
~.,.) .. ~
' (':')

(;)

(')
()
::.-.
.':II
-::1
c:
·-I
rn
iR

HEWLETT Q PACKARD 2100
corr1puter

microprogramming softwa

e POWERFULHARDWARE
A proven architecture implemented by a micro­
processor in the heart of the control section.

e EXPANDABLE MAINFRAME MEMORY
Lets you choose up to 32K all in mainframe.

e STANDARD FEATURES
2100A and 21008 both include extended arithmetic
instructions, power fail interrupt, memory parity
check, and memory protect (21008 also includes
floating point instructions, two-channel OMA, a
crystal-controlled programmable time base generator,
and a buffered teleprinter communications channel).

e FLEXIBLE INPUT/OUTPUT
2100A has 14 internal 1/0 channels, externally
expandable to 45; 21008 has 12, expandable to 43.

e FULL INTERRUPT SYSTEM
Interrupt p~iority easily established or changed for all
devices.

e COMPREHENSIVE SOFTWARE
Proven software packages for generating and exe­
cuting your programs.

2100 computers

The Hewlett-Packard 21 OOA and 21 OOS are general-purpose
digital computers designed for a wide range of small com­
puter applications.

Standard features of the 21 OOA include extended arith­
metic instructions, power fail interrupt with automatic
restart, memory parity check with interrupt, and memory
protect. Available as options are dual-channel direct
memory access (OMA), floating point hardware, multi­
plexed input/output (1/0), communications channels
accommodating a variety of 1/0 speeds and devices,
writable control store (WCS) modules, a programmable
ROM writer, and a full line of systems peripherals and 1/0
interfaces.

Standard features of the 21 OOS include extended arithmetic
instructions, power fail interrupt with automatic restart,
memory parity check with interrupt, memory protect, dual­
channel OMA, floating point hardware, crystal-controlled
programmable time base generator, and a buffered tele­
printer communications channel. Available as options are
multiplexed 1/0, communications channels accommodating
a variety of 1/0 speeds and devices, WCS modules, a pro­
grammable ROM writer, and a full line of systems periph­
erals and 1/0 interfaces.

Under OMA control, data can be transferred to or from the
computer memory at rates greater than one million sixteen­
bit words per second. The floating point hardware typically
provides a ten-fold speed increase for scientific, compute­
bound algorithms.

A minimum 2100A includes 4,096 words of core memory,
self-contained power supply, and 14 1/0 channels. A mini­
mum 21 OOS includes 16,384 words of core memory, self­
contained power supply, and 12 1/0 channels. The core
memory size of each may be expanded to 32,768 words, all
in the mainframe. Through the use of an HP 2155A 1/0
Extender Unit, another 31 1/0 channels and power supply
can also be added to each.

The 2100A and 21005 have a comprehensive range of
proven software packages, including assemblers, compilers,
operating systems, and subroutines.

In addition to the above-mentioned capabilities, you can
depend on the HP reputation for high quality and world­
wide customer support. The net result is a cost-effective
computer which meets your data processing needs today
and will continue meeting them as your needs expand.

HEWLETT WP PACKARD

MICROPROGRAMMING
SOFTWARE

for

Hewlett-Packard Model 2100 Computer

HEWLETT~ACKARDCOMPANY

11000 WOLFE ROAD, CUPERTINO, CALIFORNIA U.S.A.

HP Manual Part No. 02100-90133
Microfiche Part No. 02100-90187

Printed: SEPT 1973

PREFACE

This manual is a complete Basic Control System (BCS) software
reference source for microprogramming the Hewlett-Packard
2100 Computer. With the information given here, the micro­
programmer can expand the already powerful capability of the
2100 by adding custom-tailored instructions to the existing set of
microprogrammed operations. This ability to expand the Central
Processor Unit, in addition to the extraordinary expansion
features of the memory and I/O sections, contributes to the total
flexibility and adaptability of the 2100.

It is assumed that the microprogrammer has read the 2100 Com­
puter Microprogramming Guide (part number 5951-3028) and
that he has a copy of it available as a comprehensive reference
source. The overview presented in section 1 of this manual is
merely meant to supplement the above-mentioned guide by pro­
viding additional emphasis and actual symbolic microinstruction
examples.

This manual is divided into eleven sections. Section 1 is an over­
view of HP 2100 microprogramming, sections 2 through 8 de­
scribe the HP BCS Microassembler, section 9 describes the HP
BCS Micro Debug Editor, section 10 describes the HP BCS Pro,­
grammable ROM Writer, and section 11 describes the HP BCS
WCS Input/Output Utility Routine.

The Disc Operating System (DOS, DOS-M, or DOS-III) version of
the Microassembler, Micro Debug Editor, and WCS Input/Output
Utility Routine are described in the 2100 Computer DOS Micro­
programming Software manual (part number 02100-90168).

While Hewlett-Packard cannot assume responsibility for the effec­
ti_veness of microprograms written by the user, further infor­
mation and assistance may be obtained by contacting a Hewlett­
Packard field office. Sales and Service offices throughout the
world are listed in the back of this manual.

CONTENTS

1 HP 2100 MICROPROGRAMMING OVERVIEW 1-1
Microprogramming Facilities 1-2
Microinstruction Format 1-5
Accessing a Microprogram . 1-7

Jump Tables 1-7
Passing Control From an Assembly Language Program. . 1-12
Passing Control From a FOR TRAN Program . . 1-13
Passing Control From an ALGOL Program . 1-14
Passing Parameters . 1-15

Jump Table Conventions . 1-19
Input/Output . . 1-20

Input. . 1-20
Output . 1-21

Accessing Cor~ Memory Locations . 1-23
Read From Memory . . 1-23
Write Into Memory . 1-24

Microprogramming Shift Operations . 1-25
32-bit Data Items . . 1-27
17-bit Data Items . . 1-27
16-bit Data Items . . 1-27

2 GENERAL DESCRIPTION OF THE
HP MICROASSEMBLER 2-1
The Assembly Process 2-2
Program Location Counter 2-3
Symbolic Addressing 2-3
Asterisk (*) as an Address . 2-4
Assembly Options 2-4
Assembler Output 2-5

Symbol Table Listing 2-6
Source Microprogram Listing . 2-6

3 SYMBOLIC STATEMENT FORMAT . 3-1
Symbolic Statement Fields 3-2

Label Field . 3-2
R-bus Field 3-3

iv

S-bus Field . 3-3
Function Field 3-3
Store Field . 3-4
Special Field 3-4
Skip Field 3-4
Comments Field 3-7

Standard Coding Form . 3-7

4 MICRO-ORDERS 4-1
R-bus Field . 4-1
S-bus Field . 4-4
Function Field 4-8

Logical Operators 4-9
Shift Operators . 4-10
Jump Operators . 4-13
Arithmetic Operators . 4-14
Flip-Flop Operators . . 4-16
Phase Operators . 4-18

Store Field . . 4-18
Special Field . 4-21
Skip Field . 4-25

5 ASSEMBLER CONTROL STATEMENTS 5-1

6 SAMPLE MICROPROGRAMS 6-1
Register Save Microprogram 6-2

Microinstruction Commentary 6-3
Block Move Microprogram 6-4

Microinstruction Commentary 6-5
Table Search Microprogram 6-7

Microinstruction Commentary . 6-10
Teleprinter Output Driver . . 6-13

Initiator Section Commentary . 6-18
Continuator Section Commentary . 6-18

7 MISCELLANY 7-1
Interrupting a Microprogram 7-1

v

A/B Addressable Flip-Flops 7-4
Memory Read . 7-4
Memory Write 7-5

RPT Micro-Order 7-7
JSB/RSB Micro-Orders . 7-8
Counter . 7-9

8 ERROR MESSAGES 8-1

9 HP MICRO DEBUG EDITOR 9-1
Requirements . 9-1
Modes of Operation . 9-1

Normal Mode . 9-2
Debug Mode 9-2

HP Micro Debug Editor Commands 9-3
Input Commands 9-3
Edit Commands 9-5
Output Commands 9-8
Termination Command . 9-10
Debug Commands . 9-10

The Initialization Program . 9-14
Operating Instructions . . 9-15

Loading the Micro Debug Editor . 9-15
Debugging a Small Microprogram . 9-16
Debugging a Large Microprogram . 9-17
Punching Mask Tapes From an Object Tape . 9-20
Loading a Microprogram Into WCS From an Object Tape . 9-21

10 HP PROGRAMMABLE ROM WRITER . 10-1
Requirements . . 10-1
Loading Instructions . 10-1
Initial Parameters . 10-2
General Operation . 10-4

Set-Up . 10-5
Burning . . 10-6

11 HP BCS WCS INPUT/OUTPUT UTILITY ROUTINE . . 11-1
Calling Sequences . 11-1

vi

ILLUSTRATIONS

1-1. Microprogramming Facilities
1-2. Microinstruction Format
1-3. Control Store Module Number as Stored

in an HP 2100 Microinstruction
1-4. 32-bit Data Item Shifts
1-5. 1 7-bit Data Item Sh if ts
1-6. 16-bit Data Item Shifts
2-1. Object Code Illustration
2-2. Object Microprogram Tape Format
2-3. Symbol Table Listing
2-4. Source Microprogram Listing (first page)
2-5. Source Microprogram Listing (last page) .
3-1. Symbolic Microinstruction Format
3-2. Standard Coding Form . ..
6-1. Register Save Microprogram .
6-2. Block Move Microprogram. .
6-3. Table Search Microprogram .
6-4. Initiator Section ...
6-5. Continuator Section .
7-1. Interrupt Example. .

1-1. Effect of the Various 105xxx Macro Instructions
1-2. Secondary Jump Table Usage
1-3. Microinstruction Commentary
1-4. Passing Control From an Assembly Language

Program to a Microprogram .
1-5. Input Micro-Orders
1-6. Output Micro-Orders
2-1. Symbol Table Listing Format

1-4
1-5

1-12
1-26
1-28
1-29

2-7
2-9

2-10
2-11
2-12

3-2
3-6
6-2
6-5
6-8

6-14
6-16

7-3

TABLES

1-8
1-10
1-11

1-12
1-21
1-22

2-6

vii

TABLES (Continued)

3-1. Symbolic Microinstruction Format.
3-2. Valid Mnemonics
6-1. Register Save Locations . .
6-2. Even Starting Byte Address
6-3. Odd Starting Byte Address .
8-1. Error Messages
9-1. Micro Debug Editor Commands
9-2. Initialization Program.

10-1. Commands ·. . . .

viii

3-1
3-5
6-3
6-7
6-9
8-1
9-4

9-14
10-4

INDEX OF HP 2100 MICRO-ORDERS

Note: In each case, the first page reference is that of
the description of the micro-order.

R-bus Field
A 4-2
AAB 4-2, 7-5
B 4-2
CAB 4-3
co 4-3
F 4-2
NOP 4-1
Q 4-2

S-bus Field
ADR 4-5, 1-10, 1-11, 1-17
CIR 4-7
CL 4-6, 1-7
CNTR 4-6, 7-9
COND 4-7, 7-5
CR 4-6, 1-7
IOI 4-7, 1-21
M 4-5
NOP 4-4
p 4-4, 1-16, 1-17, 1-18
RRS 4-7
S1 4-4
S2 4-4
S3 4-5
S4 4-5
T 4-5

Function Field
ADD 4-14
ADDO 4-14
AND 4-9
ARS 4-11, 1-26
CFLG 4-17
CJMP 4-13, 2-3, 7-1
CLO 4-17
CRS 4-12, 1-26
DEC 4-15
DIV 4-14
INC 4-16
INCO 4-16
IOR 4-9, 1-7
JMP 4-13, 1-6, 1-9, 2-3
JSB 4-14, 2-3, 7-8
LGS 4-11, 1-26
LWF 4-10, 1-28
MPV 4-15
NOR 4-10
P1A 4-18
RFE 4-17
RFI 4-17
RSB 4-14, 7-8
SFLG 4-17
sov 4-16
SUB 4-15
XOR 4-9

ix

INDEX OF HP 2100 MICRO-ORDERS (Continued)

Store Field
A 4-19
AAB 4-21, 7-6
B 4-19
CAB 4-21
F 4-20
100 4-21, 1-22
IR 4-19
M 4-19
NOP 4-19
p 4-20
0 4-20
S1 4-20
S2 4-20
S3 4-20
S4 4-21
T 4-19

Special Field
AAB 4-24, 7-6
ASG1 4-24
ASG2 4-24
CNTR 4-22, 7-9
cw 4-22, 1-24, 7-5
ECYN 4-22
ECYZ 4-23
IOG 1 4-23, 1-21, 1-22

x

Special Field (Continued)
L 1 4-23, 1-26, 1-28
LEP 4-25
NOP 4-22
R 1 4-23, 1-26, 1-28
RSS 4-23
RW 4-24, 1-16, 1-17, 1-18, 1-23, 7-4
SRG1 4-25
SRG2 4-25, 1-28

Skip Field
AAB 4-29, 7-6
COUT 4-26
CTR 4-26
CTRI 4-26
EOP 4-26
FLG 4-27
ICTR 4-27, 7-9
NAAB 4-29
NEG 4-27
NMPV 4-27, 1-25, 7-5
NOP 4-26
ODD 4-28
OVF 4-28
RPT 4-28, 7-7
TBZ 4-29
UNC 4-29

HP 2100 MICROPROGRAMMING OVERVIEW n
An HP 2100 computer may include one to four control store modules
containing microprograms. These modules are referred to as modules
#0, #1, #2, and #3.

Control store module #0 is always present and is used exclusively for
the HP 2100 basic instruction set. The other three control store
modules are optional. An HP 2100 may include any of the following
control store module combinations:

0
0and1
0 and2
Oand 3
0, 1, and 2
0, 1, and 3
0, 2, and 3
0, 1, 2, and 3

The HP floating-point instruction set, if included in the HP 2100,
pre-empts module #1. Modules #2 and #3 are available for user­
supplied microprograms (as is module #1 if the floating-point instruc­
tion set is not expected to be used).

Each control store module contains 4008 (25610) locations; each
location accommodates one microinstruction containing six micro­
orders. The locations in module #0 have the octal addresses 000-377;
those in module #1 have the octal addresses 400-777; those in module
#2 have the octal addresses 1000-1377; and those in module #3 have
the octal addresses 1400-1777.

This section has seven parts. The first part summarizes the entities that
the microprogrammer may work with; the second describes the format
of a microinstruction; the third discusses how to pass control from a

1 · 1

program to a microprogram; the fourth comments on jump table
conventions; the fifth describes microprogramming input/output; the
sixth describes how to pass data between core memory and control
store modules; and the last part describes microprogramming shift
operations.

MICROPROGRAMMING FACILITIES

The microprogrammer has the following entities to work with:

1-2

Thirteen registers

• A-register (16 bits)

• B-register (16 bits)

• Q-register (16 bits)

• F-register (16 bits)

• P-register (16 bits)

• Four Scratch Pad Registers (16 bits each)

The shaded registers are available to the microprogrammer only
for a few strictly defined uses. The M- and T-registers are used
for accessing core memory locations. The Central Interrupt
Register is a read-only register that lets the microprogrammer
know which 1/0 device has caused an interrupt. The CPU
Instruction Register is used for performing input/output opera­
tions, for performing a special shift operation (shift data item
left four bit positions), for calling a microprogram by way of a
secondary jump table, and for passing a 4-bit parameter from
the calling program to a microprogram.

The other nine registers may be considered as general purpose
registers.

A five-bit hardware counter

A function generator

A shifter

Five 16-bit data paths between the registers, the counter, the
function generator, the shifter, and the 1/0 hardware

• R-bus

• S-bus

• ALU-bus

• T-bus

• 1/0-bus

Four flip-flops

• Flag (not to be confused with the 1/0 Flag)

• Overflow

• Extend

• Carry

By examining Figure 1-1, most of the available microprogramming tasks
(referred to as micro-orders) are apparent. For example, a micro-order
can:

• Read the contents of a register onto a bus.

• Read the contents of a bus into a register.

• Read the contents of the R-bus onto the S-bus.

• Read the contents of the S-bus onto the 1/0-bus.

1-3

1-4

F l M-Register 1.....
Hp-flops J"'

~Flag l T-Register 1.....
_rr

~Overflow
[CPU Instruction Register J4'
L Counter 1..... _r-

~·Ex.tend

~·Carry

.J A-Register -i -.., r
_...r

B·Register "1 -..,_ r
_.r

Q-Register L .,_ J
.... F-Register -.,_ 1

~ r s ,,
"' :I 14-1

h
i ALU·Bus J

Function Generator l f L t
IXI
..:.

e
r

.........

--i- P-Register 1_
-ri_ J

....r Scratch Pad Register 1
1_ .,_ r

-· Scratch Pad Register 2 -. .,_ J
__J L
--....... Scratch Pad Register 3 _J

__.J Scratch Pad Register 4 L ,.,_ r

[Central Interrupt Registe~}

...

... "' :I
IXI

._.. r.C -.,..

... ..

Figure 1-1. Microprogramming Facilities

... ...,..

. --.

... ...,..

.... ..

__... ...

"' ;J
IXI
ch

.. ...

..

... ,. . __... ,..

.. -..
.... --.-

• Read the contents of the 1/0-bus onto the S-bus.

• Cause the function generator and the shifter to perform a
function (e.g., add, subtract, logical "inclusive OR", shift left
one bit position) using the contents of the R- and S-buses as
input. The result is automatically read onto the T-bus.

All the available micro-orders are described in section 4 of this manual.

MICROINSTRUCTION FORMAT

An HP 2100 microinstruction comprises 24 bits and is divided into six
fields as shown in figure 1-2.

Figure 1-2. Microinstruction Format

All micro-orders in a given microinstruction are executed simultane­
ously. Whenever a data item is read onto a bus, the data item is
available on the bus only during execution of that particular
microinstruction.

The R-bus field reads the contents of the specified register onto the
R-bus.

The S-bus field reads the contents of the specified register onto the
S-bus. It is also used for reading a constant or the contents of the R-bus
or 1/0-bus onto the S-bus.

1-5

The Function field causes the function generator and the shifter to
perform the specified function using the contents of the R- and S-buses
as input. The result is automatically read onto the T-bus. The Function
field is also used for jumping and for manipulating the Overflow,
Extend, and Flag flip-flops.

The Store field reads the contents of the T-bus into the specified
register. It is also used for reading the contents of the S-bus into the
M-register, the T-register, the CPU Instruction Register, or onto the
I/0-bus.

The Special field is used for diverse purposes. It is used for initiating
input/output operations, for accessing core memory locations, for
loading the counter from the S-bus, for manipulating the Carry flip­
flop, and it is used in shifting operations for specifying which direction
the data is to be shifted.

The Skip field is used for skipping a microinstruction. If the condition
specified in the Skip field is true, the next sequential microinstruction
is skipped. In HP 2100 microprogramming, the term "skip" is used in
an unconventional way: if the skip condition is true, the next se­
quential microinstruction is not actually "jumped over", but is forced
to be a NOP. The micro-order EOP (End of Phase) is used in the Skip
field to exit from a microprogram. When an EOP is sensed, the exit
occurs after the next microinstruction is executed. It should be noted
that if an EOP is in a microinstruction that is to be skipped, the EOP is
executed and the exit occurs after execution of the next sequential
microinstruction.

There are two cases where the usual function of the Special and Skip
fields is inhibited:

1·6

1) If the Function field specifies that a jump be performed, the
jump address is supplied in place of the Special and Skip fields.
The jump address may be in the form of an asterisk expression
or a symbolic address.

Examples: JMP
JMP

*+20
XYZ

2) If the S-bus field specifies that a constant be read onto the
S-bus, the constant is supplied in place of the Special and Skip
fields.

Examples: CL
CR

IOR
IOR

10
377

The constant is always coded in the symbolic microinstruction
as an octal number.

CL specifies that the constant be read onto the leftmost eight
bits (8-15) of the S-bus; CR specifies that the constant be read
onto the rightmost eight bits (0-7) of the S-bus.

The Function field cannot contain a NOP. By convention, if a
pseudo-NOP is desired in the Function field (as in the above
example), an IOR is used.

ACCESSING A MICROPROGRAM

JUMP TABLES

One control store module must be designated as the entry module. This
decision is communicated to the hard.war~ by a hardwired connection
on the control store board (A2).

To transfer control from a program to a microprogram, the program
executes a macro instruction whose format is 105xxx (octal), where
xxx is 000-377. This passes control to one of the first sixteen locations
of the entry module. See Table 1-1.

1-7

Table 1-1. Effect of the Various 105xxx Macro Instructions

Control Store Location Jumped To

Value of xxx
Entry Module -

#1 #2 #3

000-017 400 1000 1400
020-037 401 1001 1401
040-057 402 1002 1402
060-077 403 1003 1403
100-117 404 1004 1404
120-137 405 1005 1405
140-157 406 1006 1406
160-177 407 1007 1407
200-217 410 1010 1410
220-237 411 1011 1411
240-257 412 1012 1412
260-277 413 1013 1413
300-317 414 1014 1414
320-337 415 1015 1415
340-357 416 1016 1416
360-377 417 1017 1417

The first sixteen locations of the entry module are referred to col­
lectively as the primary jump table. Each location in the primary jump
table normally contains a jump microinstruction which passes control
either to the desired microprogram or to a secondary jump table.

If secondary jump tables are not used, a maximum of 16 micro­
programs are callable. In this case, the calling program must use one of
the macro instructions 105000, 105020, 105040, 105060, 105100,
105120, 105140, 105160, 105200,105220,105240,105260,105300,
105320, 105340,or105360.

1-8

Note: When secondary jump tables are not used, the only
reason for using any of the other 240 macro instruc­
tions would be to pass a four-bit parameter to the
microprogram. The passing of parameters is discussed
later in this section.

However, each microinstruction in the primary jump table may pass
control to another jump table (referred to as a secondary jump table).
Each secondary jump table may be up to 16 locations long. If every
microinstruction in the primary jump table points to a 16-location
secondary jump table, the maximum number of callable microprograms
increases to 256. The following paragraphs discuss the use of secondary
jump tables.

When a 105xxx macro instruction is executed, the instruction itself is
in the CPU Instruction Register. Whenever a jump microinstruction is
executed, the rightmost four bits (bits 0-3) of the S-bus are auto­
matically "OR"ed with the specified jump address. Usually the S-bus
contains all zeros and the specified jump address is not altered. How­
ever, microinstructions can read the contents of the CPU Instruction
Register onto the S-bus.

The following example demonstrates the use of a secondary jump table.
Assume that:

a) module #1 is the entry module

b) the second microinstruction in the primary jump table (control
store location 401) passes control to a secondary jump table

c) the secondary jump table resides in control store locations 500
through 517

The micro-coding is as shown in table 1-2.

When the macro instruction 105025 is executed by the calling program,
control passes to control store location 401 which, in turn, passes
control to control store location 776. The microinstructions at control
store locations 776 and 777 cause the rightmost four bits of the

1-9

Table 1-2. Secondary Jump Table Usage

Control Store Location Contents

401 -- -- JMP -- 776

500 th rough 517 JMP microinstructions

776 -- ADR IOR S1
777 -- S1 JMP -- 500

105025 macro instruction (05, octal) to be "OR"ed with the jump
address (500), thus causing a jump to control store location 505. The
microinstruction in control store location 505 then passes control to
the desired microprogram.

Specifically, the microinstructions shown in control store locations 776
and 777 of the above example work as shown in table 1-3.

The microcoding in the above example may be used for jumping to
secondary jump tables that reside in modules #1 or #3 (the only
permissible variation being that Scratch Pad Register 3 may be used
instead of Scratch Pad Register 1).

If the secondary jump table resides in control modules #0 or #2, the
pair of microinstructions shown in control store locations 776 and 777
are combined into one microinstruction, as follows:

Control Store Location Contents

776 ADR JMP 500

1-10

Table 1-3. Microinstruction Commentary

First microinstruction:

• The ADR reads bits 0-9 of the CPU Instruction Register
onto the S-bus.

• The IOR reads the contents of the S-bus onto the T-bus.

• The S1 reads the contents of the T-bus into Scratch Pad
Register 1.

Second microinstruction:

• The S 1 reads the contents of Scratch Pad Register 1
onto the S-bus.

• The JMP passes control to the effective jump address.
The effective jump address is formed automatically by
"OR"ing bits 0-3 of the S-bus with the specified jump
address (500).

This difference results from the way the jump address is stored in the
microinstruction. Bits 0-7 of the microinstruction specify an address
000-377 while the least significant bit of the S-bus and Function- fields
together specify what control store module is being jumped to:
00 = module #0, 01 = module #1, 10 = module #2, and 11 = module
#3. Figure 1-3 shows how the binary module addresses are stored in the
microinstruction.

As long as nothing is coded in the S-bus field, the microassembler
automatically sets these two bits to the proper values. However, when
the microprogrammer codes something in the S-bus field, he forces the
least significant bit of the S-bus field to be set either to a zero
or a one. An ADR micro-order sets the bit off (thus specifying control
store module #0 or #2) whereas an Sl micro-order sets the bit on (thus
specifying control store module #1 or #3).

1-11

..,·~··#2
.......... #3

Figure 1-3. Control Store Module Number as Stored in
HP 2100 Jump Microinstruction.

PASSING CONTROL FROM AN ASSEMBLY LANGUAGE
PROGRAM

There are two ways to pass control from an assembly language program
to a microprogram. The first applies only if the RAM (Random Access
Memory) psuedo-instruction is available; the second applies in any case.
The two methods are as illustrated in table 1-4.

1-12

Table 1-4. Passing Control From an Assembly
Language Program to a Microprogram

Method 1: RAM SWB

SWB EOU xxxB

Method 2: OCT 105xxx

The RAM pseudo-instruction automatically forms the 105xxx macro
instruction using the constant supplied in the EQU statement (the
105xxx macro instruction replaces the RAM pseudo-instruction). In
both cases, xxx is 000-3 77.

PASSING CONTROL FROM A FORTRAN PROGRAM

A FORTRAN program passes control to a microprogram indirectly by
way of an assembly language program.

For example, the FORTRAN statement

CALL XYZ (A,B)

generates the following calling sequence:

JSB XYZ
DEF *+3
DEF address of the first parameter
DEF address of the second parameter

When the above calling sequence is executed, control passes to the
assembly language program named XYZ. XYZ replaces the JSB XYZ
instruction in the above calling sequence with the 105xxx macro
instruction and then passes control to the 105xxx macro instruction.
The program XYZ is as follows:

ENT XYZ
XYZ NOP

LDA XYZ
ADA =D-1
LDB 105xxxB
STB 0,1
JMP 0,1

1-13

Notes: When the above calling sequence is executed, the
memory address of DEF *+ 3 is automatically stored
in the entry point location (XYZ NOP).

The A-register is referenced as memory location 0.

Specifically, the program XYZ works as follows:

• The LDA instruction loads the memory address of the DEF *+3
instruction into the A-register.

• The ADA instruction subtracts one from the contents of the
A-register. The A-register now contains the memory address of
the JSB XYZ instruction.

• The LDB instruction loads the 105xxx octal constant into the
B-register.

• The STB instruction stores the contents of the B-register in the
memory location pointed to by the A-register.

• The JMP instruction passes control to the memory location
pointed to by the A-register.

Note that the microprogrammer must be aware of the a$embly
language calling sequence produced by the FORTRAN or ALGOL
compiler in order to properly access the parameters passed by the
calling program and to return control to the proper location in the
calling sequence (see "Passing Parameters" later in this section).

PASSING CONTROL FROM AN ALGOL PROGRAM

An ALGOL program passes control to a microprogram indirectly by
way of an assembly language program. The method is the same as
described for FORTRAN programs, above.

1-14

PASSING PARAMETERS

ASSEMBLY LANGUAGE PROGRAMS

There are three methods of p~ing parameters from an a&Sembly
language program to a microprogram:

• Use the A- and/or B-registers.

• Use DEF or OCT statements immediately following either the
RAM psuedo-instruction or the octal 105xxx macro instruction.

• Use the rightmost four bits of the octal 105xxx macro
instruction.

With the first method, the calling program loads the parameters into the
A- and/or B-registers (using LDA and/or LDB instructions) just prior to
executing the 105xxx macro instruction. The microprogram could then
access the parameters directly from the registers. The microcode for
accessing the parameters in this manner would be as follows:

A IOR *
B IOR *

* = any register

With the second method, the calling program supplies a series of OCT
and/or DEF statements immediately following the to5xxx macro
instruction. The OCT and DEF statements may either contain the
parameters or point to them. When control pa$eS to the microprogram,
the P-register contains the address of the first instruction following the
105xxx macro instruction.

If the DEF or OCT statement actually contains the parameter, the
microprogram does the following:

• Reads the contents of the P-register into the M-register.

• Executes a read memory (RW) operation.

1-15

• Retrieves the parameter from the T-register and reads it into a
general purpose register.

• Increments the P-register.

The microcode would be as follows:

P IOR M RW
T IOR *
P INC P

* = any register

If more than one parameter is being passed, the microprogram executes
the above microcode once for each parameter, as needed.

If the DEF or OCT statement contains the address of the parameter,
the microprogram does the following:

• Reads the contents of the P-register into the M-register.

• Executes a read memory (RW) operation.

• Retrieves the parameter address from the T-register and reads it
into the M-register.

• Executes another read memory (RW) operation.

• Retrieves the parameter from the T-register and reads it into a
general purpose register.

• Increments the P-register.

The microcode would be as follows:

1-16

p IOR M RW
T IOR 81
81 IOR M RW
T IOR * p INC p

* = any register

Again, if more than one parameter is being passed, the microprogram
executes the above microcode once for each parameter.

With the third method, the microprogram uses the ADR micro-order to
read bits 0-9 of the CPU Instruction Register onto the S-bus and then
reads the bits into a general purpose register. The microcode would be
as follows:

ADR IOR *
* = any register

The three methods described above may be used in any combination.

FORTRAN PROGRAMS

A FORTRAN program passes parameters to a microprogram by supply­
ing them in parentheses in the CALL to the assembly language linkage
program, as follows:

CALL XYZ (15,100,500,7)

where XYZ is the entry point of the assembly language linkage
program; and

15, 100, 500, and 7 are the actual parameters being passed.

After the assembly language linkage program has perfonned its func­
tion, the following calling sequence is executed:

1-17

OCT 105xxx
DEF *+5 (this is the return address)
DEF address of the first parameter
DEF address of the second parameter
DEF address of the third parameter
DEF address of the fourth parameter

When the microprogram receives control, the P-register is pointing to
the instruction immediately following the octal 105xxx macro instruc­
tion (i.e., it is pointing to the return address). To access the parameters,
the microprogram does the following:

• Increments the P-register.

• Reads the contents of the P-register into the M-register.

• Executes a read memory (RW) operation.

• Retrieves the parameter address from the T-register and reads
it into the M-register.

• Executes another read memory (R W) operation.

• Retrieves the parameter from the T-register and reads it into a
general purpose register.

The microcode would be as follows:

p INC p
JSB GET AD

Sl IOR *

GET AD p IOR M RW
GET AX T IOR Sl NEG

RSB
Sl IOR M RW

JMP GET AX

* = any register

1-18

If more than one parameter is being passed, the microprogram executes
the above microcode once for each parameter. The GET AD routine
handles multiple levels·of indirect addressing. After accessing the final
parameter, however, the microprogram must increment the P·register
one more time so it is pointing to the first instruction following the
calling sequence.

ALGOL PROGRAMS

The passing of parameters from an ALGOL program to a microprogram
involves the same technique described for FORTRAN programs, above.

JUMP TABLE CONVENTIONS

The jump table conventions are described on pages 3-6 through 3-8 of
the 2100 Computer Microprogramming Guide (5951-3028).

Note that these conventions in effect divide the primary jump table
among three control store modules (i.e., the first six locations reside in
module #1, the next five locations effectively reside in module #2, and
the last five locations effectively reside in module #3).

It is recommended, though not required, that the microprogrammer
adhere to these conventions.

In actual fact, the following generalizations apply:

• Any module (#1, #2, or #3) may be the entry module.

• Primary jump table entries may point backward or forward, and
may point to any location in modules #1, #2, or #3.

• Any primary jump table location may point to a secondary
jump table.

1-19

The following restrictions apply if the HP floating-point instruction set
is present:

• The HP floating-point instruction set must reside in module #1.

• The microprogrammer is restricted to the use of macro
instructions 105140 through 105377. These map into modules
#2 and #3 as shown on page 3-7 of the 2100 Computer
Microprogramming Guide.

If HP options other than the floating-point instruction set are present,
similar restrictions apply.

INPUT/OUTPUT

This section discusses how to pass data during an input/output opera­
tion. Microprogrammed 1/0 operations that use the interrupt system
also require that certain control instructions such as STC xx,C and CLC
xx be executed. This is done by loading the octal representation of the
particular instruction into the CPU Instruction Register and then
executing an IOG 1 micro-order. See the teleprinter output driver
example in section 6 ("Sample Microprograms") of this manual.

INPUT

An input operation transfers one character between an input device and
a register. The micro-orders for performing an input operation are as
shown in table 1-5.

1-20

Table 1-5. Input Micro-Orders

IOI IOR
IOI IOR *

IOG1

* = M, T, A, B, 0, F, P, S1, S2, S3, or S4

Before executing the above micro-orders, however, the micro­
programmer must place the octal representation of an input instruction
(LIA, LIB, MIA, or MIB) in the CPU Instruction Register. 1025xx is an
LIA instruction, 1065xx is an LIB instruction, 1024xx is an MIA
instruction, and 1064xx is an MIB instruction (xx is the select code of
the desired input device). -

The IOG 1 causes the hardware to decode and execute the input
instruction. This results in one character being transmitted from the
input device to the I/0-bus. The IOI reads the character from the
I/0-bus onto the S-bus (this is done twice in order to compensate for
the possibility of noise occurring during the "I/0-bus to S-bus" data
transfer). The IOR in the last microinstruction reads the character from
the S-bus onto the T-bus; the Store field reads the character into the
specified register.

The micro-orders must be coded into four consecutive micro­
instructions and must be in the relative positions shown above. The
fields containing "--" are available for other tasks.

OUTPUT

An output operation transfers one character between a register and an
output device. The micro-orders for performing an output operation are
as shown in table 1-6.

1-21

*
*
*

Table 1-6. Output Micro-Orders

**
**
**

IOR
IOR 100
IOR 100

IOG1

* = NOP or an R-bus register mnemonic

** = RRS or an S-bus register mnemonic (RRS reads
the contents of the R-bus onto the S-bus)

Before executing the above micro-orders, however, the micro­
programmer must load the octal representation of an output instruction
(OT A or OTB) into the CPU Instruction Register. 1026xx is an OTA
instruction and 1066xx is an OTB instruction (xx is the select code of
the desired output device). -

The JOG 1 causes the hardware to decode and execute the output
instruction. This results in one character being transmitted from the
1/0-bus to the output device. The S-bus field of the last three micro­
instructions reads the character onto the S-bus. The IOO in the last two
microinstructions reads the character from the S-bus onto the 1/0-bus.
The repetition of the R.-bus, S-bus, and Store field mnemonics (*, **,
and IOO) is neces.5ary in order to compensate for the possibility of noise
occurring during the "S-bus to 1/0-bus" data transfer. The IOR in the
last three microinstructions is a "pseudo-NOP".

The micro-orders must be coded into four consecutive microinstruc­
tions and must be in the relative positions shown above. The fields
containing"--" are available for other tasks.

1-22

ACCESSING CORE MEMORY LOCATIONS

By placing a core memory address in the M-register and then executing
an RW or CW micro-order, the microprogrammer can read data from a
core memory location or write data into a core memory location. The
T-register is always used for passing data between core memory and a
control store module.

READ FROM MEMORY

To read data from a core memory location, the microprogrammer first
loads the core memory address into the M-register by using either of the
following microinstructions:

* RRS IOR M RW

(or)

** IOR M RW

where * is any R-bus register.
** is any S-bus register.

The specified register must contain the core memory address. The RW
micro-order initiates the "read from memory" operation.

The microprogrammer then retrieves the data from the T-register by
using the following microinstruction:

T IOR *
where * is the register into which the data item is to be stored.

For example, to read the contents of core memory location 3008 into
the B-register, the microprogrammer could use the following
microinstructions:

1-23

CR
Sl
T

IOR
IOR
IOR

Sl 300
M RW
B

WRITE INTO MEMORY

To writ.e data into a core memory location, the microprogrammer first
loads the core memory address into the M-register by using either of the
following microinstructions:

* RRS

(or)

**

IOR M CW ***

IOR M CW ***

where * is any R-bus regist.er.
** is any S-bus register.

***is a "skip" micro-order (usually UNC or NMPV).

The specified register must contain the core memory addre~. The CW
micro-order initiates the "write into memory" operation. In order for
the operation to be perfonned, the next sequential microinstruction
must be skipped.

The microprogrammer then loads the data into the T-register by using
either of following microinstructions:

* RRS

(or)

**

IOR T

IOR T

where * is any R-bus register.
** is any S-bus register.

1-24

For example, to write a data word from the B-register into core
memory location 1008 , the microprogrammer could use the following
microinstructions:

CR IOR Sl 100
Sl IOR M CW UNC

IOR
B RRS IOR T

An NMPV micro-order is used for testing whether or not the specified
core memory address points to a location in the protected area of core
memory. The above example is again shown, only this time using
NMPV.

F

B

CR
Sl

RRS

IOR
DEC
JMP
IOR

81 100
M CW NMPV

ERROR
T

If a memory protect violation is detected, the "write into memory"
operation is not performed and control pa$e8 to ERROR. If no
memory protect violation is detected, the JMP microinstruction is
skipped and the "write into memory" operation is performed.

MICROPROGRAMMING SHIFT OPERATIONS

The microprogrammer can perform a variety of shift operations. In the
following paragraphs, the shift operations are categorized according to
the size of the data item being shifted.

1-25

F,Re9ister a-Refimer

Lost+11fri[; jQf t4·--f1t4l • J~g ~ZerQ

0-Reoister

CIRCULAR LEFT SHIFT: F NOP CRS F l1

F-Aegister 0-Register

r~~ J~l+-+~~ J~~
LOGICAl. RIGHT SHIFT: 8 NOP LGS B R'l

8·Retist• A-Register

Zero~l~t JQjH1ili4L ~l~~l.ost

ARITHMETIC RIGHT SHIFT: 8 NOP ARS B Rt

Figure 1-4. 32-bit Data Item Shifts

1-26

32-BIT DATA ITEMS

The data item must be in the B- and A-registers (for right shifts) or the
F- and Q-registers (for left shifts).

For right shifts, the B-register contains the high-order 16 bits and the
A-register contains the low-order 16 bits. For left shifts, the F-register
contains the high-order 16 bits and the Q-register contains the low­
order 16 bits.

The various 32-bit data item shift operations are shown in figure 1-4.

17-BIT DATA ITEMS

The LWF micro-order allows the microprogrammer to shift the Flag
flip-flop in conjunction with the contents of any register.

The 17-bit data item shift operations are shown in figure 1-5.

16-BIT DATA ITEMS

The data item may be in any register. There are two types of 16-bit
data item shift operations: a logical shift and a circular shift. The logical
shifts are shown in figure 1-6.

The circular shift operation results in the data item being rotated four
bit positions to the left. This is accomplished by using the Shift-Rotate
Group (SRG) instruction decoders.

The microprogrammer must first load the constant 000027 8 into the
CPU Instruction Register. This is done using the following
microinstruction:

NOP CR IOR IR 27

1-27

Any A-Bus Register Any S-bus Register

Figure 1-5. 17-bit Data Item Shifts

Each time the data item is to be rotated four bit positions to the left,
the microprogrammer executes either of the following:

*

NOP

NOP
(or)

**

IOR * SRG2

IOR ** SRG2

where * is any R-bus register and ** is any S-bus register. The only
restriction is that the same Scratch Pad Register cannot be specified in
both the S-bus and St-ore fields of the same microinstruction.

1-28

• = Any R-Bus Register Any S-Bus Register

Figure 1-6. 16-bit Data Item Logical Shifts

For example, to rotate the contents of the B-register eight positions to
the left, the microprogrammer would use the following micro­
instructions:

NOP
B
B

CR
NOP
NOP

IOR
IOR
IOR

IR 27
B SRG2
B SRG2

1-29

GENERAL DESCRIPTION DF THE HP MICRDASSEMBLER El

The HP Microassembler translates symbolic source language micro­
instructions into a machine language object microprogram. Source
input is read from either punched cards or paper tape; the object
program is punched on paper tape in a format acceptable to the HP
Micro Debug Editor. The source language provides:

• Alphanumeric mnemonics for each micro-order.

• Symbolic addressing capability.

• A set of assembler control statements for controlling the
assembly process.

The HP Microassembler is designed to operate in a Basic Control
System (BCS) environment and requires a minimum of SK of memory.
In addition, it requires a tape punch device (the teleprinter's tape punch
may be used for this purpose).

The operating instructions for loading and executing the HP Micro­
assembler are as described on pages BCS-11 through BCS-14 of the
BASIC CONTROL SYSTEM module (5951-1391) of the Software
Operating Procedures manual. Even though it is described as being
optional (step 6, page BCS-12), the BCS Relocatable Subroutine
Library must be loaded at step 7.

Note: In an SK BCS environment, neither the magnetic tape
driver nor the buffered version of IOC should be used.
In addition, the user must select the absolute output
option (bit-14 of Switch Register ON) during step 3 of
the loading procedure.

2-1

THE ASSEMBLY PROCESS

The assembling of a source microprogram into an object microprogram
is a two-pass operation. A pass is defined as one processing cycle of the
source input.

In the first pass, the microassembler reads the entire source micro­
program and creates a symbol table (discussed later in this section)
based upon the statement labels that are used. In addition, it checks for
duplicate labels and, if necessary, generates appropriate error messages.

In the second pass, the microassembler again reads the entire source
microprogram and, using the symbol table, resolves all references to
symbolic addresses. In addition, it checks for more errors and, if
necessary, generates appropriate error messages. It is during Pass 2 that
the object program is created. During Pass 2, the assembly listing is
printed and the object microprogram is punched.

There are two types of error messages: warning and fatal. Warning
messages are merely informational, drawing the microprogrammer's
attention to questionable, but not always illegal, microprogramming
usage. Fatal errors, on the other hand, draw the microprogrammer's
attention to illegal microprogramming usage which must be corrected.
All warning and fatal error messages are presented in section 8, "Error
Messages", of this manual.

The assembly listing contains a copy of the symbol table, a copy of the
source language microprogram, plus any error messages. To facilitate
debugging, each error message immediately preceeds the offending
source statement. The assembly listing is discussed in greater detail ,later
in this section.

Usually the microassembler halts at the end of Pass 1 to allow the
operator to reload the source input in the input device. However, if a
magnetic tape drive is available, the microprogrammer may use an
assembler control statement ($PASS2) to cause the input to Pass 1 to
be copied to magnetic tape for use as input to Pass 2.

2-2

PROGRAM LOCATION COUNTER

The microassembler maintains a counter, called the program location
counter, that is used for a$igning absolute control store addresses to
successive microinstructions. By using an assembler control statement
($ORIGIN), the microprogrammer may reset this counter to any
desired value. $ORIGIN statements may appear anywhere within a
source language microprogram. If no $ORIGIN statements are used, the
program location counter is originally set to 4008 and is incremented
by one for each successive microinstruction.

SYMBOLIC ADDRESSING

Each source language microinstruction may include an alphanumeric
statement label. The statement label, if present, is the microinstruc­
tion's symbolic address. Symbolic addresses may be used as jump
addresses in JMP, JSB, and CJMP microinstructions.

During Pass 1 the microassembler compiles a table, called the symbol
table, containing all statement labels used in the microprogram. With
each symbol, the microassembler also records the absolute control store
address assigned to the associated microinstruction. In addition, the
symbol table contains all external symbols that are declared in an
$EXTERNALS assembler control statement.

Note: While the microprogrammer may use symbolic
addresses as jump addresses in JMP, JSB, and CJMP
microinstructions, he may not use a symbolic
address± a constant as a jump address.

Whenever it encounters a symbol as the jump address in a jump
microinstruction, the microassembler consults the symbol table and
replaces the symbolic jump address with the appropriate absolute
control store address.

There are three rules pertaining to the use of symbolic addresses
(violation of any constitutes a fatal error):

2-3

1) Two microinstructions may not have the same statement label.

2) A microinstruction may not have a statement label identical to
a declared external symbol.

3) Symbols used as jump addresses must be defined somewhere in
the microprogram.

A symbol is defined if it is used as a statement label or if it appears in
an $EXTERNALS assembler control statement.

ASTERISK(*) AS AN ADDRESS

The microprogrammer may use an asterisk expre$ion as a jump addre$
in JMP, JSB, or CJMP microinstructions. When used in this manner, the
asterisk means "the address of the present microinstruction". Thus, the
microinstruction:

JMP *+10

causes control to pass to the tenth microinstruction following the JMP
*+ 10 microinstruction. Similarly, the microinstruction:

JMP *-6

causes control to pass to the sixth microinstruction preceding the JMP
*-6 microinstruction.

ASSEMBLY OPTIONS

Through the use of assembler control statements, the microprogrammer
can do the following (the statement mnemonic is shown in
parentheses):

2-4

• Specify what device is to be used for reading the source input
($INPUT).

• Specify what device is to be used for punching the object
program ($OUTPUT).

• Specify what device is to be used for printing the assembly
listing ($LIST).

• Cause the input to Pass 1 to be copied to magnetic tape for use
as input to Pass 2 ($PASS2).

• Suppress all warning messages ($SUPPRESS).

• Reset the program location counter ($ORIGIN).

• Define external symbolic addresses ($EXTERNALS).

• Specify that the debug option is to be used ($DEBUG). The
debug option affects the mode of operation of the HP Micro
Debug Editor. See section 9 of this manual.

The assembler control statements are described in section 5 of this
manual.

ASSEMBLER OUTPUT

The microassembler produces a printed listing and a punched paper
tape. The punched tape contains the object microprogram in a format
acceptable to the HP Micro Debug Editor. The format is illustrated in
Figure 2-2.

The assembly listing is in two parts: a symbol table listing and a source
microprogram listing (error messages, if present, are interspersed among

2-5

the source statements). Figure 2-3 shows a symbol table listing while
figures 2-4 and 2-5 show the first and last pages, respectively, of a
source microprogram listing. All three figures are extracted from the
same assembly listing.

SYMBOL TABLE LISTING

External symbols are listed first. They are in the order in which they
were defined in the $EXTERNALS statements. In the symbol table
listing, an external symbol is easily identifiable by the "X" immediately
following the associated absolute control store addres.5.

The symbols that appear as statement labels within the source micro­
program are listed next. Note that they are listed in ascending order by
absolute control store addres.5.

Specifically, the format of a symbol table listing is as shown in table
2-1.

Table·2-1. Symbol Table Listing Format

Print Positions Contents

1-5 Symbol

9-14 Absolute Control Store Address

15 X (if external symbol)
blank (if internal statement label)

SOURCE MICROPROGRAM LISTING

Every source statement in the microprogram is assigned a decimal line
number. These line numbers appear in print positions 1 through 3 of
each line in the listing.

2-6

Assembler control statements and comments statements are printed,
starting in print position 4, exactly as they appear in the source input.

For microinstruction statements, however, two additional fields are
displayed:

• the absolute control store address assigned to the
microinstruction

• the machine language object code for the microinstruction

The control store address appears in print positions 6 through 9. The
octal representation of the machine language object code appears in
print positions 11 through 20.

The object code is interpreted as follows:

• the leftmost three octal digits represent bits 16 through 23 of
the machine language microinstruction

• the rightmost six octal digits represent bits 0 through 15 of the
machine language microinstruction

This is best illustrated by example. The object code 375 017533
represents the bit pattern shown in figure 2-1.

Figure 2-1. Object Code Illustration

2-7

The source language microinstruction is then printed, starting in print
position 24, exactly as it appears in the source input. Note that if a
teleprinter or an 80-column line printer is used for printing the
assembly listing, the source statements are truncated after columns 48
and 56, respectively.

The final line of the source microprogram listing tells the program
length and the total number of mes8ages in the listing. Note that the
length is specified in octal and it refers to the number of control store
locations that the object program requires (maximum allowable= 4008
per module).

Warning and fatal error m~ages immediately precede the offending
source statement. The m~ages are in the following form:

WARNING xx IN LINE yy
ERROR xx IN LINE yy

where xx is the message number (see section 8 of this manual) and yy is
the line number of the offending statement. -

2-8

Notes: The record length, tape record origin, debug mode
J'.lag, blank word, and checksum each consist of one
computer word (two tape characters).

Each microinstruction consists of two computer
words (four tape characters).

A tape record may contain a maximum of 27 micro­
instructions.

Whenever a new origin is declared (via an $ORIGIN
assembler control statement), a new tape record is
begun.

The tape record length can be from 7 to 59 computer
words.

Figure 2-2. Object Microprogram Tape Format

2-9

2-10

SYMBOL
STOW
T8L1
LOCH
GETC0
GOONf
TAL
RELX
TAL1
LOH
STCH
PUTC0
PUTC5
PUTX
PL EFT
us
TASX
TAS1
TASE
SCAN
8CANL
HOVE
HOl/0
HOllEL
HOVF.:O
HOllEI
HOl/5
HOV6
SAl/E
RESTO
,ENTP
,ENTR
1 ENTL
,Ef'.ITC
,ENTX
GE TAO
GET AL
GET AX
OPGET

TA8Lf
001000
001020
001031
001033
001043
001046
001052
031061
0!1'11077
001104
001110
001116
e01 t23
001125
(,!Al 13'4
0011'40
0011•2
01il1163
001165
AllJl 172
001203
lil0120•
001226
AA1246
A01241
0il1250
0012!51
01'11261
01il1301
001320
001322
001344
i'llH3!51
i'l013!54
0013!56
0013!51
001361
0"1363

Figure 2-3. Symbol Table Listing

1$0RIGtN•1000

2* STOW • STORE WORD INTO A THREADED BUFFER
3 111100 37!5 1'117534 STOW JSB T.lS CK ADDR 0

4 111101 037 172047 A IOR S4 Rt i'Bl 54 i" ioiORD ADDR
5 1002 160 060712 F 84 DEC H cw NHPV STORE WORD
6 1003 130 057002 Q CR SUB A 2 If ILLEGAL RESET
7 1004 051 171375 B RRS IOR T EOP
IS 1!il05 030 137002 CR ADD A 2 UPDATE ADDR •
9• PRIMARY JMP TABLE

10 1006 355 03742!il AOR JMP TBLl
11 t 007 37!5 0376'1!3 JMP MOVE.
12 1010 375 037565 JHP SCAN
13 tilt 1 355 fil3743t ADA JHP LOCH
14 1012 355 037504 ADA JMP STCH
15 1013 377 1137413 JMP ••400
16 1014 377 037414 JMP ••41110
17 Ul15 377 037415 JMP ••400
18 1016 377 037416 JMP ••401!
19 1''117 377 037417 JMP ••400
20• SfCONDARY JHP TABLE
21 !020 377 176775 TBLl IOR B EDP I 0 D0

22 1021 370 057002 CR SUB A 2
23 1022 375 03740111 JMP STOW
24 1023 375 037477 JHP LOW
25 1024 375 037477 JMP LOW
26 1025 37!5 03766 ! JHP SAVE
21 1026 37!5 037701 JMP RESTO
28 1027 37!5 0377;>2 JMP 0 ENTR
29 tlll30 375 037721"1 JMP 0 ENTP
3h
31•
32• GETC • GET A CHARACTER
33•
34• IR(lll13)J 0 • THREADED, NO RE.LE.ASE
35• 1 • THREADED, RELEASE
36• 2 ' LINEAR
37•
38 1031 377 177777 LOCH IOR JMP PADING
39 tlll32 37!5 11117446 JSB TAL CK ADDR
40 1033 037 1221'157 GETC0 A LWF S4 Rt S4 111 WORD ADDR
41 1034 361 170757 u IOR M RW START READ
42 1035 036 117377 INC A UPDATE ADOR
43 1036 371 171427 CR IOA IA 27 IRll ALF
44 1037 345 t764M T IOR B RSS FLG

Figure 2-4. Source Microprogram Listing (First Page)

2-11

321 1340 362 155377 53 NOR Q OR ilLLOWtlJ 151
322 1341 J61 176777 S4 IOR li CK FOR ZERO
323 1342 367 172777 Sl IOR SJ
324 1343 !tl35 034J51 JMP p

0 ENTC
325•
326 1344 J75 1'117756 0 ENTI. JS8 GET AD 9 t 111NEXT PARM
327 1345 16'! (116(11712 54 DEC cw NHPV STORE NEXT PARM
328 1346 375 fd37754 JHP 0 ENTX (HEH VIOLATION)
329 1347 367 171377 51 IOR
330 t350 3~0 11b777 S4 INC B INC OUT PTR,STO TEH
331 1351 374 114377 0 ENTC p INC p INC IN PTR
332 1352 136 1153157 INC Q TBz OONE1
333 1353 075 032344 JHP 54 ,ENTL NOrRESET OUTPTR, Go
334 1354 365 174375 0 tNTX S2 IOR p EOP EXIT, RESTORE P
335 1355 363 117J77 SJ IOR
336•
337• Gt HD AND OPGfT
338 t356 375 170757 GfTAO p IOR M RW GET ADOR
339 1357 345 173763 GETAL T IOR St NEG INDIRECT?
340 1361! 377 057777 RSB NO, EXIT
34t 1361 367 170757 GE TAX St IOR RW YtS, READ AGAIN
342 136~ 375 11137757 JMP GET AL
343•
344 1363 367 171rl757 OPGET S1 IOR RW Gl:.T PARit.M
345 1364 345 053~71 T RSB 52
346•
347• ENO
348SEND
**NO ERRORS••

Figure 2-5. Source Microprogram Listing (Last Page)

2-12

SYMBOLIC STATEMENT FORMAT m

Source microprograms must be coded using the symbolic statement
format described in this chapter.

Each symbolic statement is 80 character positions long and contains the
fields shown in table 3-1.

Table 3-1. Symbolic Microinstruction Format

Field Character Positions

Label 1-5
R-bus 7-9
S-bus 11-14
Function 16-19
Store 21-24
Special 26-29
Skip 31-34
Comments 36-80

Figure 3-1 illustrates the symbolic microinstruction format on an
80-column punched card.

3-1

Label R-Bus S-Bus Function Store Special
Field Field Field Field Field Field

00000 c 0 0 0000 0 0 0 0 0000 0 0 0 0

• 1111 111 1111 Jill llli 1111

12222 2 2 2 2 2 2 2 2222 2 2 2 2 2 2 2 2 2 2 2 2 222222222227222222

33333 333 3333 3 3 3 3 333 3 3 3 3 3 3333 3 33 3 3 3 3 3 3 3 33 3 3 3) J 3

4 44 44 444 44 4 4 4444 4 44 4 H44 4444 H444444.J4444<t~·l14

55555 5 5 5 5555 5555 5555 5 5 5 5 5555 5 5 5 5 5 5 5 ~ 5 5 5 5 5 ~ 5 j 5 ~

6SG6o ~ 6 6 6 6 6 6 6 6 6 6 66H 6 6 6 6 6660 6 Ii 6 6 6. s 6 6 6 6 ti 5 • :, ~ J b

17 77 7 771 77 77 7 7 71 177 7 77 77 7 717 77777777777777777;

88888 8 68 8 8 8 8 8 88 6 as & a 8 8B 8 8 s 8 8 8 8 8 il RR 8 8 8 8 8 8 8 8 8 8 8 8

9 9 9 g999 9 9 9 9 9 s 39 ~ 9 9 9 9 9 ~ 9 9 9 S g ~ ~ 9 9 9 G 9 9 9 9 ... 1' ll!JH 1,1;:1u 21222324 !!l2Jl34 ~31~,~~c~~~~~qh~~~~

Figure 3-1. Symbolic Microinstruction Format

SYMBOLIC STATEMENT FIELDS

LABEL FIELD

This field is used for assigning a symbolic address to a microinstruction.
Statement labels are used as jump addresses in JMP, JSB, and CJMP
microinstructions. A valid statement label consists of 1 to 5 alpha­
numeric characters, of which the first character is not a dollar sign($)
or an asterisk (*). Statement labels must begin in character position 1
and may not contain embedded blanks. The Label field may, of course,
be entirely blank (i.e., a microinstruction may be unlabeled).

An asterisk in character position 1 specifies that the remaining 79
character positions contain an alphanumeric comment. Such statements

3-2

appear in the source microprogram listing but are otherwise ignored by
the microassembler.

A dollar sign in character position 1 specifies that the source statement
is an assembler control statement. See section 5 of this manual.

A-BUS FIELD

This field corresponds to the R-bus field of an HP 2100 microinstruc­
tion. The purpose of the R-bus field is summarized in section 1 of this
manual.

The R-bus field may be entirely blank or may contain any of micro­
order mnemonics shown in column 1 of table 3-2. The effect of each
mnemonic is described in section 4 of this manual. If a mnemonic is
used, it must begin in character position 7. If the R-bus field is entirely
blank, the microassembler automatically supplies a NOP.

S-BUS FIELD

This field corresponds to the S-bus field of an HP 2100 microinstruc­
tion. The purpose of the S-bus field is summarized in section 1 of this
manual.

The S-bus field may be entirely blank or may contain any of the
micro-order mnemonics shown in column 2 of table 3-2. The effect of
each mnemonic is described in section 4 of this manual. If a mnemonic
is used, it must begin in character position 11. If the S-bus field is
entirely blank, the microassembler automatically supplies a NOP.

FUNCTION FIELD

This field corresponds to the Function field of an HP 2100 micro­
instruction. The purpose of the Function field is summarized in section
1 of this manual.

3-3

The Function field may be entirely blank or may contain any of the
micro-order mnemonics shown in column 3 of table 3-2. The effect of
each mnemonic is described in section 4 of this manual. If a mnemonic
is used, it must begin in character position 16. If the Function field is
entirely blank, the microassembler automatically supplies an IOR.

STORE FIELD

This field corresponds to the Store field of an HP 2100 microinstruc­
tion. The purpose of the Store field is summarized in section 1 of this
manual.

The Store field may be entirely blank or may contain any of the
micro-order mnemonics shown in column 4 of table 3-2. The effect of
each mnemonic is described in section 4 of this manual. If a mnemonic
is used, it must begin in character position 21. If the Store field is
entirely blank, the microassembler automatically supplies a NOP.

SPECIAL FIELD

This field corresponds to the Special field of an HP 2100 microinstruc­
tion. The purpose of the Special field is summarized in section 1 of this
manual.

The Special field may be entirely blank or may contain any of the
micro-order mnemonics shown in column 5 of table 3-2. The effect of
each mnemonic is described in section 4 of this manual. If a mnemonic
is used, it must begin in character position 26. If the Special field is
entirely blank, the microassembler automatically supplies a NOP.

SKIP FIELD

This field corresponds to the Skip field of an HP 2100 micro­
instruction. The purpose of the Skip field is summarized in section 1 of
this manual.

3-4

The Skip field may be entirely blank or may contain any of the
micro-order mnemonics shown in column 6 of table 3-2. The effect of
each mnemonic is described in section 4 of this manual. If a mnemonic
is used, it must begin in character position 31. If the Skip field is
entirely blank, the microassembler automatically supplies a NOP.

Table 3-2. Valid Mnemonics

R-bus S-bus Function Store Special Skip

NOP NOP IOR NOP NOP NOP
A p XOR M CNTR EOP
B S1 AND T cw COUT
Q S2 NOR IR ECYN CTR
F S3 LWF A ECYZ CTRI

AAB S4 ARS B IOG1 FLG
CAB M LGS Q L1 ICTR
co T CRS F R1 NEG

ADR JMP p RSS NMPV
CNTR CJMP S1 RW ODD

CL JSB S2 AAB OVF
CR RSB S3 ASG1 RPT

CIR ADD S4 ASG2 TBZ
IOI ADDO 100 LEP UNC

RRS SUB AAB SRG1 AAB
COND MPY CAB SRG2 NAAB

DIV
DEC
INC

INCO
SOV
CLO
SFLG
CFLG
RFE
RFI
P1A

3-5

w a,

00 -8. a
C':l
0
0.. 5·

(JQ

l'%j
0

8

HEWLETT•PACKARD 2100 MICROASSEMBLER CODING FORM

+- ~-

l- i- 1- -I+
I- -!-- - +

I-· f- 1-­

-1--

t-++-+-+-t-<-+-+- -'--'--"""--'-'---'-'""--'"-'-"--'-''--'--'-'-4--~---- I-

++- +-- +-

-t-l--+-iH-H-""4-+t-++-H-t-+-H!I--++- ~

t- F

LINI! Tl:lllMINATllD •V fl.!:TURN/\,.INI!: l"l!l!D (A/Ll'I
UN& 15 OCLl!Tl'.0 •V lllUBOUT 9E.,.OAE A/LI"

-t---

+ t-

t-

-+- + +--+­
+---t-t-·t--t·++--t·-t-t- ++-+--

+­
+

+---- ++++--

+

1--

I -t­
t-+--

+-
+- +- tt

+--

t- +~ +- ++--

i-- t h

+-
I-

COMMENTS FIELD

This field may be freely used by the microprogrammer to introduce
alphanumeric comments into the assembly listing. Other than this, the
Comments field is ignored by the microassembler.

STANDARD CODING FORM

Hewlett-Packard provides a standard form to facilitate the coding of
source microprograms. This form is illustrated in figure 3-2.

3-7

MICRO-ORDERS II

This section describes what each micro-order does. It is assumed that
the microprogrammer has read both the 2100 Compu"ter Micro­
programming Guide and the overview presented in section 1 of this
manual. A few of the descriptions (e.g., MPY, DIV, etc.) refer the
reader to the 2100 Computer Microprogramming Guide.

To facilitate learning, the more esoteric information is shaded. The
reader should concentrate first on the unshaded material. The shaded
information pertains mainly to, but is not limited to, module #0
programming. In conjunction with such descriptions, the reader should
study section 7, "Miscellany", of this manual.

R-BUS FIELD

The following micro-order mnemonics are valid in the R-bus field of an
HP 2100 microinstruction:

NOP A B Q F

NOP

Reads all zeros onto the R-bus.

4-1

A

Reads the contents of the A-register onto the R-bus. The information in
the register is not altered.

B

Reads the contents of the B-register onto the R-bus. The information in
the register is not altered.

a

Reads the contents of the Q-register onto the R-bus. The information in
the register is not altered.

F

Reads the contents of the F-register onto the R-bus. The information in
the register is not altered.

s., ~e'' cont.en~ (~
. , , .,,,',;~~gt,'i1P9~ 1••w, , ',., '',
;~·rrget (both' cannotbeset·at the·same '. ~=':':1' ': ,~ :: . ~:. 'L"=< ;' '." :> ;. '.? \: ,.' ': ·;:<,"· ; ri :i ·:; :· ·:'. ·:' J '.·:' :·~r / ~· ;_:'. :1;

4-2

co

;~'.~~::c4n~ents.9t~.··.Q-~:()At9 .. tl;l~J!~.~:ifJ>. .. ,., ~)!iR~rp::
·::Jl,)~~ji<;>li.<fle~l:e',r·ls: '.·a ·01).e·and·tl,le: tnqex'.:(lip-flpp::is.S(W ·.iQ.f9tnia.;·
;~~:YJ~~~~~·.~i,l~~~::~·;~~·#~~~~~:;::~:·:~···::~::::~ .. :.:: .. :.:.·.·:;::::~·:::'.:~~::::::.::::·::.·::tL·>::::>::·:~:::.~:::,.:~ ·.: .. :.~!

CAUTION

The CQ micro-order is not intended for use in special
microprogramming. The use of CQ will effect the
operation of module #0 and consequently will cause
incorrect operation of HP software. To allow con­
tinued use of existing software, it will be necessary to
rewrite those instruction routines in module #0
which use the Q-register. As noted elsewhere in this
manual, such changes will void Hewlett-Packard
warranties and support quarantees.

4-3

S-BUS Fl ELD

The following micro-order mnemonics are valid in the S-bus field of an
HP 2100 microinstruction:

NOP p Sl S2 S3 S4 M T ADR

CNTR CL CR CIR IOI RRS

Reads all zeros onto the S-bus.

Reads the contents of the P-register onto the S-bus. The information in
the register is not altered.

Reads the contents of Scratch Pad Register 1 onto the S-bus. The
information in the register is not altered.

S2

Reads the contents of Scratch Pad Register 2 onto the S-bus. The
information in the register is not altered.

4-4

Reads the contents of Scratch Pad Register 3 onto the S-bus. The
information in the register is not altered.

Reads the contents of Scratch Pad Register 4 onto the S-bus. The
information in the register is not altered.

Reads the contents of the M-register onto bits 0-14 of the S-bus (bit 15
of the S-bus is set to a zero). The information in the register is not
altered.

Reads the contents of the T-register onto the S-bus. The information in
the register is not altered.

Reads bits 0-9 of the CPU Instruction Register onto bits 0-9 of the
S-bus. The information in the register is not altered.

4-5

If bit 10 of the CPU Instruction Register is set (1), then bits 10-15 of
the P-register are read onto bits 10-15 of the S-bus. The infonnation in
the P-register is not altered. If bit 10 of the CPU Instruction Register is
clear (0), then bits 10-15 of the S-bus are set to zeros.

Reads the contents of the counter onto bits 0-4 of the S-bus (bits 5-15
of the S-bus are set to zeros). The information in the counter is not
altered.

Reads an eight-bit constant onto bits 8-15 of the S-bus (bits 0-7 of the
S-bus are set to zeros). The constant is extracted from bits 0-7 of the
microinstruction. Note that when CL is coded in the S-bus field, nonnal
execution of the Special and Skip fields is inhibited.

Reads an eight-bit constant onto bits 0-7 of the S-bus (bits 8-15 of the
S-bus are set to zeros). The constant is extracted from bits 0-7 of the
microinstruction. Note that when CR is coded in the S-bus field,
normal execution of the Special and Skip fields is inhibited.

4-6

Reads the contents of the Central Interrupt Register onto bits 0-5 oi
the S-bus (bits 6-15 of the S-bus are set to zeros). The information in
the register is not altered.

Reads the contents of the I/0-bus onto the S-bus.

Reads the contents of the R-bus onto the S-bus.

• u .. t~el •. ~~aare~~le '. t1ip~ftd~ ':1~ .·se~;· t~ . confu~ts ·.·of the
. B~.,egister.~ read onto both th~ R- and. S*buse$.

, ' , > , ,
" ·.,' ,

• 1t neither;; flip4lop :is set, the coritf;)nts .a·f the ~~reg~te? ·are. read
onto the 8-bus. · ·

4-7

FUNCTION FIELD

The following micro-order mnemonics are valid in the Function field of
an HP 2100 microinstruction:

Logical operators: IOR XOR AND NOR
Shift operators: LWF ARS LGS CRS
Jump operators: JMP CJMP JSB RSB
Arithmetic operators: ADD ADDO SUB

DEC INC INCO
Flip-flop operators: SOV CLO SFLG CFLG RFE

Phase operators:

The Function field cannot contain a NOP. By convention, an IOR is
used whenever a Function field pseudo-NOP is desired. When an IOR is
used in this manner, a logical "inclusive OR" is still performed by the
function generator.

4-8

Refer to figure 1-1. The function generator and the shifter use a pair of
inputs: the contents of the R-bus and the contents of the S-bus. If a
non-shifting operation is specified (e.g., ADD, IOR, AND, etc), the
result of the operation passes from the function generator onto the
ALU-bus, into the shifter, and then onto the T-bus without being
altered. If a shift operation is specified, the result is available as
described under the individual shift mnemonics (LWF, ARS, LGS, and
CRS) later in this section.

LOGICAL OPERATORS

Causes the function generator to perform a logical "inclusive OR".

Causes the function generator to perform a logical "exclusive OR".

Causes the function generator to perform a logical "AND".

4-9

Causes the function generator to perform a logical "NOR". If a NOP is
specified in either the R-bus or S-bus field, the complement of the
other is obtained. If both the R-bus and S-bus fields contain a NOP, the
function generator passes all ones onto the ALU-bus.

SHIFT OPERATORS

The LWF micro-order allows the programmer to shift the contents of
the Flag flip-flop in conjunction with the contents of a register.

If Ll is coded in the Special field, the contents of the Flag flip-flop and
the contents of the register together are rotated (circular shift) one bit
position to the left. The flip-flop bit is shifted into bit 0 of the register,
bit 15 of the register is shifted into the flip-flop, and bits 0-14 of the
register are shifted one position to the left.

If Rl is coded in the Special field, the contents of the Flag flip-flop and
the contents of the register together are rotated (circular shift) one bit
position to the right. The flip-flop bit is shifted into bit 15 of the
register, bit 0 of the register is shifted into the flip-flop, and bits 1-15 of
the register are shifted one position to the right.

LWF also causes the function generator to perform an IOR.

4-10

Causes an arithmetic shift to be performed on a 32-bit data item.

The mnemonic in the Special field determines the direction of the shift
(Rl =right; Ll =left).

For right shifts, the B- and A-registers are used: the B-register contains
the sign bit plus the high-order fifteen data bits and the A-register
contains the low-order sixteen data bits. All 32 bits are shifted one bit
position to the right (the sign bit is unchanged, bit 0 of the A-register is
lost).

The required microcoding is

B - ARS B Rl *

The Skip field (*) is available for any valid use.

For left shifts, the F - and Q-registers are used: the F -register contains
the sign bit plus the high-order fifteen data bits and the Q-register
contains the low-order sixteen data bits. The sign bit is unchanged and
the 31 data bits are shifted one bit position to the left (bit 14 of the
F-register is lost, bit 0 of the Q-register is set to a zero).

The required microcoding is

F - ARS F Ll *

The Skip field (*) is available for any valid use.

Causes a logical shift to be performed on a 32-bit data item.

4-11

The mnemonic in the Special field determines the direction of the shift
(Rl =right; Ll =left).

For right shifts, the B- and A-registel'S are used: the B-register contains
the high-order sixteen bits and the A-register contains the low-order
sixteen bits. All 32 bits are shifted one bit position to the right (bit 15
of the B-register is set to zero, bit 0 of the A-register is lost).

The required microcoding is

B - LGS B Rl *

The Skip field (*) is available for any valid use.

For left shifts, the F- and Q-registel'S are used: the F-register contains
the high-order sixteen bits and the Q-register contains the low-order
sixteen bits. All 32 bits are shifted one bit position to the left (bit 15 of
the F-register is lost, bit 0 of the Q register is set to a zero).

The required microcoding is

F - LGS F Ll *

The Skip field(*) is available for any valid use.

Causes a circular shift to be performed on a 32-bit data item.

The mnemonic in the Special field determines the direction of the shift
(Rl =right; Ll =left).

For right shifts, the B- and A-registers are used: the B-register contains
the high-order sixteen bits and the A-register contains the low-order
sixteen bits. All 32 bits are rotated one bit position to the right (bit 0
of the A-register is shifted into bit 15 of the B-register).

4.12

The required microcoding is

B - CRS B Rl *

The Skip field(*) is available for any valid use.

For left shifts, the F- and Q-registers are used: the F-register contains
the high-order sixteen bits and the Q-register contains the low-order
sixteen bits. All 32 bits are rotated one bit position to the left (bit 15
of the B-register is shifted into bit 0 of the A-register).

The required microcoding is

F - CRS F Ll *

The Skip field is available for any valid use.

JUMP OPERATORS

Causes control to pass to the specified jump address.

Causes control to pass to the specified jump address only if an I/O
interrupt or a front panel halt has occurred. In single cycle operation,
the computer halts unconditionally upon execution of a CJMP micro­
order (this is useful in diagnostics) and the jump is not executed.

4-13

Causes control to pass to the specified jump address. The address of the
next sequential microinstruction is saved as a return address. This
micro-order is used for passing control to a subroutine.

Causes control to pass to the return address. This micro-order is used
for exiting from a subroutine.

ARITHMETIC OPERATORS

Adds the contents of the S-bus to the contents of the R-bus (the
overflow logic is disabled). The overflow logic is discussed under
ADDO, below.

Adds the contents of the S-bus to the contents of the R-bus (the
overflow logic is enabled). If the sign (bit 15) of the R- and S-buses are

4-14

the same (both positive or both negative) and the sign of the ALU-bus
is different, the Overflow flip-flop is set. Note that if the Overflow
flip-flop is set prior to execution of an ADDO micro-order and the
ADDO operation does not result in an overflow condition, the Over­
flow flip-flop is not cleared.

Subtracts the contents of the S-bus from the contents of the R-bus in
two's complement form.

Subtracts the contents of the S-bus from the contents of the R-bus in

4-15

one's complement form. If the S-bus contains all zeros, the contents of
the R-bus are decremented by one.

Adds the contents of the S-bus to the contents of the R-bus and
increments the sum by one (the overflow logic is disabled). The over­
flow logic is discussed under ADDO, above.

Adds the contents of the S-bus to the contents of the R-bus and
increments the sum by one (the overflow logic is enabled). The over­
flow logic is discussed under ADDO, above.

FLIP-FLOP OPERATORS

Sets the Overflow flip-flop on (also causes the function generator to
perform an IOR).

4-16

Sets the Overflow flip-flop off (also causes the function generator to
perform an IOR).

Sets the Flag flip-flop on (also causes the function generator to perform
an IOR).

Sets the F1ag flip-flop off (also causes the function generator to per­
form an IOR).

Exchanges the contents of the Flag and Extend flip-flops (also causes
the contents of the R-bus to be read onto the T-bus).

4-17

CAUTION

The RFI micro-order is not intended for use in special
microprogramming. The use of RFI will affect the
operation of module #0 and consequently will cause
incorrect operation of HP software. To allow con­
tinued use of existing software, it would be necessary
to rewrite those instruction routines in module #0
which use the Q-register. As noted elsewhere in this
manual, such changes will void Hewlett-Packard
warranties and support guarantees.

PHASE OPERATORS

STORE FIELD

The following micro-order mnemonics are valid in the Store field of an
HP 2100 microinstruction:

NOP M T IR A B Q F p Sl
82 83 84 100

4·18

No store.

Stores the contents of bits 0-14 of the S-bus in the M-register.

Stores the contents of the S-bus in the T-register.

Stores the contents of the S-bus in the CPU Instruction Register.

Stores the contents of the T-bus in the A-register.

Stores the contents of the T-bus in the B-register.

4-19

Stores the contents of the T-bus in the Q-register.

Stores the contents of the T-bus in the F-register.

Stores the contents of the T-bus in the P-register.

Stores the contents of the T-bus in Scratch Pad Register 1.

Stores the contents of the T-bus in Scratch Pad Register 2.

Stores the contents of the T-bus in Scratch Pad Register 3.

4-20

Stores the contents of the T-bus in Scratch Pad Register 4.

Reads the contents of the S-bus onto the I/0-bus.

SPECIAL Fl ELD

The following micro-order mnemonics are valid in the Special field of
an HP 2100 microinstruction:

4-21

NOP

Ll

No operation.

CNTR

Rl
cw
RSS

ECYN

RW

ECYZ IOGl

Reads bits 0-3 of the S-bus into bits 0-3 of the counter (bit 4 of the
counter is set to a zero).

Initiates a "write-into-memory" operation. See the discussion
"Accessing Core Memory Locations" in section 1 of this manual.

Sets the Carry flip-flop if the T-bus does not contain all zeros. When the
Carry flip-flop is set, the P-register is automatically incremented by one
upon exiting from the microprogram.

4-22

Sets the Carry flip-flop if the T-bus contains ali zeros. \ifoen the Carry
flip-flop is set, the P-register is automatically incremented by one upon
exiting from the microprogram.

Initiates an input/output operation. See the discussion "Input/Output"
in section 1 of this manual.

Specifies a left shift. See the description of the shift mnemonics (LWF,
ARS, LGS, and CRS) earlier in this section.

Specifies a right shift. See the description of the shift mnemonics
(LWF, ARS, LGS, and CRS) earlier in this section.

Reverses the condition specified in the Skip field. For example, if the
Skip field contains TBZ (skip if the T-bus contains all zeros), an RSS in

4-23

the Special field changes the skip condition to "skip if the T-bus does
not contain all zeros".

Initiates a "read-from-memory" operation. See the discussion "Accessing
Core Memory Locations" in section 1 of this manual.

RW also enables the setting of the A-Addressable and B-Addressable
flip-flops. See the discussion of AAB, below.

~, t~*f !'setting <>,ft~ ,~.;A-d~~\e ~q:J
Q of tit~ :ALU-b~ is a ~er~ ~4:'~~~11714,;;
~•~\)le piJ>.;flq,':ts ~t- ~r ~it;;s ! , ,

! ;.14 oUbe T:-bus1 ate ~I:ze19s:>J~ If~:Ad

! ':~J>1~~jt1t,~ skip: ~nd ~nc~~~~ft~gic s~~!ft.~.d bf ',~jts 0~2\ ,~~ 'the/c~H'":
, ;~~~~ti~ll Registe:r:, --r' , , , · ,,, ,, , ·

4-24

SKIP FIELD

The foiiowing micro-order mnemonics are valid in the Skip field of an
HP 2100 microinstruction:

NOP

NEG

EOP COUT

NMPV ODD

CTR

OVF
CTRI

RPT

FLG
TBZ

ICTR

UNC

4-25

NOP

No skip.

EOP

End-of-phase. This micro-order is used for exiting from a micro­
program. The exit occurs after the next sequential microinstruction is
executed.

COUT

Skips the next sequential microinstruction if a carry-out from bit 15 of
the ALU-bus occurs during execution of the current microinstruction.
A carry-out can result from an ADD, ADDO, SUB, INC, INCO, MPY or
DIV function.

CTR

Skips the next sequential microinstruction if bits 0-3 of the counter are
all ones (octal 17). Bit 4 of the counter is ignored. The contents of the
counter are not altered.

CTRI

Skips the next sequential microinstruction if bits 0-3 of the counter are

4-26

all ones (octal 17). Bit 4 of the counter is ignored. The counter is
always incremented by one after the test.

FLG

Skips the next sequential microinstruction if the F1ag flip-flop is set.
The setting of the flip-flop is not altered. FLG tests the state of the
flip-flop as it was just prior to execution of the current
microinstruction.

ICTR

Increments the counter by one.

NEG

Skips the next sequential microinstruction if the output of the function
generator is negative (if bit 15 of the ALU-bus is set).

NMPV

Skips the next sequential microinstruction if either of the following is
true:

a) Memory protect is. disabled and both the A-Addressable and
B-Addressable flip-flops are clear.

4-27

b) Memory protect is enabled, no memory protect violation is
detected, and both the A-Addressable and B-Addressable flip­
flops are clear.

ODD

Skips the next sequential microinstruction if the output of the function
generator is odd (if bit 0 of the ALU-bus is set).

OVF

Skips the next sequential microinstruction if the Overflow flip-flop is
set. OVF does not alter the setting of the flip-flop. OVF tests the state
of the Overflow flip-flop as it was just prior to execution of the current
microinstruction.

RPT

Causes the next sequential microinstruction to be executed repeatedly
until the condition specified in its Skip field is true.

Some restrictions:

• The next sequential microinstruction must not contain TBZ in
its Skip field.

• The next sequential microinstruction must not have an add·type
mnemonic (ADD, INC, etc.) in its Function field if its Skip field
contains NEG or ODD.

4-28

Both of the above restrictions apply even if the skip condition is
reversed (RSS in the SpEtcial field).

TBZ

Skips the next sequential microinstruction if the T-bus contains all
zeros.

UNC

Skips the next sequential microinstruction unconditionally.

4-29

ASSEMBLER CONTROL STATEMENTS m
The nine statements described in this section control the assembly
process. Each assembler control statement must begin in character
position 1 and may not contain embedded blanks.

With the exception of $ORIGIN and $END, all assembler control
statements should appear ahead of the first executable
microinstruction.

There may be more than one $ORIGIN statement. They may be placed
anywhere in the source microprogram.

The $END statement must be the final statement in the source
microprogram.

If an erroneous assembler control statement is detected, the Micro­
assembler prints BAD CONTROL STATEMENT and the erroneous
statement on the system console device and then the computer halts.
The user is expected to repunch the erroneous card, place it at the front
of the deck in the input hopper, and press the RUN switch on the'
computer front panel.

$INPUT=x

1l =unit reference number of a card reader or paper tape reader.

Causes all subsequent input to be read through the specified device.

When the assembly process is first begun, the Microassembler expects
the first source statement to be entered through the system console
device. The user may enter the whole source program through the
system console device. Most often, however, he merely enters an

5-1

$INPUT command specifying through what card reader or paper tape
photoreader the rest of the source program is to be read.

$PASS2=x

.!. =unit reference number of a magnetic tape drive.

Causes all subsequent input to be recorded on magnetic tape for use as
input to Pass 2. If this statement is omitted, the computer halts at the
end of Pass 1 to allow the operator to reload the source microprogram
in the $INPUT device.

$LIST=x

.!. =unit reference number of a printing device.

Causes the assembly listing to be printed by the specified device. If this
statement is omitted, xis assumed to be 6.

$0UTPUT=x

.!. = unit reference number of a paper tape punch.

Causes the object code produced by the assembler to be routed to the
specified device. If this.,statement is omitted, xis assumed to be 4.

$EXTERN ALS=name 1 A octal address 1, ... ,name n A octal address n

where~ is a space, name 1 through name n are symbols, and octal
address 1 through octal address n are control store addresses.

Assigns symbolic addresses to control store addresses that are external
to the program being assembled. External symbols must conform to the
rules for forming statement labels. Each symbol in the list, along with
the associated octal address, is entered into the symbol table. Once
defined in this manner, external symbols rr.ay be u.sed as jump addresses
i!l JMP, JSB, and CJMP microinstructions.

5-2

$SUPPRESS

Suppresses all warning error messages. Fatal error messages are not
affected.

$DEBUG

Specifies that the debug option is to be used. Note that the debug
option requires that the microprogram be smaller than 2728 (186 10)

locations long. See Section 9, 'Micro Debug Editor,' of this manual for
further details.

$0RIGIN=xxxx

xxxx = octal control store address

Sets the program location counter in the microassembler to the speci­
fied value. If more than one $ORIGIN statement is present, the
specified control store addresses must occur in ascending order.

$END

Signals the end of the source microprogram.

5-3

SAMPLE MICROPROGRAMS m

This section presents four sample microprograms:

1) A "save registers" microprogram that stores the contents of all
the registers in core memory locations.

2) A "block move" microprogram that moves a group of computer
words from one place in core memory to another.

3) A "table search" microprogram that scans a group of computer
words in core memory until a specified character is found.

4) A "teleprinter output driver" microprogram that sends charac­
ters from a user-specified output buffer in core memory to the
teleprinter.

Each example is presented in the following manner. First, there is a
prose description telling what the sample microprogram does, how it is
called, and what information it passes to the calling program. Then
there is a listing of the actual microinstructions. Finally, there is a
microinstruction by microinstruction commentary describing how the
microprogram works. To aid the reader, both the microprogram listing
and the microinstruction commentary are divided into functional
segments. If several microinstructions together perform a specific task,
the particular group of microinstructions is easily discerned.

'Ille examples are meant to be documented thoroughly enough so that
no additional help is required to understand them.

6-1

REGISTER SAVE MICROPROGRAM

'Ibis sample microprogram copies the contents of all the registers into
core memory locations as shown in Table 6-1.

c.i rnw b7 PUT b7 IN F
-i"::O IUR L~ u~C AOD~tSS LOC ~7

I Ok
51 1011 STORE 51 I"' LOC ti7

______ __........_ _____ " __ ,............_.---'--_""""'--"".........__._ ___ . ___
1111(

><w s ro..i
10"

SJ Iui<

l'fl<:i !Uk 11
lQR

• Sol lUH T

l NC
Rt<S !Ur<

I Oi<
>i"S 1 UR

l "'C.llf "IE'-T F
cw U"'C AOOllESS cot 71

STORt S3 I~ LOC 71

C~ UIW!; AOVM:.SS t.O' 7t

ITi~t .S• :t1t1 l,.l)t 7t

l 'lC RE."~ 'Jl F
C~ UN~ AOO,.tSS LUC 7~

STO><E A IN LOC 7J

fo It<£ f' lNC~f)!UIT F
F ~ifS. IOI< h Cw u~C A01.1fiU$ LllC.: 1A

Hl~
tl 't~S loit ·:t !&1oltf: a U11 LeC 7it ___.........___. ____ _______ ~........_.~_:.._J-------

INC
.. i.s ro.i

IOI<
I Of.I

I"'t~E.,.tq F
c. u~c ~u~~tss LDL 7~

STORE ~ lN LDC 7~

F IN!C . f l'Nt:IU·.t<1t'tll f
F fH(!i,;; tU,lt '!lit CJif 1.t"'~ ACIJMt~)L® '1i ·

lOlt
___ _!_:_.;~'' l~. l!._,____,-'-...._.;~,Qft~ 4~ 1.0C ·1~-~·..c..-~

6-2

St IO>!
1011

i<i.S IUR
l!l"

cw u"c •DORE.SS LOC 77

EDP STORE f IN LOC 77
t-nT

Figure 6-1. Register Save Microprogram

Table 6-1. Register Save Locations

Register

S1
S2
S3
S4
A
B
p
Q

F

Core Memory
Locations (octal)

67
70
71
72
73
74
75
76
77

The register save microprogram is called by other microprograms
through use of the JSB micro-order. No parameters are passed.

MICROINSTRUCTION COMMENTARY

DUMP IOR M CW

IOR

F RAS IOR T -

- CR IOR F 67

F RRS IOR M CW

IOR

- S1 IOR T -

UNC Address core memory location O.

Store the contents of the
F-register in core memory
location O.

Store the value 67 (octal) in the

UNC F-register. Address core memory
location 67.

Store the contents of Scratch Pad
Register 1 in core memory
location 67.

6-3

F • INC F Increment the F-register.

F RRS IOR M cw UNC Address core memory location

IOR 70.
. S2 IOR T Store the contents of Scratch Pad

Register 2 in core memory
I ocation 70.

And so forth •••

F • INC F Increment the F-register.

F RRS IOR M cw UNC Address core memory location
IOR 76.

Q RRS IOR T Store the contents of the
0-re{jster in core m emory
location 76.

F • INC S1 . Increment the F-re{jster and
store the result in Scratch Pad
Register 1.

IOR M RW Address core memory location O.
. T IOR F Restore the F-register from core

memory location O.

. S1 IOR M cw UNC Address core memory location

IOR 77.

F RRS IOR T EOP Store the contents of the
IOR F-register in core memory

location 77 and exit.

BLOCK MOVE MICROPROGRAM

This sample microprogram moves a group of computer words from one
place in core memory to another. When the microprogram receives
control, it is assumed that:

6-4

• The number of words· to be moved is in the A-register (in two's
complement form).

• The FROM address is in the B-register.

• The W address is in the core memory location pointed to by
the P-register.

The HP assembly language calling sequence is as follows:

LDA
LDB
105xxx
DEF

-(number-of-words)
from-address

to-address (cannot be indirect)

Figure 6-2. Block Move Microprogram

MICROINSTRUCTION COMMENTARY

MOV - P IOR M RW

- T IOR O -

Get the TO address and store it
in the 0-re{jster. The TO address
cannot be indirect.

6-5

LOOP

OUT

6-6

B RRS IOR M

- T

Q-

F S2

- S1

B •

Q-

A·

- p

IOR S1

IOR S2
DEC M
JMP

IOR T

INC B
INC Q

INC A
JMP

INC P
IOR

RW

-

-
cw
OUT

LOOP

Read a data word from the core
memory location pointed to by
the FR OM address and store the
data word in Scratch Pad
Register 1.

Put the TO address in Scratch
NMPV Pad Reijster 2. Address the TO

core memory location. Write the
data word into the core memory
location pointed to by the TO
address. The F, DEC, and NMPV
micro-orders in the "write into
memory" microinstruction test
the TO address to make sure it
does not refer to a location in the
protected portion of core
memory. If a memory protect
violation is detected, control
passes to OUT (otherwise the
"write into memory" operation
is performed).

Increment the FROM address.
Increment the TO address.

TBZ Increment and test the number
of words (remember that the
number of words is in two's
complement form; consequently,
the number is effectively
decremented). If the number= 0,
control passes to OUT.
Otherwise, the move loop is
repeated.

EOP Increment the P-register and exit.

TABLE SEARCH MICROPROGRAM

This sample microprogram searches a table for a specific character.
Each word in the table contains two characters: one in the high byte
position (bits 8-15) and one in the low byte position (bits 0-7).

The calling program passes the following parameters:

• The address of the first byte to be examined. Bits 1-15 specify
the starting core memory location while bit 0 specifies whether
the table search is to begin with the high or low byte (0 = high;
1 =low).

• The number of bytes to be examined.

• The character being searched for.

• A terminator character.

The table is searched until the specified character is found, until the
terminator character is found, or until the specified number of bytes
have been examined. If the starting byte address is even, the search is
performed as shown in Table 6-2.

If the starting byte address is odd, the search is performed as shown in
Table 6-3.

Table 6-2. Even Starting Byte Address

High Byte Low Byte

Starting core memory location 1 2

Next higher core memory location 3 4

Next higher core memory location 5 6

And so forth ...

6-7

Figure 6-3. Table Search Microprogram

6-8

Table 6-3. Odd Starting Byte Address

High Byte

Starting core memory location

Next higher core memory location 2

Next higher core memory location 4

And so forth ...

The assembly language calling sequence is as follows:

LDA <test> <term >
LDB starting-byte-address
105xxx
DEC number-of-bytes

where test is the character being searched for.

term is the terminator character.

Low Byte

1

3

5

starting-byte-address is the address of the first byte to be
examined.

number-of-bytes is the number of bytes to be examined.

After the table search is complete, the microprogram passes the
following information to the calling program:

A-register: The address of the last byte examined (bits 1-15
specify the core memory location and bit 0 is the
high/low byte indicator).

All zeros if neither the specified character nor the
terminator character was found.

~9

B-register: The last byte examined.

All zeros if neither the specified character nor the
terminator character was found.

Extend flip-flop: 1 =specified character found (or neither the specified
character nor the terminator character was
found).

0 =terminator character found.

MICROINSTRUCTION COMMENTARY

6-10

Note: The Flag flip-flop is always clear (0) when

the microprogram receives control.

- p

B -

RFE M CW

IOR
IOR T

IOR Q -

A CL AND S1 377
A CR AND S3 377

- CR IOR S2 10
- S2 IOR CNTR

B - CRS B R1

A CR AND S2 377

13 CL .A.ND S4 377

UNC Address core memory location 0
and dear the Extend flip-flop.

Store the contents of the
P-register in core memory
location 0.

Store the starting byte address in
the a-register.

Save the test character as a ''hi{jl
byte compare constant" and save
the terminator character as a
"low byte compare constant".

Set the counter to 10 (octal) and
APT rotate the B- and A-registers eight
CTRI bit positions to the ri{jlt.

Save the test character as a "I ow
byte compare constant" and save
the terminator character as a
"high byte compare constant",

. p IOR M RW Read the number of bytes into
Q. IOR B the 0-register (first restoring the

. T IOR Q starting byte address to the
B-register).

B • IOR p R1 ODD Test the starting byte address to

JMP RPEAT determine whether the search
should begin with the high or low
byte (odd=low; even=hig,), shift
the byte address one bit position
to the right, and store it in the
P-register.

If the address is even, control
passes to RPEAT. Otherwise,
continue.

. p SFLG M RW Set the Flag flip-flop and read

. T IOR A the first word in the table. Store

JMP LOW the word in the A-register.
Control passes to LOW.

RPEAT • p SFLG M RW Set the Flag flip-flop and read a
. T !OR A table word. Store the word in the

A-register.

A CL AND B 377 Isolate the high byte in the
B-register.

B S1 XOR . RSS TBZ Byte= test character?

JMP TESTH Yes, control passes to TESTH.
Otherwise, continue.

B S4 XOR . RSS TBZ Byte = terminator character?

JMP TERMH Yes, control passes to TE RMH.
Otherwise, continue.

Q. INC Q RSS TBZ Increment and test the byte

JMP EXIT count (remember that the count
is in two's complement form;
consequently, the count is
effectively decremented). If the

6-11

count =O, control passes to
EXIT. Otherwise, continue.

LOW A CR AND B 377 Isolate the low byte in the
B-register.

B 52 XOR - RSS TBZ Byte = test character?

JMP TESTL Yes, control passes to TESTL.
Otherwise, continue.

B 53 XOR - RSS TBZ Byte= terminator character?
JMP TERML Yes, control passes to TERML.

Otherwise, continue.

- p INC p Increment the byte address.

a - INC a TBZ Increment and test the byte
JMP RPEAT count (remember that the count

is in two's complement form;
consequently, the count is
effectively decremented). If the
count = 0, continue. Otherwise,
repeat the byte search loop.

EXIT Q. IOR B Set the B- and P-registers to al I
IOR p zeros.

TESTH RFE Exchange the Flag and Extend

SFLG - UNC flip-flops. Then set the Flag
flip-flop.
Control passes to TESTL.

TERML - - CFLG - Clear the Flag flip-flop.

TESTL - - RFE Exchange the Flag and Extend
flip-flops.

TERMH - p IOR A L1 FLG Store the byte address in the
A~register (shifting the address
one bit position to the left).
Then test the Flag flip-flop. If

6-12

INC A -
IOR M RW

- T IOR P

the Flag flip-flop is set, skip the
next microinstruction.

Set bit 0 of the A-register.
EOP Address core memory location O.

Read the contents of core
memory location 0 into the
P-register and then exit.

TELEPRINTER OUTPUT DRIVER

'Ibis example presents a teleprinter output driver program. The driver is
in two parts: an Initiator Section and a Continuator Section. The
Initiator Section resides in core memory while the Continuator Section
is a microprogram residing in Module #1 (starting at control store
location 4008).

A 105000 macro instruction resides in the teleprinter interrupt location
in low core memory.

During any given teleprinter output operation, the Initiator Section is
executed only once while the Continuator Section is executed once for
each character that is sent to the teleprinter.

To begin a teleprinter output operation, the user prepares an output
buffer (BUFFR) and a character-count constant (CHCNT) in core
memory and transfers control to the Initiator Section. The Initiator
Section passes parameters to a low core equipment table and then trans­
fers control to the Continuator Section. Thereafter, the Continuator
Section is entered on an interrupt basis as many times as are necessary
to satisfy the specified character count. 'lbe Continuator Section
essentially sends one character to the teleprinter and then returns con­
trol to the interrupted program.

6-13

ORG 201:1
A &SS 1 *********************
B l:ISS 1 *
t,o BSS 1 * EQUIPMENT TABL.E *
COLJNT EISS 1
ADRi:S BSS 1 * *. ** * * * * * * * * * * ** * * **
BFLAG BSS 1

ElllT INIT
Ir.IT 11101' ***********************

STF l'J *
L.DA CHCNT INITIATOR SECTION •
STA COUNT *
L.OA OBUFF ***********************
STA A ORES
CL.A
STA l:!FL.AG
L.OA l'OOE
OTA TTY
OCT 105000
JMP INIT,I

CHCNT OEC Ill * * ** * * * *. ** ** * * * *
OBl1FF OEF l:IUFFR * *
BUHi< ASC N1 CHARACTERS CONSTANTS
l'!OOt: OCT 120000
TTY EQU)(~ti ************"'***"'

Figure 6-4. Initiator Section

When the microprogram receives control, it is as.5umed that the
following parameters are in the low core equipment table:

Core Memory
Location

23

24

25

6-14

Contents

Number of characters yet to be printed.

Address of the core memory location that
contains the next character to be printed.

A "high/low byte" flag (zero= high byte;
non-zero= low byte).

Each location in the output buffer contains two characters: one in the
high byte position (bits 8-15) and one in the low byte position
(bits 0-7). At any given time, the microprogram must know whether it
is to send the high or low byte character to the teleprinter. Core
memory location 25 in the equipment table is used for this purpose.

Upon entry, the microprogram reads the contents of core memory
location 25 into Scratch Pad Register 1 and uses Scratch Pad Register 1
as the "high/low byte" indicator, as follows:

zero= Print the high byte character.

non-zero= Print the low byte character.

When the microprogram receives control from the Initiator Section,
core memory location 25 contains zero. Whenever it prints a high byte
character, the microprogram sets Scratch Pad Register 1 to non-zero.
Similarly, whenever it prints a low byte character, the microprogram
resets Scratch Pad Register 1 to zero. Just before exiting, the micro­
program reads the contents of Scratch Pad Register 1 into core memory
location 25.

Every time it is executed, the microprogram decrements the character-­
count (core memory location 23). The character-address (core memory
location 24) is incremented only after a low byte character is printed.

The character output operation is performed as follows:

1) The microprogram tests the character count.

If the count is not zero, the microprogram proceeds with the
character output operation.

If the count is zero, the microprogram forms a CLC instruction,
puts it in the CPU Instruction Register, and causes the I/O
decoders to decode and execute the instruction. This clears the
teleprinter output interrupt. Control then returns to the inter­
rupted program.

6-15

Figure 6-5. Continuator Section

2) The microprogram reads the contents of the specified cQre
memory location into the B-register and isolates the character
to be printed in the low byte position of the B-register:

6-16

• If a high byte character is to be printed, the
microprogram shifts the character into the low byte
position and then clears the high byte from the B­
register.

CLC cw
CL.
53

IOR B
IOR 53
IOR IR
JMP

311
21~

IOG1
STO~E

FORM A CL.C INSTRUCTION
Alli[,) EXECUTE IT

JUMP TO ITORE

Figure 6-5. Continuator Section (continued)

• If a low byte character is to be printed, the micro­
program merely clears the high byte from the B-register.

3) The microprogram forms an OT A instruction, puts it in the
CPU Instruction Register, and causes the I/O decoders to
decode and execute the instruction. This results in the character
in the B-register being sent to the teleprinter.

6-17

4) The microprogram forms an STC,C instruction, puts it in the
CPU Instruction Register, and causes the I/O decoders to
decode and execute the instruction.

5) Control returns to the interrupted program.

INITIATOR SECTION COMMENTARY

INIT NOP Initiator section entry point.

STFO Tum on the interrupt system.

LDA CHCNT Pass the character-count constant to the low

STA COUNT core equipment table.

LDA DBUFF Pass the character-address to the low core

STAADRES equipment table.

CLA Set BFLAG in the low core equipment table

STA BFLAG to zero.

LDAMODE Specify that the teleprinter is to be used as

OTA TTY an output device.

OCT 105000 Transfer control to the Continuator Section.

JMP INIT,I Initiator section exit.

CONTINUATOR SECTION COMMENTARY

- CR IOR S1 20

- S1 IOR M CW

IOR •

A RAS IOR T -

6·18

Save the A-register in core
UNC memory lor.ation '20 of "t:lit:> 10•~1

core equipment table.

. 51 INC 52 • Save the B-register in core

. 52 IOR M cw UNC memory location 21 of the low

IOR core equipment table,

B RR5 IOR T

. 52 INC S1 - Read the contents of the

RFE a RSS OVF Overflow and Extend flip-flops

Q. INC a - (0,0 or 0, 1) into bit positions 1

Q. LWF a L1 and 0, respectively, of the

. 51 IOR M cw UNC Q.register. Save the O.register in

IOR
core memory location 22 of the

Q RR5 IOR T
low core equipment table.

. 51 INC 52 . Read the character-count from

. 52 IOR M RW core memory location 23 in the

- S2 INC 51 - low core equipment table into

. T IOR a RSS TBZ the O.register. Test the count. If

JMP CLC zero, pass control
Otherwise, continue.

to CLC.

. 51 IOR M RW Read the character-address from

- 51 INC S2 - core memory location 24 in the

- T IOR A low core equipment table into
the A-register.

- 52 IOR M RW Read the "high/low byte" flag
. T IOR S1 . from core memory I ocation 25 in

the low core equipment table
into Scratch Pad Register 1.

A RR5 IOR M RW Get the first word to be printed
. CR IOR B 211 and store it in the B-register.

B CL IOR S3 205 Form an OTA instruction in

. T IOR B Scratch Pad Register 3.

. S1 IOR TBZ Test the "high/low byte" flag.

JMP 51 LOW If it is non-zero, pass control to
LOW.

NOR 51 . If it is zero, set it to non-zero (all
ones) and continue,

6-19

- CR IOR IR 27 Shift the high byte character in
B • IOR B SRG2 the B-register into the low byte

B • IOR B SRG2 position.

LOW A- INC A Increment the character-address
B CR AND B 377 (core memory location 24) and

clear the high byte from the
B-register.

OTA - S3 IOR IR IOG1 Load the OTA instruction from
B RRS IOR Scratch Pad Register 3 into the

B RRS IOR 100 CPU Instruction Register. Cause

B RRS IOR 100 the instruction to be decoded
and executed.

CR IOR B 311 Form the STC,C instruction in
B CL IOR S3 207 Scratch Pad Register 3.

STC,C - S3 IOR IR IOG1 Load the STC,C instruction from
Scratch Pad Register 3 into the
CPU Instruction Register. Cause
the instruction to be decoded
and executed.

Q. INC Q - Increment the character-count
(remember that the count is in
two's complement form; conse-
quently, it is effectively
decremented),

STORE - CR IOR B 23 Store the character-count in core
B RRS IOR M cw UNC memory location 23.

IOR
Q RRS IOR T

B • INC B Store the character-address in
B RRS IOR M CW UNC core memory location 24.

IOR
A RRS IOR T

6-20

B - INC B Store the "high/low byte" flag in

B RRS IOR M cw UNC core memory location 25.

IOR

- S1 IOR T

- CR IOR S1 20 Restore the A-register from core

- S1 IOR M RW memory I ocati on 20.

- S1 INC S2 -

- T IOR A -
- S2 IOR M RW Restore the B-register from core

- S2 INC S1 - memory location 21.

- T IOR B

- S1 IOR M RW Restore the Overflow and Extend

CLO - flip-flops from core memory

- T IOR o - location 22.

0- LWF o R1

0- RFE - RSS ODD

sov - EOP
IOR

CLC - CR IOR B 311 Form a CLC instruction and load

B CL IOR S3 215 it into the CPU Instruction

- S3 IOR IR IOG1 Register. Cause the instruction to

JMP STORE be decoded and executed. Then
pass control to STORE.

6-21

MISCELLANY n
This section is included as a "catch-all" for discussions that may be
added in future editions. The discussions in this first edition were
prepared by HP instructors for use in the HP 2100 Microprogramming
course.

• Interrupting a Microprogram

• A/B Addressable Flip-flops

• RPT Micro-order

• JSB/RSB Micro-orders

• Counter

INTERRUPTING A MICROPROGRAM

Microprogram execution cannot be interrupted by hardware; however,
the execution time of most microprograms is generally short enough so
as not to be detrimental to the interrupt system.

Of course there will be exceptions. For example, a "block move"
microprogram could, if the number of bytes or words to be moved is
large enough, take several milliseconds to execute.

The CJMP micro-order makes it possible for a microprogram to detect
an interrupt. If an interrupt request is present, the CJMP executes as a
JMP; otherwise it executes as a NOP.

7-1

Usually, the section of micro-code that is jumped to upon detection of
an interrupt performs the following functions:

1) Saves all address pointers, counters, and flags used by the
microprogram.

2) Loads the core memory address of the 105xxx macro instruc­
tion into the P-register.

3) Executes an EOP micro-order (this allows the interrupt to
occur).

Performance of the above functions assumes that the interrupted micro­
program, when re-entered after the interrupt, will continue execution at
the logical point where it was interrupted.

An alternate method is to merely load the core memory address of the
first location in the calling sequence into the P-register and execute an
EOP. In this case, the entire microprogram will be re-executed from the
beginning after the interrupt. This is the method used by the Extended
Arithmetic Group (EAG) instructions, since their execution times are
relatively short.

Refer to Figure 7-1. The CJMP microinstruction passes control to
INRUP if an interrupt request is detected. At INRUP, the P-register
contains the core memory address of COUNT and is used for saving the
current word count in the calling sequence. The P-register is then
decremented (so it now points to the 105xxx instruction) and an EOP
is executed (setting the PHlB interrupt phase). It is the responsibility
of the interrupting program to save the contents of the A- and
B-registers.

After the interrupt is serviced, control returns to the microprogram by
way of the 105xxx macro instruction. The A- and B-registers were
restored by the interrupting program and the word count is restored by
the first two microinstructions. The microprogram then continues at
the logical point where it was interrupted.

7-2

"10VE

LOOP

OUT

INl<UP

LDA •(# OF wOROS)
STA COUNT
LOA 'FROM' AOORUS
LOB I TO I AOOIU.SS
105XXX

COUNT RSS 1

IOR Riii
IOR
C:JMP INloll.JP

lol~S IOR M RW
T lOR S1

IOR 52

52 DEC M CIN lliMPY
JMP OUT

s1 IOR
INC
INC
INC Tl:!Z
J!'4P LOOP
I"IC EOP
IOR

UPOr. INTERf<UPT JUMP HEliE AND

IOR C:ioi UNC
IOii

RRS lOR
p SUI:! EOP
p NUR

GET THE #•OF·~ORDS

INTERRUPT wAITING ?
MOvE A wORO FROM C:ORE TO St

PU1 I TO' AOORESS IN 52

~RITE THE ~ORD INTO CORE
(MEMOR¥ PROTECT VIOLATION)

SUMP THE lfROMI ADDRESS
SUMP TnE ITO' ADDRESS
SUMP THE COUNT & SKI' l' I
NOT DONE YI:. T
SET , AND THEN EXIT

SAVt THE COUNT

'UT TH! COUNT BACK
IN THE CA~~ING SEQUENCE

D!tRlMENT P AND THEN EXIT

Figure 7-1. Interrupt Example

Had there been more variables to be saved, additional core locations
would be required either in the calling sequence or at some other
predesignated area of core memory.

If the microprogram logic requires that a particular group of micro­
instructions be skipped upon re-entry after an interrupt, an interrupt
flag may be used. Normally, the interrupt flag would be off. The
interrupt flag would be set on upon interrupt exit. Whenever the
microprogram is entered, it would test the state of the interrupt flag. If
the flag is on, the particular microinstructions would be skipped; if the
flag is off, the microinstructions would be executed.

7-3

Another method would be to use two 105xxx macroinstructions in the
calling sequence: one that would be used for originally entering the
microprogram and another that would be used for re-entering the
microprogram after an interrupt.

It is also possible to write FORTRAN-callable microprograms that
detect interrupts; however, the FORTRAN-produced assembly language
calling sequence requires greater microprogram manipulation.

A/8 ADDRESSABLE FLIP-FLOPS

Refer to the following pages in the 2100 Computer Microprogramming
Guide: 1-9, 2-4, 2-16, 2-19, 4-4, 4-6, 4-13 through 4-16, 5-5, and 5-6.
These two flip-flops are used primarily to implement Memory Reference
Group (MRG) instructions that contain an operand address of 0 or 1
(A-register= O; B-register = 1).

A microcode (RW or CW) reference to core memory address 0 or 1 will
access the actual core locations

MEMORY READ

An RW micro-order reads the contents of a core memory location into
the T-register and, for core memory addresses 0 or 1, sets the A­
Addressable or B-Addressable flip-flop. Both flip-flops are cleared if
the core memory address is other than 0 or 1.

The microprogram may test the A-Addressable and B-Addressable flip­
flops and, if either is set, use the contents of the appropriate register
instead of the contents of the actual core location. The micro-code
would be as follows:

7-4

P IOR M RW -
AAB COND IOR. Sl -

If the P-register contains 0 or 1, the A-Addressable or B-Addressable
flip-flop is set and the AAB reads the contents of the A- or B-register
(instead of core locations 0 or 1) onto the R-bus. The COND micro­
order reads the contents of the R-bus onto the S-bus.

If the P-register instead contains 300, the A-Addressable and B­
Addressable flip-flops are both cleared and the AAB reads zeros onto
the R-bus. The COND micro-order reads the contents of the T-register
(i.e., the contents of core memory location 300) onto the S-bus.

In the event that the contents of core location 0 or 1 is ~anted, the
AAB and COND micro-orders should be replaced by a T in the S-bus
field (in this case, the A-Addressable and B-Addressable flip-flops are
ignored).

- P IOR M RW -
- T IOR Sl -

MEMO RY WRITE

A CW micro-order, if executed, with 0 or 1 in the M-register writes data
from the T-register into core locations 0 or 1. CW does not enable the
setting of the A-Addressable or B-Addressable flip-flops.

- Sl IOR M CW UNC (Assume Sl contains 1)
IOR - -

- S4 IOR T -

The above coding would cause the contents of Scratch Pad Register 4
to be written into core memory location 1.

To avoid this, an NMPV micro-order should be used in the Skip field of
the CW microinstruction and the B-Addressable flip-flop must be set
prior to execution of the CW microinstruction.

7-5

If either the A-Addressable or B-Addressable flip-flop is set, control
passes from Line 2 to Line 3. Line 3 copies the contents of the
Q-register into the A- of B-register and passes control to line 4. Line 4
has no net effect (other than to cause Line 5 to be skipped) because the
"write into memory" operation was not performed.

If a memory protect violation occurs, control passes from Line 2 to
line 3. Since both the A- and B-Addressable flip-flops are clear, Line 3
skips to line 5 which passes control to VILAT. Since the A- and
B-Addressable flip-flops are clear, the AAB micro-order in the Store
field of Line 3 is not enabled.

Note that the above sequence assumes that memory-protect violations
are to be handled by microcode. If memory protect violations are to be
handled by software (the usual case), the RSS and AAB micro-orders in
line 3, plus all of Line 5, are unnecessary. In such a case, when an EOP
is detected the hardware automatically enters phase lB because the
memory protect violation flip-flop is set. This causes execution of the
contents of core memory location 5.

The bypassing of core locations 0 and 1 is necessary for implementing
the Memory Reference Group (MRG) instructions. In most user micro­
programs, however, memory references to locations 0 and 1 will not be
made and the above discussions may be disregarded.

RPT MICRO-ORDER

Refer to page 4-16 of the 2100 Computer Microprogramming Guide.

The RPT micro-order causes the next sequen tlal microinstruction to be
executed repeatedly until its skip condition is met. RPT is used pri­
marily in conjunction with a CTRI micro-order to shift a single or
double word data item up to 1610 times.

7-7

Example: Rotate the combined B- and A-registers right 8 positions.

- CR IOR 81 10
- 81 IOR - CNTR RPT

B - CR8 B Rl CTRI

- 83 IOR 84 -

Load 10 (octal) into 81.
Load the counter from 81 and

set the repeat mode.
Rotate the B- and A-registers

and increment the counter.
Repeat until counter= 17 8 •

This microinstruction is not
skipped. The CTRI in the
previous microinstruction
merely breaks the repeat
loop.

RPT may be used in conjunction with skip micro-orders other than
CTRI (e.g., NEG, ODD, etc.).

If the skip condition is never met, the repeat loop will be executed
continually until the power is turned off (i.e., infinite loop).

JSB/RSB MICRO-ORDERS

Refer to the following pages of the 2100 Computer Microprogramming
Guide: 2-2, 2-3, 2-18, and 4-10.

During microprogram execution, the Save Register copies the ROM
Address Register (RAR) until a J8B micro-order is executed. A J8B
micro-order sets the J8B flip-flop, isolating the Save Register from the
RAR and thereby preserving the return address.

The R8B micro-order is used for returning control from a subroutine to
the calling program. Execution of an RSB micro-order resets the JSB
flip-flop, causing the contents of the Save Register to be loaded into the
RAR.

7-8

Execution of an RSB micro-order without prior execution of a JSB
micro-order is interpreted as a two-cycle NOP. This allows a subroutine
to also be executed as a main line program.

The single Save Register limits the use of subroutines to one level (i.e., a
subroutine cannot, in tum, call another subroutine).

COUNTER

Refer to the following pages of the 2100 Computer Microprogramming
Guide: 2-9, 4-15, and 4-16.

The counter was designed primarily for implementation of the
Extended Arithmetic Group (EAG) instructions that require a maxi­
mum shift count of 1610•

However, the microprogrammer may also use the counter's full capacity
of 3210•

Example:

IOR - CNTR -
LOOP

IOR - - ICTR
· CNTR IOR - - TBZ

JMP - LOOP
(continue)

Set the counter to zero.

(Repeated microinstructions)

Increment the counter.
Break out of the loop when

counter = 0.

7-9

Incrementing the counter when it contains 37 8 (maximum capacity)
causes it to "roll over" to zero.

'The CNTR micro-order in the S-bus field reads all five bits of the
counter onto the S-bus.

7-10

- Sl IOR - AAB - (Assume Sl contains 1)
- Sl IOR M CW NMPV
- S4 IOR AAB -
- S4 IOR T

The above coding would cause the contents of Scratch Pad Register 4
to be copied into the :S..register. The same principle applies to the
A-register if Sl contains 0. The "write into memory" operation would
not be performed. Note that the last microinstruction is always exe­
cuted; however, when writing to the A- or B-registers, the last micro­
instruction has no net effect since the "write into memory" operation
was not performed.

The above example assumes that the memory protect feature is not
enabled.

With memory protected enabled, the NMPV micro-order also traps
memory protect violations. The microprogram must decide which event
caused the skip. If m~mory protect is enabled, the coding could be as
follows:

Line 1
Line 2
Line 3
Line 4
Line 5

- 82 IOR - AAB

F 82 DEC M CW NMPV (Assume that the data
Q - IOR AAB RSS AABUNC to be written is in the
Q RRS IOR T

JMP - VILAT Q-register)

Line 1 sets either the A-Addressable or B-Addressable flip-flop, or
clears them both. The clearing is necessary since a previous reference
to core address 0 or 1 could have occurred.

Line 2 skips to Line 4 if no memory protect violation occurs and if
both the A-Addressable and B-Addressable flip-flops are clear. In Line 4
the contents of the Q-register are loaded into the T-regi.ster, the "write
into memory" operation is performed, and the JMP VILAT micro­
instruction is skipped.

7-6

ERROR MESSAGES r~1

All error messages are presented in table 8-1.

Note: Warning messages are flagged by** in the left margin.

Table 8-1. Error Messages

Meaning

1 Duplicate label.

2 Bad control statement.

3 Illegal RBUS micro­
order.

4 Illegal SBUS micro­
order.

5 Illegal FUNCTION
micro-order.

Corrective Action

The statement label of the specified
microinstruction is the same as an­
other statement label in the micro­
program or the same as a declared
external symbol. Assign a new state­
ment label and reassemble.

The specified assembler control
statement is illegal. Correct it and
reassemble.

The micro-order in the R-bus field
of the specified microinstruction is
illegal. Correct it and reassemble.

The micro-order in the S-bus field
of the specified microinstruction is
illegal. Correct it and reassemble.

The micro-order in the Function
field of the specified m icroi nstruc­
tion is illegal. Correct it and
reassemble.

8-1

6

7

8

9

10

11

Table 8-1. Error Messages (continued)

Meaning

Illegal STORE micro-
order.

Illegal SPECIAL micro-
order.

Illegal SKIP micro-
order.

Illegal jump address.

CW in Special field and
no skip condition in the
Skip field.

Program too large.

Corrective Action

The micro-order in the Store field
of the specified microinstruction is
illegal. Correct it and reassemble.

The micro-order in the Special field
of the specified microinstruction is
illegal. Correct it and reassemble.

The micro-order in the Skip field of
the specified microinstruction is
illegal. Correct it and reassemble.

The asterisk jump address(* ± x) in
the specified microinstruction lies
outside the bounds of the current
control store module or the sym­
bolic jump address in the specified
microinstruction is undefined. Cor­
rect it and reassemble.

This combination will not write into
core memory. Correct it and
and reassemble.

The program wi II occupy more than
25610 (4008) control store loca­
tions. The microprogram must either
be rewritten or assembled in smaller
parts.

** 12 Warning! CO detected These micro-orders affect the opera­
in the R-bus field or tion of control store module #0.
RFI detected in the BE CAREFUL!
Function field.

8-2

Table 8-1. Error Mes.5ages (continued)

Meaning

**13 Warning! NOP in the
R-bus field with DEC
in the Function field.

**14 Warning! JMP, JSB, or
CJMP in the Function
field and a non-NOP in
the S-bus field.

15 SBUS is incompatible
with STORE micro­
order.

**16 Warning! LEP detected
in the Special field.

** 17 Warning! Potential
memory access problem
detected.

Corrective Action

This combination results in the com­
plement of the contents of the S­
bus. The use of a NOR micro-order
in the Function field is suggested.

JMP, JSB, and CJMP use the low­
order bit of the S-bus field as part
of the jump address. Make certain
that the S-bus micro-order does not
set this bit incorrectly.

The same Scratch Pad Register can­
not be referenced in both the S-bus
and Store fields of a microinstruc­
tion. Correct the specified micro­
instruction and reassemble.

This micro-order cannot be used for
anything other than enabling entry
points to the 2100 Extended
Arithmetic Group.

An M was detected in the Store
field of the specified microinstruc­
tion and something other than RW
or CW was detected in the Special
field. Memory access should be
started in the specified microinstruc­
tion since the M-register could be
modified by a DMA transfer.

8-3

Table 8-1. Error Messages (continued)

Meaning

**18 Warning! Potential
phasing problem

19 Repeat on non-skip
condition.

20 Repeat until NEG or
ODD with an add-type
micro-order in the
Function field or repeat
until TBZ or RSS, TBZ.

**21 Warning! RFE in the
Function field with a
non-NOP in the S-bus
field.

8-4

Corrective Action

An EOP was detected in the pre­
vious microinstruction and the Skip
field of the specified microinstruc·
tion contains something other than
a NOP. Be aware that the specified
microinstruction will be executed
before the EOP is executed.

An RPT was detected in the Skip
field of the previous microinstruc­
tion but the Skip field of the
specified microinstruction does not
contain a "skip" micro-order. Cor­
rect the microinstruction and
reassemble.

An RPT was detected in the Skip
field of the previous microinstruc­
tion but the specified microinstruc­
tion contains NEG or ODD in the
Skip field with an add-type micro­
order (ADD, ADDO, INC, or INCO)
in the Function field or the specified
microinstruction contains TBZ in
the Skip field. These combinations
are illegal. Correct the microinstruc­
tion and reassemble.

In addition to exchanging the Ex­
tend and Flag flip-flops, R FE causes
the contents of the R-bus to be read
onto the T-bus (the S-bus is
ignored).

Table 8-1. Error Messages (continued)

Meaning Corrective Action

**22 Warning! P in the S-bus Leave S-bus field blank instead.
field acts as a NOP
when a JMP is in the
Function field.

8-5

HP MICRO DEBUG EDITOR m
The HP Micro Debug Editor is a program that makes it possible for the
user to load object microprograms from an HP Microassembler output
tape into a Writable Control Store (WCS) module, debug microcode, or
produce a set of six mask paper tapes that can be used for "burning" a
set of programmable ROM chips.

REQUIREMENTS

The editor is designed to operate in an SK Basic Control System (BCS)
environment and requires a system console device (either a teleprinter
or a CRT terminal). In addition, a paper tape photoreader is required if
the input is to be in the form of an object tape and a paper tape punch
is required if the output is to be in the form of mask tapes. For most
purposes, a WCS module is also required.

MODES OF OPERATION

The editor operates in two modes: the normal mode and the debug
mode. The mode of operation is determined by the presence (debug
mode) or absence (normal mode) of the $DEBUG control statement
during the assembling of the microprogram. Though their capabilities
overlap considerably, the two modes are treated separately in the
following discussion.

9-1

NORMAL MODE

The normal mode was designed for two purposes: to transfer object
microcode from an HP Microassembler output tape to a WCS module
and to punch mask tapes from an HP Microassembler output tape.

DEBUG MODE

The debug mode was designed to allow the user to employ breakpoints
to debug microprograms. In this mode the user can insert a breakpoint
in the buffer, load the microprogram from the buffer into a WCS
module, and then execute the microprogram. When the breakpoint is
encountered, execution halts and the editor displays the contents of the
machine registers and flip-flops on the system console device. 'The user
may then alter the microprogram, alter the contents of the registers,
and/or set another breakpoint.

Specifically, in the debug mode the user can:

• Read a microprogram from an object tape into a core memory
buffer.

• Set a breakpoint in the buffer.

• Write a microprogram from the buffer into a WCS module.

• Execute a WCS-resident microprogram.

• Display the contents of any buffer location on the system
console device.

• Alter the contents of any buffer location.

• Alter the contents of any or all of the machine registers.

The user can also read a microprogram from a WCS module into the
core memory buffer or punch an updated object tape from the contents

9-2

of the buffer. However, these are considered to be secondary capabili­
ties and are·of marginal practical value to most users.

To run the editor in the debug mode, the user must previousiy have
loaded an initialization program, named TEST (see "The Initialization
Program" later in this section). Briefly, however, it is used at the start
of debug execution to pass parameters and control to the micro­
program.

HP MICRO DEBUG EDITOR COMMANDS

When the editor is executed, it prints COMMAND? on the system con­
sole device. The user responds to entering one of the input, edit,
output, or debug commands described later in this manual. After the
editor has performed the specified operation, it again prints COM­
MAND? on the system console device, etc. To terminate a Micro Debug
Editor run, the user enters FINISH in response to the COMMAND?
message.

There are twelve Micro Debug Editor commands. They are shown in
Table 9-1. In all cases, the first character of the mnemonic is sufficient
to identify the command to the editor (for example, to terminate a
Micro Debug Editor run, the user may enter F, FI, FIN, FINI, FINIS,
or FINISH).

INPUT COMMANDS

The input commands are:

LOAD[,x]
READ,x

9-3

Table 9-1. Micro Debug Editor Commands

Input
Commands: LOAD [,x]

READ,x

Edit
Commands: SHOW,xxxx[,yyyy]

MODI FY,xxxx [,yyyy]

Output
Commands: DUMP [,x]

WRITE,x

The brackets indicate that
the parameter may be
omitted.

,------------------------- - -,
, PREPARE[,x] 1 These commands are
: ___________ y_E_R_lf.YJ .. xJ_ ______ : available only in the

normal mode.

Termination
Command: FINISH

~--------------------------,
1Debug 1
: Commands: BREAK,yyyy : These commands are
: CHANGE [,mnemonic]: available only in the
:_ __________ ~ 2<_E_c_u_i:_E_[~~ ~~ '!_~Y_Y l: debug mode.

LOAD[,x]

.!. is the unit reference number of a paper tape photoreader. If omitted,

.!. is assumed to be 5.

The LOAD command reads the contents of an HP Microassembler
output tape into core memory through the specified device.

9-4

READ,x

xis the unit reference number of a WCS module.

The READ command reads the contents of the specified WCS module
into core memory.

EDIT COMMANDS

The edit commands are:

SHOW ,xxxx[,yyyy]

SHOW ,xxxx[,yyyy]
MODIFY ,xxxx[,yyyy]

~and 'm:i. are control store addresses (0-1777, octal).~is the
address of the first location to be displayed and yyyy is the address of
the final location to be displayed. If omitted, yyyy is assumed to be the
same as ~ If the user enters fewer than four digits for 1QQ9f. or
yyyy, the value entered is right-justified with zeros automatically filled
to the left. Note that the editor uses only the rightmost eight bits of
~and yyyy (0-377, octal).

The SHOW command displays the specified core memory buffer
location(s) on the system console device. The display format is as
follows:

aaaa mmm nnnnnn

where aaaa is the control store address (0-1777, octai) of the location
being displayed, mmm is the octal representation of bits 23-16 of the
location, and nnnnnn is the octal representation of bits 15-0 of the
location.

9-5

MODIFY ,xxxx[,yyyy]

xxxx and yyyy are control store addresses (0-1777, octal). xxxx is the
address of the first location to be modified and yyyy is the address of
the final location to be modified. If omitted, yyyy is assumed to be the
same as xxxx. If the user enters fewer than four digits for ~ or
yyyy, the value entered is right-justified.with zeros automatically filled
to the left. Note that the editor uses only the rightmost eight bits of
~ and yyyy (0-377, octal).

The MODIFY command allows the user to change the contents of the
specified core memory buffer location(s).

After reading an object microprogram from punched tape into the core
memory buffer, the microprogrammer is permitted to modify only
those locations occupied by the microprogram which was read from
tape. For example, if the microprogram is 1008 locations long, the
microprogrammer may modify only locations 000 through 077 8 •

However, once the contents of the buffer have been written into a WCS
module and then read back into the core memory buffer, the micro­
programmer is free to modify any location. Therefore, if it is desired to
modify a location which lies outside the bounds of the user's micro­
program, and the microprogram has not yet been moved to a WCS
module, the microprogrammer does so by first issuing a WRITE com­
mand, then issuing a READ command, and then making the desired
modifications.

In response to the MODIFY command, the Micro Debug Editor prints
the following on the system console device:

aaaa mmm nnnnnn < =

where ~ i~ the control store address (0-1777, octal) of the location
being altered, !!!.!!!!!!. is the octal representation of the current state of
bits 23-16 of the location, and~ is the octal !'ep!'esentation cf the
current state of bits 15-0 of the location.

9-6

The user then enters:

mmm,nnnnnn

where mmm is the octal representation of the desired state of bits
23-16 of the location and !!lliillill! is the desired state of bits 0-15 of the
location. If the user enters fewer than three digits for mmm or fewer
than six digits for !!!!!!llil!!, the number entered is right-justified with
zeros automatically filled to the left. If it is desired to leave !!!!!!!!! or
nnnnnn unchanged, the user may enter an asterisk instead of an octal
number.

Examples:

6,123 is equivalent to entering 006,000123.

*,123456 means that bits 23-16 of the location are not to be modified
and bits 0-15 are to be set to the value 1234568 •

123,* means that bits 23-16 of the location are to be set to the
value 1238 and bits 0-15 are not to be modified.

If the user specifies that a series of locations are to be altered, the Micro
Debug Editor responds by printing aaaa mmm nnnnnn < = on the
system console device, etc. If the user does not wish to alter the
contents of a particular location in the series, he enters *, * instead of
mmm,nnnnnn.

After the last specified location has been altered, the Micro Debug
Editor prints COMMAND? on the system console device.

Note that the MODIFY command and the associated entries alter the
specified core memory locations (not the actual WCS locations). To
update the WCS module to the revised state, the user must write the
contents of the core memory buffer into the WCS module (using the
WRITE command).

9-7

OUTPUT COMMANDS

The output commands are:

DUMP[,x]

DUMP[,x]
WRITE,x
PREP ARE[,x]
VERIFY[,x]

!. is the unit reference number-of a paper tape punch device. If omitted,
!. is assumed to be 4.

The DUMP command punches the contents of the core memory buffer
on the specified device. The tape thus produced is in the same format as
the output tape produced by the HP Microassembler.

WRITE,x

~is the unit reference number of a WCS module.

The WRITE command copies the contents of the core memory buffer
into the specified WCS module.

PREP ARE[,x]

!. is the unit reference number of a paper tape punch device. If omitted,
!. is assumed to be 4.

The PREP ARE command punches a set of six mask tapes on the
specified device from the contents of the core memory buffer. Before
punching each tape, the editor asks the user to enter the tape's I.D.
header information. The user may then enter up to three lines of
information (any characters). For tapes two through six, the user has
the option of duplicating the I.D. lines used on the previous tape.

9-8

VERIFY[,x]

.!. is the unit reference number of a paper tape photoreader. If omitted,
x is assumed to be 5.

The verify command reads a mask tape through the specified device and
compares the contents of the tape against the contents of the core
memory buffer. In response to a VERIFY command, the editor asks
the microprogrammer to identify which of the six tapes is to be
verified. The microprogrammer responds by entering one of the
following tape I.D. numbers:

I.D. Number

2320

1916

1512

1108

0704

0300

Identifies the mask tape which contains bits 23
through 20 of all WCS words.

Identifies the mask tape which contains bits 19
through 16 of all WCS words.

Identifies the mask tape which contains bits 15
through 12 of all WCS words.

Identifies the mask tape which contains bits 11
through 8 of all WCS words.

Identifies the mask tape which contains bits 7
through 4 of all WCS words.

Identifies the mask tape which contains bits 3
through 0 of all WCS words.

If no errors are detected, the editor asks for the next command. If
errors are detected, the editor prints

BAD MASK TAPE
DO YOU WANT TO REPUNCH THIS TAPE?

9-9

The user responds by entering Y or N. If the user enters N, the editor
asks for the next command. If the user enters Y, the editor prints

ENTER PUNCH LOGICAL UNIT #

and the user enters the unit reference number of the paper tape punch
device. The editor then asks the user to enter three lines of tape l.D.
information, repunches the tape, and asks for the next command.

The mask tapes may be verified in any order. To verify an entire set of
mask tapes, the user must enter the VERIFY command a total of six
times (assuming that none of the tapes has to be repunched and
reverified).

TERMINATION COMMAND

The termination command is:

FINISH

FINISH

The FINISH command terminates the current Micro Debug Editor run.

DEBUG COMMANDS

The debug commands are:

9-10

BREAK,yyyy
CHANGE[,mnemonic]
EXECUTE[,O or yyyy]

BREAK,yyyy

yyyy is a control store address (0-1777, octal). If the user enters fewer
than four digits for Y"Y-iY, the value entered is right-justified with zeros
automatically filled tothe left. Note that the editor uses only the
rightmost eight bits of yyyy (0-377, octal).

The BREAK command sets a breakpoint at the specified location in the
core memory buffer. When the breakpoint is encountered during debug
execution, execution halts, the contents of the machine registers (A, B,
Q, F, P, 81, 82, 83, 84) and flip-flops (Flag, Overflow, Extend) are
displayed on the system console device, and the breakpoint is removed
from the buffer.

Breakpoints should be set only where a JMP microinstruction is
allowed. For example, a breakpoint should not be set immediately
following a microinstruction that contains either an EOP or RPT
micro-order. However, this responsibility is left entirely up to the user.

The editor's dump routine uses core memory location 0 for temporary
storage. If the microprogram being debugged uses core location 0, the
microprogrammer should remember that the contents of that location
are altered every time a breakpoint is encountered. Also, since the
editor's dump routine occupies control store locations 272 8 through
377 8 , the microprogrammer should not set a breakpoint above control
store location 271 8 •

The editor's dump routine executes an EOP. Among other things, the
EOP clears the J8B flip-flop. Consequently, if the breakpoint occurred
within a subroutine, execution must not be restarted within the
subroutine because the R8B at the end of the subroutine will not work
as expected. After such a breakpoint, the microprogrammer should
restart execution either from the beginning (EXECUTE,O) or from
some location (EXECUTE,xxxx) which would not allow the
subroutine's R8B to be executed.

9-11

CHANGE[,mnemonic]

mnemonic is one of the following mnemonics:

A (A-register)

B (B-register)

Q (Q-register)

F (F-register)
p (P-register)

Sl (Scratch Pad Register 1)

S2 (Scratch Pad Register 2)

S3 (Scratch Pad Register 3)

84 (Scratch Pad Register 4)

0 (Overflow flip-flop)

E (Extend flip-flop)

FLAG (Flag flip-flop)

The CHANGE command is used for altering the contents of any or all
of the registers and flip-flops.

If the user omits mnemonic, the editor assumes that he wishes to alter
the contents of all the registers and flip-flops.

If the user specifies a mnemonic, the editor responds by printing

mnemonic xxxxxx < =

on the system console device, where xxxxxx is the octal representation
of the current contents of the register or flip-flop.

The user then responds by entering an octai number representing the
desired contents of the register.

9-12

If the user enters a CHANGE command with no mnemonic, the editor
assumes that he wishes to alter the contents of all the registers and
flip-flops. In this case, the above conversational process is done for each
register and flip-flop. Ii the user does not wish to aiter the contents of a
particular register or flip-flop, he enters an asterisk (*) instead of the
octal number.

EXECUTE[,0 or yyyy]

yyyy is a control store address (0-1777, octal). If the user enters fewer
than four digits for yyyy, the value entered is right-justified with zeros
automatically filled tothe left. Note that the editor uses only the
rightmost eight bits of yyyy (0-377, octal).

The EXECUTE command causes the contents of the core memory
buffer to be written to a WCS module and then executes the
WCS-resident program. If the user has previously used a WRITE
command, the EXECUTE statement automatically uses the same WCS
module referenced by the WRITE command. If the user had not
previously used a WRITE command, the editor first responds to the
EXECUTE command by asking for the unit reference number of the
WCS module.

EXECUTE,O causes the WCS-resident microprogram to be executed
from the beginning by way of the user's initialization program.

EXECUTE causes the WCS-resident microprogram to be executed from
the point where it was last interrupted. This is used for restarting
execution after a breakpoint has been encountered.

EXECUTE,yyyy causes the WCS-resident microprogram to be executed
starting at the specified control store address. Note that the editor uses
only the rightmost eight bits of yyyy (0-377, octal).

9-13

THE INITIALIZATION PROGRAM

When the Micro Debug Editor is to be run in the debug mode, the user
must supply an initialization program. The initialization program is an
assembly lenguage program that performs whatever functions are neces­
sary to call the microprogram (namely, preparing the necessary param­
eters in core memory and then executing a 105xxx macro instruction).

The name of the initialization program must be TEST. The program
must also have the symbol MACRO as a declared entry point, where
MACRO is the symbolic address of the 105xxx macro instruction.
There should only be one 105xxx macro instruction in the initialization
program. Table 9-2 shows the structure of an initialization program.

9-14

Table 9-2. Initialization Program

ASMB,R,B,L,T

TEST

NAM TEST
ENT TEST, MACRO
NOP

MACRO OCT 105xxx
DEF P1
DEF P2

DEF Px
JMP TEST,I

P1 (constant definition statement)
P2 (constant definition statement)

Px (consti.:int definition statement)

END

Operating in the debug mode imposes the following two restrictions on
the microcode that is being debugged. The first microinstruction must
be a JMP to the start of the microprogram (i.e., the first micro­
instruction must be a primary jump table entry). The microcode being
debugged must be less than 18610 locations in length.

OPERATING INSTRUCTIONS

LOADING THE MICRO DEBUG EDITOR

Refer to the Basic Control System manual (02116-9017).

1. Load the Basic Control System (BCS) using the Basic Binary
Loader.

2. Load the HP Micro Debug Editor using the BCS Relocating
Loader.

3. If the editor is to be run in the debug mode, load the initial­
ization program (TEST) using the BCS Relocating Loader.

4. If the editor is to be run in the normal mode, the user must
force program loading at this point even though there are two
undefined external symbols (TEST and MACRO). This is done
by entering 010 into switches 2-0 of the Switch Register.

5. Press the RUN switch. BCS responds by printing the loading
map on the system printer device.

6. Press the RUN switch. The editor responds by printing a
heading and then typing CO:MMAND? on the system console
device.

9-15

DEBUGGING A SMALL MICROPROGRAM

These operating instructions apply when the microprogram being
debugged is smaller than 18610 locations in length. The appropriate
Micro Debug Editor command mnemonic is shown in parentheses
whenever the associated command is used.

1. Assemble the microprogram using the debug option.

2. Load the Micro Debug Editor and the initialization program.

3. Read the Microassembler output tape into core memory
(LOAD).

4. Set a breakpoint (BREAK). To set a breakpoint immediately
after the last executable statement of the microprogram, first
issue a WRITE command, then issue a READ command, and
then set the breakpoint. Remember that a breakpoint must not
be set in any of the locations 2728 through 377 8 •

5. Enter an EXECUTE,O command. This loads the contents of the
core memory buffer into the WCS module (the editor will ask
for the module's unit reference number) and then causes the
initialization program to be executed. The initialization pro­
gram, in tum, passes control to the microprogram. When the
breakpoint is encountered, execution halts, the breakpoint is
removed from the core memory buffer, and the contents of the
machine registers and flip-flops are displayed on the system
console device.

6. Enter any Micro Debug Editor commands.

9-16

Usually at this point the user performs conversational editing
(SHOW, MODIFY) and/or alters the contents of any or all of
the registers and flip-flops (CHANGE). However, this is also the
logical point at which one would terminate the entire Micro
Debug Editor run (FINISH).

7. Set another breakpoint (BREAK). To set a breakpoint immedi­
ately after the last executable statement in the microprogram,
first issue a WRITE command, then issue a READ command,
and then set the breakpoint. Remember that a breakpoint must
not be set in any of the locations 2728 through 377 8 •

8. Restart execution (EXECUTE or EXECUTE,yyyy or EXE­
CUTE,O).

• EXECUTE restarts execution from the point where it was
interrupted.

• EXECUTE,yyyy restarts execution from the specified WCS
relative address.

• EXECUTE,O restarts execution from the beginning (by way
of the initialization program).

9. When the breakpoint is encountered, repeat steps 6-8, above.

DEBUGGING A LARGE MICROPROGRAM

These operating instructions apply when the microprogram being
debugged is larger than 1861 0 locations in length. The appropriate
Micro Debug Editor command mnemonic is shown in parentheses
whenever the associated command is used.

1. Break the microprogram into two or more segments in such a
way that each segment is smaller than 18610 locations in
length. Each segment must be able to be entered by using the
same 105xxx macro instruction and operate independently
of the other segments.

2. Assemble each segment separately using the debug option.

3. Load the Micro Debug Editor and the initialization program.

9-17

9-18

Segment#!

4. Read the Microassembler output tape for the segment into
core memory (LOAD).

5. Set a breakpoint (BREAK). To set a breakpoint immediately
after the last executable statement of the microprogram, first
issue a WRITE command, then issue a READ command, and
then set the breakpoint. Remember that a breakpoint must
not be set in any of the locations 2728 through 377 8 .

6. Enter an EXECUTE,O command. This causes the initial­
ization program to be executed. The initialization program,
in turn, passes control to the microprogram segment. When
the breakpoint is encountered, execution halts, the break­
point is removed from the core memory buffer, and the
contents of the machine registers and flip-flops are displayed
on the system console device.

7. Enter any Micro Debug Editor commands.

Usually at this point the user performs conversational editing
(SHOW, MODIFY) and/or alters the contents of any or all of
the registers and flip-flops (CHANGE). However, this is- also
the logical point at which one would initiate the debugging of
Segment #2 (step 11) or terminate the entire Micro Debug
Editor run (FINISH).

8. Set another breakpoint (BREAK). To set a breakpoint
immediately after the last executable statement in the micro­
program, first issue a WRITE command, then issue a READ
command, and then set the breakpoint. Remember .. that a
breakpoint must not be set in any of the locations 2728
through 3 77 8 •

9. Restart execution (EXECUTE or EXECUTE,yyyy or EXE­
CUTE,O).

• EXECUTE restarts execution from the point where it
was interrupted.

• EXECUTE,yyyy restarts execution from the specified
WCS relative address.

• EXECUTE,O restarts execution from the beginning (by
way of the initialization program).

10. When the breakpoint is encountered, repeat steps 7-9, above.

Segments # 2 Through x

11. Read the Microassembler output tape for the segment into
core memory (LOAD).

12. Set a breakpoint (BREAK). To set a breakpoint immediately
after the last executable statement of the microprogram, first
issue a WRITE command, then issue a READ command, and
then set the breakpoint. Remember that a breakpoint must
not be set in any of the locations 2728 through 377 8 •

13. Enter an EXECUTE,yyyy command, where yyyy is the WCS
relative address of the first microinstruction to be executed.
When the breakpoint is encountered, execution halts, the
breakpoint is removed from the core memory buffer, and the
contents of all the machine registers and flip-flops are dis­
played on the system console device.

14. Enter any Micro Debug Editor command.

Usually at this point the user performs conversational editing
(SHOW, MODIFY) and/or alters the contents of any or all of
the registers and flip-flops (CHANGE). However, this is also
the logical point at which one would initiate the debugging of
the next segment (step 11) or terminate the entire Micro
Debug Editor run (FINISH).

9-19

15. Set another breakpoint (BREAK). To set a breakpoint
immediately after the last executable statement in the micro­
program, first issue a WRITE command, then issue a READ
command, and then set the breakpoint. Remember that a
breakpoint must not be set in any of the locations 2728

through 3 77 8 .

16. Restart execution (EXECUTE or EXECUTE,yyyy).

• EXECUTE restarts execution from the point where it
was interrupted.

• EXECUTE,yyyy restarts execution from the specified
WCS relative address.

17. When the breakpoint is encountered, repeat steps 14-16,
above.

PUNCHING MASK TAPES FROM AN OBJECT TAPE

1. Assemble the microprogram.

2. Load the Micro Debug Editor using the BCS Relocating Loader.

3. Read the Microassembler output tape into core memory
(LOAD).

4. Punch the mask tapes (PREPARE).

5. Verify each mask tape, as follows:

a. l)oad the mask tape into the paper tape photoreader"

b. Enter a VERIFY command.

9-20

c. If the tape contains no errors, load the next tape in the
photoreader and enter another VERIFY command, etc.

If the tape contains errors, the editor prints a message to
that effect on the system console device and allows the user
to repunch the erroneous tape.

6. If all the mask tapes contain no errors, terminate the run
(FINISH).

LOADING A MICROPROGRAM INTO WCS FROM AN OBJECT
TAPE

1. Assemble the microprogram.

2. Load the Micro Debug Editor using the BCS Relocating Loader.

3. Read the Microassembler output tape into core memory
(LOAD).

4. Write the microprogram into a WCS module (WRITE).

5. Terminate the Micro Debug Editor run (FINISH).

9-21

HP PROGRAMMABLE ROM WRITER lm

The HP Programmable ROM Writer is a program that uses the mask
tapes produced by the HP Micro Debug Editor to permanently burn
microcode into programmable ROM chips.

REQUIREMENTS

The HP Programmable ROM Writer is designed to operate in an SK
Basic Control System (BCS) environment and requires a system console
device (either a teleprinter or a CRT console), a paper tape photo­
reader, and an HP 12909A Programmable ROM Writer.

LOADING INSTRUCTIONS

To load the HP Programmable ROM Writer program, do as follows:

1. Load BCS using the Basic Binary Loader.

2. Load the HP Programmable ROMWriterprogram using the BCS
Relocating Loader.

10-1

3. When BCS prints the message "RUN" on the system console
device, enter the select code of the HP 12909A Programmable
ROM Writer into the Switch Register and then press RUN.

Note: If the user forgets to enter a value into the Switch
Register and merely presses RUN, the program reacts
in either of the following ways:

• If the Switch Register contains all zeros, the program halts
with 102022 in the Memory Data register. The user
responds by entering the select code into the Switch
Register and then pressing RUN.

• If the Switch Register contains a non-zero value, the pro­
gram accepts the specified value as the select code and
proceeds with execution.

INITIAL PARAMETERS

When loaded, the Programmable ROM Writer prints

PROM WRITER CONTROL PROGRAM

on the system console device and then asks for a series of parameters, as
follows:

ENTER PROM BURN PARAMETERS
CHIP INITIAL STATE (0 OR l)?

The user enters either a zero or a one, depending upon whether the chip
initially contains all zeros or all ones.

MINIMUM BURN TIME (MILLISECONDS)?

The user enters a positive decimal integer specifying the length of time
(in milliseconds) that each chip location is to be burned on the first
attempt.

10-2

MAXIMUM BURN TIME (MILLISECONDS)?

The user enters a positive decimal integer specifying the length of time
(in milliseconds) that each chip location is to be burned on the final
retry.

MAXIMUM NUMBER OF RETRIES?

The user enters a positive decimal integer specifying the maximum
number of times that the burning of a chip is to be retried. The initial
burn attempt is performed using the minimum burn time. If retries are
necessary, each is performed using a proportionately longer burn time.
If the specified maximum number of retries are necessary, the final
retry is performed using the maximum burn time. For example, if the
user specifies a minimum burn time of 1 millisecond, a maximum burn
time of 11 milliseconds, and a maximum number of retries of 5, the
burn times of the various burn attempts is as follows:

Initial burn attempt:
1st retry:

2nd retry:
3rd retry:
4th retry:
5th retry:

1 ms
3ms
5ms
7ms
9ms

11 ms

WAIT TIME RATIO?

The user enters a positive decimal integer that determines the amount
of "wait time" between successive burn passes, as follows:

"wait time" = RATIO • current burn time

For example, if the current burn time is 100 milliseconds (a tenth of a
second) and the wait time ratio is 5, the program allows 500 milli­
seconds (half a second) between successive burn passes.

10-3

The information necessary for entering the above parameters is avail­
able in the documentation provided by the programmable ROM chip
manufacturer.

TIMING CONST ANT?

The user enters one of the following timing constants to identify which
model computer is being used:

Computer

2100
2114
2115
2116

Timing Constant

169
130
130
148

GENERAL OPERATION

After the initial parameters have been entered, the program prints
COMMAND? on the system console device. The user responds by
entering one of the commands shown in Table 10-1.

If the user enters an illegal command, the program prints INPUT
ERROR on the system console device and requests another command.
In all cases, the first two characters are sufficient for the program to
recognize the command.

After each command (except STOP) is executed, the program requests
another command by printing COMMAND? on the system console
device.

In the following discussions, the overall process of burning a program­
mable ROM chip is divided into two processes: set-up and burning. The
processes are performed sequentially and in that order for every chip
that is to be burned.

10-4

COMMAND

LOAD

VT APE

VCHIP

BURN

CREAD

STOP

SET-UP

Table 10-1. Commands

EFFECT

Causes the program to read a mask tape into
core memory and print the tape identity
information on the system console device.

Causes the.program to verify the contents of
the mask tape by computing a checksum and
comparing it against a checksum contained
on the tape.

Causes the program to test a chip to be cer­
tain it contains all zeros or all ones.

Causes the program to burn a chip.

Reads the contents of the chip mounted on
the Programmable ROM Writer hardware
into the core memory buffer.

Terminates an HP Programmable ROM
Writer run.

'lbe user mounts a programmable ROM chip on the HP 12909A Pro­
grammable ROM Writer, loads a mask tape in the paper tape photo­
reader, and then enters LOAD through the system console device. The
program reads the mask tape into a buffer area in core memory and
prints the tape identity information on the system console device. The
user should examine the printed identity information to be certain that
the proper tape has been loaded.

10-5

If the proper tape has been loaded, the user enters VT APE through the
system console device. The program verifies the contents of the tape by
computing a checksum and comparing it against a checksum contained
on the tape. If it detects an error, the program prints CHECKSUM
ERROR on the system console device. In such a case, the user reloads
the tape in the photoreader and re-enters the LOAD and VTAPE com­
mands. If the checksum error persists, a new set of mask tapes must be
produced using the HP Micro Debug Editor.

Note: If it is desired to duplicate a programmable ROM chip
that is already burned, use the following set-up pro­
cedure instead of the above:

1) Mount the burned chip on the HP 12909A.

2) Enter a CREAD command.

3) Remove the burned chip from the HP 12909A.

4) Mount a new (unused) chip on the HP 12909A.

The user enters VCHIP through the system console device. The program
tests the chip to be certain that it contains all zeros or all ones (as speci­
fied in the initial parameters). If the chip does not contain all zeros or
all ones, the program prints BAD CHIP on the system console device. In
such a case, the user discards the chip, mounts a new one, and re-enters
the VCHIP command.

BURNING

The user enters BURN through the system console device. The program
bums the chip using the minimum bum time. After the chip has been
burned, the program reads the chip locations to see if they were burned
properly. If any chip location was not burned properly during the first
bum pass, a second pass is made using a longer bum time, etc. During
the retry passes, only the erroneous chip locations are reburned. The

10-6

number of retry passes and the bum times are determined by the initial
p~ameters entered by the user. If the chip still contains errors after the
final bum retry, the program prints the following message on the
system console device for each erroneous chip location:

ERROR AT chip-location CHIP = xxxx BUFFER = yyyy

where chip-location is an octal number (000-377) specifying what
chip location is in error.

~ is a four-digit binary number showing the current state
of the chip location.

yyyy is a four-digit binary number showing the current state
of the associated core memory locations.

The user then enters BURN or STOP. BURN causes the program to
bum the entire chip as described above. STOP terminates the Program­
mable ROM Writer run.

10-7

HP BCSWCS INPUT/OUTPUT UTILITY ROUTINE m

This is a library routine which makes it possible for FORTRAN and
ALGOL programs to move object microcode from core memory to a
Writable Control Store (WCS) module or from a WCS module to a core
memory buffer. The routine is designed to operate in a minimum Basic
Control System (BCS) environment.

CALLING SEQUENCES

In both FORTRAN and ALGOL there are two calling sequences: one
for moving object microcode from a core memory buffer to a WCS
module and one for moving object microcode from a WCS module to a
core memory buffer.

CORE MEMORY TO WCS MODULE

The FORTRAN calling sequence for moving object microcode from a
core memory buffer to a WCS module is:

CALL WWRIT (module,buffer-name,#-of-words)

where module is a decimal number specifying the unit reference
number of the WCS module.

buffer-name is the array name of the core memory buffer.

#-of-words is a decimal number specifying the number of words
to be moved. If #-of-words is positive, it specifies the number of
WCS words to be moved; if it is negative, it specifies the number
of core memory words to be moved.

11-1

Object microcode is stored in core memory such that each WCS word
requires two buffer words. Bits 0-7 of the first buffer word of each pair
contain three octal digits specifying the WCS location to be written
into. Bits 8-15 of the same buffer word contain bits 0-7 of the specified
WCS location. Bits 0-15 of the second buffer word of each pair contain
bits 8-23 of the specified WCS location. When the object microcode is
moved from the core memory buffer to the WCS module, only the
specified WCS locations are altered (all other WCS locations are left
unchanged).

The ALGOL calling sequence for moving object microcode from a core
memory buffer to a WCS module is:

PROCEDURE WWRIT (A,B,C);
INTEGER A,C; ARRAY B;

WWRIT (module,buffer-name,#-of-words);

where module,buffer-name, and #-of-words are described for
FORTRAN, above.

WCS MODULE TO CORE MEMORY

The FORTRAN calling sequence for moving object microcode from a
WCS module to a core memory buffer is:

CALL WREAD (module ,buffer-name,#-of-words, wcs-address)

where module is a decimal number specifying the unit reference
number of the WCS module.

11-2

buffer-name is the array name of the core memory buffer.

::l:i:-of-words is a dedmal number specifying the numbi?r of wo!'ds
to be moved. If #-of-words is positive, it specifies the number of

WCS words to be moved; if it is negative, it specifies the number
of core memory words to be read into.

wcs-address is an octal number specifying the starting WCS
location of the object microcode to be moved.

Object microcode is read into the core memory buffer in the format
described earlier in this section. The WCS word residing at WCS
location wcs-address is read into the first two buffer words, the WCS
word residing at wcs location wcs-address + 1 is read into the next two
buffer words, and so forth.

The ALGOL calling sequence for moving object microcode from a WCS
module to a core memory buffer is:

PROCEDURE WREAD (A,B,C,D);
INTEGER A,C,D; ARRAY B;

WREAD (module ,buffer-name ,#-of -words, wcs-address);

where module, buffer-name, #-of-words, and wcs-address are described
for FORTRAN, above.

11-3

A Addressable Flip-flop 4-2, 4-3, 4-7, 4-21, 4-24, 4-29, 7-4
Accessing Core Memory 1-23
Accessing a Microprogram

From Assembly Language 1-12
From FORTRAN 1-13
From ALGOL 1-14

Addressing, Symbolic 2-3
Assembler Control Statements 5-1
Assembly Options 2-4
Asterisk (*) as an Address 2-4

B Addressable Flip-flop 4-2, 4-3, 4-7, 4-21, 4-24, 4-29, 7-4
"Block Move" Example 6-4
BREAK 9-10
BURN 10-4

Calling a Microprogram
From Assembly Language 1-12
From FORTRAN 1-13
From ALGOL 1-14

CHANGE 9-10
Coding Form, Standard 3-6
Commands, HP Micro Debug Editor 9-3
Comments Field 3-7
Constants 1-7
Control Statements, Assembler 5-1
Core Memory Access 1-23
Counter

Hardware - 7 -9
Program Location - 2-3

CREAD 10-4

INDEX

INDEX (Continued)

$DEBUG 5-3
Debug Mode (HP Micro Debug Editor) 9-2
Debugging

- Small Microprograms 9-14
- Large Microprograms 9-16

DUMP 9-7

$END 5-3
Entry Module 1-7
Error Messages, HP Microassembler 2-2, 8-1
EXECUTE 9-11
$EXTERNALS 5-2

Facilities, Microprogramming 1-2
FINISH 9-9
Format

Microinstruction - 1-5
Object Tape - 2-9
Source Microprogram Listing - 2-6
Symbol Table Listing - 2-6
Symbolic Statement- 3-1

Function Field 1-6, 3-3, 4-8

Hardware Requirements
HP Microassembler 2-1
HP Micro Debug Editor 9-1
HP Programmable ROM Writer 10-1

Initial Parameters, HP Programmable ROM Writer 10-1
Initialization Program, HP Micro Debug Editor 9-12
Input, Microprogram 1-20
$INPUT 5-1
Interrupting a Microprogram 7-1

Jump Tables 1-7
Jump Table Conventions 1-19

2

Label Field 3-2
Labels, Statement 3-2
$LIST 5-2
Listing

INDEX (Continued)

Source Microprogram - 2-6
Symbol Table - 2-6

LOAD 9-4
Location Counter 2-3

Mask Tapes, HP Micro Debug Editor
Punching 9-8, 9-18
Verifying 9-8, 9-19

Memory Access 1-23
Microinstruction Format 1-5
Mnemonics, Valid Micro-Order 3-5
MODIFY 9-6
Modes of Operation, HP Micro Debug Editor

Debug Mode 9-2
Normal Mode 9-2

Normal Mode, HP Micro Debug Editor 9-2

Object Tape 2-5
Options, Assembly 2-4
$ORIGIN 5-3
Output, Microprogram 1-21
$OUTPUT 5-2

Parameter Passing
From Assembly Language 1-15
From FORTRAN 1-17
From ALGOL 1-19

3

Pass 1 Description 2-2
Pass 2 Description 2-2
$PASS2 5-2

INDEX (Continued)

Primary Jump Table 1-8
PREPARE 9-8
Program Location Counter 2-3

R-bus Field 1-5, 3-3, 4-1
READ 9-5
Read From Memory 1-23, 7-4
"Register Save" Example 6-2
Requirements, Hardware and Software

HP Microassembler 2-1
HP Micro Debug Editor 9-1
HP Programmable ROM Writer 10-1

"Save Registers" Example 6-2
Sample Microprograms 6-1
S-bus Field 1-5, 3-3, 4-4
Secondary Jump Tables 1-8
Shifting 1-25
Skip Field 1-6, 3-4, 4-25
SHOW 9-5
Software Requirements

HP Microassembler 2-1
HP Micro Debug Editor 9-1
HP Programmable ROM Writer 10-1

Source Microprogram Listing 2-6
Special Field 1-6, 3-4, 4-21
Statement Labels 3-2
Statements, Assembler Control 5-1
Store Field 1-6, 3-4, 4-18
STOP 10-4
$SUPPRESS 5-3

4

INDEX (Continued)

Symbol Table 2-3
Symbol Table Listing 2-6
Symbolic Addressing 2-3
Symbolic Statement Format 3-1

"Table Search" Example 6-7
"Teleprinter Output Driver" Example 6-13

VCHIP 10-4
VERIFY 9-8
VTAPE 10-4

Warning Messages, HP Microassembler 2-2, 8-1
WCS Loading 9-19
WRITE 9-8
Write Into Memory 1-24, 7-5

5

ELECTRONIC

SALES & SERVICE OFFICES

UNITED STATES
ALABAMA COLORADO MARYLAND NEW MEXICO NORTH CAROLINA TEXAS
8290 Whllesburi Or., S.E. 7965 East Prentice 6707 Whitestone Road P.O. Box 8366 P.O. Box 5188 P.O. Box 1270
P.O. Box 4207 En11ewood 80110 Baltimore 21207 Station C 1923 North Main Street 201 E. Arapaho Rd.
Hunstvllle 35802 Tel, (303) 771·3455 Tel, (301) 944·5400 6501 Lomas Boulevard N.E. Hlah Point 27262 Richardson 75080
Tel, (205) 881·4591 rwx, 910·935-0705 TWX, 710-862-9157 Albuquerque 87108 Tel: (919) 885-8101 Teh (214) 231·6101
rwx, 810-726-2204

20010 Century Blvd.
Tel, (505) 265-3713 Twx, 510·926-1516 rwx, 910·867-4723

ARIZONA
CONNECTICUT TWX, 910·989·1665 P.O. Box 27409
12 lunar Drive Germantown 20767 OHIO

2336 E. Maanolla St. New Haven 06525 Tel, (31) 428-0700 156 Wyatt Drive 25575 Center Ridge Road
6300 Westpark Drive

Phoenix 85034 Tel, (203) 389·6551 P.O. Box 1648
Us Cruces 88001 Cleveland 44145

Suite 100
Tel, (602) 244-1361 Twx, 710-465-2029 Tel, (505) 526-2485 Teh (216) 835-0300

Houston 77027
Twx, 910-951-1330 2 Choke Cherry Road Twx, 910-983-0550 Tel, (713) 781-6000

Rockville 20850 Twx, 810-427-9129 Twx, 910-881-2645
5737 East Broadway FLORIDA Teh (301) 948-6370
Tucson 85711 P.O. Box 24210 Twx, 110-828-9684

NEW YORK 330 Progress Rd. 231 Biiiy Mllchell Road

Tel, (602) 298-2313 2806 W. Oakland Park Blvd. 6 Automation lane Dayton 45449 San Antonio 78226

rwx, 910-952·1162 Ft. Lauderdale 33307 MASSACHUSETTS Computer Park Tel, (513) 859·8202 Tel, (512) 434-4171
Tel, (305) 731-2020 32 Hartwell Ave. Albany 12205 Twx, 810-459-1925 Twx, 910-811-1110

(Effective Dec. 15, 1973) TWX, 510-955-4099 Lexington 02173 Tel, (518) 458-1550
6665 Busch Blvd. UTAH 2424 East Aragon Rd. Teh (617) 861-8960 rwx, 710-441-8270
Columbus 43229 2890 South Main Street

Tucson 85706 P.O. Box 13910 TWX, 110-326-6904
Tel• (602) 889-4661 6177 Lake Ellenor Or 1219 Campvllle Road Tel, (614) 846-1300 Salt Lake City 84115

Orlando, 32809 MICHIGAN
Endicott 13760 Tel: (801) 487-0715

CALIFORNIA Teh (607) 754-0050 OKLAHOMA rwx, 910-925-5681
1430 East Oranaethorpe Ave.

Tel, (305) 859-2900 23855 Research Drive TWX, 510-252-0890 P.O. Box 32008 Twx, 810-850-0113 Farmington 48024 VIRGINIA
Fullerton 92631 Tel, (313) 476·6400 New Yark City Oklahoma City 73132 P.O. Box 6514
Teh (714) 870-1000 GEORGIA Twx, 810-242.2900 Manhattan, Bronx

Tel, (405) 721-0200 2111SpencerRoad
rwx, 910-592-1288 P.O. Box 28234 Contact Paramus, NJ Office

TWX, 910-830-6862 Richmond 23230

3939 Lankershlm Boulevard 450 Interstate North MINNESOTA Teh (201) 265·5000 OREGON Teh (804) 285-3431

North Hollywood 91604 Atlanta 30328 2459 University Avenue Brooklyn, Queens, Richmond 17890 SW Boones Ferry Road TWX, 710-956-0157
Tel• (404) 436-6181 St. Poul 55114 Teh (213) 877-1282 Twx, 810-766-4890 Tel: (612) 645-9461

Contact Woodbury, NY Office Tualatin 97062 WASHINGTON
rwx, 910-499-2110 Twx, 910-563-3734

Teh (516) 921-0300 Telo (503) 620·3350 Bellefleld Office Pk.

6305 Arizona Place HAWAII 82Washlngton Street TWX, 910-467-8714 1203 -1141h SE

Las Anaeles 90045 2875 So. King Street MISSOURI Poughkeepsie 12601 Bellevue 98004

Telo (213) 649·2511 Honolulu 96814 11131 Colorado Ave. Tel, (914) 454-7330 PENNSYLVANIA Tel: (206) 454-3971

Twx, 910-328-6148 Tel, (808) 955.4455 Kansas City 64137 TWX, 510-248-0012 2500 Moss Side Boulevard Twx, 910-443-2303

Tel• (816) 763-8000
39 Saginaw Drive

Monroeville 15146 •WEST VIRGINIA
1101 Embarcadero Road ILLtNOIS rwx, 910-111-2081 Telo (412) 271-0724 Charleston
Palo Alto 94303 5500 Howard Street Rochester 14623 Twx, 710-797-3650 Tel, (304) 345·1640
Teh (415) 327-6500 Skokie 60076 148 Weldon Parkway Teh (716) 473-9500

Twx, 910-373-1280 Teh (312) 677--0400 Maryland Hel1hts 63043 rwx, 510-253-5981 10218thAvenue WISCONSIN

Twx, 910-223-3613 Tel, (314) 567-1455
5858 East Molloy Road

King of Prussia Industrial Park 9431 W. Beloit Road
2220 Watt Ave. TWX, 910-764-0830 King of Prussia 19406 Suite 117
Sacramento 95825 IN DIANA

Syracuse 13211 Teli (215) 265-7000 Miiwaukee 53227
Teh (916) 482·1463 3839 Meadows Drive •NEVADA Tel, (315) 454-2486 Twx, 510·660-2670 Tel, (414) 541·0550
Twx, 910-367-2092 Indianapolis 46205 Las Vegas TWX, 710-541-0482

9606 Aero Drive Teh (317) 546-4891 Tel: (702) 382-5777 I Crossways Park West RHODE. ISLAND FOR U.S. AREAS NOT

Twx, 810-341-3263 Woodbury 11797 873WatermanAve. LISTED:
P.O. Box 23333 NEW JERSEY Tel: (516) 921·0300 East Providence 02914 Contact the regional office near-
San Dleao 92123 LOUISIANA 1060 N. Kings Highway Twx, 510-221-2168 Tel: (401) 434-5535 est YOU• Atlanta, Georgia ...
Tel: (714) 279-3200 P. 0. Box 840 Cherry Hiii 08034 Twx, 110-381-7573 North Hollywood, California ...
rwx, 910-335-2000 3239 Williams Boulevard Telo (609) 667·4000 Paramus, New Jersey Skokie,

Kenner 70062 TWX: 710-892-4945 •TENNESSEE Illinois. Their complete ad-
Tel: (504) 721-6201 w. 120 Century Rd.

Memphis dresses are listed above.
rwx, 810-955-5524 Paramus 07652

Teh (901) 274·7472 •service Only

Tel, (201) 265·5000
Twx, 710·990-4951

CANADA
AL~ERTA
Hewlett-Packard <Canada) Ltd.
11748 Kingsway Ave.
Ednonton TSG OX5
Tel (403) 452-3670
TW.(, 610-831-2431

H°'1lett-Packard (Canada) Ltd.
82~ ·8th Ave., S.W.
Suire 804
Calgar1
Tel (403) 262-4279

BRITISH COLUMBIA
Hewlett-Packard (Canada) Ltd.
837 E. Cordova St.
Vancouver 6
Tel, (604) 254-0531

MANITOBA
Hewlett-Packard (Canad,11 ltd
513 Century St.
Winnipe1
re:, (204) 786-7581
TWX, 610·671-3531

NOVA SCOTIA
Hewlett-Packard (Canada) Ltd.
2745 Outch Village Rd.
Suite 210
Hal If ax
Tel, (902) 455-0511
TWX' 610-271-4482

CENTRAL AND SOUTH AMERICA
ARGENTINA
Hewlett-Packard Argentina
S.A.C.e.I
La,ialle 1171 - 3°
BU..!RDS Aires
Tel. 35-0436, 35-0627, 35·0341
Telex' 012-1009
Cat.le' HEWPACK ARG

BCLIVIA
Slambuk & Mark (Bolivia) LTDA.
Av. Mariscal, Santa Cruz 1342
LI Paz
Tel· 40626, 53163, 52421
Tel'"' 3560014
Cal"ole, BUKMAR

BF<AZIL
Hewlett-Packard Do Brasil
l.E C. Lida.
Ru.1 Frei Caneca 1119
ono7-Sao Paulo-SP
Tel. 288-7111, 287-5858
Tetex: 309151/2/3
Cable: HEWPACK Sao Paulo

Hewlett-Packard Do Brasil
l.E c. Lida.
Prr.ica Dom Fellclano, 78
90000-Porto Al11re-RS
Rio Grande do Sul CRS) Brasil
Tel· 25-8470
Callle: HEWPACK Porto Alegre

Hewlett-Packard Do Brasil
l.E.C. Lida.
Rua da Matrlz, 29
20000-Rio de Janeiro-GB
Tel, 266-2643
Telex, 210079 HEWPACK
Cable: HEWPACK Rio de Janeiro

CHILE
Htclor Calcagni y Cia, Lida.
Casilla 16.475
Santiago
Tel, 423 96
Cable, CALCAGNI Santiago

COLOMBIA
lnstrumentaci6n
Henrik A. Langebaek & Kier S.A.
Carrera 7 No. 48-59
Apartado Mreo 6287
Bo1ota, I O.E.
Tel, 45-78-06, 45-55·46
Cable, AARIS Bogota
Telex, 444001NSTCO

COSTA RICA
Lie. Alfredo Gallegos Gufdiin
Apartado 10159 ·
San lost
Tel, 21-86·13
Cable, GALGUR San los~

ECUADOR NICARAGUA
Laboratorlos de Radio-lngenierla Roberto Ter:in G.
Calle Guayaquil 1246 Apartado Postal 689
Post Office Box 3199 Edillcio TerAn
Quito Managua
Teb 212-496; 219-185 Tel, 3451, 3452
Cable, HORVATH Quito Cable, ROTERAN Managua

EL SALVADOR
Electronic Associates
Apartado Postal 1682
Centro Comerclal Gigante
Sin Salvador, El Salvador C.A
Paseo Escalon 4649·4" Pisa
Tel, 23-44·60, 23-32-37
Cable, ELECAS

GUATEMALA
IPESA
Avenida la Reforma 3-48,
Zona 9
Guatemala
Tel, 63627, 64736
Telex, 4192 TELTRO GU

MEXICO
Hewlett-Packard Mexicana,
S.A. de C.V.
Torres Adalid No. 21, 11 Pisa
Col. de! Valle
MlllCO 12, O.F.
Tel, 543-42-32
Telex, 017-74-507

PANAMA
Electr6nlco Balboa, S.A.
P.O. Box 4929
Ave. Manuel Espinosa No. 13-50
Bldg. Alina
Panama City
Tel,230833
Telex: 3481103, Curunda,
C3nal Zone
Cable, ELECTRON Panama City

PARAGUAY
Z. J. Melamed S.R.L.
Division: Aparatos y Equipos

Medicos
Division: Aparatos y Equipos

Sclentificosyde

p .d~~~~til:~ion
Chile, 482, Edificio Victoria
Asuncion
Tel, 4-5069, 4-6272
Cable, RAMEL

ONTARIO
Hewlett-Packard (Canada) Ltd.
1785 Woodward Or. ·
Ottawa K2C OP9
Teb (613) 255-6180, 255-6530
TWX, 610-562-8968

Hewlett-Packard (Canada) Ltd.
50 Galaxy Blvd.
Rt1dale
Tei; (416) 677-9611
TWX; 610-492-4246

PERU
Compania Electro Modica S.A.
Ave. Enrique Canaual 312
San Isidro
Casilla 1030
Lima
Tel, 22-3900
Cable, ELMEO Lima

PUERTO RICO
San Juan Electronics, Inc.
P.O. Box 5167
Poncedeleon154
Pda. 3-PTA de Tierra
San Juan 00906
Tel. (809) 725-3342, 722-3342
Cable, SATRONICS San Juan
Telex, SATRON 3450 332

QUEBEC
Hewlett-Packard (Canada) Ltd.
275 Hymus Boulevard
Pointe Claire H9R IG7
Tel, (514) 697-4232
TWX, 610-422-3022
Telex, 01-20607

Hewlett-Packard (Canada) Ltd.
2376 Galvani Street
Stefoy GIN 4G4
Tel; (418) 688-8710

FOR CANADIAN AREAS NOT
LIS TEO:
Contact Hewlett-Packard (Can­
ada) Ltd. In Pointe Claire.

URUGUAY
Pablo Ferrando S.A.
Comerclal e Industrial
Avenlda Italia 2877
Casilla de Correo 370
Mont1vld10
Tel: 40-3102
Cable, RADIUM Montevideo

VENEZUELA
Hewlett.Packard de Venezuela
C.A.
Apartado 50933
Edificlo Segre
Tercera Transversal
Los Ruices Norte
Caracas 107
Teh 33-00-11
Telex, 21146 HEWPACK
Cable: HEWPACK Caracas

FOR AREAS NOT LISTED,

CONTACT:
Hewlett-Packard
Inter-Americas
3200 Hillview Ave.
Palo Alto, California 94304
Tel; (415) 493-1501
TWX, 910-373-1267
Cable, HEWPACK Palo Alto
Telex, 034-B300, 034-8493

E 11/73

EUROPE
AUSTRIA Hewlett-Packard France Hewlett-Packard GmbH ITALY PORTUGAL TURKEY
Hewlett-Packard Ges.m.b.H Zone Aeronautique VertriebsbUro Hamburg Hewlett-Packard llallana S.o.A relectr<1-Empresa Tecnica de Telekom Enginee1ing Bureau
liandelska52/3 Avenue Clement Ader Wendenstr. 23 Via Amerigo Vespucci 2 Equipamentos Electricos S.a.r.I. Saglik Sok No. 15/1
P.O. Box 7 F-31770 Colomlers D-2000 Hamburg 1 1-20124 Milan RuaHodrigodaFonsecal03 Ayaspasa-Beyoglu
A-1205 Vienna Teh(61186B155 Tel,(040)241393 fel:t216251(101inesi P.O. Box 2531 P.O. Box 437 Beyoglu
Tel, (0222) 33 66 06 to 09 Telex,51957 Cable: HEWPACKSA Harnburg Cable, HEWPACKIT Milan P·Lisbonl TR-Istanbul
Callie: HEWPAK Vienna

Hewlett-Packard France
Te/ex, 21 63 032 hphh rt Telex, 32046 Tel, (19) 68 60 72 Te/, 49 40 40

Telex: 75923 hewpak a Cable, TELECTRA Lisbon Cable, TELEMATION Istanbul
Agence Regionale Hewlett-Packard GmbH Hewlett-Packard ltaliana S.p.A Telex: 1598

BELGIUM Boulevard Ferato-Gamarra VertriebsbUro Hannover Piazza Marconi, 25 UNITED KINGDOM
Hewlett-Packard Benelux Boite Postale No. 11 Mellendorfer Strasse 3 1-00144 Rome - Eur SPAIN Hewlett-Packard Ltd.
S.A./N.V. F-13100 Luynes D-3000 Hannover-Kleeteld re1,16l5912544.5,59I5947 Hewlett-Packard Espaliola. S.A 224 Bath Road
Avenue de Col-Vert, I. Tel, (47) 24 00 66 Tel, (0511) 55 06 26 Cab/e, HEWPACKIT Rome Jerez No 8 GB-Slough, SL! 4 OS, Bucks
(Groenkraaglaan) Telex: 41770

Hewlett-Packard GmbH
Telex: 61514 E-Madrid 16 Tel, Slough (0753) 33341

B-1170 Brussels Hewlett-Pack~rd France Vertriebsburo Nuremberg Hewlett-Packard ltaliana S.p.A. Tel, 458 26 00 Cab/e, HEWPIE Slough
Tel, (02) 72 22 40 Agency Rl!gionale Hersbruckerstrasse 42 Vicolo Pastori. 3 Telex,23515hpe Telex, 848413
Cable: PALOBEN Brussels 63, Avenue de Rochester 0·8500 Nuremberg 1-35100 Padova Hewlett-Packard Espafioia, S.A. Hewlett-Packard Ltd.
Telex: 23 494 paloben bru F-35000 Hennes Tel, (0911) 57 10 66 Tel,(49!664062 Milanesado 21-23 "The Graftons"

Teh (99) 36 33 21 Telex, 623 860 Telex' 32046 via Miian E-Barcelona17 Stamford New Road
DENMARK Telex,74912F Hewlett-Packard ltaliana S.p.A. Tel,(3)2036200 GB-Altrincham, Cheshire
Hewlett-Packard A/S Hewlett-Packard GmbH
Oatavej 38 Hewlett-Packard France Vertriebsbiiro Mi.inchen Via Colli, 24 Telex, 52603 hpbe e Tel, (061) 928-9021

DK··3460 Birkerod Agence Rl!gionale Unterhachinger Strasse 28 1-10129 Turin Telex, 668068

Tel, (01) 81 66 40 74, Alll!e de la Robertsau ISAR Center Tel,(lll538264 SWEDEN
Hewlett-Packard Ltd's registered Hewlett-Packard Sverlge AB

Cable, HEWPACK AS F-67000 Strasbourg 0·8012 Ottobrunn Telex: 32046 via Milan
Enlghetsvagenl-3 address for V.A.T. purposes

Telex. 166 40 hp as Te/, (88) 35 23 20/21 Te/, (089) 601 30 6117
LUXEMBURG Fack only:

Hewlett-Packard A/S
Te/ex, 89141 Telex, 52 49 85

Hewlett-Packard Benelux S-16120 Bromma 20 70, Finsbury Pavement
Cab/e, HEWPACK STRBG Cab/e, HEWPACKSA Murhen London, EC2AlSX

Torvet 9 S.A./N.V. Tel, (08) 98 12 50
Registered No, 690597

DK··8600 Si/keborg GERMAN FEDERAL (West Berlin) A"Jenue de Col-Vert, 1, Cable, MEASUREMENTS
Teh (()6) 82-71-66 REPUBLIC Hewlett-Packard GmbH (Groenkraaglaan) Stockholm SOCIALIST COUNTRIES
Telex. 166 40 hp as Hewlett-Packard GmbH Vertriebsbiiro Berlin 8·1170 Brussels Telex, 10721

PLEASE CONTACT:
Cable, HEWPACK AS Vertrlebszentrale Frankfurt Witmersdorfer Strasse 113/114 TeL (03/02) 72 22 40 Hewlett-Packard Sverlge AB Hewlett-Packard Ges.m.b.H.

FINLAND
Bernerstrasse 117 D-1000 Berlin w. 12 Cable, PALOBEN Brussels Hagakersgatan 9C Handelskal 52/3
Postlach 560 140 Teh (030) 3137046 Telex,23494 S-43141 MUlndal P.O. Box 7 Hewlett-Packard Oy D-6000 Frankfurt 56 Telex, 18 34 05 hpbln d Te/, (031) 27 68 00/01 A·1205 Vienna Bulevardi 26 Te/, (0611) 50 04·1 NETHERLANDS Telex: Via Bromma Ph, (0222) 33 66 06 to 09 P.O. Box 12185 Cable, HEWPACKSA Frankfurt GREECE Hewlett-Packard Benelux/N.V. Cable: HEWPACK Vienna SF-00120 Helsinki 12 Telex' 41 32 49 fra Kostas Karayannis Weerdestein 117 SWITZERLAND Telex. 75923 hewpak a Tel: (90) 13730
Hewlett-Packard GmbH

18, Ermou Street P.O. Box 7825 Hewlett Packard (Schweiz) AG Cab/e, HEWPACKOY Helsinki GR-Athens 126 NL-Amsterdam, 1011 ALL OTHER EUROPIEAN
Te/ex. 12·15363 hel VertriebsbUro BObllngen Ziircherstrasse 20

Herrenbergerstrasse 110
Te/,3230-303,3230-30; Teh 020-42 77 77, 44 29 66 P.O. Box 64 COUNTRIES CONTACT:

FRANCE 0-7030 Btibllngen, Wi.irttemberg
Cable, RAKAR Athens Cable: PALOBEN Amsterdam

CH-8952 Schlieren Zurich Hewlett·Packard S.A.

Hewlett-Packard France Teh (07031) 66 72 87
Telex, 215962 rkar gr Telex,J3216hepanl

Teh (01) 98 18 21/24 Rue du Bois-du-Lan 7

Quartter de Courtaboeuf Cable, HEPAK Boblingen IRELAND NORWAY Cab/e, HPAG CH P.O. Box 85

Dolle Postale No. 6 Telex: 72 65 739 bbn Hewlett-Packard Ltd. Hewlett-Packard Norge A/S Telex, 53933 hpag ch GH-1217 Meyrln 2 Gen:1va
Switzerland F-91401 Orsay

Hewlett-Packard GmbH 224 Bath Road Nesveien 13 Hewlett-Packard (Schweiz) AG Tel, (0221 41 54 00 Te/, (1) 907 78 25
Vertrlebsburo DUsseidorf GB-Slough, Sll 4 DS, Bucks Box 149 9, Chemin Louis-Plctet Cable, HEWPACKSA Geneva Cable, HEWPACK Orsay
Vogelsanger Weg 38 Teh Slough (0753) 33341 N-1344 Has/um CH-1214 Vernier--Geneva Telex. 2 24 86 Telex, 60048
D-4000 DUsseldorf Gable, HEWPIE Slough Tel, (02) 53 83 60 Tel, (022) 41 4950

Hewlett-Packard France Teh (0211) 63 80 31/38 Telex. 848413 Telex: 16621 hpnas n Cab/e, HEWPACKSA Geneva
Agenee Regional Telex, 85/86 533 hpdd d Hewlett-Packard ltd. Te/ex. 27 333 hpsa ch
4 Qual des Etrolts The Graftons
F-69321 Lyon Cedex I Stamford New Road
Tel, (78) 42 63 45 Altrincham, Cheshire
Cable: HEWPACK Lyon Teh (061) 928-9021
Telex: 31617 Telex, 66806B

AFRICA, ASIA, AUSTRALIA
ANGOLA ETHIOPIA Blue Star, Ltd. Yokogawa-Hewlett-Packard Ltd. The Electronics lnstrumenta- TAIWAN

Tel•?ctra·Empresa Tecnica African Salespower & Agency 1·1·117/1 Chuo Bldg. lions Ltd. (TEil) Hewlett Packard Taiwan
de Equipamentos Electricos Private Ltd., Co. Sarojlnl Devi Road Rm. 603 3, 16th Floor Cocoa House 39 Chung Shlao West Road

SARL P. 0. Box 718 Secunderabad 500 003 2-Chome P.M.B. 5402 Sec, 1

Rua de Barbosa, Rodrigues, 58/59 Cunningham St. Tel: 7 63 91, 7 73·93 IZUMl-CHO, Ibadan Overseas Insurance
42-1·", 01° Addis Ababa Cable: BLUEFROST Miio, 310 Tel: 22325 Corp. Bldg. 7th Floor

P.O Box 6487 rel: 12285 Telex:459 Teh 0292-25-7470 Cable: THETEIL Ibadan Taipei

Luanda Cable: ASACO Addlsababa Blue Star, ltd. KENYA PAKISTAN
rel: 389160,1,2, 375121,

Cable: TELECTRA Luanda HONG KONG 23/24 Second line Beach Kenya Kinetics
Ext. 240-249

Mushko & Company, Ltd. Telex: TP824 HEWPACK

AUSTRALIA
Schmidt & Co. (Hong Kong) Ltd. M1dras 600 001 P.O. Box 18311 Oosman Chambers Cable: HEWPACK Taipei

Hewlett-Packard Australia P.O. Box 297 Tel:23954 Nairobi, Kenya Abdullah Haroon Road

l'ty.Ltd. Connalight Centre Telex: 379 Tel: 57726 Karachi 3 THAILAND

22·26 Weir Street 39th Floor Cable: BLUESTAR Cable: PROTON Toh 511027, 512927 UNIMESA Co., Ltd.

Glen Iris, 3146 Connaught Road, Central Blue Star, Ltd. KOREA
Cable: COOPERATOR Karachi Chongkolnee Building

Victoria Hong Kong Nathraj Mansions 56 Suriwona:se Road
Teh 240168, 232735 American Tradina; Company Mushko & Company, Ltd.

Tel· 20-1371 (6 lines)
Telex: HX4766

2nd Floor Bistupur Korea, 38B, Satellite Town
Bangkok

Cable: HEWPARD Melbourne
Cable: SCHMIDTCO Hong Kong

Jamshedpur 831 001 l.P.O. Box 1103 Rawalpindi Tel: 37956, 31300, 31307,

Telex: 31 024 Tel: 38 04 Dae Kyung BldJI., 8th Floor Tel: 41924
37540

INDIA Cable: BLUESTAR Cable: UNIMESA Bangkok
He\1/ett-Packard Australia Telex, 240 107 Sejon11-Ro, Cable: FEMUS Rawalpindi

l'ty.Ltd.
Blue Star Ltd. Chongro-Ku, Seoul UGANDA

31BridgeStreet
Kasturl Buildings IN DONES IA Tel: (4 lines) 73-8924-7 PHILIPPINES Uganda Tele-Electric Co., Ltd, Jamshedji Tata Rd. Bah Bolon Trading Coy. N.V. Cable: AMTRACO Seoul Electromex, Inc.

Pyhlble, Bombay 400 020 P.O. Box 4449
New South Wales. 2073 Tel: 29 50 21

Dlalah Merdeka 29 LEllANON
6th Floor, Amalgamated Kampala

Tel 449 6566
Bandung Constantin E. Macridls

Development Corp. Bldg.
Tel: 57279

Tel,,X:2156!
Telex: 3751 Tai: 4915; 51560 P.O. Box 7213

Ayala Avenue, Makatl, Rizal Cable: COMCO Kampala
Cable: HEWPARD Sydney

Cable: BLUEFROST Cable: ILMU RL-Belrut
C.C.P.O. Box 1028

Blue Star Ltd. Telex, 08-809 Tel: 220846
Makati, Rizal VIETNAM

Hewlett-Packard Australia Sa has IRAN Cable: ELECTRONUCLEAR Beirut Tel: 86·18·87, 87-76-77, Panlnsular Trading Inc.
l'ty.ltd. 414/2 V/r Savarkar Mare Multi Corp International ltd.

87·86-88, 87-18-45, 88-91-71, P.O. Box H-3
97 Churchill Road Prabhadevi Avenue Soraya 130 MALAYSIA 83-81-12, 83-82-12 216 Hien-Vuong
Prospect 5082 Bombay 400 025 P.O. Box 1212

MECOMB Malaysia Ltd. Cable: ELEMEX Manila Saigon
So11th Australia Tel: 45 78 87 IR-Teberan 2 Lorong 13/6A

SINGAPORE Tel: 20-805, 93398
Tel 44 8151 Section 13
Cable! HEWPARO Adelaide

Telex: 4093 Tel: 83 10 35-39 Petallna: Jaya, Stl1n1or Mechanical & Combustion Cable: PENTRA, SAIGON 242
Cable, FROSTBLUE Cable: MULTICORP Tehran Engineering Company Pte.,

Hewlett-Packard Australia Telex: 2893 MCI TN
Cable: MECOMB Kuala Lumpur ZAMBIA

Blue Star ltd. ltd. R. J. Tiibury (Zambia) Ltd
f•ty.Ltd. Band Box House ISRAEL MOZAMBIQUE 10112, Jalan Kllang P.O. Box 2792

Casablanca Buildings Prabhadevi Electronics & Enelneerlna A.N. Goncalves, Lta Red Hill Industrial Estate Lusaka
196 Adelaide Terrace Bombar 400 025 Div. of Motorola Israel Ltd. 162, Av. D. Luis Slncapore, 3 Zambia. Central Africa
Perth, W.A. 6000 Tel:457301 17 Amlnadav Street P.O. Box 107 Tel: 647151 (7 lines) Tel: 73793
Tel 25-6800 Telex: 3751 Ttl-Avlv Lourenco Marques Cable: MECOMB Singapore Cable: ARJAYTEE, Lusaka
CaLle: HEWPARO Perth Cable: BLUESTAR Tel: 36941 (3 lines) rel: 27091, 27114

Hewlett-Packard Far East
Hewlett-Packard Australia Blue Star ltd. Cable: BASTEL Tel-Aviv Telex: 6-203 Nea:on Mo

Area Office MEDITERRANEAN AND

l'ty.Ltd. 14/40 Civil lines Telex: 33569 Cable, NEGON
P.O. Box 87 MIDDLE EAST COUNTRIES

10 Woolley Street Kampur 208 001 JAPAN NEW ZEALAND Alexandra Post Office NOT SHOWN PLEASE
P.O. Box 191 Telo 6 88 82 Yoko1awa-Hewlett·Packard lid. Hewlett-Packard (N.Z.) ltd. Singapore 3 CONTACT:
Dickson A.C.T. 2602 Cable, BLUESTAR 94-96 Dixon Street Tel: 633022 Hewlett-Packard
Tel 49-8194 Ohashi Building

P.O. Box 9443 Cable: HEWPACK SINGAPORE Co-ordination Office for
Cable: HEWPARD Canberra ACT Blue Star, Ltd. 1-59-1 Yoyo111 Courtenay Place, Mediterranean and Middle

Hewlett-Packard Australia
7 Hare Street Shlbuya-ku, Tokr•

Wellington SOUTH AFRICA East Operations
P.O. Box 506 Tel: 03-370-2281/92

Tel, 59-559 Hewlett Packard South Alric• Piazza Marconi 25
Pty Ltd. Calcutta 700 001 T!lex: 232-2024YHP
2nd Floor, 49 Gregory Terrace Tel: 23·0131 Cable: YHPMARKET TOK 23-724 Telex: 3898 (Ply.), Ltd. 1·00144 Rome-Eur, Italy

Brl·ibane, Queensland, 4000 Telex, 655 Cable: HEWPACK Wellington Hewlett-Packard House Tel: (6) 59 40 29

Tel 29 1544 Cable, BLUESTAR Yoko11awa-Hewlett-Packard Ltd
Hewlett-Packard (N.Z.) Ltd.

Daphne Street, Wendywood, Cable: HEWPACKIT Rome
Nisei lbaragi Bldg. Sandton, Transvaal 2001 Telex: 61514

CEfLON
Blue Star ltd. 2·2·8 Kasua:a Pakurana:a Professional Centre Tel: 407641 (live lines)
Blue Star House. lbaraei·Shi 26 7 Pakuranga Highway OTHER AREAS NOT

United Electricals ltd 34 Rin& Road Osaka Box 51092 Hewlett Packard South Africa LISTED, CONTACT:
P.O Box 681 Pakuranga (Pty.), Ltd.
60, Park St.

Lajpat Nagar Tel: (0726) 23-1641 Breecastle House
Hewlett-Packard

Hew Delhi 110 024 Telex: 5332-385 YHP OSAKA Tel:569·651 Export Trade Company
Colamba 2 TeL623276 Cable, HEWPACK, Auckland Bree Street 3200 Hillview Ave.
Tel 26696 Telex: 2463 Yokogawa-Hewlett-Packard Ltd. Cape Town Palo Alto, California 94304
Cable: HOTPOINT Colombo Cable: BLUESTAR Nakamo Building NIGERIA Tel: 2-6941/2/3 TeL 1415) 326·7000

CYPRUS
No. 24 Kamisasazlma-cho The Electronics lnstrumenta· Cable: HEWPACK Cape Town (Feb. 71 493-1501)

Blue Star, ltd. Nakamura-ku, N11oya City tionslld.(TEIL) relexo 0006 CT IWXo 910-373-1267
Kypronlcs Blue Star House Tel: (052) 571-5171 144 Agege Motor Rd .. Mushin

Hewlett Packard South Africa Cable: HEWPACK Palo Alto
19 Gregorios & Xenopoulos Road 11/llA Magarath Road P.O. Box 6645
P.O Box 1152 Bangalore 560· 025 Yokogawa-Hewlett-Packard ltd Laios <Ply.'. Ltd. Telex, 034·8300, 034-8493

CY-Nicosia rel:55668 Nitto Bldg. Cable: THETEIL Lagos 641 Ridge Road. Durban

rel· 45628/29 Telex: 430 2·4-2 Shlnohara-Kita P.O. Box 99

Cab!e: KYPRONICS PANDEHIS Cable: BLUESTAR Kohoku-ku Overpart, Natal
Yokohama 222 Telo 88-6102
Tel. 045-432-1504 Telex:567954 EJl/73
Telex:..382-3204 l!HP YOK .Cabl1' ll£Wf'ACW.

HEWLETT~ PACKARD

HP Manual Part No. 02100-90133
Microfiche Part No. 02100-90187 Printed in U.S.A. 9/73

	00001
	00002
	00003
	00004
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	05-01
	05-02
	05-03
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	07-01
	07-02
	07-03
	07-04
	07-05
	07-07
	07-08
	07-09
	07-10
	07-65
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	11-01
	11-02
	11-03
	I-01
	I-02
	I-03
	I-04
	I-05
	x-01
	x-02
	x-03
	x-04
	xBack

