
FLOATING POINT
SYSTEMS, INC.

APCBUG
Manual

by FPS Technical Publications Staff

APCBUG
Manual

2nd Edition, February 1978

This edition applies to Release 2.0 of the AP simulator
(APSIM) and the AP-1208 hardware debugger (HWDBUG)
software and all subsequent releases until indicated by
a new edition. This supersedes the AP-1208 debugger
manual FPS-7277-02.

Publication No. FPS-7364-01.

NOTICE
THE MATERIAL IN THIS MANUAL IS FOR
INFORMATIONAL PURPOSES ONLY AND IS
SUBJECT TO CHANGE WITHOUT NOTICE.
FLOATING POINT SYSTEMSJ INC. ASSUMES
NO RESPONSIBILITY FOR ANY ERRORS
WHICH MAY APPEAR IN THIS PUBLICATION.

Copyright © 1978 by Floating Point Systems, Inc.
Beaverton, Oregon 97005

All rights reserved. No part of this publication may be
reproduced in any form or by any means without written
permission from the publisher.

Printed in U.S.A.

GHAPTER 1

CHAPTER 2

2.1
2. 1. 1
2.1.2

2.1. 3
2.1.4

2.2
2.2.1
2.2.2
2.2.3

2.3
2.3.1
2.3.2
2.3.3
2.3.4

2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.4.9
2.4.10
2.4.11

APPENDIX A
A. l
A. 2
A. 3
A. 4
A.5

APPENDIX B

CONTENTS

Page

INTRODUCTION

OPERATING PROCEDURE

MONITORING REGISTERS AND MEMORY LOCATIONS •••••••••• 2-1
"E", Open and Examine ••••••••••••••••••••••••• 2-2
"+", 11-", and ". 11 ,

Examine Next, Last and Re-examine ••••••••••••• 2-3
"C", Change .•...........•...•........•..•.....• 2-5
110 11 , Set P.S. Offsets•..•......•.. 2-7

CHANGING INPUT/OUTPUT FORMATS •••••••••••••••••••••• 2-9
"N", Set Radix ..•..••..........•............•. 2-10
11F", Set/Reset Floating Point I/0 ••••••••••••• 2-11
"V", Set/Reset Program Word Field I/o ••••••••• 2-14

MEMORY LOADING AND DUMPING ••••••••••••••••••••••••• 2-17
"Y", Yank from a File••.............. 2-18
"W", Write To a File 2-19
"Z", Zero the AP-120B. ••••••••••••••••• ••••••• 2-21
Preparing Data Files for Yanking •••••••••••••• 2-22

EXECUTING PROGRAMS • •••••••••••••••••••••••••••••••• 2-24
"B", Set Breakpoint ••••••••••••••••••••••••••• 2-25
"D", Delete Breakpoint •••••••••••••••••••••••• 2-26
"L 11 , List Breakpoint •••••••••••••••••••••••••• 2-2 6
"Q", Set Breakpoint Counter ••••••••••••••••••• 2-27
"S", Set/Reset Step Mode •••••••••••••••••••••• 2-28
"I", Initialize the AP-12 OB ••••••••••••••••••• 2-2 9
"R", Run on AP-120B Program ••••••••••••••••••• 2-30
11P", Proceed with AP-120B Program Execution ••• 2-32
"T", Execution Time ••••••••••••••••••••••••••• 2-34
"M", Set Memory Speed ••••••••••••••••••••••••• 2-3 4
"X", Exit to the Host System •••••••••••••••••• 2-34

SUMMARY OF APDBUG COMMANDS ••••••••••••••••••••••••• A-1
Program Execution Commands •••••••••••••••••••• A-2
Register Examination/Modification Commands •••• A-3
!iemory Load/Dump Commands ••••••••••••••••••••• A-5
Accessible Functional Units ••••••••••••••••••• A-6
Program Word Fields ••••••••••••••••••••••••••• A-8

AN EXAMPLE DEBUGGING SESSION ••••••••••••••••••••••• B-1

iii

CHAPTER 1
INTRODUCTION

APDBUG provides an interactive facility for checking out AP-120B
programs. The user can run portions of his AP-120B program, stop and
examine the results, make program patches and then continue with
program execution. The process of interactive debugging greatly
facilitates preparation of correctly operating AP-120B programs.

APDBUG has commands to:

1. Examine and/or change memory locations and registers
inside the AP-120B

2. Type out memory contents and integers, floating point
numbers or program word fields

3. Set, clear and examine breakpoints

4. Run programs, or execute them one step at a time

Two versions of APDBUG are available: one which executes programs in
the AP-120B hardware (HWDBUG) and one which executes programs in the
AP-120B simulator (APSI~).

The simulator APDBUG (called APSIM) is most convenient for initial
program development and has the advantage that it allows debugging
off-line from the AP-120B hardware. It allows access to more internal
AP-120B registers than with the hardware. Simulation is limited,
however, to program execution inside the AP-120B. Input/Output
interaction with the host computer is not simulated. Depending upon
the speed of the host computer, the simulator runs about one million
times slower than real time or about six instruction cycles per second.

The hardware APDBUG (called HWDBUG) is convenient for debugging AP-120B
programs which require long execution times and/or real-time
interaction with the host computer.

This document describes Release 2.0 of APSIM and HWDBUG. In the
description below, (er) neans carriage return or end of line, as
appropriate to the particular host computer system. In the examples
listed, the responses typed by the computer are underlined.

1 1

CHAPTER 2
OPERATING PROCEDURE

Debugging is the process of detecting, locating and removing mistakes
from a program. When the programmer wishes to debug an AP-120B
program, he loads the program into APDBUG. The user may then control
program execution, causing the program to breakpoint at selected
program locations so that he can examine the contents of registers or
memory locations. Contents may be examined as program words, integers
or floating point numbers.

APDBUG types a "*" when ready for user input. A "?" is typed when an
error is detected.

2.1 MONITORING REGISTERS AND MEMORY LOCATIONS

Registers and memory locations in the AP-120B may be opened, examined
and modified using one of the following commands:

E open and examine locations in the AP-120B
+ examine the next higher location in an AP-120B memory

examine the next lower location in an AP-120B memory
C change the open location

re-examine the currently open location
Z zeros out all AP-120B registers and memories
0 set program source memory offset

A register in the AP-120B is opened with an "E" (exam), "+" (next), or
"-" (last) command. APDBUG gets the value of the desired location in
the AP-120B and types out the value on the user console. If desired,
the contents of that location may be changed with a "C" (change)
command. A "." (re-exam) types the con ten ts of the open register.

2 1

2.1.1 "E", Open and Examine

To open and examine a register in the AP-120B:

E (er)
name (er)

where NAME is the name of the desired register.

To open and examine a memory location in the AP-120B:

E (er)
name (er)
location (er)

where NAME is the memory name and LOCATION is the desired
memory location.

A list of the examinable registers and memories and their r:iemories is.
given in an appendix on page A-6. For the purposes of APDBUG all
functional units of the AP-120B which have addresses are considered
"memories". This includes the three obvious memories (Main Data
Memory, Table Memory and Program Memory) plus Data Pad X, Data Pad Y
and S-Pad.

Some examples:

1. Examine Main Data Memory Location 23:

*
E (er)
MD (er)
23 (er)
-234.0000000

*
MD location 20 contains -234.0

2. Examine the Memory Address Register

*
E (er)
MA (er)
1376

*
MA contains 1376

'

2 2

"+"' "-" and " " . ' Examine Next, Last and Re-examine

To open and examine the next higher sequential memory location
above a currently open memory location:

+ (er)

To open and examine the next lower sequential memory location
below a currently open memory location:

- (er)

To re-examine the currently open memory location:

• (er)

Examples:

1. Examine Main Data Memory locations 23 and 24

*
E (er)
MD (er)
23 (er)
-234.0000000

*

MD location 23 contains -234.0, now examine MD location 24 ·

* + (er)
MD 000024
789.0000000

*

MD location contains 789.0

2. Examine S-Pad registers 7 and 6

*
E (er)
SP (er)
7 (er)
000027

*

2 3

S-Pad register 7 contains 27. Now examine register 6

*
- (er)
SP 000006
-136

*
S-Pad register 6 contains -136

2 4

2.1.3 "C", Change

To change the contents of a currently "open" register
or memory location to a specified value:

C (er)
value (er)

where VALUE is an integer(s) or floating point number (depending
upon what register or memory is "open"). (See section 2. 2.)

To change a register or MEMORY location the user must
first "open" it by doing an "E", "+" or "-" command.

Examples:

1. Examine Main Data Memory Location 20 and then change its value to
-97.5.

* E (er)
MD (er)
20 (er)
76.00000000

*
C (er)
-97.5 (er)

*

Main Data Memory location 20 contained 76.0. The user
changed it to contain -97.5.

2. Now change Main Data Memory location 21 to -63.4

*
+ (er)
MD 000020
- 3.000000000

*
C (er)
-63.4 (er)

*

MD location 21 contained -3.0 and was changed to
contain -63.4.

2 5

3. Examine S-Pad Register 3 and change its value to 17:

*
E (er)
SP (er)
3 (er)
56

*
C (er)
17 (er)

*
S-Pad Register 3 contained 56 and was changed to contain 17.

2 6

2.1.4 "O", Set P.s. Offset

To set the Program Source Memory addressing offset:

0 (er)
value (er)

whete VALUE is an integer in the current radix specifying the
offset to be used when accessing Program Memory. The default
setting is o.

The offset is used when debugging a load module containing several
separately assembled programs. For example, assume that programs A, B
and C have been loaded together with APLINK and the following load map
obtained from APLINK with the "S" command:

SYMBOL

A
B
c

VALUE

000000
000153
000247

meaning that program "A" was loaded at PS location 0, "B"
at location 153 and "C" at location 247.

To examine locations 3 and 4 of program "B", type:

*
E (er)
PS (er)
156 (er)
000000 000000 000000 000000

*
+ (er)
PS 000157
000000 000000 000000 000000

*

2 7

This is confusing because the locations printed by APDBUG, 156 and 157,
don't agree with the APAL listings which always start at zero. The
offset simplifies matters by adjusting the base address for ALL PS
related I/O. Thus, for convenience-sake, the offset should be set to
the base address of the program currently being examined:

*
0 (er)
153 (er)

*
E (er)
PS (er)
3 (er)
000000 000000 000000 000000

* + (er)
PS 000004
000000 000000 000000 000000

*

The offset applies to Examining or Changing PS and PSA and also to
Breakpoints and Running programs. It should be remembered, when
setting the offset, that it is NOT relative to itself, but is an
absolute address. thus, the offset can always be reset to the default
value of zero by typing:

O (er)
0 (er)

2 8

2.2 CRA.i.~GING INPUT/OUTPUT FORMATS

The input and output format used when examining and changing registers
and memory locations may be selected using the following commands:

N Sets the radix for integers

F Sets the format for input/output of 38-bit wide
registers and memory words

V Sets the format for input/output of 64-bit wide
program memory words

APDBUG selects the proper format for input/output depending upon the
word size of the particular register or memory location that is open
and the setting of the above three flags:

1. 16-bit words: MA, TMA, DPA, S-Pad, etc. These locations
are examined or changed as integers in the radix as
selected by "N"

2. 38-bit words: DPX, DPY, Main Data Memory, Table Memory,
etc. These locations are examined or changed as either
floating point numbers or as three integers depending
upon the "F" flag

3. 64-bit words: Program memory. These locations are
examined or changed as either op-code fields or as
four 16-bit integers depending upon the "V" flag

The listing of accessible AP-120B register and memories on page A-6
specifies the width of each as:

16-bit
or 38-bit
or 64-bit

(integer word)
(floating point word)
(program word)

NOTE

Integer output is always unsigned on the range
o-177777 (octal), or 0-65536 (decimal), or
0-FFFF (hex). Thus negtive twos-complement
numbers will be typed out as their 16-bit un
signed equivalent. For example (in octal)
-1 would be output as 177777, and -2 as 177776,
and so forth •

2 9

2.2.1 "N" Set Radix

To set the radix for all. integers input/output to APDBUG:

N (er)
radix (er)

where the Radix is either 8, 10 or 16 for octal, decimal or
hexadecimal radices respectively. (Note that the radix number
is always in decimal.)

The contents of 16-bit wide registers (S-Pad, MA, PSA, etc.)
are examined and changed using the integer radix as set
by the "N" command. In addition, memory addresses are also
entered using the current radix.

On type-outs, octal numbers may be recognized as having six
digits, decimal numbers as having five digits and hex numbers
.as having four digits.

The default radix is either octal or hex depending upon the
conventions of the host computer.

Examples:

1. Examine S-Pad register 10 (decimal) in all three radices
(starting in decimal)

*
E (er)
SP (er)
10 (er)

32768

*
N (er)
8 (er)

*
• (er)
SP 000012
100000

*
N (er)
16 (er)

*
• (er)
SP OOOA

8000

*
The value of S-Pad register 10 is 32768 (decimal)
or 100000 (octal) or 8000 (hexadecimal).

2 10

2.2.2 "F" Set/Reset Floating Point I/O

To select floating point input/output of 38-bit registers
and memory words:

F (er)
l (er)

To select integer (in the current integer radix) input/output
of 38-bit wide registers and memory locations:

F (er)
0 (er)

38-bit wide registers are split into three pieces: 10-bit
exponent, 12-bit high mantissa (bits 0-11) and 16-bit low
exponent (bits 12-27) for integer I/O.

Data Pad, Main Data Memory, Table Memory and Data Pad Bus
are among the registers and memories whose I/O is governed
by the "F" flag.

Both examining and changing of 38-bit registers are effected
by "F". The default setting of the "F" switch is one for floating
point I/O.

1. Examine command output formats:

F=l: (floating point number)

F=O: (exponent) (high mantissa) (low mantissa)

2. Change command input formats:

F=l: C (er)
(floating point number) (er)

F=O: C (er)
(exponent) (er)
(high mantissa) (er)
(low mantissa) (er)

2 ll

Legal floating point numbers are of the form

+or-XX.YYE+or-ZZ

where XX is the integer part
YY is the fraction part
ZZ is the exponent

Any of the three parts may be omitted, except in the case when
an exponent is used. In this case, either an integer part or
a fraction part must also be included. The signs may be omitted
if "+" is used. The decimal point may be omitted if not needed.
No spaces are allowed inside floating point numbers.
The following are all legal floating point inputs.

-2. 3E6
• 7E-3

-2
3.65

.7

Examples:

1. Examine Data Pad register six in both floating point
and integer. (Assume the integer radix is 16.)

*
E (er)
DPX (er)
6 (er)
-1.000000000

* F (er)
0 (er)

* • (er)
DPX 0006

0200 0400 0000

*
DPX register six contains ..;1.0. Its exponent is 200 (hexadecimal)
which has an exponent value of zero (O). The fraction part is
4000000 (hexadecimal) which is a fraction of -1.0.

2 12

2. Now change the exponent to 204 and the fraction to
2000000 and set "F" to 1:

*
C (er)
204 (er)
200 (er)
0 (er)

*
F (er)
1 (er)

*
• (er)
DPX 0006
8.000000000

*
DPX register now contains 8.0 which is 0.5*2**4.

2 13

2.2.3 "V" Set/Reset Program Word Field I/O

To select input/output of 64-bit wide programs words
by op-code fields:

V (er)
1 (er)

To select input/output of program words as four 16-bit numbers:

V (er)
0 (er)

Tile four 16-bit integers represent bits 0-15, 16-31, 32-47
and 48-63 of a _program word.

Both examining and changing of Program words are effected by "V".

Tile default for the "V" flag is 0 for integer I /0 of program words.

1. Examine command output formats:

V=l: (24 op code field values)
V=O: (bits 0-15) (bits 16-31) (bits 32-4 7) (bits 48-63)

2. Change command input formats:

V•l: C (er)
(desired op-code field to change) (er)
(new value) (er)

V=O: C (er)
(bits 0-15) (er)
(bits 16-31) (er)
(bits 32-4 7) (er)
(bits 48-63) (er)

The Program word op-code fields are listed on page A-8 of the appendix.
When V•l, on Examine, the 64-bits of a program word are divided into 24
fields, whose values are printed out. On Change, the user enters the'
name of the field he wants to change along with the new value (h~nce

the mnemonic "V") for that field. The legal values for each field are
listed in appendix B of Al?-120a Processor Handbook (Form #7259).

2 14

Examples:

1. Program location 20 contains the instruction

LDSP! 14; DB=200

which sets S-Pad register 14 to 200. Patch it so that S-Pad
will be set to 300 instead.

*
E (er)
PS (er)
20 (er)
001660 000000 000000 000200

*
C (er)
1660 (er)
0 (er)
0 (er)
300 (er)

*

Note that to change the "value" field (which is the fourth
quarter) (bits 48-63) of the program word, all four quarters
had to be typed in.

2. Now change the instruction so that S-Pad register 11 (instead
of 14) will get loaded with 300.

*
V (er)
1 (er)

*
C (er)
SPD (er)
11 (er)

*

The SPD (S-Pad Destination) field (program word bits 10-13)
was changed to 11.

2 15

3. Examining Program Memory location 20 in both formats yields:

*
• (er)
PS 000020
001644 000000 000000 000300

*
V (er)
1 (er)

*
• (er)
PS

B
Al

000020
00
00

DPBS 00
Ml 01

SOP 00 SH
A2 00 COND
XR. 00 YR
M2 02 MI

00 SPS 14 SPD 11
00 DISP 00 DPX 00
00 xw 00 YW 00
00 MA 00 DPA 00

FADD 00
DPY 00
FM 00
TM.A 00

SPS=l4 means "LDSPI", SPD=ll means S-Pad destination register
is 11. The YW, FM, Ml, M2, Ml, MA, DPA and TMA fields are
meaningless since the "value" of 300 occupied these fields.

4. Program location 30 contains the instruction:

FADD FM, MD; FMUL TM, MD

Change the second argument for the "F.ADD" (A2) from MD to FA

*
E (er)
PS (er)
30 (er)
000001 114000 000000 160000

*
V (er)
1 (er)

*
C (er)
A2 (er)
1 (er)

*

2 16

2. 3 MEMORY LOADING AND DUMPING

Blocks of AP-120B memory locations may be loaded and dumped to and from
files with the following commands:

Y Yank (load) into a memory from a file
W Write out the contents of a memory to a file
Z Zero all the memories (and registers) (APSIM only)

The list of memories on which the above commands may operate is
different for APSIM and for HWDBUG. In APSIM, only Main Data memory
(MD), Table Memory (TM) and Program Memory (PM) may be yanked into or
written from. In HWDBUG, the list of memories is extended to include
S-Pad (SP) and Data Pad X and Y (DPX, DPY).

A further difference lies in the area of I/O data formats. In APSIM,
"Y" and "W" to/from 38-bit memories are always in the floating point
format (F=l). Program memory I/O is always in integer mode (V•O). In
HWDBUG, I/Oto/from 38-bit memories are governed by. the "F" switch.
Hence, it is either in floating point or integer, as set by the user.
Program Memory input is always in integer mode, whereas output may be
in either integer or op-code field format, as governed by the current
setting of the "V" switch.

The user should be aware that the procedure for typing in filenames
varies greatly according to the respective system. In some systems the
notion of user files is nonexistent. In these cases, a logical unit
number referring to an I/O device, which was opened previously by JCL
control statements must be entered in place of a filename. Other
systems allow access to disk files, line printers and terminals by
symbolic names. Thus, what must be entered for a filename depends on
the convention of each respective system. The examples given below are
only meant to be representative and may not be legal on· a given system.

2 17

2. 3.1 ''Y", Yank From a File

To load a memory from a file:

Y (er)
memory name (er)
starting location (er)
filename (er)

where MEMORY NAME is an AP-120B memory, the beginning memory
address is loaded at the STARTING LOCATION. The name of the
file from which the data is to be read is called FILENAME. The
filename must, of course, be in the proper form as determined
by the particular host operating system.

Yank is used typically to load programs into Program Memory
and data into Main Data memory. Some examples:

1. Load a program into PS location O. The program is assumed
to be in a file named MYPROG which was made using the "E"
command output from APLINK.

* y (er)
PS (er)
0 (er)
MYPROG (er)

*
2. Load data into MD starting at location 20 from a file

called DATA. Section 2.3.4 explains how to create data files:

*
y (er)
MD (er)
20 (er)
DATA (er)

* (er)

2 18

2. 3. 2 ''W", Write To a File

To write the contents of a memory into a file:

W (er)
memory name (er)
starting location (er)
ending location (er)
filename (er)

where MEMORY NAME is an AP-120B memory, STARTING LOCATION
is the initial address to be written, ENDING ADDRESS is the
last address to be written and FILENAME is the name of the
file into which the data is to be written.

Some examples:

1. Write Main Data memory locations 20 through 40 into a
file called DUMP:

* w (er)
MD (er)
20 (er)
40 (er)
DUMP (er)

*
2. Write Data Pad X locations 3 through 6 to the line printer

(first, in floating point format and second, in integer format).
(Strictly as an example, the line printer is called LP:.) Note
that Data Pad may be dumped only from HWDBUG.

*
F (er)
1 (er)

* w (er)
DPX (er)
3 (er)
6 (er)
LP: (er)

*
F (er)
0 (er)

* w (er)
DPY (er)
3 (er)
6 (er)
LP:, (er)

*

2 - 19

If the user mistypes a "W" command, he has several options to abort the
command. If the wrong memory name or starting address was typed, then
the command may be canceled by entering an ending address (which is
lower than the starting address). In HWDBUG, an unwanted dump already
underway (for example·, when a location 1000 was typed whereas location
100 was wanted) can be aborted by a USER BREAK. How this is
accomplished varies from system to system. Typically, on single-user
mini-computer systems, it is accomplished by raising the most
significant bit of the host switch register.

2 20

2.3.3 "Z", Zero the AP-120B

The "Z" command is legal only in APSIM. It zeros out all the registers
and memories in APSIM. It should be the first command given to APSIM.
It is accomplished by:

Z (er)

2 21

2.3.4 Preparing Data Files for Yanking

Data files may be prepared by the user for loading
using APSIM (typically prepared by using the host
files may be prepared for loading into MD, SP, DPX
HWDBUG. The format of the data file is as follows:

data count
data item fll
data item /12

data item f/N

into MD and TI1 by
system editor). The

and DPY by using

All entries must be left justified, one entry per line.

The data count is the number of memory locations to be filled and
written as a real number (with a decimal point). Thus, if there were
three data items, the count would be "3.".

The format of data items depends upon which debugger is used. In
APSIM, only floating point numbers may be loaded. These must appear
one per line in the data file. In HWDBUG, the format is determined by
the "F" switch setting for 38-bit memories. For integer formats, the
radix is determined by the N (radix) setting. When floating point
numbers are used they appear one per line. Also, integers must appear
one per line in the file. Thus, for 38-bit memories written· in integer
format (F=O), three integers (exponent, high mantissa, low mantissa),
written on three separate lines, must be included for each memory
location.

Some examples:

1. Four element floating point data file:

4.
1.2
.3

-6E7
2.3E-5

2 22

2. Three element integer data for a 38-bit wide memory which
wili load three integers into the low mantissa (HWDBUG only):

3.
0
0
1
0
0
2
0
0
3

2 23

2. 4 EXECUTING PROGRAMS

AP-120B
commands:

program execution may be controlled with the following

B set breakpoint
D delete breakpoint
L list breakpoint
Q set breakpoint counter
s set step mode
I initialize the AP-120B
R run an AP-120B program
p proceed (continue) with an AP-120B program
T print elapsed execution time
M set memory speed
x exit to the host operating system

The typical strategy when debugging a program is to set breakpoints at
a strategic location in the program. Run the program. When it hi'ts
the breakpoint, examine various data locations to see what has been
changed correctly or incorrectly. Thus, the user will typicaly
alternate between running a program and examining the results.

2 24

2. 4.1 "B", Set Breakpoint

To set a breakpoint:

B (er)
memory name (er)
location (er)

where MEMORY NAME is the memory on which to break execution (must
be MD, TM or PS) and LOCATION is the memory address on which to
stop. The AP-120B allows breakpointing on two conditions:
1) read or write of a given Main Data memory or Table
Memory location, or 2) execution of a given program instruction.
Contrary to typical debuggers, the program halts AFTER
executing the breakpointed instruction. Only one breakpoint may be
set at a time. Setting a new breakpoint clears any previously set
breakpoint. Users of HWDBUG should consult section 4.2 of the
AP-120B Processor Handbook (#7259) for possible interaction
between the breakpoint and the program.

Some examples:

1. Set a breakpoint in order that the program will stop after
executing the instruction at location 20.

*
B (er)
PS (er)
20 (er)

*
2. Set a breakpoint so that the program will halt after

reading or writing Main Data location 100.

*
B (er)
MD (er)
100 (er)

*

2 25

2. 4. 2 "D", Delete Breakpoint

To delete a breakpoint:

D (er)

Delete clears any previously set breakpoints.

2.4.3 "L", List Breakpoint

To list on the console what breakpoint is currently set:

L (er)

APDBUG will type the memory name in which
followed by the location of the breakpoint.
only an asterisk ("*") is typed.

the breakpoint is set,
If no breakpoint is set,

For example, if a breakpoint is set at PS location 20, then:

*
L (er)
PS 000020

*

2 26

2. 4. 4 "Q", Set Breakpoint Counter

To set the breakpoint counter:

Q (er)
count (er)

where COUNT is the desired counter setting. The breakpoint
counter is the number of times a breakpoint must
be hit before the AP-120B program will halt. It is also used by
the step flag. (See section 2.4.S.) For example, it is
useful when a bug occurs every ten times around a loop.
The count is reset to one every time a new breakpoint is
set or the step flag is set or reset.

For example, set a breakpoint at program 19cation 20 in
order that the program halts only after hitting the
breakpoint 10 times.

*
B (er)
PS (er)
20 (er)

*
Q (er)
10 (er)

*

2 27

2. 4. 5 "S", Set /Reset Step Mode

To set step mode:

s (er)
1 (er)

To clear step mode:

s (er)
0 (er)

In step mode, the program executes only a single instruction after
being started and then halts. This is useful when sequencing
step-by-step through a piece of code while watching for a data location
to be destroyed or for the program to go awry. Step mode also uses the
breakpoint counter which, in "step" mode, counts instructions to
execute before stopping.

Some examples:

1. Set step mode so that when next started, the program
will execute one instruction and then stop.

*
S (er)
1 (er)

*

2. Set step mode so that when next run, the program will
execute 100 instructions and then halt:

*
S (er)
1 (er)

Q (er)
100 (er)

*

2 28

2. 4. 6 "I", Initialize the AP-120B

To initialize (reset) the AP-120B:

I (er)

In APSIM, the initialize command clears the memory timing and
arithmetic pipelines. In HWDBUG, an interface reset is done to the
AP-120B. This is necessary to stop a program when that program has
"run away. "

2 29

2. 4. 7 ''R", Run an AP-120B Program

To run an AP-120B program:

R (er)
location (er)

where LOCATION is the program location where execution
starts. APDBUG starts the program at the specified location
and then waits until the program hits a breakpoint. If
the program "runs away" in APSIM, the user typically has
no recourse. In HWDBUG, control can be regained by causing
a USER BREAK. (See section 2.3.2.)

When the AP-120B program finally halts, APSIM responds by printing out
the current program address (PSA), the total elapsed program execution
time after the last "R" command, and the contents of the currently open
register or memory location. HWDBUG merely responds with an asterisk
("*").

Some examples:

1. In APS!M, examine MA. Then, set a breakpoint at program
location 16. Then start execution at location 10:

*
E (er)
HA (er)
123

*
B (er)
PS (er)
16 (er)

*
R (er)
10 (er)
PSA=000017
MA
123

*

1.17 us.

The program has executed 1.17 us and stopped with location 17 as the
next instruction to be executed. MA hasn't changed. Note that the
printout of the last examined location is useful for monitoring
registers to see when they change.

2 30

2. In HWDBUG, set a breakpoint at program location 16,
then start execution at location 10:

*
B (er)
PS (er)
16 (er)

*
R (er)
10 (er)

*
HWDBUG signals program return merely by a "*"

2 31

2. 4. 8 "P", Proceed with AP-120B Program Execution

To proceed with AP-120B program execution:

P (er)

Proceed is used to resume AP-120B program execution after hitting a
breakpoint or when stepping. The program continues in the location
wherever the address is currently in the Program Source Address
register (PSA). When the program next encounters a breakpoint, the
typeout is the same as that which follows a return from a Run.

Some examples:

1. Set a breakpoint at location 16, run at location 10,
examine S-Pad 3, then continue execution.

*
B (er)
PS (er)
16 (er)

*
R (er)
10 (er)
PSA=000007

*
E (er)
SP (er)
3 (er)
000123

*
P (er)

1.17 us.

2 32

2. Examine MA. Then watch it change as the program is
stepped starting at location 10.

*
S (er)
1 (er)

*
E (er)
MA (er)
000103

*
R (er)
10 (er)
PSA=OOOOl l
MA
000104

llf*
P (er)
PSA==OOOOl 2
MA
000105

*
P (er)
PSA=000013
MA
000106

*

o. 17 us.

0.33 US•

o.so us.

2 - 33

2.4.9 "T", Execution Time

To print elapsed AP-120B program execution time up to the
last Run (R) command (APSIM only):

T (er)

2.4.10 ''M", Set Memory Speed

To set Main Data Memory speed (APSIM only):

M
speed (er)

where SPEED is l for FAST memory timing and
2 for STANDARD memory timing. The default
is 2 for STANDARD memory timing.

2.4.11 ''X", Exit to the Host System

To complete a debugging session and exit to the host
operating system:

X (er)

2 34

APPENDIX A
SUMMARY OF APDBUG COMMANDS

Abbreviations used in the following appendices:

Symbol

(er)
loc
count
val
fpn

mem
reg

Meaning

Carriage Return
An integer location number
An integer count
An integer value
A floating-point number in form acceptable
to FORTRAN
The name of an AP-120B internal memory
The name of an AP-120B internal register

Debug types an "*" when ready for further action. A "?" is typed when
a command is not understood.

A 1

A.l Program Execution Commands

B
mem
loc

D

L

(er)
(er)
(er)

(er)

(er)

Q (er)
count (er)

S (er)
val (er)

I

R
loc

p

T

x

M

val

(er)

(er)
(er)

(er)

(er)

(er)

(er)

(er)

Breakpoint. Delete the last breakpoint
and set a new breakpoint at location LOC
of memory MEM. MEM must be PS, MD, or ™·
Delete. Delete the current breakpoint.

List. List the current breakpoint.

Set the continue counter to (COUNT).

Step. If (VAL) is not zero, place the
AP-120B in step n:ode.

Initialize. Reset the AP-120B
before program execution is resumed next.

Run. Begin program execution at
Program Source location LOC.

Proceed. Begin instruction execution
at the Program Source location pointed to by
the AP-120B PSA (Program Source Address)
register.

Print out elapsed execution time (APSIM only).

Exit to the operating system.

Set memory speed. VAL is 1 for one cycle
(fast) memory.

2 for two cycle (standard) memory (APSIM only).

A 2

A.2 Register Examination/Modification Commands

E (er)
reg (er)

E (er)
mem (er)
loc (er)

(er)

+ (er)

(er)

F (er)
val (er)

V (er)
val (er)

C (er)
val (er)

Examine register. Print out the contents of
AP-120B register REG.

Examine memory. Print out the contents of
AP-120B memory MEM, location LQC.

Re-examine the currently open register or
memory location (the last location examined).

Examine the next higher sequential memory location
of the memory that is currently open.

Examine the next lower sequential memory location
of the memory that_is currently open.

Floating Point Flag, affects the input/output of
38-bit wide registers and memory locations.
VAL=O: 3 integers (Exponent," High Mantissa, Low
Mantissa)

VAL=l: floating-point.

Program Source field value flag, affects
input/output of program source memory location.
VAL=O: 4 integers (the four 16-bit quarters of PS)
VAL=l: Decode into the 24 instruction word field

values.

Change. Change the con ten t.s of the currently open
register or memory location to VAL. The format
of VAL depends on the width of the current open
locations as follows:

16-bit wide registers: an integer of the current
radix.

38-bit wide registers:
F=O; VAL (er) three integers in the current radix

VAL (er) which represent the exponent, high
VAL (er) mantissa, and low mantissa

F=l: FPN (er) a floating point number legal to
FORTRAN

A 3

N (er)
VAL (er)

0 (er)
VAL (er)

Z (er)

64-bit wide registers:
V=O: VAL (er) four integers in the current radix

VAL (er) which are the four quarters of an
VAL (er) AP-120B program word ·
VAL (er)

V=l: FIELD (er) FIELD is the name of the
instruction

VAL (er) field to be changes, VAL is the new
integer value.

Number radix. Set the radix for integer user
I/O to VAL, which must be 8 (for octal), 10 (for
decimal), or 16 (for hexadecimal).

Offset. Sets the base address to which Program
Source memory addresses are relative (for user I/O).

Zero. Zero out all AP-120B memories and registers.
(APSIM only)

A 4

A.3 Memory Load/Dump Commands

y

MEM
LOC
filename

w
MEM
START
STOP
filename

(er) Yank. Load memory MEM starting at location.
(er) LOC from an external data FILENAME.
(er)
(er)

(er) Write. Dump memory MEM starting at location
(er) (START) and ending at location (STOP) to
(er) external data FILENAME.
(er) MEM can be PS, MD or TM.
(er)

A 5

A.4- Accessible Functional Units

AP-120B. Functional Units. that may be. examined or changed with A-.PDBUG:

MEMORIES

Accessible f-rom. Can ''C'or:'W'
Mnemonic: Name. Width APSIM HWDBUG AESIM HWDBUG

PS Program: Source memory 64- yes yes: yes·, yeS'
MD' Main Data memory 38 yes yes; yes yes
TM. Tab la memory 38 yes. (read.. only) yes, yes
DEX: Data. Pad. X:. 38 yes, yes. no yes,
DEY Data Pad. Y 38 yeS'> yes. no yes.
I.O r/o devices. 38 yea- no no no
SP S-Pad. 16 yes-s yes no no
SRS, Subroutin~ Retu:i:u.

Stack. 16: yes;. no na no

A 6

REGISTERS

Accessible from:
Mnemonic Name Width APSIM HWDBUG

MA Main Data Address 16 yes yes
TMA Table memory Address 16 yes yes
DPA Data Pad Address 6 yes yes
PSA Program Source Address 12 yes yes
SPD S-Pad Destination Addr. 4 yes yes
STAT AP Status Register 16 yes yes
DA I/O Device Address 6 yes yes
SPFN S-Pad Function 16 yes yes

SWR Switch register 16 no yes
FN Function register 16 no yes
LITE Lites register 16 no yes
APMA AP DMA Memory Address 16 no yes
HMA Host DMA Memory Address 16 no yes
WC DMA Word Count 16 no yes
CTL DMA Control register 16 no yes
FMTH Formatter High 16 no yes
FMTL Formatter Low 16 no yes
IFRS Interface reset 16 no yes
IFS TAT Interface status 16 no yes (when ,

present)
MDR Main Data Read Buffer 38 yes no
TI1R Table Memory Read Buff. 38 yes no
MI Main Data Input Buff. 38 yes no
DPBS Data Pad Bus 38 yes no
INBS I/O Input Bus 38 yes no
PNBS Panel Bus 16 yes no
FLAG Program Flags 4 yes no
SRA Subroutine Stack Addr. 4 yes no
Al Floating Adder #1 input 38 yes no
A2 Floating Adder #2 input 38 yes no
Ml Multiplier #1 input 38 yes no
M2 Multiplier #2 input 38 yes no
FA Floating Adder output 38 yes no
FM Floating Multiplier out.38 yes no

A 7

A.5 Program Word Fields

Fields within an instruction word that may be
examined or changed by name:

Name Program Word Bits

D 0
SOP 1-3
SH 4-5
SPS 6-9
SPD 10-13
FADD 14-16
Al 17-19
A2 20-22

- COND 23-26
DISP 27-31
DPX 32-33
DPY 34-35
DPBS 36-38
XR 39-41
Yil 42-44
xw 45:-47
YW 48-50
FM 51
Ml 52-53
M2 54-55
MI 56-57
MA 58-59
DPA 60-61
TMA 62-63

SOPl 6-9
SPEC 6-9
STST 10-13
HPNL 10-13
SPSA 10-13
PSEV 10-13
PSOD 10-13
PS 10-13
SEXT 10-13
FADl 17-19
IO 17-19
LREG 20-22
RR.EG 20-22
!OUT 20-22
SNSE 20-22
FLAG 20-22
CONT 20-22

A - 8

APPENDIX B
AN EXAi.~PLE DEBUGGING SESSION

In this hypothetical sequence an AP-120B program called MYPROG is be
ing debugged. MYPROG uses the FPS supplied divide routine to divide
two numbers in Main Data memory.

1. APAL SOURCE PROGRAM

$TITLE MYPROG
$ENTRY MYPROG,3
$EXT DIV

''MYPROG DOES A SCALAR DIVIDE OF TWO NUMBERS IN MAIN DATA
"MEMORY AND RETURNS THE ANSWER BACK INTO MAIN DATA MEMORY
"C <= A I B
II

"S-PAD PAR.Ai.'1ETER DEFINITIONS:
II

II

A $EQU 0
B $EQU l
C $EQU 2

"ADDRESS OF 'A' IN MAIN DATA MEMORY
"ADDRESS OF 'B' IN MAIN DATA MEMORY
"ADDRESS OF 'C' IN MAIN DATA MEMORY

MYPROG: MOV A,A; SETMA "FETCH A
MOV B,B; SETMA "FETCH B
NOP "WAIT
DPY<MD "SAVE A IN DPY
DPX<MD; "SAVE B IN DPX

JSR DIV II AND DIVIDE A/B
MOV C, C ; S ETMA; "STORE ANSWER IN C

MI <DPY; RETURN "AND RETURN
$END

The input parameters are the addresses of scalars A, B, and c. A and B
are fetched from Main Data memory, A is divided by B, and the result
stored into c. The $ENTRY declaration tells APAL that the routine's
name is MYPROG. The ",3" tells APAL that the routine is Fortran call
able through APEX with has three S-Pad parameters (the addresses of A,
B, and C). The $EXT tells APAL that the routine uses the DIV routine.

B 1

2. ASSEMBLE USING APAL

RUN APAL (er)
SOURCE FILE=

MYPROG.AP (er)
OBJECT FILE=

M.YPROG.OBJ (er)
LISTING AND ERROR FILE=

MYPROG.LST (er)
LISTING? l=YES, O=NO:

l (er)
LISTING RADIX: l=HEX, O=OCTAL:

0 (er)
0 ERRORS: MYPROG APAL-REV 2

File MYPROG.AP is assembled with the object going into file MYPROG.OBJ,
and the listing (reproduced below) going into file MYPROG.LST.

APAL, REV 2
PASS l
PASS 2

$TITLE MYPROG
$ENTRY MYPROG,3
$EXT DIV

''MYPROG DOES A CHALAR DIVIDE OF TWO NUMBERS IN MAIN DATA .
"MEMORY AND RETURNS TllE ANSWER BACK INTO MAIN DATA MEMORY
"C <=A I B
II

"S-PAD PARAMETER DEFINITIONS:
"

000000 A $EQU 0 "ADDRESS OF , A,

000001 B $EQU 1 "ADDRESS OF 'B,

000002 c $EQU 2 "ADDRESS OF 'C,

000000 A $EQU 0 "ADDRESS OF , A,

000001 B $EQU l "ADDRESS OF 'B,

000002 c $EQU 2 "ADDRESS OF 'c,

"
000000 040000 MYPROG: MOV A,A; SETMA "FETCH A

000000
000000
000060

000001 040104 MOV B,B; SETMA "FETCH B
000000
000000
000060

000002 000000 NOP ''WAIT

B - 2

IN MAIN DATA MEMORY
IN MAIN DATA MEMORY
IN MAIN DATA MEMORY
IN MAIN DATA MEMORY
IN MAIN DATA MEMORY
IN MAIN DATA MEMORY

000000
000000
000000

000003 000000 DPY<MD "SA VE A IN DPY
000000
015000
100000

000004 011014 DPX<MD; "SA VE B IN DPX
000000 JSR DIV " AND DIVIDE A/B
045004
177777

000005 040210 MOV C,C; SETI1A; "STORE ANSWER IN C
000340 MI<DPY; RETUR..1\1 "AND RETURN
004040
000360

$END

**** 0 ERRORS ****

SYMBOL VALUE
DIV 000004 EXT
A 000000
B 000001
c 000002
MYPROG 000000 ENT

B - 3

3. LINK THE PROGRAM USING APLINK

RUN APLINK (er)
APL INK
REV 2

*
L (er)
MYPROG.OBJ (er)

*
L (er)
APLIB (er)

LOAD COMPLETE

*
S (er)
TTY (er)

HIGR=000041

S'YMBOL TABLE

S'YMBOL VALUE
MYPROG 000000
DIV 000006

*
E (er)
MYPROG.ABS

MYPROG

*
X (er)

(er)
RIGH=000041

First MYPROG.OBJ is loaded, then the FPS supplied object library
(called APLIB) is loaded in. APLINK picks out DIV from the library.
When the loading is done, a symbol table (load map) is printed out on
the console. It shows that MYPROG is loaded at location O, and DIV at
location 7. The high location loaded was 41 (octal), which means that
the total size of the load module is 34 (decimal) program words. The E
command is used to output the load module for APSIM (or HWDBUG). It is
put in file MYPROG.ABS.

B 4

4. DEBUG THE PROGRAM WITH APSIM

RUN APSIM (c"!:')

APSIM
REV 2.0

*
Z (er)

*
Y (er)
PS (er)
0 (er)
MYPROG.ABS (er)

*
Zero the simulator and Yank in the load module.

E (er)
SP (er)
0 (er)

000000

*
C (er)
2 (er)

*
+ (er)

SP 000001
000000

* c (er)
3 (er)

*
+ (er)

SP 000002
000000

* c (er)
4 (er)

*
Set up S-Pads O, 1, and 2 with the addresses of A, B, and c. Which are
chosen here to be 2, 3, and 4, respectively.

E (er)
MD (er)
2 (er)

0.0000000000

*
C (er)
10.0 (er)

*
+ (er)

MD 000003

B 5

0.0000000000

*
C (er)
2. 0 (er)

*
Set A (in MD 2) to 10.0, and B (in MD 3) to 2.0. The answer should be
s. o.

E (er)
PS (er)
5 (er)

040210 000340 004040 000360

*
B (er)
PS (er)
6 (er)

*
Examine PS location 5. Yes, it looks like the last instruction of
MYPROG, so set the breakpoint there.

R (er)
0 (er)

PSA=OOOOOO 5.00 US.
PS 000005
040210 000340 004040 000360

*
Run the program. It took 5.0 us to reach the breakpoint. PSA shows 0
since we stopped on a RETURN, which wants to return to location 0 since
the Subroutine Return Stack was zeroed by the 'z'. PS location 5 is
printed out because it is the last location we examined.

E (er)
MD (er)
4 (er)

20.00000000

*
But alas, the answer is wrong, we should have 10.0, not 20.0 in C (MD
location 4).

E (er)
DPY (er)
0 (er)

20.00000000

*
DPY (where we thought DIV returned the answer) also has 20.0, so
where's our 10.0. Lets look in DPX, since maybe we have remembered
wrongly which.Data Pad DIV returns the answer in.

B 6

E (er)
DPX (er)
0 (er)

s.000000000
*

Sure enough, the answer is in DPX instead of DPY. A quick check of the
AP-120B Math Library Manual (#7288-03, part 2) confirms that indeed,
DIV returns the result in DPX, and that DPY is used as a scratch
location. We now patch the program so that in PS location 5, MI<DPX
instead of MI<DPY.

E (er)
PS (er)
5 (er)

040210 000340 004040 000360
*

v (er)
1 (er)
*
PS 000005

D 00 SOP 04 SH 00 SPS 02 SPD 02 FADD 00
Al 00 A2 00 COND 07 DISP 00 DPX 00 DPY 00
DPBS 04 XR 00 YR 04 xw 00 YW 00 FU 00
Ml 00 M2 00 MI 03 MA 03 DPA 00 TMA 00

*
c (er)
DPBS (er)
3 (er)
*

c (er)
XR (er)
4 (er)
*
PS 000005

D 00 SOP 04 SH 00 SPS 02 SPD 02 FADD 00
Al 00 A2 00 COND 07 DISP 00 DPX 00 DPY 00
DPBS 03 XR 04 YR 04 xw 00 YW 00 FM 00
Ml 00 M2 00 MI 03 MA 03 DPA 00 TMA 00

*

Examine PS 5 and switch the PS output mode (V) to 1 for PS opcode
field mode. It shows that now the MI field (Memory Input) is set
to 3 for Data pad Bus, and that the DPBS field is set to 4 for DPY. We
then change the DPBS field to 3 for DPX, and the DPX read address (XR)
to 4, which biased by 4 gives the proper DPX address of O. Re-examin
ing shows that the patches were made correctly. We now reinitialize
APSIM and run again.

I (er)

R (er)
O (er)

B 7

PSA=OOOOOO 5. 00 us.
PS 000005

D 00 SOP 04 SH 00 SPS
Al 00 A2 00 COND 07 DISP
DPBS 03 XR 04 YR 04 xw
Ml 00 M2 00 MI 03 MA

*
E (er)
MD (er)
4 (er)

s.000000000
*

And now we have the correct answer in c.

(er)
MD 000003

2. 000000000

*
C (er)
-3.4 (er)

*
(er)

MD 000002
10. 00000000

*
C (er)
12.5 (er)

*

02 SPD 02 FADD 00
00 DPX 00 DPY 00
00 YW 00 FM 00
03 DPA 00 TMA 00

We now try a different case: B = -3.4, and A = 12.5, expected answer
about -3. 68.

I (er)

*
R (er)
0 (er)

PSA=OOOOOO
MD 000002

12.sooooooo

*
E (er)
MD (er)
4 (er)

-3.676470578
*

s.oo us.

B 8

Re-initializing and re-running, we again get the correct answer.

X (er)

So we exit APSIM, edit the change into the source, and re-assemble,
link, and simulate to make sure things are correct.

B 9

FLOATING POINT
SYSTEMS, INC.

CALL TOLL FREE 800-54 7-1445
PO. Box 23489, Portland, OR 97223
(503) 641 -3151 , TLX: 360470 FLOATPOINT PTL

