Tiof]

T Puaog Ji

Vd +iof

HEWLETT # PACKARD

2100

computer

microprogramming software

POWERFUL HARDWARE
A proven architecture implemented by a micro-
processor in the heart of the control section.

EXPANDABLE MAINFRAME MEMORY

Lets you choose up to 32K all in mainframe.

STANDARD FEATURES

2100A and 21008 both include extended arithmetic
instructions, power fail interrupt, memory parity
check, and memory protect (21008 also includes
floating point instructions, two-channel DMA, a
crystal-controlled programmable time base generator,
and a buffered teleprinter communications channel).

FLEXIBLE INPUT/OUTPUT
2100A has 14 internal 1/O channels, externally
expandable to 45; 2100S has 12, expandable to 43.

FULL INTERRUPT SYSTEM
Interrupt priority easily established or changed for all
devices.

COMPREHENSIVE SOFTWARE
Proven software packages for generating and exe-
cuting your programs.

2100 computers

The Hewlett-Packard 2100A and 2100S are general-purpose
digital computers designed for a wide range of small com-
puter applications.

Standard features of the 2100A include extended arith-
metic instructions, power fail interrupt with automatic
restart, memory parity check with interrupt, and memory
protect, Available as options are dual-channel direct
memory access (DMA), fioating point hardware, multi-
plexed input/output (l/O), communications channels
accommodating a variety of 1/O speeds and devices,
writable control store (WCS) modules, a programmable
ROM writer, and a full line of systems peripherals and 1/O
interfaces.

Standard features of the 2100S include extended arithmetic
instructions, power fail interrupt with automatic restart,
memory parity check with interrupt, memory protect, dual-
channel DMA, floating point hardware, crystal-controlled
programmable time base generator, and a buffered tele-
printer communications channel. Available as options are
multiplexed 1/0, communications channels accommodating
a variety of 1/O speeds and devices, WCS modules, a pro-
grammable ROM writer, and a full line of systems periph-
erals and 1/0O interfaces. :

Under DMA control, data can be transferred to or from the
computer memory at rates greater than one million sixteen-
bit words per second. The floating point hardware typically
provides a ten-fold speed increase for scientific, compute-
bound algorithms.

A minimum 2100A includes 4,096 words of core memory,
self-contained power supply, and 14 1/O channels. A mini-
mum 2100S includes 16,384 words of core memory, self-
contained power supply, and 12 1/O channels. The core
memory size of each may be expanded to 32,768 words, all
in the mainframe. Through the use of an HP 2155A /O
Extender Unit, another 31 1/O channels and power supply
can also be added to each.

The 2100A and 2100S have a comprehensive range of
proven software packages, including assemblers, compilers,
operating systems, and subroutines.

In addition to the above-mentioned capabilities, you can
depend on the HP reputation for high quality and world-
wide customer support. The net result is a cost-effective
computer which meets your data processing needs today
and will continue meeting them as your needs expand.

HEWLETT [hp; PACKARD

MICROPROGRAMMING
SOFTWARE

for

Hewlett-Packard Model 2100 Computer

HEWLETT-PACKARD COMPANY
11000 WOLFE ROAD, CUPERTINO, CALIFORNIA U.S.A.

Printed: SEPT 1973

'HP Manual Part No. 02100-90133
Microfiche Part No. 02100-90187

PREFACE

This manual is a complete Basic Control System (BCS) software
reference source for microprogramming the Hewlett-Packard
2100 Computer. With the information given here, the micro-
programmer can expand the already powerful capability of the
2100 by adding custom-tailored instructions to the existing set of
microprogrammed operations. This ability to expand the Central
Processor Unit, in addition to the exfraordinary expansion
features of the memory and I/O sections, contributes to the total
flexibility and adaptability of the 2100.

It is assumed that the microprogrammer has read the 2100 Com-
puter Microprogramming Guide (part number 5951-3028) and
that he has a copy of it available as a comprehensive reference
source. The overview presented in section 1 of this manual is
merely meant to supplement the above-mentioned guide by pro-
viding additional emphasis and actual symbolic microinstruction
examples.

This manual is divided into eleven sections. Section 1 is an over-
view of HP 2100 microprogramming, sections 2 through 8 de-
scribe the HP BCS Microassembler, section 9 describes the HP
BCS Micro Debug Editor, section 10 describes the HP BCS Pro-
grammable ROM Writer, and section 11 describes the HP BCS
WCS Input/Output Utility Routine.

The Disc Operating System (DOS, DOS-M, or DOS-III) version of
the Microassembler, Micro Debug Editor, and WCS Input/Output
Utility Routine are described in the 2100 Computer DOS Micro-
programming Software manual (part number 02100-90168).

While Hewlett-Packard cannot assume responsibility for the effec-
tiveness of microprograms written by the user, further infor-
mation and assistance may be obtained by contacting a Hewlett-
Packard field office. Sales and Service offices throughout the
world are listed in the back of this manual.

CONTENTS

HP 2100 MICROPROGRAMMING OVERVIEW 11
Microprogramming Facilities 12
Microinstruction Format 15
Accessing a Microprogram 1.7
Jump Tables17
Passing Control From an Assembly Language Program . 1-12
Passing Control From a FORTRAN Program. 1-13
Passing Control From an ALGOL Program 114
Passing Parameters P B £
Jump Table Conventions119
Input/Output120
Imput.12
Output S 5 |
Accessing Core Memory Locatlons e e e e e l23
Read FromMemory.128
Write Into Memory . . T 057
Microprogramming Shift Operatlons e e 125
32-bit Dataltems.127
17-bit Dataltems.1.27
16-bit Dataltems.127
GENERAL DESCRIPTION OF THE
HP MICROASSEMBLER 21
The Assembly Process 22
Program Location Counter 23
Symbolic Addressing 23
Asterisk (*)asan Address 24
Assembly Options 24
AssemblerQutput, . . . 25
Symbol Table Listing 26
Source Microprogram Listing 26
SYMBOLIC STATEMENTFORMAT 31
Symbolic Statement Fields 32
LabelField. 32

RbusField 383

S-bus Field .

Function Field

Store Field .

Special Field

Skip Field .

Comments Field .
Standard Coding Form .

MICRO-ORDERS

R-bus Field .

S-bus Field .

Function Field
Logical Operators .
Shift Operators
Jump Operators .
Arithmetic Operators
Flip-Flop Operators .
Phase Operators .

Store Field .

Special Field

Skip Field .

ASSEMBLER CONTROL STATEMENTS

SAMPLE MICROPROGRAMS

Register Save Microprogram
Microinstruction Commentary

Block Move Microprogram
Microinstruction Commentary

Table Search Microprogram
Microinstruction Commentary

Teleprinter Output Driver .
Initiator Section Commentary .
Continuator Section Commentary

MISCELLANY .o
Interrupting a Microprogram .

3-3
3-3
34
34
34
3-7
3-7

41
4-4

4-8
4-9

. 410
. 413
. 4-14
. 4-16
. 4-18
. 4-18
. 4-21
. 4-25

6-1
6-2
6-3
6-4
6-5
6-7

. 6-10
. 6-13
. 6-18
. 6-18

71
7-1

10

11

vi

A/B Addressable Flip-Flops
Memory Read .
Memory Write

RPT Micro-Order

JSB/RSB Micro-Orders .

Counter . .o

ERROR MESSAGES

HP MICRO DEBUG EDITOR
Requirements .
Modes of Operation .
Normal Mode .
Debug Mode
HP Micro Debug Editor Commands
Input Commands .
Edit Commands .
Output Commands .
Termination Command
Debug Commands
The Initialization Program
Operating Instructions .
Loading the Micro Debug Edltor
Debugging a Small Microprogram
Debugging a Large Microprogram .
Punching Mask Tapes From an Object Tape . .
Loading a Microprogram Into WCS From an Object Tape

HP PROGRAMMABLE ROM WRITER
Requirements .
Loading Instructions
Initial Parameters
General Operation
Set-Up
Burning .

HP BCS WCS INPUT/OUTPUT UTILITY ROUTINE .
Calling Sequences

7-4
7-4
7-5
7-7
7-8
79

81

91
9-1
9-1
9-2
9-2
9-3
9-3
9-5
9-8

. 9-10
. 9-10
. 9-14
. 9-15
. 915
. 9-16
. 917
. 9-20
. 921

. 101
. 101
. 10-1
. 10-2
. 10-4
. 10-5
. 10-6

L1141
. 111

ILLUSTRATIONS

1-1. Microprogramming Facilities 1-4
1-2. Microinstruction Format 1-5
1-3. Control Store Module Number as Stored
in an HP 2100 Microinstruction 1-12
1-4. 32-bit Data Item Shifts 1-26
1-5. 17-bit DataItem Shifts 1-28
1-6. 16-bit DataItem Shifts 1-29
2-1. Object Code Illustration 2-7
2-2. Object Microprogram Tape Format 2-9
2-3. Symbol Table Listing e e e e e e e e e e 2-10
2-4. Source Microprogram Listing (first page) 2-11
2-5. Source Microprogram Listing (last page). 2-12
3-1. Symbolic Microinstruction Format 3-2
3-2. Standard Coding Form 3-6
6-1. Register Save Microprogram 6-2
6-2. Block Move Microprogram. 6-5
6-3. Table Search Microprogram 6-8
6-4. InitiatorSection. 6-14
6-5. Continuator Section. 6-16
7-1. Interrupt Example. 7-3
TABLES
1-1. Effect of the Various 105xxx Macro Instructions 1-8
1-2. Secondary Jump Table Usage 1-10
1-3. Microinstruction Commentary 111
1-4. Passing Control From an Assembly Language
Program to a Microprogram 1-12
1-5. Input Micro-Orders 1-21
1-6. OutputMicro-Ordersc..o... 1-22
2-1. Symbol Table Listing Format 2-6

3-1.
3-2.
6-1.

6-3.
8-1.
9-1.
9-2.
10-1.

viii

TABLES (Continued)

Symbolic Microinstruction Format. 31
Valid Mnemonics 0L 3.5
Register Save Locations 6-3
Even Starting Byte Address 6-7
Odd Starting Byte Address 6-9
ErrorMessages ¢ v v vttt e e 8-1
Micro Debug Editor Commands 9-4
Initialization Program. 9.14
Commands e e e e e e e e e e e e e 10-4

INDEX OF HP 2100 MICRO-ORDERS

Note: In each case, the first page reference is that of
the description of the micro-order,

R-bus Field
A 42

AAB 4-2,75
B 4-2

CAB 4-3
CcQ 4-3

F 4-2

NOP 4-1

Q 4-2

S-bus Field

ADR 45, 1-10, 1-11, 1-17
CIR 4-7

CL 4-6,1-7

CNTR 4-6,79
COND 4-7,7-5

CR 46, 1-7

101 4-7,1-21

M 45

NOP 4-4

P 4-4,1-16, 1-17, 1-18
RRS 4-7

S1 44

S2 44

S3 45

S4 45

T 45

Function Field
ADD 4-14
ADDO 4-14
AND 49

ARS 4-11,1-26
CFLG 4-17
CJMP 4-13, 2-3, 7-1
CLO 417

CRS 4-12, 1-26
DEC 4-15

DIV 4-14

INC 4-16

INCO 4-16

I0R 4-9, 1-7

JMP 4-13, 1-6, 1-9, 2-3
JSB 4-14, 2-3,7-8
LGS 4-11, 1-26
LWF 4-10, 1-28
MPY 4-15

NOR 4-10

P1A 4-18

RFE 4-17

RF1 4-17

RSB 4-14,7-8
SFLG 4-17

SOV 4-16

SuUB 4-15

XOR 4-9

INDEX OF HP 2100 MICRO-ORDERS (Continued)

Store Field Special Field (Continued)
A 419 L1 4-23, 1-26, 1-28
AAB 4-21,7-6 LEP 4-25
B 4-19 NOP 4-22
CAB 4-21 R1 4-23,1-26, 1-28
F 4-20 RSS 4-23
100 4-21,1-22 RW 4-24, 1-16, 1-17, 1-18, 1-23, 7-4
IR 4-19 SRG1 4-25
M 4-19 SRG2 4-25, 1-28
NOP 4-19
P 4-20 Skip Field
Q 4-20 AAB 4-29,7-6
S1 4-20 COUT 4-26
S2 4-20 CTR 4-26
S3 4-20 CTRI 4-26
S4 4-21 A EOP 4-26
T 4-19 FLG 4-27
ICTR 4-27,7-9
Special Field NAAB 4-29
AAB 4-24,7-6 NEG 4-27
ASG1 4-24 NMPV 4-27,1-25,7-56
ASG2 4-24 NOP 4-26
CNTR 4-22,7-9 ODD 4-28
CW 4-22,1-24,7-5 OVF 4-28
ECYN 4-22 RPT 4-28, 7-7
ECYZ 4-23 TBZ 4-29

I0G1 4-23, 1-21, 1-22 UNC 4-29

SECTION
HP 2100 MICROPROGRAMMING OVERVIEW

An HP 2100 computer may include one to four control store modules
containing microprograms. These modules are referred to as modules

#0, #1, #2, and #3.

Control store module #0 is always present and is used exclusively for
the HP 2100 basic instruction set. The other three control store
modules are optional. An HP 2100 may include any of the following
control store module combinations:

0

Oand 1

0 and 2
0Oand 3

0,1, and 2
0,1,and 3
0,2,and 3
0,1,2,and 3

The HP floating-point instruction set, if included in the HP 2100,
pre-empts module #1. Modules #2 and #3 are available for user-
supplied microprograms (as is module #1 if the floating-point instruc-
tion set is not expected to be used).

Each control store module contains 4004 (256,,) locations; each
location accommodates one microinstruction containing six micro-
orders. The locations in module #0 have the octal addresses 000-377;
those in module #1 have the octal addresses 400-777; those in module
#2 have the octal addresses 1000-1377; and those in module #3 have
the octal addresses 1400-1777.

This section has seven parts. The first part summarizes the entities that
the microprogrammer may work with; the second describes the format
of a microinstruction; the third discusses how to pass control from a

1-1

program to a microprogram; the fourth comments on jump table
conventions; the fifth describes microprogramming input/output; the
sixth describes how to pass data between core memory and control
store modules; and the last part describes microprogramming shift
operations.

MICROPROGRAMMING FACILITIES
The microprogrammer has the following entities to work with:
Thiri:een registers

® A-register (16 bits)
® B-register (16 bits)

Q-register (16 bits)
F-register (16 bits)
P-register (16 bits)
Four Scratch Pad Registers (16 bits each)

The shaded registers are available to the microprogrammer only
for a few strictly defined uses. The M- and T-registers are used
for accessing core memory locations. The Central Interrupt
Register is a read-only register that lets the microprogrammer
know which I/O device has caused an interrupt. The CPU
Instruction Register is used for performing input/output opera-
tions, for performing a special shift operation (shift data item
left four bit positions), for calling a microprogram by way of a
secondary jump table, and for passing a 4-bit parameter from
the calling program to a microprogram.

1-2

The other nine registers may be considered as general purpose
registers.

A five-bit hardware counter
A function generator
A shifter

Five 16-bit data paths between the registers, the counter, the
function generator, the shifter, and the I/O hardware

R-bus
S-bus
ALU-bus
T-bus
I/O-bus

Four flip-flops

Flag (not to be confused with the IO Flag)
Overflow

Extend

Carry

By examining Figure 1-1, most of the available microprogramming tasks
(referred to as micro-orders) are apparent. For example, a micro-order
can:

Read the contents of a register onto a bus.

Read the contents of a bus into a register.

Read the contents of the R-bus onto the S-bus.
Read the contents of the S-bus onto the I/O-bus.

1-3

h M- Reglster

L T- Reglster

j —~—~———)L - A-Regiystplrk >
L M e b
-~—*—*—‘*“’| Q-Eegisler ‘ }-d——'—-—-’ |
m“"’[’ F-LRegister]"““’"""”

R-Bus
S$-Bus

Function Generator

T-Bus

———— P-Register }
——-——-———-—-——-—-*’i Scratch Pad Register M
.___.—.-._-.—.....—-." Scratch Pad Register 2 W

’l Scratch Pad Reglster 3

1/0-Bus

’i Scratch Pad chlster 47

"‘

lcantral Interrupt Reglster

Figure 1-1. Microprogramming Facilities

® Read the contents of the 1/0-bus onto the S-bus.

® (Cause the function generator and the shifter to perform a
function (e.g., add, subtract, logical “inclusive OR”, shift left
one bit position) using the contenis of the R- and S-buses as
input. The result is automatically read onto the T-bus.

All the available micro-orders are described in section 4 of this manual.

MICROINSTRUCTION FORMAT

An HP 2100 microinstruction comprises 24 bits and is divided into six
fields as shown in figure 1-2.

16-12 - 7-4

Function Special

Figure 1-2. Microinstruction Format

All micro-orders in a given microinstruction are executed simultane-
ously. Whenever a data item is read onto a bus, the data item is
available on the bus only during execution of that particular
microinstruction.

The R-bus field reads the contents of the specified register onto the
R-bus.

The S-bus field reads the contents of the specified register onto the
S-bus. It is also used for reading a constant or the contents of the R-bus
or 1/O-bus onto the S-bus.

The Function field causes the function generator and the shifter to
perform the specified function using the contents of the R- and S-buses
as input. The result is automatically read onto the T-bus. The Function
field is also used for jumping and for manipulating the Overflow,
Extend, and Flag flip-flops.

The Store field reads the contents of the T-bus into the specified
register. It is also used for reading the contents of the S-bus into the
M-register, the T-register, the CPU Instruction Register, or onto the
I/O-bus.

The Special field is used for diverse purposes. It is used for initiating
input/output operations, for accessing core memory locations, for
loading the counter from the S-bus, for manipulating the Carry flip-
flop, and it is used in shifting operations for specifying which direction
the data is to be shifted.

The Skip field is used for skipping a microinstruction. If the condition
specified in the Skip field is true, the next sequential microinstruction
is skipped. In HP 2100 microprogramming, the term “skip” is used in
an unconventional way: if the skip condition is true, the next se-
quential microinstruction is not actually “jumped over”, but is forced
to be a NOP. The micro-order EOP (End of Phase) is used in the Skip
field to exit from a microprogram. When an EOP is sensed, the exit
occurs after the next microinstruction is executed. It should be noted
that if an EOP is in a microinstruction that is to be skipped, the EOP is
executed and the exit occurs after execution of the next sequential
microinstruction.

There are two cases where the usual function of the Special and Skip
fields is inhibited:

1) If the Function field specifies that a jump be performed, the
jump address is supplied in place of the Special and Skip fields.
The jump address may be in the form of an asterisk expression
or a symbolic address.

Examples: -- -- JMP -- *+20
-- -- JMP -- XYZ

1-6

2) If the S-bus field specifies that a constant be read onto the
S-bus, the constant is supplied in place of the Special and Skip
fields.

Examples: -- CL IOR -- 10
-- CR IOR -- 371

The constant is always coded in the symbolic microinstruction
as an octal number.

CL specifies that the constant be read onto the leftmost eight
bits (8-15) of the S-bus; CR specifies that the constant be read
onto the rightmost eight bits (0-7) of the S-bus.

The Function field cannot contain a NOP. By convention, if a
pseudo-NOP is desired in the Function field (as in the above
example), an IOR is used.

ACCESSING A MICROPROGRAM

JUMP TABLES

One control store module must be designated as the entry module. This
decision is communicated to the hardware by a hardwired connection
on the control store board (A2).

To transfer control from a program to a microprogram, the program
executes a macro instruction whose format is 105xxx (octal), where
xxx is 000-377. This passes control to one of the first sixteen locations
of the entry module. See Table 1-1.

Table 1-1. Effect of the Various 105xxx Macro Instructions

Control Store Location Jumped To
Value of xxx Entry Module

#1 #2 #3
000-017 400 1000 1400
020-037 401 1001 1401
040-057 402 1002 1402
060-077 403 1003 1403
100-117 404 1004 1404
120-137 405 1005 1405
140-157 406 1006 1406
160-177 407 1007 1407
200-217 410 1010 1410
220-237 411 1011 1411
240-257 412 1012 1412
260-277 413 1013 1413
300-317 414 1014 1414
320-337 415 1015 1415
340-357 416 1016 1416
360-377 417 1017 1417

The first sixteen locations of the entry module are referred to col-
lectively as the primary jump table. Each location in the primary jump
table normally contains a jump microinstruction which passes control

either to the desired microprogram or to a secondary jump table.

If secondary jump tables are not used, a maximum of 16 micro-
programs are callable. In this case, the calling program must use one of
the macro instructions 105000, 105020, 105040, 105060, 105100,
105120, 105140, 105160, 105200, 105220, 105240, 105260, 105300,
105320, 105340, or 105360.

1-8

Note: When secondary jump tables are not used, the only
reason for using any of the other 240 macro instruc-
tions would be to pass a four-bit parameter to the
microprogram. The passing of parameters is discussed
later in this section.

However, each microinstruction in the primary jump table may pass
control to another jump table (referred to as a secondary jump table).
Each secondary jump table may be up to 16 locations long. If every
microinstruction in the primary jump table points to a 16-location
secondary jump table, the maximum number of callable microprograms
increases to 256. The following paragraphs discuss the use of secondary
jump tables.

When a 105xxx macro instruction is executed, the instruction itself is
in the CPU Instruction Register. Whenever a jump microinstruction is
executed, the rightmost four bits (bits 0-3) of the S-bus are auto-
matically “OR”ed with the specified jump address. Usually the S-bus
contains all zeros and the specified jump address is not altered. How-
ever, microinstructions can read the contents of the CPU Instruction
Register onto the S-bus.

The following example demonstrates the use of a secondary jump table.
Assume that:

a) module #1 is the entry module

b) the second microinstruction in the primary jump table (control
store location 401) passes control to a secondary jump table

¢) the secondary jump table resides in control store locations 500
through 517

The micro-coding is as shown in table 1-2.

When the macro instruction 105025 is executed by the calling program,
control passes to control store location 401 which, in turn, passes
control to control store location 776. The microinstructions at control
store locations 776 and 777 cause the rightmost four bits of the

19

Table 1-2. Secondary Jump Table Usage

Control Store Location

Contents

401

—— - JMP -- 776

JMP microinstructions

500 through 517

776 -- ADR IOR §1
777 -- S1 JMP -~ 500

105025 macro instruction (05, octal) to be “OR”ed with the jump
address (500), thus causing a jump to control store location 505. The
microinstruction in control store location 505 then passes control to
the desired microprogram.

Specifically, the microinstructions shown in control store locations 776
and 777 of the above example work as shown in table 1-3.

The microcoding in the above example may be used for jumping to
secondary jump tables that reside in modules #1 or #3 (the only
permissible variation being that Scraich Pad Register 3 may be used
instead of Scratch Pad Register 1).

If the secondary jump table resides in control modules #0 or #2, the

pair of microinstructions shown in control store locations 776 and 777
are combined into one microinstruction, as follows:

Control Store Location Contents

776 -- ADR JMP -- 500

Table 1-3. Microinstruction Commentary

First microinstruction:
® The ADR reads bits 0-9 of the CPU Instruction Register
onto the S-bus.
The I0R reads the contents of the S-bus onto the T-bus.

® The S1 reads the contents of the T-bus into Scratch Pad
Register 1.

Second microinstruction:

® The S1 reads the contents of Scratch Pad Register 1
onto the S-bus.

® The JMP passes control to the effective jump address.
The effective jump address is formed automatically by
““OR"”ing bits 0-3 of the S-bus with the specified jump
address (500).

This difference results from the way the jump address is stored in the
microinstruction. Bits 0-7 of the microinstruction specify an address
000-377 while the least significant bit of the S-bus and Function fields
together specify what control store module is being jumped to:
00 = module #0, 01 = module #1, 10 = module #2, and 11 = module
#3. Figure 1-3 shows how the binary module addresses are stored in the
microinstruction.

As long as nothing is coded in the S-bus field, the microassembler
automatically sets these two bits to the proper values. However, when
the microprogrammer codes something in the S-bus field, he forces the
least significant bit of the S-bus field to be set either to a zero
or a one. An ADR micro-order sets the bit off (thus specifying control
store module #0 or #2) whereas an S1 micro-order sets the bit on (thus
specifying control store module #1 or #3).

1-1

Figure 1-3. Control Store Module Number as Stored in
HP 2100 Jump Microinstruction.

PASSING CONTROL FROM AN ASSEMBLY LANGUAGE
PROGRAM

There are two ways to pass control from an assembly language program
to a microprogram. The first applies only if the RAM (Random Access
Memory) psuedo-instruction is available; the second applies in any case.
The two methods are as illustrated in table 1-4.

Table 1-4. Passing Control From an Assembly
Language Program to a Microprogram

Method 1: RAM SWB

SWB EQU xxxB

Method 2: OCT 10bxxx

The RAM pseudo-instruction automatically forms the 105xxx macro
instruction using the constant supplied in the EQU statement (the
105xxx macro instruction replaces the RAM pseudo-instruction). In
both cases, xxx is 000-377.

PASSING CONTROL FROM A FORTRAN PROGRAM

A FORTRAN program passes control to a microprogram indirectly by
way of an assembly language program.

For example, the FORTRAN statement
CALL XYZ(A,B)
generates the following calling sequence:

JSB XYZ

DEF *+3

DEF address of the first parameter
DEF address of the second parameter

When the above calling sequence is executed, control passes to the
assembly language program named XYZ. XYZ replaces the JSB XYZ
instruction in the above calling sequence with the 105xxx macro
instruction and then passes control to the 105xxx macro instruction.
The program XYZ is as follows:

ENT XYZ
XYZ NOP
LDA XYZ
ADA =D-1
LDB 105xxxB
STB 0]
JMP 0]

Notes:

When the above calling sequence is executed, the
memory address of DEF *+3 is automatically stored
in the entry point location (XYZ NOP).

The A-register is referenced as memory location 0.

Specifically, the program XYZ works as follows:

Note

The LDA instruction loads the memory address of the DEF *+3
instruction into the A-register.

The ADA instruction subtracts one from the contents of the
A-register. The A-register now contains the memory address of
the JSB XYZ instruction.

The LDB instruction loads the 105xxx octal constant into the
B-register.

The STB instruction stores the contents of the B-register in the
memory location pointed to by the A-register.

The JMP instruction passes control to the memory location
pointed to by the A-register.

that the microprogrammer must be aware of the assembly

language calling sequence produced by the FORTRAN or ALGOL
compiler in order to properly access the parameters passed by the
calling program and to return control to the proper location in the
calling sequence (see “Passing Parameters™ later in this section).

PASSING CONTROL FROM AN ALGOL PROGRAM

An ALGOL program passes control to a microprogram indirectly by
way of an assembly language program. The method is the same as
described for FORTRAN programs, above.

1-14

PASSING PARAMETERS
ASSEMBLY LANGUAGE PROGRAMS

There are three methods of passing parameters from an assembly
language program to a microprogram:

® Use the A- and/or B-registers.

® Use DEF or OCT statements immediately following either the
R AM psuedo-instruction or the octal 105xxx macro instruction.

® Use the rightmost four bits of the octal 105xxx ‘macro
instruction.

With the first method, the calling program loads the parameters into the
A- and/or B-registers (using LDA and/or LDB instructions) just prior to
executing the 105xxx macro instruction. The microprogram could then
access the parameters directly from the registers. The microcode for
accessing the parameters in this manner would be as follows:

A -- IOR * -- --
B -- IOR * -- --

* = any register

With the second method, the calling program supplies a series of OCT
and/or DEF statements immediately following the 105xxx macro
instruction. The OCT and DEF statements may either contain the
parameters or point to them. When control passes to the microprogram,
the P-register contains the address of the first instruction following the
105xxx macro instruction.

If the DEF or OCT statement actually contains the parameter, the
microprogram does the following:

® Reads the contents of the P-register into the M-register.

® Executes a read memory (RW) operation.

® Retrieves the parameter from the T-register and reads it into a
general purpose register.

® [ncrements the P-register.

The microcode would be as follows:
-- P IOR M RW --

-~ T IOR * —- --
-~ P INC P -- --

* = any register

If more than one parameter is being passed, the microprogram executes
the above microcode once for each parameter, as needed.

If the DEF or OCT statement contains the address of the parameter,
the microprogram does the following:

® Reads the contents of the P-register into the M-register.
® Executes a read memory (RW) operation.

® Retrieves the parameter address from the T-register and reads it
into the M-register.

® Executes another read memory (RW) operation.

® Retrieves the parameter from the T-register and reads it into a
general purpose register.

® Increments the P-register.

" The microcode would be as follows:

1-16

-- P IOR M RW --
-~ T IOR S1 -- --
-- 81 IOR M RW --
- T IOR * = --
-~ P INC P - --

¥ = any register

Again, if more than one parameter is being passed, the microprogram
executes the above microcode once for each parameter.

With the third method, the microprogram uses the ADR micro-order to
read bits 0-9 of the CPU Instruction Register onto the S-bus and then
reads the bits into a general purpose register. The microcode would be
as follows:

-- ADR IOR * -- --
* = any register

The three methods described above may be used in any combination.

FORTRAN PROGRAMS

A FORTRAN program passes parameters to a microprogram by supply-
ing them in parentheses in the CALL to the assembly language linkage
program, as follows:

CALL XYZ(15,100,500,7)

where XYZ is the entry point of the assembly language linkage ‘
program; and

15, 100, 500, and 7 are the actual parameters being passed.
After the assembly language linkage program has performed its func-
tion, the following calling sequence is executed:

117

OCT 105xxx

DEF *+5 (this is the return address)
DEF address of the first parameter
DEF address of the second parameter
DEF address of the third parameter
DEF address of the fourth parameter

When the microprogram receives control, the P-register is pointing to
the instruction immediately following the octal 105xxx macro instruc-
tion (i.e., it is pointing to the return address). To access the parameters,
the microprogram does the following:

Increments the P-register.
Reads the contents of the P-register into the M-register.
Executes a read memory (RW) operation.

Retrieves the parameter address from the T-register and reads
it into the M-register.

Executes another read memory (RW) operation.

Retrieves the parameter from the T-register and reads it into a
general purpose register.

The microcode would be as follows:

1-18

-- P INC P -- --

-- =-- JSB -- GETAD

-- S1 IOR * -- --
GETAD -- P IOR M RW --
GETAX -- T IOR ST -- NEG

-- -- RSB -- -- --

-- S81 IOR M RW --

-- ~-- JMP -- GETAX

* = any register

If more than one parameter is being passed, the microprogram executes
the above microcode once for each parameter. The GETAD routine
handles multiple levels-of indirect addressing. After accessing the final
parameter, however, the microprogram must increment the P-register
one more time so it is pointing to the first instruction following the
calling sequence.

ALGOL PROGRAMS

The passing of parameters from an ALGOL program to a microprogram
involves the same technique described for FORTRAN programs, above.

JUMP TABLE CONVENTIONS

The jump table conventions are described on pages 3-6 through 3-8 of
the 2100 Computer Microprogramming Guide (5951-3028).

Note that these conventions in effect divide the primary jump table
among three control store modules (i.e., the first six locations reside in
module #1, the next five locations effectively reside in module #2, and
“the last five locations effectively reside in module #3).

It is recommended, though not required, that the microprogrammer
adhere to these conventions.

In actual fact, the following generalizations apply:
® Any module (#1, #2, or #3) may be the entry module.

® Primary jump table entries may point backward or forward, and
may point to any location in modules #1, #2, or #3.

® Any primary jump table location may point to a secondary
jump table. ‘

119

The following restrictions apply if the HP floating-point instruction set
is present:

® The HP floating-point instruction set must reside in module #1.

® The microprogrammer is restricted to the use of macro
instructions 105140 through 105377. These map into modules
#2 and #3 as shown on page 3-7 of the 2100 Computer
Microprogramming Guide.

If HP options other than the floating-point instruction set are present,
similar restrictions apply.

INPUT/OUTPUT

This section discusses how to pass data during an input/output opera-
tion. Microprogrammed I/O operations that use the interrupt system
also require that certain control instructions such as STC xx,C and CLC
XX be executed. This is done by loading the octal representation of the
particular instruction into the CPU Instruction Register and then
executing an IOG1 micro-order. See the teleprinter output driver
example in section 6 (“Sample Microprograms”) of this manual.

INPUT

An input operation transfers one character between an input device and
a register. The micro-orders for performing an input operation are as
shown in table 1-5.

1-20

Table 1-5. Input Micro-Orders

e - —= -- 10G1 --

-~ 10t IOR -- -- --
-~ 10l 10R * -- -

*=M,T,A, B, QF, P, S1,S5283 or S4

Before executing the above micro-orders, however, the micro-
programmer must place the octal representation of an input instruction
(LIA, LIB, MIA, or MIB) in the CPU Instruction Register. 1025xx is an
LIA instruction, 1065xx is an LIB instruction, 1024xx is an MIA
instruction, and 1064xx is an MIB instruction (xx is the select code of
the desired input device). -

The I0G1 causes the hardware to decode and execute the input
instruction. This results in one character being transmitted from the
input device to the I/O-bus. The IOI reads the character from the
I/O-bus onto the S-bus (this is done twice in order to compensate for
the possibility of noise occurring during the “I/O-bus to S-bus” data
transfer). The IOR in the last microinstruction reads the character from
the S-bus onto the T-bus; the Store field reads the character into the
specified register.

The micro-orders must be coded into four consecutive micro-
instructions and must be in the relative positions shown above. The
fields containing - are available for other tasks.

OUTPUT

An output operation transfers one character between a register and an
output device. The micro-orders for performing an output operation are
as shown in table 1-6.

1-21

Table 1-6. Output Micro-Orders

- == —= -= 10G1 --
* * ¥ IOR - - _——
* ** JOR I00 -- --

** JOR 100 -- --

* = NOP or an R-bus register mnemonic

** = RRS or an S-bus register mnemonic (RRS reads
the contents of the R-bus onto the S-bus)

Before executing the above micro-orders, however, the micro-
programmer must load the octal representation of an output instruction
(OTA or OTB) into the CPU Instruction Register. 1026xx is an OTA
instruction and 1066xx is an OTB instruction (xx is the select code of
the desired output device). o

The I0G1 causes the hardware to decode and execute the output
instruction. This results in one character being transmitted from the
I/0-bus to the output device. The S-bus field of the last three micro-
instructions reads the character onto the S-bus. The I00 in the last two
microinstructions reads the character from the S-bus onto the I/O-bus.
The repetition of the R-bus, S-bus, and Store field mnemonics (*, **,
and 100) is necessary in order to compensate for the possibility of noise
occurring during the “S-bus to I/O-bus” data transfer. The IOR in the
last three microinstructions is a “pseudo-NOP”.

The micro-orders must be coded into four consecutive microinstruc-
tions and must be in the relative positions shown above. The fields
containing ‘““--” are available for other tasks.

1-22

ACCESSING CORE MEMORY LOCATIONS

By placing a core memory address in the M-register and then executing
an RW or CW micro-order, the microprogrammer can read data from a
core memory location or write data into a core memory location. The
T-register is always used for passing data between core memory and a
control store module.

READ FROM MEMORY

To read data from a core memory location, the microprogrammer first
loads the core memory address into the M-register by using either of the
following microinstructions:
* RRS IOR M RW -
(or)
- Fk IOR M RW -

where * is any R-bus register.
** is any S-bus register.

The specified register must contain the core memory address. The RW
micro-order initiates the “read from memory” operation.

The microprogrammer then retrieves the data from the T-register by
using the following microinstruction:

- T IOR * - -
where * is the register into which the data item is to be stored.

For example, to read the contents of core memory location 3004 into
the B-register, the microprogrammer could use the following
microinstructions:

1-23

- CR IOR S1 300
- S1 IOR M RW -
- T IOR B - -

WRITE INTO MEMORY

To write data into a core memory location, the microprogrammer first
loads the core memory address into the M-register by using either of the
following microinstructions:

* RRS IOR M CW ®#*

(or)
- Ex IOR M CW %

where * is any R-bus register.
** is any S-bus register.
*¥¥ ig a “skip” micro-order (usually UNC or NMPV),

The specified register must contain the core memory address. The CW
micro-order initiates the “write into memory” operation. In order for
the operation to be performed, the next sequential microinstruction
must be skipped.

The microprogrammer then loads the data into the T-register by using
either of following microinstructions:

* RRS IOR T - -
(or)
- *k IOR T - -
where * is any R-bus register.

% is any S-bus register.

1-24

For example, to write a data word from the B-register into core
memory location 100g, the microprogrammer could use the following
microinstructions:

- CR IOR S1 100

- S1 IOR M CW ©UNC
- - IOR - - -

B RRS IOR T - -

An NMPV micro-order is used for testing whether or not the specified
core memory address points to a location in the protected area of core
memory. The above example is again shown, only this time using
NMPV,

- CR IOR S1 100

F 81 DEC M CW NMPV
- - JMP - ERROR

B RRS IOR T - -

If a memory protect violation is detected, the “write into memory”
operation is not performed and control passes to ERROR. If no
memory protect violation is detected, the JMP microinstruction is
skipped and the “write into memory” operation is performed.

MICROPROGRAMMING SHIFT OPERATIONS

The microprogrammer can perform a variety of shift operations. In the
following paragraphs, the shift operations are categorized according to
the size of the data item being shifted.

1-25

g
o
ety

EFT

k154|141‘. E— .11|6J§}-—-[;5|14

NOP LGS 8 RY .

z-m—ﬂm[u
N

i A

1 l o H15]14
7 <

N

ARITHMETIC RIGHT SHIFT: .~ B .NOP" ARS. B _R1 -

BRegster .o

Figure 1-4. 32-bit Data Item Shifts

1-26

32-BIT DATA ITEMS

The data item must be in the B- and A-registers (for right shifts) or the
F- and Q-registers (for left shifts).

For right shifts, the B-register contains the high-order 16 bits and the
A-register contains the low-order 16 bits. For left shifts, the F-register
contains the high-order 16 bits and the Q-register contains the low-
order 16 bits.

The various 32-bit data item shift operations are shown in figure 1-4.

17-BIT DATA ITEMS

The LWF micro-order allows the microprogrammer {o shift the Flag
flip-flop in conjunction with the contents of any register.

The 17-bit data item shift operations are shown in figure 1-5.

16-BIT DATA ITEMS

The data item may be in any register. There are two types of 16-bit
data item shift operations: a logical shift and a circular shift. The logical
shifts are shown in figure 1-6.

The circular shift operation results in the data item being rotated four
bit positions to the left. This is accomplished by using the Shift-Rotate
Group (SRG) instruction decoders.

The microprogrammer must first load the constant 000027, into the
CPU Instruction Register. This is done using the following
microinstruction:

NOP CR IOR IR 27

1-27

e e e mw//(mée)/:\r
)r{: PR i u ; W,,,.« i i s S [
., 7 i

s i T

o

e g i
i A ?; ;; o),‘ s

i

méxl’x i ’i i L

,‘wm,ssr:nws e «f e i . o e

: ‘ss"im,xé\ i s) m,{.,,«;w‘x““" B e
i ; i

it :

s S

.

ihe!
i ¢ ’ i
s o e
et “M o e e
2 i
o . i
e G
:frxm;; ;,;: (,,;,cg‘f

“‘*‘?, B
'«J,’Lii(»w i i
e O e G T
- i

s
i :
i ‘W,,d,(,(, «m«; i

* = Any R-Bus Register ** = Any S-bus Register

Figure 1-5. 17-bit Data Item Shifts

Each time the data item is to be rotated four bit positions to the left,
the microprogrammer executes either of the following:
* NOP IOR * SRG2 -

(or)
NOP ** IOR ** SRG2 -

where * is any R-bus register and ** is any S-bus register. The only
restriction is that the same Scratch Pad Register cannot be specified in
both the S-bus and Store fields of the same microinstruction,

1-28

i
S o e
L &xxmi%mmn sgs;smgw m“‘
mxsmmxxv—mm!wm e iy 1
e s e

v I i e ige i

S ling s xxwmmswsmssm
i

T D L T i o it oy s
s e e o L et ‘;’E::Wwr&wwww,g:;::atzmitatmsf:aw
Ei& S E‘ T"‘ “?‘f A? L na xim«m;ﬁ: | s“www m&;?;ﬁ”w mggm,gw, “;;g;gg;g,;g‘;;‘,k,
B | il G i xx YN i B o g ik Km i i

P 7”,LMw:;mx;;mz;“»,M.w R el s i m x;:,zvr*****“*“«,;:ir' ‘“““@L,,‘\“*\M ““’S:’ ﬁf?fu’wsw L

e el s i s 4 wmwmm i e W e i
iy s «vmg«ﬂmxxmx;xw xmgmnmmﬂm“m Mnmmt« i “”‘ B »« s i“"“!mi A n s
g e e fmfm‘m)W;*"“2:‘;’é,ssiﬁiul’i.ii‘liiiéiiiizﬁm o
w:m‘:::z;::'w“ e %W“““m - %“‘*t::*"i:z‘mz,‘ e
e g ‘x b L9xmmmvmijxxmkniif i mm o
e i = i
ey

o e oty
g s ssss,ssmnw i ‘?Mx
S Al
»tl6&xvvm\,xp«(jx.«;‘;;mxm i
e
i e

.

i
s e

o
S

i
i
o xxxw.xs»mmxdii\x
sl

z«m»mw-m

: *xmxxym&xmww“x(;m,&,
b w&x,,w,dw S

iy

S SR e A i
o e s Ao ok AL it e
nmxf?‘) wvmmu»‘“m k«)v;1vv1»>>>,(««««4x«((4!vn»wl»pﬁqs:g?x{w;»m i i Lﬁaﬂ s ’"’?f,ﬁﬂ‘xiummmwmww e e A .
i sl B BRI i R D = e -
| ;mmx»,,,mmmmw s i s i R
LS " e e
R o e »,mxs;%
TG e i i
Lo e S e

-
T ;

xmw«-«wmm e A9 i
TR e ‘é() m&mu R zzux\»m»,\\wi“‘” it ‘”"“‘ '
WA mssmmmmmm&g? s o ,§ s el R
hid GRiE e R B w mwmmwm&m,xm i
i ,gﬁ;;mgmswaim;mss;w A mmw;xms Wt e Sy S
R ioireniag WM,wmmwmmxwumwsms sxwwmwnwmxx«k wmnm x\»mmx(m mxxxxxw((n&(&«mx i 1 W i i
e) ‘W Sl SR e S i ;w\«;mygz;:wv <*;*;::1“‘“";;&1‘“‘&;; zmmwm i
) A R i e g IR kAR o
?E.nikiz‘i&?;z?;";;mm‘ LR S e me,Wwwx.ﬁzsz‘;‘ .*z*;;r:z;xzzwzmsN;;::tz,,t,::xz‘::;;,WMWW,w e
. MMWM e «Hf’c’i’s:mmm o i G mnmw’ﬁm L
B — e e e wmlm i
xWiﬁW,‘.,,mm el ,,M.y“ e W
iy xmw‘,;h sy L,«y .«u (x, itk e)MNW,,,m,},q»x,.mmxiw«x!sa i g ¥ ‘"““‘M A il ‘i‘l“"" W“)ﬁme i
i Hastniatiiing ¥iis55i Riewtitfinndpustni A SN i
m' . iﬁ Qﬁf ,m,)?ixé,,,f;‘ sl i W e Con BOR G "im,“"‘k‘:\x:fwz"“ I "v*";;;;s‘ o Hhia e & e
i waxxmumumx, w g wx,m.nm«w s i st v el il e
\,‘M?g;,;g‘fmm‘,“ - *,,:”“i:‘i:&ﬁ“?‘“;i}‘w &“,;, e msxm:?‘:m,f‘iis“iééz”mr ‘”‘gii,g“‘:’iiiw”’“‘ Sl mﬁ"‘i’?”’] siﬁs.’fs“s*‘"“
h S e i v\mm ot L i it i WA o
[t s e i ;’:(zzfﬁ::&,)zwm,u,,s,x:s«:;,),,,m,:g,un slag s e AL
C D e ‘x«p,w S i
P S R b e vmmm«mms!mxmwmw“(!vs;wmwuumxmm xmxxwuvmvmxx ity M,m‘ ey, *msx«wW:m,,,m,ﬂw,xw,,,,,wm i
Bl S W,m ronitive SR e e L *)w»w i e o R
?wm"w M e i T ol RS cm i ;xhwmw«f A B LT R
il it smwmmqnu«xw g o ﬁwmm o A s s oo At e e

et o Sl R Bl s “i o St
wm«x«wm o e R dan i B

e st

s e .
s sxxydmxxemmx >\msnumwww‘ A,
e e e i

s

b o e
L ;mi‘mgrf‘xzwmt Al s S S S mmrumxxﬂ‘“““":‘f:;"’I’“‘"‘”‘“““"""”‘”i:g‘“g SR
FICTSTIA s o O o B o A A i o S LS e e e e e e
oo e i x-?v»zmnw?::;":!wa»nw,: SRR P ‘!xw»«;isb R e Iﬁ§§§$&ssﬁ§§xxf Mo e M ,,’x,nh, ,u;)xxmm i
i g i i Bt g L A Upu e W e o et]
’;}jg;zmz‘:‘;X~ﬁ‘9vz;xwx,> 2::;;«5!2{:3%»;:“;? e ;w,"(- S ga?sc?wfm’xﬁf«&) t,g@xw»\\\\»&K&gmM‘a;m;mm M«u,w*wum&*,&& : Skg
e e A S e R P s i e S
o s S e e S Beaiste A : S
o i it <ttt e ke wwuwmmwx,»muwmnmx« i
R e e T e ; SR oot
s A xmﬁxixmm»xmmcr;s;m,muz/yuz‘(, v LU N i “mﬁﬁ! i
e S C T L = Gewal
S ﬁ&Wmmx!xnﬂwsimmm.wlsm maxxm,xxiﬁy L mmex i i
i gwwwwwm«»s\;«mew e fhees X«(&&m\m e ««m; e
e T R bt st B ity
e e apt T e g i
" ; = A P s&«)l»imm!mwwsxvx,mxtu&wmm»xsxxm“mxm(«,mmmu,(m,h
,’m<,,,,,,,,X,,A,,,x(,,m“! R B Xi&’?rM“W\‘(WlW!M'(W)&;;?x‘v:v;x!nmlxwm(}(v’?))mie\\\\\mxmv%mmy"\kss««\x«\mm;),A»g»r((mxxm«mm o S e
i : : S T R o S
i i e s mmmu“‘»mw‘]“» i ‘\ u,mﬁwi,,,,«“ AR AR
it i S i, St
B i e s i

i

IR w0
et st e

e 5 R 0

[5y
i 1

b

i

A
—

* Any R-Bus Register ** Any S-Bus Register

Figure 1-6. 16-bit Data Item Logical Shifts

For example, to rotate the contents of the B-register eight positions to
the left, the microprogrammer would use the following micro-
instructions:

NOP CR IOR IR 27

B NOP IOR B SRG2 -
B NOP IOR B SRG2 -

1-29

SECTION
GENERAL DESCRIPTION OF THE HP MICROASSEMBLER

The HP Microassembler translates symbolic source language micro-
instructions into a machine language object microprogram. Source
input is read from either punched cards or paper tape; the object
program is punched on paper fape in a format acceptable to the HP
Micro Debug Editor. The source language provides:

® Alphanumeric mnemonics for each micro-order.
® Symbolic addressing capability.

® A set of assembler control statements for controlling the
assembly process.

The HP Microassembler is designed to operate in a Basic Control
System (BCS) environment and requires a minimum of 8K of memory.
In addition, it requires a tape punch device (the teleprinter’s tape punch
may be used for this purpose).

The operating instructions for loading and executing the HP Micro-
assembler are as described on pages BCS-11 through BCS-14 of the
BASIC CONTROL SYSTEM module (5951-1391) of the Software
Operating Procedures manual. Even though it is described as being
optional (step 6, page BCS-12), the BCS Relocatable Subroutine
Library must be loaded at step 7.

Note: In an 8K BCS environment, neither the magnetic tape
driver nor the buffered version of IQC should be used.
In addition, the user must select the absolute output
option (bit-14 of Switch Register ON) during step 3 of
the loading procedure.

21

THE ASSEMBLY PROCESS

The assembling of a source microprogram into an object microprogram
is a two-pass operation. A pass is defined as one processing cycle of the
source input.

In the first pass, the microassembler reads the entire source micro-
program and creates a symbol table (discussed later in this section)
based upon the statement labels that are used. In addition, it checks for
duplicate labels and, if necessary, generates appropriate error messages.

In the second pass, the microassembler again reads the entire source
microprogram and, using the symbol table, resolves all references to
symbolic addresses. In addition, it checks for more errors and, if
necessary, generates appropriate error messages. It is during Pass 2 that
the object program is created. During Pass 2, the assembly listing is
printed and the object microprogram is punched.

There are two types of error messages: warning and fatel. Warning
messages are merely informational, drawing the microprogrammer’s
attention to questionable, but not always illegal, microprogramming
usage. Fatal errors, on the other hand, draw the microprogrammer’s
attention to illegal microprogramming usage which must be corrected.
All warning and fatal error messages are presented in section 8, “Error
Messages”’, of this manual.

The assembly listing contains a copy of the symbol table, a copy of the
source language microprogram, plus any error messages. To facilitate
debugging, each error message immediately preceeds the offending
source statement. The assembly listing is discussed in greater detail later
in this section.

Usually the microassembler halts at the end of Pass 1 to allow the
operator to reload the source input in the input device. However, if a
magnetic tape drive is available, the microprogrammer may use an
assembler control statement ($PASS2) to cause the input to Pass 1 to
be copied to magnetic tape for use as input to Pass 2.

22

PROGRAM LOCATION COUNTER

The microassembler maintains a counter, called the program location
counter, that is used for assigning absolute controi store addresses to
successive microinstructions. By using an assembler control statement
($ORIGIN), the microprogrammer may reset this counter to any
desired value. SORIGIN statements may appear anywhere within a
source language microprogram. If no $ORIGIN statements are used, the
program location counter is originally set to 4004 and is incremented
by one for each successive microinstruction.

SYMBOLIC ADDRESSING

Each source language microinstruction may include an alphanumeric
statement label. The statement label, if present, is the microinstruc-
tion’s symbolic address. Symbolic addresses may be used as jump
addresses in JMP, JSB, and CIMP microinstructions.

During Pass 1 the microassembler compiles a table, called the symbol
table, containing all statement labels used in the microprogram. With
each symbol, the microassembler also records the absolute control store
address assigned to the associated microinstruction. In addition, the
symbol table contains all external symbols that are declared in an
$EXTERNALS assembler control statement.

Note: While the microprogrammer may use symbolic
addresses as jump addresses in JMP, JSB, and CJMP
microinstructions, he may not use a symbolic
address + a constant as a jump address.

Whenever it encounters a symbol as the jump address in a jump
microinstruction, the microassembler consults the symbol table and
replaces the symbolic jump address with the appropriate absolute
control store address.

There are three rules pertaining to the use of symbolic addresses
(violation of any constitutes a fatal error):

23

1) Two microinstructions may not have the same statement label.

2) A microinstruction may not have a statement label identical to
a declared external symbol.

3) Symbols used as jump addresses must be defined somewhere in
the microprogram.

A symbol is defined if it is used as a statement label or if it appears in
an SEXTERNALS assembler control statement.

ASTERISK (*) AS AN ADDRESS

The microprogrammer may use an asterisk expression as a jump address
in JMP, JSB, or CJMP microinstructions. When used in this manner, the
asterisk means “the address of the present microinstruction”. Thus, the
microinstruction:

- - JMP - %10

causes control to pass to the tenth microinstruction following the JMP
*+10 microinstruction. Similarly, the microinstruction:

- - IMP - *6

causes control to pass to the sixth microinstruction preceding the JMP
*_6 microinstruction.

ASSEMBLY OPTIONS

Through the use of assembler control statements, the microprogrammer
can do the following (the statement mnemonic is shown in
parentheses):

2.4

Specify what device is to be used for reading the source input
(SINPUT).

Specify what device is fo be used for punching the object
program ($OUTPUT).

Specify what device is to be used for printing the assembly
listing ($LIST).

Cause the input to Pass 1 to be copied to magnetic tape for use
as input to Pass 2 ($PASS2).

Suppress all warning messages ($SUPPRESS).

Reset the program location counter (JORIGIN).

Define external symbolic addresses (SEXTERNALS).

Specify that the debug option is to be used ($DEBUG). The

debug option affects the mode of operation of the HP Micro
Debug Editor. See section 9 of this manual.

The assembler control statements are described in section 5 of this
manual.

ASSEMBLER OUTPUT

The microassembler produces a printed listing and a punched paper
tape. The punched tape contains the object microprogram in a format
acceptable to the HP Micro Debug Editor. The format is illustrated in
Figure 2.2.

The assembly listing is in two parts: a symbol table listing and a source
microprogram listing (error messages, if present, are interspersed among

25

the source statements). Figure 2-3 shows a symbol table listing while
figures 2-4 and 2-5 show the first and last pages, respectively, of a
source microprogram listing. All three figures are extracted from the
same assembly listing.

SYMBOL TABLE LISTING

External symbols are listed first. They are in the order in which they
were defined in the SEXTERNALS statements. In the symbol table
listing, an external symbol is easily identifiable by the “X” immediately
following the associated absolute control store address.

The symbols that appear as statement labels within the source micro-
program are listed next. Note that they are listed in ascending order by
absolute control store address.

Specifically, the format of a symbol table listing is as shown in table
2-1.

Table 2-1. Symbol Table Listing Format

Print Positions Contents
1-5 Symbol
9-14 Absolute Control Store Address
15 X (if external symbol)
blank (if internal statement label)

SOURCE MICROPROGRAM LISTING

Every source statement in the microprogram is assigned a decimal line
number. These line numbers appear in print positions 1 through 3 of
each line in the listing.

2-6

Assembler control statements and comments statements are printed,
starting in print position 4, exactly as they appear in the source input.

For microinstruction statements, however, two additionai fields are
displayed:

® the absolute control store address assigned to the
microinstruction

® the machine language object code for the microinstruction
The control store address appears in print positions 6 through 9. The
octal representation of the machine language object code appears in
print positions 11 through 20.
The object code is interpreted as follows:

® the leftmost three octal digits represent bits 16 through 23 of
the machine language microinstruction

® the rightmost six octal digits represent bits 0 through 15 of the
machine language microinstruction

This is best illustrated by example. The object code 375 017533
represents the bit pattern shown in figure 2-1.

b

S

Figure 2-1. Object Code Mlustration

27

The source language microinstruction is then printed, starting in print
position 24, exactly as it appears in the source input. Note that if a
teleprinter or an 80-column line printer is used for printing the
assembly listing, the source statements are truncated after columns 48
and 56, respectively.

The final line of the source microprogram listing tells the program
length and the total number of messages in the listing. Note that the
length is specified in octal and it refers to the number of control store
locations that the object program requires (maximum allowable = 4004
per module).

Warning and fatal error messages immediately precede the offending
source statement. The messages are in the following form:

WARNING xx IN LINE yy
ERROR xx IN LINE yy

where xx is the message number (see section 8 of this manual) and yy is
the line number of the offending statement.

28

RO
R
e e e R R r—
Wfﬁwti“mm%w u:wd‘;e«“w”‘«”’,,me “’,ug«,"‘,y,mﬂ” 7 5%
i R e ’m . m,mvwm e L
et el e b Pl m\m«v G e R
D R ;ejw e ‘m e w sm il e G L
. G e nw e e S J““"W“"w ¢
i t m s .ﬂ;‘igmyzqct mx N,,,, Y",zu
! i ir
o

R
T

tan i
s g
,mxﬂ;;; i e
o M“ﬁ‘ m,mwm!ﬁ i o e e e
& i, ot e . ,,ww (e m«*‘ s !
: . A Ax‘;pxmm e e ,Mw Run i B mw
EeLi w ‘4 N L w{,n‘ " (,Lu ;j‘;‘;:fv Pkl ‘,n% “;Z‘«
,L,w;«” = ?143 Ny,, m “ lwé (5 }w“““gx N
ax‘ e Q* ;M»fw;’\ A :) u‘ e g ‘(‘ i o ?m‘,; i
it e o "“ m“‘“ e R e e ‘Mxmxﬂ' S g i ¢,
e e a4 “ w»“zﬁmwwﬁw ’
w"" e SR e - r o
gxx*‘ 'rﬂ“‘ Pl ke e o) “"““f"iw w"’wuas 0 ,ui” G T
. ,;mnﬁ Gt o) e (X,,L,:‘ng;);{& i Tt mws“’ w‘“;s o <§3;;x i o w
e i *m,,,mx«; w’“,k. o
;i .M’ s m‘i’ i "":Z‘
bk "

} i
H b : re—
i Lo
b w e BRI L
**"w 1(, w“)

w%,wx,nxss»vx i ,"” s‘x i et e
et cwsmss s i
m” ,mxw mmM“‘ mm%" s e
e ssmm i - b
o i
i

.
i i .
4 Gt “
e
- e e
i »'*g s ;“" v‘, e “‘"E”*“{W e, ,’f",@’x*‘jj,‘mfé’”»xf‘v’;ll«
i x»“,“f,’lx!{;“ c“ < ,ﬁfzzsw y v"“”’»mr”*““"fgf:»" “353;' L ‘*;(" {W NM&’%W
”‘Iwm S ”w,m ,«m;,w o ”;§,§x el e ““‘* e m .
e - L B i m
min*‘;f,“mx . &’i,» s R ﬁf‘ ‘xx'::;*“‘?‘:"z"w o
N w“" deesi i
S
e e M,(mzww i

" n

@ o s ;mt‘ ;

= . e m,;w r ﬁ ::zw
g it i : ’. :) (‘ ; “

L wkxgs i : L "‘s .
ey o et o Lo . : =
xmw i xm& ix " o ww MM" e . e e

10 , sl i i rwm ,,w;,w,é& < A ‘mfw““ Y”é i ‘:"‘ "%’i” e
ot o "f“mx«mw i sl mm. ot g L

: ; ue ;v‘ i
- ‘WN%” ‘ - e ,ﬂ»”“mm e*mm i i;.qm“ x i
;,»r‘mw.wuw i e b ,éx a Sl “w’“mz"

e x.;s*g,mn‘tww a m*;‘“wo w\“,pm i e ““W Mw”wwr‘w w‘

w, *§x@ S ————— e G s b e s
= - w - “,,W - M’,g “ r‘"”f?ﬁu w‘“'u s asxm) e mww‘ w,x!-xm»»wx! e
: ﬁgvxw : . R A M&i?,"ﬁx (;;m,««fw e s un p x“, sl,mm .

= mmms»wb’sx;vsw‘“’ b o * w*z;‘:; w:u’? .

S e e
G ,w«“ Moan s Gl i

= e pe e swf(mvf‘“,,qw ,,@?‘w,w % b
i o e e e e e
o *,,wngg’f,;\«m«““" -m',‘"fn;m‘““n»f:"**iizi et
e e i i e “h y i

o m«wnww S B T e e
i ,,,L,,.m“;gn D o M‘ et ,»W‘,’w* s b
o «;x*"“’“xn“‘ e i ot
e

1

i
o

"
.
Do

‘*;‘, s

7
BONT o Sl i
sl e

e
= i

sl
;m ;m;.«xm e Amixx«",,ul’“"‘ :
. o e A e
: e Nle(” et et

; e i
%
i L ;,‘3”5 g
st ;f"xm e N“,,,mm'““,, o)])xg;‘;ffem,;;if;,w R
i B i i SR i
e i o - Microin
“WWNXM - : e v!“““»,w;*::“”"A‘v“"""w »J‘”"“",‘" l‘tw e wﬁ Lt m"‘
mm«m* et ‘c f Wl o *”’.m” e o, o o i
m - «v},,w,,.mx;i,,w b L s fm ““*,; mm*@‘ o ,.am“"i“w ﬂ"‘”" %*»:"“ o o ’mm '
S et S o ‘s“‘i
i’ 8 af ey «m M"“‘ P »uv\ yix»‘ i
5 ot uw" b ,mmn umm ‘“"”‘@,»,,xw«;b,‘w»:sn,(917 e .
e e R Sk
gt o Sl gt 0 o
bl «xm’“ “i«‘ i

2 ,w-«*w
o
g;g e
el
St m(“" b
e i
i e ‘,‘,,wz;;g? %, ww,»gw : ”*';:"mm
,,m" et At et ’ o
i ‘T‘ii?! sta“*f,‘nﬁ,&wxrm,‘ ;*;?EN. & s *""ff»’“ i «"‘C“:':;;:w!’mvmnﬂ o j, ; x?w“‘;‘ms&"‘” ;”‘” e
T o i 4,;3(,,@,,(;1N‘,y‘/h ,,m . R ,N,x,ﬂww ,XVI;HH,M,N
o w,,,,, j:w“" 4xx21‘$”“;2‘w1 ot ,,,T,,m;ﬁ “ ;‘ﬁw« . e ‘,‘u«,, Qe
S 4 ’,meu (I S ‘,mrv«“" 'lm,/' i
s M, el m’*‘ »w“ o w“’
i

e
s

s
s

i

e

P
0 0 e
’, A o
e b
e ”‘am el ‘“
o
aa ™ 4 .
mx tgim“ o ot . : g
e ke e Uy ey
y o ’ - o b e i
m o’ i 'u i E & v e i Ry i S ’ "
G W , : } g el i i 4.35‘~«r"**"%fn,w*;::xfw‘nii" mxiv’;,,;u,;m.‘ e
v v ‘,«,,(,,w»<Wﬂxm;:,a,,wu::," »"‘iww mw"’:“sf» e *v"‘;xww::;;m,,,;,,g;gﬂw
? g G i i m“ el ;;-» Lo
b R e et . xxww sl A S
" ,w'.m.

L

e o
i K
wu»-""« R “wv ww i
pf ‘»»»* e

x«,

oo s S

s lilon
s

P

ol

fn
i m« st st o A e T
iy ,,,,» i i y e o i
u$ ‘

- mw,m,w i :

& ot ,,,msw «,,Ww s g

e

i e
i ;x;

“I,«wr*"* i .
i Wr e,
o Mw .mw e i
e ™ e w m e S H el
L g Tr— Mzz“;ﬂ i *;z;f“‘ Bt e e

4 w’“‘ e
b e
e qw, T i ""if' .ﬁx«z«w.w mm ,n «; b i H“
o " W\!“,,,‘ ,x;s(!“‘tw,mxi r::xﬁ’ m‘“;_, ”3;;(;‘ Wmm:‘ Mm» x,,‘;.m nzz*! ‘(“mw&", m:tx;,wkmm
b L e
e SR Agj;i,,‘n

o ;‘2,‘
s""
by PUg
% i

\Xm»:;"‘ s »

A .wmv m«-‘*x” it

i e A w ! Jm o

,,w,,,, o A e
“,m wml e W.‘«»

<X RNl
4m' b,, w’“" it
o ng,’ Wx s

R n R

2o

Notes: The record le
ngth, tape record origi
a s origin, debu
c_ag, blank word, and checksum each consistgc:fmc‘e
omputer word (two tape characters) o

Each microinstructi
ion consists of
words (four tape characters). o computer

A tape rec ma:

ord may contain i
. a i
D oo ximum of 27 micro-

Wi L

as:::l;\;:: acorrxletw longm is declared (via an $ORIGIN
1ol

- statement), a new tape record is

The tape record length can be from 7 to 59 compu
g 59 ¢ puter

Figure 2-2. Object Microprogram Tape Format

SYMBOL TABLE

sSTOW 001020
TBLY 021020
LDCH 001031
GETCO 91233
GDONE 291043
TAL f01046
RELX s@1052
TALL 021061
LOW 201077
STCH 221194
PUTCO 0@i11n
PUTCS 8@1116
PUTX 201123
PLEFT 001125
TAS 271134
TASX 001140
TAS1 201142
TASE 201163
SCAN 001165
SCANL #1172
MOVE 001223
Hove 291204
MOVEL @#1226
MOVED 91246
MOVEI a@1247
MOVS 8ai250
MOV6 281251
SAVE a%1261
RESTC @2013@t
LENTP pO1320
LENTR po1322
JENTL 201344
LENTC @B1351
CJENTX BB1354
GETAD @@1356
GETAL 881357
GETAX 091361
OPGET 041363

Figure 2-3. Symbol Table Listing

210

1$0RIGIN=12300

BUFFER
Tas
84 R1
M CW
A 2
T
A 2
TBLY
MOVE
SCAN
LDCH
STCH

*+400
+3409
ved02
*+400
w+420

»o©

STOW
LDW
LDk
SAVE

RESTO
JENTR
JENTP

2% STOW « STORE WORD INTO A THREADED
3 (690 375 A17534 STOW

4 1001 037 {72047 A I0R
5 1082 160 068712 F 84 DEC
6 1003 130 8570m2 [} CR SuB
7 1084 051 171375 8 RRS IOR
8 1085 @38 137002 A CR ADD
9e PRIMARY JMP TABLE

18 1986 355 037424 ADR JMP
11 1897 378 837603 JMP
12 10124 375 037565 JMP
13 1011 355 937431 ADR JMP
14 1012 355 037504 ADR JMP
15 10813 377 937413 JupP
16 1014 377 837414 NP
17 1215 377 037445 JMP
18 1016 377 937416 JMP
19 1017 377 @3ray7 JMp
2@+ SFCONDARY JMP TABLE

21 1920 377 176775 TBLt I0R
22 102% 37e a57@02 CR sus
23 1022 375 a3¥7400 Jmp
24 1923 375 237477 Jup
25 1824 375 937477 JuP
26 1025 375 237661 JHP
27 1026 375 937701 JMP
28 1027 375 a37722 JMp
29 1030 375 @3772¢ Jup
30+

3§+

32+« GETC w GET A CHARACTER

33«

34+ IR(@33)) © s THREADED, NO RELEASE
38 1 = THREADED, RELEASE
36e 2 ® LINFAR

I7«

38 1031 377 177777 LDCM I0R
39 1932 375 @17446 Jss
49 1933 037 122057 GETCO A LWF
41 1034 361 179757 4 10R
42 1935 a36 117377 A INC
43 1936 371 171427 CR Io0R
44 1337 345 176406 T IO0R

TAL
84 R1
M RW
A
IR 27
B8 RSS

CK ADDR,
182 S4 % WORD ADDR
NMPV STORE WORD

IF ILLEGAL RESE

UPFDATE ADDR,

EOP 1,0,

JuP PADING
CK ADDR
84 3= WORD ADDR
START READ
UPDATE ADOR
IRts ALF

FLG

T A

Figure 2-4.

Source Microprogram Listing (First Page)

321 134@ 362
322 1341 461
323 1342 367
324 1343 035
325«

326 1344 375
327 1345 160
328 1346 375
329 1347 367
330 1352 360
331 1351 374
332 1352 136
333 1353 075
334 1354 365
335 1355 363
336«

337 GETAD
338 1356 375
339 1357 345
340 136w 377
341 1361 367
342 1362 375
343

344 1363 367
J45 1364 345
346+

347+ END
3J4BSEND

*«NO ERRORSw

155377
176777
172777
234351

817756
260712
837754
171377
116777
114377
115367
@32344
174375
177377

LJENTL

LENTC

<ENTX

AND OPGET

170787
173763
a57777
178757
237757

170757
253377

GETAD
GETAL

GETAX

OPGET

@® O

83
sS4
S1

54

81

[

82
33

-0

81

NOR
IOR
I0R
JHMP

Jss
DEC
Jnp
10R
INC
INC
INC
Jup
I0R
I0R

I0R
I0R
RSB
I0R
JMP

IOR
RsB

x

>» VWOV~
Ky

LENTC

GETAD
cW NMPV
JENTX

T8z
JENTL
EOP

RW
NEG

RW
GETAL

RW

OR ALLOWED 18}
CK FOR ZERO

81 tuNEXT PARM
STORE NEXT PARM
(MEM YIOLATION)

INC OUT PTR,STO TEM
INC IN PTR

DONE?

NO,RESET QUTPTR, GO
EXIT, RESTORE P

GET ADDR
INDIRECT?
NO, EXIT
YES, READ AGAIN

GtT PARAM

2-12

Figure 2-5. Source Microprogram Listing (Last Page)

SECTION
SYMBOLIC STATEMENT FORMAT

Source microprograms must be coded using the symbolic statement
format described in this chapter.

Each symbolic statement is 80 character positions long and contains the

fields shown in table 3-1.

Table 3-1. Symbolic Microinstruction Format

Field Character Positions

Label 1-56

R-bus 7-9

S-bus 11-14
Function 16-19
Store 21-24
Special 26-29
Skip 31-34
Comments 36-80

Figure 3-1 illustrates the symbolic microinstruction format on an

80-column punched card.

31

R-Bus S-Bus Function Store Special
Fiela Field Field Fiela Field Comments Field

coofococjoocoooonsocoo 0000000C000000CA0D
[NE] UEDRN IINT BEER 37T EEIY PR ERRRYTr e
[RRRI (RRR! IRRRY IRRRI |IRR R R R RN R RN
22222222222 292222, 22222222122222222

3333333323331 31333] 333323333333333313

4444 Q4444444404440 444434434444444494 14444441

EREE] EEEE EEXE] ERRE 555555555555355345 §55545
S5666MoGGCM665 c G666 6666655666686555% 665668
IRRR] [RRRI LRRR] IRARA T1I1711177171711117717%17 Titinm
L2221 LX) (XXX1 LREX 38629A88838888888
39393999 IS IGMI9S 3 9929692299528556939

11 1213 va 6 i a3 2 20 20 [l 2 e EEERL LR T P Py

Figure 3-1. Symbolic Microinstruction Format

SYMBOLIC STATEMENT FIELDS

LABEL FIELD

This field is used for assigning a symbolic address to a microinstruction.
Statement labels are used as jump addresses in JMP, JSB, and CIJMP
microinstructions. A valid statement label consists of 1 to 5 alpha-
numeric characters, of which the first character is not a dollar sign ($)
or an asterisk (*). Statement labels must begin in character position 1
and may not contain embedded blanks. The Label field may, of course,
-be entirely blank (i.e., a microinstruction may be unlabeled).

An asterisk in character position 1 specifies that the remaining 79
character positions contain an alphanumeric comment. Such statements

32

appear in the source microprogram listing but are otherwise ignored by
the microassembler.

A dollar sign in character position 1 specifies that the source statement
is an assembler control statement. See section 5 of this manual.

R-BUS FIELD

This field corresponds to the R-bus field of an HP 2100 microinstruc-
tion. The purpose of the R-bus field is summarized in section 1 of this
manual.

The R-bus field may be entirely blank or may contain any of micro-
order mnemonics shown in column 1 of table 3-2. The effect of each
mnemonic is described in section 4 of this manual, If a mnemonic is
used, it must begin in character position 7. If the R-bus field is entirely
blank, the microassembler automatically supplies a NOP.

S-BUS FIELD

This field corresponds to the S-bus field of an HP 2100 microinstruc-
tion. The purpose of the S-bus field is summarized in section 1 of this
manual.)

The S-bus field may be entirely blank or may contain any of the
micro-order mnemonics shown in column 2 of table 3-2. The effect of
each mnemonic is described in section 4 of this manual. If a mnemonic
is used, it must begin in character position 11. If the S-bus field is
entirely blank, the microassembler automatically supplies a NOP.

FUNCTION FIELD

This field corresponds to the Function field of an HP 2100 micro-
instruction. The purpose of the Function field is summarized in section
1 of this manual.

33

The Function field may be entirely blank or may contain any of the
micro-order mnemonics shown in column 3 of table 3-2. The effect of
each mnemonic is described in section 4 of this manual. If a mnemonic
is used, it must begin in character position 16. If the Function field is
entirely blank, the microassembler automatically supplies an IOR.

STORE FIELD

This field corresponds to the Store field of an HP 2100 microinstruc-
tion. The purpose of the Store field is summarized in section 1 of this
manual.

The Store field may be entirely blank or may contain any of the
micro-order mnemonics shown in column 4 of table 3-2, The effect of
each mnemonic is described in section 4 of this manual. If a mnemonic
is used, it must begin in character position 21. If the Store field is
entirely blank, the microassembler automatically supplies a NOP.

SPECIAL FIELD

This field corresponds to the Special field of an HP 2100 microinstruc-
tion. The purpose of the Special field is summarized in section 1 of this
manual.

The Special field may be entirely blank or may contain any of the
micro-order mnemonics shown in column 5 of table 3-2. The effect of
each mnemonic is described in section 4 of this manual. If a mnemonic
is used, it must begin in character position 26. If the Special field is
entirely blank, the microassembler automatically supplies a NOP.

SKIP FIELD

This field corresponds to the Skip field of an HP 2100 micro-
instruction. The purpose of the Skip field is summarized in section 1 of
this manual.

3-4

The Skip field may be entirely blank or may contain any of the
micro-order mnemonics shown in column 6 of table 3-2. The effect of
each mnemonic is described in section 4 of this manual. If a mnemonic
is used, it must begin in character position 31. If the Skip field is
entirely blank, the microassembler automatically supplies a NOP,

Table 3-2. Valid Mnemonics

R-bus S-bus Function Store Special Skip
NOP NOP I0OR NOP NOP NOP
A P XOR M CNTR EOP
B S1 AND T cw couT
Q S2 NOR IR ECYN CTR
F S3 LWF A ECYZ CTRI
AAB sS4 ARS B 10G1 FLG
CAB M LGS Q L1 ICTR
ca T CRS F R1 NEG
ADR JMP P RSS NMPV
CNTR CJmP S1 RwW OoDD
CL JSB S2 AAB OVF
CR RSB S3 ASG1 RPT
CIR ADD S4 ASG2 TBZ
101 ADDO 100 LEP UNC
RRS SuUB AAB SRG1 AAB
COND MPY CAB SRG2 NAAB
DIV
DEC
INC
INCO
SOV
CLO
SFLG
CFLG
RFE
RFI
P1A

9€

w0 Surpo prepuelg °z-g ansLy

HEWLETTsPACKARD 2100 MICROASSEMBLER CODING FORM

% 1 E consTaNTor |1
savs filroncrionf] stome [commenTs
s 4 T 1} |2 0 . 50 s “ « u ol
H -+ o
s i
LB
T I s S T T I TR TR T A TH TR © w n @ @ @ m g
#-zer0 o-ALmAG 1o 1= onE e ALAL LINE TERMINATED 8 RETURNALINE FEED (R/LF)
2iTwa eyt LINE 15 CELETEC BY RUBOUT BEFORE RALF srtessazs

COMMENTS FIELD

This field may be freely used by the microprogrammer to introduce
alphanumeric comments into the assembly listing. Other than this, the
Comments field is ignored by the microassembler.

STANDARD CODING FORM

Hewlett-Packard provides a standard form to facilitate the coding of
source microprograms, This form is illustrated in figure 3-2.

37

MICRO-ORDERS 4

" This section describes what each micro-order does. It is assumed that

the microprogrammer has read both the 2100 Computer Micro-
programming Guide and the overview presented in section 1 of this
manual. A few of the descriptions (e.g., MPY, DIV, etc.) refer the
reader to the 2100 Computer Microprogramming Guide.

To facilitate learning, the more esoteric information is shaded. The
reader should concentrate first on the unshaded material. The shaded
information pertains mainly to, but is not limited to, module #0
programming. In conjunction with such descriptions, the reader should
study section 7, “Miscellany”, of this manual.

R-BUS FIELD

The following micro-order mnemonics are valid in the R-bus field of an
HP 2100 microinstruction:

NOP A B Q F

Reads all zeros onto the R-bus.

4-1

Reads the contents of the A-register onto the R-bus. The information in
the register is not altered.

Reads the contents of the B-register onto the R-bus. The information in
the register is not altered.

Reads the contents of the Q-register onto the R-bus;. The information in
the register is not altered.

Reads the contents of the F-register onto the R-bus. The information in
the register is not altered.

i,
o

o .
ol ‘ .
iy i b s bty
AN % el i i x,‘ W
HEYNT i t ‘»L i it
1 . kiH g
Q’E~ inth »‘W L

3 “aesc § o

{ o i eSCTp

g nflmii o MR R o q,m) i i
RS D i G &rm’,‘a’f?i‘,«,?,‘,m s x«‘ﬁ‘«sﬁf;wﬁl "‘f:?“‘ N

o

Y ﬂm
T

it wé’
U,

< l

L . I ; am,m‘*x -

o Ls,,, xsmw, g i m,u el
L R ; Y it i
y ,"; "; bt p;n, b ’kxi;&%x“m?;;“ ‘ o q iy k& . 1 m;ﬁ’“m
it by b s . e St i e hy
e S e o ri R o m,,,,»ﬁ:‘«“,,,z;?*wu}m“*@w

«a,xx;«x%g

i iy, SRt g

o X:,x;“.n,,, g e S“!x,‘n G

15 é“‘ “ﬁm&m QK:. i

“wxm A w»m ﬂxgyxxx!“w im,ss e me, i

:

N n 2 ~« ol i ", i $‘” 'r'* o @
T g S ,3 T . M”u S (, s

i i ”"‘ﬁm, "" ‘L”RT"*F“‘*“ At Stk \Ws; ,m. X s

e mw,, Sl :,ﬁ.‘,‘vxé.\ :“xe::;m

A i
e

o sw\"'sm,‘l*m"“f;“
e i
«Mslﬁmh xx.wug,..\ S

CAUTION

The CQ micro-order is not intended for use in special
microprogramming. The use of CQ will effect the
operation of module #0 and consequently will cause
incorrect operation of HP software. To allow con-
tinued use of existing software, it will be necessary to
rewrite those instruction routines in module #0
which use the Q-register. As noted elsewhere in this
manual, such changes will void Hewlett-Packard
warranties and support quarantees.

S-BUS FIELD

The following micro-order mnemonics are valid in the S-bus field of an
HP 2100 microinstruction:

NOP P S1 S2 83 S4
CNTR CL CR CIR IOI RRS

Reads all zeros onto the S-bus.

Reads the contents of the P-register onto the S-bus. The information in
the register is not altered.

Reads the contents of Scratch Pad Register 1 onto the S-bus. The
information in the register is not altered.

S2

Reads the contents of Scratch Pad Register 2 onto the S-bus. The
information in the register is not altered.

4-4

Reads the contents of Scratch Pad Register 3 onto the S-bus. The
information in the register is not altered.

Reads the contents of Scratch Pad Register 4 onto the S-bus. The
information in the register is not altered.

Reads the contents of the M-register onto bits 0-14 of the S-bus (bit 15
of the S-bus is set to a zero). The information in the register is not
altered.

Reads the contents of the T-register onto the S-bus. The information in
the register is not altered.

Reads bits 0-9 of the CPU Instruction Register onto bits 0-9 of the
S-bus. The information in the register is not altered.

If bit 10 of the CPU Instruction Register is set (1), then bits 10-15 of
the P-register are read onto bits 10-15 of the S-bus. The information in
the P-register is not altered. If bit 10 of the CPU Instruction Register is
clear (0), then bits 10-15 of the S-bus are set to zeros.

CNTR
Reads the contents of the counter onto bits 0-4 of the S-bus (bits 5-15
of the S-bus are set to zeros). The information in the counter is not
altered.

Reads an eight-bit constant onto bits 8-15 of the S-bus (bits 0-7 of the
S-bus are set to zeros). The constant is extracted from bits 0-7 of the
microinstruction. Note that when CL is coded in the S-bus field, normal
execution of the Special and Skip fields is inhibited.

Reads an eight-bit constant onto bits 0-7 of the S-bus (bits 8-15 of the
S-bus are set to zeros). The constant is extracted from bits 0-7 of the
microinstruction. Note that when CR is coded in the S-bus field,
normal execution of the Special and Skip fields is inhibited.

4-6

Reads the contents of the Central Interrupt Register onto bits 0-5 of
the S-bus (bits 6-15 of the S-bus are set to zeros). The information in
the register is not altered.

i
i
P

2 \x g‘*fw, ‘»m
D .

i
)

i
iy

N

i
ol

ﬂ@ntq ,
L AL
vq«x;",« " e e “ Lx,rm i o : e,
T 2 " w g i b S ’n«\
. {x,,,, ‘m,(,g «.Ax?‘“xw‘»z,“& ggm,s,, én ,gm,,q ;L;;»g ,;un dx,‘,yswé,) Dl
;X“:«xxs“" i 20 ol o Qi , iy e e
o] U : ﬁ ,,gwt 15
gui p;. ,
e ks et il ’ ki
S i iy f«,&wm i it R e T i ke ,,\ il i
et e to both th
o gf’ e Iead onto.both the I | O-DUSES
e *, g, S ’rm,‘“*x o i
Gty Wi e b i e iy

i
St

iy i (:**«};. o
i qu i,

!pwﬂf)

g
g g

i g
i

e (xN
: AT g o '
‘\ i ‘“; i w,f Jah
i (e s

i
‘0,

g

i i e

S e
i “»m" o
e i

g

i sx« e .

. w: ,my
SR : ¥ ; ; N T i T
A i S i s 2 » ~ ~ e, T 8 o

47

FUNCTION FIELD

The following micro-order mnemonics are valid in the Function field of
an HP 2100 microinstruction:

Logical operators:
Shift operators:
Jump operators:
Arithmetic operators:

Flip-flop operators:

Phase operators:

IOR
LWF
JMP

ADD
DEC

SOV

XOR
ARS
CJmP

ADDO
INC

CLO

AND NOR

LGS CRS

JSB RSB

SuUB

INCO

SFLG CFLG RFE

The Function field cannot contain a NOP, By convention, an IOR is
used whenever a Function field pseudo-NOP is desired. When an IOR is
used in this manner, a logical “inclusive OR” is still performed by the

function generator,

4-8

Refer to figure 1-1. The function generator and the shifter use a pair of
inputs: the contents of the R-bus and the contents of the S-bus. If a
nonshifting operation is specified (e.g., ADD, IOR, AND, etc), the
result of the operation passes from the function generator onto the
ALU-bus, into the shifter, and then onto the T-bus without being
altered. If a shift operation is specified, the result is available as
described under the individual shift mnemonics (LWF, ARS, LGS, and
CRS) later in this section.

LOGICAL OPERATORS

Causes the function generator to perform a logical “inclusive OR”.

Causes the function generator to perform a logical “exclusive OR”.

Causes the function generator to perform a logical “AND?”.

49

Causes the function generator to perform a logical “NOR”. If a NOP is
specified in either the R-bus or S-bus field, the complement of the
other is obtained. If both the R-bus and S-bus fields contain a NOP, the
function generator passes all ones onto the ALU-bus.

SHIFT OPERATORS

The LWF micro-order allows the programmer to shift the contents of
the Flag flip-flop in conjunction with the contents of a register.

If L1 is coded in the Special field, the contents of the Flag flip-flop and
the contents of the register together are rotated (circular shift) one bit
position to the left. The flip-flop bit is shifted into bit 0 of the register,
bit 15 of the register is shifted into the flip-flop, and bits 0-14 of the
register are shifted one position to the left.

If R1 is coded in the Special field, the contents of the Flag flip-flop and
the contents of the register together are rotated (circular shift) one bit
position to the right. The flip-flop bit is shifted into bit 15 of the
register, bit 0 of the register is shifted into the flip-flop, and bits 1-15 of
the register are shifted one position to the right.

LWF also causes the function generator to perform an IOR.

4-10

Causes an arithmetic shift to be performed on a 32-bit data item.

The mnemonic in the Special field determines the direction of the shift
(R1 =right; L1 = left).)

For right shifts, the B- and A-registers are used: the B-register contains
the sign bit plus the high-order fifteen data bits and the A-register
contains the low-order sixteen data bits. All 32 bits are shifted one bit
position to the right (the sign bit is unchanged, bit 0 of the A-register is
lost).

The required microcoding is
B - ARS B Rl *

The Skip field (*) is available for any valid use.

For left shifts, the F- and Q-registers are used: the F-register contains
the sign bit plus the high-order fifteen data bits and the Q-register
contains the low-order sixteen data bits. The sign bit is unchanged and
the 31 data bits are shifted one bit position to the left (bit 14 of the
F-register is lost, bit 0 of the Q-register is set to a zero).

The required microcoding is
F - ARS F L1 =*

The Skip field (¥) is available for any valid use.

Causes a logical shift to be performed on a 32-bit data item.

4-11

The mnemonic in the Special field determines the direction of the shift
(R1 =right; L1 = left).

For right shifts, the B- and A-registers are used: the B-register contains
the high-order sixteen bits and the A-register contains the low-order
sixteen bits. All 32 bits are shifted one bit position to the right (bit 15
of the B-register is set to zero, bit 0 of the A-register is lost).
The required microcoding is

B - LGS B Rl =
The Skip field (*) is available for any valid use.
For left shifts, the F- and Q-registers are used: the F-register contains
the high-order sixteen bits and the Q-register contains the low-order

sixteen bits. All 32 bits are shifted one bit position to the left (bit 15 of
the F-register is lost, bit 0 of the Q register is set to a zero).

The required microcoding is
F - LGS F L1 *

The Skip field (¥*) is available for any valid use.

Causes a circular shift to be performed on a 32-bit data item.

The mnemonic in the Special field determines the direction of the shift
(R1 = right; L1 = left).

For right shifts, the B- and A-registers are used: the B-register contains
the high-order sixteen bits and the A-register contains the low-order
sixteen bits. All 32 bits are rotated one bit position to the right (bit 0
of the A-register is shifted into bit 15 of the B-register).

4-12

The required microcoding is

B - CRS B R1 *
The Skip field (*) is available for any valid use.
For left shifts, the F- and Q-registers are used: the F-register contains
the high-order sixteen bits and the Q-register contains the low-order
sixteen bits. All 32 bits are rotated one bit position to the left (bit 15
of the B-register is shifted into bit O of the A-register).
The required microcoding is

F - CRS F L1 *

The Skip field is available for any valid use.

JUMP OPERATORS

Causes control to pass to the specified jump address.

Causes control to pass to the specified jump address only if an I/O
interrupt or a front panel halt has occurred. In single cycle operation,
the computer halts unconditionally upon execution of a CJMP micro-
order (this is useful in diagnostics) and the jump is not executed.

413

Causes control to pass to the specified jump address. The address of the
next sequential microinstruction is saved as a return address. This
micro-order is used for passing control to a subroutine.

Causes control to pass to the return address. This micro-order is used
for exiting from a subroutine.

ARITHMETIC OPERATORS

Adds the contents of the S-bus to the contents of the R-bus (the
overflow logic is disabled). The overflow logic is discussed under
ADDO, below.

Adds the contents of the S-bus to the contents of the R-bus (the
overflow logic is enabled). If the sign (bit 15) of the R- and S-buses are

4-14

the same (both positive or both negative) and the sign of the ALU-bus
is different, the Overflow flip-flop is set. Note that if the Overflow
flip-flop is set prior to execution of an ADDO micro-order and the
ADDO operation does not result in an overflow condition, the Over-
flow flip-flop is not cleared.

Subtracts the contents of the S-bus from the contents of the R-bus in
two’s complement form.

Subtracts the contents of the S-bus from the contents of the R-bus in

4-15

one’s complement form. If the S-bus contains all zeros, the contents of
the R-bus are decremented by one.

Adds the contents of the S-bus to the contents of the R-bus and
increments the sum by one (the overflow logic is disabled). The over-
flow logic is discussed under ADDO, above.

Adds the contents of the S-bus to the contents of the R-bus and
increments the sum by one (the overflow logic is enabled). The over-
flow logic is discussed under ADDO, above.

FLIP-FLOP OPERATORS

Sets the Overflow flip-flop on (also causes the function generator to
perform an IOR).

4-16

Sets the Overflow flip-flop off (also causes the funetion generator to
perform an IOR).

Sets the Flag flip-flop on (also causes the function generator to perform
an IOR).

Sets the Flag flip-flop off (also causes the function generator to per-
form an IOR).

Exchanges the contents of the Flag and Extend flip-flops (also causes
the contents of the R-bus to be read onto the T-bus).

CAUTION

The RFI micro-order is not intended for use in special
microprogramming. The use of RFI will affect the
.operation of module #0 and consequently will cause
incorrect operation of HP software. To allow con-
tinued use of existing software, it would be necessary
to rewrite those instruction routines in module #0
which use the Q-register. As noted elsewhere in this
manual, such changes will void Hewlett-Packard
warranties and support guarantees.

PHASE OPERATORS

STORE FIELD

The following micro-order mnemonics are valid in the Store field of an
HP 2100 microinstruction:

NOP M T IR A B Q F P 81
S2 S3 sS4 100 ;

4-18

Stores the contents of the T-bus in the B-register.

419

Stores the contents of the T-bus in the P-register.

Stores the contents of the T-bus in Scratch Pad Register 1.

Stores the contents of the T-bus in Scratch Pad Register 2.

o -

Stores the contents of the T-bus in Scratch Pad Register 3.

4-20

i . i e , iy % £ D
DR " i . : : = : L
e ﬁwﬁ ; 1 o b, o i Sd 1)
B % G o ¢ A [amey
”Wgs ‘F‘;ﬂr i o e i i , i E??E"“‘
, : 2
CER i i el i3
= ik i i AR s S i ciiiiies
b Y S i i i ey

i e
: i 2 % gy
IS LR
S s o

Zoapo:{, ol e

s M b e o

R S e Wnian S e

SPECIAL FIELD

The following micro-order mnemonics are valid in the Special field of
an HP 2100 microinstruction:

4-21

NOP CNTR CwW ECYN ECYZ 10G1
L1 R1 RSS RW .

No operation.

Reads bits 0-3 of the S-bus into bits 0-3 of the counter (bit 4 of the
counter is set to a zero).

Initiates a ‘“‘write-into-memory” operation. See the discussion
“Accessing Core Memory Locations” in section 1 of this manual.

ECYN

Sets the Carry flip-flop if the T-bus does not contain all zeros. When the
Carry flip-flop is set, the P-register is automatically incremented by one
upon exiting from the microprogram.

4-22

ECYZ |

Sets the Carry flip-flop if the T-bus contains all zeros. When the Carry
flip-flop is set, the P-register is automatically incremented by one upon
exiting from the microprogram.

Initiates an input/output operation. See the discussion “Input/Output’
in section 1 of this manual.

N
b

Specifies a left shift. See the description of the shift mnemonies (LWF,
ARS, LGS, and CRS) earlier in this section.

Specifies a right shift. See the description of the shift mnemonics
(LWF, ARS, LGS, and CRS) earlier in this section.

o

Reverses the condition specified in the Skip field. For example, if the
Skip field contains TBZ (skip if the T-bus contains all zeros), an RSS in

4-23

the Special field changes the skip condition to “skip if the T-bus does
not contain all zeros”.

Initiates a “read-from-memory’’ operation. See the discussion “Accessing
Core Memory Locations’ in section 1 of this manual.

RW also enables the setting of the A-Addressable and B-Addressable
flip-flops. See the discussion of AAB, below.

HERE

e
e

L X
A W
i
i e

b
mming Guide.
2 o S e B

—

i
xé

’ o

b T Lkl

i e o
o x(«fé"iﬁ ~ an ‘xm%& xm mmmmv:i ’ .
b Bl .

. um enied By

R —
i S i
) . ML e n !xm S = 2
%StékxxiM,,;‘”’i‘ i 1 .
m,,

ii,&

4 3 T M E i «'«\u,‘m”
4 il IS, "“Wwﬂsxwmw s
sH , i R e
. By ru!xuuumm,m, L i "Wﬁwm e L .
s e g ol 'wwiw« xxxx;%mx’?\\w Ly s%g ﬁ Eﬁ - . -
ssim o 3 . . o
Rk e B mth:n g

- i «...5&2”‘”’%
b d L

Shaln e

R e i

et
s

SKIP FIELD

id i ip field of an
The following micro-order mnemonics are valid in the Skip fie
HP 2100 microinstruction:

R
NOP EOP COUT CTR CTRI FLG IC'?‘C
NEG NMPV ODD OVF RPT TBZ UN

4-25

No skip.

End-of-phase. This micro-order is used for exiting from a micro-
program. The exit occurs after the next sequential microinstruction is
executed.

Skips the next sequential microinstruction if a carry-out from bit 15 of
the ALU-bus occurs during execution of the current microinstruction.
A carry-out can result from an ADD, ADDO, SUB, INC, INCO, MPY or
DIV function.

CTR

Skips the next sequential microinstruction if bits 0-3 of the counter are
all ones (octal 17). Bit 4 of the counter is ignored. The contents of the
counter are not altered.

Skips the next sequential microinstruction if bits 0-3 of the counter are

4-26

all ones (octal 17). Bit 4 of the counter is ignored. The counter is
always incremented by one after the test.

FLG

Skips the next sequential microinstruction if the Flag flip-flop is set.
The setting of the flip-flop is not altered. FLG tests the state of the
flip-flop as it was just prior to execution of the current
microinstruction.

Increments the counter by one.

Skips the next sequential microinstruction if the output of the function
generator is negative (if bit 15 of the ALU-bus is set).

Skips the next sequential microinstruction if either of the following is
true:

a) Memory protect is. disabled and both the A-Addressable and
B-Addressable flip-fiops are clear.

4-27

b) Memory protect is enabled, no memory protect violation is
detected, and both the A-Addressable and B-Addressable flip-
flops are clear.

Skips the next sequential microinstruction if the output of the function
generator is odd (if bit 0 of the ALU-bus is set).

OVF

Skips the next sequential microinstruction if the Overflow flip-flop is
set. OVF does not alter the setting of the flip-flop. OVF tests the state
of the Overflow flip-flop as it was just prior to execution of the current
microinstruction.

RPT

Causes the next sequential microinstruction to be executed repeatedly
until the condition specified in its Skip field is true.

Some restrictions:

® The next sequential microinstruction must not contain TBZ in
its Skip field.

® The next sequential microinstruction must not have an add-type
mnemonic (ADD, INC, etc.) in its Function field if its Skip field
contains NEG or ODD.

4-28

Both of the above restrictions apply even if the skip condition is
reversed (RSSin the Special field).

Skips the next sequential microinstruction if the T-bus contains all
Zeros.

UNC

LIRS

on if bits 1-1.

1
Yoo s
i iy

-

sk

;"ﬂii(s*‘ m@.“s‘lix;
i

!

s

e
i Ui

g

4-29

SECTION
ASSEMBLER CONTROL STATEMENTS

The nine statements described in this section control the assembly
process. Each assembler control statement must begin in character
position 1 and may not contain embedded blanks.

With the exception of $ORIGIN and $END, ali assembler control
statements should appear ahead of the first executable
microinstruction.

There may be more than one SORIGIN statement. They may be placed
anywhere in the source microprogram.

The $END statement must be the final statement in the source
microprogram.

If an erroneous assembler control statement is detected, the Micro-
assembler prints BAD CONTROL STATEMENT and the erroneous
statement on the system console device and then the computer halts.
The user is expected to repunch the erroneous card, place it at the front
of the deck in the input hopper, and press the RUN switch on the
computer front panel.

$INPUT=x
_X = unit reference number of a card reader or paper tape reader.

Causes all subsequent input to be read through the specified device.

When the assembly process is first begun, the Microassembler expects
the first source statement to be entered through the system console
device. The user may enter the whole source program through the
system console device. Most often, however, he merely enters an

5-1

$INPUT command specifying through what card reader or paper tape
photoreader the rest of the source program is to be read.

$PASS2=x
X = unit reference number of a magnetic tape drive.

Causes all subsequent input to be recorded on magnetic tape for use as
input to Pass 2. If this statement is omitted, the computer halts at the
end of Pass 1 to allow the operator to reload the source microprogram
in the $INPUT device.

$LIST=x
X = unit reference number of a printing device.

Causes the assembly listing to be printed by the specified device. If this
statement is omitted, x is assumed to be 6.

$OUTPUT=x
X = unit reference number of a paper tape punch.

Causes the object code produced by the assembler to be routed to the
specified device. If this.statement is omitted, x is assumed to be 4.

$EXTERNALS=name 1 ~ octal address 1, ... ,name n » octal address n

where 2 is a space, name 1 through name n are symbols, and octal
address 1 through octal address n are control store addresses.

Assigns symbolic addresses to control store addresses that are external
to the program being assembled. External symbols must conform to the
rules for forming statement labels. Each symbol in the list, along with
the associated octal address, is entered into the symbol table. Once
defined in this manner, external symbols may be used as jump addresses
in JMP, JSB, and CJMP microinstructions.

5-2

$SUPPRESS
Suppresses all warning error messages. Fatal error messages are not
affected.
$DEBUG
Specifies that the debug option is to be used. Note that the debug
option requires that the microprogram be smaller than 2725 (1864,)
locations long. See Section 9, ‘Micro Debug Editor,’ of this manual for
further details.
$ORIGIN=xxxX

xxxX = octal control store address
Sets the program location counter in the microassembler to the speci-
fied value. If more than one $ORIGIN statement is present, the
specified control store addresses must occur in ascending order.

$END

Signals the end of the source microprogram.

5-3

SECTION
SAMPLE MICROPROGRAMS

This section presents four sample microprograms:

1) A “save registers’ microprogram that stores the contents of all
the registers in core memory locations.

2) A “block move” microprogram that moves a group of computer
words from one place in core memory to another.

3) A “table search’ microprogram that scans a group of computer
words in core memory until a specified character is found.

4) A “teleprinter output driver” microprogram that sends charac-
ters from a user-specified output buffer in core memory to the
teleprinter,

Each example is presented in the following manner, First, there is a
prose description telling what the sample microprogram does, how it is
called, and what information it passes to the calling program. Then
there is a listing of the actual microinstructions. Finally, there is a
microinstruction by microinstruction commentary describing how the
microprogram works. To aid the reader, both the microprogram listing
and the microinstruction commentary are divided into functional
segments. If several microinstructions together perform a specific task,
the particular group of microinstructions is easily discerned.

The examples are meant to be documented thoroughly enough so that
no additional help is required to understand them.

6-1

REGISTER SAVE MICROPROGRAM

This sample microprogram copies the contents of all the registers into
core memory locations as shown in Table 6-1.

CK 10rR F 67 PUT 87 IN F
F RHS IUR M (%] uMC ADDRESS LOC &7
10K

$1 10k T STDRE S1 IN LOC ®7

3 INC F INCREMENT F
F KKS JOR M Cw UNC ADDRESS LOC 7%
10R

59 197 T 570R= $3 I~ LOC 71

1ncw£~tu1 F
ADO®ESS LOC 73

STORE A IN LGC 7

INCREMENT §
ADUNESS LOL 74

INCREMENT F
ALULRESS LOC 75

STORE P [N LOC 7%

i i T

51 INCHEHtNT F AND STORE IN 81

$1 IOR M Cw UNC ADDRESS LOC 77

I0R
F RS TOR 7 EOP STCRE F IN LOC 77
7 0% EXIT

Figure 6-1. Register Save Microprogram

Table 6-1. Register Save Locations

. Core Memory
Register Locations (octal)
S1 67
S2 70
S3 71
sS4 72
A 73
B 74
P 75
Q 76
F 77

The register save microprogram is called by other microprograms
through use of the JSB micro-order. No parameters are passed.

MICROINSTRUCTION COMMENTARY

DUMP - - IOR M
- - IOR -
F RRS IOR T

- CR IOR F
F RRS IOR M
- - IOR -

- 81 IOR T

Ccw

67
cw

UNC

UNC

Address core memory location 0.

Store the contents of the
F-register in core memory
location O,

Store the value 67 (octal) in the
F-register. Address core memory
location 67.
Store the contents of Scratch Pad
Register 1 in core memory
location 67.

6-3

F - INC F - - Increment the F-register.

F RRSIOR M CW UNC Address core memory location

- - IOR - - - 70.

-8 IOR T - - Store the contents of Scratch Pad
Register 2 in core memory
location 70,

Andso forth ...

F - INC F - - Increment the F-register,

F RRSIOR M CW UNC Address core memory location

- - IOR - - - 76.

QRRSIOR T - - Store the contents of the
Q-egister in core m emory
focation 76.

F - INC 81 - - Increment the F-register and
store the result in Scratch Pad
Register 1,

- - IOR M RW - Address core memory location 0.

- 7T IOR F - - Restore the F-register from core

memory location 0,

- S1 IOR M Cw UNC Address core memory location

- .- IOR - - - 77.
FRRSIOR T - EOP Store the contents of the
- IOR - - - F-register in core memory

location 77 and exit.

BLOCK MOVE MICROPROGRAM

This sample microprogram moves a group of computer words from one
place in core memory to another. When the microprogram receives
control, it is assumed that:

6-4

® The number of words to be moved is in the A-register (in two’s
complement form),

® The FROM address is in the B-register.

® The TO address is in the core memory location pointed to by
the P-register,

The HP assembly language calling sequence is as follows:

LDA -(number-of-words)

LDB from-address

105xxx

DEF to-address (cannot be indirect)

IOR REAQ A DATA WORD
PUT IT IN 81

INCREMENT THE YFROM! ADORESS
INCREMENT THE 'TQ!' ADDRESS
DECREMENT AND TEST THE COUNTER
REPEAT THE MOVE LOOP

Figure 6-2. Block Move Microprogram

MICROINSTRUCTION COMMENTARY

MOV - P ICGR M RW - Get the TO address and store it
- T IOR Q - - in the Q-register, The TO address
cannot be indirect,

65

LOOP

B RRS IOR M

- T

F 82

RwW

Ccw
ouT

IOR 81
IOR 82 -
DEC M
JMP -
IOR T
INC B
INC Q
INC A
JMP -
INC P
IOR -

NMPV

EOP

Read a data word from the core
memory location pointed to by
the FROM address and store the
data word in Scratch Pad
Register 1.

Put the TO address in Scratch
Pad Register 2, Address the TO
core memory location, Write the
data word into the core memory
location pointed to by the TO
address. The F, DEC, and NMPV
micro-orders in the “write into
memory” microinstruction test
the TO address to make sure it
does not refer to a location in the
protected portion of core
memory. If a memory protect
violation is detected, control
passes to OUT (otherwise the
‘‘write into memory” operation
is performed),

Increment the FROM address.
Increment the TO address.
Increment and test the number
of words (remember that the
number of words is in two's
complement form; consequently,
the number is effectively
decremented). If the number = 0,
control passes to OUT.
Otherwise, the move loop is
repeated,

Increment the P-register and exit,

TABLE SEARCH MICROPROGRAM

This sample microprogram searches a table for a specific character.
Each word in the table contains two characters: one in the high byte
position (bits 8-15) and one in the low byte position (bits 0-7).

The calling program passes the following parameters:

® The address of the first byte to be examined. Bits 1-15 specify
the starting core memory location while bit 0 specifies whether
the table search is to begin with the high or low byte (0 = high;

1 =1low).

® The number of bytes to be examined.

® The character being searched for,

® A terminator character.

The table is searched until the specified character is found, until the
terminator character is found, or until the specified number of bytes
have been examined. If the starting byte address is even, the search is

performed as shown in Table 6-2,

If the starting byte address is odd, the search is performed as shown in

Table 6-3.

Table 6-2. Even Starting Byte Address

High Byte Low Byte
Starting core memory location 2
Next higher core memory location
Next higher core memory location 5 6
And so forth . ..

6-7

CR I0R 82 1@ STORE 1@ (OCTAL) IN 82
82 I0R CNTR RAT INITIALIZE THE COUNTER
8 CRS B R1 CTRI ROTATE BIA H!G‘W 8 BIT POSZTIDNS

L4 IR M R GET THE BYYE COUNT
Q I0R B RESTORE THE BYTE AODRESS

T IoR @ STORE BV"E COUNT IN Q

L4 SFLG M RW READ TWO EYTES
T I0R & STORE IN &
Jup LOw SK!P PIRST WIGH EVTE TEST

A CL AND B 37z IS0LATE HIGH BYTE
B LH X0R RSS TBZ BYTE = 'TESTY ?
s)

JNP TESTH (YE

'] INC @ RS8 - T8l DOECREMENT AND TEST BYTE COUNT
Jmp ExIT (BYTE COUNY » @)

8 2 XO0R R83 Y32 BYTE = 'TEST' 7
rLL TESTL (YES)

SET 8 TO ALL ZEROS
!ET P YD ALL ZEHDS

Figure 6-3. Table Search Microprogram

6-8

Table 6-3. Odd Starting Byte Address

High Byte Low Byte
Starting core memory location
Next higher core memory location 2
Next higher core memory location 4 5
And so forth . ..

The assembly language calling sequence is as follows:

LDA <test> <term>
LDB starting-byte-address
105xxx

DEC number-of-bytes

where test is the character being searched for.
term is the terminator character,

starting-byte-address is the address of the first byte to be
examined.

number-of-bytes is the number of bytes to be examined.

After the table search is complete, the microprogram passes the
following information to the calling program:

A-register: The address of the last byte examined (bits 1-15
specify the core memory location and bit 0 is the
high low byte indicator).

All zeros if neither the specified character nor the
terminator character was found.

6-9

B-register: The last byte examined.

All zeros if neither the specified character nor the
terminator character was found.

Extend flip-flop: 1 = specified character found (or neither the specified
character nor the terminator character was
found),

0 = terminator character found.

MICROINSTRUCTION COMMENTARY

Note: The Flag flip-flop is always clear (0) when
the microprogram receives control.

- - RFE M CW UNC Address core memory location 0

I IOR - - - and clear the Extend flip-flop.

- P IOR T - . - Store the contents of the
P-register in core memory
location 0.

B - JIOR Q - - Store the starting byte address in

the Q-register,

A CL AND Ss1 377 Save the test character as a “high

A CR AND 83 377 byte compare constant’’ and save
the terminator character as a
“Jow byte compare constant”,

- CR IOR 82 10 Set the counter to 10 {octal) and
- 82 IOR - CNTR RPT rotate the B-and A-registers eight
B - CRS B R1 CTR| bit positions to the right,

A CR AND S2 377 Save the test character as a "“low
B cL. AND sS4 277 byte compare constant’ and save

the terminator character as a
“high byte compare constant”,

6-10

RPEAT

IOR
IOR
IOR

IOR
JMP

SFLG
IOR
JMPpP

SFLG
10R

AND

XOR
JMP

XOR
JMP

INC
JMP

w

R1
RPEAT

RW

Low

RW

377

RSS
TESTH

RSS
TERMH

RSS
EXIT

oDD

TBZ

TBZ

TBZ

Read the number of bytes into
the Q-register (first restoring the
starting byte address to the
B-register).

Test the starting byte address to
determine whether the search
should begin with the high oriow
byte (odd=low; even=high), shift
the byte address one bit position
to the right, and store it in the
P-register.

If the address is even, control
passes to RPEAT. Otherwise,
continue.

Set the Fiag flip-flop and read
the first word in the table. Store
the word in the A-register.
Control passes to LOW,

Set the Flag flip-flop and read a
table word. Store the word in the
A-register,

Isolate the high byte in the
B-register.

Byte = test character?
Yes, control passes to TESTH.
Otherwise, continue,

Byte = terminator character?
Yes, control passes to TERMH,
Otherwise, continue,

Increment and test the byte
count {remember that the count
is in two's complement form;
consequently, the count is
effectively decremented), If the

6-11

LOW ACR AND B 377

BS2 XOR - RSS TBZ

- - JMP - TESTL

BS3 XOR - RSS TBZ

- - JMP - TERML

-P INC P - .

Q- INC Q - TBZ

- - JMP - RPEAT
EXIT Q- I0R B - -

-« IOR P . .
TESTH - - RFE - - .

- - SFLG - - UNC
TERML - - CFLG - - -
TESTL - - RFE - - -
TERMH- P IOR A L1 FLG

6-12

count =0, control passes to
EXIT. Otherwise, continue.

Isolate the
B-register.

fow byte in the

Byte = test character?
Yes, control passes to TESTL,
Otherwise, continue,

Byte = terminator character?
Yes, control passes to TERML.
Otherwise, continue.

Increment the byte address.

Increment and test the byte
count {remember that the count
is in two’s complement form;
consequently, the count is
effectively decremented). If the
count =0, continue. Otherwise,
repeat the byte search loop.

Set the B- and P-egisters to all
zeros,

Exchange the Flag and Extend
flip-flops. Then set the Flag
flip-flop.

Control passes to TESTL.

Clear the Flag flip-flop.

Exchange the Flag and Extend
flip-flops.

Store the byte address in the
A-register (shifting the address
one bit position to the left),
Then test the Flag flip-flop. If

the Flag flip-flop is set, skip the
next microinstruction,

A - INC A - - Set bit 0 of the A-register.
- - IOR M RW EOP Address core memory location 0.
- T IOR P - - Read the contents of core

memory location 0 into the
Pregister and then exit,

TELEPRINTER OUTPUT DRIVER

This example presents a teleprinter output driver program, The driver is
in two parts: an Initiator Section and a Continuator Section. The
Initiator Section resides in core memory while the Continuator Section
is a microprogram residing in Module #1 (starting at control store
location 400,).

A 105000 macro instruction resides in the teleprinter interrupt location
in low core memory.

During any given teleprinter output operation, the Initiator Section is
executed only once while the Continuator Section is executed once for
each character that is sent to the teleprinter.

To begin a teleprinter output operation, the user prepares an output
buffer (BUFFR) and a character-count constant (CHCNT) in core
memory and transfers control to the Iitiator Section. The Initiator
Section passes parameters to a low core equipment table and then trans-
fers control to the Continuator Section. Thereafter, the Continuator
Section is entered on an interrupt basis as many times as are necessary
to satisfy the specified character count. The Continuator Section
essentially sends one character to the teleprinter and then retums con-
trol to the interrupted program,

6-13

ORG 20B
A bSS AR RNR AR AR AR RN RA W
B B85S 1 « *
E.C BSS 1 * EQUIPMENT TABLE «
COUNT BSS |] *
ADRES BSS ! ERRRRRRIN IR R AR R RN AN R
BFLAG BSS |
.
.
.
ENT INIT
INIT NOP EAARRAR AR R AR RN RRAN
STF 0 * [
LDA CHCNTY + INITIATOR SECTION »
§TA COUNT L] .
LOA OBUFF ERRNNRERRRARARR AR AN FRAE
STA ADRES
CLA
STA BFLAG
LOA MODE
0TA TTY
0CT 1e5000
JMP INIT,I
.
.
.
CHCNT DEC N ERERR RN RN R RN RN
DBUFF DEF BUFFR] »
BUFFR ASC N,CHARACTERS . CONSTANTS *
MODE OCT 120808 . »
7Y EQU XXb L I AT e T T

Figure 6-4. Initiator Section

When the microprogram receives control, it is assumed that the
following parameters are in the low core equipment table:

Core Memory
Location Contents
23 Number of characters yet to be printed,
24 Address of the core memory location that
contains the next character to be printed,
25 A "high/low byte” flag (zero = high byte;

non-zero = low byte),

6-14

Each location in the output buffer contains two characters: one in the
high byte position (bits 8-15) and one in the low byte position
(bits 0-7). At any given time, the microprogram must know whether it
is to send the high or low byte character to the teleprinter, Core
memory location 25 in the equipment table is used for this purpose,

Upon entry, the microprogram reads the contents of core memory
location 25 into Scratch Pad Register 1 and uses Scratch Pad Register 1
as the “high/low byte” indicator, as follows:

zero = Print the high byte character,

non-zero = Print the low byte character.

When the microprogram receives control from the Initiator Section,
core memory location 25 contains zero, Whenever it prints a high byte
character, the microprogram sets Scratch Pad Register 1 to non-zero.
Similarly, whenever it prints a low byte character, the microprogram
resets Scratch Pad Register 1 to zero. Just before exiting, the micro-
program reads the contents of Scratch Pad Register 1 into core memory
location 25.

Every time it is executed, the microprogram decrements the character--
count (core memory location 23). The character-address (core memory
location 24) is incremented only after a low byte character is printed.

The character output operation is performed as follows:
1) The microprogram tests the character count.

If the count is not zero, the microprogram proceeds with the
character output operation.

If the count is zero, the microprogram forms a CLC instruction,
puts it in the CPU Instruction Register, and causes the I/O
decoders to decode and execute the instruction. This clears the
teleprinter output interrupt, Control then returns to the inter-
rupted program,

6-15

Si INC 82 SAVE 8 IN LOC 21
s2 IOR M cw UNC
Ior
-] RRS I10R T

S1 INC 52 READ CHARCOUNT INTO Q@
s2 IOR M RW
se INC S§)
T 10R @ RSS TBZ
JMP CLC

se IOR W RW READ BYTE=FLAG INTOD Si

s1 10R TBZ TEST BYTE«FLAG

LOW (LO% BYTE)

SET BYTE=FLAG 'LOW!
&

INCREMENT CHAR=ADDRESS
CLEAR THE HIGWM BYTE FROM B

Figure 6-5. Continuator Section

2) The microprogram reads the contents of the specified core
memory location into the B-register and isolates the character
to be printed in the low byte position of the B-register:

® If a high byte character is to be printed, the
microprogram shifts the character into the low bvte
position and then clears the high byte from the B-
register,

”?@w
?m

we wm%g

e suEsER T

STURE Cﬂ I0OR B
8 RRS DR M
I0R

RRS JOR T

e
B

e
i kmw«x!i@"“
ﬁiswmwé
e

R i xlw
GO

RESTORE B FROM LOC 2%

it i A
wﬂmwwf”%m@&%mm»ww

“,a i
e
.

FORM & CLC INSTRUCT!UN
ANG EXECUTE IT

STORE JUMP TO STORE

Figure 6-5. Continuator Section (continued)

o If a low byte character is to be printed, the micro-
program merely clears the high byte from the B-register.

3) The microprogram forms an OTA instruction, puts it in the
CPU Instruction Register, and causes the I/O decoders to
decode and execute the instruction. This results in the character
in the B-register being sent to the teleprinter.

6-17

4) The microprogram forms an STC,C instruction, puts it in the
CPU Instruction Register, and causes the I/O decoders to
decode and execute the instruction.

5) Control returns to the interrupted program,

INITIATOR SECTION COMMENTARY

INIT

NOP
STF 0

LDA CHCNT
STA COUNT

LDA DBUFF
STA ADRES

CLA
STA BFLAG

LDA MODE
OTA TTY

OCT 105000

JMP INIT,I

Initiator section entry point.
Turn on the interrupt system.

Pass the character-count constant to the low
core equipment table.

Pass the character-address to the low core
equipment table.

Set BFLAG in the low core equipment table
to zero.

Specify that the teleprinter is to be used as
an output device.

Transfer control to the Continuator Section.

Initiator section exit.

CONTINUATOR SECTION COMMENTARY

6-18

- CR IOR
- 81 IOR
.- IOR
A RRS IOR

S1 20 Save the A-register in core
M CcwW NG memory location 20 of tha low
- - - core equipment table,

T - -

B RRS

S1
§2

S2

Q-
Q-

Q RRS

A RRS
CR
B CL

S1

S1
S2
s2

S1

INC
IOR
IOR
IOR

INC
RFE
INC
LWF
IOR
10R
IOR

INC
IOR
INC
IOR
JMP

IOR
INC
IOR

10R
IOR

IOR
IOR
IOR
IOR

IOR
JMP

NOR

Zo0P0OQ

-

S2

S1

RW

RSS
CLC

RW

RW

TBZ

Save the B-register in core
memory location 21 of the low
core equipment table,

Read the contents of the
Overflow and Extend flip-flops
(0,0 or 0,1) into bit positions 1
and 0, respectively, of the
Q-register. Save the Q-register in
core memory location 22 of the
low core equipment table.

Read the character-count from
core memory location 23 in the
low core equipment table into
the Q-register, Test the count, If
zero, pass control to CLC,
Otherwise, continue, ’

Read the character-address from
core memory location 24 in the
low core equipment table into
the A-redister,

Read the “high/low byte” flag
from core memory location 25 in
the low core equipment table
into Scratch Pad Register 1.

Get the first word to be printed
and store it in the B-register.
Form an OTA instruction in
Scratch Pad Register 3.

Test the “’high/low byte” flag,

If it is non-zero, pass control to
LOW,

I it is zero, set it to non-zero (all
ones) and continue,

6-19

Low

OTA

STC,C

STORE

6-20

B CR

- 83

B RRS
B RRS
B RRS

B CL

B RRS

Q RRS

B RRS

A RRS

IOR
IOR
IOR

INC
AND

IOR
IOR
IOR
IOR

IOR
IOR

IOR

INC

IOR
IOR
IOR
IOR

INC
IOR
IOR
IOR

B SRG2
B SRG2

IR 10G1

100 -
100 -

B 31
§3 207

IR 10G1

-

Zw
e
=

-

UNC

Shift the high byte character in
the B-register into the low byte
position,

Increment the character-address
(core memory location 24) and
clear the high byte from the
B-register,

Load the OTA instruction from
Scratch Pad Register 3 into the
CPU Instruction Register. Cause
the instruction to be decoded
and executed.

Form the STC,C instruction in
Scratch Pad Register 3.

Load the STC,C instruction from
Scratch Pad Register 3 into the
CPU Instruction Register. Cause
the instruction to be decoded
and executed,

Increment the character-count
{remember that the count is in
two's complement form; conse-
quently, it is effectively
decremented),

Store the charactercount in core
memory location 23,

Store the character-address in
core memory location 24,

CLC

B -
B RRS

- CR
B CL

INC
10R
IOR
IOR

IOR
IOR
INC
IOR

IOR
INC
IOR

IOR
CLO
IOR
LWF
RFE
sov
IOR

IOR
IOR
IOR
JMP

S1

S2

$1

=

[elNe

RW

R1
RSS

311
215
10G1
STORE

UNC

Store the “high/low byte” flag in
core memory location 25,

Restore the A-register from core
memory location 20,

Restore the B-register from core
memory location 21,

Restore the Overfiow and Extend
flip-flops from core memory
iocation 22,

Form a CLC instruction and load
it into the CPU Instruction
Register, Cause the instruction to
be decoded and executed. Then
pass control to STORE.

6-21

MISCELLANY 7

This section is included as a “catch-all” for discussions that may be
added in future editions. The discussions in this first edition were
prepared by HP instructors for use in the HP 2100 Microprogramming
course,

® Interrupting a Microprogram
® A/B Addressable Flip-flops
® RPT Micro-order

® JSB/RSB Micro-orders

® Counter

INTERRUPTING A MICROPROGRAM

Microprogram execution cannot be interrupted by hardware; however,
the execution time of most microprograms is generally short enough so
as not to be detrimental to the interrupt system.

Of course there will be exceptions. For example, a “block move”
microprogram could, if the number of bytes or words to be moved is
large enough, take several milliseconds to execute,

The CJMP micro-order makes it possible for a microprogram to detect
an interrupt. If an interrupt request is present, the CJMP executes as a
JMP; otherwise it executes as a NOP.

71

Usually, the section of micro-code that is jumped to upon detection of
an interrupt performs the following functions:

1) Saves all address pointers, counters, and flags used by the
microprogram,

2) Loads the core memory address of the 105xxx macro instruc-
tion into the P-register.

3) Executes an EOP micro-order (this allows the interrupt to
occeur),

Performance of the above functions assumes that the interrupted micro-
program, when re-entered after the interrupt, will continue execution at
the logical point where it was interrupted.

An alternate method is to merely load the core memory address of the
first location in the calling sequence into the P-register and execute an
EOP. In this case, the entire microprogram will be re-executed from the
beginning after the interrupt. This is the method used by the Extended
Arithmetic Group (EAG) instructions, since their execution times are
relatively short.

Refer to Figure 7-1. The CJMP microinstruction passes control to
INRUP if an interrupt request is detected. At INRUP, the P-register
contains the core memory address of COUNT and is used for saving the
currentf word count in the calling sequence. The P-register is then
decremented (so it now points to the 105xxx instruction) and an EOP
is executed (setting the PH1B interrupt phase). It is the responsibility
of the interrupting program to save the contents of the A- and
Baregisters.

After the interrupt is serviced, control returns to the microprogram by
way of the 105xxx macro instruction. The A- and B-registers were
restored by the interrupting program and the word count is restored by
the first two microinstructions, The microprogram then continues aib
the logical point where it was interrupted.

7-2

* LDA =(# OF WQRDS)
* STA COUNT
* LDA 'FROM! ADDRESS
* LDB 'TO' ADURESS
» 185X %X
. COUNT RSS 1
*
*
*
*
MOVE P I0R M Rk GET THE M#=OFe4ORDS
T I0R Q
LooP CJImp INRUP INTERRUPT WAITING ?
a RS IOR M RW MOVE A WORD FROM CORE YO 8%
T 10R 81
B I0OR §2 PUT 'TO' ADDRESS IN 82
*
F 82 DEC M Cw NMPY WRITE THE WORD INTYD CORE
JMp ouTr (MEMORY PROTECT VIOLATION)
sy IomR T
A INC A BUMP THE 'FROM! ADDRESS
-] INC B BUMP ThHE 'TO! ADDRESS
Q INC G 182 BUMP THE COUNT 8 SKIP IF @
JMP LOoP NOT DONE YET
cuT P INC P EQP SET P AND THEN EXIT
10R
.
. UPON INTERRUPT JUMP HERE AND SAVE THE COUNT
-
INRUP P IOR M Cw UNC PUT THE COUNT BACK
lon IN THE CALLING SEQUENCE
4 RRS IOR T
P suB P EQP DECREMENT P AND THEN EXIT
(4 NUR P

Figure 7-1. Interrupt Example

Had there been more variables to be saved, additional core locations
would be required either in the calling sequence or at some other
predesignated area of core memory.

If the microprogram logic requires that a particular group of micro-
instructions be skipped upon re-entry after an interrupt, an interrupt
flag may be used. Normally, the interrupt flag would be off. The
interrupt flag would be set on upon interrupt exit., Whenever the
microprogram is entered, it would test the state of the interrupt flag, If
the flag is on, the particular microinstructions would be skipped; if the
flag is off, the microinstructions would be executed.

7-3

Another method would be to use two 105xxx macroinstructions in the
calling sequence: one that would be used for originally entering the
microprogram and another that would be used for re-entering the
microprogram after an interrupt.

It is also possible to write FORTRAN-callable microprograms that
detect interrupts; however, the FORTRAN-produced assembly language
calling sequence requires greater microprogram manipulation.

A/B ADDRESSABLE FLIP-FLOPS

Refer to the following pages in the 2100 Computer Microprogramming
Guide: 1-9, 2-4, 2-16, 2-19, 4-4, 4-6, 4-13 through 4-16, 5-5, and 5-6.
These two flip-flops are used primarily to implement Memory Reference
Group (MRG) instructions that contain an operand address of 0 or 1
(A-register = 0; B-register = 1).

A microcode (RW or CW) reference to core memory address 0 or 1 will
access the actual core locations

MEMORY READ

An RW micro-order reads the contents of a core memory location into
the T-register and, for core memory addresses 0 or 1, sets the A-
Addressable or B-Addressable flip-flop. Both flip-flops are cleared if
the core memory address is other than O or 1.

The microprogram may test the A-Addressable and B-Addressable flip-
flops and, if either is set, use the contents of the appropriate register
instead of the contents of the actual core location, The micro-code
would be as follows:

74

- P IOR M RW -
AAB COND IOR.S1 - -

If the P-register contains 0 or 1, the A-Addressable or B-Addressable
flip-flop is set and the AAB reads the contents of the A- or B-register
(instead of core locations 0 or 1) onto the R-bus. The COND micro-
order reads the contents of the R-bus onto the S-bus.

If the P-register instead contains 300, the A-Addressable and B-
Addressable flip-flops are both cleared and the AAB reads zeros onto
the R-bus. The COND micro-order reads the contents of the T-register
(i.e., the contents of core memory location 300) onto the S-bus.

In the event that the contents of core location 0 or 1 is wanted, the
AAB and COND micro-orders should be replaced by a T in the S-bus
field (in this case, the A-Addressable and B-Addressable flip-flops are
ignored).

-PIORM RW -
-TIOR 81 - -

MEMORY WRITE

A CW micro-order, if executed, with 0 or 1 in the M-register writes data
from the T-register into core locations 0 or 1. CW does not enable the
setting of the A-Addressable or B-Addressable flip-flops.

- S1 IOR M CW UNC (Assume S1 contains 1)
-- IOR- - -
-S4IORT - -

The above coding would cause the contents of Scratch Pad Register 4
to be written into core memory location 1.

To avoid this, an NMPV micro-order should be used in the Skip field of
the CW microinstruction and the B-Addressable flip-flop must be set
prior to execution of the CW microinstruction.

75

If either the A-Addressable or B-Addressable flip-flop is set, control
passes from Line 2 to Line 3. Line 3 copies the contents of the
Q-register into the A- or B-register and passes control to Line 4. Line 4
has no net effect (other than to cause Line 5 to be skipped) because the
‘““write into memory’’ operation was not performed.

If a memory protect violation occurs, control passes from Line 2 to
Line 3. Since both the A- and B-Addressable flip-flops are clear, Line 3
skips to Line 5 which passes control to VILAT. Since the A- and
B-Addressable flip-flops are clear, the AAB micro-order in the Store
field of Line 3 is not enabled.

Note that the above sequence assumes that memory-protect violations
are to be handled by microcode. If memory protect violations are to be
handled by software (the usual case), the RSS and AAB micro-orders in
Line 3, plus all of Line 5, are unnecessary. In such a case, when an EOP
is detected the hardware automatically enters phase 1B because the
memory protect violation flip-flop is set. This causes execution of the
contents of core memory location 5.

The bypassing of core locations 0 and 1 is necessary for implementing
the Memory Reference Group (MRG) instructions. In most user micro-
programs, however, memory references to locations 0 and 1 will not be
made and the above discussions may be disregarded.

RPT MICRO-ORDER
Refer to page 4-16 of the 2100 Computer Microprogramming Guide.

The RPT micro-order causes the next sequential microinstruction to be
executed repeatedly until its skip condition is met. RPT is used pri-
marily in conjunction with a CTRI micro-order to shift a single or
double word data item up to 16, , times,

7-7

Example: Rotate the combined B- and A-registers right 8 positions.

- CR IOR S1 10 Load 10 (octal) into S1.

- S1 IOR - CNTR RPT Load the counter from S1 and
set the repeat mode.

B- CRSB Rl CTRI Rotate the B- and A-registers
and increment the counter.
Repeat until counter = 174,

- S3 IOR S4 - - This microinstruction is not
skipped. The CTRI in the
previous microinstruction
merely breaks the repeat
loop.

RPT may be used in conjunction with skip micro-orders other than
CTRI (e.g., NEG, ODD, etc.).

If the skip condition is never met, the repeat loop will be executed
continually until the power is turned off (i.e., infinite loop).

JSB/RSB MICRO-ORDERS

Refer to the following pages of the 2100 Computer Microprogramming
Guide: 2-2,2-3, 2-18, and 4-10.

During microprogram execution, the Save Register copies the ROM
Address Register (RAR) until a JSB micro-order is executed. A JSB
micro-order sets the JSB flip-flop, isolating the Save Register from the
RAR and thereby preserving the return address.

The RSB micro-order is used for returning control from a subroutine to
the calling program, Execution of an RSB micrc-order resets the JSB
flip-flop, causing the contents of the Save Register to be loaded into the
RAR.

7-8

Execution of an RSB micro-order without prior execution of a JSB
micro-order is interpreted as a two-cycle NOP, This allows a subroutine
to also be executed as a main line program,

The single Save Register limits the use of subroutines to one level (i.e.,a
subroutine cannot, in turn, call another subroutine).

COUNTER

Refer to the following pages of the 2100 Computer Microprogramming
Guide: 2-9, 4-15, and 4-16.

The counter was designed primarily for implementation of the
Extended Arithmetic Group (EAG) instructions that require a maxi-
mum shift count of 16, .

However, the microprogrammer may also use the counter’s full capacity
of 32
10°

Example:
- - IOR - CNTR - Set the counter to zero.
LOOP :
(Repeated microinstructions)
- - IOR - - ICTR Increment the counter.
- CNTR IOR - - TBZ Break out of the loop when
- - JMP - LOOP counter = 0.

(continue)

79

Incrementing the counter when it contains 375 (maximum capacity)
causes it to “roll over” to zero.

The CNTR micro-order in the S-bus field reads all five bits of the
counter onto the S-bus.

7-10

- S1 IOR - AAB - (Assume S1 contains 1)
-S1IORM CW NMPV

- S4 IOR AAB - -

-S4IORT - -

The above coding would cause the contents of Scratch Pad Register 4
to be copied into the Bregister. The same principle applies to the
A-register if S1 contains 0. The “write into memory” operation would
not be performed. Note that the last microinstruction is always exe-
cuted; however, when writing to the A- or B-registers, the last micro-
instruction has no net effect since the “write into memory’” operation
was not performed.

The above example assumes that the memory protect feature is not
enabled.

With memory protected enabled, the NMPV micro-order also traps
memory protect violations, The microprogram must decide which event
caused the skip. If memory protect is enabled, the coding could be as
follows:

Linel - S2 IOR - AAB -
Line2 FS2 DECM CW NMPV
Line3 Q- IOR AAB RSS AAB
Line4 QRRSIOR T - UNC :
Line5 - - JMP - VILAT Q-register)

(Assume that the data
to be written is in the

Line 1 sets either the A-Addressable or B-Addressable flip-flop, or
clears them both. The clearing is necessary since a previous reference
to core address 0 or 1 could have occurred.

Line 2 skips to Line 4 if no memory protect violation occurs and if
both the A-Addressable and B-Addressable flip-flops are clear. In Line 4
the contents of the Q-register are loaded into the T-register, the “write
into memory” operation is performed, and the JMP VILAT micro-
instruction is skipped.

7-6

ERROR MESSAGES 8

All error messages are presented in table 8-1.

Note: Warning messages are flagged by ** in the left margin.

Table 8-1. Error Messages

Meaning

Corrective Action

1 | Duplicate label.

2 | Bad control statement.

3 | lllegal RBUS micro-
order.

4 | IHegal SBUS micro-
order.

5 | lllegal FUNCTION
micro-order.

The statement label of the specified
microinstruction is the same as an-
other statement label in the micro-
program or the same as a declared
external symbol. Assign a new state-
ment label and reassemble.

The specified assembler control
statement is illegal. Correct it and
reassemble.

The micro-order in the R-bus field
of the specified microinstruction is
illegal. Correct it and reassemble.

The micro-order in the S-bus field
of the specified microinstruction is
illegal. Correct it and reassemble.

The micro-order in the Function
field of the specified microinstruc-
tion is illegal. Correct it and
reassemble.

Table 8-1. Error Messages (continued)

Meaning

Corrective Action

10

1

**12

lllegal STORE micro-
order.

lllegal SPECIAL micro-
order.

Illegal SKIP micro-
order.

lllegal jump address.

CW in Special field and
no skip condition in the
Skip field.

Program too large.

Warning! CQ detected
in the R-bus field or
RFl detected in the
Function field.

The micro-order in the Store field
of the specified microinstruction is
illegal. Correct it and reassemble.

The micro-order in the Special field
of the specified microinstruction is
illegal. Correct it and reassemble.

The micro-order in the Skip field of
the specified microinstruction is
illegal. Correct it and reassembile.

The asterisk jump address (* £ x) in
the specified microinstruction lies
outside the bounds of the current
control store module or the sym-
bolic jump address in the specified
microinstruction is undefined, Cor-
rect it and reassemble.

This combination will not write into
core memory. Correct it and
and reassemble.

The program will occupy more than
256,, (4004} control store loca-
tions. The microprogram must either
be rewritten or assembled in smaller
parts.

These micro-orders affect the opera-
tion of control store module #0.
BE CAREFUL!

Table 8-1. Error Messages (continued)

Meaning

Corrective Action

**13

**14

15

**16

**17

Warning! NOP in the
R-bus field with DEC
in the Function field.

Warning! JMP, JSB, or
CJMP in the Function
field and a non-NOP in
the S-bus field.

SBUS is incompatible
with STORE micro-
order.

Warning! LEP detected
in the Special field.

Warning! Potential
memory access problem
detected.

This combination results in the com-
plement of the contents of the S-
bus. The use of a NOR micro-order
in the Function field is suggested.

JMP, JSB, and CJMP use the low-
order bit of the S-bus field as part
of the jump address. Make certain
that the S-bus micro-order does not
set this bit incorrectly.

The same Scratch Pad Register can-
not be referenced in both the S-bus
and Store fields of a microinstruc-
tion. Correct the specified micro-
instruction and reassemble.

This micro-order cannot be used for
anything other than enabling entry
points to the 2100 Extended
Arithmetic Group.

An M was detected in the Store
field of the specified microinstruc-
tion and something other than RW
or CW was detected in the Special
field. Memory access should be
started in the specified microinstruc-
tion since the M-register could be
modified by a DMA transfer.

Table 8-1. Error Messages (continued)

Meaning

Corrective Action

**18

19

20

**21

Warning! Potential
phasing problem

Repeat on non-skip
condition.

Repeat until NEG or
ODD with an add-type
micro-order in the
Function field or repeat
until TBZ or RSS, TBZ.

Warning! RFE in the
Function field with a
non-NOP in the S-bus
field.

An EOP was detected in the pre-
vious microinstruction and the Skip
field of the specified microinstruc-
tion contains something other than
a NOP. Be aware that the specified
microinstruction will be executed
before the EOP is executed.

An RPT was detected in the Skip
field of the previous microinstruc-
tion but the Skip field of the
specified microinstruction does not
contain a “‘skip”” micro-order. Cor-
rect the microinstruction and
reassemble.

An RPT was detected in the Skip
field of the previous microinstruc-
tion but the specified microinstruc-
tion contains NEG or ODD in the
Skip field with an add-type micro-
order (ADD, ADDO, INC, or INCO)
in the Function field or the specified
microinstruction contains TBZ in
the Skip field. These combinations
are illegal. Correct the microinstruc-
tion and reassemble.

In addition to exchanging the Ex-
tend and Flag flip-flops, RFE causes
the contents of the R-bus to be read
onto the T-bus (the S-bus is
ianored).

8-4

Table 8-1. Error Messages (continued)

Meaning

Corrective Action

Warning! P in the S-bus
field acts as a NOP
when a JMP is in the
Function field.

Leave S-bus field blank instead.

8-5

HP MICRO DEBUG EDITOR 9

The HP Micro Debug Editor is a program that makes it possible for the
user to load object microprograms from an HP Microassembler output
tape into a Writable Control Store (WCS) module, debug microcode, or
produce a set of six mask paper tapes that can be used for ““burning” a
set of programmable ROM chips.

REQUIREMENTS

The editor is designed to operate in an 8K Basic Control System (BCS)
environment and requires a system console device (either a teleprinter
or a CRT terminal). In addition, a paper tape photoreader is required if
the input is to be in the form of an object tape and a paper tape punch
is required if the output is to be in the form of mask tapes. For most
purposes, a WCS module is also required.

MODES OF OPERATION

The editor operates in two modes: the normal mode and the debug
mode. The mode of operation is determined by the presence (debug
mode) or absence (normal mode) of the $DEBUG control statement
during the assembling of the microprogram. Though their capabilities
overlap considerably, the two modes are treated separately in the
following discussion.

9-1

NORMAL MODE

The normal mode was designed for two purposes: to transfer object
microcode from an HP Microassembler output tape to a WCS module
and to punch mask tapes from an HP Microassembler output tape,

DEBUG MODE

The debug mode was designed to allow the user to employ breakpoints
to debug microprograms. In this mode the user can insert a breakpoint
in the buffer, load the microprogram from the buffer into a WCS
module, and then execute the microprogram. When the breakpoint is
encountered, execution halts and the editor displays the contents of the
machine registers and flip-flops on the system console device, The user
may then alter the microprogram, alter the contents of the registers,
and/or set another breakpoint.

Specifically, in the debug mode the user can:

® Read a microprogram from an object tape into a core memory
buffer.

® Set a breakpoint in the buffer,
® Write a microprogram from the buffer into a WCS module.
® [Execute a WCS-resident microprogram,

® Display the contents of any buffer location on the system
console device,

® Alter the contents of any buffer location.
® Alter the contents of any or all of the machine registers.

The user can also read a microprogram from a WCS module into the
core memory buffer or punch an updated object tape from the contents

9-2

of the buffer, However, these are considered to be secondary capabili-
ties and are-of marginal practical value to most users.

To run the editor in the debug mode, the user must previously have
loaded an initialization program, named TEST (see “The Initialization
Program”’ later in this section). Briefly, however, it is used at the start
of debug execution to pass parameters and control to the micro-

program,

HP MICRO DEBUG EDITOR COMMANDS

When the editor is executed, it prints COMMAND? on the system con-
sole device. The user responds to entering one of the input, edit,
output, or debug commands described later in this manual. After the
editor has performed the specified operation, it again prints COM-
MAND? on the system console device, etc. To terminate a Micro Debug
Editor run, the user enters FINISH in response to the COMMAND?
message.

There are twelve Micro Debug Editor commands. They are shown in
Table 9-1. In all cases, the first character of the mnemonic is sufficient
to identify the command to the editor (for example, to terminate a
Micro Debug Editor run, the user may enter F, FI, FIN, FINI, FINIS,
or FINISH),

INPUT COMMANDS
The input commands are:

LOADI x]
READ x

9-3

Table 9-1. Micro Debug Editor Commands

Input
Commands: LOAD{,x] The brackets indicate that
READ,x the parameter may be
omitted.
Edit

Commands: SHOW,xxxx[,yyyyl
MODIFY xxxx[,yyyyl

Output
Commands: DUMP[,x]
WRITE,x
:- Tttt -P-I-R_E-PTA-R—E-[T;] ------ : These commands are
H VERIFY[x] | available only in the

normal mode.

Termination
Command: FINISH

]
i Commands: BREA K,yyyy | These commands are
H CHANGE[,mnemonic]} available only in the

! EXECUTE(,0 or yyyyl! debug mode.

LOADI[x]

X is the unit reference number of a paper tape photoreader. If omitted,
X is assumed to be 5.

The LOAD command reads the contents of an HP Microassembler
output tape into core memory through the specified device.

9.4

READx
x is the unit reference number of a WCS module.

The READ command reads the contents of the specified WCS module
into core memory.

EDIT COMMANDS
The edit commands are:

SHOW xxxx[,yyyy]
MODIFY xxxx[,yyyy]

SHOW xxxx[,yyyy]

XxXxX and yyyy are control store addresses (0-1777, octal). xxxX is the
address of the first location to be displayed and yyyy is the address of
the final location to be displayed. If omitted, yyyy is assumed to be the
same as xxxx. If the user enters fewer than four digits for xxxx or
yyyy, the value entered is right-justified with zeros automatically filled
to the left. Note that the editor uses only the rightmost eight bits of
xxxx and yyyy (0-377, octal).

The SHOW command displays the specified core memory buffer
location(s) on the system console device. The display format is as
follows:

aaaa mmm nnnnnn

where aaaa is the control store address (0-1777, octal) of the location
being displayed, mmm is the octal representation of bits 23-16 of the
location, and nnnnnn is the octal representation of bits 15-0 of the
location.

9-5

MODIFY xxxx[,yyyy]

xxxx and yyyy are control store addresses (0-1777, octal). xxxx is the
address of the first location to be modified and Yyyy is the address of
the final location to be modified. If omitted, yyyy is assumed to be the
same as xxxx. If the user enters fewer than four digits for XXXX Of
yyyy, the value entered is right-justified with zeros automatically filled
to the left. Note that the editor uses only the rightmost eight bits of
xxxx and yyyy (0-377, octal).

The MODIFY command allows the user to change the contents of the
specified core memory buffer location(s).

After reading an object microprogram from punched tape into the core
memory buffer, the microprogrammer is permitted to modify only
those locations occupied by the microprogram which was read from
tape. For example, if the microprogram is 100z locations long, the
microprogrammer may modify only locations 000 through 077;.
However, once the contents of the buffer have been written into a WCS
module and then read back into the core memory buffer, the micro-
programmer is free to modify any location. Therefore, if it is desired to
modify a location which lies outside the bounds of the user’s micro-
program, and the microprogram has not yet been moved to a WCS
module, the microprogrammer does so by first issuing a WRITE com-
mand, then issuing a READ command, and then making the desired
modifications.

In response to the MODIFY command, the Micro Debug Editor prints
the following on the system console device:

aaaa mmm nnnnnn <=

where aaaa is the control store address (0-17717, octal) of the location
being altered, mmm is the octal representation of the current state of
bits 23-16 of the location, and nnnnnn is the octal representation ¢f the
current state of bits 15-0 of the location.

9-6

The user then enters:
mmm nnnnnn

where mmm is the octal representation of the desired state of bits
23-16 of the location and nnnnnn is the desired state of bits 0-15 of the
location. If the user enters fewer than three digits for mmm or fewer
than six digits for nnnnnn, the number entered is right-justified with
zeros automatically filled to the left. If it is desired to leave mmm or
nnnann unchanged, the user may enter an asterisk instead of an octal
number.

Examples:
6,123 is equivalent to entering 006,000123.

*.123456 means that bits 23-16 of the location are not to be modified
and bits 0-15 are to be set to the value 1234563.

123,* means that bits 23-16 of the location are to be set to the
value 1233 and bits 0-15 are not to be modified.

If the user specifies that a series of locations are to be altered, the Micro
Debug Editor responds by printing aaaa mmm nnnnnn <= on the
system console device, etc. If the user does not wish to alter the
contents of a particular location in the series, he enters * * instead of
mmm,nnnnnn,

After the last specified location has been altered, the Micro Debug
Editor prints COMMAND? on the system console device.

Note that the MODIFY command and the associated entries alter the
specified core memory locations (not the actual WCS locations). To
update the WCS module to the revised state, the user must write the
contents of the core memory buffer into the WCS module (using the
WRITE command).

9-7

OUTPUT COMMANDS
The output commands are:

DUMP[x]
WRITE x
PREPARE[x]
VERIFY[x]

DUMP[x]

x is the unit reference number of a paper tape punch device. If omitted,
x is assumed to be 4.

The DUMP command punches the contents of the core memory buffer
on the specified device. The tape thus produced is in the same format as
the output tape produced by the HP Microassembler.

WRITE x

x is the unit reference number of a WCS module.

The WRITE command copies the contents of the core memory buffer
into the specified WCS module.

PREPARE[x]

x is the unit reference number of a paper tape punch device. If omitted,
x is assumed to be 4.

The PREPARE command punches a set of six mask tapes on the
specified device from the contents of the core memory buffer. Before
punching each tape, the editor asks the user to enter the tape’s I.D.
header information. The user may then enter up to three lines of
information {any characters). For tapes two through six, the user hag
the option of duplicating the I.D. lines used on the previous tape.

9-8

VERIFY[x]

X is the unit reference number of a paper tape photoreader. If omitted,
X is assumed to be 5.

The verify command reads a mask tape through the specified device and
compares the contents of the tape against the contents of the core
memory buffer. In response to a VERIFY command, the editor asks
the microprogrammer to identify which of the six tapes is to be
verified. The microprogrammer responds by entering one of the
following tape I.D. numbers:

1.D. Number Tape
2320 Identifies the mask tape which contains bits 23
through 20 of all WCS words.
1916 Identifies the mask tape which contains bits 19
through 16 of all WCS words.
1512 Identifies the mask tape which contains bits 15
through 12 of all WCS words.
1108 Identifies the mask tape which contains bits 11
through 8 of all WCS words.
0704 Identifies the mask tape which contains bits 7
through 4 of all WCS words.
0300 Identifies the mask fape which contains bits 3

through 0 of all WCS words.

If no errors are detected, the editor asks for the next command. If
errors are detected, the editor prints

BAD MASK TAPE
DO YOU WANT TO REPUNCH THIS TAPE?

99

The user responds by entering Y or N. If the user enters N, the editor
asks for the next command. If the user enters Y, the editor prints

ENTER PUNCH LOGICAL UNIT #
and the user enters the unit reference number of the paper tape punch
device. The editor then asks the user to enter three lines of tape I.D.
information, repunches the tape, and asks for the next command.
The mask tapes may be verified in any order. To verify an entire set of
mask tapes, the user must enter the VERIFY command a total of six

times (assuming that none of the tapes has to be repunched and
reverified).

TERMINATION COMMAND
The termination command is:

FINISH
FINISH

The FINISH command terminates the current Micro Debug Editor run.

DEBUG COMMANDS

The debug commands are:
BREAK,yyyy
CHANGE[,mnemonic]
EXECUTE,0 or yyyy]

9-10

BREAK,yyyy

yyyy is a control store address (0-1777, octal). If the user enters fewer
than four digits for yyyy, the value entered is right-justified with zeros
automatically filled to the left. Note that the edifor uses only the
rightmost eight bits of yyyy (0-377, octal).

The BREAK command sets a breakpoint at the specified location in the
core memory buffer. When the breakpoint is encountered during debug
execution, execution halts, the contents of the machine registers (A, B,
Q, F, P, S1, S2, S3, S4) and flip-flops (Flag, Overflow, Extend) are
displayed on the system console device, and the breakpoint is removed
from the buffer.

Breakpoints should be set only where a JMP microinstruction is
allowed. For example, a breakpoint should not be set immediately
following a microinstruction that contains either an EOP or RPT
micro-order. However, this responsibility is left entirely up to the user.

The editor’s dump routine uses core memory location 0 for temporary
storage. If the microprogram being debugged uses core location 0, the
microprogrammer should remember that the contents of that location
are altered every time a breakpoint is encountered. Also, since the
editor’s dump routine occupies control store locations 2725 through
3774, the microprogrammer should not set a breakpoint above control
store location 27154.

The editor’s dump routine executes an EOP. Among other things, the
EOP clears the JSB flip-flop. Consequently, if the breakpoint occurred
within a subroutine, execution must not be restarted within the
subroutine because the RSB at the end of the subroutine will not work
as expected. After such a breakpoint, the microprogrammer should
restart execution either from the beginning (EXECUTE,0) or from
some location (EXECUTExxxx) which would not allow the
subroutine’s RSB to be executed.

9-11

CHANGE[,mnemonic]

mnemonic is one of the following mnemonics:

~ = o W

S1
S2
S3
S4

0
E
FLAG

The CHANGE command is used for altering the contents of any or all

(A-register)
(B-register)
(Q-register)
(F-register)
(P-register)
(Scratch Pad Register 1)
(Scratch Pad Register 2)
(Scratch Pad Register 3)
(Scratch Pad Register 4)

(Overflow flip-flop)
(Extend flip-flop)
(Flag flip-flop)

of the registers and flip-flops.

If the user omits mnemonic, the editor assumes that he wishes to alter

the contents of all the registers and flip-flops.

If the user specifies a mnemonic, the editor responds by printing

mnemonic XxXxxxx < =

on the system console device, where xxxxxx is the octal representation

of the current contents of the register or flip-flop.

The user then responds by entering an octal number represeniing the

desired contents of the register,

9-12

If the user enters a CHANGE command with no mnemonic, the editor
assumes that he wishes to alter the contents of all the registers and
flip-flops. In this case, the above conversational process is done for each
register and flip-fiop. If the user does not wish to alter the contents of a
particular register or flip-flop, he enters an asterisk (*) instead of the
octal number,

EXECUTEL,0 or yyyy]

yyyy is a control store address (0-1777, octal). If the user enters fewer
than four digits for yyyy, the value entered is right-justified with zeros
automatically filled to the left. Note that the editor uses only the

rightmost eight bits of yyyy (0-377, octal).

The EXECUTE command causes the contents of the core memory
buffer to be written to a WCS module and then executes the
WCS-resident program. If the user has previously used a WRITE
command, the EXECUTE statement automaiically uses the same WCS
module referenced by the WRITE command. If the user had not
previously used a WRITE command, the editor first responds to the
EXECUTE command by asking for the unit reference number of the
WCS module.

EXECUTE,0 causes the WCS-resident microprogram to be executed
from the beginning by way of the user’s initialization program.

EXECUTE causes the WCS-resident microprogram to be executed from
the point where it was last interrupted. This is used for restarting
execution after a breakpoint has been encountered.

EXECUTE,yyyy causes the WCS-resident microprogram to be executed
starting at the specified control store address. Note that the editor uses
only the rightmost eight bits of yyyy (0-377, octal).

9-13

THE INITIALIZATION PROGRAM

When the Micro Debug Editor is to be run in the debug mode, the user
must supply an initialization program. The initialization program is an
assembly lenguage program that performs whatever functions are neces-
sary to call the microprogram (namely, preparing the necessary param-
eters in core memory and then executing a 105xxx macro instruction).

The name of the initialization program must be TEST. The program
must also have the symbol MACRO as a declared entry point, where
MACRO is the symbolic address of the 105xxx macro instruction.
There should only be one 105xxx macro instruction in the initialization
program. Table 9-2 shows the structure of an initialization program.

Table 9-2. Initialization Program

ASMB,R.B,L, T
NAM TEST
ENT TEST, MACRO

TEST NOP

MACRO OCT 105xxx
DEF P1
DEF P2

DEF Px

JMP TEST,I
P1 (constant definition statement)
P2 (constant definition statement)

Px (constant definition statement)
END

9-14

Operating in the debug mode imposes the following two restrictions on
the microcode that is being debugged. The first microinstruction must
be a JMP to the start of the microprogram (i.e., the first micro-
instruction must be a primary jump table entry). The microcode being
debugged must be less than 186, locations in length.

OPERATING INSTRUCTIONS

LOADING THE MICRO DEBUG EDITOR

Refer to the Basic Control System manual (02116-9017).

1.

Load the Basic Control System (BCS) using the Basic Binary
Loader.

Load the HP Micro Debug Editor using the BCS Relocating
Loader.

If the editor is to be run in the debug mode, load the initial-
ization program (TEST) using the BCS Relocating Loader.

If the editor is to be run in the normal mode, the user must
force program loading at this point even though there are two
undefined external symbols (TEST and MACRO). This is done
by entering 010 into switches 2-0 of the Switch Register.

Press the RUN switch. BCS responds by printing the loading
map on the system printer device.

Press the RUN switch. The editor responds by printing a
heading and then typing COMMAND? on the system console
device.

9-15

DEBUGGING A SMALL MICROPROGRAM

These operating instructions apply when the microprogram being
debugged is smaller than 186, locations in length. The appropriate
Micro Debug Editor command mnemonic is shown in parentheses
whenever the associated command is used.

1.

2.

3.

9-16

Assemble the microprogram using the debug option.
Load the Micro Debug Editor and the initialization program.

Read the Microassembler output tape into core memory
(LOAD).

Set a breakpoint (BREAK). To set a breakpoint immediately
after the last executable statement of the microprogram, first
issue a WRITE command, then issue a READ command, and
then set the breakpoint. Remember that a breakpoint must not
be set in any of the locations 272 through 3773.

Enter an EXECUTE,0 command. This loads the contents of the
core memory buffer into the WCS module (the editor will ask
for the module’s unit reference number) and then causes the
initialization program to be executed. The initialization pro-
gram, in turn, passes control to the microprogram. When the
breakpoint is encountered, execution halts, the breakpoint is
removed from the core memory buffer, and the contents of the
machine registers and flip-flops are displayed on the system
console device.

Enter any Micro Debug Editor commands.

Usually at this point the user performs conversational editing
(SHOW, MODIFY) and/or alters the contents of any or all of
the registers and flip-flops (CHANGE). However, this is also the
logical point at which one would terminate the entire Micro
Debug Editor run (FINISH).

7. Set another breakpoint (BREAK). To set a breakpoint immedi-
ately after the last executable statement in the microprogram,
first issue a WRITE command, then issue a READ command,
and then set the breakpoint. Remember that a breakpoint must
not be set in any of the locations 2725 through 3775.

8. Restart execution (EXECUTE or EXECUTE,yyyy or EXE-
CUTE,0).

® EXECUTE restarts execution from the point where it was
interrupted.

o EXECUTE,yyyy restarts execution from the specified WCS
relative address.

® EXECUTE,0 restarts execution from the beginning (by way
of the initialization program).

9. When the breakpoint is encountered, repeat steps 6-8, above.

DEBUGGING A LARGE MICROPROGRAM

These operating instructions apply when the microprogram being
debugged is larger than 186;, locations in length. The appropriate
Micro Debug Editor command mnemonic is shown in parentheses
whenever the associated command is used.

1. Break the microprogram into two or more segments in such a
way that each segment is smaller than 186,, locations in
length. Each segment must be able to be entered by using the
same 105xxx macro instruction and operate independently
of the other segments.

2. Assemble each segment separately using the debug option.

3. Load the Micro Debug Editor and the initialization program.

9-17

9-18

Segment #1

Read the Microassembler output tape for the segment into

core memory (LOAD).

Set a breakpoint (BREAK). To set a breakpoint immediately
after the last executable statement of the microprogram, first
issue a WRITE command, then issue a READ command, and
then set the breakpoint. Remember that a breakpoint must
not be set in any of the locations 272¢ through 3775.

Enter an EXECUTE,0 command. This causes the initial-
ization program to be executed. The initialization program,
in turn, passes control to the microprogram segment. When
the breakpoint is encountered, execution halts, the break-
point is removed from the core memory buffer, and the
contents of the machine registers and flip-flops are displayed
on the system console device.

Enter any Micro Debug Editor commands.

Usually at this point the user performs conversational editing
(SHOW, MODIFY) and/or alters the contents of any or all of
the registers and flip-flops (CHANGE). However, this is also
the logical point at which one would initiate the debugging of
Segment #2 (step 11) or terminate the entire Micro Debug
Editor run (FINISH).

Set another breakpoint (BREAK). To set a breakpoint
immediately after the last executable statement in the micro-
program, first issue a WRITE command, then issue a READ
command, and then set the breakpoint. Remember that a
breakpoint must not be set in any of the locations 2724
through 3773.

Restart execution (EXECUTE or EXECUTE,yyyy or EXE-
CUTE,0).

® EXECUTE restarts execution from the point where it
was interrupted.

10.

11.

12.

13.

14.

e EXECUTE,yyyy restarts execution from the specified
WCS relative address.

® EXECUTE,0 restaris execution from the beginning (by
way of the initialization program).

When the breakpoint is encountered, repeat steps 7-9, above.

Segments # 2 Through x

Read the Microassembler output tape for the segment into
core memory (LOAD).

Set a breakpoint (BREAK). To set a breakpoint immediately
after the last executable statement of the microprogram, first
issue a WRITE command, then issue a READ command, and
then set the breakpoint. Remember that a breakpoint must
not be set in any of the locations 2725 through 3775.

Enter an EXECUTE,yyyy command, where yyyy is the WCS
relative address of the first microinstruction to be executed.
When the breakpoint is encountered, execution halts, the
breakpoint is removed from the core memory buffer, and the
contents of all the machine registers and flip-flops are dis-
played on the system console device.

Enter any Micro Debug Editor command.

Usually at this point the user performs conversational editing
(SHOW, MODIFY) and/or alters the contents of any or all of
the registers and flip-flops (CHANGE). However, this is also
the logical point at which one would initiate the debugging of
the next segment (step 11) or terminate the entire Micro
Debug Editor run (FINISH).

9-19

15

16.

17.

. Set another breakpoint (BREAK). To set a breakpoint
immediately after the last executable statement in the micro-
program, first issue a WRITE command, then issue a READ
command, and then set the breakpoint. Remember that a
breakpoint must not be set in any of the locations 2724
through 377g.

Restart execution (EXECUTE or EXECUTE,yyyy).

® EXECUTE restarts execution from the point where it
was interrupted.

® EXECUTE,yyyy restarts execution from the specified
WCS relative address.

When the breakpoint is encountered, repeat steps 14-16,
above.

PUNCHING MASK TAPES FROM AN OBJECT TAPE

1.

2.

9-20

Assemble the microprogram.
Load the Micro Debug Editor using the BCS Relocating Loader.

Read the Microassembler output tape into core memory
(LOAD).

Punch the mask tapes (PREPARE).
Verify each mask tape, as follows:
a. Load the mask tape into the paper tape photoreader.

b. Enter a VERIFY command.

c. If the tape contains no errors, load the next tape in the
photoreader and enter another VERIFY command, etc.

If the tape contains errors, the editor prints a message to
that effect on the system console device and allows the user
to repunch the erroneous tape.

6. If all the mask tapes contain no errors, terminate the run
(FINISH).

LOADING A MICROPROGRAM INTO WCS FROM AN OBJECT
TAPE

1. Assemble the microprogram.
2. Load the Micro Debug Editor using the BCS Relocating Loader.

3. Read the Microassembler output tape into core memory
(LOAD).

4. Write the microprogram into a WCS module (WRITE).

5. Terminate the Micro Debug Editor run (FINISH).

9-21

HP PROGRAMMABLE ROM WRITER

The HP Programmable ROM Writer is a program that uses the mask
tapes produced by the HP Micro Debug Editor to permanently burn
microcode into programmable ROM chips.

REQUIREMENTS

The HP Programmable ROM Writer is designed to operate in an 8K
Basic Control System (BCS) environment and requires a system console
device (either a teleprinter or a CRT console), a paper tape photo-
reader, and an HP 12909 A Programmable ROM Writer.

LOADING INSTRUCTIONS

To load the HP Programmable ROM Writer program, do as follows:
1. Load BCS using the Basic Binary Loader.

2. Load the HP Programmable ROM Writer program using the BCS
Relocating Loader.

10-1

3. When BCS prints the message “RUN” on the system console
device, enter the select code of the HP 12909 A Programmable
ROM Writer into the Switch Register and then press RUN.

Note: If the user forgets to enter a value into the Switch
Register and merely presses RUN, the program reacts
in either of the following ways:

® If the Switch Register contains all zeros, the program halts
with 102022 in the Memory Data register. The user
responds by entering the select code into the Switch
Register and then pressing RUN.

® If the Switch Register contains a non-zero value, the pro-

gram accepts the specified value as the select code and
proceeds with execution.

INITIAL PARAMETERS

When loaded, the Programmable ROM Writer prints
PROM WRITER CONTROL PROGRAM

on the system console device and then asks for a series of parameters, as
follows:

ENTER PROM BURN PARAMETERS
CHIP INITIAL STATE (0 OR 1)?

The user enters either a zero or a one, depending upon whether the chip
initially contains all zeros or all ones.

MINIMUM BURN TIME (MILLISECONDS)?

The user enters a positive decimal integer specifying the length of time
(in milliseconds) that each chip location is to be burned on the first
attempt.

10-2

MAXIMUM BURN TIME (MILLISECONDS)?

The user enters a positive decimal integer specifying the length of time
(in milliseconds) that each chip location is to be burned on the final
retry.

MAXIMUM NUMBER OF RETRIES?

The user enters a positive decimal integer specifying the maximum
number of times that the burning of a chip is to be retried. The initial
burn attempt is performed using the minimum burn time. If retries are
necessary, each is performed using a proportionately longer burn time.
If the specified maximum number of retries are necessary, the final
retry is performed using the maximum burn time. For example, if the
user specifies a minimum burn time of 1 millisecond, a maximum burn
time of 11 milliseconds, and a maximum number of retries of 5, the
burn times of the various burn attempts is as follows:

Initial burn attempt: 1ms
1st retry: 3ms
2nd retry: 5 ms
3rd retry: T ms
4th retry: 9ms
5thretry: 11ms

WAIT TIME RATIO?

The user enters a positive decimal integer that determines the amount
of “wait time” between successive burn passes, as follows:

“wait time” = RATIO - current burn time

For example, if the current burn time is 100 milliseconds (a tenth of a
second) and the wait time ratio is 5, the program allows 500 milli-
seconds (half a second) between successive burn passes.

10-3

The information necessary for entering the above parameters is avail-
able in the documentation provided by the programmable ROM chip
manufacturer.

TIMING CONSTANT?

The user enters one of the following timing constants to identify which
model computer is being used:

Computer Timing Constant
2100 169
2114 130
2115 130
2116 148

GENERAL OPERATION

After the initial parameters have been entered, the program prints
COMMAND? on the system console device, The user responds by
entering one of the commands shown in Table 10-1,

If the user enters an illegal command, the program prints INPUT
ERROR on the system console device and requests another command.
In all cases, the first two characters are sufficient for the program to
recognize the command,

After each command (except STOP) is executed, the program requests
another command by printing COMMAND? on the system console
device,

In the following discussions, the overall process of buming a program-
mable ROM chip is divided into two processes: set-up and burning, The
processes are performed sequentially and in that order for every chip
that is to be burned.

104

Table 10-1. Commands

COMMAND EFFECT

LOAD Causes the program to read a mask tape into
core memory and print the tape identity
information on the system console device.

VTAPE Causes the.program to verify the contents of
the mask tape by computing a checksum and
comparing it against a checksum contained
on the tape.

VCHIP Causes the program to test a chip to be cer-
tain it contains all zeros or all ones.

BURN Causes the program to burn a chip.
CREAD Reads the contents of the chip mounted on
the Programmable ROM Writer hardware

into the core memory buffer,

STOP Terminates an HP Programmable ROM
Writer run,

SET-UP

The user mounts a programmable ROM chip on the HP 12909A Pro-
grammable ROM Writer, loads a mask tape in the paper tape photo-
reader, and then enters LOAD through the system console device, The
program reads the mask tape into a buffer area in core memory and
prints the tape identity information on the system console device, The
user should examine the printed identity information to be certain that
the proper tape has been loaded.

10-5

If the proper tape has been loaded, the user enters VTAPE through the
system console device. The program verifies the contents of the tape by
computing a checksum and comparing it against a checksum contained
on the tape. If it detects an error, the program prints CHECKSUM
ERROR on the system console device. In such a case, the user reloads
the tape in the photoreader and re-enters the LOAD and VTAPE com-
mands, If the checksum error persists, a new set of mask tapes must be
produced using the HP Micro Debug Editor.

Note: Ifitis desired to duplicate a programmable ROM chip
that is already bumed, use the following set-up pro-
cedure instead of the above:

1) Mount the bumed chip on the HP 12909 A,

2) Enter a CREAD command.

3) Remove the burned chip from the HP 12909A.
4) Mount .a new (unused) chip on the HP 12909A.

The user enters VCHIP through the system console device. The program
tests the chip to be certain that it contains all zeros or all ones (as speci-
fied in the initial parameters). If the chip does not contain all zeros or
all ones, the program prints BAD CHIP on the system console device. In
such a case, the user discards the chip, mounts a new one, and re-enters
the VCHIP command,

BURNING

The user enters BURN through the system console device. The program
burns the chip using the minimum burn time. After the chip has been
burned, the program reads the chip locations to see if they were burned
properly. If any chip location was not burned properly during the first
burn pass, a second pass is made using a longer burn time, etc, During
the retry passes, only the erroneous chip locations are reburned. The

10-6

number of retry passes and the burn times are determined by the initial
parameters entered by the user, If the chip still contains errors after the
final burn retry, the program prints the following message on the
system console device for each erroneous chip location:

ERROR AT chip-location CHIP = xxxx BUFFER = yyyy

where chip-location is an octal number (000-377) specifying what
chip location is in error,

xxxx is a four-digit binary number showing the current state
of the chip location.

yyyy is a four-digit binary number showing the current state
of the associated core memory locations.

The user then enters BURN or STOP. BURN causes the program to
burn the entire chip as described above, STOP terminates the Program-
mable ROM Writer run,

10-7

SECTION

HP BCS WCS INPUT/OUTPUT UTILITY ROUTINE 11

This is a library routine which makes it possible for FORTRAN and
ALGOL programs to move object microcode from core memory to a
Writable Control Store (WCS) module or from a WCS module to a core
memory buffer. The routine is designed to operate in a minimum Basic
Control System (BCS) environment.

CALLING SEQUENCES

In both FORTRAN and ALGOL there are two calling sequences: one
for moving object microcode from a core memory buffer to a WCS
module and one for moving object microcode from a WCS module to a
core memory buffer.

CORE MEMORY TO WCS MODULE

The FORTRAN calling sequence for moving object microcode from a
core memory buffer to a WCS module is:

CALL WWRIT (module,buffer-name,#-of-words)

where module is a decimal number specifying the unit reference
number of the WCS module.

buffer-name is the array name of the core memory buffer.

#of-words is a decimal number specifying the number of words
to be moved. If #-of-words is positive, it specifies the number of
WCS words to be moved; if it is negative, it specifies the number
of core memory words to be moved.

Object microcode is stored in core memory such that each WCS word
requires two buffer words. Bits 0-7 of the first buffer word of each pair
contain three octal digits specifying the WCS location to be written
into. Bits 8-15 of the same buffer word contain bits 0-7 of the specified
WCS location. Bits 0-15 of the second buffer word of each pair contain
bits 8-23 of the specified WCS location. When the object microcode is
moved from the core memory buffer to the WCS module, only the
specified WCS locations are altered (all other WCS locations are left
unchanged).

The ALGOL calling sequence for moving object microcode from a core
memory buffer to a WCS module is:

PROCEDURE WWRIT (A,B,C);
INTEGER A,C; ARRAY B;
WWRIT (module,buffer-name,#-of-words);

where module buffer-name, and #-of-words are described for
FORTRAN, above.

WCS MODULE TO CORE MEMORY

The FORTRAN calling sequence for moving object microcode from a
WCS module to a core memory buffer is:

CALL WREAD (module,buffer-name,#-of-words,wcs-address)

where module is a decimal number specifying the unit reference
number of the WCS module.

buffer-name is the array name of the core memory buffer.

#of-words is a decimal numher specifying the number of words
to be moved. If #-of-words is positive, it specifies the number of

WCS words to be moved; if it is negative, it specifies the number
of core memory words to be read into.

wes-address is an octal number specifying the starting WCS
location of the object microcode to be moved.

Object mierocode is read into the core memory buffer in the format
described earlier in this section. The WCS word residing at WCS
location wes-address is read into the first two buffer words, the WCS
word residing at WCS location wes-address + 1 is read into the next two
buffer words, and so forth.

The ALGOL calling sequence for moving object microcode from a WCS
module to a core memory buffer is:

PROCEDURE WREAD (A,B,C,D);
INTEGER A,C,D; ARRAY B;
WREAD (module,buffer-name,#-of-words,wes-address);

where module, buffer-name, #-of-words, and wes-address are described
for FORTRAN, above. '

INDEX

A Addressable Flip-flop 4-2, 4-3, 4-7, 4-21,4-24,4-29, 7-4
Accessing Core Memory 1-23
Accessing a Microprogram
From Assembly Language 1-12
From FORTRAN 1-13
From ALGOL 1-14
Addressing, Symbolic 2-3
Assembler Control Statements 5-1
Assembly Options 2-4
Asterisk (*) as an Address 2-4

B Addressable Flip-flop 4-2, 4-3,4-7, 4-21, 4-24, 4-29, 74
“Block Move” Example 6-4

BREAK 9-10

BURN 10-4

Calling a Microprogram
From Assembly Language 1-12
From FORTRAN 1-13
From ALGOL 1-14
CHANGE 9-10
Coding Form, Standard 3-6
Commands, HP Micro Debug Editor 9-3
Comments Field 3-7
Constants 1-7
Control Statements, Assembler 5-1
Core Memory Access 1-23
Counter
Hardware — 7-9
Program Location — 2-3
CREAD 104

INDEX (Continued)

$DEBUG 5-3
Debug Mode (HP Micro Debug Editor) 9-2
Debugging
— Small Microprograms 9-14
— Large Microprograms 9-16
DUMP 9-7

$END 5-3

Entry Module 1-7

Error Messages, HP Microassembler 2-2, 8-1
EXECUTE 9-11

$EXTERNALS 5-2

Facilities, Microprogramming 1-2
FINISH 9-9
Format
Microinstruction — 1-5
Object Tape — 2-9
Source Microprogram Listing — 2-6
Symbol Table Listing - 2-6
Symbolic Statement — 3-1
Function Field 1-6, 3-3, 4-8

Hardware Requirements
HP Microassembler 2-1
HP Micro Debug Editor 9-1
HP Programmable ROM Writer 10-1

Initial Parameters, HP Programmable ROM Writer 10-1
Initialization Program, HP Micro Debug Editor 9-12
Input, Microprogram 1-20

$INPUT 5-1

Interrupting a Microprogram 7-1

Jump Tables 1-7
Jump Table Conventions 1-19

2

INDEX (Continued)

Label Field 3-2

Labels, Statement 3-2

$LIST 5-2

Listing
Source Microprogram — 2-6
Symbol Table — 2-6

LOAD 94

Location Counter 2-3

Mask Tapes, HP Micro Debug Editor
Punching 9-8,9-18
Verifying 9-8, 9-19

Memory Access 1-23

Microinstruction Format 1-5

Mnemonics, Valid Micro-Order 3-5

MODIFY 9-6

Modes of Operation, HP Micro Debug Editor
Debug Mode 9-2
Normal Mode 9-2

Normal Mode, HP Micro Debug Editor 9-2

Object Tape 2-5

Options, Assembly 2-4
$ORIGIN 5-3

Output, Microprogram 1-21
$OUTPUT 5-2

Parameter Passing
From Assembly Language 1-15
From FORTRAN 1-17
From ALGOL 1-19

INDEX (Continued)

Pass 1 Description 2-2

Pass 2 Description 2-2
$PASS2 5-2

Primary Jump Table 1-8
PREPARE 9-8

Program Location Counter 2-3

R-bus Field 1-5, 3-3, 4-1
READ 9-5
Read From Memory 1-23, 7-4
“Register Save” Example 6-2
Requirements, Hardware and Software
HP Microassembler 2-1
HP Micro Debug Editor 9-1
HP Programmable ROM Writer 10-1

“Save Registers”” Example 6-2
Sample Microprograms 6-1
S-bus Field 1-5, 3-3,4-4
Secondary Jump Tables 1-8
Shifting 1-25
Skip Field 1-6, 3-4, 4-25
SHOW 9-5
Software Requirements
HP Microassembler 2-1
HP Micro Debug Editor 9-1
HP Programmable ROM Writer 10-1
Source Microprogram Listing 2-6
Special Field 1-6, 3-4, 4-21
Statement Labels 3-2
Statements, Assembler Control 5-1
Store Field 1-6, 3-4, 4-18
STOP 10-4
$SUPPRESS 5-3

4

INDEX (Continued)

Symbol Table 2-3

Symbol Table Listing 2-6
Symbolic Addressing 2-3
Symbolic Statement Format 3-1

“Table Search” Example 6-7
“Teleprinter Qutput Driver’’ Example 6-13

VCHIP 10-4
VERIFY 9-8
VTAPE 10-4

Warning Messages, HP Microassembler 2-2, 8-1
WCS Loading 9-19

WRITE 9-8

Write Into Memory 1-24, 7-5

UNITED STATES

ALABAMA

8290 Whitesburg Dr., S.E.
P.0. Box 420

Hunstyille 35802

Tel: (205) 881-4591
TWX: 810-726-2204

ARIZONA

2336 E. Magnolla St.
Phosnix 85034

Tel: (602) 244-1361
TWX: 910-951-1330

5737 East Broadway
Tucson 85711

Tel: (602) 298-2313

TWX: 910-952-1162
(Effective Dec. 15, 1973)
2424 East Aragon Rd.
Tucson 85706

Tel: (602) 889-4661

CALIFORNIA

1430 East Orangethorpe Ave.

Fullerton 52631
Tel: (714) 870-1000
TWX: 910-592-1288

3939 Lankershim Boulevard
North Hollywood 91604
Tel: (213) 877-1282

TWX: 910-499-2170

6305 Arizona Place
Los Angeles 90045
Tel: (213) 649-2511
TWX: 910-328-6148

1101 Embarcadero Road
Palo Alto 94303

Tel: (415) 327-6500
TWX: 910-373-1280

2220 Watt Ave,

Sacramento 95825
Tel: (916) 482-1463
TWX: 910-367-2092

960G Aero Drive
P.0. Box 23333
$an Diego 92123
Tel: (714) 279-3200
TWX: 910-335-2000

COLORADO

7965 East Prentice
Englewood 80110
Tel: (303) 771-3455
TWX: 910-935-0705

CONNECTICUT
12 Lunar Drive
New Haven 06525
Tel: (203) 389-6551
TWX: 710-465-2029

FLORIDA
P.0. Box 24210

2806 W. Oakland Park Blvd,

Ft. Lauderdale 33307
Tel: (305) 731.2020
TWX: 510-955-4099

P.0. Box 13910

6177 Lake Ellenor Dr.
Orlanda, 32809

Tel: (305) 859-2900
TWX: 810-850-0113

GEORGIA

P.0. Box

450 Inierstate North
Atlanta 30:

Tel: (404) 436-6181
TWX: 810-766-4890

HAWAII

2875 So. King Street
Honolulu 96814

Tel: (B08) 955-4455

ILLINOIS

5500 Howard Street
Skokie 60076

Tel: (312) 677-0400
TWX: 910-223-3613

INDIANA

3839 Meadows Drive
Indianapolis 46205
Tel: (317) 546-4891
TWX: 810-341-3263

LOUISIANA

P. 0. Box 840

3239 Willlams Boulevard
Kenner 70062

Tel: (504) 721-6201
TWX: 810-955-5524

ELECTRONIC

SALES & SERVICE OFFICES

MARYLAND

6707 Whitestone Road
Baitimore 21207

Tel: (301) 944-5400
TWX: 710-862-9157

20010 Century Blvd.
Germantown 20767
Tel: (31) 428-0700

P.0. Box 1648

2 Choke Cherry Road
Rackville 20850
Tel: (301) 948-6370
TWX: 710-828-9684

MASSACHUSETTS
32 Hartwell Ave.
Lexington 02173
Tel: (617) 861-8960
TWX: 710-326-6904

MICHIGAN

23855 Research Drive
Farmington 48024
Tel: (313) 476-6400
TWX: 810-242-2900

MINNESOTA

2459 University Avenue
St. Paut 55114

Tel: (612) 645-9461
TWX: 910-563-3734

MISSOURI

11131 Colorado Ave.
Kansas Clty 64137
Tel: (816) 763-8000
TWX: 910-771-2087

148 Weldon Parkway
Maryland Heights 63043
Tel: (314) 567-1455
TWX: 910-764-0830

* NEVADA
Las Vi
Tel: (702) 382:5777

NEW JERSEY

1060 N. Kings Highway
Cherry Hill 08034

Tel: (609) 667-4000
TWX: 710-892-4945

W. 120 Century Rd.
Paramus 07652

Tel: (201) 265-5000
TWX: 710-990-4951

NEW MEXICO

P.0. Box 8366

Station C

6501 Lomas Boulevard N.E.
Albuguerque 87108

Tel: (505) 265- 37]3

TWX: 910-989-1665

156 Wyatt Drlve
Las Cruces 88001
Tal: (505) 526-2485
TWX: 910-983-0550

NEW YORK

6 Automation Lane
Computer Park
Albany 12205

Tel: (518) 458-1550
TWX: 710-441-8270

1219 Camnvllle Road
Endicott

Tel: (507) 754 -0050
TWX: 510-252-0890

New York City
Manhattan, Bronx

Contact Paramus, NJ Office
Tel: (201) 265-5000
Brookiyn, Queens, Richmond
Contact Woodbury, NY Office
Tel: (516) 921-0300

82 Washington Street
Poughkeepsie 12601
Tel: (914) 454-7330
TWX: 510-248-0012

39 Saginaw Drive
Rochester 14623
Tel: (716) 473-9500
TWX: 510-253-5981

5858 East Molloy Road
Syracuse 13211

Tel: (315) 454-2486
TWX: 710-541-0482

1 Crossways Park West
Woodbury 11797

Tel: (516) 921-0300
TWX: 510-221-2168

NORTH CAROLINA
P.0. Box 5188

1923 North Main Street
High Point 27262

Tel: (019) 885-8101
TWX: 510-926-1516

25575 Ctnlsr Ridge Road

Te (215) 835-0300
TWX: 810-427-9129

330 Progress Rd.
Dayton 45449

Tel: (513) 859-8202
TWX: 810-459-1925

6665 Busch Blvd.
Calumbus 43229
Tet: (614) 846-1300

OKLAHOMA

P.0. Box 32008
Oklahoma City 73132
Tel: (405) 721-0200
TWX: 910-830-6862

OREGON

17890 SW Boones Ferry Road
Tualatin 97062

(503) 620-3350
910-467-8714

PENNSYLVANIA
2500 Moss Slde Boulevard
Monroeville 15146
Tel: (412) 271-0724
TWX: 710-797-3650

1021 8th Avenue

King of Prussla Industrlal Park
King of Prussia 19408

Telt (215) 265-7000

TWX: 510-660-2670

RHODE ISLAND
873 Waterman Ave.
East Providence 02814
Tel: (401) 434-5535
TWX: 710-381-7573

*TENNESSEE
Memphis
Tel: (801) 274-7472

TWX:

TEXAS

P.0. Box 1270

201 E. Arapaho Rd.
Richardson 75080
Tel: (214) 2316101
TWX: 910 867 4723
P.0. B

6300 wastpark Drive
Suite 100

Houston 77027

Tel: (713) 781-6000
TWX: 910-881-2645
231 Bllly Mitcheli Road
San Antonle 78226
Tel: (512) 434-4171
TWX: 910-871-1170

UTAH

2890 South Main Street
Salt Lake City 84115
Tel: (801) 487-0715
TWX: 910-925-5681
VIRGINIA

P.0. Box 6514

2111 Spencer Road
Richmand 23230
Tel: (804} 285-3431
TWX: 710-956-0157
WASHINGTON
Bellafield Office Pk,
1203 - 114th SE
Bellevue 98004

Tel: (206) 454-3971
TWX: 910-443-2303
*WEST VIRGINIA
Charlestan

Tel: (304) 345-1640
WISCONSIN

9431 W. Beloit Road
Suite 117
Milwaukee 53227
Tel: (414) 541-0550

FOR U.S. AREAS NOT
LISTED:

Contact the regional office near-

est you: Atlanta, Gecrgia..

North Hollywood, Califgrnla. ..
Paramus, New Jersey . . . Skokle,
Illinols. Their complete ad-

dresses are listed above.
*Service Only

$301440 IJIAY3AS 2® SAVS

CANADA

AL3ERTA

Hewlett-Packard (Canada) Ltd.
11748 Kingsway Ave.
Edrionton TSG 0X5

Tel (403) 452-3670

TWXA: 610-831-2431
Hevlett-Packard (Canada) Ltd.
825 - 8th Ave., S.W.

Suiie 804

Calgary
Tel. (403) 262-4279

BRITISH COLUMBIA
Hewlett-Packard (Canada) Ltd.
837 E. Cordova St.

vancouver 6

Tel: (604) 254-0531

MANITOBA
Hewlett-Packard (Canadn) Lid.
513 Century St.

Winnipeg
Tei: (204) 786-7581

TWX: 610-671-3531

NOVA SCOTIA
Hewiett-Packard (Canada) Ltd.
2745 Dutch Village Rd.

Suite 210

Hatifax

Tel: {902) 455-0511

TWX: 610-271-4482

ONTARIO

Hewlett-Packard (Canada) Ltd.

1785 Woodward Dr.

Ottawa K2C 0P9

Tef: (613) 255-6180, 255-6530
TWX: 610-562-8968

Hewlett-Packard (Canada) Ltd.

50 Gafaxy Bivd.
Rexdale

Te!: (416) 677-9611
TWX: 610-492-4246

QUEBEC

Hewlett-Packard (Canada) Ltd.
275 Hymus Boulevard -
Pointe Claire HIR 1G7

Tel: (514) 697-4232

TWX: 610-422-3022

Telex: 01-20607
Hewlett-Packard (Canada) Ltd.
2376 Galvani Street

Stefoy GIN 4G4

Tel: (418) 688-8710

FOR CANADIAN AREAS NOT
LISTED:

Contact Hewlett-Packard (Can-
ada) Ltd. in Pointe Claire.

CENTRAL AND SOUTH AMERICA

ARGENTINA

Hewlett. Packard Argentina
S.A.C.

L:\r:ll! 1171 3°

Buunos Alres

Tei: 35-0436, 35-0627, 35-0341
Telex: 012-1009

Catile: HEWPACK ARG

BCLIVIA

Stambuk & Mark (Bolivia) LTDA.

Av. Mariscal, Santa Cruz 1342

a Paz

Tel: 40626, 53163, 52421
Telax: 3560014

Cahle: BUKMAR

BRAZiL

Hewlett-Packard Do Brasil
LEC. Ltda.

Ru.t Frej Caneca 1119
01307-Sap Paulo-Sp

Tel: 288-7111, 287.5858
Telex: 309151/2/3

Cable: HEWPACK Sao Paulo

Hewlett-Packard Do Brasil
LEC. Ltda.

Praca Dom Feliciano, 78
90000-Porto Alegre-RS

Rio Grande do Sul (RS) Brasil
Tei: 25-8470

Canle: HEWPACK Porto Alegre

nawhu Packard Do Brasit
L.E.C. Lida.

Rua da Matriz, 29

20000-Rio de Janeiro-GB

Tel: 266-2643

Telex: 210079 HEWPACK
Cable: HEWPACK Rio de Janeirg

CHILE

Hector Calcagni y Cia, Lida.
Casilla 16.475

Santiago

Tel: 423 96

Cable: CALCAGNI Santiago

COLOMBIA

Instrumentacién

Henrik A. Langebaek & Kler S.A,
Carrera 7 No. 48-59

Apartado Aéreo 6287

Bogota, 1 D.E.

Tel: 45-78-06, 45-55-46

Cable: AARIS Bogota

Telex: 44400INSTCO

COSTA RiCA

Lic. Alfudu Galluos Guedidn
Apartado 11

San Jos¢

Tel: 21-86-13

Cable: GALGUR San José

UADOR
Laboratorlos de Radioc-Ingenieria
Calle Guayaquil 1246
Post Office Box 3199
auito
Tel: 212-496; 219-185
Cable: HORVATH Quito

EL SALVADOR
Electronic_Associates
Apartado Postal 1682

Centro Comercial Gigante
San Salvador, EI Salvador C.A.
Paseo Escalon 4649-4° Piso
Tel: 23-44-60, 23-32-37
Cable: ELECAS

GUATEMALA

1PESA

Avenida La Reforma 3-48,
Zona 9

Guatemala
Tel: 63627, 64736
Telex: 4192 TELTRO GU

MEXICO

Hewlett- Packard Mexicana,
S.A. de C.V.

Torres Adalid No. 21, 11 Piso
Col. del Valle

Mexice 12, D.F.

Tel: 543-42-32

Telex: 017-74-507

NICARAGUA

Roberto Terédn G.
Apartado Postal 689
Edificio Terdn

Managua

Tel: 3451, 3452

Cable: ROTERAN Managua

PANAMA

Electrénico Balboa, S.A.

P.Q. Box 4929

Ave, Manuel Espinosa No. 13-50
Bldg. Alina

Panama City

Tel: 230833

Telex: 3481103, Curunda,

Canal Zone

Cable: ELECTRON Panama City

PARAGUAY

Z. 1. Melamed SR.L.

Division: Aparatos y Equipos
Medicos

Division: Aparatos y Equipos
Scientificos y de
investigacion

P.O.

Chile, 482, Edificio Victoria

Asuncion

Tel: 4-5069, 4-6272

Cable: RAMEL

PERU

Compaiiia Electro Médica S.A.
Ave. Enrique Canaual 312
San Isidro

Casilla 1030

Lima

Tel: 22:3900

Cable: ELMED Lima

PUERTO RICO

San Juan Electronics, Inc.
P.0. Box 5167

Ponce de Leon 154

Pda. 3-PTA de Tierra

San Juan 00906

Tel: (809) 725-3342, 722-3342
Cable: SATRONICS San Juan
Telex: SATRON 3450 332

URUGUAY

Pablo Ferrando S.A.
Comercial e Industrial
Avenida talla 2877
Casilla de Correo 370
Montevides

Tel: 40-3102
Cable: RADIUM Montevideo

VENEZUELA
Hewlett-Packard de Venezuela
A.

Apartado 50933

Edificlo Segre

Tercera Transversal

Los Ruices Norte
Caracas 107

Tel: 35-00-11

Telex: 21146 HEWPACK
Cable: HEWPACK Caracas

FOR AREAS NOT LISTED,

CONTACT:
Hewlett-Packard
Inter-Americas

3200 Hillview Ave.

Palo Alto, Callfcrnua 94304
Tel: (415) 4

TWX: 910- 373 1267

Cable: HEWPACK Palo Alto
Telex: 034-8300, 034-8493

E11/73

EUROPE

AUSTRIA
Hewletl-Packard Ges.m.b.H
landelska 52/3

P.0. Box 7

A-1205 Vienna

Tel: (0222) 33 66 06 to 09
Cable: HEWPAK Vienna
Telex: 75923 hewpak a

BELGIUM
Hewlett-Packard Benelux
SA/NV.

Avenue de Col-Vert, 1.
(Groenkraaglaan)

B-1170 Brussels

Tel: (02) 72 22 40

Cable: PALOBEN Brussels
Telex: 23 494 palaben bru

DENMARK
Hewlett-Packard A/S
Datavej 38

DK-3460 Birkerad
Tel: (01) 81 66 40
Cable: HEWPACK AS
Telex: 166 40 hp as

Hewlett-Packard A/S
Torvet 9

DK-8600 Silkeborg
Tel: (06) 82-71-66
Telex: 166 40 hp as
Cable: HEWPACK AS

FINLAND
Hewlett-Packard Oy
Bulevardi 26

P.0. Box 12185

SF-00120 Helsinki 12

Tel: (90) 13730

Cable: HEWPACKOY Helsinki
Telex: 12-15363 hel

FRANCE
Hewtett-Packard France
Quartier de Courtaboeuf
Boite Postale No. 6
F-91401 Orsay

Tel: (1) 907 78 25
Cable: HEWPACK Orsay
Telex: 60048

Hewlett-Packard France
Agenee Reglonal

4 Qual des Etroits
F-69321 Lyan Cedex 1
Tel: (78) 42 63 45
Cable: HEWPACK Lyon
Telex: 31617

Hewlett-Packard France
Zane Aéronaulique
Avenue Ciement Ader
F-31770 Colomiers

Tel: (61) 86 81 55
Telex: 51957

Hewlett-Packard France
Agence Régionale
Boulevard Ferato-Gamarra
Boite Postale No. 11
£-13100 Luynes

Tel: (47) 24 00 66

Telex: 41770

Hewlett-Packard France
Agency Régionale

63, Avenue de Rochester
F-35000 Rennes

Tel: (99) 36 33 21
Telex: 74912 F

Hewlett-Packard France
Agence Régionale

74, Allée de la Robertsau
F-67000 Strashourg

Tei: (88) 35 23 20/21
Teiex: 89141

Cable: HEWPACK STRBG

GERMAN FEDERAL
REPUBLIC
Hewlett-Packard GmbH
Vertriebszentrale Frankfurt
Bernerstrasse 117
Postfach 560 140

D-6000 Frlnkﬂ"l 56

Tel: {0611) 5

Cable: HEWPACKSA Frankfurt
Telex: 41 32 49 fi
Hewlett-Packard GmbH
Vertriebsbiiro Biblingen
Herrenbergerstrasse 110

D-7030 Boblingen, Wilrttemberg

Tel: (07031) 66 72 87
Cable: HEPAK Boblingen
Telex: 72 65 739 bbn

Hewlett-Packard GmbH
Vertrlebsbiiro Dilsseldorf
Vogelsanger Weg 38
D-4000 Diisseldorf

Tel: (0211) 63 80 31/38
Telex: 85/86 533 hpdd d

Hewlett-Packard GmbH
Vertriebsbiiro Hamburg
Wendenstr. 23

D-2000 Hamburg 1

Tel: (040) 24 13 93

Cable: HEWPACKSA Hamburg
Telex: 21 63 032 hphh ¢

Hewlett-Packard GmbH
Vertriebsbiiro Hannover
Meliendorfer Strasse 3
D-3000 Hannover-Kleefeld
Tel: (0511) 55 06 26

Hewlett-Packard GmbH
Vertriebsburo Nuremberg
Hersbruckerstrasse 42
D-8500 Nuremberg

Tel: (0911) 57 10 66
Telex: 623 860

Hewiett-Packard GmbH
Vertriebsbiiro Miinchen
Unterhachinger Strasse 28
1SAR Center

D-8012 Ottobrunn

Tel: (089) 601 30 61/7
Telex: 52 49 85

Cable: HEWPACKSA Miichen

(West Berlin}
Hewlett-Packard GmbH
Vertriebsbiiro Berlin

Wilmersdorfer Strasse 113/114

D-1000 Berfin W. 12
Tel: (030) 3137046
Telex: 18 34 05 hpbin d

GREECE

Kostas Karayannis

18, Ermou Street
GR-Athens 126

Tel: 3230-303, 3230-305
Cable: RAKAR Athens
Telex: 21 59 62 rkar gr

IRELAND
Hewlett-Packard Ltd.

224 Bath Road

GB-Stough, SL1 4 DS, Bucks
Tel: Slough (0753) 33341
Cable: HEWPIE Slough
Telex: 848413

Hewlett-Packard tid.
The Graftons
Stamford New Road
Altrincham, Cheshire
Tel: (061) 928-9021
Telex: 668068

ITALY

Hewlelt-Packard Italiana S.p.A.

Via Amerigo Vespucci 2
1-20124 Milan

Tel: (23 6251 (10 linesi
Cable: HEWPACKIT Milan
Telex: 32046

Hewlett-Packard Italiana S.p.A.
Piazza Marconi,

1-00144 Rome - Eur

Tel: (6) 5912544 °5, 5915947
Cable: HEWPACKIT Rome
Telex: 61514

Hewlett-Packard Italiana S.p.A.

vicolo Pastori, 3
1-35100 Padova

Tel: (49) 66 40 62
Telex: 32046 via Mitan

Hewlett-Packard ttaliana S.p.A.

Via Colli, 24

1-10129 Turin

Tel: (11) 53 82 64
Telex: 32046 via Milan

LUXEMBURG
Hewlett-Packard Benelux
SA/NV.

Avenue de Coi-Vert, 1,
(Groenkraaglaan)

B-1170 Brussels

Tel: (03/02) 72 22 40
Cable: PALOBEN Brussels
Telex: 23 494

NETHERLANDS
Hewlett-Packard Beneiux/N.V.
Weerdestein 117

P.0. Box 7825

NL-Amsterdam, 1011

Tel: 020-42 77 77, 44 29 66
Cable: PALOBEN Amsterdam
Telex: 13 216 hepa n)

NORWAY
Hewlett-Packard Norge A/S
Nesveien 13

Box 149

N-1344 Haslum

Tel: (02) 53 83 60

Telex: 16621 hpnas n

PORTUGAL
Tetectra-Empresa Técnica de

Equipamentos Eléctricos S.a.r.l.

Rua Rodrigo da Fonseca 103
P.0. Box 2531

P-Lisbon 1

Tel: (19) 68 60 72

Cable: TELECTRA Lisbon
Telex: 1588

SPAIN

Hewlett-Packard Espaiola, S.A.
Jerez No 8

E-Madrid 16

Tel: 458 26 00

Telex: 23515 hpe

Hewlett-Packard Espafioia, S.A.
Milanesado 21-23

E-Barcelona 17

Tel: (3) 203 62 00

Telex: 52603 hpbe e

SWEDEN
Hewlett-Packard Sverige AB
Enighetsvigen 1-3

ac

§-161 20 Bromma 20

Tel: (08) 98 12 50

Cable: MEASUREMENTS
Stockholm

Telex: 10721

Hewlett-Packard Sverige AB
Hagakersgatan 9C

$-431 41 Miindal

Tel: (031) 27 68 00/01
Telex: Via Bromma

SWITZERLAND

Hewlett Packard (Schwelz) AG
Ziircherstrasse 20

P.0. Box 64

CH-8952 Schlieren Zurich
Tel: (01) 98 18 21/24

Cabie: HPAG CH

Telex: 53933 hpag ch
Hewlett-Packard (Schweiz) AG
9, Chemin Louis-Pictet
CH-1214 Vernier—Geneva
Tel: (022) 41 4950

Cabie: HEWPACKSA Geneva
Telex: 27 333 hpsa ch

TURKEY

Telekom Engineeting Bureau
Saglik Sok No. 15/1
Ayaspasa-Beyoglu

P.0. Box 437 Beyoglu

TR- Istanbul

Tel: 49 40

Cable: TELEMATION Istanbut

UNITED KINGDOM
Hewlett-Packard Ltd.
224 Bath Road
GB-Slough, SL1 4 DS, Bucks
Tel: Slough (0753) 33341
Cable: HEWPIE Slough
Telex: 848413
Hewlett-Packard Lid.
"The Graftons”
Stamford New Road
GB-Altrincham, Cheshire
Tel: (061) 928-9021
Telex: 668068

Hewlett-Packard Ltd's reglstered

address for V.A.T. purposes
only:

70, Finsbury Pavement
London, EC2A1SX
Registered No: 690597

SOCIALIST COUNTRIES
PLEASE CONTACT:
Hewlett-Packard Ges.m.b.H.
Handelskal 52/3

P.0. Box 7

A-1205 Vienna

Ph: (0222) 33 66 06 to 09
Cable; HEWPACK Vienna
Telex: 75923 hewpak 2

ALL OTHER EUROPEAN

COUNTRIES CONTACT:

Hewlett-Packard S.A.

Rue du Bals du-Lan 7

P.0. Box

CH-1217 Meyvln 2 Geneva
Switzerland

Tel: {022) 41 54 00

Cable: HEWPACKSA Geneva

Telex: 2 24 86

AFRICA, ASIA,

ANGOLA
Telzctra-Empresa Tecnica
Je Equipamentos Electricos

Rua de Bnrbosa. Rodrigues,
42-17,
P.0. Box 64!7

Lusnda
Cable: TELECTRA Luanda

AUSTRALL

Hewlm Packard Australia
I'ty. Ltd.

22-26 Weir Street

Glen Irls, 3146

Victaria

Tel: 20-1371 (6 lines)

Cable: HEWPARD Metbourne

Telex: 31 024

Hewlett-Packard Austratia
1y. Ltd.

31 Bridge Street

Pyuible,

New Sauth Wales, 2073

Tel 449 6566

Teiax: 21561

Cal:le: HEWPARD Sydney

Hewlett-Packard Australia
I'ty. Ltd.

97 Churchill Road
Prospect 5082

South Austratia

Tel. 44 8151

Cable: HEWPARD Adelaide

Hewilett-Packard Australia
Ply. Ltd.

Casablanca Buildings

196 Adelaide Terrace

Perth, W.A. 6000

Tel 25-6800

Cable: HEWPARD Perth

Hewdlett-Packard Australia
F'ty. Ltd.

10 Woolley Street

P.0. Box 191

Dickson A.C.T. 2602

Tel 49-8194

Catle: HEWPARD Canberra ACT

Hewlelt Packard Australia
Ld.

2m1 Floor, 49 Gregory Terrace
Brl:bane, Queensland, 4000
Tel 29 1544

CEYLON

United Efectricals Ltd.
P.0. Box €81

60, Park St.

Colamho 2

Tel. 26691

Cable: HOTPOINY Colombo

CYPRUS

Kypronics

19 tiregorios & Xenopoulos Road
P.0 Box 1152

CY-Nicosta

Tel: 45628/29

Cable: KYPRONICS PANDEHIS

AUSTRALIA

ETHIOPIA

African Salesuuwer & Agency
Private Ltd.,

P. 0. Box 718

58/59 Cunningham St.

Addis Ababa

lel: 12285
Cable: ASACO Addisababa
HONG KONG

[}
Schmidt & Co. (Hong Kong) Ltd.

P.0. Box 297

Connalight Centre

39th Floor

Connaught Road, Central

Hong X

Tel: 240168, 232735

Telex: HX4766

Cable: SCHMIDTCO Hong Kong

INDIA

Blue Star Ltd.
Kasturi Buildings
Jamshedji Tata Rd.
Bombay 400 020
Tel: 29 50 21
Telex: 3751

Cahl! BLUEFROST

Blue Star Ltd.
Sahas

41472 VIr Savarkar Marg
Prabhadevi

Bombay 400 025

Tet: 45 76 87

Telex:

Cable FROSTELUE

Blue Star Ltd.
Band Box House
Prabhadevi
Bambay 400 025
Tel: 45 73 01
Telex: 3751
Cable: BLUESTAR

Blue Star Ltd.
14740 Civil Lines
Kampur 208 001
Tel: 6 88 8

Cable: BLUESTAR

Blue Star, Ltd.
7 Hare Street
P.0. Box 506
Calcutta 700 001
Tel: 23-0131
Telex: 655
Cable: BLUESTAR

Blye Star Ltd.
Blue Star House,
34 Ring Road
Lajpat Nagar

New Dethi 110 024
Tet: 62 32 76
Telex: 2463
Cable: BLUESTAR

Blue Star, Ltd.

Blue Star House
11/11A Magarath Roat
Bangalore 560 025
Tel: 55668

Teiex: 430
Cable: BLUESTAR

Blue Star, Ltd.
1-1-117/1

Sarojini Devi Road
Secunderabad 500 003
Tel: 7 63 81, 7 73-93
Cable: BLUEFROST
Telex: 459

Blue Star, Ltd.
23/24 Second Line Beach
Madras 600 001

Tel: 23954

Telex: 379

Cable:- BLUESTAR
Blue Star, Ltd.
Nathraj Mansions
2nd Floor Bistupur
Jamshedpur 831 001
Tel: 38 04

Cable: BLUESTAR
Telex; 240

INDONESIA

Bah Bolon Trading Coy. N.V.
Dialah Merdeka 29
Bandung

Tel: 4915; 51560

Cable: ILMU

Telex: 08-803

IRAN

Multl Corp International Ltd.
Avenue Soraya 130

P.0. Box 1212

IR-Teheran

Tel: 83 10 35-39

Cable: MULTICORP Tehran
Telex: 2893 MCi TN

ISRAEL

Electronics & Englneering
Dlv. of Motorola Israel Lid.

17 Aminadav Street

Tel-Aviv

Tel: 36941 (3 lines)
Cable: BASTEL Tel-Aviv
Telex: 33569

JAPAN
Yokogawa-Hewlett-Packard 1Ltd.
Ohashl Bullding

1-59-1 Yoyogl
Shibuya-ku, Tokyt
Tel: 03-3:
Tefex: 232-

Cable: VHPMM\KET IOK 23724

Yokogawa-Hewlett-Packard Ltd.
Nisei Ibaragi Bldg.

2-2-8 Kasuga

Ibaragi-Shi

Osaka

Tel: (0726) 23-1641

Telex: 5332-385 YHP QSAKA

Yokogawa-Hewlett-Packard Ltd.
Nakamu Building
. 24

Yokogawa-Hewlett-Packard Ltd.
Chuo Bldg

Rm. 603 3,

2-Chome

1ZUM1- CHO

Mito,

Tel: 0292 -25-7470

KENYA
Kenya Kinetics
P.0. Box 18311

Cable: PROTON

KOREA

Rmerican Trading Company
Korea,

1.P.0. BOX 110:

Dae Kyung Bldz 8th Floor

107 Sejong-Ro,

Chongro-Ku, Seoul

Tel: (4 lines) 73-8924-7

Cable: AMTRACO Seoul

LEBANON

Constantin €. Macridis

P.0. Box 7213

RL| Bllrlﬂ

Tel: 2208:

Cable: ELECYRDNUCLEI\R Beirut

MALAYSIA

MECOMB Malaysia Ltd.

2 Larong 13/6A

Section 13

Petaling Jaya, Selangor
Cable: MECOMB Kuala Lumpur

MOZAMBIQUE

A.N. Goncalves, Lta.
162, Av. D. Luis

P.0. Box 107
Lourenco Margues

Tel: 27091, 27114
Telex: 6-203 Negon Mo
Cabile: NEGON

NEW ZEALAND
Hawlett-Packard (N.Z.) Ltd.
4-96 Dixon Street

P.0. Box 9443

Courtenay Place,
Wellington

Tel: 59-559

Telex: 3898

Cable: HEWPACK Wellington

Hewlett-Pachard (N.Z) Ltd.
Pakuranga Professional Centre
267 Pakuranga Highway

Box 51092

Pzkuranga

Tel: 569-651

Cable: HEWPACK Auckiand

NIGERIA
The

leamuu ku, Nagoya City
Tef: (052) 571-5171

Yokogawa-Hewlett-Packard Ltd.
Nitto Bidg.

2-4-2 Shinohara-Kita
Kaohoku-ku

Yokohama 222

Tel: 045-432-1504
Telex:..382-31204 YHP YOK

tions Ltd. (TEIL)
144 Agege Motor Rd., Mushin
P.0. Box 6645

J {3
Cable: THETEIL Lagos

The Electronics Instrumenta-
tions Ltd. (TEIL)

16th Floor Cocoa House

P.M.B. 5402

fbatan

Tel: 22325

Cable: THETEIL Ibadan
PAKISTAN

Mushko & Company, Ltd.

Oosman Chambers
Abdullah Haroon Road
Kar:

acl
Tel: 511027, 512927
Cable: COOPERATOR Karachl

Mushko & Company, Ltd.
388, Satellite Town
Rawalpindi

Tel: 41924

Cable: FEMUS Rawalpindi

PHILIPPINES

Electromex, inc.

6th Floor, Amalgamated
Development Corp. Bldg.

Ayala Avenue, Makati, Rizal

C.C.P.0. Box 1028

Makati, Rizal

Tel: 86-18-87, 87-76-77,
87-86-88, 87 18-45, 88 81-71,
83-81-12, 83-82-12

Cable: ELEMEX Manila

SINGAPORE
Mechanical & Combustion
Engineering Company Pte.,

10/12, Jalan Kilang

Red Hill Industrial Estate
Singapore, 3

Tel: 647151 (7 ines)
Cable: MECOMB Singapore

Hewlett-Packard Far East
Area Otfice

P.0. Bt

Alexandra Post Office
Singapore 3

Tel: 633022

Cable: HEWPACK SINGAPORE

SOUTH AFRICA

Hewlett Packard South Africa
(Pty.), Ltd.

Hewlett-Packard House

Daphne Street, Wendywood,

.Sandten, Transvaal 2001

Tel: 407641 (five lines)

Hewlett Packard South Africa
(Ply.), Ltd

Breecastle House

Bree Street

Cape Town

Tel: 2-6941/2/3

Cable: HEWPACK Cape Town

Telex: 0006 CT

Hewlett Packard South Africa
iPty.). Lid.

641 Ridge Road. Durban

P.0. Box 99

Overport, Natal

Tel: 88-6102

Telex: 567954

Lable: HEWPACHKe

TAIWAN

Hewlett Packard Taiwan
39 Chung Shiao West Road
Sec. 1

Overseas Insurance

Corp. Bldg. 7th Floor

Taipei

Tel: 389160,1,2, 375121,
Ext. 240-249

Telex: TPB24 HEWPACK
Cable: HEWPACK Taipel

THAILAND

UNIMESA Co., Ltd.
Chongkoinee Bullding

56 Suriwongse Road
Bangkak

Tel: 37956, 31300, 31307,

37
Cable: UNIMESA Bangkok

UGANDA

Uganda Tele-Electric Co., Ltd,
P.0. Box 4449

Kampaia

Tel: 57279

Cable: COMCO Kampala

VIETNAL

Penlnsular Tr:ulnu Inc.

P.0. B¢

216 Hlen Vunnz

Salgon

Tel: 20-805, 93398

Cable: PENTRA, SAIGON 242

ZAMBIA

R. 1. Tilbury (Zambia) Ltd.
P.0. Box 2792

Lusaka

Zambla. Cenlral Africa
Tel.

Cabla~ ARJAVTEE, Lusaka

MEDITERRANEAN AND
MIDDLE EAST COUNTRIES
NOT SHOWN PLEASE
CONTACT:
Hewlett-Packard
Co-ordination Office for
Mediterranean and Middle
£ast Operations

Piazza Marconi 25
1-00144 Rome-Eur, Italy
Tek: (6) 59 40 29

Cable: HEWPACKIT Rome
Telex: 61514

OTHER AREAS NOT
LISTED, CONTACT:
Hewlett-Packard
Export Trade Company
3200 Hillview Ave,
Palo Alto, California 94304
Tel: (415) 326-7000

(Feb. 71 493-1501)
TWX: 910-373-1267
Cable: HEWPACK Palo Alta
Telex: 034-8300, 034-8493

EJ1/73

HEWLETT

h ; ;JACKARD
e

HP Manual Part No. 0210090133
Microfiche Part No. 02100-90187 Printed in U.S.A. 9/73

	00001
	00002
	00003
	00004
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	05-01
	05-02
	05-03
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	07-01
	07-02
	07-03
	07-04
	07-05
	07-07
	07-08
	07-09
	07-10
	07-65
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	11-01
	11-02
	11-03
	I-01
	I-02
	I-03
	I-04
	I-05
	x-01
	x-02
	x-03
	x-04
	xBack

