE WILL EITHER CALCULATE THE DISTANCE BETWEEN
TWO POINTS OR FIND THE SLOPE OF THE LINE CONNECTING
THE POINTS3; THEN THE POINT EQUIDISTANT FROM EACH
POINT (THE MID-POINT) IS CALCULATED.

DATA IS INPUT USING THE FORMATTER LIBRARY ROUTINE
FOUR N-DIGIT REAL NUMBERS AT A TIME. THE FIRST
QUANTITY IS THE X COORDINATE OF THE FIRST POINT; THE
SECOND QUANTITY IS THE Y COORDINATE OF THE FIRST POINT3:
THE THIRD AND FOURTH QUANTITIES ARE THE X AND Y COORDINATES
OF THE SECOND POINT.

THE RESULT IS GUTPUT 7O THE TELEPRINTER BY THE
FORMATTER LIBRARY ROUTINE; EACH QUANTITY CANNOT BE MORE
THAN AN EIGHT DIGIT REAL NUMBER.
NAM LINE
NOP
JMP
EXT
EXT
EXT
DEF
DEF
BSS
ASC
ASC
ASC
SKP
INPUT THE FIRST TWO POINTS3;
UT NOP

LDA =B85

CLB, INB

JSB .DIO.

DEF FMT3

DEF *x+4

LDA =B4

LDB .DATA

JSB .IAR.

SPC 3

INPUT
«10C.,FLOAT,IFIX,SQRT
eDI0e»+I10I.5.DTA.;.RAR.
«I0OR«.,.IAR.

DATA

PRINT

4

3, (F8e3)

85 (F8.3,"5">F8+.3/)

35 (412)

TA
IN
A

2
3

FOUR DATA WORDS

D-11

SAMPLE PROGRAMS

* THE DISTANCE BETWEEN THE TWO POINTS:
1FzZ
LDA DATA+2
CMA, INA
ADA DATA
SPC 1
JMP *+5
PRINT REP 4
NOP
SPC 1
STA PRINT
SuUP
MPY PRINT
STA PRINT
SPC 1
LDA DATA+3
CMA, INA
ADA DATA+1
STA PRINT+1
MPY PRINT+1
ADA PRINT
SPC 1
JSB FLOAT
JSB SQRT
DST PRINT
XIF
SPC 3
* FIND THE SLOPE OF THE LINE
IFN
LDA DATA+2
CMA, INA
ADA DATA
JMP *x+5
PRINT REP 4
NOP
STA PRINT
SPC 1
LDA DATA+3
CMA, INA
ADA DATA+1
CLB
DIV PRINT
DST PRINT
X1F
SPC 3
* OUTPUT THE RESULT
LDA =B2
CLB
JSB .DIO.
DEF FMT
DEF *+4
DLD PRINT
JSB .IO0R.
JSB .DTA.
SPC 3

D-12

* FIND THE MID-POINT OF THE LINE SEGMENT:
LDA DATA
ADA DATA+2
CLB
JSB FLOAT
FMP =F.5S
DST PRINT
SPC 1
LDA DATA+1
ADA DATA+3
CLB
JSB FLOAT
FMP =F.5
DST PRINT+2
SPC 1
UNL
LDA =B2
CLB
JSB «DIO.
DEF FMT2
DEF *+5
LDA =B2
LDB .PRIN
JSB .RAR.
JSB .DTA.
LST
SPC 3
UNS
JMP INPUT
END START

D-13

PAGE

0001

START
.IOCQ
FLOAT
IFIX
SQRT
-DIO.
.10I.
«-DTA.
+RAR.
+I0R.
.IAR.
+DATA
+PRIN
DATA
FMT

FMT2
FMT3
INPUT
PRINT
«MPY
.DST

-DLD

« FMP

SAMPLE PROGRAMS

va61

KXXXODDDVHOVDAXKXKXAXAXXXXXT

000000
Poveo 1
000062
208003
POABA4
peBeeBs
00006
000007
poen10
PoRA11
onBa12
Popen2
200003
PPoR34
000010
0060013
PPBB23
pBRo26
200043
PPBB13
000214
000015
p0OB0o16

** NO ERRORSx*

D-14

ASMB>R,L,T>»2Z

PAGE

200B2*
2PB 3%
P00 4%
BBBS*
PBO 6%
200 7x*
P08 *
2009 %
P210%*
PA11*
2R12%
P@13x*
BO14%
ga1s
0816
2817
2018
2219
2029
2921
wB22
2923
P24

2825

go2é

SAMPLE PROGRAMS

AA@2 #01 LINE FORMULI: DISTANCE, SLOPE, MID-POINT

PROGRAM LINE WILL EITHER CALCULATE THE DISTANCE BETWEEN
TwWO POINTS OR FIND THE SLOPE OF THE LINE CONNECTING

THE POINTS3 THEN THE POINT EQUIDISTANT FROM EACH

POINT (THE MID-POINT) IS CALCULATED.

DATA IS INPUT USING THE FORMATTER LIBRARY ROUTINE
FOUR N-DIGIT REAL NUMBERS AT A TIME. THE FIRST
QUANTITY IS THE X COORDINATE OF THE FIRST POINT3THE
SECOND QUANTITY IS THE Y COORDINATE OF THE FIRST POINT3
THE THIRD AND FOURTH QUANTITIES ARE THE X AND Y COORDINATES
OF THE SECOND POINT.

THE RESULT IS OUTPUT TO THE TELEPRINTER BY THE
FORMATTER LIBRARY ROUTINEs EACH QUANTITY CANNOT BE MORE
THAN AN EIGHT DIGIT REAL NUMBER.

00292 NAM LINE
PP009? BRPEE@ START NOP
PP0O1 B26D26R JMP INPUT

EXT .I0C.,FLOAT,IFIX»SERT
EXT «DIO+5+101+5.DTA.5.RAR.
EXT «IOR.5.IAR.

20002 @@0PB4R .DATA DEF DATA

P3PR3 BPAB43R .PRIN DEF PRINT

20004 00003 DATA BSS 4

20010 624106 FMT ASC 3,(F8.3)

PPB11 B348B56

29012 631451

090013 824186 FMT2 ASC 8,(F8.35"5»">F8.3/)

V0014 B34056

PBB1S 831454

90816 B21854

89917 B21054

PPR20 PA3070

poe21 B27063

pov22 627451

0023 B24964 FMT3 ASC 3,(412)

POP24 Ba4462

BOP2S P24440

SAMPLE PROGRAMS

PAGE 9983 #@1 LINE FORMULI: DISTANCE, SLOPE, MID-POINT

@@28* INPUT THE FIRST TWO POINTS; FOUR DATA WORDS
9029 00026 PPBAGB INPUT NOP

0838 9APP27 P62131R LDA =BS5S
A031 00830 BB6404 CLB, INB
P032 0POPO31 B160085X JSB .DIO.
2933 00032 PPBB23R DEF FMT3
9834 0PBB33 GAVB3TR DEF *+4
B35 PBB34 B62132R LDA =B4
PA36 POP3S5S B66002R LDB .DATA
PB37 0036 B16P12X JSB .IAR.

P039*% THE DISTANCE BETWEEN THE TWO POINTS:

00 40 IFZ

P41 POP3T P6200B6R LDA DATA+2
0942 00040 PO3IVA4 CMA, INA
PO4A3 0P041 D42004R ADA DATA
PB4S 0OB42 P26B47R JMP %x+5
2046 PRINT REP 4

047 DOO43 POONOO NOP

P047 00044 PORPOR NOP

@047 0QBB4S GOOROVY NOP

0847 0OR46 PODOOG NOP

PB49 P2B4T BT2043R STA PRINT
2454 sue

0851 00058 B16A13X MPY PRINT
AB52 28852 P72043R STA PRINT
0054 0BOBS5S3 B62PATR LDA DATA+3
2055 00854 PB3004 CMA, INA
PBS6 PPBASS B42805R ADA DATA+1
BO57 00056 B72044R STA PRINT+1
P58 0©OB57T B16013X MPY PRINT+1
#9059 ©PA61 B42043R ADA PRINT
PB61 0PDB62 B16002X JSB FLOAT
PR62 0BP63 D160G4X JSB SGQRT
PB63 0BR64 P16014X DST PRINT
2064 XI1F

PP66* FIND THE SLOPE OF THE LINE

po67 IFN

2068 LDA DATA+2
2069 CMA, INA
BB70 ADA DATA
PB71 JMP *+5
pB72 PRINT REP 4

8073 NOP

PO74 STA PRINT
pB7S SPC 1

P76 LDA DATA+3
a1 CMA, INA
B78 ADA DATA+1

D~16

PAGE 9004 #81

PB79
0a80
0081
pp8e

P08 4%
2085
086
PB817
2988
vB89
2090
2991
Bo92

PO 4%
PB95
PB96
2897
0298
8099
2100

g102
21083
2104
6105
2186
2187

2119

2121
2122

2123

OUTPUT THE RESULT

PPB66
o067
PoD170
220871
PAB72
20073
PRBTS
28076

FIND
22077
00100
o101
eB102
28103
Bo165

o107
00110
Po111
pa112
#2113
PB115

00130
20131
228132
92133
00134
92135

P62133R
PB6400

B16005X
PPBD10R
BBPOT6R
B16815X
16011X
P16007X

THE MID-POINT
26200 4R
P42006R
PP6429
B16002X
216016X
Di6614X

B62005R
P42007TR
P26400

2160802X
216816X
D16@14X

P26026R
pPBRRABS
00BR04
200002
240000
002000

k NO ERRORS

LINE FORMULTI:

CLB
DIV
DST
XIF

LDA
CLB
JSB
DEF
DEF
DLD
JSB
JSB

DISTANCE,

PRINT
PRINT

«DIC.
FMT
x+ 4
PRINT
«I0R.
. DTAD

SLOPE,

OF THE LINE SEGMENT:

LbA
ADA
CiB
JSB
FMP

~ o

Doi

LDA
ADA
CLB
JSB
FmMP
DST

LST

UNS
JMP

END

D-17

DATA
DATA+2

FLOAT
=F«5

PRINT

DATA+1
DATA+3

FLOAT
=F+5
PRINT+2

INPUT

START

MID-POINT

PAGE

2001
START
.I0C.
FLOAT
IFIX
SART
.DIO.
-101.
«DTA.
+«RAR.
-IOR.
«IAR.
«DATA
«PRIN
DATA
FMT
FMT2
FMT3
INPUT
PRINT
.DIV
+DST
.DLD
«FMP

SAMPLE PROGRAMS

2001

00000
PB2VO1
2000082
220003
2000084
200005
pP0BB6
000007
P00010
0oPo11
900012
2000082
000003
00004
2000610
080013
200023
20BB26
200843
2009013
POBB14
200015
PoBB16

XXXHXODDTOVIDIDIODXXXXAXAXXHXXXXDDT

** NO ERRORSx*

D-18

ASMB,R>L,TsN

PAGE

POB2x*
2003 %*
20D 4%
PPBS*
200 6*
0D 7T*
200 8*
P20 9*
NP10*
P011%*
2012%
20 13%*
BB 14%
2015
2016
Aa17
P218
2019
2020
2021
2022
P23
po24

[
NN
N
[

0826

SAMPLE PROGRAMS

pPR2 #01 LINE FORMULI: DISTANCE, SLOPE, MID-POINT

PROGRAM LINE WILL EITHER CALCULATE THE DISTANCE BETWEEN
TWO POINTS OR FIND THE SLOPE OF THE LINE CONNECTING

THE POINTS3 THEN THE POINT EQUIDISTANT FROM EACH

POINT (THE MID-POINT)> IS CALCULATED.

DATA IS INPUT USING THE FORMATTER LIBRARY ROUTINE
FOUR N-DIGIT REAL NUMBERS AT A TIME. THE FIRST
QUANTITY IS THE X COORDINATE OF THE FIRST POINT3 THE
SECOND QUANTITY IS THE Y COORDINATE OF THE FIRST POINT:
THE THIRD AND FOURTH QUANTITIES ARE THE X AND Y COORDINATES
OF THE SECOND POINT.

THE RESULT IS OQUTPUT TO THE TELEPRINTER BY THE
FORMATTER LIBRARY ROUTINE3; EACH QUANTITY CANNOT BE MORE
THAN AN EIGHT DIGIT REAL NUMBER.

26000 NAM LINE
0000 000008 START NOP
P00B1 ©D260626R JMP INPUT

EXT «.I0C.,FiL.OAT,IFIXsSORT
EXT «DIO¢»+I0I«s«DTA.5.RAR.
EXT «IOR.».IAR.

0602 PPPOZ4R .DATA DEF DATA

PP003 PAPV43R «PRIN DEF PRINT

pRov4 0000 DATA BSS 4

PPo10 B24186 FMT ASC 3,(F8.3)

PBP11 B340B56

Pe@M12 B31451

PeO13 P24106 FMTZ2 ASC 85(F8.35°57,F8.3/)

P0B14 B340B56

PB21S B31454

PPB16 021054

20017 021054

PBG20 B43270

PRR21 P27063

0022 P27451

P0023 Q24864 FMT3 ASC 3, (412D

00024 B44462

28225 P24440

D-19

SAMPLE PROGRAMS

PAGE 9983 #0801 LINE FORMULI: DISTANCE, SLOPE, MID-POINT

P@28* INPUT THE FIRST TWO POINTSs; FOUR DATA WORDS
0029 08026 GBRRVD INPUT NOP

PO3B QPPB27 P62123R LDA =BS5S
P031 Q0030 006404 CLB,INB
BA32 000931 016005X JSB .DbIO.
033 092932 BBOM23R DEF FMT3
@034 PPB33 POBBITR DEF *x+4
BB35 00934 D62124R LbA =B4
P036 BPB3S B66002R LDB .DATA
BR37 00036 B16012X JSB .IAR.

P839* THE DISTANCE BETWEEN THE TWO POINTS:

00 40 IFZ

2041 LDA DATA+2
09 42 CMA, INA

BB 43 ADA DATA
BO44 SPC 1

20845 JMP *+5
2046 PRINT REP 4

PB47 NOP

00 48 SPC 1

PO 49 STA PRINT
2958 SuUpP

2051 MPY PRINT
PBs2 STA PRINT
Vo553 SPC 1

0054 LDA DATA+3
BB55 CMA, INA
BB56 ADA DATA+]
8B57 STA PRINT+]1
2058 MPY PRINT+]
2859 ADA PRINT
2060 SPC 1

2061 JSB FLOAT
P062 JSB S@QRT
2063 DST PRINT
PB64 XIF

BO66* FIND THE SLOPE OF THE LINE

po6T IFN

PB68 PPO37T B62BB6R LDA DATA+2
PB69 0OD40 PB3004 CMA, INA
BB70 @41 P429B4R ADA DATA
8071 0BP42 P26047TR JMP *+5
2872 PRINT REP 4

PB73 00UD43 000000 NOP

BB73 0PO044 200000 NOP

BB73 VBO4S 000009 NOP

G073 0PR46 000000 NOP

PB74 0OPB47 B72043R STA PRINT
PB76 DROS2 B62VBTR LDA DATA+3
9077 0PB51 803004 CMA, INA
P78 ©0PO52 Q42805R ADA DATA+)

D-20

N e aTal s IV I

PAGE 00®4 #01 LINE FORMULI: DISTANCE, SLOPE, MID-POINT

PBP79 0BOA53 006400 CLB

PP80 Q0BBS4 B16013X DIV PRINT
PPAS5S BBBA43R

2081 0@RBS6 B16014X DST PRINT
PPB57 BBBB4A3R

pesg2 XIF

#P84*x OUTPUT THE RESULT

9085 @0VD6D V62125R LDA =B2
P86 PPB61 VB6400 CLB

PB87 0BB62 A1608B5X JSB .DIO.
PP88 0OV63 VVVO1OR DEF FMT
PP89 0PP64 OOPDTOR DEF *+4
PO9B BBB6S B166815X DLD PRINT

PPP66 BBBBA3R

P91 DPPR6T B16011X JSB .IO0R.
Pe92 0eR78 B16007X JSB .DTA.

@094% FIND THE MID-POINT OF THE LINE SEGMENT:

PP95 BBBT1 B620B4R LDA DATA

PB96 PPDT2 P42006R ADA DATA+2

pB97T ©OBT3 PB64D0 CLB

2098 POOT4 016002X JSB FLOAT

9099 0NB1S B16816X FMP =F.5
PR2T6 BBB126R

0196 0QBBT7T 0160814X DST PRINT
0010¢ 0BOO43R

2162 P0181 B628ASR LDA DATA+1

0193 02182 P42007R ADA DATA+3

Q104 0B0O103 02064002 CLB

2125 B2104 2168822X JSB FLOAT

2186 02105 A16016X FMP =F.5
PR106 BOB126R

2107 001027 B16014X DST PRINT+2
P0110 BBBB4SR

2119 . LST

2121 UNS

0122 00122 P26826R JMP INPUT

AB123 000ABS

0124 0000A4

P2125 0RPBe2

PB126 B40000

o2127 P20PR00
2123 END START
**x NO ERRORS*

D-21

The System Input/Output (SIO) subroutines may be used to perform basic input/

output operations for programs in absolute form.t

MEMORY ALLOCATION

These drivers are stored in high memory immediately preceding the Basic Binary
Loader. The Teleprinter driver must be loaded first; it is stored in the
highest portion of this area. The drivers for the Punched Tape Reader (or
Marked Card Reader), the Tape Punch, and the Magnetic Tape Unit may then be
loaded. The sequence of loading must fall within this order, depending on
your equipment configuration: Line Printer Driver, Punched Tape Reader

Driver (or Marked Card Reader), Tape Punch Driver, Magnetic Tape Driver, and

if needed, the MTS Boot.

The drivers are accessed through 15-bit absoclute addresses which are stored

in the System Linkage area starting at location 101 The allocation of

g
memory is as follows:
07777 OR 17777 BASIC BINARY LOADER
07700 OR 17777 '~-<—TELEPRINTER DRIVER

NS~_PUNCHED TAPE

\\READER DRIVER
///// \\TAPE PUNCH DRIVER
MAGNETIC TAPE DRIVER
[PROGRAM_ INTER - PASS LOADER
MEMORY (MTS)

BASE PAGE N
AVAILABLE
00107N\ MEMORY
<« S—SYSTEM LINKAGE

00000————— S5 “*S—-RESERVED LOCATIONS

TThe SIO subroutines are designed for use with FORTRAN, Assembler, Symbolic
Editor, etc.; however, they may be used with any absolute object program.

E-1

SYSTEM INPUT/OUTPUT SUBROUTINES

OPERATION AND CALLING SEQUENCE: PAPER TAPE DEVICES

All data transmission is accomplished without interrupt control, and there-
fore, operations are not buffered by the drivers. Control is not returned
to the calling program unitl an operation is completed. Date is transferred

to and from buffer storage areas specified in the user program.

The general form of the paper tape input/output calling sequence is:

LDA <buffer length> (words or characters)
LDB <buffer address>
JSB 10fB,I (f is Input/Output function)

<normal return>

Register Contents

When the JSB is performed, the A-Register must contain the length of the

buffer storage area and the B-Register, the address of the buffer. Control
returns to the location following the JSB. After an input request is completed,
the A-Register contains a positive integer indicating the number of characters

or words transmitted, or zeros, if an end-of-tape condition occurred.

The digit supplied for f in the JSB instruction determines the paper tape
input/output function to be performed. The value of the operand address is
the location in the system linkage that contains the absolute address of the

driver entry point. The following are available:

101 Input

102 List Output

103 Punch Output

104 Keyboard Input-ASCII data is read from teleprinter and printed

as it is received.

ape Punch drivers are in
memory, location 101 points to the Punched Tape Reader driver and location
103, toc the Tape Punch driver. If the latter are to be used, they must be

loaded after the Teleprinter driver.

OPERATION AND CALLING SEQUENCE: MAGNETIC TAPE DRIVER

As with the Paper Tape SIO drivers, all data transmission is accomplished
without interrupt control. Control is not returned to the calling program
until an operation is completed. (Rewind and Rewind/Standby are the only
exceptions to this. 1In these cases return is made as soon as the command is

accepted.)

The general form of the calling sequence is:

LDA <buffer length> or <file count>
LDB <buffer address> or <record count>
JSB 1078B,1I

OCT <command code>

<ECF/EOT/SOT return>

<error return>

<normal return>

NOTE: Location 107 must contain the address of the magnetic
tape driver.

Register Contents

Before initiating read or write operations, the A-Register must contain the
buffer length. This will be a positive integer if length is defined in

characters and a negative integer if length is defined in words. The

SYSTEM INPUT/OUTPUT SUBROUTINES

B-Register must contain the buffer address.

Before initiating tape positioning operations, the A-Register must contain
the number of files that are to be spaced. A positive integer indicates
forward spacing; a negative integer indicates backward spacing. The B-
Register contains the number of records that are to be spaced. A positive
integer indicates forward spacing; a negative integer indicates backward
spacing. The positioning may be defined in terms of any combination of for-
word or backward spacing of files and records (e.g., space forward two files
then backspace three records). If files only or recorxrds only are to be

spaced, the contents of the other register should be zeros.

The registers are not used when entering the subroutine to perform one of

the following operations:

Write end-of-file Rewind/Standby
Write file gap Status
Rewind

Linkage Address

107B is the system linkage word that contains the absolute address of the

entry point for the Magnetic Tape driver.

On return from a read operation, the A-Register contains a positive value

indicating the number of words or characters transmitted.

On return from all operations except Rewind and Rewind/Standby, the B-Register

contains status of the operation. (See Status.)

MAGNETIC TAPE OPERATIONS

The magnetic tape driver will perform the following operations. The pertinent
operation is specified by the command code which appears after the OCT in

the calling sequence.

Operation Command Code
Read 0
Write 1
Write End-of-File 2
Rewind (Auto mode) 3
Position 4
Rewind/standby (Local mode) 5
Gap)
Status 7

Read

One tape record is read into the buffer. The number of characters or words
read is stored in the A-Register. The value will be equal to the buffer
length except when the data on tape is less than the length of the buffer.
One tape record is read to transfer the number of characters specified into
the buffer. The number of characters in that record (not the number trans-
ferred) will be stored in the A-Register. If the tape record exceeds the
buffer length, the data will be read into the buffer until the buffer is
filled, the remainder of the record will be skipped. If the length of an
input buffer is an odd number of characters, a read operation will result in
the overlaying of the character following the last character of the buffer;

the subroutine actually transmits full words only.

Three attempts are made to read the record before returning control to the

parity error address.

SYSTEM INPUT/OUTPUT SUBROUTINES

If an EOT condition exists at the time of entry, the command will be ignored

and control will be returned to the EOT/EOF address.

If the buffer length specified is 0, control will return to the normal

address without any tape movement.

The input buffer storage area can be as large or as small as needed. The

number of characters in the tape record will be stored in the A-Register.

Write

The contents of the buffer is written on tape preceded by the record length.
Since a minimum of 7 tape characters (12 on 3030) may be written, short

records are padded.

If the end-of-tape is detected during the write operation, the normal return

used. The next write operation, however, results in a return of control of

ki
u

the EOF/EOT location; no data is written. If an EOT condition exists at the
time of entry, the command will be ignored and control will be returned to the

EOT/EOF address.

Write End-of-File

A standard EOF character (178 for 2020,238

Control return to the normal location with the EOF status on the B-Register.

for 3030) is written on tape.

No gap is written.

If the end of tape was reached on a previous write command, control retuzrns

to the EOF/EOT location; the character is written.

Rewind

This command initiates a rewind operation and then immediately returns con-

trol to the normal location.

The calling sequence for a Rewind operation consists of:

JSB 107B,I
ocT 3

<normal return>
The user need not test status on the rewind operation before issuing the next
call.
Position
This is the general command to move the tape. Both file and record operations
may be defined in the same operation. Either may be specified for forward
or backward spacing. At the completion of the operation the tape will be
positioned ready for reading or writing.
An attempt to space beyond the end-of-tape or start-of-tape will terminate the

positioning operation and return control to the EOF/EOT/SOT location.

Rewind/Standby

This causes the tape to be positioned at load point and switches the device
to local status. Control returns to the normal location immediately after

the operation is initiated.

SYSTEM INPUT/OUTPUT SUBROUTINES

The calling sequence for a Rewind/Standby operation consists of:

JSB 107B,1I
ocT 5

<normal return>

An attempt to issue another call on this device results in a halt (102044).

The device must be switched to AUTO before the program can continue.

Gap

This command causes a three-inch gap to be written on the tape.

If the end-of-tape was reached on a previous write command, control returns

to the EOF/EOT location; the gap is not written.

Status

This command returns certain status bits in the B~Register. The driver per-
forms a clear command whenever it is entered and as a result the only bits

that are valid indicators are:

Start-of-Tape
End-of-Tape
Write Not Enabled

All other commands (except Rewind and Rewind/Standby) provide valid status

replies on return to the program.

SYSTEM INPUT/OUTPUT SUBROUTINES

The status reply consists only of bits 8-0 and has the following significance:

Bits 8-0

IXXXXXXXX

X1IXXXXXXX

XXIXXKXXXX

XXX IXXXXX

XXXX1IXXXX

XXXXX1XXX

XXXXXX1xx

XXXXXXX1X

xxxxxxxxl

Condition
Local - The device is in local status

EOF - An End-of-File character (l78 for 7
track, 238 for 9) has been detected while

reading, forward spacing, or backspacing.

SOT - The Start-of-Tape marker is under the

photo sense head.

EOT - The End-of-Tape reflective marker is
sensed while the tape is moving forward.
The bit remains set until a rewind command

is given.
Timing - A character was lost.

Reject - a) Tape motion is required and the

required and the tape is at load point.
c) A write command is given and the tape

reel does not have a write enable ring.

Write not enabled - Tape reel does not have

write enable ring or tape unit is rewinding.

Parity error - A vertical or logitudinal
parity error occurred during reading or
writing. (Parity is not checked during

forward or backward spacing operations.)

Busy - The tape is in motion or the device

is in local status.

SYSTEM INPUT/OUTPUT SUBROUTINES

Following is a table summarizing the tape commands:

Command Call Return

Operation Code A B A B
Read 7] Buffer Buffer Buffer Status

Length Address or

Record
Length

Write 1 Buffer Buffer Buffer Status

Length Address Length
Write 2 - - - Status
EOF
Rewind 3 - - - -
(Auto mode)
Position 4 Number Number - Status

of Files, of

Direc- Recorxds,

tion Direction
Rewind/ 5 - - - -
Standby
{Local
mode)
Gap 6 - - - Status
Status 7 - - - Status

Additional Linkage Addresses

Other locations in the system linkage area contain the following:

lOO8 Used by the standard software system to store a JMP to

the transfer address.
1058 First word address of available memory.

1068 Last word address of available memory.

E-10

The latter two locations may be accessed by an absolute program. The user
may store the first word of available memory in 105 by performing the

following:

ORG 105B

ABS <last location of user program +1>
The last word of available memory is established by the drivers; it is the

location immediately preceding the first location used by the last driver

loaded.

BUFFER STORAGE AREA

The Buffer Address is the location of the first word of data to be written on
an output device or the first word of a block reserved for storage of data
read from an input device. The length of the buffer area is specified in the
A-Register in terms of ASCII input or output characters or binary output
words. For binary input, the length of the buffer is the length of the record
which is specified in the first character of the record. ASCII and binary
input record lengths are given as positive integers. The length of a binary
output record is specified as the two's complement of the number of words in

the record.
In addition to describing the buffer area in the calling sequence (for first

word of binary input record), the area must also be specifically defined in

the program, for example with a BSS instruction.

RECORD FORMATS

ASCII Records (Paper Tape)

An ASCII record is a group of characters terminated by an end-of-record mark

which consists of a carriage return, ’ and a line feed, @ .

SYSTEM INPUT/OUTPUT SUBROUTINES

For an input operation, the length of the record transmitted to the buffer is
the number of characters designated in the A-Register, or less if an end-of-
record mark is encountered before the character count is exhausted. The codes
for and @ are not transmitted to the buffer. An end-of-record mark

preceding the first data character is ignored.

For an output operation, the length of the record is determined by the number
of characters designated in the request. An end-of-record mark is supplied

at the end of each output operation by the driver.

If a RUB OUT code followed by a @ is encountered on input from the
teleprinter or punched tape reader, the current record is ignored (deleted)

and the next record transmitted.t

If less than ten feed frames (all zeros) are encountered before the first
data character from the punched tape reader, they are ignored. Ten feed

frames are interpreted as an end-of-tape condition.

Binary Records (Paper Tape)

A binary record is transmitted exactly as it appears in memory or on 8-level
paper tape. Each computer word is translated into two tape "characters"

(and vice versa) as follows:

15 87 0

N\ VAN /

V NV

15t TAPE CHAR.(15 14|13112]11]10] 9
2"Tarechar | 716|514 3] 2

-
O™

T RUB OUT which appears on the teleprinter keyboard is synonymous with
the ASCII symbol DEL .

E~-12

For an output operation, the record length is the number of words designated
by the value in the A-Register (the value is the two's complement of the
number of words). For input operations, the first word of the record contains
a positive integer in bits 15-8 specifying the length (in worxds) of the

record including the first word.

On input operations if less than ten feed frames precede the first data
character, they are ignored; ten feedframes are interpreted as an end-of-tape
condition. On output, the driver writes four feed frames to serve as a phys-

ical record separator.

Binary Records (Magnetic Tape)

The Magnetic Tape subroutine reads and writes binary (odd parity) records
only. A record count is supplied by the driver as the first word of the
record. This allows automatic padding of short records to the minimum record

length with automatic removal of the padded portion of the recorxrd on read.

2020 7-LEVEL TAPE

Each computer word is translated into three tape "characters" (and vice versa)

as follows:

15 i_10* 6 5% 0
computer word [O 1 T OO 1 I 1 O1 100OI]
——— / *Bits 10 and 5 are recorded
3rd 33:; of 2nd part of ——v— twice, in two tape characters,

word 1st a%;%of as shown.

TAPE TRACKS

i1st tape character
2nd o "
3rd " n

P =0dd parity bit

SYSTEM INPUT/OUTPUT SUBROUTINES

3030 9-LEVEL TAPE

Each computer word is translated into two tape "characters" by repositioning

the bits in the following scheme:

COMPUTER WORD BITS 15 87 0

Istword contents (1 0001100101 11101

2nd wordcontents |0 1101001{11010010

TAPE TRACK 76539182[1111111
ASSIGNMENTS 76539182 TRACK4IS THE

ODD PARITY BIT

TAPE TRACKS 9

1st tape character
2nd tape character
3rd tape character
4th tape character

"

1
1
1
0
0

OPERATION AND CALLING SEQUENCE: MARK SENSE CARD READER

The SIO Mark Sense Card Reader Driver overlays the Punched Tape Reader Driver
exactly, therefore, only one or the other of these two drivers may be used

in any one SIO System configuration. Further, the driver has no binary read

capability; if this ability is needed, the BCS Mark Sense Card Reader Driver

will have to be used.

All data transmission is accomplished without interrupt control. Execution

control is not returned to the calling program until a complete card has been

read.

The general form of the calling sequence is:

LDA <character count> (positive)
LDB <buffer address>
JSB <101B,I>

<normal return>

Register Contents

Before the JSB is executed, the A-Register must contain the character count
(the buffer length) and the B-Register must contain the buffer address. Con-
trol returns to the location following the JSB; then the A-Register will
contain the number of characters transmitted not including trailing blanks,

or, if a transmission error was detected, it will contain all =zeroes.

15

ea]
1

ralaS VN eaZaYl i oY ™ PV ol all VP ol Bl ol sule o
CONSOLI D CODING SHEET
5 | 14 13 12|11 10 9 |8 7 65 4 3 |2 1 0
D/1 AND 001 0 z/C - Memory Address —
D/I | XOR 010 0 z/C
D/1 | IOR 011 0 Z/C
D/1 | JSB 001 1 Z/C
D/1 | JMP 010 1 Z/C
D/1 | ISZ 011 1 Z/C
D/1 | AD* 100 A/B Z/C
D/1 | CP* 101 A/B Z/C
D/1 | LD* 110 A/B Z/C
D/1 | sT* 111 A/B Z/C
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 | SRG 000 A/B 0 D/E | *Ls 000 CLE D/E SL* | *LS 000
*RS 001 *RS 001
R*L 010 R*L 010
R*R 011 R*R 011
*LR 100 *LR 100
ER* 101 ER* 101
EL* 110 EL* 110
*LF 111 *LF 111
NOP 000 000 000 000
15 14 13 12 11 10 9 8 i 6 5 4 3 2 1 0
0 | ASG 000 A/B 1 |CL* 01 |CLE 01 | SEZ S8 SL* | IN* SZ* RSS
CM* 10 | CME 10
cc* 11 | CCE 11
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 | 106 000 A/B 1 H/C HLT 000 <+———— Select Code ——————»
1 0 STF 001
1 1 CLF 001
1 0 SFC 010
1 0 SFS o011
1 H/C MI* 100
1 H/C LI 101
1 H/C OT* 110
0 1 H/C STC 111
1 1 H/C CLC 111
1 0 STO 001 000 001
1 1 cCLO 001 000 001
1 H/C SoOC 010 000 001
1 H/C SOS 011 000 001
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 | EAU 000 MPY** 000 010 000 000
DIV** 000 100 000 000
DLD** 100 010 000 000
DST** 100 100 000 000
ASR 001 000 0 1
ASL 000 000 0 1 ber
LSR 001 000 1 0 ““g
LSL 000 000 1 0 D bit -
RRR 001 001 0 0 is
RRL 000 001 0 0
Notes: * = Aor B.

D/1, A/B, Z/C, D/E, H/C coded: 0/1.
**Second word is Memory Address.

APPENDIX G
ASSEMBLER ERROR MESSAGES

Errors detected in the source program are indicated by a 1- or 2~ letter mnemonic
followed by the sequence number and the first 62 characters of the statement in
error. The messages are printed on the list output device during the passes

indicated:

For Extended Assembler, error listings produced during Pass 1 are preceded by
a number which identifies the source input file where the error was found. Pass
2 and 3 error messages are preceded by a reference to the previous page of the

listing where an error message was written. The first error will refer to

page lloll .

Error

Code Pass Description

Cs 1 Control statement error:
a) The control statement contained a parameter

other than the legal set.

b) Neither A nor R, or both A and R were specified.
c) There was no output parameter (B, T, or L.)

DD 1 Doubly defined symbol: A name defined in the

symbol table appears more than once as:
a) A label of a machine instruction.

b) A label of one of the pseudo operations:

BSS EQU

ASC ABS

DEC oCcT

DEF Arithmetic subroutine call
DEX

c) A name in the Operand field of a COM or EXT

statement.

d) A label in an instruction following a REP

pseude coperation.

Error
Code Pass Description
e) Any combination of the above.

An arithmetic subroutine call symbol appears in a

program both as a pseudo instruction and as a label.

EN 1 The symbol specified in an ENT statement has already

been defined in an EXT or COM statement.

EN@@@ <symbol> 2 The entry point specified in an ENT statement does
not appear in the label field of a machine or BSS
instruction. The entry point has been defined in
the Operand field of an EXT or COM statement, or

has been equated to an absolute value.

IF 1 An IFZ or an IPN follows either an IFZ or an IFN
without an intervening XIF. The second pseudo

instruction is ignored.
IL 1 Illegal instruction:

a) Instruction mnemonic cannot be used with type of
assembly requested in control statement. The

following are illegal in an absolute assembly:

NAM EXT
ENT COM
ORB Arithmetic subroutine calls

b) The ASMB statement has an R parameter, and NAM

has been detected after the first valid Opcode.

IL 2 or 3 Illegal character: A numeric term used in the
Operand field contains an illegal character (e.g.

an octal constant contains other than +, -, or @-7).

Illegal instruction: ORB in an absolute assembly.
M l, 2 or 3 Illegal operand:

a) Operand is missing for an Opcode requiring one.

b) Operands are optional and omitted but comments
are included for:

END
HLT

G-2

Error

Code Pass

M 1, 2 or 3 c)

d)

e)

£)

g)

h)

i)

Descrigtion

An absolute expression in one of the following
instructions from a relocatable program is

greater than 778.

Memory Reference
DEF

Arithmetic subroutine calls

A negative operand is used with an Opcode field

other than ABS, DEX, DEC, and OCT.

A character other than I follows a comma in one
of the following statements:
IsZ ADA AND DEF

JMP ADB XOR Arithmetic
JSB LDA IOR subroutine

LDB CPA calls
STA CPB
STB

A character other than C follows a comma in one

of the following statements:

STC MIB
CLC OTA
LIA OTB
LIB HLT
MIaA

A relocatable expression in the operand field of
one of the following:

ABS ASR RRL

REP ASL LSR

SPC RRR LSL
An illegal operator appears in an Operand field

(e. g. + or - as the last character).

An ORG statement appearing in a relocatable pro-
gram includes an expression that is base page or
common relocatable or absolute.

A relocatable expression contains a mixture of

program, base page, and common relocatable terms.

G-3

Error

Code

NO

OP

OP

ov

Pass

1,2, or 3

1,2,

or 3

Description

k) An external symbol appears in an operand expres-

sion or is followed by a common and the letter I.

1) The literal or type of literal is illegal for the

operation code used (e.g., STA = B7).

m) An illegal literal code has been used (e.g.,
1DA = 077).

n) An integer expression in one of the following in-
structicons does not meet the condition 1<n<lé.
, . 4
The integer is evaluated modulo 2°.

ASR RRR LSR
ASL RRL LSL

o) The value of an 'L' type literal is relocatable.

No origin definition: The first statement in the as-
sembly containing a valid opcode following the ASMB
control statement (and remarks and/or HED, if present)
is neither an ORG nor a NAM statement. If the A par-
ameter was given on the ASMB statement, the program

is assembled starting at 2000; if an R parameter was

given, the program is assembled starting at zero.

Illegal Opcode preceding first valid Opcode. The
statement being processed does not contain an aster-
isk in position one. The statement is assumed to
contain an illegal Opcode; it 1s treated as a remarks

statement.

Illegal Opcode: A mnemonic appears in the Opcode
field which is not valid for the hardware configura-
tion or assembler being used. A word is generated

in the object program.

Numeric operand overflow: The numeric value of a

term or expression has overflowed its limit:

G-4

Error

Code

R?

SO

SY

54

Pass

Before 1

2 or 3

1,2, or 3

1,2, or 3

Description

1>N>16 sShift-Rotate Set
27-1 1Input/Output, Overflow, Halt
27 7-1 Memory Reference (in absoclute assembly)

277-1 DEF and ABS operands; data generated by DEC;
or DEX: expressions concerned with program
location counter.

16
27 -1 oCT

An attempt is made to assemble a relocatable program

following the assembly of an absolute program.

There are more symbols defined in the program than

the symbol table can handle.

Illegal Symbol: A Label field contains an illegal
character or is greater than 5 characters. A label
with illegal characters may result in an erroneous
assembly if not corrected. A long label is trun-

cated on the right to 5 characters.

Illegal Symbol: A symbolic term in the Operand
field is greater than five characters; the symbol is

truncated on the right to 5 characters.

Too many control statements: A control statement

has been input both on the teleprinter and the source
tape or the source tape contains more than one con-
trol statement. The Assembler assumes that the
source tape control statement is a label, since it
begins in column 1. Thus, the commas are considered
as illegal characters and the "label" is too long.
The binary object tape is not affected by this error,
and the control statement entered via the teleprinter

is the one used by the Assembler.
An error has occurred while reading magnetic tape.

Undefined Symbol:

G-5

Error

Code

Pass

b)

Descrigtion

A symbolic term in an Operand field is not de-
fined in the Label field of an instruction or
is not defined in the Operand field of a COM

or EXT statement.

A symbol appearing in the Operand field of one
of the following pseudo operations was not de-

fined previously in the source program:

BSsS ASC EQU ORG END

G-6

INDEX

A C
BBS.ieieienencnaannn 2-7,2-8,2-11,4-16 CLA, CCBuiviueereannncnnanaanannnns 3-7
Absolute expressions............. 2-11 O 3-7
ASC. v eeeeeeoccanaocnaannns 2-7,4-18,4-25 Character set....veeeeeeeenenn 2-3,A-1
ADA, ADB.vesseessscosassocnss 2~-14,3-2 CLA, CLB. ..ttt eteeeeaaosoacaaanans 3-6
Address definition............... 4-13 Ol it it ettt e iaenn 3-9
Address exXpressionS............... 2-9 Clear flag...iceeiinnniereonecennnn 2-16
AddresSsSingeeeeeeeseceeaaaccscnnnns 1-1 CLF . i iteeesenesosasensacanannnns 3-10
ALF .t ettt teaaea e, 3-5 Lttt tteeeeenanneanneaannnns 3-5,3-7
Alphabetic list of CLO........ Ceeteciaeaaean cese....3-10
instructionS...eeeeeeeieennncens c-1 CMA, CMB. oo 3-6
N 3-5 CME. 3-7
Alter-skip instructions........... 3-6 CPA, CPB. .o 2-14,3-4
AL ittt tteiiitee e 3-5 CORLNG FOLMn v v e oo -
G AL AL AL 27140373 oML 2-5,2-7,4-9,5-1
Arithmetic subroutine calls...... 4-27 COMMENES . . oo eeeeeee oo -16
ARS. sttt ttetaaaeeaeaaaaeeeaas 3-5 Control statement. 51
e AL LA LA 3-13 Consolidated coding sheet......... F-1
ASRutuvenaareneeneneanesennnnenns 3-13 Constant definition. 418

Assembler Control.........c.ocuenn 4-1 b
ASEEriCK. i eeeoeeeannananne 2-5,2-9 DEC. oo, 2-7,2-8,2-11,4-19,4-25
B)i 2-7,2-11,2-15,4-13
Base pPAge..cieeiiiecttinrasnonnns 2-16 Delimiters. ... oo L2-1
BCD/ASCIT.tuuneeennneennnceennnnes A-3 DEX. oo 2-7,2-8,2-11, 421
Binary Coded Decimal Format....... A-3 DIV. . oo, 2-14,3-12,4-25,4-27
Binary outpUt...veereiieeenoncncns 5-3 DID. oo 2-14,3-12,4-25,4-28
BLE ¢ et teenanneeaneeeenaanenannnns 3-5 DST. .o oo 3-12,4-25,4-28

BIRu i et eeeeneeeneesennonsennnannns 3-5 £
BLS ettt trnneenennnneennneneennnns 3-5 BLA . oo oo 3-5
BRS .t tvtennrenerennnennnnnneeneens 3-5 BB oo 3-5
BSS.tternnnnanaraaaiaaaa.s 2-7,4-24 END. o 2-17,4-3, 44, 4-8
ENT . ittt eceenccannnns 4-11,5-1
ERA ., it iiiescrenceanoacnnnonannnns 3-5

E
ERBecetocseanosoneanonannanannsans 3-5
EQUeveeeeeenooannaanaaans 2-7,2-8,4-16
EXTeeeeeenooenannnnns 2-5,2-7,4-11,5-1
Extended arithmetic
INStruCtionS.e.ceeeeeeenenananns 3-11
F
FAD' e eteeeeseanccnanenns 2-14,4-25,4-28
FDVereoeronoeneaeananns 2-14,4-25,4-28
FMP:eoeeenonooeoannannn 2-14,4-25,4-27
S 2-14,4-25,4-28
H
HED:eveeoeeoeooaneneonanosnns 4-2,4-26
HLT. i eeeeeeaneaocecaannsns 2-17,3-11
|
IFN. eeeeseeeesoossccsscannsasasonsnas 4-4
IF e e e eeceeeouensnesoacsnnasnnannns 4-4
INA, INB..ceeeseeeoooccsonnscssnnas 3-7
Indirect addressing..e.eeeeeecens 2-14
Input/output instructions......... 3-8
Instructions....ceeeeceieeersonnnas 2-1
TOR. e eeevteennsncnsoannnnnnns 2-14,3-14
ISZ . i ittt ittt eierenecscccscnnns 3-2
J
JMP . sttt tsseeecennccessnononcnsans 3-2
JSB.eteseeceesnocscscsccccnssnnnnss 3-2
L
Labels...... ceeessacsesssnsasasenn 2-4
IDA, IDB.iceeeesososeaonsnnnns 2-14,3-3
LIA, LIB.veeeeeeeeecncaccoassnnscns 3-9
Listing control.......ivveeeeenns 4-24
LIST oUtpUteseeeeseeeneceecnnneens 5-4
Literals...i.ciieenennnas et 2-13
Logical operations.....ceevecenas. 3-3
LS et tnenanosnnoassanasnsannanss 3-13
LSRecieeenenns Cetstireiseeteaaens 3-13
LT st einneeessonacsonnnnssnssas 4-25

M

Memory reference instructions..... 3-1
MIA, MIB...'iiiiiieenaoenacnnnnnns 3-9
MPY, i 'itrinnnnnnna 2-14,3-12,4-25,4-27
N
NAM,,.eoeeunnn ...1-4,2-17,4-1,5-1,5-3
No-operation instruction,......... 3-6
NOP, .ttt iieieearenannnnns 3-4,3-6,4-8
Numeric terms........ceeeeeeeennns 2-8
O
Object program linkage............ 4-9
OCT....iivenn.. 2-7,2-8,2-11,4-22,4-25
OPCOGES. . vvururneeeennnennannnnnns 2-5
Operands......ceeeeecaes ceieeean ..2-6
Operators.veeeceeeeecacennnans 2=-9
OPtioNS. . uiiueeieennenennrnnenanns 1-4
ORB. . .iiieiioneecnnnnonnns 1-4,4-3,5-1
ORG. ...t iiiiiiiiiencnnann 1-4,4-1,5-3
ORR, ..ttt ocneceseaccanannnnnnncas 4-2
L N = 39S
Overflow instructions............ 3-10
P
PASSeS. . iiieiieaneccnannnses ceesn -1
Program location counter.......... 1-3
Psuedo-instructions.........ceeun. 4-1
R
L 3-5
RAR............. eereeereseaaann ..3=5
0 3-5
RBR, . .iiiitiiiiiieriecanceencnnnns 3-5
Register reference
instructions.........cevvnia.n. 3-4
Relocatable expressions,..... ve..2-12
Relocation,.....coeveenenennnnnnnn 1-3
REP, ittt iiitinteenneannnanas 2=7,4-7
RRL,iiesesosossencnansooannns 3-13
RRR. ...t iitetinnnanenanennnnnnns 3-13
RSS 3-7

S

Shift-rotate instructions.........3=5
SIO driverS..ceeeeeeeeeeeacanns

SLB.ceieeeeeneeosnanccnnnn

SLA,
SOC . e eiieenreneennnnnnnnnesa2=17,3-11
BSOS . tieeeeeenenonnnnnnnnasaa2—=17,3-11

...............

e

SSA, SSB....

STA, STBuceiieeeneenesensnsnsnsasasld—3

Statements. S 1

.....
.....

Storage allocation........e.ce....4-24

.....

SYMOOLS . ittt tteneneennaencnnes

Symbol definition......
SZA,

READER COMMENT SHEET

HP ASSEMBLER
02116-9014 AUG 1975

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications,
Please use additional pages if necessary.

Is this manual technically accurate?

Is this manual complete?

Is this manual easy to read and use?

Other comments?

FROM:

Name

Company

Address

FIRST CLASS
PERMIT NO.141

CUPERTINO
CALIFORNIA

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States Postage will be paid by

Manager, Systems Engineering
Hewlett-Packard

Data Systems Division

11000 Wolfe Road
Cupertino, California 95014

i
{
i
{

HEWLETT @ PACKARL

PART NO. 02116-9014 Sales and service from 172 offices in 65 countries
Printed in U.S.A. 8/75 11000 Woite Road. Supertinn, Caiilora 95014

