
HEWLETT f PJ PACKARD

HP Assembler
Programmer's Reference Manual

HP Assembler
Programmer's Reference Manual

HEWLETT iP PACKARD

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Part No. 02116-9014 Printed in U.S.A. 8/75

PREFACE

This publication is the reference manual for the Hewlett-Packard Assembly

Language for the 2100 family of computers. Since Hewlett-Packard provides

assemblers with all of its operating systems, this manual covers only the

specifications of assembly language, not operating procedures for the

assemblers. The user should refer to the appropriate system manual or

operator's guide listed below:

SOFTWARE OPERATING PROCEDURES
SIO SUBSYSTEMS module
DISC OPERATING SYSTEM
MOVING-HEAD DISC OPERATING SYSTEM
MAGNETIC TAPE SYSTEM

(5951-1390)
(02116-91748)
(02116-91779)
(02116-91752)

In addition, the Formatter and other relocatable subroutines that can be called

by relocatable assembly language programs are described in full in the RELOCATABLE

SUBROUTINES manual (02116-91780). Interaction between relocatable programs

and operating systems is described in:

BASIC CONTROL SYSTEM

MOVING-HEAD DISC OPERATING SYSTEM

DISC OPERATING SYSTEM

MAGNETIC TAPE SYSTEM

(02116-9017)

(02116-91779)

(02116-91748)

(02116-91752)

Interaction between absolute programs and SIO drivers is described in an

appendix to this book.

iii

NEW AND CHANGED INFORMATION

All known errors in this manual have been corrected.
In addition, the Assembler operating procedures
(formally in Section V) are now contained in the

SOFTWARE OPERATING PROCEDURES, SIO SUBSYSTEMS

module (5951-1390).

iv

CONTENTS

iii PREFACE
iv NEW AND CHANGED INFORMATION
v CONTENTS

vi INTRODUCTION

1-1 SECTION I
GENERAL DESCRIPTION

1-1 Assembly Processing

1-1 Symbolic Addressing

1-3 Program Relocation

1-3 Program Location Counters

1-4 Assembly Options

2-1 SECTION II
INSTRUCTION FORMAT

2-1 Statement Characteristics

2-4 Label Field

2-5 Opcode Field

2-6 Operand Field

2-16 Comments Field

3-1 SECTION III
MACHINE INSTRUCTIONS

3-1 Memory Reference

3-4 Register Reference

3-8 Input/Output, Overflow, and Halt

3-11 Extended Arithmetic Unit

4-1 SECTION IV
PSEUDO INSTRUCTIONS

4-1 Assembler Control

4-8 Object Program Linkage

4-11 Address and Symbol Definition

4-17 Constant Definition

v

CONTENTS

SECTION IV (cont.)
PSEUDO INSTRUCTIONS

4-23 Storage Allocation

4-23 Assembly Listing Control

4-26 Arithmetic Subroutine Calls

5-1 SECTION V
ASSEMBLER INPUT AND OUTPUT

5-1 Control Statement

5-2 Source Program

5-3 Binary Output

5-3 List Output

APPENDICES

A-1 HP Character Set
B-1 Summary of Instructions
C-1 Alphabetical List of Instructions
D-1 Sample Problems
E-1 System Input/Output Subroutines
F-1 Consolidated Coding Sheet
G-1 Assembler Error Messages

INDEX

vi

INTRODUCTION

The Assembler and the Extended Assembler translate symbolic source language

instructions into an object program for execution on the computer. The source

language provides mnemonic machine operation codes, assembler directing pseudo

codes, and symbolic addressing. The assembled program may be absolute or

relocatable.

The source program may be assembled as a complete entity or it may be subdivided

into several relocatable subprograms (or a main program and several subroutines),

each of which may be assembled separately. The relocating loader loads the

program and Links the subprograms as required. The Basic Binary Loader or Basic

Binary Disc Loader loads absolute programs.

Input for the Assembler is prepared on paper tape or cards; the Assembler

punches the binary program on paper tape in a format to the loader.

vii

ASSEMBLY PROCESSING

SECTION I
GENERAL DESCRIPTION

The Assembler is a two pass system, or, if both punch and list output are

requested, a three pass system on a minimum configuration. A pass is de­

fined as a processing cycle of the source program input.

In the first pass, the Assembler creates a symbol table from the names used

in the source statements. It also checks for certain possible error condi­

tions and generates diagnostic messages if necessary.

During pass two, the Assembler again examines each statement in the source

program along with the symbol table and produces the binary program and a

program listing. Additional diagnostic messages may also be produced.

If only the output device is available and if both the binary output and the

list output are requested, the listing function is deferred and performed as

pass three.

When using the Assembler with a mass storage device the source program is

written on the device during the first pass; the second pass of the source

is read from the mass storage.

SYMBOLIC ADDRESSING

Symbols may be used for referring to machine instructions, data, constants,

and certain other pseudo operations. A symbol represents the address for a

computer word in memory. A symbol is defined when it is used as a label for

a location in the program, a name of a common storage segment, the label of

a data storage area or constant, the label of an absolute or relocatable

value, or a location external to the program.

1-1

ASSEMBLY
LANGUAGE

SOURCE PROGRAM

ASSEMBLY
LANGUAGE

SOURCE PROGRAM

ASSEMBLY
LANGUAGE

SOURCE PROGRAM

GENERAL DESCRIPTION

ASSEMBLER

PASS 1

ASSEMBLER
PASS 2

ASSEMBLER

PASS 3

ADDITIONAL OR
ALTERNATE

L- OBJECT
PROGRAM LISTIN

PROGRAM
LISTING

Figure 1-1. HP Assembler Processing

1-2

GENERAL DESCRIPTION

Through use of simple arithmetic operators, symbols may be combined with

other symbols or numbers to form an expression which may identify a location

other than that specifically named by a symbol. Symbols appearing in oper­

and expressions, but not specifically defined, and symbols that are defined

more than once are considered to be in error by the Assembler.

PROGRAM RELOCATION

Relocatable programs may be relocated in core by the relocating loader; the

location of the program origin and all subsequent instructions is determined

at the time the program is loaded.

A relocatable program is assembled assuming a starting location of zero. All

other instructions and data areas are assembled relative to this zero base.

When the program is loaded, the relocatable operands are adjusted to corre-

spond with the actual locations assigned by the loader.

The starting locations of the corrunon storage area and the base page portion

of the program are always established by the loader. References to the com­

mon area are common relocatable. References to the base page portion of the

program are base page relocatablec If a program refers to the common area

or makes use of the base page via the ORB pseudo instruction, the program

must also be relocatable.

If a program is to be relocatable, all subprograms comprising the program

must be relocatable; all memory reference operands must be relocatable ex­

pressions or literals, or have an absolute value of less than 100
8

.

PROGRAM LOCATION COUNTERS

The Assembler maintains a counter, called the program location counter, that

assigns consecutive memory addresses to source statements.

1-3

GENERAL DESCRIPTION

The initial value of the program location counter is established according

to the use of either the NAM or ORG pseudo operation at the start of the

program. The NAM operation causes the program location counter to be set

to zero for a relocatable program; the ORG operation specifies the absolute

starting location for an absolute program.

Through use of the ORB pseudo operation a relocatable program may specify

that certain operations or data areas be allocated to the base page. If so,

a separate counter, called the base page location counter, is used in as­

signing these locations.

ASSEMBLY OPTIONS

Parameters specified with the first statement, the control statement, de­

fine the output to be produced by the Assembler:t

Absolute - The addresses generated by the Assembler are to be in-

b::.rnrPt-Pn ;:i c:: ;:ihc::n l nt-P
- .J •• : ~ - - - - • - - ·- --- - - - -- - -

ln~;:it-innc:: in mPmnrv
----------~ --- -----··--J. - '!'he nrnrrr;::im

.L-- ~ :1-~--

is a complete entity; external symbols, corrunon storage

references, and entry points are not permitted.

Relocatable - The program may be located anywhere in memory. All

operands which refer to memory locations are adjusted as

the program is loaded. Operands, other than those refer­

ring to the first 64 locations, must be relocatable ex­

pressions. Subprograms may contain external symbols and

entry points, and may refer to common storage.

Binary output - An absolute or relocatable program is to be punched

on paper tape.

List output - A program listing is produced either during pass two

or pass three.

tsee Section V for complete details.

1-4

GENERAL DESCRIPTION

Table print - List the symbol table at the end of the first pass.

Selective assembly - Sections of the program may be included or

excluded at assembly time depending on the option

used.

1-5

SECTION II
INSTRUCTION FORMAT

A source language statement consists of a label, an operation code, an

operand, and cormnents. The label is used when needed as a reference by

other statements. The operation code may be a mnemonic machine operation

or an assembly directing pseudo code. An operand may be an expression con­

sisting of an alphanumeric symbol, a number, a special character, or any of

these combined by arithmetic operations. (For the Extended Assembler, an

operand may also be a literal.) Indicators may be appended to the operand

to specify certain functions such as indirect addressing. The cormnents por­

tion of the statement is optional.

STATEMENT CHARACTERISTICS

The fields of the source statement appear in the following order:

Field Delimiters

Label

Opcode

Operand

Cormnents

One or more spaces separate the fields of a statement. An end-of-statement

mark terminates the entire statement. On paper tape this mark is a return,

~' and line feed, Ch:V .t A single space following the end-of-statement

mark from the previous source statement is the null field indicator of the

label field.

tA circled symbol (e.g., ~) represents an ASCII code or Teleprinter key.

2-1

2!
c:
0
LL

n
I: I

~

~I

I~
~I l
Cl
c:
<(
:::£'.I
U I~
~ I~ I

r------1
~I I
~ i
$

~ I

•

i

INSTRUCTION FORMAT

g1-----------------------------+---~--:--;---,---'--;-1' ~--+------+'-+---+:--+---+f-l---1+----+------l----t+--_;__j___j
[---~------ -~- --------====-=~~~---+-----'-+-----+---+---'--+----+!----t-+---'+, -----"f---+, -+----+!-+-_;_;_~-+--l---'---'---1---+=~=~-~_i=----_-+-_----+---- +-, ___ -----~+-----_-+-__ ~ --

~ l i :---r-r-+--1 ~: t------:-----r-...:.c---:----,--+---+--+----+---+---+----t-il-----+--4--------i
~r-~----t-t-+.-----t--+--t---t--t-+-+--+-+-t-+-----1!f----t---+-+-+-+-+---+--+--+---!----+--l-+---+--l--l--!.-l----J~

1 i 1 1 l
I l l
: l :

i

r----r----t--t--t--t--t-t--+-+-+i-+-+-+-+-+--+1--+--+--+---+---+---+~~1~' --l---l--l---+---+---+---+---L--L--L--L_j 2 i------t----t-----t-----t----:--l--+-+--+--+--t-+--+-+-+-1----11f----t---+-+-+-+--+-+-~1-+-+-+---+--+----l----+--___(_____j__j__J_j2
--1-- , --_i-- --r- --r- -±-- --+-- -- --+-- -- 1

-- -- -- -i--+--

l :

j--_--t+_-_-f-+-_---j_;_--_-++_--_;j-; ----t---f------j--_-++-----l-----+i----+t-------l-----j+-+-_-----t------J-----!------l---+-1 -_-_jj_-_-.+------l--__j__-_-;=~=- -_-_ t~ __ __,_-_-+-----+----_,__-_-._-_---1----------'­

~ r-1---t----t-t-----t---t--t---t--+--+-+-+-+-+-t--f----t---+-+--+-+-+-+-+--+---!----1---l--+-+--l--l--J.---i---l-_j
r-----i----t---t-----t-----t--+-+--+--+--+-+--+-+-+--1----1~---t--+--+--+-+--+--+--+---l--!-----+---1---l-t-~-l-----!---L_J~ , 1 I

1 l J i---t---t------t-+--+--r-t---+--1+:-1--+--+--+-+-+--+-l--+-----+----l1---l------l-----l--+----l-__J_ __ L-__j____J_-----1 __ +-_--+-+----+--~__,

~ l --t--+--t-----t··-t--t--+------11r---t--t-I' --+-+---+----+-+---+--+--l--+----l------+-+--+--l~
~ r--r----t-r-i---t---j--t--t---t-t--t--t----1--,-----+--t-+---+---+-1~, -+-1~,----i-+--+-------+-t----l----+--f---l-----l------l--+-__j____j
u 1 1 l 1

l

I
t 1 l ~r-1---t-+-t-----t-+-+---t--+-+-+--+-+-+-l---'f----t---+-+_..;...-+_J._-+-+--+--!----1---l-+-+--l--l--!.----!----l--

=
+ l

gt--~J~t-,;~+--1r1 --t~t--t--t~t--+--+-+~+-~~f--+--1~:-+~+--+--+~+---+----+---l~+--+--4~.j_.-4----l-__;__;..J__j__j~
! J l ---+------+----:-~---r,--t---+---T-+----+------'-------l-_j__-+---1---+---l--_j_--J_

I !

I T 1

i
-- --- +----+----+-J-

~~
0 r--t--t------1-t--+-t-t--t--+-t---t---+--+-+--+--+-+---+--+------i-+--+--+-+-+--+-l--+--+---l-+--i-_J__L--Jl_

.2
8-
0

1
J r---t--t----l~t--+--+-+--+--+-+---+--+---t--+---+--+-+-+--+-~f--+--+----l-+----i---+-l----+---1----l--t-----L--l__J_-+--

~ I I :E I]

LlJ
--+---

] l

Y0255

Figure 2-1. Sample Coding Form (Actual Size 11 x 13-1/2)

2-2

~ 0 z"' 0 ~

0

"
"
0

INSTRUCTION FORMAT

Character Set

The characters that may appear in a statement are as follows:

A through z

0 through 9

• (period)

* (asterisk)

+ (plus)

- (minus)

, (comma)

(equals)

{){parentheses)

(space)

Any other ASCII characters may appear in the Remarks field. (See Appendix A.)

The letters A through Z, the numbers 0 through 9, and the period may be used

in an alphanumeric symbol. In the first position in the Label field, an as­

terisk indicates a comment; in the Operand field, it represents the value of

the program location counter for the current instruction. The plus and

minus are used as operators in arithmetic address expressions. The comma

separates several operation codes, or an expression and an indicator in the

Operand field. An equals sign indicates a literal value. The parentheses

are used only in the COM pseudo instruction.

Spaces separate fields of a statement. They may also be used to establish

the format of the output list. Within a field they may be used freely when

following+, -, ,, or (.

STATEMENT LENGTH

A statement may contain up to 80 characters including blanks, but excluding

the end-of-statement mark. Fields beginning in characters 73 - 80 are not

processed by the Assembler.

2-3

INSTRUCTION FORMAT

LABEL FIELD

The Label field identifies the statement and may be used as a reference

point by other statements in the program.

The field starts in position one of the statement; the first position fol­

lowing an end-of-statement mark for the preceding statement. It is termin­

ated by a space. A space in position one is the null field indicator for

the label field; the statement is unlabeled.

Label Symbol

A label must be symbolic. It may have one to five characters consisting of

A through Z, 0 through 9, and the period. The first character must be alpha­

betic or a period. A label of more than five characters could be entered on

the source language tape, but the Assembler flags this condition as an error

and truncates the label from the right to five characters.

Examples:

Label Operation O~rond Comments
I 5 10 15 20 25 30 35 40 45 50

ll\w LOA I
. AlB CD
. 1 :2 34 !

I

A .[1 23 I
I

: N101 LA BTE L ! , _J_ 1 l 1 1 T • T T

l T VIAil ID ll A BTE L i 1 i 11 T ;
J V!A!LI D lLABEL

1
l : : +

l 1 VIAJLlD lLABElJ l : _l
1 l : _L l

v Ai L I D L A B E LI I I I [i i !

1 • !AB i

NUMERIC TI }I il T

ABC 123
A BlC 12 • J_ ! J ! T T ~ I _;_

A* BC ILILEGAL LiABjELl - ASTERI!S!Ki NOiTI, :
I I ALL Ol~E 0 IN iL!AlB E L • I I I I

AAB CltJ l l NO LABEL -TIHIE} ASS EMlBL ER :A TjTIE MP TIS
l TO IINTERPiREli JABC 1

: AS AN :QPEiR:AfTIO\Ni

I T
I C!O D El. i 1 I ! I ! :

! T '!1 ll' I i

l I i l i I
I J_ T I j_ ' _;_ l l I

tThe caret symbol, A , indicates the presence of a space.

2-4

INSTRUCTION FORMAT

Each label must be unique within the program; two or more statements nay not

have the same symbolic name. Names which appear in the Operand field of an

EXT or COM pseudo instruction may not also be used as statement labels in

the same subprogram.

Examples:

Label Operation Operand
Com~nh

I 5 10 15 20 25 30 35 40 45 SC

COM AC OM (2 0) ' B c (30)
LB I EQU 160 VA LID LA BEL I

EXT XL 1 ' XL2
ST ART LOA LB VA LID LA BEL
N25 VA LID LA BEL I

XL2 IL LE GAL LA BEL - us ED IN EX T.
BC IL LE GAL LA BEL - us ED IN co M.
N25 l IL LE GAL LA BEL - PR EiV !JO us LY I

DE FII NE D . !
I
I

l i l ! I l
I
I

I I I I I l l i

i
I

l I . 1 I 1 I I
I

I I I ! : I !

Asterisk

An asterisk in position one indicates that the entire statement is a comment.

Positions 2 through 80 are available; however, positions 1 through 68 only

are printed as part of the assembly listing on the 2752A Teleprinter. An

asterisk within the Label field is illegal in any position other than one.

OPCODE FI ELD

The operation code defines an operation to be performed by the computer or

the Assembler. Tne Opcode field follows the Label field and is separated

from it by at least one space. If there is no label, the operation code may

2-5

INSTRUCTION FORMAT

begin anywhere after position one. The Opcode field is terminated by a space

immediately following an operation code. Operation codes are organized in

the following categories:

Machine operation codes

Memory Reference

Register Reference

Input/Output, Overflow, and Halt

Extended Arithmetic Unit

Pseudo operation codes

Assembler control

Object program linkage

Address and symbol definition

Constant definition

Storage allocation

Arithmetic subroutine calls

Assembly Listing Control (Extended Assembler)

Operation codes are discussed in detail in Sections III and IV.

OPERAND FIELD

The meaning and format of the Operand field depend on the type of operation code

used in the source statement. The field follows the Opcode field and is separated

from it by at least one space. It is terminated by a space except when the space

follows, + - (or, if there are no comments, by an end-of-statement mark.

The Operand field may contain an expression consisting of one of the following:

Single symbolic term

Single numeric term

Asterisk

Combination of symbolic terms, numeric terms, and the asterisk jointed by

the arithmetic operators + and -

2-6

INSTRUCTION FORMAT

An expression may be followed by a comma and an indicator.

Programs being assembled by the Extended Assembler may also contain a

literal value in the Operand field.

Symbo 1 i c Terms

A symbolic term may be one to five characters consisting of A through Z, 0

through 9, and the period. The first character must be alphabetic or a

period.

Examples:

Label Operation Operand

15
Comments

2C 25 30 35 40 45 50

L DA A 1 2 3 4 T v AIL1I D I F1 D E1F1I N1E D ! l l l :
ADA B .1 ! V'\lL,ID !IF: DEiFI[N[ED] ! 1 I I l:

I r s r A 1 Aisle ! 1

1

1 11L L!EIG A1LI ~olP EiR:A:NiD -F:I R!s rr clHIA R AICIT1E R :
t---+--1 -,---,.--+--1-+--.-11 -+--+--i-1~+--+--, _,_)_:_.____,__! +--N-! U-iM-E~,-R 1--I-: c-i-.-1 r I I i I i I I l i I

i :

1 l
T

c HjA RA c T E Rs -1 T I 1 I l
I I I l

j_ :

I _i

l

: I

l

:1 I ! 1 1
I l I

I I T I I i I IT i I i !

1 1 r 1 i I I I 1 I

! : ;

I I

i I :

l '

I
l

T

l
1

I T
l

I

f

I
-' I

I l

A symbol used in the Operand field must be a symbol that is defined else­

where in the program in one of the following ways:

As a label in the Label field of a machine operation

As a label in the Label field of a BSS, ASC, DEC, DEX, OCT, DEF,

ABS, EQU or REP pseudo operation

As a name in the Operand field of a COM or EXT pseudo operation

As a label in the Label field of an arithmetic subroutine pseudo

operation

2-7

INSTRUCTION FORMAT

The value of a symbol is absolute or relocatable depending on the assembly

option selected by the user. The Assembler assigns a value to a symbol as

it appears in one of the above fields of a statement. If a program is to be

loaded in absolute form, the values assigned by the assembler remain fixed.

If the program is to be relocated, the actual value of a symbol is estab­

lished on loading. A symbol may also be made absolute through use of the

EQU pseudo instruction.

A symbolic term may be preceded by a plus or minus sign. If preceded by a

plus or no sign, the symbol refers to its associated value. If preceded by

a minus sign, the symbol refers to the two's complement of its associated

value. A single negative symbolic operand may be used only with the ABS

pseudo operation.

Numeric Terms

A numeric term may be decimal or octal. A decimal number is represented by

one to five digits within the range 0 to 32767. An octal number is repre­

sented by one to six octal digits followed by the letter B; (0 to 177777B).

If a numeric term is preceded by a plus or no sign, the binary equivalent of

the number is used in the object code. If preceded by a minus sign, the

two's complement of the binary equivalent is used. A negative numeric oper­

and may be used only with the DEX, DEC, OCT, and ABS pseudo operations.

In an absolute program, the maximum value of a numeric operand depends on

the type of machine or pseudo instruction. In a relocatable program, the

value of a numeric operand may not exceed 77B. Numeric operands are abso­

lute. Their value is not altered by the assembler or the loader.

2-8

INSTRUCTION FORMAT

Asterisk

An asterisk in the Operand field refers to the value in the program location

counter (or base page location counter) at the time the source program state­

ment is encountered. The asterisk is considered a relocatable term in a re-

locatable program.

Expression Operators

The asterisk, symbols, and numbers may be joined by the arithmetic operators

+ and - to form arithmetic address expressions. The Asserobler evaluates an

expression and produces an absolute or relocatable value in the object code.

Examples:

I l Lobel
5

Operation Operand

10 15
Comments.

20 25 30 35 40 45 50

I I I I I I I
'l' LU ~ +· 'l' u ' 'I l 1 L t tl ·~· ' ' li

[ADA SY M-3 SU BT RA CT 3 FR.OM THE VA LUE OF SY[Mi .
I

JMP *+5 I AD D 5 T 0 THE ClO NT ENT s OF THE . T PR 01G RAM L OCA T 110 N coTu NT E RJ. I

.
I I T I . 1 I I ! I I I T I I l

I STB -A +c -4 T T AiDiD; - !VA LlU E OF A, TiHE VAil UE OF c .l

I i
I

I AiN!D S UIB TRA CT1 4. I I I I
'

1

• I

I
I 1 'T I

:

I

I
: I

I I ! I

I . l 1 1 i . l r

: 1 I I

I STlA XT!A -1* I S;LJB!TR A~T VAIL U E OF PR OGR AM
I T LO'CA!T IlON C OrU N TE R1 FROM VIAL UE Of + +
i

: -T • I I XTA. I

I I
!

I ' L l l t l I

[I
I

I
I ' I l . I

I I T I l ' + : i l I l l

L J_ -1

l i J_ l _l l l I
i J.. j_

I

I l il I
I

I I I
I j_ j_ I I

I i
I i I I

I

I
I !

I
I

I I

r ' ' i
,, I

2-9

INSTRUCTION FORMAT

Evaluation of Expressions

An expression consisting of a single operand has the value of that operand.

An expression consisting of more than one operand is reduced to a single

value. In expressions containing more than one operator, evaluation of the

expression proceeds from left to right. The algebraic expression A-(B-C+5)

must be represented in the Operand field as A-B+C-5. Parentheses are not

permitted in operand expressions for the grouping of operands.

The range of values that may result from an operand expression depends on

the type of operation. The Assembler evaluates expressions as follows:t

Pseudo Operations

Memory Reference

Input/Output

C'vnV"occ;An Tov-mc
L ... At' I '-J ...> I VI I I'- I Ill.:>

modulo 215_1

modulo 2
10

-1

2
6

- 1 (maximum value)

The terms of an expression are the numbers and the symbols appearing in it.

Decimal and octal integers, and symbols defined as being absolute in an EQU

pseudo operation are absolute terms. The asterisk and all symbols that are

defined in the program are relocatable or absolute depending on the type of

assembly. Symbols that are defined as external may appear only as single

term expressions.

Within a relocatable program, terms may be program relocatable, base page

relocatable, or common relocatable. A symbol that names an area of common

storage is a common relocatable term. A symbol that is allocated to the

ba$e page is a base page relocatable term. A symbol that is defined in any

tThe evaluation of expressions by the Assembler is compatible with the ad­
dressing capability of the hardware instructions (e.g., up to 32K words
through Indirect Addressing) . The user must take care not to create ad­
dresses which exceed the memory size of the particular configuration.

2-10

INSTRUCTION FORMAT

other statement is a program relocatable term. Within one expression all

relocatable terms must be base page relocatable, program relocatable, or

common relocatable; the three types may not be mixed.

Absolute and Relocatable Expressions

An expression is absolute if its value is unaffected by program relocation.

An expression is relocatable if its value changes according to the location

into which the program is loaded. In an absolute program, all expressions

are absolute. In a relocatable program, an expression may be base page re­

locatable, program relocatable, common relocatable, or absolute (if less

than 100
8

) depending on the definition of the terms composing it.

ABSOLUTE EXPRESSIONS

An absolute expression may be any arithmetic combination of absolute terms.

It may also contain relocatable terms alone, or in combination with abso­

lute terms. If relocatable terms do appear, there must be an even number of

them; they must be of the same type; and they must be paired by sign (a

negative term for each positive term). The paired terms do not have to be

contiguous in the expression. The pairing of terms by type cancels the ef­

fect of relocation; the value represented by the pair remains constant.

An absolute expression reduces to a single absolute value. The value of an

absolute multiterm expression may be negative only for ABS pseudo operations.

A single numeric term also may be negative in an OCT, DEX, or DEC pseudo in­

struction. In a relocatable program the value of an absolute expression

must be less than 100
8

for instructions that reference memory locations

(Memory Reference, DEF, Arithmetic subroutine calls).

2-11

INSTRUCTION FORMAT

Examples:

If P
1

and P
2

are program relocatable terms; B
1

and B
2

, base page relocatable;

c
1

and c
2

, common relocatable; and A, an absolute term; then the following

are absolute terms:

A-C +
1 c2 A - p +

1 p2 cl - c
2

+ A

A+ A pl - p
2 Bl - B

2

* - p Bl - B - A -c + c + A
1 2 1 2

B - * - p + p2 -A -P +P
1 1 1 2

The asterisk is base page relocatable or program relocatable depending on

the location of the instruction.

RELOCATABLE EXPRESSIONS

A relocatable expression is one whose value is changed by the loader. All

relocatable expressions must have a positive value.

A relocatable expression may contain any odd number of relocatable terms,

alone, or in combination with absolute terms. All relocatable terms must

be of the same type. Terms must be paired by sign with the odd term being

positive.

A relocatable expression reduces to a single positive relocatable term,

adjusted by the values represented by the absolute terms and paired re­

locatable terms associated with it.

Examples:

If P
1

, P
2

, and P
3

are program relocatable terms; B
1

, B
2

, and B
3

base page

relocatable; c
1

, c
2

and c
3

, common relocatable; and A, an absolute term;

then the following are relocatable terms:

2-12

INSTRUCTION FORMAT

p -A C -A B
1

+A 1 1

Pl-P2+P3 c1-c2+c3 c
1

+A

*+A *-P +P
1 2

*-A

A+B
1

A+C
1

-A-P +P +P
1 2 3

B -B +B -A
1 2 3

C -C +C -A
1 2 3

A+*

+P - Pl-P2 +* -C +C +C
1 1 2 3

Literals

Actual literal values may be specified as operands in relocatable programs

to be assembled by the Extended Assembler. The Extended Assembler converts

the literal to its binary value, assigns an address to it, and substitutes

this address as the operand. Locations assigned to literals are those im-

mediately following the last location used by the program.

A literal is specified by using an equal sign and a one-character identi­

fier defining the type of literal. The actual literal value is specified

irrmediately following this identifier; no spaces may intervene.

The identifiers are:

=D a decimal integer, in the range -32767 to 32767, including

zero. t

=F a floating point number; any positive or negative real number
-38 38

in the range 10 to 10 , including zero.t

=B an octal integer, one to six digits, b
1

b
2

b
3

b
4

b
5

b
6

,

where b
1

may be 0 or 1, and b
2
-b

7
may be 0 to 7.t

=A two ASCII characters.t

=L an expression which, when evaluated, will result in an absolute

value. All symbols appearing in the expression must be pre­

viously defined.

t See CONSTANT DEFINITION, Section 4.

2-13

INSTRUCTION FORMAT

If the same literal is used in more than one instruction, only one value is

generated, and all instructions using this literal refer to the same loca­

tion.

Literals may be specified only in the following memory reference instruc­

tions and pseudo instructions:

ADA

LDA

CPA

DLD

FMP

FDV

Examples:

LDA

IOR

LDA

ADB

LDB

CPB

FAD }
FSB

=D7980

=B777

=ANO

AND

XOR

IOR

MPY }
DIV

may use =F

may use =D, =B, =A, =L

A-Register is loaded with the binary equivalent of

Inclusive OR is performed with contents of A-Register

A-Register is loaded with binary representation of

ASCII characters NO.

LDB =LZETZ-ZOOM+68 B-Register is loaded with the value resulting

FMP =F39.75

Indirect Addressing

from the absolute expression.

Contents of A- and B-Registers multiplied by float­

ing point constant 39.75.

The HP computers provide an indirect addressing capability for memory ref­

erence instructions. The operand portion of an indirect instruction con­

tains an address of another location rather than an actual operand. The

2-14

INSTRUCTION FORMAT

secondary location may be the operand or it may be indirect also and give

yet another location; and so fort~~ The chaining ceases when a location

is encountered that does not contain an indirect address. Indirect address­

ing provides a simplified method of address modifications as well as allow­

ing access to any location in core.

The Assembler allows specification of indirect addressing by appending a

comma and the letter I to any memory reference operand other than one re­

ferring to an external symbol. The actual operand of the instruction may

be given in a DEF pseudo operation; this pseudo operation may also be used

to indicate further levels of indirect addressing.

Examples:

Label Operation Ooerand Comments
l 5 JO 15 20 25 JC 35 40 45 50

AB LOA SA M, I EACH TI ME THE I sz !JS E XE cu TE DJ, l I
I

AC ADA SA Md TT ii TH EI 1E FF E}CT I1V'Ei :0 P E'R A}N Dl OF ABJ AlN 01 i
I

AD rsz SA M. AC TCH AN GTE ArccTorR DIN Gil yT. T 1 1 I
I

T
I

I
I I

I I I I
I t l . T -T- I

I

. 1 l T i I
I I

SAM DEF RO GER r l I
I

l
I I I I

l I

I ·,

I
I i I i I I I I I I J I I

i I I r r
I I

+ 1 !
I

I I

' I I ! I I I I T : T ll I

A relocatable assembly language program, however, may be designed without

concern for the pages in which it will be stored; indirect addressing is

not required in the source language. When the program is being loaded, the

loader provides indirect addressing whenever it detects an operand which

does not fall in the current page or the base page. The loader substitutes

a reference to the base page and then stores an indirect address in this

referenced location. References to the same operand from other pages will

be linked through the same location in the base page.

2-15

INSTRUCTION FORMAT

Base Page Addressing

The computer provides a capability which allows the memory reference in­

structions to address either the current page or the base page. The Assem­

bler or the loader adjusts all instructions in which the operands refer to

the base page; specific notation defining an operand as a base page reference

is not required in the source program.

Clear Flag Indicator

The majority of the input/output instructions can alter the status of the

input/output interrupt flag after execution or after the particular test is

performed. In source language, this function is selected by appending a

corrma and a letter C to the Operand field.

Examples:

Label Operation Operand Commenl-1
l 5 10 15 20 25 30 35 •O 45 50

SITC IO 1iC I

! CL!EIA\R FL AG lI!OJ71 AF TEtR COjN TR OL I
I I

I ! BIITi IS SET I I l T I
I I

OTB IO 5_i_C CLJE AR FL AG lI Ol51 AF TEJR MOlVE I
I

l J l !l 1 l I
I

I I I I I I !

COMMENTS FIELD

The Comments field allows the user to transcribe notes on the program that

will be listed with source language coding on the output produced by the

Assembler. The field follows the Operand field and is separated from it by

at least one space. The end-of-statement mark, @ @ , or the 80th char­

acter in the entire statement terminates the field. If the listing i.s to be

produced on the 2752A Teleprinter, the total statement length, excluding

2-16

INSTRUCTION FORMAT

the end-of-statement mark, should not exceed 52 characters, the width of

the source language portion of the listing. Statements consisting solely

of comments may contain up to 68 characters including the asterisk in the

first position. On the list output, statements consisting entirely of com­

ments begin in position 5 rather than 21 as with other source statements.

If there is no operand present, the Comments field should be omitted in the

NAM and END pseudo operations and in the input/output statements, SOC, SOS,

and HLT. If a comment is used, the Assembler attempts to interpret it as

an operand.

2-17

SECTION Ill
MACHINE INSTRUCTIONS

The HP Assembler language machine instruction codes take the form of three­

letter mnemonics. Each source statement corresponds to a machine operation

in the object program produced by the Assembler.

Notation used in representing source language instruction is as follows:

label

m

I

SC

c
comments

{ }

lit

MEMORY REFERENCE

Optional statement label

Memory location -- an expression

Indirect addressing indicator

Select code -- an expression

Clear interrupt flag indicator

Optional comments

Brackets defining a field or portion of a field
that is optional

Brackets indicating that one of the set may be
selected.

literal

Memory reference instructions perform arithmetic, logical and jump opera­

tions on the contents of the locations in core and the registers. An in­

struction may directly address the 2048 words of the current and base pages.

If required, indirect addressing may be utilized to refer to all 32,768

words of memory. Expressions in the Operand field are evaluated modulo 2
10

•

If the program is to be assembled in relocatable form, the Operand field

may contain relocatable expressions or absolute expressions which are less

than 1008 in value. If the program is to be absolute, the operands may be

any expressions consistent with the location of the program. Literals may

not be used in an absolute program. Absolute programs must be complete en­

tities; they may not refer to external subroutines or common storage.

3-1

MACHINE INSTRUCTIONS

Jump and Increment-Skip

Jump and Increment-Skip instructions may alter the normal sequence of pro­

gram execution.

label JMP m [,I] comments

Jump to m. Jump indirect inhibits interrupt until the transfer of control

is complete.

label JSB m [,I] comments

Jump to subroutine. The address for label+! is placed into the location

represented by m and control transfers to m+l. On completion of the sub­

routine, control may be returned to the normal sequence by performing a

JMP m, I.

label ISZ m [,I] comments

Increment, then skip if zero. ISZ adds 1 to the contents of m. If m then

equals zero, the next instruction in memory is bypassed.

Add, Load and Store

Add, Load, and Store instructions transmit and alter the contents of memory

and of the A- and B-Registers. A literal, indicated by "lit", may be either

=D, =B, =A, or =I type.

label ADA { m [,I]}
lit

Add the contents of m to A.

3-2

comments

MACHINE INSTRUCTIONS

label ADB I m [,I] comments
{lit }

Add the contents of m to B.

label LDA m [,I] comments
{lit }

Load A from m.

label LDB m [,I]
{lit }

comments

Load B from m.

label STA m [,I] comments

Store contents of A in m.

label STB m [,I] comments

Store contents of B in m.

In each instruction, the contents of the sending location is unchanged

after execution.

Logical Operations

The logical instructions allow bit manipulation and the comparison of two

computer words.

label AND
{

m [,I]}
lit

comments

The logical product of the contents of m and the contents of A are placed

in A.

3-3

MACHINE INSTRUCTIONS

label XOR comments

The modulo-two sum (exclusive "or") of the bits in m and the bits in A is

placed in A.

label IOR m [,I]
{lit }

comments

The logical sum (inclusive "or") of the bits in m and the bits in A is

placed in A.

label CPA m [,I]
{lit }

comments

Compare the contents of m with the contents of A. If they differ, skip the

next instruction; otherwise, continue.

label CPB m [,I] comments
{lit }

Compare the contents of m with the contents of B. If they differ, skip the

next instruction; otherwise, continue.

REGISTER REFERENCE

The register reference instructions include a shift-rotate group, an alter­

skip group, and NOP (no-operation). With the exception of NOP, they have

the capability of causing several actions to take place during one memory

cycle. Multiple operations within a statement are separated by a comma.

3-4

MACHINE INSTRUCTIONS

Shift-Rotate Group

This group contains 19 basic instructions that can be combined to produce

more than 500 different single cycle operations.

CLE

ALS

BLS

ARS

BRS

RAL

RBL

RAR

RBR

ALR

BLR

ERA

ERB

ELA

ELB

ALF

BLF

SLA

SLB

Clear E to zero

Shift A left one bit, zero to least significant bit. Sign
unaltered

Shift B left one bit, zero to least significant bit. Sign
unaltered

Shift A right one bit, extend sign; sign unaltered.

Shift B right one bit, extend sign; sign unaltered.

Rotate A left one bit

Rotate B left one bit

Rotate A right one bit

Rotate B right one bit

Shift A left one bit, clear sign, zero to least significant
bit

Shift B left one bit, clear sign, zero to least significant
bit

Rotate E and A right one bit

Rotate E and B right one bit

Rotate E and A left one bit

Rotate E and B left one bit

Rotate A left four bits

Rotate B· left four bits

Skip next instruction if least significant bit in A is zero

Skip next instruction if least significant bit in B is zero

These instructions may be combined as follows:

ALS
ARS
RAL

label
RAR
ALR
ALF

L
ER:z\
ELA

[I CLE] [ISLA]

J

3-5

ALS
ARS
RAL
RAR

ALR
ALF

~~~ J 

corrunents 



MACHINE INSTRUCTIONS 

BLS BLS 
B~ B~ 

RBL RBL 

label 
RBR 

[,CLE] [,SLB] RBR 
BLR BLR 

comments 

BLF BLF 
ERB ERB 
ELB ELB 

CLE, SLA, or SLB appearing alone or in any valid combination with each other 

are assumed to be a shift-rotate machine instruction. 

The shift-rotate instructions must be given in the order shown. At least 

one and up to four are included in one statement. Instructions referring 

to the A-register may not be combined in the same statement with those re­

ferring to the B-register. 

No-Operation Instruction 

When a no-operation is encountered in a program, no action takes place; the 

computer goes on to the next instruction. A full memory cycle is used in 

executing a no-operation instruction. 

label NOP comments 

A subroutine to be entered by a JSB instruction should have a NOP as the 

first statement. The return address can be stored in the location occupied 

by the NOP during execution of the program. A NOP statement causes the 

Assembler to generate a word of zeros. 

Alter-Skip Group 

The alter-skip group contains 19 basic instructions that can be combined to 

produce more than 700 different single cycle operations. 

CLA Clear the A-Register 

CLB Clear the B-Register 

3-6 



MACHINE INSTRUCTIONS 

CMA Complement the A-Register 

CMB Complement the B-Register 

CCA Clear, then complement the A-Register (set to ones) 

CCB Clear, then complement the B-Register (set to ones) 

CLE Clear the E-Register 

CME Complement the E-Register 

CCE Clear, then complement the E-Register 

SEZ Skip next instruction if E is zero 

SSA Skip if sign of A is positive (0) 

SSB Skip if sign of B is positive (0) 

INA Increment A by one 

INB Increment B by one 

SZA Skip if contents of A equals zero 

SZB Skip if contents of B equals zero 

SLA Skip if least significant bit of A is zero 

SLB Skip if least significant bit of B is zero 

RSS Reverse the sense of the skip instructions. If no skip 
instructions precede in the statement, skip the next in­
struction 

These instructions may be combined as follows: 

label [U~}] [, SEZ] H~m },SSA] [, SLA] [,INA] [, SZA] [, RSS] comments 

label [{ ~~= }] [, SEZ] H~~} },SSE] [, SLB] [, INB] [, SZB] [, RSS] comments 

The alter-skip instructions must be given in the order shown. At least one 

and up to eight are included in one statement. Instructions referring to 

the A-register may not be combined in the same statement with those refer­

ring to the B-register. When two or more skip functions are combined in a 

single operation, a skip occurs if any one of the conditions exists. If a 

word with RSS also includes both SSA and SLA (or SSB and SLB), a skip occurs 

only when sign and least significant bit are both set (1). 

3-7 



MACHINE INSTRUCTIONS 

INPUT/OUTPUT, OVERFLOW, AND HALT 

The input/output instructions allow the user to transfer data to and from 

an external device via a buffer, to enable or disable external interrupt, 

or to check the status of I/O devices and operations. A subset of these in­

structions permits checking for an arithmetic overflow condition. 

Input/output instructions require the designation of a select code, sc, 

which indicates one of 64 input/output channels or functions. Each channel 

consists of a connect/disconnect control bit, a flag bit, and a buffer of 

up to 16 bits. The setting of the control bit indicates that a device as­

sociated with the channel is operable. The flag bit is set automatically 

when transmission between the device and the buffer is completed. Instruc­

tions are also available to test or clear the flag bit for the particular 

channel. If the interrupt system is enabled, setting of the flag causes 

program interrupt to occur; control transfers to the interrupt location 

related to the channel. 

Expressions used to represent select codes (channel numbers) must have a 
6 

value of less than 2 . The value specifies the device or operation refer-

enced. Instructions which transfer data between the A or B register and a 

buffer, access the Switch register when sc = 1. The character C appended 

to such an instruction clears the overflow bit after the transfer from the 

switch register is complete. 

Input/Output 

Prior to any input/output data transmission, the control bit is set. The 

instruction which enables the device may also transfer data between the de­

vice and the buffer. 

label STC SC [ ,C] comments 

Set I/O control bit for channel specified by sc. STC transfers or enables 

transfer of an element of data from an input device to the buffer or to an 

3-8 



MACHINE INSTRUCTIONS 

output device from the buffer. The exact function of the STC depends on the 

device; for the 2752A Teleprinter, an STC enables transfer or a series of 

bits. If sc = 1, this statement is treated as NOP. The C option clears the 

flag bit for the channel. 

label I CLC SC [, C] comments 

Clear I/O control bit for channel specified by sc. When the control bit is 

cleared, interrupt on the channel is disabled, although the flag may still 

be set by the device. If sc = 0, control bits for all channels are cleared 

to zero; all devices are disconnected. If sc = 1, this statement is treat­

ed as NOP, 

label I LIA SC [,C] comments 

Load into A the contents of the I/O buffer indicated by sc. 

label I LIB SC [, C] comments 

Load into B the contents of the I/O buffer indicated by sc. 

label MIA SC [,C] comments 

Merge (inclusive "or") the contents of the I/O buffer indicated by sc into A. 

label MIB SC [, C] comments 

Merge (inclusive "or") the contents of the I/O buffer indicated by sc into B. 

label I OTA SC [ 1 C] comments 

Output the contents of A to the I/O buffer indicated by sc. 

3-9 



MACHINE INSTRUCTIONS 

label OTB sc[,C] comments 

Output the contents of B to the I/O buffer indicated by sc. 

label STF SC comments 

Sets the flag bit of the channel indicated by sc. If sc = 0, STF enables 

the interrupt system. A sc code of 1 causes the overflow bit to be set. 

label CLF SC comments 

Clear the flag bit to zero for the channel indicated by sc. If sc = 0, 

CLF disables the interrupt system. If sc = 1, the overflow bit is cleared 

to zero. 

label SFC SC comments 

Skip the next instruction if the flag bit for channel sc is clear. If 

sc = 1, the overflow bit is tested. 

label SFS SC co:mrnents 

Skip the next instruction if the flag bit for channel sc is set. If 

sc = 1, the overflow is tested. 

Overflow 

In addition to the use of a select code of 1, the overflow bit may be ac­

cessed by the following instructions: 

label CLO comments 

Clear the overflow bit. 

3-10 



MACHINE INSTRUCTIONS 

label STO comments 

Set overflow bit. 

label soc [C] comments 

Skip the next instruction if the overflow bit is clear. The C option clears 

the bit after the test is performed. 

label sos [C] comments 

Skip the next instruction if the overflow bit is set. The C option clears 

the bit after the test is performed. 

The C option is identified by the sequence "space C space" following either 

"SOC" or "SOS". Anything else is treated as a comment. 

Halt 

label HLT {[sc [,C]]}j comments 
[c] 

Halt the computer. The machine instruction word is displayed in the T­

Register. If the C option is used, the flag bit associated with channel sc 

is cleared. 

If neither the select code nor the C option is used, the comments portion 

must be omitted. 

EXTENDED ARITHMETIC UNIT 

Ten instructions may be used with the EAU version of the Assembler or Ex­

tended Assembler to increase the computer's overall efficiency. The computer 

must include the Extended Arithmetic Unit option to obtain the resulting in-

crease in available core storage and decrease in program run time. 

3-11 



MACHINE INSTRUCTIONS 

label MPY 
{ m[ ,I]} 
lit 

comments 

The MPY instruction multiplies the contents of the A-Register by the con­

tents of m. The product is stored in registers B and A. B contains the 

sign of the product and the 15 most significant bits; A contains the least 

significant bits. 

label DIV 
{ m[ ,I]} 
lit 

comments 

The DIV instruction divides the contents of registers B and A by the con­

tents of m. The quotient is stored in A and the remainder in B. Initially 

B contains the sign and the 15 most significant bits of the dividend; A con­

tains the least significant bits. 

label DLD 
{ m[ ,I]} 
lit 

comments 

The DL8 instruction lcud3 -L~c contents of lccations J.LL a!:d 4U + l ir...to 

ters A and B, respectively. 

label DST m[ ,I] comments 

The DST instruction stores the contents of registers A and B in locations 

m and m + 1, respectively. 

MPY, DIV, DLD, DST results in two machine words: a word for the instruction 

code and one for the operand. 

The above four instructions are available without the Extended Arithmetic 

Unit option as software subroutines.t As a part of the Extended Arith­

metic option, they require less core storage and can be executed in less 

time. 

+ See ARITHMETIC SUBROUTINE CALLS, Section 4. 

3-12 



MACHINE INSTRUCTIONS 

The following seven instructions can be used only on machines with the 

Extended Arithmetic Unit. These shift-rotate instructions provide the capa­

bility to shift or rotate the B- and A-Registers n number of bit positions, 

where 1 < n < 16. 

label ASR n comments 

The ASR instruction arithmetically shifts the B- and A-Registers right n 

bits. The sign bit (bit 15 of B) is extended. 

label ASL n comments 

The ASL instruction arithmetically shifts the B- and A-Register left n bits. 

Zeroes are placed in the least significant bits. The sign bit (bit 15 of 

B) is unaltered. The overflow bit is set if bit 14 differs from bit 15 be­

fore each shift; otherwise, exit with overflow bit cleared. 

label RRR n comments 

The RRR instruction rotates the B- and A-Registers right n bits. 

label RRL n comments 

The RRL instruction rotates the B- and A-Registers left n bits. 

label LSR n comments 

The LSR instruction logically shifts the B- and A-Registers right n bits. 

Zeroes are placed in the most significant bits. 

label LSL n comments 

The LSL instruction logically shifts the B- and A-Registers left n bits. 

Place zeroes into the least significant bits. 

3-13 



MACHINE INSTRUCTIONS 

SWP 

Exchange the contents of the A- and B-Registers. The contents of the A­

Register are shifted into the B-Register and the contents of the B-Register 

are shifted into the A-Register. 

FLOATING-POINT INSTRUCTIONS 

Floating-point instructions provide a means of performing calculations on 

floating-point values. Computers with the hardware floating-point option 

should use assemblers and libraries with floating-point capabilities. The 

floating-point assembler generates calls to the appropriate hardware function 

instead of the library subroutines. If the computer does not have the hard­

ware floating-point option, then non-floating-point assemblers and libraries 

should be used. 

FAD m[r,J 
lit 

comments 

FAD performs an addition between a floating-point number stored in the A- and 

B-registers and a floating-point number stored in memory locations m and m + 1 

The result is returned in the A- and B-registers. 

FSB m[r,J 
lit 

comments 

The FSB instruction subtracts a floating-point value in memory locations 

m + l from a floating-point value in the A- and B-registers. The result is 

returned in the A- and B-registers. 

FMP m[r,J 
lit 

comments 

3-14 



The FMP instruction multiplies a floating-point value in memory locations m 

and m + l with a floating-point value in the A- and B-registers. The result 

is returned in the A- and B-registers. 

FDV m[r,J 
lit 

comments 

The FDV instruction divides the floating-point value in memory locations m 

and m + l into the value stored in the A- and B-registers. The result is 

returned in the A- and B~registers. 

FIX comments 

The FIX instruction converts ·a floating-point number contained in the A- and 

B-registers to a fixed point number. The result is returned in the A-register. 

The contents of the B-register are meaningless. 

FLT comments 

The FLT instruction converts a fixed-point value contained in the A-register 

to a floating-point value. The result is returned in the A- and B-registers. 

3-15 





SECTION IV 

PSEUDO INSTRUCTIONS 

The pseudo instructions control the Assembler, establish program relocatability, 

and define program linkage as well as specify various types of constants, blocks 

of memory, and labels used in the program. With the Extended Assembler, pseudo 

instructions also control listing output. 

ASSEMBLER CONTROL 

The Assembler control pseudo instructions establish and alter the contents of 

the base page and program location counters, and terminate assembly processing. 

Labels may be used but they are ignored by the Assembler. NAM records produced 

by the Assemblers are accepted by the DOS, DOS-M and BCS loaders. 

NAM name] comments 

NAM defines the name of a relocatable program. A relocatable program must begin 

with a NAM statement.t A relocatable program is assembled assuming a starting 

location of zero (i.e., zero relative). The name may be a symbol of one to five 

alphanumeric characters the first of which must be alphabetic or a period. The 

program name is printed on the list output. The name is optional and if omitted, 

the comments must be omitted also. 

ORG m comments 

The ORG statement defines the origin of an absolute program, or the origin of 

subsequent sections of absolute or relocatable programs. 

, The Control Statement, the HED instruction, and comments may appear prior to 
the NAM or ORG statements. If the Control Statement (ASMB, ... ) does not 
appear on tape preceding the program, it must be entered from the teleprinter. 

4-1 



PSEUDO INSTRUCTIONS 

An absolute program must begin with an ORG statement.t The operand m, must 

be a decimal or octal integer specifying the initial setting of the program 

location counter. 

ORG statements may be used elsewhere in the program to define starting ad­

dresses for portions of the object code. For absolute programs the Operand 

field, m, may be any expression. For relocatable programs, m, must be a 

program relocatable expression; it may not be base page or common relocat-

ab . . 1 15 le or absolute. An expression is eva uated modulo 2 Symbols must be 

previously defined. All instructions following an ORG are assembled at con­

secutive addresses starting with the value of the operand. 

ORR COMMENT 

ORR resets the program location counter to the value existing when an ORG 

or ORB instruction was encountered. 

Example: 

Label Operation Operand Comments 
I 5 10 15 20 25 30 35 40 45 .5ll 

NAM RIS ET SETl P LC TO 1VA LUE OF! ZE RO, AS SI GN: 
FI RST ADA ! RSE1TJ AS NA ,..E jOF PR OG RA M. T: 

i I : l ! ! ll 11 I 

l I i I 

I l I i ll I 
I 

! I I i I I ! I 

ADA cTT R LI I ASIS UM E PLC IA T F IR STI+ 2 2}8 0. I 

ORG FIR sJT +2 926 SA VE p LC V,A LUE 0 F JF IRS T+ 2280 l 
l I ANlD s ET PL Cl TO FI RS_IT +219 26 I 

j_ • ! 

l i I I I T 
I I I l I 

1 I i 

JMP EV EN +1 AS SU ME PL 1C AIT FI RS T+ 30 04 
ORR RE SET PLC TOT FI RS T+ 22 80. 

I I 

I 

l l l 
I 

T T 

The Control Statement, the HED instruction, and comments may appear prior 
to the NAM or ORG statements. If the Control Statement (ASMB, ... ) does 
not appear on tape preceding the program, it must be entered from the 
teleprinter. 

4-2 



PSEUDO INSTRUCTIONS 

More than one ORG or ORB statement may occur before an ORR is used. If so, 

when the ORR is encountered, the program location counter is reset to the 

value it contained when the first ORG or ORB of the string occurred. 

Example: 

Label Operation Operand Comments 
I 5 10 15 20 25 30 35 40 45 50 

NAM RS ET SET PLC TO ZE R[Q 
FI RST ADA : 

. 

. 

. 
l 

LOA ~vz 
I AS SU ME PLC AT FI RS T+ 22 50 

ORG FI RS T+ 25 00 SET PLC TO FI RS T+ 215 00 . ! 

I I 

I l I l l I I 
•I 

'l l 1 I 

! I I j I 1 
i LOB ER Ai I I I A1S1S!UIM E IPiLiC ATI 1F I RSITI+ 217 50 l l 

ORG FI R}s T+ 219 00 !SE r1 PL Cj ~T Ol FIR ST +2J9 oo_;_ 
I l I ! I 

I 
I ! I ! : J_ : I I -;- + : I 

I . ! 

~ 
' i1 l l l I I i I I 

l l 1 1• 11 !J 1 I I l ; I _j_' l l l 
1 1 CTLE T T1 AS SUME 1P LTC AT1 FiiR SIT]+ 219:2i0 1 [ . I . I ! 

Jli Ol~R l l• I I l RElS E.T lPiLJC TJ_OJ IF I RiS Ti+l2 2 5,0[ l lll i 
I I I I ' I I T 

: I I I I .i -'-' I I I I 

I I I I I I i I 

: I I I I l J_ I l l l I J J j 1 l 
I ' ! ! ! j I 

1 I l l l l l I J_ l 
I 1 I I i l I 

I : 11 I 
I l l TT ! l I 

I I I . I I I I I I I I I I I 

If a second ORR appears before an intervening ORG or ORB, the second ORR is 

ignored. 

ORR cannot be used to reset the location counter for locations in the base 

page that are governed by the ORB statement. 

ORB comments 

ORB defines the portion of a relocatable program that must be assigned to the 

base page by the Assembler. The Label field (if given) is ignored, and the 

statement requires no operand. All statements that follow the ORB statement 

are assigned contiguous locations in the base page. Assignment to the base 

page terminates when the Assembler detects an ORG, ORR, or END statement. 

4-3 



PSEUDO INSTRUCTIONS 

When more than one ORB is used in a program, each ORB causes the Assembler 

to resume assigning base page locations at the address following the last 

assigned base page location. 

An ORB statement in an absolute program has no significance and is flagged 

as an error. 

Example: 

Lobel Operation Ope<0nd Comments 
I 5 10 15 20 25 30 35 40 45 50 

NA~ PR OG AS SI GN ZE RO AS RE LA TI [VE ST AR TI NG: 
LO CA TI ON FOR P)R OG RA~ PR OG. : 

. T 
l I . I I l 1 _j_ I T I l 

ORB AS SI GN A LL FIOLL Ol\\1 I NG .SIT AT EM EN TS1 
TO B AS E PA GET. I i 

I I 

IA REA BSS 100 I 
I I l I ! l I I 

I 

l l l . ! 
I 

1 T 1 
I I 

I 
! j_ . 

I 
I I ' I l 1 

l l I 

ORR I I co NT IN UE! MA I Ni PR OG R~ M ·! l 
I I I 

T 

! :T 1 I . I I I l llll l i 
l J. J. 

l "''"'~ i l l"'I~ SU ME A lf'1t" "" "ae ME N"T" A IT' INiElXIT : l l vno nc. Aj\:>j.-:> .1.UI" I Ail 
T l . l 1 AlV AI LA B LIE! LOC AT I OJN1 II NllBA]S E IPAJG El· i 

'...i' 

I I . I 
I ! I 

I 111 I I I I l I I I 
I l i i l l •. l 

I ., l I ! i I I 1 : ! : I . ! ! I I I I 

ORR I l co N T!I NUE iMA IN PR OIG RA M ·1 i i 
I 
I 

I I I ! 

! 1 

I 
I 

I 
I 

I 
I I 

I I i I 

i I l I 

l I 

[ I 
I 

I 
I 

I 
I 

l I 
I 

T I 

The IFN and IFZ pseudo instructions cause the inclusion of instructions in a 

program provided that either an "N" or "Z", respectively, is specified as a 

parameter for the ASMB control statement.t The IFN or IFZ instruction pre­

cedes the set of statements that are to be included. The pseudo instruction 

XIF serves as a terminator. If XIF is omitted, END acts as a terminator to 

both the set of statements and the assembly. IFN and IFZ may be used only 

when the source program is translated by the Extended Assembler which is pro­

vided for BK or larger machines. 

tsee CONTROL STATEMENT, Section 5. 

4-4 



PSEUDO INSTRUCTIONS 

IFN comments 

XIF 

All source language statements appearing between the IFN and the XIF pseudo 

instructions are included in the program if the character "N" is specified 

on the ASMB control statement. 

All source language statements appearing between the IFZ and the XIF pseudo 

instructions are included in the program if the character "Z" is specified 

on the ASMB control statement. 

IFZ comments 

XIF 

When the particular letter is not included on the control statement 1 the 

related set of statements appears on the Assembler output listing but is 

not assembled. 

Any number of IFN-XIF and IFZ-XIF sets may appear in a program, however, 

they may not overlap. An IFZ or IFN intervening between an IFZ or IFN and 

the XIF terminator results in a diagnostic being issued during compilation; 

the second pseudo instruction is ignored. 

Both IFN-XIF and IFZ-XIF pseudo instructions may be used in the program; 

however, only one type will be selected in a single assembly. Therefore, if 

both characters "N" and "Z" appear in the control statement, the character 

which is listed last will determine the set of coding that is to be included 

in the program. 

4-S 



PSEUDO INSTRUCTIONS 

Example: 

Label Operation Operand Comments 
l 5 10 15 20 25 30 35 40 45 so 

NAIM TR AVL I T . T I ! 
I I 

T . l . I 

IF z· ! 

LOA CAR 
CM A_J__ SZ A 
JIMP NO .GO l 
LOA MI LES 
DIV SP EEO I l 
STA GAS ! 

XIF ! I 
l . ! I T 
! . I I 

i 
! 

! . I 

IFN l I I 
J. 

LOA PL ANE T I 
l 

I CM A..J.. SZA I T 
I 

JMP NO .GO i 

LOA Tl ME 
CPA co ST I 

: 

XIF 
NO r. ('\ HL T 77 .vv . 

. ! 

I . 
I 

END l 
I 

Program TRAVL will perform computations involving either or neither CAR or 

PLANE considerations depending on the presence or absence of Z or N parame­

ters in the Control Statement. 

4-6 



PSEUDO INSTRUCTIONS 

Example: 

Label Operation Ope<and Comments 
I 5 10 15 20 25 JO 35 40 45 so 

NAM ~A GE . 
. 
. 

JSB HO UR .. 

MPY TI ME1 
I FZ 
JSB ov T IIM I 

MPY TI ME2 : 

. 

. 

. 
TI ME1 DEC 1410 
T I1M £2 BSS 11 

END I ! 

i ! ll I I I I I I i 

Program WAGES computes a weekly wage value. Overtime consideration will be 

included in the program if "Z" is included in t..tie paraw.eters of the Control 

Statement. 

The REP pseudo instruction, available in the Extended Assembler only, causes 

the repetition of the statement immediately following it a specified number 

of times. 

label REP n cormnents 

The statement following the REP in the source program is repeated n times. 

The n may be any absolute expression. Corrunent lines (indicated by an as­

terisk in character position 1) are not repeated by REP. If a comment fol­

lows a REP instruction, the corrunent is ignored and the instruction following 

the corrunent is repeated. 

A label specified in the REP pseudo instruction is assigned to the first 

repetition of the statement. A label cannot be part of the instruction to 

be repeated; it would result in a doubly defined symbol error. 

4-7 



Example: 

TRI PL 
CLA 
REP 3 
ADA DATA 

PSEUDO INSTRUCTIONS 

The above source code would generate the following: 

TRI PL 

Example: 

FILL 

CLA 

ADA DATA 
ADA DATA 
ADA DATA 

REP 

NOP 
lOOB 

Clear the A-Register; the content of DATA is 

tripled and stored in the A-Register. 

The example above loads 100
8 

memory locations with the NOP instruction. The 

first location is labeled FILL. 

Example: 

REP 2 

MPY DATA 

The above source code would generate the following: 

MPY DATA 
MPY DATA 

END [m] comments 

This statement terminates the program; it marks the physical end of the 

source language statements. The Operand field, m, may contain a name appear­

ing as a statement label in the current program or it may be blank. If a 

name is entered, it identifies the location to which the loader transfers 

control after a relocatable program is loaded. A NOP should be stored at 

that location; the loader transfers control via a JSB. 

4-8 



PSEUDO INSTRUCTIONS 

If the Operand field is blank, the Comments field must be blank also, 

otherwise, the Assembler attempts to interpret the first five characters 

of the comments as the transfer address symbol. 

The Label field of the END statement is ignored. 

OBJECT PROGRAM LINKAGE 

Linking pseudo instructions provides a means for communication between a 

main program and its subroutines or among several subprograms that are to be 

run as a single program. These instructions may be used only in a relocat-

able program. 

The Label field of this class is ignored in all cases. The Operand field is 

usually divided into many subfields, separated by commas. The first space 

not preceded by a comma or a left parenthesis terminates the entire field. 

COM name, [size
1

)] [ ,name
2 

[size
2
)], ... ,namen [ (sizen)]] comments 

COM reserves a block of storage locations that may be used in common by sev­

eral subprograms. Each name identifies a segment of the block for the sub­

program in which the COM statement appears. The sizes are the number of 

words allotted to the related segments. The size is specified as an octal 

or decimal integer. If the size is omitted, it is assumed to be one. 

Any number of COM statements may appear in a subprogram. Storage locations 

are assigned contiguously; the length of the block is equal to the sum of 

the lengths of all segments named in all COM statements in the subprogram. 

To refer to the common block, other subprograms must also include a COM 

statement. The segment names and sizes may be the same or they may differ. 

Regardless of the names and sizes specified in the separate subprograms, there 

is only one conunon block for the combined set. It has the same relative or-
th 

igin; the content of the n word of common storage is the same for all 

subprograms. 

4-9 



PSEUDO INSTRUCTIONS 

Label Operation Openmd Comments 
I s 10 IS 20 25 30 35 •o •s so 

PR 061 COM AD DR 1(5)1,A DD R2 ( 1 0) t A DD R3 ( 1 0) 1 
I 

11 l ! 1 T 1 
l ' I 

I 

J 
i L ij A IA D DR 21+ 1 I PI CK UP SE co ND ~o RD OF SE GM ENT I 

I 

T l AD DR 2 +1 I 
i I 

T . T 1 
I i J_ 

END ! 
i 

. 
PR OG2 COM AA A( 2 ) 'A AB ( 2 ) ' AA c, AA D( 20) 

. 
I 

LOA AA 0+1 PI CK UP SE co ND JWo RD OF SE GM ENT 
AA D+ 1 • 

Organization of corrunon block: 

PROGl PROG2 Common 
name name Block --
ADDRl AAA (location 1) 

(location 2) 
A.AB (loc:ation 1) 

(location 4) 
AAC (location 5) 

ADDR2 AAD (location 6) 
(location 7) 
(location 8) 
(location 9) 
(location 10) 
(location 11) 
(location 12) 
(location 13) 
(location 14) 
(location 15) 

ADDR3 (location 16) 
(location 17) 
(location 18) 
(location 19) 
(location 20) 
(location 21) 
(location 22) 
(location 23) 
(location 24) 
(location 25) 

4-10 



nc-r-111"'\f"\ Tf.IC-Tnllf"'TTf"\f.IC' r .. :H:.uuu .Llh) I f\UI.,, I .LUI~.) 

The LDA instructions in the two subprograms each refer to the same location 

in common storage, location 7. 

The segment names that appear in the COM statements can be used in the 

Operand fields of DEF, ABS, EQU, or any memory reference statement; they may 

not be used as labels elsewhere in the program. 

The loader establishes the origin of the common block; the origin cannot be 

set by the ORG or ORB pseudo instruction. All references to the common area 

are relocatable. 

Two or more subprograms may declare common blocks that differ in size. The 

subprogram that defines the largest block must be the first submitted for 

loading. 

ENT corn.men ts 

ENT defines entry points to the program or subprogram. Each name is a symbol 

that is assigned as a label for some machine operation in the program. Entry 

points allow another subprogram to refer to this subprogram. All entry points 

must be defined in the program. 

Symbols appearing in an ENT statement may not also appear in EXT or COM state­

ments in the same subprogram. 

EXT comments 

This instruction designates labels in other subprograms that are referenced 

in this subprogram. The symbols must be defined as entry points by the other 

subprograms. 

The symbols defined in the EXT statement may appear in memory reference state­

ments, the EQU or DEF pseudo instructions. An external symbol must appear 

4-11 



PSEUDO INSTRUCTIONS 

alone; it may not be in a multiple term expression or be specified as indirect. 

References to external locations are processed by the BCS loader as indirect 

addresses linked through the base page. 

Symbols appearing in EXT statements may not also appear in ENT or COM state­

ments in the same subprogram. The label field is ignored. 

Example: 

Label Operation 

l 5 10 

PROGA NOP 

Operand 
15 20 

Comments 
25 30 35 40 45 50 

1] LOA SAMO SAMO AND SAND ARE REFERENCED IN I 

J 

J~P 
EXT 
ENT 

l END 

I I I 

1 J J PR 0 GA , BUT ARE' ACT U~ L LiY 
J LOCATIONS IN PROGB. ! 

l I I ; l 
, J i I 

SAND l l I I I I 

SAM D, SAjN}Di [ J J 
PROGA 1 } I I 1 ' 

I I i I ! TT 
ITT 1. 1. i 

I J_ I i l 

T I I ! T 1 1 I I 
l 
I I 

! I I 
I l I 

I I I I 

I ' 
I I 

I 

JJ I 

1 l I 
I -r 

r 

I 

l 1 

I 

PRIOGB NOP 1 ~ -r I 
! l 

I I 1 I I 

I I ; 1 
SAIMD OCT 7i6 7 t I l. I I 
SAND ST A SIAMD 

·I I I i 

J 1 1 
I 1 

ENT SAMD1SAND 

JSB PROGA 

EXT PROGA 

END 
I 

l 
Ii 

4-12 

_J_ 

l 
I 
l 

l 

l 
l 

l 

, I 
I I 

I 

l J 
I J 

:~ 

i I J 
J 

11 l 

l l 
I 

i i [ 

I I 

i 

\ I ! j_ 

1! I 
I 

! i-+ 
' l J i 

_l I .l ! J i ! l I 

I\ l 
! 
I 

I 

_l_ 

T 

l 1 

I I 

I 

1 

I 
l 

I l 
i l I 

T 
l 
1 

i 

1 

I 

l 
1 

l 
i 

l 
_J_ 

J.. 

I 
l l l I 

l 
I 

'. ~ 



PSEUDO INSTRUCTIONS 

ADDRESS AND SYMBOL DEFINITION 

The pseudo operations in this group assign a value or a word location to a 

symbol which is used as an operand elsewhere in the program. 

label DEF m [,I] comments 

The address definition statement generates one word of memory as a 15-bit 

address which may be used as the object of an indirect address found elsewhere 

in the source program. The symbol appearing in the label is that which is 

referenced; it appears in the Operand field of a Memory Reference instruction. 

The operand field of the DEF statement may be any positive expression in an 

absolute program; in a relocatable program it may be a relocatable expression 

or an absolute expression with a value of less than 100
8

. Symbols that do 

appear in the Operand field may appear as operands of EXT or COM statements, 

in the same subprogram and as entry points in other subprograms. 

The expression in the Operand field may itself be indirect and make reference 

to another DEF statement elsewhere in the source program. 

Example: 

Label Operation 

l s 10 

Operand 

15 

NAM PROGN 
EXT SINE,SQRT 

20 
Comments 

2S 30 35 40 45 50 

ZERO-RELATIVE START OF PROGRAM. 
T 

COM SCMA{20) ,sc~B(50) 1 

I I 
1 

X CMA/ 

XSQ 

1 
i 

XS\QR 
1 

I I 
JSB SINE 

I I I 

LOA XCMA,I I 

DEF SCMA 

,11 
---' l 

1 1 
I I 

I I I I 

JS B XIS Q, I 
DEF XSQR,I 

T 
l 

i l I ! 

E NiD PROGN 

T 
r j 

I I J 
J 

EXECUTE SINE ROUTIN[ 
l 

I I 1 I ! I I I l I l 
PIICK UP. clolMMOJN} ~ORD l·NDIREiCTL1v .1-r 

! ' I : i 11 1 I 

1 11 i Ji JJ l l JI 
s CM~ I sJ Al 1 Si- sJr TJ A:DID R1E:S SJ. I 

i I 1 1 1 ; I i I 

INDIRECT tAo:o:REssTr;N:G1- I, 1, T 11 ~ 
' I .l_ 

: I : I ; I 

J ' I 1 I I I 
--r --r1--r1 I . I 

I i 

4-13 

l 

I 
, I 

! : 



PSEUDO INSTRUCTIONS 

The DEF statement provides the necessary flexibility to perform address arith­

metic in programs which are to be assembled in relocatable form. Relocatable 

programs should not modify the operand of a memory reference instruction. 

In the example below, if TBL and LDTBL are in different pages, the Loader 

processes TBL as an indirect address linked through the base page. The ISZ 

erroneously increments the loader-provided reference to the base page rather 

than the value of TBL. 

Example: 

Lobel 0?t!'rotion Operand 

l 5 10 15 

L D[T BL LOA TBL 
1 T 

! 
l I S1Z LDtT BL I 

! .1 T j_ 

I 
I l l i 

1 l 
T 
I 

T B!Li ss,s 1100 I 
I T i : 

1 I l 
I 1 

I T 

Assuming the loader might 

ing octal values: 

Page 

(0) 

( 1) 

( 1) 

(2) 

Comments 
20 25 30 35 40 45 50 

I 11 + i 
1 ! l 11 I J l 

1 T I I I I 
111 11 l 

I l I l ' 1 11 ! I 

l I! l 
l 1 11 l T 

I J. 

l i 
I t : r I i ! : l ! 

T l l l I j_ 

T i 1 I I I I 
l 

I 
I 

I 
i 

p 
~ 

T 
l I 'l l 
I I I 

I 

I I i I 1 I I I i ' I I 
1 l I ; -r 1 

I 
: 

----i-1 

i 
i 

l ' I 
-r 

I 

I I ii I ! 1 I i 
I 

i ! I I 

i I _l + t i L lll I 
I 

! I I 
I 1 I I I I 

I I 

assign absolute locations comparable to the follow-

Loe 

(700) 

(200) 

( 300) 

(0) 

Opcode 

DEF 

LDA 

ISZ 

4-14 

Reference 

400 

(0) 700 (I) 

(1) 200 

(TBL) 



PSEUDO INSTRUCTIONS 

It can be seen that the ISZ instruction would increment the quantity 700 

rather than the address of the table (4000
8
). 

The following assures correct address modification during program execution. 

Example: 

label Operation 

l 5 10 

ITBL DEF TBL 
Operand 

15 20 

LDTBL LOA ITBL,I 

J_ 

l 

TBiL 

11 

l 
1 
l 

This sequence 

ISZ ITBL 

I 
l 

BSS 1100 
I 

j I 

1 T 
..l 

I T 

t: I I 

l ! ! 

I I I i 

might be stored by 

Page Loe 

(1) (200) 

( 1) (201) 

(1) (300) 

(2) (0) 

the 

25 

l 
! 

I I ; 

' l _j_ 

I 

I I 

JO 

L 
l 
i I 

loader as: 

Opcode 

DEF 

LDA 

ISZ 

4-15 

I : 

I 
j_ 

35 
Commenh 

40 45 50 

l 

T l T 

I i t 
-1 1 1 l I 

T 
I : 

I I I 
I ' l i 
T T 

+ l l -1 

l I 

I ' l 

Reference 

4000 

200 (I) 

(1) (200) 

(TBL) 



PSEUDO INSTRUCTIONS 

The value of 4000 is incremented; each execution of LDA will access sucessive 

locations in the table. 

label ABS m comments 

ABS defines a 16-bit absolute value to be stored at the location represented 

by the label. The Operand field, m, may be any absolute expression; a single 

symbol must be defined as absolute elsewhere in the program. 

Example: 

Label Operation Operand Comments 
1 5 10 15 20 25 30 35 40 45 50 

AB EQU 35 AS SI G NS THE VAIL UE OF 3151 l I 
I 

TO THE SIY MB OL AB 11 I I 
I I 

11 I 
I 

IM3 5 IABS -AB M35 co NT AI NS _13 5 . i i 

i 
I 

I I 
I 

P35 ABS AB P35 co NT AI NS 35. I 1] 1 
l 

I 
I 

P70 ABS AB +AB P70 co NT:A INS 70. I T I 
i j 

I 

P30 ABS AB -5 P30 C01N TA INS 310 . I 1 l I 
I 

11 I 
I I I I 

++ I 

I T, I T I 

111 1111111111 1111 I I 111 I I 111 1111 11 I 1 I 

label EQU m comments 

The EQU pseudo operation assigns to a symbol a value other than the one nor­

mally assigned by the program location counter. The symbol in the Label field 

is assigned the value represented by the Operand field. The Operand field 

may contain any expression. The value of the operand may be common, base page 

or program relocatable as well as absolute, but it may not be negative. 

Symbols appearing in the operand must be previously defined in the source 

program. 

The EQU instruction may be used to symbolically equate two locations in mem­

ory, or it may be used to give a value to a symbol. The EQU statement does 

not result in a machine instruction. 

4-16 



nc Cl rnf"'I T l\IC'Tnl lf"'TT f'll\IC' 
l..JL.UUU ll'l.:>11\UvllVI'l.::> 

Examples: 

I 
Lobel Operation Operand 

1
1 I I 1

5 
i I I I 1

10
1 I I I 1

15
1 I 

20 25 30 35 40 

l l N'AM· "FiAM l i iJ 
"if t l 

i i l I ft 1t. l 
I I 1 I l 1 i [ 1 I I l j_ 

I l l i ! 
: l ' 

l I 

: i I I i 

i ! l \ 
I ! l I [ I 

I 
I j I 

+ l J_ I 

J 3 T DEF ! 
: ! 1 I I 

I i 
i 1 J_ I I l _j_ _j_ 

I 

l l I l 1 i I l T I I l ! 

l '•J l ! 

I l I 
l 

J. l l 
i 

I I 

i . \ ,T I T ', 

I 
l : l _l_ J i 

! 
! 

LOTA J 31 THE S YMiBOL S J 1FJO UiR AND IJ 3 +1 8,0 TH 
AJD!A ONIE I DE N1T IFY T HE is1A MJEJ LO C AJTI ON. :THE 

I SITA J3+1 AND !O P:ER AT IO N II S! PE RF OiRM ED ON 
J F O!UR EIQU J3+1 TH IS' L OCAT IO N:. I 

' I I 

l ! I T 

( .j. .j. 

I I 

' 

1·, 
' 

I I, I 

M~H AINiD JFOUR I 
! i 

' 

'.' I I I I I l 
: T I I l 

Examples: 

label Operation Operand Comments 
I 5 10 15 10 25 30 35 40 45 50 

I I NA}M STTO TIB 1III 1 I l Il I TI 1 j j 1 I I 

l I l b 111 l l 1 l l l l !l Ji l ll :111 I l I 
! ! I 

I I 1.1 ' I I I I 
, I I I ! I I I I I I I I r I I 

+ 
l I I i I l I I I ' I I ' I 

I 
i ' I ll l I I I 

.j. -L -'- j_ : j_ 

1~~0 
-'- l 

I C01M TA'B\L}A ( '1 :¢')1 DIElF1I N E!S A RD T1A B1LlEJ, TTA BL 1A .! 
I I TT I I 

I 
I l TT I 

T l i 
T 

l I ' l J_ 

I I I ., ! 
! 

I 
! I ! j !j l l ! 

I . l I 
I 

I 

, T , I 
I T T; 

I 
I I ' I I 

I T I I T I l 1· I 

TAB:LB EIO'U TIA Bt':A +15 ! 
NAMES WOiRD s !6 TH RO UG Hi 11 9J OF I 

! 1. ' I 

I ' 1 TABLA IA 1 S' T A!BL 18. . I , I ! I ! i 

it: ! l 
I I• I I : I 'T: 
! 

'. I 
_j_ 

LDA TAB LB +1 LOA 1DS CONT ENTS o'F 7TH WORD 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

-+ 
I 
I 

I 
I 

I 
I 

I 
I 

I 
I 

I 

I 
I 
I 
I 
I 

: 

: 
I 

c:oMTMo N INTO A. THE STATEM ENT 1 L DA 
TAB:LA +6 WO ULD PERFORM THE SAME 

I OiP EH A TION 
i 

I NAM REG 
~ '-

I, I i 
• 

I ! 
r 

T 1' 
I 

A E'OU 0 p ES SY MBOL A AS 0 (LO CA TI ON I DE F1IiN I 

8 
I 1 £.au 1 l OF A_i- REGIS TER )., AND SYMBOL 8 AS I 

I 

I ! I I 1 ( L Q!C AT I ON OF •B-RE·GI STER) . I 
I 

[ l ! I I I 

..l l I 

I I ! LOA Ts ; 

tL OA D'S CONTENTS TQF 8- REG! SITER I I i l 

11 I! I 

4-17 



PSEUDO INSTRUCTIONS 

cor~STANT DEFINITION 

The pseudo instructions in this class enter a string of one or more constant 

values into consecutive words of the object program. The statements may be 

named by labels so that other program statements can refer to the fields 

generated by them. 

label ASC n, <2n characters> conunents 

ASC generates a string of 2n alphanumeric characters in ASCII code into n 

consecutive words.t One character is right justified in each eight bits; 

the most significant bit is sero. n may be any expression resulting in an 

unsigned decimal value in the range l through 28. Symbols used in an expres­

sion must be previously defined. Anything in the Operand field following 2n 

characters is treated as conunents. If less than 2n characters are detected 

before the end-of-statement mark, the remaining characters are assumed to be 

spaces, and are stored as such. The label represents the address of the first 

two characters. 

Example: 

Lcbei Operation Operand Comments 
I 5 10 15 20 25 JO JS 40 45 SC 

TT yp ASC 3 1 AaTc DET TT ! 1 I1J1 i 1 1 1 I 
I I 

I ] 1 i I l l l ! 1 T l ~ I 

l J j t 

I 
i i 

I 

I I ! l I ! I 1 I T 1 ! 

causes the following: 

ALPHABETIC 
15 14 8 7 6 0 

TTYP~ A 

~ 
B 

I 
c D 

E A 

EQUIVALENT IN OCTAL NOTATION 
15 14 8 7 6 0 

TTYP 1 0 1 1 0 2 

1 0 3 1 0 4 

0 5 0 4 0 

, To enter the code for the ASCII symbols which perform some action (e.g., 
CR and LF), the OCT pseudo instruction must be used. 

4-18 



PSEUDO INSTRUCTIONS 

label DEC comments 

DEC records a string of decimal constants into consecutive words. The con­

stants may be either integer or real (floating point), and positive or negative. 

If no sign is specified, positive is assumed. The decimal number is converted 

to its binary equivalent by the Assembler. The label, if given, serves as 

the address of the first word occupied by the constant. 

A decimal integer must be in the range of 0 to 2
15 

-1; it may assume positive, 

negative, or zero values. It is converted into one binary word and appears 

as follows: 

15 14 0 

s1GN.-s--1 s I number 

Example: 

'"" Oper::i··=-,. C;::ier::-ic Comments 
I 5 10 15 20 25 30 35 40 45 50 

INT t DEC 5 o _1_ + 3 2 a _J- 3 ojo I t 11 l I lH J I I 
I 

T I l I 
i I l l I 

l l I 

I 

l I I I I I I ! 

I 
: I I I ! I 

causes the following (octal representation) 

15 14 0 

INT 0 0 0 0 6 2 

0 0 0 5 1 0 

1 7 7 3 2 4 

A floating point number has two components, a fraction and an exponent. The 

exponent specifies the power of 10 by which the fraction is multiplied. The 

fraction is a signed or unsigned number which may be written with or without 

a decimal point. The exponent is indicated by the letter E and follows a 

signed or unsigned decimal integer. The floating point number may have any 

of the following formats: 

+n.n +n. +n.nE+e +.nE+e +n.E+e +nE+e - -

4-19 



PSEUDO INSTRUCTIONS 

The number is converted to binary, normalized (leading bits differ), and stored 

in two computer words. If either the fraction or the exponent is negative, that 

part is stored in two's complement form. 

15 14 0 
Word 1 [iJ fraction (most significant bi ts) I 

l + binary point 
sign of fraction 

15 8 7 1 0 
Word 2 fraction I exponent I s I 

sign of exponent __j 

The floating point number is made up of a 7-bit exponent with sign and a 23-bit 
-38 

fraction with sign. The number must be in the approximate range of 10 and zero. 

Examples: 

Label Operation Operand 

1 5 lC 15 20 25 30 35 

DEC . 415lE 1 l I i l ' 
I 1 ! 1 I I 

DEC 4151.1010 ET-i 1T1 : 
! ! T l 

! 

DEC I I -13: J I l r 451010E 
DEC 4 .15J -f I l l I T l I ..;._ 

I 1 1 TTI I 
I Ti ! I l r I I ! 

are all equivalent to 

1 
.45xl0 

and are stored in normalized form as: 

15 14 0 
lo I 1 o o 1 o o o o o o o o o o ol 

15 8 7 1 0 
lo o o o o o o o I o o o o o 1 1 I o I 

4-20 

Comments 
40 45 50 

f 
l [ T I 

I 

I l~ I 

' 

! 
I 
I 

T I 
I 

1 f 
I 
I _ ___, "----- ---+ 



PSEUDO INSTRUCTIONS 

11 
Lobel Operotion 

IC 
Comments 

3C 

DEC I 
I 

t-+-+-+-+-+-+-+=+--=+-+-r---+=---~~--+=-'-=+==+-+-4--__;_-+-f-+-+-+-+-~---+-<--+--'---+--+--+--+-+-+-1-1--+-+--+-+-+~ 

I 

are stored as: 

0 0 1 o o o o 1 o 1 ol 

lo o 1 0 lo o o o o o olol 

1011 0 1 0 0 0 1 1 0 o 1 1 I 

11 0 0 0 0 1 0 11, 1 

label DEX comments 

I 
I 

DEX, for the Extended Assembler, records a string of extended precision dec­

imal constants into consecutive words within a program. Each such extended 

precision constant occupies three words as shown below: 

Word 1 

Word 2 

Word 3 

s 
m 

15 14 

15 

15 

Mantissa 

) Exponent 

8 7 

4-21 

1 

0 

s e 

0 

0 



PSEUDO INSTRUCTIONS 

Legend: s Sign of ilie mantissa (fraction) 
m 

s Sign of ilie Exponent 
e 

NOTE: A value is entered only if normalizing of the mantissa is 
needed. 

An extended precision floating point number is made up of a 39-bit mantissa 

(fraction) and sign and a 7-bit exponent and sign. The exponent and sign 

will be zero if ilie mantissa does not have to be normalized. 

This is ilie only form used for DEX. All values, whether they be floating 

point, integer, fraction, or integer and fraction, will be stored in three 

words as just described. This storage format is basically an extension of 

that used for DEC, as previously described: 

Examples: 

DEX 12,-.45 

are stored as: 

WORD 1 WORD 2 WORD 3 

0110000000000000 I I 0000000000000000 0000000000001000 

WORD 1 WORD 2 WORD 3 

1000110011001100 1 1 1100110011001100 1001101111111111 

label OCT o
1 

[,o
2

, ... , on] conunents 

OCT stores one or more octal constants in consecutive words of the object 

program. Each constant consists of one to six octal digits (0 to 177777). 

If no sign is given, the sign is assumed to be positive. If ilie sign is 

negative, the two's complement of the binary equivalent is stored. The 

constants are separated by conunas; the last constant is terminated by a space. 

If less ilian six digits are indicated for a constant, the data is right 

justified in the word. A label, if used, acts as the address of the first 

4-22 



PSEUDO INSTRUCTIONS 

constant in the string. The letter B must not be used after the constant 

in the Operand field; it is significant only when defining an octal term in 

an instruct.ion other than OCT. 

Examples: 

Lobel Operation 

I 5 

OCT 
l I OCT 

NU!Ml OCT 
I 

_l I 
OCT 
OCT 

: i l OCT 
• I OCT 

l I OCT 
l 

I I I I 

10 

+10 
-12 

Operand 

15 20 

11717 _1_2~4"5_J_ -36 

1I9T1s 

117'781 : i 

I ' ] 

I 
.l 

25 30 

11 
i 

l 

35 
Comments 

40 45 

+ 
j_ 

l 
l 

I l 
i 

J_ 

I I I I i 
' l 

I iL L E G AL : C 0 NJT A I N S1 l 

1 T , I LlL EGA L : C 0 NIT A I NS 
CH1ARACTER B i T 

l I l I ! 

; 
i 

The previous statements are stored as follows: 

1514 

0 0 0 

1 7 7 

NUM 0 0 0 

0 2 0 

1 7 7 

0 0 0 

0 7 7 

1 7 7 

0 1 0 

1 0 7 
1 7 7 

x x x 
0 0 0 

x x x 

0 0 

7 7 

1 7 

4 0 

7 4 

0 5 

7 7 

7 7 

1 0 

6 4 

0 7 

x x 
0 0 

x x 

4-23 

0 

6 

7 

5 

2 

1 

7 

7 

1 

2 
7 

x 
1 

x 

0 

[/ 
THE RESULT OF 
ATTEMPTING TO 
DEFINE AN ILLEGAL 
CONSTANT IS UN­
PREDICTABLE 



PSEUDO INSTRUCTIONS 

STORAGE ALLOCATION 

The storage allocation statement reserves a block of memory for data or for 

a work area. 

label BSS m comments 

The BSS pseudo operation advances the program or base page location counter 

according to the value of the operand. The Operand field may contain any 

expression that results in a positive integer. Symbols, if used, must be 

previously defined in the program. The label, if given, is the name assigned 

to the storage area and represents the address of the first word. The initial 

content of the area set aside by the statement is unaltered by the loader. 

ASSEMBLY LISTING CONTROL 

Assembly listing control pseudo instructions allow the user to control the 

assembly listing Output during pass 2 or 3 of the assembly process. These 

pseudo instructions may be used only when the source program is translated 

by the Extended Assembler provided for SK or larger machines (8,192-word 

memory or larger). 

UNL comments 

Output is suppressed from the assembly listing, beginning with the UNL pseudo 

instruction and continuing for all instructions and comments until either an 

LST or END pseudo instruction is encountered. Diagnostic messages for errors 

encountered by the Assembler will be printed, however. The source statement 

sequence numbers (printed in columns 1-4 of the source program listing) are 

incremented for the instructions skipped. 

4-24 



PSEUDO INSTRUCTIONS 

LST corrunents 

The LST pseudo instruction causes the source program listing, terminated by 

a UNL, to be resumed. 

A UNL following a UNL, a LST following a LST, and a LST not preceded by a UNL 

are not considered errors by the Assembler. 

SUP corrunents 

The SUP pseudo instruction suppresses the output of additional code lines 

from the source program listing. Certain pseudo instructions, because they 

result in using subroutines, generate more than one line of coding. These 

additional code lines are suppressed by a SUP instruction until a UNS or 

the END pseudo instruction is encountered. SUP will suppress additional code 

lines in the following pseudo instructions: 

ASC 

OCT 

DEC 

DIV 

DLD 

DST 

FAD 

FDV 

FMP 

FSB 

.MPY 

The SUP pseudo instruction may also be used to suppress the listing of literals 

at the end of the source program listing. 

UNS corrunents 

The UNS pseudo instruction causes the printing of additional coding lines, 

terminated by a SUP, to be resumed. 

4-25 



PSEUDO INSTRUCTIONS 

A SUP preceded by another SUP, UNS preceded by UNS, or UNS not preceded by a 

SUP are not considered errors by the Assembler. 

SKP comments 

The SKP pseudo instruction causes the source program listing to be skipped 

to the top of the next page. The SKP instruction is not listed, but the 

source statement sequence number is incremented for the SKP. 

SPC n 

The SPC pseudo instruction causes the source program listing to be skipped 

a specified number of lines. The list output is skipped n lines, or to the 

bottom of the page, whichever occurs first. The n may be any absolute ex­

pression. The SPC instruction is not listed but the source statement se­

quence number is incremented for the SPC. 

I HED m(heading) 

The HED pseudo instruction allows the programmer to specify a heading to be 

printed at the top of each page of the source program listing. 

The heading, m, a string of up to 56 ASCII characters, is printed at the top 

of each page of the source program listing following the occurrence of the 

HED pseudo instruction. If HED is encountered before the NAM or ORG at the 

beginning of a program, the heading will be used on the first page of the 

source program listing. A HED instruction placed elsewhere in the program 

causes a skip to the top of the next page. 

The heading specified in the HED pseudo instruction will be used on every 

page until it is changed by a suceeding HED instruction. 

4-26 



PSEUDO INSTRUCTIONS 

The source statement containing the HED will not be listed, but source 

statement sequence number will be incremented. 

ARITHMETIC SUBROUTINE CALLS 

The members of this group of pseudo instructions request the Assembler to 

gener te calls to arithmetic subroutines* external to the source program. 

These pseudo instructions may be used in relocatable programs only. The 

Operand field may contain any relocatable expression or an absolute expres­

sion resulting in a value of less than 100
8

. 

label MPY m [,I] I comments 

=Dn or =Bn 

Multiply the contents of the A-register by the contents of m or the quantity 

defined by the literal and store the product in registers B and A. B contains 

the sign of the product and the 15 most significant bits; A contains the least 

significant bits. 

label DIV m [,I] I comments 

=Dn or =Bn 

Divide the contents of registers B and A by the contents of m or the quanity 

defined by the literal. Store the quotient in A and the remainder in B. 

Initially B contains the sign and the 15 most significant bits of the dividend; 

A contains the least significant bits. 

label FMP m [,I] I comments 

=Fn 

* Not intended for use with DEX formatted numbers. For such numbers JSB's 
to double precision subroutines must be used. See RELOCATABLE SUBROUTINES 
Manual. 

4-27 



PSEUDO INSTRUCTIONS 

Multiply the two-word floating point quanity in registers A and B by the two­

word floating point quantity in locations m and m+l or the quantity defined 

by the literal. Store the two-word floating point product in registers A 

and B. 

label FDV m [,I] 

=Fn 

I comments 

Divide the two-word floating point quantity in registers A and B by the two­

word floating point quantity in locations m and m+l or the quantity defined by 

the literal. Store the two-word floating point quotient in A and B. 

label FAD m [,I] 

=Fn 

I comments 

Add the two-word floating point quantity in registers A and B to the two­

word floating point quantity in locations m and m+l or the quantity defined 

by the literal. Store the two-word floating point sum in A and B. 

label FSB m [,I] I comments 

=Fn 

Subtract the two-word floating point quantity in m and m+l or the quantity 

defined by the literal from the two-word floating point quantity in registers 

A and B and store the difference in A and B. 

label DLD m [,I] 

=Fn 

comments 

Load the contents of locations m and m+l or the quantity defined by the 

literal into registers A and B respectively. 

4-28 



PSEUDO INSTRUCTIONS 

l.=ihel DST ,.,., r T 1 
... ~ .. ; ......... j 

Store the contents of registers A and B in locations m and m+l respectively. 

Each use of a statement from this group generates two words of instructions. 

Symbolically, they could be represented as follows: 

JSB <.arithmetic pseudo operation> 

DEF m [,I] 

An EXT <.arithmetic pseudo operation> is implied preceding the JSB operation. 

In the above operations, the overflow bit is set when one of the following 

conditions occurs: 

Integer overflow 

Floating point overflow or underflow 

Division by zero. 

Execution of any of the subroutines alters the contents of the E-Register. 

4-29 





SECTION V 
ASSEMBLER iNPUT ANU OUTPUT 

The Assembler accepts as input a paper tape containing a control statement 

and a source language program. A relocatable source language program may be 

divided into several subroutines; the designation of these elements is 

optional. The output produced by the Assembler may include a punched paper 

tape containing the object program, an object program listing, and diagnos­

tic messages. 

CONTROL STATEMENT 

The control statement specifies the output to be produced: 

ASMB , p., , p ..... , ... , p 
J. L. n 

"ASMB," is entered in positions 1-5. Following the comma are one or more 

parameters, in any order, which define the output to be produced. The con­

trol statement must be terminated by an end-of-statement mark, CR LF . 

The parameters may be any legal combination of the following starting in 

position 6: 

A Absolute: The addresses generated by the Assembler are to 

be interpreted as absolute locations in memory. The program 

is a complete entity. It may not include NAM, ORB, COM, ENT, 

EXT, arithmetic pseudo operation statements or literals. The 

binary output format is that specified for the Basic Binary 

loader. 

5-1 



ASSEMBLER INPUT AND OUTPUT 

R Relocatable: The program may be located anywhere in memory. 

Instruction operands are adjusted as necessary. The binary 

output format is that specified for the Relocating loader. 

B Binary output: A program is to be punched according to one 

of the above parameters. 

L List output: A program listing is to be produced either during 

pass two or pass three (if binary output selected) according 

to one of the above parameters. 

T Table print: List the symbol table at the end of the first 

pass. For the Extended Assembler: List the symbol table in 

alphabetic order in three sections: section 1 for one­

character symbols, section 2 for two- and three-character 

symbols, and section 3 for four- and five-character symbols. 

N Include sets of instructions following the IFN pseudo 

instruction. 

Z Include sets of instructions following the IFZ pseudo 

instruction. 

F Accepted by the Assembler to provide compatibility with DOS or 

DOS-M Assembler programs. F causes no action in any other assem­

blers. 

Either A or R must be specified in addition to any combination of° B, L, or T. 

If a programmer wishes to assemble Pass 1 of a source program to check for 

errors, he can specify only an A or R to be the sole parameter of the Assembler 

Control Statement, executing only Pass 1. (This produces Pass 1 error messages 

without listing the program or providing an object tape). Extended Assembler 

only. 

5-2 



ASSEMBLER INPUT AND OUTPUT 

The Assembler control statement must specifically request pass 2 operations 

(list or punch) in order for pass 2 to be executed. Lack of pass 2 option 

information causes processing only of pass 1 errors. If a C option is also 

provided, an automatic cross-reference symbol table is done after pass 1 

when operating in the MTS environment. 

The control statement may be on the same tape as the source program, or on 

a separate tape; or it may be entered via the teleprinter keyboard. 

SOURCE PROGRAM 

The first statement of the program (other than remarks or a HED statement) 

must be a NAM statement for a relocatable program or an ORG statement for 

indicating the origin of an absolute program. The last statement must be 

an END statement and may contain a transfer address for the start of a 

relocatable program. Each statement is followed by an end-of-statement 

mark. 

BINARY OUTPUT 

The punch output is defined by the ASMB control statement. The punch out­

put includes the instructions translated from the source program. It does 

not include system subroutines referenced within the source program (arith­

metic subroutine calls, .roe., .DIO., .ENTR, etc.) 

5-3 



ASSEMBLER INPUT AND OUTPUT 

LIST OUTPUT 

Fields of the object program are listed in the following print columns. 

Columns 

1-4 

5-6 

7-11 

12 

13-18 

19 

20 

21-72 

Content 

Source statement sequence number generated by 
the Assembler 

Blank 

Location (octal) 

Blank 

Object code word in octal 

Relocation or external symbol indicator 

Blank 

First 52 characters of source statement. 

Lines consisting entirely of comments (i.e., *in column 1) are printed as 

follows: 

Columns 

1-4 

5-72 

Content 

Source statement sequence number 

Up to 68 characters of comments 

A Symbol Table listing has the following format: 

Columns 

1-5 

6 

7 

8 

9-14 

Symbol 

Blank 

Content 

Relocation of external symbol indicator 

Blank 

Value of the symbol 

5-4 



ASSEMBLER INPUT AND OUTPUT 

The characters that designate an external symbol or type of relocation for 

the Operand field or the symbol are as follows: 

Character 

Blank 

R 

B 

c 

x 

Relocation Base 

Absolute 

Program relocatable 

Base page relocatable 

Common relocatable 

External symbol 

At the end of each pass, the following is printed: 

**NO ERRORS* 

or 

**nnnn ERRORS* 

The value nnnn indicates the number of errors. 

Note: For complete operating instructions for the HP 
Assembler or Extended Assembler, consult SOFTWARE 
OPERATING PROCEDURES, SIO SUBSYSTEMS module, (5951~1390). 

5-5 





APPENDIX A 

HP CHARACTER SET 

ASCII CHARACTER FORMAT 

by 

b6 

b5 

0 0 0 0 I I I I 

0 0 I I 0 0 I I 

0 I 0 I 0 I 0 I 

b4 

JJ 
l 

bz l l 
i ~I~ I l 

0' 0 o o NULLf DCo t> ' 0 Gil p 

· l1::l=l 0 0 0 I; SOM: DC1 I I I A Q 

! 0 0 I o: EOA DC2 " ! 2 B R I - --1--~ -LO 0 I 1} EOM: DC 3 * 3 c s 
[o I 0 i 0 I EOT DC4 • $ I 4 I D T 

. ----A-I 
!STOP) I I - U - ~ --S - i 

10 I o j 1 j WRU ERR O/o 5 E u N-~--~ - ~ 
~o I i I 0 RU jSYNC a I 6 F v 

I -i- --~ -i r o I I I I BELL~ LEM • T 7 I G w (APOS)l 
t-,-1--E-~ 

i I 0 '0 : 0 ! FE So ( 8 H x 
i------+l 1 I --+-o : o-+--i 1 !!"'---~=+--5111 s-----i1 I--+--! _9 /_r -+---! v--+I ~ J ~ 0 ~ j 
I I I 0 i I i 0 ~ LF ! s 2 1, it'+ 1, J I z I' E + -1- ~ 
:1 =I :0=::=1::=1::=vT=A=B:t=s=3=::====·====:==K=:'==[===-' _f~t.J__j 
~I -:~1 -:+1-~+i-~+1-~-~-+_s_•-+f(=ro~~~llM~~-<--+-L--+---+-I -1-~ 
.__.___.___.___.___+--S-5-+---+---M-_J--+ _ _ ~ 
,__1 ~· _1 +' _1 +' _o +' _s_o-+_s_6-+---+->--+_0N--;-~--+- l- +-SDSECL ' 
I 1 : 1 I 1 I 1 : SI S7 ? ~ _ ~ 

Standard 7-bit set code positional order and notation are shown below with 

b
7 

the high-order and b
1 

the low-order, bit position. 

Example: The code for "R" is: 

A-1 



NULL 

SOM 

EOA 

EOM 

EOT 

WRU 

RU 

BELL 

FE 
0 

HT 

SK 

LF 

CR 

so 

SI 

DC 
0 

HP CHARACTER SET 

Null/Idle 

Start of message 

End of address 

End of message 

End of transmission 

"Who are you?" 

"Are you ... ?" 

Audible signal 

Format effector 

Horizontal tabulation 

Skip (punched card) 

Line feed 

Vertical tabulation 

Form feed 

Crrriage return 

Shift out 

Shift in 

LEGEND 

Device control reserved for 
data link escape 

A-2 

DC
1
-oc

3 

DC
4

(stop) 

ERR 

SYNC 

LEM 

s -s 
0 7 

< 

> 

t 

ACK 

© 
ESC 

DEL 

Device Control 

Device control (stop) 

Error 

Synchronous idle 

Logical end of media 

Separator (inform-
ation 

Word separator (space, 
normally non-printing) 

Less than 

Greater than 

Up arrow (Exponentiation) 

Left arrow (Implies/ 
Replaced by) 

Reverse slant 

Acknowledge 

Unassigned control 

Escape 

Delete/Idle 



HP CHARACTER SET 

BINARY CODED DECIMAL FORMAT 

Kennedy 1406/1506 Jl.SCII-BCD Con\rersion 

BCD ASCII Equivalent BCD ASCII Equivalent 
Symbol (octal code) (octal code) Symbol (octal code) (octal code) 

(Space) 2,0 ,04,0 A 61 1,01 
52 ,041 B 62 1,02 

# 13 ,043 c 63 1,03 
$ 53 ,044 D 64 1,04 
% 34 ,045 E 65 1,05 
& 6,0 ,046 F 66 1,06 

14 ,047 G 67 1.07 
( 34 ,05,0 H 7.0 11,0 
) 74 ,051 I 71 111 

* 54 ,052 J 41 112 
+ 6,0 ,053 K 42 113 

33 ,054 L 43 114 
4,0 ,055 M 44 115 
73 .056 N 45 116 

I 21 .057 0 46 117 
p 47 12.0 

.0 12 ,06.0 Q 5.0 121 
1 ,01 .061 R 51 122 
2 952 ,062 s 22 123 
3 ,03 .063 T 23 124 
4 .04 .064 u 24 125 
5 .05 .065 v 25 126 
6 .06 .066 w 26 127 
7 .07 .067 x 27 13.0 
8 1.0 .07.0 y 3.0 131 
9 11 .071 z 31 132 

15 .072 [ 75 133 
56 .073 \ 36 134 

< 76 .074 ] 55 135 
13 .075 

> 16 .076 
? 72 .077 
@ 14 1.0.0 

Other symbols which may be represented in ASCII are converted to spaces 
in BCD (20) 

A-3 



Symbol 

(Space) 

.u. 
tt 

$ 
% 

& 

( 

) 

* 
+ 

I 

.0 
1 
2 
1 

4 
5 
6 
7 
8 
9 

< 

> 

? 
@ 

t 

HP CHARACTER SET 

HP 2020A/B ASCII-BCD Conversion 

ASCII BCD ASCII BCD 
(Octal code) (Octal code) Symbol (Octal code) (Octal 

4.0 2.0 A 1.01 61 
41 52 B 1.02 62 
42 37 c 1.03 63 
43 13 D 1.04 64 
44 53 E 1.05 65 
45 34 F 1,06 66 
46 60 t G 1.07 67 
47 36 H 11.0 7.0 
5.0 75 I 111 71 

51 55 J 112 41 
52 54 K 113 42 
53 6.0 L 114 43 
54 33 M 115 44 
55 4.0 N 116 45 
56 73 0 117 46 
57 21 p 12.0 47 

Q 121 5.0 
R 122 51 

6.0 12 s 123 22 
61 .01 T 124 23 
62 .02 u 125 24 
F.1 w~ v l?F. ?S 

64 .04 w 127 26 
65 .05 x 13.0 27 
66 .06 y 131 3.0 
67 .07 z 132 31 
7.0 1.0 
71 11 [ 133 75 

] 135 55 
t 136 77 

72 15 + 137 32 
73 56 
74 76 
75 35 
76 16 
77 72 

1.0.0 14 

BCD code of 60 always converted to ASCII code 53 (+). 

BCD code of 75 always converted to ASCII code 50 (() and 

BCD code of 55 always converted to ASCII code 51 ()). 

A-4 

code) 

+ 
t 
t 
I 



Symbols 

label 

m 

I 

c 

(m,m+l) 

comments 

{ } 
p 

/\ 

v 
A 

B 

E 

A 
n 

B 
n 

b 

(A/B) 

(AB) 

SC 

d 

0 

r 

n 

lit 

APPENDIX B 
ASSEMRLFR INSTRUCTIONS 

Meaning 

Symbolic label, 1-5 alphanumeric characters and periods 

Memory location represented by an expression 

Indirect addressing indicator 

Clear flag indicator 

Two-word floating point value in m and m+l 

Optional comments 

Optional portion of field 

One of set may be selected 

Program Counter 

Contents of location 

Logical product 

Exclusive "or" 

Inclusive "or" 

A-register 

B-register 

E-register 

Bit n of A-register 

Bit n of B-register 

Bit positions in B- and A-register 

Complement of contents of register A or B 

Two-word floating point value in register A and B 

Channel select code represented by an expression 

Decimal constant 

Octal constant 

Repeat count 

Integer constant 

Literal value 

B-1 



INSTRUCTIONS 

MACHINE INSTRUCTIONS 

MEMORY REFERENCE 

Jump and Increment-Skip 

ISZ m ['I] (m) + 1 -+ m: then if (m) 0, execute P + 2 
otherwise execute p + 1 

JMP m [,I] Jump to m; m -+ P 

JSB m [,I] Jump subroutine to m: P + 1 -+ m; m + 1 -+ P 

Add, Load and Store 

ADA {m [,I]} 
lit 

(m) + (A) -+ A 

ADB {m ['I] } 
lit 

(m) + (B) -+ B 

LDA {m ['I] } 
lit 

(m) -+ A 

{m - '\ 

LDB ['I j } (m) -+ B 
lit 

STA m [,I] (A) -+ m 

STB m [I I] (B) -+ m 

Logical 

AND {m ['I] } (m) AND (A) -+ A 
lit 

XOR {m ['I] } (m) XOR (A) -+ A 
lit 

IOR {m ['I] } (m) IOR (A) -+ A 
lit 

CPA {m 
['I] } If {m) ~ (A), execute P + 2, otherwise 
lit execute P +·1. 

CPB {m ['I] } If (m) ~ (B), execute P + 2, otherwise 
lit execute P + 1. 

B-2 



INSTRUCTIONS 

MACHINE INSTRUCTIONS (cont.) 

REGISTER REFERENCE 

Shift-Rotate 

CLE 0 -+ E 

ALS Shift (A) left one bit, 0 -+ AO, AlS unaltered 

BLS Shift (B) left one bit, 0 -+ B o' BlS unaltered 

ARS Shift (A) right one bit, (AlS) -+ Al4 

BRS Shift (B) right one bit, (B~ ~) -+ Bl4 .1::> 

RAL Rotate (A) left one bit 

RBL Rotate (B) left one bit 

RAR Rotate (A) right one bit 

RBR Rotate (B) right one bit 

ALR Shift (A) left one bit, 0 -+ A~~ 
.1::> 

BLR Shift (B) left one bit, 0 -+ BlS 

ERA Rotate E and A right one bit 

ERB Rotate E and B right one bit 

ELA Rotate E and A left one bit 

ELB Rotate E and B left one bit 

ALF Rotate A left four bits 

BLF Rotate B left four bits 

SLA If (AO) 0, execute p + 2, otherwise execute p + 1 

SLB If (BO) 0, execute p + 2, otherwise execute p + 1 

B-3 



INSTRUCTIONS 

MACHINE INSTRUCTIONS (cont) 

Shift-Rotate instructions can be combined as follows: 

No-operation 

ALS 
ARS 
RAL 
RAR 
ALR 
ALF 
ERA 
ELA 

BLS 
BRS 
RBL 
RBR 
BLR 
BLF 
ERB 
ELB 

[I CLE] 

[,CLE] 

NOP Execute P + 1 

Alter-Skip 

CLA 

CLB 

CMA 

CMB 

CCA 

CCB 

CLE 

O's 

O's 

(A) 

(B) 

l's 

l's 

0 

-+ A 

-+ B 

-+ A 

-+ B 

-+ A 

-+ B 

-+ E 

CME (E) -+ E 

CCE 1 -+ E 

[, SLA] 

[, SLB] 

ALS 
ARS 
RAL 
RAR 
ALR 
ALF 
ERA 
ELA 

BLS 
BRS 
RBL 
RBR 
BLR 
BLF 
ERB 
ELB 

SEZ If (E) 0, execute P + 2, otherwise execute P + 1 

SSA If (A
15

) 0, execute P + 2, otherwise execute P + 1 

SSB If (B
15

) 0, execute P + 2, otherwise execute P + 1 

B-4 



INSTRUCTIONS 

MACHINE INSTRUCTIONS (cont) 

(Alter-Skip (cont) 

INA (A) + 1 + A 

INB (B) + 1 + B 

SZA If (A) 0, execute p + 2, otherwise execute p + 

SZB If (B) 0, execute p + 2, otherwise execute p + 

SLA If (AO) 0, execute p + 2, otherwise execute p + 

SLB If (BO) 0, execute p + 2, otherwise execute p + 

RSS Reverse sense of skip instructions. If no skip 
instructions precede, execute P + 2 

Alter-Skip instructions can be combined as follows: 

I (CLE }l rLA)l l ~~}J [, SEZ] H~g~ }J [,SSA] [,SLA] [,INA] [,SZA] [,RRS] 

[{~mJ [, SEZ] H~~}J L CCE 

INPUT/OUTPUT, OVERFLOW, and HALT 

Input/Output 

[, SSB] [, SLB] [, INB] [, SZB] [, RSS] 

1 

1 

STC SC [ 'c J Set control bit , enable transfer of one 
element of datasEetween device and buffer 

1 

1 

SC SC 

CLC SC [,CJ Clear control bit If sc = 0 clear all 
control bits. sc 

LIA SC [I c J (buffer ) + A 
SC 

LIB SC [ 'c J (buffer ) + B 
SC 

MIA SC [ 'c J (buffer ) (A) + A 
SC 

MIB SC [I c] (buffer ) (B) + B 
SC 

OTA SC [ 'c J (A) + buffer 
SC 

OTB SC [ 'c J (B) + buff er 
SC 

B-5 



Input/Output (cont) 

STF SC 

CLF sc 

SFC sc 

SFS SC 

Overflow 

CLO 

STO 

soc [C] 

sos [C] 

HALT 

HL T [ s c [ , C ] ] 

INSTRUCTIONS 

MACHINE INSTRUCTIONS (cont) 

Set flag bit . If sc = 0, enable interrupt 
system. sc ~cl sets overflow bit. 

Clear flag bit . If sc = 0, disable interrupt 
system. If scs~ 1, clear overflow bit. 

If (flag bit ) = 0, execute P + 2, otherwise 
execute P + !? If sc = 1, test overflow bit. 

If (flag bit ) = 1, execute P + 2, otherwise 
execute P + l? If SC = 1, test overflow bit. 

0 + overflow bit 

1 + overflow bit 

If (overflow bit) 
execute P + 1 

If (overflow bit) 
execute P + 1 

Halt computer 

0, execute P + 2, otherwise 

0, execute P + 2, otherwise 

EXTENDED ARITHMETIC UNIT (requires EAU version of Assembler or 
Extender Assembler) 

MPY 
m [,I] 
lit 

DIV 
m [,I] 
lit 

OLD 
m [,I] 
lit 

DST 
m [,I] 
lit 

ASR b 

ASL b 

(A) x (m) + (B and Alsb) +msb 

(B and Alsb)/(m) +A, remainder+ B 
+msb 

(m) and (m + 1) + A and B 

(A) and (B) + m and m + 1 

Arithmetically shift (BA) right b bits, B
15 

extended 

Arithmetically shift (BA) left b bits, B
15 

unaltered, O's to A1 b rs 

B-6 



INSTRUCTIONS 

MACHINE INSTRUCTIONS (cont) 

EXTENDED ARITHMETIC UNIT (cont) 

RRR b 

RRL b 

LSR b 

LSL b 

ASSEMBLER CONTROL 

NAM 

ORG 

ORR 

ORB 

END 

REP 

<statement> 

IFN 
<statements> 

XIF 

IFZ 
<statements> 

XIF 

[name] 

m 

[m] 

r 

Rotate (BA) right b bits 

Rotate (BA) left b bits 

Logically shift (BA) right b bits, 
O's to B 

msb 

Logically shift (BA) left b bits, o's to A I sb 

PSEUDO INSTRUCTIONS 

Specifies relocatable program and its name. 

Gives absolute program origin or origin for a 
segment of relocatable or absolute program. 

Reset main program location counter at value 
existing when first ORG or ORB of a string was 
encountered. 

Defines base page portion of relocatable program. 

Terminates source language program. Produces 
transfer to program starting location, m, if given. 

Repeat immediately following statement r times. 

Include statements in program if control state­
ment contains N. 

Include statements in program if control state­
ment contains z. 

B-7 



INSTRUCTIONS 

PSEUDO INSTRUCTIONS (cont) 

OBJECT PROGRAM LINKAGE 

COM 

ENT 

EXT 

Reserves a block of common storage locations. 
name

1 
identifies segments of block, each of 

lengEh size. 

name [,name
2

, ... ,name] 
1 n 

Defines entry points, name
1

, that may be referred 
to by other programs. 

Defines external locations, name
1

, which are 
labels of other programs, referenced by this 
program. 

ADDRESS AND SYMBOL DEFINITION 

label DEF m [,I] Generates a 15-bit address which may be refer-
enced indirectly through the label. 

label ABS m Defines a 16-bit absolute value to be referenced 
by the label. 

label EQU m Equates the value, m, to the label. 

B-8 



T 1\1 C::: TD I Ir T T () 1\1' 
.Lil......, I l\VV I .LV11V 

PSEUDO INSTRUCTIONS (cont) 

CONSTANT DEFINITION 

ASC n, <2n characters> 

STORAGE ALLOCATION 

BSS m 

Generates a string of 2n ASCII characters. 

Records a string of decimal constants of 
the form: 

Integer: +n 

Floating point: ~n.n, ~n., ~.n, ~nE~e, 

+n.nE+e, +n.E+e, +.nE+e - - - - - -

Records a string of extended precision 
decimals constants of the form 

Floating point: +n, +n.m, 

+n., +. n, - -

~nE~e, ~n.nE~e, 

+n.E+e, +.nE+e 

Records a string of octal constants of 
the form: +000000 

Reserves a storage area of length, m. 

B-9 



INSTRUCTIONS 

PSEUDO INSTRUCTIONS (cont) 

ARITHMETIC SUBROUTINE CALLS REQUESTS* 

MPYt {
m [,I]} 
lit 

(A) x (m) + (B b and Al b) +ms s 

DIVt {
m [,I]} 
lit 

(B and Alsb)/(m) +A, remainder+ B 
+msb 

FMP {
m[,I]} 
lit 

(AB) x (m, m + 1) + AB 

FDV {
m[,I]} 
lit 

(AB)/(m, m + 1) +AB 

FAD {
m[,I]} 
lit 

(m, m + 1) + (AB) + AB 

FSB {
m[,I]} 
lit 

(AB) - (m, m + 1) + AB 

DLDt 
{

m[,I]} 
lit 

(m) and (m + 1) + A and B 

DSTt m [,I] (A) and (B) + m and m + 1 

tFor configurations including Extended Arithmetic Unit, these mnemonics 
generate hardware instructions when the EAU version of the Assembler or 
Extended Assembler is used. 

*Not intended for use with DEX formatted numbers. For such numbers, JSB 
Machine Instructions must be used. 

B-10 



ASSEMBLY 

UNL 

LST 

SKP 

SPC 

SUP 

UNS 

HED 

INSTRUCTIONS 

PSEUDO INSTRUCTIONS (cont) 

LISTING CONTROL 

n 

<heading> 

Suppress assembly listing output. 

Resume assembly listing output. 

Skip listing to top of next page. 

Skip n lines on listing. 

Suppress listing of extended code lines 
(e.g., as produced by subroutine calls). 

Resume listing of extended code lines. 

Print <heading> at top of each page, 
where <heading> is up to 56 ASCII characters. 

B-11 





APPENDIX C 
ALPHABETiC LiST OF iNSTRUCTiONS 

ABS Define absolute value 

ADA Add to A 

ADB Add to B 

ALF Rotate A left 4 

ALR Shift A left 1, clear sign 

ALS Shift A left l 

A..'t\ID "And" to A 

ARS Shift A right 1, sign carry 

ASC Generate ASCII characters 

ASL Arithmetic long shift left 

ASR Arithmetic long shift right 

BLF Rotate B left 4 

BLR Shift B left 1, clear sign 

BLS Shift B left l 

BRS Shift B right 1, carry sign 

BSS Reserve block of storage starting at symbol 

CCA Clear and complement A (l's) 

CCB Clear and complement B (l's) 

CCE Clear and complement E (set E 1) 

CLA Clear A 

CLB Clear B 

CLC Clear I/O control bit 

CLE Clear E 

CLF Clear I/O flag 

CLO Clear overflow bit 

CMA Complement A 

CMB Complement B 

CME Complement E 

COM Reserve block of common storage 

CPA Compare to A, skip if unequal 

CPB Compare to B, skip if unequal 

C-1 



INSTRUCTIONS 

ALPHABETIC LIST OF INSTRUCTIONS (cont) 

DEC Defines decimal constants 

DEF Defines address 

DEX Defines extended precision 

DIV Divide 

DLD Double load 

DST Double store 

ELA Rotate E and A left 1 

ELB Rotate E and B left 1 

END 

ENT 

Terminate program 

ERA 

ERB 

Entry point 

Rotate E and 

Rotate E and 

Equate symbol 

A right 

B right 

EQU 

EXT External reference 

FAD Floating add 

FDV Floating divide 

FMP Floating multiply 

FSB Floating subtract 

1 

1 

constants 

HED Print heading at top of each page 

HLT Halt 

IFN When N appears in Control Statement, assemble 
ensuing instructions 

IFZ When Z appears in Control Statement, assernble 
ensuing instructions 

INA Increment A by 1 

INB Increment B by 1 

IOR Inclusive "or" to A 

ISZ Increment, then skip if zero 

JMP Jump 

JSB Jump to subroutine 

LDA Load into A 

LDB Load into B 

C-2 



INSTRUCTIONS 

ALPHABETIC LIST OF INSTRUCTIONS (cont) 

LIA Load into A from I/O channel 

LIB Load into B from I/O channel 

LSL Logical long shift left 

LSR Logical long shift right 

LST Resume list output (follows a UNL) 

MIA Merge (or) into A from I/O channel 

MIB Merge (or) into B from I/O channel 

MPY Multiply 

NAM Names relocatable program 

NOP No operation 

OCT Defines octal constant 

ORB Establish origin in base page 

ORG Establish program origin 

ORR Reset program location counter 

OTA Output from A to I/O channel 

OTB Output from B to I/O channel 

RAL Rotate A left 1 

RAR Rotate A right 1 

RBL Rotate B left 1 

RBR Rotate B right 1 

REP Repeat next statement 

RRL Rotate A and B left 

RRR Rotate A and B right 

Reverse skip sense 

Skip if E = 0 

RSS 

SEZ 

SFC 

SFS 

Skip if I/O flag 

Skip if I/O flag 

0 (clear) 

1 (set) 

SKP Skip to top of next page 

SLA Skip if LSB of A 0 

SLB 

soc 

sos 

Skip if LSB of B 0 

Skip if overflow bit 

Skip if overflow bit 

C-3 

0 (clear) 

1 (set) 



INSTRUCTIONS 

ALPHABETIC LIST OF INSTRUCTIONS (cont) 

SPC 

SSA 

SSB 

Space n lines 

Skip if sign A 

Skip if sign B 

STA Store A 

STB Store B 

0 

0 

STC Set I/O control bit 

STF Set I/O flag 

STO Set overflow bit 

SUP Suppress list output of additional code lines 

SWP Switch the (A) and (B) 

SZA Skip if A 0 

SZB Skip if B 0 

UNL Suppress list output 

UNS Resume list out.put of oddi tioDei.l code lin.es 

XIF Terminate an IFN or IFZ group of instructions 

XOR Exclusive "or" to A 

C-4 



APPENDIX D 
SAMPLE PROGRAM 

Following are two sample problems, the second of which implements several 

options of the Extended Assembler. 

PARTS FILE UPDATE 

A master file of parts is updated by a parts usage list to produce a new 

master parts file. A report, consisting of the parts used and their cost, 

is also produced. 

The master file and the parts usage file contain four word records. Each 

record of the cost report is eleven words long. 

The organization of the files is as follows: 

Parts Master Files (PRTSM) 

Identification Quantity 1f::/ 

Identification field of the Parts Master Files exists in ASCII although the 

entire record is read and written in binary. 

Parts Usage File (PRTSU) 

I Identification Quantity 

The parts usage file has been recorded in ASCII. 

Parts Cost Report (PRTSC) 

Identification Quantity used 
Cost 

for Quantity 

The Parts Cost Report is recorded in ASCII with spacing and editing for 

printing. 

D-1 



SAMPLE PROGRAMS 

SAMPLE PROGRAMS (cont) 

The sample program reads and writes the files, adjusts the new stock levels, 

and calculates the cost. External subprograms perform the binary-to-decimal 

and decimal-to-binary conversions and handle unrecoverable input/output 

errors, invalid data conditions, and normal program termination. Input/output 

operations are performed using the Basic Control System input/output sub­

routine, .IOC. 

D-2 



SAMPLE PROGRAMS 

( START l 

rwbn 
NEW PARTSM----< 

MASTER 

SUBTRACT 
USAGE QUANTITY 

FROM 
MASTER QUANTITY 

CALCULATE 
COST OF PARTS 

USED 

SAMPLE PROGR&l\1 

GENERAL FLOW CHART 

D-3 

READ 
PARTS 
MASTER 

END 



SAMPLE PROGRAMS 

SAMPLE ASSEMBLER SYMBOL TABLE OUTPUT 
PAGE 0001 

0001 ASMB,R,s,L,T 
START R 000000 
PRTSM B 000000 
PR TSU B 000004 
PRTSC B 000010 
EOTSI B 000023 
EOTS2 B 000024 
MTEMP B 000025 
UTEMP B 000026 
SWTMP B 000027 
SP ACS B 000031 
DLRSG B 000033 
A 000000 
B 000001 
• IOC • x 000001 
BCONV x 000002 
DCONV x 000003 
ABORT x 000004 
HALT x 000005 
DTOBI c 000000 
DTOBO c 000002 
BTODI c 000003 
BTODO c 000005 
OPEN R 000002 
SPCF'L R 000003 
OLD x 000006 
DST x 000007 
REAOU R 000013 
CK STU R 000020 
RJCTU R 000035 
EOTU R 000040 
MSGU R 0000 51 
READM R 000063 
CKSTM R 000070 
RJCTM R 000105 
EOTM R 000110 
MSGM R 000117 
HLTSW R 000137 
COMPR R 000140 
PRO CM R 000157 
PRO CC R 000165 
MPY x 000010 
CONVM R 000213 
CONUl R 000224 
CONU2 R 000235 
CONVC R 0002-46 
WRI TC R 000261 
CKSTC R 000266 
RJCTC R 000276 
WRI TN R 000301 
CKSTN R 000306 
RJCTN R 000316 
** NO ERRORS* 

D-4 



SAMPLE ASSEMBLER LIST OUTPUT 

PAGE 0002 

0001 00000 NAM 11cnTc-
Ui i,.,,; i ._ 

0002 00000 000000 START NOP 
0003 00001 026002R JMP OPEN 
0004 00000 ORB ASSIGN STORAGE & CONSTANTS TO BP 
0005 00000 000000 PRISM BSS 4 MASTER PARTS f ILE - BINARY· 
0006 00004 000000 PRTSU BSS 4 PARTS USAGE LIST - ASCII• 
0007 00010 000000 PRTSC BSS 1 1 PARTS COST REPORT - ASCII· 
0008 00023 026063R EOTSl JMP READM 
0009 00024 026301R EOTS2 JMP WR I TN 
0010 00025 000000 MTEMP BSS 1 
0011 00026 000000 UTEMP BSS 1 
0012 00027 000000 SWTMP BSS 2 
0013 00031 020040 SPA CS ASC 2 .. 

00032 020040 
001/f 00033 020044 DLRSG ASC 1, $ 

0015 00000 A EQU 0 
0016 00001 B EQU 1 
0017 EXT .Ioc. PERFORM I/0 OPERATIONS USING BCS 
0018* IIO CONTROL ROUTINE. 
0019 EXT BCONV ENTRY POINT FOR DECIMALCASCII> 
0020* TO BINARY CONVERSION SUBPROGRAM. 
0021 EXT DCONV ENTRY POINT FOR BINARY TO 
0022* OECIMALCASCII> CONVERSION SUB-
0023* PROGRAM. 
0024 EXT ABORT ENTRY POINT FOR SUBPROGRAM WHICH 
0025* HANDLES UNRECOVERABLE !/O ERRORS 
0026* OR INVALID DATA· 
0027 EXT HALT END OF PROGRAM SUBROUTINE. 
0028 COM DTOBIC2>,DTOBO,BTODIC2>,BTODOC2> 
0029* COMMON STORAGE LOCATIONS USED TO 
0030* PASS DATA BETWEEN MAIN PROGRAM 
0031* ANO CONVERSION SUBPROGRAMS. 
0032 00002 ORR RESETS PLC ArTER USE Or ORB AT 
0033* BEGINNING OF PROGRAM. 
0034 00002 000000 OPEN NOP 
0035 00003 016006X SPCF'L OLD SPACS STORES EDITING CHARACTERS IN 

00004 0000318 
0036 00005 016007X DST PRTSC+2 OUTPUT AREA FOR PARTS COST 

00006 0000128 
0037 00007 016007X DST PRTSC+6 REPORT• 

00010 0000168 
0038 00011 0600338 LDA DLRSG 
0039 00012 0700208 STA PRTSC+8 
0040 00013 016001X REA DU JSB .1oc. READ ONE RECORD FROM USAGE LIST 
0041 00014 010001 OCT 10001 LOCATED ON STANDARD UNIT 1 
0042 0001 s, 02603 SR JMP RJCTU <TELEPRINTER INPUT>. PRTSU IS 
0043 00016 0000048 DEf PRTSU ADDRESS OF STORAGE AREAJ AREA IS 
0044 00017 000004 DEC 4 4 WORDS LONG. 
0045 00020 016001X CK STU JSB • IOC· CHECK STATUS Of UNIT l• 
0046 00021 040001 OCT 40001 
0047 00022 002020 SSA 
0048 00023 026020R JMP CK STU IF' BUSY1 LOOP UNTIL FREE. 
0049 00024 001200 RAL 
0050 0002 5 002020 SSA 
0051 00026 026030R JMP *+2 
0052 00027 026063R JMP READM IF COMPLETE1 TRANSF'ER TO SECTION 
0053* WHICH READS MASTER FILE RECORD. 

D-5 



SAMPLE ASSEMBLER LIST OUTPUT 

PAGE 0003 

0054 00030 001727 ALI', ALF' TEST END Of TAPE STATUS BIT 
0055 00031 001200 RAL <ORIGINAL BIT 05>. 
0056 00032 002020 SSA 
0057 00033 0260il0R JMP EOTU IF' SET, GO TO EOT PROCEDURE. 
0058 00034 026004X JMP ABORT IF NOT SET, SOME ERROR CONDITION 
0059* <UNRECOVERABLE> EXISTS. 
0060 00035 006020 RJCTU SSB CHECK CAUSE OF' REJECT. IF" UNIT 
0061 00036 026013R JMP READU BUSY LOOP UNTIL F'REE. ANY OTHER 
0062 00037 026004X JMP ABORT CAUSE IS UNRECOVERABLE ERROR. 
0063 00040 060023B EOTU LOA EOTSI IF END OF USAGE FILE, ALTER 
0064 00041 072002R STA OPEN PROGRAM SEQUENCE TO BYPASS 
0065 00042 0600248 LOA EOTS2 SECTIONS THAT READ ANO PROCESS 
0066 00043 072140R STA COMPR USAGE FILE· PRINT MESSAGE ON 
0067 0004~ 016001X JSB .Ioc. TELEPRINTER INDICATING EOT. 
0068 00045 020002 OCT 20002 
0069 00046 026044R JMP EOTU+4 
0070 00047 000051R DEF MSGU 
0071 00050 000011 DEC 9 
0072 00051 042516 MSGU ASC 9,END OF USAGE FILE 

00052 042040 
00053 047 506 
00054 02012 5 
00055 0 51 501 
00056 04350 5 
00057 020106 
00060 044514 
00061 042440 

0073 00062 026063R JMP REAl>M 
0074 00063 016001X REA OM JSB •I OC • READ A RECORD fROM MASTER PARTS 
0075 00064 010105 OCT 10105 FILE ON STANDARD UNIT 0S<PUNCHED 
0076 00065 026 l 05R JMP RJCTM TAPE READER>· PRTSM IS ADDRESS 
0077 00066 000000B DEF PRTSM Of STORAGE AREAJ AREA IS 4 WORDS 
0078 00067 000004 DEC 4 LONG. RECORD IS IN BINARY FORMAT 
0079 00070 016001X CKSTM JSB .Ioc. CHECK STATUS Or UNIT 5. 
0080 00071 040005 OCT 40005 
0081 00072 002020 SSA 
0082 00073 026070R JMP CKSTM If BUSY, LOOP UNTIL FREE· 
0083 00074 001200 RAL 
0084 00075 002020 SSA 
0085 00076 026100R JMP *+2 
0086 00077 026140R JMP COM PR If COMPLETE .. TRANSFER TO EITHER 
0087 00100 001727 ALF,ALF' PROCESSING OR WRITE OUTPUT 
0088 00101 001200 RAL DEPENDING ON SETTING Of COMPR. 
0089 00102 002020 SSA TEST FOR END OF TAPE• 
0090 00103 026110R JMP EOTM IF END, GO TO EOT PROCEDURE. 
0091 00104 026004X JMP ABORT Ir NOT, AN UNRECOVERABLE ERROR 
0092* EXISTS. 
0093 00105 006020 RJCTM SSB CHECK CONTENTS Of B f-OR CAUSE OF 
009'4 00106 026063R JMP READM REJECT. Ir UNIT Busy, LOOP UNTIL 
0095 00107 026004X JMP ABORT FREE, OTHERWISE I/0 ERROR EXISTS 
0096 00110 062137R EOTM LOA HLTSW ALTER PROGRAM SEQUENCE TO HALT 
0097 00111 07231 SR STA CKSTN+7 EXECUTION AfTER LAST RECORD IS 
0098 00112 016001X JSB .roe. WRITTEN PRINT MESSAGE 
0099 00113 020002 OCT 20002 INDICATING END OF MASTER INPUT· 
0100 00114 026112R JMP EOTM+2 
0101 00115 000117R DEF MSGM 
0102 00116 000017 DEG 1 5 
0103 001 l 7 042 516 MSGM ASC l 5, END OF MASTER PARTS FILE INPUT 

D-6 



SAMPLE ASSEMBLER LIST OUTPUT 

PAGE 0004 

0104 
0105 
0106 
0107 
0108 
0109 
0110 
01 11 
0112 
0113 
0 1 1 4 
01 1 5 
0 11 6 
01 I 7 
0118 
011 9 
0120 
0121 
0122 
0123 
0124 
0125 
0126 
0127 

0128 

0129 

0130 

0131 
0132 

0133 
0134 
0135 
0136 

0137 

0138 
0139 
0140 

00120 042040 
00121 0 47 50 6 
00122 020115 
00123 040 523 
0 0 1 2 4 0 52 1 0 5 
00125 051040 
0 0 l 2 6 0 50 1 0 1 
00127 051124 
00130 051440 
00131 043111 
00132 046105 
00133 020111 
00134 047120 
0 0 1 3 5 0 52 52 4 
00136 026140R 
00137 026005X HLTSW 
00140 000000 COMPR 
001 41 01622 4R 
001 42 01621 JR 
00143 060026B 
001 44 06402 SB 
00145 050001 
00146 026157R 
00147 007004 
001 50 040001 
00151 002020 
001 52 026004X 
001 53 0621 56R 
00154 072315R 
00155 026301R 
00156 026063R 
00157 016235R PROCM 
00160 060002B 
00161 0640278 
00162 007004 
00163 040001 
00164 0700028 
00165 016006X PROCC 
00166 0000048 
00167 016007X 
00170 000010B 
00171 016006X 
00172 0000068 
00173 016007X 
00174 0000148 
00175 0600038 
00176 016010X 
00177 000027B 
00200 070030B 
00201 0740278 
00202 016246R 
00203 016006X 
00204 0800278 
00205 016007X 
00206 000021B 
00207 062212R 
00210 072315R 
00211 026261R 

JMP COMPR 
JMP HALT 
NOP 
JSB CONUl 
JSB CONVM 
LDA UTEMP 
LE>B MTEMP 
CPA B 
JMP PROCM 
CMB .. INB 
ADA 8 
SSA 
JMP ABORT 
LOA *+3 
STA CKSTN+7 
JMP WR! TN 
JMP REAOM 
JSB CONU2 
LOA PRTSM+2 
LDB UTEMP+ l 
CMB .. INB 
ADA B 
STA PRTSM+2 
OLD PRTSU 

DST PRTSC 

OLD PRTSU+2 

DST PRTSC+4 

LOA PRTSM+3 
MPY UTEMP+l 

STA SWTMP+l 
STB SWTMP 
JSB CONVC 
OLD SWTMP 

OST PRTSC+9 

LOA *+3 
STA CKSTN+7 
JMP WR I TC 

D-7 

ENO Or PROGRAM SUBROUTINE. 

CONVERT ID NUMBER FIELDS Or 
MASTER ANO USAGE FILES TO BIN• 
LOAD THESE FIELDS FROM TEMPORARY 
STORAGE. 
COMPARE 
Ir EQUAL, JUMP TO PROCESSING 
Ir ID NUMBER Or MASTER GREATER 
THAN ID NUMBER Or USAGE .. DATA IN 
USAGE FILE ERRONEOUS: TERMINATE 
RUN. 
Ir ID MASTER LESS THAN ID USAGE .. 
ALTER SEQUENCEt READ NEXT MASTER 
RECORD IMMEDIATELY AFTER WRITING 
CURRENT MASTER RECORD. 
CONVERT QUANTITY FIELD Or USAGE 
FILE TO BINARY AND SUBTRACT FROM 
QUANTITY FIELD Or MASTER AND 
STORE RESULT. 

STORE IO Of PARTS USED IN REPORT 

FILE STORAGE AREA. 

STORE QUANTITY Or PARTS USED IN 

REPORT rILE STORAGE AREA. 

COMPUTE COST Or PARTS USED. 

CONVERT RESULT TO DECIMAL 

STORE IN REPORT FILE AREA. 

ALTER SEQUENCE: READ NEXT USAGE 
RECORD AFTER WRITING CURRENT 
MASTER RECORD. 



PAGE 0005 

0141 
0142 
0143 

0145 
0146 
0147 
0148 
0149 
0150 

01 51 

01 52 
0153 
0154 
0155 
0156 
01 57 

0158 

01 59 
0160 
01 61 
01 o2 
0163 
0164 

0165 

0166 
0167 

0168 

0169 
0170 
0171 
0172 
0173 
0174 
0175 
0176 
0177 
0178 
0179 
0180 
0181 
0182 
0183 
0184 
0185 
0186 
0187 
0188 

00212 026013R 
00213 000000 
00214 016006X 
00215 0000008 
00216 016007X 
00217 000000C 
00220 016002X 
00221 062002C 
00222 07002 58 
00223 126213R 
00224 000000 
00.22 5 01 6006X 
00226 000004B 
00227 016007X 
00230 000000C 
00231 016002X 
00232 062002C 
00233 070026B 
00234 126224R 
00235 000000 
00236 016006X 
00237 000006B 
00240 016007X 
00241 000000C 
00242 016002X 
00243 062002C 
00244 0700278 
00245 i26235R 
00246 000000 
00247 016006X 
002 50 000027B 
002 51 016007X 
002 52 000003C 
002 53 0 l 6003X 
0025.te 016006X 
002 55 00000 SC 
002 56 016007X 
00257 000027B 
00260 126246R 
00261 016001X 
00262 020102 
00263 026276R 
00264 0000108 
00265 000013 
00266 016001X 
00267 040002 
00270 002020 
00271 026266R 
00272 001200 
00273 002020 
00274 026004X 
00275 026301R 
00276 006020 
00277 026261R 
00300 026004X 
00301 016001X 
00302 020104 
00303 026316R 

SAMPLE ASSEMBLER LIST OUTPUT 

JMP READU 
CONVM NOP 

OLD PRTSM 

DST DTOBI 

JSB BCONV 
LDA DTOBO 
STA MTEMP 
JMP CONVM,,I 

CONUl NOP 
OLD PRTSU 

DST DTOBI 

JSB BCONV 
LOA DTOBO 
STA UTEMP 
JMP CONUl1l 

CONU2 NOP 
OLD PRTSU+2 

DST DTOBI 

JSB BCONV 
LOA DTOBO 
STA UTEMP+ 1 
JMP CONU2,, i 

CONVC NOP 
OLD SWTMP 

OST BTODI 

JSB DCONV 
OLD BTODO 

OST SWTMP 

JMP CONVC .. I 
WR ITC J SB • I QC • 

OCT 20102 
JMP RJCTC 
DEF' PRTSC 
DEG 11 

CKSTC JSB .roe. 
OCT 40002 
SSA 
JMP CKSTC 
RAL 
SSA 
JMP ABORT 
JMP WRITN 

RJCTC SSB 
JMP WRITC 
JMP ABORT 

WRITN JSB .roe. 
OCT 20104 
JMP RJCTN 

D-8 

STORE ID FIELDS IN COMMON 

LOCATIONS TO BE PROCESSED BY 

CONVERSION SUBPROGRAM. ON 
COMPLETION,, STORE RESULTS IN 
LOCATIONS USED BY PROCESSING 
SECTIONS. CONVM APPLIES TO ID Of 
MASTER PARTS F'ILEJ CONUl,, TO ID 
Of USAGEJ CONU2 .. TO QUANTITY OF' 

USAGEJ AND CONVC,, TO COST OF' 

PARTS<THIS IS A BINARY TO 
DECIMAL CONVERSION>• 

WRITE ONE RECORD Of PARTS COST 
REPORT ON STANDARD UNIT 2 
<TELEPRINTER OUTPUT>• PRTSC IS 
ADDRESS IN STORAGE AREAJ AREA IS 
11 WORDS LONG. RECORD IS IN ASCI 
CHECK STATUS OF' UNIT 2· 

Ir BUSY,, LOOP UNTIL FREE. 

TERMINATE IF ANY IIO ERROR. 
Ir COMPLETE,, TRANSFER TO WRITN. 
Ir BUSY,, LOOP UNTIL FREE. 
TERMINATE ON ANY OTHER REJECT 
CONDITION. 
WRITE ONE RECORO <BINARY> Or 
NEW MASTER PARTS LIST ON UNIT 4 
CTAPE PUNCH>• PRISM CINPUT AREA> 



SAMPLE ASSEMBLER LIST OUTPUT 

PAGE 0006 

0189 00304 0000008 OEf PRTSM IS ALSO USED AS OUTPUT AREA· 
0190 00305 000004 DEC 4 
0191 00306 016001X CKSTN JSB .1oc. CHECK STATUS Or UNIT 4• 
0192 00307 0"0004 OCT 40004 
0193 00310 002020 SSA 
0194 00311 026306R JMP CKSTN Ir BUSY, LOOP UNTIL rREE. 
0195 00312 001200 RAL 
0196 00313 002020 SSA 
0197 00314 026004X JMP ABORT 
0198 00315 026013R JMP REA OU 
0199 00316 006020 RJCTN SSB If BUSY, LOOP UNTIL fREE, OTHER-
0200 00317 026301R JMP WRITN WISE TERMINATE. 
0201 00320 026004X JMP ABORT 
0202 END START 
** NO ERRORS* 

D-9 



SAMPLE PROGRAMS 

CALCULATING DISTANCE 

Program "Line" will either calculate the distance between two points or find 

the slope of the line connecting the points; then the point equidistant from 

each point (the mid-point) is calculated. 

Data is input using the formatter library routine four n-digit real numbers 

at a time. The first quantity is the X coordinate of the first point; the 

second quantity is the Y coordinate of the first point; the third and fourth 

quantities are the X and Y coordinates of the second point. 

The result is output to the teleprinter by the formatter library routine; 

each quantity cannot be more than an eight-digit real number. 

IFN 

L ___ , __ __J 

OUTPUT 
THE RESULT 

{TELEPRINTER) 

IFZ 

GENERAL FLOW CHART 

D-10 

MIDPOINT= 

X1-X2 Y1-Y2 

2 2 

NO (.\ 

~0 

YES 

HALT 



Below is the source program as it is typed up on the teleprinter. After it 

are the assembler listings. The first listing results from including the Z 

option in the control statement. In the second listing the N option has been 

included in the control statement. 

NOTE: When the complete data tape has been read and the tape 
reader encounters 10 blank feed frames, an EQT message 
is typed on the teleprinter and the computer halts. 
Thus no halt instruction is needed in the program. 

HED LINE FORMULI: DISTANCE, SLOPE, MID-POINT 
* PROGRAM LINE WILL EITHER CALCULATE THE DISTANCE BETWEEN 
* TWO POINTS OR FIND THE SLOPE OF THE LINE CONNECTING 
* THE POINTS; THEN THE POINT EQUIDISTANT FROM EACH 
* POINT <THE MID-POINT) IS CALCULATED. 
* DATA IS INPUT USING THE FORMATTER LIBRARY ROUTINE 
* FOUR N-DIGIT REAL NUMBERS AT A TIME. THE FIRST 
* QUANTITY IS THE X COORDINATE OF THE FIRST POINT;THE 
* SECOND QUANTITY IS THE Y COORDINATE OF THE FIRST POINTJ 
* THE THIRD AND FOURTH QUANTITIES ARE THE X AND Y COORDINATES 
* OF THE SECOND POINT. 
* THE RESULT IS OUTPUT TO THE TELEPRINTER BY THE 
* FORMATTER LIBRARY ROUTINE; EACH QUANTITY CANNOT BE MORE 
* THAN AN EIGHT DIGIT REAL NUMBER. 

NAM LINE 
START NOP 

JMP INPUT 
EXT .1oc.,FLOAT,IFIX,SQRT 
EXT eDIOe,.IQI.,.DTAe,eRAR • 
EXT • IO R., • I AR. 

.DATA DEF DATA 

.PRIN DEF PRINT 
DATA BSS 4 
FMT ASC 3,<F8.3) 
FMT2 ASC 8,<Fs.3, " , .. ,F8.3/) 
FMT3 ASC 3, (412) 

SKP 
* INPUT THE FIRST TWO POINTS; FOUR DATA WORDS 
INPUT NOP 

LDA =BS 
CLB,INB 
JSB .om. 
DEF FMT3 
DEF *+4 
LOA =84 
LOB .DATA 
JSB • I AR. 
SPC 3 

D-11 



SAMPLE PROGRAMS 

* THE DISTANCE BETWEEN THE TWO POINTS: 

PRINT 

IFZ 
LOA DATA+2 
CMA,INA 
ADA DATA 
SPC 1 
JMP *+ 5 
REP 4 
NOP 
SPC 1 
STA PRINT 
SUP 
MPY PRINT 
STA PRINT 
SPC 1 
LOA DATA+3 
CMA,INA 
ADA DATA+l 
STA PRINT+l 
MPY PRINT+l 
ADA PRINT 
SPC 1 
JSB FLOAT 
JSB SQRT 
DST PRINT 
XIF 
SPC 3 

* FIND THE SLOPE 
IF"N 
LDA DATA+2 
CMA,INA 
ADA DATA 
JMP *+5 

PRINT REP 4 
NOP 
STA PRINT 
SPC 
LOA DATA+3 
CMA,INA 
ADA DATA+t 
CLB 
DIV PRINT 
DST PRINT 
XIF 
SPC 3 

OF THE LI NE 

* OUTPUT THE RESULT 
LOA =82 
CLB 
JSB • DIO. 
DEF FMT 
DEF *+4 
OLD PRINT 
JSB • IOR. 
JSB .OTA. 
SPC 3 

D-12 



C:l\MDI C" DD()~D/\M<:: 
..in1·11 L..L.. I l\VUl\n1·1..1 

* FINO THE MID-POINT OF THE LINE SEGMENT: 
LDA DATA 
ADA DATA+2 
CLB 
JSB FLOAT 
FMP =F.S 
DST PRINT 
SPC 1 
LDA DATA+l 
ADA DATA+3 
CLB 
JSB FLOAT 
F'MP =F.5 
DST PRINT+2 
SPC 1 
UNL 
LDA =82 
CLB 
JSB • DIO. 
DEF F'MT2 
DEF *+5 
LDA =82 
LOB .PRIN 
JSB .RAR. 
JSB .OTA. 
LST 
SPC 3 
UNS 
JMP INPUT 
END START 

D-13 



SAMPLE PROGRAMS 

PAGE 0001 

0001 ASMB,R,L,T,z 
START R 000000 
• IOC. x 000001 
FLOAT x 000002 
IF"! X x 000003 
SQRT x 000004 
.010. x 000005 
.IOI. x 000006 
.OTA. x 000007 
.RAR. x 000010 
• IOR. x 000011 
• I AR. x 000012 
.DATA R 000002 
.PRIN R 000003 
DATA R 000004 
fMT R 000010 
fMT2 R 000013 
fMT3 R 000023 
INPUT R 000026 
PRINT R 000043 
.MPY x 000013 
.DST x 000014 
.OLD x 000015 
.fMP x 000016 

** NO ERRORS* 

D-14 



SAMPLE PROGRAMS 

PAGE 0002 #01 LINE FORMULI: DISTANCE, SLOPE, MID-POINT 

0002* 
0003* 
0004* 
0005* 
0006* 
0007* 
0008* 
0009* 
0010* 
0011 * 
0012* 
0013* 
0014* 
0015 
0016 
0017 
0018 
0019 
0020 
0021 
0022 
0023 
0024 

0025 

0026 

PROGRAM LINE WILL EITHER CALCULATE THE DISTANCE BETwEEN 
TWO POINTS OR FIND THE SLOPE OF THE LINE CONNECTING 
THE POINTS; THEN THE POINT EQUIDISTANT FROM EACH 
POINT CTHE MID-POINT) IS CALCULATED. 

DATA IS INPUT USING THE FORMATTER LIBRARY ROUTINE 
FOUR N-DIGIT REAL NUMBERS AT A TIME. THE FIRST 
QUANTITY IS THE X COORDINATE OF THE FIRST POINTJTHE 
SECOND QUANTITY IS THE Y COORDINATE OF THE FIRST POINT; 
THE THIRD AND FOURTH QUANTITIES ARE THE X AND Y COORDINATES 
Or THE SECOND POINT. 

THE RESULT IS OUTPUT TO THE TELEPRINTER BY THE 
FORMATTER LIBRARY ROUTINE; EACH QUANTITY CANNOT BE MORE 
THAN AN EIGHT DIGIT REAL NUMBER. 

00000 NAM LINE 
00000 000000 START NOP 
00001 026026R JMP INPUT 

00002 
00003 
00004 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00020 
00021 
0012122 
00023 
00024 
00025 

000004R 
000043R 
000000 
024106 
034056 
031451 
024106 
034056 
031454 
021054 
021054 
043070 
027063 
027451 
024064 
044462 
024440 

EXT .Ioc.,FLOAT,IFIX,SQRT 
EXT .DIQ.,.IOI.,.OTA.,.RAR. 
EXT .IQR.,.IAR. 

.DATA DEF DATA 

.PRIN DEF PRINT 
DATA BSS 4 
FMT ASC 3,(f8.3> 

FMT2 

FMT3 ASC 3,c4I2> 

D-15 



SAMPLE PROGRAMS 

PAGE 0003 #01 LINE FORMULI: DI STANCE,, SLOPE .. MID-POINT 

0028* INPUT THE FIRST TWO POINTS; FOUR DATA WORDS 
0029 00026 000000 INPUT NOP 
0030 00027 062131R LOA =BS 
0031 00030 006404 CLB .. INB 
0032 00031 016005X JSB .oIO. 
0033 00032 000023R DEF FMT3 
0034 00033 000037R DEF *+4 
0035 00034 062132R LDA =84 
0036 00035 066002R LOB .DATA 
0037 00036 016012X JSB • I AR. 

0039* THE DISTANCE BETWEEN THE TWO POINTS: 
0040 IFZ 
0041 00037 062006R LDA DATA+2 
0042 00040 003004 CMA,,JNA 
0043 00041 042004R ADA DATA 

0045 00042 026047R JMP *+5 
0046 PRINT REP 4 
0047 00043 000000 NOP 
0047 00044 000000 NOP 
0047 00045 000000 NOP 
0047 00046 000000 NOP 

0049 00047 072043R STA PRINT 
0050 SUP 
0051 00050 016013X MPY PRINT 
0052 00052 072043R STA PRINT 

0054 00053 062007R LDA DATA+3 
0055 00054 003004 CMA,,INA 
0056 00055 042005R ADA DATA+l 
0057 00056 072044R STA PRINT+l 
0058 00057 016013X MPY PRINT+! 
0059 00061 042043R ADA PRINT 

0061 00062 016002X JSB FLOAT 
0062 00063 016004X JSB SQRT 
0063 00064 016014X DST PRINT 
0064 XIF 

0066* FIND THE SLOPE OF THE LINE 
0067 I FN 
0068 LOA DATA+2 
0069 CMA,,INA 
0070 ADA DATA 
0071 JMP *+5 
0072 PRINT REP 4 
0073 NOP 
0074 STA PRINT 
0075 SPC 1 
0076 LOA DATA+3 
0077 CMA,,INA 
0078 ADA DATA+l 

D-16 



r II ~An I r n n/"\I"' n n ••r-
..) t\1•11 LC. It\ U\.J t\l·\1¥1;) 

PAGE 0004 #01 LINE FORMULI: DISTANCE, SLOPE, MID-POINT 

0079 
0080 
0081 
0082 

0084* 
0085 
0086 
0087 
0088 
0089 
0090 
0091 
0092 

0094* 
0095 
0096 
0097 
0098 
0099 
0i00 

0102 
0103 
0104 
0105 
0106 
0107 

0119 

0121 

OUTPUT THE RESULT 
00066 062133R 
00067 006400 
00070 016005X 
00071 000010R 
00072 000076R 
00073 016015X 
00075 016011X 
00076 016007X 

FIND THE MID-POINT 
00077 062004R 
00100 042006R 
00101 006400 
00102 016002X 
00103 016016X 
00105 0i60i4X 

00107 062005R 
00110 042007R 
00111 006400 
00112 016002X 
00113 016016X 
001 ! s 016014X 

0122 00130 026026R 
00131 000005 
00132 000004 
00133 000002 
00134 040000 
00135 000000 

0123 
** NO ERRORS* 

CLB 
DIV PRINT 
DST PRINT 
XI F 

LOA =82 
CLB 
JSB • 010. 
DEF FMT 
DEF *+4 
DLO PRINT 
JSB •!OR. 
JSB .OTA. 

OF THE LINE 
LOA DATA 
ADA DATA+2 
CLB 
JSB FLOAT 
FMP =F.5 
DST PRiNT 

LOA DATA+l 
ADA DATA+3 
CLB 
JSB FLOAT 
FMP =F.5 
DST PRINT+2 

LST 

UNS 
JMP INPUT 

END START 

D-17 

SEGMENT: 



SAMPLE PROGRAMS 

PAGE 0001 

0001 ASMB,R,L,T,N 
START R 000000 
• IOC. x 000001 
FLOAT x 000002 
IFIX x 000003 
SQRT x 000004 
.010. x 000005 
.IO I. x 000006 
.OTA. x 000007 
.RAR. x 000010 
• IOR. x 000011 
• JAR. x 000012 
.DATA R 000002 
.PRIN R 000003 
DATA R 000004 
FMT R 000010 
F'MT2 R 000013 
F'MT3 R 000023 
INPUT R 000026 
PRINT R 000043 
.DIV x 000013 
.osT x 000014 
.OLD x 000015 
.FMP x 000016 

** NO ERRORS* 

D-18 



SAMPLE PROGRAMS 

PAGE 0002 #01 LINE FORMULI: DISTANCE, SLOPE, MID-POINT 

0002* 
0003* 
0004* 
0005* 
0006* 
0007* 
0008* 
0009* 
0010* 
0011 * 
0012* 
0013* 
0014* 
0015 
0016 
0017 
00i8 
0019 
0020 
0021 
0022 
0023 
0024 

0025 

0026 

PROGRAM LINE WILL EITHER CALCULATE THE DISTANCE BETWEEN 
TWO POINTS OR FIND THE SLOPE OF THE LINE CONNECTING 
THE POINTSJ THEN THE POINT EQUIDISTANT FROM EACH 
POINT <THE MID-POINT) IS CALCULATED. 

DATA IS INPUT USING THE FORMATTER LIBRARY ROUTINE 
FOUR N-DIGIT REAL NUMBERS AT A TIME. THE FIRST 
QUANTITY IS THE X COORDINATE OF THE FIRST POINTJTHE 
SECOND QUANTITY IS THE Y COORDINATE OF THE FIRST POINT; 
THE THIRD AND FOURTH QUANTITIES ARE THE X AND Y COORDINATES 
OF THE SECOND POINT. 

THE RESULT IS OUTPUT TO THE TELEPRINTER BY THE 
FORMATTER LIBRARY ROUTINE; EACH QUANTITY CANNOT BE MORE 
THAN AN EIGHT DIGIT REAL NUMBER. 

00000 NAM LINE 
00000 000000 START NOP 
00001 026026R JMP INPUT 

00002 000004R 
00003 000043R 
00004 000000 
00010 024106 
00011 034056 
000.12 031451 
000i3 024i06 
00014 034056 
00015 031454 
00016 021054 
00017 021054 
00020 043070 
00021 027063 
00022 027451 
00023 024064 
00024 044462 
00025 024440 

EXT .IQC.,FLOAT,IFIX,SQRT 
EXT .010.,.IOl.,.DTA.,.RAR. 
EXT • IOR.,. IAR. 

.DATA DEF DATA 

.PRIN DEF PRINT 
DATA BSS 4 
FMT ASC 3,<F8.3> 

FMT3 ASC 3,<4I2) 

D-19 



SAMPLE PROGRAMS 

PAGE 0003 #01 LINE FORMULI: DISTANCE, SLOPE, MID-POINT 

0028* 
0029 
0030 
0031 
0032 
0033 
0034 
0035 
0036 
0037 

0039* 
0040 
0041 
0042 
0043 
0044 
0045 
0046 
0047 
0048 
0049 
0050 
0051 
0052 
0053 
0054 
0055 
0056 
0057 
0058 
0059 
0060 
0061 
0062 
0063 
0064 

0066* 
0067 
0068 
0069 
0070 
0071 
0072 
0073 
0073 
0073 
0073 
0074 

0076 
0077 
0078 

INPUT THE FIRST TWO POINTS; FOUR DATA WORDS 
00026 000000 INPUT NOP 
00027 062123R LOA =85 
00030 006404 CLB,INB 
00031 016005X JSB .010. 
00032 000023R DEF FMT3 
00033 000037R DEF *+4 
00034 062124R LOA =84 
00035 066002R LOB .DATA 
00036 016012X JSB .JAR. 

THE DISTANCE BETWEEN THE TWO POINTS: 

FIND 

00037 
00040 
00041 
00042 

00043 
00044 
00045 
00046 
00047 

00050 
00051 
00052 

IFZ 
LOA DATA+2 
CMA,INA 
ADA DATA 
SPC 1 
JMP *+5 

PRINT REP 4 
NOP 
SPC 1 
STA PRINT 
SUP 
MPY PRINT 
STA PRINT 
SPC I 
LOA DATA+3 
CMA,INA 
ADA DATA+l 
STA PRINT+l 
MPY PRINT+l 
ADA PRINT 
SPC 1 
JSB FLOAT 
JSB SQRT 
DST PRINT 
XIF 

THE SLOPE OF THE LINE 
I FN 

062006R 
003004 
042004R 
026047R 

PRINT 
000000 
000000 
000000 
000000 
072043R 

062007R 
003004 
042005R 

D-20 

LOA DATA+2 
CMA,INA 
ADA DATA 
JMP *+S 
REP 4 
NOP 
NOP 
NOP 
NOP 
STA PRINT 

LOA DATA+3 
CMA,INA 
ADA DATA+l 



SAMPLE PROGRAMS 

PAGE 0004 #01 LINE FORMULI: DISTANCE, SLOPE, MID-POINT 

0079 00053 006400 
0080 00054 016013X 

00055 000043R 
0081 00056 016014X 

00057 000043R 
0082 

0084* OUTPUT THE RESULT 
0085 00060 062125R 
0086 00061 006400 
0087 00062 016005X 
0088 00063 000010R 
0089 00064 000070R 
0090 00065 016015X 

00066 000043R 
0091 00067 016011X 
0092 00070 016007X 

0094* FIND THE MID-POINT 
0095 00071 062004R 
0096 00072 042006R 
0097 00073 006400 
0098 00074 016002X 
0099 00075 016016X 

00076 000126R 
0100 00077 016014X 

00100 000043R 

0102 00101 062005R 
0103 00102 042007R 
0104 00103 006400 
01(.llc;. 

& IU-' 00104 016002X 
0106 00105 016016X 

00106 000126R 
0107 00107 016014X 

00110 000045R 

0119 

0121 
0122 00122 026026R 

00123 000005 
00124 000004 
00125 000002 
00126 040000 
00127 000000 

0123 
** NO ERRORS* 

CLB 
DIV PRINT 

DST PRINT 

XIF 

LOA =82 
CLB 
JSB • 010. 
DEF FMT 
DEF *+4 
OLD PRINT 

JSB • IOR. 
JSB .OTA. 

OF THE LINE 
LOA DATA 
ADA DATA+2 
CLB 
JSB FLOAT 
FMP =F.5 

DST PRINT 

LDA DATA+l 
ADA DATA+3 
CLB 
JSB !:'"I f'\/\T r L..Vl'"il 

FMP =F.5 

DST PRINT+2 

LST 

UNS 
JMP INPUT 

END START 

D-21 

SEGMENT: 





APPENDIX E 
'N""' '"T'"'"'' ..... I"'\ ....... ~· 11"'\I"'\"-• ..... N ... ,..,, II IU I /UU I IU I :>Ut31"(UU 11 t:.:> 

The System Input/Output (SIO) subroutines may be used to perform basic input/ 

output operations for programs in absolute form.t 

MEMORY ALLOCATION 

These drivers are stored in high memory immediately preceding the Basic Binary 

Loader. The Teleprinter driver must be loaded first; it is stored in the 

highest portion of this area. The drivers for the Punched Tape Reader (or 

Marked Card Reader), the Tape Punch, and the Magnetic Tape Unit may then be 

loaded. The sequence of loading must fall within this order, depending on 

your equipment configuration: Line Printer Driver, Punched Tape Reader 

Driver (or Marked Card Reader), Tape Punch Driver, Magnetic Tape Driver, and 

if needed, the MTS Boot. 

The drivers are accessed through 15-bit absolute addresses which are stored 

in the System Linkage area starting at location 101
8

. The allocation of 

memory is as follows: 

BASIC BINARY LOADER 

TELEPRINTER DRIVER 

PUNCHED TAPE 
READER DRIVER 

TAPE PUNCH DRIVER 

MAGNETIC TAPE DRIVER 

INTER - PASS LOADER 

(MTS) 

SYSTEM LINKAGE 

RESERVED LOCATIONS 

tThe SIO subroutines are designed for use with FORTRAN, Assembler, Symbolic 
Editor, etc.; however, they may be used with any absolute object program. 

E-1 



SYSTEM INPUT/OUTPUT SUBROUTINES 

OPERATION AND CALLING SEQUENCE: PAPER TAPE DEVICES 

All data transmission is accomplished without interrupt control, and there­

fore, operations are not buffered by the drivers. Control is not returned 

to the calling program unitl an operation is completed. Date is transferred 

to and from buffer storage areas specified in the user program. 

The general form of the paper tape input/output calling sequence is: 

LDA <buffer length> (words or characters) 

LDB <buffer address> 

JSB lOfB,I (f is Input/Output function) 

<normal return> 

Register Contents 

When the JSB is performed, the A-Register must contain the length of the 

buffer storage area and the B-Register, the address of the buffer. Control 

returns to the location following the JSB. After an input request is completed, 

the A-Register contains a positive integer indicating the number of characters 

or words transmitted, or zeros, if an end-of-tape condition occurred. 

The digit supplied for f in the JSB instruction determines the paper tape 

input/output function to be performed. The value of the operand address is 

the location in the system linkage that contains the absolute address of the 

driver entry point. The following are available: 

101 Input 

102 List Output 

103 Punch Output 

104 Keyboard Input-ASCII data is read from teleprinter and printed 

as it is received. 

E-2 



CVCTt:"M T l\IDI IT /nl ITDI IT Cl IR D()I ITT 1\1 t:"C 
.Jl.Jti...1·1 .Lill VI/ VI.Ill VI vVL.11\VVI .Ll1i...v 

If the Teleprinter driver alone is loaded, these locations point to entry 

points of this driver. If Punched Tape Reader and Tape Pu.nch drivers are in 

memory, location 101 points to the Punched Tape Reader driver and location 

103, to the Tape Punch driver. If the latter are to be used, they must be 

loaded after the Teleprinter driver. 

OPERATION AND CALLING SEQUENCE: MAGNETIC TAPE DRIVER 

As with the Paper Tape SIO drivers, all data transmission is accomplished 

without interrupt control. Control is not returned to the calling program 

until an operation is completed. (Rewind and Rewind/Standby are the only 

exceptions to this. In these cases return is made as soon as the command is 

accepted.) 

The general form of the calling sequence is: 

LDA <buffer length> or <file count> 

LDB <buffer address> or <record count> 

JSB 107B,I 

OCT <command code> 

<EOF/EOT/SOT return> 

<error return> 

<normal return> 

NOTE: Location 107
8 

must contain the address of the magnetic 
tape driver. 

Register Contents 

Before initiating read or write operations, the A-Register must contain the 

buffer length. This will be a positive integer if length is defined in 

characters and a negative integer if length is defined in words. The 

E-3 



SYSTEM INPUT/OUTPUT SUBROUTINES 

B-Register must contain the buffer address. 

Before initiating tape positioning operations, the A-Register must contain 

the number of files that are to be spaced. A positive integer indicates 

forward spacing; a negative integer indicates backward spacing. The B­

Register contains the number of records that are to be spaced. A positive 

integer indicates forward spacing; a negative integer indicates backward 

spacing. The positioning may be defined in terms of any combination of for­

ward or backward spacing of files and records (e.g., space forward two files 

then backspace three records). If files only or records only are to be 

spaced, the contents of the other register should be zeros. 

The registers are not used 

the following operations: 

Write end-of-file 

Write file gap 

Rewind 

Linkage Address 

when entering the subroutine to perform one of 

Rewind/Standby 

Status 

107B is the system linkage word that contains the absolute address of the 

entry point for the Magnetic Tape driver. 

On return from a read operation, the A-Register contains a positive value 

indicating the number of words or characters transmitted. 

On return from all operations except Rewind and Rewind/Standby, the B-Register 

contains status of the operation. (See Status.) 

E-4 



SYSTEM INPUT/OUTPUT SUBROUTINES 

MAGNETIC TAPE OPERATIONS 

The magnetic tape driver will perform the following operations. The pertinent 

operation is specified by the command code which appears after the OCT in 

the calling sequence. 

Operation Command Code 

Read 0 

Write 1 

Write End-of-File 2 

Rewind (Auto mode) 3 

Position 4 

Rewind/Standby (Local mode) 5 

Gap 6 

Status 7 

Read 

One tape record is read into the buffer. The number of characters or words 

read is stored in the A-Register. The value will be equal to the buffer 

length except when the data on tape is less than the length of the buffer. 

One tape record is read to transfer the number of characters specified into 

the buffer. The number of characters in that record (not the number trans­

ferred) will be stored in the A-Register. If the tape record exceeds the 

buffer length, the data will be read into the buffer until the buffer is 

filled, the remainder of the record will be skipped. If the length of an 

input buffer is an odd number of characters, a read operation will result in 

the overlaying of the character following the last character of the buffer; 

the subroutine actually transmits full words only. 

Three attempts are made to read the record before returning control to the 

parity error address. 

E-5 



SYSTEM INPUT/OUTPUT SUBROUTINES 

If an EOT condition exists at the time of entry, the command will be ignored 

and control will be returned to the EOT/EOF address. 

If the buffer length specified is 0, control will return to the normal 

address without any tape movement. 

The input buffer storage area can be as large or as small as needed. The 

number of characters in the tape record will be stored in the A-Register. 

Write 

The contents of the buffer is written on tape preceded by the record length. 

Since a minimum of 7 tape characters (12 on 3030) may be written, short 

records are padded. 

If the end-of-tape is detected during the write operation, the normal return 

is used. The next write operatio.n, bowever, results in a return of control of 

the EOF/EOT location; no data is written. If an EOT condition exists at the 

time of entry, the command will be ignored and control will be returned to the 

EOT/EOF address. 

Write End-of-File 

A standard EOF character (17
8 

for 2020,23
8 

for 3030) is written on tape. 

Control return to the normal location with the EOF status on the B-Register. 

No gap is written. 

If the end of tape was reached on a previous write command, control returns 

to the EOF/EOT location; the character is written. 

E-6 



<:V<:T~M TNPllT/nllTPllT <:llRRnllTTN~<: 
- I - I-· I •111 - 1 f V- I I - I ---· ... --I ... ,, __ 

Rewind 

This command initiates a rewind operation and then immediately returns con­

trol to the normal location. 

The calling sequence for a Rewind operation consists of: 

JSB 107B,I 

OCT 3 

<normal return> 

The user need not test status on the rewind operation before issuing the next 

call. 

Position 

This is the general command to move the tape. Both file and record operations 

may be defined in the same operation. Either may be specified for forward 

or backward spacing. At the completion of the operation the tape will be 

positioned ready for reading or writing. 

An attempt to space beyond the end-of-tape or start-of-tape will terminate the 

positioning operation and return control to the EOF/EOT/SOT location. 

Rewind/Standby 

This causes the tape to be positioned at load point and switches the device 

to local status. Control returns to the normal location immediately after 

the operation is initiated. 

E-7 



SYSTEM INPUT/OUTPUT SUBROUTINES 

The calling sequence for a Rewind/Standby operation consists of: 

JSB 107B,I 

OCT 5 

<normal return> 

An attempt to issue another call on this device results in a halt (102044). 

The device must be switched to AUTO before the program can continue. 

This command causes a three-inch gap to be written on the tape. 

If the end-of-tape was reached on a previous write command, control returns 

to the EOF/EOT location; the gap is not written. 

Status 

This command returns certain status bits in the B-Register. The driver per­

forms a clear command whenever it is entered and as a result the only bits 

that are valid indicators are: 

Start-of-Tape 

End-of-Tape 

Write Not Enabled 

All other commands (except Rewind and Rewind/Standby) provide valid status 

replies on return to the program. 

E-8 



SYSTEM INPUT/OUTPUT SUBROUTINES 

The status reply consists only of bits 8-0 and has the following significance: 

Bits 8-0 

lxxxxxxxx 

xlxxxxxxx 

xxlxxxxxx 

xxxlxxxxx 

xxxxlxxxx 

xxxxxlxxx 

xxxxxxlxx 

xxxxxxxlx 

xxxxxxxxl 

Condition 

Local - The device is in local status 

EOF - An End-of-File character (17
8 

for 7 

track, 23
8 

for 9) has been detected while 

reading, forward spacing, or backspacing. 

SOT - The Start-of-Tape marker is under the 

photo sense head. 

EOT - The End-of-Tape reflective marker is 

sensed while the tape is moving forward. 

The bit remains set until a rewind command 

is given. 

Timing - A character was lost. 

Reject - a) Tape motion is required and the 

b) Backward 

required and the tape is at load point. 

c) A write command is given and the tape 

reel does not have a write enable ring. 

Write not enabled - Tape reel does not have 

write enable ring or tape unit is rewinding. 

Parity error - A vertical or logitudinal 

parity error occurred during reading or 

writing. (Parity is not checked during 

forward or backward spacing operations.) 

Busy - The tape is in motion or the device 

is in local status. 

E-9 



SYSTEM INPUT/OUTPUT SUBROUTINES 

Following is a table surrunarizing the tape conunands: 

Command Call Return 
Operation Code A B A 

Read fO Buffer Buffer Buffer 
Length Address or 

Record 
Length 

Write 1 Buffer Buffer Buffer 
Length Address Length 

Write 2 - - -
EOF 

Rewind 3 - - -
(Auto mode) 

Position 4 Number Number -
of Files, of 
Di rec- Records, 
ti on Direction 

Rewind/ 5 - - -
Standby 
,, - - - , 
\ .LIU~d..L 

mode) 

Gap 6 - - -

Status 7 - - -

Additional Linkage Addresses 

Other locations in the system linkage area contain the following: 

100
8 

Used by the standard software system to store a JMP to 

the transfer address. 

105
8 

First word address of available memory. 

1068 Last word address of available memory. 

E-10 

B 

Status 

Status 

Status 

-

Status 

-

Status 

Status 



SYSTEM INPUT/OUTPUT SUBROUTINES 

The latter two locations may be accessed by an absolute program. The user 

may store the first word of available memory in 105 by performing the 

following: 

ORG 105B 

ABS <last location of user program +l> 

The last word of available memory is established by the drivers; it is the 

location immediately preceding the first location used by the last driver 

loaded. 

BUFFER STORAGE AREA 

The Buffer Address is the location of the first word of data to be written on 

an output device or the first word of a block reserved for storage of data 

read from an input device. The length of the buffer area is specified in 

A-Register in terms of ASCII input or output characters or binary output 

words. For binary input, the length of the buffer is the length of the record 

which is specified in the first character of the record. ASCII and binary 

input record lengths are given as positive integers. The length of a binary 

output record is specified as the two's complement of the number of words in 

the record. 

In addition to describing the buffer area in the calling sequence (for first 

word of binary input record) , the area must also be specifically defined in 

the program, for example with a BSS instruction. 

RECORD FORMATS 

ASCII Records (Paper Tape) 

An ASCII record is a group of characters terminated by an end-of-record mark 

which consists of a carriage return, @, and a line feed, @ . 

E-11 



SYSTEM INPUT/OUTPUT SUBROUTINES 

For an input operation, the length of the record transmitted to the buffer is 

the number of characters designated in the A-Register, or less if an end-of­

record mark is encountered before the character count is exhausted. The codes 

for @ and @ are not transmitted to the buffer. An end-of-record mark 

preceding the first data character is ignored. 

For an output operation, the length of the record is determined by the number 

of characters designated in the request. An end-of-record mark is supplied 

at the end of each output operation by the driver. 

If a RUB OUT code followed by a @ @ is encountered on input from the 

teleprinter or punched tape reader, the current record is ignored (deleted) 

and the next record transmitted.t 

If less than ten feed frames (all zeros) are encountered before the first 

data character from the punched tape reader, they are ignored. Ten feed 

frames are interpreted as an end-of-tape condition. 

Binary Records (Paper Tape) 

A binary record is transmitted exactly as it appears in memory or on 8-level 

paper tape. Each computer word is translated into two tape "characters" 

(and vice versa) as follows: 

15 

' 
1st TAPE CHAR. 

2nd TAPE CHAR. 

87 0 ____ .,,, ....... ____ _ 
v v 

, 

'15 14 13 12 11 10 9 8 
7 G 5 4 3 2 1 0 

·T RUB OUT which appears on the teleprinter keyboard is synonymous with 
the ASCII symbol DEL . 

E-12 



C'VC'TCM Tl\1n11T/f"\llTn11T r11nnf"\llTT~1rr 
..JI ..JI L.1'1 .llffU I/ vu I ru I ..)UDKUU I ll'4C..:> 

For an output operation, the record length is the number of words designated 

by the value in the A-Register (the value is the two's complement of the 

number of words). For input operations, the first word of the record contains 

a positive integer in bits 15-8 specifying the length (in words) of the 

record including the first word. 

On input operations if less than ten feed frames precede the first data 

character, they are ignored; ten feedframes are interpreted as an end~of-tape 

condition. On output, the driver writes four feed frames to serve as a phys­

ical record separator. 

Binary Records (Magnetic Tape) 

The Magnetic Tape subroutine reads and writes binary (odd parity) records 

only. A record count is supplied by the driver as the first word of the 

record. This allows automatic padding of short records to the minimum record 

length with automatic removal of the padded portion of the record on read. 

2020 7-LEVEL TAPE 

Each computer word is translated into three tape "characters" (and vice versa) 

as follows: 

15 11 10* 
computer word I 1 0 I I 0 0 I 0 I I 0 0 0 I j 

3rd part of 2nd part of~ 
word word 1st oart of 

TAPE TRACKS 

1st tape character 
2nd 
3rd 

word 

E-13 

*Bits 10 and 5 are recorded 
twice, in two tape characters, 
as shown. 

P =Odd parity bit 



SYSTEM INPUT/OUTPUT SUBROUTINES 

3030 9-LEVEL TAPE 

Each computer word is translated into two tape "characters" by repositioning 

the bits in the following scheme: 

COMPUTER WORD BITS 15 8 7 0 

1st word contents 1 0 0 0 1 1 0 0 1 0 1 1 1 1 0 1 

2nd word contents 0 1 1 0 1 0 0 1 1 1 0 1 0 0 1 0 

TAPE TRACK l H ~ ~ ~ ~ ! U1 11111 ! I 
ASSIGNMENTS 7 6 5 3 9 1 8 2 \ 

TAPE TRACKS 9 4 

1st tape character 1 0 1 0 0 0 0 0 1 
2nd tape character 1 0 1 0 1 1 1 1 1 
3rd tape character 1 0 0 1 1 1 0 1 0 
4th tape character 0 1 1 1 0 1 1 0 0 

TRACK 4 IS THE 
ODD PARITY BIT 

OPERATION AND CALLING SEQUENCE: MARK SENSE CARD READER 

The SIO Mark Sense Card Reader Driver overlays the Punched Tape Reader Driver 

exactly, therefore, only one or the other of these two drivers may be used 

in any one SIO System configuration. Further, the driver has no binary read 

capability; if this ability is needed, the BCS Mark Sense Card Reader Driver 

will have to be used. 

All data transmission is accomplished without interrupt control. Execution 

control is not returned to the calling program until a complete card has been 

read. 

The general form of the calling sequence is: 

LDA <character count> (positive) 

LDB <buffer address> 

JSB <101B,I> 

<normal return> 

E-14 



Register Contents 

C'VC'Tl:"l\11 T 1\11'11 IT I f"'ll ITnl IT r I In nl'\t l"T" T ~tr-t"' 
.;) I .;) I C:.l'I .L l'lr u I I vu I r u I .:> UD KUU I l l'l t..) 

Before the JSB is executed, the A-Register must contain the character count 

(the buffer length) and the B-Register must contain the buffer address. Con­

trol returns to the location following the JSB; then the A-Register will 

contain the number of characters transmitted not including trailing blanks, 

or, if a transmission error was detected, it will contain all zeroes. 

E-15 





APPENDIX F 
,.,,,.,,,,,.N,...,.,,,,,., '~A ...... ~ 
\.;U ::>ULIU 11::.U CODiNG SHEET 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

D/I AND 001 0 Z/C -- Memory Address .. 
D/I XOR 010 0 Z/C 
D/I IOR 011 0 Z/C 
D/I JSB 001 1 Z/C 
D/I JMP 010 1 Z/C 
D/I ISZ 011 1 Z/C 
D/I AD* 100 A/B Z/C 
D/I CP* 101 A/B Z/C 
D/I LD* 110 A/B Z/C 
D/I ST* 111 A/B Z/C 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

0 SRG 000 A/B 0 D/E *LS 000 CLE D/E SL* *LS 000 
*RS 001 *RS 001 
R*L 010 R*L 010 
R*R 011 R*R 011 
*LR 100 *LR 100 
ER* 101 ER* 101 
EL* 110 EL* 110 
*LF 111 I *LF 111 

I 
NOP 000 000 000 000 

15 14 13 12 11 10 !) 8 7 6 5 4 3 2 1 0 

0 ASG 000 A/B 1 CL* 01 CLE 01 SEZ SS* SL* IN* SZ* RSS 
CM* 10 CME 10 
CC* 11 CCE 11 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 IOG 000 A/B 1 H/C HLT 000 - Select Code ~ 

1 0 STF 001 
1 1 CLF 001 
1 0 SFC 010 
1 0 SFS 011 
1 Hi,-, 

/'-' MI* 100 
1 H/C LI* 101 
1 H/C OT* 110 

0 1 H/C STC 111 
1 1 H/C CLC 111 

1 0 STO 001 000 001 
1 1 CLO 001 000 001 
1 H/C soc 010 000 001 
1 H/C sos 011 000 001 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

1 EAU 000 MPY** 000 010 000 000 
DIV** 000 100 000 000 
DLD** 100 010 000 000 
DST** 100 100 000 000 
ASR 001 000 0 1 
ASL 000 000 0 1 number LSR 001 000 1 0 
LSL 000 000 1 0 of ----+ 

RRR 001 001 0 0 bits 

RRL 000 001 0 0 

Notes: *=A or B. 
D/I, A/B, Z/C, D/E, H/C coded: 0/1. 
**Second word is Memory Address. 

F-1 





APPENDIX G 

ASSEMBLER ERROR MESSAGES 

Errors detected in the source program are indicated by a 1- or 2- letter mnemonic 

followed by the sequence number and the first 62 characters of the statement in 

error. The messages are printed on the list output device during the passes 

indicated: 

For Extended Assembler, error listings produced during Pass 1 are preceded by 

a number which identifies the source input file where the error was found. Pass 

2 and 3 error messages are preceded by a reference to the previous page of the 

listing where an error message was written. The first error will refer to 

page "O". 

Error 
Code 

cs 

DD 

Pass 

1 

1 

Descriotion 

Control statement error: 

a) The control statement contained a parameter 

other than the legal set. 

b) Neither A nor R, or both A and R were specified. 

c) There was no output parameter (B, T, or L.) 

Doubly defined symbol: A name defined in the 

symbol table appears more than once as: 

a) A label of a machine instruction. 

b) A label of one of the pseudo operations: 

BSS EQU 
ASC ABS 
DEC OCT 
DEF Arithmetic subroutine call 
DEX 

c) A name in the Operand field of a COM or EXT 

statement. 

d) A label in an instruction following a REP 

pseudo operation. 

G-1 



Error 
Code 

EN 

Pass 

1 

EN~~~ <symbol> 2 

IF 1 

IL 1 

IL 2 or 3 

M 1, 2 or 3 

Description 

e) Any combination of the above. 

An arithmetic subroutine call symbol appears in a 

program both as a pseudo instruction and as a label. 

The syIQbol specified in an ENT statement has already 

been defined in an EXT or COM statement. 

The entry point specified in an ENT statement does 

not appear in the label field of a machine or BSS 

instruction. The entry point has been defined in 

the Operand field of an EXT or COM statement, or 

has been equated to an absolute value. 

An IFZ or an IFN follows either an IFZ or an IFN 

without an intervening XIF. The second pseudo 

instruction is ignored. 

Illegal instruction: 

a) Instruction mnemonic cannot be used with type of 

assembly requested in control statement. The 

following are illegal in an absolute assembly: 

NAM EXT 
ENT COM 
ORB Arithmetic subroutine calls 

b) The ASMB statement has an R parameter, and NAM 

has been detected after the first valid Opcode. 

Illegal character: A numeric term used in the 

Operand field contains an illegal character (e.g. 

an octal constant contains other than +, - or ~-7). 

Illegal instruction: ORB in an absolute assembly. 

Illegal operand: 

a) Operand is missing for an Opcode requiring one. 

b) Operands are optional and omitted but comments 

are included for: 

G-2 

END 
HLT 



Error 

Code Pass 

M 1, 2 or 3 

Description 

c) An absolute expression in one of the following 

instructions from a relocatable program is 

greater than 77
8

• 

Memory Reference 

DEF 

Arithmetic subroutine calls 

d) A negative operand is used with an Opcode field 

other than ABS, DEX, DEC, and OCT. 

e) A character other than I follows a comma in one 

of the following statements: 

ISZ ADA AND DEF 
JMP ADB XOR Arithmetic 
JSB LDA IOR subroutine 

LDB CPA calls 
STA CPB 
STB 

f) A character other than c follows a comma in one 

of the following statements: 

STC MIB 
CLC OTA 
LIA OTB 
LIB HLT 
MIA 

g) A relocatable expression in the operand field of 

one of the following: 

ABS ASR RRL 
REP ASL LSR 
SPC RRR LSL 

h) An illegal operator appears in an Operand field 

(e. g. +or - as the last character). 

i) An ORG statement appearing in a relocatable pro­

gram includes an expression that is base page or 

common relocatable or absolute. 

j) A relocatable expression contains a mixture of 

program, base page, and common relocatable terms. 

G-3 



Error 

Code Pass 

NO 1, 2, 3 

OP 1, 2, 3 

OP 1,2, or 3 

ov 1,2, or 3 

Description 

k) An external symbol appears in an operand expres­

sion or is followed by a conunon and the letter I. 

1) The literal or type of literal is illegal for the 

operation code used (e.g., STA B7) • 

m) An illegal literal code has been used (e.g., 

LOA = 077) . 

n) An integer expression in one of the following in­

structions does not meet the condition l<n<l6. 

The integer is evaluated modulo 2
4

• 

ASR 
ASL 

RRR 
RRL 

LSR 
LSL 

o) The value of an 'L' type literal is relocatable. 

No origin definition: The first statement in the as­

sembly containing a valid opcode following the ASMB 

control statement (and remarks and/or HED, if present) 

is neither an ORG nor a NAM statement. If the A par-

ameter was given on the ASMB statement, the program 

is assembled starting at 2000; if an R parameter was 

given, the program is assembled starting at zero. 

Illegal Opcode preceding first valid Opcode. The 

statement being processed does not contain an aster­

isk in position one. The statement is assumed to 

contain an illegal Opcode; it is treated as a remarks 

statement. 

Illegal Opcode: A mnemonic appears in the Opcode 

field which is not valid for the hardware configura­

tion or assembler being used. A word is generated 

in the object program. 

Numeric operand overflow: The numeric value of a 

term or expression has overflowed its limit: 

G-4 



Error 

Code Pass 

R? Before 1 

so 

SY 1,2,3 

SY 2 or 3 

TP 1,2, or 3 

UN 1,2, or 3 

Description 

l>N>l6 Shift-Rotate Set 

2
6
-1 Input/Output, Overflow, Halt 

2
10

-1 Memory Reference (in absolute assembly) 

15 
2 -1 DEF and ABS operands; data generated by DEC; 

or DEX: expressions concerned with program 

location counter. 

An attempt is made to assemble a relocatable program 

following the assembly of an absolute program. 

There are more symbols defined in the program than 

the symbol table can handle. 

Illegal Symbol: A Label field contains an illegal 

character or is greater than 5 characters. A label 

with illegal characters may result in an erroneous 

assembly if not corrected. A long label is trun­

cated on the right to 5 characters. 

Illegal Symbol: A symbolic term in the Operand 

field is greater than five characters; the symbol is 

truncated on the right to 5 characters. 

Too many control statements: A control statement 

has been input both on the teleprinter and the source 

tape or the source tape contains more than one con­

trol statement. The Assembler assumes that the 

source tape control statement is a label, since it 

begins in column 1. Thus, the commas are considered 

as illegal characters and the "label" is too long. 

The binary object tape is not affected by this error, 

and the control statement entered via the teleprinter 

is the one used by the Assembler. 

An error has occurred while reading magnetic tape. 

Undefined Symbol: 

G-5 



Error 

Code Pass Description 

a) A symbolic term in an Operand field is not de­

fined in the Label field of an instruction or 

is not defined in the Operand field of a COM 

or EXT statement. 

b) A symbol appearing in the Operand field of one 

of the following pseudo operations was not de­

fined previously in the source program: 

BSS ASC EQU ORG END 

G-6 



INDEX 

A 
ABS .•............... 2-7,2-8,2-11,4-16 

Absolute expressions •.........•.• 2-11 

ASC ........•.....•.....• 2-7,4-18,4-25 

ADA, ADB ..................... 2-14,3-2 

Address definition ...•........... 4-13 

Address expressions ............... 2-9 

Addressing ........................ 1-1 

ALF .......•.....................•. 3- 5 

Alphabetic list of 
instructions .•••.............•.. C-1 

ALR ........•.....................• 3- 5 

Alter-skip instructions .....•..... 3-6 

ALS ........•.•...•.•.....•....•... 3- 5 

AND ......•.....•.....•....... 2-14, 3-3 

Arithmetic subroutine calls •..... 4-27 

ARS ............................•.. 3- 5 

ALS ..•..........•.........•...... 3-13 

ASR .............•.......•........ 3-13 

Assembler Control ................. 4-1 

Asterick ..•...•............... 2-5,2-9 

8 
Base page ........................ 2-16 

BCD/ASCII .......•................. A- 3 

Binary Coded Decimal Format ....... A-3 

Binary output ...................•. 5-3 

BLF ............................... 3- 5 

BLR ............................... 3-5 

BLS ........................•...... 3- 5 

BRS ............................... 3- 5 

BSS .......................... 2-7,4-24 

I-1 

c 
CLA, CCB ....•..•.................. 3-7 

CCE ..•.....•.......•.....•...•.... 3-7 

Character set ...•....••....•.. 2-3,A-l 

CLA, CLB ...•...•...•.............. 3-6 

CLC ...................•...•....... 3-9 

Clear flag ..•..............•.••.• 2-16 

CLF ........•............•.......• 3-10 

CLE ...•............•..•......• 3- 5 , 3- 7 

CLO •.......•..•..........•.•.•... 3-10 

CMA, CMB ........•..........••....• 3-6 
~ 

CME ..•..•.•......•.........•...... 3- 7 

CPA, CPB ••.•.............•.•• 2-14,3-4 

Coding form ••....•......••.•...•.• 2-2 

COM .........•......... 2-5,2-7,4-9,5-1 

Cornmen ts ......................... 2-16 

Control statement ..•...•.•...••... 5-1 

Consolidated coding sheet ..•.••••• F-1 

Constant definition .•...•..•...•. 4-18 

D 
DEC ...•.•....•• 2-7,2-8,2-11,4-19,4-25 

DEF •..............• 2-7' 2-11, 2-15 I 4-13 

Delimiters ..........•............• 2-1 

DEX •.•.•..•...•.•••. 2-7,2-8,2-11,4-21 

DIV .........•....• 2-14' 3-12 I 4-25, 4-27 

DLD ......•.•...... 2-14,3-12,4-25,4-28 

DST .......•••.......•.. 3-12,4-25,4-28 

E 
ELA ••••••••••••••••••••••••••••••• 3-5 

ELB .•............•.....••.••••..•• 3- 5 

END •.....•••.•.•.•••• 2-1 7 I 4- 3' 4-4 I 4-8 

ENT ........•......•.......... 4-11,5-1 

ERA ••••••••••••••••••••••••••••••• 3- 5 



E 
ERB ............................... 3- 5 

EQU ...................... 2-7, 2-8, 4-16 

EXT •.•.....•.•.....•. 2-5,2-7,4-11,5-1 

Extended arithmetic 
instructions ...••.............. 3-11 

F 
FAD .................... 2-14,4-25,4-28 

FDV •........•.......•.. 2-14,4-25,4-28 

FMP ...•...•..••........ 2-14,4-25,4-27 

FSB .......•............ 2-14,4-25,4-28 

H 
HED ••....•...•............... 4- 2 , 4- 2 6 

HLT .........•....•.......... 2-17,3-11 

IFN ••............•..........•..... 4- 4 

IFZ .......•...•.....•............. 4-4 

INA, INB ......•................... 3- 7 

Indirect addressing .............. 2-14 

Input/output instructions ......... 3-8 

Instructions •...............•..... 2-1 

IOR ......................... 2-14, 3-14 

ISZ .•............................. 3-2 

J 
JMP .•............................. 3- 2 

JSB ..•.........•.................. 3-2 

L 
Labels .....••...............•..... 2-4 

LDA, LDB .••••••••..•.•...•... 2-14,3-3 

LIA, LIB ...•.••..••.••.•......••.• 3-9 

Listing control •.••••..•...••...• 4-24 

LIST output •••.....•.............. 5-4 

Literals ................•......•. 2-13 

Logical operations ................ 3-3 

LSL .............................. 3-13 

LSR ...........••..............•.. 3-13 

LST .............................. 4-25 

I-2 

M 
Memory reference instructions ..... 3-1 

MIA, MIB .......................... 3-9 

MPY ....•.......... 2-14,3-12,4-25,4-27 

N 
NAM ...........•.. 1-4,2-17,4-1,5-l,5-3 

No-operation instruction .......... 3-6 

NOP .....•................. 3-4,3-6,4-8 

Numeric terms .•..........•.....•.. 2-8 

0 
Object program linkage ............ 4-9 

OCT .......••... 2-7,2-8,2-11,4-22,4-25 

Opcodes •......•...•.........•..... 2- 5 

Operands .•••..•..•....•.••.....••. 2-6 

Operators ..••.•..•.....•.......•.. 2-9 

Options .....•.•..•................ 1-4 

ORB ..•...••...•...•.••.... 1-4 , 4- 3 , 5-1 

ORG •.........•....••.•.•.. 1-4,4-1,5-3 

ORR ••••••••••••••••••••••••••••••• 4- 2 

~~~ ~Tn ? 0 
U.lht V..LD• ...J ...1

Overflow instructions .•...••...•. 3-10

p
Passes•.. 1-1

Program location counter ...•..••.. 1-3

Psuedo-instructions•••. 4-1

R
RAL ••••••••••••••••••••••••••••••• 3- 5

RAR ••••••••••••••••••••••••••••••• 3-5

RBL•...••.•.......•....•..•.. 3-5

RBR•••........•..••.•.•...... 3-5

Register reference
instructions 3-4

Relocatable expressions•.•... 2-12

Relocation•. l-3

REP ••••••••••••••••••••••••••• 2-7, 4-7

RRL •••••••••••••••••••••••••••••• 3-13

RRR •••••••••••••••••••••••••••••• 3-13

RSS 3- 7

s
Sample program .•••••..•••...••..•. D-1

SEZ •••..••.•••••..•.....•••..•...• 3- 7

SFC ••••••••••••••.•••••..•••.•••• 3-10

SFS ••••••••.•••••••.•••••.•..•••. 3-10

Shift-rotate instructions •..••.•.• 3-5

SIO drivers ..•••..•••.•.•..•..•••• E-1

SKP ••.••....•••••..•.••.•••.•..•• 4-26

SLA, SLB•••••..•••...•..•. 3-5,3-7

SOC• o o o o • • o • o o o o o • • • o • • • o o o • 2-1 7 I 3-11

sos•.•......... 2-17,3-11

Source program .•.•.....•.•....•••. 5-3

SPC •.••.•.•....••.•...••...•...•• 4-26

SSA, SSB ••...•.••...••.•...•..••.. 3-7

STA, STB .••.•••..•••.•.•••..•.•..• 3-3

Statements •.......••.....•.•••...• 2-1

Statement length •..•....•••..••••• 2-3

STC ••....•.••.....•••....••.....•• 3-8

STF .•....••............••..•...•• 3-10

ST0•.•...•••••....•••••••.•. 3-11

Storage allocation •...•••...•.... 4-24

Summary•.•••...••..•.•••.•..•• B-1

SUP •..•••.•.•••••••••.•..•••.••.. 4- 2 5

SWP ••........•..••.•.•••....•.•.. 3-14

Syrnbo ls ••..••..•....••••.•.••••••• 2- 7

Symbol definition •.....•.•..•...• 4-13

s ZA I s ZB • 3- 7

u
UNL •••••.•.••.•..•.••.••••••••.•. 4-24

UNS .•.•.••.......•.•..••..•...••. 4-25

x
XIF ..••.•..•.•....•..•...••...•••• 4-4

XOR ••.•.••••••.•••••••••..••. 2-14 I 3-4

I-3

READER COMMENT SHEET

HP ASSEMBLER
02116-9014 AUG 1975

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications.

Please use additional pages if necessary.

Is this manual technically accurate?

Is this manual complete?

Is this manual easy to read and use?

Other comments?

FROM:

Name

Company

Address

FOLD

FOLD

BUSINESS REPLY MAIL

No Postage Necessary if Mailed in the United States Postage will be paid by

Manager, Systems Engineering
Hewlett-Packard
Data Systems Division
11000 Wolfe Road
Cupertino, California 95014

FIRST CLASS

PERMIT N0.141

CUPERTINO

CALIFORNIA

FOLD

FOLD

PART NO. 02116-9014
Printed in U.S.A. 8/75

HEWLETT'~ PAC KARI.

Sales and service from 172 offices in 65 countries

