HEWLETT 'Tf PACKARD

21MX M-Series Computers
BCS and DOS Microprogramming

Reference Manual

21MX M-Series Computers
BCS and DOS

Microprogramming
Reference Manual

(This manual reflects information that is compatible with

software revision code 1437.)

HEWLETT Iﬁ—ﬁ, PACKARD

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA, 95014

Library Index Number
21M.340.02108-90008
Printed in U.S.A. 10/77

PART NO. 02108-90008

PUBLICATION NOTICE

Information in this manual describes the use of 21MX M-Series BCS and DOS Microprogramming software. Changes in
text to document software updates subsequent to the initial release are supplied in manual update notices and/or complete
revisions to the manual. The history of any changes to this edition of the manual is given below under “Publication
History.” The last change itemized reflects the software currently documented in the manual.

Any changed pages supplied in an update package are identified by a change number adjacent to the page number.
Changed information is specifically identified by a vertical line (revision bar) on the outer margin of the page.

PUBLICATION HISTORY

Second Edition Oct 77 (Software Rev. Code 1437)

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATER-
IAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors
contained herein or for incidental or consequential damages in connection with the furnishing, perfor-
mance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is
not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved.
No part of this document may be photocopied, reproduced or translated to another program language
without the prior written consent of Hewlett-Packard Company.

Copyright © 1977 by HEWLETT-PACKARD COMPANY

il

PREFACE

This manual is a complete reference source for microprogramming the
Hewlett-Packard 21MX M-Series Computers (HP 2105/2108/2112). With the
facilities of the HP 12978A Writable Control Store, the user can expand the
already powerful capability of M-Series Computer by adding custom-tailored
instructions to the existing set of microprogrammed basic instructions.

The HP 12978A Writable Control Store is provided with options to adapt to the
applicable operating system. The 12978A option 001 provides software that
operates in the DOS-III operating system. The 12978A option 002 provides
software that operates in the Basic Control System. Refer to the HP 12978A
Writable Control Store Reference Manual, part no. 12978-90007, for a complete
description of the options.

This manual is written for an individual who already has considerable
experience as an assembly language programmer. Microprogramming the HP
21MX M-Series Computer is no more complex than normal assembly language
programming on larger computers. Thus, with little more investment than
learning a new assembly language, large computer capability can be had for
small computer expense.

RELATED DOCUMENTATION

It is assumed that the microprogrammerr has read the HP 2IMX Computer
Series Reference Manual, part no. 02108-90002, and that he knows how to use
his operating system, DOS-III (HP 24307B), or the Basic Control System (HP
20855A). These operating systems are described in the following publications:
e HP 24307B DOS-III Disc Operating System, part no. 24307-90006.

® Basic Control System, part no. 02116-9017.

During the process of writing, debugging, and using a microprogram, the user
should also have access to and be familiar with the following additional
publications:

The assembler used with the DOS-III-B system is described in:

® Assembler Reference Manual, part no. 24307-90014.

The assembler used with the Basic Control System is described in:

e HP Assembler, part no. 02116-2014.

The 21MX M-Series Computer is described in:
e HP 2IMX Computer Series Operator's Manual, part no. 02108-90004.

® HP 21MX Computer Series Installation and Service Manual, part no.
02108-90006.

iii

Preface

The HP 12909B pROM Writer, which is used in conjunction with the six mask
tapes produced by the Micro Debug Editor, and installing pPROM’s is described
in:

e HP 12909B pROM Writer Operating and Reference Manual, part no.
12909-90009.

® HP 12909B Programmable ROM Writer Interface Kit Installation and
Service Manual, part no. 12909-90005.

The operation of the HP 12978A (1/4K) Writable Control Interface Kit is
described in:

e HP 12978A Writable Control Store Reference Manual, part no.
12978-90007.

HOW TO USE THIS MANUAL

This manual is intended to be used in the following way:

a. Read Section I for the introduction to user microprogramming.

b. Study Section II to learn the structure of the system that is being
controlled by microprogramming. Section II explains the relationship
between the Control Section and the other sections of the computer.

¢. Become familiar with the reference material in Sections IV and V so that
when the time comes to use the material, it may be found easily. These
sections describe the microprogramming language, the Micro-assembler,

and the Micro Debug Editor.

d. Study Section III to learn how to write a microprogram.

iv

CONTENTS

Section 1 Page
INTRODUCTION TO USER
MICROPROGRAMMING
Conventional Control Section 1-1
Microprogrammed Control Section 1-1
Limitations of HP 21MX Microprogramming 1-1
Summary P 1-2
Section IT Page
THE MICROPROGRAMMABLE COMPUTER
Relationship Between Sections 2-1
Control Section 2-1
The Control Processor 2-2
The Microprogrammer’s Roadmap 2-2
DataPaths........... 2-3
Main Memory 2-3
I/0Section i 2-3
Arithmetic And Logic Section. 2-4
FrontPanel 2-4
Section II1 Page
WRITING A MICROPROGRAM
AnExample.............. .. .ol 3-1
Comparison Between Assembly and
Micro-assembly Language Programming 3-1
TheInstruction 3-1
Data Source and Data Destination 3-1
Data Modification. 3-1
DataTestandBranch 3-3
Micro-instruction Formats 3-3
Statement Characteristics 3-3
Fields 3-3
Character Setot 3-4
Label Symbol............. 34
Asterisk Comment 34
Micro-orders: Fields 2 through6.................. 3-4
OperandsinField6.......................... ... 3-4
Coding the Four Word Types 34
Coding with Word Type1 — Common............. 3-4
Coding with Word Type 2 — Immediate Data 3-5

Coding with Word Type 3 — Conditional Jump 3-5
Coding with Word Type 4 — Unconditional Jump . . . 3-6

From Code to Execution Summary 3-6
Access to microprograms in Control Store 3-7
User Function Code in Assembly Language 37
Control Store Modules Availableto User 3-10
Mapping to a Module Address 3-10
Microprogramming Input and Output Functions8-11
Synchronizing with the I/O System 3-11
1/0 Signal Generation 3-11
Memory Protection in Relation to I/0
Microprogramming. 3-12
I/0 Control Routine 3-12
I7/0 Output Routine 3-12
I/0 InputRoutine. 3-12

Section III (Continued) Page
Interrupt Handling 3-12
Normal User Interrupt Handling Applications. 3-13
Micro-orders Affecting Memory Protect 3-13
The Effect of the Dual Channel Port Controller
on Microprograms., 3-14
Summary of Special Timing Rules 3-14
Sample Microprograms 3-15
Swap Memory Locations 3-15
Block Move Microprogram 3-16
Input, Sum, and Sum of Squares Microprogram 3-17
Read a Word fromaLoader ROM 3-23
Section IV Page
MICROPROGRAMMING LANGUAGE
Word Type 1 — Commonoovvvviniiunan. 4-1
Op Micro-ordersc.covoveevrvnniienneneennnn. 4-2
Special Micro-ordersoovviiiniiiiiiiinn 4-7
ALU Micro-ordersovvviiiiineiunnn 4-10
Store Micro-orderscoovviienineinenn.. 4-12
S-bus Micro-ordersccoeviiiiiniiiiian.. 4-14
Microprogramming Information for
Dynamic Mappingcccovviiinnnnnnnnn.. 4-16
Word Type 2 — Immediate Data 4-17
“IMM” Micro-orderc.covuvvuvinnenenene... 4-17
Modifier Micro-orders (Bits 19 and 18 of the
Micro-instruction) 4-17
Operand Micro-ordercovvvvevnn, 4-19
Word Type 3 — Conditional Jump 4-19
“JMP” Micro-orderccvvvvinviiiinn... 4-20
“CNDX” Micro-orderccovvivvivininnnnn 4-20
Condition Micro-ordersccoovvvvuvnn.. 4-20
Jump Sense Micro-order 4-22
Operand Micro-orderouvn 4-22
Word Type 4 — Unconditional Jump 4-23
“JMP” and “JSB” Micro-orders.................. 4-23
Jump Modifier Micro-orders 4-23
The Operand Micro-orderoovvnnnn.. 4-25
Pseudo Instructionsccovviiiineeenenenn. 4-25
EQU .. 4-26
ONES .. e e 4-26
S P e e 4-27
ZEROES ... e 4-27
Section V Page
MICROPROGRAMMING SOFTWARE
Microprogramming Software Summary 5-1
Micro-assembler 5-1
Hardware Environment 5-1
Micro-instruction Source Record 5-1
Micro-assembler Control Record 5-2
Micro-assembler Output
Binary ObjectQutput........................... 5-4
Symbol Table Listing 5-4
Micro-assembly Listing 5-5
Micro-assembler Error Message 5-5
DOS-III Operation of Micro-assembler 5-5
BCS Operation of Micro-assembler. 5-7

CONTENTS (continued)

Section V {Continued) Page Appendix A Page
MicroDebug Editor 5-8 OBJECT TAPE FORMATS A-1
Hardware Environment 5-8
Initialization Program 5-8
Using the Micro Debug Editor 5-9 Appendix B Page
Input Commands 5-10 MICROCODINGFORM B-1
LOADLX] .o 5-10
READ, X 5-11
EditCommands 5-11 Appendix C Page
SHOW, xxxx[,yyyy] ... 5-11 MICRO-ORDER SUMMARY C-1
MODIFY, xxxx[,yyyy] 5-11
Output Commands 5-11
DUMPLX] . . 5-11 Appendix D Page
WRITE, X 5-11 FUNCTIONAL BLOCKDIAGRAM D-1
PREPARE[LX] 5-11
VERIFY[LX]o 5-12
Termination Command 5-13 Appendix E Page
FINISH 5-13 BASIC INSTRUCTION SET MICRO-
DebugCommands............................. 5-13 PROGRAMLISTING E-1
BREAK,yYYY ... 5-13
CHANGE[,m].......... 5-14
Relocate MDE WCS-resident Microcode 5-14
MOVE,yYY . oo 5-14
MDE Error Messages. 5-14
DOS-I1I Operationof MDE 5-14
WCS I/0 Utility Subroutine 5-16
ILLUSTRATIONS
Title Page Title Page
Four Major Computer Sections 2-1 Swap Microprogram 3-15
A Microprogram Implements One Macroprogram Block Move Microprogram 3-16
Instruction....... 2-2 Input, Sum, and Sum of Squares Microprogram 3-18
Front Panel Displays and Switches 2-4 Reading From A Loader ROM 3-23
Microprogram Segment on the 21MX Word Type 1 Micro-assembler Mnemonic format. 4-1
Microcoding Form 3-2 Word Type 1 Binary Format 4-1
Microprogram Implementation Process 3-6 Word Type 2 Micro-assembler Mnemonic Format4-17
Processing the Instruction Register................. 3-8 Word Type 2 Binary Format 4-17
Allocation of Control Store by Modules 3-10 Word Type 3 Micro-assembler Mnemonic Format4-19

vi

ILLUSTRATIONS (continued)

Title Page Title Page
Word Type 3 Binary Format 4-19 General Format of Initialization Program 5-8
Word Type 4 Micro-assembler Mnemonic Format .. 4-23 Test Program Call to Microprogram 5-9
Word Type 4 Binary Format 4-23 Format of Standard Object Tape A-1
Micro-instruction Card Source Record 5-2 Format of $RCASE Object Tape A-3
Symbol Tableciiiiiiiiii i, 5-5 Microcoding Form ciuuiinn.. B-1
Micro-assembly Listingcccovvvivv... 5-5 Functional Block Diagram D-1
Title Page Title Page
User Function Code Mappingcoovvenen.... 3-10 MEM Microcode Control Signals.................. 4-16
I/0 Control Signal Generation Determined by Micro-assembly Error Messages.................... 5-6

IRBits 11-6t 3-11 Micro Debug Editor Commands................... 5-10
MEM Symbols Invoked by Alphabetical List of MDE Error Messages......... 5-15

Microcode. ...t 4-16 Summary of User Micro-order C-2

vii

TO USER MICROPROGRAMMING|[|

INTRODUCTION

The Control Section of a computer contains circuitry
which decodes each machine instruction and then executes
the required sequence of operations. Machine instructions
can be decoded and executed by either a conventional
Control Section or a microprogrammed Control Section.

1-1. CONVENTIONAL CONTROL
SECTION

In a conventional computer Control Section, specific hard-
ware is dedicated to each function performed by the
instruction set. The major advantage of this specially
designed hardware is speed for the instruction set. The
major disadvantage is the loss of flexibility for special
applications or for enhancements. Changes and additions
to hardware components are required to implement
changes and additions to existing capabilities.

This is no problem for a conventional computer if no new
machine instructions are required. The hardware has been
designed to minimize timing for the instruction set. Rarely
however, does a computer manufacturer produce an in-
struction set that fully meets the requirements of most
potential users. Hence, the manufacturer must either focus
his attention on one group of users (specialize) or widen his
scope and generalize the hardware design to meet the
needs of a number of user groups. In the latter case, the
user must modify his discipline to some extent to meet the
limitations of his hardware.

1-2. MICROPROGRAMMED CONTROL
SECTION

In the microprogrammed computer, all distinct logical
functions are separated from the sequence in which those
functions are performed. Hardware redundancy is thus
reduced. The logical functions are defined by a bit pattern
or micro-instruction held in Control Store. Each machine
instruction in Main Memory is performed by a sequence of
micro-instructions in Control Store that defines the logical
functions to be performed. This sequence of micro-
instructions is called a microprogram and is often referred
to as firmware, because it lies somewhere between
hardware and software in origin and permanence.

Software can execute much faster with the application of
microprogramming. This speed is achieved by two factors:

the ratio of Control Store speed over Main Memory and
the relative flexibility of a micro-instruction over normal
machine instructions. The HP 21MX Control Store, where
micro-instructions reside, cycles more than twice as fast as
Main Memory, where normal machine instructions reside.
Control Store words are 24 bits whereas Main Memory
words are 16 bits. In addition, micro-instructions have
access to many internal registers and logical functions
that Main Memory programs cannot use.

For example, the 21MX floating point software
subroutines were identified as being very time consuming.
They were then microcoded by a Hewlett-Packard micro-
programmer and made available in Read Only Memory to
users. Implementation of the floating point firmware
requires no change to user programs. The micro-
programmed floating point instructions run about 20
times faster than the corresponding software subroutines.

As in the floating point microprogram, the user can study
his software, determine the most time consuming
functions performed, and then microprogram those
functions, that is, execute them in Control Store using a
single Main Memory instruction instead of a sequence of
Main Memory instructions. Any software that uses those
microprogrammed functions will execute at a higher
speed.

1-3. LIMITATIONS OF HP 21MX MICRO-
PROGRAMMING

The user should be aware of the following limitations
imposed by HP 21MX microprogramming:

a. Since the origin of a microprogram is specified during
micro-assembly, HP 21MX microprograms are not
relocatable.

b. Since there is only one register available to the micro-
programmer to save subroutine return addresses, the
HP 21MX design allows for no more than one logical
microprogram subroutine level. This limitation can be
circumvented by using other registers or Main
Memory to simulate subroutine nesting.

c. The microprocessor cannot be interrupted. If the
microprogram execution time exceeds the interval be-
tween interrupts, the microprogram must test for
pending interrupts or data may be lost. When a pend-
ing interrupt is detected, the microprogram must yield
control to the interrupt handler. For a discussion of
microprogram interrupt handling, refer to sections
3-32 and 3-33 in this manual.

11

Introduction To User Microprogramming

1-4. SUMMARY
The advantages of microprogrammed control are:
a. The user can use a fully-supported general purpose

computer to aid in the generation and debugging of
extensions to the computer’s own instruction set.

21MX

. The user can speed up the overall execution time of his

software by microprogramming its most time con-
suming or repetitious routines.

The user can implement enhancements of the
instruction set and special purpose processors
produced by the manufacturer with little impact on his
existing software.

THE MICROPROGRAMABLE COMPUTER

To successfully implement microprograms, the assembly
language programmer must learn more about the
computer. This section of the manual is the introduction to
the structure of the computer. A functional block diagram
of the microprogrammable machine is provided in
Appendix D. This diagram describes what paths data can
follow. Control commands or micro-instructions spell out
what paths the data does follow and what modifications
and tests are performed in the process.

Functionally, a computer consists of four major sections:

e Control

e Main Memory

e Input and Output

e Arithmetic and Logic

2-1. RELATIONSHIP BETWEEN
SECTIONS

These four sections and the Front Panel are interconnected
by a network of signal paths. Data processing programs

and data are stored in the Main Memory. Parameters,
status, commands, and processor results (data) are
exchanged with external devices such as teleprinters,
magnetic tape units, and line printers via the Input and
Output (I/0) section. Add, subtract, and other
mathematical functions and shift, ‘“or”’, “and”’, and other
logical functions are performed in the Arithmetic and
Logic section. The Front Panel registers and switches pro-
vide direct operator communication.

Each section executes under the direction of the Control
Section by means of a microprogram. The Control Section
reads the user’s program stored in Main Memory and
directs the appropriate hardware in each of the other
sections.

Figure 2-1 shows the four major sections of the computer.

2-2. CONTROL SECTION

To write a microprogram an understanding of the Control
Section is required. The Control Section takes an instruc-
tion from Main Memory and stores it into the Instruction

THE COMPUTER

MAIN
MEMORY

PROGRAMS AND DATA

CONTROL

ARITHMETIC
AND LOGIC

CONTROL
SECTION

DATA MATHEMATICAL
AND LOGICAL
FUNCTIONS

1/0

EXTERNAL
DEVICES
INTERFACE

Figure 2-1. Four Major Computer Sections

2-1

The Microprogrammable Computer

21MX

CONTROL SECTION

INSTRUCTION REGISTER

MACROPROGRAM
INSTRUCTION

k_‘\

CONTROL STORE

} MICROPROGRAM

MAIN MEMORY

MACROPROGRAM

MACROPROGRAM
-] INSTRUCTION

Figure 2-2. A Microprogram Implements One
Macroprogram Instruction

Register (IR), as shown in figure 2-2. An appropriate
microprogram is executed whose Control Store entry point
address is determined by the IR. View, then, each program
instruction in Main Memory as a jump to a micro-
programmed routine, which resides in Control Store.

The storage area for these microprograms is Control Store
which may be either a Read Only Memory (ROM) or
Writable Control Store (WCS). In this manual, to dis-
tinguish programs in Main Memory from microprograms
in ROM, Main Memory programs are called macropro-
grams. We refer to a Control Section that executes
microprograms from ROM, as a Control Processor.

2-3. THE CONTROL PROCESSOR

A microprogram in the Control Processor is in command of
the computer at all times. A microprogram which is part of
the basic 21MX instruction set microprogram takes pro-
gram instructions from Main Memory and stores them
into the Instruction Register. The upper eight bits of the
Instruction Register determine the microprogram address
within one of the following instruction groups:

22

Basic Instruction Set
Extended Instruction Group
Floating Point Instruction Group

User Microprogram Group

Since the user is mainly interested in writing and exe-
cuting his own microprograms, he can regard the Basic
Instruction Set microprogram as a supervisor micro-
program that determines when a user microprogram is
called and then passes control to the user microprogram.

When the Instruction Register holds an octal 101rrr or
105rrr (see table 3-1 for possible values of rrr), a branch is
made to the user microprogram area of Control Store.

When a microprogram has run to completion, it returns to
location 0 in Control Store to take the next instruction
from Main Memory and store it into the Instruction
Register.

2-4. THE MICROPROGRAMMER’S ROADMAP

Appendix D holds the fundamental diagram of the com-
puter required by the microprogrammer. This functional

21MX

block diagram is the “roadmap”’ that is used to determine
possible data paths and to determine where logical
decisions can be made. This diagram can be unfolded and
referred to while reading other parts of the manual. Note
that the four sections of the computer, illustrated in
figure 2-1, are shown in more detail in the functional block
diagram.

To read the functional block diagram, begin with a 101rrr
or 105rrr instruction in the Instruction Register. The rrr
specifies the octal Control Store entry point address
according to the description in section 3-24, Mapping to a
Module Address. This address is moved into the ROM
Address Register (RAR). With a first address specified,
the user microprogram begins execution. The contents of
the Control Store location given in the ROM Address
Register are moved into the ROM Instruction Register
(RIR). The ROM Instruction Register now holds a 24 bit
micro-instruction. The micro-instruction is decoded and
the specified control functions are executed.

Successive micro-instruction addresses are determined in
the following way. The ROM Address Register is incre-
mented at the start of execution of each micro-instruction.
When a jump is executed, the ROM Address Register is
loaded with the jump target address. When a jump to sub-
routine is executed, the ROM Address Register is stored
into the SAVE Register (save return address) and the
jump target address is stored into the ROM Address
Register. When a return from subroutine is executed
(RTN), the SAVE Register contents are transferred into
the ROM Address Register and the SAVE Register is
cleared. Thus at the completion of execution of each micro-
instruction, the ROM Address Register holds the address
of the next micro-instruction.

2-5. DATA PATHS

The central data transfer path is the S-bus. The contents
of all regesters except the following can be directed onto
the S-bus: L-register, RAR, SAVE Register, Extend
Register, and the Overflow Register. The following
registers can receive data from the S-bus:

M-register
T-register
L-register
Counter Register
Display Register
Display Indicator

Instruction Register

The T-bus receives data only from the Rotate/Shifter
(R/S) but can pass data to these registers:

A-register
B-register
Scratch Pad Registers (S1 through S12)

The Microprogrammable Computer

X-register
Y-register
P-register

S-register

The I/0-bus serves to transfer data to and from external
devices under programmed control.

Note in Appendix D, the functional block diagram, that
the arrows are significant. For example, the B-register
contents can be sent to the S-bus and thence to the
M-register. However, the contents of the B-register cannot
be sent to S12 (Scratch Pad 12) without passing through
the ALU.

2-6. MAIN MEMORY

The M-register is a 15 bit register which holds memory
addresses for reading from or writing into Main Memory.
When storing from the M-register, bit 15 is clear (0). The
T-register or Transfer register holds the data being
transferred to or from memory. Contents of both these
registers are transferred to and from the S-bus. Four
loader ROMs, selectable by Instruction Register bits 15
and 14, each can contain a 64 word Main Memory program
which may be loaded into Main Memory and used to load
Main Memory from a peripheral device or to perform any
other function desired by the user.

Two flags are associated with memory: the A-register
Addressable Flag (AAF) and the B-register Addressable
Flag (BAF). These flags are required to allow the A- and
B-registers to be addressed as locations 0 and 1,
respectively, of Main Memory.

2-7. 1/0 SECTION

The Central Interrupt Register (CIR) is a 6 bit register
associated with the I/0 interrupt circuitry. It is loaded
with the Select Code of the interrupting device under
program control and passed to the S-bus. Whenever the
Central Interrupt Register is loaded, an Interrupt
Acknowledge (IAK) signal is issued to the I/0O device.

The I/0-bus transfers data to and from external devices.

Two flags are associated with I/0: the Interrupt Pending
flag and the I/O Skip Condition Met (Main Memory
instructions SFS and SFC) flag.

The Interrupt Enable Register is used to disable or enable
the recognition of all interrupts, except Memory Protect,
Parity, Power Fail and Dynamic Mapping System inter-
rupts.

2-3

The Microprogrammable Computer

2-8. ARITHMETIC AND LOGIC SECTION

This section consists of the Arithmetic and Logic Unit
(ALU), the Rotate/Shifter (R/S), 22 registers and six
flags.

The ALU and R/S are the only units that execute
functional modifications on the data. The ALU receives
input from the S-bus and from the L-register (Latch
Register). Output from the ALU goes to the R/S which
places its output on the T-bus.

Output from the ALU and R/S can be stored in one of the
following registers via the T-bus:

A-register
B-register
Scratch Pad Registers (S1 through S12)
X-register
Y-register
P-register

S-register

Remember that the P-register holds the macroprogram
(Main Memory) address. The P-register must be under
control of the microprogram which must insure that it
contains the proper address after the microprogram is
complete. When the microprogram is complete, the
resulting P-register value is the address of the next macro-
instruction to be executed. Note that the Basic Instruction
Set fetch routine (at Control Store address 0)
automatically increments the P-register after the macro-
instruction is fetched. Thus for one word wuser
macro-instruction function codes, no further incrementing
of the P-register is necessary in the user microprogram.

The S-register is reserved for internal storage of the Front
Panel switch register. Note that all of these registers can
also be sent along the S-bus for storage into memory,
passage to an external device, or input to the ALU.

21MX

The Extend Register is a one bit register used in shift
operations to link the A- and B-register or to indicate a
“carry’’ arithmetic result out of the A- or B-registers. The
Overflow is a one-bit register used to indicate an
arithmetic overflow from the ALU. (See 21MX Computer
Series Reference Manual, where Overflow and Extend
Register arithmetic results are fully explained.) These two
registers can also be used as flags.

The 8 bit Counter Register, which passes to and from the
S-bus, is used for repecat instructions, for Loader ROM
addressing, and other general purposes, such as looping in
a microprogram.

There are six flags dedicated to the Arithmetic and Logic
Section. The CPU Flag is a general purpose flag. Four
others signal output results from the ALU and one indi-
cates the last T-bus value. ALU Ones is set when all ones
are output from the ALU. ALU Carry Out is set when an
ALU function produces a ‘“‘carry’’ out of bit 15. ALU Bit 0
and ALU Bit 15 flags represent the last value of the
specified bit in the ALU output. T-bus Zero flag is set if all
bits of the T-bus are zero.

2-9. FRONT PANEL

Two registers and two flags are associated with the Front
Panel Section. The Display Register holds the contents of
the register A, B, M, T, P, or S, indicated by the Display
Indicator. The Display Register and the Display Indicator
are displayed on the Front Panel, as illustrated in figure
2-3.

The Run Mode flag indicates that the computer is in a Run
or Halt condition. The Run Enable flag indicates whether
the four position key-operated switch on the front panel is
in Lock or Operate mode.

DISPLAY REGISTER

LOCK

OPERATE R

STANDBY

O)

OVERFLOW EXTEND

FOUR POSITION

Ol O OOy Ol O OO

BGHBDDDBBDBBBBBB

>OIO OO

[EI B SYSTEM

HALT IBL

KEY-OPERATED
SWITCH
DISPLAY INDICATOR
N - e p N o N
(,>) e) ())Ly INSTR INC
RUN PRESET INTERRUPT PARITY POWERFAIL/ A B M T P S STEP M STORE

BATTERY

0

CLEAR DEC DISPLAY
DISPLAY M

Figure 2-3. Front Panel Displays and Switches

2-4

WRITING A MICROPROGRAM | B

This section introduces the basics of writing and
debugging a microprogram in the micro-assembly
language.

An assembly language programmer who codes programs
for Main Memory may shun microprogramming because
he regards it as too complex, mysterious, and the exclusive
field of the computer designer.

However, Hewlett-Packard has especially designed the
HP 21MX series computers to enable assembly language
programmers to quickly get to the microcode level of
computer logic so that they can attack the most
time-consuming and least efficient parts of the software.
Execution times can be cut with the proper application of
microcode.

3-1. AN EXAMPLE

Figure 3-1 illustrates a segment of a microprogram. Ten
micro-instructions are shown coded on the 21MX Micro-
coding Form. The second micro-instruction shaded in
figure 3-1 consists of the following four codes:

COV PASSM P

Each of the four codes are called micro-orders:

a. P takes the 16 bits in the P-register and puts them onto
the S-bus.

b. M stores the 16 bits on the S-bus into the M-register
(bit 15 of M-register is always 0).

c. PASS passes the 16 bits on the S-bus through the ALU
without modification.

d. COV clears the Overflow Register.

Note in figure 3-1 that the various micro-orders of the
micro-instruction begin in certain columns of the
micro-coding form. These columns define the location of
fields of the micro-instruction and each field holds a
certain type of micro-order. In the case of the example
micro-instruction, field 3 holds the special operation COV,
field 4 holds the ALU operation PASS, field 5 holds the
store operation M, and field 6 holds the data source P, that
is, the data placed on the S-bus.

Section IV of this manual gives a full explanation of micro-
instruction formats and micro-orders.

3-2. COMPARISON BETWEEN AS-
SEMBLY AND MICRO-ASSEMBLY
LANGUAGE PROGRAMMING

The assembly language programmer is already familiar
with the basic concepts of programming: the instruction,
data source, data destination, data modification, data test,
and branch. These concepts hold in microprogramming.

3-3. THE INSTRUCTION

The normal macro-instruction in Main Memory is 16 bits
long. Most macro-instructions consist of one operation
command (for example Add to A-register) and a data
source or destination (for example Memory Location
1237). Thus there are usually two orders in a
macro-instruction [Add to A-register] [Memory location
1237]. This is coded in Assembly Language as ADA
VALU, where VALU is the label of memory location 1237.

The micro-instruction in Control Store is 24 bits long,
which allows more control and flexibility to be coded into
each instruction. A micro-instruction consists of up to five
orders called micro-orders. Section 3-1 gives an example of
four micro-orders coded into a micro-instruction.

There are four micro-instruction formats. Each format
defines a micro-instruction Word Type (Word Type 1,
Word Type 2, etc.) and determines a set of micro-orders
which may be coded into the format. Micro-instruction
Word Types and micro-orders are described in Section IV.

3-4. DATA SOURCE AND DATA DESTINATION

Both assembly and micro-assembly language instructions
specify data source and data destination. In assembly
language one of these is usually a Main Memory address
and the other is a register, as in ADA VALU where the
A-register is the destination of the data and VALU is the
source of the data. With microprogramming both data
source and data destination are usually registers, as more
registers are available to the microprogram than to the
assembly language program.

3-5. DATA MODIFICATION

Add, shift, set flag, and logical functions are performed
similarly in both types of programming. In micropro-
gramming, a wider range of basic operations, especially
logical functions, is available. Complex operations, such as
divide, multiply, and byte move, are performed by micro-
programmed subroutines and are available in the Basic
Instruction Set and Extended Instruction Group
microprograms.

3-1

¢€

w0 SuIpeoomI XINTZ oY) uQ jusurdog werdoxdodrjy ‘1-¢ oandi g

(Actual size: 12.5% x 10.5") HEWLETT-PACKARD 21MX MICROCODING FORM
rmocrawner JOE CODER oxre ©/10/ 74 |wcnormosas Read Loader ROM |uosue pace 1 or 1
T T e e BT T e e e T e T T
I!M! L lLow lcNTR lgB CLEAR CNTR [(ROM ADDR_REG) 1 | |
| | PUT SA TN M:CLR OVF = NO OPER ERR
L0OP! 1 b PSS XXXXXXX%AAAAXXXX INTO SL3CNTR=X
1oNT PASS L st | CNTR=xgl e
L4 BND st DR FORM XXXXAAAABBEBXXXX IN S1: CNTR Xg1
ICNT PASS L st CNTR=xig]
L4 JAND ISt |LDR FORM_AAAABBBBCCCCXXXY TN §13CNTR=X1g
; ICNT PASS L= i1 CNTR=x11
| NAND |51 |LDR FORM_AAAABBBBCCCCDDDD (CMPL FORM)
WRTE PASS [T S1 WRITE INTO MEMORY
SRR . TN SERRREEN RN
. i w;ulsiiizu ‘zsi;.‘ m;ii;‘Jm‘;i‘%‘szui.w N kw.*sa

weigordoroiy v Sunjap

XIN1e

21MX

3-6. DATA TEST AND BRANCH

These operations are quite similar in the two languages.
Many tests occur automatically in the course of trans-
ferring data in a microprogram. A test and branch out of a
line of macro-instructions in normal assembly language,
however, requires two instructions (4.6 us): a test instruc-
tion and a skip instruction.

For example:

SLA skip if LSB of A=0

JMP OUT branch out of code sequence

A test and branch out of a line of micro-instructions
requires only two micro-instructions (.650 us).

For example:

PASS A
JMP CNDX ALO ouT

branch out of code se-
quence if bit 0 of A = 0

3-7. MICRO-INSTRUCTION FORMATS

Just as in normal assembly language coding, micro-
assembly language source statements are coded in
mnemonic form to define an instruction. Each source
language statement defines a micro-instruction and
consists of an optional label, five micro-order fields some of
which may be left blank, and a comment field. The label is
used when needed as a reference by other micro-instruction
statements. The micro-orders consist of one to four
mnemonic characters and specify functions to be per-
formed by the Control Section. According to the type of
micro-instruction being defined, one of the micro-orders is
sometimes interpreted as an operand. When an operand is
specified, it defines an integer or an address, depending on
the type of micro-instruction being defined.

3-8. STATEMENT CHARACTERISTICS

Micro-assembly language source statements are divided
into four formats, according to the function the
micro-instruction is to perform. Each format is called a
Word Type.

e Word Type 1 is the most commonly used micro-
instruction format and specifies data transfer and
modification. Word Type 1 source statement fields are:

Label
Op
Special
ALU
Store
S-bus:

Comments

Writing A Microprogram

e Word Type 2 is used to form 16 bit constants in a
register. Word Type 2 source statement fields are:

Label
“IMM”
Special
Modifier
Store
Operand

Comments

e Word Type 3 is used to specify a conditional branch in
the microprogram. Word Type 3 source statements
fields are:

Label
“JMP”
“CNDX”
Condition
Jump Sense
Operand

Comments

e Word Type 4 is used to specify an unconditional branch
in the microprogram. Word Type 4 source statement
fields are:

Label

“JMP” or “JSB”
Jump Modifier
Operand

Comments

3-9. FIELDS

As shown in figure 3-1, the fields are fixed for micro-
assembly language source statements. An entry in any
field (except comments) must begin in the first column of
that field.

e Field 1 begins in column 1 and holds a label that is no
longer than eight characters.

e Field 2 begins in column 10 and contains a micro-order
no longer than four characters. This field can also hold a
Pseudo Instruction (refer to section 4-21 for the
explanation of Pseudo Instruction mnemonic codes).

o TField 3 begins in column 15 and contains a micro-order
no longer than four characters.

e Field 4 begins in column 20 and contains a micro-order
no longer than four characters.

3-3

Writing A Microprogram

e Field 5 begins in column 25 and contains a micro-order
no longer than four characters.

e Field 6 begins in column 30 and contains a micro-order
no longer than four characters (Word Type 1) or an
operand (Word Types 2, 3, and 4).

® TField 7 begins at the termination of field 6 (one space
must follow the field 6 mnemonic) and contains com-
ments only. Field 7 ends in column 80.

3-10. CHARACTER SET

The characters that may appear in a source statement are
as follows:

A through Z
0 through 9
(period)

* (asterisk)

+ (plus)
- (minus)

(space)
Any ASCII character may appear in the comments field.

A space may only begin a field if no micro-order is
specified in that field.

3-11. LABEL SYMBOL

A label may be one to eight characters consisting of A
through Z, 0 through 9, and a period. The first character
must be a letter.

Each label must be unique within the microprogram.
Names which appear in SEXTERNALS micro-assembler
control input statements (refer to section 5-5) may not be
used as statement labels in the same microprogram.

3-12. ASTERISK COMMENT

An asterisk in column one of the source statement
indicates that the entire micro-assembler source statement
is a comment.

3-13. MICRO-ORDERS: FIELDS 2 THROUGH 6

The micro-order fields define operations that are to be
performed by the Control Section of the computer. The
micro-orders applicable to each field are determined by the
source statement Word Type. Section IV describes the
micro-orders that apply to each Word Type and describes
the operations that they specify.

3-4

21MX

3-14. OPERANDS IN FIELD 6
Word Types 2, 3, and 4 contain an operand in field 6.

In Word Type 2, the operand must be either a decimal or
octal number. It cannot be an expression (refer to section
4-10 for definition of a Word type 2 operand).

In Word Types 3 and 4, the operand is a decimal number,
octal number, or a number computed from an expression
which can include a label (refer to section 4-16 for the
definition of a Word Type 3 operand. Refer to section 4-20
for the definition of a Word Type 4 operand).

3-15. CODING THE FOUR WORD TYPES

The following sections describe how to code source
statements in micro-assembly language. The reader should
be familiar with Section IV of this manual before pro-
ceeding with these descriptions. Section IV describes the
micro-orders that can be used with each Word Type. By
referring to Section IV, the reader can see the options that
are available to him as each Word Type is described. The
reader will also need to refer to the functional block
diagram in Appendix D.

3-16. CODING WITH WORD TYPE 1 — COMMON

This word type specifies data transfer and modification.
The format of Word Type 1 is shown in section 4-1. As an
example, a micro-instruction is developed that executes
the following control functions:

e Store the A-register contents into the M-register

o Perform a memory protect check on the A-register
contents

e Transfer the A-register contents to the ALU, increment
this value in the ALU, and store the result into the
P-register

a. Specify the register that is to be placed on the
S-bus; the A-register is specified in the example:

oP SPEC ALU STORE S-BUS

A

b. Specify the function of the ALU; the increment
function is specified in the example:

oP SPEC ALU STORE S-BUS

INC A

21MX

c. Specify the Op field function; no Op field function is
specified in the example. When no Op function is
required, the standard operation is specified by
either leaving the field blank or inserting NOP into
the field:

op SPEC ALU STORE S-BUS

INC A

d. Specify a Special function, if required; a memory
protect check is specified in the example:

oP SPEC ALU STORE S-BUS

MPCK INC A

e. Finally, specify where the resulting data is to be
stored. Two store operations are required in the
example. The unmodified A-register value on the
S-bus must be stored into the M-register and the in-
cremented A-register value on the T-bus must be
stored into the P-register. The micro-order PNM
performs both of these store operations and serves
to illustrate that data stored from the S-bus is
unmodified data and data stored from the T-bus can
be modified by the ALU or R/S:

opP SPEC ALU STORE S-BUS

MPCK INC PNM A

PNM is a unique micro-order. No other micro-order
provides the ability to store into two registers in the
same micro-instruction.

3-17. CODING WITH WORD TYPE 2 — IMMEDI-
ATE DATA

This word type sends an 8 bit constant (immediate data)
specified in the micro-instruction to a register. The format
of Word Type 2 is shown in section 4-7. As an example, a
micro-instruction is developed that specifies the following
control function:

o Repeat the micro-instruction following this one ten
times

Writing A Microprogram

b. Specify the octal or decimal data to be placed on the
S-bus; an octal -12 is specified in the example (366B):

“IMM” SPEC MODIF STORE OPERAND

Mm 3668

This is necessary because use of the minus sign (-)
is not allowed.

c. Specify one of the four possible data modifiers (refer
to section 4-9); LOW (place the 8 bit operand in the
lower half of the S-bus and ones in the upper half) is
specified in the example:

“IMM"” SPEC MODIF STORE OPERAND

MM LOW 366B

d. Specify where the resulting data is to be stored; the
Counter Register is specified in the example:

“iIMM"” SPEC MODIF STORE OPERAND

IMM LOW CNTR 366B

e. Specify any special operations required; RPT
(repeat the micro-instruction following this one the
number of times specified in the Counter Register)
is specified in the example:

“IlMM” SPEC MODIF STORE OPERAND

MM RPT Low CNTR 366B

3-18. CODING WITH WORD TYPE 3 — CONDI-
TIONAL JUMP

This word type specifies a conditional branch in the micro-
program, The format of Word Type 3 is shown in section
4-11. As an example, a micro-instruction is developed that
specifies the following control function:

e Jump to the microprogram address labeled ERR2, if
the last data on the T-bus was not zero.

a. Specify JMP and CNDX in the Op Code and Special

a. Specify IMM in the Op Code field: fields:
“IMM” SPEC MODIF STORE OPERAND “JMP” “CNDX” COND JUMP SENSE OPERAND
IMM JVP CNDX

Writing A Microprogram

b. Specify the condition that must be tested for the
jump to take place; T-bus equal to 0 is specified in
the example:

“JMP* “CNDX"” COND JUMP SENSE OPERAND

JMP CNDX TBZ

c. Specify, if required, RJS (Reverse Jump Sense),
which establishes whether the condition code
“true” means jump or ‘‘false’”’ means jump. The
TBZ used in the example means the test condition is
T-bus equal to 0. If RJS is specified, T-bus not equal
to 0 means perform the jump. If RJS is not specified
(blank in the field), then T-bus equal to 0 means
jump. RJS is specified in the example:

“JMP” “CNDX” COND JUMP SENSE OPERAND

JMP CNDX TBZ RJS

d. Specify the target address of the jump. The target
address must have the same most significant three
bits as the address of this micro-instruction. The
address label ERR2 (an address label in the current
page) is specified in the example:

“JMP” “CNDX” COND JUMP SENSE OPERAND

Jmp CNDX TBZ RJS ERR2

3-19. CODING WITH WORD TYPE 4 — UNCONDI-
TIONAL JUMP

This word type specifies an unconditional branch in the
microprogram, The format of Word Type 4 is shown in
section 4-17. As an example, a micro-instruction is
developed that specifies the following control function:

e Jump to a microprogram subroutine whose address is
derived by the following: the address labeled CLSUB
supplies all bits of the subroutine address except bits
3-0; bits 3-0 are supplied by the Instruction Register.

a. Specify JSB in the Op code field:

“JMP” OR “JSB” JUMP MODIFIER -- -- OPERAND

JsB

b. Specify a target address (to be modified) of the
jump anywhere within the Control Store (0-7777);
CLSUB is specified in the example:

21MX

“JMP” OR “JSB” JUMP MODIFIER -- - OPERAND

JsSB cLsus

c. Specify any modification to the target address; J30
(replace bits 3 to 0 of the operand with bits 3 to 0 of
the Instruction Register) is specified in the

example:
“JMP” OR “JSB” JUMP MODIFIER -- -- OPERAND
JsB J30 CLSuB

3-20. FROM CODE TO EXECUTION
SUMMARY

Figure 3-2 helps to illustrate the process of implementing a
microprogram. Writing a micro-assembly language pro-
gram is essentially the same process as writing an
assembly language program. Micro-instructions are
combined to form a microprogram. The microprogram is
punched onto cards or paper tape and this source is read
by the Micro-assembler. The Micro-assembler produces a
listing and an object tape.

PUNCH CARDS

{or TAPE) _ /
=)
ST

INTERIM
PUNCHED

TAPE
(or DISC FILE)

MICRO-
DEBUG
EDITOR

NEW J

/ N\ (EDITED) LISTING
INTERIM TAPE

{or DISC FILE)

WRITABLE
CONTROL
STORE

=2y
Y

PROGRAMMABLE ROM
INTEGRATED CIRCUITS

USER PROGRAMS > P pROM
IN MAIN MEMORY, W

Figure 3-2. Microprogram Implementation Process

21MX

The object tape is loaded into Writable Control Store
(WCS), executed, and debugged interactively using the
Micro Debug Editor (MDE). When the microprogram is
debugged, the source is corrected and the microprogram is
reassembled. The microprogram can be loaded in two
ways. It can be loaded into WCS by a call to the WCS I/0
Utility subroutine from the user’s Main Memory program
or it can be burned into a programmable Read Only
Memory. In the latter case, the object tape of the
debugged microprogram is loaded into a buffer in Main
Memory, using the Micro Debug Editor, and a set of six
mask tapes are punched. These tapes are used by the HP
12909 pROM Writer to create (‘‘burn”) the programmed
Read Only Memory (pROM) chip. The pROM chip is
installed on an HP 12945A User Control Store board that
is set by jumper wires to specify the proper Control Store
module number.

3-21. ACCESS TO MICROPROGRAMS IN
CONTROL STORE

The control processor microprograms are divided into
three groups.

a. The 21MX Instruction Set microprograms including
the Basic Instruction Set, the Extended Instruction
Group, and Floating Point.

b. Hewlett-Packard supplied special microprograms (for
example, the 12977A Fast FORTRAN Processor
option) if installed.

¢. User microprograms, if installed.

The control processor reads a 16 bit instruction from Main
Memory into the Instruction Register (IR), decodes it, and
then determines which microprogram is called for by the
instruction. This reading, decoding, and address determi-
nation is performed by microprograms that are an integral
part of the Basic Instruction Set. The Basic Instruction
Set microprogram is in some ways analogous to system
software in a normal Main Memory operating system,
since the Basic Instruction set performs the general
control functions and passes control to the wuser
microprogram area when the Instruction Register calls for
a user microprogram. This enables the user-
microprogrammer to concentrate effort on his special
application.

For the purposes of decoding and implementing
macro-instructions, the 21MX Instruction Set is divided
into groups according to the general functions they
perform. As shown in figure 3-3, there are five groups that
encompass the 21MX Instruction Set. A sixth group
called the User Instruction Group consists of the
macro-instructions that allow the user to access the micro-
programs which he writes. Most instruction set
enhancements or special microprograms will be accessed
by the general classification of “‘user’’ macro-instructions.

Writing A Microprogram

Figure 3-3 summarizes the processing of the Instruction
Register. A microprogram within the Basic Instruction
Set reads an instruction from Main Memory into the
Instruction Register and determines to which macro-
instruction group (Alter/skip, Memory Reference, etc.)
that instruction belongs. This is accomplished by a ROM
table branch command (SPECIAL micro-order ‘“‘JTAB”)
that uses the upper eight bits of the Instruction Register
to jump, via the fixed ROM Main Look Up Table, to a
Control Store microprogram address, according the value
of those eight bits. Once the general instruction group is
determined, the Instruction Register is further decoded
and the logic implemented by the microprogram designed
to implement that macro-instruction.

For example, if the instruction in the Instruction Register
is in the Extended Arithmetic Unit (EAU) Group, the
EAU Group microprogram address is found in the Main
Look Up Table based on the Op Code of the instruction.
Then the EAU Group microprogram executes the EAU
instruction. Provided in the micro-instruction set are
special jump parameters, such as “JEAU”, to branch
within the EAU Group microprogram according to which
member of the group is being processed. Jump parameters
are explained in Section IV of this manual.

3-22. USER FUNCTION CODE IN ASSEMBLY
LANGUAGE

The assembly language program calls a microprogram
using mnemonic codes that are assigned in the assembly
language program. The pseudo op “MIC” is used to assign
the mnemonic code. Refer to the HP Assembler Reference
Manual (HP 24307-90014) for the use of the MIC pseudo

op.

Using the MIC instruction, a binary function code is
assigned to the mnemonic so that whenever the mnemonic
appears, the function code is written into that location of
the assembled program. The number of parameters is also
specified.

The octal function code that calls the user microprogram
is:

105rrr if bit 8 of the IR = 0
101rrr or 105rrr if bit 8 of the IR =1

The value of rrr (bits 8-0) determines the Control Store
module address. rrr is defined in table 3-1. Bit 11 in the
third digit (5 or 1) is used by micro-instructions which test
data in the Instruction Register, where the function code is
interpreted. For example, see the ‘“CAB” S-bus
micro-order.

3-7

Writing A Microprogram

21MX

ANY INSTRUCTION

TO NEXT PAGE

INSTRUCTION REGISTER
15114113{12|11|110] 9| 8| 7|6}5|4]|3]2] 1|0
JTAB VIA
MAIN LOOKUP
TABLE
L Address of first
ALTER/SKIP micro-instruction
GROUP for Alter/Skip type
N, instructions
_)
Address of first
SHIFT/ROTATE micro-instruction
GROUP for Shift/Rotate type
instructions
.
Address of first
MEMORY REFERENCE micro-instruction
GROUP for Memory Reference
N type instructions
1/0 INSTRUCTION
1/0 GROUP INSTRUCTION REGISTER
- 15]14[13[12]11[10{9]| 8(7|6 |5]4}| 3|2] 1|0
Address of first
JMP micro-instruction
10G for particular
1/O instruction
\
EAU INSTRUCTION
gggdgw - INSTRUCTION REGISTER
A 15)14|13|12|11|10] 9| 8| 7{6 |5|4|3|2]1|0
Address of first
micro-instruction
JMP for all but three
JEAU EAU instructions
{See EAL Direct Group)
N Address of first
EAU DIRECT micro-instruction for
GROUP DL.D,DST, or DIV
EAU instructions

Figure 3-3. Processing the Instruction Register (Sheet 1 of 2)
3-8

21MX Writing A Microprogram

USER GROUP
MODULES 3-7,14
h.

USER TYPE INSTRUCTION

\.
L USER GROUP

15(14|13[12]|11]10§ 9 514|3|2]1]0

JMP J74 Address of 21MX
R JMP ; .

via JUMP DIRECT instruction set

TABLE

microprogram

or or

Address of user
microprogram

USER TYPE INSTRUCTION

15114131211 oo 81 7|6 151413 12[1]0

T%////////////////Y/A

Address of 2tMX
instruction set
microprogram

JMP via
Jmp JUMP
J30 TABLE or

Address of user
microprogram

_ _

Figure 3-3. Processing the Instruction Register (Sheet 2 of 2)

39

Writing A Microprogram

3-23. CONTROL STORE MODULES AVAILABLE

TO USER

The 4096 words of ROM are divided into sixteen 256-word
modules, module 0 through module 15. Modules 0, 1, 14,
and 15 hold the 21MX Instruction Set and are not
available to the user microprogrammer. Modules 12 and 13
are reserved exclusively for user microprograms. Any
other Control Store space, not filled by a micropro-
grammed option, is available to the user micropro-
grammer. Figure 3-4 summarizes the allocation of Control
Store.

MODULE ALLOCATION
NO.
0 INSTRUCTION SET NOT AVAILABLE
1 (NOT OPTIONAL) TO USER
2
3
4
5
6 HP AVAILABLE TO
FIRMWARE USER IF OPTION
7 OPTIONS NOT INSTALLED
8
9
10
1
12 RESERVED FOR USER | AVAILABLE
13 MICROPROGRAMS TO USER
14 INSTRUCTION SET NOT AVAILABLE
15 (NOT OPTIONAL) TO USER

21MX

If the HP 12977A Fast FORTRAN Processor is installed,
the following function codes are not available to the user:

105140 through 105277
105700 through 105737

101700 through 101737
Note: If the function code maps to a Control
Store module which is not present, the
micro-instruction

JEAU PASS S S

is executed for each non-existent Control
Store location. The ROM Address Regis-
ter is incremented after each execution of
the above micro-instruction until an
installed module is encountered. No
notification is given to the user or system
that a mnon-existent module is being
executed.

Figure 3-4. Allocation of Control Store by Modules

3-24. MAPPING TO A MODULE ADDRESS

Function codes available to the user are listed in table 3-1
together with the module address to which these function
codes map. Some of these user function codes are assigned
to the microprogrammed processors and options produced
by Hewlett-Packard. The following function codes cannot
be used:

105000 through 105137
105740 through 105777
101740 through 101777

3-10

Table 3-1. User Function Code Mapping

Function codes 101rrrg and 105rrrg map to the
module address given:
RANGE OF
RANGE OF OCTAL
rer VALUES | MODULE | ADDRESSES
(14010 157 3 1400
160 to 177 3 1400 to 1417
200 to 217 4 2000
220 to 237 4 2000 to 2017
106rrrg < 240 to 257 5 2400
only 260 to 277 5 2400 to 2417
300 to 317 6 3000
320 to 337 6 3000 to 3017
340 to 357 7 3400
360 to 377 7 3400 to 3417
(40010417 8 4000
420 to 437 8 4000 to 4017
440 to 457 9 4400
460 to 477 9 4400 to 4417
500 to 517 10 5000
520 to 537 10 5000 to 5017
101rrrg 540 to 557 11 5400
102:""8 S 560 to 577 11 5400 to 5417
600 to 617 12 6000
620 to 637 12 6000 to 6017
640 to 657 13 6400
660 to 677 13 6400 to 6417
700 to 717 2 1000
720 to 737 2 1000 to 1017

21IMX

3-25. MICROPROGRAMMING INPUT
AND OUTPUT FUNCTIONS

Microprogramming Input and Output (I/O) functions
requires more care than any other type of micropro-
gramming, because there are strict timing dependencies.
The microprogram described in section 3-40is an example
of I/0 microprogramming.

To maintain integrity of the I/0 system, every control
signal which goes to the I/0 devices is generated in a
specific time period (T-period). All micro-instructions,
except those containing READ or WRTE micro-orders,
are executed in one I/0 T-period, where T = 325 ns. READ
and WRTE each require two I/0 T-periods. An I/0 time
cycle consists of five T-periods labelled T2, T3, T4, T5, and
T86. Specific I/O activity is restricted to certain T-periods
in order to synchronize setting of data flags, latching of
data, and resolving of multiple interrupt requests.

The microprocessor must synchronize with T2 before
initiating an 1/0 cycle. Thereafter, special consideration
must be given to the order and timing of the I/O
micro-instructions given.

3-26. SYNCHRONIZING WITH THE 1/O0 SYSTEM

To initiate an I/0 cycle, the IOG micro-order must be
specified. When this occurs, the processor ‘‘freezes”
(ceases executing micro-instructions) until time T2. The
next micro-instruction is executed during time T3, the
next during T4, etc. IOG may occur with any
micro-instruction which does not require some other

Writing A Microprogram

Special or Jump Modifier (Field 3) micro-order.
Examples:

a. READ IOG INC PNM P
b. I0G PASS IR S3

3-27. 1/0 SIGNAL GENERATION

When IOG is specified, the I/O system generates
backplane I/O signals to the I/O devices starting at the
next T2 time and according to the contents of the Instruc-
tion Register (IR). These are separate and different from
micro-orders.

IR bits 5-0 hold a Select Code (SC) signal (SC = the I/0
slot number on the backplane or in I/0 extenders) that
determines which device will respond to the control signal.
IR bits 11-6 determine which I1/0 signals are sent, as
shown in table 3-2. The IR must be loaded prior to or
during occurrence of the IOG to insure that the correct
signals are generated to the proper SC. If Memory Protect
is enabled, the IR must be loaded prior to issuing I0G (see
section 3.34).

Select Codes 0, 1, 2, 3, 4, and 5 have special functions con-
cerning, respectively, the interrupt system, the Front
Panel, the Dual Channel Port Controller (DCPC), Power
Fail, and Memory Protect/parity. The ‘“Interrupt and
Control summary’” table in the Appendix of the HP 21MX
Computer Series Reference manual (HP 02108-90002)
holds a description of the effect of these select codes (S.C.
in the table).

Table 3-2. Backplane I/O Signal Generation Determined by IR Bits 11-6

IR* BACKPLANE
BACKPLANE 1/O SIGNAL

1110 9 8 7 6 /0 SIGNAL TIME GENERAL USE

x x f 0 0 O none T3 Turns off the Run Flag on the CPU.

X x 0 0 0 A1 STF T3 Set device flag.

X x 1 x x X CLF T4 Clear device flag.

Xx x 0 0 1 0 SFC T3-T5 SKPF condition is true if and only if the device flag is
clear.

x x 0 0 1 A1 SFS T3-T5 SKPF condition is true if and only if the device flag
is set.

x x f 1 0 x 101 T4 If the corresponding select code is not between 1 and
7 (during T4 only), buffer the input data latch on the
device onto the 1/0O-bus.

5 Buffer the input data latch on the device onto the
I/O-bus.
x f 1 1 x 100 T3-T4 Store the I/0O-bus into the input data latch on the device.
x f 1 1 1 STC T4 Set device control flag.
x 1 1 1 CLC T4 Clear device control flag.

*Bits marked with x are not significant for the I/O signal specified. If bit 9 is set the device flag is cleared. If bit 9 is not set

the device flag is not altered.

311

Writing A Microprogram

3-28. MEMORY PROTECTION IN RELATION TO
I/0 MICROPROGRAMMING

When the Instruction Register is loaded, the Memory
Protect (MP) feature (12892A) records information on the
instruction (from Main Memory) being stored in the IR.
When an IOG micro-order is specified, MP checks the
select code. If it is not equal to 1 (Front Panel) and MP
control is set, MP will inhibit any I/0 signals and prevent
the CPU from altering memory or the P- or S-registers,
and will generate an interrupt request. The micropro-
grammer cannot prevent this function, so the software
operating system maintains security of 1/0 programming
with MP in the microprogramming environment.

3-29. 1/0 CONTROL ROUTINE

This type of 1/0 function requires no data transfer. The IR
must specify:

STF
CLF
SFS
SFC
STC
CLC
HLT

Note that CLF can be generated in conjunction with any
other signal by merely letting bit 9 of the IR equal one. To
simulate a CLF macro-instruction, specify CLF with STF.
Once IOG has been given in an I/0 control routine, there
are no limitations in using micro-instructions because 1/0
signals are generated automatically.

For SFS and SFC, the state of the flag on the device may
be tested with a “JMP CNDX SKPF” instruction. SKPF
is true only when SF'S is being executed and the flag is set,
or when SFC is being executed and the flag is clear. The
SKPF test should occur during T4 or T5 of a SFS or SFC
routine. Any operation desired may be implemented as a
result of this test. To cause a macroprogram skip, simply
increment the P-register contents.

3-30. 1/0 OUTPUT ROUTINE

This routine is characterized by generation of the I00
micro-order. The IR must specify IOO also. The IOO sends
data from the I/O-bus into the input data latch on the
device. (Do not confuse this with the 100 backplane I/O
signal in table 3-2.) The microprogram must put the pro-
per data on the S-bus, then direct it onto the I/O-bus. The
detailed timing requirements are:

a. During T3, the S-bus must be driven by the register
(see 10O store micro-order for register restrictions) con-
taining the output data to prepare for the transfer to
the I/O bus.

b. During T4 and T5, the S-bus must be driven by the
same register and I00 must appear in the Store field.
This insures valid data on the 1/0 bus.

3-12

21MX

For example, the sequence for a standard OTA macro-
instruction is:

(Time T2) 10G

(Time T3) PASS CAB
(Time T4) PASS 100 CAB
(Time T5) RTN PASS 100 CAB

3-31. I/O INPUT ROUTINE

This routine is characterized by use of IOI in the S-bus
field. The IR must specify I0I also. IO!I is used in the I/O
cycle during T5 to input data from the I/O device PCA
onto the I/O-bus and then onto the S-bus. (Do not confuse
this with the IOI backplane I/O signal in table 3-7.) Any
normal Word Type 1 instruction may be used to store the
data input from the S-bus.

For example:

(Time T2) 10G
(Time T3) NOP
(Time T4) NOP
(Time T5) RTN PASS CAB 101

It can be seen that during some parts of some I/0
routines, there are instruction times which are unused.
Caution is required when using these times. Do not use
micro-instructions which may cause the processor to freeze
(listed in section 3-36), until all I/0 related code has been
executed for that I/0 cycle. In the above example, if the
T3 and T4 NOPs were replaced by READ and T (S-bus
field) micro-orders, the CPU would freeze in the middle of
T4 and I0I would not be executed until T6 — too late to
correctly handle the data transfer. On the other hand,
during a control type routine which is not performing an
SFS or SFC, many kinds of micro-instructions can be
performed after the I0G. These include READ or even
another IOG, since the I/0 system requires no further
assistance from the microprocessor.

3-32. INTERRUPT HANDLING

The presence of a pending interrupt or halt request may be
detected by microcode in two ways:

a. Performing a test with JMP CNDX on INT, NHOI, or
RUN.

b. Attempting to JMP or RTN to location 0 in Control
Store; a pending interrupt or halt will cause Control
Store address 4 to be loaded into the RAR.

The interrupt device select code (SC) can be read onto the
S-bus (high order bits = 0) by specifying CIR in the S-bus
field. This freezes the CPU until T6 and then sends IAK to
the interrupting device. The CIR micro-order should al-
ways be used when READ or WRTE micro-orders are
used. In the Basic Instruction Set microprogram, the
select code from the CIR is loaded into the M-register and
the Main Memory instruction at that address is executed.
Note that the P-register is not altered during this process.

21MX

3-33. NORMAL USER INTERRUPT HANDLING
APPLICATIONS

If a long microprogram is entered, the program itself has
complete control over when it is terminated or suspended
for a detected interrupt. It is not desirable to hold off
interrupts very long. Magnetic tape, for example, might
request an interrupt every 27 microseconds, if not trans-
ferring data by way of the Dual Channel Port Controller.

It is up to the microprogrammer to decide how long to wait
before testing for an interrupt. When an interrupt is
detected, a jump should be made to a routine to save
whatever is necessary to allow the microprogram to
continue after the interrupt is serviced or to provide for
complete restart of the microprogram. The P-register must
be reset to point to the Main Memory address of the
macro-instruction interrupted. If parameters are saved, a
test must be made at the beginning of the microprogram
to determine if it was interrupted or if it executes from the
beginning.

When the interrupt servicing is started, a JMP or RTN is
made to Control Store location 4 where the Basic Set
microcode takes the trap cell address from the Central
Interrupt Register and then gives control to Main Memory
programs which service the interrupt. After the interrupt
routine is complete, the interrupted microprogram is
restarted (assuming the P-register was reset upon
interrupt detection).

3-34. MICRO-ORDERS AFFECTING
MEMORY PROTECT

To fully use the level of protection afforded by the 12892A
Memory Protect feature, some conventions must be
followed in microprogramming to assure proper communi-
cation between the processor and the Memory Protect
feature (MP).

Note that MP can only be enabled and disabled by the I/O
system. There are no microcode commands for it. Refer to
the Memory Protect Interrupt section in the HP 21MX
Reference Manual for further discussion. The micro-orders
which communicate with MP are listed below together
with a description of their rules and functions:

a. FTCH (Special field). This reads the M-register into
the MP Violation register, clears out the MP Violation
flag and resets the Indirect counter. It should be given
when the address of the current instruction from Main
Memory is being read (READ micro-order) or
immediately after. FTCH occurs in the following places
in the Basic Instruction Set Microprogram:

1. At location 0, the Fetch routine.

2. At the location MGOOD+1 in the Halt routine to
reset the MP Violation flag and to enable alteration
of P-register, S-register, and Main Memory from
the Front Panel.

Writing A Microprogram

3. Atlocation SCAN+12 as part of the single instruc-
tion fetch routine, where it serves the same purpose
as at location 0.

b. IR (Store field). Whenever the IR is specified in the
Store field, MP records whether the instruction is a
Halt, JMP, or neither, and whether or not IR bits 5-0
equal 01 or not. When MP is enabled:

1. Only I/O instructions with a select code of 01 are
executed.

2. The IR must be loaded prior to initiating an I/O
cycle with the IOG to insure that the signal decod-
ing logic takes effect.

When MP is not enabled:

1. No restriction is placed on select codes which are
otherwise valid.

2. The IR may be loaded during the execution of a
micro-instruction initiating the I/O cycle with
I0G.

c. INCI (Special field). This micro-order should be used
whenever another level of indirect addressing is
detected by a microprogram. After 3 counts of the
Indirect Counter, an ION (enable interrupts) micro-
order is effectively performed by the Memory Protect
option. A microprogrammed IOFF micro-order will
have no effect after this occurs until after the next
FTCH is executed.

d. MPCK (Special field). There is no need to use this
memory protect check micro-order if the Memory Pro-
tect feature (HP 12892A) is not installed. This micro-
order should be used to insure that a microprogram will
not alter protected memory. When this micro-order is
used and a MP violation is detected:

1. All future READ instructions put invalid data into
the T-register.

2. No WRTE instructions are performed.
3. All attempts to alter the P- or S-registers fail.

4. All 1/0 signals from the processor are inhibited
until after the next FTCH or CIR is executed.

e. 110G (Special and Jump Modifier). If Memory Protect
has been enabled, this micro-order will set the Memory
Protect Violation flag if the select code (IR bits 5-0) is
not equal to one. If a MP violation is detected, the
actions 1 through 4 described in d. MPCK take place.

f. CIR (S-bus field). This micro-order causes a freeze until

T6 and then issues an IAK to acknowledge the
granting of an interrupt to the requesting device. If the
select code is 5, the Parity indicator on the Front Panel
is cleared and the Memory Protect Violation flag is
cleared. Whenever CIR occurs, special logic on the
Memory Protect PCA determines whether or not the
MP should be disabled (Clear the Control bit). This

3-13

Writing A Microprogram

determination is made six micro-instructions after the
last CIR:

1. MP is not disabled if an I/0 instruction (IOG) is
executed that is not a halt.

2. MP is disabled if no 1/0 instruction (I0G) is exe-
cuted or a halt is executed.

To re-enable Memory Protect, an STC 5 is required.

3-35. THE EFFECT OF THE DUAL CHAN-
NEL PORT CONTROLLER ON
MICROPROGRAMS

The Dual Channel Port Controller (optional hardware)
steals full I/0 cycles to perform direct transfers between
external devices and Main Memory. This process is
essentially transparent to the microprogram. The Dual
Channel Port Controller (DCPC) is a hardware function
that does not employ microcode. If the microprogram
interferes with a DCPC cycle, the Control Processor
freezes until DCPC completes its cycle. If DCPC takes a
sequence of consecutive I/0 cycles for input transfers, any
attempted I0G, READ, or WRTE micro-orders will freeze
the processor until DCPC is finished. If DCPC takes a
sequence of consecutive I/0 cycles for output transfers,
the Memory Reference Group, the Alter/skip Group, and
Shift Rotate Group macro-instructions can still proceed at
between 40% and 60% normal execution rate; I0G will
still freeze the Control Processor.,

If DCPC takes as much as 50% of all 1/0 cycles, the
overall efficiency of the basic instruction set execution is
60% to 70% for input or output transfers. Non-main
Memory micro-instruction execution is only frozen 20%
of each DCPC cycle. Thus arithmetic and logical micro-
instructions execute at 80% efficiency, when DCPC takes
every I/0 cycle.

3-36. SUMMARY OF SPECIAL TIMING
RULES

a. Always load the M-register before specifying WRTE in
the OP micro-order field.

b. Load the M-register before or during micro-instructions
containing READ in the OP field. Do not modify
M-register until two micro-instructions after the READ.,

c¢. Do not alter the T-register unless initiating a WRTE,
since the T-register is internal to the Main Memory
system and is used by DCPC and the CPU. The
T-register is not intended to be a general purpose
register, but to be used in referencing Main Memory.

d. Load the T-register with data to be written in the same
instruction as WRTE appears, or DCPC could alter it
before WRTE is executed.

3-14

21MX

e. The T-register must be placed on the S-bus no later
than two micro-instructions after a READ is specified
or the T-register will be disabled by the Memory
system.

f. When an I/0 cycle (using IOG) is in progress, a READ
or WRTE must not be initiated before T6 in the cycle
under either of the following conditions:

1. An input or output routine (refer to sections 3-29
and 3-30) is in progress.

2. A skip flag test of the I/0 system is taking place.

g. Do not specify a READ or WRTE micro-order in the
same micro-instruction that is transferring data from
the T-register (T or TAB micro-order in the S-bus
field). The reason is that if a freeze occurs as a result of
such a READ or WRTE micro-order (see i. below) the
data in the T-register will be invalid after the freeze.

For example, a sequence of micro-instructions similar
to the following must not take place:

READ — INC PNM P
— — PASS S4 L
READ — INC M TAB

h. Do not start an I/0 cycle (using I0G) before data is
transferred from the T-register following a READ
operation. The reason is that if the I0G results in a
freeze (see i. below), the data in the T-register will be
invalid.

For example, a sequence of micro-instructions similar
to the following must not take place:

READ — INC PNM P
— I0G PASS 54 TAB

i. The following conditions always cause a micro-
processor freeze:

1. The CIR micro-order is in the S-bus field and either
the I/0 cycle time is not T6 or the Dual Channel
Port Controller is stealing a full I/0 cycle.

2. The I0G micro-order is in the Special field and
either the I/0 cycle time is not T2 or the Dual
Channel Port Controller is stealing a full I/0 cycle.

3. A T or TAB micro-order is in the S-bus field and a
READ or WRTE micro-order memory cycle is still
in progress.

4. A READ or WRTE micro-order is in the Op field
and one of the following conditions is true:

(a) The semi-conductor Main Memory is being
refreshed (two micro-instruction cycles are
required every 32.5 microseconds for this
purpose).

21MX

(b) The Dual Channel Port Controller is stealing an
I/0 cycle and has not completed its memory
reference.

(c) A READ or WRTE memory cycle is still in
progress.

j. Load the IR before issuing IOG unless there is no
chance that Memory Protect is enabled (no Memory
Protect on 2105).

3-37. SAMPLE MICROPROGRAMS

While reading the sample microprograms, the reader may
find it useful to refer to the fold out functional block
diagram in Appendix D. This diagram and the micro-order
definitions in Section IV are the two basic sets of
information used by the programmer in writing a
microprogram.

3-38. SWAP MEMORY LOCATIONS

The sample microprogram illustrated in figure 3-5 swaps
the contents of two Main Memory locations that are
pointed to by the A- and B-registers (no indirect
addresses).

Micro-instruction Commentary

READ INC M A

a. Put the address in the A-register onto the S-bus.
b. Store the S-bus into the M-register.

c. Pass the S-bus through the ALU and increment data
enabling the A- or B-register addressable test.

d. Read the location in Main Memory pointed to by the
M-register (this requires 2 micro-instruction cycles).

MPCK PASS M

Writing A Microprogram

. Put the M-register onto the S-bus.

. Pass the S-bus through the ALU (output not used).

Since READ requires two cycles, an instruction cycle
is available before data is available from memory. And
since the M-register holds the address of the location
that will eventually be written into, this cycle is used
for the memory protect check.

PASS S1 TAB

. The read is complete and data from the memory

location is in the T-register unless the AAF or BAF
Flag is set. If AAF is set, the data is in the A-register.
If BAF is set, the data is in the B-register.

. Put memory data on the S-bus.

Pass S-bus through the ALU and R/S to the T-bus.

. Store data on T-bus into Scratch Pad Register 1 (S1).

READ INC M B

. Put the address in the B-register onto the S-bus.

. Store S-bus into the M-register.

Pass the S-bus through the ALU and increment data
enabling the A- or B-register addressable test.

. Read the Main Memory location pointed to by the

M-register.

MPCK PASS M

. Put M-register (memory address) onto the S-bus.

. Pass the S-bus data through the ALU.

Op Code Special ALU Store S-bus

Comment

INC M)
WRTE RTN PARSS TAB 82
$END

SORIGIN=20008
$SYNTAB
READ INC # A
NPCK PARSS "
Pass Si TAB
READ INC N 8
MPCK PASS H
PASS 82 TAB
WRTE PASS TaB 81

READ WORD POINTED TO BY A
CHECK ADDRESS

STORE DATA IN SI

READ VORD POINTED TO BY B
CHECK ADDRESS

STORE DATA IN S2

BEGIN WRITE

LOAD N VITH A

WRITE AND RETURN

Figure 3-5. Swap Microprogram

3-15

Writing A Microprogram

. Test the address for a Memory Protect violation.

PASS 82 TAB

. Put memory data (T-, A-, or B-register contents) onto
the S-bus.

. Pass S-bus through the ALU and R/S to the T-bus.

Store data on the T-bus into Scratch Pad Register 2
(S2).

WRTE PASS TAB 81

. The contents of the first memory location is in S1. Put
S1 onto the S-bus.

. Store the S-bus into T-register (or A- or B-register if
AAF or BAF, respectively are set).

Pass S-bus data through the ALU.

. Write T-register contents into Main Memory at
address pointed to by the M-register. Note that the
M-register still holds the second memory location
address. It was loaded during last read operation.

INC M A

. The A-register holds the first memory location. Put the
A-register contents onto the S-bus.

. Store the S-bus into the M-register.

21MX

Pass S-bus data through the ALU and increment data
enabling the A- or B-register addressable test.

WRTE RTN PASS TAB S2

The contents of the second memory location is in S2.
Put S2 onto the S-bus.

Store the S-bus into the T-register (or A- or B-register,
if AAF or BAF, respectively, are set).

Pass S-bus data through the ALU.

Write the T-register contents into Main Memory at the
address pointed to by the M-register.

Exit (RTN micro-order).

3-39. BLOCK MOVE MICROPROGRAM

The sample program illustrated in figure 3-6 moves a
group of words in Main Memory from one location to
another. When the microprogram receives control, it is
assumed that:

The negative value of the number of words to be moved
is in the A-register in two’s complement form.

The FROM address is in the B-register.

The TO address is in the Main Mernory location pointed
to by the P-register and cannot be indirect.

Op Code Special ALU Store S-bus Comment
SORIGIN=6000
SFILE=FILMV
MOVE S1 A WORD COUNT = 0?
JMP CNDX TBZ ouT IF ZERO, THEN GO TO "ouT"
READ INC M P GET "'TO" ADDRESS
S2 TAB PUT IT IN S2
LOOP READ INC M B READ A DATA WORD
INC B B INCREMENT "FROM'" ADDRESS
S3 TAB STORE THE WORD IN S3 REG
INC M S2 GET "'TO" ADDRESS
INC S22 S2 INCREMENT "'TO" ADDRESS
WRTE TAB S3 WRITE A DATA WORD TO MEMORY
INC S1 S1 INCREMENT WORD COUNT
JMP CNDX TBZ RJS LOOP GO TO "LOOP' IF WORD
% COUNT IS NOT ZERO
ouT RTN INC P P INCREMENT THE P-REG AND EXIT

Figure 3-6. Block Move Microprogram

3-16

21MX

The HP assembly language calling sequence is as follows:

LDA — (number-of-words)
LDB FROM-address

OCT 105200

DEF TO-address

Note: This microprogram is a translation of the
Block Move microprogram shown in
Section VI of the HP 2100 Computer
Microprogramming Software manual (HP
02100-90133). Thus it can be used to com-
pare HP 2100 microprogramming to HP
21MX microprogramming.

Micro-instruction Commentary

MOVE — — S1 A
JMP CNDX TBZ — ouT

Store the contents of the A-register in Scratch Pad
Register 1. If the contents of the A-register are zero, then
go to OUT address and return to the calling program.

READ — INC M P
- — INC B B
— — S2 TAB

Get the TO address and store it in Scratch Pad Register 2.
Increment the FROM address pointer. The TO address
cannot be indirect.

LOOP READ — INC M B
PASS S3 TAB

Read a data word from the Main Memory location pointed
to by the FROM address and store the data word in
Scratch Pad Register 3. Note that a Control Processor
freeze will occur.

INC M S2
INC S2 82
WRTE — TAB S3

Write the data (in Scratch Pad Register 3) into memory.
Increment TO address pointer.

— — INC S1 S1
JMP CNDX TBZ RJS LOOP

Increment the word count. If the word count is not zero, go
to LOOP.

ouT — RTN INC P P

Increment the P-register beyond the word containing the
TO address and exit.

Writing A Microprogram

3-40. INPUT, SUM, AND SUM OF
SQUARES MICROPROGRAM

The sample microprogram illustrated in figure 3-7 loads a
16 bit word from a device specified by its select code
“SC”. If the word is equal to 177777 (end of transmission
word), the microprogram is finished and this is signalled
by executing the next instruction in Main Memory; other-
wise:

a. The word is stored in memory location “DATA”
indexed by the X-register.

b. The word is added to a running total kept in memory
location “SUM”.

c. The word is squared and added to a running total of
squares in memory location “SQUAR”.

d. Another input is initiated from the specified device
(STC SC,C).

e. The next instruction in Main Memory is skipped to
indicate that 177777 was not input from the specified
device.

Conditions:

a. All numbers are 16 bit positive integers.

b. If SUM exceeds 2'°-1, the Extend Register is set.

c. If SQUAR exceeds 2!%-1, the Overflow Register is set.

d. If both SUM and SQUAR are less than 2'6.1, the
Extend and Overflow Registers are clear.

e. Memory protect check is performed on addresses used
for a write into Main Memory.

Microprogram storage:

The microprogram resides in module 12 starting at
octal address 6017.

Microprogram initiation:

Entry into the microprogram is caused by the exe-
cution of the following 5 words in Main Memory:

105637 USER CALL TO CONTROL STORE
ADDRESS 6017

0000nn nn = SELECT CODE “SC”

Oaaaaa “DATA” STORAGE ADDRESS (a table

holding all input data)
Obbbbb “SUM” STORAGE ADDRESS
cccece “SQUAR” STORAGE ADDRESS

(end of transmission return) SUMMING TERMI-
NATED BY EOT

(normal return) SUMMING CONTINUES

3-17

Writing A Microprogram

21MX

Op Code Special ALU Store S-bus Comments
$ORIGTN=E6M1 7B
READ INC PNM P #1/READ SC, INC P, SET UP TAB LOGIC
MM Ly CMLO S 1378 P2/000500 INTO 81«-USE FOR INP COM LATER
PASS L TAB A3/STORE SC INTO L
10R S11. 81 Q4/CREATE INPUT COM BOAS5SNN IN S11
READ INC PNM P A5/READ DATA ADR,INCR P,S8ET UP TAB LOGIC
ITMM L4 CMLLO 8¢ 3038 P6/001790 INTO S1 FOR SET CONT COM LATER
PASS S3 TAB @7/8TORE DATA ADR INTO 83
PASS IR Sit @8/L0AD IR WITH INPUT COMMAND
106 I0OR 3818 81 a9/
*09/ FREEZE TILL T2,START 1/0, CRFATE SET CONTROL COMMAND @QA17NN IN S10
PASS L S3 10/73 STORE DATA ADDRESS INTO L
ADD 83 X 11774 ADD INDEX 70 L, S8TR INTO S3
ASG PASS A 01 12/75 GET DEV WRD FROM I,/0 BUS, ST INTO A
* 12,5/CLEAR E (IR6m1)
JMP CNDX ONES ouTt 13/76 JUMP OUT TF ALL ONES IN DEV WORD
READ INC PNM P 14/READ SUM ADR, INCR P, SETUP TAB LOGIC
INC X X 15/INCR INDEX
INC M TAB 16/ STORE SUM ADR IN M, PREPARE TABR LOGIC
READ 16,5/ READ SUM
IMHM LLOW CNTR @B 17/CLEAR CNTR Tp PREPARE FOR REPEAT
PASS L TAB 18/STORE SUM INTO L
ENVE ADD 87 A 19/ADD DEVICE wORD TO T, ENBL ORE,ST INS?
MPCK PASS M 20/MEMORY PROTECTY TEST ON SUM ADDRESS
WRTE PASS TAB 87 21/WRITE TOTAL INTO SUM ADDRESS
COV PASS IR Sia 22/CL OV,PUT SET CNTRL.CL FLG COM INTO IR
106 PASS L A 23/FRZ TILL T2, ST A INTO L, STARTY 1/0
MPCK INC M 83 24/T3383(DATA ANRE&X) ST INTO M,MEM PROT
WRTE PASS TAB A 25/T4sWRITE DEV WORD INTO (DATARX
READ INC PNM P 26/T5,T63READ ADR OF SQUAR, SETUP TAB LO0G
INC M TAB 26,5/ PREPARE TAB LOGIC
READ INC P P 27/7INCR PsNORMAL RETURN, READ SQUARE
RPT PASS B TAB 28/S8STORE SQUAR INTO B, SETUP REPEAT
MPY R{ ADD B B 29/
*29/ (A TIMES L)&B, STORE RESULT INTO0 B,A
JMP CNDX TRZ NO,OVER 38/7/JMP IF MPY RESULTED IN B8s@ (MSB IN B)
sov 31/8ET OV BIT:RESULT GR TH ACCEPTABLE
NN ,OVER MPCK PASS M 32/MEM PROT CK 0N SOUAR ADDRESS
WRTE RTN PASS TAB A 33/WRITE RESULT INTO SQUAR LOCATION, RTN
ouT INC P P 34/INCREMENT P
RTN INC P P 35/INCR P TO INDICATE EOT RETURN, RETURN
SEND
Figure 3-7. Input, Sum, and Sum of Squares Microprogram
The above instruction is coded in assembly language by SSI SC DATA SUM SQUAR
defining the mnemonic SSI, function code, and four (end of transmission return) SUMMING TERMI-

parameters:

a. Use the MIC pseudo op in the assembler to define the
five word instruction by its mnemonic and number of
parameters: MIC SSI,105637B,4

b. Code the following when calling the SSI microprogram:
3-18

NATED BY EOT

(normal return) SUMMING CONTINUES

**bATA AREA s®ssksoksksioksksorkokk

SC EQU nnB SELECT CODE OF DEVICE

DATA BSSmm BUFFER ARE TO HOLD ALL
INPUT DATA

SUM OCTO “SUM” STORAGE LOCATION

SQUAR OCTO0 “SQUAR” STORAGE LO-
CATION

21MX

Micro-instruction Commentary:

Writing A Microprogram

READ — INC PNM P

READ — INC PNM P

a. Upon entry into the microprogram, P is the address in
Main Memory that follows the instruction that calls
microprogram. Hence P is the address of the address
containing the select code.

b. Place the P-register contents on the S-bus. Store the
S-bus into the M-register. Pass the S-bus contents
through the ALU incrementing the data in the ALU
and store the result (from the T-bus) into the
P-register. The address on the T-bus is tested by the T-
or-A-or-B logic for use by the TAB micro-order.

c¢. Read the contents of the location in Main Memory
specified by the address in the M-register. The read
requires two cycles.

IMM 11 CMLO 81 137B

a. While the read is still in progress, a memory cycle is
used to construct an input command to be used later.

b. Place an octal 137 in bits 7-0 of the S-bus. Bits 15-8 are
automatically filled with ones.

c. Pass the S-bus through the ALU complementing the
data. Shift the data left one bit as it passes through the
Rotate/Shifter inserting a zero into bit 0.

d. Store the T-bus result into Scratch Pad Register 1. The
result in S1 = 000500.

— — PASS L TAB

a. Store the result of the read from Main Memory (con-
tents of T- or A- or B-register) onto the S-bus (the
select code nn was read).

b. Store the S-bus into the L-register and pass the S-bus
contents through the ALU (the PASS is effectively a
non-operation since the T-bus data is not stored).

- — IOR S11 S1

a. Place Scratch Pad Register 1 on the S-bus. Perform an
“inclusive or”’ of L-register and S-bus in the ALU and
store the result in S11.

b. S1 = 00050

L =nn (select code)} IOR = 0005nn in S1l

The result in S11 is the complete input command for
select code = nn.

. The P-register now points to the DATA address.

. Place the P-register on the S-bus. Store the S-bus into

the M-register. Increment the S-bus contents as it
passes through the ALU and store the resulting
address into the P-register. The address on the T-bus is
tested by the T-or-A-or-B logic for use by the TAB
micro-order.

Read the contents of the address in Main Memory
specified by the M-register (read the DATA address).

IMM L4 CMLO 81 303B

. While the read is still in progress, the memory cycle is

used to construct a set control-clear flag I/0 command.

. Place an octal 303 in bits 7-0 of the S-bus. Bits 15-8 are

automatically filled with ones.

Pass the S-bus through the ALU complementing the
data. Rotate the data left four bits as it passes through
the Rotate/Shifter.

. Store the T-bus result into Scratch Pad Register 1. The

result in S1 = 001700.

— — PASS S3 TAB

. Place the result of the read from Main Memory (con-

tents of T- or A- or B-register) onto the S-bus (the
DATA address was read).

. Pass the S-bus data through the ALU and store it into

Scratch Pad Register 3.

— — PASS IR S11

. Place Scratch Pad Register 11 on the S-bus and store

the S-bus into the Instruction Register (IR). IR now
holds the input command 0005nn, where nn is the
device select code.

— I0G IOR S10 S1

. I0G commands the microprocessor to freeze until time

T2. At time T2 the input command in the Instruction
Register is executed (transmitted to the device).

. The L-register still holds the select code of device.

Place Scratch Pad Register 1 (holding 001700) on the
S-bus. Perform an “‘inclusive or”’ with the L-register in
the ALU. Store the result (0017nn) into Scratch Pad
Register 10.

3-19

Writing A Microprogram

d. The net result in S10 is the completed set control —
clear flag command.

- PASS L S3

a. Place Scratch Pad Register 3 (holding DATA address)
onto the S-bus and then store S-bus into the L-register.

b. The PASS is essentially a non-operation.

— ADD S3 X

a. Place the X-register (index to the number of words so
far input from the device) onto the S-bus.

b. Add the S-bus to the L-register (now containing DATA
address).

c. Store the result in Scratch Pad Register 3.

PASS A I0I

ASG —

a. The time is T5. Take the word input from the Device
from the 1/0-bus and place it on the S-bus.

b. Pass the S-bus data through the ALU and store it into
the A-register.

¢. The IR = 0005nn, where nn is the device select code.
Perform an Alter/Skip Group instruction (ASG)
according to bits 7 and 6 in the IR. Since bits 7 and
6 = 01, perform a CLE (Clear Extend register bit).

JMP CNDX ONES -— ouT

If the word last passed through the ALU (see previous
micro-instruction) was all ones (end of transmission), jump
to the location with the label OUT.

READ — INC PNM P

a. The P-register now points to the SUM address.

b. Place the P-register onto the S-bus. Store the S-bus
into the M-register. Increment the S-bus contents as
they pass through the ALU and store the resulting
address into the P-register. The address on the T-bus is
tested by the T-or-A-or-B logic for use by the TAB
micro-order.

c. Read the contents of the address in Main Memory
specified by the M-register (read the SUM address).

— — INC X X

Increment the X-register, which is an index to the number
of words input from the device.

3-20

21MX

- INC M TAB

a. Place the result of the read from Main Memory
(contents of T- or A- or B-register) onto the S-bus (the
address of the SUM was read).

b. Store the data on the S-bus into the M-register.
¢. Increment the data in the ALU and place it on the

T-bus so that the data is tested by the T-or-A-or-B
logic.

READ — — — -

Read the contents of the address in Main Memory
specified by the M-register (the present SUM value).

IMM — LOW CNTR 0B

a. While the read is still in progress, the memory cycle is
used to clear the Counter Register in preparation for
the RPT used later in the microprogram.

b. Place zero on the lower eight bits of the S-bus. All ones
are automatically stored in the upper eight bits.

c. .Store the S-bus into the Counter Register.

PASS L TAB

a. Place the result of the read from Main Memory
(contents of T- or A- or B-register) onto the S-bus (the
present SUM value was read).

b. Store the S-bus into the L-register.

ENVE — ADD S7 A

a. The A-register still contains the word input from the
device. Place the A-register onto the S-bus.

b. Enable the Overflow test and Extend Register test in
this micro-instruction only.

c. Add the L-register (current SUM value) to the S-bus in
the ALU.

d. Store the result in Scratch Pad Register 7.

— MPCK PASS - M

a. The M-register still holds the Main Memory address of
SUM. Place the M-register onto the S-bus.

b. Pass the S-bus through the ALU.

21MX

¢. Perform a memory protect check on the address since
this address will be used for a write into Main Memory.

WRTE — PASS TAB S7

Writing A Microprogram

Initiate a write to Main Memory of the data in the
T-register to the address in the M-register. This stores
the word input from the device into the Main Memory
table of DATA values.

a. Place Scratch Pad Register 7 (holding the current
DATA total) onto the S-bus.

b. Store the S-bus into the T-register (or A- or B-register
according to AAF or BAF flags).

c. Initiate a write to Main Memory of the data in the
T-register to the address in the M-register. This stores
the new total of data words from the device back into
the Main Memory address of SUM.

READ — INC PNM P

— cov PASS IR S10

a. Scratch Pad Register 10 holds the set control-clear flag
command, 0017nn, where nn = the select code. Place
Scratch Pad Register 10 onto the S-bus.

b. Store the S-bus into the Instruction Register.

c. Clear the Overflow Register.

. The P-register now points to the SQUAR address.

Place the P-register onto the S-bus.

. Store the S-bus into the M-register.

Increment the S-bus data as it passes through the
ALU and then store the T-bus into the P-register.

. Read the SQUAR address pointed to by the

M-register.

— — INC M TAB

— I0G PASS L A

a. IOG commands the microprocessor to freeze until time
T2. At time T2 the set control-clear flag command in
the Instruction Register is executed (transmitted to
the device).

b. Place the A-register (which still holds the word input
from the device) onto the S-bus.

c. Store the S-bus into the L-register.

— MPCK INC M S3

a. Place Scratch Pad Register 3 (which holds DATA
address + index X) onto the S-bus.

b. Store the S-bus into the M-register.

c. Increment the data as it passes through the ALU and
place it onto the T-bus. The data is tested by the
T-or-A-or-B logic.

d. Perform a memory protect check on the S-bus data.

WRTE — PASS TAB A

a. Place the A-register (which still holds the word input
from the device) onto the S-bus.

b. Store the S-bus into the T-register (or A- or B-register
if the AAF or BAF flag is set).

. Freeze until last READ is complete, then place

SQUAR address just read from Main Memory onto the
S-bus.

. Store the S-bus into the M-register.

Increment the data as it passes through the ALU and

place it onto the T-bus. The data is tested by the

T-or-A-or-B logic.

READ — INC P P

. Place the P-register onto the S-bus.

. Increment the data as it passes through the ALU and

store it into the P-register. The P-register now contains
the normal Main Memory return address.

Read the SQUAR contents from Main Memory
(contains the current total of data squares).

— RPT PASS B TAB

. Place the SQUAR contents (in the T- or A- or

B-register) onto the S-bus.

. Pass the S-bus through the ALU onto the T-bus and

then store the T-bus into the B-register. The B-register
now holds the current total of device input word
squares.

Repeat the following micro-instruction incrementing
the Counter Register after each repeat. When the
Counter Register is equal to 377, execute the next
micro-instruction.

MPY R1 ADD B B

3-21

Writing A Microprogram

. Perform a multiply step where the multiplier is in the
L-register and the multiplicand is in the A-register.

. Both the A- and L-registers hold the last word input
from the device. The B-register holds the current total
of word squares. Thus the result of 16 repeats of this
multiply step is to square the word input from the
device adding the result to the past total of squares
[(A x L) + B].

The 32 bit result is in the B- and A-registers with the
most significant bits in the B-register.

JMP CNDX TBZ - NO.OVER

. Jump to the location in the microprogram with the
label NO.OVER if the last value that passed onto the
T-bus was equal to zero.

. In a multiply step operation, the last data to go along
the T-bus is the data that is stored into the B-register.
Since the B-register holds the most significant bits of
the multiplication result, if the result exceeds 2¢-1,
bits will be set in the B-register.

- SOV — - —

Set the Overflow Register. The result of the multiplication
operation (added to the B-register) exceeds 21°-1,

NO.OVER — MPCK PASS — M

a. Place the M-register (the SQUAR address) onto the

S-bus.

3-22

21IMX

. Perform a memory protect check on the address on the

S-bus. (To prepare to write the multiplication result
back into the Main Memory data location (SQUAR.)

— WRTE RTN PASS TAB A

. Place the A-register (the current total of squares) onto

the S-bus.

. Store the S-bus into the T-register (or A- or B-register,

if AAF or BAF flag is set).

. Write the contents of the T-register into Main Memory

at the address given in the M-register (the address of
SQUAR).

. Return to the Control Store address held in the SAVE

Register. In general, this means return to 0 to read the
next instruction from Main Memory at the address
pointed to by the P-register.

ouT — — INC p P

. This micro-instruction (label QUT) is branched to, if

the end of transmission character (177777) has been
received from the device.

. Increment the P-register.

- — RTN INC P P

. Increment the P-register again to point to the end of

transmission return address in Main Memory.

. Return to the Control Store address held in the SAVE

Register. In general, this means return to 0 to read the
next instruction from Main Memory at the address
pointed to by the P-register.

21MX

3-41. READ A WORD FROM A LOADER
ROM

The sample program segment illustrated in figure 3-8
reads four 4-bit bytes from a Loader ROM, constructs a 16
bit word, and then stores the word into Main Memory.

Conditions:

a. The A-register holds the Main Memory address into
which the 16 bits read from the Loader ROM are to be
stored.

b. The Loader ROM is selected by bits 15 and 14 of the
Instruction Register. The particular Loader ROM
selected does not affect the example.

¢. The Counter Register is set to address the first location

in the Loader ROM at the beginninng of the micro-
program segment.

Micro-instruction Commentary:

— IMM — LOW CNTR 0B

a. Place a 0 onto the S-bus in bits 7-0; bits 15-8 are auto-
matically filled with ones.

b. Store the S-bus into the Counter Register. Since the
Counter Register is eight bits long, only bits 7-0 of the
S-bus are stored into the Counter Register.

¢. The Counter Register is now zero.

— PASS M A

Writing A Microprogram

LOOP1 — L4 PASS S1 LDR

. The LOOP1 label is used to identify this microprogram
segment in the Basic Instruction Set microprogram.

Place a 4-bit-byte, addressed by the Counter Register,
onto the S-bus. The Counter Register is equal 0; thus
addressing byte 0 (there are 256 bytes addressed octal
0-377 in each Loader ROM). Note that each byte is
stored on the S-bus in complemented form. Thus before
a 16 bit word is stored into Main Memory, it must be
complemented. This is taken care of by the next to last
micro-instruction in this program segment.

Pass the S-bus through the ALU to the Rotate/Shifter.
Left shift the data four bits.

d. Store the data on the T-bus into Scratch Pad Register 1

(S1). S1 now holds 16 bits of the form:
XXXXXXXXAAAAXXXX

where AAAA is the 4 bit byte just read.

ICNT: PASS L S1

a. Place Scratch Pad Register 1 onto the S-bus.

b. Store the S-bus into the L-register.

Increment the Counter Register to address Loader
ROM byte 1.

a. The P-register holds the Main Memory Address into
which 16 bits are to be stored from the Loader ROM.

b. Place the P-register contents onto the S-bus.
c. Store the S-bus into the M-register for use later in the

write to Main Memory of the word from the Loader
ROM.

— — L4 AND S1 LDR

a. Place byte 1 of the Loader ROM onto the S-bus.

b. Perform alogical “‘and” of the S-bus and the L-register

in the ALU.

c. Left shift the data four bits in the Rotate/Shifter.

Comments

Op Code Special ALU Store S-bus
MY LO¥ CHTR ®
ooy PR55 N f

LOOPI LY PRES 31t LDR
ICNT PABS L 51

L4 AND 8t LDR
ICNT PARBS L 51

L4 AND 81 LDR
ICNT PasSsS L 3t

NAND 31 LDR
WRTE FRASE T 3t

CLEAR CNTR (KON ADDR REGO

PUT SA IN N

PAGE XXKXRXXXARAAXKKX
CNTR=X01

FORM XXXKXAAARABRRBRBX XXX
CRTR=X1D

FORM AANABBRBCCCCXXXX
CRTR=X11

FURM AANABBEBCCCCDDDD
WRITE IHTO MEMORY

INTO 51:CNTR=XQ0
TN S1ICNTR=XQ1
IHN S1;CHTR=X10

{CMPL FORM)

Figure 3-8. Reading From a Loader ROM

3-23

Writing A Microprogram

. Store the T-bus into Scratch Pad Register 1. S1 is now
of the form:

xxxxAAAABBBBxxxx

where BBBB is the 4-bit-byte just read.

21MX

a. Place S1 onto the S-bus.
b. Store the S-bus into the L-register.

c. Increment the Counter Register to address Loader
ROM byte 3.

- - ICNT PASS L S1

— — - NAND S1 LDR

. Place the contents of Scratch Pad Register 1 onto the
S-bus.

. Store the S-bus into the L-register.

Increment the Counter Register to address Loader
ROM byte 2.

— - L4 AND S1 LDR

. Place byte 2 of the Loader ROM onto the S-bus.

. Perform a logical “and” of the S-bus and the L-register
in the ALU.

Left shift the data four bits in the Rotate/Shifter.

. Store the T-bus into Scratch Pad Register 1. S1 is now
of the form:

AAAABBBBCCCCxxxx

where CCCC is the 4-bit-byte just read.

- - ICNT PASS L S1

3-24

a. Place byte 3 of the Loader ROM onto the S-bus.

b. Perform a logical ‘“nand” of the L-register and the
S-bus (L “and” S, the result complemented) in the
ALU.

c. Store the T-bus in S1. S1 is now of the form:

AAABBBCCCDDD

where DDD is the 4-bit-byte just read. S1 now holds
the completed 16 bit macro-instruction.

— WRTE — PASS T S1

a. Place S1 onto the S-bus.

b. Store the S-bus in the T-register (the Main Memory
Data Register).

c. Initiate a write to Main Memory {(address in the
M-register) of the data in the T-register.

This completes the reading of 4 bytes from the Loader
ROM, constructing a 16 bit macro-instruction, and storing
the macro-instruction in Main Memory.

MICROPROGRAMMING LANGUAGE o

IV

This section serves as a reference to micro-instruction
word definitions and formats.

There are four micro-instructions word types. Their
general uses are defined below:

e Word Type 1 executes

a. Data transfers between Main Memory, 1/0, and
arithmetic and logic sections.

b. Logical and arithmetic functions on data.

o Word Type 2 specifies octal data to be transferred to a
specific register.

e Word Type 3 executes a conditional jump based on
flags or data values.

e Word Type 4 executes an unconditional jump or sub-
routine jump.

In addition, there are five Pseudo Instructions recognized
by the micro-assembler.

Each word type has two formats. One format is the 24-bit
Binary Instruction Format. This is the machine-language
format; the format of the micro-instruction as it is stored
in the ROM. The second format is the. Mnemonic Format.
This is the micro-assembler source format; the mnemonic-
character representation of the micro-instruction.

4-1. WORD TYPE 1 — COMMON

Each micro-instruction consists of a number of
micro-orders, which define the control steps to be executed
within the system. The binary representation of the micro-
orders falls within certain bits of the 24-bit Binary
Instruction. The mnemonic representation of each
micro-order falls within seven fields of the micro-
instruction input record (e.g. a card). The binary and
mnemonic formats are defined for word types in the
following sections.

Common to all word types are the LABEL (Field 1),
COMMENTS (Field 7), and “*” (column 1).

¢ LABEL
This optional field is a string containing any ASCII
characters except +, -, or a space. The string of

characters can be one through eight characters long and
must always start in column one with a “.”” (period) or a
letter. A maximum of 256 locations address labels are

allowed in any microprogram:.

¢ COMMENT
This optional field can be any string of up to 30
characters.

o *

The asterisk indicates that the entire input record
(card) is a comment field.

Charactor
Column:
1 10 15 20 25 30 40 80
A
Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
* or LABEL OP SPECIAL STORE S-BUS COMMENTS

Figure 4-1. Word Type 1 Micro-assembler
Mnemonic Format

BitNo, 1 23| 22|21} 20| 19| 1817 | 16| 15| 14

1211|109 | 8 7{6|5]|]4|3|2]|1]0

Fields OP ALV

S-BUS

STORE SPECIAL

Figure 4-2. Word Type 1 Binary Format

Microprogramming Language

There are five micro-order classifications in Word Type 1:
e OP — 12 operations

e SPECIAL — 32 special operations

e ALU — 32 ALU functions

e STORE — 32 destinations of data generated by the
micro-instruction

e S-BUS — 32 sources for data to be used by the micro-
instruction.

Micro-orders for Word Type 1 are defined in the following
paragraphs. The mnemonic code is defined first, followed
by its binary equivalent, the meaning, and any special
conventions in the use of the micro-order.

21MX

4-2, OP MICRO-ORDERS

Many operation codes require specific micro-orders in
other fields of the micro-instruction. Those that do will be
defined in terms of all required and optional micro-orders
in the fields of the micro-instruction.

oP

ARS

Required micro-instruction mnemonic fields:

opP SPECIAL ALU STORE S-BUS

ARS L1 or R1 PASS B B

Equivalent micro-instruction binary fields:

23| 22121|20(19| 18| 17| 16| 15| 14| 13

12

11110} 9|1 81 7| 6] 5] 4] 3| 2|1 0

ALU

S-BUS

SPECIAL

L1 or R1 Code

Meaning: Perform a single bit Arithmetic shift of the A-
and B-register combined, with the A-register forming the
low-order 16 bits. The direction of the shift is specified in
the SPECIAL field: L1 for left, R1 for right.

ARITHMETIC LEFT SHIFT: SPECIAL=L1

If L1, a 0 is shifted into bit 0 of the A-register; bit 14 of the
B-register is lost, but the sign bit remains unchanged. The
overflow register bit is set if bits 14 and 15 differ before the
shift operation.

B-Register A-Register
15| 14| » . .] . . 1 0 |« 15| 14 | . . . L3 . 1 0 j4— Zero
LY R_/R_/ Rk k_k_
Lost
If R1, the sign is copied into bit 14 of the B-register and bit
0 of the A-register is lost.
ARITHMETIC RIGHT SHIFT: SPECIAL=R1
B-Register A-Register
15| 14| o 1 0 >l 15| 14| 1 0 I Lost

LA

4-2

A A

21MX
oP BIT NO. 23| 22121 |20
ASG CONTENT 1 ololo

Meaning: Let bits 6 and 7 of the Instruction Register
determine which of the following functions is to be
performed; then clear the L-register.

Microprogramming Language

Conventions: This micro-order is used by the Basic
Instruction Set rmicroprograms which implement the
Alter/skip Macro-instruction Group.

oP

CRS

Required micro-instruction mnemonic fields:

IR Bit No. 7|6 OP SPECIAL ALU STORE S-BUS
CLE| 0| 1 Clear Extend Register CRS L1 or R1 PASS B B
CME |10 Complement Extend Register ; Alter/Skip
instruction

CCE | 1 | 1 | Set the Extend Register Equivalent micro-instruction binary fields:

23| 221211201191 18}17}| 16} 15| 14| 13| 12| 11] 10] 9 81 7 6 5] 43 2|1 0

OoP ALU S-BU STORE SPECIAL
0 01 0 1 1 1 1 1 0 1 0 1 0 0 1 0 1 0 L1 or R1 Code

Meaning: Perform a single bit circular Rotate Shift of the
A- and B-registers combined, with the A-register forming
the low order 16 bits. The direction of the shift is specified
in the SPECIAL field: L1 for left, R1 for right.

If L1, bit 15 of the B-register is transferred to bit 0 of the
A-register.

CIRCULAR LEFT SHIFT: SPECIAL=L1
B-Register

A-Register

1514 ¢ o o o ¢ o] 1|0

15| 14 .] (] L] 3 . 1 0

k_ R

If R1, bit 0 of the A-register is transferred to bit 15 of the
B-register.

CIRCULAR RIGHT SHIFT: SPECIAL=R1

B-Register

A-Register

151 14| o) 1 0

Pl 15|14 ¢ o o o o e | 110

AN

A AA

4-3

Microprogramming Language

opP

DIV

Equivalent micro-instruction binary fields:

21MX

Required micro-instruction mnemonic fields:

op SPECIAL ALU STORE S-BUS

DIv L1 sus B B

231221214201 19| 18117 |16 | 15|14 13 | 12

11110} 9|8)| 716|514)3]2|1]0

opP ALU

S-BUS

SPECIAL

1 00 1 [ojofo0o}lo 1 0

Meaning: Perform a divide step where the divisor is in the
L-register and the 32 bit dividend is in the A- and
B-registers (least significant bits in the A-register). This
micro-order is repeated (16 times for a full word divisor) by
specifying the Special micro-order RPT in the preceding
micro-instruction. This performs the successive sub-
tractions required in a divide algorithm,

The divide step is executed as follows:

a. Subtract the L-register from the B-register (ALU = B
-L).

b. If borrow is required to complete the subtraction, the
ALU Carry Out Flag is clear (0). This Carry Out result
means that the divisor (L-register) is too big. The ALU
result is not stored. The A-register and B-register are
left shifted one bit and the divide step is complete.

c. If aborrow is not required to complete the subtraction,
the ALU Carry Out Flag is set (1). This Carry Out
result means that the divisor is small enough. The
result of the subtraction is contained in the ALU and is
left shifted one bit and stored back into the B-register.
Bit 15 of the A-register shifts into bit 0 of the
B-register and bit 0 of the A-register is set to 1 (the
Carry Out result). The divide step is complete.

Usage: The base set divide operation is shown in the
Basic Instruction Set microprogram in Appendix E at the
label = DIV. When performing 16 divide steps, an L1
micro-order must be executed before the first divide step
for proper bit alignment for the division.

Initial Contents:

B-register A-register L -register
Dividend Dividend
16 Most 16 Least

Significant bits Significant bits

After Repeat 16
Times of Divide
Step:

Divisor
(unchanged)

16 Bit Quotient
of (B,A)/L

Remainder
Doubled

4-4

opP BIT NO. 23122 (21|20

ENV

CONTENT | 1 0 110

Meaning: Enable the overflow test for the current ALU
operation.

Usage: To detect an overflow condition (that is, set the
Overflow register bit), ENV or ENVE (see below) must be
specified as the OP Code of the micro-instruction in which
the condition is to be tested. Overflow is set if the S-bus
and L-register bits 15 are the same and bit 15 output from
the ALU is different.

Caution: Caution is advised in the use of DEC (decrement)
or INC (increment) in conjunction with ENV. The
L-register is always compared.

opP BIT NO. 23|22 21| 20

ENVE CONTENT 1 0|1 1

Meaning: Enable the overflow test and the extend test for
the current ALU operation.

Usage: To detect an Overflow condition (that is, set the
Overflow register bit), ENV (see above) or ENVE must be
specified as the OP Code of the micro-instruction. To set
the Extend Register as a result of the ALU operation, the
ENVE micro-order must be specified as the OP code of the
micro-instruction. The Extend Register bit is set if there is
a carry generated by the ALU (ALU Carry Out = 1).

oP

LGS

Required micro-instruction mnemonic fields:

op SPECIAL ALU STORE S-BUS

LGS L1 or R1 PASS B B

21MX

Required micro-instruction binary fields:

Microprogramming Language

2312212112019 |18 |17 16| 15 13

12

11

10

ALU

S-BU

SPECIAL

L1 or R1 Code

Meaning: Perform a single bit Logical Shift of the A- and
B-registers combined, with the A-register forming the low
order 16 bits. The direction of the shift is specified in the
SPECIAL field: L1 for left, R1 for right.

If L1, a 0 is shifted into bit 0 of the A-register and bit 15 of
the B-register is lost.

LOGICAL LEFT SHIFT: SPECIAL=L1

B-Register

A-Register

Lost ¢— 15| 14| o 1

0

<&
«

15|14 | » .

. . Zero

k_k_

If R1, a 0 is shifted into bit 15 of the B-register and bit 0 of
the A-register is lost.

LOGICAL RIGHT SHIFT: SPECIAL=R1

B-Register

x_/k_/ K_k_/

A-Register

Zero —p1 15 | 14

15| 14

\ 4

—» Lost

ALA

OoP BIT NO. 23122 21

CONTENT

LWF

Meaning: Perform a one bit rotational shift of a 17 bit
operand in the Rotate/Shifter where bit 17 is formed by
the CPU Flag. The rotate moves left one bit, if L1 is the
SPECIAL code, or right one bit, if R1 is the SPECIAL
code. If neither L1 or R1 are specified, LWF clears the
flag.

ROTATIONAL RIGHT SHIFT: SPECIAL=R1
ALU Contents

A

ROTATIONAL LEFT SHIFT: SPECIAL=L1
ALU Contents

15[14} »

15114

A A A

R IR/

F

<
«

CPU Flag

Microprogramming Language

opP

MPY

Required micro-instruction binary fields:

21MX

Required micro-instruction mnemonic fields:

opP SPECIAL ALU STORE S-BUS

MPY R1 ADD B B

23122121 |20 (19 (18 (17|16 | 15|14 | 13| 12

MMj10(98| 7| 6| 5|4]|3|2(|1]0O0

ALU

S-BUS

Meaning: Perform a multiply step where the multiplier is
in the L-register and the multiplicand is in the A-register.
The multiply step is executed as follows:

a. Test bit 0 of the A-register.

b. If the test bit is a one, the L-register is added to the
S-bus (B-register value) in the ALU. The result is
shifted right one bit and stored back into the B-register
with the ALU Carry Out bit forming bit 15.

c. If the test bit is a zero, the S-bus (B-register value) is
shifted right one bit and stored back into the B-register
with the ALU Carry Out bit forming bit 15.

d. In either case, the A-register is shifted right and ALU
bit 0 fills vacated bit position 15. Bit 0 of the A-register
is lost. The multiply step is complete.

Usage: This micro-instruction, repeated 16 times by
specifying the SPECIAL code RPT in the preceding
micro-instruction, performs the successive additions
required in a multiply algorithm. The base set multiply
operation is shown in the Basic Instruction Set
microprogram in Appendix E at the label =MPY.

Each step of the multiply algorithm effectively multiplies
the L-register by the A-register bit that corresponds to the
step; that is, step one multiplies the L-register by bit 0 of
A-register, step two multiplies the L-register by bit 1 of
the A-register, etc. Thus to multiply the L-register by all
16 bits of the A-register, MPY must be repeated 16 times.

Since the B-register goes through successive right shifts
and additions as described under “Meaning’’, the initial
contents of the B-register are added to the final result of
the multiply algorithm. If the B-register is not zero before
the multiply steps are begun, 16 multiply steps will yield
the 32 bit result in the B- and A-registers (where the Least
Significant Bits (LSB’s) are in the A-register):

(B,A) = [(AxL) + B]

This may be useful in some computational procedures. For
example: X(2) = X(1) + (YxZ).

4-6

Initial Contents:

B-register A-register L-register
Value to be added Multiplicand Multiplier
to the final result
After Repeating the
Multiply Step 16 Times:

(AxL)+B (AxL)+B Multiplier
16 Most 16 Least (unchanged)

Significant bits Significant bits

oP BIT NO. 23|22 21|20

READ CONTENT 110|011

Meaning: Read data into the T-register from the Main
Memory address specified in the M-register. The CPU will
freeze until Main Memory is not busy.

Usage: The data must be removed from the T-register two
micro-instructions after the READ instruction. Note that
the M-register must be loaded (M, PNM, or CM in the
Store field) prior to or during the Read micro-instruction.
The A- or B-register Addressable Flags (AAF or BAF,
respectively) are set, according to data present on the
T-bus when the M-register is loaded. Specify INC in the
ALU field when the address being stored into the
M-register could be a 0 or 1 (A- or B-register addressed).
This assures that data is extracted from the proper
register when TAB micro-order is used in the S-bus field.

T-bus when M Register Referenced By
Store is specified AAF BAF TAB in S-bus or Store Field
1 1 0 A
2 0 1 B
any other value 0 0 T

21MX

oP BIT NO. 2312221 |20

Nop| CONTENT |o{ofo o

Meaning: Standard Operation. No operation is specified
for the Op Code field.

Usage: This is the default micro-order when the OP Code
Field is left blank.

oP BIT NO. 23|22 21| 20

WRTE CONTENT | 0|+ | 1] 1

Meaning: Write data from the T-register into the Main
Memory address specified in the M-register. The CPU will
freeze until Main Memory is not busy. Two micro-
instruction times are required to complete the write.

Usage: The T-register should be loaded during the write
instruction and must not be altered by the next sequential
micro-instruction; otherwise the Dual Channel Port Con-
troller data-transfers could destroy the data.

Microprogramming Language

SPECIAL BIT NO. 4 13| 2(1(0

ICNT CONTENT 1 0 0 1 1

Meaning: Increment the Counter Register by one.

SPECIAL BIT NO. 4 3 2(1 0

INCI CONTENT 110 1 0 1

Meaning: Increment the Indirect Counter in the Memory
Protect Option (if installed) by one.

Usage: Used by microprograms that implement indirect
addressing. If INCI is executed three times before FTCH
or IAK appears in the Special field, the Interrupt Enable
Flag is set to allow the CPU to recognize interrupts. Used
to prevent multiple indirect addressing levels from hold-
ing off recognition of I/O interrupt requests.

4-3. SPECIAL MICRO-ORDERS

SPECIAL

IOFF

BIT NO.

CONTENT

Meaning: Turn off the Interrupt Enable flag to disable

SPECIAL BIT NO. 4| 3| 2
CLFL CONTENT | o (1] o
Meaning: Clear the CPU Flag.

SPECIAL BIT NO. 413|210
cov CONTENT | g | 1|1 |00

Meaning: Clear the Overflow Register bit.

recognition of normal interrupts (does not disable memory
protect, parity, or power fail interrupts).

Usage: After three occurrences of INCI (see INCI Usage)
in the SPECIAL Field, interrupts are again recognized
and cannot be disabled until a FTCH micro-order occurs.
The ION micro-order is normally used to re-enable
interrupt recognition.

IOFF should be used with caution, since holding off
interrupts could cause the loss of input and output data.

SPECIAL

BIT NO.

FTCH

CONTENT

SPECIAL

10G

BIT NO.

CONTENT

Meaning: Move the Main Memory address contained in
the M-register (usually the address of the next macro-
instruction to be executed) to the Memory Protect
Violation Register. Clear out the Memory Protect
Violation flag and reset the Indirect Counter.

Usage: This micro-order must be used during, or one
micro-instruction after, the initiation of a READ from the
address of the next macro-instruction to be executed. This
micro-order must be used if the Memory Protect feature is
installed on the computer.

Meaning: Freeze the CPU until time period T2. Then
execute the base set I/0 macro-instruction that is in the
Instruction Register.

Usage: Microprogrammed input and output require
cooperation between the I/0 Section and microprogram
control. Familiarity with the I/0 system is mandatory.
See section 3-25 and the following sections for a more
detailed description of I/O microprogramming.

4-7

Microprogramming Language

SPECIAL BIT NO. 41 3f(2]|1]0

ION CONTENT 0 0ol 1 ol 1

Meaning: Turn the Interrupt Enable flag on to enable
recognition of interrupts. Allow the CPU to recognize
standard device interrupts until the micro-order IOFF is
executed.

Usage: After ION has been executed, the CPU can detect
an interrupt from any I/0O device in two ways:

a. If a JMP or RTN to location 0 of Control Store (the
macro-instruction read and decode routine) is executed
and an interrupt is pending or the Run flag is clear,
execution is forced to location 4 in Control Store, which
is the interrupt handler routine.

b. A test for interrupt pending or Run flag clear can be
performed by the executing microprogram by
executing INT, NHOI, or RUN in the Jump Condition
field.

ION allows interrupts to be recognized. However
interrupts are not generated by the interrupt system until
a STF 0 I/0 control command is executed. Refer to the
discussion of the interrupt system in the HP 21MX
Computer Series Reference Manual.

SPECIAL BIT NO. 41 32170

JTAB CONTENT | 4 1 0 1 1

Meaning: Perform a jump to a location within the Basic
Instruction Set microprogram, based on the eight most
significant bits (bits 15 through 8) of the Instruction
Register. This is accomplished via a table look-up of the
address in the main jump table for the basic instruction set
(see figure 3-3).

The Save Register is cleared to 0. JTAB overrides the
effects of JMP or JSB in the OP code field.

SPECIAL BIT NO. 4 3|1 2|1 0

L1 CONTENT 0 0 0 1 0

Meaning: Left one bit command to the Rotate/Shifter.

Lost 15|14 | o 1 0 |4 Zero

k_/ R k_/k_

Usage: See MPY, DIV, CRS, LGS, ARS, LWF. Without
one of the previous Op Codes, L1 performs a one bit logical
left shift on data leaving the ALU.

4-8

21MX

SPECIAL BIT NO. 43| 2|110

L4 CONTENT olofo]| 1] 1

Meaning: Four bit circular left shift command to the
Rotate/Shifter (R/S).

-
1
+

r_}
vorss [15]1a]is12[ni]w] o8] 7]e[s[aa]2]1]0]

I FEEEEEEEEEEEEER
1s]1a]13]12]n]10] o8] 7]6{s]ala]2]1]0]

TO T-BUS

Usage: Used in conjunction with the shift and rotate
operations.

SPECIAL BIT NO. 4 31 211 0

Meaning: Check the address placed on the S-bus for a
memory protect violation.

Usage: An S-BUS micro-order must be used in conjunc-
tion with MPCK. The M-register must hold the address to
be checked, when the micro-instruction using MPCK exe-
cuted and this M-register value must not change until the
write operation is executed.

This check should be performed before any write to Main
Memory (WRTE OP-code), if the memory protect feature
is installed. Refer to section 3-27 for details on use of
MPCK with the I/0 system.

SPECIAL BIT NO. 4 3| 2(1 0

NOP CONTENT } g | ¢ | 97 {11

Meaning: No SPECIAL operation is performed.

Usage: This is the default operation if none is specified in
the SPECIAL field.

SPECIAL BIT NO. 4 3 2 1 0

Meaning: Repeat the following micro-instruction incre-
menting the Counter Register after each time the repeat is
executed. When the lower four bits of the Counter Register
are set, execute the following micro-instruction once. The
lower four bits of the Counter Register are set at the
completion of the repeat sequence. Thus, the repeat is
executed the number of times specified in the lower four
bits of the Counter Register in two’s complement form.

21MX

SPECIAL BIT NO. 4 (3211 0

R1 CONTENT | 0 { O {1 oo

Meaning: Right one bit command to the Rotate/Shifter.

Zero 15| 14| o 1 0 > Lost
\AA \AA

Usage: Used in conjunction with the shift and rotate
instructions. See MPY, DIV, ARS, CRS, LGS, LWF.
Without one of the previous micro-orders, a single bit
logical right shift is executed.

SPECIAL BIT NO. 4 3] 2|1 0

RTN CONTENT |1 |11]1 (0

Meaning: Return from subroutine. Jump to the address
held in the Save register and clear the Save register.

Usage: No more than one subroutine level is permissable.
The second RTN encountered causes a jump to ROM
address 0 (the address contained in the Save register)
where the macro-instruction pointed to by the P-register is
read. RTN overrides the effect of a JMP or JSB in the OP
code field.

SPECIAL BIT NO. 4| 3] 2 1 0

SHLT CONTENT 11011010

Meaning: Clear the Run Flag (request a CPU halt).

Usage: The Run Flag is actually cleared at the completion
of the micro-instruction following the one specifying
SHLT. This micro-order should be used with caution by
the microprogrammer. Once the Run Flag is clear, the halt
request (SHLT) is detected:

a. when a RTN or JMP to address 0 in Control Store
(fetch routine) is executed

b. when the Run Flag is tested by RUN or NHOI Jump
Condition micro-order.

SPECIAL BIT NO. 41 3 2 1 0

sov CONTENT [o1 [0]|1 11

Meaning: Set the Overflow Register

SPECIAL BIT NO. 4 3|1 2 (1 0

SRGE CONTENT 0 1 1 1 0

Meaning: If Instruction Register bit 5 is set, clear the
Extend Register bit.

Conventions: This micro-order is used by the Basic
Instruction Set that implements the Extend Register
instructions.

Microprogramming Language

SPECIAL BIT NO. 4 31 211 0

SRG1 CONTENT (ol o|1({11] 0

Meaning: Execute the Shift/Rotate function specified by
bits 6 through 9 of the Instruction Register (Shift/Rotate
instruction in the first position; see HP 21MX Computer
Series Reference Manual.) The Shift/Rotate function is
performed on the data that leaves the ALU. The function
performed in the R/S is determined by IR bits 6 through 9
as follows:

Bi
9 81t786 Function Performed In R/S
1000 Arithmetic left shift one bit
1001 Arithmetic right shift one bit
1010 Rotational left shift one bit
1011 Rotational right shift one bit
1100 Arithmetic left shift one bit, clear sign
bit 15
1101 Rotational right shift one bit with E-
register forming bit 16 (the 17th bit)
1110 Rotational left shift one bit with E-
register forming bit 16 (the 17th bit)
1111 Rotational left shift four bits
Oxxx No shift (bits 8, 7, and 6 can have any
setting)
SPECIAL BIT NO. als3|2]1]o0
SRG2 CONTENT 0 0 0 0 1

Meaning: Execute the Shift/Rotate function specified by
bits 0 1, 2 and 4 of the Instruction Register (Shift/Rotate
instruction in the second position; see HP 21MX
Computer Series Reference Manual). The Shift/Rotate
function is performed on the data that leaves the ALU.
The function performed in the R/S is determined by IR
bits 0, 1, 2 and 4.

4B2“is0 Function Performed in R/S

1000 Arithmetic left shift one bit

1001 Arithmetic right shift one bit

1010 Rotational left shift one bit

1011 Rotational right shift one bit

1100 Arithmetic left shift one bit, clear sign
bit 15

1101 Rotational right shift one bit with E-
register forming bit 16 (the 17th bit)

1110 Rotational left shift one bit with E-
register forming bit 16 (the 17th bit)

1111 Rotational left shift four bits

Oxxx No shift (bits 8, 7, and 6 can have any
setting)

4-9

Microprogramming Language

SPECIAL BIT NO. 4 31211 0

SRUN CONTENT 1 0] 1 1 1

Meaning: Set the Run Flag (remove the CPU halt
request).

SPECIAL BIT NO. 4 {31211 0

STFL CONTENT 0 1 olojoO

Meaning: Set the CPU flag.

4-4. ALU MICRO-ORDERS

ALU BIT NO. 191811716 | 15

ADD CONTENT 0 1 [/ I o) 1

Meaning: Add the data placed on the S-bus to the
contents of the L-register; the L-register contents are not
disturbed; pass the result to R/S.

Usage: The L-register must be loaded in a previous micro-
instruction.

ALU BIT NO. 19118 (17 (16| 15

AND CONTENT 1 1 0|1 1

Meaning: Logical and of L-register and S-bus (L+S); the
L-register contents are not disturbed; pass the result to
R/S.

Usage: The L-register must be loaded in a previous micro-
instruction.

ALU BIT NO. 19|18 {17 (16| 15

CMPL CONTENT | 1 {0 | 1|01

Meaning: Ones complement the L-register; pass the result
to Rotate/Shifter.

ALV BIT NO. 191817 (16| 15

CMPS CONTENT 1 o(fojo}|o

Meaning: Ones complement the data on the S-bus; pass
the result to Rotate/Shifter.

ALV BIT NO . 19|18 17|16] 15

DEC CONTENT | o | 1111 | 1

Meaning: Decrement the data on the S-bus by one; pass
the result to the Rotate/Shifter.

4-10

21MX

ALU BIT NO. 19|18 |17 |16] 15

INC CONTENT [0l o0o]|o]o] o

Meaning: Increment the data on the S-bus by one; pass
the result to the Rotate/Shifter.

ALU BIT NO. 19118117116 | 15

I0R CONTENT 1 1 1 1 0

Meaning: Logical inclusive or of L-register and S-bus
(L+8); L-register contents are not disturbed; pass result
to Rotate/Shifter.

ALU BIT NO. 19|18 | 17 }16 | 15

NAND CONTENT | 4 011 ol o

Meaning: Logical nand of L-register and S-bus (L+S); pass
result to Rotate/Shifter.

ALU BIT NO. 1918|1716 | 15

NOR CONTENT 1 ol o o] 1

Meaning: Logical nor of L-register and S-bus (L+S); pass
result to Rotate/Shifter.

ALU BIT NO. 1918|1716 | 15

NSAL CONTENT 1 0 0 1 0

Meaning: Logical and of the complement of the S-bus and
the L-register (S-L); pass result to Rotate/Shifter.

ALU BIT NO. 19{18 {17 (16| 15

NSOL CONTENT 1 1 o{o0]| o0

Meaning: Logical or of the complement of the S-bus and
the L-register (S+L); pass result to Rotate/Shifter.

ALU BIT NO. 1918|1716 15

ONE CONTENT 1 1 1 ol o

Meaning: Set all 16 bits (logical one) and pass them to the
Rotate/Shifter.

21MX

ALU BIT NO. 19|18 [17]16] 15

OP1 CONTENT o(o0ojo0]O0]|1

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S+L) plus 1

where ‘“‘+’’ means logical function “or”.

ALV BIT NO. 19|18 17|16] 15

oP2 CONTENT o(ojoOof1]o0

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S+1) plus 1

where ““+”’ means logical function “or”” and L means the
ones complement of the L-register (not L).

ALU BIT NO. 19|18 17|16 115

OP3 CONTENT ojoj1i0]0

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

S plus (S+L) plus 1

66?7

where means logical function “and’”’ and L means the
ones complement of the L-register (not L).

ALU 8IT NO. 19|18 17| 16|15

oP4 CONTENT 0ojJ]O0]l1}]01]1

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S+L) plus (S-L) plus 1
where ‘<’ means logical function ‘“and”, “‘+"’'means logical
function ‘“or”’, and L means the ones complement of the
L-register (not L).

ALU BIT NO. 1918|1716 | 15

oPs CONTENT 0]0] 1 1 1

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S°L)

6,0

where means the logical function ‘“‘and” and L means
the ones complement of the L-register (not L).

Microprogramming Language

ALU BIT NO. 19[18 [17]16 |15

oP6 CONTENT oti1 0(0} O

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

S plus (S-L)

where ‘»”” means the logical function “and”.
ALU BiITNO. |19]|18|17]|16 |15
OoP7 CONTENT 0 1 0 1 0

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S+L) plus (S-L)
where ‘“‘+’’ means log_ical function “or”’, ‘"’ means logical
function “‘and”’, and L means the ones complement of the
L-register (not L).

ALU BIT NO. 19|18 |17 {16 | 15

oP8 CONTENT o110 1]1

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(SeL) minus 1

where ‘‘+”’ means the logical function “and”.
ALV BIT NO. 19|18 17|16 |15
oP9 CONTENT 0 1 1 0 V]

Meaning: Perform the following logical function in the
ALU with the S-bus:

S plus S

ALU BIT NO. 19]|18[17| 16| 15

OP10 CONTENT 0 1 1 0 1

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S+L) plus S

where ‘“‘+’’ means the logical function ‘“‘or”.

4-11

Microprogramming Language

ALU BITNO. 191817 |16 |15

OP11 CONTENT 01 1 110

Meaning: Perform the following logical function in the
ALU with the L-register and the S-bus:

(S+L) plus S

where “+' means the logical function “or”” and L. means
the complement of the L-register (not L).

ALU BITNO. 19{18 |17 16|15

PASL CONTENT | 1| 1l 0] 1] 0

Meaning: Pass the L-register to the Rotate/Shifter.

ALU BIT NO. 19|18 |17 |16 |15

PASS CONTENT | 14 1| 1] 1] 1

Meaning: Pass the S-bus data to the Rotate/Shifter.
(Default for blank ALU field.)

ALU BIT NO. 19118 (1716 | 15

SANL CONTENT | 1] ol 1|11

Meaning: Logical and of the S-bus and the complement of
the L-register (S:L); pass the result to the Rotate/Shifter.

ALU BIT NO. 19|18 | 17|16 | 15

SONL| CONTENT | 1 [11 11 ol 1

Meaning: Logical or of the S-bus and the complement of
the L-register (S+L); pass the result to the Rotate/
Shifter.

ALU BIT NO. 19 (18 17 (16 | 16

suB CONTENT 0] 01 1 0

Meaning: Subtract the L-register from the S-bus and pass
the result to Rotate/Shifter.

ALU BIT NO. 19(18 |17 |16 | 15

XNOR CONTENT 1 1]10(0]1

Meaning: Logical exclusive nor of the L-register and the
S-bus; (L®S) and pass it to the Rotate/Shifter (¢ means
“exclusive or’’.)

ALU BIT NO. 19(18117 |16 | 15

XOR CONTENT 1 01 1 0

Meaning: Logical exclusive or of the L-register and the
S-bus (L®8S); pass the result to the Rotate/Shifter (o
means ‘‘exclusive or’’.)

4-12

21MX

ALU BIT NO. 19]|18|17|16] 15

ZERO CONTENT | 0O f 0| 0|1 1

Meaning: Pass all zeros to the Rotate/Shifter.

ALU BIT NO. 19 |18 |17 |16 | 15

OoP13 CONTENT |1 |0 | O |1 1

Meaning: Pass all zeros to the Rotate/Shifter.

4-5. STORE MICRO-ORDERS

STORE 8IT NO. g|8|7|e6]|s

A CONTENT 0l 1 ol 1 1

Meaning: Store the data on the T-bus in the A-register.

STORE BIT NO. 98| 7|65

B CONTENT | 0| 1/0 | 1] 0

Meaning: Store the data on the T-bus in the B-register.

STORE 8IT NO. 9| 8| 71le6]|s

CAB CONTENT | o | ol 0| o] 1

Meaning: Store the data on the T-bus in the A- or
B-register according to the value of IR bit 11:

IR bit 11 set means B-register

IR bit 11 clear means A-register

STORE BIT NO. 9|8l 7|65

CM CONTENT 0 1 1 0 1

Meaning: Store the data on the S-bus in the M-register, if
the IR holds any Memory Reference instruction except a
direct jump (JMP). Refer to the HP 21MX Computer
Series Reference Manual, for a description of the Memory
Reference instructions.

AAF or BAF is set as described under Usage for the M
Store micro-order, whether or not the IR holds a Memory
Reference instruction.

STORE BIT NO. 9181 7 65

CNTR CONTENT | 0| 0f 1| 0] 1

Meaning: Store the lower eight bits of the S-bus (bits 0-7)
in the Counter Register.

21MX

STORE

DSP(

‘BIT NO.

CONTENT

9

()

STORE

BIT NO.

CONTENT

Microprogramming Language

Meaning: Store the lower six bits of the S-bus in the

Display Indicator on the front panel.

Display Indicator Bit

2

0

Register Displayed

M

A

Meaning: Store the data on the S-bus in the M-register.

Usage: The ALU micro-order, INC, should also be
specified in the micro-instruction. This will activate an A-
or B-register addressable test. If bits 14 through 0 on the
T-bus equal 1 or 2, the AAF or BAF, respectively, will be
set. The M-register may be stored into immediately after

Usage: The six indicators on the front panel, labelled A, B,
M, T, P and S are lit according to the bit(s) cleared in the
Display Indicator. At power-up all bits are set until pro-
grammatically changed.

STORE BIT NO. 9|1 8| 7|6 |65

DSPL CONTENT | g (0| 1] 1]| 0

Meaning: Store the data on the S-bus in the Display
Register on the Front Panel.

STORE 81T NO. 9| 817)|6]|65

100 CONTENT | 9| 0| 1] 0] O

Meaning: Direct the S-bus onto the 1/0-bus.

Usage: This micro-order when used must be in the third
and fourth instructions (T4 and T5) after IOG Special
micro-order. When using this micro-order the S-bus is
restricted to the A/B registers or the S5-register. See sec-
tion 3-25 and the following sections for a description of I/O
microprogramming.

STORE BIT NO. 91 8| 7 6|5

IR CONTENT 0|1 0jo0] o0

Meaning: Store the data on the S-bus in the Instruction
Register. Record the type of macro-instruction stored
there in the Memory Protect hardware for use in
determining error conditions during Instruction Register
execution. See sections 3-28 and 3-34 for a description of
Interfacing With Memory Protect feature.

Usage: S-bus field must not contain a CAB micro-order.

STORE BIT NO. 91| 8 7 6 5

L CONTENT 0 0|0 1 1

Meaning: Store the data on the S-bus in the L-register
(Latch).

a WRTE Op micro-order.

STORE

NOP

BIT NO.

CONTENT

9

0

Meaning: No store operation is performed; this is the
default micro-order when the Store field is left blank.

STORE

BIT NO.

CONTENT

Meaning: Store the data on the T-bus in the P-register
(Program Counter).

STORE

PNM

BIT NO.

CONTENT

9

8

6

5

0

1

1

0

Meaning: Store the data on the T-bus in the P-register
(Program Address Register), and the data on the S-bus
into the M-register (Memory Address Register).

Usage: Useful in microprograms which perform multiword
READ operations from Main Memory, where the
P-register points to the address in Main Memory to be
read. In a single micro-instruction the microprogram can
store P into the M-register via the S-bus and then
increment P via the T-bus. An example of such an
application is the following:

READ - - INC PNM P

The A- or B-register addressable test is activated. See
Usage under M micro-order, above.

STORE BIT NO. 9 8 7 6 5

S CONTENT 1 1 1 1 1

Meaning: Store the data on the T-bus in the S-register.
4-13

Microprogramming Language

21MX

STORE STORE

BIT NO. 9|1 8| 7]|6]|65

THRU

S-BUS BIT NO. 14 (131211 |10

s1 S12 CONTENT 1 n n ni|n

B CONTENT 0 1 0 1 0

nnnn is binary representation of decimal number 0 + 11

Meaning: Store the data on the T-bus in the indicated
Scratch Pad Register S1 to S12.

STORE| BIT NO. 9|1 8| 716]|5

T CONTENT [0o0|lolo 1] o

Meaning: Store the data on the S-bus in the T-register
(Memory Data Register).

Usage: This micro-order should occur concurrently when a
WRTE micro-order is used. The T-register is internal to
the Memory System. It must not be used as a working
register.

STORE BIT NO. 91 8 716|656

TAB CONTENT olo{olol|o

Meaning: Store the data on the T-bus in the A-register if
the AAF (A addressable Flag) is set; store the data on the
T-bus in the B-register if the BAF (B addressable Flag) is
set; store the data on the S-bus into the T-register
(Memory Data Register) if neither AAF nor BAF is set.

Usage: Same as T micro-order.

STORE BIT NO. 9| 8 7|16 |65

X CONTENT 1 1 1 0 0

Meaning: Store the data on the T-bus in the X-register.

STORE | BIT NO. olsl|7]6ls

Y CONTENT 1 1 1 0 1

Meaning: Store the data on the T-bus in the Y-register.

4-6. S-BUS MICRO-ORDERS

S-BUS BIT NO. 14 (13| 12|11 {10

A CONTENT 0ol 1 0 1 1

Meaning: Direct the data in the A-register onto the S-bus.

S-BUS BIT NO. 141312 11|10

ADR CONTENT 0| 1 o0} 0

Meaning: An address is formed on the S-bus using IR bits
0-9 and M-register bits 10-14; if IR bit 10 is clear, bits
10-14 of the address formed on the S-bus are clear. Bit 15 is
always clear. IR bit 10 is the zero page/current page flag.

4-14

Meaning: Direct the contents of the B-register onto the
S-bus.

S-BUS BIT NO. 14131121110

CAB CONTENT | ol 0| 0} 0] 1

Meaning: Direct the contents of the A- or B-register onto
the S-bus according to the value of IR bit 11:

IR bit 11 set means B-register
IR bit 11 clear means A-register

S-BUS BIT NO. 14113112]11]10

CIR CONTENT | gl 0ol o | 1| 1

Meaning: At I/0 time T6 place the contents of the Central
Interrupt Register onto the S-bus and generate an IAK
(Interrupt Acknowledge) signal to the I/0 device. (See
section 3-33 for CIR description in relation to Interrupt
Handling).

Usage: This micro-order must be used only after detec-
tion of an I/O interrupt to determine the select code of the
interrupting device and to acknowledge that the interrupt
is being serviced. Always use CIR in conjunction with a
READ or WRTE micro-order, even if the location refer-
enced is not used.

S-BUS BIT NO. 14131121110

CNTR CONTENT ol o 1 ol 1

Meaning: Direct the contents of the Counter Register onto
the S-bus. The 8 bit Counter Register is placed onto the
low 8 bits of the S-bus; the upper 8 bits are set to ones.

S-BUS BIT NO. 14 (13|12 |11 |10

DSPI CONTENT 0| 0] 1 1 1

Meaning: Direct the six bits of the display Indicator from
the Front Panel to the S-bus. The upper 10 bits of the
S-bus are set to ones.

Usage: See DSPI Store field definition for Display
Indicator bit significance.

S-BUS BIT NO. 1413|1211]10

DSPL CONTENT | o 011 1 0

Meaning: Direct the contents of the Front Panel Display
Register onto the S-bus.

21MX

S-BUS BIT NO. 14113121110

101 CONTENT | O V] 1 0|O

Meaning: Direct the I/0 bus onto the S-bus. (See section
3-25, Microprogramming Input and Output Functions.)

Usage: This is used to transfer data from an I/0 device to
the S-bus. When not in use, the I/0 bus is all zeros.
However, do not try to use the I/0 bus for a source of zero
data, since it is used by the Dual Channel Port Controller
at indeterminate times.

S-BUS BIT NO. 14 (1311211]10

LDR CONTENT [0 [11)]0} O

Meaning: Place one 4-bit-byte from a Loader ROM on the
S-bus. The 4-bit-byte address is contained in the Counter
Register. Determination of which Loader ROM, of the four
Loader ROMs available, is specified by bits 15 and 14 in
the Instruction Register.

INSTRUCTION REGISTER
13[12[0] o8] 7]6]s[a]3]2]1T0

15(1

nin

a

———

LH Select Loader ROM nn, where nn is between binary 00 and 11

COUNTER REGISTER ROM nn
716] 5 [h I 3 I 2' 1 [0 01123 Octal addresses range
LOADED ROM ADDRESS a 4|s|6|7| fom0Ot377
Each addressed location
10(11[12]13 contains a 4-bit-byte
\\ 1 of data
L L
—[]

rrre was contents of
ROM nn, address a

S-BUS

Usage: See sample microprogram in section 3-41 for an
illustration of the use of the LDR micro-order.

S-BUS BIT NO. 1411312 |11]10

M CONTENT 0|1 0 0 1

Meaning: Direct the 15 bit contents of the M-register onto
the S-bus. Bit 15 of the S-bus is cleared.

S-BUS BIT NO. 14 (13 (1211]10

NOP CONTENT 0 1 1 1 1

Meaning: The S-bus holds all ones.

Usage: This is the default micro-order when the S-bus field
is left blank.

Microprogramming Language

S-BUS BIT NO. 113121110

P CONTENT 1 1 1 1 0

Meaning: Direct the contents of the P-register onto the
S-bus.

S-BUS BIT NO. 1413|1211 }10

S CONTENT 1 1 1 1 1

Meaning: Place the contents of the S-register onto the
S-bus.

S-BUS S-BUS BIT NO. 14113 (12|11 |10

S1 THRU| 8§12 CONTENT 1 n|n|ln|n

nnnn is binary representation of decimal numbers 0 to 11

Meaning: Place the contents of the indicated Scratch Pad
Register S1 to S12 onto the S-bus.

S-BUS BIT NO. 14 (13]12]111 |10

T CONTENT | o 0 0 1 0

Meaning: Direct the contents of the T-register (Memory
Data Register) onto the S-bus.

Usage: Data in the T-register that resulted from a READ
operation must be removed within two micro-instructions
afer the READ or the Dual Channel Port Controller could
alter the data.

S-BUS BIT NO. 1411312111 |10

TAB CONTENT | 0| © 0} 0 0

Meaning: Direct the contents of the T-register (Memory
Data Register) onto the S-bus if neither AAF (A
addressable Flag) nor the BAF (B addressable Flag) is
set; read the A-register onto the S-bus, if the AAF is set;
read the B-register onto the S-bus if the BAF is set.

Usage: See T-register Usage description.

S-BUS BIT NO. 14113 (12|11 |10

X CONTENT 1 1 1 oo

Meaning: Direct the contents of the X-register onto the
S-bus.

S-BUS BIT NO. 14113112111 (10

Y CONTENT | 1 1 1 0ol 1

Meaning: Direct the contents of the Y-register onto the
S-bus.

4-15

Microprogramming Language

4-7

. MICROPROGRAMMING
INFORMATION FOR DYNAMIC
MAPPING

This section will serve to introduce the micro-
programmer/hardware designer to the handicaps and
versatilities of the MEM when controlled by the CPU or
other intelligent system organ.

Use

1.

For

4-16

these guidelines:

There are three signals generated directly from
control store used to control the MEM. In the special
field, ‘MESP’ generates MESP. In the store field,
‘MEU’ generates MEST. In the S-bus field, MEU’
generates MEEN.

Other signals which directly affect the MEM are
MPCK, READ, TEN, IAK (CIREN).

Table 4-1 indicates what control line signal (Q,— Q)
is enabled by each combination of MEM micro-orders.
The three micro-orders are used in a one-of-eight
command structure as opposed to have three specific
functions.

Table 4-2 lists all the functions performed by each of
the MEM control signals. These functions are
performed only during the microcycle during which
they are asserted with the exception of Q4 port 1.

A good feel for the microcode control can be gained by
examination of the supplied routines (Appendix E).

additional control:

When issuing a Qs command, further information is
needed to indicate which utility register you wish to
store information into.

Since the information has been presented on the S-bus
and none of the register require more than 11 bits of
information several S-bus bits are reserved for
determination of which register is activated.

Bit 14 indicates that the State Registers are to be
loaded (i.e., enable/disable MEM; select System/User).
Bits 9, 8 contain the status information.

Bit 13 indicates that the Address Register is to be
loaded. Bits 7-0 contain the address information.

If a Q4 has preceded this step by exactly one
microcycle (i.e., Qi Qs in a row), then bit 14 will
indicate that the Fence Register is to be loaded. Bits
10-0 contain the fence information.

Bit 15 is used to override the Protected Mode, thus
allowing these registers (specifically the State
Registers) to be altered under microprogram control
at any time.

21MX

Table 4-1. MEM Signals Invoked by Microcode

MEM
LABEL OP SPEC ALU STORE S-BUS | SIGNAL
@ @ MESP @ MEU MEU Q,

@ @ MESP @ MEU $ Q,

@ @ MESP @ $ MEU .

@ @ MESP @ $ $.

@ @ - @ MEU MEU .

@ @ . @ MEU $
@ @ - @ $ MEU
@ @ * @ $ $ Q

@ — Any legal code
* — Any legal code except MESP
$ — Any legal code except MEU

Table 4-2. MEM Microcode Control Signals

Qo 1. Enable SYS/USR map to S-bus per MZAR bit 5: 0

for SYS, 1 for USR

2. Store S-bus into PORTA/PORTB map per MEAR
bit 7: 0 for PORTA, 1 for PORT B

3. Relative map address specified by MEAR bits

40

Q, 1. Store S-bus into maps per MEAR bits 6,5: 00-
=8YS, 01=USR, 10=PORTA, 11=PORTB
2. Relative map address specified by MEAR bits

4-0

Q, 1. Enable maps to S-bus per MEAR bits 6,5: 00-
=S8YS, 01=USR, 10=PORTA, 11=PORTB

2. S-bus bits 13-10 are always low

3. Relative map address specified by MEAR bits

40

Q, 1. Select opposite program map
2. Can generate DMAFRZ to CPU

Q, 1. Set “Status Command” flag through next micro-
processor cycle

2. Reset to currently selected map (nullifies Q)

Qs 1. Store S-bus into MEM (other than maps)

a) MEM State Register = S-bus bits 9,8: bit 9 =
0 = diable MEM, 1 = enable MEM; bit8 = 0=
select SYS map, 1 = select USR map.

b) MEM Fence Register = S-bus bits 10-0

c) MEM Address Register = S-bus bits 6-0

2. Register selected by S-bus bits 15-13: 000 =
Fence Register, 001 = Address Register, 010 =
State Register. If Base Page Fence is to be
selected, Q; must be immediately preceded by

Q.
Qg 1. Enable MEM data (other than maps) onto S-bus
a) Normally enables MEM Violation Register
b) If preceded by Q,, MEM Status Register
enabled
Q 1. No MEM microcode specified (NOP state for

MEM)

Notes: MEAR is the MEM Address Register
MAP bits 9-0 are transferred to/from S-bus bits 9-0
MAP bits 11,10 are transferred to/from S-bus bits
15,14

21MX

4-8. WORD TYPE 2 — IMMEDIATE

Microprogramming Language

DATA
Charactor
Column:
1 10 15 20 25 30 40 80
Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
* or LABEL “IMM SPECIAL MODIFIER STORE OPERAND COMMENTS
Figure 4-3. Word Type 2 Micro-assembler
Mnemonic Format
Bit No. 23(22121120|19|18|17|16|15] 14|13 12| 11| 10| 9 8 7 6 5 4 3 2 1 0
) T IMM™
Fields op CODE OPERAND STORE SPECIAL
R
MODIFIER

Figure 4-4. Word Type 2 Binary Format

There are five micro-order classifications in Word Type 2:

e “IMM” — OP Code specifying Word Type 2.

e SPECIAL — Special operations and modifiers.

¢ MODIFIER — A special modifier for the Immediate
Operation.

o STORE — Destination of the data.

¢ OPERAND — Binary data that is to be placed on the

S-bus.

The STORE and SPECIAL micro-orders applicable to
Word Type 2 are exactly the same as those defined for
Word Type 1. Consequently, only the other three micro-
order groups are defined in the following sections. The
“IMM” and MODIFIER micro-order groups are defined by
the mnemonic, by its binary equivalent, and finally, by
the meaning. When using the micro-order to store data in

4-10.

MODIFIER MICRO-ORDERS (BITS 19 AND

18 OF THE MICRO-INSTRUCTION)

Bit 19 Set:

Bit 19 Clear:

Bit 18 Set:

Bit 18 Clear:

specifies complement the S-bus data in the
ALU.

specifies pass the S-bus data through the
ALU.

specifies OPERAND goes in bits 7-0 of the
S-bus.

specifies OPERAND goes in bits 15-8 of
the S-bus.

the M-register, the previous micro-instruction must not FIER

contain T or TAB in the S-bus field. MODIFIE BITNO. |19 |18

4-9. “IMM” MICRO-ORDER CMHI CONTENT (1 | 0

“tMM*” BIT NO. 23| 22| 21|20

MM CONTENT | 1] 11 11 o i\(/)[ﬁg:;;gg:. The 16 bits received by the S-bus consist of the
Meaning: Place 16 bits onto the S-bus consisting of the 8 Bits 15-8 = OPERAND

bit binary OPERAND and another 8 bits of all ones. Bits 7-0 = all ones

Determination of which 8 bits of the S-bus receive the
OPERAND and which 8 bits receive all ones is made by
the MODIFIER.

The S-bus is then complemented as it passes through the
ALU.

4-17

Microprogramming Language

BIT NO. 1511413 | 12111 10| 9
S-Bus
CONTENT OPERAND
BIT NO. 15| 1413|112} 11| 10| 9
Out of ALU
CONTENT OPERAND Complemented

MODIFIER BITNO. |19 18

CMLO CONTENT | 1 1

Meaning: The 16 bits received by the S-bus consist of the
following:

Bits 15-8 = all ones
Bits 7-0 = OPERAND

The S-bus is then complemented as it passes through the
ALU.

7(6|56}|4]3}]2]1 0

OPERAND

7]e|s[ala]2][1]0

BIT NO. 15|14 (13|12 |11 | 10| 9

S-Bus
CONTENT 1 1 1 1 1 1 1
BIT NO. 15|14 13|12 |11| 10| 9

Out of ALU
CONTENT | O| O{j O] OjO0O]| O] O

OPERAND Complemented

MODIFIER BITNO. |19 18

HIGH CONTENT | 0| O

Meaning: The 16 bits received by the S-bus consist of the
following:

" Bits 15-8 = OPERAND
Bits 7-0 = all ones

The S-bus is then passed through the ALU without
modification.

S-Bus and

BIT NO. 15|14 |13 |12 (11| 10| 9
Out of ALU

CONTENT OPERAND

4-18

21MX

21MX Microprogramming Language

MODIFIER BIT NO. 19 | 18

Low CONTENT | 0. | 1

Meaning: The 16 bits received by the S-bus consist of the

following:
Bits 15-8 = all ones
Bits 7-0 = OPERAND
The S-bus is then passed through the ALU without
modification.
BIT NO. 15|14 [13|12|11|10| 0|8 7| 6|5]|a[3]2|1]0
S-Bus and .
Outof ALU | content | 1|1 {1 |1 1|1]1]n OPERAND

4-11. OPERAND MICRO-ORDER

OPERAND BITNO. |19(18|17| 16|15 |14 13|12 |11 10

Integer CONTENT Binary Integer Equivalent

The Integer can be an octal number or decimal number:
e Decimal number in range 0 to 255.

e Octal number in range 0 to 377, followed by ‘“B”.
Examples:

117B, 117, 198, 5, 10B

4-12. WORD TYPE 3 — CONDITIONAL JUMP

Charactor
Column ;
1 10 15 20 25 30 40 80
Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
* or LABEL “JMP ‘“CNDX ” CONDITION JUMP SENSE OPERAND COMMENTS

Figure 4-5. Word Type 3 Micro-assembler Mnemonic Format

BitNo. { 23] 22| 21| 20}19[18|17 | 1615|114 |13{12|(11|10| 9| 8| 7| 6 | 5| 43| 2| 1|0

. T ONEX"
Fields op CODE CONDITION OPERAND SPECIAL CODE
——
JUMP
SENSE

Figure 4-6. Word Type 3 Binary Format
' 4-19

Microprogramming Language

There are five micro-order classifications in Word Type 3:

e “JMP” — Op Code used in conjunction with “CNDX"
specifies Word Type 3, a conditional jump.

e “CNDX” — SPECIAL Code specifying Word Type 3.

e CONDITION — Condition that must be satisfied
before jump is executed.

e JUMP SENSE — Optional code to invert the jump
condition.

e OPERAND — Target address of jump.
All micro-order groups, except the OPERAND, are

defined by the mnemonic, its binary equivalent, meaning,
and, where necessary, by conventions in their use.

4-13. “JMP” MICRO-ORDER
“JMP” BIT NO. 2322|2120
P CONTENT [1 |1} 0]1

Meaning: Used in conjunction with the SPECIAL Code
“CNDX", the CONDITION code specifies the condition
under which a jump to the address specified in the
OPERAND will take place. If the JUMP SENSE code
“RJS” is specified, the CONDITION code specifies the
condition under which no jump will take place.

4-14. *“CNDX” MICRO-ORDER
“CNDX” | BIT NO. af{3]21]o0
CNDX CONTENT | 1 {1 /0]0]|1

Meaning: Used in conjunction with the Op code “JMP”,
this micro-order specifies a conditional jump and Word
Type 3.

4-15. CONDITION MICRO-ORDERS

The ALU and T-bus condition flags are set after each
Word Type 1 or 2 micro-instruction. They are not changed
during JMP or JSB micro-instructions (Word Types 3 and
4). Thus, several different jump tests can be made without
losing the flag results.

CONDITION BIT NO. 191817 |16 | 15

ALO CONTENT 0 o| 0| 1 1

Meaning: Bit 0 of the last output from the ALU was set
(tested before the Rotate/Shifter) by the last Word Type 1
or 2 micro-instruction.

4-20

CONDITION

AL15

BIT NO.

CONTENT

19

18

17

16

15

0

0

1

0

0

21MX

Meaning: Bit 15 of the last output from the ALU was set
(tested before the Rotate/Shifter) by the last Word Type 1
or 2 micro-instruction.

CONDITION

ASGN

BIT NO.

CONTENT

19

18

17

16

15

Meaning: Alter/skip macro-instruction condition is not

satisfied.

CONDITION

CNT4

BIT NO.

CONTENT

19

18

17

16

15

Meaning: The right (least significant) 4 bits of the Counter
Register are all ones.

CONDITION

CNTS8

BIT NO .

CONTENT

19

18

17

16

15

Meaning: All eight bits of the Counter Register are ones.

CONDITION

couT

BIT NO.

CONTENT

19

18

17

16

15

0

Meaning: The ALU Carry Out Flag bit was set by the last
ALU operation (tested before the Rotate/Shifter) of the
last Word Type 1 or 2 micro-instruction.

CONDITION

E

BIT NO.

CONTENT

Meaning: The Extend Register bit is set.

CONDITION

FLAG

BIT NO.

CONTENT

Meaning: The CPU FLAG bit is set.

CONDITION

FPSP

BIT NO.

CONTENT

19 (18|17 |16] 15
0] 1 oo 1
19(18| 17116 | 15
01 0|00
19|18 |17)16 (15
o| 0 1 1 1

Meaning: A special signal is present issued by certain non-
standard CPU Front Panels.

21MX

CONDITION BIT NO. 19|18 |17 |16 | 15

INT CONTENT | 1 |10l 1] o0

Meaning: An Interrupt is pending.

CONDITION BIT NO. 1911817 |16 |15

IR2 CONTENT 01 1 111

Meaning: Instruction Register bit 2 is set.

CONDITION BIT NO. 1918 17 (16| 15

NDEC CONTENT 1 0| 0] 1 1

Meaning: The “DEC M” (Decrement M-register) button
on the Front Panel was not actuated.

CONDITION BIT NO. 1911817 |16 | 15

NHO! CONTENT 01 1 cf 0

Meaning: The RUN/HALT switch on the Front Panel is
set to “Run’’ and there is no interrupt pending (i.e. no halt
and no interrupt).

Usage: This micro-order is recommended for use in long
microprograms. (85 microseconds or longer is the criterion
used by Hewlett-Packard produced microprograms.) This
is necessary since microprograms cannot be interrupted. A
pending interrupt or halt condition is not detected unless a
specific test is made for them.

CONDITION| g7 NO . 19({18|17 16|15

NINC CONTENT 1 00| 1 0

Meaning: The “INC M”’ (Increment M-register) button on
the Front Panel was not actuated.

CONDITION BIT NO. 19|18 (17|16 | 15

NLDR CONTENT 1 0o|lo0j|0 0

Meaning: The “IBL” (loader) button on the Front Panel
was not actuated.

CONDITION BIT NO. 19 (18 |17 | 16 | 15

NLT CONTENT [1 1l o]l 1] o] 1

Meaning: The “<’* REGISTER SELECT LEFT button
on the Front Panel was not actuated.

| NMLS CONTENT ofo]l1loj1

Microprogramming Language

CONDITION BIT NO. 19|18 17|16 | 15

Meaning: Memory was not lost as a result of the last
power down or power failure.

CONDITION BIT NO. 1918 |17 |16 | 15

NOP CONTENT 1 1 1 0 1

Meaning: No condition test is made; no jump occurs.

Usage: This is the default micro-order if none is specified
in the condition field.

CONDITION BIT NO. 19|18 (17116 | 15

NRST CONTENT 1o 1| 1]1

Meaning: The DISPLAY button on the Front Panel was
not actuated.

CONDITION BIT NO. 19118 |17 |16 | 15

NRT CONTENT | 91 Jo|1]|]0]| 0

Meaning: The “ »” REGISTER SELECT RIGHT button
on Front Panel was not selected.

CONDITION BIT NO. 19118} 17|16 | 15

NSFP CONTENT |1 [1{0 |0 |1

Meaning: A standard Front Panel is not installed on the
CPU.

CONDITION BIT NO. 1918 | 17 (16 | 15

NSNG CONTENT | 1 [0 20 O I I I

Meaning: The INSTR STEP (Instruction Step) button on
the Front Panel was not actuated.

CONDITION BIT NO . 19|18} 17|16 | 15

NSTB CONTENT |1 |1 [o0of[o0foO

Meaning: None of the following Front Panel buttons were
actuated:

INSTR STEP (Instruction Step)
“—” REGISTER SELECT RIGHT
“«” REGISTER SELECT LEFT
DISPLAY

IBL (Binary Loader)

INC M (Increment M-register)
DEC M (Decrement M-register)
STORE

RUN

PRESET

4-21

Microprogramming Language

CONDITION BIT NO. 19|18 [17|16 |15

NSTR CONTENT |1 [0 | 1 1 0

Meaning: The STORE button on the Front Panel was not
actuated.

CONDITION BIT NO. 19 (18117 |16 | 15

ONES CONTENT (0o | o001

Meaning: All 16 bits of the last output from the ALU were
set (tested before Rotate/Shifter) as a result of the last
Word Type 1 or 2 micro-instruction.

CONDITION BIT NO. 19(18 (17 |16 | 15

OVFL CONTENT (o1 |0 (|10

Meaning: The Overflow Register bit is set.

CONDITION BIT NO. 19 |18 117)16] 15

RUN CONTENT | 0! 1|01]1

Meaning: The CPU is in RUN mode (the Front Panel
RUN flag is set).

CONDITION BIT NO. 191817 |16 | 15

Meaning: The four position STANDBY/OPERATE/
LOCK/R switch on the Front Panel is not in the LOCK
position.

CONDITION BIT NO. 19|18 (17|16 | 15

SKPE CONTENT | o0 |1 | 1| 0f1

Meaning: The I/0 signal SFS is present (I/0 time is T3 to
T5) and the addressed 1/0 device Flag is set or the 1/0
signal SFC is present (I/O time is T3 to T5) and the
addressed I/0 device Flag is clear.

Usage: See section 3-25, Microprogramming Input and
Output Functions, for the use of the micro-order SKPF.

CONDITION BIT NO. 1918 (17 |16 | 15

SRGL CONTENT 1 1 0 1 1

Meaning: Bit 3 of the Instruction Register is set and bit 0
of the last output from the ALU was cleared as a result of
the last Word Type 1 or 2 micro-instruction.

Usage: This micro-order is used by the Basic Instruction
Set microprogram which implements the SLA and SLB
macro-instructions of the Shift/rotate Group.

CONDITION BIT NO. 1911817 | 16| 15

TBZ CONTENT | 0| 0| 0j 0] 0

Meaning: The last output from the Rotate/Shifter onto
the T-bus was equal to zero as a result of the last Word
Type 1 or 2 micro-instruction.

4-22

21MX

4-16. JUMP SENSE MICRO-ORDER

JUMP SENSE BIT NO. 14

RJS CONTENT 0

Meaning: Perform the jump, if the jump condition is not
met. The CONDITION micro-order specifies the condition
under which a jump can take place; the RJS micro-order in
effect reverses the sense of the jump. For example, if a
conditional jump is specified if the Flag bit is set (jump if
Flag bit set), the RJS micro-order will reverse the
condition so that the jump occurs if the Flag bit is not set.

4-17. OPERAND MICRO-ORDER

OPERAND

An Address
BIT NO. 13|12]11|10| 9| 8| 7| 6| 5
CONTENT Binary Address Equivalent

The address can be an octal, decimal or computed number:
Decimal number, d, in the range 0 to 511

Octal number, kB, in the range 0B to 777B, where the
B signifies octal.

Computed number, ¢, which is within the decimal or
octal range, according to whether it is computed from
octal or decimal values, of the form:

a. *+kB f. LABEL-kB
b. *—kB g. LABEL+d

c. *+d h. LABEL-d

d. *-d i. LABEL

e. LABEL+kB

where * means ‘“‘this address’” and LABEL means a
micro-instruction or pseudo-instruction label that is
defined elsewhere in the microprogram.

The target address of the jump is not relative and must be
within the current 1000 octal locations (two modules). The
complete absolute address must be specified. For example,
if a conditional jump micro-instruction is within Control
Store addresses 3000 and 3777, no target address may be
outside the range 3000 to 3777. A target address of 3377B
would initiate a jump to the octal address 3377.

Examples:

1005, 2632, 2632B, START, START -11B, END-11

21MX

Microprogramming Language

4-18. WORD TYPE 4 — UNCONDITIONAL JUMP

Character Column:

1 10 15 20 25 30 40 80
A
Fields: Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
Content: | *or LABEL | “JMP” or “JSB" Mg},’,":':',’m (blank) (blank) OPERAND COMMENTS
Figure 4-7. Word Type 4 Micro-assembler Mnemonic Format
BitNo: |23(22(121|20{19 18|17 |16 |15 (14|13 |12 |11|10| 9 8| 7|6 5| 4 312 1 0
) “ JMP’’ or . JUMP
Fields: “JSB” Op Code (zero) binary OPERAND MODIFIER
Figure 4-8. Word Type 4 Binary Format
Word Type 4 consists of three micro-order classifications: 4-20. JUMP MODIFIER MICRO-ORDERS
e “JMP” or “JSB” Operation, code wused in ;
y BIT NO.
conjunction with the JUMP MODIFIER, specifies JUMP MODIFIER al3p2jr]eo
Word Type 4, an unconditional jump or subroutine |OFF CONTENT [o| 0o (0[O0 O
jump.
e JUMP MODIFIER — Specifies modification to the ~ Meaning: Disable recognition of normal interrupts (does
. not disable memory protect, parity, or power fail
OPERAND jump address. . Ly : oo
interrupts). Perform an unconditional jump. No modifi-
e OPERAND — Target address of jump, prior to any cation is made to the jump OPERAND.

modification.

Micro-orders, except the OPERAND, are defined by the
mnemonic, binary equivalent, meaning, and, where
necessary, by conventions in their use.

4-19. “JMP” AND “JSB” MICRO-ORDERS
“JMP”" or “JSB” BIT NO. 23| 222120
JMP CONTENT | 1 | 1|0 | 1

Meaning: Jump unconditionally to the address specified in
the OPERAND, modified according to the JUMP
MODIFIER micro-order.

“JMP"" or *JSB’’ BIT NO. 2322 | 21

JsB CONTENT 1 i

Meaning: Perform a subroutine jump unconditionally to
the address specified in the OPERAND, modified
according to the JUMP MODIFIER micro-order. The
return address is stored in the Save register and recalled
by the RTN micro-order (see section 4-3, SPECIAL
Micro-orders for RTN definition).

JUMP MODIFIER BIT NO.

CONTENT 1

10G

Meaning: Freeze the CPU until time period T2. Execute
the I/0 function according to the base set I/0 macro-
instruction that is in the Instruction Register. Perform the
JMP or JSB modifying OPERAND bits 2 and 3 according
to the I/0 instruction jump table (bits 6, 7, and 8 of the
I/0 macro-instruction in the Instruction Register actually
determine the OPERAND address modification):

OPERAND
IR Contains IR Bits Bits 3 & 2
1/0 Macro-instruction 876 Replaced By:
MIA or MIB 100 11
LIA or LIB 101 10
OTA or OTB 110 01
HLT 000 00
CLO or CLF 001 00
STO or STF 001 00
SFC or SOC 010 00
SFS or SOS 011 00
STC or CLC 111 00

See section 3-25 and those following for a more complete
description of the use of the IOG micro-order.

4-23

Microprogramming Language

JUMP MODIFIER BIT NO. 41 3|21 0

JEAU CONTENT | 1 J 1)1} 1] 1

Meaning: Enable the EAU jump table. According to the
particular EAU macro-instruction held in the Instruction
Register, the least significant three bits (0-2) of the
OPERAND are replaced by EAU jump table bits (bits 4-9
and 11 of the Instruction Register actually determine the
OPERAND address modification):

EAU Three LSB’s
Macro-instruction of Address
RRR 000
ASR 001
LSR 010
(not used) 011
RRL 100
ASL 101
LSL 110
MPY 111
JUMP MODIFIER BIT NO. 4q 3 2 1 0
Jio CONTENT | 1 (1[0 |10

Meaning: Perform the JMP or JSB modifying OPERAND
bits 2 and 3 according to the I/0 instruction jump table
(bits 6, 7, and 8 of the I/O macro-instruction in the
Instruction Register actually determine the OPERAND
address modification):

OPERAND
IR Contains IR Bits Bits 3 & 2
I/0 Macro-instruction 876 Replaced By:
MIA or MIB 100 11
LIA or LIB 101 10
OTA or OTB 110 01
HLT 000 00
CLO or CLF 001 00
STO or STF 001 00
SFC or SOC 010 00
SFS or SOS 011 00
STC or CLC 111 00

4-24

21MX

JUMP MODIFIER BIT NO. 41 3|12 /110

JTAB CONTENT | ¢ 1| 0] 1]1

Meaning: Perform a jump to a location within the Basic
Instruction Set microprogram based on the eight most
significant bits of the Instruction Register. This is
accomplished via a table look up of the address in the Main
Jump Table for the basic instruction set. This micro-order
is executed independently of word types; hence JMP or
JSB need not be specified.

JUMP MODIFIER BIT NO. 4 3121 0

J30 CONTENT 1 1 1 0 1

Meaning: Replace the four Least Significant Bits of the
OPERAND with bits 3 through 0 of the Instruction
Register.

JUMP MODIFIER BIT NO. 4 3 2|1 0

J74 CONTENT | 4 111 ol o0

Meaning: Replace the four Least Significant Bits of the
OPERAND with bits 7 through 4 of the Instruction
Register.

JUMP MODIFIER BIT NO. al3l2111]o0

RTN CONTENT 1 1 1 1 0

Meaning: Return to the address stored in the Save
Register as a result of a subroutine jump (JSB); if the
Save Register is equal to zero (no subroutine is active),
return to address 0 of Control Store to initiate the reading
of the next macro-instruction from Main Memory.

JUMP MODIFIER BIT NO. a4 3 2 1 0

STFL CONTENT j 0 | 1 ojof|o

Meaning: Set the CPU Flag and then perform the JMP or
JSB to the OPERAND address. No modification is made
to the OPERAND address.

JUMP MODIFIER BIT NO. 4 3 2 1 0

UNCD CONTENT | 1 1 0 0] 0

Meaning: Perform the JMP or JSB to the OPERAND
address. No modification is made to the OPERAND
address.

Usage: This is the default micro-order if no JUMP
MODIFIER is specified.

21MX

4-21. THE OPERAND MICRO-ORDER

OPERAND

An Address
BIT NO. 16| 15| o o ¢ o o o o o @ 61| 5
CONTENT Binary Address Equivalent

The ADDRESS can be a decimal, octal or computed
number:

Decimal number, d, in the range 0 to 4095

Octal number, kB, in the range 0B to 7777B where B
signifies octal

Computed number, ¢, which is within the decimal or
octal range, according to whether it is computed from
octal or decimal values, of the form:

*+kB

*—kB

*+d

*—d
LABEL-+kB
LABEL-kB
LABEL+d
LABEL-d
LABEL

PR e pe oo

.

where * means ‘“‘this address’” and LABEL means a
micro-instruction label that is defined elsewhere in the
microprogram.

Examples:

*+11B, *+9, HERE+5, START

Microprogramming Language

The DEF statement creates a 24 bit micro-instruction
word in ROM the contents of which is a 12 bit binary
address defined by “ADDRESS” in the micro-assembler
input record (Field 6). The binary address is associated in
the microprogram with the optional LABEL, if defined.

The ADDRESS can be a decimal, octal or computed
number:

Decimal number, d, in the range 0 to 4095

Octal number, kB, in the range 0B to 7777B, where B
signifies octal

Computed number, ¢, which is within the decimal or
octal range, according to whether it is computed from
octal or decimal values, of the form:

*+kB
*—kB

*+d

*—d
LABEL+kB
LABEL-kB
LABEL+d
LABEL-d
LABEL

PR e pe T

-

where * means ‘‘this address” and LABEL means a
micro-instruction label that is defined elsewhere in the
microprogram,

Examples of DEF statements:

Character
4-22. PSEUDO INSTRUCTIONS Column:
1 10 30
There are five pseudo instructions recognized by the micro-
assembler: DEF, EQU, ONES, SKP, and ZEROES. Fields: Field 1 Field 2 Field 6
DEF SRF+150
Content: AD1 DEF ASGNOP
4-23. DEF DEF 416B
Character
Column:
1 10 15 20 25 30 40 80
L 1
Fields: Field 1 Field 2 Fields 3-5 Fleld 6 Field 7
LABEL
Content: {optional) “DEF” (blank) ADDRESS COMMENTS

4-25

Microprogramming Language

21MX

4-24. EQU

Character

Column:

1 10 15 20 25 30
Fields: Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
Content: LABEL “EQU"” (blank) (blank) {blank) ADDRESS COMMENTS
The EQU statement associates the stated LABEL with a f. LABEL-kB
12 bit ad(i:ress. This‘statement does not result in an g. LABEL+d
address being stored in ROM. The ADDRESS can be a
decimal, octal or computed number: h. LABEL-d
i. LABEL

Decimal number, d, in the range 0 to 4095

Octal number, kB, in the range 0B to 7777B, where B
signifies octal

Computed number, ¢, which is within the decimal or
octal range, according to whether it is computed from

where * means ‘‘this address” and LABEL means a
micro-instruction label that is defined in the micro-
program before this statement.

Examples of EQU statements:

octal or decimal values, of the form: Character
Column:
a. *+kB 1 10 30
b. *-k
B Fields: Field 1 Field 2 Field 6
c. *+d
HALT EQU 4008
d. *-d Content: RELO EQU 60008
e. LABEL-+kB START EQU RELO
4-25. ONES
Character
Column:
1 10 15 20 25 30
Fields: Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
Content: LABEL “ONES” (blank) (blank) (blank) (blank) COMMENTS

The ONES statement creates a 24 bit micro-instruction
word in ROM consisting of ones in all 24 bits.

Example of a ONES statement:

4-26

Character
Column:
1 10
Fields: Field 1 Field 2
Content: NEG 1 ONES

21MX

4-26. SKP
Character
Column:
1 10 15 20 25 80
A
Fields: Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
Content: (blank) “SKP"’ {blank) (blank) (blank) (blank) COMMENTS
The SKP statement commands the micro-assembler to
skip to the Top of the next page (TOP OF FORM
command) during the listing of the microprogram. No
locations in ROM are used, when this statement is
specified.
Example of a SKP statement:
Character
Column:
1 10
Fields: Field 1 Field 2
Content: SKP
4-27. ZEROES
Character
Column:
1 10 15 20 25 80
Fields: Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
Content: LABEL “ZEROES” (blank) (blank) (blank) (blank) COMMENTS

Microprogramming Language

The ZEROES statement creates a 24 bit micro-instruction
word in ROM consisting of zeroes in all 24 bits.

Example of a ZEROES statement:

Character
Column:
1 10 40
Fields: Field 1 Field 2 /\/ Field 7
Content: NULL ZEROES NO BITS

4-27

MICROPROGRAMMING SOFTWARE

SECTION

vV

Two sets of programs are provided to assemble, debug,
and implement microprograms. One set operates in the
BCS (Basic Control System) environment and the other
operates in the DOS-III (Disc Operating System)
environment.

5-1. MICROPROGRAMMING SOFT-
WARE SUMMARY

The following microprogramming software is provided:

e A two-pass micro-assembler, which converts the user’s
source microprogram record into an object tape and
microcode listing.

o A Micro Debug Editor, which reads the object tape into
Main Memory, outputs it to Writable Control Store
(WCS), and allows the user to run the microprogram
in WCS. The user can set breakpoints, change micro-
instructions, change registers, etc. This program also
provides the ability to punch the paper tapes that are
used to create (“burn’’) programs into the ROM.

e A WCS I/0 Utility subroutine, callable from FOR-
TRAN and ALGOL libraries, that allows a micropro-
gram, stored in a regular FORTRAN, ALGOL, or
Assembler program buffer (in Main Memory), to be
written into WCS.

Refer to the HP 12978A Writable Control Store Reference
Manual, part no. 12978-90007 for a summary of micropro-
gramming software part numbers.

5-2. MICRO-ASSEMBLER

The Micro-assembler accepts 80-character fixed-field card
format records from a card reader, paper tape reader, or
disc (using the DOS-III JFILE directive). Each record
contains one micro-instruction coded in mnemonic format
as described in Section IV of this manual. The
micro-assembler processes input records and produces an
object program paper tape which contains micro-
instructions in binary format. Optionally output is a
microprogram listing in both mnemonic and binary
format, a symbol table, and error messages.

5-3. HARDWARE ENVIRONMENT

The BCS version requires the following as the minimum
hardware:

a. An HP 2105 or HP 2108 Processor with 8K of Main
Memory.

b. A Teleprinter.
This minimum system means that the assembly of the

microprogram will be slow, since all input, listing, and
punching must take place on the teleprinter.

The following additional hardware is supported:

Paper Tape Reader for source microprogram input.

a
b. Paper Tape Punch for binary object tape output.

1

Card Reader for source microprogram input.

s

Line Printer for microprogram assembly listing and
symbol table listing.

e. 7970 or 3030 Magnetic Tape Unit for temporary stor-
age of source microprogram that is input to Pass 2 of
the micro-assembler.

The DOS-III version of the micro-assembler requires the
same hardware as the DOS-III system.

5-4. MICRO-INSTRUCTION SOURCE RECORD

A micro-instruction source record has the following
characteristics:

a. Length <80 characters.

b. If not on a punched card, terminated by RETURN
and LINE FEED.

c. Seven fields with the starting column of each field as
follows:

Character Column

1
10
15
20
25
30
40

Field Number

OO R WN

Figure 5-1 shows a card record.

Refer to Section IV, “Microprogramming Language,” for
a description of the micro-orders appropriate to the seven
fields.

5-1

Microprogramming Software

21MX

| | | | | | |
Card] | I ! T | N\
Column 1 10 15 20 25 30 40

|

FIELD | FIELD | FIELD | FIELD | FIELD FIELD FIELD
1 2 3 4 5 6 7
N\ _/
Figure 5-1. Micro-instruction Card Source Record

5-5. MICRO-ASSEMBLER CONTROL RECORD

Control statements are interspersed with micro-assembler
language statements and specify control over the
assembly process. For example, they may define the
logical unit number of an input or output device or
suppress listings.

There is one control statement per Control Record. If not
on a card, it must be terminated by RETURN and LINE
FEED.

Two control statements are required for every micropro-
gram:

a. $ORIGIN statement
b. $END statement

All control statements start with a ‘‘$”’ (Dollar character)
in column 1. No intervening spaces are allowed in any
control statement other than as specified. Details on each
statement text and meaning are given below.

$END

SEND

General Form:

Meaning: End of microprogram
Purpose: Required as the last statement in
every microprogram
Example: $END
SEXTERNALS

General Form: $EXTERNALS = namelbaddressl,
bname2baddress2,
b. . .namenbaddressn

A comma and a space (b) separate each external name and
address pair. Each ‘“‘name’ conforms to the Label defini-
tion in Section 4-1 and “‘address’ means an octal address
in the range 0 - 7777.

Define the following label names:
namel refers to addressl
name2 refers to address2

Meaning:

namen refers to addressn

Each $SEXTERNALS control state-
ment provides for one or more branch
(JMP or JSB) target addresses out-
side of the microprogram.

SEXTERNALS = OUTPUT 1012,
CHAR 736.

Purpose:

Example:

$FILE (Used by DOS-III systems only)

General Form: $FILE = filename

The filename must be in accordance
with DOS-III file name requirements.

Meaning: The object output file name for this
microprogram is ‘‘filename.”
Purpose: Provides the DOS-III micro-
assembler with the name of the disc
file into which the binary object code
is to be stored.
Example: $FILE=MOBJ
Note: Prior to assembling a microprogram with

a $FILE control statement, the user must
have reserved a disc file using the DOS-
III “:ST,B,...” directive.

21MX

$INPUT

General Form:

Meaning:

Purpose:

Example:

$LIST

General Form:

Meaning:

Purpose:

Example:

$NOPUNCH

General Form:

Meaning:
Purpose:

Example:

$ORIGIN

General Form:

Meaning:

(Used by BCS systems only)

3INPUT = lun

The logical unit number, lun, must be
octal and in the range 1 - 74.

The logical unit number of the device
through which all subsequent input
(to the next $SEND statement) is to be
read is “lun.”

When the assembly process is begun
in BCS systems, the micro-assembler
expects the first source statement to
be entered through the system con-
sole device. The user may enter the
whole source program through the
system console device. Normally,
however, the user enters a $INPUT
command specifying the logical unit
number of the card reader or paper
tape reader from which the rest of the
source program is to be read.

$INPUT = 12

$LIST = lun
The logical unit number, lun, must be
octal and in the range 1 - 74.

The logical unit number of the listing
device is “lun”’.

To cause the assembly listing to be
printed on the device having the spec-
ified unit number. If omitted, logical
unit number is assumed to be 6
(standard list device).

SLIST = 16

$SNOPUNCH

Suppress punching of binary object
tape.

To perform a micro-assembly for
listing and diagnosis only.

$NOPUNCH

$ORIGIN = nnn

The origin, nnn, must be octal and in
the range 0 - 7777.

Set microprogram origin at octal
address nnn in Control Store.

Note:

Purpose:

Example:

$RCASE

General Form:

Meaning:

Purpose:

Example:

$O0UTPUT

General Form:

Meaning:

Purpose:

Example:

$PASS 2

General Form:

Meaning:

Purpose:

Microprogramming Software

Every microprogram must have its
program address origin defined. New
origins may be specified within the
microprogram.

SORIGIN = 427

$RCASE

Punch a special 32-micro-instruc-
tions/record object tape.

This special object tape is reserved for
system maintenance. Refer to Section
5-6 Micro-Assembler Qutput for a
description of this special object tape.

$3RCASE

$OUTPUT = lun

The logical unit number, lun, must be
octal and in the range 1 - 74. This
statement may come anywhere before
the $END statement.

lun is the logical unit number of the
output device.

To specify the device on which the
micro-assembler object code is to be
output. If this statement is omitted,
logical unit of 4 is assumed.

$OUTPUT = 10

(Used by BCS systems only)

$PASS2 = lun

The logical unit number, lun, must be
octal and in therange 1 - 74. If present,
this must be the first statement in the
source deck or tape.

lun is the logical unit number of the
magnetic tape unit onto which all sub-
sequent micro-assembler input is to be
written.

To cause all source input to be
recorded on magnetic tape for use as
input to Pass 2 of the micro-assem-
bler. If this control statement is
omitted, the computer halts at the end
of Pass 1 to allow the operator to re-
load the microprogram source into
the “$INPUT” device.

The only magnetic tape units supported

by the micro-assembler are the HP 3030
and HP 7970.

Example:

$PASS2 = 23

Microprogramming Software

$SUPPRESS

$SUPPRESS

General Form:

Meaning: Suppress all warning error messages.
Purpose: To cut down the volume of messages
to the console device. Fatal error mes-
sages will still be printed.
Example: $SUPPRESS
$SYMTAB
General Form: $SYMTAB

Meaning: Print symbol table

Purpose: To provide the user with label names
and corresponding octal addresses
used in his microprogram.

Example: $SYMTAB

5-6. MICRO-ASSEMBLER OUTPUT

This section describes all forms of output from the micro-
assembler. They are:

o Binary Object

e Symbol Table

o Source and Binary Microprogram Listing
o KError Messages

5-7. BINARY OBJECT OUTPUT

The Standard Object Tape output by the micro-assembler
to paper tape or a disc file consists of one or more
Instruction Records, the format of which is shown in
Appendix A, Figure A-1. One Instruction Record holds up
to 27 micro-instructions and five words of header
information. Each micro-instruction requires 32 bits or two
words in the format: an eight bit address and 24 bits for the
micro-instruction. Hence the length of the record =

5 words of header

2n words for n micro-instructions (2 words for each
micro-instruction)

5+4+2n words for one Instruction Record

No more than 27 micro-instructions are written into an
Instruction Record. Hence the maximum length =
5+(2x27)=59 words. The last object record is a four word
End Record. When the microprogram consists of more
than 27 micro-instructions, a series of Instruction Records
are produced with the last one holding 27 or less micro-
instructions. For example, if 57 micro-instructions have
been assembled, three Instruction Records and an End
Record are required consisting of the following:

5-4

21MX

a. Instruction Record 1 holds 27 micro-instructions and
consists of

5 words of header
54 words for 27 micro-instructions
59 words

b. Instruction Record 2 holds 27 micro-instructions and
consists of

5 words of header
54 words for 27 micro-instructions
59 words

¢. Instruction Record 3 holds 3 micro-instructions and
consists of

5 words of header
6 words for 3 micro-instructions
11 words

d. The End Record consists of

4 words
133 words for the entire microprogram Binary Object.

The Standard Object format is accepted by all programs
which accept standard relocatable format. Thus a
Standard Object tape can be stored in a DOS-III file using
the “:STORE,R,...” directive. However, if the DOS-III
user wants the Binary Object stored automatically in a
disc file by the micro-assembler, the DOS-III directive
“STORE,B,. ..” must have previously been used to
reserve a disc file.

The Micro-assembler can also produce a non-standard
object as the result of the inclusion of the $SRCASE control
statement. This optional object is the HP ROM Simulator
Object tape. The format of this tape is shown in Appendix
A, Figure A-2.

5-8. SYMBOL TABLE LISTING

If the user has a $SYMTAB control statement in his
microprogram source input, then the micro-assembler will
print a symbol table on the device with logical unit number
6 or on the device defined by the $LIST control statement,
if present.

An example of a symbol table is shown in Figure 5-2.

On the left are the symbols or labels in the microprogram.
On the right is the value of the symbol; that is the six digit,
absolute octal address of the symbol. Where X follows the
address, the symbol has been defined by a SEXTERNAL

control statement.

21MX

SYMBOL TABLE

MOVE 002412X
GOTO 003421K
RET 002427X
LAST 002717X
ouT 002011
ERR1 002012

Figure 5-2. Symbol Table

5-9. MICROASSEMBLY LISTING

Unless suppressed by the SNOLIST control statement, the
micro-assembler provides a listing like the one shown in
Figure 5-3. This listing is associated with the symbol table
illustrated in Figure 5-2.

5-10. MICRO-ASSEMBLER ERROR MESSAGES
During the assembly process the micro-assembler checks
each instruction for errors. If an error is detected, an error
message of the following general form is printed in the
Micro-assembly Listing.

*ERROR eeee IN LINE nnnn

Microprogramming Software

where
eeee
is an Error Code defined in Table 5-1 and

nnnn
is a line number in the Micro-assembly Listing.

Table 5-1 gives the meaning of each error code and the
recovery procedure. Note that Figure 5-3 holds examples
of two error messages in lines 9 and 11.

5-11. DOS-III OPERATION OF MICRO-
ASSEMBLER

Before using the DOS-III version of the Micro-assembler,
the following items must be available.

a. A current DOS-III system.

b. A source microprogram, on cards, paper tape, or in a
source file on disc. If input is from a disc file, the file
must be on the system subchannel.

c¢. The Micro-assembler program named MICRO stored
in the DOS-III user library. If MICRO still is on re-
locatable object paper tape (HP 12978-16003), it can be
loaded in the same way as any other relocatable object
program.

For the detailed description of DOS-III operation, see HP
24307B DOS-III Reference Manual (HP 24307-90006).

Currently, if MICRO is included in the system area dur-
ing DOS system generation, base page linking must be

0001 $ORIGIN=20008 FIRST ANDNDRESS OF MODULE 4
Vo0 $SYMTAR PRINT SYMROL TABLFE
0003 SEXTERNAL=MOVE 2412, GOTO 3421s RET 2427+ LAST 2717
G004 # PZ2=A&P1
0005 2000 220 074457 READ INC M P READ ADDEND P
0006 2001 017 126157 PASS L A PUT AUGEND IN L AND ENABLE E & O
0007 2002 264 101557 FNVE ADD Sl2 TABR ADD MEMORY TO L AND STOURE IN S12
0008 2003 324 140531 JMP CNDX E ERR1 IF E SETsy GO TO ERR1
##FRROK 0008 IN LINE 0009
0009 2004 320 000030 JMP CNDX OVFL ERR2 IF 0 SETs GO TO ERRZ
0010 2005 000 075717 INC P BUMP P FOR NEXT PARAMETER
##ERROR 0003 IN LINF 0011
0011 2006 017 136757 RFAN INC P HFAD NEST PARAMETER PZ ADDRESS
00le 2007 000 000461 MPCK INC TAR PUT IN M AND CHECK FOR M P ERR
0013 2010 177 166017 WRTE PASS TAB S12 PUT ADD RESULT INTO MEM ADD P2
0014 2011 017 136776 OUT RTN THE RETURN
0015 2012 344 001757 ERRI MM LOW S 0 SET UPPER BYTE FOR E ERR
0016 2013 320 100470 JMP ouT RETURN
0017 2014 340 001757 ERRZ MM HIGH S 0 SET LOWER BYTE FOR O ERR
0018 2015 320 100470 Jmp ouT RETURN
0019 $END
#4# 0002 EFRRORS##
D e Sm—— S—— N S e pmref
Line ROM Bits Bits Field Field Field Field Field Field Field
Number Address 23-16 15-0 1 2 3 4 5 6 7
o, e’
Binary
Micro-instruction
Figure 5-3. Micro-Assembly Listing

5-5

Microprogramming Software

specified. Thus, when generating the system, the answer
to the question

ENTER PROG PARAMETERS
must include
MICRO,3,1

where the 1 indicates base page linking. This is necessary
because the distributed version of the micro-assembler is
set to current page linking and does not executed properly
in the system area.

21MX

When an executable version of the micro-assembler is
properly included in the DOS system, perform the follow-
ing steps to assemble the microprogram.

a. If thereis a $FILE control statement in the micropro-
gram source, a binary file must be reserved on the disc
before beginning the micro-assembly process to hold
the relocatable object. The name of the reserved disc
file must be the same as the one specified in the $FILE
control statement.

Table 5-1. Micro-assembly Error Messages

Error Code

Meaning/Recovery

before reassembly.

OR aaaa

Error Conditions.

ABORT!

1 Duplicate Label. The statement label of the micro-instruction in line nnnn is the same
as another statement in the microprogram or the same as a declared $SEXTERNAL
symbol. Assign a new statement label and reassemble.

2 Illegal Control Statement. Correct control statement in line nnnn and reassemble.

3 Illegal Field 2 Micro-order. A NOP is inserted in field 2 and assembly continues. Cor-
rect line nnnn and reassemble.

4 Illegal Field 3 Micro-order. A NOP is inserted in field 3 and assembly continues. Cor-
rect line nnnn and reassemble.

5 Illegal Field 4 Micro-order. A NOP is inserted in field 4 and assembly continues. Cor-
rect line nnnn and reassemble. '

6 Illegal Field 5 Micro-order. A NOP is inserted in field 5 and assembly continues. Cor-
rect line nnnn and reassemble.

7 Illegal Field 6 Micro-order. A NOP is inserted in field 6 and assembly continues. Cor-
rect line nnnn and reassemble.

8 Illegal JMP or JSB Address. Address is outside permitted range, or target label
address is undefined. A value of 0 will be inserted into address field of line nnnn and
assembly continues. Redefine address and reassemble.

9 Microprogram Too Large. The last relative address in the program is 400 or greater. A
$ORIGIN statement must be changed or the program broken up into smaller parts

10 Missing $ORIGIN Control Statement. At least one $ORIGIN control statement is
required. Insert $SORIGIN statement and reassemble.

11 Illegal Word Type 2 Operand. Operand of the IMM micro-instruction is outside the
permitted range. A value of 0 is inserted into the operand and assembly continues.
Correct line nnnn and reassemble.

Insufficient DOS-III File Space Reserved. Reserve a binary file with more sectors for

storage of the file named in the $FILE control statement {(aaaa is an address in the
micro-assembler and can be disregarded). See DOS-III manual section 15 under

An irrecoverable error has occurred; correct error and reassemble.

5-6

21MX

b. Place the microprogram source in the input device;
turn the device on; turn on the paper tape punch and
the list device.

c. Summon the Micro-assembler with statement

:PR,MICRO,[p1,p2,p3,p4,99]

where
pl = the input device logical unit number. If input is
from a disc file, the file must be on the system
subchannel
p2 = list device logical unit number
p3 = paper tape punch device logical unit number

p4 = maximum number of lines-per-page on the list
device.

If 99 is entered for any of the above parameters, that
parameter and all those that follow are defaulted to
“standard’ values.

d. The program title
MICRO-ASSEMBLER

is printed and Pass 1 begins. If a $SYMTAB control
statement is in the source microprogram, the symbol
table is printed at the conclusion of Pass 1. Pass 2
begins immediately (from disc) and the listing and
relocatable object tape are output. Micro-assembly is
complete.

Note: 1If Pass 2 fails to begin, check that the
paper tape punch is turned on. The micro-
assembler will cycle in a loop until the
punch is turned on.

5-12. BCS OPERATION OF MICRO-ASSEMBLER
Before proceeding, the following items must be available:

o An absolute BCS binary tape.

® A relocatable object tape of the Micro-assembler pro-
gram MICRO (HP 12978-16003).

e A source microprogram either on cards or paper tape.

For a detailed description of BCS usage, see the Basic Con-
trol System manual (HP 02116-9017).

The following procedure need be performed only once.
When an absolute binary tape of the Micro-assembler is
punched, it is used as described in the procedure
“Executing the Micro-assembler.”

Making an Absolute Micro-assembler tape:

a. Load the absolute BCS binary tape using the Basic
Binary Loader.

b. Set the P-register to 2. Set bit 14 of the Switch Register
and clear all other Switch Register bits.

Microprogramming Software

c. Place the MICRO relocatable object tape in the paper
tape reader. Check that the paper tape reader and the
console device are on. Turn on the paper tape punch.
Press PRESET and RUN on the CPU front panel.
MICRO reads in and absolute binary tape is punched.

d. The message
*LOAD
is printed and the computer waits. Set Switch Register
bits 2 and 14 leaving all others clear. Load BCS
Library tape into the paper tape reader. Press RUN.
e. The BCS Library tape reads in and the rest of the abso-
lute binary tape is punched. Linkage information is

printed on the console device.

This is the absolute binary tape of MICRO, used for input
to the next step.

Executing the Micro-assembler:

a. Load the MICRO absolute binary tape using the Basic
Binary Loader.

b. When loading is complete, set P-register to 2. Press

PRESET and RUN. The message
MICRO-ASSEMBLER

is printed followed by a request for the logical unit
number of the source input device.

ENTER LU NUMBER OF DEVICE

c. Enter $INPUT = <LU #> followed by carriage
return/line feed. Pass 1 now begins. If a $SYMTAB
control statement is in the microprogram source, the
symbol table is printed at the conclusion of Pass 1. (See
Section 5-5 for a description of the $SYMTAB control
statement).

d. Turn on the paper tape punch.

e. Pass 2 begins immediately. If no $PASS2 control
statement was included in the source, the message

RELOAD SOURCE, PRESS RUN

is printed. Reload the source microprogram into the
input device and then press RUN on the front panel of
the computer.

Note: If Pass 2 fails to begin, check that the
paper tape punch is turned on. The micro-
assembler will cycle in a loop until the
punch is turned on.

If a teletype is used for both listing and punching, the
computer halts (T -register = 102052) so that the oper-
ator can press the paper tape punch ON button to

5-7

Microprogramming Software

punch the microprogram object tape. The operator
then presses RUN on the computer front panel.

When the paper tape is punched, another halt (T-
register = 102053) occurs, so that the paper tape punch
button can be set to OFF. Press RUN on the computer
front panel.

f. Pass 2 completes micro-assembly. The microprogram
object tape is complete. To assemble another micro-
program proceed from step b.

5-13. MICRO DEBUG EDITOR

The Micro Debug Editor (MDE) makes it possible to load
the object microprograms output from the Micro-
assembler into a Writable Control Store module. It also
provides the ability to debug microcode stored in the WCS
and to “burn’’ microprograms into ROM chips.

Before using the Micro Debug Editor to debug micro-
programs, the Writable Control Store PCAs must be set to
the required control store module numbers. This is
accomplished by the installation of a module selection
Jumper Assembly (HP Part Number 5060-8342). Refer to

21MX

the HP 12978A Writable Control Store Reference Manual,
part no. 12978-90007 for installation of the module selec-
tion Jumper Assembly and the WCS PCAs.

5-14. HARDWARE ENVIRONMENT

The BCS version requires the following minimum
hardware:

a. HP 21MX Series Computer with 8K of Main Memory
b. A console device
c. A paper tape reader

d. One or more WCS PCA'’s, depending on the size of the
microprogram to be debugged.

e. If a ROM program tape is to be punched, a paper tape
punch is also required.

The DOS-III version of the MDE requires the same mini-
mum hardware as the DOS-III system.

5-15. INITIALIZATION PROGRAM

When the Micro Debug Editor is to be run for debugging
purposes (as opposed to being run merely to punch ROM

ASMB,R,B,L,T

NAM TEXT,7

ENT TEST,MACRO
TEST NOP

MACRO OCT 105xxx

DEF P1
DEF P2

DEF Px
JMP TEST,I

P1 (parameter 1 value)
P2 (parameter 2 value)

Px (parameter x value)

END

Assembly parameters
Program name
Entry points

Any initialization procedure re-
quired by the microprogram

(or 101xxx) Instruction that calls
the user microprogram

Parameter addresses required by
the microprogram

Return to calling program (MDE)

Parameter values

Figure 5-4. General Format of the Initialization Program

5-8

21MX

program tapes), the user must supply an initialization
program. The initialization program is an assembly lan-
guage program that prepares the necessary parameters in
Main Memory and then executes a 101xxx or 105xxx
macro-instruction.

The name of the initialization program must be TEST
(required in BCS systems, is a NAM TEST statement; in
DOS-III systems a NAM TEST, 6 statement). The
program must also have the symbol “MACRO” declared
as an entry point where MACRO is the symbolic address
(label) of the macro-instruction (101xxx or 105xxx) which
calls the microprogram under test. Note that there must
only be one such macro-instruction in the TEST
initialization program.

Figure 5-4 holds the general structure of the initialization
program.

This initialization program is called as a relocatable sub-

routine by MDE. Thus, its name is one of the references
that must be satisfied when loading MDE.

An example of a short initialization program is shown in
Figure 5-5.

5-16. USING THE MICRO DEBUG EDITOR

Section 5-37 describes how to execute MDE using the

Microprogramming Software

DOS-III operating system. Section 5-38 describes how to
execute MDE using the BCS operating system.

Before using the Micro Debug Editor to debug a mi-
croprogram, the Writable Control Store PCAs must have
the correct terminal board plugged in, to establish the
Control Store module number. Refer to the WCS Refer-
ence manual (12978-90007) for a description of setting
module numbers in a Writable Control Store PCA.

When the module number has been set in the Writable
Control Store PCA and it is plugged into the correct 1/0
slot, the user loads the microprogram object tape
(produced by the Micro-assembler) using the Micro Debug
Editor LOAD command. The microprogram is then output
to the Writable Control Store using the WRITE
command.

When the user is ready to execute his microprogram, the
EXECUTE command is used. For the microprogram to
execute properly, the following conditions must hold:

a. The module that the microprogram was written into
matches the range of addresses used by the micropro-
gram. For example, a microprogram whose addresses
are in the octal range 2400 to 2777 must be stored in
a Writable Control Store PCA which has been set to
module 5.

Macroprogram in Main Memory

ASMB. L Microprogram to be executed in WCS
NAM TEST,7 .
TEST NOP
MACRO OCT 105200 SORIGIN=20008B
END $ORIGIN=20208B
START NOP CLFL INC M p
RTN A S12
$END

Figure 5-5. Test Program Call to Microprogram

5-9

Microprogramming Software

b. The macro-instruction in the TEST program must ini-
tiate entry into Control Store at the proper address of
the microprogram to be tested.

Micro Debug Editor results are unpredictable if either of
the above conditions are not met.

When MDE is executed, it prints the input prompt
COMMAND?
on the system teleprinter.

Respond by entering one of the input, edit, output, or
debug commands described in Table 5-2 and the following
pages. In most cases, the first letter of the command is
sufficient to specify it to MDE. The two commands,
“MOVE” and “MODIFY"’, require at least three letters to
identify the command. After MDE has performed the
specified operation, it again prints COMMAND? to repeat
the cycle.

Terminate an MDE run by entering the FINISH
command.

There are 13 MDE commands which are summarized in
Table 5-2. A detailed description of each command follows.
Whenever a logical unit number (lun) is called for, it must
be entered in octal.

Note that the last octal 45 words of the lowest numbered
WCS module loaded with a microprogram are used by
Micro Debug Editor for its own resident microcode. If
these locations are required by the user microprogram
under test, use the MOVE command to relocate the MDE
microcode before loading the user microprogram.

The Micro Debug Editor uses a Main Memory buffer to
hold the microprogram object code. When the micropro-
gram is loaded from an object tape, it is stored into this
buffer. Most MDE commands make modifications or
transfers to and from this buffer.

Use of the PREPARE command to punch the six ROM
microprogram mask tapes has the following restriction.
This buffer must have been loaded using an object tape
produced by the micro-assembler and the buffer must not
have been modified.

5-17. INPUT COMMANDS
5-18. LOADI[X]

Meaning:Load the object microprogram produced by the
Micro-assembler from disc or paper tape into the MDE
buffer. The logical unit number (lun) of the input device is
X.

Usage: The Micro-assembler control statement $SFILE can
be used to specify (during assembly) the name of the
DOS-III file into which the object code is to be stored. In
the DOS-III version of MDE, if the logical unit number

5-10

21MX

entered is that of the disc, MDE will respond with a
request for the name of the file in which the object code is
to be stored:

FILENAME?

Enter the file name given to the object code by the $FILE
control statement.

Note: When loading the object microprogram for
output to WCS (instead of punching pROM
tapes), the LOAD command must be fol-
lowed immediately by a WRITE command
to the appropriate WCS PCA. No interven-
ing commands are allowed. This allows the
Micro Debug Editor to build a table relat-
ing microprogram addresses to WCS logi-
cal unit numbers.

Table 5-2. Micro Debug Editor Commands

INPUT
Commands: LOADI[,X]
READ,X
EDIT
Commands: SHOW xxxx[,yyyyl
MODIFY xxxx[,yyyy]
OUTPUT
Commands: DUMP[,X]
WRITE,X
PREPAREI,X]
VERIFY[,X]
TERMINATION
Command: FINISH
DEBUG
Commands: BREAK,yyyy

CHANGE[,mnemonic]
EXECUTE[0 or yyyy]

RELOCATE MDE WCS-RESIDENT
MICROCODE

Command: MOVE,yyyy

Note

The brackets indicate that the parameter may be
omitted.

21MX

5-19. READ,X

Meaning: Read the contents of a WCS into the Micro
Debug Editor buffer. X is the logical unit number of the
WCS.

Usage: If no WCS is on the specified logical unit, the
MDE buffer is unchanged. No notification is made to the
user that the buffer is unchanged or that no WCS is on the
logical unit specified. Thus, if READ or SHOW is being
used to insure that a previous WRITE executed properly
to the same (non-WCS) logical unit, the MDE buffer will
still hold the data that was assumed to be written to that
logical unit. The user could incorrectly assume that the
non-existent WCS holds the proper data.

Note that a READ requires a prior WRITE command to
establish the relationship between logical unit and mod-
ule number.

5-20. EDIT COMMANDS

5-21. SHOW,xxxx[,yyyyl

Meaning: Display the WCS contents on the console
device, where xxxx is the beginning address and yyyy is
the ending address. Only the contents of the address xxxx
are displayed, if yyyy is omitted.

Usage: See Usage under 5-19, READ,X.
The display format of each 24-bit word is:
aaa mmm nnnnnn

where aaa is the control store address of the location being
displayed, mmm is the octal representation of bits 23-16 of
the location, and nnnnnn is the octal representation of bits
15-0 of the location.

5-22,. MODIFY xxxx[,yyyyl

Meaning: Change the contents of the MDE buffer and the
WCS where xxxx is the beginning absolute WCS address
and yyyy is the ending absolute WCS address. Change
WCS address xxxx if yyyy is omitted.

Usage: See Usage under 5-25, WRITE X.

“MOD” is the minimum input required to initiate the
modify command. xxxx and yyyy must be absolute WCS
addresses in a single WCS module. One at a time, the
contents of each location are printed on the console device
in the same format as the SHOW command above.
Following the location contents, the operator enters the
new location contents followed by a CARRIAGE
RETURN and LINE FEED.

If fewer than 3 digits are entered for mmm or fewer than 6
digits are entered for nnnnnn, the number entered is right

Microprogramming Software

justified with zeros automatically filled to the left. To
specify that no change is to be made, enter an asterisk (*),
instead of mmm or nnnnnn.

Example (underlined characters indicate operator input):

MOD,4000,4003
4000 123 456777 *,123456

leaves bits 23-16 unchanged and sets bits 15-0 to 123456 in
WCS location 4000.

4001 123 456777 6,123

is equivalent to entering 006,000123; bits 23-16 are set to
006 and bits 15-0 are set to 000123 in location 4001.

4002 123 456777 123,*

sets bits 23-16 to 123 and leaves bits 15-0 unchanged in
location 4002.

4003 123 456777 **
makes no change to location 4003.
5-23. OUTPUT COMMANDS
5-24. DUMPLX]

Meaning: Punch the entire contents of the MDE buffer on
the paper tape punch. X is the logical unit number of the
paper tape punch, If X is omitted, it is assumed to be 4.

Usage: The DUMP command must be preceded by a
READ or LOAD command to fill the MDE buffer. The
tape produced is in the same format as the object tape
produced by the Micro-assembler. If the tape is reloaded
into the MDE buffer, the buffer cannot be used to punch
(PREPARE command) a set of six pPROM mask tapes.
The primary use of this tape is to enable the user to save
the results of a microprogram debug session for
resumption later.

5-25. WRITE,X

Meaning: Write the contents of the MDE buffer into the
WCS. X is the logical unit number of the WCS.

Usage: Since the Micro Debug Editor addresses the WCS
by logical unit number, it is the responsibility of the user
to insure that a WCS is installed with logical unit number
X and that it is set to the proper module for the micro-
code to be stored. If no WCS is on the specified logical
unit, no notification is given to the user that a WRITE or
MODIFY command failed to transmit data to the non-
existent WCS.

5-26. PREPARE[,X]

Meaning: Punch a set of six pROM mask tapes each
headed by three lines of 1.D. and a checksum on the paper

5-11

Microprogramming Software

tape punch. X is the logical unit number of the device. If X
is omited, it is assumed to be 4.

Usage: Following entry of the PREPARE command, a
cycle of dialogue is initiated between the operator and the
console device. In the following procedure, the underlined
characters indicate operator input is required at the
console device. Each entry must be followed by a
CARRIAGE RETURN and LINE FEED.

a. Turn on the paper tape punch. The message cycle
starts with:

GENERATION OF MASK BITS 23-20

where 23-20 represents the 4 bit range of bits to be
punched into the first mask tape. (Underlined charac-
ters indicate operator input.)

ENTER 3 LINES OF 1.D. INFORMATION

LINE 1 — key in first line of tape I.D.
LINE 2 — key in second line of tape I.D.
LINE 3 — key in third line of tape 1.D.

Enter up to 72 characters of identification information
in each line.

b. Following entry of the third 1.D. line, the mask tape is
punched for mask bits 23 to 20. This is for ROM chip
number 6. The following cycle of dialogue is repeated
for each of the remaining five mask tapes:

GENERATION OF MASK BITS UU-LL

UU - LL is the range of bits to be punched.

ANY CHANGE OF 1.D. INFO IN LINE 1? key in N
(no) or Y(yes) and new line 1 1.D.

LINE 2? key in N or Y and new line 2 1.D.
LINE 3? key in N or Y and new line 3 1.D.

c¢. The next mask tape is punched. When all six mask
tapes have been punched, the following message is
output:
GENERATION OF TAPES COMPLETED

The six mask tapes have the following characteristics:

For Module ROM

UU-LL Punch Sequence Chip No.
23-20 First tape 6

19-16 Second tape 5

15-12 Third tape 4

11-08 Fourth tape 3

07-04 Fifth tape 2

03-00 Sixth tape 1

Conventions: Line 1 I.D. holds module number, ROM chip
number, number of bits (4), ROM size, and other 1.D.
information.

5-12

21IMX

For example:

LINE 1-1,005, 4, 1025 REENTRY FACTOR

Line 2 1.D. holds part number or other central reference
number. For example:

LINE 2-MT 38-0226 REVISION C

Line 3 I.D. holds date and any other I.D. information. For
example:

LINE 3-04/01/75 PVT. D.M. BULMAN

5-27. VERIFY|[,X]

Meaning: Compare the contents of the pPROM mask tapes
to the contents of the MDE buffer. The logical unit
number of the paper tape reader is X.

Usage: Following entry of the command, the console
device requests the range of bits in the pROM mask tape
to be compared to the MDE buffer (underlined characters
indicate operator entry).

TAPE NUMBER: uull

Enter CARRIAGE RETURN and LINE FEED after the
bit range uu (upperlimit) and 1l (lowerlimit). Refer to 5-26
PREPARE(,X] for valid bit ranges.

For example, the entry 2320’ specifies verification of bits
23 to 20. The paper tape then reads the mask tape and
compares its contents to the specified bits in the MDE
buffer. As the tape is being read, the three lines of I.D. (see
PREPARE command) and checksum are printed on the
console device.

Note: If the DOS-III operating system is being
used, and no errors were encountered, an
1/0 “‘error’’ message is printed at the con-
sole device:

I/0 ERR ET EQT #n

Where n is the EQT number of the paper
tape reader. This message notes a charac-
teristic of the mask tape that DOS-III
normally interprets as an error condition,
but the message in fact, connotes no error.

If no errors were detected, the message
TAPE VERIFIED

is printed. Enter another bit range as before. The VERIFY
command completes only after the bit range 03 ot 00 has
been entered and verified.

21MX

Errors: If errors are detected, dialogue between the
console device and the operator is initiated. Follow each
operator entry with CARRIAGE RETURN and LINE
FEED.

a. The message CHECKSUM ERROR OR BAD MASK
TAPE is printed followed by a tape repunch
request:

DO YOU WANT TO REPUNCH THIS TAPE?
enter Y or N

b. If N is entered, another bit range request with the
message

TAPE NUMBER?
Enter another bit range as before. The VERIFY com-
mand completes only after the bit range 03 to 00 has

been entered and verified.

c. If Y is entered, the following request is made:

ENTER PUNCH LOGICAL UNIT # enter octal

logical unit number of paper tape punch

The message

ENTER THREE LINES OF I.D. INFORMATION

-

is printed.
Enter up to 3 lines of tape I.D. information according
to the procedure given in 5-26, PREPARE[,X]. The

new mask tape is punched, headed by the I.D.
information.

Special DOS-IIT operation: When a series of bit ranges are
being verified, specification of each successive range at the
console device (as a result of the message TAPE
NUMBER?) will bring about the prompt character “@ ".
To verify the specified bit range on paper tape:
a. Enter the following command

:UP,n

where n is the EQT number of the paper tape reader.
b. Then enter:

:GO

The next tape to be verified will read in as above.

Verify sequence: The mask tapes may be verified in any
order with exception that the last tape verified must have
the bit range 03 to 00.

5-28. TERMINATION COMMAND

Microprogramming Software

5-29. FINISH

Meaning: Terminate the current MDE run.

5-30. DEBUG COMMANDS

5-31. BREAK,yyyy

Meaning: Set a Breakpoint at location yyyy and clear the
previous one. If yyyy = 0, no breakpoint is set and the
previous one is cleared.

Usage: Microcode execution is initiated by an EXECUTE
command. When the Breakpoint address yyyy is reached,

REG’S?

is printed and microprogram execution ceases {(breaks).
Enter the mnemonics of the flags or registers that are to be
displayed, separated by commas. The mnemonics are
described under the CHANGE command. The entry is of
the form (underlined characters indicate operator entry)

REG'S? ml,m2,m3, ... mn

where m1 through mn are register and flag mnemonics.
The resulting display is of the form

ml =c¢l, m2=c¢2, m3 =¢3,...... , mn = cn

when c1 through cn are octal contents of the requested
registers and flags.

Example of a display request:
REG’S AB,1,2,3,4,14

The resulting display:

A = 00004, B = 103005, 1 = 000447,
2 = 00012, 3 = 00000, 4 = 00000,
14 = 034716

Enter “!” to display all registers and flags. Enter “/"" to
return to command entry mode.

Restrictions: Do not set a breakpoint
a. in the WCS entry point address of the microprogram

b. ina microprogram subroutine (within the JSB...RTN
code limits)

c¢. in an address where the micro-instruction passes
information to or from the T-register immediately fol-
lowing a WRITE or READ micro-order.

d. at a WRITE micro-order

e. at a READ micro-order if the M-register is not loaded
in the same micro-instruction.

5-13

Microprogramming Software

5-32. CHANGE[,m]

Meaning: Alter the contents of one or more registers and
flags. If the mnemonic m is specified, alter the contents of
the register or flag which it specifies. It not specified, all
registers and flags are displayed in sequence to prompt the
user to make required changes.

Mnemonics: The list of register and flag mnemonics
follows:

Mnemonic Stands For Mnemonic Stands For
A A-register 9 S9-register
B B-register 10 S10-register
S S-register 11 S11-register
P P-register 12 S12-register
1 *S1-register X X-register
2 S2-register Y Y -register
3 S3-register (0] Overflow Register bit
4 S4-register E Extend Register bit
5 Sb-register F CPU Flag bit
6 SB-register CN Counter Register
7 S7-register L L-register
8 S8-register

*Scratch Pad Register 1; similarly for §2, $3, etc.

Usage: Upon entry of the command, the message
m XXXXXX =

is printed, where m is the register or flag mnemonic and
xxxxxx is the octal representation of the contents. Enter
the new contents or an asterisk (¥) if no change is to be
made.

Example of a CHANGE request:

CHANGE, 6
6 173777 = 173770

This is a request for a change to S6-register (Scratch Pad
Register 6). The original contents were octal 173777. The
new contents are octal 173770.

5-33. EXECUTE[yyyyl

Meaning: Execute microprogram,

If yyyy = 0, the TEST initialization program is run,
which carries execution to the microcode in WCS. This is
the normal mode of initiating microcode execution.
Note: If the entire system goes dead after
entering an EXECUTE,0, the reason may
be that the WCS with the correct module
number is not plugged into the correct
slot.

If yyyy = an absolute WCS address, execution of micro-
code begins at that address.

5-14

21MX

If yyyy is omitted, execution resumes from the last break-
point with registers and flags set

a. according to their setting when the breakpoint was
encountered, or

b. modified by the CHANGE command.

Usage: Execution will continue until a breakpoint is
encountered or until the microprogram is completed.
When complete, the command entry mode is repeated.

Before initiating a microprogram execute (other than
EXECUTE,0), make sure that all registers and flags are
preset using the CHANGE command, if necessary.

5-34. RELOCATE MDE WCS-RESIDENT
MICROCODE

5-35. MOVE,yyyy

Meaning: Move the octal 45 word WCS-resident
microprogram portion of MDE from the usually resident
locations to locations beginning with yyyy.

Usage: “MOV”’ is the minimum input required to initiate
the move operation. MDE requires a portion of WCS for
register dump and register restore microprograms. These
MDE microprograms are initially stored in relative octal
locations 333 to 377 of the first WCS loaded. If the user
requires these locations in Writable Control Store, he can
move this resident MDE microcode elsewhere.

No check is made to see if a portion of the user microcode
has been overlayed. The reason is that the user may
actually want to situate the dump and restore
microprograms on top of his own microcode as he debugs
another portion of his code.

The actual relocation of the MDE microcode does not
occur until the EXECUTE command is given.

5-36. MDE ERROR MESSAGES

During the use of MDE, commands, parameters, and
processing functions are monitored. If an error condition is
detected, an appropriate message is printed. Table 5-3

holds the list of MDE error messages plus their meaning
and the recovery procedure.

5-37. DOS-IIT OPERATION OF MDE

Before using the DOS-III version of the Micro Debug
Editor (MDE), the following items must be available.

a. A current DOS-III system

b. A relocatable object tape of MDE (HP 12978-16002).

21MX

C.

A relocatable object tape of the TEST initialization
program if a debug run is to be made.

d. A microprogram object tape output by the Micro-

assembler.

The following is an example of how the user can proceed.
For details on additional DOS-III options, see DOS-III
manual (HP 24307-90006).

a.

Store the two tapes, MDE and TEST, on the disc using
the DOS-III store command

:ST,R,filename, lun

where filename is any suitable label and lun is the log-
ical unit number of the paper tape reader from which

Microprogramming Software

Respond as follows:
MDE filename, TEST filename, /E

where MDE filename and TEST filename are the
chosen file names used with the “ST”’ store command
(step A), and /E specifies end of entry.

If MDE is being used only to load WCS with a micro-
program, the TEST filename may be omitted. The
loader then reads the two files into main memory.
If the TEST initialization program has been omitted,
the message

UNDEFINED EXTS

is printed indicating TEST or MACRO is an undefined
external to the MDE program.

the tapes are entered.

To proceed, enter

b. Make sure the list device is on. At the console device

enter
:PR,LOADR,2

DOS-III responds with

ENTER FILE NAMES OR /E

:GO,1
When loading is finished, the message
LOADER COMPLETE

is printed.

Table 5-3. Alphabetical List of MDE Error Messages

Message

Meaning/Recovery

CAN’'T FILL MORE THAN
16 MODULES!

ILLEGAL COMMAND

ILLEGAL DIGIT

ILLEGAL PARAMETER

ILLEGAL REG.

MNEMONIC

ILLEGAL TAPE #

MISSING PARAMETER

NO BREAKPOINT HAS

BEEN SET!

WCS NOT LOADED

User has tried to write microprograms to more than the maximum of
16 WCS modules. The user can debug no more than 16 WCS modules
at a time.

Command just entered is not an MDE command; re-enter command.

An “8” or ‘9" was entered in the previous command that called for
an octal digit; re-issue the entire command.

An unacceptable parameter was entered in the previous command;
re-issue command.

Register or flag mnemonic just entered is not one of those listed under
the CHANGE command (section 5-32); enter correct mnemonic,

Bit range entered is not one of those listed under PREPARE command
(section 5-26).

A required parameter was omitted from the previous command;
re-issue command.

An EXECUTE-from-breakpoint command was given without having
set a breakpoint logically beyond the execute address.

The Writable Control Store PCA corresponding to the logical unit
specified in the command just entered, has not been loaded with a
microprogram during this MDE session; load the WCS.

5-15

Microprogramming Software

d. Save the loaded MDE program with
:ST,P
To summon MDE from now on, enter
:PR,MDE

e. The program title is then printed followed by command
request:

MICRO-DEBUG EDITOR
COMMAND?

Now enter the MDE commands required as described
beginning in Section 5-16.
5-38. BCS OPERATION OF MDE
Before proceeding, the following items must be available:
a. An absolute BCS binary tape.
b. A relocatable object tape of MDE (HP 12978-16004).

c. A relocatable object tape of the TEST initialization
program, if a debug run is to be made.

d. A microprogram object tape.

e. A BCS Library tape (HP 24145-60001), Revision B.

The following is an example of how the user can proceed.
For details on additional BCS options, see the Basic
Control System manual (HP 02116-9017).

a. Load the absolute BCS binary tape using the Basic
Binary Loader.

b. Set the P-register to 2. Set bit 14 of the Switch Reg-
ister and clear all other Switch Register bits.

c. Place MDE relocatable object tape in the paper tape
reader and insure that the paper tape reader and the
console device are on. Turn on paper tape punch. Press
PRESET and RUN on the CPU Front Panel.

The MDE tape is read and an absolute binary tape is
punched.

d. The message
*LOAD
is printed on the console device and the program halts.

If required, load the relocatable TEST Initialization
Program tape into the paper tape reader. Press RUN.

The TEST tape is read and another absolute binary
tape is punched.

5-16

21MX

e. The message
*LOAD
is printed on the teleprinter and the program halts.

Set Switch Register bits 2 and 14 leaving all others
clear. Load BCS Library tape into the paper tape
reader. Press RUN.

f. Library tape is read and more absolute binary tape is
punched.

Linkage information is printed on the Teleprinter.
Remove paper tape from punch. This is the complete
absolute binary tape of the Micro Debug Editor in-
cluding the TEST Initialization Program.

g. Load this tape using the Basic Binary Loader.

h. When loading is complete, set P-register to 2. Press
PRESET and RUN. The message

MICRO-DEBUG EDITOR
COMMAND?

is printed.

i. Now enter the required MDE commands as described
beginning in Section 5-16.

5-39. WCS 1/0 UTILITY SUBROUTINE

This library subroutine provides the capability of writing a
microprogram into and reading a microprogram from a
WCS using a buffer in an Assembly Language,
FORTRAN, or ALGOL program and operating in a BCS
or DOS-III environment. This avoids the necessity of
running MDE every time it is necessary to access a WCS.
This subroutine is in the standard BCS and DOS-III
libraries for 21MX Series Computers.

Unlike a ROM chip, whenever the computer power is
turned off, the WCS contents are lost. Thus the WCS must
be loaded before access can be made to microprograms.
This WCS I/0 utility has been provided to serve that
purpose.

Besides the calling sequence, a buffer is required in the
calling program large enough to hold the number of micro-
instructions being transferred in or out.

Initially, the microprogram is stored on an object paper
tape, in an object file on disc, or as octal data stored in the
Main Memory program. In the case where the micro-
program is in the form of octal data in the Main Memory
program, the octal data area serves as the buffer when the
WCS 1/0 Utility is used to write the microprogram into
the WCS.

21MX

In the case where the microprogram resides on disc or
paper tape, the control system (BCS or DOS-III) must be
used to read the tape or disc file into a buffer in the Main
Memory program. It must be remembered that the
microprogram object contains header and end record infor-
mation that must be deleted before storing the micropro-
gram in the buffer. (Header and end record information
must not be written into the WCS.)

Refer to Section 5-7 for a description of the Binary object
tape output by the micro-assembler. Appendix A illus-
trates the binary object tape format.

When the microprogram has been stored in the Main
Memory program buffer, a WCS I/0O Utility calling sequ-
ence is used to write the microprogram into the WCS.

To read the contents of the WCS, another WCS I/0 Utility
READ calling sequence is used.

The assembly language calling sequences are the
following:

Microprogramming Software

READ
JSB WREAD Branch to WCS read subroutine
DEF *+5 Return address
DEF lun Logical unit number of WCS
DEF BUFF Address of microprogram buffer
DEF LENGTH Number of words of transfer
DEF ADRS WCS relative address

WRITE
JSB WWRIT Branch to the WCS write sub-

routine

DEF *+4 Return address
DEF lun Logical unit number of WCS
DEF BUFF Address of microprogram buffer
DEF LENGTH Number of words of transfer

Where lun contains the logical unit number of the WCS
being accessed and BUFF contains the first word of a
word pair that holds a micro-instruction. LENGTH
contains the octal number of words in the transfer; if
LENGTH is positive, the number of 24 bit words is
specified; if LENGTH is negative, the number of 16 bit
words is specified. ADRS contains the WCS relative
address (between octal addresses 0 and 377) of where to
start reading.

5-17

APPENDIX

OBJECT TAPE FORMATS |

WORD 0 WORD 1 WORD 2
BitNO. ——» 15 8 7 015 13 6 0 15 0
L] . * L] * L] . ® L] L]
v S—— ——

Leader Record length = Nult Ident 1 Checksum = sum of contents
total no. of 16- =011 of all words in record excluding
bit words in record length and checksum
record (including itself,
this word).

Min. record

length = 5;

max. =59.

WORD 3 WORD 4 WORD 5 WORD 6
15 0 15 0 15 87 0 15 0
Microprogram origin Tape flag: O = 'Punched by Address relative High bits of first Low bits of first
$ORIGIN value, Microassembler’; if Debug to base address microinstruction, microinstruction,
Editor punches an object of module.

tape, this field = 1.

15 0 15 015 8 0
etc ... Vv etc..
Low bits of last micro- Record tength of
instruction in record. next record; same

format as previous.

Figure A-1. Format of Standard Object Tape (Sheet 1 of 2)
A-1

Appendix A

21MX

15 0 15 8 7 015 13 12 0 15
—_— -~
Low bits of last micro- Record length of Null Ident Null End record checksum =
instruction on. End record, =101 120000.
always = 4.
15 0

Null

Trailer

A-2

Figure A-1. Format of Standard Object Tape (Sheet 2 of 2)

21MX Appendix A

Bit No. — 15 8 7 0 15 8 7 0 15 8 7 0 15 8 7 0

N — — “~r— —“~— it “eppmn. o e ftt ety e’ et s’ et ot et o

Leader # of 16-bit Nuil Bits 23-16 of Bits 15-8 of Bits 7-0 of Bits 23-16 of Bits 15-8 of Bits 7-0 of
words in record, 1st micro- 1st micro- 1st micro- 2nd micro- 2nd micro- 2nd micro-
including this instruction instruction, instruction. instruction instruction. instruction.
word. Is always in 1st record. in 1st record.

648 = 5210
15 0 15 0 15 0 15 0 15 0
!
etc. ... '
Bits 15-8 of 32nd Bits 7-0 of 32nd Checksum: computed in Null
micro-instruction. micro-instruction. following way:
a. sum of all bytes in
record excluding
this checksum.
b. the sum is ones comple-
mented and then rotated
8 bits.
s
15 0 15 8 e
NOTE: If last record contains less than
32 micro-instructions, then remainder of
micro-instruction space on tape is filled
etc . . . with all bits set (—1's}.
N —— oo’ N — —
Nuil # of 16-bit Trailer

words in record
= 64g.

Figure A-2. Format of the SRCASE Object Tape
A-3

®
—

INd04 INIdOJO0HIIN

(Actual size: 12.5” x 10.5") HEWLETT-PACKARD 21MX MICROCODING FORM
PROGRAMMER DATE MICROPROGRAM MODULE PAGE OF
LABEL oP SPECIAL ALU STORE S-BUS COMMENTS Word Type 1
LABEL “IMM” SPECIAL MODIFIER STORE OPERAND COMMENTS Word Type 2
LABEL “JMP” ““CNDX" CONDITION | JUMP SENSE OPERAND COMMENTS Word Type 3
LABEL B OPERAND COMMENTS Word Type 4
. FIELD 1 10 FIELD2 |5 FIELD3 |, FIELD4 |, FIELDS |, FIELD 6 % FIELD 7 20
— T == T T = == = T T T T
} 7 Jli;w“wr,‘m]wm,!!:Uw\:;
! : ! I Lo b . : i | : i
: v [b : ! ! | : | P
. P SRS RN / Ll { Lol
i | ' ' : i
| ! ' i P
' i [i
i ! i i
! |
i i |
T H
| R | |
; i | : ! :
: ‘ ‘ i ‘
| i ! i
| H ! ! i
I : ! I
+ ! ‘ :
i : ;
; i
. i i . i ;
: Ll H : ; - -
i :
i
i ‘
i ! i !
t T
i i i i i
: | i !
i i
i
: i
} i i T T
‘ ‘ -
| o
R : L | : I i . . P i P i .
1 10 15 20 25 30 40 80
g - ZERO lor1 -ONE 1+ ALPHAI S951.7386
0 : ALPHA O 2 -TWO 2 ALPHAZ

Figure B-1. Microcoding Form

XIAN3ddV

MICRO-ORDER SUMMARY

APPENDIX

C

C-1

Appendix C 21MX
Table C-1. Summary of User Micro-orders
MICRO-ASSEMBLER - _ JMP IMMEDIATE
SOURCE (CARD) opP SPECIAL ALU COND MODIFIER STORE RJS S-BUS
COLUMNNO. — 10 15 20 20 20 25 25 30
BITS (ROM) — 23-20 4-0 19-15 19-15 19-18 9-5 14 14-10
Corresponding
Bit Pattern
00000 *NOP IOFF INC TBZ HIGH TAB RIS TAB
00001 ARS SRG2 0134 ONES LOW CAB CAB
00010 CRS L1 oP2 COouT CMHI T T
00011 LGS L4 ZERO ALO CMLO L CIR
00100 MPY R1 OP3 100 101
00101 D1v ION OP4 . CNTR CNTR
00110 LWF SUB CNT8 DSPL DSPL
00111 WRTE OP5 DSPIL DSPI
01000 ASG STFL OP6 FLAG IR
01001 READ CLFL ADD E . M
01010 ENV FTCH oP7 OVFL B
01011 ENVE (0% op8 RUN
01100 JSB Cov oP9 NHOI
01101 JMP RPT OP10 SKPF ’
01110 IMM SRGE OP11 ASGN PNM v
01111 _*NOP DEC IR2 *NOP *NOP
10000 ' CMPS NLDR s1 s1
10001 NOR NSNG S2 S2
10010 10G NSAL NINC S3 S3
10011 ICNT OP13 NDEC sS4 S4
10100 SHLT NAND NRT S5 S5
10101 CMPL NLT S6 S6
10110 i XOR NSTR S7 S7
10111 SRUN SANL NRST S8 S8
11000 #**UNCD NSOL NSTB S9 S9
11001 CNDX XNOR NSFP 510 S10
11010 J10 PASL INT S11 S11
11011 JTAB AND SRGL S12 S12
11100 J74 ONE RUNE X X
11101 J30 SONL *NOP Y Y
11110 RTN IOR P P
11111 JEAU *PASS S S
*default micro-order
**%JMP default
+If no ‘RJS’, then bit 14 =1
- means not normally used by user microprogrammer.
-means included here for completeness only; reserved for exclusive use of system microprogrammers.

FUNCTIONAL BLOCK DIAGRAM

APPENDIX

D-1/D-2

Appendix D

By : :
IR m R : S1 s
: —st : Scratch
FTCH,, : s2 G oo
JTABg INCIS'p [53 | Register
RTN :
ple—] sAve : < s4 |
: : IO S5 <
. Memory : :
. A Protect . : [S6 =
: Option : :
M Increment e RAR N : a K 57 KS T-bus
. Address JSB Main Mem: : : %
: =0 o Hemory Inhibit : : < s8 |<H
: WRTE. : : -
- 3 Maps Address to . OR(EAD : : S9 [<H
y Control Store : Data Address : : [<bed S10 f<Pms
- jme a— — — - .
: A : :
i : TAB WARTEo : <H s11 |G
Micro- ROM : - st Memory : ARS
: |nstr:ctlon Address : : <t S12 [—0 A
gﬁ;e AAF Selection y] o Register == > Register
1 ; £ 3 : SRS
Address Four P-Register <ol P 1<l PNM
RIR : Loader T M .
JSB . : i Switch
H’Z ROMS TAB; o Register Register Register] s e
: BAF MeCK,, TAE, Tag,
' ADR, LDR, ? CAB, CAB,
B,
Decode : TAB ADR : L3 A
Instruction M ——7s,st Ms ot N
IMM (E:zzigéle Is,st PNM ., . R /Shifter
: CM_, . ALU otate/Shi
DO S - F P -
... . L1 ARS. DIV T-bus
- . - =lgp A8 Yo
oy S-bus : v S-bus Yl o1 R, CRs, LWE, |
~ o o o AsG, L4, LGS,
101 ¥ ey
Y) ey,
immediate Data CMHI; = E
HIGH; : L IE:NF <j
LOW.: . ALU .
™M L(l} : L-Register Output '@ Extend Register TBZ,
! Interrupt IAK : LNTsp Tests
. Acknowiedge - CNT4, .
: Display DSPL. : Counter | ———¢ ONES ;e?:s
N Register 2 sst . CNTBc YINED
: 100, :
: st . CNTR, 5 ALU
: === 1/0-bus : 1 Ones
NOTES: :
: N ENV0
‘:—_—__...—:_——l-‘> = Data path N : . ENVEO
. Teleprinter Overflow Register
== = Control path : Display
A . D indicator | 2Plsst cov LWF
Underlined characters = Micro-order : COV¢p E‘Fl?
: sov STFLg,
: : =—sp
Subscripts: OVEL, CLFLsp
s => S-bus field Line Printer FLAG.
st = Store field
RUNE
¢ = Jump Condition field RUN. — ¢
sp = Special field NHOl. | Run
o = Op field SRUN,, | Mode
i = Immediate Modifier field SHLT,, Central
Interrupt | CIRg
Example: Register
CNTRg ¢ = Micro-order “"CNTR”
’ in S-bus or Store fields
IOF Fsp v
ION sp
\v4

FRONT PANEL SECTION

Other
Peripherals

i/0 SECTION

Figure D-1. Functional Block Diagram

D-3/D-4

BASIC INSTRUCTION SET
MICROPROGRAM LISTING

E

4002
ooz
cao4
aoas
aage
iR ey
agaae
0003
0010
a0ttt
ag12
00t 3
ag14
aats
aole
Qo1?
ao18
0019
ao20
agzy
aozz
0023
a0z4
0025
aaze
aoz7
aozs
apez9
G030
003!
0032
ap33
034
G035
G036
Qg3vy
0038
agag
G040
[T
ao42
0043
6044

aaooo
60001
Qagge
g0QQ3

aaooade

aoQas
ago0e
oago?
aoQie
0a0il
ooz

o013
(R
0aa1s
0001e
gLy
ggozo
aooz1
Qo022
agQz3

220
017
a1v
220

325

237
320
237
320
a17?
220

220

017
322
220
01?7
330

20

074712
136745
100411
Qz0e73

120031

106451
000471
106457
0400318
104400
020673

022457
ap103t
100463
040571
022476
100485
100731
{75717
Qo230

This appendix holds a full micro-assembly listing of the 21MX Computer Basic
Instruction Set microprogram. Due to the size of this microprogram, a special micro-
assembler was used. Minor differences can be seen between this micro-assembly listing
and a listing produced by the micro-assembler described in this manual. The major
difference to be noted is that octal numbers are preceded by a ‘“%’’ symbol in this
listing. Other differences are self explanatory.

arG a
A ke oo ook ok ok ok ok ok sk d HOR ook s ook oK sk ok ok e ko ok ool ok s ke o st ok oo b sk ko K OR ok ROk ek ok ok o ok oK ook
*
* 21MK MICRO-CODE
* MODULE ¢
*
Aok ok e e o ook ol ok s e ok ke e b e s e e sk s s e e ol ofe ok e ook ke ok o R s s e oot ok ok st s e koK ok A sk ook ko ko o ko ok
Fabp EQU %r12a
FSUB EQU %ri1de
FHPY EGU “re2i
FDIV EQU %reee
IFIX EQU oo
FLOAT EQU wrees
ook ok ook b ook ok stk sk sk s o ok ok ok ok o st ok oK R ok ok sk ok ook ko skook sk s sk ok sl R o ok ok SR ko HOR Ok R o K Ok ok ok
* FETCH ROUTINE
LR EEEERE R E SRR R R R R R L R R N R R R R R R R R R E R E AR E LR E R E R R E SR EEE RS EEL EEE]
FETCH READ FTCH INC FPHM F ME=P: P{=P+!: RERD MHEW INSTR.

10N ENABLE IMTERRUPT RECOGMITION
CLFL PASS IR TAB IRS{= T/n/B; CLR FLAG FF

READ JUTAB INC (%] AbR JUMP THRU TREBLE: LOAD M IF MRG IN
kol ok ok otk N o e Sk R K o R R Rk AR K kR ook ol R ok ok O K ok o ook ol o ot ok ok R K KR K
HGRI JMP CNDX RUN RJS HALT RUN MODE IMPLIES AN INTERUFT
LEREE S EREESEEREELSEEREEEEFEEEEEEREIESERELELEEEREEEEEELEREEIEREEETEREEEEEEEEEEEEEL S
* INTERRUPT RESFONSE ROUTIME
EERELEEEREEE L ERE S E R R R E R L L NI E R R R E RS
INTERUPT READ CLFL PASS N Cir M{=CIR: READ TRAP CELL: CLF FLAG

JMP CNDX TBZ RJS INTOK CHECK IF CIR IS YALID

READ PASS M CIR M{=CIR: READ TRAF CELL

JMP CRDX TBZ FETCH IF NO INT BY NOW., IGNORE
INTOK I0FF PASS IR T IR(= TRAP CELL., DISAKBLE INT RECOG

READ J4TAB INC CHM ADR JUMP THRU TABLE: LOAD M IF MRG IN
LEELELEEE R E L LR E R R L R R A R R R PR R EE R LR
* INDIRECT ROUTINE
kR K R AR AR R R OR AR OR e R e ok ok ook K ok ok ook ool ok ook Rk ok ok ok sk e sk sk skook o ook e sk sk ko ok ok ok ook ok ko
INDLEYEL RERD INC M M REARD HEXT LEVEL

JMP CHDX NHOI RJS IND2 HALT OR INTERRUPT?
INDIRECT INCI PASS M ThB Me=T/na 85 INCR IMDIRECT COUNT

JMP CHDX AL1S INDLEYEL CHECK FOR ANCOTHER LEYEL OF INDIRE

READ RTN IHC N M READ EFFECTIVYE AQ0DDRESE. FETURN
IND2 INCTI PASS H Tak (=T /aB; IHCR IMDIRECT COQUNT

JMP CNDX NGENG RJS INDIRECT+!IJUMP BACK FOR SINGLE INSTRUCTION

DEC P F RESET P
JHP HOR1 HALT OR INTERUPT

E-1

Appendix E

Go4e

[

gode

0049 00024
0050 00025
6051 CO0zZé
gas2 ocaoz?
G053 Cou3o
(1054

GOSS 00031

0056 00032
6057 00033
058 GOoU34
t05% Qo035
6060

G06! 00036
6062 0U037
G063 00040
0064 00041

0065 QOU4z
0066

0067 00043
0068 00044
0069 QQ045
0070 (00046
Go7Y 00a4?
agr2

0073 00050
0074 00051

0075 QG052
gove

0077

aore

Qp?% 00053
0080 00054
GoBl 00055
G082 00GS6
1083 00057
Cofd 0QUe0
0oes 0006y

aoav

ocoga

coa?

0o90 60062
0091 00063
00%2 00064
0093 G00eS
0094

6095 000ee
Ga%6 00Ue7
0097 00070
098 QO0vL
agesa

0100 00072
010y QOO73
0102 Go074
G103 000VS
0104

0165 00076
6106 00077
G1oe? 00100
o108

6109

ai1a

Gtd

G112 0010y
@113 o0toz
(114 60103
6115 00104

E-2

017
a1y
335
017
aoo
017
oiy

ety

017

oLv
oty

a7

320
320
320
320

102757
0424314
arari?
10003}
goa2t7e

136057
042431
075717
1060031
002076

002057
a42431)
0?5717
100031
0o207e

036057
042431
075717
100031
aozave

136757
1003y
002070

102049
102056
10306318
102041
075730
102041
136770

136757
100031
075736
136757

102757
102217
102239
136757

[
b= G Gl
oo
NNy
w4 choen
~No N

136757
102137
010076

003122
015437
016034
Q17034

21MX

LEREEEEREEEEEEREELERESEEEREEAEEEREE EE L EEEEEEEEEE R AR EEREEEREEREEREEEEREEREEESERS:H;]

* ALTER-SKIF GROUP
LR EE R LR E R R E S E L E R R E A S R R E R E R LR R R R R AR R EEEEEE R E R EEEEEEEREREEREEE]
ASGNOF PASS ChB SET UP SKIP TEST
JMP CHDX ASGN ASGNSKP JUMP IF ASG SKIP NOT MET
ASG INC P P PC=P+ii EMAELE ASG HARDWARE
JMP CNDX IR2 RJS FETCH DOME IF WOT IH4/E
ENVE RTH INC CHB CHB AJE (= ASE PLUS 1
*
ASGCL* ZERQ CAB CLEAR A/B REGISTER
AP CHDX ASGN ASGNSKP JUMP IF ASG SKIP NOT HET
A5G N F P Pe=P+1: ENARLE ASG HAFDWARE
JHP CHDX IRZ RJS5 FETCH DOGNE IF HNOT IHA/E
ENYE RTN INC CAB CAE A/F (= AJE PLUS |
k]
ASGCH» CMPS CAB CHB ACB <= NOT A/B
JHP CNDX ASGN ASGNSKP JUMP IF WSG SKIP NOT NET
ASG IHC P P P(=P+1: ENABLE A5G HARDWARE
UMP CHDY IR2Z RJS FETCH DONE IF NOT TNA/E
ENVE RTN INC CAB C#B ACB ¢= AZE FLUS |
*
ASGLCH ONE ChB CLR & COMP A/B REGISTER
JMP CNDX ASGN ASGNSKP JUMP IF ASG SKIP NOT MET
HEG INC P P P{=P+1: EMAELE A5G WARDWARE
JMP CNDX IRZ RJS FETCH DONE I1F NOT INA/E
ENVE RTN INC CAE CAB ACB (= AJE PLUE 1
*®
ASGNSKP ASG MO SKIF: ENARBLE ASG HARDUWARE
AMP CHDX IR2 RJS FETCH DUNE IF NOT INA/E
ENYE RTN INC CAB CAB A/B (= AZE PLUS I
EEERF R LR E R LR R R R R R R R R R A E R FE R E R ETEEEE L REREE R AN
* SHIFT/ROTATE GROUP
LEREEEEE R L EEEE L EEE R L E R R R R R RN R R R EEE SR
SRG SRG1 PASS CAB CAB FIRST SHIFT
SRGE PASS CAB CAEB CHECK FOR CLEAR E: SET SLA TEST
JMF CHDX SRGL Ry5 #+3 SRGL 1§ SLA TEST
SRG2Z PHSS CAB CAB SECOND SHIFT
RTHN INC F P PC=P+1, WHEN LSE = 0
SRG2 PASS CAB CAB SECOND SHIFT
RETURN RTH

e K OR o k OK K K R K ok o ek K R K R R K K o o oo ok N oK R Ok ok ok K e ok ok kK Kk

* 1/0 GROUP
LRI EAR L R E LR E R E RS RS R E R E L LR R R R A R R R R L R EE R E R E R EE R
10CHTRL HOF ALLOW TINE TO GET SKIP FLAG
JWF CHDX SKPF RJS FETCH CHECK SKIF FLAG
RTN INC P P P (=P + |
NOF
*
10.07+ PASS CAE 3ET UP §-BUS
PASS 100 CHB 1/0-BUS <= A/B
RTH PASS 100 CHE HOLD I/G-BUS YALID
NOF
x
10.L1% NOP SYNCHRONIZE 101 PULSE
NOF
RTN FPHSS CAB lol ACR <= 1/0-BUS
NOF
*
10.MIx NOP SYNCHROMIZE 101 PULSE
FASS L CAB L <= 4/B FOR ALY OPERATION
RTN 10R CAB 10! ACBCE (AZBY + (170 BUS D
*®
A ok o o R s ol ik o K kR Kok ok ok sk ook ok bk e dk ok ook ok ook ok oo SOk R R Ok R G kool ok ol e ok sk sk ok ok Ok R R ok
* 10 GROUP/ EAU GROUP/ MAC GROUF JUMPS
LEEEELE RS R E R EEEE S EEE R E SR EE R E R E R R R R E R R E R R L R R R R R R E R R E R RN
106 JMF O 10G IGCNTRL
EAU JMP JERAU EAUTABLE
HACO NP 474 MACTAELG
HAC! JNP 474 HACTREL]

21MX Appendix E

117y A RN kol e o A ok R b ok Kok ok ok ok e o ok ook ol st ok ok s ook oK s O Ok o K Kook ol ook ko ke ok sk sk ok kR ok kK ok ke
o118 * MEMORY REFEREMCE GROUP

B & Sk ok ke ok ook ook ok s K ok o ok R O ok A R ok R R ko kR ok ok ek o ek R R OR SR R R R R
G0 006106% 300 Q000670 AND.1 JSE INDIRECT

Glzl 0U0l0e 017 126157 AND FASS L f L <= A

iz 001067 015 100576 RTN AND A TAB A<= T/A/B AND L

a1z3 *

gta2d4 QUi 00 00Q6TO CPs. 1 d8E INDIRECT

125 adtil Oty 1a2187 CP« PASS L CAKE L (= A/E

glze 00112 043 QUWO7PSY XOR ThB T-BUS (= T/8/8B XOR L

0127 00113 320 040031 JWMP CHDX TEZ FETCH JUMP TO FETCUH IF EQUAL

ft1es Gait4 QOO0 075736 RTN IHC F P Fi= R+l 1F HOT EGUAL

t1ea *

0130 00145 300 000670 KOR.1 JSE INDIRECT

013t ocalte 017 126157 KOR PASS L A L <= #n

G132 00ttty 013 0CGQS7Te RTN XOR A TAR A (= T/A/B KOF L

(133 *

G134 00126 300 0COGTC I10OR.1I JEE INDIRECT

¢t3d 00121 017 126157 10R FPAGS L A

136 0Glzz @17 0OQGOSTe RTN IOR & TAR A (= TAA/BR T10R L

QL3v *

0138 00123 300 000670 ST=.1 J&B INDIRECT

0139 00124 Q17 122761 &T#* MPCK PASS] MEM FPROTECT CHECK OF ADDRESS
0140 00125 177 102036 WRTE RTN PASS TAB CAR T/A/B (= A/B: WRITE

IR +

alsz *

0143 00126 300 000670 AD*.1 J8B INDIRECT

Gidd Q0127 017 102157 ADx PRES L ChE L <= A/F

0145 00130 264 100076 ENYE RTN ADD CnEB TAB ASR (= T/A4B PLUS L

146 *

147 QG134 300 000640 J8B.1I dSB IOFF INDIRECT DISWABLE INTERRUPT RECOGNITION
G148 QG132 017 122761 JSB MPCK FASS " MEM FROTECT CHECKS THIS ADDFR
G149 QGIIZ 177 174017 WRTE P55 Tug F T/rAa B <= RETURN GDORELRS: WRITE
(180 0G134 OO0 023736 RTH INC F 1] P (=M + 1

G151 *

G152 00135 300 000670 168Z.1 JS8B INDIRECT

0153 00136 O1Y 122761 152 MPCK PASS M MEM PROTECT CHECKS THIS aDOR
0154 Q0137 €00 QCtQLv? INC 51 TAB §1 (= T/A/B + 1

G155 00140 177 140017 WRTE PASS TABR 51 T <= 51: WRITE

1% 00141 320 000031 JdMF CHDX TBZ RJS FETCH ZERO? MG, DONE

G187 QG042 GO0 O75736 RTH IMC F F YES, P d= P+|

1&g *

1%% 00143 300 000670 LD#,1 J58E IMDIRECT

te0 00144 017 100070 LD% RTN PASS CAB TAB AR (= T/AAR

G162 00148 017 136765 JHMP.1 INCI COUNT ONE INDIRECT LEVEL

163 0Glde 017 10100GC IO0FF PASS 351 ThE DISABLE INT RECOGNITIGN:SI1<=T/A B
G164 0G147 322 046531 JMP CNDX ALLS JINDL JMP IF ANOTHER LEYEL OF INDIRECT
G165 06150 017 140761 MPCK PARSS 51 MEM PRUT CHECKS DESTINATION ADOR
0tee QQ1S%1 017 $4173e RTN Pa&S P 51 P ¢(= DESTINATIGH ADDR

GLev *

0168 Q0152 220 040457 JINDL READ INC M S1 READ MEXT LEVEL

Gles OGIS3 326 007031 JHP CNDX NHOI RJS HORICK JMP IF HALT OR INT

Qivo 0G1S4 017 101025 INCI PAES §1 TAR 81 (= T/A/B: COUNT INDIRECT LEYEL
G1v1 00185 322 046531 dMP CHDX AL1LS JINDL dMP IF ANOTHER LEYEL OF INDIRECT
0172 001S6 017 140761 MPCK PASS 51 MEM PROT CHECKS DESTIHATIGHN RDDE
QiF3 0GIS7 017 141736 RTN FPASS P 51 P <= DESTINATION RADDR

aiv4 *

G1v¥S 00160 017 101025 HORICK INCI PASS §1 TaB 51 (= T/A/B! COUNT INDIRECT LEYE
0176 QG162 30 106678 JMP CNDX NSNG RJS JINDL+3I JUMP BACK FOR SINGLE INSTRUCTION
0177 00lez GOf L17VS7L7 DEC P P RESET P

Gi78 00163 320 000230 MNP HOR1 HALT OR INTERUFRT

Q{72 00164 017 121021 JMP MPCK PASS 51 ADR 31¢=DESTINATION ADDR: CHECK WITH
0t80 0016S 017 141736 RTH PASS F 51 P <= DESTIMATION RDDREES

E-3

Appendix E

atg2
0183
0184
0185
0186
0187
0188
0189
0140
01914
0192
06193
0194
(195
136
0197
0198
0199
0200
a201

aanpz
aza3
az04
azos5
Gz
a207
a208
02073
az210
oz2it

Gz12
0213
G214
azis
azie
G217
0218
az2t9
220
g221

azzz2
0223
224
0223
a2z6
gzzv
a2z8
azz29
G230
G231

az32
0233
«z34
4235

Q237
azla
239
0240
G241
0242
02473
Gz44
d2435
06246
Gz47
t248
a2443
4250
@251
252
4253
G254

E-4

00166
00167
aa1vo
00171
0g172

00173
ag174
00173
00176
00177

00200
ag201
ggz0z2
00203
Ggz04

00205
002086
ogza?
06210
oga1t!

ggziz
agae13
aoz14
aa21s
Gozte

ag21tvy
aazzo
gaz21
agz22
agzz3

0gz24
ag22s
00z2é
gazzav
ag230
0az31
Goz32

00233
Q234
aQz3s
00236
aaz3r
aQz40
0ge4dt

oQz4z
Qaz43
agz44
aGz4s
0az4e
aga4?
Qazse
aazsi
Q25
aazs3
00254
0o2ss
agzsé
ag2s?
aQzel
aazed

010
000
01?7
057
017

o110
600
017
037
017

010

ot7

ato
000
017
asy
017

otQ
Gon
a1y
037
0ty

g1c
aoa
017
077
017

220
360
[l
017
220
aor
017

220
300
[
177
aoo
177

age

22Q
300

aal
oty
a1z
104
017
222
ao3
a1y
rzz
gLv
ao3

a21017
041017
140255
124504
136776

021017
041014
140255
124504
136770

021017
041017
140255
124504
1367706

021017
041017
140255
124502
1367706

021017
041014
14023535
124502
136770

021017
41017
140255
124502
136770

074457
000640
az30t7
100557
040457
073717
100530

0744%7
000640
gz3cel
120017
040461t
124017
075738

74457
000640
Q75717
101057
127114
136517
142157
124235
124504
1447507
a1273¢
024517
142757
ag3avy
144157
024536

21MX

LE R E S E L R EE S R LR E S R E R L R AR R R R R R R RS R E AR R R RS E R E LR E AR ESE]

*

EAU MICROPROGRANS

LRI R R R A EE L AR R R R R R RS R R R R R R AL R E RS EA R R AR RS AL E R LR ELELERDE

RRR

ASR

LSR

RRL

ASL

LsL

pLbD

MpY

HPYX

CRS

ARS

LGS

CRS

READ
JSE

READ

READ

d5R

WRTE

WRTE

READ
J5R

MPY

dMP

JGMP

RFT

RTN

coy

RPT

RTH

RFT

RTN

RFT
RTH
cov
RFT

Lt
RTN

RFT

RTN

IGFF

10GFF
MFCK

WP CK

1GFF

cov

RPT

K1

CHDX

CNDX

RTHN

CMPS
INC

PASS
PASS

CHPS
INC

PASS
PASS

CHPS
INC

PASS
PASS

CHFPS
INC

PASS
PRSS

CHPS
INC

PASS
PASS

CMPS
INC

PASS
PRES

INC

INC
PASS
IHC
INC
PASS

INC

INC
FASS
INC
FaSS
INC

INC

INC

PRES
PASS
ZERGQ
PHSS
FRSS
ADD

PASS
AL LS
suB

PASS
ALLS
PASES
5UB

S1
51
CHTR
B

€1
51
CHTR

§1
§1
CNTR

S1
51
CNTR

51
51
CHTR

§1
S
CNTR
B

=
—

WU ETW

ER

TaB

ThER

x

ol R

[oWl WONTEE)
z
-
B

m R0
o
o

[
oY

morom

ADR
51
S1
B

ADR
§1

51

HDR
51
St

ADR
S1

51

ADR

ADR

51

P
INDIRECT
L

TAE

§1

P

ThE

[3
INDIRECT
i}

H
a1
k
14

P
INDIRECT
P

TRE

A

(5]

+ o

rn

TURH

WL XWLmE u MO,
iMoo

51 (= TW0'S COMP OF SHIFTS
SET UP COUNTER FOR REPEAT
DOUBLE-WORD SHIFT REPEAT

§1 ¢= TWO’'5 COGMP OF SHIFTS
SET UP COUNTER FGR REFEAT
DOUBLE-WORD SHIFT REPEAT

St (= TUO’S COMP OF SHIFTS
SET UP COUNTER FOR REPEAT
DOUBLE-WORD SHIFT REFEARTY

S1 <= TWG'S COMP OF S5HIFTS
SET UP COUNTER FOR REFEAT
DOUBLE-WORD SHIFT REPERT

81 <= TWO’S COMP OF SHIFTS
SET UP COUNTER FOR REPEAT
DOUBLE-WORD SHIFT REPEAT

81 <= TW0'S COMP OF SHIFTS
SET UP COUNTER FOR REPERT
DOUBLE-WORD SHIFT REPEAT

READ MEMORY ADDREGS

JSE TO GET M<(=nbDR OF FIRST WOFRD
51 <= ADDRESS (F SECGHD WaRD

A <= FIRST DRTA MORD

M{=ADDR OF SECOND WORD: RERD

P (= P +

B (= SECOMD DATA WORD

READ MEMORY ADDRESS

J5B TO GET M <= ADDF OF FIRST WIR
MP CHECK FIRST ADDR: S1<{=5ECOHD §
STOGRE A INTO FIRST LGCATIGH

MP CHECK Sit: M(=E&1

STORE B INTGQ SECOND LOCATICHN
UFDATE P

M (= P: RERD

J&B TO GET M {= ADDR OF COPERAND
UPDATE P

52 <= MULTIPLIER
SI{=ALMULTIPLICAND 2! CLEAR QYFL
CLEAR B FOR MULTIPLY

Lo(= 52 (MULTIFLIER:

CLEAR COUNTER: SET REPEAT FF

MEY STEP (X1ée2: (B.AX =R TIMES L
TEST MULTIFLICAND

JUMF IF POSITIVE

UBDG LAST MPY STEP IF NEGATIVE
TEST MULTIPLIER

JUMP IF POSITIVE

L <= MULTIFLICAND

Be=8 MINUS L CCORRECTSE FOR NEG. M

21MX

0259
4256
G257
azs8
0259
0260
02614
0262
(1263
(264
1263
G266
0267
0268
0269
G270
271
az72
az2v3
0274
0275
az27e
a2e?
zve
G279
aze0
0281
0282
283
284
0285
286
G287
0288
aze9

029!
292
a2%3
G294
G299
(296
4297
0z98
06293
0300
a3ol
a3e2
4303
0304
g30%
0306
4307
4308
t3p9
a3ig
a3t
Q312
(313
1314
a3l s
fi3le
a3y
0318
(t319
3z
N

1

.

= o
LA R
re
-

P
P2

goze
002623
gozoed
0azed
agzee
goze?
ggzro
ozl
aae7e
oQz?3
agzv4
0Qa7s
0Qz7e
gQa7y
Q300
00301
00302
003403
0304
00305
0c306
00307
ga3to
0a3Ll
g3tz
00313
00314
00315
06o31e
ao31t?
00320
00321
go3z22
00323
60324

PR3

Qo330
0033}
0033z
60333
006334
00338
00336
00337

00340
00341
aQal4z
04343
tg344
Ga345
talde
Gh347
[RURA1
o35l
aa3se
00353
G354
(U
Q356
QU3ET

220
300
000
oio
o1Q
322
Qoo
a1y
LRV
32z
a1v
oiQ
000
321
oo
ao3
322

a0t
a1y
123

ot
3zo
013
322
Goo
o117
013
322
017
ot7
324
Qio
000

320
320
320
3z0
320
320
320
320

321
3zt
321
321
321
324
320
320
320
320
320
320
320
320
320
zo

074457
0G0e40
[W
001t&7
047017
013471
047617
140157
025417
034071
144517
027037
042557
014071
044517
024753
anoasl
124502
137054
1422385
024502
144142
gz7eiv
195071
0470357
014671
040557
142157
Qze757
015071
136753
124504
040031
024517
024530

007330
007570
010030
000030
010270
010530
010770
012130

145270
1435330
151070
153130
140030
141270
060030
0600335
100030
100G3s
120030
120035
1400630
140033
160030
160035

Appendix E

Div READ INC M P M (= P! READ
8B IOFF INDIRECT JSB TOG GET # <= ADOR GF CFERAND
IHC P F UPDATE P
CHPS &4 TAEB 54 (= DYSRILMOICtEAYE ORIG SIGH
CHPs 51 S4 &1 <= DYSR
MNP CNDX ALIS RIS #+2 dMP 1F DYSR NEGRTIVE
INC 51 54 S1 <= DYSR{zCH
FASS L S1 L <= ABS YALUE(DYSR)
CHFPS3 53 B 83 (= DYNDHIC2CH)
JMF CHDXA ALLS b1ve JMP IF DYMD POSITIVYE
PASS B 53 IF DYND 15 NEGATIYE. ..
CHPS §2 A FORM DYND{2ZCHMD
INC A 52 IN B.A-REGISTER
dMP CHDX COUT RIS DIVS *
INC B 53 *
DIVS S0y SUB B CHECK FOR DYSR TOO SMALL
MP CHNDX ALIS RUS FETCH (=DYHND TOO LARGE)
LES L¢ PRASS B B SHIFT QUT SIGN BIT OF FULL WORD
coy ZERO §2 CLEAR OVYFL.S2.4 CNTR
RPFT PASS CNTR 32 AND SET RPTFF
pIy L1 suB R B DIVLLeRd: AC=QUQCPOS): B{=REN%2
LWF Lt PASS L a3 L <= FLG <= DYND GSIGN(CHM)
CMPS 51 A §1 (= QUOCCHM>
JWMP CHDX OHES QZERD IF QUO=0,THEN NO FURTHER TESTING
XOR 52 54 §2¢15) (= EXPECTED SIGN OF QUG
JMP CNDX ALIS RIS *+2 JHP IF POSITIVE WAS EXPECTED
INC »a $1 ELSE A (= QuoC2cM
PASS L sz LE1S) <= EXPECTED SI1GHN GF @U@
XOR A COMPARE TO FINAL SIGMN OF QUO
JMP CHDX ALID R4S #+2 JMP 1F 0K
SOy ELSE INDICATE QVERFLOWU
GZERO R1 PASS B B B <= (REW*22/2
JMP CNDX FLAG FETCH CHECK S5GN OF DYND
CMPS B B IF NEG.THEN FORM 2-COMP OF
RTN INC B B REM & STORE IN B
ORG 3308
oo o s oK ok o R K ok o S KK o oK R KRR KK B oKk ok ok T ok R oK o K R Ak R R Rk R oK SO K R K K Rk ok ok
* EAU TABLE
oo R R S A ok SOk oK R oK S S S o o Kok O ok o o R R Ao ok o K ROl ot ok RO ok kR R Ok kK
EAUTABLE JMP RER
dMP ASR
JHP LSR
JHP FETCH ILLEGAL IR CODE FOR ERU GROUP
JMFP RRL
JMP ASL
JMP LsL
JHP MPY
Ao K ook R R ook kA oK o o AR ko ok o R R SRR R o koK N SR R R S R o O SR K A RO R O Ok
* MAC TABLE
SR ok R e o o oRR o R ok o R o AR o R oK ok R R ok ok A o R ok ok R HOKOR R HOK o kO R Ok O ok koK
MACTABLO JNP FabDD / FLOATING POINT
JHP FsuB / FLOATING POINT
JMP FMPY /A FLOATING FPOINT
JHP FDIV /A FLOATING POINT
JHP IFIX A FLOATING POINT
JHP FLQRAT /A FLOATING POINT
JMF %1400 #%% PRUBABLE FUTURE HP USE
JMP J30 %1400 #kx PROBABLE FUTURE HP UGE
JMP L2000 wkk PROBABLE FUTURE HF UGE
JHP o 430 %2000 “#% PROBABLE FUTURE HP UGE
JMP “2400 ##%% PROBABLE FUTURE HP USE
JMP 430 %2400 #44% PROBABLE FUTURE HP USE
JHP %3000 w44 PRUHABLE FUTURE HP USE
JHP 430 %3gaa 4% PROBABLE FUTURE MP USE
JMP %3400 “44« PROBABLE FUTURE HP USE
JHP o 430 %3400 #4« PROBABLE FUTURE HP USE

A AR AOK A OK ook N S o ok R R R R R R R A N K o N K o R R ROk ok e ok R R SO ok ok ok ok K ok ok ok

E-5

Appendix E

@323
1324
3z
3o
e3zy

Lot sn i ax i s B v
LIS A S N R S 991
[\

[an i i s i i o)
LIPS R % L #5 }

PSS SN R WS N S B FX RPN I U |

)
i
<+
()

P = D NGB LR e Q0@

R R s I)

]

344
G345
G346
347
348
0349
4350
035!
a3s2
383
4354
0355
0356
0357
358
359
360
G361
0362
0363
0364
365
366
0367
1368
369
370
Q371!
0372

a391
392
1393

E-6

Ga3el
Qa3sl
ol3ae
00363
aa3ed
aa3es
Q366
0a367
aa3vo
Ga371
aa3vz
gQ3v3
QQg374
0037S
G037
QQa3vry

00400
0a4al
00402
ag4902
00404
00405
aQ406
Qo407
0o410
0g411
o4tz
Q413
aadi4
00415
GQ416
00417
ca420
aa421
ag422

0423
Q424
0g425
0g4z26
aa427
ag430
00431
00432
004323

Q434
00435
60436
00437
00440
agadt

321
321
321
321
32!
321
3zt
321
321
321
3at
321
3z0
320
321
321

322

oon

322

3414

334
aLy
330
347
300
334
325

[tR s

332
331
331!
332
333
332

000030
000035
g2o03c
020035
040030
040035
060030
060035
160030
100035
120030
120035
0400230
040035
160035
161035

161171
gu4de617
101017
137057
142557
142517
142117
077117
076264
144617
142620
04306323
020531
137717
074717
020731
041017
020431
000617

165531
115752
121371
156357
Q24270
021431
164231
061471
136757

122571
023431
123531
0235471
121371
032231

21MX

MACTABL! (NP %4000 #x% PRUBABLE FUTURE HP USE
JMF G330 %4000 4% FPROBABRLE FUTURE HP USE
JMP 4400 «%+ PROUBABRLE FUTURE HP USE
MR 430 %4400 #%% PROBABLE FUTURE HP USE
MNP %5000 4x% FROBABLE FUTURE HP USE
JMF J30 45000 4% PROBARLE FUTURE HP USE
MNP %5400 “kk PROBABLE FUTURE HP USE
JMP J30 %5400 *%% PROBABLE FUTURE HP USE
JHMP e (iG0 +++RESERYED FOR CUSTOMER ONLY
JMP J30 %6 Quon +++RESERYED FOR CUSTOMER OHLY
JMP “6400 +++RESERYED FOR CUSTOMER CONLY
NP J3g %6400 +++RESERYED FOR CUSTOMER ONLY
JMP %100 / RESERYED FOR HF USE
JMP U430 »1agQ / RESERVYED FOR HP USE
GHP G20 %7400 / BASE SET EXTENSION
JMP JXO %7420 / BASE SET EXTENSION
ok oK o kAR ok ok Sk Tl o ok ok R o K R o OR k Hh RSK f o o R N R R ok ek kol ok ok ok K %
Ok G 400GB
oK oK oK R R oK R S ook R ok ok ok ok ol ok ok ok ok ok ok R R N ko ok ok R ke okt st Ak R ok Ok
*
* ZiMK MICRO-CODE
* MODULE !
*
o R K R R o ok o R oK ok ok R okt K K KR ROK Ok Ok KR SR sk ok ok ok o sk ok R ok R R Kk K K
DISPLAYAR ERU %376
DISFLAYT EGU %367
DISPLAYS E&U %337
e o o SOk o o ok ok R ok ok Rk Rk ok K ok ok ok ok ok o ko ol ok ok AR R R o o ko ok ko ok Ok R ok kR
* MEMORY INITIALIZATION ROUTINE
o o ook o o oK ok ok o R R R Ko SRR o o R o K R ok o KR o o W st Sk kK RO o R Rk kA ROk ROk K
HALT JMP CHNDX NMLS MGOOD JUMF IF MEMORY NOT LOST
Inm HIGH MEU Zz102 ENABLE 3YSTEM MAF
IMM LoW &1 %340 §1 <= 2'§ CaMp OF 32
ZERO 82 CLR 52 {MAPF ADDR)
PASS A s2 CLR A-REG
PASS B 52 CLR B-REG
PASS T ¥4 CLRE T REG
INN CMHI 82 %337 §3 <= "LO0AD ADDR REG"™ COMMAND
LOSTLOOP IMM SHLT LOW CNTR %337 CNTR{=COMP OF 32: CLEAR RUN FF
PASS MEU 53 LOAD 0 INTO ADDR REG ON MEU
MAPLOGF MESP PASS MEU S& LOAD MAF IN MEU
ICNT INC 52 52 INC MAP ADDR

JMP CNDX CNT8 R4S HAFLDOFP LOOP(*32)

ZERO P CLR F KEG
WRTE INC PHM P M{=P: P<{=F+1; WRITE ZERO DATA
NP CNDX AL1S RIS -1 LOOP UNTIL M=077777
INC 51 S1 INC MAP CNTR
JHP CNDX TBZ RJS LOSTLOOP LOOP <»32)
M HIGH MEU %100 DISABLE ALL MAPS NOW. . .

o ARk SR o ook ko A SR oAk ol o N oK R ok R R ook ok T o ook e ok ok A ks ook ok ke ke oo ook ol ook K ot ol stk ok Stk b K kol ok ek ok

* FRONT PANEL STANDARD 3CAM ROUTINESR
I L A E R AR B
HGOOD JHF CNDX H&FP CENTFP JUMP OTF NON-STANDARD FRONT PRNE
FTCH PARS5S § DSPL S¢=DISPLAY;INITIALIZE MEN. PROTEC
JMP CHDX NSNG RJS WAIT JUMP IF “INSTR STEP" PRESSED
MM LOW DSPI DISPLAYT ACTIYATE "T" IMDICATOR IN DSPI
WARIT JSE UFPDATE UFDATE DIGPLAY WITH PROUPER DRTH
JHFP CHDX NSTEB R4S % WAIT FOR BUTTON RELEASES
JHF CHDX RUN RUN
JMP CHNDX NSTB *-
SCAN NOFP 5CAN FOR SWITCH PRESSED
* NOP OHE CYCLE TG SET SWITCH CONDI

dMP CNDX NLT RIS LEFT
dMP CHDX NINC R4S INC.M
JMP CHDX NDEC R¢5 DEC.H
JMP CHDX NSTR R4S STOREX
JMP CNDX NRST RJS MWAIT

SCANRT JMP CHDX NRT R4S RIGHTR JUMP IF "RIGHT" TO TEST FOR ENTRY
* INTO SPECIAL DISPLAY ROUTINE.

21MX

3%4
395
0396
Q397
G398
G399
400
G401
ad402
ad04
0405
a406
a407
408
409
410
G4t
G412
413
0414
G445
G40
G417
Q418
413
G420
a4zt
422
423
424
0425
426
0427
428
429
G430
0431
432
0433
4434
1435

0437
438
439
0440
(441
G442
0443
1444
(443
G446
0447
0448
449
(1450
0451
452
0453
4454
485
G456
457
0458
1459
(400
G461
0462
0463
(1464
0465
G466
G467

(0442
G443
G444
060445
00446
00447
g4 30
00451
00452

0e453
00454
Q0455
004506
Q457
00460
00461
00462
00463
00464
0465
00466
Q467

co470
Qa4vy
aQ47e
G473
Ga4s74

a4 v s
acad476
0Q477
Qaaon
0onal

pasaz
agso3
00504

00505
0QSos

aasay
Qa&i0
00511
005tz
0o513
00514
00515
paste
0gsty?
o520
00521
agn2e

330
328
330
335
017
220
o1v
a1y
220

1 e
3214
ot7
320
347
320
347
017
320
157
320
347
320

aoa
32
ooy
0tv
320

o= AR
e Mt B)

L7 it 2 U B e
=

017
320
347

017
320

177
oon
aon
320

0t7
017
01?7
347
(%)
320
017

026171
1e4231}
161431
04027}
176317
074712
136745
100411
020673

117004
12277
140357
021370
076357
021370
076lG7?
416750
123331
11vog2
Q022670
174357
021370

237
Ge3LT0
123017
140457
021370

1164187
122571
168357
142317
033130

116417
424035
G76287

116417
025035

114017
023017
040457
021430
014470
11577%
114530
11457¢
136157
0le?57?
164631}
115736

Appendix E
MP CNDX NLDR RJ5 LUARDER
JMP CNDX RUN RUN
JHP CHDX NSNG WATT+) JMP IF *INSTR STEP" NOT PRESSED
IMP CNDX INT INTERUPT SERWICE ANY PENDING INTERRUPT
PASS DSPL § DIGPLAY (= §
READ FTCH INC PRM P b0 STANDARD FETCH ROUTINE

1GNK
CLFL PASS IR TAEB
READ JTAB IHC CH ADR

LR R E R R E L E RS E L R R L R R R R R R L R R R A R R R R L R L R L L LR RE S

* DISPLAY INDICATOR SHIFT ROUTIMES
LR R LR L EEEE L EE T E S EEEE L E R EE A EES RS EREE L EREEEEEEEAEE LRI R R R R EEEREE R EELEEER]
LEFT RY PASS 51 D&PI §1(=D3P1 SHIFTED RIGHT ONE

JHP CNDX ALO R4S LEFTH JUMP IF DSPI WRAP-ARGUND REQUIRED
LEFTB PASS DSFI 51 DSP1 <= DSP1 SHIFTED RIGHT ONE

JHP WAIT JUMP TO 5TAHDARD SCHN ROUTINES
LEFTA MM LOW DSXPI DISPLAYS DSPI WRAP-ARGUND A TO §

IMP WALT JUMP TO STAMDARD SCAN ROUTIMNES
RIGHT MM Loy L DISPLAYS

STFL IOR DEFI SET FLAG: TEST DSPI

JMP CNDX ONES RIS RIGHTA JUMP IF WRAF-ARGUND OF D5SP1 REGD

LWF L1 PASS 51 D§PI 51¢=D3P1 SHIFTED LEFT ONE

JMP LEFTE
RIGHTA 1NN LOW DSPI DISPLAYA DSPI WRAP-AROUND § TO A

dMp WAIT JUMP TO STANDARD SCAN ROUTINES
LR R R E N T EE R EE R R RN EEEE SRR R EEE R E R EEE R EEEEEERBEEE SRR R R SRR
* INC M, DEC M ROUTINES
R R R L E R R R R R RS E R RS RS AR R EEE R E L R R R R
INC. H INC &1 M 51 <= 8 ¢+ !

NP DEC.M+1
DEC. M DEC 51 M 51 <= M - |

POSS M 51 M <= 51

JMP UNCD WATT JUMP TO STANDARD SCAN ROUTINE
EEEEES EEEE R PR EE SRR EEEEA R ESEEE RS EEEREERERESELERE RS EEEREERESEEIERSESEEEE SN
* SPECIAL TEST TO EXIT SPECIAL DISPLAY LOGP
IR FEREEENEREFEEEEEREE EEEEEEEFEN R RN EE R E NP EEEFEREEEREEREEREERE SEREEEREEEEEEEENE]
LEFTR PA&5 IR DSPI CHECK FOR "M" D3PI

UMP CHDX IRZ RIS LEFT JUMP IF "N® TQ LEAYE SFECIAL CODE

i LoW DSPI 4373 DSPI <= "N" {SHIFT FROM "T")

FH&S DSPL S2 SHOW POINTER OM DIGFLAY
JMP UNCD WHITR WalT FOR BUTTON RELEASE IN SPECIA

o ok ok ok ot o K Kk ook AR ok oK s o 0K ok sk R oK Ok ok ol Ok o ok Sk st ok sk R ROk kKoK K Rtk R Ak dodok s ok R Rok

* STOGRE AND UPDATE ROUTINES
A o o Sk R R SR Rk Rk kR Rk R o Rt ok ok o oo R ok ok ok o st ok sk ok K ok AR KR KR ok K K
* THE REGISTER IMDICATED IN D&EFI 1& THE BIT POSITIOM WH

* LOW. ALL OTHER BITS ARE 1. THE ORDER {MSE TO0 L&B) 15
* § P T M B A

* THE INDICATED REGISTER IS5 DETERMIHNED BY LOADING DSPI
* THE 1R. AND JUMPING USING 430 TO GET 70 THE APPROFRIR
* STORE OR UPDATE ROUTIME. OTHER CCGDE 16 INTERSFERSED
* FOR MaXKIMUM CONTROL STORE EFFICIENCY

S

s TORE PASS IR DsP1
JMP 430 %4500 JMP TO STOGRE SELECTED REGISTER
RUN e LGW DEPI DISFLAYS DS&PI (= *§". THE SAYE REGIGTER
* ZERO AT THIS POINT S0 THE MERT RT
* WILL INITIATE THE FETCH ROUTINE
A SRR R o R R SRR SR SR oK K R R R ROR R TR ko oK R K KK KK R T K R K OK Kk
UPDATE PASS IR DSPI
JHF J30 %320 JMP TG DISPLAY SELECTED REGISTER
o O R ko kol ok O OO R R o ook o OR O ok ok OK R R Kk R R Ok kK K R Rk
WRTE PASS TAB DSFL STORE T
INC 8t M
INC M 31 INCREMENT M. SET TwHB LOGIC
JHP UNCD WAIT+!
RTN IHC M bSPL STORE M
STORES RTN PASS § D5PL STORE &
RTN PASS B DSPL STORE B
RTN PAGS A DSPL STORE A
153, Low L 5357 P GR 5 TO BE DISPLAYED
10R D&PI MARSK OUT "§»
JMP CHDX OHES STORES JUMP IF "S" IHDICATED
RTN PASS P DSPL STORE F

E-7

Appendix E

468
469
0470
G471
G472
0473
G474
475
476
0477
0478
G479
G480
1481
482
0483
G484
1485
4486
0487
488

0490
0491
0492
1493
0494
4495
G496
497
1498
493
asao
G501
aso2
as03
0504
a50%
506
4507
4503
509
510
a5t
512
G513
0514
ast5s
0516
Q817
518
a%19
1520
as2!
asz2z2
as523
524
as525
526
asz?
4528
@529
6530
0531
as32
0333
0534

E-8

0g523
00524
00525
00526

gasay
Qus30

00531
40532

00533
0534
00535
00536
0os37
0g540
00541
Q542

0as43
QaS44

00545
Qon46
Qo547
aass50
00551
0g552
[
aassd
00855
00356
Qaas?
0asel

00561l
00562
aaSed
00564
00%eq
00%6e6
0Ga567
0Qsvo
[

6gs7e
00573

a0sS74
0QS73
Qo576
ags577
00e00
00601l
0ge02
006023
00604
00605
00606
0ge0?
00610

017
321
017
0t?

220
017

300
320

0tv

at?

341
353

347
IR
o1a
0oa
017
3a2o
177
017
223
617
013
320

347

017
0t7
017
013
347
604
3az

344
017

a7

115013
165331
136754
136776

022457
100330

024130
021370

122336
176336
124330
126336
136157
016757
165631
174336

1770353
137017

000157
143717
075217
051217
142457
161371
150117
140157
043057
150157
004757
026271

000157
164257
176417
17715353
147144
147137
160157
147153
061371

000257
174454

131003
140163
131003
140163
131003
140163
031017
140117
023063
142457
ono157
022757
127631

21IMX

Sk Aok ok RO ok ok Ok o R o ook S ok O R R R skt o s Rk o SRR o ok o ok ok ok ok kR kK Rk Kk
s#xxwx OYFL REG. STORE--PART OF SPECIAL DISFLAY ROUTINES sorserhsdhddhhhtsk

STOROC S0y PASS Si DSPL CHECK DISFLAY
JMP CHDX ALO *+2
coy CLEAR OVERFLOQWU
RTH
Ak N o ook ok oA ook oo Rk o Sk R o o o kR ok KR b ok ok sk o kR sk ko R R R R Ok ok ok
RERD INC M o UPDATE T. READ M. SET TAEB LOGIC
RTH PASS DSPL TaB DSPL <= MENM DATA
Aok kR R R K R ok ook N ok ok s stk Rk R OK A OR sk o ok Rk ok Ok ok ok sk R Nk R ok ko ok
STOREX J&B STORE STORE ROUTINES END MWITH RTN
CONTFP JNP WAIT JUMP TO STANHDARD SCAN ROUTINMNES
o ko o o o KR K K oK oK K R K KRR ok oKk ok o R KON OR HOK S ok T R S R kR R KR HOK o Kk K
RTH PASS DSPL M UPDATE N
UPDRTES RTN PASS DSPL S UPDATE §
RTN PASS DSPL B UPDATE B
RTN PASS DSPL A UPDATE A
IMN LOW L 3578 P OR § INDICATED
10R DSPI HASK OUT "g*
JMP CNDX OMES UPDRTES
RTN PASS DSPL P UPDATE P

o ok oo oKk ok kK o R Ok o kR Ok ke ok NN kR o e ok ok R ok ok ol ok ko ok i ok ke sk i o Ok R ok R ok ok sk e ROk R R ko Sk ok

* 21MX ROM BOOTSTRAP MEMORY LOADER ROUTINE
ok o kR o ok ok ok Sk ok sk HOK A oK K sk ook oK ok o oK ko ok sk ok ok o ok sk o s koK R ko ok Rk K KOk ok kR ok ok
LOADER IMM SOV HIGH S2 %177 FORM 0111113113811 t1 (MAX ADDRD
151 CHHI §1i %357 FORM 0001000000000000 (10K) IN 51
*#*x24% DETERNINE MEMORY SIZE, STARTING ADDR FOR LOADER #wadak btk hhkiurnk
S1ZE M Low L %300 FORM 11il1i11t1o00000 IN L
AND P §2 FORM STARTING ADDR 1IN P
CMPS §§ P FORM TWO'S CONMP
INC 85 S5 0F SA IN 835
PASS M s2 PUT LAST ADDR INTO M
JMP CHDX ONES HRlT TEST FOR NO READSKRTE CAPABRILITY
WRTE PASS T 5% PASS INTO T
PASS L St UPDATE LAST ADDR WHILE WAITING
READ suB sz Se Te RETRIEYE DATH
PASS L §5 COMFARE WHAT MAS READ FROM MEM.
XOR T TO DATA WRITTEN (§3)
JHP CNDX TBZ R4S SIZE IF IT CHECKS. WE HAYE CORRECT 3TR
«#%4wxx CHECK SELECT CODE 1IN 5 REG. o ok ok o ok ook ok ook koK K oK ok ok koo Ok R KR
Ny Low L %300 FORM 1111111111000000 IN L
INM LOW CNTR %372 CNTR GETS -@

SET UP LOADER SELECT BIT
SET UP S-REG FOR SHIFT

%
PRSS IR 8

RPT PASS G4 §
R1 PASS S4 S
3

%

4 SHIFT SELECT CODE INTQ BITSC(O-3)
SANL S4 4 MASK OFF SEL. CODE
MM Low L 370 FORM 1111111 111118000 <=-10B) IN
50y ADD &4 54 SUB 108 FROM SEL CODE: GAYE IN &
JMP CNDX ALLS WAIT IF NEG RESULT. SCB < 10B: KTH W/
*xkkk k¥ PREPARE FOR LOADER TRANSFER # ok ok o ook %k oo ok okooko ok ohok 6ok ok ook ok & bok ok ok kok ok &
Inm LOW CNTR XxC CLEAR CNTR (ROM ADDR REG?
cay PASS M P PUT SA IN M:CLR OYF = NO OPER ERR
#%Adkkx TRANSFER COMNTENTS OF LOADER ROM TO MEMORY ok koo oo st oo o dokok ko
LOOPI? L4 PASS 5t LDR PASS XXXXKNNXAAAAKXKX INTQ S1iCNT
ICNT PASS L 51 CHTR=X01
L4 AND 51 LDR FOGRM XKXXKARAABEBRBXXKX IN S1iCHNTR=
ICNT PASS L Sl CHTR=X10
Ld AND 51 LDR FORM AAAABEBBRECCCOXXKX IN S1ICNTR=
ICNT PASS L S CHTR=X11
NAND &I LDR FORM ARAAERBBRCCLCCDDDD (CMPL FOGRMD
WRTE PASS T 51 WRITE INTO MEMORY
ICHNT INC Ss2 L] UPDATE MEM ADDRICMNTR=XQQ
PASS N 52 PASS MEW ADDR INTO N
InM Low L % FORM 113111110QQO0QOG0E IN L
10K hi MASK M TO 5EE IF LAST WORD OF LDR
JMP CNDX ONES RJUS LOOPI IF M(G-go=11111118, DON'TLOOP

21MX

536
537
538
539
4540
0541
0542
0543
544
6545
0548
0547
0548
549
G550
551
0552
553
0554
585
asse
0557
G558
(1553
0560
04561
056z
%63
564
0565
0566

0568
03569
QS70
0571
asv2
Q573
574
G575
0576
0577
a578
0573
asso
05814
0582
4583
584
585
986
587
588
G589
1590
45931
6552
593
04594
0595
t596
0597
598
599
4600
460l
1Y 3]
Go(t3
0604

00611
o6t
00613
00614

GQa6ls
odele
ade v
Qo220
0g621
Q0622
00623

00624
QQe2s
0a626
age2av
00630
0a631

Gge32
00633
00634
00633
00636
GQaa37
00640
00641
00642
00643

00644
00645
G064de
00647
00650

006351
00652
00653
Qo654
00658
00656
00657
(-2 20
0066l

00662
00663
00664

00e6%
G666
066y
0Q670
Qoevl
ageve
006?73
Go6v4
G0e7?s
00676
Qo677
aar oo
aarol
Qar7o

347
344
157
o1y

237
340
0t7
0t3
341
013
320

177

0t
014
320
347
013
320
017
ac4
177
320

ot
327
017
322
347

006

350
018
017
333
200
320
300

334
3235
334

0L
33z
331
Goo
320
331
340
015

[ifgd
007
017
327
017

ogozay
077110
143102
175017

140457
026137
105057
1436187
166157
040757
171531

023023
030671
146154
143051
142117
021370

144157
042757
1712318
016157
142757
071231
146157
143057
142117
031230

116417
163071
115057
023071
156357

042157
074671
067003
144057
142417
073071
0370335
033130
036035

033131
164231}
073171}

142757
033771
143057
143057
116417
172471
142317

Appendix E

LR AR L E IR R ELEE R R R L R]

MM LOW CNTR %300 SET UP COUNT TO FIND LRS3T WQRD
IMM STFL LOW 53 Z037
LMF L1 PRSS 83 §3 FORM 111131100C283128 IN 53
PASS §1i P PASSE 58 INTO 51
wdkknkx CHECK INSTRUCTION IN MEMORY FOR T/70 TYPE & okt ok ok ok ok ok ook ok %
NUWRD READ PASS M 51 FASS SA INTO M & READ FIRST INSTR
IMn HIGH L w013 FOGRM COMP OF 1131030GQGOOCOOOCOO IN
PASS 52 T SAYE WORD IN 52
SANL S1i 52 MASK UPPER BITS FOR 1,0 TYPE
Inn HIGH L %173 FORM 0118101182 1124888 IN L
XOR S\ HOW CHECK FOGR 1.0 TYPE
JMP CNDX ONES HTST IF HATCH QCCURS. JUMP OQUT OGF LOOP
o Aok ok ko kA Nk o Ak SR R SR oK OR o ook N ook OR SOKOR ok O kot s ok o ok R Nk R R sOR OK
UrDT ICNT IMC 51 M OTHERUWISE UPDATE M IN 51
JMP CHDX CHT8 RJ5 NUWRD LOOP BACK
covy PASS L S4 PASS {SCR-10GR)Y INTO L
CLFL ADD 82 14 CHNG SC OF DCPC ONTRL WORD
WRTE PASS T 52 SAYE IN MEM
NP MAIT RETURN TO SCAN ROUTINE
dxandk UPDATE SELECT CODE IN I/0 ITMSTRUCTTION hoksok oo o ook ook ook ok o ook ok ook ook ook o
HTST PASS L 53 PASS 1111111CG00GLYY11Y INTO L
NSOL S BLEND TO CHECK FOR.. . 00Q. . QOF HLT
JMP CHDX OMNES UrPDT IF FOUND GET NEXT INSTR
MM LoW L %307 FORM 11818111 110Q0018Y IN L
SANL 52 MASK BITS TO CHECK FOR 5C ¢ {QOE
JMP CHDX TBZ UrPDT IF 50, RIN TO LOOP
PASS L 54 PASS (&SCB-10GE> INTO L
ADD 52 52 ADD TO SC FROM INSTR
WRTE PASS T s2 PASS INTO T AND WRITE INTO MEMQORY
JHP UPDT RTN TO LOGP

A2 e ok ok o sl ok o R i ok ok o Ok o iR OK i R ol K i o ok ook o o ok ok o o ok ol e SR ook i skl ok o sk ok Sk SN ok ke ok ok ok ok ok ok ok W ok

* SPECIAL DISPLAY ROUTIMNES
A RO R R A ol Sk ook o oK K o A o o R SOk o ok sk K R K o O ok R KR OR R K Ok Ok KK
RIGHTR PASS IR DsSP1 "RIGHT™ PRESSED: IR <= DSPI
JHP CNDX 1IR2 RIGHT JUMP IF M NOT SELECTED BY [DSPI
PASS 82 DSPL S2 <= DSPL (POINTER)
JMP CNDX AL1S RJS RIGHT JMP IF DSPL BIT 15 WASNT SET
InN LOW DSPI %367 DSPI <= "7T°"
W ok ok SR o o Rk o o R o K R o ok o R oK ok ko ok ok R ol oK R ok ook ol oK ROK S OR Ok oK Rk KOk koK ok ok ok
UPDATR oP9 L s2 CHECK DSPL BIT t4. STORE 52 IN L
JMP CHDX AL1S MEUMAPS JUNP IF S2 BIT 14 = 1 TQ UPDATE M
MK L4 CHHI S %003 S1 <= MASK FOR REGISTERS = 140017
AND S22 S1 §2 (= §2 MASK OUT UMNUSED RITS
PASS IR ¥4 SET REGISTER SELECTIOH
JMP CHDX NSTR READREG JUMP IF STORE BUTTON NOT PRESSED
J8B 430 STOREG SELECTED REGISTER <= DISFLAY
JMP UNCD WAITR WAlT FOR MEXKT BUTTON
READREG JE8B J230 DSPLREG DISPLAY <= SELECTED REGISTER
L R L e LR
WAITR JHP CNDX NSTB RJS = WAIT FOR BUTTON RELEASE
JMP CNDX RUN RUN JUMP IF RUN INDICATOR LIT
JMP CHNDX NSTB #- JUMP BACK IF NO BUTTON PRESSED
*
NOP WAIT ONE CYCLE FOR SETTING SWITCH
JMP CHDX NLT RJS LEFTK JUMP IF "LEFT" PRESGSED
JMP CNDX NINC NGTINC JUMP 1F "INCM" HOT PRESSED
INC 52 5¢ INCREMENT POINTER
NP UNCD DECHMR+1
NOTINC JMP CNDX NDEC NOTDEC
MM HIGH L a0 CHECK FQOR
AND sz DECREMENT OF
JMP CHDX TBZ RJS DECHR ZERO COUNT
or1 82 82 S OR L PLUS t {WRAP ARQUND COUNT
DECHNR DEC 82 52 DECREMENT POINTER
PASS IR D&P1 IR (= DSPI
NP CNDX 1k2 UPDATR JUMP IF M NOT INDICATED
PASS DSPL 52 UPDATE DI&GPLAY

E-9

Appendix E

ae0s
606
a607?
G608
a0t
610
el
[EXCR)
teld
0613
(RN ¥
a1y
[IX: PR
a6la
tez0
ozt
ez
623
Ge24
Q625
4626
627
628
63
G630
Q63!
G632
Q633
634
635

Ga37
G638
639
nda
to6dl
Ged2
1643
G644
0645
06de
G647
0648
0649
a6s0
a651

G652
653
0654
653
66
aas7
a65g
659
Ge60
0661

G662
(663
664

0665
G666
a66v
668
o9
0670
ey

Q672
Q673
G674

E-10

aQro3
00704
00703
007 0e
pavor
aovio
[IES B

aoriz
aav i3
agv 4

0ar 1S
ag7ie
ag?7Lv
aerab
aarval
aovee
aoaras
pavad
0Qres
agree
aqray
aorao

aay 3l
gor3e
aoy3a
GGar34

aov40
aQr 41
00742
ag743
0Gr44
0745
G746
agr47
oarsa
oar51l
0orse
o753
[)
00758
0ovSe
aavrsy

garet
00761
00762
Qo7e3
aared
0ov6s
00766
o767
ag7vo
aar7l
garve
aQarv3
garv4e
aay?s

garve
oavrvy

346
0t3

Gia
343
016
oiv
333
017
320
017
320

344
017
017
017

017

047

343
343

oi7
017
017
017
«t?
o17
0t7
oty
01y
017
017
017
017
017

3z20
320

033130
134031
074471
116417
125471
032470
Q22070

172417
114741
136776

oot s?
143017
176157
141057
076l1&7
14t017
140617
07537¢
114620
033130
134320
033130

010417
136762
136757
11033¢

17033¢
172336
112336
14433¢
146336
150336
152336
154336
156336
160336
162336
164336
166336
035470
176336
176336

115636
115676
114276
11513%
115176
115236
115276
115330
115376
115430
115470
115536
115576
106336

025170
034530

21MX

JMP UNCD WRITR WITH NEW POINTER VALUE AND JUMP
NOTDEC dMP CNDX NRST RJS DECHMR+! JUMF IF "DISPLAY* PRESSED
JHP CHDX NETR #+d JUMP IF STORE NGT PRESSED
PASS IR DSPI
JMP CHDX IR2 RJ45 STOREX JUMP IF M SELECTED. LEAYE SPECIAL
JMP UNCD UPDATR M NOT SELECTED
MMP UNCD SCANRT JUMP TO STD ROUTIMNES
ook R HOK SOk T o Ok Sk ok Ok R Ak AOK skl skoR koK ok oo ok kol oK sk K O K A Ok ok koK sk Ok ok KOk
STOREE inn LOW IR %375 SET UP SRG TYPE ER# SHIFT
SkEG2 PASS DEPL SET E ACCORDING TO DSFL BIT @
RTHN

R]
axdkkt NEU MAP MANTPULATIONS ok ok oo o oo okoh o ot of Ok o ok ok koo ot ok ko ok 8 ooR ook o ok ok ok ok o o K

MEUMAFS IHM LW L %200 51 <= MASK OF LGW ? EBITS
SANL 51 sz
INM HIGH L F s L <= 037777E
SONL &2 51 52 <= MASK GUT EBITS 13 TO &
Imn HIGH L %337 OrR IN BIT 13
SaNL 51 51
PASS MEU 51 SEND MNAP NO. TO MEU
JMP CHDX NS&TR READMAP JUMP IF STORE MNOT PRESSED
MESP PASS MEU DSFPL MEU MAF (= DISPLAY
JMP UNCD WATTE
READMAP MESP PASS DSPL HMEU DIZPLAY <= MEU MAF
MNP UNCD BAITR
Axdxkx SIMULATED LIA 4 1,0 INSTRUCTION TO RERAD CIR ook sosdobohofok dob ok b won bk %
DSEPLCIR IMNM LOW IR “004 SET UP SEL CODE 4 IN IR
166G INITIATE 1.0 CYCLE AT TIME T2
NOP WAIT FOUR TIME T4
RTHN PASS DSPL I01 CIR TO DISPLAY. DONT ISSUE IRk
QRG 7408
A ok ok ok A s ook ok skl ak ok 3l ok ok ook ol ok o N o ok 3k ok ook ik ok ok SRk ok o ok SRk O ok ok N o s ok sk sk ROk ok o sk Kok ok kok ok K
* S5HORT SUBROUTINES TO STORE/DISPLAY SELECTED REGISTERS

o ok ok ok ok ok Ok s R o S SIOR o ook R K R R ok o kR Tk ok ook ok sk kN sk ok o o R AOK ok R kR Ok ok K
DSPLREG RTN PASS D&PL X PASS REG TO FRONT PANEL AND RETUR
RTN PASS DSPL Y
RTN PASS DSPL CHTR
RTH PASS DSPL 53
RTN PASS D&PL 54
RTN PASS DSPL S5
RTN PaSS DSPL S6
RTN PARSS DSPL §7
RTH PASS DSPL S¢
RTH PASS DSPL 89
RTN PASS DSPL 510
RTN PASS DSPL 511
RTN PaSS DSPL S12
JMP UNCD DSPLCIR
IMM RTNH HIGH DSPL 377R
IMM RTH HIGH DSPL 377B
PR L R P R e
STOREG RTH PASS3 X DEPL STORE INTO REG FROM FRONT FANEL
RTH PASS Y DSFL
RTH PASS CNTR DSPL
RTN PA5S 83 DSPL
RTH PASS 54 D&PL
RTH PASS &5 DSPL
RTHN PASS 5o DSPL
RTH PASS §7 DSPL
RTH PASS S8 DSPL
RTN PASS 39 DSPL
RTN PASS 510 DSPL
RTH PASS S11 DSPL
RTN PASS 8te DSPL

RTN PnSS DSPL CIR LEAD CIR FROM INT. REGUEST LINES

* AND T1S5UE INTERRUFT ACKNOWLEDGE
JMP UNCD STGROC
dMP UNCD STOREE

21MX Appendix E

a6are Ao oK o o R o ok ol ok o oK o oK o K SRR o o R KRR ROk Ko ok A ok o oK K R R OR OR R KOk Ok K R R
te7? * LOOK UP TABLE USED BY THE 4T7AB SPECIAL
(R] Ao A oK o ok o R K R o o o ok K K R R AR o o ok S ok s o SOk o ok sk e otk R o ook ok kR Ok K Rk K
0679 01000 000 000053 DEF SKkG 1
0680 01001 000 000053 DEF SRG

G681 01002 000 000053 DEF SRG 3
G682 01003 000 000024 DEF ASGNOF 4
G683 01004 000 0CO0O21 DEF ASGCL* S
G684 01005 000 000036 DEF ASGCH=* 6
0e8S5 01006 000 000043 DEF ASGCCH 7
0686 01007 000 000054 DEF SRG+1 10
687 01010 000 000033 DEF SRG 11
688 01011 000 000053 DEF SRG 12
G683 010t2 000 000033 DEF SRG 13
06%0 01013 000 000024 DEF ASGNOP 14
069! 01014 000 000031 DEF ASGCL* 15
692 01015 000 00003 DEF ASGCH* 16
(693 0Gi0ile 000 000043 DEF ASGCC* i7
(694 0017 000 000106 DEF AND 20
06%5 01020 000 000106 DEF AND 21
G696 01021 000 000106 DEF AND 22
0e97 01027 Q00 060010e DEF AND 23
(é9e 01023 000 00010e DEF AND 24
0699 010G24 000 000106 DEF AND 25
70 01025 000 000106 DEF AND 26
GvO0tl 01026 0OO0 000108 DEF AND 27
agvoz 01027 000 000132 DEF RR:3:] 30
4703 01030 000 000132 DEF J&B 31
6704 01031 000 000132 DEF JEB 32
0v05 01032 000 0DO132 DEF J48B 33
6706 01033 000 000132 DEF JEB 34
0707 01034 000 000132 DEF J8B 35
0708 01035 000 000132 DEF J&B 36
04709 01036 000 000132 DEF JS8B 37
0710 01037 000 000116 DEF XOR 40
0711 01040 OO0 00011le DEF XOR 41
G712 01041 000 000116 DEF XOR 42
0713 01042 000 00O0!1e DEF XOR 43
0714 01043 0Q0 00O011le DEF XOR 44
0715 01044 000 000116 DEF XOR 45
G716 01045 000 000116 DEF XOR 46
0717 01046 000 00016 DEF XOR 47
6718 01047 000 000164 DEF JMP 30
4719 01050C 000 ONO164 DEF JMP 51
720 0105Y 0QO0C 0C0le4d DEF MNP G2
G721 01052 000G 000164 DEF JHP 53
gr722 01053 000 000164 DEF JHP 54
0722 01034 000 0GO01e4 DEF JMP 59
g7e4 0L0OSS 000 000164 DEF JMP 56
arz2s Gi105e 000 0C01e4 DEF JMP &7
gvze 01057 000 00012t DEF IoR 60
727 01060 000 000121 DEF 10R 6.1
Gree 0106l 000 OOOIZU DEF 10R 62
vzs 0ltez 000 Q00121 DEF 16R 63
731 010e3 €00 OC0OL2Z2U DEF I0R 64
G732 01064 000 0001 21Q DEF I06R 65
G733 0t0eS 000 000121 DEF IGR 66
4734 01066 000 000121 DEF 10R 67
735 01067 000 000136 DEF 182 70
736 01070 GO0 0600136 DEF 182 71
av37 01071 000 000136 DEF 182 7e
av3g 01072 000 0CGO013é DEF 182 73
0739 01073 0600 000136 DEF 182 74
740 1074 000 000136 DEF 1s2Z b1
av41 Q1075 000 000136 DEF 182 76
G742 0i0F6 000 000136 DEF I8Z v
or43 Q1077 000 000127 DEF AD 1oQ
av44 0100 000 000127 DEF AD = 10l
745 (1161 000 000127 DEF AD* 102
G746 01102 000 000127 DEF AD * 103
747 01103 000 000127 DEF AD* 104
G748 01104 000 000127 DEF AD * 105
av4% 01105 000 0CO127 DEF AD * 10e
0750 01106 000 000127 DEF ab* 107
avsy 01107 QOO0 O0QOt27 DEF AD=* 110
752 01110 000 000127 DEF AD* 111

E-11

Appendix E 21MX

0783 01111 000 000127 DEF AD * 112

0v54 01112 000 000127 DEF AD * 113

0?35 01113 000 000127 DEF AD» 114

0756 01114 000 000127 DEF AD = 118

0757 01115 000 o000t27? DEF AD * 116

0758 01116 000 000127 DEF AD* 117

0759 01117 000 00OCI1tt DEF CP* 120

0760 01120 000 000111} DEF CPx 121

G676l 0G1t2! 000 000111} DEF CP=* 122

0762 01122 000 000111 DEF CP* 123

g7e3 01123 000 oOCO1l1 DEF CPx* 124

764 01124 000 000111 DEF CP= 125

0765 01125 000 0001t1 DEF CP=* 126

G766 01126 000 000111} DEF CP= 127

ave? 01127 000 00Oit1 DEF CP=* 130

0768 01130 000 00Ottt DEF CP= 131

76% 01131 000 00011L1 DEF CP* 132

770 01132 000 000tt1 DEF CPx* 133

77t 01133 000 0CGOlLd DEF CP= 134

0772 01134 000 000111} DEF CP= 135

4?73 01135 000 00011} DEF CP* 136

av74 G13136 CGOD ODOLL1Q DEF CPx 137

a7?S 01137 000 000144 DEF LD=* 140

0776 01140 000 000144 DEF LD* 141

0777 01141 000 000144 DEF LD= 142

778 01142 00D 000144 DEF LD x* 143

773 01143 000 000144 DEF LD= 144

G780 01144 QGO0 000144 DEF LD=* 1435

ave2 01145 000 000144 DEF LD= 146

7e3 01146 GO0 000144 DEF LD x* 147

a7&4 01147 000 000144 DEF LD* 150

078% 01150 000 000144 DEF LDx* 1514

786 01151 000 000144 DEF LD* 152

avgy? 011%2 000 000144 DEF LD=* 1583

avee 01153 000 000144 DEF LD 154

0789 01154 000 000144 DEF LD=* 155

0790 01155 000 OGO!44 DEF LDx* 156

0791 01156 000 000144 DEF LD* o7

a7%2 01157 000 oQO1zd4 DEF STx* 160

G793 0t1e0 QOO 000124 DEF ST* 161

G7%4 t1éer 000 000124 DEF ST* 162

795 01162 QOC 00C124 DEF STx* 163

0796 01163 000 000124 DEF ST 164

79y 01164 000 000124 DEF ST» 165

(798 01te5 000 000124 DEF ST 166

799 01166 000 000124 DEF ST= 167

800 01167 (OO0 000124 DEF ST* 170

801 0t170 OO0 000124 DEF ST* 17t

a0z 0171 OO0 000124 DEF STx* 17

gG3 01172 000 000124 DEF ST* 173

4304 01173 0O0 0CGO124 DEF ST * 174

805 01174 000 000124 DEF ST 175

o806 01175 QOO0 000124 DEF 5T=* 176

ey 0ii1ve @00 000124 DEF ST* 177

Ggae Qit7y 000 oCOto2 DEF EAU 200 MPY.ASL.LSL.RRL
4309 01200 GO0 00O262 DEF DIy 201

10 C0iz0l 000 000102 DEF EnU 202 ASR.LSR,RRF
g1y orzoz 000 000104 DEF MAC! 203

Gale 01203 GO0 000101 DEF 106G 204 HLT.STF.SFC.SF5
¢at3 Grz04 GO0 0CO3C01Q DEF 106 205 MIA,LIA.OTA.STC
tal4 01205 000 000101} DEF 106 206 HLT.CLF
815 Gi1206 GO0 0GO1Q1Q DEF 166 207 M1ALLIAOTA,STC
a8le 01207 000 000224 DEF DLD 210

(817 01210 000 000233 DEF DST 211

818 01211 000 000103 DEF HARCO 212

819 01212 000 000104 DEF MAC! 2132

Gazp O0tz2i3 000 00010 DEF 166 214 HLT,S3TF,S8FC.GF3
gzl aiz2!4 000 000101 DEF 106 215 MIB.LIB.QTE.CLC
Ggz2 01213 GO0 O0O1C! DEF 106 216 HLT.CLF
ogez3 otzle 000 000101 DEF 106 217 MIB.LIB,OTE.CLC
324 01217 000 000105 DEF AND, 1 220

agz2s 0tzz20 000 00GOL1CS DEF RND . 1 221

03z2e 01z2! 000 000105 DEF AND . 1 222

agzy 0t222 000 000105 DEF AND. 1 223

828 01223 000 000109 DEF AKRD. 1 224

6823 01224 000 000105 DEF AND., 1 225

E-12

21MX

0830
a3l
G333
0834
(1835
0836
837
0838
0839
0840
g4l
342
(a43
(a44
G345
Q846
0347
JERCE RS
31249
GRE0
w3514
Q82
HECI
a%4
0355
0356
aas?
0858
0359
0860
861
a8e62
363
0864
GRGT
366
Qa67
368
Q869
087
asv!
0872
0373
agr4
Q375
04376
oary
asvs8
879
Q386
381
asaz
3k4
0885
[ReE:23
a3ev
g8
0333
890
03914
ag%2
0393
N394
g5
a32%
ags?
438938
%2
0300
09a1
0302
a0z
0904
4303
a306
G307

01225
01226
o227
01230
01231
01232
01233
01234
01235
01236
01237
g1z240
Q1241
atzdz
01243
01244
01245
Lied6
i1e4v
Q1250
012351
012952
01283
Q1254
01255
01256
G1asy
ai2e0
01261l
n1z2e2
01263
01264
01265
01266
01267
a1zvo
a1zve
greve
01273
01274
Q1275
01276
[s
01300
01301
Q1302
013403
01304
01305
01306
0307
01310
0131y
61342
01343
01314
01315
01316
01317
01320
01321
Q1322
01323
01324
01325
a1326
01327
01330
01331
01332
01333
01334
01335
01336
01337
01340

aon
pan
aan
aon
0oo
non
0oo
ooa
poe
aon
aon
Qoo
0on
aon
aoo
aoo
oon
aao
aon
aoo
oot
000
non
aon
aoo
aon
[(Re3¢]
aon
aon
o000
aoo
oo
oon
aon
oon
oaon
oon
ago
aao
oao
aga
aaa

060105
000105
000131
000131
000131
000131
000131
000131
000131
00013l
000115
000115
000115
0001 1S
0G0115
06011S
060115
00atLs
000145
000145
000145
000145
000145
an014s
000145
000145
oeoszo
000120
000820
000120
0060120
000120
000120
0n0t 2o
000135
000135
000135
000135
000135
000835
Q00135
000135
000126
000126
000126
ono12e
0no12e6
ono12e
000126
000126
000126
000126
000126
000126
000126
000126
00012
000126
analta
000110
000110
ono1t0
000110
000110
000110
000110
goalio
000110
006110
000110
a00t10
anorto
000110
onaiia
000143
060143

DEF
DEF
DEF
DEF
DEF

‘DEF

DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF
DEF

DEF
DEF
DEF
DEF
DEF
DEF

AND, 1
AND 1
J8B.1
488, 1
y58B., 1
J§B.,1
468, 1
J8B.1
488,1
JEE.T
XOR. 1
XOR.1
¥OR, 1
XOR, 1
XOR.1
XOR, 1
XOR.,1
ROR.I
NP1
JMP, 1
JMP,1
JHP .1
JMP .1
P
NP,
RE R
TR 1
TOR, 1
I0R, 1
IGR.,1
IGR.1
I0R.1
10R,1
IR, 1
152,1
I1sZ2.1
152.1
1§21
182.,1
182.,1
182.1
152.1
AD# . I
AD* ., 1
nh*x, 1
AD ., 1
AD* .1
AD*, 1
nh*x, I
ADx ., 1
hE
Ab* .1
abp*x .1
Rh*, 1
AD#, 1
Ab =, 1
Aab#* .1
Rl %, 1
CPx, 1
CPw#,1
Chwx,1
CPw.,1
CP#.,1
CP=*,1
CP#*.1
CP#., 1
CP«,1
CP#,1
CP«, 1
Chrx, 1
CPw.1
CPw,1
CPw., 1
CP=.1
LD, 1
LD, I

226
227

o
~ ~
-

r>
“J
\J

p= SR IS IS I I
[BRSNS A B]

G P PO PSP

[
oo
[

330

3

Gl G Gl G Gl e G G L
e B G O O L)) Ty
DN SY O S)) e

Appendix E

E-13

Appendix E 21MX

0208 01341 go0 000143 DEF LD®,1 342

0905 031342 000 000143 DEF LDw# .1 343

0310 01343 000 000143 DEF LD*,1 344

311 01344 000 000143 DEF LD~ .1 345

0912 0i345 000 GGO143 DEF LD*,1 346

%13 01346 Q00 00Ql43 DEF LD, 1 347

0314 01347 000 000143 DEF LDo*,1 350

715 Q1350 000 0CGG143 DEF LD*.,1 361

0716 01384 Q0G 000143 DEF Lbhw, 1 352

G317y 01352 000 000143 DEF LD, 1 353

%18 01353 000 000143 DEF LD*.1 354

G319% 01354 QCGOG 000143 DEF LD*.1 355

Q%20 0135% 000 0GLOL143 DEF LDw .1 356

Gaz2t Q1356 QOO0 Q0DO143 DEF LD+, 1 357

G%22 01357 000 0DOLZ3 DEF 5T*,1 360

G323 01360 0060 000123 DEF ST+, 1 361

0324 01361 god 000123 DEF ST+.1 362

(%25 01362 000 000123 DEF 5T#,1 363

G326 01363 000G 000123 DEF ST, 1 364

Ga27 01364 0Q0G 000123 DEF ST#,1 385

0328 01365 000 000123 DEF ST, 1 366

G329 01366 000 000123 DEF ST#.1 6T

930 01367 06O0 00GL23 DEF 8T#.1 3ra

93! Qi3vy0 000 000123 DEF 5T, 1 Irl

0932 Q13718 000 000123 DEF ST#*.1 372

0533 01372 000 0RO123 DEF GT+,1 373

934 Q1373 000 000123 DEF 5T=.1 ar4d

335 01374 000 000123 DEF ST+.,1 375

0336 01375 000 000123 DEF ST*,1 Ire

Q237 QI3F6 000G 000123 DEF 5T#.1 vy

0338 END

otz aRrRG 10CGaR

aous *

Gou4 *

aoQs #

[#

aoo? *

aacs *

aaoee LR R R N R R L R R R R R R R TR R
ao1a * «
oty * MEMORY EXPANSION UNIT MACRO INSTRUCTIONS *
ooz # mmmmmm memmemeo e mmmme mmccmmeemoo - .
aaLs * 45 ELWARD #
Q14 * REY 41 AFR 1975 »
0015 LR R E AR N E R AR R R R A R R R L E R E L E L EEEE AR EE S E R]
aale *

agiv INDLEYEL EQU w013

aale * A JdMF TO INDLEVEL WILL ADD 5§ CYCLES +¢ 4 PER ADDITIONAL LEVEL
o149 *

aazo oot OoR kR KR o R Nk R R N R A Ok ok ok R K KK R K RO R ok Ok K KOk ROk
[*

agzz * REGISTER ASSIGHMENTS

agze3 *

aaz4 * S3 F-REGISTEFR

Gazs * G4 MEM CONTROL WORD: MEM ADDRESS REGISTER

aaze * 85 WORDS AND MAP DATA IN LOOGP EXECUTION: MASKS AND CONSTANTS
aaev * 56 GENERAL FURPISE SCPATCH

agra *

QQz9 LE R R E R E R R R R L R R R R R E R R R R EEEE R E R

E-14

21MX Appendix E

[t *®

g3z #*

Qa3 *

eaxd *

[IRURE *

GoRe «4m*«*«««e«we««ww«««««««*ﬁm****««*w#*@«wm*e«*««v*«w««*kwmmmmwwe««v«*«w+
o3y * ENTRY JUMP TABLE WE HAYE COMPLETED S1% CYCLLES AT ENTRY

R RK:] Av«vﬁ*«0««&«#0«**e*kAv«*«0&«&0#@0**?««&*&«*0«1k««kv«#{««u@v«l#f«ve««kkb
aain # L LENGTH
ao4a * MACRO JUMP PUINT AND MNEMOMIC BINARY CODE QCTAL UECINAL
God *

GGdr OL0O0 320 041035 MEUMARLRO JaMP J30 JTARL 1000K0TILIO00ONKRK 40 3z
aQde3 Qi00L 20 o4z0iQ dIMMP STFL KMM 1000Kal 1o oald 1a ag
QQadd G0z 320 045270 JHP KM 10000 11GLa0La 16 14
GOd% 01003 C17F 136778 RTHN aeaxory ool ag [y
Q08 01004 I20 J46170 JHP KL% teaaxoltiroraiao G3 as
Q47 01005 320 046430 JMP HE 100oKarI Y1010t (15 [
o048 QLo0n J2L O46670 JGHp ®C*x 1OCOKorsf1asatrd av [
0049 Q1007 320 Q47230 MNP LF«+ 1000K0L 111010108 a4 04
GOS0 QL0te 01F 134617 REw PHS5 MEU MEU 1000K0 1101 a0a ag ao
Go%s Giuil 017 134076 RY« RTH FASS CAR HMEU {OaQkat3d105: 201 an an
agse olq 320 047430 JMF DdéF 1eoaxkatyrtarsata az ae
QGE3 GLQ13 320 ATR00TQ JMF bd s 1000K01 111028081 a2 ae
00&%s 0104 320 G47E20 MNP SdF {oooKot1a111040 az e
GesS i0is 320 QR01T0 GNP S48 1eogaoxerriartiog ae e
Qa%6 Gi{le 320 0476340 dHP udp 1euoXorytor o a3 (]
aasy «iply I 0RQZTOQ JdMF Ud s 1paarotsriary ity av a7
QOSR8 0lo20 320 042030 JTAHBL JdMP K13 1aoogxatriiaxoQoq 58 48
a0%2 0102y 17 (36778 RTH 10060801 1120G0001 aa ag
QoeQ 01022 320 O0BQ06TO MNP MBI {opoKary11aaoara 1é 14
Q06 Otoz3d 320 00630 dMP MBF tpaaxaty ooy al [4N
06z Q:0Z9 I20 051E60 MNP MEGP MEW 1000KOLL 1100000 3t I
el 0i02s 320 Q370 dMP Mt T 1OQaKatLtaad g N =
0o0ed 01026 320 QL3160 JMP MEGP Mg 1gogKott11000L1c oa at
aOes Qigzy 320 0540320 JHMP MEGP Mt 1e0axos 111000y 13 13
a0eo Q1O30 320 054670 GMFP Gy * 1oQoKaiss1aoLaad ae 4
aoe? 0ta3d 320 485230 MNP UG = 10QoKOL Y L1GaLaas 24 20
aoe8 01032 320 054770 JMP P 10QoK01 1110601010 a3 a3
QOR9 (1033 320 9RS130 JMP PB* (00RO 11anLoly g g
aayo 1034 320 0S6470 dHP S5&HM 1000K0 Y100 100 (U] 0%
GO7Y Q1035 320N QEe7 30 JdMP JR S 1000K01 Y1008 1008 18 13
oF2 01038 017 136776 RTHN 1oaaKar11aa1td Qi ab
GO7F3 G1037 017 136778 RTH 10aoRotyILaastet ac gt
aavd * JEER UPGET dkw UTILITY ko as as
aavs P R R R e
aar? *

aare *

aove *

ao&o *

aog! *

aaee e Ok ok kN sk ok O ok sk Y ok o oo e s sk ook ok b st sk e sk sl SOR o ook oK N K R sk ok o o Ok ok kR kK kK
GO&2 1040 OiF 175117 KMNM PRSE 63 P 53 <= P: GAYE F

Qo4 0104) aolo o727 CMPS &85 N 55 <= OMNE'S COMP OF COUNT

QoS 01042 320 146131 JMFP CNDX ONES RTH«* TEST FOR ZERG COUNT

Qog6 01043 346 QOOIST IMM Low L Z200 L (= {11118 010000000

Q087 01044 013 1271587 SANL 54 n MASK LOW 7 BITS OF R-RES

Goge 01045 JT43 OV6LET IMM HIGH L %337 Lod= piartterirtistt

0089 (1046 Ole 147187 SOHL 54 G4 apDh CONTROL BIT (130

G0%0 Q1047 017 146617 FaSsS MEU &4 MEM ADDR REG <= &4

ap%y 0L10Sc 0iF 12&vi? PAGS P E P . <= B(TRABLE NDDREGE:

00%2 0105) 17 t5Qzav PASS CNTR 55 CHTR <= &5

QO93 0105z 324 0436718 JMP CHDX FLAG XM3 TEST FOR WMS IMSTRUCTION

poess 01053 3JIzz 004271 dJMF CHDX ALIS Ru3 READMAP TESRT FOUR NEGATIYE COUNT

0095 01054 220 974717 RERD INC FHMN P READ FIRST WORD: P <= P+l

aase *

Qa7 QLuss 0t7 10yzivy MELOOP PAGS 5§ TRE 8% (= MAP DATAH

G0%8 01036 017 180620 MESP FASS MEU &G MAP REG <= DATR

0099 {057y 220 Gr4723 READ ICHT INC PHM P READ MEKT WORD: INC CHTR AND P
Q10 oiae0 337 006V JMF CNDXY CMT4 RJE MELOOPI LOGGP FOR 16K

atgl 01061 323 043271 JMP CHDX CHTS KMM ORTH 15 TOaTAaL LGOFP FINSIHED

ayroz 0t0dz 237 136757 READ RESTART THE READ AT SAME ADDR
0i03 01063 RIE QU26T JMP CHDX INT RJE HMELQGP) TEST FUR WO INTERRUPT

alad4 01064 0G7 145117 DEC &3 33 RESET F REGIGTER FOR RESTART
[IBR] * dMF MM ORTH ELSE SERYICE INTERRUPT

(LB R ®

10?7 Qi06S% 017 122517 NMM.ORTH PHs5 B M RESET EB-REG

I8 1066 000 Q13257 KNS RTH INC 356 CNTR 56 <= REMAINING COUNTI2°5F CONP)
i@ 01067 OiF 1V01E7 FAGS L " L <= ORIGINAL COUNTL(POBITIVED
11O oioave 010 Q13617 cHps X CHTR N <= REMAINING CQUNTIPOEITIVED
il orove a4 153287 BhD 56 56 §6 (= ORIGINAL - REMAINING
atia Glov2 OI1F 182167 PAGS L 36 L <= WORDLS COMPLETED

Q113 01073 (0G4 126567 AlD A] A <= A + TUTRL COMNPLETED

a1i4 OLI0T4 07 145736 P.RTN RTN PAGS P 53 P <= NEXT INSTRUCTION

E-15

Appendix E

gits
0117
ai13
119
0120
arad
gree
Q123
Q124
0125
0t2e
gtav
G128
a1z29
G130

oo
b
o 0y
LC RS

QOO o
. e b b e
L))))) T
R BB T, B |

[~
@

Q139
0140
U141
G142
G143
G144
a14%
0tde
147
G148
G149
(BB}
G152
G153
054
0155
aLtse
0157
Gtsa
0154
G160
dtel
Gtez
G163
164
Gi6s
giee
Giev
168
(X
[l]
G171t

atr3
{74
ai7s
aive
GLvy
atrs
01743
areQ
Gray
arez
Graz
[UF R
a1es
aree
ate?
aLres
a1&9
(O A1}

E-16

Qia7s
a1a7e
QiQ7?
1100
ai1al
cl11o2
01103
01104

Q105
Q1106
1107
[R R
ottt
girie
airit3
01114
(BB R

titte
ar1sy
alrizo
arizt
artaz
01123
ao1124

011235
ailze
ai1e?
1130
a113y
1132
G1133
031134
01135
01136
01137
01140
011414
Q1142

01143
1144
1145
ai14e
ayt47

(R RaY
1181
152
01183
Gi154

o
Q

oo
=]
vy o

O) b
LS RIS IS
A LA B B |

om0]
=
el

[y

300
aor
Qoo
177

oLv

(=]
-
o
)
i

L e]
Lo I R

=~

LT P2 RO P2 SN R

——] O

aqu4asv
1451147

{7
17
a1
a7
152
tze
1487

EVIENEENT

) -) D B

~

8
1
6
Z
1
5

PRI Y PN
-1

]

147167
ausSar!
arey1ss
147157
146617
goaess
134620
00Q0ESS
134620

136774

LA, BN]
=)o

—_—0 00
(=S XN |
- s
e) oo b
bV BB % LN B
NN O o

LY R S N IS |

S

e =]
3IRI R
[=2E
g =]

(3]

S roro o

o

®
*
*
*
*
*
AR L E R E R L R R R L R L L A R R T R R
KMs JMP CNDX ALtS RIS P .RTHM TEST FOR XU NOP
MELOQOPZ MEZP PASE MEU B MAP REG <= DATA
ICHNT INC B] B (= B + 1: INC CNTR
JMF CHDX CNT4 RJS HMELOGP2 LOGP FOR 16X
JMP CHNDX CHTR XMS . RTH IS8 TOTAL LOGP FINSIHED
JMP O CHDX INT RYS MELOGPEZ TEST FOR NO INTERRUPT
DEC 53 33 RESET P REGIGTER FOR RESTART
JMp KMS.RTN ELSE SERYICE IMTERRUPT
#*
READNAF DEC S4 X 54 <= K-1
PRSS CNTR &4 CHTR <= CMT+1:iTWO'S5S CGMPD
MELGOPZ MPCK IHC PHM P MOP _CHECK: P (= P+t
MESP PABS S5 MEY 85 (= MAP REG
WRTE ICHNT PASS TAB 5§ WRITE DATA INTO THABLE
dMP CHDX CHT4 R4S MELOOP3I LOOP FOR 16X
JMP CNDX CHTS KMM RTH«
JMP CNDX INT RIS MELOOPZ TEST FOR MO INTERRUPT
DEC 53 a3 RESET P REGISTER FOR REGTART
* JHP MMM .ORTH* ELSE SERYICE INTERRUPT
*
MMM BT N* PASS B P RESET B-REG
PASS L X L <= ORIGIBAL COUNTA{MNEGATIVE?
IRE X CHTR ¥ (= REMAINING COUNT(Z'S COamp)
SUE Se “ S6 <= ORIGIMAL - REMAINING
PR3S L 56 L (= YORDS COMPLETED
abh A] A = A + TUTAL COMPLETED
RTH PASS P 53 F <= NEXT IMGTRUCTION
*
*
*
*
*

A AR Ok KR R R ol R K R R Sk H R o e kR Ok kK ok ok SOK R R O ok K ok Rk ok

M MM CHMHI 54 %337 84 (= (01OOQOQGLOCOOOGG
LWF Lt FASS ChB T-BUS <= A/B; FLAG <= A/B{15)
FA.FB JIJMP CHDX nmLO RJS5 5% . US TEST FOR FPORT . A MAP
IMM Loy L LS W Lo4= ittt
SOML &4 &4 §4 (= (@OoiGQLOQIOOOGLOU
3Y U5 JHMP o CHDX FLAG RS NFER TEST FOR GYSTEM MAP
MM Low L u33IT Loo<= trttrrptiiortnny
SONL 54 54 54 (= 001QOQOQOXOIQQOON
“FEF PASS MEU & MEM ADDR REG <= 5447-0)
IMM RPT LOW CNTR %Q4Q CHTR <= Q: SET REPEAT FF FOR 1éX
MESF PRG&S MEU MEU MEM PORT REG <= MEM PROG REG
I8N RPT LOW CNTR nOQQ CHTR <= Q; SET REPERT FF FOR 16K
MWESP PASS MEU HEU MEM PORT REG (= MEM PROUG REG
BTN« RTH RETURHN

AR N A A R L R R R R R R AR E R RS R R EAEE R RS

*
*
*
*
*
AR K R K R ORI R O ACHOR o OR HOR fof KOK OK R R R R o ok K 8 R oK ok ok R e ok Ok Ok ko
L JER aFGET GET OPERAND ADDR FROM IHNSTR + !
MESP INC P P
READ INC n M SWITCH MAPS: GET REAL QGPERAND
PASS MEYU HMEU RESET MAP STATE
RTN PAaS5 CAE TaB
Aot Ok e ke ok ORI R e R R Ok e H R K K K e kR Tk o KOk kb ok ki ok K e ok o Ok kO ok R ek ok R ek kR
K G JEB aQPGET GET CGPERAND ADDR FROM INSTR + |
MESP INC P P SWITCH MAP STATE
MPCK IHC n M
URTE PASS TAB €hb
RTH PASS MEU MEU RESET MAP STWTE

R AR K KK K N KK R A SKOK R h oK K koK KK A ok ok K ok o K K R K

21MX

0191
a192
ye3
194
4195
a1%6
aray
0t98
G195
G200
a2al
a20z
aan3
Gaog
az2oe
Gan7?
e
Qen9
aaro
Gzt
gas2
az13
azl4
aels
G216
aztv
o218
G219
@220
ezzt
azpea

az23d

agaea
G263
Q264
0265
azed
Q267
02e8
0269
gy

ga2vt

118§
01156
aiys?
aitel
1ot
oilée
alield

gl1ed
0116
alitée
at1e?

aizoo

aGraal
(thege

freasd
aiz04

01e05
Gizoe
aLeav
gra1n
grztt
agrzie
aiald

a1zld
arels
ai1zie
ateLy
are2t
arzay
aizze
aizz3
grzz4
0lees
ate2e
asez2?
g1zaon
a2t
arziz

0te33
IR
01e3&
G136
Gieav
Grz4q
atezal
gtede
a1z43
Gizdd
Q1245

300
0iv
220
agn
0Lz
320
oon

240
015
0t7

L7 IS e A% B i o B Y
LU S R - N s
o=t e s BRI)

gR7E7 0
1p2160
Gezd4&y
075720
oaays?
[E RSN
a7 5736

arels?
103187
134617
146636

I8
47

1A
-

fexiiee]
G,

A7 0

Qa5157
47670

144017
gz37 36

audled
1265344
124504
171604
053230
170757
arazyvi
g13a3dt
120760
151371
gnoL6g
0264G7
1zeh42
101157

082320

126344
124504
171604
g54070
170760
ara2y9y

¢13031
QUays?

EEEEELE RS
LF+

EEEL L E R T

E R 3

*
R R R
DJUF

*
SdP

£
UJP
"
IMPSTAT

kR ok
pus

e Ok ok ok
*
*
*
*

*
A HOK kKK
MEF
MET

ek O
MEY

IR

Appendix E

GET OPERAND ADDR FROM INSTR + !
L (= AFB: GET ALTERNATE MAF
GET REAL CPERAND

P ¢(= INSTR +) RESET MNAF
COMPARE ACB WITH MEMORY
RTN-DON'T BKIP IF EQUAL

P <= INSTR + 2: RETURN

St o R sk et ek o ok ok Ok b R o ok Ok e e ok ook ook ok s ok ok s ok Aok sk ot i ok bk kol Rk

MM

OPGET
MESP PASS L Cas
INC M i
MESP INC F P
XOR TAB
CHDY TBEZ RTH=*
RTN INC P P
HIGH L waov
AHD S4 the
PASS MEU HMEU
RTH PARES MEU 34

Lo 4= 000001y

84 <= A/BCID-0D

SEMD "FENCE® DIRECTIVE

MEM FENCE <= 543 RETURN

Ok R R HOR S OR OR R ok NOk kool R e R O kR o oo e IR R ok ok kK

HeOok ek R o SR o ok ok K okt e ok ok ok o ok ook s ok ok s ok kRO R R ok Rk Ak ok Rk

inn HIGH
dMF
MM HIGH
GNP
Inn HIGH
JEE IGFF
PH55
MPCK PRES
RTH FALS
ok ek ok oK ok O sk ko
IHHN HIGH
M
IMn HIGH
JMP
InM HIGH
JSE IOFF
INC
PassS
MPCK PARS
WRTE PAGS
RTH INC
okt ok

EER Y
InM

LUWF
JEE

e
GMP

GNP
InM
READ

JdMp
CEEE]

LWF
JE&B

AME
JMF
MM
READ

G4 %i1a0
JF*
sS4 niea
JF#
S4 %103
OFGET
MEU G4
M
P 3]
AN R O R O
54 %iaa
JE*®
54 w62
d G *
54 %103
GPGET
33 P
MEU 54
il
ThRB &3
P il

G4 (= 01QQQOOCQOI11EtLLe
S4 (= QloGQOtartrristl

54 (= [Q1OGOOtirrtringt

GET OPERAND ADDR FROM INSTR + 1
MEM STATUE 15 SET HERE

5-RBUS <= ADDRES&S: CHECK TRRGET

P (= TARGET ADPDRESS: RETURN

st otk R R S ON CHOR O K OR Ok K Kk K Ok ROk
54 (= (1O0OC0011IL10LL

54 <= Gloaarotirriigy

84 <= OLoGootirriiiety

GET OPERAMD ADDR FROM INSTR + 1
33 (= RETURN nDDRESS

EM STATUS I5 SEYT HERE

S-BUS (= ADDRES&S: CHECK THARGET
WRITE RETURN #ADDR AT TARGET

P (= TARGET + 1|

oo e KOk Tk Ak e kb kA K Ok ok o Ot R ke ok ok HOR ot ok o ook R

ok ok o ot N Rk OK SOk e Ok ook ok sk e ok oKk ok ook oK ok kR Ok kR kK ko ok R

MESP HIGH
R1 PASS
R FRES
R1 PASS
PR&S
CHD® TEBZ
CNDX FLAG
MESP PAGS
CHDX aLoO
MESP HIGH
INC
L1 PASS
SANL
MESP
Ok ok ok
R PAGS
R PASS
R PRES
MESP PAGRS
CNDX TBZ
CNDX FLAG
HIGH
INC
L1 PAGS
SANL

*

P

%eoo
A

K. oLGOP-1

B.RESET
B.RESET+!
ADR

2

AR

A

A

TaR

ME ¥

L <= 0OCOCGCQGI1ttt Lt siGET ALT MAP
A (= SQURCE WORD ADDRESS

B <= DESTINATION WCFD ADLRESS

X <= WORD COUNT: FLAG <= GDD BYTE
MOYE BYTES IN PRIRS

T-BUG <= K

TEST FUR INTERRUPTED MOVYE

TEST FOR NO QDD BYTE

ALO <= IRLQ): SET ALTERNATE MpP
TEST FOR MBF INSTRUCTION

L <= Q00a00001 i1 i6ET ALT MAP
M <= SOURCE ADDRESS

FURM BYTE ADDRESE IN A

84 (= AANAAARAOOOQOQUGD

A ke Nk e ok R ook A e R OR Sk R R A o Ok oK ok ok kR

W.oLaGP-t

B.RESET

B REGET «t
PAgad

]

A

TAER

A (= SQOURCE WORD nDDRESS
B <= DESTINATION WORD ADLRECE

X <= WORD COUNT: FLAG (= ODD BYTE
MOYE BYTESE IN PAIRS
T-BUS <= ¥; GELECT ALTERNATE MAP

TEST FOUR INTERRUFTED MOYVE
TERT FOR NQ QDD EYTE

L (= Goooapaorrrertd

M (= SQURCE ADDRESS

FURM BYTE ADDRESS 1IN 8

34 (= AAARARAACQOOQLGT

E-17

Appendix E 21MX

Gzaya ared4e 220 02444618 MB# READ MPCK INC M B M ¢= DESTINATION ADDRESRS

0273 Q01247 017 t24502 L1 PHE3 B B FURM BYTE ADDRESS INM B

G274 QIS0 015 101217 AND &S TaE S5 <= D000OCOOBBEEBEEE

27s @izs a1y 130157 POSs L ER L (= 5§

Gz7e @125 017 Q47157 IR 54 54 5S4 <= AAARRARANBEEEBREEBER

0277 01253 177 140047 WRTE PASS TAE G54 WRITE DATA INTO DESTIHNAMTION

Q278 01254 017 134817 PASS MEU NMEU RESET SELECTED HMAP

gy 03283 00 Q026847 INC A A A 4= A +

280 012%6 000 02457 RTHN IHC B <] B <= B + 1

w28t e ok ok R R O R R O K SO N S KO R R R T HOR ko HOK ONCtk K R R KR ROk Ok Rk
azgz Q12&y 157 171602 E._RESEY LWF L1t PASS ¥ * RESET ¥ 1IN RYTES

Q283 01260 017 t2eG42 L1 PRA3S R] RESET » FOR EYEN BYTE ADDFRESS
a2ad grzel iy tz4t0z L1 PASS B E RESET B FOUR EYEN BYTE ADDREGS
Gzegs Oi1zez 017 134830 RTN PASS5 MEU MEU RESET SELECTED MAP: FETURN

(=¥ A R ROR R KR N T N O ORI Bk R R ok ok iR ok Ok KR R KR TR K K CHOK R A kR e K
028 *

G2k9 *

6290 *

291 *

292 #*

0292 A AR K o O e O ok Sk o ok o K R ok R Ok N o ROk KON SR Ok Ok sk ok ok ok S kOK K ok sk RO ko ol ok ROk Gk deok ok
0294 01263 Q17 170757 MUl PASS X T~BUS (= X

4295 0iZod 320 0546731 JMP CHDX TRZ MU * TEST FOR H=0

g6 016§ 220 Q026407 X LOOF FERD INC N 2] READ SOURCE WORD

02497 O0t1zee 000 0265690 MESP INC A A INCR. SOURCE ADDR.: SWITCH MAFPS
0298 0ize? 017 101157 PASS 54 TAB 54 <= DATH

239 (01270 000G Q024461 MPCK IHC N B M. P . CHECK: W (= DEST ADDRESS
a3a0 01271 177 146017 WRTE PASS TaB G4 WRITE DRTA INTO DESTIHATION

30l 01272 000 024517 INC B B INCREMENT DESTIMATION ADDREGS
302 01273 007 (71620 MESP DEC X X DECREMENT COUNT; SWITCH MAFS
G303 01274 J20 0546731 MNP CHDX TRZ M * TEST IF MOYE COMPLETE

304 01275 335 013271 JHP CHDX INT RJS X.LOOF TEST FOR NO INTERRUPT

G305 *

0306 01276 007 175717 DEC P P P (= IN3TR ADDR

Q3ay 012vry O1F 13463e RTH PASS MEU HMEU RESET SELECTED MAP: RETURN

a3Ins K O A ok OK CROR K I RO R NI SRR ok SOl O ook ok ok ko ok R K S K AR o K o ok R ok kR ok
@309 Gi3a0 01V 1TOFPS7 MuY PASS % SET ALTERHATE MAFP: T-BUS <= X
0310 013018 320 0546731 JMP CHDX THZ RS TEST FOR ¥=0

031) 01302 220 026457 W._LOOF RERD THG N A READ SOURCE WQRD

0312 01303 000 026&5E7 INC A A INCREMENT SGURCE ADDRESS

313 01304 1y 103y ey FASS 54 THB 54 (= DATA

0314 01305 @00 024461 MPCK INC M B M.P.CHECK: M (= DEST ADDRESS
G315 01306 177 140017 WRTE FASS TAB 54 WRITE DATA INTC DESTINATION

316 Q1307 000 024517 INC B B INCREMENT DESTINATION ADDRESSE
Q317 1340 007 171617 DEC X % DECREMENT COUNT

Q318 0131t 320 0446318 JMP CHDX TERZ M TEST 1F MOYE COMPLETE

(319 0131z 335 014131 JMP CHDX INT R4S W, LOOP TEST FOR NO INTERRUPT

3z0 *

31 01313 007 (V5717 DEC P P P <= INSTR ADDR

a3zz Q13t4 017 134636 Muw RTN FASS MEU NMEU RESET SELECTED MAP: RETURN

323 Mo st R CHOR HOK K S sk R TR R Ok OK K K Rk Ok sk o R ok sk ok R kol ROk Ok ko ke ok
328 *

3z *

a3zr *

a3z2a *

4329 *

QI3 Ao R K ok o Ak o o ook RO o O R T K ok otk ot K Nk ok Ok Ok ok Ok Ok R KOk R ke k
G331 01315 353 QOF7LS7 &Y« My CMHI 54 %337 34 (= @pQloouoooonQoQon

0332 013t6 320 0S5370 dHP HARMOVE

G333 ot ok ko Tk AR SOk R SO ROk ok ok sk ok ok Ak ok ok kK ok kR ko Rk ek
0334 01317 351 175144 PA+ imp R CMHI 54 %176 S¢ (= @Olrogoooaoraooaoan

0335 01320 7oi47144 R1 PASS G4 sS4 5S4 <= (QQoilooooQoliocooon

0330 013218 320 Q05537¢Q GMP MAPMOVE

Q337 oA koo ko o e R sk ko ko ook R ke ko R o o ok Ok ok ok ROk RO kR ok ok Rk Ok ok ok
@338 0:1322 346 Q77187 PHRa MM LW S4 %237 84 (= 1titrryr1ootreny

0339 01323 3I20 Q0&5zvF0 JMp USx+} L <= 11081trrirtree

G340 * 54 <= GGlOQOQQOILOQQQOU

1Y B kot ot ok okl o ook K ok ok ook ok o ok O KR N S R s ok O K ook o ok SRR R o RS R Rk S OK K ok ok Tk ok OR Ok
342 Q1324 347 OFTIET7 UG« Iny LG¥ 54 HATT 34 (= trisfrtrniotertt

0343 01325 343 076157 M HIGH L %337 L <= 1101111188ttt

(344 01326 013 047157 KGR o4 54 sS4 (= @oloaooooailoQQan

0345 01327 017 tde6l7? MAPMOYVE PASS MEU 54 MEMN ADDR REG <= &4

0346 01330 347 Q76257 Imn LOW CHTR %337 CHTR <= 1103111t ¢-41R)

347 01331 (U SO O I PASS 53 P 33 <= P

0348 Q1332 0O!7 103717 PASS P CAB P (= n/B

0349 01333 322 056171 JdMP CNDX ALLS MELOGPS ALIS=1 => READ MAPS

G350 *

E-18

21MX

G35
0352
0353
0354
0355
0356
Q357
0338
0359
0360
036t
ale2
G363
G364
3685
a367
G364
03649
0370
a3rt
a3ve
a3r3
0374
Q375
a37e
a3vr?
03re
0373
0380
a38al
6382
0383
384
4385
0386
G387
03883
0389
0390
4391
0392
3493
0394
03495
0396
Q397
0398
0399
04G0
4401
G402
0403
0404
0405
0406
G407
4408
0409
a410
o411
a4tz
0413

gnoo2
0903
QN4
onags
000e
0007
oang
0009
0010
903t
00i2

o

oo

o

(=] L~
e e b b b b e

RN SRS S
&b B0l GGl
A R R

(=)

Q1343
01344
01348
01346
Q1347
01350

LA L Y)

55 B IR 7 R 4% I 45

w
LS G DY e

01366
01367
1370
Q1371
01372

01373
01374
Q1373
01376
G137y

300

el

R g

oy

_—— Qe O
B T =
LhPY L B D e
1 -
L I R R
i Rt I~ BN IR

-l
S

RV B P8 B |
G
R B B A e B
L BEAL BN BN G N N
B v e L) e

O

&

fo1zaz
044457
gETFe70
057331
Qu3tLs?
151204
g47731
GO4157
147187
047730

074457
[Ur-2 B g
gao4sy
[At
quosyo

Appendix E

READ INC PNMN P READ FIRST WOGRD: P (= P + |
MELOOF4 PASS K& ThE 8% <= MAP DATH
MESP PASS MEU 68 MAP REG (= DATH
READ ICNHT INC FNM F READ MEXT WOQRD: P <= F + |
GMP CNDX CHT8 R4S MELOOPS LOGP FOR 32K
FASS CABR N RAB <= ASR O+ 32
RTN PARS P 53 P <= IHSGTR + 1
#* »
MELOOFPS MPCK INC PHNM P M.P.CHECK: P (= P + 1
MESF PASS 5§ MEU 5% {= MAP DATH
WRTE ICNT PASS TAB 58 WRITE DATA INTO TABLE
GHP CNDX CHT8 R4S MELOOPS LOQP FOR 32K
PAass Cag P A’B (= ASB ¢ 32
RTH FRASS3 P 33 P (= INSTR + 1
Ak ok kT oot ok ok ok ok o A ok stk s ook ok o ook ks oo ke Kook ook oW kb ook st o sk o ok Kk Rk
*
*
*
*
*
LR R LR R R R R R R R R L A R R E R R R L E LR R EE LR EEEE
S&NM JEE GFPGET GET OPERAND ADDR FROM INGTR +
MFCK PAGS M M.F. CHECK BEFOGRE WRITE
PASS MEU NMEU SEND "STATUS™ DIRECTIVE
WRTE PASS TAB MEU WRITE STATUS WORD INTO MEMNORY
RTN 1HC P P P (= INSTR + 2! RETURHN
o ook b ek R Ok R R MO OK R o R Sk i ok ok e i R R R e e kst sk ok KO i ok aoE e o R ok o R K R ok Rk kK
JRSG JER IOFF QFGET GET OQPERAND ADDR FROM INSTR + 1
READ INC M M READ THE STATUS WORD
IMH HIGH 54 %103 54 <= Q10000101 LLLLLLY
LUF L1t PASS S5 ThE FLAG (= STAT{15): §8(15) <= STAT{14)
READ INC M 53 READ JMP TARGET
JSE . QPGET+2 GET TARGET ADDR FROM INSTR + 2
ON.OFF JyMP CHDX FLAG 3Y . USR TEST IF MEM WAS ON
MM HIGH &4 %1014 IF OFF., 54 <= QloCo0Uilititsy
8Y USSR LWF Rt PASS §& 1] 8% (= ETAT; ALIG (= STAT(14)
JMP CHDX ALIS JMPSTAT TEST STAT(14) FOR USER SELECTED
InM HIGH L %102 IF 8¥S5, L 4= 0lOQooioitriieyd
AND 84 sS4 THEMN 54 4= Q10000X0LLIILENY
GMP IMFSETAT SET STATUR OF MEM: ALSO SET P
LR R L L A R L R R R A R R E R R R R A
GPGET RERD INC N P
INC 83 P 33 <= F + i 53 «= INSTR + 2
INC M TaB M <= NEXT ADDR
JMP CHDX AL!S RIS RTH=+ TESRT FOR NO INDIRECT

JHP INDLEVEL
A ok ok ool oK A ok ok ok Ak s ok R R ROR o R OK KOk O Ok sk o sk ok O R ok ok ok ok sk ok ok o K R kA
*
LISTING OF INDLEVEL ROUTINE FOR REFERENCE ONLY

*
#«INDLEYEL READ INC M M READ NEKT LEYEL
* JMP CNDX NHQI R4S IMDZ HALT OR INTERRUFT?
*INDIRECT INCI PASS M TaR M{=T/A B! INCR IMDIRECT COUNMTER
* JMP O CHDX AL LS INDLEVEL CHECK FOR ANOTHER LEYEL (OF INDIRECT
* READ RTN INC M M READ EFFECTIYE ADDRESS., RETURHN
«1ND2 INCT PaSsS M THE Mi=T/A/B: ITMCR INDIRECTY COUNTER
* JHP CMDX HGNG RUS INDIRECT+1JUMP BACK FOUR SINGLE INSTRUCTION
* DEC P P RESET F
* JHP HOR1I HALT OR INTERRUPT
*
ok ok ok s oK Aok o R Ok A ok AR ok K ok Ok 0K ok R K Rk Nk sk R R ok OB Ok OB ok dOK o ROk Ok Ok ok
END
ARG %7006
EIE R R R R S P R T S R S R I R R R R R R R R R R R IR I IR R IR O IR
* 21M8 MICRO-CARE
kS MODULE 1d: FLOATING POIMT ITHETRUCTIONS

2
R R R R E E R E E R EEE T R S R T U O e i L i R HT O T A it U T S T T T S T S I U i O T O T T S TR A
INDIRERT EQU 0013
MPYE EGQ ®02 46
B R R E R EE Y E R e e S e e R e T U e e e R S S R O G T R I I e e

*

E-19

Appendix E 21MX

0013 07000 017 125419 IFIX oy PASS CLERR THE OYFL AHD FUT EXP IN 359
0014 Q07001 321 10017 JMP ENDX AL0 TESZT FOR NEG EXFP

0615 Q7002 001 13eS7e RTH ZERN [F ENPCO WE CAN'T FIXN

0dte Q7002 0OL7F 126517 Fass PUT HIBITS IN E-REG

0017 07004 344 000157 nn Lo PUT *UF-3" HAESK IH L

00i8 07005 015 1(e0537 ANHD MK LERST S1¢. 8 BITE INTO p
0019 Q7006 015 (61457 AND SHYE BITS FOR ROUHD-0OFF

03z0 07007 013 feld404 R1 SANL sk EXP INTO SS9 WITHOUT SEGH
0021 orv0oi0 347 (40157 IMKn Lo PUT ~200BBx IHTO L

0322 07011 004 16i413 50Y ROD CHECE T0O SEE IF EXP TGO LARGE
0023 N?012 320 149771 JMP CNDX QNES Gf IF N0 SHIFT REGUIRED

0024 0?7013 322 Q05231 JHP CHDX ALLS IF 30 THEN WE CAN'T FIX

0025 27014 Q00 0sid417 THC START LOOF 10O SHIFT LIGITS

0d2¢ 0701 017 {60259 RPT PASS FrSS # QF SHIFTS IMTO CHIR

0a27 Qv0ie 037 124504 ARS Ri R 33-BIT SHIFT

a0z8 07017 01V (29157 MOZHIFT Fass HOLD LEFTOWER BITS IN L

0022 07a20 0f7F {24554 cov PA3S J PUT INTEGER INTO A-REG

0030 D72l 322 017e31 JHP CNDR AL13 RIS RTINFP TEST FOR NEG INTEGER

GQaZi 0va2e 017 Ge27S7 I0R S10 IF MEG THEMN CHECK FOR TRUNC EITS
0032 Q7023 320 037eld! JMP o CNDX TEBZ RTINFP IF RLL ZEROS WE ARE DONE

0023 Q7024 000 0245798 RTN IHC R g OTHERWISE IHLC THE INTEGER & RTH
0134 A Ok K K R s o o ok R ROk R ROK A K B OR KR R Wk Kok K KON K A R Rk R R R R b ko ok B KO KO8 Kk R kB K R KO kR K
013y IR EIE R TS EEEE ERIRE RUR IR B R R R O T R R AR S T A R R FE R R E L EE ST]
QO37 07025 017 (2517 FLOAT PRSS B R FUT INTEGER IMN R-REG

0038 07026 001 12wSS7 ZERD A CLEAR A-REG

0039 07027 I37 141417 IMn cHLn 59 KXY STORE +15CRINY IH ENP REG

0040 07030 321 1425329 Jne PHCK

0qg4t »

0042 EEE R RS R EE AL E R L SRR AR R EEEE R R EE LR R EE R L E R R EEE R R
01343 *

0044 0701 017 101317 FLD PHIR THE STORE HIBITS IN 57

gg4s5 07 000 023017 ING t INC RDORS FOR HEXT RERD

0046 Q707 340 000157 [mu HIGH Ay ATORE “LO-3" MasK IN L

0047 07034 220 040457 RERD INC 1 READ SECOND HALF OF WRD

0043 07T0U3IS 015 125417 AND =] MEAMWHILE . MAZE EXP OF WRDI IHNTOD 59
0049 07036 BIF7 (01217 PHES THE STORE WRD2 LORIT AFOITH 5%

0NS0 Q7037 013 125457 SANL e CLRETTS OF WRDL INTO 510

0051 07040 013 1&1257 SrMHL 39 LOEBTITS OF WRD2 INTO 36

00%2 07041 Nis 151204 R1 RND 59 MASE EXP OF WRL2 INTO 311 WITHOUT SGH
0053 07042 321 102271 JMP CNDX wald w3 IF SIGH WAS POS, JMF

0054 07042 34¢ Q00157 mmn [%ana OTHERWISE PUT ~-2000R8Y INTD L
N0SS 07044 004 (S1217 ROD 33 ROD TO EXP OF WREZ2

0056 07045 017 161404 R1 PaES 39 MASK EXP OF WROL INTO 39 WITHOUT SIGHN
0057 07046 321 102471 Jmup o CNOX /LD *+3 IF SIGN WAS POZ, JMF

0NS8 07047 246 000157 Ji K] LW L 20 DTHERWISE PUT -2000B8) INTOD L
0059 Q7050 0G4 1e€l417 AblD 59 ROD TO EWP OF WREE

Q060 Q7051 Q17 12753% RTN FPRSS 511 PUT HIBITS DF WRDT INTO S3 3% RIN
0061 LR R EE R SRR E R N EE R R RS R FF R EE R EEEEEEEEEREEEEEEEE R EE]
0063 o e Ok K ROk SOk S 3 o R Ok Rk K OK H k oho okok o h K Rk Rk ko ok g Sk ok Rk K Kok Kk Rk N R K R K Kk ok kR
0064 07052 017 126154 PACK cov PASS L A GLR OVFL ANG PUT WRDI LAORITS INTO L
0065 07053 001 137457 ZERO S10 CLEAR COUNTER REG

0066 07054 017 024757 [OR 8 FASS THRY ALY WITH HIBITS

0067 07055 320 0QST7&3t JHP CNDX TBZ RTINFP IF A/B IS5 ZERO,RTH

0068 07056 346 Q03517 mm LoW 511 5201 STORE -177¢CE2) INH 511

0069 07357 037 124742 HRMLZ ARS L1 PASS B TEST IF NUMEBER IS HNORMALIZED

0070 07060 325 043231 JMP CMDX OYFL RHND IF S0, JMP T0 ROUNDING ROUTIMNE
0071 070&1 077 124502 LGS L1 PASS B g8 IF HOT. DO 32-BIT LEFT-SHIFT
0072 07062 000 063457 INC S10 3510 INC THE EXP LCNTR

0073 07083 321 1427790 Jne NRMLZ G0 BACK TO CHECK FOR MORMAL HNUMBER
0074 07064 322 043331 RND JMP CNDX ALIS *+ 2 SINCE B WAS JUST PRSSED THRU ALU
0075 07065 007 165517 DEC 511 511 CHECK SGH 2 ADJUST ROUND OFF

0076 0QT06é6 017 (64154 cov PASS L 311 PUT “ROUND’ INTO L

0a77? 07087 003 028357 U8 R] ACTUALLY: ADD 2000BR) TQ LOBITS
0078 07070 321 004171 JHP CNDX COUT RIS KFNT IF NO COUT FROM LOBITE, 0K. JHF
0079 07071 340 000187 Inn HIGH L x0 CLR LO15) FOR OVERFLOW

0080 07072 240 024517 ENV INC B B IF COUT, INC HIBITS AND CHECK FOR OVFL
00et1 07073 325 Q0377L JHP CNDX OYWFL R4S =*+4 IF HO OVFL, 0K, JMP

0Q82 07074 017 124504 R1 PASS B B O¥FL IMPLIES B/n= 1000

0083 07075 000 0Oel4t4 cov INC SS9 S9 30 HWE SHIFT B TG FORM 0100 . .&
0084 07076 321 144170 JHP KPNT BUMP EXP, THEHW JHP

0085 Q7077 037 124742 ARS L1 PasSS 8 IF B NEQ 100..,CHECK IF B=111..
0086 07100 323 044171 JMP CHDX OYFL KPNT IF NOT. JUMP

0087 0710t 077 124502 LGS Lt PASS B g RE-MORMALIZE

0988 O07toz 000 063457 INC 5103 510

0089 07103 017 162183 XKPHT 50v PASS L 310 CLR OWFL aND PUT EXP INTO L

0090 071904 Q02 Q61417 U 59 59 SUB CRLC EXF FROM ORIG E£XP

0091 07105 346 000157 TMKn Law L w204 PUT -2000B3 IHMTD L

0092 07106 002 050757 SuB 59 TEST FOQR EAF UNDERFLO

0023 07107 3222 045131 JHP CNOX AL 13 UHFLD IF 50, Jip

00%4 07110 004 160757 abD 54 TEST FOR EXF QVERFLOW

09925 07111 322 017671 JRP CHDX ALLS RJS OWFLD IF 50, JMP CTO F375)

0096 07112 157 160742 LWF L1 PRSS 59 PASS EXF SIGN INTO FLAG-REG

E-20

=3 =1 =1 ~1 =~
- .
——— =
N Ay

-1

OO0 QOC OO
e
N
-0

-1

<
-3
-
L8]
o

oo
~8 =g

o

D
~1 o~ ~g =y
SIS}

o

[
S
P

=
&

LN R O
(=]
—

(el R w)
R]
153

~

P en}
=
[N o B SN RN O B 4
— ke 0D s
o O A,

fus]

e

—3 =1

<

o
I N B]

[)

-1
-1 L0 S LR e

~ =~
[=3

-1

=) =~ =1

Lo B v ¥ ' i e S w0 Y o Y e)

-1

o U1 Bt RY e

<4

Lo Rt ww Y ao Rk v Y ow I o}
N B B B e |

OO DD
~ =

oo o
-3 =1
ba ban s bk b bk bk kb e e ks Rk bk b e e bk ek b ek BA em bk bn beh b bR Mk b bea b bk ek sk e A ek b b s

N I N I Y BN IR VN N . S G ONES IS IS IS I IS IS, IS, QSN S S S A N R AR S NN N RN N VRN

I R N R L I NP NI Q=Y

oo
-1~y ~

wn

W O3 OF 0) 8 O D

LIS A A LS

w O
O o

o
-~
P
—
3.

oo
i N B |
py A3 A3

=)

- e e e e
4~ g g~

DO NS AW

161402
200157
161457
127417
124557
160154
06253%
128557
135653¢

178376

126759

ar 4457
000679
141479
154517
205631
QUizLT
164757
905771
QuigtL?
046331
024517
053257
053257
00w531
Q24517
QUnS31
1&4742
006531
124504
51217
152554
150157
061351
Q47731
Q47131
057357
Q57357
147439
124157
164517
162857

124504
057387
Q07871

L7 e

-3

e
G AR
oS PR (S S
LS
~4

[ed
.

|

O
Sode 5

€ ra A e B3
PR T N R I L L R N
YRS}

P an}
e e R

Pl
IR

[LINS
[SIR
-~ —)

- e
5 o5 G

124504
12u544
teldaty

GwEvn

oo
[0 SEEN
ra e an
-~ -

3

<

~b

.

LWF
[nu
UNFLO
®
OVER MM

EE R EEEREEESERELELEEEELE RS
PR EREEEZEREEREESESEEEE R RS

FanD
.

J8e
JEB

JMP
e

Jne

Inn
JHF

JHp

JHUE

Jne

DIFR

JHMP
JHMFP

JMP
RYRE

SURMPCHK MM

JHF

SHIFT HRS
JHP

I3

waern CONTINUED

*

apD2 LUF
FNV
JHFP
THH
EHY
JUF
JUF
M
JHF

£

OFLOY LWF
LWF
JUP

-,,

auT
JHF

w0 O 9
L=1
L==]

[N R)
2

—
o

Fsug REWD

ao

o s v e s BN PR I <51

@

o

oy

o

LE0 T s o o 5 s §

0

)
3

2D M

=

03w GO O O T

PN
e

G o
[

o0

oo

4

L
B
&
L

4

o
=

o)
o0 el

,‘
p

w oD

=3 i

W

o3
w

o

Appendix E

SHIFT EXP WITH S1GH

STORE “LO-8' MASK IMN L

MaSK EXKP IMTO $10

MASK LOBITS INTO S9

PUT HIBITS INTO A-REG

PUT LOBITS INTO L

COMBINE WITH EXP AMD STORE I[N B-REGC
CLERR A-REG: OVFL=t

MOW CLR B-REG AND RTH

SET UP ERROR CONDITION IN A

EEREEEEEESERESEEEEEEEEEEEEEEEES]
FR IR I AR R ISR T P T R P T R SR O Y O R

Frzs P IMTO M TO READ ADDR OF WRD2
CHECK FOR INCIRECTS

UHFPRCE WRDS INTO SCRATCH REGS
CHECK FOR WRE2=D

IF MOT. CONTINUE

IF 30, MAKE E#AP MOST NEG C-200. 81
CHECK FOR WRDI=0

IF MOT.CONTINUE

IF 80, MUKE EXP MOSTY NEGS (-200.B8)
IF DUING @alD,3KIFP AHERD

FORM 2~-C0MF OF HIBITS IM B

FORM 2-CONMP OF

LOBLITS 0OF WRD2

IF COuUT OQCCURS

gUMP HIBITS

CHECK SGM; IF FOS,JHMP

TF MNEG. CHECYE FOR MOST

MEG #0100, .3

IF 30, 5HIFT BACK (010..)

LEUMP EXP

e

3

Lo

FIHD DIFF IN EXPE

SSTORE IMN 58 FLG=D

IF DIFF=0,JHWPF TO AQD ESTEFP
IF MEG. WRDZ URDY

FORM -DIFF

§ STORE -DIFF IH €3

HOLD B IN L
WROL(CWRD2; FILL E.A
WITH 311,510
ALSHD FILL 511,510,552
WITH £.5%,35

FORM -20(B8) IN L

IF -DIFF»-31,RTN HITH LARGER #
JUF T3 RESTORE A.B

N START SHIFT LOOF

TNC COUNTER

LOOP UHTIL DONE

HO A KR KR R R KR Ak KR R kR K Ok Kk K

FLG <= SIGM: L <= HIBITS
REGD HIBITS: B RESULTS) OYFL?
L= L0OBiTsa
ROD LOETITS: | <= RESULTS
CHECK FOR COUT FROM LOBITS
=it iitiritiieg

= B oy 1) DNFLY

IF HO OQVERFLOW. RETURH

K IF ADDEND, RUGEWMD WERE FOS
3 ogreittifritrrettgt

TEST FOR B = 100000Q00030000000

15 TRYE., THEHN ITGHORE OQVERFLON

GO OFULLMORD SHIFT
US1HG Flwid TO IHJEST STGHN EIT
BUMP EXPOMENT

PASS MUCH L&RSER WRD INTO &, @

A O K R HOR HOR KK RO KRR R S R R KON R R O R R R R R R R SRR R R R R KR KR R K kg

E-21

Appendix E

010

18t nrvz21
Q182 07222
Q183 N7z23
0184 07224
0185 Q7228
0186 07226
Q187 0rz27
01e8 07z
0189 07231
0190 07232
0191 07233
0192 07234
0123 07235
0194 0723&
0195 67237
01926 07240
0197 07241
0198 07242
0199 07242
0200 07244
0201 07245
0202 07246
0203 Q7247
0204 07250
0205 0725y
020¢ 07252
0207 07252
0208 07254
0203 07255
C2i0 Nresé
G211 07257
0212 07260
213 072wl
0214

021%

0217 07262
02i18 072v2
0219 0N72w4
0220 07263
0221 07266
0222 07267
0223 07270
0224 07271
0225 nra72
0226 07273
0227 07274
0228 07275
02292 07276
0230 07277
0231 07300
0232 0?7301
9233 07302
0234 07302
0235 07Z04
023% 0?3035
0237 B7306
0238 07207
0239 07310
0240 D73211
241 00312
n242 07313
0243 07314
0244 07315
0245 07316
024¢ 07317
0247 07220
0243 07321
N24% 07222
0250 073232
0251 07324
0252 Q73235
0253 07326
0254 07327
0255 07330
0256 07331
3257 07332
52%8 00233
n2%9 07334
0260 7233
0201 07276

E-22

220
300
I0l
aag

DGl D D) DG) N
DD D D D R A
[I =IREEVIT. SRS

D
O -

037
301
n17

ang
017
200
air
001
017
322
01é
017
322
397
0i7
07
017
004
321
ano0
agrv
317

074457
000e7a
141470
Qetdt?
150157
feid417?

BRGE
ST

S
S~ de

RELEDN I (V)

B R R N R I Y N R YR L =~ CR N~]

P O e e N N B RN e) = AW e A A
~3 N

o Ry o R
-3
3D b

e R T = T

<
~ —

L R I R e O
NN

BT O b B DS O O
fe)

L PR S

[R . N
[V

P
P
N = -

S - D O e e
R I S LR B N)

[I ST T B (S L A B Y
3.0 5D

074457
000670
141470
054554
156131
053471
027213
150157
061417
061417
162557
164517
124504

wi70

[
w
5]

g T
C s =g NN O = NA= U= = WA D NN DO = -y = W
o -

(R RV

—_

~

~

[T P,
ol R N RY A G P ks R RO
S b O

D DD
~8 o~ =

G G B e OB f R

DR SN S . SRR I O S O I e Lo A B ST RUN S R ¥ |

I R |

BRI B DR S O
(%

- R

-
Ao F
ERERE NS R NN RN R NSRS NS N L RN T RURY N NET)

;]

e e s e D e D D e
Bt B B (6 T WY]

<O
(XS
IS

1243

19018

oAk ¥ ok Ok Ok R K R A ORI ol OR R R O b ROk K kR o e Rk or o ROk Ok kiR Ok ok ok kW OE ROk
WRD2

Fupy

RERD INC
J&B
JeB
INC
PASS
ALD
R1 PaSH
PAasSS
JsB
Pag
PasSS
PARSS
R1 PASS
JeB
Pas
alD
JMP CHDX COUT
INC
PRES
ROD
PASS
JEB
Rl Pa3S
cav PASS
ENV LI RLD
JUF CNDX RLLS
JME CNDY OYFL
DELC
JER
RTHN
J&B
RTH INE

EERS LR RS REE R EERERE R TR

ERE RS RS EESEE R R L ELE REEEE R

FOIV

READ
JSB
JEB

INC

CHFS
ONES
RL1S
INC
PASS
5U8
INC
FH3S
PH3S
R1 FAZS

cov
CHNDX
CNDX
S0

JMF
JHP

s

—
]
™ w0

P#s3
Fass
RLd
DEC
ZEROQ

JHUP CNDH

o3 W) U

s =}

P
NP oD
Mm D DD

DWW

[}

=
-
o

I
Fass
JSB
PHSS
ZERD
Fass
CHDX RLLS
ONE
FassS
RL 1S
pEC
[FASS
[PASSH
PASS
ROD
courT
INC
[A] FaSS
Pass

JUP
JHP CHNDR

JHP CNDX

,.
1)
Wy

]

W D u o
ny N4 o

oA

o WY D
— R

I

W o T
.

I

o2l <3 anlli o3
o

oy

m

* 4

LY
M

[y i <

na

o
-~

2 o

)

4

LS

P

INDIRECT

FLD

T
o -0

YRy

PYTGIYS
=

DL W= W
— -
—_ <

=
R
<

+ =
™

wn

=3

= 010 0 M % W I

FaC
p

Fdoh Rk AR Kk ok kA sk koK kR K KR b K R R KR R Kk K
ER R TN R R ERE R E RS R IR I N
WRD2

P

INCDIREDT

FLD
57
DEY

w2

b3
wn

o

WY WO O
=)

W I T

m =
el
~

* U

+
(SN

- - ~ =y + -
- [

[SXn o o IR T Vs SE RV N B]

wn

b

P

K

IR

FASS P
CHECK FOR
STORE ARGS IN

INTO M TG READ RDDR OF
INCIRECTS
SCRATCH REGS

FORM EXPI+EXKP2+1

RND SAVE IN 359

FORM ¢WRDL LOBITS)/2 IN R
PAIS WRD2 HIBITS INTO S2
JUP TO MPY SUB &% RTN WITH
HIBITS IM B: SavE IN 85
PASS WRD! HIBITS INTO 22
LOBITS INTO Ay SAVE TN 3511
FOFM (WRDZ2 LOBITE /2 IN A
JUF T MPY SUB & RTN WITH
LOBITS IH A: PASS INTO L

ALD BOTH LOBITS & CHK FOR COUT
TELSE TRUNCATE DIGITS?

IF cOuT, BUME HIBITS

ROD HIBITS AND SAVE IN 51t
PHSS WRD2 HIBITS INTO A

JUP T MPY SUB &% RTN WITH
LORITS IM A 3AYE LOBITS/2
ROD LOBITS 2 T HIBITS SUM &
SHFET LY T0 REQRIEHT

CHECK FOR CaRRY INTQ OR
ROFRNOW FROM HIEITS &

ROJUST ACCORDINGLY

CHMYT OVFL FRAM HIBITS

FASS P INTO M TO READ RODR NF
CHECK FOR INMDIREDTS

FASS HRD2 HIBITS & CHECK

FOR DI¥ BY ZERUC

SINCE WE WUS3E 3ZAME DV3R,MAKE FO3
MW & SHYE SGH TN 0WFL

FORM ExXPL-EXP2+1

% SAVE IH 52

FILL B, A WITH WRCE A> DYND

i FRESHIFT To avdID OYFL

JMETO SPECIAL DIV SUE
EE FUAL TN 39

3 QUD & CHECK FOR
SIMULATE FIRST
LEFT SHIFT IN DIV
CLR DVHD LOBITS
WFE T SPEC DIY
SAVE QuD2 Id 31t
FORM »4WRODZ LOBITS /4 IN
Bo=DYND HIBITS

CLE DVND LOBITS: DVYSR
JMP TD SPEC DIV SUB
FORM 2-CONF 0OF QUO3
HI MFLF

Fass QuUOtL RS MCND
JUFTO MPY SUB

SAYE FROID HIEITS IN 3
PRE-CLE B

CHECK SGh 0F QUO2
EXTEND A5 ALL 3'3¢POSH

ALD/EVEM

ROUTIHE
O0¥SR SHME
cus

3

SHME

Of RLL 7 SOMEG)
CHECK MONF -RU014QU0D3
IF MNEG.SUE 1 FRONW B

PEORIENT PROD

Al T QU02

IF CouT QCCURRED

BUMP HIBITS 0OF RESULT
SHIFT FULLWRE TO ORIENT
ROD QUOL TO HIBITS

RESULT

CRADJUST EXP,REALLY

21MX

Lo e B o Y o)
[N
Ry

[XY

I e A]

Pwt

vl

Lo I e R e
AN VTN VR AU (VN SRV AV VA (VIR S IRV VI (VI (VI (VLW S NIV SV AV 9
0 D D0 M

L= R i v }
o

D oo o

P

P

Los S n}

=

Lo)

D
DD W NG U BN D WDONS GRS~ DD~ D Gl

QD DO) D D D D D D D 0 0 D

]

O 0 oo
R N]
[SROES RN NS

Ll

E S N N - YN}
R R R e}

fos B Jes |
~ ~3
T

~3
S RO

os e B o B e B we Y o Y s Bow B |
N R R T I
[E5 2% RS RS IR SI RN OV &S a1 |
DU RS IS JOF RS JES Y =N
TN LA f D)) e DNy

IS A md R~
Kl e G G e G
S S G B T 5 3
N A G R e O

SCOO0CDOO0Oo OO0
B I IR AN R
[y
~ g g~
[N N

[N}

(=]
~4
[z

~J
EN

07400
07401
07402
07403
07404
Q74085
07406
07407
07410
Dr41d
gr412
07413
07414
07418
07416
07417
ar420
07421
07422
07423
07424
07425
0742¢e
07427
07430

LSRRI SIS N S N N NSNS N = RN N IS I SIS IS I Y I3 R e W11

LS ISR AU (G T LS T SE T S R (ST SS T OSSR o B R e o I S LV B O SRl OSSR N Y

F T T T e

124817
142830
Q7573w
136557
QU517
125417
142530
75734

000zs7
124742
016771
024517

Al SNE N o

R
[T I NPT RPN
~

T~ em &y e

e

163170
103¢ 3¢
163170
163030
[7007%
163030
163039
164070
163630
[03676
162634
163030
{72079
163034
163030
164230
164370
164670
irr7a7i
1725249

716329

164530

Appendix E

AlD R]
J5B PHLK
RTN INHC P p
DBYZR IERD n CLR OLOBITS
Inu CHHI B HE00 FORM 00111131 G0000000 IH HIEITS
PASS 59] ! PSS INTO EXP
[T Jae PHLK REFRCK #. B #EC:
RTN INC P P ITHC P 4D RETURH

LR R R R A S g i B R o R A e B e S e e S R S R AR B A i S A e 22 L R L LN
ok ok Ko K Ok R HOR E Y R RO SO S OK E CROR KR R R E R ok Kk ok Tk ok ok ok kR R ROk Kk KR R Y K
E3

SPECIAL SUB FOR F P. DIV

* ES THAT DWVSR I3 alWavys POS

” THAT QRIG ONER SGH IS IM OVMFL REG

* THART ¥0OU HAVE PREWIQUSLY DONE FIRST LEFT SHIFT

* AND THRT NO ERROR COMD MNEEQR BE CHECKED

¥ CROT OTIT IS FAST»

¥
A COK KOk k R OR K Y K R Rk ko R I L R R E T R E R R S
0IvR IMn LOW CHTR CLR CHNTR
LWF L1 Pass g CHECK FOR NEG DVYND % SAVE SGH IN FLG
JUP CNDX ALLIS RIS REMCY IF PG5, WE ARE READY
CHPS B 8 COMP HIBITS
CHRS & & COMP LOBITS
INC R A FORM 2-COMP 0OF LOBITS
JMP CHDX £OUT R4S RERDY IF HO CQUT,QK
INC B B ELSE BUMP HIRITS
REALDY RFT PASS L 57 PASS DYER IHTO L! SET RPTFF
DIy L1 sUB B g PERFORW DIV STEPC1Bx)
R FASS B B FORM REM IN B
JMP O CNDX FLAG RIS %+ 3 IF REM SGH IS T0O BE HEG
CHUF5 B B CDETERMIMED BY DYNDY. THEN
ING B B FORM 2-COnP IN B
JHP CHDX OYFL *+4 CHECK QRIG DVSR SGH: IF PO
JMP CNDX FLAG RJS RIMFF LODK FOR NEG DYND
CHUPS A A WHICH MERANS FORM
RTH INC R R NEG QU0 IM & & RTH
JMP CNDX FLAG RINFF ELSE IF NEG.LOOK FOR POS DVHNR
CHP3 R R HHICH MEANS FORN
RTHN INC A B NEG QU IM & % RTH

EEERE R EE L EEE R EE R L R E R R EE R R R R R E T R R RN R Y
X

RTHMFP RTH

*

avELD R1 ONE R PUT MOST FODS & AND MOST POS EXP
Imm RTN LOW B R37 % INTO R.E-REGS; OVFLO=1

W RO R R R KR K HOR K K KR ROE K R KR KR K R ok X R R R R R
ARG P40

bk kR O SR ORI KO R SO R Ok o O R R S R AOR hoR R B R K R KR Lk R Lk R R

*
* 21MK8 MICRO-CORE

MODULE 15 EXTENDED I[NSTRULTION GROUF

"

O O R HOR KRR SR HOR KK R HOR HK R R R K R R AR OR K HR R h E R R K RR KR KKK KA ROk K
FETCH EQU 50000

AR ROK R O kR ROR S HOR K K Ok O R KO R Ok R KR KR R Rk R K R R R Rk R Rk
#: Junp TRBLES ~ ENTERED FROM BRZE SET

EEEEEEEEEEE SRR EEERE N ERESEREREE S SRR R T R L E RS RN

JHup EaDRE
RTN P&SsS X CHE

JHP EaDRY

JHe EAlR
RTN PA3SS CAB X

AMP E#2R

JHe EaR

JMP KX

JHE EADRY
RYN PASS ¥ CHE

JMP EADRY

Jne
RTH PnS3 CaB

JHp

JHne

JHP KAV IKBY

JHMP

JMP

JHp

JHP

JMF

JHUFP

Jnp

JHUP

JMe

E-23

Appendix E

0347 07431
0348 07432
0349 07433
0350 07434
0351 0743S
0352 07436
0353 07437
0155
0356
0357
0358
013159
0360
0361 07440
0362 07441
0363 07442
0364 07443
0365 07444
0366 07445
0367 07448
0368 07447
0369 07450
0370 07451
0371 07452
0372 037453
0373 07454
0374 07455
0375 07456
0376 07457
0377
0378
0379 07460
0380 07461
0381 074%2
0182
03s3
0364
0385 07463
0386 07464
0387 07465
0388 07466
0329
0320
0391 07467
0392 07470
0323
0394
0395 07471

OF 0
[=2 5
——

220
0t?7
017
322

LN
f="] 5
=]

W o
oo o
- oA

Gl OO

[X3 SISy S

—- o

oo
—
NN

017

017

017

165030
177379
1672320
167330
166630
170230
171030

nz22461
10203%
1000786
022461
17003%
101636
1a0ts7
17163%
022461
10203e
10007%
022461
17203¢
1016748
100157
1736786

Q74717
165630
162035

123017
040457
162035

141636

103017
172057
141675

071617
067271
136776

6

-~
~1 &

g
0
{

SN

«
3
-~ ~N
& - 2

N

21MX

Jne DS Y
JNF JRY
JmMe SE5CES
JMF SBSCES
Jnup TE3
JHP CHu
JHP myw
T AR KR K OK TKOR K AR SR K HOK OR KKK KOK A 0K Kb K KON R KO AR KKK K Kk o KOk K WOR K A W SKOK Ok K K Ok KOk K ROk
* INDEX REGISTER INSTRUCTIONS
BRSO K CAOR O K OK HOK K NOR KK OR OR S K R SO S R SR O KOR SKOK R SR AR 0K KRR K K HOK OK R Ol KO ROk R ROk K R ok K
* DISPLACEMENT FROW FINISH CORREPONDS TO
* DISPLACEMENT FROM 7400B FOR INSTRS. LISTED
* IN COMMENT FILELD BELOQW.
FINISH MECK INC M M SAHX/SBY
WRTE RTN PASS TAB CaB
RTN PASS CwB THE LAX/LBY
MPCK INC M M ERIEN
WRTE RTH FPASS TaE X
RTN PASS X Tab LDX
PassS L Tu8 Al X
ENYE RTN ADD X X
MPCK INC il SAY/SBY
WRTE RTN PAaS3 TAB CHB
RTN PASS CaB Twab LATALBY
MPCK INC 4] ul ERI
WRTE RTH PSS THE T
RTN PASS ¥ TAB Loy
PASS L THB ALY
ENVE RTN WOD 7 ¥
WK K R KK TR K K OR KK K 0K JOK kK KR R K OR S O R E R KR K KK R KK KK Ok OR KOK K % OK KK K OR Ok R K
* EADR IS COMMOMN TO LO#*, ST, 40
EADR READ INC FNM P READ WORD 2 . FP{=pDDR OF NEXT INSTK.
JsB INDBIT CHECK FOR INDIRECT,GET OFERARND
JHP JI0 FINISH JUMP TO COMPLETE IMSTRUCTION
RO R KKK KR KK HOK KO Sk KK KR S KO K KR K r K R KR R KR KCHOK KR Ok KR KK KR KOk KOF
® EADRX DOES EFFECTIVE ALDR FOR
* SAX SBY . LAX,LBX INSTRS.
EADRX READ INC PNM F READ ADDRESS NF WORD 2
PA3S L ®
Pass THB M(=CONTENTS OF WORD 2.
JNP CNDX RALL1S RIS DIRELT JUMP IF MO INDIRECT.

K KR R OK KR KOOE KK S CHOK K K 0K KOK KRR SOk IR Rk 108 Kk 0K R A OK KK KO KR CHOK R R SO Kk o K K
w INOIRECT ROUTINE FOR INDEXED INS3T
EADRI READ INC M i READ INDIRELT ADDRESS

JeB INDBIT JSB TO IHWDIRECT ROUTINE
R ORHOR K O SO R R KK KRR KK R R KO KOk KK R R KO ROl K R CK kR KK R R K O R sk Ok K KK K ROR K K K
* COMPUTE [MODEXKECD ADDRESS THEN JUNMP
CIRECT ROD 51 " 31¢=TRARGET ADDR. + ¥ OR ¥
RERD INC M 51 REWD INDEXED RODRESS
JMP 420 FINISH SJUMP T COMPLETE THE INSTRUCTION
B R KA KRR R R OR R K K K OR KO% R R OR OR R R F OR ORb kh R R o O K h E E K ok KK
* EADRY COMFUTES EFFECTIYE RODRESS
» FOR SAY.58Y.LAY. . LBY INSTRS
ERDRY READ INC PHR P
PASS L Y
Fass M THB Me= CONTENTS OF WORD 2
JMP CHLDX AL15 RJE DIRECT JUMP TF HND INDIRECTS
JMP EAaDRI JUNP 10 00 INDIRECT ROUTINE
Sk ROR KR OR ok ok KK K Ok KOk R R KK Kk R KON R KK Rk KOk R R KOk b ok Kk R koK KO Kok R b K ROK sk ok ok ROk
HABX PASS 51 CaB EXCHANGE A/B WITH X
PASS Caf X
RTN PASS X 51
kR ROk K HOK KOE KOROR KR KR KOk % R KOk O b R KO ek ok KR Sk koh kKK R KOk KR SN R K K KR K
KABY PASS S1 CHE EKCHANGE A/B WITH Y
PASS CaB ¥
RTN PHSS 7 51
Bt K AR K K R OR K O OB OOk K KR JOK R OR KCR BOR KR Ok K RO K OR K RO OF Kk KOk KRR KK Rk kK R Kok KK
5% INC X X ITHCREMENT . SKIP IF ZERQ
JHP CNDX TBEZ SKIP
RETURN RTHN
kK KO Tk OK KO K OR Ok R ROK KOE K Ok KOF RO KOk ¥ ROk 8 K RO o #OK Rk O ROk K KOk K R K R Rk KRR K R K
sy INC 7 Y INCREMENT Y. SKIP [F ZERQ
JHP CHNOX TEZ 3E1P
RTHN
kRO Ok oK AR K kK K K K TR Ok R OK Hk K ok Ok K b ok OK R OK k K R KO K K Ok SKOR KOKOR KK K R R F K
[DEC X X DECREMENT X. SKIF IF ZERD
JMP CHDR TBZ SEIP
RTN
A KKK S OH KR KROR K K OK KK KOR OB N NOR K OR KK KON K KR KK R KR R O O K O K K KR K Ok Ok K
DSy pEC Y 't CECREMEMNT Y. SKIFP IF ZERO.
JUP CHDX TBZ SKIP
RTHN

21MX Appendix E

D432 LR EREERAEE RS EREEEA RS RS AR E R E S R R R ES R EEE R R R R R E R EEE R R R EE R L]
0433 * GENERRL IMDIRECT ROUTINE FOR INDEX BIT INSTE

04734 * COMMOMN ROUTINES FOR WORD/RYTE INSTRUCTINNS

0435 AR HOE OCROR O 0k 30K K CHOR SOk 300K BOR RCRE KR ook K R ok ROk 0k Rk R ROk S oR A ko Ok R ol KOk K Oh o K KOk Ok Kok ok
0439 * INITIARLIZATION FOR WORD,BYTE

0437 07523 000 0v5217 INITCH INC S5 P 234= ALDRES3Z OF WORD 3.

0438 07524 220 0S0457 RERD INC 4] 59 READ PDDRESS OF WORD 2.

D439 07528 uon 51157 INC 34 N 34<= pUORESS OF HEAT INSTRUCTION.

0440 073526 ui7 101117 PASS 53 THE F3¢= COMTENTS OF WORD 3.

0441 07527 320 065531 JHP CHDX TBZ2 *+ 3 JUMRP IF HWORE 3 = 0 (ND INTERRUPTY

0442 07530 ong 0ysLT INC P [P{=ADCRESS OF WORD 3 (FOR EXITH

D443 075314 0Nl 15533 RTN ZERO 57 37 57¢=0 AND RETURN T0 CALLER.

0444 N7532 220 Q74710 READ STFL INC PN M P READ ADDRESS OF WORD 2 {=P+1.

0445 079532 061 (S5317 ZERY S7 57 57 4= 0

0446 HA O KK K AR KR OO K R K o kK % O KRR R kO ok R kN R B R O KO K Kk 8

n447 * COMMON THDIRECT IMBEDDEDR IN IMITCHM

04483 07534 017 100457 INDBIT PrSSE M ThHE M= CONTENTS OF LAST READ ADLRESS.

0449 07535 322 02n27t Jue CHDX ALLS RJS COMTEIT JUMP IF MDD INMDIRECT.

0450 0752¢ 220 022465 INDLBIT READ IMCI INC M M READ ADDRESE IN M

0451 073537 326 065631 JMF CHDW NHOIT INDBIT JUMP TF NO HALT OR INTERRUPT PENDING
0452 07540 0f{7 100457 IND2BIT PASS M ThaB ME= CONTENTS OF LAST RERD HADDRESS

0453 07541 330 125671 JnF CHDA NSNG RJS IHDBI T+t JUnMp IF SINGLE-INSTRUCT MODE

0454 07942 g7 (75717 LEC2 pEL [P

0453 07543 007 175717 DEC P P f = ALDDRESES OF WORD 1.

0456 07544 320 Q00030 JUP FETCH ATTEMRT JUMF TO FETCH ROUTINE.

0457 07545 324 066371 COMNTBIT JHP CNDX FLAG *+2 FLAG ICENTIFIES CRLLER TO INDBIT

0458 07346 220 022470 READ RTH INC M M READ ADDRESS AMD RETURN.

N459 R E R E R E R Y R R R R EEEE R R E N EEE RS

0460 07547 220 0zZ2451¢ READ CLFL INC M il CALLER=IHITCM--RESET FLAG,RERD COUNT

0461 07550 017 10igs? PHSS 56 THB S 4= COUNT FOR THIS INSTRUCTIODN

c462 07551 320 025571 JHP CNDX TBZ RIE RTINCHNT JUNMP IF COUNT NMOT ZERD

D463 07552 30 175739 JSB EXTIT EME THE IMSTRUCTION.

0464 07553 0 153138 RTHCNT RTHN PASS 532 56 53 4= COUNT RETURN TO CALLER.

0468 o R R R KK K O O S KOK SKOE S s Ok RO KOR R R K R ROE A R HOR R R K R RO K KR KR R KR R Y ko R R K ok K
0467 * BIT INSTRUCTIONS

0468 AR CEOR A Rk KR R KR R KRR KR R R R KRR R R R e kol kR R Rk o Kk R R R OR R ko k R kh h kb b kR K
D469 07554 220 074717 TEL READ INC PN M P

0470 07558 301 1635630 456 INCBIT GET MasK

N471 07556 g17 100157 Pass3 L TaRe L= MAasK

0472 07557 220 074457 RERD INC M P

0473 07560 301 165630 JEB IMDRIT GET WORD TO BE TESTED

0474 07561 013 101017 AND 51 THB LUGICAL AND OF MASK. WORD UNDER TEST

0475 075s2 012 041017 XOR 51 51 1 = 0 [F ALL MASK BITS SET IN WORD
0476 07563 320 0evavd JMF CHbH TRZ SKIP SHIP [F ALL MASK BITS SET IN WORD.

0477 07S5cd 000 075717 INC P P SKIP NEXT MACHINE INSTRUCTION

0478 07565 N0 07573¢ SKIP RTHN INC £ |3 RUGJUST P, JUMP TO FEYOH ROUTINME

0479 A HOHOR T OR TOR O HOR O K Oh O h OR R O O OR R HOR O e o Kk R R Ok kL R R R ok Ok R ¥ ok
2480 07Se6 220 0V4TL7 SB5CBS READ INT PHNM £

0481 00?567 30! 1e5630 JOg THOBIT DRTAIN BIT MAasSH

482 07370 D17 00157 Pass3 L THE Lo2= BIT MASK

0483 07571 220 074457 READ INC il [

0484 07572 301 165630 Jse INDBIT DETHIN WORD TO BE OPERATED 0N

0485 0?3573 327 170031 JHP CNDX TR2 £8s JUMP TF INSTRUCTION IS B3

N4388 07574 017 Q01017 10R 51 Ta4B SET BITS IN WORO.PUT IN 51¢

0487 Q7575 000 022461 MPCK INC i} i MEMORY FROTECT CHECK.

2488 079576 177 140017 WRTE FPHSS5 TaB 51 REWRITE WORD T0O MEMORY RETURN TD FETCH
0469 07577 000 075738 £THN iNC £ P

0490 07600 013 101017 €83 SaNL %1 TRE 51 (= MEMORY HWORD WITH BITE CLEARED

04921 07601 000 Nz246l MPCK INC M M

D492 0Nve02 77 140017 WRTE Fass Tak a1 REWRITE GORD TD MEMORY .

0493 07602 000 07573% RTH INT P ¢ RETURM TO FETCH ROUTINE

04924 B N R R N]
0495 * WORD TNSTRUCTIONG

0496 S e Ok R R ROK OR KOOk kA b b ROV s oK ke ok Ok R ks ok R Rl ok b R ek R R Rk ok kD R KR kol kA AR R R h kR AR K ¥ K
0497 D7604 281 165179 CHu J&B INTTOM IMITIRLTZE

0498 07605 220 D2%457 READ INC t [READ FROM ARRAY A

0499 07606 017 t00187 Pas3 L Tak L <= WORD FROM ARRAY A

0500 07607 220 N24457 READ [NT 4l & READ RDDRESS IN RRRAY B.

0301 D7et0 000 024517 TN g & INCREMENT ARRAY B POINTER.

0502 07611 003 Qoidt? SUB 51 TAG SUBTRARCT ARRAY WORDS B - @A

0503 07612 320 035431 JHF CHDX TEZ Rd = CHAaLYS JUMP IF UNEQUAL

03504 07613 000 028557 INC 2] A INCREMENT ARRAY A POINTER

0509 07¢l4 007 145117 CEC 53 53 DECREMENT COUNT .

0508 07615 320 076731 JHP CNDX TE:Z EXTIT JUMP TO ERIT IF COUNT I5 ZEROD

0307 07elé 335 02narit JHP CNDX INT Ry & [RPE B JUMP IF NOT INTERRUPTED

0508 Q7617 321 171130 SJHP IHTPEND

0509 kAR R O kKR OR RO O RO 0K R HOR RO e R A R N HOR SO K Rtk k9 O O K RN KR K R R HOR K KR Ok K ko K

E-25

Appendix E

0510 07620
0511 07621
0312 07622
0513 07623
0514 Qre24
0515 07625
0516 07626
0517 07827
0518 07630
0519 07e31
0320 NF7e32
0321 07633

05587 07¢71
07672
0559 07673
0560 07674
07675
07676
0563 07677

n7rno
077014
0568 07ro2
07703
07704
0?7053
07706
0573 07707
0v7t0
07711
or712
Q7713
0578 07714
07715
07716
0r717
orv720
07?721

301
220
goo
o1z
gaa
017

000
007
320
338

321

—
w
<

[=3
S

EXEENY

fo & Ny Ry O
DA N, I e 8

- O

o=

~4 -~

[N =

(=1
~ S e

- O e

R RN
A D RO B e

W W e - O

G - -

100543
126543
13778
100578

165170
127087
172630
043051
[T1670
145117
033671
142557
175734
033231
142857
179130

900157
127117
127143
147143

127357

172530
126157
156557
045257
034571

24536
047017
034771
07573%
{rerre
034271
175739
17eres

21MX
My JSE INITOH INITIALTZE
READ INC M A REHXD FROM ARRAY A
INC R F INCREMENT ARRRAY £ POINTER.
FA3S 31 THE 51 f= COMTENTS OF WORD OF ARRATY A
INC M 4 M= pLDRESS FROM ARRRY E
MPCK FHSS 4 MEMORY PROTECT CHECK-~ BIT 15 LOUW
WRTE PH3s TaR 31 WEITE WORD INTOD ARRAY B
[NC B B ROYANCE RRRAY B FOINTER.
pEC %3 33 DECREMENT COUNT
JMP CRDX TEZ ExTIT EXIT I8 COUNT IS5 ZERQ

JAP CHDXN INT RIS MHYW+!
JME IHTPEND

JUMP O TE ONOT INTERRUPTED .

LR EEESEELEEE R RS SRR R E LS E R E S R E R E R A L R R R R R R R R R R R RS EE R R LR EE RS R

* BYTE INSTRUCTIONS
ko OR KK Ok R O KK K HOR K KOK ok R K E S Ok R Kok R Kok KR Kk A KK RO KoK Rk Rk R K KK R R K KK KOk K K
SeT mn HIGH L %000 L <= Q003778 .
STBYTE AND St A 51 <= RIGHT BRYTE 0OF A REG.
LWF RY PASS 56 B S6 (= WORD ADDORESS. FLAG SET IF BYTE QDD
READ MPCK INC M Sé READ WORD ADDRESS,CHECK FOR MP VIOLATION
JMP CNDX FLAG RJS STEVEN Junp IF STORE T0 EVEN BYTE.
SaNL 59 ThB MASK QUT EWEN BYTE QOF MEMORY WORD.
JMP MERGE
STEVEN AND S92 TaB MASK OUT OO0 BYTE OF MEMORY WORD
L4 PaSS S1 S1 EXCHANGE EBYTES IN REGISTER CONTRINING
Ld PASS $S1 51 BYTE T0 BE STORED
MERGE Pass L s? L ¢= MEMORY WORD WITH TARGET BYTE CLEARED
[0R St 51 21 (= WORD WITH BYTES MERGED.
INC B 8 INCREMENT BYTE ALCDRESS
WRTE RTN PAaSS THB 51 WRITE NE# WORD BACK INTO HORD ADDRESS

kAN R Kk R KON OR K KO AOK KK KOR O ROR RO OB R K OR KAOR SOR HOR KK K KR KO SOk K KKK Ok K KR KR K kK KR % Kk K

LBT PASS 52 B 5¢ (= BYTE ADDRESS
INC B 8 INCREMENT BYTE ALDRESS FOR NEXT INSTRUCT.
LDBYTE MM CLFL HIGH L %000 L <= fOo03vr7e CLEPR CPU FLAC.
LWF Rt PASS Sé 52 56 (= WORD WDDRESS OF EBYTE. SET FLAG IF O
READ [NC M 56 one BYTE READ WORD ADDRESS
JMP CNDX FLAG LODD JUMP IF BYTE [§ 0O0D.
L4 SANL R TAaB MASK QUT EVYEN BYTE AND MOYE ODD BYTE
L4 PASS A R T0 EVEN BYTE 0OF A REG.
RTHN RETURMN TO CALLER QR FETCH.
LODD RTN AND R THE MASK OUT EVEN BYTE,LOAD INTO A RETURN.

R R R R N R R R R R R R R R R R R R R R E R E R L E RS EE R LY]

HBT JSB INITCH INITIALIZIE.
PASS S2 A S2 = ADDRESS START OF ARRAY A
J&B LOBYTE LOAD BYTE FROM ARRAY R
CLFL INC %2 s2 RESET FLAG, 52 <= MEXT BYTE ACLDR IN ARRAY
JSB STEVTE 3TORE EBYTE INTO BYTE ADDRESS IN B REG
pEC 512 53 OECREMENT COUNT
JHP CNDX TBZ RJS HNOTDAN JUMP IF COUNT MOT ZERG
PASS A 52 A= 1+ LRET ARRAY A BYTE ADLRESS MOVED
JHF EXIT
NOTDAN JHP CNDX INT RJS MBT+2 JUMP IF MHOT INTERRUPTED
PHSS A 5a A <= 1 + LAST “RRAY A ADDRESS MOVED
JHP INTPENL
K RO TR KK K K Rk Ak oK KR KOk KO K K OR SK kH HOR KR R S RO Ok ok K K R OH SKOR SKOK R KR K KR K KR R KR O KOR K K K
IFB n HIGH L %009 L (= Q00377%&
AND 83 A 33 4= TEST BYTE IN LOW-ORDER BYTE
L4 SHANL 54 A 54 4= TERMINAGTION BYTE I[N
L PASS S4 34 LOW-QROER BYTE
PASS 358 A 58 = IZAVYE ORIGINAL CONTENTS OF A REG.
CONTSFB 4SB LBT LO#C BYTE INTO A REG FROM ACDRESS IM E.
PasSs L A L 4= BYTE TO TESTEND IN LOWH EBYTE.
PASS A se REZTORE ORIGIMAL CONTENTS OF A REG
{0R S€ 33 COMPARE BYTE TO TEST EBYTE
JHUP CNDX TBZ RJS NOMATCH JUMP TF UNEGUAL
RTN DEC B B B (= BYTE ADDRESS OF MATCH GO TO FETCH
NOMATCH 10R 31 54 COMPARE BYTE TO TERMINATION BYTE.
JHP CHDX TBZ R4S INTTST JUMP TF UNERUAL .
RTN IHC P P SKEIP MNEXT MACHINE INSTRUCTION AND FETCH.
ONES
INTTST JHP CHORX INT RdJ4S5S CONTSFB JUMP IF HNOT INTERRUPTED.
RIN DEC P P P (= INSTRUCTION ADORESS, GO TO FETCH.

ONES
sk ko Ok K OR SKOR KRR KR K TR 3Kk Ok 30K Kk 00 R KR R OR KR 0K K A OR ROk S R KOR K KOK OR HOR Ok Ok or R HOR SOK K Ok oK ke

21MX

0585
n58%
0587
0588
0589
0520
0591
0592
0593
0594
05%5
0596
03597
0598
05%9
0600

0e02
0&03
De04
0¢05
0e0%6
0e07
0¢08
0¢09
0#10
0&tl
Q%12
0e13
0el4d
0¢18
0ete
0817
0%18
0€19
0a20
[Tt
0e22
0¢23
oea4
0423
0é2é
geav?
0¢28
029
0v30
Oue?l
0wi2
0633
0¢74
0435
D¢?e
027
0¢38
0#32
Qx40
Qédl
Dedq2
C¢43
0cd4
0645

orraz
07723
07724
0?r2s
07726
orr2y
07730
07731

07742
07743
07744
07743

07746
07747
07790
07751
orr52
07753
07754
07755

oo

~ -~
~ N~
&
o~

LY

~ =~
Py Sape

OO COOo
~ -~
N]
oS I N6y
o N

OO DO o0

EYIE I RN
R IRV ELEES BEN IR N
e e
W W O

~N =~y -

~
~ o

Lo s]
-~y
=~

301

301
017

321

017

007

0904

000
177
otz

220
301
240
ni7

oLy

1€5170
127357
1570857

72630

27417
043357
172539
160157
Qzval?
026331
145117
026031
156357
{76730
035231
1586557

050457
144017
175717
175738

156557
141017
036531
047157
047157
145117
144157
124517

050457
154017
147736

qQv4717
1656390
120417
{22401
175657
12373¢

Q74717
172157
11017
120417
140457
ta2ve!
12373e

17eve?
{ve7ee

Appendix E

ceT JSB INTTOM INITIALIZE.
PASS S8 A S8 (= FOIMTER FOR ARR&Y A.
PHSS 52 S8 52 (= NEXT BYTE ADDRESS IN ARRAY A
J68 LOBYTE LOAD ARRAY @ BYTE INTO 8 REG
PASS 59 A 59 {= ARRAY A BYTE.
INC 58 52 THCREMENT ARRAY @ POINTER.
JSB LET R (= BYTE FROM ARRAY & (ADDRESS IN B REG)
Pass L 39 L (= BYTE FROMN ARRAY @
sug st A SUBTRACT BYTE FROM ARRAY B - A
JUPR CNDX T8Z RJS CHALISE JUMP IF BYTES MOT EQUAL .
DEC 53 53 DECREMENT THE COUNT.
JHP CNDX TBZ RJS CANTCBT JUMP IF COUNT IS5 NOT ZERO.
PASS R 58 EQUAL EXIT. fo (= 1+LAST MONYED BYTE ADDR
JHF EXIT
CONTCET JHMP CNDX IHT RJS CBT+Z JUMP IF NOT INTERRUPTED.
FPASS A 58 R (= NEXT BYTE PDDRESS OF ARRAY A TO TEST

Wk o ok RO K K K OK k tOKR k ok ko sk ok KOk Ok KR K ok K ok o OR Kk ko Rk ok Kok oK ok ok ok ok ok K ok Kk Ak kR ok ok R ok KOk o koK K

* COMMON ROUTIMES TO MOYWE, COMPARE INSTRUCTIONS
Aok R KR kKO K KK K KO K ok sk ok ok Ok K ok R KR SOk ROk K g Aok ok Kok ok ok ok ko K O Rk ok ok K Kk K Sk Ak K K) Rk ok kR K
* INTERRUPT EXIT
INTPEND INC M 39 M <= ADDRESS OF WORD 3
WRTE PASS TaB S3 WRITE REMAINING COUNT TIHTD WARD 2.
DEC P P
RTN DEC P P P <= ADDRESS OF WORD 1, GO TO FETCH.
LR EE RS ERE RS R E L R R R L R R R R R E R R R I R R T E R
* EXIT TESTS FOR CBT,CMW
CHAL1S9B pEC A 52 A (= BYTE RBOORESS OF MISHATCH.
FaSs 51 St CHECK REBULT OF COMPARE
CHAL1S JAP CNDX ALLIS RIS SKIPL JUMP IF SIGN BIT IS ZERO.
INC sS4 54 SKIP ONE MACHINE INSTRUCTION
SKIPt INC 54 54 SKIP ONE MACHINE INSTRUCTION.
DEC 352 93 ODECREMENT THE COUNT.
PASS L 5 L <= COUNT REMAINING
ARLD B 8 B (= FIRST ADDR. IN ARRRAY B + COUNT.
K Kok KOk KKk K K NOK KR OK K AR K ok ok ok K K K ok kR R R K KOk K e Ok K A K ko R ook Ok o ok ko ok ok sk Kok ok ko kR X
E COMPLETION EXIT
EXIT INC M EN] ft {= ADDRESS OF WORD 3
WRTE pPASS Tae &7 WORD 3 <= ZERD
RTH PasSsS P S4 P <= NEXT MACHINE INSTR. T0 EXECUTE . FETCH
ik KOk sk ok N kK sk R K ko ook Ok sk sk ok iOb ko R Oh sk o ko sk ok kb Sk ok ok kool ok ok kob ok ok K R ok ok Kok ok ok kR
* JUMP INSTRUCTIONS
ook Ok K K sk koK ko R sk ok ok Ok O K ik KOk K N Ok ok ok kR ko ko ok ok Rk ok Kk ok O oKk Nk kol ok R ok o ok kR Kk
JiLv READ INC PNM P READ ADDRESS OF WORD 2
JEB INDBIT CHECK FOR INDIRECT,M<= DESTINATION ADDR.
inm HIGH IR EAURY MACHINE NP INTO IR TO SET LOW MP BOUNDS
MPCK PHSS M P 00 MP OCHECK O JUMP TARGET ALDRESSH
R £ ¥oi= ADDRISE OF FOLLOJING MACHIHE THSTR.
RTH PASS P M P o= STINATION ARDRESS, JUMPE T0 FETCH,
EEEE S EELEEESEEEESEE EREREFEEERERBER AR FEREEREEEEE S EFEEEEE EEETERERE R EREESEREESEPES
dPY READ INC PHM P READ ADDRESS QF WORD 2.
PAaSS L A4 L <= TMDEX REG. Y.
ROD 51 Té4B 51 {= INDEWED JUNP ADDRESS.
THHM HIGH IR %050 MaCHINE JHP ITNTO IR TO SET LOW MP BOUNDS
FRES M 51 e INDEXED aLDRESS, UITH 21T 1% LOY
MPCK PASSH t prE CHECK ON (5-B17 DESTINATION ADDPRESS
RTN Pass P 1 Pol= DEATINGTION #ODREGS. 50 TO FETCH.
EE T AR RS E R EE N R LSRR R L L AR R E RS E R R EEE R
ONES
ONES
END

E-27/E-28

INDEX

A micro-order
as S-Bus micro-order, 4-14
as STORE micro-order, 4-12
AAF (A-register Addressable Flag)
What it does (in brief), 2-3
ADD micro-order, 4-10
ADR micro-order, 4-14
Advantages
of microprogramming, see ‘‘Microprogramming’
ALO micro-order, 4-20
AL15 micro-order, 4-20
ALU (Arithmetic and Logic Unit)
What it does, 2-4
ALU micro-orders, 4-10
AND micro-order, 4-10
A-register Addressable Flag, see “AAF”
Arithmetic and Logic Unit, see “ALU”
ARS micro-order, 4-2
ASG micro-order 4-3
ASGN micro-order, 4-20

B micro-order
as S-BUS micro-order, 4-14
as STORE micro-order, 4-12
BAF (B-register Addressable Flag)
What it does (in brief), 2-3

Binary object tape output by Microassembler, 5-4, A-1

BREAK command, 5-13
B-register Addressable Flag, see “BAF”’

CAB micro-order
as S-BUS micro-order, 4-14
as STORE micro-order, 4-12
Central Interrupt Register, see “CIR”
CHANGE command, 5-14
Character Set for source statements, 3-4
CIR micro-order, 4-14
CLFL micro-order, 4-7
CM micro-order, 4-12
CMHI micro-order, 4-17
CMLO micro-order, 4-18
CMPL micro-order, 4-10
CMPS micro-order, 4-10
CNDX micro-order, 4-20
CNT4 micro-order, 4-20
CNT8 micro-order, 4-20
CNTR micro-order
as S-BUS micro-order, 4-14
as STORE micro-order, 4-12
Comments, in source statements, 3-4, 4-1

Conditional jump micro-instrruction (Word Type 3), 4-19

CONDITION micro-orders discussion of,
in Word Type 3, 4-20

Control Processor, 2-2

Control records (for Microassembler), 5-2

Control Section of a Computer
Conventional 1-1
Microprogrammed, 1-1, 2-1

Control store, 1-1
How microprograms are accessed, 3-7
Modules available to user, 3-10

COUT micro-order, 4-20

COV micro-order, 4-7

CRS micro-order, 4-3

Data paths, brief description of, 2-3
DEC micro-order, 4-10
DEF pseudo instruction explanation of, 4-25
DIV micro-order, 4-4
DSPI micro-order
as S-BUS micro-order, 4-14
as STORE micro-order, 4-13
DSPL micro-order
as S-BUS micro-order, 4-14
as STORE micro-order, 4-13
Dual Channel Port Controller Effect
on microprograms, 3-14
DUMP command, 5-11
Dynamic Mapping, 4-16

E micro-order, 4-20
E register, 2-4
$END control record, 5-2
ENV micro-order, 4-4
ENVE micro-order, 4-4
EQU pseudo instruction explanation of, 4-26
Error messages

Microassembler, 5-5

Micro Debug Editor, 5-15
Examples of microprograms, 3-15
EXECUTE command, 5-14
Extend register, see “‘E register”’
$EXTERNALS control record, 5-2

Fields, in source statements
Where each begins and no. of characters, 3-3, 5-1
$FILE control record, 5-2
FINISH command, 5-13
FLAG micro-order, 4-20
Flags, 2-4
FPSP micro-order, 4-20
Front panel
Registers and flags associated with, 2-4
FTCH micro-order, 4-7

I-1

Index 21MX

HIGH micro-order, 4-18 L micro-order, 4-13

L1 micro-order, 4-8

L4 micro-order, 4-8

Label, in source statements, 3-4, 4-1

LDR micro-order, 4-15

LGS micro-order, 4-4

$LIST control record, 5-3

Listing optionally output by Microassembler, 5-5
. LOAD command, 5-10

INCI micro-order, 4-7 LOW micro-order, 4-19

‘I‘M M mlf:ro-grdel‘, 4-17 e ” L-register, relation to S-bus, 2-3
Immediate” data, see ‘“Word Type 2 LWF micro-order. 4-5

INC micro-order, 4-10

Initialization program for use with Micro Debug
Editor, 5-8

$INPUT control record, 5-3

Input/Output, see “1/0”

INT micro-order, 4-21

Instruction Register, see “IR”

ICNT micro-order, 4-7

Interrupt Enable Register M micro-order
What it does, 2-3 as S-BUS micro-order, 4-15
Interrupt handling, 3-12, 3-13 as STORE micro-order, 4-13
1/0, How to code 1I/0 functions, 3-11 Macro instructions (Assembly language) Mappings to
1/0 bus, what it does, 2-3 ROM and/or WCS addresses, 3-10
1/0 Utility Subroutine for WCS, 5-16 MACRO (label in TEST program used with Micro
IOFF micro-order Debug Editor), 5-9
as SPECIAL micro-order, 4-7 MDE (see ‘“Micro Debug Editor”)
as JMP modifier in Word Type 4, 4-23 Memory protection
I0G micro-order in relation to I/O microprogramming, 3-12
as SPECIAL micro-order, 4-7 micro-orders, 3-13
as JMP modifier in Word Type 4, 4-23 MICRO (see ‘‘Microassembler’’)
I01 micro-order, 4-15 Microassembler, what it does, 5-1
ION micro-order, 4-8 BCS version:
100 micro-order, 4-13 Hardware required, 5-1
IOR micro-order, 4-10 Software required, 5-7
IR2 micro-order, 4-21 How to use, 5-7
IR (Instruction Register) DOS-IIT version:
How processed, 3-8 Hardware and software required, 5-5
What it does, 2-1 How to use, 5-5
IR micro-order, 4-13 Micro Debug Editor

BCS version:
Hardware required, 5-8
Software required, 5-16
How to use, 5-16
DOS-III version:
Hardware required, 5-8
Software required, 5-14

J30 micro-order, 4-24 How to use, 5-14
J74 micro-order, 4-24 Micro-order, meaning of, 3-1
JEAU micro-order, 4-24 Microprogramming, Advantages, 1-2
JIO micro-order, 4-24 MODIFIER micro-orders
JMP micro-order, discussion of, for JMP in Word Type 4, 4-23
in Word Type 3, 4-20 for IMM in Word Type 2, 4-17
in Word Type 4, 4-23 MODIFY command, 5-11
JSB micro-order, discussion of, in Word Type 4, 4-23 Modules available to user, 3-10
JTAB micro-order M-register, what it does, 2-3
as SPECIAL micro-order in Word Type 1, 4-8 MOVE command, 5-14
as JMP modifier in Word Type 4, 4-24 MPCK micro-order, 4-8
Jump-Sense micro-order (RJS), 4-22 MPY micro-order, 4-6

I-2

21MX

NAND micro-order, 4-10

NDEC micro-order, 4-21

NHOI micro-order, 4-21

NINC micro-order, 4-21

NLDR micro-order, 4-21

NLT micro-order, 4-21

NMLS micro-order, 4-21 7

NOP micro-order (in CONDITION set of
micro-orders), 4-21

NOP micro-order (in OP micro-order set), 4-7

NOP micro-order (in SPECIAL micro-order set), 4-8

NOP micro-order (in STORE set of micro-orders), 4-15

NOR micro-order, 4-10

NRST micro-order, 4-21

NRT micro-order, 4-21

NSAL micro-order, 4-10

NSFP micro-order, 4-21

NSNG micro-order, 4-21

NSOL micro-order, 4-10

NSTB micro-order, 4-21

NSTR micro-order, 4-22

O register, 2-4

ONES micro-order, 4-22

ONE micro-order, 4-10

ONES pseudo instruction explanation of 4-26
OP1 micro-order, 4-11

OP2 micro-order, 4-11

OP3 micro-order, 4-11

OP4 micro-order, 4-11

OP5 micro-order, 4-11

OP6 micro-order, 4-11

OP7 micro-order, 4-11

OP8 micro-order, 4-11

OP9 micro-order, 4-11

OP10 micro-order, 4-11

OP11 micro-order, 4-12

OP micro-orders, 4-2

$ORIGIN control record, 5-3
$OUTPUT control record, 5-3
Overflow register, see ‘O register”
OVFL micro-order, 4-22

P micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-13
P register, 2-4
PASL micro-order, 4-12
PASS micro-order, 4-12
$PASS2 control record, 5-3
PNM micro-order, 4-13
PREPARE command, 5-11
Pseudo instructions, 4-25

Index

R1 micro-order, 4-9
RAR (ROM address register), 2-3
$RCASE control record, 5-3
READ command, 5-11
READ micro-order, 4-6
RJS micro-order, 4-22
“Roadmap”’, D-1
ROM, see ‘“Control store”
RPT micro-order, 4-8
RTN micro-order
as SPECIAL micro-order, 4-9
as JMP modifier in Word Type 4, 4-24
RUN micro-order, 4-22
RUNE micro-order, 4-22

S micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-13
S register, 2-4
S1 thru S12 micro-orders
as S-BUS micro-orders, 4-15
as STORE micro-orders, 4-14
Sample microprograms, 3-15
SANL micro-order, 4-12
SAVE register, relation to S-bus, 2-3
S-bus, 2-3
S-BUS micro-orders, 4-14
SHLT micro-order, 4-9
SHOW command, 5-11
SKP pseudo instruction, explanation of, 4-27
SKPF micro-order, 4-22
SONL micro-order, 4-12
Source records, Microassembler format, 5-1
SOV micro-order, 4-9
SPECIAL micro-orders, 4-7
SRG1 micro-order, 4-9
SRG2 micro-order, 4-9
SRGE micro-order, 4-9
SRGL micro-order, 4-22
SRUN micro-order, 4-10
STFL micro-order
as SPECIAL micro-order in Word Type 1, 4-10
as JMP modifier in Word Type 4, 4-24
STORE micro-orders, 4-12
SUB micro-order, 4-12
Subroutine microinstruction (Word Type 4), 4-23
“‘Suitcase’”’ ROM simulator, Microassembler control
record to generate object tape for, 5-3
Symbol table optionally output by Microassembler, 5-4
$SYMTAB control record, 5-4
$SUPPRESS control record, 5-4

I-3

Index

T micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-14
T-periods, 3-11
T-register, 2-3
TAB micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-14
T-bus, 2-3
TBZ micro-order, 4-22
TEST program for use with Micro Debug Editor, 5-8
Timing, Summary of timing rules, 3-14

UNCD micro-order, 4-24
Unconditional jump micro-instruction (Word Type 4),
4-23

VERIFY command, 5-12

WCS (Writable Control Store)
How to load microprogram in WCS, 5-9, 5-10, 5-11
170 Utility Subroutine, 5-16
No. of words in special microprogram which MDE auto-
matically loads in WCS, 5-10, 5-14
Modules and
equivalent absolute WCS address, 3-10
mappings from Assembly language macro
instructions, 3-10
Word Type 1
Source statement fields (in brief), 3-3

14

How to code a typical instruction, 3-4
Uses (in brief), 4-1
Word Type 2
Source statement fields (in brief), 3-3
How to code a typical instruction, 3-5
Uses (in brief), 4-1
Word Type 3
Source statement fields (in brief), 3-3
How to code a typical instruction, 3-5
Uses (in brief), 4-1
Word Type 4
Source statement fields (in brief), 3-3
How to code a typical instruction, 3-6
Uses (in brief), 4-1
Writable Control Store, see “WCS”
WRITE command, in Micro Debug Editor, 5-11
WRTE micro-order, 4-7

X micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-14
X register, 2-3
XNOR micro-order, 4-12
XOR micro-order, 4-12

Y micro-order
as S-BUS micro-order, 4-15
as STORE micro-order, 4-14
Y register, 2-3

ZERO micro-order, 4-12
ZEROES pseudo instruction, 4-27

21MX

HEWLETT

SALES & SERVICE OFFICES

AFRICA, ASIA, AUSTRALIA

ANGOLA

Telectra

Empresa Técnica de
Equipamentos
Eléctricos, S.AR.L

.R. Barbosa Rodrigues, 42-1"DT.

Caixa Postal, 6487

Luanda

Tel: 35515/6

Cable: TELECTRA Luanda

AUSTRALIA
Hewlet!-Packard Australia

Pty. Ltd
31-41 Joseph Street
Biackburn, Vicloria 3130
P.0. Box 36
Doncaster East. Victoria 3109
51

024

Cable: HEWPARD Melbourne
Hewleti-Packard Australia

Ply. Lid,
31 Bridge Street
Pymble
New South Wales, 2073
Tel: 449- 6566
Telex: 215
Cable: HEWPARD Sydney
Hewlett-Packard Australia

153%!99ﬂhl“ Road
Parkslde S A.. 5063

Tel: 272

Telex: 82536 ADEL

Cable: HEWPARD ADELAID

Hewlett-Packard Australia
Pty.Ltd.-

141 Stirling Highway
ledlands, W.A. 6009

Tel: 86-5455

Telex: 93859

PERT
Cable: HEWPARD PERTH
Hewlen Packard Australia

121 Wollonqong S(reet
Fyahwlck A

Telex 62850 Canberr:
Cable: HEWPARD CANBERRA
Hewlett Packard Australia
PtFy Lid
5th Floor
Teachers Union Building
495 499 Boundary Street
$ ‘rln% HIII 4000 Queensland
o

Cable: HEWPARD Brisbane
GUAM

Medical/Pocket Ca\culalors Only
Guam Medical Supply.

Jay Ease Bul\dmg Room 210
P.0. Box 8

Tamunin 96911

Cable: EARMED Guam

HONG KONG

Ol
Schmidt & Co Hong Kong) Ltd.
Fehmidt (Hong Kong)

Cannaltghl Cenlre
9th Floor
Connaught Road. Central
Hong Kong
Tel: H 255291 5
Telex: 74766 SCHMC H
Cable: SCHMIDTCO Hong Kong

INDIA

Blue Star Lid.
Kasturi Buildings
Jamshedji Tata Rd
Bombay 400 020
Tel: 29 50 21
Telex: 001-2156
Cab!e BLUEFROST
Blue Star Ltd.

414/2 Vir Savarkar Marg
Prabhadevi
Bombay 400 025
Tel: 45 78 87
Telex: 011-4093
Cable: FROSTBLUE
Blue Star Ltd
Band Box House
Prabhadevi
Bombay 400 025
Tel: 45 73 01
Telex: 011-3751
Cable: BLUESTAR
Blue Star Ltd
14740 Civil Lines
Kangur 208 001
Tel: 6 88 82

Telex: 292
Cable: BLUESTAR

Blue Star Ltd.

7 Hare Street

P.0. Box 506
Calcutta 700 001
Tel: 23-0131

Telex: 021-7655

Cable: BLUESTAR
Blue Star Ltd.

7th & 8th Floor
Bhandari House

81 Nehru Place

New Delhi 110024
Tel: 634770 & 635166
Telex: 031-2463

Cable: BLUESTAR
Blue Star Ltd

Blue Star House
11/11A Magarath Road
Bangalore 560 025
Tel: 55668

Telex: 043-430

Cable: BLUESTAR

Blue Star Ltd
Meeakshi Mandiran
xxx/1678 Manalma Gandhi Rd.
Cochin 01

Tel 32069 32161 32282
Telex: 0885-514

Cable: BLUESTAR
Blue Star Ltd.
1-1-117/1

Sarojini Devi Road

Secunderabad 500 003
Tel: 70126, 70127

Cable: BLUEFROST

Telex: 015-459

Blue Star Ltd

2/34 Kodambakkam High Road
Madras 600034

Tel: 82056

Telex: 041-379

Cable: BLUESTAR

Blue Star Ltd

Nataraj Mansions

2nd Floor Bistupur
Jamshedpur 831 001
Tel: 7383

Cable: BLUESTAR

Telex: 240

INDONESIA

BERCA Indonesia P.T

P.0. Box 496/Jkt.

JLNeAbdul Muis 62

Jakarta

Tel: 40369, 49886.49255.356038
JKT.42895

8!
Cable: BERCACON
BERCA Indonesia P.t.
63 JL. Raya Gubeng
Surabaya
Tel: 44309

ISRAEL

Electromcs & Engineening Div
of Motorola Israel Ltd

17, Kremenetski Street

P.0. Box 25016

Tel-Aviv

Tel: 38973

Telex: 33569

Cable: BASTEL Tel-Aviv

JAPAN
Yokogawa-Hewlett-Packard Ltd
Ohashi Building

$9-1 Yoyogi 1-Chome
Shibuya-ku. Tokyo 151

Tel: 03-3 0-2281/92

Telex: 232-2024YH!

Cable: YHPMARKET TOK 23-724
Yokogawa-Hewlett-Packard Ltd.
Chuo Bldg.. 4th Floor

4-20, Nishinakajima 5-chome
Yodogawa-ku. Osaka-shi
Osaka,532

Tel: 06-304-6021
Yokogawa-Hewlett-Packard Ltd
Nakamo Building

24 Kami Sasajima-cho
Nakamura-ku, Nagoya . 450
Tel: (052) 571-5171
Yokogawa-Hewlett-Packard Ltd
Tanigawa Building

2-24-1 Tsuruya-cho
Kanagawa-ku

Yokohama, 221

Tel: 045-312-1252

Telex 382-3204 YHP YOK
Yokogawa-Hewlett-Packard Ltd
Mito Mitsu Building

105. Chome-1.San-no-maru

): PACKARD

Mito. Ibaragi 310
Tel:: 0292-25-7470
Yokogawa-Hewlett-Packard Ltd.
Inoue Building
1348-3. Asahi-cho. 1-chome
Atsugi, Kanagawa 243
Tel: 0462-24-0452
Yokogawa-Hewlett-Packard Ltd
Kumagaya Asahi
Hachijuni Building
4th Floor
34 Tsukuba

magaya, Saitama 360
Tel 0485-24-6563

NYA

Techmcal Engineering

Services(E.A)Ltd..
P.0. Box 18311
Nairobi
Tel: 557726556762
Cable: PROTON
Medical Only
International Aeradio(E.A.)Ltd .
P.0. Box 19012
Nairobi Airport
Nairobi
Tel: 336055/56
Telex: 22201/22301
Cable: INTAERIO Nairobi

KOREA
Samsung Electronics Co.. Ltd

ngbang Bidg. 250, 2-KP
Taepyung Ro. Chung-Ku
Tel (23) 6811

Cable. ELEKSTAR Seoul

MALAYSIA

Teknik Mutu Sdn. Bhd
2 Lorong 13/6A

Section 13

Petaling Jaya.Selangor
Tel: 54994/54916

Telex: MA 37605

Protet Engineering

P.0 Box 1917

Lot 259. Satok Road
Kuching, Sarawak

Tel: 2400

Cable: PROTEL ENG
MOZAMBIQUE

AN Goncalves. Lta
162. 1 Apt. 14 Av. D. Luis
Caixa Postal 107
Lourenco Marques
Tel: 27091, 27114
Telex: 6-203 NEGON Mo
Cable: NEGON

NEW ZEAL AND

Hewlett-Packard (N.Z.) Ltd.
P.0. Box 9443
Courtenay Place

Wellington

Tel: 877-199

Telex: NZ 3839

Cable: HEWPACK Wellinglon

Hewlett-Packard (N.2.) Ltd.

Pakuranga Professional Centre

267 Pakuranga Highway

Box 51092

Pakuranga

Tel: 569-651

Cable: HEWPACK Auckland

Analytical’/Medical Only

Medical Supplies N.2. Ltd.

Scientific Division

79 Cariton Gore Rd.. Newmarket

P.0. Box 1234

Aucklnnd

Tel: 75-2|

Cable: DENTAL Auckland

Analytical/Medical Onty

Memcal Supplles N.Z.Ld

P.0. Box 1994

147- 161 Tory St.

Wellington

Tel: 850-799

Telex: 3858

Cable: DENTAL. Wellington

Analytical/Medical Only

Medical Supplies N.Z. Ltd

P.0. Box 309

239 Stanmore Road

Christchurch

Tel: 892-019

Cable: DENTAL. Christchurch

Analytical/Medical Only

Medical Suppties N.Z. Ltd

303 Great King Street

P.0. Box 233

Dunedin

Tel: 88-817

Cable: DENTAL, Dunedin

NIGERIA

The Electronics
Instrumentations Ltd

N6B/770 Oyo Road

Oluseun House

P.M.B. 5402

Ibadan

61577

Telex: 31231 TEIL Nigeria

Cable: THETEIL Ibadan

The Electronics Instrumenta-
tions Ltd

144 Agege Motor Road, Mushin

P 0 Bux 6645

Cable. TH ETEIL Lagos

PAKISTAN

Mushko & Company, Ltd
Oosman Chambers

Abdullah Haroon Road
Karachi-3

}e: 5121027 512927

Cable: COOPERATOR Karachi
Mushko & Company. Ltd
38B. Satellite Town

Rawal mdl

Cable' FEMUS Rawalpindi

PHILIPPINES

The Oniine Advanced
Systems Corporation

8th Floor, Filcapital Bldg.

Ayala Avenue

. MetroManila

Tel: 85-35-81, 85-34-91

Telex: 3274 ONLINE

RHODESIA

Field Technical Sales
435 Kelvin Road North
P.0. Box 3458
Salisbury

Tet 705231 (5 lines)
Telex: RH 4122

SINGAPORE
Hewleﬂ Packam Singapore

(Pte.) L
1150 Depot Road
Alexandra P.0. Box 58
Sln%apore 4
Tel: 270 2355
Telex: HPSG R
Cable: HEWPACK Snngapore

SOUTH AFRICA
Hewlett-Packard South Africa
(Ply.). Ltd
Private Bag Wendywood
Sandton. Transvaal 2144
Hewlett-Packard Centre
Daphne Street. Wendywood,
Sandton, Transvaal 2144

4782
Cable: HEWPACK JOHANNESBURG
Service Department
Hewlett-Packard South Africa
(Pty.). LId.
P.0. Box 39325
Gramley, Sandton, 2018
451 Wynberg Extenston 3.
Sandton. 2001
Tel: 636-8188/9
Telex: 8-2391

Hewlen Packard South Africa

gox 120

Haward Place, Cape Province. 7450
Pine Park Centre. Forest Drive,
Pinelands, Cape Province. 7405
Tel: 53-7955 thu 9
Telex: 57-0006
Service Department
Hewlett-Packard South Africa

(Pty.). Ltd
P.0. Box 37099
Qverport, Durban 4067

Durban. 4001
Tel: 88-7478
Telex: 6-7954

TAIWAN

Hewlett-Packard Far East Ltd.,
Taiwan Branch

39 Chung Hsiao West Road
Sec. 1. 7th Floor

Taipei

Tel: 3819160-4

Cable: HEWPACK TAIPE(
Hewlett-Packard Far East Ltd
Taiwan Branch

68-2, Cnung Cheng 3rd. Road
Kaohsi %

Tel: (07 24 318-Kaohsiung
Analytical Only

San Kwang Instruments Co.. Ltd..
No. 20. Yung Sui Road

Taipei

Tel: 3715{71-4 (5 lines)
Telex: 22894 SANKWANG
Cable: SANKWANG TAIPE!

TANZANIA

Medical Onl!

International Aeradlu (EA), Ltd
P.0 Box 861

Dar es Salaam

Tel: 21251 Ext. 265

Telex: 41030

THAILAND

UNIMESA Co . Ltd.
Elcom Research Building
2538 Sukumvit Ave
Bangkok

Tel: 3932387, 3930338
Cable: UNIMESA Bangkok

UGANDA

Medical Only

International Aeradio(E.A). Ltd .
Box 2577

Kampala
Tel: 54388
Cable: INTAERIO Kampala

ZAMBIA
R.J. Tllbury (Zambla) Ltd
P.0. Box 2
Lusaka

Tel: 73793
Cable: ARJAYTEE, Lusaka

OTHER AREAS NOT LISTED, CONTACT:
Hewlett-Packard Intercontinental

3200 Hillview Ave

Palo Atto, California 94304

Tel: (415) 493-1501

TWX: 910-373-1267

Cable: HEWPACK Palo Afto

Telex: 034-8300. 034-8493

Tel: 646-4513

CANADA

ALBERTA

Hewleﬂ-Packard éCanada) Ld
620A

ontonTSM 319
TeI (403) 452-3670
TWX: 610-831-2431 EDTH
Hewlett- Packard Canada) Lid
210.7220 Fish

Calga TZH 2H8
Tel: ?) 263-2713
Twx: GIO 82l<6MI

BRITISH COLUMBIA
Hewlett-Packard (Canada) Ltd
837 E. Cordova Street
Vancouver V6A 3R2

Tel: (604) 254-0531

TWX: 610-922-5059 VCR

MANITOBA
Hewlett-Packard (Canada) Ltd
513 Century St

St. James
Winnipeg R3H OL8
4& 786-7581

Tel: (2
TWX: 610-671-3531

NOVA SCOTIA
Hewlett-Packard (Canada) Ltd
800 Windmill Roa

Dartmouth BSB 1L1
Tel: (302) 469-7820
TWX: 610-271-4482 HFX

ONTARIO

Hewlett-Packard (Canada) Ltd
1020 Morrison Dr

Ottawa K2H 8K7

Tel (613) 820-6483

TWX: 610-563-1636
Hewlett-Packard (Canada) Ltd.
6877 Goreway Drive
Mississauga L4V 1M8

Tel: (416) 6/8-9430

TWX: 610-492-4246

QUEBEC

Hewlett-Packard (Canada) Ltd.
275 Hymus Blvd

Pointe Claire HOR 1G7
Tel: (514) 697-4232

TWX: 610-422-3022

TLX: 05-821521 HPCL

FOR CANADIAN AREAS NOT LISTED:
Contact Hewlett-Packard (Canada)
Lid in Mississauga

CENTRAL AND SOUTH AMERICA

ARGENTINA
gew!ell-Packam Argentina
A

Av. Leandro N. Alem 822 - 12
1001Buenos Aires

Tel: 31-6063,4,5,6 and 7
Telex: Public Booth N 9
Cable: HEWPACK ARG

BOLIVIA

Casa Kavlin S.A

Calle Potosi” 1130
0 l 500

Te\ 41530‘53221
Telex: GWG BX 5298.1TT 3560082
Cable: KAVLIN

BRAZIL
Heugett Packard do Brasil

Avenida Rlo Negro, 980
Alphaville
06400931 uerl SP

Tel: 429-2148/9:429-2118/9

Hengen Packard do Brasil

Rua Padre Chagas 32
90000-Pérto Alegre-RS
Tel: (0512) 22-2998. 22-5621
Cable: HEWPACK Potto Alegre
IHfan(I:en Packard do Brasit

Rua Slque\ra Campos, 53
Copacabana
0-Rio de Janeiro
Tel 257 80-94-DDD (02 1&
Telex: 391-212-1905 HEWP-BR
Cable: HEWPACK
Rio de Janeiro

CHILE

Calcagni y Metcalfe Ltda.
Alameda 580-0f.

Casilla 2118

Santia o. 1

Tel: 398613

Telex: 3520001 CALMET
Cable: CALMET Santiago

COLOMBIA

Instrumentacién

Hearik A. Langebaek & Kier S A
Carrera 7 No. 48-7

Apartado Aéreo 6287
Bogola.\ D E

Cab\e AARIS Bogotd
Telex: 044-400

COSTA RICA

Cientifica Costarricense S.A
Calle Central, Avenidas 1y 3
Apartado 10159

San José

Tel: 21-86-13

Cable: GALGUR San José¢

ECUADOR

Medical Only

AF. Vuzcamo Compaiiia Ltda
Av. Rio Amazonas No. 239
P.0. Box 292!

Quito
Tel: 242-150,247-033/034
Cable: Astor Quito

Calculators Only
Computadoras y Equipos
Electrdnicos

P.0. Box 6423 CCI

Eloy AIfaro #1824 3 Piso
Quito

Tel: 453482

Telex: 02-2113 Sagita €0
Cable: Sagita-Quito

EL SALVADOR

Instrumentacion y Procesamiento
Electronico de el Salvador

Bulevar de los Heroes 11-48

San Salvador

Tel: 252787

GUATEMALA

IPESA

Avenida La Reforma 3-48,
2 a 9

temaln City
Tel 63627, 64786
Telex: 4192 Teletro Gu

MEXICO
Hewlett-Packard Mexicana,
A,

A deCV
Torres Adalid No. 21, 11 Piso
Col. del Valle
Mexico 12, D.F.
Tel: (905) 543-42-32
Telex: 017-74-507

Hewlen Packard Mexicana,
A deCV.

Ave. Consmucmn No. 2184
Monterrey, N.L..

Tel: 48-71-32, 48-71-84
Telex: 038-843

NICARAGUA

Roberto Terdn G.
Apartado Postal 689
Edificio Terdn

Managua

Tel: 25114, 23412,23454
Gable: ROTERAN Managua
Calculators Only

Cientifice Costarricewse §.A
Ciudad Jardin D-1
Managua

Tel: 24108

PANAMA

Electrdnico Balboa, 5.A
P.0. Box 4929

Calle Samuel Lewis
Cuidad de Panama

Tel: 64-2700

Telex: 3431103 Curunda,
Canal Zone

Cable: ELECTRON Panama

PARAGUAY

Z.J. Melamed S.R.L.

Divisidn: Aparatos y Equipos
Médicos

Divisidn: Aparatos y Equipos
Cuenllhcog y de Investigacidn
7|

X

Chile-482, Edificio Victoria
Asuncidn

Tel 91-271, 91-272
Cable: RAMEL

PERU
Compaiifa Electro Médica S A.
Los Flamencos 145
San Isidro Casilla 1030
1

Lima

Tel: 41-4325

Cable: ELMED Lima
PUERTO RICO
Hewlett-Packard Inter-Americas
Puerto Rico Branch Office
Calle 272,

No. 203 Urb. Country Club
Carolina 00924

Tel: (809) 762-7255

Telex: 345 0514

URUGUAY

Pablo Ferrando S.A

Comercial e Industrial

Avenida Italia 2877

Casilla de Correo 370
Montevideo

Tel: 40-3102

Cable: RADIUM Montevideo

VENEZUELA
Hewlett-Packard de Venezuela

C.A.

P.0. Box 50933

Caracas 105

Los Ruices Norte

3a Transversal

Edificio Segre

Caracas

Tel: 35-00- H (20 lines)
Telex: 25146 HEWPACK
Cable: HEWPACK Caracas

FOR AREAS NOT LISTED, CONTACT:
Hewlett-Packard
Inter-Americas
3200 Hillview Ave.

Palo Alto, California 94304
Tel: {415) 493-1501
TWX: 910-373-1260
Cable: HEWPACK Palo Alto
Telex: 034-8300, 034-8493

EUROPE, NORTH AFRICA AND MIDDLE EAST

AUSTRIA
Hewlett-Packard Ges m b H
Handelska 52

Tel (0222) 35162! to 27
cable. HEWPAK Vienna
Telex: 75923 hewpak a

BELGIUM
Hewlett-Packard Benelux
AN

Avenue de Col-Vert, 1,
Groenkraaglaan)

-1170 Brussels
Tel: (02) 672 22 40
Cable: PALOBEN Brussels
Telex: 23 494 paloben bru

CYPRUS

Kypronics

19, Gregonus & Xenopoulos Rd

PO Box 1

CY- Nlcosm

Tel. 456,

Calble KVPRONICS PANDEHIS
elex

CZECHOSLOVAKIA

Vyvojova a Provozni Zakladna
Vyzkumnych Ustavu v Bechovicich
CSSR- 25097 Bechovice u Prahy
Tel: 89 93 4

Telex 12‘333

Institute of Medical Bionics
Vyskumny Ustav Lekarskej Bioniky
Jedlova 6

CS-88346 Bratislava-Kramare
Tel: 44-551/45-541

DDR

Entwicklungslabor der TU Dresden
Fovscnungsmslllut Meinsberg
DDR-73(

Waldheim/Meinsberg
Tel: 37 667

Telex: 112145

Export Contact AG Zuerich
Guenther Forgber
Schleoelslrasse 15

Telex: 111889

DENMARK
Hewlett-packard A/S
Datave) 52

DK-3460 Birkerod
Tel (02) 81 66 40
Cable: HEWPACK AS
Telex: 166 40 hpas
Hewlett- Packard AIS
Navervej

DK-| 8600 Sllkeborg
Tel: (06) 82 71 66
Telex: 166 40 hpas
Cable: HEWPACK AS

FINLAND
Hewlett-Packard Y
Nahkahousuntie 5

P.0. Box &
SF-00211 Helsinki 21
Tel: (90) 63923031

Cable: HEWPACKOY Helsinki
Telex: 12-1563 HEWPA SF
FRANCE

Hewleti-Packard France
Quartier de Courtaboeuf
Boite Postale No. 6

5
Cable: HEWPACK Orsay
Telex: 600048

Hewlett-Packard France
Agency REanale

Saqui
Chemin des Mouilles

B P 162

F-69130 Ecully

Tel: (78} 33 81 25,
Cable: HEWPACK Eculy
Teiex: 31 06 1

Hewlet!—Packaro France
Agence Régionale

Péricentre de [a Cépiére
Chemin de la Cépiére, 20
F-31300 Toulouse-Le Mirail
Tel(61) 40 11 12

Cable HEWPACK 51957

Telex 510957

Hewlett-Packard France
Agence Régionale
Aéroport principal de
Marseille-Marignane
F-13721Marignane

Tel: (91) 89 1

Cable HEWPACK MARGN
Telex 410770

Hewlett-Packard France
Agence Régionale
63. Avenue de Rochester
B P.o1124
£-35014 Rannes Cédex
Tel: (99) 36 3.
Cable HEWPACK 74912
Telex 740912
Hewlett-Packard France
Agence Régionale
74, Allée de la Robertsau
F-67000 Strasbour,
Tel: (88) 35 23 20/2
Telex. 8901
Cable HEWPACK STRBG

Hewlett-Packard France
Agence Régionale

Centre Vauban

201, rue Colbert

Entrée A2

F£-53000 Lille

Tel: (20) 51 44 14

Telex. 820744
Hewlett-Packard France
Centre d' Affarres Pans-Nord
Batiment Ampére

Faiue de La Commune de Paris

F- 93153 Le Blanc Mesnil Cédex
Tei: (01) 931 88 50

GERMAN FEDERAL
REPUBLIC

Hewlett-Packard GmbH
Vertnebszentrale Frankfurt
Bernerstrasse 117

Postiach 560 140

? 60(00 Fv)anokfurt 56

Cable HEWPACKSA Frankfurt
Tel: (0611) 50 04-

Cable: HEWPACKSA Frankfurt
Telex: 04 13249 hptfmd
Hewletl-Packard GmbH
Technisches Buero Boblingen
Herrenbergerstrasse 110
D-7030 Béblingen, Wirttemberg
Tel: (07031) 667-1

Cable: HEPAK Boblingen
Telex: 07265739 bbn
Hewlett-Packard GmbH
Technisches Buero Dusseidort
Emanuel-Leutze-Str 1 (Seestern)
D-4000 Dusseldort 11

Tel: (0211) 59711

Telex: 085/86 533 hpdd ¢
Hewlett-Packard GmbH
Technisches Buero Hamburg
Wendenstrasse 23

0-2000 Hambur:

Tel: {040) 24 13 93

Cable: HEWPACKSA Hamburg
Telex: 21 63 032 hphh d

Hewlett-Packard GmbH
Technisches Buero Hannover
Am Grossmarkt 6

D-3000 Hannover-Kleefeld 91
Tel' (0511) 46 60 01

Telex 092 3259
Hewlett-Packard GmbH
Werk Groetzingen
Ohmstrasse 6

D-7500 Karlsruke 41

Tel: (0721) 69 40 06

Telex: 07-825707
Hewleti-Packard GmbH
Technisches Buero Nuremberg
Neumeyer Str. 9

0-8500 Nurember:

Tel: (0911) 56 30 83/85
Telex: 0623 860
Hewlett-Packard GmbH
Technisches Buero Munchen
Unterhachinger Strasse 28
ISAR Center

D-8012 Ottobrunn

Tel- (089) 601 30 61:7
Cable HEWPACKSA Munchen
Telex. 0524985
Hewlett-Packard GmbH
Technisches Buero Berlin
Keith Strasse 2-4

0-1000 Berlin 30

Tel. (030) 24 90 86

Telex 18 3405 hpoln d

GREECE
Kostas Karayannis
18, Ermou Street
GR-Athens 126
Tel: 3237731
Gable: RAKAR Athens
Telex 21 59 62 rkar gr
Analytical Only

‘INTECO™ G Papathanassiou & Co
Marny 17
GR - Athens 103
Tel: 522 1915
Cable: INTEKNIKA Athens
Telex 21 5329 INTE GR
Medical Only
Technomed Hellas Ld
52.Skoufa Street

GR - Athens 135
Tel: 362 6972. 363 3830
Cable:etalak athens
Telex. 21-4693 ETAL GR

HUNGARY
MTA

Muszerugy és Méréstechnikai
Szolgalata

Lenin Krt. 67

Tel: 42 03 38

Telex 22 51 14

ICELAND

Medical Only

Elding Trading Company Inc
Hafnarhvoli - Tryggvatotu
IS-Reykjavik

Tel: 158 20

Cable: ELDING Reykjavik

IRAN
Hewlett-Packard Iran Ltd
No 13, Fourteenth St
Miremad Avenue
P.0. Box 41/2419
IR-Tehran

Tel: 851082-7
Telex: 213405 HEWP IR

IRAQ
Hewlett-Packard Trading Co
téllansoor City

Tel g5.517327

Telex: 2455 Hepairaq 1k

Cable: HEWPAGDAD.
Baghdad Irag

IRELAND
Hewlett-Packard Ltd

King Street Lane
GB-Winnersh, Wokingham
Berks, RG11 5AR

Tel. {0734) 78 47 74
felex 847178/848179

ITALY
Hewlet!-Packard italiana S.p.A
Via Amerigo Vespucci 2
Casella postale 3645
1-20100 Milano
Tel (2) 6251 (10 lines)
Cable: HEWPACKIT Milano
Telex: 32046
Hewlett-Packard Italiana S.p A
Via Pietro Maroncelli 40
(ang Via Visentin)

00 Padova
Tel (49) 66 48 88
Telex: 41612 Hewpacki
Medical only
Hewlett-| Paci:’ard7l|al|ana SpA

.

Tel (050) 2 32 04

Tetex 32046 via Milano
Hewlett-Packard [taliana S p. A
Via G. Armell I|n| 10

1-00143 Rom

Tel 106) 54 69 6i

Telex: 6

Cable HEWPACKIT Roma

Hewlett-Packard Italiana S.p.A
Corso Guovanm Lanza 94
1-10130 Tori

Tel (011) 682245/659308

Medical/Calculators Only
Hewleti-Packard Italiana S.p A
Via Prncipe Nicola 43 G/C
1-95126 Catania

Tel:(095) 37 05 04
Hewlett-Packard Italiana S p A
Via Amenigo Vespuccr, 9
1-80142 Napoli

Tel: (081) 33 77 1t

Hewlett-Packard Italiana S.p.A.

Via £ Masi, 9/B
1-40137 Bologna
Tel- (051) 30 /8 87

KUWAIT

Al-Khaldiya Trading &
Cnmractmg Co

P.0. Box 83

Kuwait

Tei: 42 49 10

Cable. VISCOUNT

LUXEMBURG
Hewlett-Packard Benelux
ANV

Avenue du Col-Vert. 1.
hGroenkraaglaan)

-1170 Brussels
Tel (02) 672 22 40
Cable: PALOBEN Brussels
Telex. 23 494

EIIOROCCO

8re|
190. Blvd Brahm’l Roudan
Casablan,
Tel 25-16- 76/25 90-99
Cable: Gerep-Casa
Telex: 23739

NETHERLANDS
Hewilett-Packard Benelux N.V.
Van Heuven Goedhartlaan 121
P.0. Box 667

NL-1134 Amstelveen

Tel: (020) 47 20 21

Cable: PALOBEN Amsterdam
Teiex: 13 216 hepa nt

NORWAY
Hewletl-Packard Norge A/S
Nesveien 13

Box 149

N-1344 Haslum

Tel: (02) 53 83 60

Telex: 16621 hpnas n

POLAND

Biuro informaciji Technicznej
Hewlett-Packard

U1 Stawki 2. 6P
00-950Warszawa

Tel: 395962/395187

Télex: 81 24 53 hepa p!
UNIPAN

Zaklad Doswiadczalny
Budowy Aparatury Naukowej
U1. Krajowej Rady Narodowej 51/5¢
?0 800 gvoarszawa

Telex 81 46 48

Zaklady Naprawcze Sprzetu
Medycznego

Plac Komuny Paryskiej 6

90-007 Lddz

Tel: 334-41. 337-83
PORTUGAL
Telectra-Empresa Técnica de

Equipamentos Eléctricos S.a.r.1
Eua Rodngo da Fonseca 103

P-Lisbon 1

Tel: (19) 68 60 7

Cable: TELECTRA Lisbon

Telex: 12598

Medicai only

Mundinter

Intercambm Mundial de Comércio

ol
Av A A.de Agmar 138
P.0. Box 2761
P - Lisbon
Tel: (19) 53 2
Cable: INTERCAMBIO Lisbon

RUMANIA

Hewlett-Packard Reprezentanta
Bd. N Balcescu 16

Buchar

Tel: i58023/138885
Te lex

LR U C‘
Inlrepnnderea Pentru
intretinerea
Si Repararea Utilajelor de Calcul
B-dul prof. Dimitrie Pompes 6
Bucharest-Sectorul 2
Tel: 12 64 30
Telex: 11716

SAUDI ARABIA

Modern Electronic Establishment
King Abdui Aziz str.(Head office)
P.0. Box 1228

Jeddah

Tel: 31173-332201

Cabie: ELECTRA

P.0. Box 2728 (Service center)
Riyadh

yar
Tel: 62596-66232
Cable: RAOUFCO

SPAIN

Hewlett-Packard Espafiola, S.A.
Jerez, Calle 3

E-Madrid 16

Tel:(1) 458 26 DO (10 lines)
Telex: 23515 h

Hewlett- Packdm Espahola S.A
Milanesado 21 23
E-Barcelona 1

Tel: (3) 203 6200 (5 lines)
Telex: 52603 hpbe e
Hewlett-Packard Espariola, S A.
Av Ramdn y Cajal. 1

Edificio Sevilla, planta 9.

E-Seville 5
Tel: 64 44 54/58

Hewiett-Packard Espafiola S.A.
Edificio Albia 11 7" B
E-Bilbao-1

Tel: 23 83 06/23 82 06
Calculators Only

Hewlett-Packard Espafiola S.A.
Gran Via Fernando E! Catdlico. 67
E-valencia-8
Tel: 326 67 28/326 85 55
SWEDEN

Hewlett-Packard Sverige AB
Emihetsvagen 1-3

Fac

$-161 20 Bromma 20

Tel: (08) 730 05 50

Cable: MEASUREMENTS

Stockholm

Telex: 10721

Hewlett-Packard Sverige AB
Ostra Vintergatan 22
§-702 40 Orebro
Tel: (019) 14 07 20
Hewlett-Packard Sverige AB
Frotalisgatan 30
$-421 32 Vns"a Frolunda
Tel: (031) 49 0
Telex: 10721 Vla Bromma Office

SWITZERLAND
Hewlett-Packard (Schweiz) AG
Zircherstrasse 20

P.0. Box 307

CH-8952 Schiieren-Zurich
Tel: (01) 730 52 40/730 18 21
Cable: HPAG CH

Telgx: 53933 hpag ch
Hewlett-Packard (schweiz) AG
Chateau Bloc 19

CH-1219 Le Lignon-Geneva
Tel: (022) 96 03 22

Cable: HEWPACKAG Geneva
Telex: 27 333 hpag ch

SYRIA
Medical/Calcuiator only
Sawah & Co

Place Azmé

B8.P. 2308
SYR-Damascus

Tel: 16367, 19697, 14268
Cable: SAWAH. Damascus

TURKEY

Telekom Engmeermg Bureau
;0 ’ 437

ey 0 u

TR-Istanbui

Tel: 49 40 40

Cable: TELEMAYION Istanbul
Telex: 23609

Medlca\ only

Munenmshk Kollektif Sirketi
Adakale Sokak 41/6
TR-Ankara

Tel: 175622

Analytical only

Yilmaz Ozyure

Milli Mudalaa Cad No. 16/6
Kizitay

TR-Ankara

Tel: 25 03 09

Telex: 42576 Ozek tr

UNITED KINGDOM
Hewlett-Packard Ltd.

King Street Lane
GB-Winnersh, Wokingham
Berks. RG11 5AR

Tel: (0734) 78 47 74

Cable: Hewpie London
Telex:847178/9

Hewlett-Packard Ltd.
Tratalger House.
Navagation Road
Altrincham
Cheshire WA14 INU

Tel: (061) 928 6422
Cable: Hewpie Manchester
Telex: 668068

Hewlett-Packard Ltd.
Lygon Court

Hereward Rise

Dudley Road
Halesowen,

West Mldlands B62 850
Tel: (021) 550 9911
Telex: 339105

Hewlett-Packard Ltd.
Wedge House

799, London Road
GB-Thornton Healh
Surre%

Tel: {1
Telex: 9:

Hewiett-Packard L1d.

c/o Makro

South Serviceholesale Centre

Wear Industrial Estate

Washington

GB-New Town, County Durham
Tel: Washington 464001 ext. 57/58

Hewlett-| Packam Ltd
10, Wesley St.
GB-Castleford

West Yorksmre WF10 1AE
Tel: (09775) 50402

Telex: 557355

Hewlett-Packard Ltd
1, Wallace Way
GB- Hntchin

Hert:
Te\ (0462) 52824/58704
Telex: 825

USSR

Hewlett-Packard

Representative Office USSR
Pokrovsky Boulevard 4/17-KW 12
Moscow 10100

Tel:294-2024

Telex: 7825 hewpak su

YUGOSLAVIA
Iskra-standard/Hewlett-Packard
Miklosiceva 38/VII

61000 Ljubljana

Tel: 31 58 79/32 16 74

Tefex: 31583

SOCIALIST COUNTRIES
NOT SHOWN PLEASE

CONTACT:
Hewlett-Packard Ges.m.b.H
P.0. Box 7

A-1205 Vienna, Austria
Tel: (0222) 35 16 21 to 27

Cable: HEWPAK Vienna
Telex: 75923 hewpak a

MEDITERRANEAN AND
MIDOLE EAST COUNTRIES
NOT SHOWN PLEASE CONTACT:
Hewlett-Packard S.A.
Mediterranean and Middie

East Operations

35, Kolokotroni Street

Platia Kefallariou

GR-Kifissia- Athens, Greece
Tet: 8080337/359/429

Telex: 21-6588

Cable: HEWPACKSA Athens

FOR OTHER AREAS
NOT LISTED CONTACT
Hewlett-Packard S.A.

7. rue du Bois-du-Lan

0. X
CH-1217 Meyrin 2 - Geneva
Switzerland
Tel: (0222 82 70 00
Cable: HEWPACKSA Geneva
Telex: 2 24 86

UNITED STATES

ALABAMA

8290 Whitesburg Dr..
P.0. Box 4207
Huntsville 35802
Tel: {205) 881-4591
Medical Only

228 W_Valley Ave .
Room 220
Birmingham 35209
Tel: (205) 942-2081/2

ARIZONA

2336 E. Magnolia St.
Phoenix 85034

Tel' (602) 244-1361

2424 East Aragon Rd
Tueson 85706

Tel: (602) 294-3148

"ARKANSAS
Medical Service Only
P.0. Box 5646
Brady Station

Little Rock 72215
Tel (501) 376-1844

CALIFORNIA

1430 East Orangelnorpe Ave
Fullerton 926:

Tel (714) 870~1000

3939 Lankershim Boulevard
North .Hollywood 91604
Tel (213) 877-1282

TWX: 910-499-2671

6305 Arizona Place

Los Angeies 90045

Tel: (213) 649-2511

TWX: 910-328-6147

‘Los Angeles

Tel: (213) 776-7500

3003 Scott Boulevard
Santa Clara 95050

Tel: (408) 249-7000

TWX: 910-338-0518

S.E

“Ridgecrest

Tel (714) 446-6165

646 W. North Market Blvd
Sacramento 95834

Tel: (916) 929-7222
9606 Aero Drive

P.0. Box 23333

San Diego 92123

Tei: {714) 279-3200
COLORADO

5600 South Ulster Parkway

Englewood 80110
Tel: (303) 771-3455

CONNECTICUT
12 Lunar Drive
New Haven 06525
Tel: (203) 389-6551
TWX: 710-465-2029

FLORIDA

P.0. Box 24210

2805 W. Qakland Park Blvd.
Lauderdale 33311

TeI (305) 731-2020

“Jacksonville

Medical Service onl)

Tel: (904) 398-0663]

P.C. Box 13910

6177 Lake Ellenor Dr

Orlando 32809

Tet: (305) 859-2900

P.0. Box 12826

Pensacola 32575

Tel: {904) 476-8422

GEORGIA

P.0. Box 105005
Atlanta 30348

Tei: (404) 955-1500
TWX:810-766-4890

Medical Service Only
“Augusta 30903
Tel ?404) 736-0592

P.0 Box 2103
Warner Robins 31098
Tel: {912) 922-0449

HAWAI

2875 So. King Street
Honolulu 96814
Tel: (808) 955-4455
Telex 723-705

ILLINOIS

5201 Toliview Or.

Rolling meadows 60008
Tel: (312) 255-9800

TWX. 910-687-2260

INDIANA

7301 North Shadeland Ave
Indianapolis46250

Tel: (317)842-1000

TWX: 810-260-1797

IOWA

1902 Broadway
lowa City 52240
Tel: (319) 338-9466

KENTUCKY
Medical Cnly
Atkinson Square
3901 Atkinson Dr
Suite 207
Louisville 40218
Tel' {502) 456-1573

LOUISIANA

P.0. Box 840

3229-39 Williams Boultevard
Kenner 70063

Tel: (504) 443-6201

MARYLAND

6707 Whitestone Road
Baltimore 21207
Tel: (301} 944- 54g0
TWX' 710-862-9157

2 Choke Cherry Road
Rockville 20850

Tel: (301) 948-6370
TWX' 710-828-9684

MASSACHUSETTS
32 Hartwel) Ave
Lexin?lon 02173
Tel (617) 861-8960
TWX: 710-326-6904

MICHIGAN

23855 Research Drive
Farmington Hills 48024
Tel (313) 476-6400

MINNESOTA
2400 N_ Prior Ave
St. Paul 55113

Tel (612) 636-0700

MISSISSIPPI
*Jackson

Medical Service only
Tel (601) 982-9363

MISSOURI

11131 Colorado Ave
nsas City 64137

Tel (816) 763-8000

TWX: 910-771-2087

1024 Executive Parkway

St. Louis 63141

Tel: (314) 878-0200

NEBRASKA
Medical On
7171 Mercy
Suite 110
Omanha 668106

Tel: (402) 392-0948

NEW JERSEY

W. 120 Century Rd
Paramus 07652

Tel: (201) 265-5000

TWX: 710-990-4951
Crystal Brook Professional

Building

Eatontown 07724
Tel:(201) 542-1384

oad

NEW MEXICO

P.0. Box 11634
Station E

11300 Lomas Blvd.. N.E.
Albuquerque 87123
Tel: (505) 292-1330
TWX. 910-989-1185
156 Wyalt Drive

Las Cruces 88001
Tel' (505) 526-2484
TWX: 910-9983-0550

NEW YORK

6 Automation Lane
Computer Park
Albany 12205

Tel (518) 458-1550
201 South Avenue
Pau%hkeopslo 12601
Tel: (914) 454-7330
TWX: §10-253-5981

650 Perinton Hitl Office Park
Fairport 14450
Tel 515) 223-9950
5858 East Molloy Road
11

TWX: 710-541-0482
1 Crossways Park West
Woodbury 11797
Tel: (516) 921-0300
TWX: 710-990-4951

NORTH CAROLINA
PO Box 5188

1923 North Main Street
High Point 27262

Tel: {919) 885-8101

OHIO

16500 Sprague Road
Cleveland 44130
Tel: (216) 243-7300
TWX: 810-423-9430
330 Progress Rd
Dayton 45449

Tel (513) 859-8202

1041 ngsmlll Parkway
Columbus 4.
Tel: (614) 436-1041

OKLAHOMA

P.0. Box 32008
Oklahoma City 73132
Tel: {405) 721-0200

OREGON

17890 SW Lower Boones
Ferry Road

Tualatin 97062

Tel: (503) 620-3350

PENNSYLVANIA
111 Zeta Drive
Pittsburgh 15238
Tel: (412) 782-0400
1021 8th Avenue
Kmq of Prussia Industrial Park
of Prussla 19406
5) 265-7

Kin
Tel: {21
TWX: 510-660- 2670

SOUTH CAROLINA
6941-0 N. Trennolm Road
Columbia 29260

Tel: (803) 782 6493
TENNESSEE

"Knox

Meumal Servu:e onl

Tel: (615) 523-502.

3027 Vanguard Dr.
Director's Plaza
Memgpms 38131
Tel: (901) 346-8370

Nashville
Medical Service only
Tel: (615) 244-5448

TEXAS

P.0. B

201 E Arapaho Rd
Richardson 75080
Tel: (214) 231-6101

10535 Hatwm Dr
Houston 7.

Tel: (713) 776 6400
205 Billy Mitchell Road
San Antonio 78226

Tel: (512) 434-8241

2160 South 3270 West Street
Salt Lake City 84119
Tel: (801) 972-4711

VIRGINA

P.0. Box 12778

No. 7 Koger Exec. Center
Suite 212

Norfolk 23502

Tel:(804) 461-4025/6

P.0.Box 9669

2914 Hungar¥ Springs Road
3228

Richmond
Tel: (804) 285-3431

WASHINGTON
Bellefield Office Pk

Tel: (206) 454-3971
TWX: 910-443-2446

"WEST VIRGINIA
Medwal/AnaIyucaI Only
Charleston

Tei: (304) 345-1640

WISCONSIN

9004 Wast Lincoln Ave.
West Allis 53227

Tel: (414) 541-0550

FOR U.S. AREAS NOT LISTED:
Contact the regional office

nearest you: Atlanta, Georgia

North Hollywood. California. ..
Rockville, Maryland. ..Rolling Meadows,
|llinois. Their complete

addresses are listed above

“Service Only

8/17

HEWLETT @ PACKARD

PART NO. 02108-90008 Sales and service from 172 offices in 65 countries.
Printed in U.S.A. 10/77 11000 Wolfe Road, Cupertino, California 95014

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	A-01
	A-02
	A-03
	B-01
	C-01
	C-02
	D-01
	D-03
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	E-23
	E-24
	E-25
	E-26
	E-27
	I-01
	I-02
	I-03
	I-04
	x-01
	x-02
	xBack

