
VMS Debugger Manual

Order Number: AA-LA59A-TE

April 1988

This manual explains the features of the VMS Debugger for programmers
in high-level languages and assembly language.

Revision/Update Information: This document supersedes the
VAX/VMS Debugger Reference Manual,
Version 4.4.

Software Version: VMS Version 5.0

digital equipment corporation
maynard, massachusetts

April 1988

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appear
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by Digital Equipment Corporation or its affiliated companies.

Copyright © 1988 by Digital Equipment Corporation

All Rights Reserved.
Printed in U.S.A.

The postpaid READER'S COMMENTS form on the last page of this document
requests the user's critical evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

DEC DIBOL UNIBUS
DEC/CMS EduSystem VAX
DEC/MMS IAS VAXcluster
DECnet MASSBUS VMS
DECsystem-10 PDP VT
DECSYSTEM-20 PDT
DECUS RSTS

~D~Dll5lD TM DECwriter RSX

HOW TO ORDER ADDITIONAL DOCUMENTATION
DIRECT MAIL ORDERS

USA & PUERTO Rico* CANADA INTERNATIONAL

ZK4538

Digital Equipment Corporation
P.O. Box CS2008

Digital Equipment
of Canada Ltd.

Digital Equipment Corporation
PSG Business Manager

Nashua, New Hampshire
03061

100 Herzberg Road
Kanata, Ontario K2K 2A6
Attn: Direct Order Desk

In Continental USA and Puerto Rico call 800-258-1710.
In New Hampshire, Alaska, and Hawaii call 603-884-6660.
In Canada call 800-267-6215.

c/o Digital's local subsidiary
or approved distributor

*Any prepaid order from Puerto Rico must be placed with the local Digital subsidiary (809-754-7575).
Internal orders should be placed through the Software Distribution Center (SOC), Digital Equipment
Corporation, Westminster, Massachusetts 01473.

Production Note
This book was produced with the VAX DOCUMENT electronic publishing
system, a software tool developed and sold by DIGITAL. In this system,
writers use an ASCII text editor to create source files containing text and
English-like code; this code labels the structural elements of the document,
such as chapters, paragraphs, and tables. The VAX DOCUMENT software,
which runs on the VMS operating system, interprets the code to format the
text, generate a table of contents and index, and paginate the entire document.
Writers can print the document on the terminal or line printer, or they can use
DIGITAL-supported devices, such as the LN03 laser printer and PostScript®
printers (PrintServer 40 or LN03R ScriptPrinter), to produce a typeset-quality
copy containing integrated graphics.

®> PostScript is a trademark of Adobe Systems, Inc.

Contents

PREFACE

NEW AND CHANGED FEATURES

PARTI

CHAPTER 1

1.1
1.1.1
1.1.2

1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.2.4.1
1.2.4.2
1.2.5
1.2.5.1

1.2.5.2
1.2.5.3
1.2.5.4
1.2.5.5
1.2.6
1.2.6.1
1.2.6.2
1.2.6.3
1.2.7
1.2.7.1
1.2.7.2
1.2.8

1.3

USING THE VMS DEBUGGER

INTRODUCTION TO THE VMS DEBUGGER

OVERVIEW OF THE DEBUGGER
Functional Features
Convenience Features

GETTING STARTED WITH THE DEBUGGER
Compiling and Linking to Prepare for Debugging
Starting and Terminating a Debugging Session
Entering Debugger Commands
Viewing Your Source Code

Noscreen Mode • 1-8
Screen Mode • 1-9

Controlling and Monitoring Program Execution
Starting and Resuming Program Execution • 1-11

1.2.5.1.1 The GO Command• 1-11
1.2.5.1.2 The STEP Command• 1-12

Determining Where Execution Is Currently Suspended • 1-13
Suspending Program Execution • 1-13
Tracing Program Execution • 1-15
Monitoring Changes in Variables • 1-16

Examining and Manipulating Program Data
Displaying the Value of a Variable • 1-17
Changing the Value of a Variable • 1-18
Evaluating Expressions • 1-19

Controlling Symbol References
Module Setting • 1-20
Resolving Multiply-Defined Symbols • 1-21

A Sample Debugging Session

DEBUGGER COMMAND SUMMARY

xix

xxi

1-1

1-1
1-2
1-3

1-5
1-5
1-6
1-7
1-7

1-11

1-17

1-20

1-22

1-25

v

Contents

1.3.1 Starting and Terminating a Debugging Session
1.3.2 Controlling and Monitoring Program Execution
1.3.3 Examining and Manipulating Data
1.3.4 Controlling Type Selection and Radix
1.3.5 Controlling Symbol Lookup and Symbolization
1.3.6 Displaying Source Code
1.3.7 Screen Mode
1.3.8 Source Editing
1.3.9 Defining Symbols
1.3.10 Keypad Mode
1.3.11 Command Procedures, Log Files, and Initialization Files
1.3.12 Control Structures
1.3.13 Miscellaneous Commands

CHAPTER 2 STARTING AND CONTROLLING PROGRAM
EXECUTION

2.1 STARTING, TERMINATING, AND INTERRUPTING A DEBUGGING
SESSION

2.1.1 Invoking the Debugger with the DCL RUN Command
2.1.2 Invoking the Debugger with the DCL DEBUG Command
2.1.3 Terminating a Debugging Session
2.1.4 Interrupting and Resuming a Debugging Session
2. 1.4. 1 Interrupting with CTRL/Y • 2-5
2.1.4.2 Interrupting with the SP AWN and ATTACH Commands • 2-6

2.2 COMMANDS THAT CAUSE PROGRAM EXECUTION

2.3 USING THE STEP COMMAND
2.3.1 Changing the STEP Command Behavior
2.3.2 Stepping into and over Routines

2.4 SUSPENDING AND TRACING EXECUTION WITH BREAKPOINTS
AND TRACEPOINTS

2.4.1 Setting Breakpoints or Tracepoints on Individual Program
Locations

2.4.1.1 Specifying Symbolic Addresses • 2-11
2.4.1.2 Specifying Locations in Virtual Memory• 2-13
2.4.1.3 Obtaining and Symbolizing Virtual Memory Addresses• 2-13
2.4.2 Setting Breakpoints or Tracepoints on Consecutive Lines or on

Classes of Instructions
2.4.3 Controlling Debugger Action at Breakpoints or Tracepoints -
2.4.4 Setting Breakpoints or Tracepoints on Exceptions

vi

1-25
1-25
1-26
1-26
1-26
1-27
1-27
1-28
1-28
1-28
1-29
1-29
1-29

2-1

2-1
2-1
2-3
2-4
2-5

2-7

2-7
2-8
2-9

2-10

2-11

2-14
2-15
2-16

2.4.5

2.4.6

2.5

2.5.1
2.5.2
2.5.2.1
2.5.2.2
2.5.2.3

2.6

CHAPTER 3

3.1
3.1.1
3.1.2
3.1.3
3.1.4
3.1.5
3. 1..5. 1
3.1.5.2
3.1.6
3.1.7
3.1.8
3.1.9
3.1.10

3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5

3.3
3.3.1
3.3.2

3.4

Setting Breakpoints or Tracepoints on Language-Specific
Events
Canceling Breakpoints or Tracepoints

Contents

2-16
2-17

MONITORING CHANGES IN VARIABLES AND OTHER PROGRAM
LOCATIONS 2-17
Watchpoint Options 2-19
Watching Nonstatic Variables

Execution Speed • 2-20
Setting a Watchpoint on a Nonstatic Variable • 2-20
Options for Watching Nonstatic Variables• 2-21

HOW THE DEBUGGER CONTROLS PROGRAM EXECUTION

EXAMINING AND MANIPULATING PROGRAM DATA

GENERAL CONCEPTS
Accessing Variables While Debugging
Using the EXAMINE Command
Using the DEPOSIT Command
Address Expressions and Their Associated Types
Evaluating Language Expressions

Using Variables in Language Expressions• 3-6
Numeric Type Conversion by the Debugger • 3-7

Address Expressions Compared to Language Expressions
Specifying the Current, Previous, and Next Entity
Language Dependencies and the Current Language
Specifying a Radix for Entering or Displaying Integer Data
Obtaining and Symbolizing Virtual Memory Addresses

EXAMINING AND DEPOSITING INTO VARIABLES
Scalar Types
ASCII String Types
Array Types
Record Types
Pointer {Access) Types

EXAMINING AND DEPOSITING VAX INSTRUCTIONS
Examining VAX Instructions
Depositing VAX Instructions

EXAMINING AND DEPOSITING REGISTER VALUES

2-19

2-22

3-1

3-1
3-1
3-2
3-3

·3_4

3-5

3-7
3-8

3-10
3-10
3-12

3-14
3-14
3-16
3-16
3-18
3-18

3-19
3-19
3-21

3-22

vii

Contents

3.4.1

3.5
3.5.1
3.5.2
3.5.2.1
3.5.2.2
3.5.2.3

The Processor Status Longword (PSL)

SPECIFYING A TYPE WHEN EXAMINING AND DEPOSITING
Defining a Type for Locations Without a ,Symbolic Name
Overriding the Current Type

Integer Types• 3-26
ASCII String Type • 3-26
User-Declared Types• 3-27

3-23

3-24
3-24
3-25

CHAPTER 4 CONTROLLING SYMBOL LOOKUP 4-1

4.1 CONTROLLING SYMBOL INFORMATION WHEN COMPILING AND
LINKING 4-2

4.1.1 Compiling 4-2
4.1.2 Local and Global Symbols 4-3
4.1.3 Linking 4-4
4.1.4 Controlling Symbol Information in Debugged Images 4-5

4.2 SETTING AND CANCELING MODULES 4-5

4.3 RESOLVING MULTIPLY-DEFINED SYMBOLS 4-7
4.3.1 Scope and Symbol Lookup Conventions 4-7
4.3.2 Using SHOW SYMBOL and Path Names to Specify Symbols

Uniquely 4-8
4.3.2.1 Simplifying Path Names • 4-9
4.3.2.2 Specifying Symbols in the Call Stack • 4-9
4.3.2.3 Specifying Global Symbols • 4-9
4.3.2.4 Specifying Routine Invocations• 4-9
4.3.3 Using SET SCOPE to Specify a Symbol Search Scope 4-10

4.4 DEBUGGING SHAREABLE IMAGES 4-11
4.4.1 Compiling and Linking Shareable Images for Debugging 4-11
4.4.2 Accessing Symbols in Shareable Images 4-13
4.4.2.1 Accessing Symbols in the PC Scope (Dynamic Mode) • 4-13
4.4.2.2 Accessing Symbols in Arbitrary Images • 4-13

viii

Contents

CHAPTER 5 CONTROLLING THE DISPLAY OF SOURCE CODE 5-1

5.1 HOW THE DEBUGGER OBTAINS SOURCE CODE
INFORMATION 5-1

5.2 SPECIFYING THE LOCATION OF SOURCE FILES 5-2

5.3 DISPLAYING SOURCE CODE BY SPECIFYING LINE
NUMBERS 5-3

5.4 DISPLAYING SOURCE CODE BY SPECIFYING ADDRESS
EXPRESSIONS 5-4

5.5 DISPLAYING SOURCE CODE BY SEARCHING FOR STRINGS 5-6

5.6 CONTROLLING SOURCE DISPLAY AFTER STEPPING AND AT
EVENTPOINTS 5-7

5.7 SETTING MARGINS FOR SOURCE DISPLAY 5-8

CHAPTER 6 USING SCREEN MODE 6-1

6.1 CONCEPTS AND TERMINOLOGY 6-2

6.2 THE PREDEFINED DISPLAYS 6-4
6.2.1 The Predefined Source Display SRC 6-4
6.2.2 The Predefined Output Display OUT 6-5
6.2.3 The Predefined Prompt Display PROM PT 6-5
6.2.4 The Predefined Instruction Display INST 6-6
6.2.5 The Predefined Register Display REG 6-7

6.3 MANIPULATING EXISTING DISPLAYS 6-7
6.3.1 Scrolling a Display 6-8
6.3.2 Showing, Hiding, Removing, and Canceling a Display 6-9
6.3.3 Moving a Display Across the Screen 6-9
6.3.4 Expanding or Contracting a Display 6-10

6.4 CREATING A NEW DISPLAY 6-10

ix

Contents

6.5 SPECIFYING A DISPLAY WINDOW 6-11
6.5.1 Specifying a Window in Terms of Lines and Columns 6-11
6.5.2 Predefined Windows 6-11
6.5.3 Creating a New Window Definition 6-12

6.6 SPECIFYING THE DISPLAY KIND 6-12
6.6.1 DO (command[; ...]) Display Kind 6-13
6.6.2 INSTRUCTION Display Kind 6-13
6.6.3 INSTRUCTION (command) Display Kind 6-14
6.6.4 OUTPUT Display Kind 6-14
6.6.5 REGISTER Display Kind 6-15
6.6.6 SOURCE Display Kind 6-15
6.6.7 SOURCE (command) Display Kind 6-16
6.6.8 PROGRAM Display Kind 6-16

6.7 ASSIGNING DISPLAY ATTRIBUTES 6-16

6.8 A SAMPLE DISPLAY CONFIGURATION 6-18

6.9 SAVING DISPLAYS AND THE SCREEN STATE 6-19

6.10 CHANGING THE SCREEN HEIGHT AND WIDTH 6-20

CHAPTER 7 ADDITIONAL CONVENIENCE FEATURES 7-1

7.1 USING DEBUGGER COMMAND PROCEDURES 7-1
7.1.1 Basic Conventions 7-1
7.1.2 Passing Parameters to Command Procedures 7-2

7.2 USING A DEBUGGER INITIALIZATION FILE 7-4

7.3 LOGGING A DEBUGGING SESSION INTO A FILE 7-5

7.4 DEFINING SYMBOLS FOR COMMANDS, ADDRESS
EXPRESSIONS, AND VALUES 7-6

7.4.1 Defining Symbols for Commands 7-6
7.4.2 Defining Symbols for Address Expressions 7-7
7.4.3 Defining Symbols for Values 7-7

x

7.5
7.5.1
7.5.2

7.6
7.6.1
7.6.2
7.6.3
7.6.4
7.6.5

7.7

CHAPTER 8

8.1
8.1.1
8.1.2
8.1.3
8.1.4

8.2

8.3
8.3.1
8.3.2
8.3.2.1
8.3.2.2
8.3.2.3
8.3.2.4
8.3.2.5
8.3.2.6

8.4
8.4.1
8.4.2
8.4.3
8.4.3.1
8.4.3.2
8.4.3.3
8.4.3.4

ASSIGNING COMMANDS TO FUNCTION KEYS
Basic Conventions
More Advanced Techniques

USING CONTROL STRUCTURES TO ENTER COMMANDS
FOR Command
IF Command
REPEAT Command
WHILE Command
EXITLOOP Command

CALLING ROUTINES LINKED WITH YOUR PROGRAM

DEBUGGING SPECIAL CASES

DEBUGGING OPTIMIZED CODE
Eliminated Variables
Coding Order
Use of Registers
Use of Condition Codes

DEBUGGING SCREEN-ORIENTED PROGRAMS

DEBUGGING MULTILANGUAGE PROGRAMS
Controlling the Current Debugger Language
Specific Differences Among Languages

Default Radix • 8-8
Evaluating Language Expressions • 8-8
Arrays and Records • 8-9
Case Sensitivity • 8-9
Initialization Code • 8-9
Ada Predefined Breakpoints • 8-1 0

DEBUGGING EXCEPTIONS AND CONDITION HANDLERS
Setting Breakpoints or Tracepoints on Exceptions
Resuming Execution at an Exception Breakpoint
Effect of Debugger on Condition Handling

Primary Handler • 8-14
Secondary Handler • 8-14
Call-Frame Handlers (User-Declared) • 8-14
Final and Last-Chance Handlers • 8-14

Contents

7-7
7-8
7-9

7-9
7-9

7-10
7-10
7-10
7-10

7-11

8-1

8-1
8-2
8-3
8-4
8-5

8-5

8-7
8-7
8-8

8-10
8-11
8-11
8-13

xi

Contents

8.4.3.5
8.4.4

8.5

8.6
8.6.1
8.6.2

PARTll

xii

1

2
2.1
2.2

3

4

5

Catchall Handler • 8-1 5
Exception-Related Built-in Symbols

DEBUGGING EXIT HANDLERS

DEBUGGING AST-DRIVEN PROGRAMS
Disabling and Enabling the Delivery of ASTs
Call Frames Associated with ASTs in SHOW CALLS
Display

DEBUGGER COMMAND DICTIONARY

GENERAL COMMAND FORMAT

RULES FOR ENTERING AND TERMINATING COMMANDS
Interactively at the Terminal
Within a Debugger Command Procedure

COMMANDS RECOGNIZED ONLY ON VAXSTATIONS

OBSOLETE COMMANDS

DEBUGGER COMMAND DICTIONARY
@ (EXECUTE PROCEDURE)
ATTACH
CALL
CANCEL ALL
CANCEL BREAK
CANCEL DISPLAY
CANCEL IMAGE
CANCEL MODE
CANCEL MODULE
CANCEL RADIX
CANCEL SCOPE
CANCEL SOURCE
CANCEL TRACE
CANCEL TYPE/OVERRIDE
CANCEL WATCH
CANCEL WINDOW
CTRL/C, CTRL/W, CTRL/Y, CTRL/Z

CD-7
CD-9

CD-10
CD-13
CD-14
CD-16
CD-17
CD-18
CD-19
CD-21
CD-22
CD-23
CD-25
CD-27
CD-28
CD-29
CD-30

8-15

8-16

8-16
8-17

8-17

CD-3

CD-4
CD-4
CD-5

CD-5

CD-5

CD-6

Contents

DECLARE CD-32
DEFINE CD-35
DEFINE/KEY CD-37
DELETE CD-40
DELETE/KEY CD-42
DEPOSIT CD-44
DISABLE AST CD-50
DISPLAY CD-51
EDIT CD-55
ENABLE AST CD-57
EVALUATE CD-58
EVALUATE/ADDRESS CD-60
EXAMINE CD-62
EXIT CD-69
EXITLOOP CD-70
EXPAND CD-71
EXTRACT· CD-73
FOR CD-75
GO CD-77
HELP CD-79
IF CD-81
MOVE CD-82
QUIT CD-84
REPEAT CD-85
SAVE CD-86
SCROLL CD-87
SEARCH CD-89
SELECT CD-92
SET ATSIGN CD-95
SET BREAK CD-96
SET DEFINE CD-102
SET DISPLAY CD-103
SET EDITOR CD-107
SET EVENT_FACILITY CD-109
SET IMAGE CD-110
SET KEY CD-112
SET LANGUAGE CD-113
SET LOG CD-115
SET MARGINS CD-116
SET MAX_SOURCE_FILES CD-119
SET MODE CD-120
SET MODULE CD-123
SET OUTPUT CD-126
SET PROMPT CD-128
SET RADIX CD-129

xiii

Contents

SET SCOPE CD-131
SET SEARCH CD-134
SET SOURCE CD-136
SET STEP CD-139
SET TASK CD-142
SET TERMINAL CD-145
SET TRACE CD-147
SET TYPE CD-153
SET WATCH CD-156
SET WINDOW CD-161
SHOW AST CD-163
SHOWATSIGN CD-164
SHOW BREAK CD-165
SHOW CALLS CD-166
SHOW DEFINE CD-168
SHOW DISPLAY CD-169
SHOW EDITOR CD-170
SHOW EVENT_fACILITY CD-171
SHOW EXIT_HANDLERS CD-172
SHOW IMAGE CD-173
SHOW KEY CD-174
SHOW LANGUAGE CD-176
SHOW LOG CD-177
SHOW MARGINS CD-178
SHOW MAX_SOURCE_FILES CD-179
SHOW MODE CD-180
SHOW MODULE CD-181
SHOW OUTPUT CD-184
SHOW RADIX CD-185
SHOW SCOPE CD-186
SHOW SEARCH CD-188
SHOW SELECT CD-189
SHOW SOURCE CD-191
SHOW STACK CD-193
SHOW STEP CD-194
SHOW SYMBOL CD-195
SHOW TASK CD-198
SHOW TERMINAL CD-201
SHOW TRACE CD-202
SHOW TYPE CD-203
SHOW WATCH CD-204
SHOW WINDOW CD-205
SPAWN CD-206
STEP CD-208
SYMBOLIZE CD-212

xiv

TYPE
WHILE

CD-214
CD-216

PART Ill APPENDIXES

APPENDIX A COMMAND DEFAULTS

APPENDIX B PREDEFINED KEY FUNCTIONS

B.1 DEFAULT, GOLD, AND BLUE FUNCTIONS

B.2 KEY DEFINITIONS SPECIFIC TO LK201 KEYBOARDS

B.3 KEYS THAT SCROLL, MOVE, EXPAND, AND CONTRACT
DISPLAYS

B.4 ONLINE KEYPAD KEY DIAGRAMS

B.5 DEBUGGER KEY DEFINITIONS

APPENDIXC SCREEN MODE REFERENCE INFORMATION

C.1 DISPLAY KINDS

C.2 DISPLAY ATTRIBUTES

C.3 PREDEFINED DISPLAYS
C.3.1 SRC (Source Display)
C.3.2 OUT (Output Display)
C.3.3 PROMPT (Prompt Display)
C.3.4 INST (Instruction Display)
C.3.5 REG (Register Display)

C.4 SCREEN-RELATED BUILT-IN SYMBOLS

Contents

A-1

B-1

B-1

B-3

B-3

B-4

B-5

C-1

C-1

C-2

C-3
C-4
C-4
C-4
C-5
C-5

C-6

xv

Contents

C.4.1
C.4.2

C.5

APPENDIX D

D.1

D.2

D.3
D.3.1
D.3.2
D.3.3
D.3.4
D.3.5

D.3.6
D.3.7
D.3.8

APPENDIX E

E.1
E.1.1
E.1.2
E.1.3
E.1.4
E.1.5
E.1.5.1
E.1.5.2
E.1.6

E.2
E.2.1
E.2.2
E.2.3

xvi

Screen Height and Width
Pseudo-Display Names

SCREEN DIMENSIONS AND PREDEFINED WINDOWS

BUILT-IN SYMBOLS AND LOGICAL NAMES

SS$_DEBUG CONDITION

LOGICAL NAMES

BUILT-IN SYMBOLS
Specifying the VAX Registers
Constructing Identifiers
Counting Parameters Passed to Command Procedures
Controlling Radix
Specifying Program Locations and the Current Value of an
Entity
Using Symbols and Operators in Address Expressions
Obtaining Information About Exceptions
Specifying Ada Tasks

SUMMARY OF DEBUGGER SUPPORT FOR
LANGUAGES

DEBUGGER SUPPORT FOR LANGUAGE ADA
Operators in Language Expressions
Constructs in Language and Address Expressions
Data Types
Predefined Attributes
Tasking States

Task States • E-4
Task Substates • E-4

Events

DEBUGGER SUPPORT FOR LANGUAGE BASIC
Operators in Language Expressions
Constructs in Language and Address Expressions
Data Types

C-6
C-6

C-7

D-1

D-1

D-1

D-2
D-2
D-3
D-3
D-4

D-4
D-5
D-8
D-9

E-1

E-1
E-1
E-2
E-2
E-3
E-4

E-5

E-6
E-7
E-7
E-7

Contents

E.3 DEBUGGER SUPPORT FOR BLISS E-8
E.3.1 Operators in Language Expressions E-8
E.3.2 Constructs in Language and Address Expressions E-9
E.3.3 Data Types E-9

E.4 DEBUGGER SUPPORT FOR LANGUAGE C E-10
E.4.1 Operators in Language Expressions E-10
E.4.2 Constructs in Language and Address Expressions E-11
E.4.3 Data Types E-11

E.5 DEBUGGER SUPPORT FOR LANGUAGE COBOL E-12
E.5.1 Operators in Language Expressions E-12
E.5.2 Constructs in Language and Address Expressions E-13
E.5.3 COBOL Data Types E-13

E.6 DEBUGGER SUPPORT FOR LANGUAGE DIBOL E-14
E.6.1 Operators in Language Expressions E-14
E.6.2 Constructs in Language and Address Expressions E-14
E.6.3 Data Types E-14

E.7 DEBUGGER SUPPORT FOR LANGUAGE FORTRAN E-15
E.7.1 Operators in Language Expressions E-15
E.7.2 Constructs in Language and Address Expressions E-16
E.7.3 Predefined Symbols E-16
E.7.4 Data Types E-16

E.8 DEBUGGER SUPPORT FOR LANGUAGE MACRO E-17
E.8.1 Operators in Language Expressions E-17
E.8.2 Constructs in Language and Address Expressions E-18
E.8.3 Data Types E-19

E.9 DEBUGGER SUPPORT FOR LANGUAGE PASCAL E-19
E.9.1 Operators in Language Expressions E-19
E.9.2 Constructs in Language and Address Expressions E-20
E.9.3 Predefined Symbols E-20
E.9.4 Built-In Functions E-21
E.9.5 Data Types E-21

E.10 DEBUGGER SUPPORT FOR LANGUAGE PL/I E-22
E.10.1 Operators in Language Expressions E-22
E.10.2 Constructs in Language and Address Expressions E-22

xvii

Contents

E.10.3

E.11
E.11.1
E.11.2
E.11.3

E.12
E.12.1
E.12.2
E.12.3
E.12.4

E.13
E.13.1
E.13.2
E.13.3

INDEX

FIGURES
1-1

1-2

6-1

6-2

6-3

6-4

B-1

TABLES
2-1

xviii

4-1

4-2

B-1

B-2

B-3

B-4

Data Types

DEBUGGER SUPPORT FOR LANGUAGE RPG
Operators in Language Expressions
Constructs in Language and Address Expressions
Data Types

DEBUGGER SUPPORT FOR LANGUAGE SCAN
Operators in Language Expressions
Constructs in Language and Address Expressions
Data Types
Events

DEBUGGER SUPPORT FOR LANGUAGE UNKNOWN
Operators in Language Expressions
Constructs in Language and Address Expressions
Data Types

Keypad Key Functions Predefined by the Debugger

Default Screen Mode Display Configuration

Default Screen Mode Display Configuration

Screen Mode Source Display When Source Code Is Not
Available

Screen Mode Instruction Display

Screen Mode Register Display

Keypad Key Functions Predefined by the Debugger

Controlling Debugger Activation with the LINK and RUN
Commands

Compiler Options for DST Symbol Information

Effect of Compiler and Linker on DST and GST Symbol
Information

Key Definitions Specific to LK201 Keyboards

Keys That Change the Key State

Keys That Invoke Online Help to Display Keypad
Diagrams

Debugger Key Definitions

E-23

E-23
E-24
E-24
E-24

E-25
E-25
E-25
E-26
E-27

E-27
E-27
E-28
E-28

1-8

1-10

6-2

6-5

6-6

6-7

B-2

2-3

4-3

4-4

B-3

B-4

B-5

B-5

Preface

Intended Audience
This manual is for programmers at all levels of experience.

New users should start with Chapter 1 (Introduction to the VMS Debugger).
It contains an overview of debugger features, an interactive tutorial on the
debugger, and a summary of debugger commands.

The debugger can be used with most VMS supported languages (language
support is summarized in Appendix E). This manual emphasizes usage that is
common to all or most languages. For additional information that is specific
to a particular language, refer to the documentation furnished with that
language.

Note that you can use the VMS Debugger only to debug code in user mode.
You cannot debug any code in supervisor, executive, or kernel modes. If you
need to debug code in other than user mode, refer to the VMS Delta/XDelta
Utility Manual, which describes the VMS DELTA/XDELTA Utility.

Document Structure
This manual is organized in three parts:

• Part I, Using the VMS Debugger (Chapters 1 through 8), presents task­
oriented and conceptual information about the debugger. Debugger
commands and features, such as keypad-key definitions, screen-mode
displays, and built-in symbols, are discussed in the context of their
use. To simplify the discussions, many details about command syntax,
qualifiers, and so on, are not included in these chapters. Refer to Parts II
and III for such additional information.

• Part II is the debugger command dictionary. It lists all debugger
commands alphabetically and provides complete information on
command format, parameters, and qualifiers, as well as examples of
each command's use.

• Part III consists of appendixes. These provide reference information on
topics such as predefined keypad-key functions, debugger support of
specific languages, and so on.

Associated Documents
Information on compiling and debugging in a particular language is available
in the documentation furnished with that language.

Information on the linking of programs and on shareable images is available
in the VMS Linker Utility Manual.

xix

Preface

Conventions

xx

Convention

CTRL/C

$SHOW TIME
05-JUN-1988 11 :55:22

$TYPE MYFILE.DAT

input-file, ...

[logical-name]

quotation marks
apostrophes

Meaning

In examples, a key name (usually abbreviated)
shown within a box indicates that· you press
a key on the keyboard; in text, a key name is
not enclosed in a box. In this example, the key
is the RETURN key. (Note that the RETURN
key is not usually shown in syntax statements
or in all examples; however, assume that you
must press the RETURN key after entering a
command or responding to a prompt.)

A key combination, shown in uppercase with a
slash separating two key names, indicates that
you hold down the first key while you press the
second key. For example, the key combination
CTRL/C indicates that you hold down the key
labeled CTRL while you press the key labeled C.
In examples, a key combination is enclosed in a
box.

In examples, system output (what the system
displays) is shown in black. User input (what
you enter) is shown in red.

In examples, a vertical series of periods, or
ellipsis, means either that not all the data that
the system would display in response to a
command is shown or that not all the data a
user would enter is shown.

In command syntax or examples, a horizontal
ellipsis indicates that additional parameters,
values, or other information can be entered, that
preceding items can be repeated one or more
times, or that optional arguments in a statement
have been omitted.

Brackets indicate that the enclosed item is
optional. (Brackets are not, however, optional
in the syntax of a directory name in a file
specification or in the syntax of a substring
specification in an assignment statement.)

The term quotation marks is used to refer
to double quotation marks ("). The term
apostrophe (') is used to refer to a single
quotation mark.

New and Changed Features

The following technical changes have been made to the VMS Debugger since
VAX/VMS Version 4.4. See the command dictionary and any referenced
chapter or appendix for complete details.

The following enhancements have been made to MACRO support, to match
the support available with other languages.

• Source display is now available (in both line mode and screen mode).

• When the language is set to MACRO, the default behavior of the STEP
command is STEP /LINE (not STEP /INSTRUCTION, the previous
behavior).

• When the language is set to MACRO, the debugger interprets an address
expression used in a language expression as the current value stored
at that address (not the address denoted by the address expression, the
previous behavior). See Chapter 3.

The SET WATCH command now permits you to set watchpoints on nonstatic
variables (variables allocated on the stack or in registers). The new /INTO,
/OVER, and /[NO]STATIC qualifiers are used with nonstatic watchpoints (see
Chapter 2).

The STEP and CALL commands may now be entered at exception
breakpoints (see Chapter 8).

The new /CALLS qualifier of the SET MODULE command sets all modules
that currently have routines on the call stack.

When examining instructions, you c&n now obtain the address and contents
of instruction operands. You can either use the command
EXAMINE/OPERANDS or first enter the command SET MODE OPERANDS
to establish the default behavior of the EXAMINE command for instructions.

The SP AWN command has been enhanced. The new /INPUT qualifier
specifies an input DCL command file to be executed in a subprocess. The
new /OUTPUT qualifier specifies an output file to capture the output from a
SPAWN operation.

The following enhancements have been made to screen mode (see
Appendix C):

• Register displays are now dynamic by default. The register information is
automatically reformatted when you resize the window, and the window
is automatically resized and reformatted when you change the screen
height or width.

• The predefined windows now include eighths of the screen height. These
built-in names have the prefix E. For example, window RE123 occupies
the top three eighths of the right half of the screen.

• Source display is now available for MACRO programs.

If your program includes any VAX Ada® code, two predefined breakpoints are
automatically set at debugger startup. These breakpoints are associated with
Ada exception conditions (see Chapter 8 and the VAX Ada documentation).

® Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

xxi

New and Changed Features

xxii

The following enhancements have been made to the support for workstations.
The new SET MODE [NO]SEP ARATE command provides an optional
separate window to display debugger input and output. The new /[NO]POP
qualifier of the SET PROMPT command controls whether the debugger
window is automatically popped over other windows when the debugger
prompts for commands.

Part I Using the VMS Debugger
This part contains task oriented and conceptual information about the
debugger, organized into eight chapters.

1 Introduction to the VMS Debugger

This chapter is a tutorial introduction to the VMS Debugger (debugger). The
following information is provided:

• An overview of the debugger's features (Section 1.1)

• Enough information to get you started, including a sample debugging
session (Section 1.2)

• A list of the debugger commands, by function (Section 1.3)

Once you have read this chapter, consult the rest of this manual for additional
details.

1 . 1 Overview of the Debugger
The debugger is a tool that helps you locate run-time programming or logic
errors, also known as bugs. You use the debugger with a program that has
been compiled and linked successfully but that does not run correctly. For
example, the program may give incorrect output, go into an infinite loop, or
terminate prematurely.

You locate errors with the debugger by observing and manipulating your
program interactively as it executes. By entering debugger commands at the
terminal, you can do the following:

• Control the program's execution (start the program, stop at points of
interest, resume execution, and so on)

• Trace the execution path of the program

• Monitor changes in variables and other program entities

• Monitor events (for example, exception conditions)

• Examine and modify the contents of variables, or force events to occur

• In some cases, test the effect of modifications without having to edit the
source code, recompile, and relink

These are the basic debugging techniques. Once you are satisfied that you
have found the error in the program, you can edit the source code and
compile, link, and execute the corrected version.

As you use the debugger and its documentation, you will discover variations
on the basic techniques. You can also tailor the debugger for your own needs.
The next section summarizes the debugger features.

1-1

1.1.1

Introduction to the VMS Debugger
1 . 1 Overview of the Debugger

Functional Features
Programming Language Support

You can use the debugger with the following VMS supported languages:
Ada® , BASIC, BLISS, C, COBOL, DIBOL, FORTRAN, MACR0-32, Pascal,
PL/I, RPG II, and SCAN. The debugger recognizes the syntax, data typing,
operators, expressions, and other constructs of a given language. If your
program is written in more than one language, you can change the debugging
context from one language to another during a debugging session with the
SET LANGUAGE command.

Symbolic Debugging

The VMS Debugger is a symbolic debugger. You can refer to program
locations by the symbols you used for them in your program - the names
of variables, routines, labels, and so on. You do not need to use virtual
addresses to refer to memory locations.

Support for All Data Types

The debugger understands all language data types, such as integer, floating
point, enumeration, record, array, and so on. It displays program variables
according to their declared type.

Flexible Data Format

The debugger permits a variety of data forms and types for entry and display.
By default, the source language of the program determines the format used
for the entry and display of data. You can also impose other formats. For
example, by using a type or radix qualifier with the EXAMINE command,
you can display the contents of a program location in ASCII~ word-integer, or
hexadecimal format.

Starting and Resuming Program Execution

You start and resume program execution with the GO or STEP commands.
The GO command causes the program to execute until a breakpoint is
reached, a watchpoint is modified, an exception condition occurs, or the
program terminates. The STEP command enables you to execute a specified
number of lines or instructions, or up to the next instruction of a specified
class.

Breakpoints

By setting breakpoints with the SET BREAK command, you can suspend
program execution at specified locations and check the current status of your
program. Rather than specify a location, you can also suspend execution on
certain classes of instructions or on every source line. Also you can suspend
execution on certain kinds of events, such as exceptions and Ada tasking
events.

® Ada is a registered trademark of the U.S. Government (Ada Joint Program Office).

1-2

1.1.2

Introduction to the VMS Debugger
1 .1 Overview of the Debugger

Tracepoints

By setting tracepoints with the SET TRACE command, you can monitor the
path of program execution through specified locations. When a tracepoint
is triggered, the debugger reports that the tracepoint was reached and then
continues execution. As with the SET BREAK command, you can also trace
through classes of instructions and monitor events.

Watchpoints

By setting a watchpoint with the SET WATCH command, you can cause
execution to stop whenever a particular variable or other memory location
has been modified. When a watchpoint is triggered, the debugger suspends
execution at that point and reports the old and new values of the variable.

Manipulation of Variables and Program Locations

With the EXAMINE command, you can determine the value of a variable or
program location. The DEPOSIT command enables you to change that value.
You can then continue execution to see the effect of the change, without
having to recompile, relink, and rerun the program.

Evaluation of Expressions

With the EVALUATE command, you can compute the value of a source­
language expression or an address expression. You specify expressions and
operators in the syntax of the language to which the debugger is currently set.

Control Structures

You can use logical control structures (FOR, IF, REPEAT, WHILE) in
commands to control the execution of other commands.

Shareable Image Debugging

You can debug shareable images (images that are not directly executable).
The SET IMAGE command makes it possible for you to reference the symbols
declared in a shareable image.

Terminal and Workstation Support

The debugger supports all VT-series terminals and Micro VAX workstations.

Convenience Features
Online HELP

Online HELP is always available during a debugging session. Online HELP
contains information on all debugger commands and selected topics.

Source Code Display

You can display lines of source code for all supported languages during a
debugging session.

1-3

Introduction to the VMS Debugger
1 . 1 Overview of the Debugger

1-4

Screen Mode

In screen mode, you can display and capture various kinds of information
in scrollable windows that can be moved around the screen and resized.
Automatically updated source, instruction, and register displays are available.
You can selectively direct debugger input, output, and diagnostic messages to
displays. You can also create "DO" displays that capture the output of specific
command sequences.

Keypad Mode

When you invoke the debugger, several commonly used debugger command
sequences are assigned by default to the keys of the numeric keypad (if
you have a VT52, VTlOO, or LK201 keyboard). Thus, you can enter these
commands with fewer keystrokes than if you }'Vere to type them at the
keyboard. You can also create your own key definitions.

Source Editing

As you find errors during a debugging session, you can use the EDIT
command to invoke any editor available on your system. You specify the
editor you wish with the SET EDITOR command. If you use the VAX
Language-Sensitive Editor, the editing cursor is automatically positioned
within the source file whose code appears in the screen-mode source display.

Command Procedures

You can direct the debugger to execute a command procedure (a file of
debugger commands) to recreate a debugging session, to continue a previous
session, or to avoid typing the same debugger commands many times during
a debugging session. You can pass parameters to command procedures.

Initialization Files

You can create an initialization file containing commands to set your default
debugging modes, screen display definitions, keypad key definitions, symbol
definitions, and so on. When you invoke the debugger, those commands are
executed automatically to tailor your debugging environment.

Log Files

You can record in a log file the commands you enter during a debugging
session and the debugger's responses to those commands. You can use
log files to keep track of your debugging efforts, or you can use them as
command procedures in subsequent debugging sessions.

Symbol Definitions

You can define your own symbols to represent lengthy commands, address
expressions, or values in abbreviated form.

Introduction to the VMS Debugger
1 .2 Getting Started with the Debugger

1 .2 Getting Started with the Debugger

1.2 .. 1

The way you use the debugger depends on several factors: the kind of
program you are working on, the kinds of errors you are looking for, and
your own personal style and experience with the debugger. This section
explains the following basic functions that apply to most situations.

• Compiling and linking your program to prepare for debugging

• Starting and terminating a debugging session

• Entering debugger commands and getting online HELP

• Viewing your source code in screen mode and with the TYPE command

• Controlling program execution with the GO, STEP, and SET BREAK
commands, and monitoring execution with the SHOW CALLS, SET
TRACE, and SET WATCH commands

• Examining and manipulating data with the EXAMINE, DEPOSIT, and
EVALUATE commands

• Controlling symbol references with path names and the SET MODULE
and SET SCOPE commands

At the end of this section, a sample debugging session with a simple program
illustrates how to locate an error and correct it.

Several examples are language specific. However, the general concepts are
readily adaptable to all supported languages.

Compiling and Linking to Prepare for Debugging
Before you can use the debugger, you must compile and link the modules
(compilation units) of your program as explained in this section. The
following example shows how to compile and link a FORTRAN program
(consisting of a single compilation unit named FORMS) before using the
debugger.

Note: The /DEBUG and /NOOPTIMIZE qualifiers may be compiler command
defaults for some languages. These qualifiers are used in the example for
emphasis.

$ FORTRAN/DEBUG/NOOPTIMIZE FORMS
$ LINK/DEBUG FORMS
$

The /DEBUG qualifier on the compiler command (FORTRAN in this case)
causes the compiler to write the symbol records associated with FORMS into
the object module, FORMS.OBJ. These records permit you to use the names
of variables and other symbols declared in FORMS in debugger commands (if
your program has several compilation units, you must compile each unit that
you want to debug with the /DEBUG qualifier).

Some compilers optimize the object code to reduce the size of the program or
make it run faster. In such cases you should compile your program with the
/NOOPTIMIZE (or equivalent) command qualifier. Otherwise the contents
of some program locations may be inconsistent with what you might expect
from viewing the source code.

1-5

1.2.2

Introduction to the VMS Debugger
1 .2 Getting Started with the Debugger

The /DEBUG qualifier on the LINK command causes the linker to include all
symbol information that is contained in FORMS.OBJ in the executable image.
The qualifier also causes the VMS image activator to start the debugger at run
time. (Again, if your program has several object modules, you may need to
specify other modules in the LINK command~)

Starting and Terminating a Debugging Session

1-6

After you have compiled and linked your program with the /DEBUG
command qualifier, as explained in Section 1.2.1, you can then invoke the
debugger by entering the DCL command RUN. The following example shows
how the debugger identifies itself after you invoke it:

$ RUN FORMS

VAX DEBUG Version 5.0

%DEBUG-I-INITIAL, language is FORTRAN, module set to 'FORMS'
DBG>

The "INITIAL" message indicates that the debugging session is initialized
for a FORTRAN program and that the name of the main program unit (the
module containing the image transfer address) is FORMS. The initialization
sets up any language-dependent debugger parameters.

At this point, execution is suspended at the start of the main program.
The DBG > prompt, which is displayed whenever the debugger suspends
execution, indicates that you can now enter debugger commands.
(Section 1.2.3 explains how to enter commands, and Section 1.2.5 explains
how to start and stop execution.)

To terminate a debugging session and return to DCL level any time th~
DBG> prompt is displayed, type EXIT or press CTRL/Z:

DBG> EXIT
$

To interrupt a debugging session and return to DCL level, press CTRL/Y.
This may be necessary if your program loops or if you want to interrupt a
debugger command that is still in progress.

To resume the debugging session after a CTRL/Y interruption, type either
the CONTINUE or DEBUG command at DCL level. Use the CONTINUE
command to return to the exact point at which you interrupted the debugging
session. If you interrupted the session because of an infinite loop, use
the DEBUG command instead. The DEBUG command returns you to the
debugger prompt so that you can enter another command. For example:

DBG> GO

(infinite loop)
icTRL/YI
Interrupt
$ DEBUG
DBG>

1.2.3

1.2.4

Introduction to the VMS Debugger
1.2 Getting Started with the Debugger

The following message, displayed during a debugging session, indicates that
your program has completed normally:

%DEBUG-I--EXITSTATUS, is 1 %SYSTEM-S-NORMAL, normal successful completion'
DBG>

Entering Debugger Commands
You can enter debugger commands any time you see the debugger prompt
(DBG>). To enter a command, type it at the keyboard and press RETURN.
You can enter several commands on a line by separating the command strings
with semicolons (;). As with DCL commands, you can continue a command
string on a new line by ending the line with a hyphen (-), and you can
abbreviate debugger commands and qualifiers to unique characters. Also,
you can use the up arrow and down arrow keys to recall command lines,
and the left arrow and right arrow keys to position the cursor for editing the
command line. See Sections 1 and 2 of the command dictionary for complete
rules on entering debugger commands.

Entering the HELP command gives online HELP on debugger commands and
selected topics. For example, if you enter the command HELP STEP, help on
the STEP command is displayed.

When you invoke the debugger, a few commonly used command sequences
are automatically assigned to the keys on the numeric keypad (to the right of
the main keyboard). By pressing keypad keys, you can enter these commands
with fewer key strokes. The predefined key functions are identified in
Figure 1-1. In addition to the STEP, GO, SHOW CALLS, and EXAMINE
commands, several functions that manipulate screen-mode displays are bound
to the keys. You can also redefine key functions with the DEFINE/KEY
command.

Most keypad keys have three predefined functions-DEFAULT, GOLD, and
BLUE. To obtain a key's DEFAULT function, press the key. To obtain its
GOLD function, first press the PFl key, then the given key. To obtain its
BLUE function, first press the PF4 key, then the given key. In Figure 1-1, the
DEFAULT, GOLD, and BLUE functions are listed within each key's outline,
from top to bottom, respectively. For example, pressing keypad key 0 issues
the command STEP (DEFAULT function); pressing key PFl and then key 0
issues the command STEP /INTO (GOLD function); pressing key PF4 and
then key 0 issues the command STEP /OVER (BLUE function).

Normally, keys 2, 4, 6, and 8 scroll screen displays down, left, right, or up,
respectively. By putting the keypad in the MOVE, EXPAND, or CONTRACT
state (as indicated in Figure 1-1), you can also use these keys to move,
expand, or contract displays in four directions. Enter the command HELP
KEYPAD to get HELP on the keypad key definitions.

Viewing Your Source Code
The debugger provides two modes for displaying information: noscreen mode
and screen mode. By default, when you invoke the debugger, you are in
noscreen mode, but you may find that it is easier to view source code in
screen mode. The following sections briefly describe both modes.

1-7

Introduction to the VMS Debugger
1 .2 Getting Started with the Debugger

Figure 1-1 Keypad Key Functions Predefined by the Debugger

, F17 "' F18 F19 F20 ' DEFAULT MOVE EXPAND CONTRACT
(SCROLL) (EXPAND+) (EXPAND-)

\. ~

/' PF1 PF2 PF3 PF4 """
GOLD HELP DEFAULT SET MODE SCREEN BLUE

GOLD HELP GOLD SET MODE NOSCR BLUE

GOLD HELP BLUE DISP/GENERATE BLUE

7
,8

"""
9 -

DISP SRC,INST,OUT SCROLL/UP DISPLAY next DISP next at FS

DISP INST.REG.OUT SCROLL/TOP

SCROLL/UP .•• DISP SRC, OUT

\.. ~
~

""'
5 '6

""" ' SCROLL/LEFT EX/SOU .0\ %PC SCROLL/RIGHT GO

SCROLL/LEFT:255 SHOW CALLS SCROLL/RIGHT:255

SCROLL/LEFT ... SHOW CALLS 3 SCROLL/RIGHT ... SEL/INST next

\... ~ \.. ~
1 ,2

"""
3 ENTER

EXAMINE SCROLL/DOWN SEL/SCROLL next
EXAMft(prev) SCROLL/BOTTOM SEL/OUTPUT next

SCROLL/DOWN ... SEL/SOURCE next

\.. ..J
0 . ENTER

STEP RESET

STEP/INTO RESET

STEP/OVER RESET

\.. ...)

LK201 Keyboard:

Press Keys 2,4,6,8
F17 SCROLL "CONTRACT"

F18 MOVE
F19 EXPAND
F20 CONTRACT

VT-100 Keyboard:

Type Keys 2,4,6,8
SET KEY /ST ATE=DEFAUL T SCROLL
SET KEY /ST ATE=MOVE MOVE
SET KEY /ST A TE=EXPAND EXPAND
SET KEY /ST A TE=CONTRACT CONTRACT

1.2.4.1 Noscreen Mode
Noscreen mode is the default, line-oriented mode of displaying input
and output. The interactive examples throughout this chapter, excluding
Section 1.2.4.2, illustrate noscreen mode.

1-8

1.2.4.2

Introduction to the VMS Debugger
1 .2 Getting Started with the Debugger

In noscreen mode, use the TYPE command to display one or more source
lines. For example, the following command displays line 7 of the module
where execution is currently suspended:

DBG> TYPE 7
module SWAP_ROUTINES

7: TEMP := A;
DBG>

The display of source lines is independent of program execution. To display
source code from a module other than the one where execution is currently
suspended, use the TYPE command with a path name to specify the module.
For example, the following command displays lines 16 through 21 of module
TEST:

DBG> TYPE TEST\16:21

Path names are discussed in more detail in Section 1.2.5.1.2.

You can also use the EXAMINE/SOURCE command to display the source
line for a routine or any other program location that is associated with an
instruction.

To invoke noscreen mode from screen mode, press the keypad key sequence
GOLD-PF3 (or type SET MODE NOSCREEN). Note that you can use
the TYPE and EXAMINE/SOURCE commands in screen mode as well as
noscreen mode.

Screen Mode
Screen mode provides the easiest way to view your source code. To invoke
screen mode, press keypad key PF3 (or type SET MODE SCREEN). In screen
mode, by default the debugger splits the screen into three displays named
SRC, OUT, and PROMPT, as illustrated in Figure 1-2.

1-9

Introduction to the VMS Debugger
1 .2 Getting Started with the Debugger

1-10

Figure 1-2 Default Screen Mode Display Configuration

-SRC: module SWAP ROUTINES-scroll-source--------------
2: with TEXT_IO; use TEXT_IO;
3:
4:
5:
6:
7:

-> 8:
9:

10:
11:

package body SWAP ROUTINES is
procedure SWAPl (A,B: in out INTEGER) is

TEMP: INTEGER;
begin

TEMP :=A;
A := B;
B 1= TEMP;

end;

12: procedure SWAP2 (A,BI in out COLOR) is
-OUT-output-------------------------
stepped to SWAP ROUTINES\SWAPl\-\LINE 8
SWAP_ROUTINES\SWAPl\A: 35

-PROMPT-error-program-prompt-----------------­
DBG> STEP
DBG> EXAMINE A
DBG>

ZK-6502-HC

The SRC display shows the source code of the module (compilation unit)
where execution is currently suspended. An arrow in the left column points
to the source line corresponding to the current value of the program counter,
PC (the PC is a VAX register that contains the address of the next instruction
to be executed). The line numbers, which are assigned by the compiler, match
those in a listing file. As you execute the program, the arrow moves down
and the source code is scrolled vertically to center the arrow in the display.

The OUT display captures debugger output from the commands that you
enter. The PROMPT display shows the debugger prompt, your input,
debugger diagnostic messages, and program output.

Both SRC and OUT are scrollable so you can see whatever information may
scroll beyond the display window's edge. Use keypad key 3 to select the
display to be scrolled (by default, SRC is scrolled). Use keypad key 8 to
scroll up and keypad key 2 to scroll down. Scrolling a display does not affect
program execution.

If the debugger cannot locate source lines for the routine where execution is
currently suspended, it tries to display source lines for the next routine down
on the call stack for which source lines are available and issues the following
message:

%DEBUG-I-SOURCESCOPE, Source lines not available for .O\%PC.
Displaying source in a caller of the current routine.

Source lines may not be available for a variety of reasons. For example:

• Execution is currently suspended within a routine for which no source
code is available (for example, a system or shareable image routine).

• Execution is currently suspended within a routine that was compiled
without the /DEBUG compiler command qualifier (or with /NODEBUG).

• Execution is currently suspended within a routine whose module is not
"set" (module setting is explained in Section 1.2.7.1).

1.2.5

Introduction to the VMS Debugger
1 .2 Getting Started with the Debugger

• The source file was moved to a different directory after it was compiled
(the location of source files is embedded in the object modules).

Controlling and Monitoring Program Execution
This section covers the following topics:

1.2.5.1

1.2.5.1.1

• Starting and resuming program execution with the GO and STEP
commands

• Determining where execution is currently suspended with the SHOW
CALLS command

• Suspending program execution with breakpoints

• Tracing program execution with tracepoints

• Monitoring changes in variables with watchpoints

With this information you can pick program locations where you can then
test and manipulate the contents of variables as described in Section 1.2.6.

Starting and Resuming Program Execution
There are two basic commands for starting and resuming program execution:
GO and STEP.

The GO Command
The GO command starts execution, which· continues until forced to stop.
Typical uses of the GO command are illustrated in this section.

With most programming languages, when you invoke the debugger, execution
is initially suspended directly at the start of the main program. Entering a GO
command at this point quickly enables you to test for an exception condition
or an infinite loop.

If an exception condition that is not handled by your program occurs, the
debugger interrupts execution at that point so that you can enter commands.
If you are using screen mode, the pointer in the source display indicates
where execution stopped. You can also use the SHOW CALLS command
(explained in Section 1.2.5.2) to identify the currently active routine calls (the
call stack).

If an infinite loop occurs, the program does not terminate, so the debugger
prompt does not reappear. To obtain the prompt, interrupt the program with
CTRL/Y and then enter the DCL DEBUG command. You can then look at
the source display and a SHOW CALLS display to find where execution is
suspended.

In general, the most common use of the GO command is in conjunction
with breakpoints, tracepoints, and watchpoints, as described in Sections
1.2.5.3, 1.2.5.4, and 1.2.5.5, respectively. If you set a breakpoint in the path
of execution and then enter the GO command, execution is suspended at that
breakpoint. Similarly, if you set a tracepoint, execution is monitored through
that tracepoint. And if you set a watchpoint, execution is suspended when
the value of the "watched" variable changes.

1-11

Introduction to the VMS Debugger
1 .2 Getting Started with the Debugger

1.2.5.1.2

1-12

The STEP Command
The STEP command is useful when you want to execute a specified number
of source lines or instructions, or if you want to execute the program to the
next instruction of a particular kind, for example to the next CALL instruction.

By default, the STEP command executes a single source line at a time. In the
following example, the STEP command executes one line, reports the action
("stepped to ... "), and displays the line number (27) and source code of the
next line to be executed:

DBG> STEP
stepped to TEST\COUNT\%LINE 27

27: x := x + 1;
DBG>

Execution is now suspended at the first machine code instruction for line 27
of module TEST. Line 27 is in COUNT, a routine within module TEST.

When displaying a program symbol (for example, a line number, routine
name, or variable name), the debugger always uses a path name. A path
name consists of the symbol plus a prefix that identifies the symbol's location.
In the preceding example, the path name is TEST\ COUNT\ %LINE 27. The
leftmost element of a path name is the module name. Moving toward the
right, the path name lists any successively nested routines and blocks that
enclose the symbol. A backslash character (\) is used to separate elements
(except when the language is Ada, where a period is used, to parallel Ada
syntax).

A path name uniquely identifies a symbol of your program to the debugger.
In general, you need to use path names in commands only if the debugger
cannot resolve a symbol ambiguity in your program (see Section 1.2.7).
Usually the debugger can figure out the symbol you mean from its context.

When using the STEP command, you can also specify a number of lines for
the STEP command to execute. In the following example, the STEP command
executes three lines:

DBG> STEP 3
stepped to TEST\COUNT\%LINE 34

34: SWAP(X,Y);
DBG>

Note that only those source lines for which code instructions were generated
by the compiler are recognized as executable lines by the debugger. The
debugger skips over any other lines-for example, comment lines. Also,
if a line has more than one statement on it, the debugger executes all the
statements on that line as part of the single step.

You can specify different stepping modes, such as stepping by instruction
rather than by line (SET STEP INSTRUCTION). Also, by default, the
debugger steps "over" called routines-execution is not suspended within
a called routine, although the routine is executed. By entering the SET STEP
INTO command, you tell the debugger to suspend execution within called
routines as well as within the routine where execution is currently suspended
(SET STEP OVER is the default mode).

1.2.5.2

1.2.5.3

Introduction to the VMS Debugger
1 .2 Getting Started with the Debugger

Determining Where Execution Is Currently Suspended
The SHOW CALLS command is useful when you are unsure where execution
is suspended during a debugging session (for example, after returning to the
debugger following a CTRL/Y interrupt).

The command shows a traceback that lists the sequence of active calls leading
to the routine where execution is suspended. For example:

DBG> SHOW CALLS
module name routine name line rel PC abs PC

*TEST PRODUCT 18 00000009 0000063C
*TEST COUNT 47 00000009 00000647
*MY_PROG MY_PROG 21 00000000 00000653
DBG>

This example indicates that execution is suspended at line 18 of routine
PRODUCT (in module TEST), which was called from line 47 of routine
COUNT (in module TEST), which was called from line 21 of routine
MY_pROG (in module MY_pROG).

For each routine (beginning with the one where execution is suspended), the
debugger displays the following information:

• Name of the module that contains the routine

• Name of the routine

• Line number at which the call was made (or at which execution is
suspended, in the case of the current routine)

• Corresponding PC values (the relative PC address from the start of the
routine and the absolute PC address of the program)

Suspending Program Execution
The SET BREAK command enables you to select locations at which to
suspend program execution (breakpoints). You can then enter commands
to check the call stack, examine the current values of variables, and so on.
You resume execution from a breakpoint with the GO or STEP commands.

The following example shows a typical use of the SET BREAK command:

DBG> SET BREAK COUNT
DBG> GO

break at PROG2\COUNT
54: procedure COUNT(X,Y:INTEGER);

DBG>

In the example, the SET BREAK command sets a breakpoint on routine
COUNT (at the start of the routine's code); the GO command starts execution;
when routine COUNT is encountered, execution is suspended, the debugger
announces that the breakpoint at COUNT has been reached ("break at ... "),
displays the source line (54) where execution is suspended, and prompts for
another command. At this breakpoint, you could use the STEP command
to step through routine COUNT and then use the EXAMINE command
(discussed in Section 1.2.6.1) to check on the values of X and Y.

1-13

Introduction to the VMS Debugger
1.2 Getting Started with the Debugger

1-14

When using the SET BREAK command, you can specify program locations
using various kinds of address expressions (for example, line numbers, routine
names, instructions, virtual memory addresses, byte offsets). With high level
languages, you typically use routine names, labels, or line numbers, possibly
with path names to ensure uniqueness.

Routine names and labels should be specified as they appear in the source
code. Line numbers may be derived from either a source code display or a
listing file. When specifying a line number, use the prefix %LINE. Otherwise
the debugger interprets the line number as a memory location. For example,
the next command sets a breakpoint at line 41 of the module where execution
is currently suspended. The breakpoint causes the debugger to suspend
further execution when the PC value is at the start of line 41.

DBG> SET BREAK %LINE 41
DBG>

Note that you can set breakpoints only on lines that resulted in machine code
instructions. The debugger warns you if you try to do otherwise (for example
on a comment line). If you want to pick a line number in a module other
than the one where execution is suspended, you must specify the module's
name in a path name. For example:

DBG> SET BREAK SCREEN_IO\%LINE 58
DBG>

You can also use the SET BREAK command with a qualifier, but no
parameter, to break on every line, or on every CALL instruction, and so
on. For example:

DBG> SET BREAK/LINE
DBG> SET BREAK/CALL
DBG>

Also, you can set breakpoints on events, such as exceptions, or state
transitions in Ada tasking programs.

You can conditionalize a breakpoint (with a "WHEN" clause) or specify that
a list of commands be executed at the breakpoint (with a "DO" clause). For
example, the next command sets a breakpoint on the label LOOP3. The
command's DO clause displays the value of the variable TEMP whenever the
breakpoint is triggered, as shown in the following example:

DBG> SET BREAK LOOP3 DO (EXAMINE TEMP)
DBG> GO

break at COUNTER\LOOP3
37: LOOP3: FOR I = 1 TO 10 DO

COUNTER\TEMP: 284.19
DBG>

To display the currently active breakpoints, enter the command SHOW
BREAK:

1.2.5.4

Introduction to the VMS Debugger
1 .2 Getting Started with the Debugger

DBG> SHOW BREAK
breakpoint at SCREEN_IO\%LINE 58
breakpoint at PROG2\LOOP3

do (EXAMINE TEMP)

DBG>

To cancel a breakpoint, enter the command CANCEL BREAK, specifying the
program location exactly as you did when setting the breakpoint. CANCEL
BREAK/ ALL cancels all breakpoints.

Tracing Program Execution
The SET TRACE command enables you to select locations for tracing the
execution of your program (tracepoints), without stopping its execution. After
setting a tracepoint, you can start execution with the GO command and then
monitor the path of execution, checking for unexpected behavior. By setting a
tracepoint on a routine, you can also monitor the number of times it is called.

As with breakpoints, every time a tracepoint is reached, the debugger issues
a message and displays the source line. But the program continues executing,
and the debugger prompt is not displayed. For example:

DBG> SET TRACE COUNT
DBG> GO

trace at PROG2\COUNT
54: procedure COUNT(X,Y:INTEGER);

This is the only difference between a breakpoint and a tracepoint. When
using the SET TRACE command, you specify address expressions, qualifiers,
and optional clauses exactly as with the SET BREAK command.

The /LINE qualifier causes the SET TRACE command to trace every line
and is a convenient means of checking the execution path. By default, lines
are traced within all called routines as well as the routine where execution
is suspended. If you do not want to trace system routines or routines in
shareable images, use the /NOSYSTEM or /NOSHARE qualifiers. For
example:

DBG> SET TRACE/LINE/NOSYSTEM/NOSHARE
DBG>

The /SILENT qualifier suppresses the trace message and source code display.
This is useful when you want to use the SET TRACE command to execute a
debugger command at the tracepoint. For example:

DBG> SET TRACE/SILENT %LINE 83 DO (EXAMINE STATUS)
DBG> GO

SCREEN_IO\CLEAR\STATUS: OFF

1-15

Introduction to the VMS Debugger
1 .2 Getting Started with the Debugger

1.2.5.5

1-16

Monitoring Changes in Variables
The SET WATCH command enables you to specify program variables that the
debugger monitors as your program executes. This process is called setting
watchpoints. If the program modifies the value of a "watched" variable,
the debugger suspends execution and displays information. The debugger
monitors watchpoints continuously during program execution. (Note that
the SET WATCH command may also be used to monitor arbitrary program
locations, not just variables.)

To set a watchpoint on a variable, specify the variable's name with the SET
WATCH command. For example, the following command sets a watchpoint
on the variable TOTAL:

DBG> SET WATCH TOTAL
DBG>

Subsequently, every time the program modifies the value of TOTAL, the
watchpoint is triggered.

The next example shows what happens when your program modifies the
contents of a watched variable.

DBG> SET WATCH TOTAL
DBG> GO

watch of SCREEN_IO\TOTAL at SCREEN_IO\%LINE 13
13: TOTAL := TOTAL + 1;

old value: 16
new value: 17

break at SCREEN_IO\%LINE 14
14: POP(TOTAL);

DBG>

In this example, a watchpoint is set on the variable TOTAL and execution
is started. When the value of TOTAL changes, execution is suspended. The
debugger announces the event ("watch of ... "), identifying where TOTAL
changed (the start of line 13) and the associated source line. The debugger
then displays the old and new values and announces that execution has been
suspended at the start of the next line (14). Finally, the debugger prompts for
another command. Note that when a change in a variable occurs at a point
other than the start of a source line, the debugger gives the line number plus
the byte offset from the start of the line.

This technique for setting watchpoints always applies to static variables. A
static variable is associated with the same virtual memory location throughout
program execution.

A variable that is allocated on the stack or in a register (a nonstatic variable)
exists only when its defining routine is active (on the call stack). If you try
to set a watchpoint on a nonstatic variable when its defining routine is not
active, the debugger issues a warning:

DBG> SET WATCH Y
%DEBUG-W-SYMNOTACT, nonstatic variable 'Y' is not active
DBG>

1.2.6

Introduction to the VMS Debugger
1 .2 Getting Started with the Debugger

A convenient technique for.setting a watchpoint on a nonstatic variable is to
set a tracepoint on the defining routine, also specifying a DO clause to set
the watchpoint whenever execution reaches the tracepoint. In the following
example, a watchpoint is set on the nonstatic variable Y in routine ROUT3.
After the tracepoint is triggered, the WPTTRACE message indicates that the
nonstatic watchpoint is set. And the watchpoint is triggered when the value
of Y changes:

DBG> SET TRACE/NOSOURCE ROUT3 DO (SET WATCH Y)
DBG> GO

trace at routine MOD4\ROUT3
%DEBUG-I-WPTTRACE, nonstatic watchpoint, tracing every instruction

watch of MOD4\ROUT3\Y at MOD4\ROUT3\%LINE 16
16: y := 4
old value: 3
new value: 4

break at MOD4\ROUT3\%LINE 17
17: SWAP(X,Y);

DBG>

The debugger monitors nonstatic watchpoints by tracing every instruction.
Because this slows execution speed compared to monitoring static
watchpoints, the debugger informs you (with the WPTTRACE message)
when it is monitoring nonstatic watchpoints.

When execution returns to the calling routine, the nonstatic variable is no
longer active, so the debugger automatically cancels the watchpoint and
issues a message to that effect.

Examining and Manipulating Program Data

1.2.6.1

This section explains how to use the EXAMINE, DEPOSIT, and EVALUATE
commands to display and modify the contents of variables and evaluate
expressions. Note that before you can examine or deposit into a nonstatic
variable (as defined in Section 1.2.5.5), its defining routine must be active (on
the call stack).

Displaying the Value of a Variable
To display the current value of a variable, use the EXAMINE command. It
has the following form:

EXAMINE variable-name

The debugger recognizes the compiler-generated data type of the variable
you specify and retrieves and formats the data accordingly. The following
examples show some uses of the EXAMINE command.

Examine a string variable:

DBG> EXAMINE EMPLOYEE_NAME
PAYROLL\EMPLOYEE_NAME: "Peter C. Lombardi"
DBG>

1-17

Introduction to the VMS Debugger
1.2 Getting Started with the Debugger

1.2.6.2

1-18

Examine three integer variables:

DBG> EXAMINE WIDTH, LENGTH, AREA
SIZE\WIDTH: 4
SIZE\LENGTH: 7
SIZE\AREA: 28
DBG>

Examine a two-dimensional array of real numbers (three per dimension):

DBG> EXAMINE REAL_ARRAY
PROG2\REAL_ARRAY

(1,1): 27.01000
(1,2): 31.00000
(1,3): 12.48000
(2,1): 15.08000
(2,2): 22.30000
(2,3): 18.73000

DBG>

Examine element 4 of a one-dimensional array of characters:

DBG> EXAMINE CHAR_ARRAY(4)
PROG2\CHAR_ARRAY(4): 'm'
DBG>

Examine a record variable (COBOL example):

DBG> EXAMINE PART
INVENTORY\PART:

ITEM: "WF-1247"
PRICE: 49.95
IN_STOCK: 24

DBG>

Examine a record component (COBOL example):

DBG> EXAMINE IN_STOCK OF PART
INVENTORY\IN-STOCK of PART:

IN_STOCK: 24
DBG>

Note that the EXAMINE command may be used with any kind of address
expression (not just a variable name) to display the contents of a program
location. The debugger associates certain default data types with untyped
locations. You can override the defaults for typed and untyped locations if
you want the data to be interpreted and displayed in some other data format.

Changing the Value of a Variable
To change the value of a variable, use the DEPOSIT command. It has the
following form:

DEPOSIT variable-name = value

The DEPOSIT command is like an assignment statement in most
programming languages.

In the following examples, the DEPOSIT command assigns new values to
different variables. The debugger checks that the value assigned, which may
be a language expression, is consistent with the data type and dimensional
constraints of the variable.

DBG> DEPOSIT X = -14

Introduction to the VMS Debugger
1 .2 Getting Started with the Debugger

Deposit a string value (it must be enclosed in quotation marks (") or
apostrophes (')):

DBG> DEPOSIT PART_NUMBER = "WG-7619.3-84"
DBG>

Deposit an integer expression:

DBG> DEPOSIT WIDTH = CURRENT_WIDTH + 10
DBG>

Deposit element 12 of an array of characters (you cannot deposit an entire
array aggregate with a single DEPOSIT command, only an element):

DBG> DEPOSIT C_ARRAY(12) := 'K'
DBG>

Deposit a record component (you cannot deposit an entire record aggregate
with a single DEPOSIT command, only a component):

DBG> DEPOSIT EMPLOYEE.ZIPCODE = 02172
DBG>

Deposit an out-of-bounds value (X was declared as a positive integer):

%DEBUG-I-IVALOUTBNDS, value assigned is out of bounds at or near DEPOSIT
DBG>

1.2.6.3

As with the EXAMINE command, you can specify any kind of address
expression (not just a variable name) with the DEPOSIT command. You can
override the defaults for typed and untyped locations if you want the data to
be interpreted in some other data format.

Evaluating Expressions
To evaluate a language expression, use the EVALUATE command. It has the
following form:

EVALUATE language-expression

The debugger recognizes the operators and expression syntax of the currently
set language. In the following example, the value 45 is assigned to the
integer variable WIDTH; the EVALUATE command then obtains the sum of
the current value of WIDTH and 7:

DBG> DEPOSIT WIDTH := 45
DBG> EVALUATE WIDTH + 7
52
DBG>

In the next example, the values TRUE and FALSE are assigned to the boolean
variables WILLING and ABLE, respectively; the EVALUATE command then
obtains the logical conjunction of these values:

DBG> DEPOSIT WILLING := TRUE
DBG> DEPOSIT ABLE := FALSE
DBG> EVALUATE WILLING AND ABLE
False
DBG>

1-19

1.2.7

Introduction to the VMS Debugger
1 .2 Getting Started with the Debugger

Controlling Symbol References

1.2.7.1

1-20

In most cases, the way in which the debugger handles the symbols (variable
names, and so on) that you reference in debugger commands is transparent to
you. However, the following two areas might require action:

• Module setting

• Multiply-defined symbols

Module Setting
To facilitate symbol searches, the debugger loads symbol records from the
executable image into a run-time symbol table (RST), where they can be
accessed efficiently. Unless a symbol record is in the RST, the debugger
cannot recognize or properly interpret that symbol.

Because the RST takes up memory, the debugger loads it dynamically,
anticipating what symbols you might want to reference in the course of
execution. The loading process is called module setting, because all symbol
records of a given module are loaded into the RST at one time.

At debugger startup, only the module containing the image transfer address is
set. As your program executes, whenever the debugger interrupts execution it
sets the module where execution is suspended. This enables you to reference
the symbols that should be visible at the current PC value.

If you try to reference a symbol in a module that has not been set, the
debugger warns you that the symbol is not in the RST. For example:

DBG> EXAMINE K
%DEBUG-W-NOSYMBOL, symbol 'K' is not in symbol table
DBG>

You must then use the SET MODULE command to set the module containing
that symbol explicitly:

DBG> SET MODULE MOD3
DBG> EXAMINE K
MOD3\ROUT2\K: 26
DBG>

The SHOW MODULE command lists the modules of your program and
identifies which modules are set.

Note that dynamic module setting may slow the debugger down as more and
more modules are set. If performance becomes a problem, you can use the
CANCEL MODULE command to reduce the number of set modules, or you
can disable dynamic module setting by entering the command SET MODE
NODYNAMIC (SET MODE DYNAMIC enables dynamic module setting).

1.2.7.2

Introduction to the VMS Debugger
1.2 Getting Started with the Debugger

Resolving Multiply-Defined Symbols
The debugger finds the symbols that you reference in commands according to
the following conventions. First, it looks in the PC scope (also known as scope
0), according to the scope and visibility rules of the currently set language.
This means that, typically, the debugger first looks within the block or routine
surrounding the current PC value (where execution is currently suspended).
If the symbol is not found, the debugger searches the nesting program unit,
then its nesting unit, and so on. The precise manner, which depends on the
language, guarantees that the correct declaration of a multiply-defined symbol
is selected.

The debugger must enable you to reference symbols throughout your
program, not just those that are visible in the PC scope as defined by the
language. This is necessary so you can set breakpoints in arbitrary areas or
examine arbitrary variables, and so on. Therefore, if the symbol is not visible
in the PC scope, the debugger continues searching. After the PC scope, the
debugger searches the scope of the calling routine (if any), then its caller, and
so on. Symbolically, the complete scope search list is denoted 0,1,2, ... ,n,
where scope 0 is the PC scope and n is the number of calls in the call stack.
Within each scope, the debugger uses the visibility rules of the language to
locate a symbol. If the symbol is not found, the debugger searches the rest of
the run-time symbol table.

If the debugger cannot resolve a symbol ambiguity, it issues a message. For
example:

DBG> EXAMINE Y
%DEBUG-W-NOUNIQUE, symbol 'Y' is not unique
DBG>

You can then use a path name prefix to uniquely specify a declaration of the
given symbol. First, use the SHOW SYMBOL command to identify all path
names associated with the given symbol; then use the desired path name
when referencing the symbol. For example:

DBG> SHOW SYMBOL Y
data MOD7\ROUT3\BLOCK1\Y
data MOD4\ROUT2\Y
DBG> EXAMINE MOD4\ROUT2\Y
MOD4\ROUT2\Y: 12
DBG>

If you need to refer to a particular declaration of Y repeatedly, use the SET
SCOPE command to establish a new default scope for symbol lookup. Then,
references to Y without a path name prefix specify the declaration of Y that is
visible in the new scope. For example:

DBG> SET SCOPE MOD4\ROUT2
DBG> EXAMINE Y
MOD4\ROUT2\Y: 12
DBG>

To display the current scope for symbol lookup, use the SHOW SCOPE
command. To restore the default scope, use the CANCEL SCOPE command.

1-21

1.2.8

Introduction to the VMS Debugger
1 .2 Getting Started with the Debugger

A Sample Debugging Session

1-22

This section goes through a debugging session with a simple FORTRAN
program that contains a logic error:

1: INTEGER INARR(20), OUTARR(20)
2: c
3: C ---Read the input array from the data file.
4: OPEN(UNIT=8, FILE='DATAFILE.DAT', STATUS='OLD')
5: READ(8,*) N, (INARR(I), I=1,N)
6: c
7: C ---Square all non-zero elements and store in OUTARR.
8: K = 0
9: DO 10 I = 1, N

10: IF(INARR(I) .NE. 0) THEN
11: OUTARR(K) = INARR(I)**2
12: ENDIF
13: 10 CONTINUE
14: c
15: C ---Print the squared output values. Then stop.
16: PRINT 20, K
17: 20 FORMAT(' Number of non-zero elements is' ,I4)
18: DO 40 I = 1, K
19: PRINT 30, I, OUTARR(I)
20: 30 FORMAT(' Element' ,I4,' has value' ,I6)
21: 40 CONTINUE
22: END

As you read, you can refer to this code to identify source lines. The program
reads a sequence of integer numbers from a data file (lines 4 and 5) and saves
these numbers in the array INARR. The program then enters a loop (lines 8
through 13) where it copies the square of each nonzero integer into another
array OUTARR. Finally, it prints the number of nonzero elements in the
original sequence and the square of each such element (lines 16 through 21).

The error in the program occurs when variable K, which keeps track of the
current index into OUTARR, is not incremented in the loop on lines 9 through
13. The statement K = K + 1 should be inserted just before line 11.

To find this error, first compile, link, and run the program:

$ FORTRAN/DEBUG/NOOPTIMIZE SQUARES
$ LINK/DEBUG SQUARES
$ RUN SQUARES

VAX DEBUG Version 5.0

%DEBUG-I-INITIAL, language is FORTRAN, module set to 1 SQUARES$MAIN 1

DBG>

You can now enter debugger commands. To step forward 4 lines, enter the
following command:

DBG> STEP 4
stepped to SQUARES$MAIN\%LINE 9
DBG>

To check the current values of variables N and K, enter the following
command:

DBG> EXAM N, K
SQUARES$MAIN\N: 9
SQUARES$MAIN\K: 0
DBG>

Introduction to the VMS Debugger
1 .2 Getting Started with the Debugger

The values of N and K are both correct at this point in the execution. Now
enter the command STEP 2 to enter the loop that copies and squares all
nonzero elements of INARR into OUTARR.

DBG> STEP 2
stepped to SQUARES$MAIN\%LINE 11
DBG>

To see if the variables I and K have the expected values, enter the following
command:

DBG> EXAM I,K
SQUARES$MAIN\I: 1
SQUARES$MAIN\K: 0
DBG>

The variable I has the expected value (namely 1), but K has the value zero,
which is not the expected value. Now you can see the error in the program:
K should be incremented in the loop just before it is used in line 11. To
check this hypothesis, correct the program by entering the following debugger
commands:

DBG> DEPOSIT K = 1
DBG> SET TRACE/SILENT %LINE 11 DO(DEPOSIT K = K + 1)
DBG>

The first command gives K the value it should have now, namely 1. The
second command specifies that the debugger should perform the debugger
command DEPOSIT K = K + 1 each time line 11 is reached in the execution.
The /SILENT qualifier suppresses the "trace at" message that would otherwise
appear each time line 11 is executed. The effect of the SET TRACE command
has been to patch the program to perform correctly.

Line 22 is a suitable location for a breakpoint that will stop program execution
after testing the correctness of your patch. Set a breakpoint as follows:

DBG> SET BREAK %LINE 22
DBG>

Now run the program to test the patch. Enter the command GO to execute
the program until it reaches the breakpoint at line 22.

DBG> GO
Number of non-zero elements is 6
Element 1 has value 16
Element 2 has value 36
Element 3 has value 9
Element 4 has value 49
Element 5 has value 81-
Element 6 has value 1

break at SQUARES$MAIN\%LINE 22
22: END

DBG>

The program output shows that the program works properly with the
DEPOSIT K = K + 1 patch. To correct the source code without leaving
the debugging session, use the EDIT command. It invokes the VAX Language
Sensitive Editor or another editor previously established with the SET
EDITOR command:

DBG> EDIT

1-23

Introduction to the VMS Debugger
1.2 Getting Started with the Debugger

1-24

The editor positions the cursor at the same line that is marked by the pointer
in the debugger's source display.

The corrected portion of the source code is as follows.

8: K = 0
9: DO 10 I = 1, N

10: IF(INARR(I) .NE. 0) THEN
11: K = K + 1
12: OUTARR(K) = INARR(I)**2
13: ENDIF
14: 10 CONTINUE

Now you can compile, link, and run the program again under debugger
control, to check that it runs correctly:

$ FORTRAN/DEBUG/NOPTIMIZE SQUARES
$ LINK/DEBUG SQUARES
$ RUN SQUARES

To set a breakpoint at line 12 that displays the values of I and K
automatically, enter the following SET BREAK command. The subsequent
GO command starts execution:

DBG> SET BREAK %LINE 12 DO (EXAMINE I,K)
DBG> GO

SQUARES$MAIN\I: 1
SQUARES$MAIN\K: 1
DBG> GO

SQUARES$MAIN\I: 2
SQUARES$MAIN\K: 2
DBG> GO

SQUARES$MAIN\I: 4
SQUARES$MAIN\K: 3
DBG>

At the first breakpoint, the value of K is 1, indicating that the program is
running correctly so far. Each additional GO command shows the current
values of I and K. After two GO commands, K is now 3, as expected, but
note that I is 4. The reason is that one of the INARR elements was zero so
that lines 11 and 12 were not executed (and K was not incremented) on one
iteration of the DO loop. This confirms that the program is running correctly.

Introduction to the VMS Debugger
1 .3 Debugger Command Summary

1.3 Debugger Command Summary

1.3.1

1.3.2

The following sections list all the debugger commands and any related DCL
commands in functional groupings, along with brief descriptions. During a
debugging session, you can get online HELP on all debugger commands and
their qualifiers by typing HELP.

Starting and Terminating a Debugging Session
The following commands are used to start, interrupt, and terminate a
debugging session:

($) RUN 1 Invokes the debugger if LINK/DEBUG was
used

($) RUN/[NO]DEBUG 1

EXIT I CTRL/Z

QUIT

CTRL/Y

CTRL/C

($) CONTINUE 1

($) DEBUG 1

ATTACH

SPAWN

Controls whether the debugger is invoked
when the program is executed

Ends a debugging session, executing all exit
handlers

Ends a debugging session without executing
any exit handlers declared in the program

Interrupts a debugging session, returning
you to DCL level

Has the same effect as CTRL/Y, unless the
program has a CTRL/C service routine

Resumes a debugging session after a
CTRL/Y interruption

Resumes a debugging session after a
CTRL/Y interruption but returns you to the
debugger prompt

Passes control of your terminal from the
current process to another process (similar
to the DCL command ATTACH)

Creates a subprocess, enabling you to
execute DCL commands without terminating
a debugging session or losing your
debugging context (similar to the DCL
command SP AWN)

1 This is a DCL command, not a debugger command.

Controlling and Monitoring Program Execution
The following commands are used to control and monitor program execution:

GO

STEP

(SET ,SHOW) STEP

Starts or resumes program execution

Executes the program up to the next line,
instruction, or specified instruction

(Establishes, displays) the default qualifiers
for the STEP command

1-25

1.3.3

1.3.4

1.3.5

Introduction to the VMS Debugger
1 .3 Debugger Command Summary

(SET ,SHOW ,CANCEL) BREAK

(SET ,SHOW ,CANCEL) TRACE

(SET ,SHOW ,CANCEL) WATCH

SHOW CALLS

SHOW STACK

CALL

(Sets, displays, cancels) breakpoints

(Sets, displays, cancels) tracepoints

(Sets, displays, cancels) watchpoints

Identifies the currently active routine calls

Gives additional information about the
currently active routine calls

Calls a routine

Examining and Manipulating Data
The following commands are used to examine and manipulate data:

EXAMINE

DEPOSIT

EVALUATE

Displays the value of a variable or the
contents of a program location

Changes the value of a variable or the
contents of a program location

Evaluates a language or address expression

Controlling Type Selection and Radix
The following commands are used to control type selection and radix:

(SET ,SHOW ,CANCEL) RADIX

(SET ,SHOW ,CANCEL) TYPE

SET MODE [NO]G_FLOA T

(Establishes, displays, restores) the radix for
data entry and display

(Establishes, displays, restores) the type
to be associated with untyped program
locations

Controls whether double-precision floating­
point constants are interpreted as
G_FLOA T or D_FLOAT

Controlling Symbol Lookup and Symbolization

1-26

The following commands are used to control symbol lookup and
symbolization:

SHOW SYMBOL

(SET ,SHOW ,CANCEL) MODULE

(SET,SHOW ,CANCEL) IMAGE

SET MODE [NO]DYNAMIC

(SET,SHOW,CANCEL) SCOPE

Displays symbols in your program

Sets a module by loading its symbol records
into the debugger's symbol table, identifies,
cancels a set module

Sets a shareable image by loading data
structures into the debugger's symbol table,
identifies, cancels a set image

Controls whether or not modules and
shareable images are set automatically
when the debugger interrupts execution

(Establishes, displays, restores) the scope
for symbol lookup

1.3.6

1.3.7

Introduction to the VMS Debugger
1 .3 Debugger Command Summary

SYMBOLIZE

SET MODE [NO]LINE

SET MODE [NO]SYMBOLIC

Converts a virtual address to a symbolic
address

Controls whether code locations are
displayed in terms of line numbers or
routine-name + byte offset

Controls whether code locations are
displayed symbolically or in terms of
numeric addresses

Displaying Source Code

Screen Mode

The following commands are used to control the display of source code:

TYPE

EXAMINE/SOURCE

SEARCH

(SET ,SHOW) SEARCH

SET STEP SOURCE

(SET ,SHOW) MARGINS

(SET,SHOW,CANCEL) SOURCE

(SET,SHOW)
MAX_SOURCE_FILES

Displays lines of source code

Displays the source code at the location
specified by the address expression

Searches the source code for the specified
string

(Establishes, displays) the default qualifiers
for the SEARCH command

Enables the display of source code after a
STEP command has been executed or at a
breakpoint, tracepoint, or watchpoint

(Establishes, displays) the left and right
margin settings for displaying source code

(Creates, displays, cancels) a source
directory search list

(Establishes, displays) the maximum number
of source files that may be kept open at
one time

The following commands are used to control screen mode and screen
displays:

SET MODE [NO]SCREEN Enables/disables screen mode

DISPLAY

SCROLL

EXPAND

MOVE

(SET,SHOW,CANCEL) DISPLAY

(SET ,SHOW ,CANCEL) WINDOW

SELECT

SHOW SELECT

Modifies an existing display

Scrolls a display

Expands or contracts a display

Moves a display across the screen

(Creates, identifies, deletes) a display

(Creates, identifies, deletes) a window
definition

Selects a display for a display attribute

Identifies the displays selected for each of
the display attributes

1-27

1.3.8

1.3.9

Introduction to the VMS Debugger
1.3 Debugger Command Summary

Source Editing

Defining Symbols

SAVE

EXTRACT

(SET,SHOW) TERMINAL

SET MODE [NO]SCROLL

CTRL/W ,DISPLAY /REFRESH

Saves the current contents of a display into
another display

Saves a display or the current screen state
into a file

(Establishes, displays) the terminal screen
height and width that the debugger uses
when it formats displays and other output

Controls whether an output display is
updated line by line or once per command

Refreshes the screen

The following commands are used to control source editing from a debugging
session:

EDIT

(SET ,SHOW) EDITOR

Invokes an editor during a debugging
session

(Establishes, identifies) the editor invoked
by the EDIT command

The following commands are used to define and delete symbols for addresses,
commands, or values:

DEFINE

DELETE

(SET ,SHOW) DEFINE

SHOW SYMBOL/DEFINED

Defines a symbol as an address, command,
or value

Deletes symbol definitions

(Establishes, displays) the default qualifier
for the DEFINE command

Identifies symbols that have been defined

1.3.10 Keypad Mode

1-28

The following commands are used to control keypad mode and key
definitions:

SET MODE [NO]KEYPAD

DEFINE/KEY

DELETE/KEY

SET KEY

SHOW KEY

Enables/disables keypad mode

Creates key definitions

Deletes key definitions

Establishes the key definition state

Displays key definitions

Introduction to the VMS Debugger
1 .3 Debugger Command Summary

1.3.11 Command Procedures, Log Files, and Initialization Files
The following commands are used with command procedures and log files:

@file-spec

(SET ,SHOW) A TSIGN

DECLARE

(SET ,SHOW) LOG

SET OUTPUT [NO]LOG

SET OUTPUT [NO]SCREEN_LQG

SET OUTPUT [NO]VERIFY

SHOW OUTPUT

1.3.12 Control Structures

Executes a command procedure

(Establishes, displays) the default file
specification that the debugger uses to
search for command procedures

Defines parameters to be passed to
command procedures

(Specifies, identifies) the debugger log file

Controls whether a debugging session is
logged

Controls whether, in screen mode, the
screen contents are logged as the screen is
updated

Controls whether debugger commands
are displayed as a command procedure is
executed

Identifies the current output options
established by the SET OUTPUT command

The following commands are used to establish conditional and looping
structures for debugger commands:

IF

FOR

REPEAT

WHILE

EXITLOOP

1 .3.13 Miscellaneous Commands

Executes a list of commands conditionally

Executes a list of commands repetitively

Executes a list of commands repetitively

Executes a list of commands conditionally

Exits an enclosing WHILE, REPEAT, or FOR
loop

The following commands are used for miscellaneous purposes:

(DISABLE,ENABLE,SHOW) AST

(SET ,SHOW) EVENT _FACILITY

(SET ,SHOW) LANGUAGE

SET MODE [NO]SEPARATE

(Disables, enables) the delivery of ASTs in
the program, identifies whether delivery is
enabled or disabled

(Establishes, identifies) the current run-time
facility for language-specific events

(Establishes, identifies) the current language

Controls whether the debugger, when
used on a V AXstation, creates a separate
window for debugger input and output

1-29

Introduction to the VMS Debugger
1 .3 Debugger Command Summary

SET OUTPUT [NO]TERMINAL

SET PROMPT

(SET ,SHOW) TASK

SHOW EXIT _HANDLERS

SHOW MODE

SHOW OUTPUT

1-30

Controls whether debugger output, except
for diagnostic messages, is displayed or
suppressed

Specifies the debugger prompt

Modifies the tasking environment, displays
task information

Identifies the exit handlers declared in the
program

Identifies the current debugger modes
established by the SET MODE command
(for example, screen mode, step mode)

Identifies the current output options
established by the SET OUTPUT command

2 Starting and Controlling Program Execution

This chapter describes the options for invoking the debugger and for starting
and controlling program execution while debugging.

2.1 Starting, Terminating, and Interrupting a Debugging Session

2.1.1

This section explains how to do the following:

• Compile and link your program so you can invoke the debugger

• Start, interrupt, resume, and terminate a debugging session

Invoking the Debugger with the DCL RUN Command
The usual way to invoke the debugger is as follows:

1 Compile your program using the /DEBUG and /NOOPTIMIZE (or
equivalent) qualifiers with the DCL compiler command (consult your
language documentation to determine the compiler command defaults).

2 Link your program using the /DEBUG qualifier with the DCL LINK
command.

3 Execute your program using the DCL RUN command. The debugger
initially takes control and prompts for commands. Note that you cannot
run a program under debugger control over a DECnet link.

The following example illustrates these steps with a simple Pascal program,
INVENTORY, that consists of two compilation units whose source code is in
two separate files, FORMS.PAS and INVENTORY.PAS. INVENTORY is the
main program unit.

$ PASCAL/DEBUG/NOOPTIMIZE FORMS, INVENTORY
$ LINK/DEBUG INVENTORY, FORMS
$ RUN INVENTORY

VAX DEBUG Version *****
%DEBUG-I-INITIAL, language is PASCAL, module set to 'INVENTORY'
DBG>

When the debugger first takes control, it does the following:

• Displays its banner.

• Sets the language-dependent parameters to the language of the main
program (the module that contains the image transfer address). The
"INITIAL" message identifies the language to which the debugging
session is initialized and the name of the main program (Pascal and
INVENTORY, respectively, in the previous example). See Sections 3.1.8
and 3.1.9 for more information about language-dependent parameters.

• Executes any user-supplied initialization file (see Section 7.2).

2-1

Starting and Controlling Program Execution
2.1 Starting, Terminating, and Interrupting a Debugging Session

2-2

• Suspends execution at the start of the main program. The DBG >
prompt, which is displayed whenever the debugger suspends execution,
indicates that you can now enter debugger commands.

In some cases the debugger suspends execution before the start of the main
program and displays the following additional message:

%DEBUG-I-NOTATMAIN, type GO to get to start of main program

See Section 8.3 for an explanation of this message.

The effect of the qualifiers used with the compiler command (PASCAL, in
this example) and the LINK command is as follows.

The /DEBUG qualifier on the compiler command loads the debugger symbol
records associated with each compilation unit into its object module. These
symbol records enable you to use, in debugger commands, the names of
variables, routines, labels, and other symbols as they appear in the source
code. By specifying options with the /DEBUG qualifier, you can control the
level of symbolic information provided (see Section 4.1.1). This qualifier does
not affect whether the debugger is invoked or how it is invoked.

Most compilers optimize code to reduce the size of the program and make
it run faster. For example, invariant expressions are removed from DO
loops so that they are evaluated only once at run time; also, some memory
locations may be allocated to different variables at different points in the
program. The /NOOPTIMIZE (or equivalent) qualifier ensures that the code
is not optimized and, therefore, that the contents of all program locations
are con~istent with what you would expect from looking at the source code.
Section 8.1 describes some of the effects of optimization.

Note also another possible cause of unexpected behavior. The debugger and
your program share the same address space. In some rare cases, this may
cause the debugger to affect how your program executes. Section 2.6 explains
how the debugger controls execution and the possible sources of interference.

The /DEBUG qualifier on the LINK command does the following:

• Copies the debugger symbol records from the object modules being linked
into the debug symbol table (DST) and puts the DST in the executable
image.

• Directs the image activator to pass control to the debugger when you
subsequently execute the image with the RUN command.

See Section 4.1.3 for more details on how the LINK command controls
symbol information.

Even if you have compiled and linked an image with the /DEBUG command
qualifier, you can execute that image normally, without it being under
debugger control. To do so, use the /NODEBUG qualifier on the DCL
RUN command. For example:

$ RUN/NODEBUG INVENTORY

This is convenient for checking your program once you think it is error
free. But the data required by the debugger still occupies space within the
executable image. So, when you think your program is correct, you may want
to link your program again without.the /DEBUG qualifier. This creates an
image with only traceback data in the DST, to use less disk space.

2.1.2

Starting and Controlling Program Execution
2.1 Starting, Terminating, and Interrupting a Debugging Session

Table 2-1 summarizes how to control debugger activation by means of LINK
and RUN command qualifiers. Note that the LINK command qualifiers
/[NO]DEBUG and /[NO)TRACEBACK affect not only debugger activation but
also the level of symbolic information provided.

Table 2-1 Controlling Debugger Activation with the LINK and RUN Commands

LINK Command To Run Program To Run Program Maximum Symbolic Information
Qualifier With Debugger Without Debugger Available1

/DEBUG RUN RUN/NODEBUG Full

/TRACEBACK or RUN/DEBUG RUN Only traceback3

/NODEBUG2

/NOTRACEBACK Cannot RUN None

1 The level of symbolic information available while debugging is controlled both by the compile command qualifier and
the LINK command qualifier (see Section 4. 1).

2LINK/TRACEBACK (or LINK/NODEBUG) is a LINK command default.

3Traceback information includes compiler-generated line numbers and the names of routines and modules (compilation
units). This symbolic information is used by the VMS traceback condition handler to identify the PC value and the active
calls when a run-time error has occurred. The information is also used by the debugger SHOW CALLS command (see
Section 1.2.5.2).

Invoking the Debugger with the DCL DEBUG Command
You can invoke the debugger while your program is executing freely-for
example, if you suspect that the program may be looping or if you see
erroneous output.

To invoke the debugger in this manner, perform the following steps:

1 Compile and link the program with the /DEBUG command qualifier, as
described in the previous section (you can also use LINK/TRACEBACK,
but only traceback symbols are then available while you debug).

2 Enter the DCL command RUN/NODEBUG to execute the program
without debugger control.

3 To interrupt the executing program, press CTRL/Y. Control then passes
to the DCL command interpreter.

4 Enter the DCL command DEBUG to activate the debugger. It displays
its banner, sets the language-dependent parameters to the language of
the module where execution was interrupted, executes any user-defined
initialization file, and prompts for commands. Usually you will not know
where execution was interrupted. Enter the SHOW CALLS command to
identify the current PC value and the sequence of routine calls on the call
stack (the SHOW CALLS command is described in Section 1.2.5.2).

2-3

2.1.3

Starting and Controlling Program Execution
2.1 Starting, Terminating, and Interrupting a Debugging Session

For example:

$ PASCAL/DEBUG/NOOPTIMIZE FORMS.INVENTORY
$ LINK/DEBUG INVENTORY.FORMS
$ RUN/NODEBUG INVENTORY

lcTRL/YI
Interrupt

$ DEBUG

VAX DEBUG Version *****
%DEBUG-I-INITIAL, language is PASCAL, module set to 'INVENTORY'
DBG> SHOW CALLS

Interrupting a running program with CTRL/Y and then invoking the
debugger with the DEBUG command is useful under the following conditions:

• Your program is in an infinite loop.

• After entering the RUN /NODEBUG command, you decide that you want
debugger control.

• You have not specified the /DEBUG command qualifier at compile time,
link time, or run time but want to debug your running program. In this
case, traceback information is the only symbolic information available for
debugging.

Terminating a Debugging Session

2-4

To terminate a debugging session in an orderly manner, use the EXIT or
QUIT commands, or press CTRL/Z. These commands invoke the debugger
exit handlers to close log files, restore the screen and keypad states, and so
on.

The EXIT command and CTRL/Z have the same effect. The QUIT command
is like the EXIT command or CTRL/Z, except that the EXIT command and
CTRL/Z also execute any exit handlers your program may have declared; the
QUIT command does not.

You can also terminate a debugging session by pressing CTRL/Y and then
entering the DCL commands EXIT or STOP, or any DCL command that
executes an image. CTRL/Y followed by EXIT is preferred because all exit
handlers are executed. CTRL/Y followed by STOP does not execute the
debugger exit handlers. Therefore, the screen and keypad may not get
restored to their original state.

2.1.4

Starting and Controlling Program Execution
2.1 Starting, Terminating, and Interrupting a Debugging Session

Interrupting and Resuming a Debugging Session

2.1.4.1

There are two basic ways of interrupting a debugging session:

• Press CTRL/Y.

• Create a subprocess or attach to an existing process or subprocess by
using the debugger commands SP AWN and ATTACH, respectively.

With each of these techniques, depending on the circumstances, you have
several options for resuming your debugging session.

Interrupting with CTRL/V
Pressing CTRL/Y during a debugging session interrupts the session and
passes control to the DCL command interpreter.

If, after pressing CTRL/Y, you enter the DCL command CONTINUE, the
debugging session resumes at exactly the same point at which you interrupted
it.

If, after pressing CTRL/Y, you enter the DCL command DEBUG, control
returns to the debugger and the debugger prompt is displayed. You can then
enter debugger commands. For example:

DBG> GO

icTRL/YI
Interrupt

$ DEBUG

DBG>

The CTRL/Y-DEBUG command sequence is useful in the following
circumstances. For example:

• Your program goes into an infinite loop when you enter a GO command
during a debugging session. After returning to the debugger prompt, you
can enter the SHOW CALLS command to determine where execution has
been suspended.

• You want to interrupt a debugger command that is taking too long
to complete or is generating a large amount of output. In this case,
the CTRL/Y-DEBUG sequence causes the debugger to abort the current
command when all of the data structures are in a consistent state (entering
a second CTRL/Y-DEBUG sequence immediately aborts the command,
regardless of whether all data structures are in a consistent state).

Pressing CTRL/C during a debugging session is like pressing CTRL/Y, unless
your program has a CTRL/C AST service routine enabled. If a CTRL/C
service routine exists, pressing CTRL/C passes control to that routine rather
than the DCL command interpreter.

2-5

Starting and Controlling Program Execution
2.1 Starting, Terminating, and Interrupting a Debugging Session

2.1.4.2

2-6

Interrupting with the SPAWN and ATTACH Commands
The debugger SP AWN and ATTACH commands enable you to interrupt a
debugging session from the debugger prompt, enter DCL commands, and
return to the debugger prompt. These commands function essentially like the
DCL SPAWN and ATTACH commands.

Use the debugger SPAWN command to create a subprocess. Use the
debugger ATTACH command to attach to an existing process or subprocess.

You can enter the SPAWN command with or without specifying a DCL
command as parameter. If you specify a DCL command, it is executed in
a subprocess (if the DCL command invokes a utility, that utility is invoked
in a subprocess). Control returns to the debugging session when the DCL
command terminates (or when you exit the utility). The following example
illustrates spawning the DCL DIRECTORY command.

DBG> SPAWN DIR [JONES.PROJECT2]*.FDR

%DEBUG-I-RETURNED, control returned to process JONES_!
DBG>

The next example illustrates spawning the DCL MAIL command, which
invokes the MAIL utility:

DBG> SPAWN MAIL
MAIL> READ/NEW

MAIL> EXIT
%DEBUG-I-RETURNED, control returned to process JONES_!
DBG>

If you enter the SP AWN command without specifying a parameter, a
subprocess is created, and you can then enter DCL commands. Either
logging out of the subprocess or attaching to the parent process (with the
DCL ATTACH command) returns you to the debugging session. For example:

DBG> SPAWN
$ RUN PROG2

$ ATTACH JONES_!
%DEBUG-I-RETURNED, control returned to process JONES_!
DBG>

If you plan to go back and forth several times between your debugging
session and a spawned subprocess (which may be another debugging session),
use the debugger ATTACH command to attach to that subprocess. Use the
DCL ATTACH command to return to the parent process. Because you do not
create a new subprocess every time you leave the debugger, you use system
resources more efficiently.

If you are running two debugging sessions simultaneously, you can define
a new debugger prompt for one of the sessions with the SET PROMPT
command. This helps you to differentiate the sessions.

Starting and Controlling Program Execution
2.2 Commands that Cause Program Execution

2.2 Commands That Cause Program Execution
Only four debugger commands can cause your program to execute: GO,
STEP, CALL, and EXIT.

As indicated in Section 1.2.5.1, GO and STEP are the basic commands for
starting and resuming program execution. The STEP command is discussed
further in Section 2.3.

During a debugging session, routines are executed as they are called during
the execution of a program. The CALL command enables you to arbitrarily
call and execute a routine that was linked with your program. This command
is discussed in Section 7. 7.

The EXIT command was discussed in Section 2.1.3, in conjunction with
terminating a debugging session. Because it executes any exit handlers in
your program, it is also useful for debugging exit handlers (see Section 8.5).

When using any of these four commands, keep in mind that program
execution may be interrupted or stopped by any of the following events:

• The program terminates.

• A breakpoint is reached.

• A watchpoint is activated.

• An exception is signaled.

• You press CTRL/Y.

2.3 Using the Step Command
The STEP command (probably the most frequently used debugger command)
enables you to execute your program in small increments.

By default, the STEP command executes a single source line at a time. In the
following example, the STEP command executes one line, reports the action
("stepped to ... "), and displays the line number (27) and source code of the
next line to be executed:

DBG> STEP
stepped to TEST\COUNT\%LINE 27

27: x := x + 1;
DBG>

Execution is now suspended at the first machine code instruction for line 27
of module TEST. Line 27 is in COUNT, a routine within module TEST.

The STEP command can also execute several source lines at a time. If you
specify a positive integer as parameter, the STEP command executes that
number of lines. In the following example, the STEP command executes the
next three lines:

DBG> STEP 3
stepped to TEST\COUNT\%LINE 34

34: SWAP(X,Y);
DBG>

2-7

2.3.1

Starting and Controlling Program Execution
2.3 Using the Step Command

Note that only those source lines for which code instructions were generated
by the compiler are recognized as executable lines by the debugger. The
debugger skips over any other lines - for example, comment lines. Also,
if a line has more than one statement on it, the debugger executes all the
statements on that line as part of the single step.

Source lines are displayed by default after stepping if they are available for
the module being debugged. Source lines are not available if you are stepping
in code that has not been compiled or linked with the /DEBUG qualifier
(for example, a shareable image routine). If source lines are available, you
can control their display with the SET STEP [NO]SOURCE command and
the /[NO]SOURCE qualifier of the STEP command. See Chapter 5 for
information on how to control the display of source code in general and in
particular after stepping.

Changing the STEP Command Behavior

2-8

The default behavior of the STEP command may be altered in the following
two ways:

• By specifying a STEP command qualifier - for example,
STEP /INSTRUCTION.

• By establishing a new default qualifier with the SET STEP command -
for example, SET STEP INSTRUCTION.

In the following example, the command STEP /INSTRUCTION executes the
next instruction rather than the next line (STEP /LINE is the default behavior).
The debugger displays the source line (10) associated with the new PC value
(instruction TSTL):

DBG> STEP/INSTRUCTION
stepped to SQUARES$MAIN\%LINE 10+4: TSTL w--164(R11) [RO]

10: IF(INARR(I) .NE. 0) THEN
DBG>

After the STEP /INSTRUCTION command executes, subsequent STEP
commands revert to the default behavior.

In contrast, the SET STEP command enables you to establish new defaults for
the STEP command. These defaults remain in effect until another SET STEP
command is entered. For example, the command SET STEP INSTRUCTION
causes subsequent STEP commands to behave like STEP /INSTRUCTION
(SET STEP LINE causes subsequent STEP commands to behave like
STEP /LINE).

There is a SET STEP command parameter for each STEP command qualifier.

You can override the current STEP command defaults for the duration of a
single STEP command by specifying other qualifiers. Use the SHOW STEP
command to identify the current STEP command defaults.

2.3.2

Starting and Controlling Program Execution
2.3 Using the Step Command

Stepping into and over Routines
By default, when the PC is at a call statement and you enter the STEP
command, the debugger steps "over" the called routine. Although the routine
is executed, execution is not suspended within the routine but, rather, on the
start of the line that follows the call statement. When stepping by instruction,
execution is suspended on the instruction that follows a called routine's RET
(return from routine) instruction.

To step into a called routine when the PC is at a call statement, enter the
STEP /INTO command. The following example shows how to step into the
routine PRODUCT, which is called from routine COUNT of module TEST:

DBG> STEP
stepped to TEST\COUNT\%LINE 18

18: AREA := PRODUCT(LENGTH, WIDTH);
DBG> STEP/INTO
stepped to routine TEST\PRODUCT

6: function PRODUCT(X,Y : INTEGER) return INTEGER is
DBG>

To return to the calling routine from any point within the called routine, use
the STEP /RETURN command. It causes the debugger to step to the RET
instruction of the routine being executed. A subsequent STEP command
brings you back to the statement that follows the routine call. For example:

DBG> STEP/RETURN
stepped on return from TEST\PRODUCT\%LINE 11 to TEST\PRODUCT\%LINE 15+4

15: end PRODUCT;
DBG> STEP
stepped to TEST\COUNT\%LINE 19

19: LENGTH :=LENGTH + 1;
DBG>

To step into several routines, enter the command SET STEP INTO to change
the default behavior of the STEP command from STEP /OVER to
STEP/INTO:

DBG> SET STEP INTO
DBG>

As a result of this command, when the PC is at a call statement, a STEP
command suspends execution within the called routine. If you later want to
step over routine calls, enter the command SET STEP OVER.

When SET STEP INTO is in effect, you can qualify the kinds of called
routines that the debugger is stepping into by specifying any of the following
parameters with the SET STEP command:

• [NO]JSB - controls whether to step into routines called by JSB
instructions.

• [NO]SHARE - controls whether to step into called routines in shareable
images.

• [NO]SYSTEM - controls whether to step into called system routines.

These parameters make it possible to step into your own (user) routines
and automatically step over system routines, and so on. For example,
the following command tells the debugger to step into called routines in
user space only. The debugger steps over routines in system space and in
shareable images.

2-9

Starting and Controlling Program Execution
2.3 Using the Step Command

DBG> SET STEP INTO,NOSYSTEM,NOSHARE
DBG>

2.4 Suspending and Tracing Execution with Breakpoints and Tracepoints

2-10

This section discusses use of the SET BREAK and SET TRACE commands
to, respectively, suspend and trace program execution. The commands are
discussed together because of their similarities.

SET BREAK Command Overview

The SET BREAK command enables you to specify program locations or
events at which to suspend program execution (breakpoints). After setting
a breakpoint, you can start or resume program execution with the GO
command, letting the program run until the specified location or condition is
reached. When the breakpoint is triggered, the debugger suspends execution,
identifies the breakpoint, and displays the DBG > prompt. You can then
enter debugger commands-for example, to determine where you are
(with the SHOW CALLS command), step into a routine, examine or modify
variables, and so on.

The syntax of the SET BREAK command is as follows:

SET BREAK[/qualifier[, . . .]] [address-expression[, . . .]]
[WHEN (conditional-expression)]
[DO (command[; . . .])]

The following example shows a typical use of the SET BREAK command and
illustrates the general default behavior of the debugger at a breakpoint.

In this example, the SET BREAK command sets a breakpoint on routine
COUNT (at the start of the routine's code). The GO command starts
execution. When routine COUNT is encountered, execution is suspended,
the debugger announces that the breakpoint at COUNT has been reached
("break at ... "), displays the source line (54) where execution is suspended,
and prompts for another command:

DBG> SET BREAK COUNT
DBG> GO

break at PROG2\COUNT
54: procedure COUNT(X,Y:INTEGER);

DBG>

SET TRACE Command Overview

The SET TRACE command· enables you to select program locations or events
for tracing the execution of your program without stopping its execution
(tracepoints). After setting a tracepoint, you can start execution with the GO
command and then monitor that location, checking for unexpected behavior.
By setting a tracepoint on a routine, you can also monitor the number of
times it is called.

The debugger's default behavior at a tracepoint is identical to that at a
breakpoint, except that program execution continues past a tracepoint.
Thus, the DBG > prompt is not displayed when a tracepoint is reached
and announced by the debugger.

2.4.1

Starting and Controlling Program Execution
2.4 Suspending and Tracing Execution with Breakpoints and Tracepoints

Except for the command name, the syntax of the SET TRACE command is
identical to that of the SET BREAK command:

SET TRACE[/qualifier[, . . .]) [address-expression[, . . .]]
[WHEN (conditional-expression)]
[DO (command[; . . .])]

The SET TRACE and SET BREAK commands have the same qualifiers. When
using the SET TRACE command, you specify address expressions, qualifiers,
and the optional WHEN and DO clauses exactly as with the SET BREAK
command.

Unless you use the /TEMPORARY qualifier on the SET BREAK (or SET
TRACE) command, breakpoints (and tracepoints) remain in effect until you
cancel them or exit the debugging session.

To identify all of the breakpoints (or tracepoints) that are currently set, use
the SHOW BREAK (or SHOW TRACE) command. To cancel breakpoints (or
tracepoints), use the CANCEL BREAK (or CANCEL TRACE) command (see
Section 2.4.6).

The following sections describe how to specify program locations and events
with the SET BREAK and SET TRACE commands.

Setting Breakpoints or Tracepoints on Individual Program Locations

2.4.1.1
NOTE:

To set a breakpoint (or a tracepoint) on a particular program location, specify
an address expression with the SET BREAK (or SET TRACE) command.

Fundamentally, an address expression specifies a location in virtual memory
or a VAX register. Because the debugger understands the symbols associated
with your program, the address expressions you typically use with the SET
BREAK (or SET TRACE) command are routine names, labels, or source line
numbers rather than virtual memory addresses - the debugger converts
these symbols to addresses.

Specifying Symbolic Addresses
In some cases, when using the SET BREAK or SET TRACE command
with a symbolic address expression, you may need to set a module or
specify a scope or a path name. Those concepts are described in detail in
Chapter 4. The examples in this section assume that all modules are set
and that all symbols referenced are uniquely defined, unless otherwise
indicated.

The following examples illustrate how to set a breakpoint (or a tracepoint) on
a routine (SWAP) and a label (LOOPl):

DBG> SET BREAK SWAP
DBG> SET TRACE LDOP1
DBG>

The next command sets a breakpoint on the RET (return) instruction of
routine SWAP. "Breaking" on the RET instruction of a routine enables you
to inspect the local environment before the RET instruction removes the
routine's call frame from the call stack.

DBG> SET BREAK/RETURN SWAP
DBG>

2-11

Starting and Controlling Program Execution
2.4 Suspending and Tracing Execution with Breakpoints and Tracepoints

2-12

Some languages, for example FORTRAN, use numeric labels. To set a
breakpoint (or a tracepoint) on a numeric label, you must precede the number
with the built-in symbol %LABEL. Otherwise, the debugger interprets the
number as a virtual memory address. For example, the following command
sets a tracepoint on label 20.

DBG> SET TRACE %LABEL 20
DBG>

You can set a breakpoint (or a tracepoint) on a line of source code by
specifying the line number preceded by the built-in symbol %LINE. The
following command sets a breakpoint on line 14.

DBG> SET BREAK %LINE 14
DBG>

The preceding breakpoint causes execution to be suspended when the PC
value is on the first instruction of line 14. Note that you can set a breakpoint
(or a tracepoint) only on lines for which the compiler generated instructions
(lines that resulted in executable code). If you specify a line number that is
not associated with an instruction, such as a comment line or a statement that
declares but does not initialize a variable, the debugger issues a diagnostic
message. For example:

DBG> SET BREAK %LINE 6
%DEBUG-I-LINEINFO, no line 6, previous line is 5, next line is 8
%DEBUG-E-NOSYMBOL, symbol '%LINE 6 1 is not in the symbol table
DBG>

The preceding messages indicate that the compiler did not generate
instructions for lines 6 or 7 in this case.

Some languages, for example BASIC, allow more than one statement on a
line. In such cases, you can use statement numbers to differentiate among
statements on the same line. A statement number consists of a line number,
followed by a period (.) and a number indicating the statement. The format
is as follows:

%LINE line-number.statement-number

For example, the following command sets a tracepoint on the second
statement of line 38:

DBG> SET TRACE %LINE 38.2
DBG>

When searching for symbols that you reference in commands, the debugger
uses the conventions described in Section 4.3.1. That is, it first looks within
the module where execution is currently suspended, then in other scopes
associated with routines on the call stack, and so on. Therefore, to specify a
symbol that is defined in more than one module, such as a line number, you
may need to use a path name. For example, the following command sets a
tracepoint on line 27 of module MOD4:

DBG> SET TRACE MOD4\%LINE 27
DBG>

Remember the symbol lookup conventions when specifying a line number in
debugger commands. If that line number is not defined in the module where
execution is suspended (because it is not associated with an instruction),
the debugger uses the symbol lookup conventions to locate another module
where the line number is defined.

Starting and Controlling Program Execution
2.4 Suspending and Tracing Execution with Breakpoints and Tracepoints

2.4.1.2

2.4.1.3

When specifying address expressions, you can combine symbolic addresses
with byte offsets. Thus, you can set a breakpoint (or a tracepoint) on a
particular assembly language instruction by specifying its line number and
the byte offset from the start of that line to the first byte of the instruction.
For example, the next command sets a breakpoint on the address that is five
bytes beyond the start of line 23.

DBG> SET BREAK %LINE 23+5
DBG>

Specifying Locations in Virtual Memory
To set a breakpoint (or a tracepoint) on a location in virtual memory, specify
its numerical address in the currently set radix The default radix for both data
entry and display is decimal for all languages except BLISS and MACRO. It
is hexadecimal for BLISS and MACRO. For example, the following command
sets a breakpoint at address 2753, decimal (for all languages except BLISS or
MACRO), or at address 2753, hexadecimal (for BLISS and MACRO):

DBG> SET BREAK 2753
DBG>

You can specify a radix when you enter an individual integer literal (such as
2753) by using one of the built-in symbols %BIN, %OCT, %DEC, or %HEX.
For example, in the following command line the symbol %HEX specifies that
2753 should be treated as a hexadecimal integer:

DBG> SET BREAK %HEX 2753
DBG>

Note that when specifying a hexadecimal number that starts with a letter
rather than a number, you must add a leading "O". Otherwise, the debugger
tries to interpret the entity specified as a symbol declared in your program.

See Section 3.1.9 and Appendix D for additional information on specifying
radixes and on the built-in symbols %BIN, %DEC, %HEX, and %OCT.

If a breakpoint (or a tracepoint) was set on a numerical address that
corresponds to a symbol in your program, the SHOW BREAK (or SHOW
TRACE) command identifies the breakpoint symbolically.

Obtaining and Symbolizing Virtual Memory Addresses
Use the EVALUATE/ADDRESS command to determine the virtual memory
address associated with a symbolic address expression, such as a line number,
routine name, or label. For example:

DBG> EVALUATE/ADDRESS SWAP
1536
DBG> EVALUATE/ADDRESS %LINE 26
1629
DBG>

The address is displayed in the current radix. You can specify a radix qualifier
to display the address in another radix. For example:

DBG> EVALUATE/ADDRESS/HEX %LINE 26
00000650
DBG>

2-13

2.4.2

Starting and Controlling Program Execution
2.4 Suspending and Tracing Execution with Breakpoints and Tracepoints

The command SYMBOLIZE does the reverse of EVALUATE/ ADDRESS. It
converts a virtual memory address into its symbolic representation (including
its path name) if such a representation is possible. Chapter 4 explains how to
control symbolization. See Section 3.1.10 for more information on obtaining
and symbolizing addresses.

Setting Breakpoints or Tracepoints on Consecutive Lines or on Classes of
Instructions

2-14

Several SET BREAK (and SET TRACE) command qualifiers cause the
debugger to break on (or trace) every source line or every assembly language
instruction of a particular class:

/LINE
/BRANCH
/CALL
/INSTRUCTION
/INSTRUCTION=(opcode[, ...])

When using these qualifiers, do not specify an address expression.

For example, the following command causes the debugger to break on the
start of every source line encountered during execution:

DBG> SET BREAK/LINE
DBG>

The instruction-related qualifiers are especially useful for opcode tracing,
which is the tracing of all instructions or the tracing of a class of instructions.
The next command causes the debugger to trace every branch instruction
encountered (for example BEQL, BGTR, and so on):

DBG> SET TRACE/BRANCH
DBG>

Note that opcode tracing slows program execution.

By default, when you use the qualifiers discussed in this section, the debugger
breaks (or traces) within all called routines as well as within the currently
executing routine (this is equivalent to specifying SET BREAK/INTO or SET
TRACE/INTO). By specifying SET BREAK/OVER or SET TRACE/OVER,
you can suppress break (or trace) action within all called routines. Or, you
can use the /[NO]JSB, /[NO]SHARE, or /[NO]SYSTEM qualifiers to specify
the kinds of called routines where break (or trace) action is to be suppressed.
For example, the next command causes the debugger to break on every line
except within called routines that are in shareable images or system space:

DBG> SET BREAK/LINE/NOSHARE/NOSYSTEM
DBG>

2.4.3

Starting and Controlling Program Execution
2.4 Suspending and Tracing Execution with Breakpoints and Tracepoints

Controlling Debugger Action at Breakpoints or Tracepoints
The SET BREAK and SET TRACE commands provide several options for
controlling the behavior of the debugger at breakpoints and tracepoints -
the /AFTER, /[NO]SILENT, /[NO]SOURCE, and /TEMPORARY command
qualifiers, and the optional WHEN and DO clauses. The following examples
illustrate several of these options.

The next command sets a breakpoint on line 14 and specifies that the
breakpoint take effect after the fifth time that line 14 is executed:

DBG> SET BREAK/AFTER:5 %LINE 14
DBG>

The next command sets a tracepoint that is triggered at every line of
execution. The DO clause obtains the value of the variable X when each
line is executed:

DBG> SET TRACE/LINE DO (EXAMINE X)
DBG>

The next example illustrates how the WHEN and DO clauses can be used
together. The command sets a breakpoint at line 27. The breakpoint is
triggered (execution is suspended) only when the value of SUM is greater
than 100 (not each time line 27 is executed). The DO clause causes the value
of TEST_RESUL T to be examined whenever the breakpoint is triggered-that
is, whenever the value of SUM is greater than 100. If the value of SUM is
not greater than 100 when execution reaches line 27, the breakpoint is not
triggered and the DO clause is not executed.

DBG> SET BREAK %LINE 27 WHEN (SUM >100) DO (EXAMINE TEST_RESULT)
DBG>

See Section 3.1.5 and Section 8.3.2.2 for information about evaluating
language expressions, such as the expression "SUM > 100".

The /SILENT qualifier suppresses the break or trace message and source code
display. This is useful when, for example, you want to use the SET TRACE
command only to execute a debugger command at the tracepoint. In the
next example, the SET TRACE command is used to examine the value of the
boolean variable STATUS at the tracepoint.

DBG> SET TRACE/SILENT %LINE 83 DO (EXAMINE STATUS)
DBG> GO

SCREEN_IO\CLEAR\STATUS: OFF

In the next example, the SET TRACE command is used to count the number
of times line 12 is executed. The first DEFINE/VALUE command defines
a symbol COUNT and initializes its value to zero. The DO clause of the
SET TRACE command causes the value of COUNT to be incremented and
evaluated whenever the tracepoint is triggered (whenever execution reaches
line 12).

DBG> DEFINE/VALUE COUNT=O
DBG> SET TRACE/SILENT %LINE 12 DO (DEF/VAL COUNT=COUNT+1;EVAL COUNT)
DBG>

2-15

2.4.4

2.4.5

Starting and Controlling Program Execution
2.4 Suspending and Tracing Execution with Breakpoints and Tracepoints

Source lines are displayed by default at eventpoints (breakpoints, tracepoints,
and watchpoints) if they are available for the module being debugged. You
can also control their display with the SET STEP [NO]SOURCE command
and the /[NO]SOURCE qualifier of the SET BREAK, SET TRACE, and SET
WATCH commands. See Chapter 5 for information on how to control the
display of source code in general and in particular at eventpoints.

Setting Breakpoints or Tracepoints on Exceptions
The SET BREAK/EXCEPTION and SET TRACE/EXCEPTION commands
direct the debugger to treat any exception generated by your program as a
breakpoint or tracepoint, respectively. The breakpoint (or tracepoint) occurs
before any user-declared exception handler is invoked. See Section 8.4 for
debugging techniques associated with exceptions and condition handlers.

Setting Breakpoints or Tracepoints on Language-Specific Events

2-16

The SET BREAK and SET TRACE commands each have an /EVENT=event­
name qualifier. You can use this qualifier to set breakpoints or tracepoints
to be triggered by various language-specific events (denoted by event-name
keywords).

Note: Currently, event-name keywords are defined only for Ada and SCAN. See
the VAX Ada and VAX SCAN documentation for complete information.

When you run a program under debugger control, the appropriate set of
event-name keywords is defined during the initialization of language-specific
parameters. Use the SHOW EVENT_FACILITY command to identify the
event-name keywords that apply to the current language. The
SET EVENTJACILITY command enables you to initialize the debugger for
events that are specific to another language.

The following examples briefly illustrate how to set event breakpoints with
Ada tasking programs and SCAN programs. When a breakpoint or tracepoint
is triggered, the debugger identifies the event that caused it to be triggered
and gives additional information.

The following command causes the debugger to break whenever any Ada
task enters the TERMINATED state.

DBG> SET BREAK/EVENT=TERMINATED
DBG>

The next command sets two tracepoints, which are associated with the Ada
tasks CHECKIN and RESERVE, respectively. Each tracepoint is triggered
whenever its associated task makes a transition to the RUN state.

DBG> SET TRACE/EVENT=RUN CHECKIN,RESERVE
DBG>

The next command causes the debugger to break whenever a SCAN token is
built, for any value.

DBG> SET BREAK/EVENT=TOKEN
DBG>

See Section 8.3.2 for information on predefined Ada event breakpoints.

2.4.6

Starting and Controlling Program Execution
2.4 Suspending and Tracing Execution with Breakpoints and Tracepoints

Canceling Breakpoints or Tracepoints
Use the CANCEL BREAK and CANCEL TRACE commands to cancel
breakpoints and tracepoints, respectively. To cancel a breakpoint (or a
tracepoint), specify address expressions and qualifiers exactly as you specified
them when setting the breakpoint (or tracepoint).

Thus, to cancel breakpoints (or tracepoints) that were set at specific address
expressions, specify those same address expressions. For example:

DBG> CANCEL BREAK SWAP,MOD2\LOOP4,2753
DBG>

To cancel breakpoints (or tracepoints) that were set with the following
command qualifiers, specify those same command qualifiers: /BRANCH,
/CALL, /EVENT=event-name, /EXCEPTION, /INSTRUCTION,
/INSTRUCTION=(opcode[, ...]), /LINE. If the qualifier requires one or
more keywords, include the keywords associated with the breakpoints or
tracepoints that are to be canceled. For example:

DBG> CANCEL BREAK/LINE
DBG> CANCEL TRACE/INSTRUCTION=(JSB,CALLS)
DBG> CANCEL TRACE/EVENT=RUN CHECKIN
DBG>

2.5 Monitoring Changes in Variables and Other Program Locations
Note: This section describes the general use of the SET WATCH command.

Section 2.5.2 gives additional information pertaining to setting
watchpoints on nonstatic variables - variables that are allocated on
the stack or in registers.

Also, in some cases, when using the SET WATCH command with a
variable name (or any other symbolic address expression) you may need
to set a module or specify a scope or a path name. Those concepts are
described in Chapter 4. The examples in this section assume that all
modules are set and that all variable names are uniquely defined.

The SET WATCH command enables you to specify program variables (or
arbitrary memory locations) that the debugger monitors as your program
executes. This process is called setting watchpoints. If, during execution, the
program modifies the value of a "watched" variable (or memory location),
the watchpoint is triggered. The debugger then suspends execution, displays
information, and prompts for more commands. The debugger monitors
watchpoints continuously during program execution.

The syntax of the SET WATCH command is as follows:

SET WATCH[/ qualifier[, . . .]] [address-expression[, . . .]]
[WHEN (conditional-expression)]
[DO (command[; . . .])]

Although any valid address expression may be specified, usually you specify
the name of a variable. The example that follows shows a typical use of the
SET WATCH command and illustrates the general default behavior of the
debugger at a watchpoint.

Starting and Controlling Progra·m Execution
2.5 Monitoring Changes in Variables and Other Program Locations

2-18

DBG> SET WATCH COUNT
DBG> GO

watch of MOD2\COUNT at MOD2\%LINE 24
24: COUNT := COUNT + 1;

old value: 27
new value: 28

break at MOD2\%LINE 25
25: END;

DBG>

In this example, the SET WATCH command sets a watchpoint on the variable
COUNT, and the GO command starts execution. When the program changes
the value of COUNT, execution is suspended. The debugger then does the
following:

• Announces the event ("watch of MOD2\ COUNT ... "), identifying the
location of the instruction that changed the value of the watched variable
(" ... at MOD2\ %LINE 24")

• Displays the associated source line (24)

• Displays the old and new values of the variable (27 and 28)

• Announces that execution has been suspended at the start of the next line
("break at MOD2\ %LINE 25") and displays that source line

• Prompts for another command.

When the address of the instruction that modified a watched variable is not
at the start of a source line, the debugger denotes the instruction's location by
displaying the line number plus the byte offset from the start of the line. For
example:

DBG> SET WATCH K
DBG> GO

watch of TEST\K at TEST\%LINE 19+5
19: DO 40 K = 1, J

old value: 4
new value: 5

break at TEST\%LINE 19+9
19: DO 40 K = 1, J

DBG>

In this example, the address of the instruction that modified variable K
is 5 bytes beyond the start of line 19. Note that the breakpoint is on the
instruction that follows the instruction that modified the variable (not on the
start of the next source line as in the preceding example).

You can set watchpoints on aggregates (that is, entire arrays or records). A
watchpoint set on an array or record triggers if any element of the array or
record changes. Thus, you do not need to set watchpoints on individual
array elements or record components. Note, however, that you cannot set
an aggregate watchpoint on a variant record. In the following example, the
watchpoint is triggered because element 3 of array ARR was modified:

2.5.1

2.5.2

Starting and Controlling Program Execution
2. 5 Monitoring Changes in Variables and Other Program Locations

DBG> SET WATCH ARR
DBG> GO

watch of SUBR\ARR at SUBR\%LINE 12
12: ARR(3) := 28

old value:
(1) : 7
(2): 12
(3): 3
(4) : 0

new value:
(1): 7
(2): 12
(3): 28
(4): 0

break at SUBR\%LINE 13
DBG>

To identify all of the watchpoints that are currently set, use the SHOW
WATCH command. To cancel watchpoints, use the CANCEL WATCH
command.

Note that the SET BREAK/MODIFY command has the same effect as the SET
WATCH command.

Watchpoint Options
The SET WATCH command provides the same options for controlling the
behavior of the debugger at watchpoints that the SET BREAK and SET
TRACE commands provide for breakpoints and tracepoints - namely the
/AFTER, /[NO]SILENT, /[NO]SOURCE, and /TEMPORARY command
qualifiers, and the optional WHEN and DO clauses. See Section 2.4.3 for
examples.

Watching Nonstatic Variables
Storage for a variable in your program is allocated either statically or
nonstatically. A static variable is associated with the same virtual memory
address throughout execution of the program. A nonstatic variable is allocated
on the stack or in a register and has a value only when its defining routine
is active (on the call stack). As explained in this section, the technique for
setting a watchpoint, the watchpoint's behavior, and the speed of program
execution are different for the two kinds of variables.

To determine how a variable is allocated, use the EVALUATE/ ADDRESS
command. A static variable generally has its address in PO space (0 through
3FFFFFFF, hexadecimal). A nonstatic variable generally has its address in Pl
space (40000000 through 7FFFFFFF, hexadecimal) or is in a register. In the
following Pascal code example, X is declared as a static variable, whereas Y
is a nonstatic variable (by default). The EVALUATE/ ADDRESS command,
entered while debugging, shows that Xis allocated at memory location 512,
whereas Y is allocated in register RO:

2-19

Starting and Controlling Program Execution
2.5 Monitoring Changes in Variables and Other Program Locations

2.5.2.1

2.5.2.2

2-20

VAR
X: [STATIC] INTEGER;
Y: INTEGER;

DBG> EVALUATE/ADDRESS X
512
DBG> EVALUATE/ADDRESS Y
%RO
DBG>

When using the SET WATCH command, note the following distinction. You
can set a watchpoint on a static variable regardless of the PC value when
you enter the command; but you can set a watchpoint on a nonstatic variable
only when the PC value is within the routine where that variable is defined.
Otherwise, the debugger issues a warning. For example:

DBG> SET WATCH Y
%DEBUG-W-SYMNOTACT, nonstatic variable 'MOD4\ROUT3\Y' is not active
DBG>

Section 2.5.2.2 describes how to set a watchpoint on a nonstatic variable.

Execution Speed
When a watchpoint is set, the speed of program execution depends on
whether the variable is static or nonstatic. To watch a static variable, the
debugger write-protects the page containing the variable. If your program
attempts to write to that page (modify the value of that variable), an access
violation occurs and the debugger handles the exception. The debugger
temporarily unprotects the page to allow the instruction to complete and then
determines whether the watched variable was modified. Except when writing
to that page, the program executes at full speed.

Because problems arise if the stack or registers are write-protected, the
debugger must use another technique to watch a nonstatic variable. It traces
every instruction in the variable's defining routine and checks the value of the
variable after each instruction has been executed. Because this significantly
slows down the execution of the program, the debugger issues the following
message when you set a nonstatic watchpoint:

DBG> SET WATCH Y
%DEBUG-I-WPTTRACE, nonstatic watchpoint, tracing every instruction
DBG>

Setting a Watchpoint on a Nonstatic Variable
To set a watchpoint on a nonstatic variable, make sure that the PC value is
within the defining routine. A convenient technique is to set a tracepoint
on that routine, also specifying a DO clause to set the watchpoint. Thus,
whenever the routine is called, the tracepoint is triggered and the watchpoint
is automatically set on the local variable. In the following example, the
WPTTRACE message indicates that a watchpoint has been set on Y, a
nonstatic variable that is local to routine ROUT3:

Starting and Controlling Program Execution
2.5 Monitoring Changes in Variables and Other Program Locations

2.5.2.3

DBG> SET TRACE/NOSOURCE ROUT3 DO (SET WATCH Y)
DBG> GO

trace at routine MOD4\ROUT3
%DEBUG-I-WPTTRACE, nonstatic watchpoint, tracing every instruction

watch of MOD4\ROUT3\Y at MOD4\ROUT3\%LINE 16
16: y := 4
old value: 3
new value: 4

break at MOD4\ROUT3\%LINE 17
17: SWAP(X,Y);

DBG>

When execution returns to the caller of routine ROUT3, variable Y is no
longer active. Therefore, the debugger automatically cancels the watchpoint
and issues the following messages:

%DEBUG-I-WATCHVAR, watched variable MOD4\ROUT3\Y has gone out of scope
%DEBUG-I-WATCHCAN, watchpoint now cancelled

Options for Watching Nonstatic Variables
The SET WATCH command qualifiers /OVER, /INTO, and /[NO]STATIC
provide options for watching nonstatic variables.

When you set a watchpoint on a nonstatic variable, you can direct the
debugger to do one of two things at a routine call:

• Step over the called routine - executing it at full speed - and resume
instruction tracing after returning. This is the default
(SET WATCH/OVER).

• Trace instructions within the called routine, thereby monitoring the
variable instruction-by-instruction within the routine
(SET WATCH/INTO).

Using the SET WATCH/OVER command results in better performance. But
it also means that, if the called routine modifies the watched variable, the
watchpoint is triggered only after execution returns from that routine. The
SET WATCH/INTO command slows down program execution but enables
you to monitor watchpoints more precisely within called routines.

The debugger determines whether a variable is static or nonstatic by looking
at its address (PO space, Pl space, or register). When entering a SET WATCH
command, you can override this decision with the /[NO]STATIC qualifier.
For example, if you have allocated nonstack storage in Pl space, use the SET
WATCH/STATIC command to tell the debugger that a particular variable is
static even though it is in Pl space. Conversely, if you have allocated your
own stack in PO space, use the SET WATCH/NOSTATIC command to tell the
debugger that a particular variable is nonstatic even though it is in PO space.

2-21

Starting and Controlling Program Execution
2.6 How the Debugger Controls Program Execution

2.6 How the Debugger Controls Program Execution

2-22

This section is for readers who are interested in how the debugger functions.

The debugger controls and monitors execution by causing exceptions to occur
at points of interest in your program. For example, it may put a breakpoint
fault instruction (BPT) in your code, causing a breakpoint exception to occur
when that instruction is executed. The debugger may also set the trace enable
bit (T bit) in the processor status longword (PSL), thus causing a trace trap at
the end of each instruction.

When you run your program with the debugger, the debugger is the primary
exception handler. Any exception resulting from the execution of your
program, whether or not it is caused by the debugger, is first handled by
the debugger. If the debugger did not cause the exception, it resignals the
exception (refer to Section 8.4 for information and debugging techniques
related to exceptions and condition handlers). If the debugger caused the
exception, it takes appropriate action. For example, in the case of a tracepoint
the debugger identifies the tracepoint and returns control to the program. In
the case of a breakpoint, the debugger maintains control by identifying the
breakpoint and then prompting for commands.

The following paragraphs illustrate the functioning of the debugger with
some typical commands - SET BREAK and STEP. See also Sections 2.5.2
and 8.4 for implementation information on the SET WATCH and
SET BREAK/EXCEPTION commands, respectively.

When you set a breakpoint, specifying a particular address expression, the
debugger removes the opcode at that address and replaces it with the BPT
instruction. When execution reaches that address, the BPT instruction causes
a breakpoint fault, which gives control to the debugger:

1 The debugger announces the breakpoint and prompts for commands.
When you resume execution, the debugger performs the following steps.

2 The debugger replaces the original opcode and sets the T bit of the saved
PSL on the stack, so that a trace trap occurs when the current instruction
is executed.

3 The instruction is executed.

4 When the trace trap occurs, the debugger replaces the BPT instruction at
the original breakpoint address, so that the break fault occurs whenever
execution again reaches that address.

When you enter a STEP /INSTRUCTION command, the debugger sets the T
bit of the saved PSL, executes the next instruction, then, when the trace trap
occurs, issues a message and prompts for commands.

The STEP /LINE command is implemented similarly, except that the debugger
keeps track of line boundaries by correlating the low and high PC values of
each line with data stored in the symbol table. The debugger completes the
step and prompts for commands when you leave the current line.

When you set a breakpoint on a class of instructions and then start execution,
the debugger traces (traps on) every instruction by setting the T bit of the
saved PSL. If the next instruction is of the desired class, the debugger
suspends execution on that instruction, announces the breakpoint, and
prompts for commands. If the instruction is not of the desired class, the
debugger continues to trace and execute instructions.

Starting and Controlling Program Execution
2.6 How the Debugger Controls Program Execution

When you enter a STEP /OVER command at a routine call, the debugger does
the following:

1 Steps into the routine, then sets a reserved bit in the saved PSL.

2 Lets the program run. The routine is executed, but the RET instruction
causes a reserved-operand exception when it tries to restore the modified
PSL.

3 Lets the RET instruction complete but sets the T bit to suspend execution
after the RET instruction (in the calling routine) on the instruction that
follows the original call.

STEP /RETURN is also implemented by setting a reserved bit in the saved
PSL.

Because the debugger and your program share the same address space, in
some rare cases they may interfere with each other, causing unexpected
behavior. The following paragraphs highlight possible sources of interference.

Effect of Debugger on Uninitialized Variables

Because the debugger acts as an exception handler, it uses the stack. This
may cause uninitialized variables saved on the stack to be modified by the
debugger.

If your program references an uninitialized variable that is in this state, the
execution of the program may be affected.

Effect of Debugger on Memory Usage

Another source of possible interference between the debugger and your
program is that they share virtual memory. If your program is sensitive to
changes in memory usage, the execution of the program may be affected.

2-23

3 Examining and Manipulating Program Data

This chapter explains how to use the EXAMINE and DEPOSIT commands to
display and modify the values of symbols declared in your program as well as
the contents of arbitrary program locations. The chapter also explains how to
use the EVALUATE and other commands that evaluate language expressions.

The topics covered in this chapter are organized as follows:

• General concepts related to using the EXAMINE, DEPOSIT, and
EVALUATE commands.

• Use of the commands with symbolic names - for example, the names .of
variables and routines declared in your program. Such symbolic address
expressions are associated with compiler generated types.

• Use of the commands with program locations (virtual memory addresses
or registers) that do not have symbolic names. Such address expressions
are not associated with compiler generated types.

• Specifying a type to override the type associated with an address
expression.

The examples in this chapter do not cover all language-dependent behavior.
When debugging in any language, be sure to consult the documentatio~
supplied with that language. The chapter devoted to debugging in the user's
guide contains all language-dependent information for that language. The
following sections of this manual also contain language-related information:

• Appendix E tabulates the constructs and operators that are supported by
the debugger for each language.

• Section 8.3 highlights some important differences between languages that
you should be aware of when debugging multilanguage programs.

3.1 General Concepts

3.1.1

This section introduces the EXAMINE, DEPOSIT, and EVALUATE commands
and discusses concepts that are common to those commands.

Accessing Variables While Debugging
Before you try to examine or deposit into a nonstatic (stack-local or register)
variable, its defining routine must be active (on the call stack). That is,
program execution must be suspended somewhere within the defining
routine. See Section 2.5.2 for more information about nonstatic variables.

You can examine a static variable at any time during program execution,
and you can examine a nonstatic variable as soon as execution reaches its
defining routine. However, before you examine any variable, you should
step or otherwise execute the program beyond the point where the variable

3-1

3.1.2

Examining and Manipulating Program Data
3.1 General Concepts

is declared and initialized. The value contained in any uninitialized variable
should be considered invalid.

Many compilers optimize code to make the program run faster. If the code
that you are debugging has been optimized, some program locations may not
match what you might expect from looking at the source code. In particular,
some optimization techniques eliminate certain variables, so that you no
longer have access to them while debugging.

Section 8.1 explains the effect of several optimization techniques on the
executable code. When first debugging a program, it is best to disable
optimization, if possible, with the /NOOPTIMIZE (or equivalent) compiler
command qualifier.

Note that, in some cases, when using the EXAMINE or DEPOSIT command
with a variable name (or any other symbolic address expression) you may
need to set a module or specify a scope or a path name. Those concepts are
described. in Chapter 4. The examples in this chapter assume that all modules
are set and that all variable names are uniquely defined.

Using the EXAMINE Command

3-2

For high-level language programs, the EXAMINE command is used mostly to
display the current value of variables, and it has the following form:

EXAMINE variable-name[, . . .]

Thus, for example, the following command displays the current value of the
integer variable X:

DBG> EXAMINE X
MOD3\X: 17
DBG>

When displaying the value, the debugger prefixes the variable name with
its path name - in this case, the name of the module where variable X is
declared (see Section 4.3.2).

More generally, the EXAMINE command displays the current value of the
entity denoted by an address expression, in the type associated with that
location (for example, integer, real, array, record, and so on). The basic
format of the EXAMINE command is as follows:

EXAMINE address-expression[, . . .]

When you enter an EXAMINE command, the debugger evaluates the address
expression to yield a program location (a virtual memory address or a
register). The debugger then displays the value stored at that location as
follows:

• If the location has a symbolic name, the debugger formats the value
according to the compiler generated type associated with that symbol.

• If the location does not have a symbolic name, the debugger formats the
value in the type longword integer, by default.

See Section 3.1.4 for more information on the types associated with symbolic
and nonsymbolic address expressions.

3.1.3

Examining and Manipulating Program Data
3.1 General Concepts

By default, when displaying the value, the debugger identifies the address
expression and its path name symbolically if symbol information is available.
See Section 3.1.10 for additional information about symbolization of
addresses.

Using the DEPOSIT Command
For high-level languages, the DEPOSIT command is used mostly to assign
a new value to a variable. The command is like an assignment statement in
most programming languages, and it has the following form:

DEPOSIT variable-name = value

Thus, for example, the following DEPOSIT command assigns the value 23 to
the integer variable X:

DBG> EXAMINE X
MOD3\X: 17
DBG> DEPOSIT X = 23
DBG> EXAMINE X
MOD3\X: 23
DBG>

More gen~rally, the DEPOSIT command evaluates a language expression and
deposits the resulting value into a program location denoted by an address
expression. The basic format of the DEPOSIT command is as follows:

DEPOSIT address-expression = language-expression

When you enter a DEPOSIT command, the debugger does the following:

• It evaluates the address expression to yield a program location.

• If the program location has a symbolic name, the debugger associates the
location with the symbol's compiler generated type. If the location does
not have a symbolic name, the debugger associates the location with the
type longword integer, by default (see Section 3.1.4).

• It evaluates the language expression in the syntax of the current language
and in the current radix to yield a value. This behavior is identical to that
of the EVALUATE command (see Section 3.1.5).

• It checks that the value and type of the language expression is consistent
with the type of the address expression. If you try to deposit a value that
is incompatible with the type of the address expression, the debugger
issues a diagnostic message. If the value is compatible, the debugger
deposits the value into the location denoted by the address expression.

Note that the debugger may do type conversion during a deposit operation if
the language rules allow it. For example, assume X is an integer variable. In
the following example, the real value 2.0 is converted to the integer value 2,
which is then assigned to X:

DBG> DEPOSIT X = 2.0
DBG> EXAMINE X
MOD3\X: 2

In general, the debugger tries to follow the assignment rules for the current
language.

3-3

3.1.4

Examining and Manipulating Program Data
3.1 General Concepts

Address Expressions and Their Associated Types

3-4

The symbols that are declared in your program (variable names, routine
names, and so on) are symbolic address expressions. They denote locations
in virtual memory or in registers. Symbolic address expressions (also called
symbolic names in this chapter) have compiler generated types, and the
debugger knows the type and location that are associated with symbolic
names. Section 3.1.10 explains how to obtain memory addresses and register
names from symbolic names and how to symbolize program locations.

Symbolic names include the following categories:

• Variables. The associated program locations contain the current values
of variables. Techniques for examining and depositing into variables are
described in Section 3.2.

• Routines, labels, and line numbers. The associated program locations
contain VAX assembly-language instructions. Techniques for examining
and depositing VAX instructions are described in Section 3.3.

Program locations that do not have a symbolic name are not associated with
a compiler generated type. To enable you to examine and deposit into such
locations, the debugger associates them with the default type longword integer.
This means that, if you specify a location that does not have a symbolic
name, the EXAMINE command displays the contents of 4 bytes starting at the
address specified and formats the displayed information as an integer value.
In the following example, the virtual memory address 926 is not associated
with a symbolic name (note that the address is not symbolized when the
EXAMINE command is executed). Therefore, the EXAMINE command
displays the value at that address as a longword integer:

DBG> EXAMINE 926
926: 749404624
DBG>

Similarly, by default you can deposit up to 4 bytes of integer data into a
program location that does not have a symbolic name. And this data is
formatted as a longword integer. For example:

DBG> DEPOSIT 926 = 84
DBG> EXAMINE 926
926: 84
DBG>

Techniques for examining and depositing into locations that do not have a
symbolic name are described in Section 3.5.

The EXAMINE and DEPOSIT commands accept type qualifiers (/ ASCil:n,
/BYTE, and so on) that enable you to override the type associated with a
program location. This is useful if you want the contents of the location to
be interpreted and displayed in another type, or if you want to deposit some
value of a particular type into a location that is associated with another type.
Techniques for overriding a type are described in Section 3.5.

3.1.5

Examining and Manipulating Program Data
3.1 General Concepts

Evaluating Language Expressions
A language expression consists of any combination of one or more symbols,
literals, and operators that is evaluated to a single value in the syntax of the
current language and in the current radix. {The current language and current
radix are defined in Section 3.1.8 and Section 3.1.9, respectively.) Several
debugger commands and constructs evaluate language expressions:

• The EVALUATE and DEPOSIT commands, which are described in this
section and in Section 3.1.3, respectively.

• The IF, FOR, REPEAT, and WHILE commands (see Section 7.6).

• WHEN clauses, which are used with the SET BREAK, SET TRACE, and
SET WATCH commands (see Section 2.4.3).

Although this discussion applies to all commands and constructs that evaluate
language expressions, it focuses on the use of the EVALUATE command.

The EVALUATE command evaluates one or more language expressions in
the syntax of the current language and in the current radix and displays the
resulting values. The command has the following form:

EVALUATE language-expression[, . . .]

One use of the EVALUATE command is as a calculator, to perform arithmetic
calculations that may be unrelated to your program. For example:

DBG> EVALUATE (8+12)*6/4
30
DBG>

The debugger uses the rules of operator precedence of the current language
when evaluating language expressions.

You can also evaluate language expressions that include variables and other
constructs. For example, the following EVALUATE command subtracts 3 from
the current value of the integer variable X, multiplies the result by 4, and
displays the resulting value:

DBG> DEPOSIT X = 23
DBG> EVALUATE (X - 3) * 4
80
DBG>

If an expression contains symbols with different compiler generated types,
the debugger uses the type-conversion rules of the current language to
evaluate the expression. If the types are incompatible, a diagnostic message
is issued. Debugger support for operators and other constructs in language
expressions is tabulated in Appendix E for each language. You can also obtain
information by typing "HELP LANGUAGE language-name".

The built-in symbol %CURVAL denotes the current value - the value last
displayed by an EVALUATE or EXAMINE command, or deposited by a
DEPOSIT command. The backslash (\) also denotes the current value when
used in that context. For example:

3-5

Examining and Manipulating Program Data
3.1 General Concepts

3.1.5.1

3-6

DBG> EXAMINE X
MOD3\X: 23
DBG> EVALUATE %CURVAL
23
DBG> DEPOSIT Y = 47
DBG> EVALUATE \
47
DBG>

Using Variables in Language Expressions
You can use variables in language expressions in much the same way that
you use them in the source code of your program.

Thus, the debugger generally interprets a variable used in a language
expression as the current value of that variable, not the address of the
variable. For example (X is an integer variable):

DBG> DEPOSIT X = 12
DBG> EXAMINE X
MOD4\X: 12
DBG> EVALUATE X
12
DBG> EVALUATE X + 4
16
DBG> DEPOSIT X = X/2

DBG> EXAMINE X
MOD4\X: 6
DBG>

Assign the value 12 to X
Display the value of X

Evaluate and display the value of X

Add the value of X to 4

Divide the value of X by 2 and assign
the resulting value to X
Display the new value of X

Note that the use of a variable in a language expression as illustrated in
the previous examples is generally limited to single-valued, nonstructured
variables. Typically, you can specify a multi-valued, structured variable (like
an array or record) in a language expression only if the syntax indicates that
you are referencing only a single value (a single element of the structure). For
example, if ARR is the name of an array of integers, the following command
is invalid:

DBG> EVALUATE ARR
%DEBUG-W-NOVALUE, reference does not have a value
DBG>.

However, the following commands are valid because only a single element of
the array is referenced:

DBG> EVALUATE ARR(2)
37
DBG> DEPOSIT K = 5 + ARR(2)
DBG>

Evaluate element 2 of array ARR

Deposit the sum of two integer values
into an integer variable

Note also that, if the current language is BLISS, the debugger interprets a
variable in a language expression as the address of that variable. To denote
the value stored in a variable, you must use the contents-of operator (period
(.)). For example, when the language is set to BLISS:

3.1.6

3.1.5.2

Examining and Manipulating Program Data
3.1 General Concepts

DBG> EXAMINE Y
MOD4\Y: 3
DBG> EVALUATE Y
024758
DBG> EVALUATE .Y
3
DBG> EVALUATE Y + 4
02475F
DBG> EVALUATE .Y + 4
7

Display the value of Y.

Display the address of Y.

Display the value of Y.

Add 4 to the address of Y and display
the resulting value.
Add 4 to the value of Y and display
the resulting value.

For all languages, to obtain the address of a variable, use the
EVALUATE/ ADDRESS command, as described in Section 3.1.10. The
EVALUATE and EVALUATE/ ADDRESS commands both display the address
of an address expression when the language is set to BLISS.

Numeric Type Conversion by the Debugger
When evaluating language expressions involving numeric types of different
precision, the debugger first converts lower-precision types to higher-precision
types before performing the evaluation. In the following example, the
debugger converts the integer 1 to the real 1.0 before doing the addition.

DBG> EVALUATE 1.5 + 1
2.5
DBG>

The basic rules are as follows. If integer and real types are mixed, the integer
type is converted to the real type. If integer types of different sizes are mixed
(for example, byte-integer and word-integer), the one with the smaller size
is converted to the larger size. If real types of different sizes are mixed (for
example, G_float and H_float), the one with the smaller size is converted to
the larger size.

In general, the debugger allows more numeric type conversion than the
programming language. In addition,. the hardware type used for a debugger
calculation (word, longword, G_float, and so on) may differ from that chosen
by the compiler. Because the debugger is not as strongly typed or as precise
as some languages, the evaluation of an expression by the EVALUATE
command may differ from the result that would be calculated by compiler
generated code and obtained with the EXAMINE command.

Address Expressions Compared to Language Expressions
Do not confuse address expressions with language expressions. An address
expression specifies a program location, whereas a language expression
specifies a value. In particular, the EXAMINE command expects an address
expression as its parameter, and the EVALUATE command expects a language
expression as its parameter. These points are illustrated in the next examples.

In the following example, the value 12 is deposited into the variable X. This is
confirmed by the EXAMINE command. The EVALUATE command computes
and displays the sum of the current value of X and the integer literal 6:

DBG> DEPOSIT X = 12
DBG> EXAMINE X
MOD3\X: 12
DBG> EVALUATE X + 6
18
DBG>

3-7

3.1.7

Examining and Manipulating Program Data
3.1 General Concepts

In the next example, the EXAMINE command displays the value currently
stored at the virtual memory location that is 6 bytes beyond the address of X.

DBG> EXAMINE X + 6
MOD3\X+6: 274903
DBG>

In this case the location is not associated with a compiler generated type.
Therefore, the debugger interprets and displays the value stored at that
location in the type longword integer (see Section 3.1.4).

In the next example, the value of X + 6 (that is, 18) is deposited into the
location that is 6 bytes beyond the address of X. This is confirmed by the last
EXAMINE command.

DBG> EXAMINE X
MOD3\X: 12
DBG> DEPOSIT X + 6 = X + 6
DBG> EXAMINE X
MOD3\X: 12
DBG> EXAMINE X + 6
MOD3\X+6: 18

Specifying the Current, Previous, and Next Entity

3-8

When using the EXAMINE and DEPOSIT commands, you can use three
special built-in symbols (address expressions) to refer quickly to the current,
previous, and next data locations (logical entities). These are the period (.),
the circumflex("), and the RETURN key.

The period (.), when used by itself with an EXAMINE or DEPOSIT
command, denotes the current entity - that is, the program location most
recently referenced by an EXAMINE or DEPOSIT command. For example:

DBG> EXAMINE X
SIZE\X: 7
DBG> DEPOSIT = 12
DBG> EXAMINE
SIZE\X: 12
DBG>

The circumflex (") and RETURN key denote, respectively, the previous
and next logical data locations relative to the last EXAMINE or DEPOSIT
command (the logical predecessor and successor, respectively). The circumflex
and RETURN key are useful for referring to consecutive indexed components
of an array. The following example illustrates the use of these operators with
an array ofintegers, ARR:

DBG> EXAMINE ARR(5) Examine element 5 of array ARR
MAIN\ARR(5): 448670
DBG> EXAMINE ~ Examine the previous element (4)
MAIN\ARR(4): 79280
DBG> EXAMINE llifilJ Examine the next element (5)
MAIN\ARR(5): 448670
DBG> EXAMINE llifilJ Examine the next element (6)
MAIN\ARR(6): 891236
DBG>

The debugger uses the type associated with the current entity to determine
logical successors and predecessors.

Examining and Manipulating Program Data
3.1 General Concepts

You can also use the built-in symbols %CURLOC, %PREVLOC, and
%NEXTLOC to achieve the same purpose as the period, circumflex, and
RETURN key, respectively. These symbols are useful in command procedures
and also if your program uses the circumflex for other purposes. Moreover,
using the RETURN key to signify the logical successor does not apply to all
contexts. For example, you cannot press the RETURN key after typing the
command DEPOSIT to indicate the next location, whereas you can always
use the symbol %NEXTLOC for that purpose.

See Appendix D for more information on built-in symbols.

The previous example illustrates the use of the built-in symbols after
referencing a symbolic name with the EXAMINE or DEPOSIT command.
If you examine or deposit into a virtual memory address, that location may or
may not be associated with a compiler generated type. When you reference
a virtual memory address, the debugger uses the following convention to
determine logical predecessors and successors:

• If the address has a symbolic name (the name of a variable, component
of a structured variable, routine, and so on), the debugger uses the
associated compiler generated type.

• If the address does not have a symbolic name, the debugger uses the type
longword integer by default.

As the current entity is reset with new examine or deposit operations, the
debugger associates each new location with a type in the manner indicated to
determine logical successors and predecessors. This is illustrated in the next
examples.

Assume that your program has declared three variables, ARY, FLT, and BTE:

• ARY is an array of three word integers (2 bytes each).

• FLT is an F_floating type (4 bytes).

• BTE is a byte integer (1 byte).

Assume that storage for these variables has been allocated at consecutive
addresses in memory, starting with 1000. For example:

1000: ARY(1)
1002: ARY(2)
1004: ARY(3)
1006: FLT
1010: BTE
1011: undefined

Then, examining successive logical data locations would give the following
results:

3-9

3.1.8

3.1.9

Examining and Manipulating Program Data
3.1 General Concepts

DBG> EXAMINE 1000
MOD3\ARY(1): 13
DBG> EXAMINE [gf]
MOD3\ARY(2): 7
DBG> EXAMINE [gf]
MOD3\ARY(3): 19
DBG> EXAMINE [gf]
MOD3\FLT: 1.9117807E+07
DBG> EXAMINE [gf]
MOD3\BTE: 43
DBG> EXAMINE [gf]
1011: 17694732
DBG>

Examine ARY(1), associated with 1000.
Current entity is now ARY(1).
Examine next location, ARY(2),
using type of ARY(1) as reference.
Examine next location, ARY(3).
Current entity is now ARY(3).
Examine entity at 1006 (FLT).
Current entity is now FLT.
Examine entity at 1010 (BTE).
Current entity is now BTE.
Examine entity at 1011 (undefined).
Interpret data as longword integer.
Location is not symbolized.

The same principles apply when you use type qualifiers with the EXAMINE
and DEPOSIT commands (see Section 3.5.2). The type specified by the
qualifier determines the data boundary of an entity and, therefore, any logical
successors a,nd predecessors.

Language Dependencies and the Current Language
The debugger enables you to set your debugging context to any one of several
VAX-supported languages. The setting of the current language determines
how the debugger parses and interprets the names, numbers, operators, and
expressions you specify in debugger commands, and how it displays data.

By default, the current language is the language of the module containing
the main program, and it is identified when you invoke the debugger. For
example:

$ PASCAL/NOOPTIMIZE/DEBUG FORMS
$ LINK/DEBUG FORMS
$ RUN FORMS

VAX DEBUG Version 5.0

%DEBUG-I-INITIAL, language is PASCAL, module set to 'FORMS'
DBG>

When debugging modules whose code is written in other languages, you can
use the SET LANGUAGE command to establish a new language dependent
context. Section 8.3 highlights some important language differences.
Appendix E identifies the operators and language constructs that are
supported for each language (these are also identified if you type HELP
LANGUAGE language-name at the debugger prompt). Be sure to consult the
user's guide of your language documentation for details on debugger support
for that language.

Specifying a Radix for Entering or Displaying Integer Data

3-10

The debugger can interpret and display integer data in any one of four
radixes: decimal, hexadecimal, octal, and binary. The default radix is decimal
for all languages except BLISS and MACRO, and it is hexadecimal for BLISS
and MACRO.

You can control the radix for the following kinds of integer data:

• Data that you specify in address expressions or language expressions.

Examining and Manipulating Program Data
3.1 General Concepts

• Data that is displayed by the EVALUATE and EXAMINE commands.

You cannot control the radix for other kinds of integer data. For example,
addresses are always displayed in hexadecimal radix in a SHOW CALLS
display. Or, when specifying an integer n with various command qualifiers
(/ AFTER:n, /UP:n, and so on) you must use decimal radix.

The technique you use to control radix depends on your objective. To
establish a new radix for all subsequent commands, use the SET RADIX
command. For example:

DBG> SET RADIX HEXADECIMAL
DBG>

After this command is executed, all integer data that you enter in address
or language expressions is interpreted as being hexadecimal. Also, all
integer data displayed by EVALUATE and EXAMINE commands is given
in hexadecimal radix.

The SHOW RADIX command identifies the current radix (which is either the
default radix, or the radix last established by a SET RADIX command). For
example:

DBG> SHOW RADIX
input radix: hexadecimal
output radix: hexadecimal
DBG>

The SHOW RADIX command identifies both the input radix (for data entry)
and the output radix (for data display). The SET RADIX command qualifiers
/INPUT and /OUTPUT enable you to specify different radixes for data entry
and display. See the command dictionary for additional information about
the SET RADIX command.

Use the CANCEL RADIX command to restore the default radix.

The examples that follow show several techniques for displaying or entering
integer data in another radix without changing the current radix.

To convert some integer data to another radix without changing the current
radix, use the EVALUATE command with a radix qualifier (/BINARY,
/DECIMAL, /HEXADECIMAL, /OCTAL). For example:

DBG> SHOW RADIX
input radix: decimal
output radix: decimal
DBG> EVALUATE 18 + 5
23
DBG> EVALUATE/HEX 18 + 5
00000017
DBG>

23 is decimal integer.

17 is hexadecimal integer.

The radix qualifiers do not affect the radix for data entry.

To display the current value of an integer variable (or the contents of a
program location that has an integer type) in another radix, use the EXAMINE
command with a radix qualifier. For example:

DBG> EXAMINE X
MOD4\X: 4398
DBG> EXAMINE/OCTAL
MOD4\X: 00000010456
DBG>

4398 is a decimal integer.
Xis the current entity.
10456 is an octal integer.

3-11

Examining and Manipulating Program Data
3.1 General Concepts

To enter one or more integer literals in another radix without changing the
current radix, use one of the radix built-in symbols %BIN, %DEC, %HEX,
or %OCT. A radix built-in symbol directs the debugger to treat an integer
literal that follows (or all numeric literals in a parenthesized expression that
follows) as a binary, decimal, hexadecimal, or octal number, respectively.
These symbols do not affect the radix for data display. For example:

DBG> SHOW RADIX
input radix: decimal
output radix: decimal
DBG> EVAL %BIN 10
2
DBG> EVAL %HEX (10 + 10)
32
DBG> EVAL %HEX 20 + 33
65
DBG> EVAL/HEX %OCT 4672
000009BA
DBG> EXAMINE X + %DEC 12
MOD3\X+12: 493847
DBG> DEPOS J = %OCT 7777777
DBG> EXAMINE .
MOD3\J: 2097151
DBG> EXAMINE/OCTAL .
MOD3\J: 00007777777

Evaluate the binary integer 10.
2 is a decimal integer.
Evaluate the hexadecimal integer 20.
32 is a decimal integer.
Treat 20 as hexadecimal, 33 as decimal.
65 is a decimal integer.
Treat 4672 as octal and display in hex.
9BA is a hexadecimal number.
Examine the location 12 decimal bytes
beyond the address of X.
Deposit an octal value.
Display that value in decimal radix.

Display that value in octal radix.

DBG> EXAMINE %HEX OA34D Examine location A34D, hexadecimal.
SHARE$LIBRTL+4941: 344938193 ! 344938193 is a decimal integer.
DBG>

NOTE: When specifying a hexadecimal integer that starts with a letter rather
than a number (for example, A34D in the last example), add a leading
110". Otherwise, the debugger tries to interpret the integer as a symbol
declared in your program.

See Appendix D for more examples showing the use of the radix built-in
symbols.

3.1 .10 Obtaining and Symbolizing Virtual Memory Addresses

3-12

Use the EVALUATE/ ADDRESS command to determine the virtual memory
address or the register name associated with a symbolic address expression,
such as a variable name, line number, routine name, or label. For example:

DBG> EVALUATE/ADDRESS X A variable name
2476
DBG> EVALUATE/ADDRESS SWAP A routine name
1536
DBG> EVALUATE/ADDRESS %LINE 26
1629
DBG>

The address is displayed in the current radix (as defined in Section 3.1.9).
You can specify a radix qualifier to display the address in another radix. For
example:

DBG> EVALUATE/ADDRESS/HEX X
000009AC
DBG>

Examining and Manipulating Program Data
3.1 General Concepts

If a variable is associated with a register instead of a virtual memory address,
the EVALUATE/ ADDRESS command displays the name of the register,
regardless of whether a radix qualifier is used. The following command
indicates that variable K (a nonstatic variable) is associated with register R2:

DBG> EVALUATE/ADDRESS K
%R2

The command SYMBOLIZE does the reverse of EVALUATE/ ADDRESS.
It converts a virtual memory address or a register name into its symbolic
representation (including its path name) if such a representation is possible
(Chapter 4 explains how to control symbolization). For example, the
following command shows that variable K is associated with register R2:

DBG> SYMBOLIZE %R2
address MOD3\%R2:

MOD3\K
DBG>

By default, symbolic mode is in effect (SET MODE SYMBOLIC). Therefore
the debugger displays all addresses symbolically, if symbols are available
for the addresses. For example, if you specify a numeric address with the
EXAMINE command, the address is displayed in symbolic form if symbolic
information is available:

DBG> EVALUATE/ADDRESS X
2476
DBG> EXAMINE 2476
MODS\X: 16

However, if you specify a register that is associated with a variable, the
EXAMINE command does not convert the register name to the variable name.
For example:

DBG> EVALUATE/ADDRESS K
%R2
DBG> EXAMINE %R2
MOD3\%R2: 78

By entering the command SET MODE NOSYMBOLIC, you disable symbolic
mode and cause the debugger to display numeric addresses rather than their
symbolic names. When symbolization is disabled, the debugger may process
commands somewhat faster because it does not need to convert numbers
to names. The EXAMINE command has a /[NO]SYMBOLIC qualifier ·that
enables you to control symbolization for a single EXAMINE command. For
example:

DBG> EVALUATE/ADDRESS Y
512
DBG> EXAMINE 512
MOD3\Y: 28
DBG> EXAMINE/NOSYMBOLIC 512
512: 28
DBG>

Symbolic mode also affects the display of instructions. For example:

DBG> EXAMINE/INSTRUCTION .%PC
MOD5\%LINE 14+2: MOVAL LAMOD4\X,R11
DBG> EXAMINE/NOSYMBOL/INSTRUCTION .%PC
1538: MOVAL LA1080,R11
DBG>

3-13

Examining and Manipulating Program Data
3.2 Examining and Depositing into Variables

3.2 Examining and Depositing into Variables

3.2.1 Scalar Types

3-14

The examples in this section illustrate how to use the EXAMINE and
DEPOSIT commands with variables.

Languages differ in the types of variables they use, the names for these types,
and the degree to which different types can be intermixed in expressions. The
following generic types are discussed in this section.

• Scalars (such as integer, real, character, or boolean)

• Strings

• Arrays

• Records

• Pointers (access types)

The most important consideration when examining and manipulating
variables in high-level language programs is that the debugger recognizes
the names, syntax, type constraints, and scoping rules of the variables in
your program. Therefore, when specifying a variable with the EXAMINE or
DEPOSIT command, you use the same syntax that is used in the source code.
The debugger processes and displays the data accordingly. SimilarlyJ when
assigning a value to a variable, the debugger follows the typing rules of the
language. It issues a diagnostic message if you try to deposit an incompatible
value. The examples in this section show some of these invalid operations
and the resulting diagnostics.

When using the DEPOSIT command (or any other command), note the
following behavior. If the debugger issues a diagnostic message with a
severity level of I (informational), the command is still executed (the deposit
is made in this case). The debugger aborts an illegal command line only
when the severity level of the message is W (warning) or greater.

See your language documentation for additional examples and for information
concerning any language features that are not supported by the debugger.

The following examples illustrate use of the EXAMINE, DEPOSIT, and
EVALUATE commands with some integer, real, and boolean types.

Examine a list of three integer variables:

DBG> EXAMINE WIDTH, LENGTH, AREA
SIZE\ WIDTH: 4
SIZE\LENGTH: 7
SIZE\AREA: 28
DBG>

Deposit an integer expression:

DBG> DEPOSIT WIDTH = CURRENT_WIDTH + 10
DBG>

Examining and Manipulating Program Data
3.2 Examining and Depositing into Variables

The debugger checks that a value to be assigned is compatible with the data
type and dimensional constraints of the variable. The following example
shows an attempt to deposit an out-of-bounds value (X was declared as a
positive integer):

DBG> DEPOSIT X = -14
%DEBUG-I-IVALOUTBNDS, value assigned is out of bounds at or near DEPOSIT
DBG>

If you try to mix numeric types (integer and real of varying precision) in a
language expression, the debugger generally follows the rules of the language.
Strongly typed languages do not allow much if any mixing. With some
languages, you can deposit a real value into an integer variable. However,
the real value is converted into an integer. For example:

DBG> DEPOSIT I = 12345
DBG> EXAMINE I
MOD3\I: 12345
DBG> DEPOSIT I = 123.45
DBG> EXAMINE I
MOD3\I: 123
DBG>

Note that, if numeric types are mixed in an expression, the debugger performs
type conversion as discussed in Section 3.1.5.2. For example:

DBG> DEPOSIT Y = 2.356 ! Y is of type D_floating point.
DBG> EXAMINE Y
MOD3\Y: 2.35600000000000
DBG> EVALUATE Y + 3
5.35600000000000

DBG> DEPOSIT R = 5.35E3 R is of type F_floating point.
DBG> EXAMINE R
MOD3\R: 5350.000
DBG> EVALUATE R*50

267500.0
DBG> DEPOSIT I = 22222
DBG> EVALUATE R/I

0.2407524
DBG>

The next example shows some operations with boolean variables. The
values TRUE and FALSE are assigned to the variables WILLING and ABLE,
respectively. The EVALUATE command then obtains the logical conjunction
of these values:

DBG> DEPOSIT WILLING = TRUE
DBG> DEPOSIT ABLE = FALSE
DBG> EVALUATE WILLING AND ABLE
False
DBG>

3-15

3.2.2

3.2.3

Examining and Manipulating Program Data
3.2 Examining and Depositing into Variables

ASCII String Types

Array Types

3-16

When displaying an ASCII string value, the debugger encloses it within
quotation marks (") or apostrophes ('), depending on the language syntax.
For example:

DBG> EXAMINE EMPLOYEE_NAME
PAYROLL\EMPLOYEE_NAME: "Peter C. Lombardi"
DBG>

To deposit a string value (including a single character) into a string variable,
you must enclose the value in quotation marks (") or apostrophes (')). For
example:

DBG> DEPOSIT PART_NUMBER = "WG-7619.3-84"
DBG>

If the string has more ASCII characters (1 byte each) than can fit into the
location denoted by the address expression, the debugger truncates the extra
characters from the right and issues the following message:

%DEBUG-I-ISTRTRU, string truncated at or near DEPOSIT

If the string has fewer characters, the debugger pads the remaining characters
to the right of the string by inserting ASCII space characters.

You can examine an entire array aggregate, a single indexed element, or a
slice (a range of elements). But you can deposit into only one element at a
time. The following examples show typical operations with arrays.

The following command displays the values of all the elements of the array
variable ARRX, a one-dimensional array of integers:

DBG> EXAMINE ARRX
MOD3\ARRX

(1) : 42
(2): 17
(3): 278
(4): 56
(5): 113
(6): 149

DBG>

The following command displays the value of element 4 of array ARRX
(depending on the language, parentheses or brackets are used to denote
indexed elements):

DBG> EXAMINE ARRX(4)
~OD3\ARRX(4): 56
DBG>

The following command displays the values of all the elements in a slice of
ARRX. This slice consists of the range of elements from element 2 through
element 5:

Examining and Manipulating Program Data
3.2 Examining and Depositing into Variables

DBG> EXAMINE ARRX(2:5)
MOD3\ARRX

(2): 17
(3): 278
(4): 56
(5): 113

DBG>

In general, a range of values to be examined is denoted by two values
separated by a colon (value1:value2). Depending on the language, two periods
(..) may be used instead of a colon.

You can deposit a value to only a single array element at a time (you cannot
deposit to an array slice or an entire array aggregate with a single DEPOSIT
command). For example, the following command deposits the value 53 into
element 2 of ARRX:

DBG> DEPOSIT ARRX(2) = 53
DBG>

The following command displays the values of all the elements of array
REAL-ARRAY, a two-dimensional array of real numbers (three per
dimension):

DBG> EXAMINE REAL_ARRAY
PROG2\REAL_ARRAY

(1,1): 27.01000
(1,2): 31.00000
(1,3): 12.48000
(2,1): 15.08000
(2,2): 22.30000
(2,3): 18.73000

DBG>

The debugger issues a diagnostic message if you try to deposit to an index
value that is out of bounds. For example:

DBG> DEPOSIT REAL_ARRAY(1,4) = 26.13
%DEBUG-I-SUBOUTBND, subscript 2 is out of bounds, value is 4, bounds are 1 .. 3
DBG>

Note that, in the previous example the deposit operation was executed
because the diagnostic message is of I level. This means that the value of
some array element adjacent to (1,3), possibly (2,1) may have been affected
by the out-of-bounds deposit operation.

To deposit the same value to several ,components of an array, you can use a
looping command, such as FOR or REPEAT. For example, assign the value
RED to elements 1 through 4 of the array COLOR-ARRAY:

DBG> FOR I = 1 TO 4 DO (DEPOSIT COLOR_ARRAY(I) = RED)
DBG>

You can also use the built-in symbols (.) and (") and the RETURN key to
step through array elements, as explained in Section 3.1.7.

3-17

3.2.4

3.2.5

Examining and Manipulating Program Data
3.2 Examining and Depositing into Variables

Record Types
You can examine an entire record aggregate, a single record component, or
several components. But you can deposit into only one component at a time.
The following examples show typical operations with records.

The following command displays the values of all the components of the
record variable PART:

DBG> EXAMINE PART
INVENTORY\PART:

ITEM: "WF-1247"
PRICE: 49.95
IN_STOCK: 24

DBG>

The following command displays the value of component IN _STOCK of
record PART (general syntax):

DBG> EXAMINE PART.IN_STOCK
INVENTORY\PART.IN_STOCK: 24
DBG>

The following command displays the value of the same record component,
using COBOL syntax (the language must be set to COBOL):

DBG> EXAMINE IN_STOCK OF PART
INVENTORY\IN_STOCK of PART:

IN_STOCK: 24
DBG>

The following command displays the values of two components of record
PART:

DBG> EXAMINE PART.ITEM, PART.IN_STOCK
INVENTORY\PART. ITEM: "WF-1247"
INVENTORY\PART.IN_STOCK: 24
DBG>

The following command deposits a value into record component IN _STOCK:

DBG> DEPOSIT PART.IN_STOCK = 17
DBG>

Pointer (Access) Types

3-18

You can examine the entity designated (pointed to) by a pointer variable and
deposit a value into that entity. You can also examine a pointer variable.

For example, the following Pascal code declares a pointer variable A that
designates a value of type real:

TYPE
T = AREAL;

VAR
A : T;

The following command displays the value of the entity designated by the
pointer variable A:

DBG> EXAMINE AA
MOD3\A A : 1. 7

Examining and Manipulating Program Data
3.2 Examining and Depositing into Variables

In the follo· ing example, the value 3.9 is deposited into the entity designated
by A:

DBG> DEPOSIT A- = 3.9
DBG> EXAMINE A -
MOD3\A-: 3.9

When you specify the name of a pointer variable with the EXAMINE
command, the debugger displays the virtual memory address of the object it
designates. For example:

DBG> EXAMINE/HEXADECIMAL A
SAMPLE\A: OOOOB2A4
DBG>

3.3 Examining and Depositing VAX Instructions

3.3.1

The debugger recognizes address expressions that are associated with VAX
assembly language instructions. This enables you to examine and deposit
instructions using the same basic techniques as with variables.

When stepping through your program to examine or deposit instructions,
you may find it convenient to first enter the following command. It sets the
default step mode to stepping by instruction:

DBG> SET STEP INSTRUCTION
DBG>

There are other step modes that enable you to step to specific kinds of
instructions (CALL, BRANCH, and so on).

Examining VAX Instructions
If you specify an address expression that is associated with an instruction in
an EXAMINE command (for example, a line number), the debugger displays
the first instruction at that location. You can then use the period (.), RETURN
key, and circumflex character (") to display the current, next, and previous
instruction (logical entity), as described in Section 3.1. 7. For example:

DBG> EXAMINE %LINE 12
MOD3\%LINE 12: MOVL (R11) ,B-16(R11)
DBG> EXAMINE ~
MODE\%LINE 12+4: MOVL s-#1,B-4(R11) Next instruction.
DBG> EXAMINE ~
MOD3\%LINE 12+8: TSTL B-16(R11) Next instruction.
DBG> EXAMINE -
MODE\%LINE 12+4: MOVL s-#1,B-4(R11) Previous instruction.
DBG>

Line numbers, routine names, and labels are symbolic address expressions
that are associated with instructions. In addition, instructions may be
stored at various other memory addresses and in certain registers during
the execution of your program.

The program counter (PC) is the register that contains the address of the next
instruction to be executed by your program. The command EXAMINE . %PC
displays that instruction. The period (.), when used directly in front of an
address expression, denotes the "contents of" operator - that is, the contents
of the location designated by the address expression. Note the following
distinction:

3-19

Examining and Manipulating Program Data
3.3 Examining and Depositing VAX Instructions

• EXAMINE %PC displays the current PC value, namely the address of the
next instruction to be executed.

• EXAMINE . %PC displays the contents of that address, namely the next
instruction to be executed by the program.

When you enter the command EXAMINE . %PC, you can control the amount
of information displayed by using the /OPERANDS qualifier. For example:

DBG> EXAMINE .%PC
MOD3\%LINE 12: MOVL ,B-12(R11),R1
DBG> EXAMINE/OPERANDS .%PC
MOD3\%LINE 12: MOVL a-12(R11),R1

a-12(R11) MOD3\K (address 1196) contains 1
R1 R1 contains 8

DBG> EXAMINE/OPERANDS=FULL .%PC
MOD3\%LINE 12: MOVL a-12(R11),R1

DBG>

a-12(R11) R11 contains MOD3\N (address 1184), a-12(1184) evaluates to
MOD3\K (address 1196), which contains 1

R1 R1 contains 8

Use the /OPERANDS qualifier only when examining the current PC
instruction. The information may not be reliable if you specify other
locations. The command SET MODE [NO]OPERANDS enables you to
control the default behavior of the command EXAMINE . %PC.

As shown in the previous examples, the debugger knows whether an address
expression is associated with an instruction. If it is, the EXAMINE command
displays that instruction (you do not need to use the /INSTRUCTION
qualifier). You use the /INSTRUCTION qualifier to display the contents of
an arbitrary program location as a VAX instruction - that is, the command
EXAMINE/INSTRUCTION causes the debugger to interpret and format the
contents of any program location as a VAX instruction (see Section 3.5.2).

Note that, when you examine consecutive instructions in a MACRO program,
the debugger may misinterpret data as instructions if storage for the data is
allocated in the middle of a stream of instructions. The following example
shows some MACRO code with two longwords of data storage allocated
directly after the BRB instruction at line 7 (line numbers have been added to
the example for clarity):

module TEST
1: .TITLE TEST
2:
3: TEST$START: :
4: .WORD 0
5:
6: MOVL #2,R2
7: BRB LABEL_2
8:
9: .LONG -x12345

10: .LONG -x14465
11:
12: LABEL_2:
13: MOVL #5,R5
14:
15: .END TEST$START

3-20

3.3.2

DBG> EXAMINE ~

Examining and Manipulating Program Data
3.3 Examining and Depositing VAX Instructions

The following examine command displays the instruction at the start of
line 6:

DBG> EXAMINE %LINE 6
TEST\TEST$START\%LINE 6: MOVL

The following examine command correctly interprets and displays the logical
successor entity as an instruction, at line 7:

DBG> EXAMINE ~
TEST\TEST$START\%LINE 7: BRB TEST\TEST$START\LABEL_2

However, the following three examine commands incorrectly interpret the
three logical successors as instructions:

TEST\TEST$START\%LINE 7+2: MULF3 s-#11.ooooo.s-#0.5625000,S-#0.5000000
DBG> EXAMINE ~
%DEBUG-W-ADDRESSMODE, instruction uses illegal or undefined addressing modes
TEST\TEST$START\%LINE 7+6: MULD3 s-#0.5625000[R4] .s-#0.5000000,©W-5505(RO)
DBG> EXAMINE ~
TEST$START+12: HALT

Depositing VAX Instructions
When depositing a VAX instruction, use the following command format:

DEPOSIT/INSTRUCTION address-expression = "VAX instruction"

You must enclose the instruction in either quotation marks or apostrophes.
You must also use the /INSTRUCTION qualifier with the DEPOSIT
command, to indicate that the delimited string is an instruction and not
an ASCII string. Or, if you plan to deposit several instructions, you
can first enter the command SET TYPE/OVERRIDE INSTRUCTION (see
Section 3.5.2). You then do not need to use the /INSTRUCTION qualifier on
the DEPOSIT command.

VAX instructions occupy different numbers of bytes, depending on their
operands. When depositing VAX instructions of arbitrary lengths into
successive memory locations, use the logical successor operator (RETURN
key) to establish the next unoccupied location where an instruction can be
deposited. The following example illustrates the technique.

DBG> SET TYPE/OVERRIDE/INST ! Set the default type to instruction.
DBG> DEPOSIT 730 = "MOVB #77, R1"
DBG> EXAMINE .

! Deposit an instruction beginning at address 730.
! Examine the current entity to verify the deposit.

730: MOVB #77,R1
DBG> EXAMINE IBfi]
734: HALT

! Make the logical successor the new current entity.

DBG> DEPOSIT . = "MOVB #66, R2"
DBG> EXAMINE .

Deposit the next instruction.
Display and verify the deposit.

734: MOVB #66,R2
DBG>

When you replace an instruction, be sure that the new instruction, including
operands, is the same length in bytes as the old instruction. If the new
instruction is longer, you cannot deposit it without overwriting, and thereby
destroying, the next instruction. If the new instruction occupies fewer bytes
of memory than the old one, you must deposit NOP instructions (instructions
that cause "no operation") in bytes of memory left unoccupied after the
replacement. The debugger does not warn you if an instruction you are

3-21

Examining and Manipulating Program Data
3.3 Examining and Depositing VAX Instructions

depositing will overwrite a subsequent instruction, nor does it remind you to
fill in vacant bytes of memory with NOPs.

The following example illustrates how to replace an instruction with an
instruction of equal length.

DBG> SET STEP INSTRUCTION ! Step by instruction.
DBG> STEP
stepped to 1584: PUSHAL (R11)
DBG> STEP
stepped to 1586: CALLS #1,LA2224 ! Instruction to be replaced.
DBG> EXAMINE .%PC
1586: CALLS #1,LA2224
DBG> EXAMINE llig] ! Determine start of next
1593: CALLS #O,LA2216 ! instruction (1593).
DBG> DEPOSIT/INST 1586 = "CALLS #2,LA2224"

DBG> EXAMINE
1586: CALLS #2,LA2224
DBG> EXAMINE llig)
1593: CALLS #0,LA2216
DBG>

! Deposit new instruction.
! Verify that instruction
! is deposited.
! Verify that the next
! instruction is unchanged.

3.4 Examining and Depositing Register Values

3-22

The VAX architecture provides 16 general registers, some of which are used
for temporary address and data storage. When referencing a register in a
debugger command, use the following built-in symbols (the register name
preceded by a percent sign (%)):

Symbol

%RO ... %R11

%AP (R12)

%FP (R13)

%SP (R14)

%PC (R15)

%PSL

Description

General purpose registers RO . . . R 11

Argument pointer

Frame pointer

Stack pointer

Program counter

Processor status longword

You can omit the % prefix if your program has not declared a symbol with
the same name.

You can examine the contents of all the registers. You can deposit values into
all the registers except for SP. Use caution when depositing values into FP.

The following examples show how to examine and deposit into registers.

3.4.1

Examining and Manipulating Program Data
3.4 Examining and Depositing Register Values

DBG> SHOW TYPE
type: long integer
DBG> SHOW RADIX
input radix: decimal
output radix: decimal
DBG> EXAMINE %R11
MOD3\%R11: 1024
DBG> DEPOSIT %R11 = 444
DBG> EXAMINE %R11
R11: 444
DBG> EXAMINE %SP
O\%SP: 2147278720
DBG>

Show type for locations without
a compiler generated type.
Identify the current radix.

Display the value in R11.

Deposit a new value into R11
Check the new value

Display the value in the stack pointer.

See Section 3.3.1 for specific information about the PC.

The Processor Status Longword (PSL)
The PSL is a register whose value represents a number of processor state
variables. The first 16 bits of the PSL (referred to separately as the processor
status word, or PSW) contain unprivileged information about the current
processor state. The values of these bits may be controlled by a user
program. The latter 16 bits of the PSL, bits 16 through 31, contain privileged
information and cannot be altered by a user-mode program.

The following example shows how to examine the contents of the PSL:

DBG>EXAMINE %PSL
MOD3\PSL:

DBG>

CMP TP FPD IS CURMOD PRVMOD IPL DV FU IV T N Z V C
n n n n mode mode 1v n n n n n n n n

See the VAX Architecture Handbook for complete information on the PSL,
including the values of the various bits.

You can also display the information in the PSL in other formats. For
example:

DBG> EXAMINE/LONG/HEX PSL
MOD3\%PSL: 03C00010
DBG> EXAMINE/LONG/BIN PSL
MOD3\%PSL: 00000011 11000000 00000000 00010000
DBG>

The command EXAMINE/PSL displays the value at any location in PSL
format. This is useful for examining saved PSLs on the stack.

To disable all conditions in the PSL, clear bits 0 through 15 with the following
DEPOSIT command:

DBG>DEPOSIT/WORD PSL = 0
DBG>EXAMINE PSL
MOD3\PSL:

DBG>

CMP TP FPD IS CURMOD PRVMOD IPL DV FU IV T N Z V C
0 0 0 0 USER USER 0 0 0 0 0 0 0 0 0

3-23

Examining and Manipulating Program Data
3.5 Specifying a Type When Examining and Depositing

3.5 Specifying a Type When Examining and Depositing

3.5.1

The preceding sections explain how to use the EXAMINE and DEPOSIT
commands with program locations that have a symbolic name and, therefore,
are associated with a compiler generated type.

Section 3.5.1 describes how the debugger formats (types) data for program
locations that do not have a symbolic name and explains how you can control
the type for those locations.

Section 3.5.2 explains how to override the type associated with any program
location, including a location that has a symbolic name.

Defining a Type for Locations Without a Symbolic Name

3-24

Program locations that do not have a symbolic name and, therefore, are not
associated with a compiler generated type have the type longword integer
by default. Section 3.1.4 explains how to examine and deposit into such
locations using the default type.

The SET TYPE command enables you to change the default type. This is
useful if you want to examine and display the contents of a location in
another type, or if you want to deposit a value of some particular type into a
location that is associated with another type. The possible type keywords are
as follows:

ASCIC CONDITION_ VALUE INSTRUCTION QUADWORD

ASCID D_FLOAT LONGWORD TYPE=(type-expression)

ASCll:n DATE_ TIME OCTAWORD WORD

ASCIW FLOAT PACKED

ASCIZ G_FLOAT PSL

BYTE H_FLOAT PSW

For example, the following commands set the type for locations without a
symbolic name to, respectively, byte integer, G_float, and ASCII with 6 bytes
of ASCII data. Each successive SET TYPE command resets the type:

DBG> SET TYPE BYTE
DBG> SET TYPE G_FLOAT
DBG> SET TYPE ASCII:6

Note that the SET TYPE command, when used without the /OVERRIDE
qualifier, does not affect the type for program locations that have a symbolic
name (locations associated with a compiler generated type).

The SHOW TYPE command identifies the current type for locations without
a symbolic name. To restore the default type for such locations, enter the
command SET TYPE LONGWORD.

3.5.2

Examining and Manipulating Program Data
3.5 Specifying a Type When Examining and Depositing

Overriding the Current Type
The SET TYPE/OVERRIDE command enables you to change the type
associated with any program location, thereby overriding any compiler
generated type. For example, after the following command is executed, an
unqualified EXAMINE command displays the contents of only the first byte
of the location specified and interprets the contents as byte integer data. An
unqualified DEPOSIT command modifies only the first byte of the location
specified and formats the data deposited as byte integer data.

DBG> SET TYPE/OVERRIDE BYTE
DBG>

To identify the current override type, enter the command
SHOW TYPE/OVERRIDE. To cancel the current override type and restore
the normal interpretation of locations that have a symbolic name, enter the
command CANCEL TYPE/OVERRIDE.

Type qualifiers, used with the EXAMINE and DEPOSIT commands, enable
you to override the type currently associated with a program location for the
duration of a single EXAMINE or DEPOSIT command. The type qualifiers
are as follows:

/ASCIC /CONDITION_ VALUE /INSTRUCTION /QUADWORD

/ASCID /D_FLOAT /LONGWORD /TASK

/ASCll:n /DATE_ TIME /OCTAWORD /TYPE=(type-expression)

/ASCIW /FLOAT /PACKED /WORD

/ASCIZ /G_FLOAT /PSL

/BYTE /H_FLOAT /PSW

These qualifiers override any previous SET TYPE or SET TYPE/OVERRIDE
command as well as any compiler generated type.

When used with a type qualifier, the EXAMINE command displays the entity
specified by the address expression in that type. For example:

DBG> EXAMINE %LINE 15 Display line 15 in compiler
MOD3\%LINE 15 : MOVL #1,BA44(R11) generated type: instruction.
DBG> EXAMINE/BYTE . Type is byte integer.
MOD3\%LINE 15 : -48
DBG> EXAMINE/WORD . Type is word integer.
MOD3\%LINE 15 : 464
DBG> EXAMINE/LONG . Type is longword integer.
MOD3\%LINE 15 : 749404624
DBG> EXAMINE/QUAD . Type is quadword integer.
MOD3%LINE 15 : +0130653502894178768
DBG> EXAMINE/FLOAT . Type is F_floating.
MOD3%LINE 15 : 1.9117807E-38
DBG> EXAMINE/G_FLOAT . Type is G_floating.
MOD3%LINE 15 : 1.509506018605227E-300
DBG> EXAMINE/INSTRUCTION . Type is VAX instruction.
MOD3\%LINE 15 : MOVL #1,BA44(R11)
DBG> EXAMINE/ASCII . ! Type is ASCII string.
MOD3\%LINE 15 ' II II

DBG>

3-25

Examining and Manipulating Program Data
3.5 Specifying a Type When Examining and Depositing

3.5.2.1

3.5.2.2

3-26

When used with a type qualifier, the DEPOSIT command deposits a value of
that type into the location specified by the address expression, overriding the
type associated with the address expression.

The remaining sections provide examples of specifying integer, string, and
user-declared types with type qualifiers and the SET TYPE command.

Integer Types
The following examples illustrate the use of the EXAMINE and DEPOSIT
commands with integer type qualifiers (/BYTE, /WORD, /LONGWORD).
These qualifiers enable you to deposit a value of a particular integer type into
an arbitrary program location.

DBG> SHOW TYPE
type: long integer
DBG> EVALU/ADDR .
724
DBG> DEPO/BYTE 1

DBG> EXAM .
724: 1280461057
DBG> EXAM/BYTE
724: 1
DBG> DEPO/WORD = 2

DBG> EXAM/WORD
724: 2
DBG> DEPO/LONG 724 = 999

DBG> EXAM/LONG 724
724: 999
DBG>

ASCII String Type

Show type for locations without
a compiler generated type.
Current location is 724.

Deposit the value 1 into one byte
of memory at address 724.
By default, 4 bytes are examined.

Examine one byte only.

Deposit the value 2 into first two
bytes (word) of current entity.
Examine a word of the current entity.

Deposit the value 999 into 4 bytes
(a longword) beginning at address 724.
Examine 4 bytes (longword)
beginning at address 724.

The following examples illustrate the use of the EXAMINE and DEPOSIT
commands with the/ ASCII:n type qualifier.

When used with the DEPOSIT command, this qualifier enables you to
deposit an ASCII string of length n into an arbitrary program location. In the
example, the location has a symbolic name (I) and, therefore, is associated
with a compiler generated integer type. The command format is as follows:

DEPOSIT/ASCII:n address-expression = "ASCII string of length n"

The default value of n is 4 bytes.

DBG> DEPOSIT I = "abcde" ! I has compiler generated integer type.
%DEBUG-W-INVNUMBER, invalid numeric string 'abcde'

! So, cannot deposit string into I.
DBG> DEP/ASCII:5 I = "abcde" /ASCII qualifier overrides integer

DBG> EXAMINE .
MOD3\I: 1146048327
DBG> EXAM/ASCII:5
MOD3\I: "abcde"
DBG>

type to deposit 5 bytes of
ASCII data.
Display value of I in compiler
generated integer type.
Display value of I as 5-byte
ASCII string.

3.5.2.3

Examining and Manipulating Program Data
3.5 Specifying a Type When Examining and Depositing

If you want to enter several DEPOSIT/ ASCII commands, you can establish an
override ASCII type with the SET TYPE/OVERRIDE command. Subsequent
EXAMINE and DEPOSIT commands then have the effect of specifying the
/ASCII qualifier with these commands. For example:

DBG> SET TYPE/OVER ASCII:5 ! Establish ASCII:5 as override type.
DBG> DEPOSIT I = "abcde" ! Can now deposit 5-byte string into I.
DBG> EXAMINE I ! Display value of I as 5-byte
MOD3\I: "abcde" ! ASCII string.)
DBG> CANCEL TYPE/OVERRIDE ! Cancel ASCII override type.
DBG> EXAMINE I ! Display I in compiler generated type.
MOD3\I: 1146048327
DBG>

User-Declared Types
The following examples illustrate the use of the EXAMINE and DEPOSIT
commands with the /TYPE=(type-expression) qualifier. The qualifier enables
you to specify a user-declared override type when examining or depositing.

For example, assume that a Pascal program contains the following code,
which declares the enumeration type COLOR with the three values RED,
GREEN, and BLUE:

TYPE
COLOR= (RED,GREEN,BLUE);

During the debugging session, the SHOW SYMBOL/TYPE command
identifies the type COLOR as it is known to the debugger:

DBG> SHOW SYMBOL/TYPE COLOR
data MOD3\COLOR

enumeration type (COLOR, 3 elements), size: 1 byte
DBG>

The next command displays the value at address 1000, which is not associated
with a symbolic name. Therefore, the value 0 is displayed in the type
longword integer, by default:

DBG> EXAMINE 1000
1000: 0

The next command displays the value at address 1000 in the type COLOR.
The preceding SHOW SYMBOL/TYPE command indicates that each
enumeration element is stored in 1 byte. Therefore, the debugger converts the
first byte of the longword integer value 0 at address 1000 to the equivalent
enumeration value, RED (the first of the three enumeration values):

DBG> EXAMINE/TYPE=(COLOR) 1000
1000: RED
DBG>

The following DEPOSIT command deposits the value GREEN into address
1000 with the override type COLOR. The EXAMINE command displays the
value at address 1000 in the default type, longword integer:

DBG> DEPOSIT/TYPE=(COLOR) 1000 = GREEN
DBG> EXAMINE 1000
1000: 1
DBG>

3-27

Examining and Manipulating Program Data
3.5 Specifying a Type When Examining and Depositing

3-28

The following SET TYPE command establishes the type COLOR for locations,
such as address 1000, that do not have a symbolic name. The EXAMINE
command now displays the value at 1000 in the type COLOR:

DBG> SET TYPE TYPE=(COLOR)
DBG> EXAMINE 1000
1000: GREEN
DBG>

4 Controlling Symbol Lookup

Symbolic debugging enables you to specify variable names, routine names,
and so on, in debugger commands, precisely as they appear in your source
code. You do not need to use virtual memory addresses or registers when
referring to program locations (although you can, if you want). Also, the
debugger knows about the conventions of the particular source language
regarding things like data types, expressions, scope, and visibility of entities.
Therefore, you can use symbols (names, operators, and so on) in the context
that is appropriate to the source program and language.

In most cases, the way in which symbol information is passed from your
source program to the debugger and is processed by the debugger is
transparent to you. Certain cases might require some action, however.
For example, when you try to examine a variable X in a debugger command,
the debugger may display the following diagnostic message:

DBG> EXAMINE X
%DEBUG-E-NOSYMBOL, symbol 'X' is not in the symbol table
DBG>

Also, the debugger may display the following message if X is multiply
defined - that is, if the same symbol X is defined (declared) in more than
one module, routine, or other program unit:

DBG> EXAMINE X
%DEBUG-E-NOUNIQUE, symbol 'X' is not unique
DBG>

This chapter explains how to handle these and other situations related to
symbol lookup:

• Controlling the level of symbolic information passed to the debugger
when you compile and link your program.

• Module setting, the means by which symbolic information stored in
your program's executable image is made available efficiently during a
de bugging session.

• Resolving multiply-defined symbols that the debugger cannot resolve
automatically.

• Applying and extending these concepts when debugging shareable
images.

Note that this chapter discusses only the symbols (typically address
expressions) that are derived from your source program, for example:

• The names of various entities that you have declared in your source code,
such as the names of variables, routines, labels, array elements, or record
components.

• The names of modules (compilation units) and shareable images that are
linked with your program.

4-1

Controlling Symbol Lookup

• Elements that the debugger uses to identify source code - for example,
the specifications of source files, and source line numbers as they appear
in a listing file or when the debugger displays source code.

The following types of symbols are discussed in other chapters:

• The symbols you create during a debugging session with the DEFINE
command are covered in Section 7.4.

• The debugger's built-in symbols, such as the period (.), %PC, and
%SOURCE_SCOPE are tabulated in Appendix D and discussed
throughout this manual in the appropriate context.

Also, see Section 3.1.10 for information on how to obtain the virtual memory
addresses and register names associated with symbolic address expressions
and how to symbolize program locations.

4.1 Controlling Symbol Information When Compiling and Linking

4.1.1 Compiling

4-2

To take full advantage of symbolic debugging, you must compile and link
your program with the /DEBUG qualifier. The following example illustrates
these steps with a simple Pascal program, INVENTORY, that consists of two
compilation units whose source code is in two separate files, FORMS.PAS
and INVENTORY.PAS. INVENTORY is the main program unit:

$ PASCAL/NOOPTIMIZE/DEBUG FORMS, INVENTORY
$LINK/DEBUG INVENTORY, FORMS
$

Note that the /NOOPTIMIZE qualifier is used with the compiler command
(PASCAL, in this example). If the compiler optimizes code by default, it is
best to disable this feature by specifying /NOOPTIMIZE (or the equivalent
qualifier, if any, for your compiler). Otherwise, the resulting object code is
optimized, possibly causing the contents of some program locations to be
inconsistent with what you might expect from looking at the source code.
(Section 8.1 describes some of the effects of optimization.)

The next sections describe how symbol information is created and passed to
the debugger when compiling and linking.

When you compile a source file using the /DEBUG qualifier, the compiler
creates symbol records for the debug symbol table (DST records) and includes
them in the object module being generated (such as the compiler output file
FORMS.OBJ, in the previous example).

DST records provide not only the names of symbols but also all relevant
information about their use. For example:

• Data types, ranges, and constraints associated with variables.

• Parameter names and parameter types associated with functions and
procedures.

• Source line correlation records, which associate source lines with line
numbers and source files.

4.1.2

Controlling Symbol Lookup
4.1 Controlling Symbol Information When Compiling and Linking

Most compilers allow you to vary the amount of DST information put
in an object module by specifying different options with the /DEBUG
qualifier. Table 4-1 identifies the options for most compilers (refer to the
documentation supplied with your compiler for complete information).

Table 4-1 Compiler Options for DST Symbol Information

Compiler Command DST Information

Full /DEBUG1

/DEBUG=TRACEBACK2 Traceback only (module names, routine names,
and line numbers)

/NODEBUG3 None

1 /DEBUG, /DEBUG=ALL, and /DEBUG=(SYMBOLS,TRACEBACK) are equivalent.

2 /DEBUG= TRACEBACK and DEBUG=(NOSYMBOLS,TRACEBACK) are equivalent.

3 /NODEBUG, /DEBUG=NONE, and /DEBUG=(NOSYMBOLS,NOTRACEBACK) are equivalent.

The TRACEBACK option is a default for most compilers. That is, if you omit
the /DEBUG qualifier, most compilers assume /DEBUG=TRACEBACK. The
TRACEBACK option enables the VMS traceback condition handler to translate
virtual addresses into routine names and line numbers so that it can give a
symbolic traceback if a run-time error has occurred. For example:

$ RUN INVENTORY

%PAS-F-ERRACCFIL, error in accessing file PAS$0UTPUT
%PAS-F-ERROPECRE, error opening/creating file
%RMS-F-FNM, error in file name
%TRACE-F-TRACEBACK, symbolic stack dump follows

module name

PAS$IO_BASIC
PAS$IO_BASIC
PAS$IO_BASIC
INVENTORY
$

routine name

_PAS$CODE
_PAS$CODE
_PAS$CODE
INVENTORY

line

59

rel PC

00000192
00000540
0000028B
00000020

abs PC

00001CED
000020A8
00001DE6
000005A1

Traceback information is also used by the debugger's SHOW CALLS
command.

Local and Global Symbols
DST records contain information about all of the symbols that are defined in
your program. These are either local or global symbols.

Typically, local symbols are symbols that are referenced only within the
module where they are defined; global symbols are symbols such as routine
names, procedure entry points, and global data names, that are defined in one
module but referenced in other modules.

Compilers handle local and global symbols differently. Generally, the
compiler resolves references to local symbols, and the linker resolves
references to global symbols.

4-3

4.1.3

Controlling Symbol Lookup
4.1 Controlling Symbol Information When Compiling and Linking

Linking

The distinction between local and global symbols is discussed in this chapter
in connection with symbol lookup and with shareable images and universal
symbols.

When you enter the command LINK/DEBUG to link object modules and
produce an executable image, the linker performs several functions that affect
debugging:

• It builds a debug symbol table (DST) from the DST records contained
in the object modules being linked .. The DST is the primary source of
symbol information during a debugging session.

• It resolves references to global symbols and builds a global symbol table
(GST). The GST duplicates some of the global symbol information already
contained in the DST, but the GST is used by the debugger for symbol
lookup under certain circumstances.

• It puts the DST and GST in the executable image.

• It sets flags in the executable image that cause the image activator to pass
control to the debugger when you enter the RUN command.

Table 4-2 summarizes the level of DST and GST information passed to the
debugger depending on the compiler or LINK command option. The compiler
command qualifier controls the level of DST and GST information passed to
the linker. The LINK command qualifier controls not only how much of that
information is passed to the debugger but also how (or if) you can invoke the
debugger.

Table 4..:...2 Effect of Compiler and Linker on DST and GST Symbol Information

Compiler DST Data in LINK
Command O~ect Command
Qualifier1 M dule Qualifier

/DEBUG Full /DEBUG

/DEBUG= TRACE Traceback only /DEBUG

/NOOEBUG None /DEBUG

/DEBUG Full /TRACE2

/DEBUG=TRACE Traceback only /TRACE

/NODEBUG None /TRACE

/DEBUG Full /NOTRACE

1See Table 4-1 for additional information.

Invoke
Debugger

RUN

RUN

RUN

RUN/DEBUG

RUN/DEBUG

RUN/DEBUG

Cannot

DST Data GST Data
Passed Passed
to Debugger to Debugger

Full Full

Traceback only Full

None Full

Traceback only Only universal
symbols3

Traceback only Only universal
symbols

None Only universal
symbols

2LINK/TRACEBACK and LINK/NODEBUG are equivalent. This is the default for the LINK command.

3 A universal symbol is a symbol that is defined in one image and referenced in another. A universal symbol must be
defined as such at link time. See Section 4.4 for information on universal symbols and shareable images.

4-4

4.1.4

Controlling Symbol Lookup
4.1 Controlling Symbol Information When Compiling and Linking

If you specify /NODEBUG with the compiler command and subsequently
link and execute the image, the debugger issues the following message when
it is invoked:

%DEBUG-I-NOLOCALS, image does not contain local symbols

The preceding message, which occurs whether you linked with the
/TRACEBACK or /DEBUG qualifier, indicates that no DST has been created
for that image. Therefore, you have access only to global symbols contained
in the GST.

If you do not specify /DEBUG with the LINK command, the debugger issues
the following message when it is invoked:

%DEBUG-I-NOGLOBALS, some or all global symbols not accessible

The preceding message indicates that the only global symbol information
available during the debugging session is the following:

• Information about global symbols that is stored in the DST.

• Information about universal symbols that is stored in the GST.

These concepts are discussed in later sections. In particular, see Section 4.4
for additional information related to debugging shareable images.

Controlling Symbol Information in Debugged Images
Symbol records occupy space within the executable image. After you have
debugged your program, you may want to link it again without using the
/DEBUG qualifier, to make the executable image smaller. This creates an
image with only traceback data in the DST.

The command LINK/NOTRACEBACK enaples you to secure the contents
of an image from users once it has been debugged. Use this command for
images that are to be installed with privileges (see the Guide to VMS System
Security and the Guide to Setting Up a VMS System). When you enter
LINK/NOTRACEBACK, no symbolic information (including traceback data)
is passed to the image. Moreover, the debugger cannot be invoked, either by
the RUN/DEBUG command, or by a CTRL/Y-DEBUG sequence while the
program is running.

4.2 Setting and Canceling Modules
The preceding sections explain how symbol information derived from your
program is passed to the debugger when you compile and link the program.
This section explains how that information is made available during a
debugging session. The material covered will help you take appropriate
action when the debugger is unable to locate a symbol you have specified in
a command. For example:

DBG> EXAMINE X
%DEBUG-E-NOSYMBOL, symbol 'X' is not in the symbol table
DBG>

When you invoke the debugger, symbol information is contained in the
DST and GST, within the executable image. The DST contains detailed
information about local and global symbols. The GST duplicates some of the
global symbol information contained in the DST.

4-5

Controlling Symbol Lookup
4.2 Setting and Canceling Modules

4-6

To facilitate symbol searches, the debugger loads symbol records from the
DST and GST into a run-time symbol table (RST), which is structured for
efficient symbol lookup. Unless a symbol record is in the RST, the debugger
cannot recognize or use the symbol.

Because the RST takes up memory, the debugger loads it dynamically,
anticipating what symbols you might want to reference as your program
executes. The loading process is called module setting, because all the symbol
records of a given module are loaded into the RST at one time.

Symbol records are loaded into the RST as follows. At debugger startup,
all GST records are loaded into the RST because global symbols must be
accessible throughout the debugging session. Also, the debugger sets the
module which contains the main program (the routine specified by the image
transfer address, where execution is suspended at the start of a debugging
session). You therefore have access to all global symbols and to any local
symbols that should be visible within the main program.

As the program executes, whenever the debugger interrupts execution it sets
the module containing the routine where execution is suspended. Therefore
you can always reference the local symbols that should be visible at the
current PC value (in addition to the global symbols). This default mode of
operation is called "dynamic mode".

If you try to reference a local symbol that is defined in a module that has
not been set, the debugger warns you that the symbol is not in the RST. You
must then use the SET MODULE command to set the module containing that
symbol explicitly. For example:

DBG> EXAMINE X
%DEBUG-E-NOSYMBOL, symbol 'X' is not in the symbol table
DBG> SET MODULE MOD3
DBG> EXAMINE X
MOD3\ROUT2\X: 26
DBG>

The SHOW MODULE command lists the modules of your program and
identifies which modules are set.

When a module is set, the debugger automatically allocates memory as
needed by the RST. This may eventually slow down the debugger as more
and more modules are set. If performance becomes a problem, you. can use
the CANCEL MODULE command to reduce the number of set modules,
thereby automatically releasing memory. Or you can disable dynamic mode
by entering the command SET MODE NODYNAMIC. When dynamic mode
is disabled, the debugger does not set modules automatically. Use the
SHOW MODE command to determine whether dynamic mode is enabled or
disabled.

Section 4.4 explains how to set images and modules when debugging
shareable images.

Controlling Symbol Lookup
4.3 Resolving Multiply-Defined Symbols

4.3 Resolving Multiply-Defined Symbols

4.3.1

When you reference a multiply-defined symbol in a debugger command,
the debugger may not be able to determine the particular declaration of the
symbol that you intended. For example:

DBG> EXAMINE X
%DEBUG-W-NOUNIQUE, symbol 'X' is not unique
DBG>

Also, the debugger may reference the declaration that is visible in the current
scope, not the one you want.

To resolve such problems, you must specify a scope where the debugger
should search for a particular declaration of the symbol. In the following
example, the path name COUNTER\X uniquely specifies a particular
declaration of X:

DBG> EXAMINE COUNTER \X
COUNTER\X: 14
DBG>

The next sections discuss scope concepts and explain how to work with
multiply-defined symbols.

Scope and Symbol Lookup Conventions
You can specify symbols in debugger commands by using either a path name
or the exact symbol.

If you specify a path name, the debugger looks for the symbol in the scope
denoted by the path name. Section 4.3.2 explains the technique.

If you do not specify a path name, by default, the debugger searches the
RST as follows (you can modify this default behavior with the SET SCOPE
command, as explained in Section 4.3.3).

First, the debugger looks for symbols in the PC scope (also known as scope
0), according to the scope and visibility rules of the currently set language.
This means that, typically, the debugger first looks within the block or routine
surrounding the current PC value (where execution is currently suspended).
If the symbol is not found, the debugger searches the nesting program unit,
then its nesting unit, and so on. The precise manner, which depends on the
language, guarantees that the correct declaration of a multiply-defined symbol
is selected.

The debugger must enable you to reference symbols throughout your
program, not just those that are visible in the PC scope as defined by the
language. This is necessary so you can set breakpoints in arbitrary areas or
examine arbitrary variables, and so on. Therefore, if the symbol is not visible
in the PC scope, the debugger continues searching as follows.

After the PC scope, the debugger searches the scope of the calling routine (if
any), then its caller, and so on. Symbolically, the complete scope search list
is denoted 0,1,2, ... ,n, where scope 0 is the PC scope and n is the number
of calls in the call stack. Within each scope, the debugger uses the visibility
rules of the language to locate a symbol.

4-7

4.3.2

Controlling Symbol Lookup
4.3 Resolving Multiply-Defined Symbols

If the symbol is still not found, the debugger searches the rest of the RST (the
other set modules and the GST). At this point the debugger does not attempt
to resolve multiply-defined symbols. Instead, if more than one occurrence of
the symbol is found, the debugger issues the "symbol not unique" message.
For example:

%DEBUG-W-NOUNIQUE, symbol 'Y' is not unique

Using SHOW SYMBOL and Path Names to Specify Symbols Uniquely

4-8

If the debugger indicates that a symbol reference is "not unique", use the
SHOW SYMBOL command to obtain all possible path names for that symbol,
then specify a path name to reference the symbol uniquely. For example:

DBG> EXAMINE COUNT
%DEBUG-W-NOUNIQUE, symbol 'COUNT' is not unique

DBG> SHOW SYMBOL COUNT
data MOD7\ROUT3\BLOCK1\COUNT
data MOD4\ROUT2\COUNT
routine MOD2\ROUT1\ROUT3\COUNT

DBG> EXAMINE MOD4\ROUT2\COUNT
MOD4\ROUT2\COUNT: 12
DBG>

The command SHOW SYMBOL COUNT lists all declarations of the symbol
COUNT that exist in the RST. The first two declarations of COUNT are
variables (data). The last declaration listed is a routine. Each declaration is
shown with its path name prefix, which indicates the path (search scope)
the debugger must follow to reach that particular declaration. For example,
MOD4 \ROUT2\ COUNT denotes the declaration of the symbol COUNT in
routine ROUT2 of module MOD4.

The path name format is as follows. The leftmost element of a path name
identifies the module containing the symbol. Moving toward the right, the
path name lists the successively nested routines and blocks that lead to the
particular declaration of the symbol (which is the rightmost element).

Although the debugger always displays symbols with their path names, you
need to use path names in debugger commands only to resolve an ambiguity.

The debugger looks up line numbers like any other symbols you specify
(by default, it first looks in the module where execution is suspended). A
common use of path names is for specifying a line number in an arbitrary
module. For example:

DBG> SET BREAK QUEUE_MANAGER\%LINE 26
DBG>

Note that the SHOW SYMBOL command identifies global symbols twice,
because global symbols are included both in the DST and in the GST. For
example:

DBG> SHOW SYMBOL X
data ALPHA\X
data ALPHA\BETA\X
data X (global)
DBG>

global X
local X
same as ALPHA\X

4.3.2.1

4.3.2.2

4.3.2.3

4.3.2.4

Controlling Symbol Lookup
4.3 Resolving Multiply-Defined Symbols

Simplifying Path Names
Path names are often long. You can simplify the process of specifying path
names in three ways:

• Abbreviate a path name.

• Define a brief symbol for a path name.

• Set a new search scope so you do not have to use a path name.

To abbreviate a path name, delete the names of nesting program units starting
from the left, leaving enough of the path name to specify it uniquely. For
example, ROUT3\COUNT is a valid abbreviated path name for the routine in
the first example of Section 4.3.2.

To define a symbol for a path name, use the DEFINE command. For example:

DBG> DEFINE INTX = INT_STACK\CHECK\X
DBG> EXAMINE INTX

To set a new search scope, use the SET SCOPE command, which is described
in Section 4.3.3.

Specifying Symbols in the Call Stack
You can use a numeric path name to specify the scope associated with a
routine on the call stack (as identified in a SHOW CALLS display). The path
name prefix "O\" denotes the PC scope, the path name prefix "1\" denotes
scope 1 (the scope of the caller routine), and so on.

For example, the following commands display the current values of two
distinct declarations of Y, which are visible in scope 0 and scope 2,
respectively.

DBG> EXAMINE O\Y
DBG> EXAMINE 2\Y

By default, the command EXAMINE Y signifies EXAMINE 0\ Y.

Specifying Global Symbols
To specify a global symbol uniquely, use a backslash (\) as a prefix to the
symbol. For example, the following command displays the value of the global
symbol X:

DBG> EXAMINE \X

Specifying Routine Invocations
When a routine is called recursively, you may need to distinguish among
several calls to the same routine, all of which generate new symbols with
identical names.

You can include an invocation number in a path name to indicate a particular
call to a routine. The number must be a nonnegative integer and must follow
the name of the rightmost routine in the path name. 0 denotes the most
recent invocation; 1 denotes the previous invocation, and so on. For example,
if PROG calls COMPUTE and COMPUTE calls itself recursively, and each
call creates a new variable SUM, the following command displays the value
of SUM for the most recent call to COMPUTE:

DBG> EXAMINE PROG\COMPUTE 0\SUM

4-9

4.3.3

Controlling Symbol Lookup
4.3 Resolving Multiply-Defined Symbols

To refer to the variable SUM that was generated in the previous call to
COMPUTE, you would express the path name with a 1 in place of the 0.

When you do not include an invocation number, the debugger assumes that
the reference is to the most recent call to the routine (the default invocation
number is 0).

Using SET SCOPE to Specify a Symbol Search Scope

4-10

By default, the debugger looks up symbols that you specify without a path
name prefix by using the scope search list described in Section 4.3.1.

The SET SCOPE command enables you to establish a new scope for symbol
lookup, so that you do not have to use a path name when referencing
symbols in that scope.

In the following example, the SET SCOPE command establishes the path
name MOD4\ROUT2 as the new scope for symbol lookup. Then, references
to Y without a path name prefix specify the declaration 9f Y that is visible in
the new scope.

DBG> EXAMINE Y
%DEBUG-E-NOUNIQUE, symbol 'Y' is not unique
DBG> SHOW SYMBOL Y
data MOD7\ROUT3\BLOCK1\Y
data MOD4\ROUT2\Y

DBG> SET SCOPE MOD4\ROUT2
DBG> EXAMINE Y
MOD4\ROUT2\Y: 12
DBG>

After you have entered a SET SCOPE command, the debugger applies the
path name you specified in the command to all references that are not
individually qualified with path names.

You can specify numeric path names with SET SCOPE (see Section 4.3.2.2).
For example, the following command sets the current scope to be three calls
down from the PC scope.

DBG> SET SCOPE 3
DBG>

You can also define a scope search list to specify the order in which the
debugger should search for symbols. For example, the following command
causes the debugger to look for symbols first in the PC scope (scope 0) and
then in the scope denoted by routine ROUT2 of module MOD4:

DBG> SET SCOPE 0, MOD4\ROUT2
DBG>

The debugger's default scope search list is equivalent to entering the following
command (if it existed):

DBG> SET SCOPE 0, 1, 2, 3, . . . ,n
DBG>

Here the debugger searches successively down the call stack to find a symbol.

To display the current scope for symbol lookup, use the SHOW SCOPE
command. To restore the default scope search list (see Section 4.3.1), use the
CANCEL SCOPE command.

Controlling Symbol Lookup
4.4 Debugging Shareable Images

4.4 Debugging Shareable Images

4.4.1

By default, your program may be linked with several DIGITAL-supplied
shareable images (for example, the run-time library image MTHRTL.EXE).
This section explains how to extend the concepts described in the previous
sections when debugging user-defined shareable images.

A shareable image is not intended to be directly executed. A shareable image
must first be included as input in the linking of an executable image, and then
the shareable image is loaded at run time when the executable image is run.
You do not have to install a shareable image to debug it. Instead, you can
debug your own private copy by assigning a logical name to it.

See the VMS Linker Utility Manual for detailed information on linking
shareable images.

Compiling and Linking Shareable Images for Debugging
The basic steps in compiling and linking a shareable image for debugging are
as follows:

1 Compile the source files for the main image and for the shareable image,
using the /DEBUG qualifier.

2 Link the shareable image with the /SHAREABLE and /DEBUG command
qualifiers, declaring any universal symbols for that image using the
UNIVERSAL linker option. (A universal symbol is a symbol, for example
a routine name, that is defined in a shareable image and referenced in ·
another image.)

3 Link the shareable image against the main image, specifying the shareable
image with the /SHAREABLE file qualifier as a linker option. Also
specify the /DEBUG command qualifier.

4 Define a logical name to point to the local copy of the shareable
image. You must specify the device and directory as well as the
image name. Otherwise the VMS image activator looks for an
image of that name in the system default shareable image library
(SYS$LIBRARY:IMAGELIB.OLB).

5 Execute the main image to invoke the debugger. The shareable image is
loaded at run time.

These steps are illustrated next with a simple example. In the example,
MAIN.FOR and SUBl.FOR are the source files for the main image (the
executable image that you specify with the RUN command); SHRl.FOR and
SHR2.FOR are the source files for the shareable image that is to be debugged.

You compile the source files for each image as described in Section 4.1:

$ FORTRAN/NOOPT/DEBUG MAIN.SUB!
$ FORTRAN/NOOPT/DEBUG SHR1,SHR2
$

You then use the LINK command to create the shareable image, also
specifying any universal symbols:

$LINK/SHAREABLE/DEBUG SHR1,SHR2,SYS$INPUT:/OPTIONS
UN IVERSAL=SHR_ROUT I CTRL/Z I
$

4-11

Controlling Symbol Lookup
4.4 Debugging Shareable Images

4-12

In the preceding example,

• The /SHAREABLE command qualifier creates the shareable image
SHRl.EXE from the object files SHRl.OBJ and SHR2.0BJ.

• The /OPTIONS qualifier appended to SYS$INPUT: enables you
to specify the global symbol SHR-ROUT as a universal symbol
interactively.

• The /DEBUG command qualifier builds a DST and a GST for SHRl.EXE
and puts them in that image. The GST contains the universal symbol
SHR_ROUT. Note that the linker puts universal symbols in the GST
unless you specify LINK/NOTRACEBACK, because universal symbols
must be global symbols as well.

You have now built the shareable image SHRl.EXE in your current default
directory. Because SHRl.EXE is a shareable image, you do not execute it
directly with the RUN command. Instead you link SHRl.EXE against the
main (executable) image:

$LINK/DEBUG MAIN,SUB1,SYS$INPUT:/OPTION
SHR1. EXE/SHAREABLE icTRL/ZI
$

In the preceding example,

• The LINK command creates the executable image MAIN .EXE from
MAIN.OBJ and SUBl.OBJ.

• The /DEBUG qualifier builds a DST and a GST for MAIN.EXE and puts
them in that image.

• The /SHAREABLE qualifier appended to SHRl.EXE specifies that
SHRl.EXE is to be linked against MAIN.EXE as a shareable image.

When you execute the resulting main image, MAIN.EXE, any shareable
images linked against it are loaded at run time. However, by default the
VMS image activator looks for shareable images in the system default
shareable image library (SYS$LIBRARY:IMAGELIB.OLB). Therefore, you
must define the logical name SHRl to point to SHRl.EXE in your current
default directory. Be sure to specify the device and directory:

$ DEFINE SHR1 SYS$DISK: []SHR1.EXE
$

You can now invoke the debugger to debug both MAIN and SHRl by
entering the following command:

$ RUN MAIN

4.4.2

Controlling Symbol Lookup
4.4 Debugging Shareable Images

Accessing Symbols in Shareable Images

4.4.2.1

4.4.2.2

All the concepts covered in Sections 4.1 through 4.3 apply to the modules of
a single image, namely the main (executable) image. This section provides
additional information that is specific to debugging shareable images.

When you link shareable images for debugging as explained in the previous
section, the linker builds a DST and a GST for each image. To conserve
memory, the debugger builds an RST for an image only when that image is
"set", either dynamically by the debugger or when you enter a SET IMAGE
command.

The SHOW IMAGE command identifies all shareable images that are linked
with your program, shows which images are set, and identifies the current
image (see Section 4.4.2.2 for a definition of the current image). Only the
main image is set initially when you invoke the debugger.

The following sections explain how the debugger sets images dynamically
during program execution and how you can access symbols in arbitrary
images independently of execution.

Accessing Symbols in the PC Scope (Dynamic Mode)
By default, dynamic mode is enabled. Therefore, whenever the debugger
interrupts execution, the debugger sets the image and module where
execution is suspended, if they are not already set (unless the image was
linked with the /NOTRACEBACK qualifier).

Dynamic mode gives you the following access to symbols automatically:

• You can reference symbols defined in all set modules in the image where
execution is suspended.

• You can reference symbols in the GST for that image, including any
universal symbols defined for that image.

• By setting other modules in that image, you can reference any symbol
defined in the image.

Once an image is set, it remains set until you cancel it with the CANCEL
IMAGE command. If the debugger slows down as more images and modules
are set, use the CANCEL IMAGE command. You can also enter the command
SET MODE NODYNAMIC to disable dynamic mode.

Accessing Symbols in Arbitrary Images
The last image that you or the debugger sets is the current image. The current
image is the debugging context for symbol lookup. Therefore, when using the
following commands, you can reference only the symbols that are defined in
the current image:

• (SET, SHOW, CANCEL) MODULE

• SHOW SYMBOL

• EXAMINE, DEPOSIT, EVALUATE

• TYPE

• (SET, CANCEL) BREAK

• (SET, CANCEL) TRACE

• (SET, CANCEL) WATCH

4-13

Controlling Symbol Lookup
4.4 Debugging Shareable Images

4-14

• DEFINE/ ADDRESS, DEFINE/VALUE

However, note that the commands SHOW BREAK, SHOW TRACE, and
SHGW WATCH identify any breakpoints, tracepoints, or watchpoints that
have been set in all images.

To reference a symbol in another image, use the SET IMAGE command to
make the specified image the current image, then use the SET MODULE
command to set the module where that symbol is defined (the SET IMAGE
command does not set any modules). The following example illustrates these
concepts.

The sample program consists of a main image PROG 1 and a shareable image
SHRl. Assume that you have just invoked the debugger and that execution
is suspended in image PROGl, within the main program. Now, suppose you
want to set a breakpoint on routine ROUT2, which is defined in some module
in image SHRl.

If you try to set a breakpoint on ROUT2, the debugger looks for ROUT2 in
the current image, PROGl:

DBG> SET BREAK ROUT2
%DEBUG-E-NOSYMBOL, symbol 'ROUT2' is not in symbol table
DBG>

The SHOW IMAGE command shows that image SHRl needs to be set:

DBG> SHOW IMAGE

image name

*PROG1
SHR1

total images: 2
DBG> SET IMAGE SHR1

DBG> SHOW IMAGE

image name

PROG1
*SHR1

total images: 2
DBG>

set

yes
no

base address

00000200
00001000

bytes allocated: 32856

set

yes
yes

base address

00000200
00001000

bytes allocated: 41948

end address

000009FF
00001FFF

end address

000009FF
00001FFF

SHRl is now set and is the current image. However, because the SET IMAGE
command does not set any modules, you must set the module where ROUT2
is defined before you can set the breakpoint:

DBG> SET BREAK ROUT2
%DEBUG-E-NOSYMBOL, symbol 'ROUT2' is not in symbol table
DBG> SET MODULE/ALL
DBG> SET BREAK ROUT2
DBG> GO
break at routine ROUT2
10: SUBROUTINE ROUT2(A,B)
DBG>

Now that you have set image SHRl and all its modules and have reached the
breakpo~nt at ROUT2, you can debug using the normal method (for example,
step through the routine, examine variables, and so on).

Controlling Symbol Lookup
4.4 Debugging Shareable Images

Once you have set an image and set modules within that image, the image
and modules remain set even if you establish a new current image. However,
you have access to symbols only in the current image at any one time.

4-15

5 Controlling the Display of Source Code

The term source code refers to statements in a programming language as they
appear in a source file. Each line of source code is also called a source line.

This chapter covers the following topics:

• How the debugger obtains information about source files and source lines.

• Directing the debugger to a source file that has been moved to another
directory after it was compiled.

• Displaying source lines by specifying line numbers, address expressions,
and search strings.

• Controlling the display of source code at debugger eventpoints
(breakpoints, tracepoints, watchpoints) and after a STEP command has
been executed.

• Using the SET MARGINS command to improve the display of source
lines under certain circumstances.

The techniques described in this chapter apply to screen mode as well as line
(noscreen) mode. Any difference in behavior between line mode and screen
mode is identified in this chapter and in the command dictionary for the
commands discussed. (Screen mode is described fully in Chapter 6.)

If your program has been optimized by the compiler, the code that is
executing as you debug may not always match your source code. See
Section 8.1 for information on that subject.

5.1 How the Debugger Obtains Source Code Information
When a compiler processes source files to generate object modules, it assigns
a line number to each source line in sequential order. {X>r most languages,
each compilation unit (module) starts with line 1. For others like Ada, each
source file, which may represent several compilation units, starts with line 1.

Line numbers appear in a source listing obtained with the /LIST compile­
command qualifier. They also appear whenever the debugger displays source
code, either in line mode or screen mode. Moreover, line numbers are used
in several debugger commands (for example, TYPE, SET BREAK) to specify
source lines.

The debugger displays source lines only if you have specified the /DEBUG
command with both the compile command and the LINK command. Under
these conditions, the symbol information created by the compiler and passed
to the debug symbol table (DST) includes source-line correlation records.
For a given module, source-line correlation records contain the full VMS file
specification of each source file that contributes to that module. In addition,
they associate source records (symbols, types, and so on) with source files and
line numbers in the module.

5-1

Controlling the Display of Source CQde
5.2 Specifying the Location of Source Files

5.2 Specifying the Location of Source Files
The debug symbol table (DST) contains the full VMS file specification of each
source file when it was compiled. Thus, by default, the debugger expects a
source file to be in the same directory it was in at compile time. If a source
file is moved to a different directory after it is compiled, the debugger does
not find it and displays a warning such as the following when attempting to
display source code from that file:

%DEBUG-W-UNAOPNSRC, unable to open source file DISK: [JONES.WORK]PRG.FOR;2

5-2

In such cases, use the SET SOURCE command to direct the debugger to the
new directory. The command may be applied to all source files for your
program or to only the source files for specific modules.

For example, after the following command line is entered, the debugger looks
for all source files in WORK$:[JONES.PROG3]:

DBG> SET SOURCE WORK$: [JONES.PROG3]
DBG>

You can specify a directory search list with the SET SOURCE command.
For example, after the following command line is entered, the debugger
looks for source files first in the current default directory ([]) and then in
WORK$:[JONES.PROG3]:

DBG> SET SOURCE [] , WORK$: [JONES. PROG3]
DBG>

If you want to apply the SET SOURCE command only to the source
files for a given module, use the /MODULE=module-name qualifier and
specify that module. For example, the following command line tells the
debugger to find the source files for module SCREEN -10 in the directory
DISK2:[SMITH.SHARE] (the search of source files for other modules is not
affected by this command):

DBG> SET SOURCE/MODULE=SCREEN_IO DISK2: [SMITH.SHARE]
DBG>

In summary, the SET SOURCE/MODULE command tells the debugger
where to find source files for a particular module, whereas the SET SOURCE
command tells the debugger where to find source files for modules that were
not mentioned explicitly in SET SOURCE/MODULE commands.

Use the SHOW SOURCE command to display all source directory search
lists currently in effect. The command displays the search lists for specific
modules (as previously established by one or more SET SOURCE/MODULE
commands) and the search list for all other modules (as previously established
by a SET SOURCE command). For example:

DBG> SET SOURCE [PROJA] ,[PROJB] ,USER$: [PETER.PROJC]
DBG> SET SOURCE/MODULE=COBOLTEST [], DISK$2: [PROJD]
DBG> SHOW SOURCE
source directory search list for COBOLTEST:

[]
DISK$2: [PROJD]

source directory search list for all other modules:
[PROJA]
[PROJB]
USER$: [PETER.PROJC]

DBG>

Controlling the Display of Source Code
5.2 Specifying the Location of Source Files

If no SET SOURCE or SET SOURCE/MODULE command has been entered,
the SHOW SOURCE command indicates that no search list is currently in
effect.

Use the CANCEL SOURCE command to cancel the effect of a previous SET
SOURCE command. Use the CANCEL SOURCE/MODULE command to
cancel the effect of a previous SET SOURCE/MODULE command (specifying
the same module name).

When a source directory search list has been canceled, the debugger again
expects the source files corresponding to the designated modules to be in the
same directories they were in at compile time.

See the description of the SET SOURCE command in the command dictionary
for additional information about how the debugger locates source files that
have been moved to another directory after compile time.

Opening a source file requires the use of an 1/0 channel, a limited system
resource. Like the debugger, your program may need to open files. To ensure
that the debugger does not use all available 1/0 channels and thus cause the
program to fail, by default the debugger can keep a maximum of 5 source files
open at one time. To specify a different limit, use the SET MAX_SOURCE_
FILES command. For example, the following command line sets the limit to 7
source files:

DBG> SET MAXIMUM_SOURCE_FILES 7
DBG>

Note that the value specified limits only the number of source files that may
be kept open at any one time. If the debugger reaches this limit, it closes a file
in order to open another one. Note also that setting the limit to a very small
number can make the debugger's use of source files inefficient.

The SHOW MAX_SOURCE_FILES command displays the number of source
files that the debugger may keep open at one time.

5.3 Displaying Source Code by Specifying Line Numbers
The TYPE command enables you to display source lines by specifying
compiler-assigned line numbers, where each line number designates a line of
source code.

For example, the following command displays line 160 and lines 22 through
24 of the module being debugged:

DBG> TYPE 160, 22:24
module COBOLTEST

160: START-IT-PARA.
module COBOLTEST

22: 02 SC2V2 PIC S99V99
23: 02 SC2V2N PIC S99V99
24: 02 CPP2 PIC PP99

DBG>

COMP VALUE 22.33.
COMP VALUE -22.33.
COMP VALUE 0.0012.

You can display all the source lines of a module by specifying a range of line
numbers starting from 1 and ending at a number equal to or greater than the
largest line number in the module.

5-3

Controlling the Display of Source Code
5.3 Displaying Source Code by Specifying Line Numbers

After displaying a source line, you can display the next line in that module
by entering a TYPE command without a line number - that is, by entering a
TYPE command and then pressing the RETURN key. For example:

DBG>TYPE 160
module COBOLTEST

160: START-IT-PARA.
DBG>TYPE
module COBOLTEST

161: MOVE SC1 TO ESO.
DBG>

You can then display the next line and successive lines by entering the TYPE
command repeatedly, in this way reading through your code one line at a
time.

To display source lines in an arbitrary module of your program, specify 'the
module name with the line numbers. Use standard path name notation -
that is, first specify the module name, then a backslash (\), and finally the
line numbers (or the range of line numbers), without intervening spaces. For
example, the following command displays line 16 of module TEST:

DBG> TYPE TEST\16

If you do not specify a module name with the TYPE command, the debugger
displays source lines for the module where execution is currently suspended,
by default - that is, the module associated with the PC scope. If you have
specified another scope with the SET SCOPE command the debugger displays
source lines in the module associated with the specified scope.

In screen mode, the output of a TYPE command is directed at the current
source display, not at an output or DO display. The source display shows the
lines specified and any surrounding lines that fit in the display window (see
Chapter 6).

5.4 Displaying Source Code by Specifying Address Expressions

5-4

The EXAMINE/SOURCE command enables you to display the source line
corresponding to an address expression. The address expression must denote
the address of a machine code instruction and, therefore, must be one of the
following:

• A line number

• A label

• A routine name

• The virtual address of an instruction

You cannot specify a variable name with the EXAMINE/SOURCE command,
because a variable name is associated with data, not with instructions.

When you use the EXAMINE/SOURCE command, the debugger evaluates
the address expression to obtain a virtual address, determines which compiler­
assigned line number corresponds to that address, and then displays the·
source line designated by the line number.

Controlling the Display of Source Code
5.4 Displaying Source Code by Specifying Address Expressions

For example, the following command line displays the source line associated
with the address (declaration) of routine SWAP:

DBG> EXAMINE/SOURCE SWAP
module MAIN

47: procedure SWAP(X,Y: in out INTEGER) is
DBG>

If you specify a line number that is not associated with an instruction, the
debugger issues a diagnostic message. For example:

DBG> EXAMINE/SOURCE %LINE 6
%DEBUG-I-'LINEINFO, no line 6, previous line is 5, next line is 8
%DEBUG-E-NOSYMBOL, symbol '%LINE 6' is not in the symbol table
DBG>

The command EXAMINE/SOURCE . %PC displays the source line
corresponding to the current PC value (the line that is about to be executed).
For example:

DBG> EXAMINE/SOURCE .%PC
module COBOLTEST

162: DISPLAY ESO.
DBG>

Note the use of the "contents-of" operator (.),which specifies the contents of
the entity that follows the period. If you do not use the contents-of operator,
the debugger tries to find a source line for the address of the PC rather than
for the value stored in the PC:

DBG> EXAMINE/SOURCE %PC
!%DEBUG-W-NOSRCLIN, no source line for address 7FFF005C
DBG>

The same kind of warning is issued if you specify a valid address expression
with EXAMINE/SOURCE, but the module that contains the address
expression is not set.

The following example shows the use of a numeric path name (1 \) to display
the source line at the PC value one level down the call stack (at the call to
the routine where execution is suspended):

DBG> EXAMINE/SOURCE .1\%PC

In screen mode, the output of an EXAMINE/SOURCE command is directed
at the current source display, not at an output or DO display. The arrow in
the source display points to the line associated with the address expression
specified. The predefined source display SRC is an automatically updated
display that executes the following command every time the debugger
prompts for commands (see Chapter 6 and Appendix C):

EXAMINE/SOURCE .%SOURCE_SCOPE\%PC

5-5

Controlling the Display of Source Code
5.5 Displaying Source Code by Searching for Strings

5.5 Displaying Source Code by Searching for Strings

5-6

The SEARCH command enables you to display any source lines that contain
an occurrence of a specified string.

The syntax of the SEARCH command is as follows:

SEARCH[/qualifier[, . . .]] [range] [sfring]

The range parameter may be a module name, a range of line numbers, or
a combination of both. If you do not specify a module name, the debugger
uses the current scope to find source lines, as with the TYPE command (see
Section 5.3).

By default, the SEARCH command displays the source line that contains the
first (next) occurrence of a string in a specified range (SEARCH/NEXT). The
command SEARCH/ ALL displays all source lines that contain an occurrence
of a string in a specified range. For example, the following command line
displays the source line that contains the first occurrence of the string "pro" in
module SCREEN _IO:

DBG> SEARCH SCREEN_IO pro

The remaining examples use source lines from one COBOL module, in the
current scope, to illustrate various aspects of the SEARCH command.

The following command line displays all source lines within lines 40 through
50 that contain an occurrence of the string "D".

DBG>SEARCH/ALL 40:50 D
module COBOLTEST

40: 02 D2N
41: 02 D
42: 02 DN
47: 02 DRO
48: 02 DR5
49: 02 DR10
50: 02 DR15

DBG>

COMP-2 VALUE -234560000000.
COMP-2 VALUE 222222.33.
COMP-2 VALUE -222222.333333.
COMP-2 VALUE 0.1.
COMP-2 VALUE 0.000001.
COMP-2 VALUE 0.00000000001.
COMP-2 VALUE 0.0000000000000001.

Once you have found an occurrence of a string in a particular module, you
can enter the SEARCH command with no parameters to display the source
line containing the next occurrence of the same string in the same module.
This is analogous to using the TYPE command without a parameter to display
the next source line. For example:

DBG> SEARCH 42:50 D
module COBOLTEST

42: 02 DN COMP-2 VALUE -222222.333333.
DBG> SEARCH
module COBOLTEST

47: 02 DRO COMP-2 VALUE 0.1.
DBG>

By default, the debugger searches for a string as specified and does not
interpret the context surrounding an occurrence of the string (this is the
behavior of SEARCH/STRING). If you want to locate occurrences of a string
that is an identifier in your program (for example, a variable name) and
exclude other occurrences of the string, use the /IDENTIFIER qualifier. The
command SEARCH/IDENTIFIER displays only those occurrences of the
string that are bounded on either side by a character that cannot be part of an
identifier in the current language.

Controlling the Display of Source Code
5.5 Displaying Source Code by Searching for Strings

The default qualifiers for the SEARCH command are /NEXT and /STRING.
If you want to establish different default qualifiers, use the SET SEARCH
command. For example, after the following command is executed, the
SEARCH command behaves like SEARCH/IDENTIFIER:

DBG>SET SEARCH IDENTIFIER
DBG>

Use the SHOW SEARCH command to display the default qualifiers currently
in effect for the SEARCH command. For example:

DBG>;SHOW SEARCH
search settings: search for next occurrence, as an identifier
DBG>

5.6 Controlling Source Display After Stepping and at Eventpoints
By default, whenever the debugger interrupts the execution of your program,
it displays the source line at which execution is suspended. The debugger
interrupts execution following a STEP command and when an eventpoint is
triggered. Eventpoints are breakpoints, tracepoints, and watchpoints.

When you enter a STEP command, by default the debugger displays the
source line at which execution is suspended after the step. This is the next
line to be executed if you enter a STEP or GO command. For example:

DBG> STEP
stepped to MAIN\%LINE 16

16: RANGE := 500;
DBG>

When an eventpoint is triggered, by default the debugger displays the source
line at which execution is suspended. For example:

DBG> SET BREAK SWAP
DBG> GO

break at MAIN\SWAP
47: procedure SWAP(X,Y: in out INTEGER) is

DBG>

In the case of a breakpoint or tracepoint, the debugger displays the source line
at the location of the eventpoint. In the case of a watchpoint, the debugger
displays the source line corresponding to the instruction that caused the
watchpoint to be triggered.

The SET STEP [NO]SOURCE command enables you to control the display of
source code after a step and at eventpoints. SET STEP SOURCE, the default,
enables source display. SET STEP NOSOURCE suppresses source display.
For example:

5-7

Controlling the Display of Source Code
5.6 Controlling Source Display After Stepping and at Eventpoints

DBG> SET STEP NOSOURCE
DBG> STEP
stepped to MAIN\%LINE 16
DBG> SET BREAK SWAP
DBG> GO

break at MAIN\SWAP
DBG>

You can selectively override the effect of a SET STEP SOURCE command or
a SET STEP NOSOURCE command by using the qualifiers /SOURCE and
/NOSOURCE with the STEP, SET BREAK, SET TRACE, and SET WATCH
commands.

The command STEP /SOURCE overrides the effect of the command SET
STEP NOSOURCE, but only for the duration of that STEP command
(similarly, STEP /NOSOURCE overrides the effect of SET STEP SOURCE
for the duration of that STEP command). For example:

DBG> SET STEP NOSOURCE
DBG> STEP/SOURCE
stepped to MAIN\%LINE 16

16: RANGE :~ 500;
DBG>

The command SET BREAK/SOURCE overrides the effect of the command
SET STEP NOSOURCE, but only for the eventpoint set with that SET BREAK
command (similarly, SET BREAK/NOSOURCE overrides the effect of SET
STEP SOURCE for the eventpoint set with that SET BREAK command). The
same conventions apply to the SET TRACE and SET WATCH commands. For
example:

DBG> SET STEP SOURCE
DBG> SET BREAK/NOSOURCE SWAP
DBG> GO

break at MAIN\SWAP
DBG>

5. 7 Setting Margins for Source Display

5-8

The SET MARGINS command enables you to specify the leftmost and
rightmost source-line character positions at which to begin and end the
display of a source line (respectively, the left and right margins). This is
useful for controlling the display of source code when, for example, the code
is deeply indented or long lines wrap at the right margin. In such cases, you
can set the left margin to eliminate indented space in the source display, and
you can decrease the right margin setting to truncate lines and prevent them
from wrapping.

For example, the following command line sets the left margin to column 20
and the right margin to column 35.

DBG> SET MARGINS 20:35
DBG>

Controlling the Display of Source Code
5. 7 Setting Margins for Source Display

Subsequently, only that portion of the source code that is between columns
20 and 35 is displayed when you enter commands that display source lines
(for example, TYPE, SEARCH, STEP). Use the SHOW MARGINS command
to identify the current margin settings for the display of source lines.

Note that the SET MARGINS command affects only the display of source
lines. It does not affect the display of other debugger output, as from an
EXAMINE command.

The SET MARGINS command is useful mostly in line (noscreen) mode. In
screen mode, the SET MARGINS command has no effect on the display of
source lines in a source display, such as the predefined display SRC.

5-9

6 Using Screen Mode

Screen mode enables you to see more information more conveniently than the
default, line-oriented, display mode. In screen mode, you display different
types of data in separate areas of the screen. You might, for example, display
your source code in the top left half of the screen, the contents of the VAX
registers in the top right half, debugger output in the middle, and diagnostic
messages at the bottom, near your interactive input.

To enable screen mode, press keypad key PF3 (or type the command SET
MODE SCREEN). To return to line-oriented debugging, press GOLD-PF3 (or
type the command SET MODE NOSCREEN). In screen mode, to recreate
the default layout of various windows, press the keypad-key sequence
BLUE-MINUS (PF4 followed by the MINUS key (-)).

Screen mode output is best displayed on VTlOO, VT200, or VT300 series
terminals and VAXstations. The larger screen of VAXstations is particularly
suitable to using a number of displays for different purposes. You can use
screen mode with VT52 terminals, but they are less suited to the formatted
screen displays because they do not support the scrolling regions used in
screen mode.

This chapter covers the following topics:

• Screen mode concepts and terminology used throughout the chapter.

• The predefined displays SRC, OUT, PROMPT, INST, and REG, which are
automatically available when you enter screen mode.

• Scrolling, hiding, deleting, moving, and resizing a display.

• Creating a new display.

• Specifying a display window.

• The different kinds of displays and how to use them.

• Directing various types of debugger output to different displays by
assigning display attributes.

• A sample display configuration that illustrates a possible use of screen
mode.

• Saving the current state of your screen displays.

• Changing your terminal screen's height and width during a debugging
session and the effect on display windows.

Many screen mode commands are bound to keypad keys. See Appendix B
for key definitions. Also, Appendix C contains screen mode information in
summary reference format.

6-1

Using Screen Mode
6.1 Concepts and Terminology

6.1 Concepts and Terminology

6-2

A display is a group of text lines. The text may be lines from a source file,
assembly language instructions, the values contained in registers, your input
to the debugger, various types of debugger output, or program input and
output.

You view a display through its window, which may occupy any rectangular
area of the screen. Because a display's window is typically smaller than
the display, you can scroll the window up, down, right, and left across the
display text to view any part of the display.

Figure 6-1 is an example of screen mode that shows three displays. The
name of each display (SRC, OUT, and PROMPT) appears at the top left
corner of its window. It serves both as a tag on the display itself and as a
name for future reference in commands.

Figure 6-1 Default Screen Mode Display Configuration

- SRC: module SQUARES$MAIN- scroll-source--------------
7: c -- Square all non-zero elements and store in output array
8: K = 0
9: DO 10 I = 1, N

10: IF(INARR(I) .NE. 0) THEN
-> 11: OUTARR(K) = INARR(I)**2

12: ENDIF
131 10 CONTINUE
14: c
151 c
16:
17: 20

-- Print the squared output values. Then stop.
PRINT 20, K
FORMAT(' Number of non-zero elements is',14)

-OUT-output-------------------------
stepped to SQUARES$MAIN\\LINE 9

9: DO 10 I = 1, N
SQUARES$MAIN\N: 9
SQUARES$MAIN\K: 0
stepped to SQUARES$MAIN\\LINE 11

-PROMPT- error-prograrn-prornpt-----------------­
DBG> EXAM N, K
DBG> STEP 2
DBG>

ZK-6503-HC

• Display SRC is a source code display (it is displaying FORTRAN code in
the example shown in Figure 6-1). SRC's current window is the upper
half of the screen. Like other display windows, SRC's window may be
changed to accommodate different display layouts. The name of the
module whose source code is displayed, SQUARES$MAIN, is to the right
of the display name.

• Display OUT, located in a window directly below SRC, shows the output
of debugger commands.

• Display PROMPT, at the bottom of the screen, shows the debugger
prompt and debugger input.

Figure 6-1 is the default display configuration that is established when you
first invoke screen mode. SRC, OUT, and PROMPT are three of the five
predefined displays that the debugger provides by default when you enter
screen mode. You can create additional displays.

Using Screen Mode
6.1 Concepts and Terminology

Every display has a memory buffer, whose size is independent of the window
size and may be adjusted. Displays that hold source code or assembly
language instructions enable you to see all of the lines of source code of
the associated module or all of the instructions of the associated routine,
regardless of the size of the memory buffer. This is because the necessary
information is paged into the buffer as needed. For other displays, such as
display OUT, the buffer size defines how much text the display can hold. If
you add more text to the display, the oldest text lines are discarded to make
room for the new text.

Conceptually, displays are placed on the screen as on a pasteboard. The
display that is most recently referenced in a command is put on top of the
pasteboard, by default. Therefore, depending on the window locations, the
displays that you have referenced recently may overlay or hide other displays
(as on a pasteboard).

The debugger maintains a display list, which is the pasting order of displays.
Several keypad key definitions use the display list to cycle through the
displays currently on the pasteboard.

Every display belongs to a display kind. The display kind determines what
type of information the display can capture and display; for example, source
code, assembly language instructions, debugger output of various types. The
display kind also determines how the contents of the display are generated.

The contents of a display are generated in two ways. Some displays are
automatically updated. Their definition includes a command list that is
executed whenever the debugger gains control from the program. The output
of the command list forms the contents of those displays. Display SRC
belongs to that category: the source display is automatically updated so that
an arrow centered in the window shows the current location of the program
counter.

Other displays, for example display OUT, derive their contents from
commands you enter interactively. If you create a display of this general
category, you must first select it (with the SELECT command) as the target
display for one or more types of output before anything can be written to it.
This is also known as assigning one or more attributes to a display.

The names of any attributes assigned to a display appear to the right of the
display name, in lowercase letters. In Figure 6-1 SRC has the source and
scroll attributes (SRC is the current source display and the current scrolling
display), OUT has the output attribute (it is the current output display), and
so on. Note that, although SRC is automatically updated by its own built-in
command, it can also receive the output of certain interactive commands
(such as EXAMINE/SOURCE) because it has the source attribute.

The concepts introduced in this section are developed in more detail in the
rest of this chapter.

6-3

Using Screen Mode
6.2 The Predefined Displays

6.2 The Predefined Displays

6.2.1

The debugger provides the following predefined displays by default:

• A source display named "SRC"

• An output display named "OUT"

• A prompt display named "PROMPT"

• An assembly-language instruction display named "INST"

• A register display named "REG"

When you enter screen mode, the debugger puts SRC in the top half of the
screen, PROMPT in the bottom sixth, and OUT between SRC and PROMPT,
as illustrated in Figure 6-1. If, after rearranging displays and windows,
you ever want to recreate this default configuration, press the keypad-key
sequence BLUE-MINUS (PF4 followed by the MINUS(-) key).

Each of the predefined displays is discussed in the next sections.

The Predefined Source Display SRC

6-4

Note: See Chapter 5 for general information about source lines and how to
control their display. See also the description of the SET SOURCE
command in the command dictionary for related information.

The predefined source display SRC displays the source code of the module
being debugged, if that source code is available. The arrow in the leftmost
column indicates the source line where execution is suspended. Each time
the debugger gains control from your program, the arrow position is updated,
and the source text scrolls as needed so that the display is centered around
the source line that corresponds to the new PC value.

By default, SRC has the source attribute and, therefore, also shows the output
of a TYPE or EXAMINE/SOURCE command (the source text is scrolled as
needed to reveal the source line output).

If source lines are not available for the routine where execution is suspended
(because, for example, that routine is a run-time library routine}, the debugger
attempts to display source lines in the caller of that routine (scope 1). If
source lines are also not available at that level, the debugger tries scope 2,
and so on. When displaying source lines that are not associated with the
module where execution is suspended, the debugger displays a message to
that effect:

%DEBUG-I-SOURCESCOPE, Source lines not available for .O\%PC.
Displaying source in a caller of the current routine.

Figure 6-2 illustrates this feature. In the source display, the arrow indicates
that the PC value is at a call to routine TYPE. TYPE corresponds to a
FORTRAN run-time library procedure. No source lines are available for
that code, so the debugger displays lines in the caller of that routine. The
output of a SHOW CALLS command, shown in the output display, identifies
the routine where execution is suspended and the call sequence leading to
that routine.

6.2.2

6.2.3

Using Screen Mode
6.2 The Predefined Displays

Figure 6-2 Screen Mode Source Display When Source Code Is Not
Available

-SRC: module TEST-scroll-source----------------­
\DEBUG-I-SOURCESCOPE, Source lines not available for .O\\PC

Displaying source in a caller of the current routine
3: CHARACTER*(*) ARRAYX

-> 4: TYPE *, ARRAYX
5: RETURN
6: END

-OUT-output------------------------
stepped to SHARE$FORRTL+Bl0
module name routine name
SHARE$FORRTL SHARE$FORRTL

*TEST TEST
*.A A

line

4
3

rel PC abs PC
0000032A OOOOOB2A
OOOOOOlE 00000436
00000011 00000411

-PROMPT-error-program-prompt-----------------­
DBG> STEP
DBG> SHOW CALLS
DBG>

The Predefined Output Display OUT

ZK-6504-HC

Figures 6-1 and 6-2 illustrate some typical debugger output in the predefined
display OUT.

By default, OUT has the output attribute and therefore displays any debugger
output that is not directed to the source display SRC or the instruction display
INST.

By default, OUT does not display debugger diagnostic messages (these appear
in the PROMPT display). You can assign attributes to OUT so that it captures
debugger input and diagnostics as well as normal output (see Section 6.7).

The Predefined Prompt Display PROMPT
The predefined display PROMPT is where the debugger prompts for input.
Figures 6-1 and 6-2 show PROMPT in its default location, the bottom sixth
of the screen.

By default, PROMPT has the program and error attributes, in addition to the
prompt attribute. Therefore, by default, the debugger forces program output
to PROMPT and prints diagnostic messages to that display.

PROMPT has different properties and restrictions than other displays. This is
to eliminate possible confusion when manipulating that display:

• The debugger always keeps PROMPT on top of the display pasteboard
so it cannot be hidden by another display. You cannot hide PROMPT
(with the DISPLAY /HIDE command), or remove PROMPT from the
pasteboard (with the DISPLAY/REMOVE command}, or permanently
delete PROMPT (with the CANCEL DISPLAY command).

6-5

6.2.4

Using Screen Mode
6.2 The Predefined Displays

• PROMPT can have the scroll attribute, so that it can be made the default
target display for the MOVE and EXP AND commands. But you cannot
scroll PROMPT.

• You can move PROMPT anywhere on the screen, expand it to fill the
full screen height, and contract it down to two lines. But PROMPT must
always occupy the full width of the screen. Therefore, you cannot move,
expand, or contract PROMPT horizontally.

The debugger alerts you if you try to move or expand a display such that it is
hidden by PROMPT.

The Predefined Instruction Display INST

6-6

The predefined assembly-language instruction display INST displays the
instruction stream of the routine being debugged (see Figure 6-3). The
instructions displayed are decoded from the image being debugged.

Figure 6-3 Screen Mode Instruction Display

-INST: routine SQUARES$MAIN------------------­
: TSTL BA16(Rll)
: BLEQ SQUARES$MAIN\\LINE 16

Line 10: MOVL BA4(Rll),RO
: TSTL WA-164(Rll)[RO]
: BEQL SQUARES$MAIN\\LINE 13

->ne 11: MOVL BA12(Rll),Rl
: MOVL BA4(Rll),RO
: MULL3 WA-164(Rll)[RO],WA-164(Rll)[RO],BA-84(Rll)[Rl]

Line 13: AOBLEQ BA16(Rll),BA4(Rll),SQUARES$MAIN\\LINE 10
Line 16: PUSHAL LA525

: MNEGL SAil,-(SP)
-OUT-output-------------------------------~

stepped to SQUARES$MAIN\\LINE 9
9: DO 10 I = 1, N

SQUARES$MAIN\N: 3
SQUARES$MAIN\K: 0
stepped to SQUARES$MAIN\\LINE 11
SQUARES$MAIN\I: 1
SQUARES$MAIN\K: 0
-PROMPT-error-program-prompt--------------------­
DBG> STEP
DG> EXAMINE I, K
DBG>

ZK-6505-HC

This type of display is useful when debugging code that has been optimized.
In such cases some of the code being executed may not match the source
code that is shown in a source display. See Section 8.1 for information on the
effects of optimization.

In display INST, the numbers to the left of the instructions are line numbers.
The arrow points to the instruction at the current PC value. Whenever the
debugger gains control from your program, the arrow position is updated and
the display is centered around the current PC value.

By default, INST is marked as removed (see Section 6.3.2) from the display
pasteboard and is not visible. You must use the DISPLAY command (or
keypad keys 7 or GOLD-7) to show the INST display in such cases.

6.2.5

Using Screen Mode
6.2 The Predefined Displays

If you assign the instruction attribute to INST with the command SELECT
/INSTRUCTION INST, then the output of an EXAMINE/INSTRUCTION
command is directed to the instruction display.

The Predefined Register Display REG
The predefined register display REG automatically shows the current values
of all VAX machine registers (see Figure 6-4). REG also shows the four
condition code bits (C,V, Z, and N) of the processor status longword (PSL),
plus the top several values on the stack and on the current argument list. The
values in this display are highlighted when they change as you execute the
program.

REG is initially marked as removed (see Section 6.3.2) from the display
pasteboard and is not visible. You must use the DISPLAY command (or the
keypad key sequence GOLD-7) to show the REG display.

If the register window is made larger, the debugger fills the remaining space
with information (in hexadecimal format) contained in the user stack (see
Appendix C).

Figure 6-4 Screen Mode Register Display

r ""' -SRC: module SQUARES$MAIN-scroll-sourc REG-------------
3: c -- Read the input array RO:OOOOOOOO RlO 7FFEDDD4 @SP 00000000
4: 0PEN(UNIT=8, FILE='DATAF Rl:00000008 Rll 000004AO +4 08000000
5: READ(8,*) N, (!NARR(!), R2:00000000 AP 7FF4AlCC +8 7FF4AlCC
6: C R3:7FF4Al94 FP 7FF4Al80 +12 7FF4AlB8
7: C -- Square all non-zero e R4:00000000 SP 7FF4A180 +16 000196C8

-> 8: K = 0 R5:00000000 PC 00000640 +20 7FFE33DC
9: DO 10 I = 1, N R6:7FF49E49 @AP 00000006 +24 000009FF

10: IF(INARR(I) .NE. 0) THEN R7:8001E4DD +4 7FFE6440 +28 00000005
11: K = K + 1 R8:7FFED052 +8 7FF9F4EB +32 00000600
12: OUTARR(K) = INAR R9:7FFED25A +12 7FFE640C +36 00000000
13: ENDIF N:O Z:O V 0 C:O +40 00000001

-OUT-output-----------..__-------------~

stepped to SQUARES$MAIN\%LINE 4
stepped to SQUARES$MAIN\%LINE 5
stepped to SQUARES$MAIN\%LINE 8
SQUARES$MAIN\I: 5
SQUARES$MAIN\K: 0
SQUARES$MAIN\N: 4

ZK-6506-HC

6.3 Manipulating Existing Displays
This section explains how to

• Use the SELECT and SCROLL commands to scroll a display
(Section 6.3.1).

• Use the DISPLAY command to show, hide, or remove a display; the
CANCEL DISPLAY command to permanently delete a display; and the
SHOW DISPLAY command to identify the displays that currently exist
and their order in the display list (Section 6.3.2).

6-7

6.3.1

Using Screen Mode
6.3 Manipulating Existing Displays

• Use the MOVE command to move a display across the screen
(Section 6.3.3).

• Use the EXPAND command to expand or contract a display
(Section 6.3.4).

Note also that Sections 6.5 and 6.6 discuss more advanced techniques for
modifying existing displays with the DISPLAY command - how to change
the display window and the type of information displayed.

Scrolling a Display

6-8

A display usually has more lines of text (and possibly longer lines) than can
be seen through its window. The SCROLL command enables you to view
text that is hidden beyond a window's border. You can scroll through all
displays except for the PROMPT display.

The easiest way to scroll displays is with keypad keys, as described later in
this section. First, use of the relevant commands is explained.

You can specify a display explicitly with the SCROLL command. Typically,
however, you first use the SELECT /SCROLL command to select the current
scrolling display. This display then has the scroll attribute and is the default
display for the SCROLL command. You then use the SCROLL command
with no parameter to scroll that display up or down by a specified number of
lines, or to the right or left by a specified number of columns. The direction
and distance scrolled are specified with the command qualifiers (/UP:n,
/RIGHT:n, and so on).

In the following example, the SELECT command selects display OUT as the
current scrolling display (/SCROLL may be omitted because it is the default
qualifier); the SCROLL command then scrolls OUT to reveal text 18 lines
down:

DBG> SELECT OUT
DBG> SCROLL/DOWN: 18

Several useful SELECT and SCROLL command lines are assigned to keypad
keys (see Appendix B for the keypad diagram):

• Pressing key 3 assigns the scroll attribute to the next display in the
display list after the current scrolling display. So, to select a display as
the current scrolling display, press key 3 repeatedly until the word "scroll"
appears on the top line of that display.

• Press key 8, 2, 6, or 4 to scroll up, down, right, or left, respectively. The
amount of scroll depends on which key state you use (DEFAULT, GOLD,
or BLUE).

6.3.2

6.3.3

Using Screen Mode
6.3 Manipulating Existing Displays

Showing, Hiding, Removing, and Canceling a Display
The DISPLAY command is the most versatile command for manipulating
existing displays. In its simplest form, the command puts a display on top of
the pasteboard, where it appears through its current window. For example,
the following command shows the display INST through its current window:

DBG> DISPLAY INST

Pressing keypad key 9, which is bound to the command DISPLAY
%NEXTDISP, enables you to achieve this effect conveniently. The built-
in function %NEXTDISP signifies the next display in the display list
(Appendix D identifies all screen-related built-in functions). Each time you
press key 9, the next display in the list is put on top of the pasteboard, in its
current window.

Note that, by default, the top line of display OUT (which identifies the
display) coincides with the bottom line of display SRC. If SRC is on top
of the pasteboard, its bottom line hides the top line of OUT (keep this in
mind when using the DISPLAY command and associated keypad keys to put
various displays on top of the pasteboard).

To hide a display at the bottom of the pasteboard, use the DISPLAY /HIDE
command. This command changes the order of that display in the display
list.

To remove a display from the pasteboard so that it is no longer seen (yet is
not permanently deleted), use the DISPLAY /REMOVE command. To put a
removed display back on the pasteboard, use the DISPLAY command.

To delete a display permanently, use the CANCEL DISPLAY command. To
recreate the display, use the SET DISPLAY command, which is described in
Section 6.4.

Note that you cannot hide, remove, or delete the PROMPT display.

To identify the displays that currently exist, use the SHOW DISPLAY
command. They are listed according to their order on the display list. The
display that is on top of the pasteboard is listed last.

See the command dictionary for information on the various options provided
by the DISPLAY command qualifiers. Note also that the DISPLAY command
accepts optional parameters that enable you to modify other characteristics
of existing displays, namely the display window and the type of information
displayed. The techniques are discussed in Sections 6.5 and 6.6.

Moving a Display Across the Screen
Use the MOVE command to move a display across the screen. The qualifiers
/UP:n, /DOWN:n, /RIGHT:n, and /LEFT:n specify the direction and the
number of lines or columns by which to move the display. If you do not
specify a display, the current scrolling display is moved.

The easiest way to move a display is by using keypad keys:

• Press key 3 repeatedly as needed to select the current scrolling display.

• Put the keypad in the MOVE state, then use keys 8, 2, 4, or 6 to move
the display up, down, left, or right, respectively (see Appendix B).

6-9

6.3.4

Using Screen Mode
6.3 Manipulating Existing Displays

Expanding or Contracting a Display
Use the EXPAND command to expand or contract a display. The qualifiers
/UP:n, /DOWN :n, /RIGHT:n, and /LEFT:n specify the direction and the
number of lines or columns by which to expand or contract the display (to
contract a display, specify negative integer values with these qualifiers). If
you do not specify a display, the current scrolling display is expanded or
contracted.

The easiest way to expand or contract a display is by using keypad keys.

• Press key 3 repeatedly as needed to select the current scrolling display.

• Put the keypad in the EXP AND or CONTRACT state, then use keys 8,
2, 4, or 6 to expand or contract the display vertically or horizontally (see
Appendix B).

Note that the PROMPT display cannot be contracted (or expanded)
horizontally. Also, it cannot be contracted vertically to less than two lines.

6.4 Creating a New Display

6-10

To create a new screen display, use the SET DISPLAY command. The basic
syntax is as follows:

SET DISPLAY display-name [AT window-specification] [display-kind]

The display name can be any name that is not already used to name a
display. When you create a new display, it is placed on top of the pasteboard,
on top of any existing displays (except for the predefined PROMPT display,
which cannot be hidden). The display name appears at the top left corner of
the display window.

Section 6.5 explains the options for specifying windows. If you do not
provide a window specification, the display is positioned in the upper or
lower half of the screen, alternating between these locations as you create
new displays.

Section 6.6 explains the options for specifying display kinds. If you do not
specify a display kind, an output display is created.

For example, the following command creates a new output display named
OUT2. The window associated with OUT2 is either the top or bottom half of
the screen.

DBG> SET DISPLAY OUT2

The following command creates a new "DO" display named EXAM-'<Y that
is located in the right third quarter (RQ3) of the screen. This display shows
the current value of variables X and Y and is updated whenever the debugger
gains control from the program.

DBG> SET DISPLAY EXAM_XY AT RQ3 DO (EXAMINE X,Y)

See the command dictionary for information on the various options provided
by the SET DISPLAY command qualifiers.

Using Screen Mode
6.5 Specifying a Display Window

6.5 Specifying a Display Window

6.5.1

6.5.2

Display windows may occupy any rectangular portion of the screen.

You can specify a display window when creating a display with the SET
DISPLAY command. You can also change the window currently associated
with a display by specifying a new window with the DISPLAY command.
You have the following options:

• Specify a window in terms of lines and columns.

• Use the name of a predefined window, such as Hl.

• Use the name of a window definition previously established with the SET
WINDOW command.

Each of these techniques is described in the next sections. When specifying
windows, keep in mind that the PROMPT display always remains on top of
the display pasteboard and, therefore, occludes any part of another display
that shares the same region of the screen.

Display windows, regardless of how specified, are dynamic. This means that,
if you use a SET TERMINAL command to change the screen height or width,
the window associated with a display expands or contracts in proportion to
the new screen height or width.

Specifying a Window in Terms of Lines and Columns
The general form of a window specification is (start-line,line-count[,start­
column,column-count]). For example, the following command creates the
output display CALLS and specifies that its window be 7 lines deep starting
at line 10, and 30 columns wide starting at column 50:

DBG> SET DISPLAY CALLS AT (10,7,50,30)

If you do not specify start-column or column-count, the window occupies the
full width of the screen.

Predefined Windows
The debugger provides many predefined windows. These have short
symbolic names that you can use in the SET DISPLAY and DISPLAY
commands instead of having to specify lines and columns. For example,
the following command creates the output display ZIP and specifies that its
window be RHl (the top right half of the screen).

DBG> DISPLAY ZIP AT RH1

The SHOW WINDOW command identifies all predefined window definitions,
as well as those you create with the SET WINDOW command.

6-11

6.5.3

Using Screen Mode
6.5 Specifying a Display Window

Creating a New Window Definition
Although the predefined windows should be adequate for most situations,
you can create a new window definition with the SET WINDOW command.
This command, which has the following form, associates a window name
with a window specification:

SET WINDOW window-name AT (start-line,line-count[,start-col,col-count])

After creating a window definition, you can simply use its name (like that
of a predefined window) in a SET DISPLAY or DISPLAY command. In the
following example, the window definition MIDDLE is established. That
definition is then used to display OUT through the window MIDDLE.

DBG> SET WINDOW MIDDLE AT (9,4,30,20)
DBG> DISPLAY OUT AT MIDDLE

To identify all current window definitions, use the SHOW WINDOW
command. To delete a window definition, use the CANCEL WINDOW
command.

6.6 Specifying the Display Kind

6-12

Every display has a display kind. The display kind determines the type of
information a display contains and how that information is generated.

Typically, you specify a display kind when you use the SET DISPLAY
command to create a new display (if you do not specify a display kind, an
output display is created). You can also specify a display kind when you
use the DISPLAY command to change a display kind. The keywords and
associated parameters with which you specify a display kind are listed below.
Each of these options is explained in the sections that follow (refer also to the
displays illustrated in Section 6.2).

DO (command-list)
INSTRUCTION
INSTRUCTION (command)
OUTPUT
REGISTER
SOURCE
SOURCE (command)

The contents of a register display are generated and updated automatically
by the debugger. The contents of other kinds of displays are generated by
commands, and these display kinds fall into two general groups.

A display that belongs to one of the following display kinds has its contents
updated automatically according to the command or command list you supply
when defining that display:

DO (command-list)
INSTRUCTION (command)
SOURCE (command)

The command list specified is executed each time the debugger gains control
from your program, provided the display is not marked as removed. The
output of the commands forms the new contents of the display. If the display
is marked as removed, the debugger does not execute the command list until
you view that display (marking that display as unremoved).

6.6.1

6.6.2

Using Screen Mode
6.6 Specifying the Display Kind

A display that belongs to one of the following display kinds derives its
contents from commands that you enter interactively:

INSTRUCTION
OUTPUT
SOURCE

To direct debugger output to a specific display in this group, you must first
select it with the SELECT command. The technique is explained in the next
sections and, in further detail, in Section 6.7. Once a display is selected for a
certain type of output, the output from your commands forms the contents of
the display.

The default size of the memory buffer associated with any newly created
display is 64 lines. For source and instruction displays, the size of the buffer
only affects performance. In the case of a source display, source files are
paged in as necessary as you scroll through the module. In the case of an
instruction display, the instructions are decoded from the image as necessary
as you scroll through the routine.

For output and DO displays, the buffer size defines how many lines of text
the display holds. If you add more text to the display, the oldest lines are
discarded to make room for the new text. You can use the /SIZE qualifier on
the SET DISPLAY and DISPLAY commands to change the buffer size.

DO (command[; ...]) Display Kind
A DO display is an automatically updated display. The commands in the
command list are executed in the order listed each time the debugger gains
control from your program. Their output forms the content of the display,
erasing any previous content.

For example, the following command creates the DO display CALLS at
window Q3. Each time the debugger gains control from the program, the
SHOW CALLS command is executed and the output is displayed in CALLS,
replacing any previous contents.

DBG> SET DISPLAY CALLS AT Q3 DO (SHOW CALLS)

INSTRUCTION Display Kind
An instruction display shows the output of an EXAMINE/INSTRUCTION
command within the assembly-language instruction code of the routine being
debugged (the instructions displayed are decoded from the image being
debugged). One line is devoted to each instruction. Source line numbers
corresponding to the instructions are displayed in the left column. The
instruction at the location being examined is centered in the display and is
marked by an arrow in the left column.

Note that, before anything can be written to an instruction display, you must
select it as the current instruction display with the SELECT /INSTRUCTION
command.

In the following example, the SET DISPLAY command creates the instruction
display INST2 at RHl. The SELECT /INSTRUCTION command then
selects INST2 as the current instruction display. When the EXAMINE
jINSTRUCTION X command is execuied, window RHl fills with the

6-13

6.6.3

6.6.4

Using Screen Mode
6.6 Specifying the Display Kind

instruction code surrounding the location X. The arrow points to the
instruction at location X, which is centered in the display.

DBG> SET DISPLAY INST2 AT RH1 INSTRUCTION
DBG> SELECT/INSTRUCTION INST2
DBG> EXAMINE/INSTRUCTION X

Each subsequent EXAMINE/INSTRUCTION command updates the display.

INSTRUCTION (command) Display Kind
This is an instruction display that is automatically updated with the output of
the command specified. That command, which must be an
EXAMINE/INSTRUCTION command, is executed each time the debugger
gains control from your program.

For example, the following command creates the instruction display INST3
at window RS45. Each time the debugger gains control, the command
EXAMINE/INSTRUCTION .0\ %PC is executed (it displays the instruction at
the current PC location), updating the display.

DBG> SET DISPLAY INST3 AT RS45 INSTRUCTION (EX/INST .O\%PC)

This command creates a display that functions like the predefined display
INST.

If an automatically updated instruction display is selected as the current
instruction display, it is updated like a simple instruction display by an
interactive EXAMINE/INSTRUCTION command (in addition to being
updated by its built-in command).

OUTPUT Display Kind

6-14

An output display shows any debugger output that is not directed to some
other display. New output is appended to the previous contents of the
display.

Note that, before anything can be written to an output display, it must be
selected as the current output display with the SELECT /OUTPUT command,
or as the current error display with the SELECT /ERROR command, or as the
current input display with the SELECT/INPUT command. See Section 6.7 fm
more information on using the SELECT command with output displays.

In the following example, the SET DISPLAY command creates the output
display OUT2 at window T2 (the display kind OUTPUT could have been
omitted from this example, because it is the default kind). The
SELECT /OUTPUT command then selects OUT2 as the current output
display. These two commands create a display that functions like the
predefined display OUT.

DBG> SET DISPLAY OUT2 AT T2 OUTPUT
DBG> SELECT/OUTPUT OUT2

OUT2 now collects any debugger output that is not directed to another
display. For example:

• The output of a SHOW CALLS command goes to OUT2.

6.6.5

6.6.6

Using Screen Mode
6.6 Specifying the Display Kind

• If no instruction display has been selected as the current instruction
display, the output of an EXAMINE/INSTRUCTION command goes to
OUT2.

• By default, debugger diagnostic messages are directed to the PROMPT
display. They may be directed to OUT2 with the SELECT /ERROR
command.

REGISTER Display Kind
A register display is an automatically updated display that shows the current
contents of all VAX machine registers, the four condition code bits (C, V, Z,
and N) of the processor status longword (PSL), and the top several values
on the stack and on the current argument list. The display is updated each
time the debugger gains control from your program. Any values that have
changed are highlighted.

See Appendix C for information on the behavior of register displays when
expanded and contracted.

SOURCE Display Kind
A source display shows the output of a TYPE or EXAMINE/SOURCE
command within the source code of the module being debugged, if that
source code is available. Source line numbers are displayed in the left
column. The source line that is the output of the command is centered in the
display and is marked by an arrow in the left column. If a range of lines is
specified with the TYPE command, the lines are centered in the display, but
no arrow is shown.

Note that, before anything can be written to a source display, you must select
it as the current source display with the SELECT /SOURCE command.

In the following example, the SET DISPLAY command creates the source
display SRC2 at Q2. The SELECT /SOURCE command then selects SRC2 as
the current source display. When the TYPE 34 command is executed, window
RHl fills with the source code surrounding line 34 of the module being
debugged. The arrow points to line 34, which is centered in the display.

DBG> SET DISPLAY SRC2 AT Q2 SOURCE
DBG> SELECT/SOURCE SRC2
DBG> TYPE 34

Each subsequent TYPE or EXAMINE/SOURCE command updates the
display.

6-15

6.6.7

6.6.8

Using Screen Mode
6.6 Specifying the Display Kind

SOURCE (command) Display Kind
This is a source display that is automatically updated with the output of the
command specified. That command, which must be an EXAMINE/SOURCE
or TYPE command, is executed each time the debugger gains control from
your program.

For example, the following command creates a source display SRC3 at
window RS45. Each time the debugger gains control, the command
EXAMINE/SOURCE . %SOURCE_SCOPE\ %PC is executed, updating the
display.

DBG> SET DISPLAY SRC3 AT RS45 SOURCE (EX/SOURCE .%SOURCE_SCOPE\%PC)

This command creates a display that functions like the predefined display
SRC. %SOURCE-SCOPE is a built-in scope that signifies scope 0 when
source lines are available for scope 0. Otherwise, it signifies scope N, where
N is the first level down the call stack for which source lines are available.

If an automatically updated source display is selected as the current source
display, it is updated like a simple source display by an interactive
EXAMINE/SOURCE or TYPE command (in addition to being updated by its
built-in command).

PROGRAM Display Kind
The PROMPT display belongs to the special display kind "program." Note
that PROMPT is the only display of that kind. You cannot specify that
display kind in a SET DISPLAY or DISPLAY command.

To avoid possible confusion, the PROMPT display has several restrictions (see
Section 6.2.3).

6. 7 Assigning Display Attributes

6-16

In screen mode, the output from commands you enter interactively is directed
to various displays according to the type of output and the attributes assigned
to these displays. For example, debugger diagnostic messages go to the
display that has the error attribute (the current error display). By assigning
one or more attributes to a display, you can mix or isolate different kinds of
information.

The attributes have the following names: error, input, instruction, output,
program, prompt, scroll, and source. When a display is assigned an attribute,
the name of that attribute appears in lowercase letters on the top border of its
window, to the right of the display name. Note that the scroll attribute does
not affect debugger output but is used to control the default display for the
SCROLL, MOVE, and EXP AND commands.

By default, attributes are assigned to the predefined displays as follows:

• SRC has the source and scroll attributes.

• OUT has the output attribute.

• PROMPT has the prompt, program, and error attributes.

Using Screen Mode
6. 7 Assigning Display Attributes

To assign an attribute to a display, use the SELECT command with the
qualifier of the same name as the attribute. In the following example, the SET
DISPLAY command creates the output display ZIP. The SELECT /OUTPUT
command then selects ZIP as the current output display-the display that
has the output attribute. After this command is executed, the word "output"
disappears from the top border of the predefined output display OUT and
appears instead on display ZIP, and all debugger output formerly directed to
OUT is now directed to ZIP.

DBG> SET DISPLAY ZIP OUTPUT
DBG> SELECT/OUTPUT ZIP

Specific attributes may be assigned only to certain display kinds. The
following list identifies each of the SELECT command qualifiers, its effect,
and the display kinds to which you can assign that attribute.

SELECT
Qualifier

/ERROR

/INPUT

/INSTRUCTION

/OUTPUT

/PROGRAM

Description

Selects the specified display as the current error display.
Directs any subsequent debugger diagnostic message to that
display. It must be either an output display or the PROMPT
display. If no display is specified, selects the PROMPT
display as the current error display.

Selects the specified display as the current input display.
Echoes any subsequent debugger input in that display.
It must be an output display. If no display is specified,
unselects the current input display: debugger input is not
echoed to any display.

Selects the specified display as the current instruction
display. Directs the output of any subsequent EXAMINE
/INSTRUCTION command to that display. It must be an
instruction display. Keypad key sequence BLUE-COMMA
selects the next instruction display in the display list as
the current instruction display. If no display is specified,
unselects the current instruction display: no display has the
instruction attribute.

Selects the specified display as the current output display.
Directs any subsequent debugger output to that display,
except where a particular type of output is being directed
to another display (such as diagnostic messages going to
the current error display). The specified display must be
either an output display or the PROMPT display. Keypad
key sequence GOLD-3 selects the next output display in the
display list as the current output display. If no display is
specified, selects the PROMPT display as the current output
display.

Selects the specified display as the current program display.
Tries to force any subsequent program input or output to
that display. Currently, only the PROMPT display may be
specified. If no display is specified, unselects the current
program display: program output is no longer forced to the
PROMPT display.

6-17

Using Screen Mode
6. 7 Assigning Display Attributes

SELECT
Qualifier

/PROMPT

/SCROLL

/SOURCE

Description

Selects the specified display as the current prompt display,
where the debugger prompts for input. Currently, only the
PROMPT display may be specified. You cannot unselect the
PROMPT display.

Selects the specified display as the current scrolling display.
Makes that display the default display for any subsequent
SCROLL, MOVE, or EXPAND command. You can specify
any display (however, note that the PROMPT display cannot
be scrolled). /SCROLL is the default if you do not specify a
qualifier with the SELECT command. Key 3 selects as the
current scrolling display the next display in the display list
after the current scrolling display. If no display is specified,
unselects the current scrolling display: no display has the
scroll attribute.

Selects the specified display as the current source display.
Directs the output of any subsequent TYPE or EXAMINE
/SOURCE command to that display. It must be a source
display. Keypad key sequence BLUE-3 selects the next
source display in the display list as the current source
display. If no display is specified, unselects the current
source display: no display has the source attribute.

Subject to the restrictions listed, a display can have several attributes. In the
preceding example, ZIP was selected as the current output display. In the
next example, ZIP is further selected as the current input, error, and scrolling
display. After these commands are executed, debugger input, output, and
diagnostics are logged in ZIP in the proper sequence as they occur, and ZIP is
the current scrolling display.

DBG> SELECT/INPUT/ERROR/SCROLL ZIP

To identify the displays currently selected for each of the display attributes,
use the SHOW SELECT command.

If you use the SELECT command with a particular qualifier but without
specifying a display name, the effect is typically to de-assign that attribute (to
"unselect" the display that had the attribute). The exact effect depends on the
attribute, as described in the preceding list.

6.8 A Sample Display Configuration

6-18

How to best use screen mode depends on your personal style and on what
type of bug you are looking for. You may be satisfied to simply use the
predefined displays. On the other hand, especially if you have access to
a larger screen, you may want to create additional displays for various
purposes. The following example may give you some ideas.

Assume you are debugging in a high-level language and are interested in
tracing the execution of your program through several routine calls.

First set up the default screen configuration-that is, SRC in Hl, OUT in
S45, and PROMPT in 56 (the keypad key sequence BLUE-MINUS gives this
configuration). SRC shows the source code of the module where execution is
suspended.

Using Screen Mode
6.8 A Sample Display Configuration

The next command creates a source display named SRC2 in RHl that shows
the PC value at scope 1 (one level down the call stack, at the call to the
routine where execution is suspended):

DBG> SET DISPLAY SRC2 AT RH1 SOURCE (EXAMINE/SOURCE .1\%PC)

Thus the left half of your screen shows the currently executing routine,
whereas the right half shows the caller of that routine.

The next command creates a DO display named CALLS at S4 that executes
the SHOW CALLS command each time the debugger gains control from the
program:

DBG> SET DISPLAY CALLS AT S4 DO (SHOW CALLS)

Because the top half of OUT is now hidden by CALLS, make OUT's window
smaller:

DBG> DISPLAY OUT AT S5

You can create a similar display configuration with instruction displays
instead of source displays.

6.9 Saving Displays and the Screen State
The SAVE command enables you to make a "snapshot" of an existing display
and save that copy as a new display. This is useful if, for example, you later
want to refer to the current contents of an automatically updated display
(such as a DO display).

In the following example, the SAVE command saves the current contents of
display CALLS into display CALLS4, which is created by the command:

DBG> SAVE CALLS AS CALLS4

The new display is removed from the pasteboard. So, to view its contents use
the DISPLAY command:

DBG> DISPLAY CALLS4

The EXTRACT command has two uses. First, it enables you to save the
contents of a display in a text file. For example, the following command
extracts the contents of display CALLS, appending the resulting text to the
file COB34. TXT:

DBG> EXTRACT/APPEND CALLS COB34

Second, the EXTRACT/SCREEN_LAYOUT command enables you to create
a command procedure that may later be invoked during a debugging session
to recreate the previous state of the screen. In the following example, the
EXTRACT/SCREEN_LAYOUT command creates a command procedure with
the default specification SYS$DISK:[]DBGSCREEN.COM. The file contains all
the commands needed to recreate the current state of the screen.

DBG> EXTRACT/SCREEN_LAYOUT

DBG> ©DBGSCREEN

Note that you cannot save the PROMPT display as another display, or extract
it into a file.

6-19

6.10

Using Screen Mode
6.10 Changing the Screen Height and Width

Changing the Screen Height and Width

6-20

During a debugging session, you may want to change the height or width
of your terminal screen. One reason may be to accommodate long lines
that would wrap if displayed across 80 columns. Or, if you are using a
VAXstation, you may want to reformat your debugger window relative to
other windows.

To change the screen height or width, use the SET TERMINAL command.
The general effect of the command is the same whether you are at a VT-series
terminal or at a VAXstation.

In this example, assume you are using a VAXstation in its default emulated
VTlOO-screen mode, with a screen size of 24 lines by 80 columns. You have
invoked the debugger and are using it in screen mode. You now want to
take advantage of the larger screen. The following command increases the
screen height and width of the debugger window to 35 lines and 110 columns
respectively:

DBG> SET TERMINAL/PAGE:35/WIDTH:110

By default, all displays are dynamic. A dynamic display automatically adjusts
its window dimensions in proportion when a SET TERMINAL command
changes the screen height or width. This means that, when using the
SET TERMINAL command, you preserve the relative positions of your
displays. The /[NO]DYNAMIC qualifier on the DISPLAY and SET DISPLAY
commands enables you to control whether or not a display is dynamic. If a
display is not dynamic, it does not change its window coordinates after you
enter a SET TERMINAL command (you can then use the DISPLAY, MOVE,
or EXP AND commands, or various keypad key combinations, to move or
resize a display).

To see the current terminal width and height being used by the debugger, use
the SHOW TERMINAL command.

Note that the debugger's SET TERMINAL command does not affect the
terminal screen size at DCL level. When you exit the debugger, the original
screen size is maintained.

7 Additional Convenience Features

This chapter describes the following debugger convenience features not
described elsewhere in Part I of this manual:

• Using debugger command procedures

• Using an initialization file for a debugging session

• Logging a debugging session into a file

• Defining symbols to represent commands, address expressions, or values

• Assigning debugger commands to function keys

• Using control structures to enter commands

• Calling arbitrary routines linked with your program

7 .1 Using Debugger Command Procedures

7 .1.1

A debugger command procedure is a sequence of commands contained in a
file. It is an efficient way to enter precisely the same sequence of commands
several times, for example, commands to set a series of breakpoints in your
program. As with DCL command procedures, you execute a debugger
command procedure by preceding its file specification with an at sign (@).
The @ is the execute procedure command.

Debugger command procedures are especially useful when you regularly
perform a number of standard set-up debugger commands, as specified in a
debugger initialization file (see Section 7.2). You can also use a debugger log
file as a command procedure (see Section 7.3).

Basic Conventions
The following is a sample debugger command procedure named
BREAK7.COM:

! ***** Debugger Command Procedure BREAK7.COM *****
SET BREAK/AFTER:3 %LINE 120 DO (EXAMINE K,N,J,X(K); GO)
SET BREAK/AFTER:3 %LINE 160 DO (EXAMINE K,N,J,X(K),S; GO)
SET BREAK %LINE 90

When you execute this command procedure with the execute procedure (@)
command, the commands listed in the procedure are executed in the order
they appear.

The rules for creating command procedures are listed in Sections 1 and 2 of
the command dictionary.

You can pass parameters to a command procedure. See Section 7.1.2 for
conventions on passing parameters.

7-1

7.1.2

Additional Convenience Features
7 .1 Using Debugger Command Procedures

You can enter the@ command like any other debugger command - that is,
directly from the terminal, from within another command procedure, from
within a DO clause in a command such as SET BREAK, or from within a DO
clause in a screen display definition.

If you do not supply a full file specification with the @ command, the
debugger assumes SYS$DISK:[]DEBUG.COM as the default file specification
for command procedures. For example, you would enter the following
command line to execute command procedure BREAK7.COM, located in your
current default directory:

DBG> ©BREAK7

The SET ATSIGN command enables you to change any or all fields of the
default file specification, SYS$DISK:[]DEBUG.COM. The command SHOW
ATSIGN identifies the default file specification for command procedures.

By default, commands read from a command procedure are not echoed. If
you enter the command SET OUTPUT VERIFY, all commands read from a
command procedure are echoed on the current output device, as specified by
DBG$0UTPUT (the default output device is SYS$0UTPUT). Use the SHOW
OUTPUT command to determine whether commands read from a command
procedure will be echoed or not.

If the execution of a command in a command procedure results in a diagnostic
of severity "warning" or higher, the command is aborted, but execution of the
command procedure continues at the next command line.

Passing Parameters to Command Procedures

7-2

As with DCL command procedures, you can pass parameters to debugger
command procedures. However, the technique is different in several respects.

Subject to the conventions described here, you can pass as many parameters
as you want to a debugger command procedure. The parameters may be
address expressions, commands, or value expressions in the current language.
You must surround command strings in quotation marks ("), and you must
separate parameters by commas (,).

A debugger commancf procedure to which you pass parameters must contain
a DECLARE command line that binds each actual (passed) parameter to a
formal parameter (a symbol) declared within the command procedure.

The DECLARE command is valid only within a command procedure. Its
format is as follows:

DECLARE p-name:p-kind [,p-name:p-kind [, ...]]

Each p-name:p-kind pair associates a formal parameter (p-name) with a
parameter kind (p-kind). The valid p-kind keywords are as follows:

ADDRESS

COMMAND

VALUE

Causes the actual parameter to be interpreted as an address
expression.

Causes the actual parameter to be interpreted as a command.

Causes the actual parameter to be interpreted as a value
expression in the current language.

Additional Convenience Features
7. 1 Using Debugger Command Procedures

The following example illustrates what happens when a parameter is
passed to a command procedure. The command DECLARE K:ADDRESS,
within command procedure EXAM.COM, declares the formal parameter K.
The actual parameter passed to EXAM.COM is interpreted as an address
expression. The command EXAMINE K displays the value of that address
expression. The command SET OUTPUT VERIFY causes the commands to
echo when_ they are read by the debugger.

! ***** Debugger Command Procedure EXAM.COM *****
SET OUTPUT VERIFY
DECLARE K:ADDRESS
EXAMINE K

The next command line executes EXAM.COM, passing the actual parameter
ARR4. Within EXAM.COM, ARR4 is interpreted as an address expression (an
array variable, in this case).

DBG> ©EXAM ARR4
%DEBUG-I-VERIFYIC, entering command procedure EXAM

DECLARE K:ADDRESS
EXAMINE K

PROG_8\ARR4
(1): 18
(2) : 1
(3): 0
(4) : 1

%DEBUG-I-VERIFYIC, exiting command procedure EXAM

Each p-name:p-kind pair specified by a DECLARE command binds one
parameter. So, for instance, if you want to pass five parameters to a command
procedure, you need five corresponding p-name:p-kind pairs. The pairs are
always processed in the order in which you specify them.

For example, the next command procedure, EXAM_GO.COM accepts two
parameters, an address expression (L) and a command string (M). The address
expression is then examined and the commanq is executed:

! ***** Debugger Command Procedure EXAM_GO.COM *****
DECLARE L:ADDRESS, M:COMMAND
EXAMINE L; M

The following example shows how you could execute EXAM_GO.COM,
passing a variable X_to be examined and a command @DUMP.COM to be
executed:

DBG> ©EXAM_ GO X, "©DUMP"

The %PARCNT built-in symbol, which can be used only within a command
procedure, enables you to pass a variable number of parameters to a
command procedure. The value of %P ARCNT is the number of actual
parameters passed to the command procedure.

The %P ARCNT built-in symbol is illustrated in the following example. The
command procedure, VAR.DBG, contains the following lines:

! ***** Debugger Command Procedure VAR.DEG *****
SET OUTPUT VERIFY
! Display the number of parameters passed:
EVALUATE %PARCNT
! Loop as needed to bind all passed parameters and obtain their values:
FOR I = 1 TO %PARCNT DO (DECLARE X:VALUE; EVALUATE X)

7-3

Additional Convenience Features
7 .1 Using Debugger Command Procedures

The following command line executes VAR.DBG, passing the parameters 12,
37, and 45:

DBG> ©VAR.DBG 12,37,45
%DEBUG-I-VERIFYIC, entering command procedure VAR.DBG

! Display the number of parameters passed:
EVALUATE %PARCNT

3
! Loop as needed to bind all passed parameters and obtain their values:
FOR I = 1 TO %PARCNT DO (DECLARE X:VALUE; EVALUATE X)

12
37
45
%DEBUG-I-VERIFYIC, exiting command procedure VAR.DBG

When VAR.DBGis executed, %PARCNT has the value 3. Therefore, the
FOR loop within VAR.DBG is repeated 3 times. The FOR loop causes the
DECLARE command to bind each of the three actual parameters (starting
with 12) to a new declaration of X. Each actual parameter is interpreted as a
value expression in the current language, and the command EVALUATE X
displays that value.

7 .2 Using a Debugger Initialization File

7-4

A debugger initialization file is a command procedure, assigned the logical
name DBG$INIT, that the debugger automatically executes at debugger start
up. Every time you invoke the debugger, the commands contained in the file
are automatically executed.

An initialization file contains any command lines you might always enter at
the start of a debugging session to either tailor your debugging environment
or control the execution of your program in a predetermined way from run to
run.

For example, you might have a file DEBUG_START4.COM containing the
following commands:

! ***** Debugger Initialization File DEBUG_START4.COM *****
! Log debugging session into default log file (SYS$DISK: []DEBUG.LOG)
SET OUTPUT LOG
! Echo commands as they are read from command procedures:
SET OUTPUT VERIFY
! If source files are not in current default directory, use [SMITH.SHARE]
SET SOURCE [],[SMITH.SHARE]
! Set all modules:
SET MODULE/ALL
! Invoke screen mode:
SET MODE SCREEN
! Define the symbol SB as the command SET BREAK:
DEFINE/COMMAND SB = "SET BREAK"
! Assign the command SHOW MODULE * to keypad key 7:
DEFINE/KEY/TERMINATE KP7 "SHOW MODULE *"

To make this file a debugger initialization file, use the DCL command
DEFINE. For example:

$ DEFINE DBG$INIT WORK: [JONES.DBGCOMFILES]DEBUG_START4.COM

Additional Convenience Features
7 .3 Logging a Debugging Session into a File

7 .3 Logging a Debugging Session into a File
A debugger log file maintains a history of a debugging session. During the
debugging session, each command entered and the resulting debugger output
are stored in the file.

The following is an example of a debugger log file.

SHOW OUTPUT
!noverify, terminal, noscreen_log, logging to DSK2: [JONES.P7]DEBUG.LOG;1
SET STEP NOSOURCE
SET TRACE %LINE 30
SET BREAK %LINE 60
SHOW TRACE
!tracepoint at PROG4\%LINE 30
GO
!trace at PROG4\%LINE 30
!break at PROG4\%LINE 60

The DBG> prompt is not recorded, and the debugger output is commented
out with exclamation points so the file can be used as a debugger command
procedure without modification. Thus, if a lengthy debugging session is
interrupted, you can execute the log file as you would any other debugger
command procedure. Executing the log file restores the debugging session to
the point at which it was previously terminated.

To create a debugger log file, use the command SET OUTPUT LOG.
By default, the debugger writes the log to SYS$DISK:[]DEBUG.LOG.
To name a debugger log file, use the SET LOG command. You can
override any field of the default file specification. For example, after you
enter the following commands, the debugger logs the session to the file
[JONES.WORK2]MONITOR.LOG:

DBG> SET OUTPUT LOG
DBG> SET LOG [JONES.WORK2]MONITOR

You may want to enter the SET OUTPUT LOG command in your debugger
initialization file (see Section 7.2).

The SHOW LOG command reports whether the debugger is writing to a
log file and identifies the current log file. The SHOW OUTPUT command
identifies all current output options.

If you are debugging in screen mode, the SET OUTPUT SCREEN _LOG
command enables you to log the screen contents as the screen is updated.
To use this command, you must already be logging your debugging session
- that is, the command SET OUTPUT SCREEN _LOG is valid only after
you have entered the command SET OUTPUT LOG. Note that using SET
OUTPUT SCREEN _LOG is not desirable for a long debugging session,
because storing screen information in this manner results in a big log file. For
other techniques on saving screen-mode information, see also the descriptions
of the commands SAVE and EXTRACT in Chapter 6 and in the command
dictionary.

If you plan to use a log file as a command procedure, you should first enter
the command SET OUTPUT VERIFY so that debugger commands are echoed
as they are read.

7-5

Additional Convenience Features
7 .4 Defining Symbols for Commands, Address Expressions, and Values

7 .4 Defining Symbols for Commands, Address Expressions, and Values

7.4.1

The DEFINE command enables you to create a symbol for a lengthy or often­
repeated command sequence or address expression and to store the value of a
language expression in a symbol.

You specify the kind of symbol you want to define by the command qualifier
you use with the DEFINE command (/COMMAND, /ADDRESS, or
/VALUE). The default qualifier is /ADDRESS. If you plan to enter several
DEFINE commands with the same qualifier, you can first use the SET
DEFINE command to establish a new default qualifier (for example, SET
DEFINE COMMAND makes the DEFINE command behave like DEFINE
/COMMAND). The SHOW DEFINE command identifies the default qualifier
currently in effect.

Use the SHOW SYMBOL/DEFINED command to identify symbols you
have defined with the DEFINE command. Note that the SHOW SYMBOL
command without the /DEFINED qualifier identifies only the symbols that
are defined in your program, such as the names of routines and variables.

Use the DELETE command to DELETE symbol definitions created with the
DEFINE command.

When defining a symbol within a command procedure, use the /LOCAL
qualifier to confine the symbol definition to that command procedure.

Defining Symbols for Commands

7-6

Use the DEFINE/COMMAND command to equate one or more commands
(actually, strings) to a shorter symbol. The basic syntax is illustrated in the
following example.

DBG> DEFINE/COMMAND SB = "SET BREAK"
DBG> SB PARSER

In the example, the DEFINE/COMMAND command equates the symbol
SB to the string SET BREAK (note the use of the quotation marks to delimit
the command string). When the command line SB PARSER is executed,
the debugger substitutes the string SET BREAK for the symbol SB and then
executes the SET BREAK command.

In the following example, the DEFINE/COMMAND command equates
the symbol BT to the string consisting of the command SHOW BREAK
followed by the command SHOW TRACE (use semicolons to separate
multiple command strings):

DBG> DEFINE/COMMAND BT = "SHOW BREAK;SHOW TRACE"

The SHOW SYMBOL/DEFINED command identifies the symbol BT as
follows:

DBG> SHOW SYM/DEFINED BT
defined BT

bound to: "SHOW BREAK;SHOW TRACE"
was defined /command

To define complex commands, you may need to use command procedures
with parameters (see Section 7.1.2 for information on passing parameters to
command procedures). For example:

DBG> DEFINE/COMMAND DUMP= "©DUMP_PROG2.COM"

7.4.2

7.4.3

Additional Convenience Features
7 .4 Defining Symbols for Commands, Address Expressions, and Values

Defining Symbols for Address Expressions
Use the DEFINE/ ADDRESS command to equate an address expression to
a symbol. Although /ADDRESS is the default qualifier for the DEFINE
command, it is used in the following examples for emphasis.

In the following example, the symbol Bl is equated to the address of line 378;
the command SET BREAK Bl then sets a breakpoint on line 378.

DBG> DEFINE/ADDRESS Bi = %LINE 378
DBG> SET BREAK Bi

The DEFINE/ ADDRESS command is useful when you need to specify a long
path name repeatedly to reference the name of a multiply-defined variable
or routine. In the next example, the symbol UX is equated to the path name
SCREEN _IQ\ UPDATE\X; the abbreviated command line EXAMINE UX
can then be used to obtain the value of X in routine UPDATE of module
SCREEN-IO.

DBG> DEFINE UX = SCREEN_IO\UPDATE\X
DBG> EXAMINE UX

Defining Symbols for Values
Use the DEFINE/VALUE command to equate the current value of a language
expression to a symbol (the current value is the value at the time the
DEFINE/VALUE command was entered).

The following example illustrates how the DEFINE/VALUE command may
be used to count the number of calls to a routine.

DBG> DEFINE/VALUE COUNT = 0
DBG> SET TRACE/SILENT ROUT DO (DEFINE/VALUE COUNT = COUNT + i)
DBG> GO

DBG> EVALUATE COUNT
i4

In the example, the first DEFINE/VALUE command initializes the value of
the symbol COUNT to 0. The SET TRACE command sets a silent tracepoint
on routine ROUT and (through the DO clause) increments the value of
COUNT by 1 every time ROUT is called. After execution is resumed and
eventually suspended, the EVALUATE command obtains the current value of
COUNT (the number of times that ROUT was called).

7. 5 Assigning Commands to Function Keys
To facilitate entering commonly used commands, the function keys on the
keypad have predefined debugger functions that are established when you
invoke the debugger. These predefined functions are identified in detail
in Appendix B. You can modify the functions of the keypad keys to suit
your individual needs. If you have a VT200- or VT300-series terminal or a
workstation, you can also bind commands to the additional function keys on
the LK201 keyboard.

7-7

7.5.1

Additional Convenience Features
7.5 Assigning Commands to Function Keys

The debugger commands DEFINE/KEY, SHOW KEY, and DELETE/KEY
enable you to assign, identify, and delete key definitions, respectively. Before
you can use this feature, keypad mode must be enabled with the SET MODE
KEYPAD command (keypad mode is enabled by default). Keypad mode also
enables you to use the predefined functions of the keypad keys.

If you want to use the keypad keys to enter numbers rather than debugger
commands, enter the command SET MODE NOKEYPAD.

Basic Conventions

7-8

The debugger DEFINE/KEY command, which is similar to the DCL
DEFINE/KEY command, enables you to assign a string to a function key. In
the following example, the DEFINE/KEY command defines keypad key 7 to
enter and execute the command SHOW MODULE*:

DBG> DEFINE/KEY/TERMINATE KP7 "SHOW MODULE *"
%DEBUG-I-DEFKEY, DEFAULT key KP7 has been defined
DBG>

The /TERMINATE qualifier indicates that pressing key 7 executes the
command. You do not have to press RETURN after pressing key 7.

KP7 is the key name that you must use with the commands DEFINE/KEY,
SHOW KEY, and DELETE/KEY. The valid key names that you can use with
these commands are listed in the command dictionary for VT52 and VTlOO­
series terminals and for LK201 keyboards (see the command descriptions).

The same function key can be assigned any number of definitions as long
as each definition is associated with a different state. The predefined states
(DEFAULT, GOLD, BLUE, and so on) are identified in Appendix B. In the
preceding example, the informational message indicates that key 7 has been
defined for the DEFAULT state (which is the default key state).

You can enter key definitions in a debugger initialization file (see Section 7.2)
so that these definitions are available whenever you invoke the debugger.

To display a key definition in the current state, enter the command SHOW
KEY. For example:

DBG> SHOW KEY KP7

DEFAULT keypad definitions:
KP7 = "SHOW MODULE *" (echo,terminate,nolock)

DBG>

To display a key definition in a state other than the current state, specify that
state with the /STATE qualifier when entering the SHOW KEY command.
To see all key definitions in the current state, enter the command SHOW
KEY/ALL.

To delete a key definition, use the DELETE/KEY command. To delete a key
definition in a state other than the current state, specify that state with the
/STATE qualifier. For example:

DBG> DELETE/KEY/STATE=GOLD KP7
%DEBUG-I-DELKEY, GOLD key KP7 has been deleted

\

7.5.2 More Advanced Techniques

Additional Convenience Features
7.5 Assigning Commands to Function Keys

This section illustrates more advanced techniques for defining keys,
particularly techniques related to the use of state keys.

The following command line assigns the unterminated command string "SET
BREAK %LINE" to keypad key 9, for the BLUE state.

DBG> DEFINE/KEY/IF_STATE=BLUE KP9 "SET BREAK %LINE"

The predefined DEFAULT key state is established by default. The predefined
BLUE key state is established by pressing keypad key PF4. You would
enter the command line assigned in the preceding example (SET BREAK
%LINE ...) by pressing key PF4 then key 9, then entering a line number,
then pressing the RETURN key to terminate and process the command line.

The SET KEY command enables you to change the default state for key
definitions. For example, after entering the command
SET KEY /STATE=BLUE, you would not need to press PF4 to enter the
command line in the previous example. Also, the SHOW KEY command
would show key definitions in the BLUE state, by default, and the DELETE
/KEY command would delete key definitions in the BLUE state, by default.

You can create additional key states. For example:

DBG> SET KEY/STATE=DEFAULT
DBG> DEFINE/KEY/SET_STATE=RED/LOCK_STATE F12 ""

In this example, the SET KEY command establishes DEFAULT as the current
state. The DEFINE/KEY command makes key F12 (LK201 keyboard) a state
key. As a result, pressing F12 while in the DEFAULT state causes the current
state to become RED. The key definition is not terminated and has no other
effect (a null string is assigned to Fl2). After pressing Fl2, you can enter
"RED" commands by pressing keys that have definitions associated with the
RED state.

7. 6 Using Control Structures to Enter Commands

7.6.1 FOR Command

The FOR, IF, REPEAT, and WHILE commands enable you to create looping
and conditional constructs for entering debugger commands. The associated
command EXITLOOP is used to exit a FOR, REPEAT, or WHILE loop.

See Section 3.1.5 and Section 8.3.2.2 for information about evaluating
language expressions.

The FOR command executes a sequence of commands repetitively for a
specified number of times. It has the following format:

FOR name=expression 1 TO expression2 [BY expression3] DO(command[; . . .])

For example, the following command line sets up a loop that initializes the
first 10 elements of an array to zero:

DBG> FOR I = 1 TO 10 DO (DEPOSIT A(I) = 0)

7-9

7.6.2

7.6.3

7.6.4

7.6.5

Additional Convenience Features
7. 6 Using Control Structures to . Enter Commands

IF Command
The IF command executes a sequence of commands if a language expression
(boolean expression) is evaluated as TRUE. It has the following format:

IF boolean-expression THEN (command[; . . .]) [ELSE (command[; . . .])]

The following FORTRAN example sets up a condition that issues the
command EXAMINE X2 if Xl is not equal to -9. 9, and issues the command
EXAMINE Yl otherwise:

DBG> IF Xi .NE. -9.9 THEN (EXAMINE X2) ELSE (EXAMINE Yi)

The following Pascal example combines a FOR loop and a condition test. The
STEP command is issued if Xl is not equal to -9.9. The test is made four
times:

DBG> FOR COUNT = i TO 4 DO (IF Xi <> -9.9 THEN (STEP))

REPEAT Command
The REPEAT command executes a sequence of commands repetitively for a
specified number of times. It has the following format:

REPEAT language-expression DO (command[; . . .])

For example, the following command line sets up a loop that issues a
sequence of two commands (EXAMINE Y then STEP) 10 times:

DBG> REPEAT iO DO (EXAMINE Y; STEP)

WHILE Command
The WHILE command executes a sequence of commands repetitively until
the language expression (boolean expression) you have specified evaluates as
FALSE. It has the following format:

WHILE boolean-expression DO (command[; . . .))

The following Pascal example sets up a loop that tests Xl and X2 repetitively
and issues the two commands EXAMINE X2 and STEP if X2 is less than Xl:

DBG> WHILE X2 < Xi DO (EX X2;STEP)

EXITLOOP Command

7-10

The EXITLOOP command exits one or more enclosing FOR, REPEAT, or
WHILE loops. It has the following format:

EXITLOOP [n]

The integer n specifies the number of nested loops to exit from.

The following Pascal example sets up an endless loop that issues a STEP
command with each iteration. After each step, the value of Xis tested. If Xis
greater than 3, the EXITLOOP command terminates the loop.

DBG> WHILE TRUE DO (STEP; IF X > 3 THEN EXITLOOP)

Additional Convenience Features
7. 7 Calling Routines Linked with Your Program

7. 7 Calling Routines Linked with Your Program
The CALL command enables you to execute a routine independently of the
normal execution of your program. It is one of the four debugger commands
that can cause your program to execute (the others are GO, STEP, and EXIT).

The CALL command executes a routine whether or not your program actually
includes a call to that routine, so long as the routine was linked with your
program. Thus you can use the CALL command to execute routines for
any purpose (for example, to debug a routine out of the context of program
execution, invoke a run-time library procedure, execute a routine that dumps
debugging information, and so on).

You can debug unrelated routines by linking them with a dummy main
program that has a transfer address, and then using the CALL command to
execute them.

The following example shows how you could use the CALL command
to display some process statistics without having to include the necessary
code in your program. The example consists of calls to run-time library
routines that initialize a timer and counts (LIB$INIT_ TIMER) and display the
elapsed time and counts (LIB$SHOW_TIMER). (Note that the presence of the
debugger affects the timings and counts):

DBG> SET MODULE SHARE$LIBRTL
DBG> CALL LIB$INIT_TIMER
value returned is 1
DBG> [enter various debugger commands]

DBG> CALL LIB$SHOW_TIMER
ELAPSED: 0 00:00:21.65 CPU: 0:14:00.21 BUFIO: 16 DIRIO: 0 FAULTS: 3

value returned is 1

In the previous example, the run-time library routines are in the shareable
image LIBRTL. The SET MODULE command makes the universal symbols
(routine names) in the shareable image visible in the main image. See the
description of the /SHARE qualifier of the SHOW MODULE command (in
the command dictionary) for more information on this subject.

The "value returned" message indicates the value returned in register RO after
the CALL command has been executed. By VMS convention, after a called
routine has executed, register RO contains the function return value (if the
routine is a function) or the procedure completion status (if the routine is a
procedure that returns a status value). If a called procedure does not return a
status value or function value, the value in RO may be meaningless, and the
"value returned" message can be ignored.

The following example shows how to call LIB$SHOW_VM (also in LIBRTL)
to display virtual memory statistics. (Again, note that the presence of the
debugger affects the counts):

DBG> SET MODULE SHARE$LIBRTL
DBG> CALL LIB$SHOW_VM

1785 calls to LIB$GET_VM, 284 calls to LIB$FREE_VM, 122216 bytes still allocated
value returned is 1

You can pass parameters to routines with the CALL command. See the
description of the CALL command in the command dictionary for details and
examples.

7-11

8 Debugging Special Cases

This chapter presents debugging techniques for special cases that are not
covered elsewhere in Part I of this manual:

•
•
•
•
•
•

Optimized code

Screen-<?riented programs

Multilanguage programs

Exceptions and condition handlers

Exit handlers

AST-driven programs

8.1 Debugging Optimized Code
By default, many compilers optimize the object code they produce so that
the program executes faster. The net result is that the code that is executing
as you debug may not match the source code as displayed in a screen-mode
source display (see Chapter 6) or in a listing file. This section describes some
typical situations.

To avoid the problems of debugging optimized code, many compilers allow
you to specify the /NOOPTIMIZE (or equivalent) command qualifier at
compile time. Specifying this qualifier inhibits most compiler optimization,
thereby reducing discrepancies between source cede and object code caused
by optimization. However, this option is not always available to you, so you
should read this section for information on how to debug optimized code.

When debugging optimized code, if you encounter a program segment where
source and object code do not seem to match, you can inspect the object
code itself by using a screen-mode instruction display (enter the command
DISPLAY INST) or by entering EXAMINE/INSTRUCTION or
STEP /INSTRUCTION commands. (Note that, in screen mode, pressing
keypad key 7 produces the SRC and INST displays, side by side.)
Alternatively, you can inspect a compiler-generated machine code listing.
Using either of these methods, you should be able to determine what is
happening at the object code level and thereby resolve the discrepancy
between source line display and program behavior.

8-1

8.1.1

Debugging Special Cases
8.1 Debugging Optimized Code

Eliminated Variables

8-2

A compiler may optimize code by eliminating variables, either permanently
or temporarily at various points during execution. If you try to examine a
variable X that no longer is accessible because of optimization, the debugger
may display one of the following messages:

%DEBUG-W-UNALLOCATED, entity X was not allocated in memory
(was optimized away)

%DEBUG-W-NOVALATPC, entity X does not have a value at the current PC
(was optimized away)

The following Pascal example shows how this could happen.

PROGRAM DOC(OUTPUT);
VAR

X,Y: INTEGER;
BEGIN

x := 5;
y := 2;
WRITELN(X*Y);

END.

If you compile this program with the /NOOPTIMIZE (or equivalent) qualifier,
you obtain the following (normal) behavior when debugging:

$ PASCAL/DEBUG/NOOPTIMIZE DOC
$ LINK/DEBUG DOC
$ RUN DOC

DBG> STEP
stepped to DOC\%LINE 5

5: x := 5;
DBG> STEP
stepped to DOC\%LINE 6

6: y := 2;
DBG> STEP
stepped to DOC\%LINE 7

7: WRITELN(X*Y);
DBG> EXAMINE X,Y
DOC\X: 5
DOC\Y: 2
DBG>

If you compile the program with the /OPTIMIZE (or equivalent) qualifier,
because the values of X and Y are not changed after the initial assignment, the
compiler calculates X*Y, stores that value (10), and does not allocate storage
for X or Y. Therefore, after you invoke the debugger, a STEP command takes
you directly to line 7 rather than line 5. Moreover, you cannot examine X or
Y:

8.1.2 Coding Order

Debugging Special Cases
8.1 Debugging Optimized Code

$ PASCAL/DEBUG/OPTIMIZE DOC
$ LINK/DEBUG DOC
$ RUN DOC

DBG> EXAMINE X,Y
%DEBUG-W-NOVALATPC, entity X does not have a value at the current PC

(was optimized away)
DBG> STEP
stepped to DOC\%LINE 7

7: WRITELN(X*Y);
DBG>

To see exactly what values are being used in your optimized program, you
can use the command EXAMINE/OPERAND .%PC to display the machine
code at the current PC value, including the values and symbolization of all
of the operands. For example, the following lines show the optimized code
when the PC value is at the WRITELN statement:

DBG> STEP
stepped to DOC\%LINE 7

7: WRITELN(X*Y);
DBG> EXAMINE/OPERAND .%PC
DOC\%LINE 7: PUSHL SA#10

In contrast, the following lines show the unoptimized code at the WRITELN
statement:

DBG> STEP
stepped to DOC\%LINE 7

7: WRITELN(X*Y);
DBG> EXAMINE/OPERAND .%PC
DOC\%LINE 7: MOVL SA#10,BA-4(FP)

BA-4(FP) 2146279292 contains 62914576

Several methods of optimizing consist of performing operations in a sequence
different from the sequence specified in the source code. Sometimes code is
eliminated altogether.

As a result, the source code displayed by the debugger does not correspond
exactly to the actual object code being executed. This is important to keep in
mind, especially when using the STEP and EXAMINE/SOURCE commands.

To illustrate, the following example depicts a segment of source code from a
FORTRAN program as it might appear on a compiler listing or in a screen­
mode source display. This code segment sets the first ten elements of array A
to the value 1 /X.

line source code

5 DO 100 I=1,10
6 A(I) = 1/X
7 100 CONTINUE

As the compiler processes the source program, it determines that the
reciprocal of X need only be computed once, not ten times as the source
code specifies, because the value of X never changes in the DO-loop. The
compiler thus generates optimized object code equivalent to the following
code segment:

8-3

8.1.3

Debugging Special Cases
8.1 Debugging Optimized Code

Use of Registers

8-4

line object code equivalent

5 TEMP = 1/X
DO 100 !=1,10

6 A(I) = TEMP
7 100 CONTINUE

In the optimized object code, the value of 1 /X is computed once, saved in
a temporary location, and then assigned to each A(I). The object code now
executes faster, but it no longer corresponds exactly to the source code.

In this example, if you execute to line 5 by entering a STEP command, the
debugger displays the source line as it appears in the source file, not the
optimized object code equivalent that it is actually executing.

stepped to PROG_\%LINE 5
5: DO 100 !=1,10

At this point, if you enter another STEP command to execute line 5, the
debugger executes line 5 of the optimized object code, not line 5 of the
displayed source code. Thus, the program computes the reciprocal of X and
sets up the DO loop, whereas the source display indicates only that the DO
loop is set up.

This discrepancy is not obvious from looking at the displayed source line.
Furthermore, if the computation of 1/X were to fail because X is zero, it
would appear from inspecting the source display that a division by zero had
occurred on a source line that contains no division at all.

This kind of apparent mismatch between source code and object code should
be expected from time to time when debugging optimized programs. It can
be caused not only by code motions out of loops, as in the previous example,
but by a number of other optimization methods as well.

A compiler may determine that the value of an expression does not change
between two given occurrences and may save the value in a register. In such
cases, the compiler does not recompute the value for the next occurrence,
but assumes the value saved in the register is valid. If, while debugging
a program, you use the DEPOSIT command to change the value of the
variable in the expression, then the value of that variable is changed, but the
corresponding value stored in the register may not be. Thus, when execution
continues, the value in the register may be used instead of the changed value
in the expression, causing unexpected results.

In addition, when the value of a nonstatic variable (see Chapter 2) is held in
a register, its value in memory is generally invalid; therefore, a spurious value
may be displayed if you enter the EXAMINE command for a variable under
these circumstances.

8.1.4 Use of Condition Codes

Debugging Special Cases
8.1 Debugging Optimized Code

One optimization technique takes advantage of the way in which the VAX
processor condition codes are set. For example, consider the following Pascal
source code:

x := x + 2.5;
IF X < 0
THEN

Rather than test the new value of X to determine whether to branch, the
optimized code bases its decision on the condition code setting after 2.5 is
added to X. Thus, if you attempt to set a breakpoint on the IF and deposit
a different value into X, you do not achieve the intended result because the
condition codes no longer reflect the value of X. In other words, the decision
to branch is being made without regard to the deposited value of the variable.

Again, you can use the command EXAMINE/OPERAND .%PC to determine
the correct location for depositing so as to achieve the desired effect.

8.2 Debugging Screen-Oriented Programs
The debugger uses portions of the entire terminal screen for input and output
(I/O) at various points during a debugging session. If you use a single
terminal to debug a screen-oriented program that uses most or all of the
screen, debugger I/O may overwrite, or may be overwritten by, program I/0.

Using one terminal for both program I/O and debugger I/O is even more
complicated if you are debugging in screen mode and your screen-oriented
program calls any VMS screen-management RTL routines (SMG$xxx). This is
because the debugger's screen mode also calls SMG routines. In such cases,
the debugger and your program share the same SMG pasteboard, causing
further interference.

To avoid these problems when debugging a screen-oriented program, use
one terminal for program I/O and another terminal for debugger I/O. If
debugging at a VAXstation, you can achieve this effect easily by entering
the command SET MODE SEPARATE, which creates a separate window for
debugger I/O. At the very least, using two terminals (or two VAXstation
windows) enables you to see the behavior of your program more clearly.

The rest of this section explains how to allocate a second terminal for
debugger I/O, so that your current terminal is devoted exclusively to program
I/O during a debugging session.

By default, the debugger input device is SYS$INPUT and the debugger output
device is SYS$0UTPUT. The logical names DBG$INPUT and DBG$0UTPUT
enable you to specify a new debugger input device and a new debugger
output device, respectively.

Assume that TTDl: is your current terminal and you want to have debugger
I/O at terminal TTD2:. Assigning both DBG$INPUT and DBG$0UTPUT
to TTD2: enables you to enter debugger commands and observe debugger
output at TTD2:. Meanwhile, you continue to enter program input and
observe program output at TTDl:.

8-5

Debugging Special Cases
8.2 Debugging Screen-Oriented Programs

8-6

Note that on a properly secured system, terminals are protected so that you
can log into but you cannot allocate a terminal. The following steps explain
how to allocate TTD2:, assign DBG$INPUT and DBG$0UTPUT to TTD2:,
run the program to be debugged, and then deallocate TTD2: after finishing
the debugging session:

1 Ask your system manager (or a suitably privileged user) to provide you
with read/write access to TTD2:. One way is to use a command line such
as the following:

$SET PROTECTION=WORLD:RW/DEVICE TTD2:

This command line provides world read/write access and, therefore,
allows other users to also allocate and perform 1/0 to TTD2:.

The following technique is preferred because it uses an access control list
(ACL). Assume that your UIC is [PROJ,JONES]. Then the system manager
can restrict device access to you alone as follows:

$SET DEVICE/ACL=(IDENT=[PROJ,JONES] ,ACCESS=(READ,WRITE)) TTD2:

Another method is for you to enable SYSPRV privilege in your own
process so that you can allocate TTD2: without allowing the world to
allocate it. However, note that it is risky to debug an erroneous program
with SYSPRV enabled.

2 Once you have read/write access to the terminal, allocate it so that you
have exclusive access to it:

$ALLOCATE TTD2:

3 Now you can assign DBG$INPUT and DBG$0UTPUT to TTD2 as
follows:

$DEFINE DBG$INPUT TTD2:
$DEFINE DBG$0UTPUT TTD2:

4 Make sure that the terminal type is known to the system. Use the
following command:

$SHOW DEVICE/FULL TTD2:

If the device type is "unknown", make it known to the system as follows
(in this example, the terminal is assumed to be a VTlOO):

$SET TERMINAL/PERMANENT/DEVICE=VT100 TTD2:

5 Now you can run your program and observe debugger input and output
at TTD2:

$ RUN FORMS

6 When finished with the debugging session, deallocate TTD2 as follows:

$DEALLOCATE TTD2:

Debugging Special Cases
8.3 Debugging Multilanguage Programs

8.3 Debugging Multilanguage Programs

8.3.1

The debugger enables you to debug modules whose source code is written
in different languages, within the same debugging session. This section
highlights some language specific behavior that you should be aware of, to
minimize possible confusion.

When debugging in any language, be sure to consult the documentation
supplied with that language. The chapter devoted to debugging, in the user's
guide, contains all language dependent information for that language. See
also Appendix E of this manual, which tabulates the constructs and operators
that are supported by the debugger for each language.

Controlling the Current Debugger Language
At debugger startup, the debugger sets the current language to that in which
the module containing the main program (usually the routine containing the
image transfer address) is written. The current language is identified when
you invoke the debugger. For example:

$ RUN FORMS

VAX DEBUG Version 5.0

%DEBUG-I-INITIAL, language is PASCAL, module set to 'FORMS'
DBG>

The current language setting determines how the debugger parses and
interprets the names, operators, and expressions you specify in debugger
commands, including things like the typing of variables, array and record
syntax, th~ default radix for numeric data, case sensitivity, and so on. The
language setting also determines how the debugger displays data associated
with your program.

Many programs include modules that are written in languages other than
that of the main program. To minimize confusion, by default the debugger
language remains set to the language of the main program throughout a
debugging session, even if execution is suspended within a module written in
another language.

To take full advantage of symbolic debugging with such modules, use the
SET LANGUAGE command to set the debugging context to that of another
language. For example, the following command causes the debugger to
interpret any symbols, expressions, and so on according to the rules of the
COBOL language:

DBG> SET LANGUAGE COBOL

The keywords that you can use with the SET LANGUAGE command
correspond to all of the VMS supported languages that are also supported
by the debugger:

ADA
BASIC
BLISS
c
COBOL
DIBOL
FORTRAN
MACRO

8-7

8.3.2

Debugging Special Cases
8.3 Debugging Multilanguage Programs

PASCAL
PLI
RPG
SCAN

In addition, when debugging a program that is written in an unsupported
language, you can specify the command SET LANGUAGE UNKNOWN. To
maximize the usability of the debugger with unsupported languages, the SET
LANGUAGE UNKNOWN command causes the debugger to accept a large set
of data formats and operators, including some that may be specific to only a
few supported languages. The operators and constructs that are recognized
when the language is set to UNKNOWN are identified in Appendix E.

Specific Differences Among Languages

8.3.2.1

8.3.2.2

8-8

This section lists some of the differences you should keep in mind when
debugging in various languages. Included are differences that are affected by
the SET LANGUAGE command and other differences (for example, language
specific initialization code and predefined breakpoints).

This list is not intended to be complete. Consult your language
documentation for complete details.

Default Radix
The default radix for entering and displaying numeric data is hexadecimal for
BLISS and MACRO and decimal for all other languages.

Use the SET RADIX command to establish a new default radix.

Evaluating Language Expressions
Several debugger commands and constructs evaluate language expressions:

• The EVALUATE, DEPOSIT, IF, FOR, REPEAT, and WHILE commands.

• WHEN clauses, which are used with the SET BREAK, SET TRACE, and
SET WATCH commands.

When processing these commands, the debugger evaluates language
expressions in the syntax of the current language and in the current radix
as discussed in Section 3 .1.5.

Note that operators vary widely among different languages (see Appendix E).
For example, the following two commands evaluate equivalent expressions in
Pascal and FORTRAN, respectively:

DBG> SET WATCH X WHEN (Y < 5)
DBG> SET WATCH X WHEN (Y .LT. 5)

! Pascal
! FORTRAN

Assume that the language is set to PASCAL and you have entered the first
(Pascal) command. You now step into a FORTRAN routine, set the language
to FORTRAN, and resume execution. While the language is set to FORTRAN,
the debugger is not able to evaluate the expression (Y < 5). As a result,
it sets an unconditional watchpoint and, when the watchpoint is triggered,
returns a syntax error for the" <" operator.

This type of discrepancy can also occur if you use commands that evaluate
language expressions in debugger command procedures and initialization
files.

8.3.2.3

8.3.2.4

8.3.2.5

Debugging Special Cases
8.3 Debugging Multilanguage Programs

Note also that the debugger processes language expressions that contain
variable names (or other address expressions) differently when the language
is set to BLISS than when it is set to another language. See Section 3.1.5 for
details.

Arrays and Records
The syntax for denoting array elements and record components (if applicable)
varies among languages.

For example, some languages use brackets, [], and others use parentheses, (),
to delimit array elements.

Some languages (like BASIC) have zero-based arrays. Some languages have
one-based arrays, as in the following example:

DBG> EXAMINE INTEGER_ARRAY
PROG2\INTEGER_ARRAY

(1,1): 27
(1, 2) : 31
(1,3): 12
(2,1): 15
(2 ,2): 22
(2,3): 18

DBG>

For some languages (like Pascal and Ada) the specific array declaration
determines how the array is based.

Case Sensitivity
Names and language expressions are case-sensitive in C. You must specify
them exactly as they appear in the source code. For example, the following
two commands are not equivalent when the language is set to C:

DBG> SET BREAK SCREEN_IO\%LINE 10
DBG> SET BREAK screen_io\%LINE 10

Initialization Code
If you have a multilanguage program that includes an Ada package,
or a FORTRAN main program that was compiled with the
/CHECK=UNDERFLOW (or /CHECK=ALL) qualifier, a NOTATMAIN
message is issued when you invoke the debugger. For example:

$ RUN MONITOR

VAX DEBUG Version 5.0

%DEBUG-I-INITIAL, language is ADA, module set to 'MONITOR'
%DEBUG-I-NOTATMAIN, type GO to get to start of main program
DBG>

The NOTATMAIN message indicates that execution is suspended before the
start of the main program. This enables you to execute and check some
initialization code under debugger control.

The initialization code is created by the compiler and is placed in a
special PSECT named LIB$INITIALIZE. In the case of an Ada package,
the initialization code belun~~ i:o the package body (whkh iTLay c01ltai:i:l
statements to initialize variables, and so on). In the case of a FORTRAN
program, the initialization code declares the handler that is needed if you
specify the /CHECK=UNDERFLOW or /CHECK=ALL qualifier.

8-9

Debugging Special Cases
8.3 Debugging Multilanguage Programs

8.3.2.6

The NOTATMAIN message indicates that, if you do not want to debug the
initialization code, you can execute immediately to the start of the main
program by entering a GO command. You are then at the same point as
when you invoke the debugger with any other program. Entering the GO
command again starts program execution.

Ada Predefined Breakpoints
If your program is linked with a module that is written in Ada, two
breakpoints that are associated with Ada tasking exception events are
automatically established when you invoke the debugger. Note that these
breakpoints are not affected by a SET LANGUAGE command. They are
established automatically during debugger initialization when the Ada run­
time library is present. When you enter a SHOW BREAK command under
these conditions, the following breakpoints are displayed:

DBG> SHOW BREAK
Breakpoint on ADA event "DEPENDENTS_EXCEPTION" for any value
Breakpoint on ADA event 11 EXCEPTION_TERMINATED" for any value

These breakpoints are equivalent to entering the following commands:

DBG> SET BREAK/EVENT=DEPENDENTS_EXCEPTION
DBG> SET BREAK/EVENT=EXCEPTION_TERMINATED

8.4 Debugging Exceptions and Condition Handlers

8-10

A condition handler is a procedure that the VMS operating system executes
when an exception condition occurs.

Exceptions include hardware conditions (such as an arithmetic overflow or
a memory access violation) or signaled software exceptions (for example, an
exception signaled because a file could not be found).

VMS conventions specify how, and in what order, various condition handlers
set up by the operating system, the debugger, or your own program are
invoked - for example, the primary handler, call frame (user-declared)
handlers, and so on. Section 8.4.3 describes condition handling when you
are using the debugger. See the VMS Run-Time Library Routines Volume for
additional general information on condition handling.

Tools for debugging exceptions and condition handlers include the following:

• The SET BREAK/EXCEPTION and SET TRACE/EXCEPTION commands,
which direct the debugger to treat any exception generated by your
program as a breakpoint or tracepoint, respectively (see Section 8.4.1 and
Section 8.4.2).

• Several built-in symbols (such as %EXC-NAME), which enable you to
qualify exception breakpoints and tracepoints (see Section 8.4.4).

• The SET BREAK/EVENT and SET TRACE/EVENT commands, which
enable you to break on or trace exception events that are specific to Ada
and SCAN programs (see the corresponding documentation for more
information).

8.4.1

8.4.2

Debugging Special Cases
8.4 Debugging Exceptions and Condition Handlers

Setting Breakpoints or Tracepoints on Exceptions

DBG> SET BREAK/EXCEPTION
DBG> GO

When you enter a SET BREAK/EXCEPTION (or SET TRACE/EXCEPTION)
command, you direct the debugger to treat any exception generated by your
program as a breakpoint (or tracepoint). As a result of a
SET BREAK/EXCEPTION command, if your program generates an exception,
the debugger suspends execution, reports the exception condition and the line
where execution is suspended, and prompts for commands. The following
example illustrates the effect:

%SYSTEM-F-INTDIV, ~rithmetic trap, integer divide by zero at PC=0000066C, PSL=03C00022
break on exceptiop preceding TEST\%LINE 13

6: X := 3/Y;
DBG>

Note that an exception breakpoint (or tracepoint) is triggered even if your
program has a condition handler to handle the exception. The
SET BREAK/EXCEPTION command causes a breakpoint to occur before
any handler can execute (and thereby possibly dismiss the exception).
Without the exception breakpoint, the handler would be executed, and
the debugger would get control only if no handler dismissed the exception
(see Section 8.4.2 and Section 8.4.3).

The following command line is useful for identifying where an exception
occurred. It causes the debugger to display automatically the sequence of
active calls and the PC value at an exception breakpoint.

DBG> SET BREAK/EXCEPTION DO (SET MODULE/CALLS; SHOW CALLS)

You can also create a screen-mode DO display that issues a SHOW CALLS
command whenever the debugger interrupts execution. For example:

DBG> SET DISPLAY CALLS DO (SET MODULE/CALLS; SHOW CALLS)

An exception tracepoint (established with the SET TRACE/EXCEPTION
command) is like an exception breakpoint followed by a GO command
without an address expression specified.

An exception breakpoint cancels art exception tracepoint, and vice versa.

To cancel exception breakpoints or tracepoints, use the CANCEL BREAK
/EXCEPTION or CANCEL TRACE/EXCEPTION command, respectively.

Resuming Execution at an Exception Breakpoint
When an exception breakpoint is triggered, execution is suspended before any
user-declared condition handler is invoked. When you resume execution from
the breakpoint with the GO, STEP, or CALL commands, the behavior is as
follows:

• Entering a GO command without an address-expression parameter, or
entering a STEP command, causes the debugger to resignal the exception.
The GO command enables you to observe which user-declared handler, if
any, next handles the exception. The STEP command causes you to step
into that handler (see the next example}.

8-11

Debugging Special Cases
8.4 Debugging Exceptions and Condition Handlers

• Entering a GO command with an address-expression parameter causes
execution to resume at the specified location, thus inhibiting the execution
of any user-declared handlers.

• A common debugging technique at an exception breakpoint is to call
a dump routine with the CALL command (see Chapter 7). When you
enter the CALL command at an exception breakpoint, no breakpoints,
tracepoints, or watchpoints that were previously set within the called
routine are active, so that the debugger does not lose the exception
context. After the routine has executed, the debugger prompts for input.
Entering a GO or STEP command at this point causes the debugger to
resignal the exception, as for the first bulleted item in this list.

The following FORTRAN example shows how to determine the presence of
a condition handler at an exception breakpoint and how a STEP command,
entered at the breakpoint, enables you to step into the handler.

At the exception breakpoint, the· SHOW CALLS command indicates that the
exception was generated during a call to routine SYS$QIOW:

DBG> SET BREAK/EXCEPTION
DBG> GO

%SYSTEM-F-SSFAIL, system service failure exception, status=0000013C, PC=7FFEDE06, PSL=03COOOOO
break on exception preceding SYS$QIOW+6
DBG> SHOW CALLS
module name

*EXC$MAIN

8-12

routine name
SYS$QIOW
EXC$MAIN

line

23

rel PC abs PC
00000006 7FFEDE06
0000003B 0000063B

The following SHOW STACK command indicates that no handler is declared
in routine SYS$QIOW. However, one level down the call stack, routine
EXC$MAIN has declared a handler named SSHAND:

DBG> SHOW STACK
stack frame 0 (2146296644)

condition handler: 0
SPA: 0
S: 0
mask: -M<R2,R3,R4,R5,R6,R7,R8,R9,R10,R11>
PSW: 0020 (hexadecimal)

saved AP: 2146296780
saved FP: 2146296704
saved PC: EXC$MAIN\%LINE 25

stack frame 1 (2146296704)
condition handler: SSHAND

SPA: 0
S: 0
mask:
PSW:

saved AP:
saved FP:
saved PC:

-M<R11>
0000 (hexadecimal)
2146296780
2146296760
SHARE$DEBUG+2217

8.4.3

D8G> STEP

Debugging Special Cases
8.4 Debugging Exceptions and Condition Handlers

At this exception breakpoint, entering a STEP command enables you to step
directly into condition handler SSHAND:

stepped to routine SSHAND
2: INTEGER*4 FUNCTION SSHAND (SIGARGS, MECHARGS)

D8G> SHOW CALLS
module name

*SSHAND
routine name
SS HAND

line
2

rel PC abs PC
00000002 00000642

----- above condition handler called with exception 0000045C:
%SYSTEM-F-SSFAIL, system service failure exception, status=0000013C, PC=7FFEDE06, PSL=03COOOOO
----- end of exception message

SYS$QIOW 00000006 7FFEDE06
*EXC$MAIN EXC$MAIN 23 00000038 00000638

The debugger symbolizes the addresses of condition handlers into names
if that is possible. However, note that with some languages, exception
conditions are first handled by an RTL routine, before any user-declared
condition handler is invoked. In such cases, the address of the first condition
handler may be symbolized to an offset from an RTL shareable image address.

Effect of Debugger on Condition Handling
When you run your program with the debugger, at least one of the following
condition handlers is invoked, in the order given, to handle any exceptions
caused by the execution of your program:

1 Primary handler

2 Secondary handler

3 Call-frame handlers (user-declared). Also known as stack handlers.

4 Final handler

5 Last-chance handler

6 Catchall handler

A handler can return one of the following three status codes to the VAX
Condition Handling Facility:

• SS$_RESIGNAL - The VMS operating system searches for the next
handler.

• SS$_CONTINUE - The condition is assumed to be corrected, and
execution continues.

• SS$_UNWIND - The call stack is unwound some number of frames, if
necessary, and the signal is dismissed.

For more information on condition handling, see the VMS Run-Time Library
Routines Volume.

8-13

Debugging Special Cases
8.4 Debugging Exceptions and Condition Handlers

8.4.3.1

8.4.3.2

8.4.3.3

8.4.3.4

8-14

Primary Handler
When you run your program with the debugger, the primary handler is the
debugger. Therefore, the debugger has the first opportunity to handle an
exception condition, whether or not the exception is caused by the debugger
(Section 2.6 describes how the debugger causes exceptions to occur in your
program in order to control and monitor execution).

If you have entered a SET BREAK/EXCEPTION or SET TRACE/EXCEPTION
command, the debugger breaks on (or traces) any exceptions caused by your
program. The break (or trace) action occurs before any user-declared handler
is invoked.

If you have not entered a SET BREAK/EXCEPTION or
SET TRACE/EXCEPTION command, the primary handler resignals any
exceptions caused by your program.

Secondary Handler
The secondary handler is used for special purposes and does not apply to the
types of programs covered in this manual.

Call-Frame Handlers (User-Declared)
Each routine of your program can establish a condition handler, also known
as a call-frame handler. The operating system searches for these handlers
starting with the routine that is currently executing. If no handler was
established for that routine, the system searches for a handler established by
the next routine down the call stack, and so on back to the main program, if
necessary.

Once invoked, a handler may perform one of the following actions:

• It handles the exception condition, thus allowing the program to continue
execution.

• It resignals the exception. The operating system then searches for another
handler down the call stack.

• It encounters a breakpoint or watchpoint, thereby suspending execution
at the breakpoint or watchpoint.

• It generates its own exception. In this case, the primary handler is
invoked again.

• It exits, thus terminating program execution.

Final and Last-Chance Handlers
These handlers are controlled by the debugger. They enable the debugger to
ultimately regain control and display the DBG > prompt if no user-declared
handler has handled an exception. Otherwise, the debugging session would
terminate, and control would pass to the DCL command interpreter.

The final handler is the last frame on the call stack and the first of these
two handlers to be invoked. The following example illustrates what happens
when an unhandled exception condition is propagated from an exception
breakpoint to the final handler:

8.4.4

DBG> SET BREAK/EXCEPTION
DBG> GO

Debugging Special Cases
8.4 Debugging Exceptions and Condition Handlers

%SYSTEM-F-INTDIV, arithmetic trap, integer divide by zero at PC=0000066C, PSL=03C00022
break on exception preceding TEST\%LINE 13

6: X := 3/Y;
DBG> GO
%SYSTEM-F-INTDIV, arithmetic trap, integer divide by zero at PC=0000066C, PSL=03C00022
DBG>

DBG> DEPOSIT %FP = 10
DBG> GO

In this example, the first INTDIV message is issued by the primary handler,
and the second is issued by the final handler, which then displays the DBG >
prompt.

The last-chance handler is invoked only if the final handler cannot gain
control because the stack is corrupted. For example:

%SYSTEM-F-ACCVIO, access violation, reason mask=OO, virtual address=OOOOOOOA, PC=0000319C, PSL=03COOOOO
%DEBUG-E-LASTCHANCE, stack exception handlers lost, re-initializing stack
DBG>

8.4.3.5 Catchall Handler
The catchall handler, which is part of the VMS operating system, is invoked
if the last-chance handler cannot gain control. The catchall handler produces
a register dump. This should never occur if the debugger has control of your
program. But it may occur if your program encounters an error when running
without the debugger.

If, during a debugging session, you observe a register dump and are returned
to DCL level, submit an SPR to DIGITAL.

Exception-Related Built-in Symbols
When an exception is signaled, the debugger sets the following exception­
related built-in symbols.

Symbol

%EXC_FACILITY

%EXC_NAME

%ADAEXC_
NAME

%EXC_NUMBER

%EXC_SEVERITY

Description

Name of facility that issued the current exception

Name of current exception

Ada exception name of current exception (for Ada programs
only)

Number of current exception

Severity code of current exception

You can use these symbols as follows:

• To obtain information about the fields of the VMS condition code of the
current exception.

8-15

Debugging Special Cases
8.4 Debugging Exceptions and Condition Handlers

DBG> EVALUATE %EXC_NAME
'ACCVIO'

• To qualify exception breakpoints (or tracepoints) so that they trigger only
on certain kinds of exceptions.

The following examples illustrate the use of some of these symbols.

DBG> SET TRACE/EXCEPTION WHEN (%EXC_NAME = "ACCVIO")
DBG> EVALUATE %EXC_FACILITY
'SYSTEM'
DBG> EVALUATE %EXC_NUMBER
12
DBG> EVALUATE/CONDITION_VALUE %EXC_NUMBER
%SYSTEM-F-ACCVIO, access violation, reason mask=01, virtual address=FFFFFF30, PC=00007552, PSL=03COOOOO
DBG> SET BREAK/EXCEPTION WHEN (%EXC_NUMBER = 12)

DBG> SET BREAK/EXCEPTION WHEN (%EXC_SEVERITY .NE. "I" .AND. %EXC_SEVERITY .NE. "S")

8.5 Debugging Exit Handlers
Exit handlers are procedures that are called whenever an image requests the
$EXIT system service or runs to completion. A user program may declare one
or more exit handlers. The debugger always declares its own exit handler.

At program termination, the debugger exit handler executes after all user­
declared exit handlers have executed.

To debug a user-declared exit handler, you must first set a breakpoint in
that exit handler. Then, you must cause that exit handler to execute, either
by including in your program an instruction that invokes the exit handler
(usually a call to $EXIT), or by allowing your program to terminate, or
by entering the EXIT command (note that the QUIT command does not
execute any user declared exit handlers). When the exit handler executes, the
breakpoint is activated and control is then returned to the debugger, which
prompts for commands.

The SHOW EXIL_HANDLERS command gives a display of the exit handlers
that your program has declared. The exit handler routines are displayed in
the order that they are called. A routine name is displayed symbolically, if
possible. Otherwise its address is displayed. The debugger's exit handlers are
not displayed. For example:

DBG> SHOW EXIT_HANDLERS
exit handler at STACKS\CLEANUP
exit handler at BLIHANDLER\HANDLER1

8.6 Debugging AST-Driven Programs

8-16

A program may use asynchronous system traps (ASTs) either explicitly, or
implicitly by calling VMS system services or RTL routines that call user­
defined AST routines. Section 8.6.1 explains how to facilitate debugging by
disabling and enabling the delivery of ASTs originating with your program.
Section 8.6.2 explains how delivery of an AST affects a SHOW CALLS
display.

8.6.1

8.6.2

Debugging Special Cases
8.6 Debugging AST-Driven Programs

Disabling and Enabling the Delivery of ASTs
Debugging AST-driven programs may be confusing because interrupts
originating from the program being debugged may occur, but will not be
processed, while the debugger is running (processing commands, tracing
execution, displaying information, and so on).

By default, the delivery of ASTs is enabled while the program is running. The
command DISABLE AST disables the delivery of ASTs while the program is
running and causes any such potential interrupts to be queued.

The delivery of ASTs is always disabled when the debugger is running.

The command ENABLE AST reenables the delivery of ASTs, including any
pending ASTs. The command SHOW AST indicates whether the delivery of
ASTs is enabled or disabled.

To control the delivery of ASTs during the execution of a routine called with
the CALL command, use the /[NO]AST qualifiers. The command CALL/ AST
enables the delivery of ASTs in the called routine. The command CALL
/NOAST disables the delivery of ASTs in the called routine. If you do not
specify /AST or /NOAST with the CALL command, the delivery of ASTs is
enabled unless you have previously entered the command DISABLE AST.

Call Frames Associated with ASTs in SHOW CALLS Display
The delivery of an AST creates one or more special call frames that appear
in a SHOW CALLS display. These call frames are not symbolized and may
make the SHOW CALLS display confusing. The following example illustrates
what you might see in a SHOW CALLS display when an AST routine is on
the call stack.

Assume that a program calls the system service $SETIMR to set a timer that
expires at a specified interval and then execute a user-defined AST routine,
TIMER_ROUT, in the program.

The following command lines set a breakpoint on routine TIMER_ROUT,
start execution which is then suspended on that routine, and display the
sequence of active calls at the breakpoint:

DBG> SET BREAK TIMER_ROUT
DBG> GO
break at routine MOD1\TIMER_ROUT

14: x = .x + 1;
DBG> SHOW CALLS
module name
*MDD1

routine name
TIMER_ ROUT

line
14

rel PC abs PC
00000002 0000040E
00000000 80009E5E

The bottom line is the call frame associated with the system AST dispatcher.
It shows the absolute PC value when the AST was delivered. Because the
AST dispatcher is in system space (as indicated by the high absolute address),
no symbolic information (module name, routine name, line number) is
available. A SHOW CALLS display associated with the delivery of an AST
may also show some debugger call frames (module name SHARE$DEBUG)
and diagnostic messages related to condition handling by the debugger. You
should ignore such messages and call frames.

8-17

Part 11 Debugger Command Dictionary
This part contains detailed reference information on the debugger
commands.

1

This part contains detailed reference information on all debugger commands,
organized as follows:

• Section 1 describes the general format for debugger commands.

• Section 2 gives the rules for entering and terminating commands, both
interactively at the terminal and within a debugger command procedure.

• Section 3 lists commands that apply only when you are running the
debugger on a VAXstation.

• Section 4 lists commands and qualifiers that are obsolete starting with
VMS Version 5.0.

• Section 5, which is most of Part II, is the debugger command dictionary.

General Command Format
A command string is the complete specification of a debugger command.
Although you can continue a command on more than one line, the term
command string is used to define an entire command that is passed to the
debugger.

A debugger command string consists of a verb and, possibly, parameters and
qualifiers.

The verb specifies the command to be executed. Some debugger command
strings may consist of only a verb or a verb pair. For example:

DBG> GO
DBG> SHOW IMAGE

A parameter specifies what the verb acts on (for example, a file specification).
A qualifier describes or modifies the action taken by the verb. Some
command strings may include one or more parameters or qualifiers. In
the following examples, COUNT, I, J, and K, OUT2, and PROG4.COM
are parameters (@ is the "execute procedure" command); /SCROLL and
/OUTPUT are qualifiers.

DBG> SET WATCH COUNT
DBG> EXAMINE I,J,K
DBG> SELECT/SCROLL/OUTPUT OUT2
DBG> ©PROG4.COM

Some commands accept optional WHEN or DO clauses. DO clauses are also
used in some screen display definitions.

A WHEN clause consists of the keyword WHEN followed by a conditional
expression (within parentheses) that evaluates to TRUE or FALSE in the
current language. A DO clause consists of the keyword DO followed by one
or more command strings (within parentheses) that are to be executed in the
order that they are listed. You must separate multiple command strings with
semicolons (;). These points are illustrated in the next example.

The following command string sets a breakpoint on routine SWAP that is
triggered whenever the value of J equals 4 during execution. When the
breakpoint is triggered, the debugger executes the two command strings
SHOW CALLS and EXAMINE I,K, in the order indicated.

DBG> SET BREAK SWAP WHEN (J = 4) DO (SHOW CALLS; EXAMINE I,K)

CD-3

The debugger checks the syntax of the commands in a DO clause when it
executes the DO clause. You can nest commands within DO clauses.

2 Rules for Entering and Terminating Commands
You can enter debugger commands interactively at the terminal or store
them within a command procedure to be invoked later with the @ (execute
procedure) command. The conventions are described for each mode of
operation.

When you use any debugger command, if the debugger issues a diagnostic
message with a severity level of I (informational), the command is still
executed. The debugger aborts an illegal command line only when the
severity level of the message is W (warning) or greater.

2.1 Interactively at the Terminal

CD-4

When entering a debugger command interactively, you can abbreviate a
keyword (verb, qualifier, parameter) to as few characters as are needed to
make it unique within the set of all debugger keywords. However, some
commonly used commands (for example, EXAMINE, DEPOSIT, GO, STEP)
can be abbreviated to their first characters. Also, in some cases, the debugger
interprets nonunique abbreviations correctly on the basis of context.

Pressing the RETURN key terminates the current line, causing the debugger
to process it. To continue a long command string on another line, type a
hyphen (-) before pressing RETURN. As a result, the debugger prompt is
prefixed with an underline character (_DBG >), indicating that the command
string is still being accepted.

You can enter more than one command string on one line by separating
command strings with a semicolon(;).

To enter a comment (explanatory text that is recorded in a debugger log file
but is otherwise ignored by the debugger), precede the comment text with an
exclamation point (!). If the comment wraps to another line, start that line
with an exclamation point.

The command line editing functions that are available at the DCL prompt are
also available at the debugger prompt, including command recall with the up
arrow and down arrow keys. For example, pressing the left arrow and right
arrow keys moves the cursor one character to the left and right, respectively;
pressing CTRL/H and CTRL/E moves the cursor to the start and the end of
the line, respectively; pressing CTRL/U deletes all the characters to the left of
the cursor, and so on.

To interrupt a command that is in progress, press CTRL/Y. This puts you
at DCL level. You can then type either CONTINUE or DEBUG to return
to the debugging session. (See the description of CTRL/Y in the command
dictionary.)

2.2 Within a Debugger Command Procedure
To maximize legibility, it is best to not abbreviate command keywords in a
command procedure. In any case, as with DCL commands, do not abbreviate
command keywords to less than four significant characters (not counting the
negation /NO ...), to avoid potential conflicts in future releases.

Start a debugger command line at the left margin (in contrast, each command
line of a DCL command procedure starts with a dollar sign ($)).

The start of a new line terminates the previous command line (end of file also
terminates the previous command line). To continue a command string on
another line, type a hyphen (-) before starting the new line.

You can enter more than one command string on one line by separating
command strings with a semicolon (;).

To enter a comment (explanatory text that does not affect the execution of the
command procedure), precede the comment text with an exclamation point
(!). If the comment wraps to another line, start that line with an exclamation
point.

3 Commands Recognized Only on VAXstations
The following commands are recognized only when you are running the
debugger on a VAXstation:

• SET MODE (NO]SEP ARATE

• SET PROMPT /(NO]POP

See the descriptions of these commands in the command dictionary in
Section 5. All of the other debugger commands apply to VAXstations as well
as terminals.

4 Obsolete Commands
The following debugger commands and command qualifiers are obsolete
starting with VMS Version 5.0 and are no longer documented. For
compatibility with previous VMS versions, these commands and qualifiers
will be supported indefinitely, however, except as indicated.

CD-5

5

Obsolete Command or Qualifier Reason

ALLOCATE The debugger now allocates and deallocates memory automatically.
This command now has no effect.

CANCEL EXCEPTION BREAK This command duplicates the effect of the newer command CANCEL
BREAK/EXCEPTION, which better conforms to the general command
format for canceling breakpoints.

SET EXCEPTION BREAK

SET MODULE/ALLOCATE

UNDEFINE

UNDEFINE/KEY

This command duplicates the effect of the newer command SET
BREAK/EXCEPTION, which better conforms to the general command
format for setting breakpoints.

The debugger now allocates and deallocates memory automatically.
This qualifier now has no effect.

This command duplicates the effect of the newer command DELETE,
which conforms to the analogous DCL command DELETE.

This command duplicates the effect of the newer command DELETE
/KEY, which conforms to the analogous DCL command DELETE/KEY.

Debugger Command Dictionary

CD-6

The debugger command dictionary, which starts on the next page,
describes each of the debugger commands in detail. Commands are listed
alphabetically. The following information is provided for each command:
command description, format, parameters, qualifiers, and one or more
examples. See the preface of this manual for documentation conventions.

@ (Execute Procedure)

@ (Execute Procedure)

Executes a debugger command procedure.

FORMAT @file-spec [parameter{, ... 11

PARAMETERS file-spec

QUALIFIERS

DESCRIPTION

Specifies the command procedure to be executed. For any part of the full
file specification that is not provided, the debugger uses the file specification
established with the last SET ATSIGN command, if any. If the missing part
of the file specification was not established by a SET ATSIGN command, the
debugger assumes SYS$DISK:[]DEBUG.COM as the default file specification.
You can specify a logical name.

parameter
Specifies a parameter that is passed to the command procedure. The
parameter may be an address expression, a value expression in the current
language, or a debugger command (the command must be enclosed within
quotation marks (")). Note that, unlike with DCL, you must separate
parameters by commas. Also, you can pass as many parameters as there
are formal parameter declarations within the command procedure. For
more information on passing parameters to command procedures, see the
DECLARE command description.

None.

A debugger command procedure can contain any debugger commands,
including another@ command. The debugger executes commands from
the command procedure until it reaches an EXIT or QUIT command or the
end of the file. At that point, the debugger returns control to the command
stream that invoked the command procedure. A command stream can be
the terminal, an outer (containing) command procedure, a DO clause in a
command such as SET BREAK, or a DO clause in a screen display definition.

By default, commands read from a command procedure are not echoed. If
you enter the command SET OUTPUT VERIFY, all commands read from a
command procedure are echoed on the current output device, as specified by
DBG$0UTPUT (the default output device is SYS$0UTPUT).

For information on passing parameters to command procedures, see the
DECLARE command description.

Related commands: (SET, SHOW) ATSIGN, SET OUTPUT [NO]VERIFY,
SHOW OUTPUT, DECLARE.

CD-7

@ (Execute Procedure)

EXAMPLE

DBG> SET ATSIGN USER: [JONES.DEBUG] .DBG
DBG> SET OUTPUT VERIFY
DBG> ©CHECKOUT
%DEBUG-I-VERIFYICF, entering command procedure CHECKOUT

SET MODULE/ALL
SET BREAK SUB1
GO

break at routine PROG5\SUB2
EXAMINE X

PROG5\SUB2\X: 376

%DEBUG-I-VERIFYICF, exiting command procedure MAIN
DBG>

CD-8

In this example, the command SET ATSIGN establishes that debugger
command procedures are, by default, in USER:[JONES.DEBUG] and have
a file type of DBG. The command @CHECKOUT executes the command
procedure USER:[JONES.DEBUG]CHECKOUT.DBG. Commands contained
within the command procedure are echoed because the command SET
OUTPUT VERIFY was entered.

ATTACH

FORMAT

ATTACH

Passes control of your terminal from the current process to another
process.

ATTACH process-name

PARAMETERS process-name
Specifies the process to which your terminal is to be attached. The process
must already exist before you try to attach to it. If the process name contains
non-alphanumeric characters or spaces, you must enclose it in quotation
marks(").

QUALIFIERS None.

DESCRIPTION The ATTACH command allows you to go back and forth between a
debugging session and your command interpreter, or between two debugging
sessions. To do so, you must first use the SP AWN command to create a
subprocess (see the description of the SPAWN command); you can then
attach to it whenever you want. To return to your original process with
minimal system overhead, use another ATTACH command.

EXAMPLES

IJ DBG> SPAWN
$ATTACH JONES

Related command: SP AWN.

%DEBUG-I-RETURNED, control returned to process JONES
DBG> ATTACH JONES_1
$

In this example, the series of commands creates a subprocess named JONES_
1 from the debugger (currently running in the process JONES) and then
attaches to that subprocess.

~ DBG> ATTACH "Alpha One"
$

This example illustrates use of quotation marks to enclose a process name
that contains a space.

CD-9

CALL

CALL

FORMAT

PARAMETERS

CD-10

Calls a routine that was linked with your program.

CALL routine-name [(argument[, ...])]

routine-name
Specifies the name or the virtual address of the routine to be called.

argument
Specifies an argument that is required by the routine. Arguments can be
passed by address (the default), by descriptor, by reference, and by value, as
follows:

%ADDR

%DESCR

%REF

%VAL

Passes the argument by address. This is the default. The format is
the following:

CALL routine-name (%ADDR address-expression)

The debugger evaluates the address expression and passes that
address to the routine specified. For simple variables (such as X),
the address of X is passed into the routine. This passing mechanism
is how FORTRAN implements ROUTINE(X). In other words, for
named variables, using %ADDR corresponds to a call by reference in
FORTRAN. For other expressions, however, you must use the %REF
function to call by reference. For complex or structured variables
(such as arrays, records, and access types), the address is passed
when you specify %ADDR, but the called routine may not handle the
passed data properly. Do not specify a literal value (a number or an
expression composed of numbers) when using %ADDR.

Passes the argument by descriptor. The format is the following:

CALL routine-name (%DESCR language-expression)

The debugger evaluates the language expression and builds a VAX­
standard descriptor to describe the value. The descriptor is then
passed to the routine you named. You would use this technique to
pass strings to a FORTRAN routine.

Passes the argument by reference. The format is the following:

CALL routine-name (%REF language-expression)

The debugger evaluates the language expression and passes
a pointer to the value, into the called routine. This passing
mechanism corresponds to the way FORTRAN passes the result
of an expression.

Passes the argument by value. The format is the following:

CALL routine-name (%VAL language-expression)

The debugger evaluates the language expression and passes the
value directly to the called routine.

QUALIFIERS

DESCRIPTION

CALL

/[NOJAST
Controls whether the delivery of aynchronous system traps (ASTs) is enabled
or disabled during the execution of the called routine. /AST specifies that
ASTs can be delivered. /NOAST specifies that ASTs cannot be delivered. By
default, if you do not specify /AST or /NOAST, delivery of ASTs is enabled
in the called routine if it was enabled before the CALL command was issued.

The CALL command is one of the four debugger commands that can cause
your program to execute (the others are GO, STEP, and EXIT). The command
enables you to execute a routine independently of the normal execution of
your program.

The CALL command executes a routine whether or not your program actually
includes a call to that routine, as long as the routine was linked with your
program.

When you enter the CALL command at an exception breakpoint, any
breakpoints,. tracepoints, or watchpoints that were previously set within
the called routine are disabled temporarily so that the debugger does not lose
the exception context. However, such eventpoints are active if you enter the
CALL command at a location other than an exception breakpoint.

When you enter a CALL command, the debugger takes the following action:

1 Saves the current values of the general registers.

2 Constructs an argument list.

3 Executes a call to the routine specified in the command and passes any
arguments.

4 Executes the routine.

5 Displays the value returned by the routine in RO. By VMS convention,
after a called routine has executed, register RO contains the function
return value (if the routine is a function) or the procedure completion
status (if the routine is a procedure that returns a status value). If a called
procedure does not return a status value or function value, the value
in RO may be meaningless, and the "value returned" message can be
ignored.

6 Restores the values of the general registers to the values they had just
before the CALL command was executed.

7 Issues the prompt.

The debugger assumes that the called routine conforms to the VMS procedure
calling standard (see the VAX Architecture Handbook). However, note that
the debugger does not know about all the argument-passing mechanisms
for all supported languages. Therefore, you may need to specify how to
pass parameters-for example, use CALL SUB1(%VAL X) rather than CALL
SUBl(X). See your language documentation for complete information on how
arguments are passed to routines.

CD-11

CALL

EXAMPLES

i] DBG> CALL SUB1(X)
value returned is 19

This command calls the routine SUBl, passing the address of "X" as the
required parameter (by default, the address of the argument specified is
passed). The routine is a function whose returned value is 19.

~ DBG> CALL SUB(%REF 1)
value returned is 1

This command passes a pointer to a memory location containing the numeric
literal 1, into the routine SUB.

~ DBG> SET MODULE SHARE$LIBRTL
DBG> CALL LIB$SHOW_VM

1785 calls to LIB$GET_VM, 284 calls to LIB$FREE_VM, 122216 bytes still allocated
value returned is 00000001

This example shows how you could call the run-time library routine
LIB$SHOW_ VM (in the shareable image LIBRTL) to display virtual memory
statistics. The SET MODULE command makes the universal symbols (routine
names) in LIBRTL visible in the main image. See the description of the
/SHARE qualifier of the SHOW MODULE command for more information on
this subject.

~ SUBROUTINE CHECK_TEMPERATURE (TEMPERATURE,ERROR_MESSAGE)
REAL TOLERANCE /4.7/
REAL TARGET_TEMPERATURE /92.0/
CHARACTER*(*) ERROR_MESSAGE

IF (TEMPERATURE .GT. (TARGET_TEMPERATURE + TOLERANCE)) THEN
TYPE*· 'Input temperature out of range:' ,TEMPERATURE
TYPE *,ERROR_MESSAGE

ELSE
TYPE *·'Input temperature in range:' ,TEMPERATURE

END IF
RETURN
END

DBG> CALL CHECK_TEMPERATURE(%REF 100.0, %DESCR 'TOLERANCE-CHECK 1 FAILED')
Input temperature out of range: 100.0000

.TOLERANCE-CHECK 1 FAILED
value returned is 0

DBG> CALL CHECK_rEMPERATURE(%REF 95.2, %DESCR 'TOLERANCE-CHECK 2 FAILED')
Input temperature in range: 95.2000
value returned is 0

CD-12

In this example, the source code is that of a FORTRAN routine (CHECK_
TEMPERATURE) that accepts two parameters, TEMPERATURE (a real
number) and ERROR_MESSAGE (a string). Depending on the value of
the temperature, the routine prints different output. Each of the two CALL
commands passes a temperature value (by reference) and an error message
(by descriptor). Because this routine does not have a formal return value, the
value returned is undefined, in this case, 0.

CANCEL ALL

CANCEL ALL

Cancels all breakpoints, tracepoints, and watchpoints. Restores any
modes established with the SET MODE command to their default values.
Restores the scope and type to their default values.

FORMAT CANCEL ALL

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The CANCEL ALL command does the following:

EXAMPLE

DBG> CANCEL ALL

• Cancels all eventpoints (breakpoints, tracepoints, watchpoints). This
is equivalent to entering the CANCEL BREAK, CANCEL TRACE, and
CANCEL WATCH commands.

• Restores the scope search list to its default value (0, 1,2, ... ,n). This is
equivalent to entering the CANCEL SCOPE command.

• Restores the data type associated with a typed memory location to the
compiler generated type. Restores the type associated with untyped
memory locations to "longword integer". This is equivalent to entering
the CANCEL TYPE/OVERRIDE and SET TYPE LONGWORD commands.

• Restores the modes established with the SET MODE command to their
default values. This is equivalent to entering the following command:

DBG> SET MODE KEYPAD,NOSCREEN,DYNAMIC,LINE,SYMBOLIC,NOG_FLOAT,SCROLL

The CANCEL ALL command does not affect the current language setting or
modules included in the run-time symbol table (SET MODULE).

Related commands: CANCEL BREAK, CANCEL TRACE, CANCEL WATCH,
CANCEL SCOPE, CANCEL TYPE/OVERRIDE, (SET, CANCEL) MODE.

This command cancels all the eventpoints you have set previously. It also
restores scope, modes and types to their default values.

CD-13

CANCEL BREAK

CANCEL BREAK

Cancels breakpoints.

FORMAT CANCEL BREAK [address-expression[, ... 11

PARAMETERS address-expression
Specifies a breakpoint to be canceled. Do not use the asterisk wildcard
character (*). Do not specify an address expression when using any of the
qualifiers except for /EVENT.

QUALIFIERS /ALL

CD-14

Cancels all breakpoints. Do not specify an address expression with /ALL.

/BRANCH
Can.eels the effect of a previous SET BREAK/BRANCH command. Do not
specify an address expression with /BRANCH.

/CALL
Cancels the effect of a previous SET BREAK/CALL command. Do not specify
an ~ddress expression with /CALL.

/EVENT=event-name
Note: This qualifier applies only to Ada and SCAN. See the VAX Ada
and VAX SCAN documentation for complete information.

Cancels the effect of a previous SET BREAK/EVENT=event-name command.
The effect of CANCEL BREAK/EVENT=event-name is symmetrical with the
effect of SET BREAK/EVENT=event-name. To cancel a breakpoint, specify
the event name and address expression (if any) exactly as you did with the
SET BREAK/EVENT command, excluding any WHEN or DO clauses. Event
names depend on the run-time facility and are identified in Appendix E for
Ada and SCAN. You can also display the event names associated with the
current run-time facility by entering the SHOW EVENT_FACILITY command.

/EXCEPTION
Cancels the effect of a previous SET BREAK/EXCEPTION command. Do not
specify an address expression with /EXCEPTION.

/INSTRUCTION
Cancels the effect of a previous SET BREAK/INSTRUCTION command. Do
not specify an address expression with /INSTRUCTION.

/LINE
Cancels the effect of a previous SET BREAK/LINE command. Do not specify
an address expression with /LINE.

DESCRIPTION

EXAMPLES

CANCEL BREAK

The effect of the CANCEL BREAK command is symmetrical with the effect of
the SET BREAK command.

To cancel a breakpoint that was established at a specific location with
the SET BREAK command, specify that same location with the CANCEL
BREAK command. To cancel breakpointsJthat were established on a class
of instructions or events by using a qualifier with the SET BREAK command
(/CALL, /LINE, /EXCEPTION, /EVENT, and so on), specify that same
qualifier with the CANCEL BREAK command.

Generally, you must specify either an address expression or a qualifier, but
not both. The only exception is with the /EVENT qualifier, which requires
that you specify an event name and permits you also to specify an address
expression for certain event names.

Note that the command CANCEL ALL also cancels all breakpoints.

Related commands: (SET, SHOW) BREAK, (SET, SHOW, CANCEL) TRACE,
CANCEL ALL, (SET, SHOW) EVENT_FACILITY.

iJ DBG> CANCEL BREAK MAIN\LOOP+10

This command cancels the breakpoint set at the address expression
MAIN\LOOP+lO.

~ DBG> CANCEL BREAK/ALL

This command cancels all breakpoints you have set previously.

CD-15

CANCEL DISPLAY

CANCEL DISPLAY

Permanently deletes a screen display.

FORMAT CANCEL DISPLAY [disp-name[, ...]]

PARAMETERS disp-name
Specifies the name of a display to be canceled. Do not specify the PROMPT
display, which cannot be canceled. Do not use the asterisk wildcard character
(*). Do not specify a display name with /ALL.

QUALIFIERS /ALL
Cancels all displays, except for the PROMPT display. Do not specify a display
name with /ALL.

DESCRIPTION When a display is canceled, its contents are permanently lost, it is deleted
from the display list, and all the memory that was allocated to it is released.

EXAMPLES

You cannot cancel the PROMPT display.

Related commands: (SET, SHOW) DISPLAY, (SET, SHOW, CANCEL)
WINDOW.

iJ DBG> CANCEL DISPLAY SRC2

This command permanently deletes display SRC2.

~ DBG> CANCEL DISPLAY/ALL

CD-16

This command permanently deletes all displays, except for the PROMPT
display.

CANCEL IMAGE

CANCEL IMAGE

Deletes symbol table information for a shareable image.

FORMAT CANCEL IMAGE [image-name[, ... 11

PARAMETERS image-name
Specifies a previously set shareable image that is to be canceled. Do not
specify the main image, which cannot be canceled. Do not use the asterisk
wildcard character (*). Do not specify an image name with /ALL.

QUALIFIERS /ALL
Specifies that all shareable images except the main image are to be canceled.
Do not specify an image name with /ALL.

DESCRIPTION The CANCEL IMAGE command deallocates the data structures previously
built to debug a shareable image by a SET IMAGE command. Use the
CANCEL IMAGE comm~md if the debugger performance has slowed down
because of ni.any images and modules being set. You can also use the
CANCEL MODULE. command to delete only certain modules from an
image's run-time symbol table (RST) without canceling the entire image.
Also, if dynamic mode is enabled (this is the default), you can disable it with
the command SET MODE NODYNAMIC. As a result, the debugger does not
set images or modules automatically.

EXAMPLE

If the current image (the image last set with the SET IMAGE command) is
canceled, the main image (the image containing the image transfer address)
becomes the current image.

Related commands: (SET, SHOW) IMAGE, (SET, SHOW, CANCEL)
MODULE, SET MODE [NO]DYNAMIC.

DBG> CANCEL IMAGE SHARE2,SHARE3

This command cancels shareable images SHARE2 and SHARE3. If either of
these was the current image, the main image becomes the current image.

CD-17

CANCEL MODE

CANCEL MODE

Restores all modes controlled by the SET MODE command to their default
values. Also restores the default input/output radix.

FORMAT CANCEL MODE

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The effect of the CANCEL MODE command is equivalent to entering the
following commands:

EXAMPLE
DBG> CANCEL MODE

CD-18

DBG> SET MODE SYMBOLIC,LINE,NOG_FLOAT,NOSCREEN,SCROLL,KEYPAD,-
DYNAMIC,NOSEPARATE

DBG> CANCEL RADIX

Note that, although the same default modes apply to all languages, the
default radix for both data entry and display is decimal for all languages
except BLISS and MACRO. It is hexadecimal for BLISS and MACRO.

Related commands: (SET, SHOW) MODE, (SET, SHOW, CANCEL) RADIX.

This command restores the default radix mode and all default mode values.

CANCEL MODULE

CANCEL MODULE

FORMAT

PARAMETERS

QUALIFIERS

DESCRIPTION

Deletes the symbol records of a module in the current image from the
run-time symbol table (RST) for that image.

CANCEL MODULE [module-name{, ...]]

module-name
Specifies the name of a module whose symbol records are to be deleted from
the RST. Do not use the asterisk wildcard character (*). Do not specify a
module name with /ALL.

/ALL
Deletes the symbol records of all modules from the RST. Do not specify a
module name with /ALL.

/[NO]RELATED
Note: This qualifier applies only to Ada programs.

Controls whether the debugger deletes from the RST the symbol records of a
module that is related to a specified module through a with-clause or subunit
relationship.

CANCEL MODULE/RELATED (default) deletes symbol records for related
modules as well as for those specified, but not for any module that is also
related to another set module. The effect of CANCEL MODULE/RELATED
is consistent with Ada's scope and visibility rules and depends on the actual
relationship between modules. CANCEL MODULE/NORELATED deletes
symbol records only for modules that are specified (no symbol records are
deleted for related modules).

Note: The current image is either the main image (by default) or the
image established as the current image by a previous SET IMAGE
command.

Use the CANCEL MODULE command if the debugger performance has
slowed down because of many modules being set. You can also use the
CANCEL IMAGE command to delete the symbols of an entire image (this
automatically cancels all of the modules in that image). Also, if dynamic
mode is enabled (this is the default), you can disable it with the command
SET MODE NODYNAMIC. As a result, the debugger does not set modules or
images automatically.

The CANCEL MODULE command does not cancel any breakpoints,
tracepoints, or watchpoints that are set currently. It deletes the symbolization
of any breakpoints, tracepoints, or watchpoints associated with the canceled
modules.

Related commands: (SET, SHOW) MODULE, SET MODE [NO]DYNAMIC,
(SET, SHOW, CANCEL) IMAGE.

CD-19

CANCEL MODULE

EXAMPLES

iJ DBG> CANCEL MODULE SUB!

This command deletes the symbols of module SUBl from the RST.

fa DBG> CANCEL MODULE/ALL

This command deletes the symbols of all modules from the RST.

CD-20

CANCEL RADIX

CANCEL RADIX

Restores the default radix for the entry and display of integer data.

FORMAT CANCEL RADIX

PARAMETERS None.

QUALIFIERS /OVERRIDE
Cancels the override radix established by a previous SET RADIX/OVERRIDE
command. This sets the current override radix to "none" and restores the
output radix mode to the value established with a previous SET RADIX or
SET RADIX/OUTPUT command. If you did not change the radix mode with
a SET RADIX or SET RADIX/OUTPUT command, the
CANCEL RADIX/OVERRIDE command restores the radix mode to its default
value (decimal for all languages except BLISS and MACRO, hexadecimal for
BLISS and MACRO).

DESCRIPTION The CANCEL RADIX command cancels the effect of any previous SET
RADIX and SET RADIX/OVERRIDE commands. It restores the input and
output radix to their default value (decimal for all languages except BLISS and
MACRO, hexadecimal for BLISS and MACRO).

EXAMPLES
iJ DBG> CANCEL RADIX

The effect of the CANCEL RADIX/OVERRIDE command is more limited and
is explained in the description of the /OVERRIDE qualifier.

Related commands: (SET, SHOW) RADIX, EVALUATE.

This command restores the default input and output radix.

~ DBG> CANCEL RADIX/OVERRIDE

This command cancels any override radix you may have set with the SET
RADIX/OVERRIDE command.

CD-21

CANCEL SCOPE

CANCEL SCOPE

Restores the default scope for symbol lookup.

FORMAT CANCEL SCOPE

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The CANCEL SCOPE command cancels the current scope search list
established by a previous SET SCOPE command and restores the default
scope search list, namely 0,1,2, ... ,N, where N is the number of calls in the
call stack.

EXAMPLE

DBG> CANCEL SCOPE

CD-22

The default scope means that, for a symbol without a path name prefix, a
symbol lookup such as "EXAMINE X" first looks for X in the routine that is
currently executing (scope O); if no X is visible there, the debugger looks in
the caller of that routine (scope 1), and so on down the call stack; if Xis not
found in scope N, the debugger searches the rest of the run-time symbol table
(RST), then searches the global symbol table (GST), if necessary.

Related commands: (SET, SHOW) SCOPE.

This command cancels the current scope.

CANCEL SOURCE

CANCEL SOURCE

Cancels a source directory search list established by a previous SET
SOURCE command.

FORMAT CANCEL SOURCE

PARAMETERS None.

QUALIFIERS /EDIT

DESCRIPTION

Note: This qualifier applies mainly to Ada programs.

Cancels the effect of a previous SET SOURCE/EDIT command. As a result,
when you use the EDIT command, the debugger searches for a source file in
the same directory that it was in at compile time. The
CANCEL SOURCE/EDIT command does not cancel the effect of a previous
SET SOURCE command.

/MODULE=module-name
Cancels the effect of a previous SET SOURCE/MODULE=module-name
command in which the same module name was specified. (module-name
specifies a module for which a source directory search list is to be canceled).
As a result, the debugger searches for the source file of the specified module
in the same directory that it was in at compile time. The
CANCEL SOURCE/MODULE=module-name command does not cancel the
effect of a previous SET SOURCE command, or of a
SET SOURCE/MODULE=module-name command in which a different
module name was specified.

When used without a qualifier, the CANCEL SOURCE command cancels
the effect of a previous SET SOURCE command used without a qualifier.
CANCEL SOURCE does not cancel the effect of a previous SET SOURCE
/EDIT or SET SOURCE/MODULE=module-name commands.

See the qualifier descriptions for an explanation of their effects.

The /EDIT qualifier is needed when the files used for the display of source
code are different from the files to be edited by means of the EDIT command.
This is the case with Ada programs. For Ada programs, the (SET, SHOW,
CANCEL) SOURCE commands affect the search of files used for source
display (the "copied" source files in Ada program libraries); the (SET, SHOW,
CANCEL) SOURCE/EDIT commands affect the search of the source files that
you edit when using the EDIT command. If you use /MODULE with /EDIT,
the effect of /EDIT is further qualified by /MODULE.

Related commands: (SET, SHOW) SOURCE, (SET, SHOW)
MAX_SOURCE_FJLES.

CD-23

CANCEL SOURCE

EXAMPLE
OBG> SHOW SOURCE
source directory search list for COBOLTEST:

[]
SYSTEM: : DEVICE: [PROJD]

source directory search list for all other modules:
[PROJA]
[PROJB]
[PETER. PROJC]

DBG> CANCEL SOURCE
OBG> SHOW SOURCE
source directory search list for COBOLTEST:

[]
SYSTEM: : DEVICE: [PROJO]

DBG> CANCEL SOURCE/MODULE=COBOLTEST
DBG> SHOW SOURCE
no directory search list in effect

CD-24

In this example, the CANCEL SOURCE command cancels the effect of a
previous SET SOURCE command. It does not cancel any source directory
search lists for specific modules. But the
CANCEL SOURCE/MODULE=module-name (in this case, COBOLTEST)
cancels the source directory search list for that module.

CANCEL TRACE

CANCEL TRACE

Cancels tracepoints.

FORMAT CANCEL TRACE [address-expression[, ...]]

PARAMETERS address-expression
Specifies a tracepoint to be canceled. Do not use the asterisk wildcard
character (*). Do not specify an address expression when using any of the
qualifiers except for /EVENT.

QUALIFIERS /ALL
Cancels all tracepoints. Do not specify an address expression with /ALL.

/BRANCH
Cancels the effect of a previous SET TRACE/BRANCH command. Do not
specify an address expression with /BRANCH.

/CALL
Cancels the effect of a previous SET TRACE/CALL command. Do not specify
an address expression with /CALL.

/EVENT=event-name
Note: This qualifier applies only to Ada and SCAN. See the VAX Ada
and VAX SCAN documentation for complete information.

Cancels the effect of a previous SET TRACE/EVENT=event-name command.
The effect of CANCEL TRACE/EVENT=event-name is symmetrical with the
effect of SET TRACE/EVENT=event-name. To cancel a tracepoint, specify
the event name and address expression (if any) exactly as you did with the
SET TRACE/EVENT command, excluding any WHEN or DO clauses. Event
names depend on the run-time facility and are identified in Appendix E for
Ada and SCAN. You can also display the event names associated with the
current run-time facility by entering the SHOW EVENT_FACILITY command.

/EXCEPTION
Cancels the effect of a previous SET TRACE/EXCEPTION command. Do not
specify an address expression with /EXCEPTION.

/INSTRUCT/ON
Cancels the effect of a previous SET TRACE/INSTRUCTION command. Do
not specify an address expression with /INSTRUCTION.

/LINE
Cancels the effect of a previous SET TRACE/LINE command. Do not specify
an address expression with /LINE.

CD-25

CANCEL TRACE

DESCRIPTION

EXAMPLES

The effect of the CANCEL TRACE command is symmetrical with the effect of
the SET TRACE command.

To cancel a tracepoint that was established at a specific location with the
SET TRACE command, specify that same location with the CANCEL
TRACE command. To cancel tracepoints that were established on a class
of instructions or events by using a qualifier with the SET TRACE command
(/CALL, /LINE, /EXCEPTION, /EVENT, and so on), specify that same
qualifier with the CANCEL TRACE command.

Generally, you must specify either an address expression or a qualifier, but
not both. The only exception is with the /EVENT qualifier, which requires
that you specify an event name and permits you also to specify an address
expression for certain event names.

Note that the command CANCEL ALL also cancels all tracepoints.

Related commands: (SET, SHOW) TRACE, (SET, SHOW, CANCEL) BREAK,
CANCEL ALL, (SET, SHOW) EVENT_FACILITY.

D DBG> CANCEL TRACE MAIN\LOOP+10

This command cancels the tracepoint at the location MAIN\LOOP+lO.

~ DBG> CANCEL TRACE/ALL

This command cancels all tracepoints you have set.

CD-26

CANCEL TYPE/OVERRIDE

CANCEL TYPE/OVERRIDE

Cancels the override type established by a previous SET TYPE/OVERRIDE
command.

FORMAT CANCEL TYPE/OVERRIDE

PARAMETERS None.

QUALIFIERS /OVERRIDE
This qualifier must be specified.

DESCRIPTION The CANCEL TYPE/OVERRIDE command sets the current override type to
"none". As a result, a program location associated with a compiler generated
type is interpreted according to that type.

Related commands: (SET, SHOW) TYPE/OVERRIDE, EXAMINE, DEPOSIT.

EXAMPLE

DBG> CANCEL TYPE/OVERRIDE

This command cancels the effect of a previous SET TYPE/OVERRIDE
command.

CD-27

CANCEL WATCH

CANCEL WATCH

Cancels watchpoints.

FORMAT CANCEL WATCH [address-expression[, ...]]

PARAMETERS address-expression
Specifies a watchpoint to be canceled. With high-level languages, this is
typically the name of a variable. Do not use the asterisk wildcard character
(*). Do not specify an address expression with /ALL.

QUALIFIERS /ALL
Cancels all watchpoints. Do not specify an address expression with /ALL.

DESCRIPTION The effect of the CANCEL WATCH command is symmetrical with the effect
of the SET WATCH command. To cancel a watchpoint that was established
at a specific location with the SET WATCH command, specify that same
location with the CANCEL WATCH command. Thus, to cancel a watchpoint
that was set on an entire aggregate, specify the aggregate in the CANCEL
WATCH command; to cancel a watchpoint that was set on one element of an
aggregate, specify that element in the CANCEL WATCH command.

EXAMPLES

Note that the CANCEL ALL command also cancels all watchpoints.

Related commands: (SET, SHOW) WATCH, (SET, SHOW, CANCEL) BREAK,
(SET, SHOW, CANCEL) TRACE, CANCEL ALL.

iJ DBG> CANCEL WATCH SUB2\TOTAL

This command cancels the watchpoint at variable TOTAL in module SUB2.

~ DBG> CANCEL WATCH/ALL

This command cancels all watchpoints you have set.

CD-28

CANCEL WINDOW

CANCEL WINDOW

Permanently deletes a screen window definition.

FORMAT CANCEL WINDOW [wname[, ...]]

PARAMETERS wname

QUALIFIERS

DESCRIPTION

EXAMPLE

Specifies the name of a screen window definition to be canceled. Do not use
the asterisk wildcard character (*). Do not specify a window definition name
with /ALL.

/ALL
Cancels all predefined and user-defined window definitions. Do not specify a
window definition name with /ALL.

When a window definition is canceled, you can no longer use its name in ·
DISPLAY or SET DISPLAY commands. The command does not affect any
displays.

Related commands: (SET, SHOW) WINDOW, (SET, SHOW, CANCEL)
DISPLAY.

DBG> CANCEL WINDOW MIDDLE

This command permanently deletes the screen window definition MIDDLE.

CD-29

CTRL/C, CTRL/W, CTRL/Y, CTRL/Z

CTRL/C, CTRL/W, CTRL/Y, CTRL/Z

CTRL/Y interrupts a debugging session, or interrupts a program that
is running without debugger control (enabling you to then invoke the
debugger with the DCL DEBUG command). CTRL/C is like CTRL/Y unless
the program has a CTRL/C AST service routine enabled. CTRL/Z ends
a debugging session (like EXIT). CTRL/W refreshes the screen in screen
mode (like DISPLAY /REFRESH).

FORMAT lcTRL/cl

ICTRL/WI

ICTRL/YI

ICTRL/ZI

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION For an explanation of the CTRL/W and CTRL/Z commands, see the
descriptions of the DISPLAY /REFRESH and EXIT commands, respectively.

CD-30

Unless the system or the user program has a CTRL/C AST service routine
enabled, CTRL/Y and CTRL/C have the same effect: the image is interrupted
but unchanged, the terminal type-ahead buffer is purged, and the command
interpreter receives control.

You can use the CTRL/Y command to (1) interrupt a debugging session or
(2) interrupt an executing program in order to then invoke the debugger.

When you enter a CTRL/Y_.__DEBUG sequence, the DCL command
interpreter causes an SS$_DEBUG exception to be delivered. Note that
you cannot invoke the debugger with a CTRL/Y-DEBUG sequence if your
program has a handler that will prevent the SS$_DEBUG exception from
reaching the traceback handler.

Interrupting a Debugging Session

Pressing CTRL/Y interrupts a debugging session and is useful when the
program is executing an infinite loop that does not have a breakpoint, or
when you want to interrupt a debugger command that takes a long time to
complete. You are then at DCL command level. You may then want to enter
any of the following DCL commands:

• DEBUG - Control passes to the debugger. You return to the debugging
session, but execution is suspended and the debugger prompt is
displayed. You can then enter debugger commands.

• CONTINUE - You return to the debugging session at the same point
where you interrupted it. Control passes either to the debugger. or to your
program, whichever had control when you pressed CTRL/Y.

EXAMPLE
DBG> GO

DBG; I CTRL/Y I
Interrupt
$ DEBUG
DBG>

•

•

•

CTRL/C, CTRL/W, CTRL/Y, CTRL/Z

EXIT - Causes normal termination of the debugging session. The
debugger exit handler is executed.

STOP - Causes abnormal termination of the debugging session. The
debugger exit handler is not executed.

Any other DCL command - Causes orderly termination of the debugging
session. The debugger exit handler is executed.

Interrupting an Executing Program

Interrupting program execution with CTRL/Y is useful if your program is
running without the debugger and you want to invoke the debugger.

To use this feature, you must, as a minimum, have linked your program with
the /TRACEBACK qualifier. To reference all of your program's symbols, you
must have compiled and linked with the /DEBUG qualifier (in that case,
you would use the DCL command RUN /NODEBUG to execute the program
without the debugger).

Related commands: ($)DEBUG,($) CONTINUE, EXIT, QUIT,
DISPLAY /REFRESH.

In this example, a debugging session is interrupted with CTRL/Y and
resumed with the DCL command DEBUG. The debugger prompt indicates
that debugger commands may now be entered.

CD-31

DECLARE

DECLARE

FORMAT

PARAMETERS

QUALIFIERS

DESCRIPTION

CD-32

Declares a formal parameter within a command procedure. This enables
you to pass an actual parameter to the procedure when entering an @
(Execute Procedure) command.

DECLARE p-name:p-kind [,p-name:p-kind, ...]

p-name
Specifies a formal parameter (a symbol) that is declared within the command
procedure.

Do not specify a null parameter (represented either by two consecutive
commas or by a comma at the end of the command).

p-kind
Specifies the parameter kind of a formal parameter. Valid keywords are the
following:

ADDRESS Specifies that the actual parameter is to be interpreted as an
address expression. Has the same effect as the command
DEFINE/ ADDRESS p-name = actual-parameter.

COMMAND Specifies that the actual parameter is to be interpreted as a
command. Has the same effect as the command
DEFINE/COMMAND p-name =actual-parameter.

VALUE Specifies that the actual parameter is to be interpreted as a value
expression in the current language. Has the same effect as the
command DEFINE/VALUE p-name = actual-parameter.

None.

The DECLARE command is valid only within a command procedure.

The DECLARE command binds one or more actual parameters (specified on
the command line following the"@ file-spec") to formal parameters (symbols)
declared within a command procedure.

Each p-name:p-kind pair specified by a DECLARE command binds one
formal parameter to one actual parameter. Formal parameters are bound
to actual parameters in the order in which the debugger processes the
parameter declarations. If you specify several formal parameters on a single
DECLARE command, the leftmost formal parameter is bound to the first
actual parameter, the next formal parameter is bound to the second, and
so on. If you use a DECLARE command in a loop, the formal parameter
is bound to the first actual parameter on the first iteration of the loop; the
same formal parameter is bound to the second actual parameter on the next
iteration, and so on.

EXAMPLES

DECLARE

Each parameter declaration acts like a DEFINE command: it associates
a formal parameter with ,an address expression, a command, or a value
expression in the current language, according to the parameter kind specified.
The formal parameters themselves are consistent with those accepted by the
DEFINE command and may in fact be deleted from the symbol table with
the DELETE command. For more information, see the descriptions of the
DEFINE and DELETE commands.

The %PARCNT built-in symbol, which can be used only within a command
procedure, enables you to pass a variable number of parameters to a
command procedure. The value of %P ARCNT is the number of actual
parameters passed to'the command procedure.

Related commands: @(Execute Procedure), DEFINE, DELETE.

[I ! ***** Command Procedure EXAM.COM *****
SET OUTPUT VERIFY
DECLARE K:ADDRESS
EXAMINE K

DBG> ©EXAM ARR4
%DEBUG-I-VERIFYIC, entering command procedure EXAM

DECLARE K:ADDRESS
EXAMINE K

PROG_8\ARR4
(1): 18
(2): 1
(3): 0
(4): 1

%DEBUG-I-VERIFYIC, exiting command procedure EXAM

In this example, the command DECLARE K:ADDRESS declares the formal
parameter K within command procedure EXAM.COM. When EXAM.COM
is executed, the actual parameter passed to EXAM.COM is interpreted as an
address expression, and the command EXAMINE K displays the value of
that address expression. The command SET OUTPUT VERIFY causes the
commands to echo when they are read by the debugger.

At the debugger prompt, the command @EXAM ARR4 executes EXAM.COM,
passing the actual parameter ARR4. Within EXAM.COM, ARR4 is interpreted
as an address expression (an array variable, in this case).

~ ***** Debugger Command Procedure EXAM_GO.COM *****
DECLARE L:ADDRESS, M:COMMAND
EXAMINE L; M

DBG> ©EXAM_GO X "©DUMP"

In this example, the command procedure EXAM_GO.COM accepts two
parameters, an address expression (L) and a command string (M). The address
expression is then examined and the command is executed.

At the debugger prompt, the command @EXAM_GO X "@DUMP" executes
EXAM_GO.COM, passing the address expression X and the command string
@DUMP.

CD-33

DECLARE

~ ! ***** Debugger Command Procedure VAR.DEG *****
SET OUTPUT VERIFY
FOR I = 1 TO %PARCNT DO (DECLARE X:VALUE; EVALUATE X)

DEG> ©VAR.DEG 12,37,45
%DEEUG-I-VERIFYIC, entering command procedure VAR.DEG

FOR I = 1 TO %PARCNT DO (DECLARE X:VALUE; EVALUATE X)
12
37
45
%DEEUG-I-VERIFYIC, exiting command procedure VAR.DBG

CD-34

In this example, the command procedure VAR.DBG accepts a variable number
of parameters. That number is stored in the built-in symbol %P ARCNT.

At the debugger prompt, the command @VAR.DBG executes VAR.DBG,
passing the actual parameters 12, 37, and 45. Therefore, %PARCNT has the
value 3, and the FOR loop is repeated 3 times. The FOR loop causes the
DECLARE command to bind each of the three actual parameters (starting
with 12) to a new declaration of X. Each actual parameter is interpreted as a
value expression in the current language, and the command EVALUATE X
displays that value.

DEFINE

DEFINE

Assigns a symbolic name to an address expression, command, or value.

FORMAT DEFINE symbol-name=parameter
[,symbol-name=parameter, ... }

PARAMETERS symbol-name

QUALIFIERS

DESCRIPTION

Specifies a symbolic name to be assigned to an address, command, or
value. The symbolic name can be composed of alphanumeric characters

, and underscores. The debugger converts lowercase alphabetic characters to
uppercase. The first character must not be a number. The symbolic name
must be no more than 31 characters long.

parameter
Depends on the qualifier specified.

/ADDRESS
Specifies that the defined symbol is an abbreviation for an address expression.
In this case, parameter is an address expression. DEFINE/ ADDRESS is the
default.

/COMMAND
Specifies that the defined symbol is to be treated as a new debugger
command. In this case, parameter is a quoted character string. This qualifier
provides, in simple cases, essentially the same capability as the DCL
command "symbol:=string." To define complex commands, you may need
to use command procedures with formal parameters. For more information
on declaring parameters to command procedures, see the description of the
DECLARE command.

/LOCAL
Specifies that the definition remain local to the command procedure in which
the DEFINE command is issued. The defined symbol is not visible at the
debugger command level. By default, a symbol defined within a command
procedure is visible outside that procedure.

/VALUE
Specifies that the defined symbol is an abbreviation for a value. In this case,
parameter is a language expression in the current language.

The DEFINE/ ADDRESS command enables you to assign a symbolic name
to an address expression in your program. For example, you can define
a symbol for a nonsymbolic program location or for a symbolic program
location having a long path name prefix. Then, you can refer to that program
location by the newly defined symbol. /ADDRESS is the default definition
qualifier.

CD-35

DEFINE

EXAMPLES

The DEFINE/COMMAND command enables you to define abbreviations for
debugger commands or even define new commands, either from the debugger
command level or from command procedures.

The DEFINE/VALUE command enables you to assign a symbolic name to a
value (or the result of evaluating a language expression).

Use the /LOCAL qualifier to confine symbol definitions to command
procedures. By default, defined symbols are global (visible outside the
command procedure).

If you plan to enter several DEFINE commands with the same qualifier, you
can first use the SET DEFINE command to establish a new default qualifier
(for example, SET DEFINE COMMAND makes the DEFINE command behave
like DEFINE/COMMAND). Then you do not have to use that qualifier with
the DEFINE command. You can override the current default qualifier for the
duration of a single DEFINE command by specifying another qualifier.

In symbol translation, the debugger searches symbols you define during
the debugging session first. So if you define a symbol that already exists in
your program, the debugger translates the symbol according to its defined
definition, unless you specify a path name prefix.

If a symbol is redefined, the previous definition is canceled, even if different
qualifiers were used with the DEFINE command.

Definitions created with the DEFINE/ ADDRESS and DEFINE/VALUE
commands are available only when the image in whose context they
were created is the current image. If you use the SET IMAGE command to
establish a new current image, these definitions are temporarily unavailable.
Definitions created with the DEFINE/COMMAND and DEFINE/KEY
commands are always available for all images, however.

Use the SHOW SYMBOL/DEFINED command to determine the equivalence
value of a symbol.

Use the DELETE command to cancel a symbol definition.

Related commands: SHOW DEFINE, SHOW SYMBOL/DEFINED, DELETE,
SET IMAGE, DECLARE.

D DBG> DEFINE CHK=MAIN\LOOP+10

This command assigns the symbol CHK to the address MAIN\LOOP+lO.

~ DBG> DEFINE/VALUE COUNTER=O
DBG> SET TRACE/SILENT R DO (DEFINE/VALUE COUNTER = COUNTER+1)

In this example, the first command assigns a value of 0 to the symbol
COUNTER. The second command causes the debugger to increment the
value of the symbol COUNTER by 1 whenever address R is encountered. In
other words, this example counts the number of calls to R.

~ DBG> DEFINE/COMMAND BRE = "SET BREAK"

CD-36

This command assigns the symbol BRE to the debugger command SET
BREAK.

DEFINE/KEY

DEFINE/KEY

Assigns a string to a function key.

FORMAT DEFINE/KEY key-name "equiv-string"

PARAMETERS key-name

Key-name

PF1

PF2

PF3

PF4

KPO, KP 1, ... ,KP9

PERIOD

COMMA

MINUS

ENTER

E1

E2

E3

E4

E5

E6

HELP

DO

F6, F7, ... I F20

QUALIFIERS

Specifies a function key to be assigned a string. Valid key names are the
following:

LK201 Keyboard

PF1

PF2

PF3

PF4

VT100-type

PF1

PF2

PF3

PF4

VT52-type

Blue

Red

Black

Keypad 0, ... ,9 Keypad 0, ... ,9 Keypad 0, ... ,9

Keypad period (.) Keypad period (.)

Keypad comma (,) Keypad comma (,)

Keypad minus (-) Keypad minus (-)

ENTER ENTER ENTER

Find

Insert Here

Remove

Select

Prev Screen

Next Screen

Help

Do

F6, F7, ... I F20

equiv-string
Specifies the string to be processed when the specified key is pressed.
Typically, this is one or more debugger commands. If the string includes any
spaces or non-alphanumeric characters (for example, a semicolon separating
two commands) enclose the string in quotation marks (").

/[NO JECHO
Controls whether the command line is displayed after the key has
been pressed. The default is /ECHO. Do not use /NOECHO with
/NOTERMINATE.

CD-37

DEFINE/KEY

DESCRIPTION

CD-38

/[NO]/F _STATE=(state-name[, ...])
Specifies one or more states to which a key definition applies. /IF_STATE
assigns the key definition to the specified states. You may specify predefined
states, such as DEFAULT and GOLD, or user-defined states. A state name
can be any appropriate alphanumeric string. /NOIF_STATE (default) assigns
the key definition to the current state.

/[NO]LOCl<-STATE
Controls how long the state set by /SET_STATE remains in effect after the
specified key is pressed. /LOCK_STATE causes the state to remain in effect
until it is changed explicitly (for example, with a SET KEY /STATE command).
/NOLOCK_STATE (default) causes the state to remain in effect only until
the next terminator character is typed, or until the next defined function key
is pressed.

/[NOJLOG
Controls whether a message is displayed indicating that the key definition has
been successfully created. /LOG (default) displays the message.

/[NO]SET _STATE=state-name
Controls whether pressing the key changes the current key state.
/SET_STATE causes the current state to change to the specified state when
you press the key. /NOSET_STATE (default) causes the current state to
remain in effect.

/[NO]TERMINATE
Controls whether the specified string is to be terminated (processed) when
the key is pressed. /TERMINATE causes the string to be terminated when
the key is pressed. /NOTERMINATE (default) allows you to press other keys
before terminating the string by pressing the RETURN key.

Keypad mode must be enabled (SET MODE KEYPAD) before you can use
this command. Keypad mode is enabled by default.

The DEFINE/KEY command enables you to assign a string to a function key,
overriding any predefined function that was bound to that key (the predefined
key functions are listed in Appendix B). When you then press the key, the
debugger enters the currently associated string into your command line. The
DEFINE/KEY command is like the DCL DEFINE/KEY command.

On VT52 and VTlOO-series terminals, the function keys you can use include
all of the numeric keypad keys. Newer terminals and workstations have
the LK201 keyboard. On LK201 keyboards, the function keys you can use
include all of the numeric keypad keys, the nonarrow keys of the editing
keypad (Find, Insert Here, and so on), and keys F6 through F20 at the top of
the keyboard.

A key definition remains in effect until you redefine the key, enter the
DELETE/KEY command for that key, or exit the debugger. You can include
key definitions in a command procedure, such as your debugger initialization
file.

The /IF-STATE qualifier enables you to increase the number of key
definitions available on your terminal. The same key can be assigned any
number of definitions as long as each definition is associated with a different
state.

EXAMPLES

DEFINE/KEY

By default, the current key state is the "DEFAULT" state. The current state
may be changed with the SET KEY /STATE command, or by pressing a key
that causes a state change (a key that was defined with the
DEFINE/KEY /LOCK_STATE/STATE qualifier combination).

Related commands: DELETE/KEY, SHOW KEY, SET KEY.

i] DBG> SET KEY/STATE=GOLD
%DEBUG-I-SETKEY, keypad state has been set to GOLD
DBG> DEFINE/KEY/TERMINATE KP9 "SET RADIX/OVERRIDE HEX"
%DEBUG-I-DEFKEY, GOLD key KP9 has been defined

In this example, the SET KEY command establishes GOLD as the current key
state. The DEFINE/KEY command assigns the SET RADIX/OVERRIDE HEX
command to keypad key 9 for the current state (GOLD). The command is
processed when the key is pressed.

fa DBG> DEFINE/KEY/IF_STATE=BLUE KP9 "SET BREAK %LINE "
%DEBUG-I-DEFKEY, BLUE key KP9 has been defined

This command assigns the unterminated command string "SET BREAK
%LINE" to keypad key 9 for the BLUE state. After pressing the keypad
key sequence BLUE-KP9, you can enter a line number and then press the
RETURN key to terminate and process the SET BREAK command.

~ DBG> SET KEY/STATE=DEFAULT
%DEBUG-I-SETKEY, keypad state has been set to DEFAULT
DBG> DEFINE/KEY/SET_STATE=RED/LOCK_STATE F12 ""
%DEBUG-I-DEFKEY, DEFAULT key F12 has been defined

In this example, the SET KEY command establishes DEFAULT as the current
state. The DEFINE/KEY command makes key F12 (LK201 keyboard) a state
key. Pressing F12 while in the DEFAULT state causes the current state to
become RED. The key definition is not terminated and has no other effect
(a null string is assigned to F12). After pressing Fl2, you can enter "RED"
commands by pressing keys that have definitions associated with the RED
state.

CD-39

DELETE

DELETE

FORMAT

Deletes a symbol definition that was established with the DEFINE
command.

DELETE {symbol-name[, ...]]

PARAMETERS symbol-name
Specifies a symbol whose definition is to be deleted from the DEFINE symbol
table. Do not use the asterisk wildcard character (*). Do not specify a symbol
name with /ALL. If you use /LOCAL, the symbol specified must have been
previously defined with the DEFINE/LOCAL command. If you do not specify
/LOCAL, the symbol specified must have been previously defined with the
DEFINE command without the /LOCAL qualifier.

QUALIFIERS /ALL

DESCRIPTION

EXAMPLES

Deletes all global DEFINE definitions. If you also specify /LOCAL, deletes
all local DEFINE definitions associated with the current command procedure
(but not the global DEFINE definitions). Do not specify a symbol name with
/ALL.

/LOCAL
Deletes the (local) definition of the specified symbol from the current
command procedure. The symbol must have been previously defined with
the DEFINE/LOCAL command.

The DELETE command deletes either a global DEFINE symbol or a local
DEFINE symbol. A global DEFINE symbol is a symbol defined with the
DEFINE command without the /LOCAL qualifier. A local DEFINE symbol is
a symbol defined in a debugger command procedure with the
DEFINE/LOCAL command, so that its definition is confined to that command
procedure.

Related command: DEFINE, SHOW SYMBOL/DEFINED, SHOW DEFINE,
DECLARE.

iJ DBG> DEFINE X = INARR, Y = OUTARR
DBG> DELETE X, Y

CD-40

In this example, the DEFINE command defines X and Y as global symbols
corresponding to INARR and OUTARR, respectively. The DELETE command
deletes these two symbol definitions from the global symbol table.

DELETE

~ DBG> DELETE/ ALL/LOCAL

In this example, the DELETE/ ALL/LOCAL commmand deletes all local
symbol definitions from the current command procedure.

CD-41

DELETE/KEY

DELETE/KEY

FORMAT

Deletes a key definition that was established with the DEFINE/KEY
command or, by default, by the debugger.

DELETE/KEY [key-name}

PARAMETERS key-name

Key-name

PF1

PF2

PF3

PF4

KPO, KP1 I ••• ,KP9

PERIOD

COMMA

MINUS

ENTER

E1

E2

E3

E4

E5

E6

HELP

DO

F6, F7, ... I F20

QUALIFIERS

CD-42

Specifies a key whose definition is to be deleted. Do not use the asterisk
wildcard character (*). Do not specify a key name with /ALL. Valid key
names are as follows:

LK201 Keyboard

PF1

PF2

PF3

PF4

Keypad 0, ... ,9

Keypad period (.)

Keypad comma (,)

Keypad minus (-)

ENTER

Find

Insert Here

Remove

Select

Prev Screen

Next Screen

Help

Do

F6, F7, ... I F20

/ALL

VT100-type

PF1

PF2

PF3

PF4

Keypad 0, ... ,9

Keypad period (.)

Keypad comma (,)

Keypad minus (-)

ENTER

VT52-type

Blue

Red

Black

Keypad 0, ... ,9

ENTER

Deletes all key definitions in the specified state. Do not specify a key name
with /ALL. If you do not specify a state, all key definitions in the current
state are deleted. Use the /STATE qualifier to specify one or more states.

/[NO]LOG
Controls whether a message is displayed indicating that the specified key
definitions have been deleted. /LOG (default) displays the message.

DESCRIPTION

EXAMPLES

DELETE/KEY

/[NO]STATE=(state-name [, ...])
Selects one or more states for which a key definition is to be deleted. /STATE
deletes key definitions for the specified states. You may specify predefined
key states, such as DEFAULT and GOLD, or user-defined states. A state
name can be any appropriate alphanumeric string. /NOSTATE (default)
deletes the key definition for the current state only.

By default, the current key state is the "DEFAULT" state. The current state
may be changed with the SET KEY/STATE command, or by pressing a key
that causes a state change (a key that was defined with the
DEFINE/KEY /LOCK_STATE/STATE qualifier combination).

The DELETE /KEY command is like the DCL DELETE /KEY command.

Keypad mode must be enabled (SET MODE KEYPAD) before you can use
this command. Keypad mode is enabled by default.

Related commands: DEFINE/KEY, SHOW KEY, SET KEY.

iJ DBG> DELETE/KEY KP4
%DEBUG-I-DELKEY, DEFAULT key KP4 has been deleted

This command deletes the key definition for keypad key KP4 in the state last
set by the SET KEY command (by default, this is the DEFAULT state).

~ DBG> DELETE/KEY/STATE=(BLUE,RED) COMMA
%DEBUG-I-DELKEY, BLUE key COMMA has been deleted
%DEBUG-I-DELKEY, RED key COMMA has been deleted

This command deletes the key definition for keypad key COMMA in the
BLUE and RED states.

CD-43

DEPOSIT

DEPOSIT

FORMAT

PARAMETERS

QUALIFIERS

CD-44

Changes the value of a program variable. More generally, deposits a new
value at the location denoted by an address expression.

DEPOSIT address-expression= language-expression

address-expression
Specifies the location into which the value of the language expression is
to be deposited. With high-level languages, this is typically the name of a
variable and may include a path name to specify the variable uniquely. More
generally, an address expression may also be a virtual memory address or a
register and may be composed of numbers (offsets) and symbols, as well as
one or more operators, operands, or delimiters. Appendix D identifies the
operators that may be used in address expressions.

You cannot specify an entire aggregate variable (a composite data structure
such as an array or a record). To specify an individual array element or a
record component, use the syntax of the current language.

language-expression
Specifies the value to be deposited. You can specify any language expression
that is valid in the current language. For most languages, the expression can
include the names of simple (non-structured, single-valued) variables but not
the names of aggregate variables (such as ·arrays or records). If the expression
contains symbols with different compiler generated types, the debugger uses
the rules of the current language to evaluate the expression.

If the expression is an ASCII string or a VAX assembly-language instruction,
you must enclose it in quotation marks (") or apostrophes ('). If the string
contains quotation marks or apostrophes, use the other delimiter to enclose
the string.

If the string has more characters (1-byte ASCII) than can fit into the program
location denoted by the address expression, the debugger truncates the extra
characters from the right. If the string has fewer characters, the debugger
pads the remaining characters to the right of the string by inserting ASCII
space characters.

/ASCIC
Deposits a counted ASCII string into the specified location. You must specify
a string on the right-hand side of the equal sign. The deposited string is
preceded by a 1-byte count field that gives the length of the string. /AC is
also accepted.

/ASCID
Deposits an ASCII string into the address given by a string descriptor that
is at the specified location. You must specify a string on the right-hand side
of the equal sign. The specified location must contain a string descriptor. If
the string lengths do not match, the string is either truncated on the right or
padded with blanks on the right. /AD is also accepted.

DEPOSIT

/ASCll:n
Deposits n bytes of an ASCII string into the specified location. You must
specify a string on the right-hand side of the equal sign. If its length is not n,
the string is truncated or padded with blanks on the right. If n is omitted, the
actual length of the data item at the specified location is used.

/ASCIW
Deposits a counted ASCII string into the specified location. You must specify
a string on the right-hand side of the equal sign. The deposited string is
preceded by a 2-byte count field that gives the length of the string. /AW is
also accepted.

/ASCIZ
Deposits a zero-terminated ASCII string into the specified location. You must
specify a string on the right-hand side of the equal sign. The deposited string
is terminated by a zero byte that indicates the end of the string. /AZ is also
accepted.

/BYTE
Deposits a 1-byte integer into the specified location.

/D_FLOAT
Converts the expression on the right-hand side of the equal sign to the
D_floating type (length 8 bytes) and deposits the result into the specified
location. Values of type D_floating may range from .29 * 10-38 to 1. 7 * 1038
with approximately 16 decimal digits precision.

/DATE_ TIME
Converts a string representing a date and time (for example, 21-DEC-1988
21:08:47.15) to the VMS internal format for date and time and deposits that
value (length 8 bytes) into the specified location. Specify an absolute date
and time in the following format: [dd-mmm-yyyy[:]] [hh:mm:ss.cc].

/FLOAT
Converts the expression on the right-hand side of the equal sign to the
F_floating type (length 4 bytes) and deposits the result into the specified
location. Values of type F_floating may range from .29 * 10-38 to 1. 7 * 1038
with approximately 7 decimal digits precision.

/G_FLOAT
Converts the expression on the right-hand side of the equal sign to the
G_floating type (length 8 bytes) and deposits the result into the specified
location. Values of type G_floating may range from .56 * 10-308 to .9 * 10308
with approximately 15 decimal digits precision:

/H_FLOAT
Converts the expression on the right-hand side of the equal sign to the
H_floating type (length 16 bytes) and deposits the result into the specified
location. Values of type H_floating may range from .84*10-4932 to .59*104932
with approximately 33 decimal digits precision.

/INSTRUCTION
Deposits a VAX assembly-language instruction into the specified location.
The expression on the right-hand side of the equal sign must be a string
representing a VAX instruction.

CD-45

DEPOSIT

DESCRIPTION

CD-46

/LONGWORD
Deposits a longword integer (length 4 bytes) into the specified location.

/OCTAWORD
Deposits an octaword integer (length 16 bytes) into the specified location.

/PACKED:n
Converts the expression on the right-hand side of the equal sign to a packed
decimal representation and deposits the resulting value into the specified
location. The value of n is the number of decimal digits. Each digit occupies
one nibble (4 bits).

/QUADWORD
Deposits a quadword integer (length 8 bytes) into the specified location.

/TASK
Note: This qualifier applies only to Ada programs.

Deposits an Ada task value (a task name, or a task ID such as %TASK 3) into
the specified location.

/TYPE=(type-expression}
Converts the expression to be deposited to the type denoted by type­
expression (the name of a variable or data type declared in the program),
then deposits the resulting value into the specified location. This enables you
to specify a user-declared type.

/WORD
Deposits a word integer (length 2 bytes) into the specified location.

The DEPOSIT command may be used to change the contents of any memory
location or register that is accessible in your program. For high-level
languages the command is used mostly to change the value of a variable
(an integer, real, string, array, record, and so on).

The DEPOSIT command is like an assignment statement in most
programming languages. The value of the expression specified to the right of
the equal sign is assigned to the variable or other location specified to the left
of the equal sign. Note that for Ada and Pascal, you can use":=" instead of
"="in the command syntax.

The debugger recognizes the compiler generated types associated with
symbolic address expressions (symbolic names declared in your program).
Symbolic address expressions include the following:

• Variable names. When specifying a variable with the DEPOSIT
command, use the same syntax that is used in the source code.

• Routine names, labels, and line numbers. These are associated with
VAX instructions. You can deposit instructions using basically the same
techniques as when depositing into string variables. However, you
must also use the /INSTRUCTION qualifier or first enter a SET TYPE
INSTRUCTION or SET TYPE/OVERRIDE INSTRUCTION command.

DEPOSIT

In general, when you enter a DEPOSIT command, the debugger does the
following:

• It evaluates the address expression specified to the left of the equal sign,
to yield a program location.

• If the program location has a symbolic name, the debugger associates
the location with the symbol's compiler generated type. If the location
does not have a symbolic name (and, therefore, no associated compiler
generated type) the debugger associates the location with the type
longword integer, by default. This means that, by default, you can
deposit integer values that do not exceed 4 bytes into these locations.

• It evaluates the language expression specified to the right of the equal
sign, in the syntax of the current language and in the current radix, to
yield a value. The current language is the language last established with
the SET LANGUAGE command. If no SET LANGUAGE command was
entered, the current language is, by default, the language of the module
containing the main program.

• It checks that the value and type of the language expression is consistent
with the type of the address expression. If you try to deposit a value that
is incompatible with the type of the address expression, the debugger
issues a diagnostic message. If the value is compatible, the debugger
deposits the value into the location denoted by the address expression.

The debugger may do type conversion during a deposit operation if the
language rules allow it. For example a real value that is specified to the right
of the equal sign may be converted to an integer value if it is being deposited
into a location with an integer type. In general, the debugger tries to follow
the assignment rules for the current language.

There are several ways of changing the type associated with a program
location so that you can deposit data of a different type into that location:

• To change the default type for all locations that do not have a symbolic
name, you can specify a new type with the SET TYPE command.

• To change the default type for all locations (both those that do and do
not have a symbolic name), you can specify a new type with the SET
TYPE/OVERRIDE command.

• To override the type currently associated with a particular location for the
duration of a single DEPOSIT command, you can specify a new type by
means of a qualifier (/ ASCII:n, /BYTE, TYPE=(type-expression), and so
on).

The debugger can interpret and display integer data in any one of four
radixes: binary, decimal, hexadecimal, and octal. The default radix for both
data entry and display is decimal for all languages except BLISS and MACRO.
It is hexadecimal for BLISS and MACRO. You can use the SET RADIX and
SET RADIX/OVERRIDE commands to change the default radix.

The DEPOSIT command sets the current entity built-in symbols %CURLOC
and period (.) to the location denoted by the address expression specified.
Logical predecessors (%PREVLOC and circumflex (")) and successors
(%NEXTLOC and pressing the RETURN key) are based on the value of
the current entity.

Related commands: EXAMINE, EVALUATE, (SET, SHOW, CANCEL) RADIX,
(SET, SHOW) TYPE, CANCEL TYPE/OVERRIDE.

CD-47

DEPOSIT

EXAMPLES

D DBG> DEPOSIT I = 7

This command deposits the value 7 into the integer variable I.

~ DBG> DEPOSIT WIDTH = CURRENT_WIDTH + 24.80

This command deposits the value of the expression CURRENT_ WIDTH +
24.80 into the real variable WIDTH.

~ DBG> DEPOSIT STATUS = FALSE

This command deposits the value FALSE into the boolean variable STATUS.

~ DBG> IDEPOSIT PART_NUMBER = "WG-7619. 3-84"

This command deposits the string WG-7619.3-84 into the string variable
PART_NUMBER.

~ DBG> DEPOSIT EMPLOYEE.ZIPCODE = 02172

This command deposits the value 02172 into component ZIPCODE of record
EMPLOYEE.

~ DBG> DEPOSIT ARR(8) = 35
DBG> DEPOSIT ~ = 14

The first DEPOSIT command deposits the value 35 into element 8 of array
ARR. As a result, element 8 becomes the current entity. The second command
deposits the value 14 into the logical predecessor of element 8, namely
element 7.

(i DBG> FOR I 1 \TD 4 DO (DEPOSIT ARR(I) = 0)

This command deposits the value 0 into elements 1 through 4 of array ARR.

DBG> DEPOSIT COLOR = 3
%DEBUG-E-OPTNOTALLOW, operator "DEPOSIT" not allowed on given data type

The debugger alerts you when you try to deposit data of the wrong type
into a variable (in this. case, if you try to deposit an integer value into an
enumerated type variable). The E (error) message severity indicates that the
debugger does not make the assignment.

DBG> DEPOSIT VOLUME = - 100
%DEBUG-I-IVALOUTBNDS, value assigned is out of bounds at or near '-'

The debugger alerts you when you try to deposit an out-of-bounds value
into a variable (in this case a negative value). The I (informational) message
severity indicates that the debugger does make the assignment.

~ DBG> DEPOSIT/BYTE WORK = %HEX 21

This command deposits the expression %HEX 21 into location WORK and
converts it to a byte integer.

ilJ DBG> DEPOSIT/OCTAWORD BIGINT = 111222333444555

CD-48

This command deposits the expression 111222333444555 into location
BIGINT and converts it to an octaword integer.

DEPOSIT

[fa DBG> DEPOSIT/FLOAT BIGFLT = 1.11949*10**35

This command converts 1.11949*10**35 to an F_floating type value and
deposits it into location BIGFLT.

lEJ DBG> DEPOSIT/ASCII:10 WORK+20 = 'abcdefghij'

This command deposits the string "abcdefghij" into the location that is 20
bytes beyond that denoted by the symbol WORK.

[I] DBG> DEPOSIT/INSTR SUB2+2 = 'MOVL #20A,RO'

This command deposits the instruction MOVL #20A,RO' into the location
SUB2 + 2 bytes.

~ DBG> DEPOSIT/TASK VAR = %TASK 2
DBG> EXAMINE/HEX VAR
SAMPLE.VAR: 0016A040
DBG> EXAMINE/TASK VAR
SAMPLE.VAR: %TASK 2

The DEPOSIT command deposits the Ada task value % TASK 2 into location
VAR. The subsequent EXAMINE commands display the contents of VAR in
hexadecimal format and as a task value, respectively.

CD-49

DISABLE AST

DISABLE AST

Disables the delivery of asynchronous system traps (ASTs) in your
program.

FORMAT DISABLE AST

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The DISABLE AST command disables the delivery of ASTs in your program
and thereby prevents interrupts from occurring while the program is running.
If ASTs are delivered while the debugger is running (processing commands,
and so on), they are queued and are delivered when control is returned to the
program.

EXAMPLE
DBG> DISABLE AST
DBG> SHOW AST
ASTs are disabled

CD-50

The ENABLE AST command re-enables the delivery of ASTs, including any
pending ASTs (ASTs waiting to be delivered).

Related commands: (ENABLE, SHOW) AST.

The DISABLE AST disables the delivery of ASTs in your program, as
confirmed with the SHOW AST command.

DISPLAY

DISPLAY

Modifies an existing screen display.

FORMAT DISPLAY [disp-name [ATw-spec} [disp-kind]} [, ...]

PARAMETERS disp-name
Specifies a screen display to be displayed. You may specify any of the
following:

• A predefined display: SRC, OUT, PROMPT, INST, REG

• A display previously created with the SET DISPLAY command

• A pseudo-display name: %CURDISP, %CURSCROLL, %NEXTDISP,
%NEXTINST, %NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE

You must specify this parameter unless you use /GENERATE (parameter
optional), or /REFRESH (parameter not allowed).

You may specify more than one display, each with an optional window
specification (w-spec) and display kind (disp-kind).

w-spec
Specifies the screen window at which the display is to be positioned if you
want to change the position. You may specify any of the following:

• A predefined window. For example, RHl (right top half). See
Appendix C.

• A window definition previously established with the SET WINDOW
command.

• A window specification of the form (start-line, line-count [,start-column,
column-count]). The specification can include expressions which may
be based on the built-in symbols %PAGE and % WIDTH (for example,
%WIDTH/4).

If you omit the w-spec parameter, the screen position of the display is not
changed.

disp-kind
Specifies the new display kind if you want to change the kind of display.
Valid keywords are the following:

CD-51

DISPLAY

QUALIFIERS

CD-52

DO (command[; ...])

INSTRUCTION

INSTRUCTION (command)

OUTPUT

REGISTER

SOURCE

SOURCE (command)

Specifies an automatically updated output display.
The commands are executed in the order listed
each time the debugger gains control. Their
output forms the contents of the display. If you
specify more than one command, they must be
separated by semicolons.

Specifies an instruction display. If selected
as the current instruction display with the
SELECT /INSTRUCTION command, it displays the
output from subsequent EXAMINE/INSTRUCTION
commands.

Specifies an automatically updated instruction
display. The command specified must be
an EXAMINE/INSTRUCTION command. The
instruction display is updated each time the
debugger gains control.

Specifies an output display. If selected as the
current output display with the SELECT /OUTPUT
command, it displays any debugger output that
is not directed to another display. If selected
as the current input display with the SELECT
/INPUT command, it echoes debugger input. If
selected as the current error display with the
SELECT /ERROR command, it displays debugger
diagnostic messages.

Specifies an automatically updated register
display. The display is updated each time the
debugger gains control.

Specifies a source display. If selected as the
current source display with the SELECT /SOURCE
command, it displays the output from subsequent
TYPE or EXAMINE/SOURCE commands.

Specifies an automatically updated source display.
The command specified must be a TYPE or
EXAMINE/SOURCE command. The source
display is updated each time the debugger gains
control.

You cannot change the display kind of the PROMPT display.

/CLEAR
Erases the entire contents of a specified display. Do not use /GENERATE
with /CLEAR.

/[NO]DYNAMIC
Controls whether a display automatically adjusts its window dimensions
proportionally when the screen height or width is changed by a SET
TERMINAL command. By default (/DYNAMIC), all user-defined and
predefined displays adjust their dimensions automatically.

DISPLAY

/GENERATE
Regenerates the contents of a specified display. Only automatically generated
displays are regenerated. These include DO displays, register displays,
source (cmd-list) displays, and instruction (cmd-list) displays. The debugger
automatically regenerates all these kinds of displays before each prompt. If
no display is specified, regenerates the contents of all automatically generated
displays. Do not use /CLEAR with /GENERATE.

/HIDE
Places a specified display at the bottom of the display pasteboard. This makes
visible any display previously hidden by the specified display. It also hides
the specified display behind any other displays that share the same region of
the screen. You cannot hide the PROMPT display.

/HIDE has the same effect as /PUSH.

/[NO]MARl<-CHANGE
Controls whether the lines that change in a DO display each time it is
automatically updated are marked. When you use /MARK_CHANGE, any
lines in which some contents have changed since the last time the display
was updated are highlighted in reverse video. This qualifier is particularly
useful when you want any variables in an automatically updated display to
be highlighted when they change.

/NOMARK_CHANGE (default) specifies that any lines that change in DO
displays are not to be marked. This qualifier cancels the effect of a previously
entered /MARK_CHANGE qualifier on the specified display.

This qualifier is not applicable to other kinds of displays.

/[NO]POP
Controls whether a specified display is placed at the top of the display
pasteboard, ahead of any other displays but behind the PROMPT display. By
default (/POP), the display is placed at the top of the pasteboard and hides
any other displays that share the same region of the screen, except for the
PROMPT display. This is the default action of the DISPLAY command.

/NOPOP preserves the order of all displays on the pasteboard (same effect as
/NO PUSH).

/[NO]PUSH
/PUSH has the same effect as /HIDE. /NOPUSH preserves the order of all
displays on the pasteboard (same effect as /NOPOP).

/REFRESH
Refreshes the terminal screen. Do not specify any command parameters with
/REFRESH. You can also use CTRL/W to refresh the screen.

/REMOVE
Marks the display as being removed from the display pasteboard, so it is not
shown on the screen unless you explicitly request it with another DISPLAY
command. Although a removed display is not visible on the screen, it still
exists and its contents are preserved. You cannot remove the PROMPT
display.

CD-53

DISPLAY

DESCRIPTION

EXAMPLES
i] DBG> DISPLAY REG

/SIZE:n
Changes the maximum size of a display to n lines. If more than n lines are
written to the display, the oldest lines are lost as the new lines are added. If
you omit this qualifier, the maximum size is not changed.

For an output or DO display, /SIZE:n specifies that the display should
hold the n most recent lines of output. For a source or instruction display,
n gives the number of source lines or lines of instructions that can be
placed in the memory buffer at any one time. However, you can scroll a
source display over the entire source code of the module whose code is
displayed (source lines are paged into the buffer as needed). Similarly, you
can scroll an instruction display over all of the instructions of the routine
whose instructions are displayed (instructions are decoded from the image as
needed).

The DISPLAY command performs a variety of functions. Its major function
is to show the display you have requested. The display is placed on top of
the display pasteboard, ahead of the other displays but behind the PROMPT
display, which cannot be hidden. The specified display thus becomes visible,
and the portions of any displays that share the same region of the screen are
hidden (although these displays still exist).

With certain qualifiers, you can use this command to remove displays from
the terminal screen or to refresh the entire screen. You can also use this
command to change the display's screen window, to change its maximum size
in lines, or to change its kind or debug command list.

See Appendix B for keypad-key definitions associated with the DISPLAY
command.

Related commands: (SET, SHOW, CANCEL) DISPLAY, (SET, SHOW,
CANCEL) WINDOW, SELECT, EXPAND, MOVE, (SET, SHOW) TERMINAL.

This command shows the predefined register display, REG, at its current
window location.

DBG> DISPLAY NEWDISP AT RT2
DBG> SELECT/INPUT NEWDISP

CD-54

In this example, the DISPLAY command shows the user-defined display
NEWDISP at the right middle third of the screen. The SELECT /INPUT
command selects NEWDISP as the current input display. NEWDISP now
echoes debugger input.

EDIT

FORMAT

PARAMETERS

QUALIFIERS

DESCRIPTION

EDIT

Invokes the editor established with the SET EDITOR command. If no SET
EDITOR command was entered, invokes the VAX Language-Sensitive
Editor, if that editor is installed on your system.

EDIT [[module-name\} line-number}

module-name
Specifies the name of the module whose source file is to be edited. If you
specify a module name, you must also specify a line number. If you omit the
module name parameter, the source file whose code appears in the current
source display is chosen for editing.

line-number
A positive integer that specifies the source line on which the editor's cursor
is to be initially placed. If you omit this parameter, the cursor is initially
positioned at the start of the source line that is centered in the debugger's
current source display, or at the start of line 1 if the editor was set to
/NOSTART_pOSITION (see the SET EDITOR command description).

/[NOJEXIT
Controls whether you end the debugging session prior to invoking the editor.
If you specify /EXIT, the debugging session is terminated and the editor
is then invoked. If you specify /NOEXIT (default), the editing session is
started and you return to your debugging session after terminating the editing
session.

If you have not specified an editor with the SET EDITOR command, the
EDIT command invokes the VAX Language-Sensitive Editor in a spawned
subprocess (if the VAX Language-Sensitive Editor is installed on your system).
The typical (default) way to use the EDIT command is not to specify any
parameters. In this case, the editing cursor is initially positioned at the start
of the line that is centered in the currently selected debugger source display
(the current source display).

The SET EDITOR command provides options for invoking different editors,
either in a subprocess or through a callable interface.

Related commands: (SET, SHOW) EDITOR, (SET, SHOW, CANCEL)
SOURCE.

CD-55

EDIT

EXAMPLES

D DBG> EDIT

~ DBG> EDIT SWAP\12

In this example, the EDIT command spawns the VAX Language-Sensitive
Editor in a subprocess to edit the source file whose code appears in the
current source display. The editing cursor is positioned at the start of the line
that was centered in the source display.

In this example, the EDIT command spawns the VAX Language-Sensitive
Editor in a subprocess to edit the source file containing the module SWAP.
The editing cursor is positioned at the start of source line 12.

~ DBG> SET EDITOR/CALLABLE_EDT
DBG> EDIT

CD-56

In this example, the SET EDITOR/CALLABLE-EDT command establishes
that EDT is the default editor and is invoked through its callable interface
(rather than spawned in a subprocess). The EDIT command invokes EDT to
edit the source file whose code appears in the current source display. The
editing cursor is positioned at the start of source line l, because the default
qualifier /NOSTART_pQSITION applies to EDT.

ENABLE AST

ENABLE AST

Enables the delivery of asynchronous system traps (ASTs) in your
program.

FORMAT ENABLE AST

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The ENABLE AST command enables the delivery of ASTs while your
program is running, including any pending ASTs (ASTs waiting to be
delivered). If ASTs are delivered while the debugger is running (processing
commands, and so on), they are queued and are delivered when control

EXAMPLE
DBG> ENABLE AST
DBG> SHOW AST
ASTs are enabled

is returned to the program. Delivery of ASTs in your program is initially
enabled by default.

Related commands: (DISABLE, SHOW) AST.

The ENABLE AST command enables the delivery of ASTs in your program,
as confirmed with the SHOW AST command.

CD-57

EVALUATE

EVALUATE

FORMAT

Evaluates a language expression in the current language (by default, the
language of the module containing the main program).

EVALUATE language-expression[, ...]

PARAMETERS language-expression
Specifies any valid expression in the current language.

QUALIFIERS /BINARY

DESCRIPTION

CD-58

Specifies that the result be displayed in binary radix.

/CONDITION_ VALUE
Specifies that the expression be interpreted as a VMS condition value (the
kind of condition value you would specify using the condition-handling
mechanism). The message text corresponding to that condition value is then
displayed. The specified value must be an integer value.

/DECIMAL
Specifies that the result be displayed in decimal radix.

/HEXADECIMAL
Specifies that the result be displayed in hexadecimal radix.

/OCTAL
Specifies that the result be displayed in octal radix.

The debugger interprets the expression specified in an EVALUATE command
as a language expression, evaluates it in the syntax of the current language
and in the current radix, and displays its value as a literal (for example, an
integer value) in the current language.

The current language is the language last established with the SET
LANGUAGE command. If no SET LANGUAGE command was entered,
the current language is, by default, the language of the module containing the
main program.

If an expression contains symbols with different compiler generated types, the
debugger uses the type-conversion rules of the current language to evaluate
the expression.

The debugger can interpret and display integer data in any one of four
radixes: binary, decimal, hexadecimal, and octal. The current radix is the
radix last established with the SET RADIX command. If no SET RADIX
command was entered, the current radix for both data entry and display
is, by default, decimal for all languages except BLISS and MACRO. It is
hexadecimal for BLISS and MACRO. You can use a radix qualifier with the
EVALUATE command (/BINARY, /OCTAL, and so on) to display integer
data in some other radix. These qualifiers do not affect how the debugger

EXAMPLES

EVALUATE

interprets the data you specify - that is, they override the current output
radix, but not the input radix.

Debugger support for language-specific operators and constructs is described
in Appendix E.

Related commands: EVALUATE/ ADDRESS, (SET, SHOW) LANGUAGE,
(SET, SHOW, CANCEL) RADIX, (SET, SHOW) TYPE.

iJ DBG> EVALUATE 100. 34 * (14. 2 + 7. 9)
2217.514

This command uses the debugger as a calculator by multiplying 100.34 by
(14.2 + 7.9).

~ DBG> EVALUATE/OCTAL X
00000001512

This command evaluates the symbol X and displays the result in octal radix.

~ DBG> EVALUATE TOTAL + CURR_AMOUNT
8247.20

This command evaluates the sum of the values of two real variables, TOTAL
and CURR-AMOUNT.

~ DBG> DEPOSIT WILLING = TRUE
DBG> DEPOSIT ABLE = FALSE
DBG> EVALUATE WILLING AND ABLE
False

In this example, the EVALUATE command evaluates the logical AND of the
current values of two boolean variables, WILLING and ABLE.

~ DBG> EVALUATE COLOR'FIRST
RED

In this Ada example, this command evaluates the first element of the
enumeration type COLOR.

CD-59

EVALUATE/ ADDRESS

EVALUATE/ ADDRESS

FORMAT

Evaluates an address expression and displays the result as a virtual
memory address or a register name.

EVALUATE/ADDRESS address-expression[, ...]

PARAMETERS address-expression
Specifies an address expression of any valid form (for example, a routine
name, a variable name, a label, a line number, and so on).

QUALIFIERS /BINARY

DESCRIPTION

EXAMPLES

Specifies that the memory address is to be displayed in binary radix.

/DECIMAL
Specifies that the memory address is to be displayed in decimal radix.

/HEXADECIMAL
Specifies that the memory address is to be displayed in hexadecimal radix.

/OCTAL
Specifies that the memory address is to be displayed in octal radix.

The EVALUATE/ ADDRESS command enables you to determine the virtual
address or register associated with an address expression.

The debugger can interpret and display integer data in any one of four
radixes: binary, decimal, hexadecimal, and octal. The default radix for both
data entry and display is decimal for all languages except BLISS and MACRO.
It is hexadecimal for BLISS and MACRO. You can use a radix qualifier with
the EVALUATE command (/BINARY, /OCTAL, and so on) to display address
values in some other radix. Note that these qualifiers do not affect how the
debugger interprets the data you specify - that is, they override the current
output radix, but not the input radix.

If the value of a variable is currently stored in a register instead of virtual
memory, the EVALUATE/ ADDRESS command identifies the register. The
radix qualifiers have no effect in that case.

Related commands: EVALUATE, (SET, SHOW, CANCEL) RADIX,
SYMBOLIZE, SHOW SYMBOL/ ADDRESS.

i] DBG> EVALUATE/ADDRESS MODNAME\%LINE 110
3942

CD-60

This command displays the virtual memory address denoted by the address
expression MODNAME\ %LINE 110.

~ DBG> EVALUATE/ADDRESS/HEX A,B,C
000004A4
000004AC
000004AO

EVALUATE/ ADDRESS

This command displays the virtual memory addresses denoted by the address
expressions A, B, and C in hexadecimal radix.

~ DBG> EVALUATE/ADDRESS X
MOD3\%R1

This command indicates that variable Xis associated with register Rl. X is a
nonstatic (register) variable.

CD-61

EXAMINE

EXAMINE

FORMAT

PARAMETERS

QUALIFIERS

CD-62

Displays the current value of a program variable. More generally, displays
the value of the entity denoted by an address expression.

EXAMINE [address-expression[: address-expression]}
[, ... 1

address-expression
Specifies an entity to be examined. With high-level languages, this is typically
the name of a variable and may include a path name to specify the variable
uniquely. More generally, an address expression may also be a virtual
memory address or a register and may be composed of numbers (offsets)
and symbols, as well as one or more operators, operands, or delimiters.
Appendix D identifies the operators that may be used in address expressions.

If you specify the name of an aggregate variable (a composite data structure
such as an array or a record structure), the debugger displays the values of all
elements. For an array, the display shows the subscript (index) and value of
each array element. For a record, the display shows the name and value of
each record component.

To specify an individual array element, array slice, or record component, use
the syntax of the current language.

If you specify a range of entities, the value of the address expression that
denotes the first entity in the range must be less than the value of the address
expression that denotes the last entity in the range. The debugger displays
the entity specified by the first address expression, the logical successor of
that address expression, the next logical successor, and so on, until it displays
the entity specified by the last address expression. You can specify a list of
ranges by separating ranges with a comma.

/ASCIC
Interprets each examined entity as a counted ASCII string preceded by a
1-byte count field that gives the length of the string. The string is then
displayed. /AC is also accepted.

/ASCID
Interprets each examined entity as the address of a string descriptor pointing
to an ASCII string. The CLASS and DTYPE fields of the descriptor are not
checked, but the LENGTH and POINTER fields provide the character length
and address of the ASCII string. The string is then displayed. /AD is also
accepted.

/ASCll:n
Interprets and displays each examined entity as an ASCII string of length n
bytes (n characters). If n is omitted, the debugger attempts to deterrr~ine a
length from the type of the address expression.

EXAMINE

/ASC/W
Interprets each examined entity as a counted ASCII string preceded by a
2-byte count field that gives the length of the string. The string is then
displayed. /AW is also accepted.

/ASCIZ
Interprets each examined entity as a zero-terminated ASCII string. The
trailing zero byte indicates the end of the string. The string is then displayed.
/AZ is also accepted.

/BINARY
Displays each examined entity as a binary integer.

/BYTE
Displays each examined entity in the byte integer type (length 1 byte).

/CONDITION_ VALUE
Interprets each examined entity as a condition-value return status and
displays the message associated with that return status.

/D_FLOAT
Displays each examined entity in the D_floating type (length 8 bytes). Values
of type D_floating may range from .29*10-38 to 1. 7 *1038 with approximately
16 decimal digits precision.

/DATE_T/ME
Interprets each examined entity as a quadword integer (length 8 bytes)
containing the internal VMS representation of date-time. Displays the value
in the format dd-mmm-yyyy hh:mm:ss.xx.

/DECIMAL
Displays each examined entity as a decimal integer.

/DEFAULT
Displays each examined entity in the default radix.

/FLOAT
Displays each examined entity in the F_floating type (length 4 bytes). Values
of type F_floating may range from .29 * 10-38 to 1. 7 * 1038 with approximately
7 decimal digits precision.

/G_FLOAT
Displays each examined entity in the G_floating type (length 8 bytes). Values
of type G_floating may range from .56* 10-308 to .9*10308 with
approximately 15 decimal digits precision.

/H_FLOAT
Displays each examined entity in the H_floating type (length 16 bytes).
Values of type H_floating may range from .84 * 10-4932 to .59 * 104932 with
approximately 33 decimal digits precision.

/HEXADECIMAL
Displays each examined entity as a hexadecimal integer.

CD-63

EXAMINE

CD-64

/INSTRUCTION
Displays each examined entity as a VAX assembly-language instruction
(variable length, depending on the number of instruction operands and the
kind of addressing modes used). See also /OPERANDS.

In screen mode, the output of an EXAMINE/INSTRUCTION command is
directed at the current instruction display, not at an output or DO display.
The arrow in the instruction display points to the examined instruction.

/[NO]LINE
Controls whether code locations are displayed in terms of line numbers
(%LINE x) or as routine-name + byte-offset. By default (/LINE), the debugger
symbolizes code locations in terms of line numbers.

/LONGWORD
Displays each examined entity in the longword integer type (length 4 bytes).
This is the default type for program locations that do not have a compiler
generated type.

/OCTAL
Displays each examined entity as an octal integer.

/OCTAWORD
Displays each examined entity in the octaword integer type (length 16 bytes).

/OPERANDS[=keyword]
Displays operand information associated with an examined instruction
(displays each operand's address and its contents). The level of information
displayed depends on whether you use the keyword BRIEF or FULL. The
default is /OPERANDS=BRIEF.

Use /OPERANDS only when examining the instruction at the current
PC value (for example, EXAMINE/OPERANDS .0\ %PC). Examining the
operands of an instruction that is not at the current PC value may give
erroneous results, because the state of the machine (such as the contents of
the registers) is not set up for that instruction.

See also the SET MODE [NO]OPERANDS=keyword command. It enables
you to set a default level for the amount of operand information displayed
when examining instructions.

/PACKED:n
Interprets each examined entity as a packed decimal number. The value of n
is the number of decimal digits. Each digit occupies one nibble (4 bits).

/PSL
Displays each examined entity in PSL (processor status longword) format.

/PSW
Displays each examined entity in PSW (processor status word) format. /PSW
is like /PSL except that only the low order word (2 bytes) is displayed.

/QUADWORD
Displays each examined entity in the quadword integer type (length 8 bytes).

DESCRIPTION

EXAMINE

/SOURCE
Displays the source line corresponding to the location of each examined
entity. The examined entity must be associated with a machine code
instruction and, therefore, must be a line number, a label, a routine name,
or the virtual address of an instruction. The examined entity cannot be a
variable name or any other address expression that is associated with data.

In screen mode, the output of an EXAMINE/SOURCE command is directed
at the current source display, not at an output or DO display. The arrow in
the source display points to the source line associated with the last entity
specified (or the last one specified in a list of entities).

/[NOJSYMBOLIC
Controls whether symbolization occurs. By default (/SYMBOLIC), the
debugger symbolizes all addresses, if possible; that is, it converts numeric
addresses into their symbolic representation. If you specify /NOSYMBOLIC,
the debugger suppresses symbolization of entities you specify as absolute
addresses. If you specify entities as variable names, symbolization still
occurs. /NOSYMBOLIC is useful if you are interested in identifying numeric
addresses rather than their symbolic names (if symbolic names exist for those
addresses). If you specify /NOSYMBOLIC, command processing may speed
up somewhat, because the debugger does not need to convert numbers to
names.

/TASK
Note: This qualifier applies only to Ada programs.

Interprets each examined entity as an Ada task object and displays the task
value (the name or task ID) of that task object.

/TYPE=(type-expression)
Interprets and displays each examined entity according to the type specified
by type-expression (the name of a variable or data type declared in the
program). This enables you to specify a user-declared type.

/WORD
Displays each examined entity in the word integer type (length 2 bytes).

The EXAMINE command displays the entity at the location denoted by an
address expression. The command may be used to display the contents of
any virtual memory location or register that is accessible in your program.
For high-level languages the command is used mostly to obtain the current
value of a variable (an integer, real, string, array, record, and so on).

The debugger recognizes the compiler generated types associated with
symbolic address expressions (symbolic names declared in your program).
Symbolic address expressions include the following:

• Variable names. When specifying a variable with the EXAMINE
command, use the same syntax that is used in the source code.

• Routine names, labels, and line numbers. These are associated with VAX
instructions. You can examine instructions using the same techniques as
when examining variables.

CD-65

EXAMINE

CD-66

In general, when you enter an EXAMINE command, the debugger evaluates
the address expression specified to yield a program location. The debugger
then displays the value stored at that location as follows:

• If the location has a symbolic name, the debugger formats the value
according to the compiler generated type associated with that symbol -
that is, as a variable of a particular type or as a VAX instruction.

• If the location does not have a symbolic name (and, therefore, no
associated compiler generated type) the debugger formats the value
in the type longword integer, by default. This means that, by default, the
EXAMINE command displays the contents of these locations as longword
(4-byte) integer values.

There are several ways of changing the type associated with a program
location so that you can display the data at that location in another data
format:

• To change the default type for all locations that do not have a symbolic
name, you can specify a new type with the SET TYPE command.

• To change the default type for all locations (both those that do and do
not have a symbolic name), you can specify a new type with the SET
TYPE/OVERRIDE command.

• To override the type currently associated with a particular location for the
duration of a single EXAMINE command, you can specify a new type by
means of a type qualifier (/ ASCII:n, /BYTE, /TYPE=(type-expression), and
so on). Most of the EXAMINE command qualifiers are type qualifiers.

The debugger can interpret and display integer data in any one of four
radixes: binary, decimal, hexadecimal, and octal. The default radix for both
data entry and display is decimal for all languages except BLISS and MACRO.
It is hexadecimal for BLISS and MACRO. The EXAMINE command has four
radix qualifiers (/BINARY, /DECIMAL, /HEXADECIMAL, /OCTAL) that
enable you to display integer data in another radix. You can also use the SET
RADIX and SET RADIX/OVERRIDE commands to change the default radix.

In addition to the type and radix qualifiers, the EXAMINE command has
qualifiers for other purposes:

• The /SOURCE qualifier enables you to identify the line of source code
corresponding to a line number, routine name, label, or any other address
expression that is associated with an instruction rather than data.

• The /[NO]LINE and /[NO]SYMBOL qualifiers enable you to control the
symbolization of address expressions.

The EXAMINE command sets the current entity built-in symbols %CURLOC
and period (.) to the location denoted by the address expression specified.
Logical predecessors (%PREVLOC and circumflex (")) and successors
(%NEXTLOC and pressing the RETURN key) are based on the value of
the current entity.

Related commands: DEPOSIT, EVALUATE, (SET, SHOW, CANCEL)
RADIX, (SET, SHOW) TYPE, CANCEL TYPE/OVERRIDE, SET MODE
[NO]OPERANDS, SET MODE [NO]SYMBOLIC.

EXAMINE

EXAMPLES

iJ DBG> EXAMINE COUNT
SUB2\COUNT: 27

This command displays the value of the integer variable COUNT, in module
SUB2.

~ DBG> EXAMINE PART_NUMBER
INVENTORY\PART_NUMBER: "LP-3592.6-84"

This command displays the value of the string variable P ART_NUMBER.

~ DBG> EXAMINE SUB1\ARR3
SUB1\ARR3

(1,1): 27.01000
(1,2): 31.01000
(1,3): 12.48000
(2,1): 15.08000
(2,2): 22.30000
(2,3): 18.73000

This command displays the value of all elements in array ARR3, in module
SUBl. ARR3 is a 2 by 3 element array of real numbers.

~ DBG> EXAMINE SUB1\ARR3(2,1:3)
SUB1\ARR3

(2,1): 15.08000
(2,2): 22.30000
(2,3): 18.73000

This command displays the value of the elements in a slice of array
SUBl \ARR3. The slice includes "columns" 1 through 3 of "row" 2.

~ DBG> EXAMINE VALVES.INTAKE.STATUS
MONITOR\VALVES.INTAKE.STATUS: OFF

This command displays the value of the nested record component
VALVES.INTAKE.STATUS in module MONITOR.

~ DBG> EXAMINE/SOURCE SWAP
module MAIN

47: procedure SWAP(X,Y: in out INTEGER) is

This command displays the source line in which routine SWAP is declared
(the location of routine SWAP).

(i DBG> DEPOSIT/ASCII:7 WORK+20 = 'abcdefg'
DBG> EXAMINE/ASCII:7 WORK+20
DETAT\WORK+20: "abcdefg"
DBG> EXAMINE/ASCII:5 WORK+20
DETAT\WORK+20: "abcde"

In this example, the DEPOSIT command deposits the entity 'abcdefg' as
an ASCII string of length 7 bytes into the location that is 20 bytes beyond
the location denoted by the symbol WORK. The first EXAMINE command
displays the value of the entity at that location as an ASCII string of length
7 bytes (abcdefg). The second EXAMINE command displays the value of the
entity at that location as an ASCII string of length 5 bytes (abcde).

CD-67

EXAMINE

W DBG> EXAMINE/INST MAIN+2
MAIN\MAIN+02: MOVAL LAMAINA,R11

This command displays the contents of the location that is 2 bytes beyond the
location denoted by the symbol MAIN as an instruction (MOVAL).

~ DBG> EXAMINE/OPERANDS=FULL .O\%PC
X\X$START+OC: MOVL BA04(R4),R7

BA04(R4) R4 contains X\X$START\M (address 00001054),
BA04(00001054) evaluates to X\X$START\K
(address 00001058), which contains 00000016

R7 R7 contains 00000000

This command displays the instruction (MOVL) at the current PC value. The
/OPERANDS qualifier with the keyword FULL displays the maximum level
of operand information.

DBG> SET RADIX HEXADECIMAL
DBG> EVALUATE/ADDRESS WORKDATA
0000086F
DBG> EXAMINE/SYMBOLIC 0000086F
MOD3\WORKDATA: 03020100
DBG> EXAMINE/NOSYMBOLIC 0000086F
0000086F: 03020100

In this example, the EVALUATE/ ADDRESS command indicates that the
virtual address of variable WORKDATA is 0000086F, hexadecimal. The two
EXAMINE commands display the value contained at that address using the
/[NO]SYMBOL qualifier to control whether the address is symbolized to
WORKDATA.

ii] DBG> EXAMINE/HEX FIDBLK
FDEX1$MAIN\FIDBLK

(1): 00000008
(2) : 00000100
(3): OOOOOOAB

This command displays the value of the array variable FIDBLK in
hexadecimal radix. ·

&;fa DBG> EXAMINE/DECIMAL/WORD NEWDATA:NEWDATA+6
SUB2\NEWDATA: 256
SUB2\NEWDATA+2: 770
SUB2\NEWDATA+4: 1284
SUB2\NEWDATA+6: 1798

This command displays, in decimal radix, the values of word integer entities
(2-byte entities) that are in the range of locations denoted by NEWDATA
through NEWDATA + 6 bytes.

[El DBG> EXAMINE/TASK ALPHA
SAMPLE.ALPHA: %TASK 2

CD-68

This command interprets ALPHA to be the address of an Ada task object and
displays the task value % TASK 2 associated with that task object.

EXIT

FORMAT

PARAMETERS

QUALIFIERS

DESCRIPTION

EXAMPLE

DBG> EXIT
$

EXIT

Ends the debugging session, or ends the execution of commands in a
command procedure or DO clause.

EXIT

None.

None.

When you enter the EXIT command at the terminal, you cause orderly
termination of the debugging session: your program's exit handlers (if any)
are run, the debugger exit handler is executed (closing log files, restoring the
screen and keypad states, and so on), and control is returned to the command
interpreter. You cannot then continue to debug your program by entering the
DCL commands DEBUG or CONTINUE. To restart the debugger, you must
run the program again.

Note that, since EXIT runs your exit handlers, you can set breakpoints in your
exit handlers and they are triggered upon typing EXIT. EXIT can thus be used
to debug your exit handlers.

If you want to terminate your debugging session without running your exit
handlers, use the QUIT command instead of EXIT.

When the debugger executes an EXIT command in a command procedure,
control returns to the command stream that invoked the command procedure.
A command stream can be the terminal, an outer (containing) command
procedure, a DO clause in a SET BREAK, SET TRACE, or SET WATCH
command, or a DO clause in a screen display definition. For example, if the
command procedure was invoked from within a DO clause, control returns
to that DO clause, where the debugger executes the next command (if any
remain in the command sequence).

When the debugger executes an EXIT command in a DO clause, it ignores
any remaining commands in that clause and displays its prompt.

Related commands: CTRL/Z, QUIT, CTRL/Y, CTRL/C, @file-spec.

This command ends the debugging session and returns you to the DCL
command level.

CD-69

EXITLOOP

EXITLOOP

Exits one or more enclosing FOR, REPEAT, or WHILE loops.

FORMAT EXITLOOP [n]

PARAMETERS n

QUALIFIERS

DESCRIPTION

EXAMPLE

A decimal integer that specifies the number of nested loops to exit from. The
default is 1.

None.

Use the EXITLOOP command to exit one or more enclosing FOR, REPEAT,
or WHILE loops.

Related commands: FOR, REPEAT, WHILE.

DBG> WHILE 1 DO (STEP; IF X .GT. 3 THEN EXITLOOP)

CD-70

The WHILE 1 command generates an endless loop that executes a STEP
command with each iteration. After each STEP, the value of Xis tested. If X
is greater than 3, the EXITLOOP command terminates the loop (FORTRAN
example).

EXPAND

EXPAND

Expands or contracts the window associated with a screen display.

FORMAT EXPAND [disp-name{, ...]]

PARAMETERS disp-name

QUALIFIERS

DESCRIPTION

Specifies a display to be expanded or contracted. You may specify any of the
following:

• A predefined display: SRC, OUT, PROMPT, INST, REG

• A display previously created with the SET DISPLAY command

• A pseudo-display name: %CURDISP, %CURSCROLL, %NEXTDISP,
%NEXTINST, %NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE

If you do not specify a display, the current scrolling display, as established by
the SELECT command, is chosen.

You must specify at least one qualifier.

/DOWN[:n]
Moves the bottom border of the display down by n lines (if n is positive) or
up by n lines (if n is negative). If n is omitted, the border is moved down by
1 line.

/LEFT[:n]
Moves the left border of the display to the left by n lines (if n is positive) or
to the right by n lines (if n is negative). If n is omitted, the border is moved
to the left by 1 line.

/RIGHT[:n]
Moves the right border of the display to the right by n lines (if n is positive)
or to the left by n lines (if n is negative). If n is omitted, the border is moved
to the right by 1 line.

/UP[:n]
Moves the top border of the display up by n lines (if n is positive) or down
by n lines (if n is negative). If n is omitted, the border is moved up by 1 line.

The EXP AND command moves one or more display-window borders
according to the qualifiers specified (/UP:[n], /DOWN:[n], RIGHT:[n],
/LEFT:[n]).

The EXP AND command does not affect the order of a display on the display
pasteboard. Depending on the relative order of displays, the EXP AND
command may cause the specified display to hide or uncover another display
or be hidden by another display, partially or totally.

CD-71

EXPAND

EXAMPLES

iJ DBG> EXPAND/RIGHT:6

Except for the PROMPT display, any display can be contracted to the point
where it disappears (at which point it is marked as "removed"). It can then
be expanded from that point. Contracting a display to the point where it
disappears causes it to lose any attributes that were selected for it. The
PROMPT display cannot be contracted or expanded horizontally but can be
contracted vertically to a height of 2 lines.

A window border can be expanded only up to the edge of the screen. The
left and top window borders cannot be expanded beyond the left and top
edges of the display, respectively. The right border can be expanded up to
255 columns from the left display edge. The bottom border of a source or
instruction display can be expanded down only to the bottom edge of the
display (to the end of the source module or routine's instructions). A register
display cannot be expanded beyond its full size.

See Appendix B for keypad-key definitions associated with the EXPAND
command.

Related commands: MOVE, DISPLAY, SELECT/SCROLL, (SET, SHOW)
TERMINAL.

This command moves the right border of the current scrolling display to the
right by 6 columns.

~ DBG> EXPAND/UP/RIGHT:-12 OUT2

This command moves the top border of display OUT2 up by 1 line, and the
right border to the left by 12 columns.

~ DBG> EXPAND /DOWN : 99 SRC

CD-72

This command moves the bottom border of display SRC down to the bottom
edge of the screen.

EXTRACT

FORMAT

EXTRACT

Saves the contents of screen displays in a file or creates a file with all of
the debugger commands necessary to recreate the current screen state at
a later time.

EXTRACT [disp-name[, ...]] [file-spec]

PARAMETERS disp-name

QUALIFIERS

DESCRIPTION

Specifies a display to be extracted. You may specify any of the following:

• A predefined display: SRC, OUT, PROMPT, INST, REG

• A display previously created with the SET DISPLAY command

You can use the asterisk wildcard character (*) in a display name. Do not
specify a display name with /ALL.

file-spec
Specifies the file to which the information is written. You can specify a logical
name.

If you specify /SCREEN_LAYOUT, the default specification for the file
is SYS$DISK:[]DBGSCREEN.COM. Otherwise, the default specification is
SYS$DISK:[]DEBUG.TXT.

/ALL
Extracts all displays. Do not specify a display name with /ALL. Do not
specify /SCREEN _LAYOUT with /ALL.

/APPEND
Appends the information at the end of the file, rather than creating a new file.
By default, a new file is created. Do not specify /SCREEN _LAYOUT with
/APPEND.

/SCREEN_LAYOUT
Writes a file that contains the debugger commands describing the current
state of the screen. This information includes the screen height and width,
and the position, display kind, and display attributes of every existing display.
This file can then be executed with the @file-spec command to reconstruct
the screen at a later time.

When you use the EXTRACT command to save the contents of a display into
a file, only those lines that are currently stored in the display's memory buffer
(as determined by the /SIZE qualifier on the DISPLAY or SET DISPLAY
command) are written to the file.

You cannot extract the PROMPT display into a file.

Related commands: SAVE, DISPLAY.

CD-73

EXTRACT

EXAMPLES
iJ DBG> EXTRACT SRC

This command writes all the lines in display SRC into file
SYS$DISK:[]DEBUG.TXT.

~ DBG> EXTRACT/APPEND OUT [JONES.WORK]MYFILE

This command appends all the lines in display OUT to the end of file
[JONES.WORK]MYFILE.TXT.

~ DBG> EXTRACT/SCREEN_LAYOUT

CD-74

This command writes the debugger commands needed to reconstruct the
screen into file SYS$DISK:[]DBGSCREEN.COM.

FOR

FORMAT

PARAMETERS

QUALIFIERS

DESCRIPTION

FOR

Executes a sequence of commands repetitively a specified number of
times.

FOR name=expression 1 TO expression2 /BY
expression3] DO (command[; ...])

name
Specifies the name of a count variable.

expression 1
Specifies an integer or enumeration type value. The expressionl and
expression2 parameters must always be of the same type.

expression2
Specifies an integer or enumeration type value. The expressionl and
expression2 parameters must always be of the same type.

expression3
Specifies an integer.

command
Specifies a debugger command. If you specify more than one command, they
must be separated by semicolons. ·

None.

The behavior of the FOR command depends on the value of the expression3
parameter. If expression3 is positive, name is incremented from the value of
expressionl by the value of expression3 until it is greater than the value of
expression2.

If expression3 is negative, name is decremented from the value of expressionl
by the value of expression3 until it is less than the value of expression2.

If expression3 is zero, the debugger returns an error message.

If expression3 is left out entirely, the debugger assumes it to have the
value +1.

Related commands: REPEAT, WHILE, EXITLOOP.

CD-75

FOR

EXAMPLES

iJ DBG> FOR I = 10 TO 1 BY -1 DO (EXAMINE A(I))

This command examines an array backwards.

~ DBG> FOR I = 1 TO 10 DO (DEPOSIT A(I) = 0)

This command initializes an array to zero.

CD-76

GO

FORMAT

PARAMETERS

QUALIFIERS

DESCRIPTION

EXAMPLES

iJ DBG> GO

GO

Starts or resumes program execution.

GO {address-expression]

address-expression
Specifies that program execution resume at the location denoted by the
address expression. If you do not specify an address expression, execution
resumes at the point of suspension or, in the case of debugger startup, at the
image transfer address.

None.

Note that specifying an address expression with the GO command can
produce unexpected results because it alters the normal control flow of your
program.

For example, during a debugging session you can restart execution at the
beginning of the program by entering the command GO %LINE 1. However,
because the program has executed, the contents of some variables may now
be initialized differently from when you first invoked the debugger.

Related commands: STEP, SET STEP, SET BREAK, SET TRACE, SET
WATCH.

%DEBUG-I-EXITSTATUS, is '%SYSTEM-S-NORMAL, normal successful completion

This command starts program execution, which then completes successfully.

~ DBG> GO

break at INVENTORY\RESTORE
137: procedure RESTORE;

This command starts program execution, which is then suspended at a
breakpoint on routine RESTORE in module INVENTORY.

CD-77

GO

~ DBG> GO %LINE 42

CD-78

This command resumes program execution at line 42 of the currently
executing module.

HELP

FORMAT

PARAMETERS

QUALIFIERS

DESCRIPTION

HELP

Displays online help on debugger commands and selected topics.

HELP help-topic [subtopic [. ..]]

help-topic
Specifies the name of a debugger command or topic about which you need
help. You can specify the asterisk wildcard character (*), either singly or
within a name.

subtopic
Specifies a subtopic, command qualifier, or command parameter about which
you want further information. You can specify *, either singly or within a
name.

None.

The debugger's online help facility provides the following information
about any debugger command: a description of the command, format of
the command, parameters that may be specified with the command, and
qualifiers that may be specified with the command.

To obtain information about a particular qualifier or parameter, specify it
as a subtopic. If you want information about all command qualifiers, specify
"qualifier" as a subtopic. If you want information about all parameters, specify
"parameter" as a subtopic. If you want information about all parameters,
qualifiers, and any other subtopics related to a command, specify * as a
subtopic.

In addition to help on commands, you can get online help on various topics
such as screen features, keypad mode, and so on. Topic keywords are listed
along with the commands when you type HELP.

Type HELP Release_Notes for information about any incompatibilities
between the current release of the debugger and previous releases. Type
HELP New_Features for summary information on new features with this
release of the debugger.

For help on the predefined keypad-key functions, see Appendix B.

CD-79

HELP

EXAMPLE

DBG> HELP DEFINE

DEFINE

Defines one or more symbols and assigns them specified
addresses for the duration of the debugging session.

Format:

DEFINE symbol=expression [, symbol=expression . . .]

Additional information available:

Parameters

This command displays help for the DEFINE command.

CD-80

IF

FORMAT

Executes a sequence of commands conditionally.

IF boolean-expression THEN (command{; ...]) [ELSE
(command[; ...])]

IF

PARAMETERS boolean-expression

QUALIFIERS

DESCRIPTION

EXAMPLE

Specifies a language expression that evaluates as a Boolean value (TRUE or
FALSE) in the currently set language.

command
Specifies a debugger command. If you specify more than one command, you
must separate them with semicolons.

None.

The IF command evaluates a boolean-expression. If the value is TRUE (as
defined in the current language), the debugger command list in the THEN
clause is executed. If the expression is FALSE, the command list in the ELSE
clause is executed (if it is present).

Related commands: FOR, REPEAT, WHILE, EXITLOOP.

DBG> SET BREAK R DD (IF X .LT.5 THEN (GO) ELSE (EXAMINE X))

This command causes the debugger to suspend program execution at location
R (a breakpoint) and then resume program execution if the value of X is less
than 5 (FORTRAN example). If the value of Xis 5 or more, the value of Xis
displayed.

CD-81

MOVE

MOVE

Moves a screen display vertically and/or horizontally across the screen.

FORMAT MOVE [disp-name[, ...]]

PARAMETERS disp-name

QUALIFIERS

DESCRIPTION

CD-82

Specifies a display to be moved. You may specify any of the following:

• A predefined display: SRC, OUT,- PROMPT, INST, REG

• A display previously created with the SET DISPLAY command

• A pseudo-display name: %CURDISP, %CURSCROLL, %NEXTDISP,
%NEXTINST, %NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE

If you do not specify a display, the current scrolling display, as established by
the SELECT command, is chosen.

You must specify at least one qualifier.

/DOWN[:n]
Moves the display down by n lines (if n is positive) or up by n lines (if n is
negative). If n is omitted, the display is moved down by 1 line.

/LEFT[:n]
Moves the display to the left by n lines (if n is positive) or right by n lines (if
n is negative). If n is omitted, the display is moved to the left by 1 line.

/RIGHT[:n]
Moves the display to the right by n lines (if n is positive) or left by n lines (if
n is negative). If n is omitted, the display is moved to the right by 1 line.

/UP[:n]
Moves the display up by n lines (if n is positive) or down by n lines (if n is
negative). If n is omitted, the display is moved up by 1 line.

For each display specified, the MOVE command simply creates a window
of the same dimensions elsewhere on the screen and maps the display to it,
while maintaining the relative position of the text within the window.

The MOVE command does not change the order of a display on the display
pasteboard. Depending on the relative order of displays, the MOVE
command may cause the display to hide or uncover another display or be
hidden by another display, partially or totally.

A display can be moved only up to the edge of the screen.

See Appendix B for keypad-key definitions associated with the MOVE
command.

EXAMPLES

iJ DBG> MOVE/LEFT

MOVE

Related commands: EXPAND, DISPLAY, SELECT/SCROLL, (SET, SHOW)
TERMINAL.

This command moves the current scrolling display to the left by 1 column.

~ DBG> MOVE/UP:3/RIGHT:5 NEW_OUT

This command moves display NEW_OUT up by 3 lines and to the right by 5
columns.

CD-83

QUIT

QUIT

FORMAT

PARAMETERS

QUALIFIERS

DESCRIPTION

EXAMPLE

DBG> QUIT
$

CD-84

Ends the debugging session, or ends the execution of commands in a
command procedure or DO clause (analogous to EXIT). Does not execute
any exit handlers you have declared.

QUIT

None.

None.

When you enter the QUIT command at the terminal, you cause orderly
termination of the debugging session: the debugger exit handler is executed
(closing log files, restoring the screen and keypad states, and so on), and
control is returned to the command interpreter. You cannot then continue to
debug your program by entering the DCL commands DEBUG or CONTINUE.
To restart the debugger, you must run the program again.

Note that, in contrast to the EXIT command, the QUIT command does not
execute any exit handlers that you may have declared.

When the debugger executes a QUIT command in a command procedure,
control returns to the command stream that invoked the command procedure.
A command stream can be the terminal, an outer (containing) command
procedure, a DO clause in a SET BREAK, SET TRACE, or SET WATCH
command, or a DO clause in a screen display definition. For example, if the
command procedure was invoked from within a DO clause, control returns
to that DO clause, where the debugger executes the next command (if any
remain in the command sequence).

When the debugger executes a QUIT command in a DO clause, it ignores any
remaining commands in that clause and displays its prompt.

Related commands: EXIT, CTRL/Z, CTRL/Y, CTRL/C, @file-spec.

This command, when entered from the prompt, ends the debugging session
and returns you to DCL command level.

REPEAT

FORMAT

REPEAT

Executes a sequence of commands repetitively a specified number of
times.

REPEAT Jang-exp DO (command{; . ..])

PARAMETERS Jang-exp

DESCRIPTION

EXAMPLE

Denotes any expression in the currently set language that evaluates to a
positive integer.

command
Specifies a debugger command. If you specify more than one command, they
must be separated by semicolons.

The REPEAT command is a simple form of the FOR command. The REPEAT
command executes a sequence of commands repetitively a specified number
of times, without providing the options for establishing count parameters that
the FOR command does.

Related commands: FOR, WHILE, EXITLOOP.

DBG> REPEAT 10 DO (EXAMINE Y; STEP)

This command line sets up a loop that issues a sequence of two commands
(EXAMINE Y then STEP) 10 times:

CD-85

SAVE

SAVE

Preserves the contents of an existing screen display in a new display.

FORMAT SA VE old-disp AS new-disp [, ...]

PARAMETERS old-disp

QUALIFIERS

DESCRIPTION

EXAMPLE

DBG> SAVE REG AS OLDREG

CD-86

Specifies the display whose contents are to be saved. You may specify any of
the following:

• A predefined display: SRC, OUT, PROMPT, INST, REG

• A display previously created with the SET DISPLAY command

• A pseudo-display name: %CURDISP, %CURSCROLL, %NEXTDISP,
%NEXTINST, %NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE

new-disp
Specifies the name of the new display to be created. This new display then
receives the contents of the old-disp display.

None.

The SAVE command enables you to save a "snapshot" copy of an existing
display in a new display for later reference. The new display is created with
the same text contents as the existing display. In general, the new display
is given all the attributes or characteristics of the old display except that it is
removed from the screen and is never automatically updated. You can later
recall the saved display to the terminal screen with the DISPLAY command.

When you use the SAVE command, only those lines that are currently stored
in the display's memory buffer (as determined by the /SIZE qualifier on
the DISPLAY or SET DISPLAY command) are stored in the saved display.
However, in the case of a saved source or instruction display, you can also see
any other source lines associated with that module or any other instructions
associated with that routine (by scrolling the saved display).

You cannot save the PROMPT display.

Related commands: EXTRACT, DISPLAY.

This command saves the contents of the display named REG into the newly
created display named OLDREG.

SCROLL

SCROLL

Scrolls a screen display to make other parts of the text visible through the
display window.

FORMAT ·SCROLL [disp-name]

PARAMETERS disp-name

QUALIFIERS

Specifies a display to be scrolled. You may specify any of the· following:

• A predefined display: SRC, OUT, PROMPT, INST, REG

• A display previously created with the SET DISPLAY command

• A pseudo-display name: %CURDISP, %CURSCROLL, %NEXTDISP,
%NEXTINST, %NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE

If you do not specify a display, the current scrolling display, as established by
the SELECT command, is chosen.

/BOTTOM
Scrolls down to the bottom of the display' s text.

/DOWN:[n]
Scrolls down over the display's text by n lines to reveal text further down in
the display. If n is omitted, the display is scrolled by approximately 3 / 4 of its
window height.

/LEFT:[n]
Scrolls left over the display' s text by n columns to reveal text beyond the left
window border. You cannot scroll past column 1. If n is omitted, the display
is scrolled left by 8 columns.

/RIGHT[:n]
Scrolls right over the display' s text by n columns to reveal text beyond the
right window border. You cannot scroll past column 255. If n is omitted, the
display is scrolled right by 8 columns.

/TOP
Scrolls up to the top of the display's text.

/UP[:n]
Scrolls up over the display's text by n lines to reveal text further up in the
display. If n is omitted, the display is scrolled by approximately 3/4 of its
window height.

CD-87

SCROLL

DESCRIPTION

EXAMPLES

iJ DBG> SCROLL/LEFT

The SCROLL command moves a display up, down, right, or left relative to its
window so that various parts of the display text can be made visible through
the window.

Use the SELECT /SCROLL command to select the target display for the
SCROLL command (the current scrolling display).

See Appendix B for keypad-key definitions associated with the SCROLL
command.

Related commands: SELECT.

This command scrolls the current scrolling display to the left by 8 columns.

~ DBG> SCROLL/UP: 4 ALPHA

This command scrolls display ALPHA 4 lines up.

CD-88

SEARCH

FORMAT

PARAMETERS

SEARCH

Searches the source code for a specified string and displays source lines
that contain an occurrence of the string.

SEARCH [range} [string]

range
Specifies a program region to be searched. Use any of the following formats:

mod-name Searches the specified module from line 0 to the
end of the module.

mod-name\line-num Searches the specified module from the specified
line number to the end of the module.

mod-name\line-num:line-num Searches the specified module from the line
number specified on the left of the colon to the
line number specified on the right.

line-num Uses the current scope to find a module and
searches that module from the specified line
number to the end of the module. The current
scope is that established by a previous SET
SCOPE command, or the PC scope if no SET
SCOPE command was entered. If you specify
a scope search list with the SET SCOPE
command, the debugger searches only the
module associated with the first named scope.

/ine-num:line-num Uses the current scope to find a module and
searches that module from the line number
specified on the left of the colon to the line
number specified on the right. The current scope
is that established by a previous SET SCOPE
command, or the PC scope if no SET SCOPE
command was entered. If you specify a scope
search list with the SET SCOPE command, the
debugger searches only the module associated
with the first named scope.

null (no entry) Searches the same module as that from which

string

a source line was most recently displayed (as a
result of a TYPE, EXAMINE/SOURCE, or SEARCH
command, for example), beginning at the first line
following the line most recently displayed and
continuing to the end of the module.

Specifies the source code characters for which to search. If you do not specify
a string, the string specified in the last SEARCH command, if any, is used.

You must enclose the string in quotation marks (") or apostrophes (') under
the following conditions:

• The string has any leading or trailing space or tab characters

CD-89

SEARCH

QUALIFIERS

DESCRIPTION

CD-90

• The string contains an embedded semicolon

• The range parameter is null

If the string is enclosed in quotation marks, use two consecutive quotation
marks ("") to indicate an enclosed quotation mark. If the string is enclosed
in apostrophes, use two consecutive apostrophes (") to indicate an enclosed
apostrophe.

/ALL
Specifies that the debugger search for all occurrences of the string in the
specified range and display every line containing an occurrence of the string.

/IDENTIFIER
Specifies that the debugger search for an occurrence of the string in the
specified range but display the string only if it is not bounded on either side
by a character that can be part of an identifier in the current language.

/NEXT
Specifies that the debugger search for the next occurrence of the string in the
specified range and display only the line containing this occurrence. This is
the default.

/STRING
Specifies that the debugger search for and display the string as specified, and
not interpret the context surrounding an occurrence of the string, as it does in
the case of /IDENTIFIER. This is the default.

The SEARCH command displays the lines of source code that contain an
occurrence of a specified string.

When specifying a module name with the SEARCH command, note that
the module must be set. Use the SHOW MODULE command to determine
whether a particular module is set. Then use the SET MODULE command, if
necessary.

SEARCH command qualifiers determine whether the debugger: (1) searches
for all occurrences (/ALL) of the string or only the next occurrence (/NEXT);
and (2) displays any occurrence of the string (/STRING) or only those
occurrences in which the string is not bounded on either side by a character
that can be part of an identifier in the current language (/IDENTIFIER).

If you plan to enter several SEARCH commands with the same qualifier, you
can first use the SET SEARCH command to establish a new default qualifier
(for example, SET SEARCH ALL makes the SEARCH command behave like
SEARCH/ ALL),. Then you do not have to use that qualifier with the SEARCH
command. You can override the current default qualifiers for the duration of
a single SEARCH command by specifying other qualifiers.

Related commands: (SET, SHOW) SEARCH, (SET, SHOW) LANGUAGE,
(SET, SHOW) SCOPE, (SET, SHOW) MODULE.

SEARCH

EXAMPLES

iJ DBG> SEARCH/STRING/ALL 40:50 D
module COBOLTEST

40: 02 D2N
41: 02 D
42: 02 DN
47: 02 DRO
48: 02 DR5

COMP-2 VALUE -234560000000.
COMP-2 VALUE 222222.33.
COMP-2 VALUE -222222.333333.
COMP-2 VALUE 0.1.
COMP-2 VALUE 0.000001.

49: 02 DR10 COMP-2 VALUE 0.00000000001.
COMP-2 VALUE 0.0000000000000001. 50: 02 DR15

This command searches for all occurrences of the letter D in lines 40 through
50 of the module COBOLTEST, the module that is in the current scope.

~ DBG> SEARCH/IDENTIFIER/ ALL 40: 50 D
module COBOLTEST

41: 02 D COMP-2 VALUE 222222.33.

This command searches for all occurrences of the letter D in lines 40 through
50 of the module COBOL TEST. The debugger displays the only line where
the letter D (the search string) is not bounded on either side by a character
that can be part of an identifier in the current language.

~ DBG> SEARCH/NEXT 40: 50 D
module COBOLTEST

40: 02 D2N COMP-2 VALUE -234560000000.

~ DBG> SEARCH/NEXT
module COBOLTEST

41: 02 D

~ DBG> SEARCH 43 D
module COBOLTEST

47: 02 DRO

This command searches for the next occurrence of the letter D in lines 40 to
50 of the module COBOLTEST.

COMP-2 VALUE 222222.33.

This command searches for the next occurrence of the letter D. The debugger
assumes D to be the search string because D was the last one entered and no
other search string was specified.

COMP-2 VALUE 0.1.

This command searches for the next occurrence (by default) of the letter D,
starting with line 43.

CD-91

SELECT

SELECT

FORMAT

Selects a screen display as the current error, input, instruction, output,
program, prompt, scrolling, or source display.

SELECT {disp-name}

PARAMETERS disp-name

QUALIFIERS

CD-92

Specifies the display to be selected. You may specify any one of the
following, with the restrictions noted in the qualifier descriptions:

• A predefined display (SRC, OUT, INST, REG, and PROMPT)

• A display previously created with the SET DISPLAY command

• A pseudo-display name: %CURDISP, %CURSCROLL, %NEXTDISP,
%NEXTINST, %NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE

If you omit this parameter and do not specify a qualifier, you "unseh~d"
the current scrolling display (no display then has the scrolling attribute). If
you omit this parameter but specify a qualifier (/INPUT, /SOURCE, and
so on), you unselect the current display with that attribute (see the qualifier
descriptions).

/ERROR
If you specify a display, selects it as the current error display. This causes all
debugger diagnostic messages to go to that display. The display specified
must be either an output display or the PROMPT display.

If you do not specify a display, the PROMPT display is selected as the current
error display.

By default, the PROMPT display has the error attribute.

/INPUT
If you specify a display, selects it as the current input display. This causes
that display to echo debugger input (which always appears in the PROMPT
display). The display specified must be an output display.

If you do not specify a display, the current input display is unselected and
debugger input is not echoed to any display (debugger input appears only in
the PROMPT display).

By default, no display has the input attribute.

/INSTRUCT/ON
If you specify a display, selects it as the current instruction display. This
causes the output of all EXAMINE/INSTRUCTION commands to go to that
display. The display specified must be an instruction display.

If you do not specify a display, the current instruction display is unselected
and no display has the instruction attribute.

SELECT

By default, for all languages except MACRO, no display has the instruction
attribute. If the language is set to MACRO, the INST display has the
instruction attribute by default.

/OUTPUT
If you specify a display, selects it as the current output display. This causes
debugger output that is not already directed to another display to go to
that display. The display specified must be either an output display or the
PROMPT display.

If you do not specify a display, the PROMPT display is selected as the current
output display.

By default, the OUT display has the output attribute.

/PROGRAM
If you specify a display, selects it as the current program display. This causes
the debugger to try to force program input and output to that display.
Currently, only the PROMPT display may be specified.

If you do not specify a display, the current program display is unselected and
program input and output are no longer forced to the specified display.

By default, the PROMPT display has the program attribute, except on
VAXstations, where the program attribute is unselected.

/PROMPT
Selects the specified display as the current prompt display. This is where the
debugger prompts for input. Currently, only the PROMPT display may be
specified. Moreover, you cannot unselect the PROMPT display (the PROMPT
display always has the prompt attribute).

/SCROLL
If you specify a display, selects it as the current scrolling display. This is the
default display for the SCROLL, MOVE, and EXPAND commands. Although
any display may have the scroll attribute, note that you can use only the
MOVE and EXP AND commands (not the SCROLL command) with the
PROMPT display.

If you do not specify a display, the current scrolling display is unselected and
no display has the scroll attribute.

By default, for all languages except MACRO, the SRC display has the scroll
attribute. If the language is set to MACRO, the INST display has the scroll
attribute by default.

Note: If no qualifier is specified, /SCROLL is assumed by default.

/SOURCE
If you specify a display, selects it as the current source display. This causes the
output of all TYPE and EXAMINE/SOURCE commands to go to that display.
The display specified must be a source display.

If you do not specify a display, the current source display is unselected and
no display has the source attribute.

By default, for all languages except MACRO, the SRC display has the source
attribute. If the language is set to MACRO, no display has the source attribute
by default.

CD-93

SELECT

DESCRIPTION

EXAMPLES

Attributes are used to select the current scrolling display and to direct various
types of debugger output to particular displays. This gives you the option
of mixing or isolating different types of information, such as debugger input,
output, diagnostic messages, and so on in scrollable displays.

You use the SELECT command with one or more qualifiers (/ERROR,
/SOURCE, and so on) to assign one or more corresponding attributes to a
display. If you do not specify a qualifier, the /SCROLL qualifier is assumed
by default.

If you use the SELECT command without specifying a display name, in
general the attribute assignment indicated by the command qualifier is
canceled (unselected). To reassign display attributes you must use another
SELECT command. See the individual qualifier descriptions for details.

See Appendix B for keypad-key definitions associated with the SELECT
command.

Related commands: SHOW SELECT, SCROLL, MOVE, EXPAND, DISPLAY,
SET DISPLAY.

[I DBG> SELECT /SOURCE/SCROLL SRC2

This command selects display SRC2 as the current source and scrolling
display.

Ea DBG> SELECT/ INPUT /ERROR OUT

~ DBG> SELECT/SOURCE

CD-94

This command selects display OUT as the current input and error display.
This causes debugger input, debugger output (assuming OUT is the current
output display), and debugger diagnostic messages to be logged in the OUT
display in the correct sequence.

This command unselects (deletes the source attribute from) the currently
selected source display. The output of a TYPE or EXAMINE/SOURCE
command then goes to the currently selected output display.

SET ATSIGN

SET ATSIGN

FORMAT

Establishes the default file specification that the debugger uses when
searching for command procedures.

SET ATSIGN file-spec

PARAMETERS file-spec

QUALIFIERS

DESCRIPTION

EXAMPLES

Specifies any part of a VMS file specification (for example, a directory name
or a file type) that the debugger is to use by default when searching for
a command procedure. If you do not supply a full file specification, the
debugger assumes SYS$DISK:[]DEBUG.COM as the default file specification
for any missing field.

You may specify a logical name that translates to a search list. In this case,
the debugger processes the file specifications in the order they appear in the
search list until the command procedure is found.

None.

When you invoke a command procedure during a debugging
session, the debugger, by default, assumes that its file specification is
SYS$DISK:[]DEBUG.COM. The SET ATSIGN command enables you to
override this default.

Related commands: @file-spec, SHOW ATSIGN.

iJ DBG> SET ATSIGN USER: [JONES.DEBUG] .DBG
DBG> ©TEST

In this example, when the user invokes @TEST, the debugger looks for the
file TEST.DBG in USER:[JONES.DEBUG].

CD-95

SET BREAK

SET BREAK

FORMAT

Establishes a breakpoint at the location denoted by an address expression,
at instructions of a particular class, or at the occurrence of events.

SET BREAK [address-expression[, ...]]
[WHEN (conditional-expression)]
[DO(command{; ...])]

PARAMETERS address-expression

QUALIFIERS

CD-96

Specifies an address expression (a program location) at which a breakpoint is
to be set. With high-level languages, this is typically a line number, a routine
name, or a label, and may include a path name to specify the entity uniquely.
More generally, an address expression may also be a virtual memory address
or a register and may be composed of numbers (offsets) and symbols, as well
as one or more operators, operands, or delimiters. Appendix D identifies the
operators that may be used in address expressions.

Do not specify the asterisk wildcard character (*). Do not specify
an address expression with /BRANCH, /CALL, /EXCEPTION,
/INSTRUCTION[=(opcode-list)], /INTO, /[NO]JSB, /LINE, /OVER,
/[NO]SHARE, or /[NO]SYSTEM. The /MODIFY and /RETURN qualifiers are
used with specific kinds of address expressions.

If you specify a virtual memory address or an address expression whose
value is not a symbolic location, check (with the EXAMINE command) that
an instruction actually begins at the byte of memory so indicated. If an
instruction does not begin at this byte, a run-time error may occur when an
instruction including that byte is executed. When you set a breakpoint by
specifying an address expression whose value is not a symbolic location, the
debugger does not verify that the location specified marks the beginning of
an instruction. CALLS and CALLG routines start with an entry mask.

command
Specifies a debugger command that is to be executed as part of the DO clause
when break action is taken.

conditional-expression
Specifies a conditional expression in the currently set language that is to be
evaluated when execution reaches the breakpoint. If the expression is TRUE,
break action occurs, and the debugger reports that a break has occurred. If
the expression is FALSE, break action does not occur. In this case, a report is
not issued, the commands specified by the DO clause are not executed, and
program execution is continued.

/AFTER:n
Specifies that break action not be taken until the nth time the designated
breakpoint is encountered (n is a decimal integer). Thereafter, the breakpoint
occurs every time it is encountered provided that conditions in the WHEN

'

SET BREAK

clause (if specified) are TRUE. The command SET BREAK/ AFTER: 1 has the
same effect as the SET BREAK command.

/BRANCH
Causes the debugger to break on every branch instruction encountered during
execution (including BEQL, BGTR, BLEQ, BGEQ, BLSS, BGTRU, BLEQU,
BVC, BVS, BGEQU, BLSSU, BRB, BRW, JMP, BBS, BBC, BBSS, BBCS, BBSC,
BBCC, BBSSI, BBCCI, BLBS, BLBC, ACBB, ACBW, ACBL, ACBF, ACBD,
ACBG,ACBH,AOBLEQ,AOBLSS,SOBGEQ,SOBGTR,CASEB,CASEW,
CASEL). Do not specify an address expression with /BRANCH. See also
/INTO, /OVER.

/CALL
Causes the debugger to break on every call instruction (including the CALLS,
CALLG, BSBW, BSBB, JSB, RSB, and RET instructions) encountered during
execution. Do not specify an address expression with /CALL. See also
/INTO, /OVER.

/EVENT=event-name
Note: This qualifier applies only to Ada and SCAN. See the VAX Ada
and VAX SCAN documentation for complete information.

Causes the debugger to break on the specified event (if that event is defined
and detected by the run-time system). If you specify an address expression
with /EVENT, causes the debugger to break whenever the specified event
occurs for that address expression. Event names depend on the run-time
facility and are identified in Appendix E for Ada and SCAN. You can display
the event names associated with the current run-time facility by entering
the SHOW EVENT_FACILITY command. Note that you cannot specify an
address expression with certain event names.

Do not specify /EVENT with /BRANCH, /CALL, /EXCEPTION,
/INSTRUCTION[=(opcode-list)], /INTO, /[NO]JSB, /LINE, /MODIFY,
/OVER, /RETURN, /[NO]SHARE, or /[NO]SYSTEM.

/EXCEPTION
Causes the debugger to break whenever an exception is signaled. The break
action occurs before any user-written exception handlers are invoked. Do not
specify an address expression with /EXCEPTION.

As a result of a SET BREAK/EXCEPTION command, whenever your program
generates an exception condition, the debugger suspends program execution,
reports the exception condition, and displays its prompt. When you resume
execution from an exception breakpoint, the behavior is as follows:

• If you enter a GO command without an address-expression parameter,
the exception is resignalled, thus allowing any user-declared exception
handler to execute.

• If you enter a GO command with an address-expression parameter,
program execution continues at the specified location, thus inhibiting the
execution of any user-declared exception handler.

• If you enter a STEP command, the debugger steps into any user-declared
exception handler. If there is no user-declared handler for that exception,
the debugger resignals the exception.

CD-97

SET BREAK

CD-98

• If you enter a CALL command, the routine specified is executed. If
a routine is called with the CALL command directly after an exception
breakpoint has been triggered, no breakpoints, tracepoints, or watchpoints
set within that routine are triggered. However, they are triggered if the
CALL command is given at another time.

/INSTRUCTION
Causes the debugger to break on every instruction executed. Do not specify
an address expression with /INSTRUCTION. See also /INTO, /OVER.

/INSTRUCTION=(opcode[, ...])
Causes the debugger to break on every instruction whose opcode is in the list.
Do not specify an address expression with /INSTRUCTION. See also /INTO,
/OVER.

/INTO
Applies only to breakpoints set with /BRANCH, /CALL,
/INSTRUCTION[=(opcode-list)], or /LINE; that is, when an address
expression is not explicitly specified. When used with those qualifiers, causes
the debugger to break at the specified points within called routines (as well
as within the routine where execution is currently suspended). /INTO is the
default behavior and is the opposite of /OVER.

When using /INTO, you can further qualify the break action with the
/[NO]JSB, /[NO]SHARE, and /[NO]SYSTEM qualifiers.

/[NO]JSB
Qualifies /INTO. Use /[NO]JSB only with /INTO and one of the following
qualifiers: /BRANCH, /CALL, /INSTRUCTION[=(opcode-list)], or /LINE.
/JSB is the default for all languages except DIBOL. /JSB permits the debugger
to break within routines that are called by the JSB or CALL instruction.
/NOJSB (the DIBOL default) specifies that breakpoints not be set within
routines called by JSB instructions. In DIBOL, user-written routines are called
by the CALL instruction and DIBOL run-time library routines are called by
the JSB instruction. Do not specify an address expression with /[NO]JSB.

/LINE
Causes the debugger to break at the start of each new line. Do not specify an
address expression with /LINE. See also /INTO, /OVER.

/MODIFY
Causes a break at every instruction that writes to and modifies the value of
the location indicated by the address expression. The address expression is
typically a variable name.

The SET BREAK/MODIFY command acts exactly like a SET WATCH
command and operates under the same restrictions.

If you specify an absolute address for the address expression, the debugger
may not be able to associate the address with a particular data object. In
this case, the debugger uses a default length of 4 bytes. You can change this
length, however, by setting the type to either WORD (SET TYPE WORD,
which changes the default length to 2 bytes) or BYTE (SET TYPE BYTE,
which changes the default length to 1 byte). SET TYPE LONGWORD
restores the default length of 4 bytes.

SET BREAK

/OVER
Applies only to breakpoints set with /BRANCH, /CALL,
/INSTRUCTION[=(opcode-list)], or /LINE; that is, when an address
expression is not explicitly specified. When used with those qualifiers, causes
the debugger to break at the specified points only within the routine where
execution is currently suspended (not within called routines). /OVER is the
opposite of /INTO (the default behavior).

/RETURN
Sets a breakpoint on the RETURN (RET) instruction from an indicated
routine. This qualifier can only be applied to routines called with a CALLS or
CALLG instruction; it cannot be used with JSB routines. Breaking on the RET
instruction also allows you to inspect the local environment before the RET
instruction deletes the routine's call frame from the call stack.

For this qualifier, the address-expression parameter is an instruction address
within a CALLS or CALLG routine. It may simply be a routine name, in
which case it specifies the routine start address. However, you can also
specify another location in a routine, so you can see only those returns that
are taken after a certain code path is followed.

A SET BREAK/RETURN command cancels a previous SET BREAK command
if the same address expresion is specified.

/[NO]SHARE
Qualifies /INTO. Use /[NO]SHARE only with /INTO and one of the
following qualifiers: BRANCH, /CALL, /INSTRUCTION[=(opcode-list)], or
/LINE. /SHARE (default) permits the debugger to break within shareable
image routines as well as other routines. /NOSHARE specifies that
breakpoints not be set within shareable images. Do not specify an address
expression with /[NO]SHARE.

/[NO JS/LENT
Controls whether or not the "break ... " message and source code are
displayed when break action is taken. /NOSILENT (default) specifies that the
message be displayed. /SILENT specifies that no message or source code be
displayed. /SILENT overrides /SOURCE. See also SET STEP [NO]SOURCE.

/[NOJSOURCE
Controls whether or not the source code is displayed when break action
is taken. /SOURCE (default) specifies that the source code be displayed.
/NOSOURCE specifies that no source c9de be displayed. /SILENT overrides
/SOURCE.

/[NO]SYSTEM
Qualifies /INTO. Use /[NO]SYSTEM only with /INTO and one of the
following qualifiers: /BRANCH, /CALL, /INSTRUCTION[=(opcode-list)],
or /LINE. /SYSTEM (default) permits the debugger to break within system
routines (Pl space) as well as other routines. /NOSYSTEM specifies that
breakpoints not be set within system routines. Do not specify an address
expression with /[NO]SYSTEM.

/TEMPORARY
Causes the breakpoint to disappear after it is triggered (the breakpoint does
not remain permanently set).

CD-99

SET BREAK

DESCRIPTION

CD-100

When a breakpoint is triggered, the debugger does the following:

1 Suspends program execution at the breakpoint location.

2 If /AFTER was specified when the breakpoint was set, checks the AFTER
count. If the specified number of counts has not been reached, execution
is resumed and the debugger does not perform the remaining steps.

3 Evaluates the expression in a WHEN clause, if one was specified when
the breakpoint was set. If the value of the expression is FALSE, execution
is resumed and the debugger does not perform the remaining steps.

4 Reports that execution has reached the breakpoint location, unless
/SILENT was specified.

5 Displays the line of source code where execution is suspended, unless
/NOSOURCE or /SILENT was specified when the breakpoint was set, or
SET STEP NOSOURCE was entered previously.

6 Executes the commands in a DO clause, if one was specified when the
breakpoint was set. If the DO clause contains a GO command, execution
continues and the debugger does not perform the next step.

7 Issues the prompt.

The following qualifiers affect what output is seen when a breakpoint is
reached:

/[NO]SILENT
/[NO]SOURCE

The following qualifiers affect the timing and duration of breakpoints:

/AFTER:n
/TEMPORARY

The /LINE qualifier sets a breakpoint on each line of source code.

The following qualifiers set breakpoints on classes of instructions:

/BRANCH
/CALL
/INSTRUCTION
/INSTRUCTION=(opcode-list)
/RETURN

The following qualifiers set breakpoints on classes of events:

/EVENT=event-name
/EXCEPTION

The following qualifiers affect what happens at a routine call:

/INTO
/[NO]JSB
/OVER
/[NO]SHARE
/[NO]SYSTEM

The /MODIFY qualifier is used to monitor changes at program locations
(typically changes in the values of variables).

EXAMPLES

SET BREAK

If you set a breakpoint at a location currently used as a tracepoint, the
tracepoint is canceled in favor of the breakpoint, and vice versa.

Related commands: (SHOW, CANCEL) BREAK, CANCEL ALL, SET TRACE,
SET WATCH, GO, STEP, (SET, SHOW) EVENT_FACILITY, SET STEP
[NO]SOURCE.

i] DBG> SET BREAK SWAP\%LINE 12

This command sets a breakpoint on line 12 of module SWAP.

fa DBG> SET BREAK/ AFTER: 3 SUB2

This command sets a breakpoint that triggers on the third and subsequent
times that SUB2 (a routine) is executed.

~ DBG> SET BREAK LOOP1 DO (EXAMINE D; STEP; EXAMINE Y; GO)

This command sets a breakpoint at location LOOPl. When the breakpoint is
reached, the following commands are executed:

EXAMINED
STEP
EXAMINE Y
GO

~ DBG> SET BREAK/TEMPORARY 1440
DBG> SHOW BREAK
breakpoint at 1440 [temporary]

This command sets a temporary breakpoint at location 1440. After that
breakpoint is triggered, it disappears.

CD-101

SET DEFINE

SET DEFINE

FORMAT

PARAMETERS

QUALIFIERS

DESCRIPTION

EXAMPLE
DBG> SET DEFINE VALUE

CD-102

Establishes a default qualifier (/ADDRESS, /COMMAND, or /VALUE) for
the DEFINE command.

SET DEFINE define-default

define-default
Specifies the default to be established for the DEFINE command. Valid
keywords (which correspond to DEFINE command qualifiers) are the
following:

ADDRESS

COMMAND

VALUE

None.

Subsequent DEFINE commands are treated as DEFINE/ ADDRESS.
This is the default.

Subsequent DEFINE commands are treated as DEFINE/COMMAND.

Subsequent DEFINE commands are treated as DEFINE/VALUE.

The SET DEFINE command establishes a default qualifier for subsequent
DEFINE commands. The parameters that you specify in the SET DEFINE
command have the same names as the DEFINE command qualifiers. DEFINE
command qualifiers determine whether the DEFINE command binds a symbol
to an address, a command string, or a value.

You can override the current DEFINE default for the duration of a single
DEFINE command by specifying another qualifier. Use the SHOW DEFINE
command to identify the current DEFINE defaults.

Related commands: SHOW DEFINE, DEFINE, DELETE,
SHOW SYMBOL/DEFINED.

This command specifies that subsequent DEFINE commands are to be treated
as DEFINE/VALUE.

SET DISPLAY

SET DISPLAY

FORMAT

Creates a new screen display.

SET DISPLAY disp-name [AT w-spec} [disp-kind]
[, ... 1

PARAMETERS disp-name
Specifies the name of the display you are defining. If a display by the same
name already exists, you must cancel the first display before you can define
the new display.

You may specify more than one display, each with an optional window
specification (w-spec) and display kind (disp-kind).

w-spec
Specifies the screen window at which the display is to be positioned. You
may specify any of the following:

• A predefined window. For example, RHl (right top half). See
Appendix C.

• A window definition previously established with the SET WINDOW
command.

• A window specification of the form (start-line, line-count [,start-column,
column-count]). The specification can include expressions which may
be based on the built-in symbols %PAGE and % WIDTH (for example,
%WIDTH/4).

If you omit the w-spec parameter, the display is positioned at window Hl
or H2 by default, alternating between Hl and H2 with each SET DISPLAY
command.

disp-kind
Specifies the display kind. Valid keywords are the following:

DO (command[; ...]) Specifies an automatically updated output display.

INSTRUCTION

The commands are executed in the order listed
each time the debugger gains control. Their
output forms the contents of the display. If you
specify more than one command, they must be
separated by semicolons.

Specifies an instruction display. If selected
as the current instruction display with the
SELECT /INSTRUCTION command, it displays the
output from subsequent EXAMINE/INSTRUCTION
commands.

CD-103

SET DISPLAY

QUALIFIERS

CD-104

INSTRUCTION (command)

OUTPUT

REGISTER

SOURCE

SOURCE (command)

Specifies an automatically updated instruction
display. The command specified must be
an EXAMINE/INSTRUCTION command. The
instruction display is updated each time the
debugger gains control.

Specifies an output display. If selected as the
current output display with the SELECT /OUTPUT
command, it displays any debugger output that is
not directed to another display. If selected as the
current input display with the
SELECT /INPUT command, it echoes debugger
input. If selected as the current error display
with the SELECT /ERROR command, it displays
debugger diagnostic messages.

Specifies an automatically updated register
display. The display is updated each time the
debugger gains control.

Specifies a source display. If selected as the
current source display with the SELECT /SOURCE
command, it displays the output from subsequent
TYPE or EXAMINE/SOURCE commands.

Specifies an automatically updated source display.
The command specified must be a TYPE or
EXAMINE/SOURCE command. The source
display is updated each time the debugger gains
control.

If you omit the disp-kind parameter, an OUTPUT display is created.

/[NO]DYNAMIC
Controls whether a display automatically adjusts its window dimensions in
proportion when the screen height or width is changed by a SET TERMINAL
command. By default (/DYNAMIC) all newly created displays adjust their
window dimensions automatically.

/HIDE
Places a newly created display at the bottom of the display pasteboard. This
hides the new display behind any previously existing displays that share the
same region of the screen.

/HIDE has the same effect as /PUSH.

/MARK_CHANGE
Marks the lines that change in a DO(cmd-list) display each time the display
is automatically updated. Any lines in which the contents have changed
since the last time the display was updated are highlighted with reverse
video. This qualifier is particularly useful when you want any variables in an
automatically updated display to be highlighted when they change.

This qualifier is not applicable to other kinds of displays.

DESCRIPTION

EXAMPLES

SET DISPLAY

/POP
Places a newly created display at the top of the display pasteboard, ahead of
any other displays except the PROMPT display. The new display then hides
any other displays that share the same region of the screen, except for the
PROMPT display. This is the default action of the SET DISPLAY command.

/PUSH
Has the same effect as /HIDE.

/REMOVE
Specifies that the display not be shown on the screen unless you explicitly
request it with the DISPLAY command. The display is then marked as being
removed from the display pasteboard, although it still exists.

/SIZE:n
Sets the maximum size of a display to be n lines. If more than n lines are
written to the display, the oldest lines are lost as new lines are added. If
you omit this qualifier, the default size is 64 lines, except for the predefined
display OUT (100 lines).

For an output or DO display, /SIZE:n specifies that the display should
hold the n most recent lines of output. For a source or instruction display,
n gives the number of source lines or lines of instructions that can be
placed in the memory buffer at any one time. However, you can scroll a
source display over the entire source code of the module· whose code is
displayed (source lines are paged into the buffer as needed). Similarly, you
can scroll an instruction display over all of the instructions of the routine
whose instructions are displayed (instructions are decoded from the image as
needed).

The SET DISPLAY command is used to create a new display. You can specify
the display' s name, window, and display kind. By default, an output display
is created, and it is placed on top of the display pasteboard, ahead of any
existing displays but behind the PROMPT display. You can also hide a newly
created display at the bottom of the pasteboard, so it does not conceal existing
displays. And you can create a new "removed" display.

Related commands: (SHOW, CANCEL) DISPLAY, DISPLAY, (SET, SHOW,
CANCEL) WINDOW, SELECT, (SET, SHOW) TERMINAL.

D DBG> SET DISPLAY DISP2 AT RS45
DBG> SELECT/OUTPUT DISP2

In this example, the SET DISPLAY command creates a new display named
DISP2 essentially at the right bottom half of the screen, above the PROMPT
display, which is located at S6. This is an output display by default. The
SELECT /OUTPUT command then selects DISP2 as the current output
display.

CD-105

SET DISPLAY

~ DBG> SET WINDOW TOP AT (1, 8, 45, 30)
DBG> SET DISPLAY NEWINST AT TOP INSTRUCTION
DBG> SELECT/INST NEWINST

In this example, the SET WINDOW command creates a window named TOP
starting at line 1 and column 45, and extending down for 8 lines and to the
right for 30 columns. The SET DISPLAY command creates an instruction
display named NEWINST to be displayed through TOP. The SELECT /INST
command selects NEWINST as the current instruction display.

~ DBG> SET DISPLAY CALLS AT Q3 DO (SHOW CALLS)

CD-106

This command creates a DO display named CALLS at window Q3. Each time
the debugger gains control from the program, the SHOW CALLS command
is executed and the output is displayed in display CALLS, replacing any
previous contents.

SET EDITOR

SET EDITOR

FORMAT

PARAMETERS

QUALIFIERS

Establishes the editor that is invoked by the EDIT command.

SET EDITOR [command-line]

command-line
Specifies a command line to invoke a particular editor on your system when
you use the EDIT command.

You must specify a command line unless you use the /CALLABLE_EDT,
/CALLABLE_LSEDIT, or /CALLABLE_TPU qualifiers. If you do not use
one of these qualifiers, the editor specified in the SET EDITOR command line
is spawned to a subprocess when you enter the EDIT command.

You may specify a command line with the /CALLABLE_LSEDIT and
/CALLABLE_TPU qualifiers, but not with the /CALLABLE_EDT qualifier.

/CALLABLE_EDT
Specifies that the callable version of the EDT editor is to be invoked
when you use the EDIT command. Do not specify a command line with
/CALLABLE_EDT (a command line of "EDT" is used).

/CALLABLE_LSEDIT
Specifies that the callable version of the VAX Language-Sensitive Editor
(LSEDIT) is to be invoked when you use the EDIT command. If you also
specify a command line, it is passed to callable LSEDIT. If you do not specify
a command line, the. default command line is "LSEDIT".

/CALLABLE_ TPU
Specifies that the callable version of the VAX Text Processing Utility
(VAXTPU) is to be invoked when you use the EDIT command. If you
also specify a command line, it is passed to callable VAXTPU. If you do not
specify a command line, the default command line is "TPU".

/[NO JS TART _POSITION
Note: Currently, only V AXTPU and the VAX Language-Sensitive
Editor (specified either as TPU or /CALLABLE_ TPU, and LSEDIT or
/CALLABLE_LSEDIT, respectively) supports /ST ART_pQSITION.

Controls whether the /START_POSITION qualifier is appended to the
specified or default command line when the EDIT command is used.
This qualifier affects the initial position of the editor's cursor. By default,
(/NOSTART_POSITION), the editor's cursor is placed at the start of source
line l, regardless of which line is centered in the debugger's source display or
whether a line number is specified in the EDIT command. If
/START_POSITION is specified, the cursor is placed either on the line whose
number is specified in the EDIT command, or (if no line number is specified)
on the line that is centered in the current source display.

CD-107

SET EDITOR

DESCRIPTION

EXAMPLES

The SET EDITOR command may be used to specify any editor that is installed
on your system. In general, the command line specified as parameter to the
SET EDITOR command is spawned and executed in a subprocess. However,
if you use EDT, LSEDIT, or VAXTPU, you have the option of invoking these
editors in a more efficient way. You can specify the /CALLABLE_EDT,
/CALLABLE_LSEDIT, or /CALLABLE_TPU qualifiers, which cause the
callable versions of EDT, LSEDIT, and VAXTPU, respectively, to be invoked
by the EDIT command. In the case of LSEDIT and VAXTPU, you may also
specify a command line that is executed by the callable editor.

Related commands: SHOW EDITOR, EDIT, (SET, SHOW, CANCEL)
SOURCE.

D DBG> SET EDITOR I ©MAIL$EDIT 1111 I

This command causes the EDIT command to spawn the command line
'@MAIL$EDIT ""',which invokes the same editor as you use in MAIL.

DBG> SET EDITOR/CALLABLE_TPU

This command causes the EDIT command to invoke callable VAXTPU with
the default command line of TPU.

DBG> SET EDITOR/CALLABLE_TPU TPU/SECTION=MYSECINI.TPU$SECTION

This command causes the EDIT command to invoke callable VAXTPU with
the command line TPU/SECTION=MYSECINI.TPU$SECTION.

DBG> SET EDITOR/CALLABLE_LSEDIT/START_POSITION

CD-108

This command causes the EDIT command to invoke callable LSEDIT with
the default command line of LSEDIT. Also the /START_POSITION qualifier
is appended to the command line, so that the editing session starts on the
source line that is centered in the debugger's current source display.

SET EVENT_FACILITY

SET EVENT_FACILITY

FORMAT

Establishes the run-time library facility for eventpoints that are set with the
SET BREAK/EVENT and SET TRACE/EVENT commands.

Note: This command currently applies only to Ada and SCAN.
See the VAX Ada and VAX SCAN documentation for complete
information.

SET EVENT_FACILITY facility-name

PARAMETERS facility-name

QUALIFIERS

DESCRIPTION

EXAMPLE

Specifies a run-time library facility for eventpoints. Valid keywords are the
following:

ADA Enables recognition of Ada-specific events when you use the
(SET, CANCEL) BREAK/EVENT and (SET, CANCEL) TRACE/EVENT
commands. Valid Ada event names are identified in Appendix E.

SCAN Enables recognition of SCAN-specific events when you use the
(SET, CANCEL) BREAK/EVENT and (SET, CANCEL) TRACE/EVENT
commands. Valid SCAN event names are identified in Appendix E.

None.

The Ada event facility enables you to set breakpoints and tracepoints on
tasking events and exception events. The SCAN event facility enables you to
set breakpoints and tracepoints on pattern-matching events.

Use the SHOW EVENT-FACILITY command to identify the events applicable
to the currently set language.

Related commands: SHOW EVENT_FACILITY, (SET, CANCEL) BREAK
/EVENT, SHOW BREAK, (SET, CANCEL) TRACE/EVENT, SHOW TRACE.

DBG> SET EVENT_FACILITY ADA

This command establishes Ada as the current run-time library facility.

CD-109

SET IMAGE

SET IMAGE

FORMAT

Loads symbol information for one or more shareable images and
establishes the current image.

SET IMAGE [image-name{, ...]]

PARAMETERS image-name
Specifies a shareable image that is to be "set". Do not use the asterisk
wildcard character (*). Do not specify an image name with /ALL.

QUALIFIERS /ALL
Specifies that all shareable images are to be set. Do not specify an image with
/ALL.

DESCRIPTION The SET IMAGE command builds data structures for one or more specified
images but does not set any modules within the images specified.

CD-110

The "current" image is the current debugging context: you have access to
symbols in the current image. If only one image is specified with the SET
IMAGE command, that image becomes the current image. If a list of images
is specified, the last one in the list becomes the current image. If /ALL is
specified, the current image is unchanged.

Before an image can be set with the SET IMAGE command, it must have been
linked with the /DEBUG or /TRACEBACK qualifier on the LINK command.
If an image was linked /NOTRACEBACK, no symbol information is available
for that image and you cannot specify it with the SET IMAGE command.

Definitions created with the DEFINE/ ADDRESS and DEFINE/VALUE
commands are available only when the image in whose context they were
created is the current image. When you use the SET IMAGE command to
establish a new current image, these definitions are temporarily unavailable.
Definitions created with the DEFINE/COMMAND and DEFINE/KEY
commands are always available for all images, however.

Related commands: (SHOW, CANCEL) IMAGE, (SET, SHOW, CANCEL)
MODULE, SET MODE [NO]DYNAMIC.

EXAMPLE

DBG> SET IMAGE SHARE1
DBG> SET MODULE SUBR
DBG> SET BREAK SUBR

SET IMAGE

This sequence of commands shows how to set a breakpoint on routine SUBR
in module SUBR of shareable image SHAREl. The SET IMAGE command
sets the debugging context to SHAREl. The SET MODULE command loads
the symbol records of module SUBR into the RST. The SET BREAK command
sets a breakpoint on routine SUBR.

CD-111

SET KEY

SET KEY

Establishes the current key state.

FORMAT SET KEY

PARAMETERS None.

QUALIFIERS /[NO]LOG
Controls whether a message is displayed indicating that the key state has
been set. /LOG (default) displays the message.

/[NOJSTATE[=state-name]

DESCRIPTION

EXAMPLE

DBG> SET KEY/STATE=PROG3

CD-112

Specifies a key state to be established as the current state. You may specify
a predefined key state, such as GOLD, or a user-defined state. A state name
can be any appropriate alphanumeric string. /NOSTATE (default) leaves the
current state unchanged.

Keypad mode must be enabled (SET MODE KEYPAD) before you can use
this command. Keypad mode is enabled by default.

By default, the current key state is the "DEFAULT" state. When you define
function keys using the DEFINE/KEY command, you can use the /IF-STATE
qualifier of that command to assign a specific state name to the key definition.
If that state is not set when you press the key, the definition is not processed.
The SET KEY /STATE command enables you to change the current state to
the appropriate state.

You can also change the current state by pressing a key that causes a state
change (a key that was defined with the DEFINE/KEY /LOCK_STATE/SET_
STATE qualifier combination).

Related commands: DEFINE/KEY, DELETE/KEY, SHOW KEY.

This command changes the key state to the PROG3 state. The user can now
use the key definitions that are associated with this state.

SET LANGUAGE

SET LANGUAGE

Establishes the current language.

FORMAT SET LANGUAGE language-name

PARAMETERS language-name
Specifies a language. Valid keywords are ADA, BASIC, BLISS, C, COBOL,
DIBOL, FORTRAN, MACRO, PASCAL, PLI, RPG, SCAN, and UNKNOWN.

QUALIFIERS None.

DESCRIPTION When you invoke the debugger, the debugger sets the current language
to that in which the module containing the main program is written. This
is usually the module containing the image transfer address. To debug a
module written in a different source language from that of the main program,
you can change the language with the SET LANGUAGE command.

The current language setting determines how the debugger parses and
interprets the names, operators, and expressions you specify in debugger
commands, including things like the typing of variables, array and record
syntax, the default radix for the entry and display of integer data, case
sensitivity, and so on. The language setting also determines how the
debugger formats and displays data associated with your program.

The default radix for both data entry and display is decimal for all languages
except BLISS and MACRO. It is hexadecimal for BLISS and MACRO. The
default type for program locations that do not have a compiler generated type
is longword integer.

The SET LANGUAGE UNKNOWN command may be used when debugging
a program that is written in an unsupported language. To maximize the
usability of the debugger with unsupported languages, the SET LANGUAGE
UNKNOWN command causes the debugger to accept a large set of data
formats and operators, including some that may be specific to only a few
supported languages.

The operators and constructs that are recognized for each value of the SET
LANGUAGE command are identified in Appendix E.

Related commands: SHOW LANGUAGE, SET TYPE, SET RADIX, SET
MODE, DEPOSIT, EXAMINE, EVALUATE.

CD-113

SET LANGUAGE

EXAMPLES

D DBG> SET LANG COBOL

This command establishes COBOL as the current language.

~ DBG> SET LANG PASCAL

This command establishes PASCAL as the current language.

CD-114

SET LOG

FORMAT

SET LOG

Specifies a log file to which the debugger writes after a SET OUTPUT LOG
command has been entered.

SET LOG file-spec

PARAMETERS file-spec

QUALIFIERS

DESCRIPTION

EXAMPLES

D DBG> SET LOG CALC
DBG> SET OUTPUT LOG

Denotes the file specification of the log file. If you do not supply a full file
specification, the debugger assumes SYS$DISK:[]DEBUG.LOG as the default
file specification for any missing field.

If you specify a version number and that version of the file already exists,
the debugger writes to the file specified, appending the log of the debugging
session onto the end of that file.

None.

Note that the SET LOG command only determines the name of a log file; it
does not cause the debugger to create or write to the specified file. The SET
OUTPUT LOG command accomplishes that.

If you have entered a SET OUTPUT LOG command but no SET LOG
command, the debugger writes to the file SYS$DISK:[]DEBUG.LOG by
default.

If the debugger is writing to a log file and you specify another log file with
the SET LOG command, the debugger closes the former file and begins
writing to the file specified in the SET LOG command.

Related commands: SHOW LOG, SET OUTPUT LOG, SET OUTPUT
SCREEN_LOG.

In this example, the SET LOG command specifies the debugger log file to be
SYS$DISK:[]CALC.LOG. The SET OUTPUT command causes user input and
debugger output to be logged to that file.

~ DBG> SET LOG "[CODEPROJ] FEB29. TMP"
DBG> SET OUTPUT LOG

In this example, the SET LOG command specifies the debugger log file to be
[CODEPROJ]FEB29.TMP. The SET OUTPUT command causes user input and
debugger output to be logged to that file.

CD-115

SET MARGINS

SET MARGINS

FORMAT

Specifies the leftmost and rightmost source-line character position at
which to begin and end display of a source line.

SET MARGINS rm
lm:rm
Im:
:rm

PARAMETERS /m

QUALIFIERS

DESCRIPTION

CD-116

The source-line character position at which to begin display of the line of
source code (the left margin).

rm
The source-line character position at which to end display of the line of
source code (the right margin).

None.

The SET MARGINS command affects only the display of source lines. It
does not affect the display of other debugger output, as from an EXAMINE
command.

The SET MARGINS command is useful for controlling the display of source
code when, for example, the code is deeply indented or long lines wrap at
the right margin. In such cases, you can set the left margin to eliminate
indented space in the source display, and you can decrease the right margin
setting (from its default value of 255) to truncate lines and prevent them from
wrapping.

The SET MARGINS command is useful mostly in line (noscreen) mode. In
line mode, the SET MARGINS command affects the display of source lines
resulting from a TYPE, EXAMINE/SOURCE, SEARCH, or STEP command,
or when a breakpoint, tracepoint, or watchpoint is triggered.

In screen mode, the SET MARGINS command has no effect on the display
of source lines in a source display, such as the predefined display SRC.
Therefore it does not affect the output of a TYPE or EXAMINE/SOURCE
command, since that output is directed at a source display. The SET
MARGINS command affects only the display of any source code that might
appear in an output or DO display (for example after a STEP command has
been executed). However, note that such display is normally suppressed if
you invoke screen mode with the keypad key sequence PF1-PF3, because
that sequence issues the command SET STEP NOSOURCE in addition to SET
MODE SCREEN, to eliminate redundant source display.

EXAMPLES

[I DBG> SHOW MARGINS

SET MARGINS

By default, the debugger displays a source line beginning at character position
1 of the source line. This is actually character position 9 on your terminal
screen. The first eight character positions on the screen are reserved for the
line number and cannot be manipulated by the SET MARGINS command.

If you specify a single number, the debugger sets the left margin to 1 and the
right margin to the number specified.

If you specify two numbers, separated with a colon, the debugger sets the
left margin to the number on the left of the colon and the right margin to the
number on the right.

If you specify a single number followed by a colon, the debugger sets the left
margin to that number and leaves the right margin unchanged.

If you specify a colon followed by a single number, the debugger sets the
right margin to that number and leaves the left margin unchanged.

Related commands: SHOW MARGINS, SET STEP [NO]SOURCE.

left margin: 1 , right margin: 255
DBG> TYPE 14
module FORARRAY

14: DIMENSION IARRAY(4:5,5), VECTOR(10), I3D(3,3,4)

This example displays the default margin settings for a line of source code (1
and 255).

~ DBG> SET MARGINS 39
DBG> SHOW MARGINS
left margin: 1 , right margin: 39
DBG> TYPE 14
module FORARRAY

14: DIMENSION IARRAY(4:5,5), VECTOR

This example shows how the display of a line of source code changes when
you change the right margin setting from 255 to 39.

eJ DBG> SET MARGINS 10:45
DBG> SHOW MARGINS
left margin: 10 , right margin: 45
DBG> TYPE 14
module FORARRAY

14'. IMENSION IARRAY(4:5,5), VECTOR(10),

This example shows the display of the same line of source code after both
margins are changed.

~ DBG> SET MARGINS :100
DBG> SHOW MARGINS
left margin: 10 , right margin: 100

This example shows how to change the right margin setting while retaining
the previous left margin setting.

CD-117

SET MARGINS

~ DBG> SET MARGINS 5:
DBG> SHOW MARGINS
left margin: 5 , right margin: 100

CD-118

This example shows how to change the left margin setting while retaining the
previous right margin setting.

SET MAX_SOURCE_FILES

SET MAX_SOURCE_FILES

FORMAT

PARAMETERS

QUALIFIERS

DESCRIPTION

EXAMPLE

Specifies the maximum number of source files that the debugger may keep
open at any one time.

SET MAX_SOURCE_FILES n

n
Specifies the maximum number of source files that the debugger may keep
open at any one time (n is a decimal integer). The value of n may not exceed
20. The default value is 5.

None.

By default, the debugger may keep five source files open at any one time.

Opening a source file requires the use of an 1/0 channel, which is a limited
system resource. Both the program and the debugger use 1/0 channels. To
ensure that the debugger does not use all available 1/0 channels and thus
cause the program to fail (for lack of an available 1/0 channel), you can enter
the SET MAX_SOURCE_FILES command to specify the maximum number
of source files (and thus source file 1/0 channels) that the debugger may use
at any one time.

Note that the value of MAX_SOURCE_FILES does not limit the number
of source files that the debugger can open; rather, it limits the number that
may be kept open at any one time. Thus, if the debugger reaches this limit, it
must close a file in order to open another one.

Note also that setting MAX_SOURCE_FILES to a very small number can
make the debugger's use of source files inefficient.

Related commands: SHOW MAX_SOURCE_FILES, (SET, SHOW, CANCEL)
SOURCE.

DBG> SHOW MAX_SOURCE_FILES
max_source_files: 5
DBG> SET MAX_SOURCE_FILES 8
DBG> SHOW MAX_SOURCE_FILES
max_source_files: 8

In this example, the SET MAX_SOURCE_FILES 8 command enables the
debugger to keep a maximum of eight files open at any one time.

CD-119

SET MODE

SET MODE

FORMAT

PARAMETERS

CD-120

Enables or disables a debugger mode.

SET MODE mode[, ...]

mode
Specifies a debugger mode to be enabled or disabled. Valid keywords are the
following:

DYNAMIC Enables dynamic mode. When dynamic mode is
enabled, the debugger sets modules and images
automatically during program execution so that you
typically do not have to enter the SET MODULE or SET
IMAGE command. Specifically, whenever the debugger
interrupts execution (whenever the debugger prompt is
displayed), the debugger automatically sets the module
and image that contain the. routine where execution is
currently suspended. If the module or image is already
set, dynamic mode has no effect on that module or
image. The debugger issues an informational message
when it sets a module or image automatically. SET
MODE DYNAMIC is the default.

NODYNAMIC

G_FLOAT

NOG_FLOAT

Disables dynamic mode. Because additional memory
is allocated when a module or image is set, you may
want to disable dynamic mode if performance becomes
a problem (you can also free up memory by canceling
modules and images with the CANCEL MODULE and
CANCEL IMAGE commands). When dynamic mode is
disabled, you must set modules and images explicitly
with the SET MODULE and SET IMAGE commands.

Specifies that the debugger interpret double-precision
floating-point constants entered in expressions as G_
FLOAT (does not affect the interpretation of variables
declared in your program). EXAMINE/D_FLOAT and
DEPOSIT /D-FLOA T may be used to override SET
MODE G_FLOA T for the duration of an EXAMINE or
DEPOSIT command.

Specifies that the debugger interpret double-precision
floating-point constants entered in expressions as D_
FLOAT (does not affect the interpretation of variables
declared in your program). EXAMINE/G_FLOAT and
DEPOSIT /G_FLOA T may be used to override SET
MODE NOG_FLOA T for the duration of an EXAMINE
or DEPOSIT command. SET MODE NOG_FLOA T is the
default.

KEYPAD

NOKEYPAD

LINE

NOLINE

OPERANDS[=keyword]

NOOPERANDS

SCREEN

NOSCREEN

SCROLL

NOSCROLL

SET MODE

Enables keypad mode. When keypad mode is enabled,
you can use the keys on the numeric keypad to
perform certain predefined functions. Several debugger
commands, especially useful in screen mode, are
bound to the keypad keys (see Appendix B). You can
also redefine the key functions with the DEFINE/KEY
command. SET MODE KEYPAD is the default.

Disables keypad mode. When keypad mode is
disabled, the keys on the numeric keypad do not
have predefined functions, nor can you assign
debugger functions to those keys with the DEFINE
/KEY command.

Specifies that the debugger display code locations in
terms of line numbers, if possible. SET MODE LINE is
the default.

Specifies that the debugger display code locations
in terms of routine-name + byte-offset rather than in
terms of line numbers.

Specifies that the EXAMINE command, when used
to examine an instruction, display the address and
contents of the instruction's operands in addition to the
instruction and its operands. The level of information
displayed depends on whether you use the keyword
BRIEF or FULL. The default is OPERANDS=BRIEF.

Specifies that the EXAMINE command, when used to
examine an instruction, display only the instruction and
its operands. SET MODE NOOPERANDS is the default.

Enables screen mode. When screen mode is enabled,
you can divide the terminal screen into rectangular
regions, so different data can be displayed in different
regions. Screen mode enables you to view more
information more conveniently than the default, line­
oriented, noscreen mode. You can use the predefined
displays, or you can define your own.

Disables screen mode. SET MODE NOSCREEN is the
default.

Enables scroll mode. When scroll mode is enabled,
a screen-mode output or DO display is updated by
scrolling the output line by line, as it is generated. SET
MODE SCROLL is the default.

Disables scroll mode. When scroll mode is disabled,
a screen-mode output or DO display is updated only
once per command, instead of line by line as it is
generated. Disabling scroll mode reduces the amount
of screen updating that takes place and may be useful
with slow terminals.

CD-121

SET MODE

QUALIFIERS

DESCRIPTION

EXAMPLE
DBG> SET MODE SCREEN

CD-122

SEPARATE

NOSEPARATE

SYMBOLIC

NOSYMBOLIC

None.

(Applies only to V AXstations.) Specifies that a
separate window be created for debugger input and
output. This is useful when debugging screen-oriented
applications, since it moves all debugger displays out
of the original window (where the program is running).
The separate window is created with a height of 24
lines and a width of 80 columns wide, emulating a
VT-series terminal screen.

(Applies only to V AXstations.) Specifies that no
separate window be created for debugger input and
output. SET MODE NOSEPARATE is the default.

Enables symbolic mode. When symbolic mode is
enabled, the debugger displays the locations denoted
by address expressielns symbolically (if possible) and
displays instruction operands symbolically (if possible).
EXAMINE/NOSYMBOLIC may be used to override SET
MODE SYMBOLIC for the duration of an EXAMINE
command. SET MODE SYMBOLIC is the default.

Disables symbolic mode. When symbolic mode is
disabled, the debugger does not attempt to symbolize
numeric addresses (it does not cause the debugger
to convert numbers to names). This is useful if you
are interested in identifying numeric addresses rather
than their symbolic names (if symbolic names exist for
those addresses). When symbolic mode is disabled,
command processing may speed up somewhat,
because the debugger does not need to convert
numbers to names. EXAMINE/SYMBOLIC may be used
to override SET MODE NOSYMBOLIC for the duration
of an EXAMINE command.

See the parameter descriptions for details about the SET MODE command.
The default values of these modes are the same for all languages.

Related commands: (SHOW, CANCEL) MODE, (SET, SHOW, CANCEL)
MODULE, (SET, SHOW, CANCEL) IMAGE, (SET, SHOW) TYPE, EXAMINE,
DEPOSIT, EVALUATE, DEFINE/KEY, SYMBOLIZE, DISPLAY, SET
PROMPT, (SET, SHOW, CANCEL) RADIX.

This command puts the debugger in screen mode.

SET MODULE

SET MODULE

FORMAT

PARAMETERS

QUALIFIERS

DESCRIPTION

Loads the symbol records of a module in the current image into the
run-time symbol table (RST) of that image.

SET MODULE [module-name[, ...]]

module-name
Specifies a module of the current image whose symbol records are to be
loaded into the RST. Do not use the asterisk wildcard character (*). Do not
specify a module name with /ALL.

/ALL
Specifies that the symbol records of all modules in the current image be
loaded into the RST. Do not specify a module name with/ ALL.

/CALLS
Sets all the modules that currently have routines on the call stack. If a
module is already set, /CALLS has no effect on that module.

/[NO JR ELATED
Note: This qualifier applies only to Ada programs.

Controls whether the debugger loads into the RST the symbol records of a
module that is related to a specified module through a with-clause or subunit
relationship.

SET MODULE/RELATED (default) loads symbol records for related modules
as well as for those specified. This makes names declared in related modules
visible so that you can reference them in debugger commands exactly as they
can be referenced within the Ada source code. SET MODULE/NORELATED
loads symbol records only for modules that are specified (no symbol records
are loaded for related modules).

Note: The current image is either the main image (by default) or the
image established as the current image by a previous SET IMAGE
command.

Symbol records must be present in the run-time symbol table (RST) if the
debugger is to recognize and properly interpret the symbols declared in your
program. The process by which the symbol records of a module are loaded
into the RST is called setting a module.

At debugger startup, the debugger sets the module containing the transfer
address (the main program). By default, dynamic mode is enabled (SET
MODE DYNAMIC). Therefore, the debugger sets modules (and images)
automatically as the program executes so that you can reference symbols
as you need them. Specifically, whenever execution is suspended, the
debugger sets the module and image containing the routine where execution
is suspended. In the case of Ada programs, as a module is set dynamically, its

CD-123

SET MODULE

EXAMPLES

related modules are also set automatically, by default, to make the appropriate
symbols accessible (visible).

Dynamic mode makes accessible most of the symbols you might need to
reference. If you need to reference a symbol in a module that is not already
set, proceed as follows:

• If the module is in the current image, use the SET MODULE command to
set the module where the symbol is defined.

• If the module is in another image, use the SET IMAGE command to make
that image the current image, then use the SET MODULE command to
set the module where the symbol is defined.

If dynamic mode is disabled (SET MODE NODYNAMIC), only the module
containing the transfer address is set automatically. You must set any other
modules explicitly.

If you use the SET IMAGE command to establish a new current image, all
modules previously set remain set. However, only the symbols in the set
modules of the current image are accessible. Symbols in the set modules of
otherUmages are temporarily unaccessible.

When dynamic mode is enabled, memory is allocated automatically to
accommodate the increasing size of the RST. If dynamic mode is disabled,
the debugger automatically allocates more memory as needed when you set
a module or an image. Whether dynamic mode is enabled or disabled, if
performance becomes a problem as more modules are set, use the CANCEL
MODULE command to reduce the number of set modules.

If a parameter in a SET SCOPE command designates a program location in a
module that is not already set, the SET SCOPE command sets that module.

Related commands: (SHOW, CANCEL) MODULE, SET MODE
[NO]DYNAMIC, (SET, SHOW, CANCEL) IMAGE.

[I DBG> SET MODULE SUB1

This command sets module SUBl (loads the symbol records of module SUBl
into the RST).

~ DBG> SET IMAGE SHARE3
DBG> SET MODULE MATH
DBG> SET BREAK %LINE 31

CD-124

In this example, the SET IMAGE command makes shareable image SHARE3
the current image. The SET MODULE command sets module MATH in image
SHARE3. The SET BREAK command sets a breakpoint on line 31 of module
MATH.

SET MODULE

~ DBG> SHOW MODULE/SHARE
module name symbols language size

FOO
MAIN

SHARE$DEBUG
SHARE$LIBRTL
SHARE$MTHRTL
SHARE$SHARE1
SHARE$SHARE2

yes MACRO 432
no FORTRAN 280

no Image 0
no Image 0
no Image 0
no Image 0
no Image 0

total modules: 17. bytes allocated: 162280.
DBG> SET MODULE SHARE$SHARE2
DBG> SHOW SYMBOL * IN SHARE$SHARE2

In this example, the SHOW MODULE/SHARE command identifies all
of the modules in the current image and all of the shareable images
(the names of the shareable images are prefixed with "SHARE$"). The
command SET MODULE SHARE$SHARE2 sets the shareable image module
SHARE$SHARE2. The SHOW SYMBOL command identifies any universal
symbols defined in the shareable image SHARE2. See the description of the
/SHARE qualifier of the SHOW MODULE command for more information.

CD-125

SET OUTPUT

SET OUTPUT

FORMAT

PARAMETERS

QUALIFIERS

DESCRIPTION

CD-126

Enables or disables a debugger output option.

SET OUTPUT output-option[, ...]

output-option
Specifies an output option to be enabled or disabled. Valid keywords are the
following:

LOG Specifies that debugger input and output be recorded in a
log file. If you specify the log file by the SET LOG command,
the debugger writes to that file; otherwise, by default the
debugger writes to SYS$DISK[]:DEBUG.LOG.

NOLOG Specifies that debugger input and output not be recorded in
a log file. NOLOG is the default.

SCREEN_LOG Specifies that, while in screen mode, the screen contents be
recorded in a log file as the screen is updated. To log the
screen contents you must also specify SET OUTPUT LOG.
See the description of the LOG option regarding specifying
the log file.

NOSCREEN_LOG Specifies that the screen contents, while in screen mode,
not be recorded in a log file. NOSCREEN_LOG is the default.

TERMINAL Specifies that debugger output be displayed at the terminal.
TERMINAL is the default.

NOTERMINAL Specifies that debugger output, except for diagnostic
messages, not be displayed at the terminal.

VERIFY Specifies that the debugger echo, on the current output
device, each input command string that it is executing from
a command procedure or DO clause. The current output
device is by default SYS$0UTPUT, the terminal, but may be
redefined with the logical name DBG$0UTPUT.

NOVERIFY Specifies that the debugger not display each input command
string that it is executing from a command procedure or DO
clause. NOVERIFY is the default.

None.

Debugger output options control the way in which debugger responses to
commands are displayed and recorded.

Related commands: SHOW OUTPUT, (SET, SHOW) LOG, SET MODE
SCREEN, @file-spec, (SET, SHOW) ATSIGN.

SET OUTPUT

EXAMPLE

DBG> SET OUTPUT VERIFY,LOG,NOTERMINAL

This command specifies that the debugger do the following:

• Output each command string that it is executing from a command
procedure or DO clause (VERIFY).

• Record debugger output and user input in a log file (LOG).

• Not display output at the terminal, except for diagnostic messages
(NOTERMINAL).

CD-127

SET PROMPT

SET PROMPT

FORMAT

Changes the debugger prompt string from DBG> to a string of your
choice.

SET PROMPT [prompt-string}

PARAMETERS prompt-string
Specifies the string which is to become the new prompt. If the string contains
blanks, semicolons, or lowercase characters, you must enclose it in quotation
marks (11

) or apostrophes ('). By default, the prompt string is DBG > . If you
do not specify a string, the current prompt string remains unchanged.

QUALIFIERS /[NO]POP

DESCRIPTION

EXAMPLE

DBG> SET PROMPT 11 $ II

$ SET PROMPT 11 d b g : II

Note: This qualifier applies only to VAXstations.

/POP causes the debugger window to pop over other windows and become
attached to the keyboard when the debugger prompts for input. /NOPOP
disables this behavior and is the default (the debugger window is not popped
over other windows and is not attached to the keyboard automatically when
the debugger prompts for input).

If you do not specify /POP or /NOPOP, the prompt behavior is set to
/NO POP

The SET PROMPT command enables you to tailor the debugger prompt to
your individual preference.

d b g SET PROMPT 11 DBG> II

DBG>

CD-128

In this example, the successive SET PROMPT commands change the debugger
prompt from "DBG> 11 to "$ 11

, to "db g :11
, then back to "DBG> 11

•

SET RADIX

FORMAT

PARAMETERS

QUALIFIERS

DESCRIPTION

SET RADIX

Establishes the radix for the entry and display of integer data. When used
with /OVERRIDE, causes all data to be displayed as integer data of the
specified radix.

SET RADIX radix

radix
Specifies the radix to be established. Valid keywords are the following:

BINARY Sets the radix to binary.

DECIMAL Sets the radix to decimal. This is the default for all languages
except BLISS and MACRO.

DEFAULT Sets the radix to the language default.

OCT AL Sets the radix to octal.

HEXADECIMAL Sets the default radix to hexadecimal. This is the default for
BLISS and MACRO.

/INPUT
Sets only the input radix (the radix for entering integer data) to the specified
radix.

/OUTPUT
Sets only the output radix (the radix for displaying integer data) to the
specified radix.

/OVERRIDE
Causes all data to be displayed as integer data of the specified radix.

The current radix setting influences how the debugger interprets and displays
integer data in the following contexts:

• Integer data that you specify in address expressions or language
expressions.

• Integer data that is displayed by the commands EXAMINE and
EVALUATE.

The default radix for both data entry and display is decimal for all languages
except BLISS and MACRO. It is hexadecimal for BLISS and MACRO.

The SET RADIX command enables you to specify a new radix for data entry
or display (the input radix and output radix, respectively).

If you do not specify a qualifier, the SET RADIX command changes both the
input and output radix. If you specify the /INPUT or /OUTPUT qualifier,
the command changes the input or output radix, respectively.

CD-129

SET RADIX

EXAMPLES

[I DBG> SET RADIX HEX

If you specify the /OVERRIDE qualifier, the SET RADIX command changes
only the output radix but causes all data (not just data that has an integer
type) to be displayed as integer data of the specified radix.

Note that, except when used with the /OVERRIDE qualifier, the SET RADIX
command does not affect the interpretation or display of non-integer values
(such as real or enumeration type values).

The EVALUATE, EXAMINE, and DEPOSIT commands have radix qualifiers
(/BINARY, /HEXADECIMAL, and so on) that enable you to override, for
the duration of that command, any radix previously established with the SET
RADIX or SET RADIX/OVERRIDE command.

You can also use the built-in symbols %BIN, %DEC, %HEX, and %OCT in
address expressions and language expressions to specify that an integer literal
that follows should be interpreted in binary, decimal, hexadecimal, or octal
radix, respectively (see Appendix D).

Related commands: (SHOW, CANCEL) RADIX, (SET, SHOW, CANCEL)
MODE, EVALUATE, EXAMINE, DEPOSIT.

This command sets the radix to hexadecimal. This means that, by default,
integer data is interpreted and displayed in hexadecimal radix.

~ DBG> SET RADIX/INPUT OCT

This command sets the radix for input to octal. This means that, by default,
integer data that is entered is interpreted in octal radix.

~ DBG> SET RADIX/OUTPUT BIN

This command sets the radix for output to binary. This means that, by
default, integer data is displayed in binary radix.

~ DBG> SET RADIX/OVERRIDE DECIMAL

CD-130

This command sets the override radix to decimal. This means that, by default,
all data (not just data that has an integer type) is displayed as decimal integer
data.

SET SCOPE

FORMAT

PARAMETERS

QUALIFIERS

SET SCOPE

Establishes how the debugger looks up symbols when a path name prefix
is not specified.

SET SCOPE location[, ...]

location
Denotes a program region to be used for the interpretation of symbols that do
not have a path name prefix. A location may be any of the following:

path name prefix

n

\

Specifies the scope denoted by the path name prefix. A
path name prefix consists of the names of one or more
nesting program elements (module, routine, block, and so
on), with each name separated by a backslash character
(\). When a path name prefix consists of more than one
name, list a nesting element to the left of the \ and a
nested element to the right of the \. A common path
name prefix format is module\routine\block\.

If you specify only a module name and that name is
the same as the name of a routine, use the /MODULE
qualifier; otherwise, the debugger assumes that you are
specifying the routine.

Specifies the scope denoted by the routine which is n
levels down the call stack (n is a decimal integer). A
scope specified by an integer changes dynamically as the
program executes. The value 0 denotes the routine that
is currently executing, the value 1 denotes the caller of
that routine, and so on down the call stack. The default
scope is 0, 1,2, ... ,n, where n is the number of calls in
the call stack.

Specifies the global scope - that is, the set of all
program locations in which a global symbol is known.
The definition of a global symbol and the way it is
declared depends on the language.

When you specify more than one location parameter, you establish a scope
search list. If the debugger cannot interpret the symbol using the first
parameter, it uses the next parameter, and continues using parameters in
order of their specification until it successfully interprets the symbol or until it
exhausts the parameters specified.

/MODULE
Indicates that the name specified is the name of a module and not of a
routine. You need to use /MODULE only when you specify a module name
as the scope, and that module name is the same as the name of a nested
routine.

CD-131

SET SCOPE

DESCRIPTION

EXAMPLES
i] DBG> EXAMINE Y

By default, the debugger looks up a symbol specified without a path name
prefix according to the scope search list 0,1,2, ... ,n, where n is the number of
calls in the call stack. This scope search list is based on the current PC value
and changes dynamically as the program executes. The default scope means
that a symbol lookup such as "EXAMINE X" first looks for X in the routine
that is currently executing (scope O); if no X is visible there, the debugger
looks in the caller of that routine (scope 1), and so on down the call stack;
if Xis not found in scope n, the debugger searches the rest of the run-time
symbol table (RST) - that is, all set modules and the global symbol table
(GST), if necessary.

The SET SCOPE command enables you to change this default symbol lookup.
This is useful if, for example, you need to use a path name repeatedly to
access a multiply-defined symbol. By specifying that path name prefix in the
SET SCOPE command, you establish a new default scope for symbol lookup.
You can then reference the symbol without using a path name prefix. Note
that, when you use the SET SCOPE command, the debugger searches only
the program locations you specify explicitly.

If you specify a module name in a SET SCOPE command, the debugger "sets"
that module if it is not already set. However, if all you want to do is set a
module, it is best to use the SET MODULE command rather than disturb the
current scope search list with the SET SCOPE command.

If a name you specify is the name of both a module and a nested routine,
the debugger sets the scope to the routine, unless you use the /MODULE
qualifier to indicate that you want to set the scope to the module.

To restore the default scope, use the CANCEL SCOPE command.

Related commands: (SHOW, CANCEL) SCOPE, SET MODULE, SHOW
SYMBOL, SYMBOLIZE.

%DEBUG-W-NOUNIQUE, symbol 'Y' is not unique
DBG> SHOW SYMBOL Y

data CHECK_IN\Y
data INVENTORY\COUNT\Y

DBG> SET SCOPE INVENTORY\COUNT
DBG> EXAMINE Y
INVENTORY\COUNT\Y: 347.15

CD-132

In this example, the first EXAMINE Y command indicates that symbol Y
is multiply defined and cannot be resolved from the current scope search
list. The SHOW SYMBOL command displays the different declarations of
symbol Y. The SET SCOPE command tells the debugger to look for symbols
without path name prefixes in routine COUNT of module INVENTORY. The
subsequent EXAMINE command can now interpret Y unambiguously.

SET SCOPE

~ DBG> SET SCOPE 0, STACKS\R2, SCREEN_IO

~ DBG> SHOW SYMBOL X
data ALPHA\X
data ALPHA\BETA\X
data X (global)
DBG> SHOW SCOPE

This command tells the debugger to look for symbols without path name
prefixes according to the following scope search list. First the debugger looks
in the PC scope (denoted by "O"). If the debugger cannot find a specified
symbol in the PC scope, it then looks in routine R2 of module STACKS; if
necessary, it then looks in module SCREEN _IO. If the debugger still cannot
find a specified symbol, it looks no further.

global X
local X
same as ALPHA\X

scope: 0 [= ALPHA\BETA]
DBG> SYMBOLIZE X
address ALPHA\BETA\%RO:

ALPHA\BETA\X
DBG> SET SCOPE \
DBG> SYMBOLIZE X
address 00000200:

ALPHA\X
address 00000200: (global)

x

In this example, the SHOW SYMBOL command indicates that there are
two declarations of the symbol X-a global ALPHA\X (shown twice) and a
local ALPHA \BETA \X. Within the current scope, the local declaration of X
(ALPHA \BETA \X) is visible. After the scope is set to the global scope (SET
SCOPE \), the global declaration of X is made visible.

CD-133

SET SEARCH

SET SEARCH

FORMAT

PARAMETERS

QUALIFIERS

DESCRIPTION

CD-134

Establishes default qualifiers (/ALL or /NEXT, /IDENTIFIER or /STRING) for
the SEARCH command.

SET SEARCH search-default[, ...]

search-default
Specifies a default to be established for the SEARCH command. Valid
keywords (which correspond to SEARCH command qualifiers) are the
following:

ALL

IDENTIFIER

NEXT

STRING

None.

Subsequent SEARCH commands are treated as SEARCH/ ALL,
rather than SEARCH/NEXT.

Subsequent SEARCH commands are treated as SEARCH
/IDENTIFIER, rather than SEARCH/STRING.

Subsequent SEARCH commands are treated as SEARCH/NEXT,
rather than SEARCH/ ALL. This is the default.

Subsequent SEARCH commands are treated as SEARCH
/STRING, rather than SEARCH/IDENTIFIER. This is the default.

The SET SEARCH command establishes default qualifiers for subsequent
SEARCH commands. The parameters that you specify in the SET SEARCH
command have the same names as the SEARCH command qualifiers.
SEARCH command qualifiers determine whether the SEARCH command:
(1) searches for all occurrences (ALL) of a string or only the next occurrence
(NEXT); and (2) displays any occurrence of the string (STRING) or only those
occurrences in which the string is not bounded on either side by a character
that can be part of an identifier in the current language (IDENTIFIER).

You can override the current SEARCH default for the duration of a single
SEARCH command by specifying other qualifiers. Use the SHOW SEARCH
command to identify the current SEARCH defaults.

Related commands: SEARCH, SHOW SEARCH, (SET, SHOW) LANGUAGE.

SET SEARCH

EXAMPLE

DBG> SHOW SEARCH
search settings: search for next occurrence, as a string
DBG> SET SEARCH IDENTIFIER
DBG> SHOW SEARCH
search settings: search for next occurrence, as an identifier
DBG> SET SEARCH ALL
DBG> SHOW SEARCH
search settings: search for all occurrences, as an identifier

In this example, the SET SEARCH IDENTIFIER command tells the debugger
to search for an occurrence of the string in the specified range but display the
string only if it is not bounded on either side by a character that can be part
of an identifier in the current language.

The SET SEARCH ALL command tells the debugger to search for (and
display) all occurrences of the string in the specified range.

CD-135

SET SOURCE

SET SOURCE

FORMAT

Specifies where the debugger is to search for source files that have been
moved to another directory after being compiled.

SET SOURCE directory-spec[, ...]

PARAMETERS directory-spec
Specifies any part of a VMS file specification (typically a device/directory)
that the debugger is to use by default when searching for a source file. For
any part of a full file specification that you do not supply, the debugger uses
the file specification stored in the module's symbol record-that is, the file
specification that the source file had at compile time.

If you specify more than one directory in a single SET SOURCE command,
separating each directory name with a comma, you create a source directory
search list (you may also specify a search list logical name that is defined at
your process level). The debugger handles a source directory search list by
searching the first directory specified to locate the source file for a module,
then the second directory specified, then the next, and so on, until it either
locates the source file or exhausts the list of directories.

QUALIFIERS /EDIT

DESCRIPTION

CD-136

Note: This qualifier applies mainly to Ada programs.

Specifies that the directory search list is used to locate source files for editing
when you use the EDIT command.

/MODULE=module-name
Specifies that the directory search list is used to locate source files only for the
specified module.

By default, the debugger expects a source file to be in the same directory
it was in at compile time (the debugger also checks that the creation and
revision date and time of a source file match the information in the debugger's
symbol table). If a source file has been moved to a different directory since
compile time, use the SET SOURCE command to specify a source directory
search list.

When a source file is moved to another directory, the version number of
the source file may change. To locate the correct version of the source file
in the event that a version number was not specified in the directory-spec
parameter, the debugger inserts the match-all asterisk wildcard character
(*) in the version number field of the new file specification. Therefore, all
versions of the moved source file are searched until the correct version is
located. The correct version of the source file is the version that has the same
revision date and time, the same file size, the same record format, and the
same file organization as the original compile-time source file. If the debugger
does not find the correct version, it uses the file that has the closest revision

EXAMPLES

iJ DBG> SHOW SOURCE

SET SOURCE

date and time (if such a file exists in that directory) and issues a message such
as the following when first displaying source code:

%DEBUG-I-NOTORIGSRC, original version of source file not found
file used is WORK: [JONES.PROG3]PRG.FOR;14

If you enter the SET SOURCE command without the /MODULE=module­
name qualifier, the debugger uses the specified directory search list to locate
sgurce files for all modules that were not mentioned in a previous SET
SOURCE/MODULE=module-name command.

See the qualifier descriptions for an explanation of their effects.

The /EDIT qualifier is needed when the files used for the display of source
code are different from the files to be edited by means of the EDIT command.
This is the case with Ada programs. For Ada programs, the (SET, SHOW,
CANCEL) SOURCE commands affect the search of files used for source
display (the "copied" source files in Ada program libraries); the (SET, SHOW,
CANCEL) SOURCE/EDIT commands affect the search of the source files you
edit when using the EDIT command. If you use /MODULE with /EDIT, the
effect of /EDIT is further qualified by /MODULE.

A full VMS file specification consists of the following fields:

node:: device: [directory]file-name. file-type ;version-number

If the full file specification of a source file exceeds 231 characters, the
debugger cannot locate the file. You can work around this problem by
first defining a logical name "X" (at DCL level) to expand to your long file
specification, and then using the command "SET SOURCE X".

Related commands: (CANCEL, SHOW) SOURCE,
(CANCEL, SHOW) MAX_SOURCE_FILES.

no directory search list in effect
DBG> SET SOURCE [PROJA] ,[PROJB] ,USER$: [PETER.PROJC]
DBG> SHOW SOURCE
source directory search list for all modules:

[PROJA]
[PROJB]
USER$: [PETER.PROJC]

In this example, the SET SOURCE command specifies that the debugger
should search directories [PROJA], [PROJB], and USER$:[PETER.PROJC], in
that order, for source files.

CD-137

SET SOURCE

~ DBG> SET SOURCE/MODULE=COBOLTEST [], DISK$2: [PROJD]
DBG> SHOW SOURCE
source directory search list for COBOLTEST:

[]
DISK$2: [PROJD]

source directory search list for all other modules:
[PROJA]

CD-138

[PROJB]
USER$: [PETER.PROJC]

In this example, the SET SOURCE command specifies that the debugger
should search the current default directory ([]) and DISK$2:[PROJD], in that
order, for source files to use with the module COBOLTEST. The SHOW
SOURCE command displays the search lists established in examples 1 and 2.

SET STEP

FORMAT

PARAMETERS

SET STEP

Establishes default qualifiers (/LINE, /INTO, and so on) for the STEP
command.

SET STEP step-default[, ...]

step-default
Specifies a default to be established for the STEP command. Valid keywords
(which correspond to STEP command qualifiers) are the following:

BRANCH

CALL

EXCEPTION

INSTRUCTION

INTO

JSB

NOJSB

LINE

OVER

RETURN

Subsequent STEP commands are treated as STEP /BRANCH
(step to the next branch instruction).

Subsequent STEP commands are treated as STEP /CALL (step
to the next call instruction).

Subsequent STEP commands are treated as STEP /EXCEPTION
(step to the next exception condition).

Subsequent STEP commands are treated as
STEP /INSTRUCTION (step to the next instruction).
You can also specify one or more instructions
(INSTRUCTION=(opcode-list)). The debugger then steps to
the next instruction that is in the specified list.

Subsequent STEP commands are treated as STEP /INTO (step
into called routines) rather than STEP /OVER (step over called
routines). When INTO is in effect, you can qualify the types
of routines to step into by means of the [NO]JSB, [NO]SHARE,
and [NO]SYSTEM parameters, or by using the STEP /[NO]JSB,
STEP /[NO]SHARE, and STEP /[NO]SYSTEM command/qualifier
combinations (the latter three take effect only for the immediate
STEP command).

If INTO is in effect, subsequent STEP commands are treated as
STEP/INTO/JSB (step into routines called by a JSB instruction
as well as those called by a CALL instruction). This is the
default for all languages except DIBOL.

If INTO is in effect, subsequent STEP commands are treated
as STEP /INTO /NOJSB (step over routines called by a JSB
instruction, but step into routines called by a CALL instruction).
This is the default for DIBOL.

Subsequent STEP commands are treated as STEP /LINE (step to
the next line). This is the default for all languages.

Subsequent STEP commands are treated as STEP /OVER (step
over all called routines) rather than STEP /INTO (step into called
routines). SET STEP OVER is the default.

Subsequent STEP commands are treated as STEP /RETURN
(step to the RETURN instruction of the current routine). Thus,
STEP /RETURN n takes you up n levels of the call stack.

CD-139

SET STEP

QUALIFIERS

DESCRIPTION

CD-140

SHARE

NOSH ARE

SILENT

NOSILENT

SOURCE

NOSOURCE

SYSTEM

NOSYSTEM

None.

If INTO is in effect, subsequent STEP commands are treated
as STEP/INTO/SHARE (step into called routines in shareable
images as well as into other called routines). This is the default.

If INTO is in effect, subsequent STEP commands are treated as
STEP/INTO/NOSHARE (step over called routines in shareable
images, but step into other routines).

Subsequent STEP commands are treated as STEP /SILENT
(suppress the "stepped to ... " message as well as other
debugger output).

Subsequent STEP commands are treated as STEP /NOSILENT
(display the "stepped to ... " message as well as other
output). This is the default.

Subsequent STEP commands are treated as STEP /SOURCE
(display source code after a step). Also, subsequent SET
BREAK, SET TRACE, and SET WATCH commands are treated
as SET BREAK/SOURCE, SET TRACE/SOURCE, and SET
WATCH/SOURCE, respectively (display source code when a
breakpoint, tracepoint, or watchpoint is triggered). This is the
default.

Subsequent STEP commands are treated as STEP /NOSOURCE
(do not display source code after a step). Also, subsequent
SET BREAK, SET TRACE, and SET WATCH commands are
treated as SET BREAK/NOSOURCE, SET TRACE/NOSOURCE,
and SET WA TCH/NOSOURCE, respectively (do not display
source code when a breakpoint, tracepoint, or watchpoint is
triggered).

If INTO is in effect, subsequent STEP commands are treated as
STEP/INTO/SYSTEM (step into called routines in system space
(P 1 space) as well as into other called routines). This is the
default.

If INTO is in effect, subsequent STEP commands are treated as
STEP /INTO/NOSYSTEM (step over called routines in system
space, but step into other routines).

The SET STEP command establishes default qualifiers for subsequent STEP
commands. The parameters that you specify in the SET STEP command have
the same names as the STEP command qualifiers. The following parameters
affect where the STEP command suspends execution after a step:

SET STEP BRANCH
SET STEP CALL
SET STEP EXCEPTION
SET STEP INSTRUCTION
SET STEP INSTRUCTION=(opcode-list)
SET STEP LINE
SET STEP RETURN

EXAMPLES

SET STEP

The following parameters affect what output is seen when a STEP command
is executed:

SET STEP [NO]SILENT
SET STEP [NO]SOURCE

The following parameters affect what happens at a routine call:

SET STEP INTO
SET STEP [NO]JSB
SET STEP OVER
SET STEP [NO]SHARE
SET STEP [NO]SYSTEM

You can override the current STEP defaults for the duration of a single STEP
command by specifying other qualifiers. Use the SHOW STEP command to
identify the current STEP defaults.

If you invoke screen mode with the keypad-key sequence PF1-PF3, the
command SET STEP NOSOURCE is entered in addition to the command
SET MODE SCREEN. Therefore, any display of source code in output and
DO displays that would result from a STEP command or from an eventpoint
being triggered is suppressed, to eliminate redundancy with the source
display.

Related commands: STEP, SHOW STEP.

iJ DBG> SET STEP INSTRUCTION,NOSOURCE

This command causes the debugger to execute the program to the next
instruction when a STEP command is entered, and to not display lines of
source code with each STEP command.

~ DBG> SET STEP LINE,INTO,NOSYSTEM,NOSHARE

This command causes the debugger to execute the program to the next
line when a STEP command is entered, and to step into called routines in
user space only. The debugger steps over routines in system space and in
shareable images.

CD-141

SET TASK

SET TASK

FORMAT

PARAMETERS

QUALIFIERS

CD-142

Modifies characteristics of one or more tasks or of the entire tasking
system.

Note: This command currently applies only to Ada programs. See the
VAX Ada documentation for complete information.

SET TASK [task-expression[, ...]]

task-expression
Specifies a task value. A task expression may be one of the following:

• An Ada language expression for a task value-for example, a task object
name. You can use a path name.

• The task ID (for example, % TASK 2), as indicated in a SHOW TASK
display.

• A pseudo-task name (%ACTIVE_TASK, %CALLER_TASK,
%NEXT_ TASK, or % VISIBLE_TASK).

Do not use the asterisk wildcard character (*). See the qualifier descriptions
for details on how to specify tasks with particular qualifiers.

/ABORT
Aborts the specified tasks. If no task is specified, aborts the visible task. The
task is marked for termination but is not immediately terminated. The effect
is identical to executing the Ada statement abort task-name, and causes the
specified tasks to become abnormal.

/ACTIVE
Makes the specified task the active task-the task that runs when a STEP
or GO command is executed. Causes a task switch to the new active task
and makes the new active task the visible task. The specified task must be
in either the RUNNING or READY state. When using /ACTIVE, you must
specify one, and only one, task.

/ALL
Applies the SET TASK command to all tasks. Do not specify a task nor the
/ACTIVE, /VISIBLE, or /TIME_SLICE qualifiers with/ ALL.

/[NO]HOLD
Controls whether or not a specified task is placed on HOLD. /HOLD places a
specified task on HOLD. If no task is specified, /HOLD places the visible task
on HOLD.

Placing a task on HOLD prevents a task from entering the RUNNING
state. A task placed on HOLD is allowed to make other state transitions; in
particular, it may change from the SUSPENDED to the READY state.

DESCRIPTION

SET TASK

A task that is already in the RUNNING state (the active task) can continue to
execute as long as it remains in the RUNNING state, even though it is placed
on HOLD. If the task leaves the RUNNING state for any reason (including
expiration of a time slice, if timeslicing is enabled), it may not return to the
RUNNING state until the HOLD is removed. You can force a task into the
RUNNING state with the SET TASK/ ACTIVE command even if the task is
on HOLD.

/NOHOLD removes a specified task from HOLD. If no task is specified,
/NOHOLD removes the visible task from HOLD.

/PRIORITY=n
Sets the priority of a specified task to n, where n is a decimal integer from 0
to 15 inclusive. If no task is specified, sets the priority of the visible task to n.
Note that this does not prevent the task's priority from later changing in the
course of execution, for example, while executing a rendezvous.

/RESTORE
Causes the priority of a specified task to be restored to the value specified in
pragma PRIORITY. If pragma PRIORITY was not specified, the ·default value
of 7 is used. If no task is specified, causes the priority of the visible task to be
restored.

/TIME_SLICE=t
Sets the duration otherwise specified by pragma TIME_SLICE to the value
t, where tis a decimal integer or fixed-point value representing seconds. The
SET TASK/TIME_SLICE=O.O command disables time slicing.

/VISIBLE
Makes the specified task the visible task-the task whose stack and register
set are the current context for looking up names, calls, and so on (commands
such as EXAMINE are directed at the visible task). When using /VISIBLE,
you must specify one, and only one, task.

Note: If no qualifier is specified, /VISIBLE is assumed by default.

The possible task states are RUNNING, READY, SUSPENDED, and
TERMINATED.

All of the SET TASK command qualifiers except for /ALL provide a means
of controlling the tasking environment, by directly or indirectly causing task
state transitions. The /ALL qualifier is used to apply the SET TASK command
to all tasks.

Task switching can often be confusing when you are trying to debug a
program. The SET TASK/TIME_SLICE and SET TASK/HOLD commands
give you several ways of controlling task switching.

Related commands: SHOW TASK, SET BREAK/EVENT,
SET TRACE/EVENT, EXAMINE/TASK, DEPOSIT /TASK.

CD-143

SET TASK

EXAMPLES

D DBG> SET TASK/ ACTIVE %TASK 3

This command makes the task whose task ID is % TASK 3 the active task.

~ DBG> SET TASK/HOLD/ALL
DBG> SET TASK/ACTIVE %TASK 1
DBG> GO

DBG> SET TASK/ACTIVE %TASK 3
DBG> STEP

CD-144

The SET TASK/HOLD/ ALL command freezes the state of all tasks except the
active task. The SET TASK/ ACTIVE command is then used selectively (along
with the GO command) to observe the behavior of one or more specified
tasks in isolation.

SET TERMINAL

SET TERMINAL

FORMAT

PARAMETERS

QUALIFIERS

DESCRIPTION

Sets the terminal screen width or height, or both, that the debugger uses
when it formats screen and other output.

SET TERMINAL

None.

You must specify at least one qualifier, either /PAGE or /WIDTH. You can
specify both /PAGE and /WIDTH. You must specify a value for each qualifier
used.

/PAGE:n
Specifies that the terminal screen height should be set to n lines. You may
use any value from 18 to 100.

/WIDTH:n
Specifies that the terminal screen width should be set ton columns. You may
use any value from 20 to 255. For a VTlOO, VT200, or VT300 series terminal,
n is typically either 80 or 132.

The SET TERMINAL command enables you to define the portion of the
screen that the debugger has available for formatting screen output. This
command is useful with VTlOO, VT200, or VT300 series terminals, where you
can set the screen width to typically 80 or 132 columns. It is also useful with
V AXstations, where you can modify the size of the window that the debugger
uses.

When you enter the SET TERMINAL command, all screen window definitions
(including those created by the user) are automatically adjusted for the new
screen dimensions. For example, RHl changes dimensions proportionally to
remain the top right half of the screen.

Similarly, all "dynamic" displays are automatically adjusted to maintain their
relative dimensions. By default, all predefined and user-defined displays
are dynamic. If you have specified /NODYNAMIC in a SET DISPLAY or
DISPLAY command, the display is no longer dynamic. In that case, the
display does not automatically change dimensions with a SET TERMINAL
command. However, you can always use the DISPLAY command to redisplay
the display within any window definition (you can also use keypad-
key combinations, such as BLUE-MINUS, to enter predefined DISPLAY
commands).

Related commands: SHOW TERMINAL, DISPLAY /[NO]DYNAMIC, SET
DISPLAY /[NO]DYNAMIC, (SET, SHOW, CANCEL) WINDOW, EXPAND.

CD-145

SET TERMINAL

EXAMPLE

DBG> SET TERMINAL/WIDTH:132

This command specifies that the terminal screen width be set to 132 columns.

CD-146

SET TRACE

FORMAT

PARAMETERS

QUALIFIERS

SET TRACE

Establishes a tracepoint at the location denoted by an address expression,
at instructions of a particular class, or at the occurrence of specified
events.

SET TRACE [address-expression[, ...]]
fWH EN (conditional-expression)}
[DO(command[; ...])}

address-expression
Specifies an address expression (a program location) at which a tracepoint is
to be set. With high-level languages, this is typically a line number, a routine
name, or a label, and may include a path name to specify the entity uniquely.
More generally, an address expression may also be a virtual memory address
or a register and may be composed of numbers (offsets) and symbols, as well
as one or more operators, operands, or delimiters. Appendix D identifies
the operators that may be used in address expressions. Do not specify the
asterisk wildcard character (*). Do not specify an address expression with
/BRANCH, /CALL, /EXCEPTION, /INSTRUCTION[=(opcode-list)], /INTO,
/[NO]JSB, /LINE, /OVER, /[NO]SHARE, or /[NO]SYSTEM. The /MODIFY
and /RETURN qualifiers are used with specific kinds of address expressions.

If you specify a virtual memory address or an address expression whose
value is not a symbolic location, check (with the EXAMINE command) that
an instruction actually begins at the byte of memory so indicated. If an
instruction does not begin at this byte, a run-time error may occur when an
instruction including that byte is executed. When you set a tracepoint by
specifying an address expression whose value is not a symbolic location, the
debugger does not verify that the location specified marks the beginning of
an instruction. CALLS and CALLG routines start with an entry mask.

command
Specifies a debugger command that is to be executed as part of the DO clause
when trace action is taken.

conditional-expression
Specifies a conditional expression in the currently set language that is to be
evaluated whenever execution reaches the tracepoint. If the expression is
TRUE, trace action occurs, and the debugger reports that a tracepoint has
been reached. If the expression is FALSE, trace action does not occur. In this
case, a report is not issued, the commands specified by the DO clause are not
executed, and program execution is continued.

/AFTER:n
Specifies that trace action not be taken until the nth time the designated
tracepoint is encountered (n is a decimal integer). Thereafter, the tracepoint
occurs every time it is encountered provided that conditions in the WHEN
clause (if specified) are TRUE. The command SET TRACE/ AFTER:l has the
same effect as the SET TRACE command.

CD-147

SET TRACE

CD-148

/BRANCH
Causes the debugger to trace every branch instruction encountered during
execution (including BEQL, BGTR, BLEQ, BGEQ, BLSS, BGTRU, BLEQU,
BVC, BVS, BGEQU, BLSSU, BRB, BRW, JMP, BBS, BBC, BBSS, BBCS, BBSC,
BBCC, BBSSI, BBCCI, BLBS, BLBC, ACBB, ACBW, ACBL, ACBF, ACBD,
ACBG,ACBH,AOBLEQ,AOBLSS,SOBGEQ,SOBGTR,CASEB,CASEW,
CASEL). Do not specify an address expression with /BRANCH. See also
/INTO, /OVER.

/CALL
Causes the debugger to trace every call instruction (including the CALLS,
CALLG, BSBW, BSBB, JSB, RSB, and RET instructions) encountered during
execution. Do not specify an address expression with /CALL. See also
/INTO, /OVER.

/EVENT=event-name
Note: This qualifier applies only to Ada and SCAN. See the VAX Ada
and VAX SCAN documentation for complete information.

Causes the debugger to trace the specified event (if that event is defined
and detected by the run-time system). If you specify an address expression
with /EVENT, causes the debugger to trace whenever the specified event
occurs for that address expression. Event names depend on the run-time
facility and are identified in Appendix E for Ada and SCAN. You can display
the event names associated with the current run-time facility by entering
the SHOW EVENT_FACILITY command. Note that you cannot specify an
address expression with certain event names.

Do not specify /EVENT with /BRANCH, /CALL, /EXCEPTION,
/INSTRUCTION[=(opcode-list)], /INTO, /[NO]JSB, /LINE, /MODIFY,
/OVER, /RETURN, /[NO]SHARE, or /[NO]SYSTEM.

/EXCEPTION
Causes the debugger to trace every exception that is signaled. The trace
action occurs before any user-written exception handlers are invoked. Do not
specify an address expression with /EXCEPTION.

As a result of a SET TRACE/EXCEPTION command, whenever your program
generates an exception condition, the debugger reports the exception
condition and resignals the exception, thus allowing any user-declared
exception handler to execute.

/INSTRUCTION
Causes the debugger to trace every instruction executed. Do not specify an
address expression with /INSTRUCTION. See also /INTO, /OVER.

/INSTRUCTION=(opcode[, ...])
Causes the debugger to trace every instruction whose opcode is in the list.
Do not specify an address expression with /INSTRUCTION. See also /INTO,
/OVER.

/INTO
Applies only to tracepoints set with /BRANCH, /CALL,
/INSTRUCTION[=(opcode-list)], or /LINE; that is, when an address
expression is not explicitly specified. When used with those qualifiers, causes
the debugger to trace the specified points within called routines (as well as
within the routine where execution is currently suspended). /INTO is the
default behavior and is the opposite of /OVER.

SET TRACE

When using /INTO, you can further qualify the trace action with the
/[NO]JSB, /[NO]SHARE, and /[NO]SYSTEM qualifiers.

/[NO]JSB
Qualifies /INTO. Use /[NO]JSB only with /INTO and one of the following
qualifiers: /BRANCH, /CALL, /INSTRUCTION[=(opcode-list)], or /LINE.
/JSB is the default for all languages except DIBOL. /JSB permits the debugger
to set tracepoints within routines that are called by the JSB or CALL
instruction. /NOJSB (the DIBOL default) specifies that tracepoints not be
set within routines called by JSB instructions. In DIBOL, user-written routines
are called by the CALL instruction and DIBOL run-time library routines are
called by the JSB instruction. Do not specify an address expression with
/[NO]JSB.

/LINE
Causes the debugger to trace the start of each new line. Do not specify an
address expression with /LINE. See also /INTO, /OVER.

/MODIFY
Causes the debugger to report a tracepoint whenever an instruction writes
to and modifies the value of a location indicated by a specified address
expression. The address expression is typically a variable name.

The SET TRACE/MODIFY command acts like a SET WATCH command
followed by a GO command. It operates under the same restrictions as the
SET WATCH command.

If you specify an absolute address for the address expression, the debugger
may not be able to associate the address with a particular data object. In
this case, the debugger uses a default length of 4 bytes. You can change this
length, however, by setting the type to either WORD (SET TYPE WORD,
which changes the default length to 2 bytes) or BYTE (SET TYPE BYTE,
which changes the default length to 1 byte). SET TYPE LONGWORD
restores the default length of 4 bytes.

/OVER
Applies only to tracepoints set with /BRANCH, /CALL,
/INSTRUCTION[=(opcode-list)], or /LINE; that is, when an address
expression is not explicitly specified. When used with those qualifiers, causes
the debugger to trace the specified points only within the routine where
execution is currently suspended (not within called routines). /OVER is the
opposite of /INTO (the default behavior). Sets tracepoints only within the
routine where execution is currently suspended (not within called routines)
when /BRANCH, /CALL, /INSTRUCTION[=(opcode-list)], or /LINE is
specified; that is, when an address expression is not explicitly specified.
/OVER is the opposite of /INTO.

/RETURN
Sets a tracepoint on the RETURN (RET) instruction from an indicated routine.
This qualifier can only be applied to routines called with a CALLS or CALLG
instruction; it cannot be used with JSB routines.

For this qualifier, the address-expression parameter is an instruction address
within a CALLS or CALLG routine. It may simply be a routine name, in
which case it specifies the routine start address. However, you can also
specify another location in a routine, so you can see only those returns that
are taken after a certain code path is followed.

CD-149

SET TRACE

DESCRIPTION

CD-150

A SET TRACE/RETURN command cancels a previous SET TRACE command
if the same address expresion is specified.

/[NO]SHARE
Qualifies /INTO. Use /[NO]SHARE only with /INTO and one of the
following qualifiers: BRANCH, /CALL, /INSTRUCTION[=(opcode-list)],
or /LINE. /SHARE (default) permits the debugger to set tracepoints within
shareable image routines as well as other routines. /NOSHARE specifies that
tracepoints not be set within shareable images. Do not specify an address
expression with /[NO]SHARE.

/[NO JS/LENT
Controls whether or not the "trace ... " message and source code are
displayed when trace action is taken. /NOSILENT (default) specifies that
the message be displayed. /SILENT specifies that no message or source code
be displayed. /SILENT overrides /SOURCE.

/[NO]SOURCE
Controls whether or not the source code is displayed when trace action
is taken. /SOURCE (default) specifies that the source code be displayed.
/NOSOURCE specifies that no source code be displayed. /SILENT overrides
/SOURCE. See also SET STEP [NO]SOURCE.

/[NOJSYSTEM
Qualifies /INTO. Use /[NO]SYSTEM only with /INTO and one of the
following qualifiers: /BRANCH, /CALL, /INSTRUCTION[=(opcode-list)], or
/LINE. /SYSTEM (default) permits the debugger to set tracepoints within
system routines (Pl space) as well as other routines. /NOSYSTEM specifies
that tracepoints not be set within system routines. Do not specify an address
expression with /[NO]SYSTEM.

/TEMPORARY
Causes the tracepoint to disappear after it is triggered (the tracepoint does not
remain permanently set).

When a tracepoint is triggered, the debugger takes the following action:

1 Suspends program execution at the tracepoint location.

2 If /AFTER was specified when the tracepoint was set, checks the AFTER
count. If the specified number of counts has not been reached, execution
is resumed and the debugger does not perform the remaining steps.

3 Evaluates the expression in a WHEN clause, if one was specified when
the tracepoint was set. If the value of the expression is FALSE, execution
is resumed and the debugger does not perform the remaining steps.

4 Reports that execution has reached the tracepoint location, unless
/SILENT was specified.

5 Displays the line of source code corresponding to the tracepoint, unless
/NOSOURCE or /SILENT was specified when the breakpoint was set, or
SET STEP NOSOURCE was entered previously.

6 Executes the commands in a DO clause, if one was specified when the
tracepoint was set.

EXAMPLES
iJ DBG> SET TRACE SUB 1

SET TRACE

7 Resumes execution.

The following qualifiers affect what output is seen when a tracepoint is
reached:

/[NO]SILENT
/[NO]SOURCE

The following qualifiers affect the timing and duration of tracepoints:

/AFTER:n
/TEMPORARY

The /LINE qualifier sets a tracepoint on each line of source code.

The following qualifiers set tracepoints on classes of instructions:

/BRANCH
/CALL
/INSTRUCTION
/INSTRUCTION=(opcode-list)
/RETURN

The following qualifiers set tracepoints on classes of events:

/EVENT=event-name
/EXCEPTION

The following qualifiers affect what happens at a I'oiitine--caU:

/INTO
/[NO]JSB
/OVER
/[NO]SHARE
/[NO]SYSTEM

The /MODIFY qualifier is used to monitor changes at program locations
(typically changes in the values of variables).

If you set a tracepoint at a location currently used as a breakpoint, the
breakpoint is canceled in favo~ of the tracepoint, and vice versa.

Related commands: (SHOW, CANCEL) TRACE, CANCEL ALL, SET
BREAK, SET WATCH, GO, (SET, SHOW) EVENT_FACILITY, SET STEP
[NO]SOURCE.

This command sets a tracepoint at location (routine) SUBl.

~ DBG> SET TRACE/SILENT COUNTER WHEN (A = B) DO (EXAMINE Y)

This command sets a tracepoint on routine COUNTER that triggers only
when A equals B. When the tracepoint is triggered, variable Y is examined.
The /SILENT qualifier suppresses the "trace ... "message.

CD-151

SET TRACE

~ DBG> SET TRACE/BRANCH/CALL

This command causes the debugger to trace every BRANCH instruction and
every CALL instruction.

~ DBG> SET TRACE/LINE/INTO/NOSHARE/NOSYSTEM

CD-152

This command causes the debugger to trace every line, including lines in
called routines, but not in shareable image routines or system routines.

SET TYPE

FORMAT

PARAMETERS

SET TYPE

Establishes the default type to be associated with program locations that
do not have a symbolic name (and, therefore, do not have an associated
compiler generated type). When used with /OVERRIDE, establishes the
default type to be associated with all locations, overriding any compiler
generated types.

SET TYPE type-keyword

type-keyword
Specifies the default type to be established. Valid keywords are the following:

ASCIC

ASCID

ASCll:n

ASCIW

ASCIZ

BYTE

O_FLOAT

DATE_ TIME

Sets the default type to counted ASCII string with a
1-byte count field that precedes the string and gives its
length. AC is also accepted as a keyword.

Sets the default type to ASCII string descriptor. The
CLASS and DTYPE fields of the descriptor are not
checked, but the LENGTH and POINTER fields provide
the character length and address of the ASCII string.
The string is then displayed. AD is also accepted as a
keyword.

Sets the default type to ASCII character string (length n
bytes). The length indicates both the number of bytes
of memory to be examined and the number of ASCII
characters to be displayed. If you do not specify a
value for n, the debugger uses the default value of 4
bytes. The value n is interpreted in decimal radix.

Sets the default type to counted ASCII string with a
2-byte count field that precedes the string and gives
its length. This data type occurs in PASCAL and PL/I.
AW is also accepted as a keyword.

Sets the default type to zero-terminated ASCII string.
The trailing zero byte indicates the end of the string.
AZ is also accepted as a keyword.

Sets the default type to byte integer (length 1 byte).

Sets the default type to O_floating (length 8 bytes).
Values of type O_floating may range from .29 * 10-38

to 1. 7 * 1038 with approximately 16 decimal digits
precision.

Sets the default type to date-time. This is a quadword
integer (length 8 bytes) containing the internal VMS
representation of date-time. Values are displayed in
the format dd-mmm-yyyy hh:mm:ss.xx. Specify an
absolute date and time as follows:

[dd-mmm-yyyy [:]] [hh: mm: ss. cc]

CD-153

SET TYPE

QUALIFIERS

DESCRIPTION

CD-154

FLOAT

G_FLOAT

H_FLOAT

INSTRUCTION

LONGWORD

OCTAWORD

PACKED:n

QUADWORD

TYPE=(expression)

WORD

/OVERRIDE

Sets the default type to F _floating (length 4 bytes).
Values of type F _floating may range from .29 * 10-38 to
1.7 * 1038 with approximately 7 decimal digits precision.

Sets the default type to G_floating (length 8 bytes).
Values of type G_floating may range from .56 * 10-308

to .9 * 10308 with approximately 15 decimal digits
precision.

Sets the default type to H_floating (length 16 bytes).
Values of type H_floating may range from .84 * 10-4932

to .59 * 104932 with approximately 33 decimal digits
precision.

Sets the default type to VAX instruction (variable
length, depending on the number of instruction
operands and the kind of addressing modes used).

Sets the default type to longword integer (length 4
bytes). This is the default type for program locations
that do not have a symbolic name (do not have a
compiler generated type).

Sets the default type to octaword integer (length 16
bytes).

Sets the default type to packed decimal. The value of
n is the number of decimal digits. Each digit occupies
one nibble (4 bits).

Sets the default type to quadword integer (length 8
bytes).

Sets the default type to the type denoted by
expression (the name of a variable or data type
declared in the program). This enables you to specify a
user-declared type.

Sets the default type to word integer (length 2 bytes).

Associates the type specified with all program loc;ations, whether or not they
have a symbolic name (whether or not they have an associated compiler
generated type).

When you use the EXAMINE, DEPOSIT, or EVALUATE commands, the
default types associated with address expressions influence how the debugger
interprets and displays program entities.

The debugger recognizes the compiler generated types associated with
symbolic address expressions (symbolic names declared in your program),
and it interprets and displays the contents of these locations accordingly.
For program locations that do not have a symbolic name and, therefore,
no associated compiler generated type, the default type in all languages is
longword integer.

The SET TYPE command enables you to change the default type associated
with locations that do not have a symbolic name. The SET TYPE/OVERRIDE
command enables you to set a default type· for all program locations, both
those that do and do not have a symbolic name.

EXAMPLES

SET TYPE

The EXAMINE and DEPOSIT commands have type qualifiers (/ASCII,
/BYTE, /G-FLOAT, and so on) that enable you to override, for the duration
of a single command, the type previously associated with any program
location.

Related commands: SHOW TYPE, CANCEL TYPE/OVERRIDE, (SET,
SHOW, CANCEL) RADIX, (SET, SHOW, CANCEL) MODE, EXAMINE,
DEPOSIT.

i] DBG> SET TYPE ASCII : 8

This command establishes 8-byte ASCII character string as the default type
associated with untyped program locations.

~ DBG> SET TYPE/OVERRIDE LONGWORD

This command establishes longword integer as the default type associated
with both untyped program locations and program locations that have
compiler generated types.

~ DBG> SET TYPE D_FLOAT

This command establishes D_Floating as the default type associated with
untyped program locations.

~ DBG> SET TYPE TYPE=(S_ARRAY)

This command establishes the type of the variable S__ARRAY as the default
type associated with untyped program locations.

CD-155

SET WATCH

SET WATCH

FORMAT

PARAMETERS

QUALIFIERS

CD-156

Establishes a watchpoint at the location denoted by an address
expression.

SET WATCH address-expression[, ...]
[WHEN (conditional-expression)]
[DO(command[; ...])]

address-expression
Specifies an address expression (a program location) at which a watchpoint is
to be set. With high-level languages, this is typically the name of a program
variable and may include a path name to specify the variable uniquely. More
generally, an address expression may also be a virtual memory address or a
register and may be composed of numbers (offsets) and symbols, as well as
one or more operators, operands, or delimiters. Appendix D identifies the
operators that may be used in address expressions.

Do not use the asterisk wildcard character (*).

command
Specifies a debugger command that is to be executed as part of the DO clause
when watch action is taken.

conditional-expression
Specifies a conditional expression in the currently set language that is to be
evaluated whenever execution reaches the watchpoint. If the expression is
TRUE, watch action occurs, and the debugger reports that a watchpoint has
been triggered. If the expression is FALSE, watch action does not occur. In
this case, a report is not issued, the commands specified by the DO clause are
not executed, and program execution is continued.

/AFTER:n
Specifies that watch action not be taken until the nth time the designated
watchpoint is encountered (n is a decimal integer). Thereafter, the watchpoint
occurs every time it is encountered provided that conditions in the WHEN
clause are TRUE. The command SET WATCH/ AFTER:l has the same effect
as the SET WATCH command.

/INTO
Specifies that the debugger is to monitor a nonstatic variable by tracing
instructions not only within the defining routine, but also within a routine
that is called from the defining routine (and any other such nested calls).
SET WATCH/INTO enables you to monitor nonstatic variables within called
routines more precisely than SET WATCH/OVER; but the speed of execution
within called routines is faster with SET WATCH/OVER.

DESCRIPTION

SET WATCH

/OVER
Specifies that the debugger is to monitor a nonstatic variable by tracing
instructions only within the defining routine, not within a routine that
is called by the defining routine. As a result, the debugger executes a
called routine at normal speed and resumes tracing instructions only when
execution returns to the defining routine. SET WATCH/OVER provides
faster execution than SET WATCH/INTO; but if a called routine modifies
the watched variable, execution is interrupted only upon returning to the
defining routine. SET WATCH/OVER is the default behavior when you set
watchpoints on nonstatic variables.

/[NO JS/LENT
Controls whether or not the "watch ... "message (and source code) is
displayed when watch action is taken. /NOSILENT (default) specifies that
the message be displayed. /SILENT specifies that no message or source code
be displayed. /SILENT overrides /SOURCE.

/[NO]SOURCE
Controls whether or not the source code is displayed when watch action
is taken. /SOURCE (default) specifies that the source code be displayed.
/NOSOURCE specifies that no source code be displayed. /SILENT overrides
/SOURCE. See also SET STEP [NO]SOURCE.

/[NO]STAT/C
Enables you to override the debugger's default determination of whether
a specified variable is static or nonstatic. SET WATCH/STATIC tells the
debugger to treat the variable as a static variable. SET WATCH/NOSTATIC
tells the debugger to treat the variable as a nonstatic variable. Exercise
caution when using this qualifier.

/TEMPORARY
Causes the watchpoint to disappear after it is triggered (the watchpoint does
not remain permanently set).

Whenever an instruction causes the modification of a watched location, the
debugger does the following:

1 Suspends program execution after that instruction has completed
execution.

2 If /AFTER was specified when the watchpoint was set, checks the AFTER
count. If the specified number of counts has not been reached, execution
continues and the debugger does not perform the remaining steps.

3 Evaluates the expression in a WHEN clause, if one was specified when
the watchpoint was set. If the value of the expression is FALSE, execution
continues and the debugger does not perform the remaining steps.

4 Reports that execution has reached the watchpoint location, unless
/SILENT was specified.

5 Reports the old (unmodified) value at the watched location.

6 Reports the new (modified) value at the watched location.

7 Displays the line of source code where execution is suspended, unless
/NOSOURCE or /SILENT was specified when the watchpoint was set, or
SET STEP NOSOURCE was entered previously.

CD-157

SET WATCH

CD-158

8 Executes the commands in a DO clause, if one was specified when the
watchpoint was set. If the DO clause contains a GO command, execution
continues and the debugger does not perform the next step.

9 Issues the prompt.

For high-level language programs, the address expressions you specify with
the SET WATCH command are typically variable names. If you specify an
absolute memory address that is associated with a a compiler-generated
type, the debugger symbolizes the address and uses the length in bytes
associated with that type to determine the length in bytes of the watched
location. If you specify an absolute memory address that the debugger cannot
associate with a compiler-generated type, the debugger watches 4 bytes of
virtual memory, by default, beginning at the byte identified by the address
expression. You can change this length, however, by setting the type to either
WORD (SET TYPE WORD, which changes the default length to 2 bytes) or
BYTE (SET TYPE BYTE, which changes the default length to 1 byte). SET
TYPE LONGWORD restores the default length of 4 bytes.

You can set watchpoints on aggregates (that is, entire arrays or records). A
watchpoint set on an array or record triggers if any element of the array or
record changes. Thus, you do not need to set watchpoints on individual
array elements or record components. Note, however, that you cannot set an
aggregate watchpoint on a variant record.

The following qualifiers affect what output is seen when a watchpoint is
reached:

/[NO]SILENT
/[NO]SOURCE

The following qualifiers affect the timing and duration of watchpoints:

/AFTER:n
/TEMPORARY

The following qualifiers apply only to nonstatic variables:

/INTO
/OVER

The following qualifiers are used to override the debugger's determination of
whether a variable is static or nonstatic:

/[NO]STATIC

The technique for setting a watchpoint depends on whether the variable
is static or nonstatic. A static variable is associated with the same virtual
memory address throughout execution of the program. You can always set a
watchpoint on a static variable throughout execution.

A nonstatic variable is allocated on the stack or in a register and has a value
only when its defining routine is active (on the call stack). Therefore, you
can set a watchpoint on a nonstatic variable only when the PC value is
within the scope of the defining routine (including any routine called by the
definining routine). The watchpoint is cancelled when execution returns from
the defining routine.

EXAMPLES

SET WATCH

The debugger determines whether a variable is static or nonstatic by checking
how it is allocated. Typically, a static variable is in PO space (0 through
3FFFFFFF, hexadecimal); a nonstatic variable is in Pl space (40000000
through 7FFFFFFF) or in a register. The debugger issues a warning if you
try to set a watchpoint on a variable that is allocated in Pl space or in a
register when the PC value is not within the scope of the defining routine.
The /[NO]STATIC qualifier enables you to override the default behavior. For
example, if you have allocated nonstack storage in Pl space, use the /STATIC
qualifier when setting a watchpoint on a variable that is allocated in that
storage area.

Another distinction between static and nonstatic watchpoints is speed of
execution. To watch a static variable, the debugger write-protects the page
containing the variable. If your program attempts to write to that page, an
access violation occurs and the debugger handles the exception, determining
whether the watched variable was modified. Except when writing to that
page, the program executes at normal speed.

To watch a nonstatic variable, the debugger traces every instruction in the
variable's defining routine and checks the value of the variable after each
instruction has been executed. Since this significantly slows down execution,
the debugger issues a message when you set a nonstatic watchpoint. The
/INTO and /OVER qualifiers enable you to choose whether to also trace
instructions within any routine that is called by the defining routine or to
execute the called routine at normal speed.

Related commands: (SHOW, CANCEL) WATCH, SET BREAK, SET TRACE,
SET STEP [NO]SOURCE.

iJ DBG> SET WATCH MAXCOUNT

~ DBG> SET WATCH ARR
DBG> GO

This command establishes a watchpoint on the variable MAXCOUNT.

watch of .SUBR\ARR at SUBR\%LINE 12+8
old value:

(1): 7
(2): 12
(3) : 3

new value:
(1): 7
(2): 12
(3): 28

break at SUBR\%LINE 14

In this example, the SET WATCH command sets a watchpoint on the
three-element integer array, ARR. Execution is then resumed with the GO
command. The watchpoint is triggered whenever any array element changes.
In this case the third element changed.

CD-159

SET WATCH

~ DBG> SET TRACE SUB2 DO (SET WATCH K)

CD-160

In this example variable K is a nonstatic variable and is defined only when
its defining routine, SUB2, is active (on the call stack). The SET TRACE
command sets a tracepoint on SUB2. When the tracepoint is triggered during
execution, the DO clause sets a watchpoint on K. The watchpoint is then
canceled when execution returns from routine SUB2.

SET WINDOW

SET WINDOW

FORMAT

PARAMETERS

QUALIFIERS

DESCRIPTION

Creates a screen window definition.

SET WINDOW wname AT (start-line,line-count
[,start-col, col-count])

wname
Specifies the name of the window you are defining. If a window definition
with that name already exists, it is canceled in favor of the new definition.

start-line
Specifies the starting line number of the window. This line displays the
window title, or header line. The top line of the screen is line 1.

line-count
Specifies the number of text lines in the window, not counting the header
line. Line-count must be at least 1. The sum of start-line and line-count must
not exceed the current screen height.

start-col
Specifies the starting column number of the window. This is the column at
which the first character of the window is displayed. The leftmost column of
the screen is column 1.

col-count
Specifies the number of characters per line in the window. Col-count must
be at least 1. The sum of start-col and col-count must not exceed the current
screen width.

None.

A screen window is a rectangular region on the terminal screen through
which you may view a display. The SET WINDOW command establishes a
window definition by associating a window name with a screen region. You
specify the screen region in terms of a starting line and height (line count)
and, optionally, a starting column and width (column count). If you do not
specify the starting column and column count, they default to column 1 and
the current screen width.

You can specify a window region in terms of expressions that use the built-in
symbols %PAGE and % WIDTH.

You can use the names of any windows you have defined with the SET
WINDOW command in DISPLAY and SET DISPLAY commands to position
displays on the screen.

Window definitions are dynamic-that is, window dimensions expand and
contract proportionally when a SET TERMINAL command changes the screen
width or height.

CD-161

SET WINDOW

EXAMPLES

Related commands: (SHOW, CANCEL) WINDOW, (SET SHOW, CANCEL)
DISPLAY, DISPLAY, (SET, SHOW) TERMINAL.

i] DBG> SET WINDOW ONELINE AT (1, 1)

This command defines a window named ONELINE at the top of the screen.
The window is one line deep and, by default, spans the width of the screen.

~ DBG> SET WINDOW MIDDLE AT (9,4,30,20)

This command defines a window named MIDDLE at the middle of the screen.
The window is 4 lines deep starting at line 9, and 20 columns wide starting at
column 30.

~ DBG> SET WINDOW FLEX AT (%PAGE/4,%PAGE/2,%WIDTH/4,%WIDTH/2)

CD-162

This command defines a window named FLEX that occupies a region around
the middle of the screen and is defined in terms of the current screen height
(%PAGE) and width (%WIDTH).

SHOW AST

SHOW AST

Indicates whether delivery of ASTs is enabled or disabled.

FORMAT SHOW AST

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The SHOW AST command indicates whether delivery of ASTs is enabled or
disabled. Note that the command does not identify an AST whose delivery is
pending. The delivery of ASTs is enabled by default and with the ENABLE
AST command. The delivery of ASTs is disabled with the DISABLE AST
command.

EXAMPLE
DBG> SHOW AST
ASTs are enabled
DBG> DISABLE AST
DBG> SHOW AST
ASTs are disabled
DBG>

Related commands: (ENABLE, DISABLE) AST.

The SHOW AST command indicates whether the delivery of ASTs is enabled.

CD-163

SHOW ATSIGN

SHOW ATSIGN

Identifies the default file specification established with the last SET
ATSIGN command. The debugger uses this file specification when
processing the @file-spec command.

FORMAT SHOW ATSIGN

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION Related commands: SET ATSIGN, @file-spec.

EXAMPLES
D DBG> SHOW ATSIGN

No indirect command file default in effect, using DEBUG.COM

This example shows that, if the SET ATSIGN command was not used,
command procedures are assumed to have the default file specification
SYS$DISK:[]DEBUG.COM.

~ DBG> SET ATSIGN USER: [JONES.DEBUG] .DBG
DBG> SHOW ATSIGN
Indirect command file default is USER: [JONES.DEBUG] .DBG

CD-164

In this example, the SHOW ATSIGN command indicates the default file
specification for command procedures, as previously established with the SET
ATSIGN command.

SHOW BREAK

SHOW BREAK

Displays information about all breakpoints established by the SET BREAK
command, including WHEN and DO clauses and /AFTER counts.

FORMAT SHOW BREAK

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The debugger displays all information about each breakpoint that is currently
set, including any optional WHEN and DO clauses.

EXAMPLE
DBG> SHOW BREAK

If you established a breakpoint using the / AFTER:n command qualifier with
the SET BREAK command, the SHOW BREAK command displays the current
value of the decimal integer n, that is, the originally specified integer value
minus one for each time the breakpoint location was reached. (The debugger
decrements n each time the breakpoint location is reached until the value of n
is zero, at which time the debugger takes break action.)

See Section 8.3.2 for information on predefined Ada event breakpoints.

Related commands: (SET, CANCEL) BREAK.

breakpoint at SUB1\LOOP
breakpoint at MAIN\MAIN+1F

do (EX SUB1\D ; EX/SYMBOLIC PSL; GO)
breakpoint at routine SUB2\SUB2

/after: 2

This command displays information about the three breakpoints currently set,
SUB1\LOOP,. MAIN\MAIN, and SUB2\SUB2.

CD-165

SHOW CALLS

SHOW CALLS

Identifies the currently active routine calls (the call stack).

FORMAT SHOW CALLS [n]

PARAMETERS n

QUALIFIERS

DESCRIPTION

CD-166

A decimal integer that specifies the number of call frames to be identified. By
default, all currently active call frames are identified.

None.

Whenever a call is made to a routine as your program executes, the VMS
operating system creates a separate call frame on the stack. Each call frame
stores information about the calling routine. The call frame for the most
recently called routine is on the top of the stack.

When a routine returns execution to its caller, the call frame for that routine
is removed from the stack.

The SHOW CALLS command shows a traceback that lists the sequence
of active routine calls that lead to the routine where execution is currently
suspended. Any recursive routine calls are shown in the display, so you can
use the SHOW CALLS command to examine the chain of recursion.

One line of information is displayed for each call frame, starting with the
most recent call. The top line identifies the currently executing routine, the
next line identifies its caller, the following line identifies the caller of the
caller, and so on.

The following information is provided for each call frame:

• The name of the enclosing module. An asterisk (*) to the left of a
module name indicates that the module is set.

•

•

•

The name of the calling routine, provided the module is set (the first line
shows the currently executing routine).

The line number where the call was made in that routine, provide~ the
module is set (the first line shows the line number where execution 'ls
suspended).

The value of the PC in the calling routine at the time that control was
transferred to the called routine. The PC value is shown as a virtual
address relative to the virtual address of the name of the routine and also
as an absolute virtual address.

Note that, even if your program contains no routine calls, the SHOW CALLS
command displays an active call. The reason for this is that your program has
a stack frame built for it when it is first activated. Thus, if the SHOW CALLS
display shows no active calls, either your program has terminated or the stack
has been corrupted.

SHOW CALLS

Related commands: SHOW STACK, SHOW SCOPE.

EXAMPLE

DBG> SHOW CALLS

module name routine name line rel PC abs PC

SUB2 SUB2
*SUB1 SUB1
*MAIN MAIN

00000002 0000085A
5 00000014 00000854

10 0000002C 0000082C

This command displays information about the sequence of currently active
procedure calls.

CD-167

SHOW DEFINE

SHOW DEFINE

Identifies the default qualifier (/ADDRESS, /COMMAND, or /VALUE)
currently in effect for the DEFINE command.

FORMAT SHOW DEFINE

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The default qualifier for the DEFINE command is the default qualifier last
established with the SET DEFINE command. If no SET DEFINE command
was entered, the default qualifier is /ADDRESS.

EXAMPLE
DBG> SHOW DEFINE

To identify a symbol defined with the DEFINE command, use the SHOW
SYMBOL/DEFINED command.

Related commands: SET DEFINE, DEFINE, DELETE, SHOW SYMBOL
/DEFINED.

Current setting is: DEFINE/ADDRESS
DBG>

CD-168

In this example, the SHOW DEFINE command indicates that the DEFINE
command is set for definition by address.

SHOW DISPLAY

SHOW DISPLAY

Identifies one or more existing screen displays.

FORMAT SHOW DISPLAY [disp-name[, ...]]

PARAMETERS disp-name
Specifies the name of a display. If you do not specify a name, or if you
specify the asterisk wildcard character (*) by itself, all display definitions are
listed. You can use* within a display name. Do not specify a display name
with /ALL.

QUALIFIERS /ALL
Lists all display definitions. Do not specify a display name with /ALL.

DESCRIPTION The SHOW DISPLAY command lists all displays according to their order in
the display list. The most hidden display is listed first, and the display that is
on top of the display pasteboard is listed last.

EXAMPLE
DBG> SHOW DISPLAY

For each display, the SHOW DISPLAY command lists its name, maximum
size, screen window, and display kind (including any debug command list). It
also identifies whether or not the display is removed from the pasteboard or
is dynamic (a dynamic display automatically adjusts its window dimensions if
the screen size is changed with the SET TERMINAL command).

Related commands: (SET, CANCEL) DISPLAY, DISPLAY, (SET, CANCEL,
SHOW WINDOW), SHOW SELECT, EXTRACT/SCREEN_LAYOUT.

display SRC at Hi, size = 64, dynamic
kind= SOURCE (EXAMINE/SOURCE .%SOURCE_SCOPE\%PC)

display INST at Hi, size = 64, removed, dynamic
kind = INSTRUCTION (EXAMINE/INSTRUCTION .O\%PC)

display REG at RHi, size = 64, removed, not dynamic, kind= REGISTER
display OUT at S45, size = iOO, dynamic, kind = OUTPUT
display EXSUM at Q3, size = 64, dynamic, kind = DO (EXAMINE SUM)
display PROMPT at S6, size = 64, dynamic, kind= PROGRAM

The SHOW DISPLAY command lists all displays currently defined. In this
example, they include the five predefined displays (SRC, INST, REG, OUT,
and PROMPT), and the user-defined DO display EXSUM. Displays INST and
REG are removed from the display pasteboard: the DISPLAY command must
be used in order to display them on the screen.

CD-169

SHOW EDITOR

SHOW EDITOR

Indicates the action taken by the EDIT command, as established by the
SET EDITOR command.

FORMAT SHOW EDITOR

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION Related commands: SET EDITOR, EDIT.

EXAMPLES
i] DBG> SHOW EDITOR

The editor is SPAWNed, with command line "LSEDIT/START_pOSITION=(n,1)"

This command indicates that, when you enter the EDIT command, you spawn
the VAX Language-Sensitive Editor in a subprocess. The
/START_POSITION qualifier that is appended to the command line indicates
that the editing cursor is initially positioned at the start of the line that is
cented in the debugger's current source display.

~ DBG> SET EDITOR/CALLABLE_TPU
DBG> SHOW EDITOR
The editor is CALLABLE_TPU, with command line "TPU"

CD-170

In this example, the SHOW EDITOR command indicates that, when you
enter the EDIT command, you invoke the callable version of the VAX Text
Processing Utility (VAXTPU). The editing cursor is initially positioned at the
start of source line 1.

SHOW EVENT_FACILITY

SHOW EVENT_FACILITY

Identifies the current run-time facility for eventpoints and the associated
event names.

Note: This command currently applies only to Ada and SCAN.
See the VAX Ada and VAX SCAN documentation for complete
information.

FORMAT SHOW EVENT_FACILITY

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The SHOW EVENT-FACILITY command is meaningful only with Ada or
SCAN programs. The command identifies the current run-time facility and
lists the associated event names that may be used with the

EXAMPLE
DBG> SHOW EVENT_FACILITY
event facility is ADA

SET BREAK/EVENT and SET TRACE/EVENT commands. The event names
associated with the Ada and SCAN run-time facilities are identified in
Appendix E.

Related commands: SET EVENT_FACILITY, (SET, CANCEL) BREAK
/EVENT, SHOW BREAK, (SET, CANCEL) TRACE/EVENT, SHOW TRACE.

This command identifies the current event facility to be Ada and lists the
associated event names that may be used with a SET BREAK/EVENT or SET
TRACE/EVENT command.

CD-171

SHOW EXIT_HANDLERS

SHOW EXIT_HANDLERS

Identifies the exit handlers that have been declared in your program.

FORMAT SHOW EXIT_HANDLERS

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The exit handler routines are displayed in the order that they are called (that
is, last in, first out). The routine name is displayed symbolically, if possible.
Otherwise, its address is displayed. The debugger's exit handlers are not
displayed.

EXAMPLE
DBG> SHOW EXIT_HANDLERS
exit handler at STACKS\CLEANUP

CD-172

This command identifies the exit handler routine CLEANUP, which is
declared in module STACKS.

SHOW IMAGE

SHOW IMAGE

FORMAT

Displays information about one or more shareable images that are part of
your running program.

SHOW IMAGE [image-name]

PARAMETERS image-name
Specifies the name of a shareable image to be included in the display. If you
do not specify a name, or if you specify the asterisk wildcard character (*) by
itself, all images are listed. You can use *within an image name.

QUALIFIERS None.

DESCRIPTION The SHOW IMAGE command displays the following information:

EXAMPLE
DBG> SHOW IMAGE SHARE*

image name

*SHARE
SHARE1
SHARE2
SHARE3
SHARE4

total images: 5

• Name of the shareable image

• Start and end addresses of the image

• Whether the image has been set with the SET IMAGE command (loaded
into the RST)

• Current image that is your debugging context (marked with an asterisk)

• Total number of images selected in the display

• Number of bytes allocated for the RST and other internal structures

Related commands: (SET, CANCEL) IMAGE, (SET, SHOW, CANCEL)
MODULE.

set

yes
no
yes
no
no

base address

00000200
00001000
00018COO
00019200
00019600

bytes allocated: 33032

end address

OOOOOFFF
000017FF
000191FF
000195FF
0001B7FF

This SHOW IMAGE command identifies all of the shareable images whose
names start with "SHARE" and which are associated with the program.
Images SHARE and SHARE2 are set. The asterisk identifies SHARE as the
current image.

CD-173

SHOW KEY

SHOW KEY

FORMAT

·Displays the debugger predefined key definitions and those created by the
DEFINE/KEY command.

SHOW KEY [key-name]

PARAMETERS key-name

Key-name

PF1

PF2

PF3

PF4

KPO, KP1 I ••• ,KP9

PERIOD

COMMA

MINUS

ENTER

E1

E2

E3

E4

E5

E6

HELP

DO

F6, F7, ... I F20

QUALIFIERS

CD-174

Specifies a function key whose definition is to be displayed. Do not use the
asterisk wildcard character (*). Do not specify a key name with /ALL. Valid
key names are the following:

LK201 Keyboard

PF1

PF2

PF3

PF4

Keypad 0, ... ,9

Keypad period (.)

Keypad comma (,)

Keypad minus (-)

ENTER

Find

Insert Here

Remove

Select

Prev Screen

Next Screen

Help

Do

F6, F7, ... I F20

/ALL

VT100-type

PF1

PF2

PF3

PF4

Keypad 0, ... ,9

Keypad period (.)

Keypad comma (,)

Keypad minus (-)

ENTER

VT52-type

Blue

Red

Black

Keypad 0, ... ,9

ENTER

Displays all key definitions for the current state, by default, or for the states
specified with the /STATE qualifier. Do not specify a key name with/ ALL.

/BRIEF
Displays only the key definitions (by default, all the qualifiers associated with
a key definition are also shown, including any specified state).

DESCRIPTION

EXAMPLES

iJ DBG> SHOW KEY/ALL

SHOW KEY

/DIRECTORY
Displays the names of all the states for which keys have been defined. Do
not specify other qualifiers with /DIRECTORY.

/[NOJSTATE=(state-name [, ...])
Selects one or more states for which a key definition is to be displayed.
/STATE displays key definitions for the specified states. You may specify
predefined key states, such as DEFAULT and GOLD, or user-defined states.
A state name can be any appropriate alphanumeric string. /NOSTATE
(default) displays key definitions for the current state only.

Keypad mode must be enabled (SET MODE KEYPAD) before you can use
this command. Keypad mode is enabled by default.

By default, the current key state is the "DEFAULT" state. The current state
may be changed with the SET KEY /STATE command, or by pressing a key
that causes a state change (a key that was defined with the
DEFINE/KEY /LOCK_STATE/STATE qualifier combination).

Related commands: DEFINE/KEY, DELETE/KEY, SET KEY.

This command displays all the key definitions for the current state.

~ DBG> SHOW KEY/STATE=BLUE KP8
GOLD keypad definitions:

KP8 = "Scroll/Top" (noecho,terminate,nolock)

This command displays the definition for keypad key 8 in the BLUE state.

~ DBG> SHOW KEY/BRIEF KP8
DEFAULT keypad definitions:

KP8 = "Scroll/Up"

This command displays the definition for keypad key 8 in the current key
state.

~ DBG> SHOW KEY/DIRECTORY
MOVE_ GOLD
MOVE_BLUE
MOVE
GOLD
EXPAND_GOLD
EXPAND_BLUE
EXPAND
DEFAULT
CONTRACT_GOLD
CONTRACT_BLUE
CONTRACT
BLUE

This command displays the names of the states for which keys have been
defined.

CD-175

SHOW LANGUAGE

SHOW LANGUAGE

Identifies the current language.

FORMAT SHOW LANGUAGE

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The current language is the language last established with the SET
LANGUAGE command. If no SET LANGUAGE command was entered,

EXAMPLE
DBG> SHOW LANGUAGE
language: BASIC

CD-176

the current language is, by default, the language of the module containing the
main program.

Related commands: SET LANGUAGE.

This command displays the name of the current language as BASIC.

SHOW LOG

SHOW LOG

Indicates whether the debugger is writing to a log file and identifies the
current log file.

FORMAT SHOW LOG

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The current log file is the log file last established by a SET LOG command.

EXAMPLES
D DBG> SHOW LOG

If no SET LOG command was entered, the current log file is the file
SYS$DISK:[]DEBUG.LOG, by default.

Related commands: SET LOG, SET OUTPUT (NO]LOG, SET OUTPUT
[NO]SCREEN _LOG.

not logging to DEBUG.LOG

~ DBG> SET LOG PROG4
DBG> SET OUTPUT LOG
DBG> SHOW LOG

This command displays the name of the current log file as DEBUG.LOG (the
default log file) and reports that the debugger is not writing to it.

logging to USER$: [JONES.WORK]PROG4.LOG

In this example, the SET LOG command establishes that the current log file
is PROG4.LOG (in the current default directory). The SET OUTPUT LOG
command causes the debugger to log debugger input and output into that file.
The SHOW LOG command confirms that the debugger is writing to the log
file PROG4.COM in the current default directory.

CD-177

SHOW MARGINS

SHOW MARGINS

Displays the current source-line margin settings for the display of source
code.

FORMAT SHOW MARGINS

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The current margin settings are the margin settings last established with the
SET MARGINS command. If no SET MARGINS command was entered, the
left margin is set to 1 and the right margin is set to 255 by default.

Related commands: SET MARGINS.

EXAMPLES

iJ DBG> SHOW MARGINS
left margin: 1 , right margin: 255

Ea DBG> SET MARGINS 50
DBG> SHOW MARGINS

This command displays the default margin settings of 1 and 255.

left margin: 1 , right margin: 50

This command displays the default left margin setting of 1 and the modified
right margin setting of 50.

~ DBG> SET MARGINS 10:60
DBG> SHOW MARGINS
left margin: 10 , right margin: 60

This command displays both margin settings modified to 10 and 60.

CD-178

SHOW MAX_SOURCE_FILES

SHOW MAX_SOURCE_FILES

Displays the maximum number of source files that the debugger may keep
open at any one time.

FORMAT SHOW MAX_SOURCE_FILES

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The maximum number of source files that the debugger may keep open
at any one time may be specified using the SET MAX_SOURCE_FILES
command. If no SET MAX_SOURCE_FILES command was entered, the
maximum number of files is 5, by default.

EXAMPLE

Related commands: SET MAX_SOURCE_FILES, (SET, SHOW, CANCEL)
SOURCE.

DBG> SHOW MAX_SOURCE_FILES
max_source_files: 7

This command shows that the debugger may keep a maximum of 7 source
files open at any one time.

CD-179

SHOW MODE

SHOW MODE

Identifies the current debugger modes (screen or no screen, keypad or
nokeypad, and so on) and the current radix.

FORMAT SHOW MODE

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The current debugger modes are the modes last established with the SET
MODE command. If no SET MODE command was entered, the current
modes are, by default: DYNAMIC, NOGJLOAT (cLfloat), KEYPAD, LINE,
NOSCREEN, SCROLL, NOSEP ARATE, SYMBOLIC.

EXAMPLE
DBG> SHOW MODE

Related commands: (SET, CANCEL) MODE, (SET, SHOW, CANCEL)
RADIX.

modes: symbolic, line, d_float, screen, scroll, keypad, dynamic, no separate window
input radix :decimal
output radix:decimal

CD-180

The SHOW MODE command displays the current modes and current input
and output radix.

SHOW MODULE

SHOW MODULE

Displays information about the modules in the current image.

FORMAT SHOW MODULE [module-name]

PARAMETERS module-name
Specifies the name of a module to be included in the display. If you do not
specify a name, or if you specify the asterisk wildcard character (*) by itself,
all modules are listed. You cart use* within a module name. Shareable image
modules are selected only if the /SHARE qualifier is specified.

QUALIFIERS /[NO]RELATED

DESCRIPTION

Note: This qualifier applies only to Ada programs.

Controls whether the debugger includes, in the SHOW MODULE display,
any module that is related to a specified module through a with-clause or
subunit relationship.

SHOW MODULE/RELATED displays related modules as well as those
specified. The display identifies the exact relationship. By default
(/NORELATED), no related modules are selected for display (only the
modules specified are selected).

/[NO]SHARE
Controls whether the debugger includes, in the SHOW MODULE display,
any shareable images that have been linked with your program. By default
(/NOSHARE) no shareable image modules are selected for display.

The debugger creates dummy modules for each shareable image in your
program. The names of these shareable "image modules" have the prefix
"SHARE$". SHOW MODULE/SHARE identifies these shareable image
modules, as well as the modules in the current image.

Setting a shareable image module loads the universal symbols for that image
into the run-time symbol table so that you can referen~e these symbols from
the current image. However, you cannot reference other (local or global)
symbols in that image from the current image. Note that this feature overlaps
the effect of the newer SET IMAGE and SHOW IMAGE commands.

Note: The current image is either the main image (by default) or the
image established as the current image by a previous SET IMAGE
command.

The SHOW MODULE command displays the following information about
one or more modules selected for display:

• Name of the module.

• Programming language in which the module is coded, unless all modules
are coded in the same language.

CD-181

SHOW MODULE

EXAMPLES
iJ DBG> SHOW MODULE

module name

TEST
SCREEN_IO

• Whether or not the module has been set with the SET MODULE
command. That is, whether or not the symbol records of the module
have been loaded into the debugger's run-time symbol table (RST).

• Space (in bytes) required in the RST for symbol records in that module.

• Total number of modules selected in the display.

• Number of bytes allocated for the RST and other internal structures.

Related commands: (SET, CANCEL) MODULE, (SET, SHOW, CANCEL)
IMAGE, SET MODE [NO]DYNAMIC, SHOW SYMBOL, (SET, SHOW,
CANCEL) SCOPE.

symbols size

yes 432
no 280

total PASCAL modules: 2. bytes allocated: 2740.

In this example, the SHOW MODULE command, without a parameter
specified, displays information about all of the modules in the current image,
which is the main image by default. This example shows the display format
when all modules have the same source language. The "symbols" column
shows that module TEST has been set, but module SCREEN _IO has not.

~ DBG> SHOW MODULE FOO,MAIN,SUB*
module name

FOO
MAIN
SUB!
SUB2

total modules: 4.

symbols language size

yes MACRO 432
no FORTRAN 280
no FORTRAN 164
no FORTRAN 204

bytes allocated: 60720.

In this example, the SHOW MODULE command displays information about
the modules FOO and MAIN, and all modules having the prefix SUB. This
example shows the display format when the modules do not have the same
source language.

~ DBG> SHOW MODULE/SHARE
module name

FOO
MAIN

SHARE$DEBUG
SHARE$LIBRTL
SHARE$MTHRTL
SHARE$SHARE1
SHARE$SHARE2

CD-182

symbols language size

yes MACRO 432
no FORTRAN 280

no Image 0
no Image 0
no Image 0
no Image 0
no Image 0

SHOW MODULE

total modules: 17. bytes allocated: 162280.
DBG> SET MODULE SHARE$SHARE2
DBG> SHOW SYMBOL * IN SHARE$SHARE2

In this example, the command SHOW MODULE/SHARE identifies all
of the modules in the current image and all of the shareable images
(the names of the shareable images are prefixed with "SHARE$"). The
command SET MODULE SHARE$SHARE2 sets the shareable image module
SHARE$SHARE2. The SHOW SYMBOL command identifies any universal
symbols defined in the shareable image SHARE2.

CD-183

SHOW OUTPUT

SHOW OUTPUT

Displays the current output options.

FORMAT SHOW OUTPUT

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The current output options are the options last established with the SET
OUTPUT command. If no SET OUTPUT command was entered, the
output options are, by default: NOLOG, NOSCREEN _LOG, TERMINAL,
NO VERIFY.

Related commands: SET OUTPUT, SET LOG, SET MODE SCREEN.

EXAMPLE
DBG> SHOW OUTPUT
noverify, terminal, screen_log, logging to USER$: [JONES.WORK]DEBUG.LOG;9

CD-184

This command shows the following current output options:

• Debugger commands read from debugger command procedures are not
echoed on the terminal.

• Debugger output is being displayed on the terminal.

• The debugging session is being logged to the log file
USER$:[JONES. WORK]DEBUG.LOG;9.

• The screen contents are logged as they are updated in screen mode.

SHOW RADIX

SHOW RADIX

Displays the current radix for the entry and display of integer data or, if the
/OVERRIDE command qualifier is specified, the current override radix.

FORMAT SHOW RADIX

PARAMETERS None.

QUALIFIERS /OVERRIDE
Identifies the current override radix.

DESCRIPTION The debugger can interpret and display integer data in any one of four
radixes: binary, decimal, hexadecimal, and octal. The current radix for the
entry and display of integer data is the radix last established with the SET
RADIX command. If no SET RADIX command was entered, the radix for
both entry and display (input radix and output radix, respectively) is decimal
for all languages except BLISS and MACRO. It is hexadecimal for BLISS and
MACRO.

EXAMPLES
D DBG> SHOW RADIX

The current override radix for the display of all data is the override radix last
established with the SET RADIX/OVERRIDE command. If no SET RADIX
/OVERRIDE command was entered, the override radix is "none".

Related commands: (SET, CANCEL) RADIX, EXAMINE, DEPOSIT,
EVALUATE.

input radix: decimal
output radix: decimal

This command identifies the input radix and output radix as decimal.

~ DBG> SET RADIX/OVERRIDE HEX
DBG> SHOW RADIX/OVERRIDE
output override radix: hexadecimal

In this example, the SET RADIX/OVERRIDE command sets the override radix
to hexadecimal and the SHOW RADIX/OVERRIDE command indicates the
override radix. This means that all data is displayed as hexadecimal integer
data in commands such as EXAMINE and so on.

CD-185

SHOW SCOPE

SHOW SCOPE

FORMAT

PARAMETERS

QUALIFIERS

DESCRIPTION

EXAMPLE

Displays the current scope search list for symbol lookup.

SHOW SCOPE

None.

None.

The current scope search list designates one or more program locations
(specified by path names and/or other special characters) to be used in the
interpretation of symbols that are specified without path name prefixes in
debugger commands.

The current scope search list is the scope search list last established with the
SET SCOPE command. If no SET SCOPE command was entered, the current
scope search list is 0,1,2, ... ,N, by default.

The default scope means that, for a symbol without a path name prefix, a
symbol lookup such as "EXAMINE X" first looks for X in the routine that
is currently executing (scope O); if no X is visible there, the debugger looks
in the caller of that routine (scope 1), and so on down the call stack; if Xis
not found in scope N, the debugger searches the rest of the run-time symbol
table (RST) - that is, all set modules and the global symbol table (GST), if
necessary.

If you have used a decimal integer in the SET SCOPE command to represent
a routine in the call stack, the SHOW SCOPE command displays the name of
the routine represented by the integer, if possible.

Related commands: (SET, CANCEL) SCOPE.

DBG> SET SCOPE O,STACKS\R2,SCREEN_IO,\
DBG> SHOW SCOPE
scope:

0, [= TEST] ,
STACKS\R2,
SCREEN_IO,
\

CD-186

In this example, the SET SCOPE command tells the debugger to look for
symbols without path name prefixes according to the following scope search
list. First the debugger looks in the PC scope (denoted by "O", which is in
module TEST). If the debugger cannot find a specified symbol in the PC
scope, it then looks in routine R2 of module STACKS; if necessary, it then
looks in module SCREEN_IO, and then finally in the global symbol table

SHOW SCOPE

(denoted by the global scope,\). The SHOW SCOPE command identifies the
current scope search list for symbol lookup.

CD-187

SHOW SEARCH

SHOW SEARCH

Identifies the default qualifiers (/ALL or /NEXT, /IDENTIFIER or /STRING)
currently in effect for the SEARCH command.

FORMAT SHOW SEARCH

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The default qualifiers for the SEARCH command are the default qualifiers last
established with the SET SEARCH command. If no SET SEARCH command
was entered, the default qualifiers are /NEXT and /STRING.

Related commands: SET SEARCH, SEARCH, (SET, SHOW) LANGUAGE.

EXAMPLE
DBG> SHOW SEARCH
search settings: search for next occurrence, as a string
DBG> SET SEARCH !DENT
DBG> SHOW SEARCH
search settings: search for next occurrence, as an identifier
DBG> SET SEARCH ALL
DBG> SHOW SEARCH
search settings: search for all occurrences, as an identifier

CD-188

In this example, the first SHOW SEARCH command displays the default
settings for the SET SEARCH command. By default, the debugger searches
for and displays the next occurrence of the string.

The second SHOW SEARCH command indicates that the debugger searches
for the next occurrence of the string, but displays the string only if it is not
bounded on either side by a character that can be part of an identifier in the
current language.

The third SHOW SEARCH command indicates that the debugger searches
for all occurrences of the string, but displays the strings only if they are not
bounded on either side by a character that can be part of an identifier in the
current language.

SHOW SELECT

SHOW SELECT

Identifies the displays currently selected for each of the display attributes:
error, input, instruction, output, program, prompt, scroll, and source.

FORMAT SHOW SELECT

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The display attributes have the following properties:

• A display that has the error attribute displays debugger diagnostic
messages.

• A display that has the input attribute echoes your debugger input.

• A display that has the instruction attribute displays the decoded assembly
language instruction stream of the routine being debugged. The display is
updated when you enter an EXAMINE/INSTRUCTION command.

• A display that has the output attribute displays any debugger output that
is not directed to another display.

• A display that has the program attribute displays program input and
output. Currently only the PROMPT display can have the program
attribute.

• A display that has the prompt attribute is where the debugger prompts
for input. Currently, only the PROMPT display can have the PROMPT
attribute.

• A display that has the scroll attribute is the default display for the
SCROLL, MOVE, and EXP AND commands.

• A display that has the source attribute displays the source code of the
module being debugged, if available. The display is updated when you
enter a TYPE or EXAMINE/SOURCE command.

Related commands: SELECT, SHOW DISPLAY.

CD-189

SHOW SELECT

EXAMPLE

DBG> SHOW SELECT
display selections:

scroll = SRC
input = none
output = OUT
error = PROMPT
source = SRC
instruction = none
program = PROMPT
prompt = PROMPT

CD-190

In this example, The SHOW SELECT command identifies the displays
currently selected for each of the display attributes. The display selections
shown are the default selections for all languages.

SHOW SOURCE

SHOW SOURCE

Displays the source directory search lists currently in effect.

FORMAT SHOW SOURCE

PARAMETERS None.

QUALIFIERS /EDIT

DESCRIPTION

Note: This qualifier applies mainly to Ada programs.

Identifies the search list for source files to be edited when you use the EDIT
command.

If a source directory search list has not been established by means of the SET
SOURCE or SET SOURCE/MODULE=module-name commands, the SHOW
SOURCE command indicates that no directory search list is currently in effect.
In this case, the debugger expects each source file to be in the same directory
that it was in at compile time (the debugger also checks that the version
number and the creation date and time of a source file match the information
in the debugger's symbol table).

The SET SOURCE/MODULE=module-name command establishes a source
directory search list for a particular module. The SET SOURCE command
establishes a source directory search list for all modules not explicitly
mentioned in a SET SOURCE/MODULE=module-name command. When
those commands have been used, the SHOW SOURCE command identifies
the source directory search list associated with each search categories.

The /EDIT qualifier is needed when the files used for the display of source
code are different from the files to be edited by means of the EDIT command.
This is the case with Ada programs. For Ada programs, the SHOW SOURCE
command identifies the search list of files used for source display (the "copied"
source files in Ada program libraries); the SHOW SOURCE/EDIT command
identifies the search list for the source files you edit when using the EDIT
command.

Related commands: (SET, CANCEL) SOURCE, (SET, SHOW)
MAX _SOURCE _FILES.

CD-191

SHOW SOURCE

EXAMPLES

I] DBG> SHOW SOURCE
no directory search list in effect
DBG> SET SOURCE [PROJA], [PROJB] ,DISK: [PETER.PROJC]
DBG> SHOW SOURCE
source directory search list for all modules:

[PROJA]
[PROJB]
DISK: [PETER.PROJC]

In this example, the SET SOURCE command directs the debugger to search
the directories [PROJA],[PROJB], and DISK:[PETER.PROJC].

~ DBG> SET SOURCE/MODULE=COBOLTEST [], DISK$2: [PROJD]
DBG> SHOW SOURCE
source directory search list for COBOLTEST:

[]
DISK$2: [PROJD]

source directory search list for all other modules:
[PROJA]

CD-192

[PROJB]
DISK: [PETER.PROJC]

In this example, the SET SOURCE command directs the debugger to search
the current default directory ([]) and directory DISK$2:[PROJD] for source files
to use with the module COBOL TEST.

SHOW STACK

SHOW STACK

Displays information from the current call stack.

FORMAT SHOW STACK [n]

PARAMETERS n
Specifies the number of frames to display. If n is omitted, information about
all stack frames is displayed.

QUALIFIERS None.

DESCRIPTION For each call frame, the SHOW STACK command displays information such
as the condition handler, saved register values, and the argument list, if any.
The latter is the list of arguments passed to the subroutine with that call. In
some cases the argument list may contain the addresses of actual arguments.
In such cases, use the command EXAMINE address to display the values of
these arguments.

Related commands: SHOW CALLS.

EXAMPLE
DBG> SHOW STACK
stack frame 0 (2146814812)

condition handler: 0
SPA: 0
S: 0
mask: AM<R2>

· PSW: 0000 (hexadecimal)
saved AP: 7
saved FP: 2146814852
saved PC: EIGHTQUEENS\%LINE 69
saved R2: 0
argument list:(1) EIGHTQUEENS\%LINE 68+2

stack frame 1 (2146814852)

condition handler: SHARE$PASRTL+888
SPA: 0
S: 0
mask:
PSW:

saved AP:
saved FP:
saved PC:

none saved
0000 (hexadecimal)
2146814924
2146814904
SHARE$DEBUG+667

In this example, the SHOW STACK command displays information about all
stack frames at the current PC location.

CD-193

SHOW STEP

SHOW STEP

Identifies the default qualifiers (/INTO, /INSTRUCTION, /NOSILENT and so
on) currently in effect for the STEP command.

FORMAT SHOW STEP

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The default qualifiers for the STEP command are the default qualifiers
last established by the SET STEP command. If no SET STEP command
was entered, the default qualifiers are /LINE, /OVER, /NOSILENT, and
/SOURCE.

EXAMPLE

If you invoke screen mode with the keypad-key sequence PF1-PF3, the
command SET STEP NOSOURCE is issued in addition to the command
SET MODE SCREEN (to eliminate redundant source display in output and
DO displays). In that case, the default qualifiers for the STEP command are
/LINE, /OVER, /NOSILENT, and /NOSOURCE.

Related commands: SET STEP, STEP.

DBG> SET STEP INTO,NOSYSTEM,NOSHARE,INSTRUCTION,NOSOURCE
DBG> SHOW STEP
step type: nosystem, noshare, nosource, nosilent, into routine calls, by instruction

CD-194

In this example, this SHOW STEP command indicates that the debugger does
the following:

• Steps into called routines, but not those in system space or in shareable
images

• Steps by instruction

• Does not display lines of source code while stepping

SHOW SYMBOL

SHOW SYMBOL

FORMAT

PARAMETERS

QUALIFIERS

Displays information about the symbols in the debugger's run-time symbol
table (RST) for the current image.

SHOW SYMBOL symbol-name flN scope[, ...]]
[, ... J

symbol-name
Specifies a symbol to be identified. A valid symbol name is a single identifier
or a label name of the form %LABEL n, where n is an integer. Compound
names such as RECORD.FIELD or ARRAY[l,2] are not valid. If you specify
the asterisk wildcard character (*) by itself, all symbols are listed. You can
use * within a symbol name.

scope
Specifies the name of a module, routine, or lexical block, or a numeric scope.
It has the same syntax as the scope specification in a SET SCOPE command
and may include path name qualification. All specified scopes must be in set
modules in the current image.

The SHOW SYMBOL command displays only those symbols in the RST
for the current image that both match the specified name and are declared
within the lexical entity specified by the scope parameter. If the scope
parameter is omitted, all set modules and the global symbol table (GST) for
the current image are searched for symbols that match the name specified by
the symbol-name parameter.

/ADDRESS
Displays the address specification for each selected symbol. The address
specification is the method of computing the symbol's address. It may
merely be the symbol's virtual address, but it may also involve indirection or
an offset from a register value. Some symbols have address specifications
too complicated to present in any understandable way. These address
specifications are labeled "complex address specifications."

/DEFINED
Displays symbols you have defined with the DEFINE command (symbol
definitions that are in the DEFINE symbol table).

/DIRECT
Displays only those symbols that are declared directly in the scope parameter.
Symbols declared in lexical entities nested within the scope specified by the
scope parameters are not shown.

/LOCAL
Displays symbols that are defined with the DEFINE/LOCAL command
(symbol definitions that are in the DEFINE symbol table).

CD-195

SHOW SYMBOL

DESCRIPTION

EXAMPLES

iJ DBG> SHOW SYMBOL I
data FORARRAY\I

/TYPE
Displays data type information for each selected symbol.

/USE_CLAUSE
Note: This qualifier applies only to Ada programs.

Identifies any Ada package that a specified block, subprogram, or package
names in a use clause. If the symbol specified is a package, also identifies
any block, subprogram, package, and so on that names the specified symbol
in a use clause.

Note: The current image is either the main image (by default) or the
image established as the current image by a previous SET IMAGE
command.

The SHOW SYMBOL command displays information that the debugger has
about a given symbol in the current image. This information may not be the
same as what the compiler had or even what you see in your source code.
Nonetheless, it is useful for understanding why the debugger may act as it
does when handling symbols.

If you do not specify a qualifier, the SHOW SYMBOL command lists all of
the possible declarations or definitions of a specified symbol that exist in
the RST for the current image - that is, in all set modules and in the GST
for that image. Symbols are displayed with their path names. A path name
identifies the search scope (module, nested routines, blocks, and so on) that
the debugger must follow to reach a particular declaration of a symbol. When
specifying symbolic address expressions in debugger commands, you need to
use path names only if a symbol is multiply defined and the debugger cannot
resolve the ambiguity.

The /DEFINED and /LOCAL qualifiers display information about symbols
defined with the DEFINE command (not the symbols that are derived from
your program). The other qualifiers display information about symbols
defined within your program.

Related commands: DEFINE, SHOW DEFINE, DELETE, SYMBOLIZE, SET
MODE [NO]LINE, SET MODE [NO]SYMBOLIC.

This command shows that symbol I is defined in module FORARRAY and is
a variable (data) rather than a routine.

~ DBG> SHOW SYMBOL/ADDRESS INTARRAY1
data FORARRAY\INTARRAY1

descriptor address: 0009DE8B

This command shows that symbol INTARRAYl is defined in module
FORARRAY and has a virtual address of 0009DE8B.

~ DBG> SHOW SYMBOL *PL*

This command lists all the symbols whose names contain the string "PL".

CD-196

SHOW SYMBOL

m DBG> SHOW SYMBOL/TYPE/ADDRESS *

This command displays all information about all symbols.

~ DBG> SHOW SYMBOL * IN MOD3\COUNTER
routine MOD3\COUNTER
data MOD3\COUNTER\X
data MOD3\COUNTER\Y

This command lists all the symbols that are defined in the scope denoted by
the path name MOD3\ COUNTER.

~ DBG> DEFINE/COMMAND SB=SET BREAK
DBG> SHOW SYMBOL/DEFINED SB
defined SB

bound to: SET BREAK
was defined /command

In this example, the DEFINE/COMMAND command defines SB as a symbol
for the command SET BREAK. The SHOW SYMBOL/DEFINED command
displays that definition.

CD-197

SHOW TASK

SHOW TASK

FORMAT

Displays information about the tasks of a tasking program.

Note: This command currently applies only to Ada programs. See the
VAX Ada documentation for complete information.

SHOW TASK [task-expression[, ... 11

PARAMETERS task-expression

QUALIFIERS

CD-198

Specifies a task value. A task expression may be one of the following:

• An Ada language expression for a task value-for example, a task object
name. You can use a path name.

• The task ID (for example, % TASK 2), as indicated in a SHOW TASK
display.

• A pseudo-task name (%ACTIVE_TASK, %CALLER_TASK, %NEXT_
TASK, or % VISIBLE_ TASK).

Do not use the asterisk wildcard character (*). See the qualifier descriptions
for details on how to specify tasks with particular qualifiers.

/ALL
Selects all tasks that currently exist in the program for display. Do not specify
a task with /ALL.

/CALLS[=n]
Performs a SHOW CALLS command for each task selected for display. You
can use the SHOW CALLS command to obtain the current PC value of a task.

/FULL
Displays additional information about each task selected for display. /FULL
provides additional information if used either by itself, or with the /CALLS
or /STATISTICS qualifier.

/[NO]HOLD
Selects either tasks that are on HOLD, or tasks that are not on HOLD for
display.

If you do not specify a task, /HOLD selects all tasks that are on HOLD. If
you specify a task list, /HOLD selects the tasks in the task list that are on
HOLD.

If you do not specify a task, /NOHOLD selects all tasks that are not on
HOLD. If you specify a task list, /NOHOLD selects the tasks in the task list
that are not on HOLD.

SHOW TASK

/PRIOR/TY=(n[, ...])
If you do not specify a task, selects all tasks that have any of the specified
priorities, n, where n is a decimal integer from 0 to 15 inclusive. If you
specify a task list, selects the tasks in the task list that have any of the
priorities specified.

/STATE=(state[, ...])
If you do not specify a task, selects all tasks that are in any of the specified
states (the possible states are RUNNING, READY, SUSPENDED, or
TERMINATED). If you specify a task list, selects the tasks in the task list
that are in any of the states specified.

/STATISTICS
Displays tasking statistics for the entire tasking system. You can use this
information to measure the performance of your tasking program. The larger
the number of total schedulings (also known as context switches), the more
tasking overhead there is. When you specify /STATISTICS, the only other
permissible qualifier is /FULL.

/TIME_SLICE
Displays the current value of pragma TIME_SLICE.

DESCRIPTION You can select tasks for display with the SHOW TASK command by
specifying any of the following:

EXAMPLES

• A task list-that is, a list of task expressions.

• Task selection qualifiers: /ALL, /[NO]HOLD, /PRIORITY, /STATE.

• Both a task list and task selection qualifiers. Only the tasks that satisfy all
specified criteria are selected for display.

If no task parameters or task selection qualifiers are given, the SHOW TASK
command displays summary information about the visible task.

Related commands: SET TASK, SET BREAK/EVENT, SET TRACE/EVENT,
EXAMINE/TASK, DEPOSIT /TASK.

i] DBG> SHOW TASK/ALL

task id
* %TASK 1

%TASK 2
%TASK 3

pri hold state substate
7 RUN
7 HOLD SUSP Accept
6 READY Entry call

task object
122624
TASK_EXAMPLE.MONITOR
TASK_EXAMPLE.CHECK_IN

In this example, the SHOW TASK/ ALL command provides basic information
on all the tasks of a program that are currently in existence-namely, tasks
that have been created and whose master has not yet terminated. One line
is devoted to each task. The active task is marked with an asterisk and is
always the task that is in the RUN state.

~ DBG> SHOW TASK %ACTIVE_TASK,%TASK 3,MONITOR

This command selects the active task, %TASK 3, and task MONITOR for
display.

CD-199

SHOW TASK

~ DBG> SHOW TASK/PRIORITY=6

This command selects all tasks with priority 6 for display.

~ DBG> SHOW TASK/STATE=(RUN,SUSP)

This command selects all tasks that are either running or suspended for
display.

~ DBG> SHOW TASK/STATE=SUSP/NOHOLD

This command selects all tasks that are both suspended and not on hold for
display.

~ DBG> SHOW TASK/STATE=(RUN,SUSP)/PRI0=7 %VISIBLE_TASK,%TASK 3

CD-200

This command selects for display those tasks among the visible task and
% TASK 3 that are in either the RUNNING or SUSPENDED STATE, and have
priority 7.

SHOW TERMINAL

SHOW TERMINAL

Displays the current terminal screen height (page) and width being used to
format output.

FORMAT SHOW TERMINAL

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The current terminal screen height and width are the height and width

EXAMPLE
DBG> SHOW TERMINAL
terminal width: 80

page: 24

last established by the SET TERMINAL command. If no SET TERMINAL
command was entered, the current height and width are, by default, the
height and width known to the VMS terminal driver, as displayed by the DCL
command SHOW TERMINAL (usually 24 lines and 80 columns, respectively,
for VT-series terminals).

Related commands: SET TERMINAL, SHOW DISPLAY, SHOW WINDOW.

This command displays the current terminal screen width and height (page)
as 80 columns and 24 lines, respectively.

CD-201

SHOW TRACE

SHOW TRACE

Displays information about all tracepoints established by the SET TRACE
command, including WHEN and DO clauses and /AFTER counts.

FORMAT SHOW TRACE

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The debugger displays all information about each tracepoint that is currently
set, including any optional WHEN and DO clauses.

EXAMPLE
DBG> SHOW TRACE

If you established a tracepoint. using the / AFTER:n command qualifier with
the SET TRACE command, the SHOW TRACE command displays the current
value of the decimal integer n, that is, the originally specified integer value
minus one for each time the tracepoint location was reached. (The debugger
decrements n each time the tracepoint location is reached until the value of n
is zero, at which time the debugger takes trace action.)

Related commands: (SET, CANCEL) TRACE.

tracepoint at routine CALC\MULT
tracepoint on calls:

RET RSB BSBB JSB BSBW CALLG CALLS

CD-202

The SHOW TRACE command identifies the tracepoints that are currently
set. This example indicates that a tracepoint is triggered whenever execution
reaches routine MULT in module CALC or one of the instructions RET, RSB,
BSBB, JSB, BSBW, CALLG, or CALLS.

SHOW TYPE

SHOW TYPE

Displays the current type for program locations that do not have a compiler
generated type or, if the /OVERRIDE command qualifier is specified, the
current override type.

FORMAT SHOW TYPE

PARAMETERS None.

QUALIFIERS /OVERRIDE
Identifies the current override type.

DESCRIPTION The current type for program locations that do not have a compiler generated
type is the type last established by the SET TYPE command. If no SET TYPE
command was entered, the type for those locations is longword integer.

EXAMPLES

The current override type for all program locations is the override type
last established by the SET TYPE/OVERRIDE command. If no SET TYPE
/OVERRIDE command was entered, the override type is "none".

Related commands: SET TYPE, CANCEL TYPE/OVERRIDE, (SET, SHOW,
CANCEL) RADIX, (SET, SHOW, CANCEL) MODE, EXAMINE, DEPOSIT.

i] DBG> SET TYPE QUADWORD
DBG> SHOW TYPE
type: quadword integer

This command sets the type for locations that do not have a compiler
generated type to quadword. The SHOW TYPE command displays the
current default type for those locations as quadword integer. This means that
the debugger interprets and displays entities at those locations as quadword
integers unless you specify otherwise (for example with a type qualifier on
the EXAMINE command).

~ DBG> SHOW TYPE/OVERRIDE
type/override: none

This command indicates that no override type has been defined.

CD-203

SHOW WATCH

SHOW WATCH

Displays information about all watchpoints established by the SET
WATCH command, including WHEN and DO clauses and /AFTER counts.

FORMAT SHOW WATCH

PARAMETERS None.

QUALIFIERS None.

DESCRIPTION The debugger displays all information about each watchpoint that is currently
set, including any optional WHEN and DO clauses.

EXAMPLE
DBG> SHOW WATCH

If you established a watchpoint using the / AFTER:n command qualifier with
the SET WATCH command, the SHOW WATCH command displays the
current value of the decimal integer n, that is, the originally specified integer
value minus one for each time the watchpoint location was reached. (The
debugger decrements n each time the watchpoint location is reached until the
value of n is zero, at which time the debugger takes watch action.)

Related commands: (SET, CANCEL) WATCH.

watchpoint of MAIN\X
watchpoint of SUB2\TABLE+20

CD-204

This command displays two watchpoints, one at the variable X (defined in
module MAIN), and the other at the location SUB2\ TABLE+20 (20 bytes
beyond the address denoted by the address expression TABLE).

SHOW WINDOW

SHOW WINDOW

FORMAT

PARAMETERS

QUALIFIERS

DESCRIPTION

EXAMPLE

Displays the name and screen position of predefined and user-defined
screen-mode windows.

SHOW WINDOW [wname[, ...]]

wname
Specifies the name of a screen window definition. If you do not specify
a name, or if you specify the asterisk wildcard character (*) by itself, all
window definitions are listed. You can use* within a window name. Do not
specify a window definition name with/ ALL.

/ALL
Lists all window definitions. Do not specify a window definition name with
/ALL.

Related commands: (SET, CANCEL) WINDOW, (SET, SHOW, CANCEL)
DISPLAY, SHOW SELECT, (SET, SHOW) TERMINAL.

DBG> SHOW WINDOW LH*,RH*
window LH1 at (1,11,1,40)
window LH12 at (1,23,1,40)
window LH2 at (13,11,1,40)
window RH1 at (1,11,42,39)
window RH12 at (1,23,42,39)
window RH2 at (13,11,42,39)

This command displays the name and screen position of all screen window
definitions whose names starts with LH or RH.

CD-205

SPAWN

SPAWN

FORMAT

PARAMETERS

QUALIFIERS

CD-206

Creates a subprocess, enabling you to execute DCL commands without
terminating a debugging session or losing your debugging context.

SPAWN [DCL-command}

DCL-command
Specifies a DCL command. If you specify a DCL command, the command is
executed in a subprocess. Control is returned to the debugging session when
the DCL command terminates.

If you do not specify a DCL command, a subprocess is created and you can
then enter DCL commands. Either logging out of the spawned process or
attaching to the parent process (with the DCL ATTACH command) enables
you to continue your debugging session.

If the DCL command contains a semicolon, you must enclose the command
in quotation marks ("). Otherwise the semicolon is interpreted as a debugger
command separator. To include a quotation mark inside the string, enter two
consecutive quotation marks ("").

/INPUT=file-spec
Specifies an input DCL command file containing one or more DCL commands
to be executed by the spawned subprocess. The default file type is .COM.
If you specify a DCL command string with the SPAWN command and an
input file with the /INPUT qualifier, the command string is processed before
the input file. Once processing of the input file is complete, the subprocess
is terminated. Do not use the asterisk wildcard character (*) in the file
specification.

/OUTPUT=file-spec
Writes the output from the SPAWN operation to the specified file. The default
file type is .LOG. Do not use the asterisk wildcard character (*) in the file
specification.

/[NO]WAIT
Controls whether the debugging session (the parent process) is suspended
while the subprocess is running. /WAIT (def~ult) suspends the debugging
session until the subprocess is terminated. You cannot enter debugger
commands until control returns to the parent process.

/NOWAIT executes the subprocess in parallel with the debugging session.
You can enter debugger commands while the subprocess is running. If
you use /NOWAIT, you should specify a DCL command with the SPAWN
command; the DCL command is executed in the subprocess. A message
indicates when the spawned subprocess completes.

DESCRIPTION

EXAMPLES

i] DBG> SPAWN
$

SPAWN

The SPAWN command acts exactly like the DCL SPAWN command. You
can edit files, compile programs, read mail, and so on without ending your
debugging session or losing your current debugging context.

In addition, you can spawn a DCL SP AWN command. DCL processes
the second SP AWN command, including any qualifier specified with that
command.

Related commands: ATTACH.

·This command shows that the SPAWN command, with no parameter
specified, creates a subprocess at DCL level. You can now enter DCL
commands. Log out to return to the debugger prompt.

~ DBG> SPAWN/NOWAIT/INPUT=READ_NOTES/OUTPUT=0428NOTES
DBG>

This command creates a subprocess that is executed in parallel with the
debugging session. This subprocess executes the DCL command procedure
READ_NOTES.COM. The output from the spawned operation is written to
the file 0428NOTES.LOG.

~ DBG> SPAWN/NOWAIT SPAWN/OUT=MYCOM.LOG ©MYCOM
DBG>

This command creates a subprocess that is executed in parallel with the
debugging session. This subprocess creates another subprocess to execute the
DCL command procedure MYCOM.COM. The output from that operation is
written to the file MYCOM.LOG.

CD-207

STEP

STEP

FORMAT

Causes the debugger to execute your program by line, by instruction, or
by some other step unit. The step behavior depends on the step mode
previously established by a SET STEP command and on the qualifier used
with the STEP command.

STEP [n]

PARAMETERS n

QUALIFIERS

CD-208

Specifies the number of lines or instructions to be executed by the STEP
command (n is a decimal integer). If you do not specify the parameter n, the
debugger executes one line or one instruction. The parameter n is always
interpreted as a decimal integer.

/BRANCH
Causes the debugger to step to the next branch instruction. STEP /BRANCH
does the same as SET BREAK/BRANCH;GO except that it does not create a
permanent breakpoint.

/CALL
Causes the debugger to step to the next call or return instruction. STEP
/CALL does the same as SET BREAK/CALL;GO except that it does not
create a permanent breakpoint.

/EXCEPTION
Causes the debugger to step to the next exception condition. STEP
/EXCEPTION does the same as SET BREAK/EXCEPTION;GO except that it
does not create a permanent breakpoint.

/INSTRUCTION
Causes the debugger to step a single machine instruction. STEP
/INSTRUCTION does the same as SET BREAK/TEMPORARY
/INSTRUCTION;GO.

/INSTRUCTION=(opcode[, ...])
Causes the debugger to step to the next machine instruction whose opcode is
specified in the list. STEP /INSTRUCTION=(opcode[, ...]) does the same as
SET BREAK/TEMPORARY /INSTRUCTION=(opcode[, ...]);GO.

/INTO
If you are at a call to a routine, causes the debugger to step into that routine.
Otherwise, has the same effect as STEP without a qualifier.

The STEP /INTO behavior may be qualified as follows:

• If SET STEP NOJSB was previously specified, or if you specify STEP
/INTO /NOJSB, you step over a routine that was called by a JSB
instruction (see the description of the /OVER qualifier).

STEP

• If SET STEP NOSHARE was previously specified, or if you specify STEP
/INTO /NOSHARE, you step over a routine that is in a shareable image.

• If SET STEP NOSYSTEM was previously specified, or if you specify STEP
/INTO/NOSYSTEM you step over a routine that is in system (Pl) space.

/[NO]JSB
/[NO]JSB qualifies a previous SET STEP INTO command or a current STEP
/INTO command. If you are at a routine call, /JSB causes the debugger
to step into the routine, whether it is called by a CALL instruction or by a
JSB instruction. This is the default for all languages except DIBOL. /NOJSB
causes the debugger to step into a routine called by a CALL instruction but
causes the debugger to step over a routine called by a JSB instruction (see
description of /OVER qualifier). In DIBOL, user-written routines are called
by the CALL instruction and DIBOL run-time library routines are called by
the JSB instruction.

/LINE
Causes the debugger to step to the next line of your program. This is the
default behavior for all languages.

/OVER
If you are at a call to a routine, causes the debugger to step over the routine.
The routine is executed. However, any code executed in the routine, up to
and including the corresponding RETURN instruction, is considered part of a
single STEP. This is the default behavior.

/RETURN
Causes the debugger to step to the RETURN instruction of the routine you
are now in. Thus, STEP /RETURN n takes you up n levels of the call stack.

/[NO]SHARE
/[NO]SHARE qualifies a previous SET STEP INTO command or a current
STEP /INTO command. If you are at a call to a shareable image routine,
/SHARE causes the debugger to step into that routine. This is the default.
/NOSHARE causes the debugger to step over that shareable image routine
(see description of /OVER qualifier).

/[NO]SILENT
Controls whether the "stepped to ... "message and other output associated
with the STEP command is displayed. /SILENT specifies that no message or
other output be displayed. /NOSILENT is the default and specifies that the
step message and other output be displayed.

/[NO]SOURCE
Controls whether the source code corresponding to the current program
location is displayed after the STEP command is executed. /SOURCE is the
default and specifies that source code be displayed. /NOSOURCE specifies
that no source code be displayed.

/[NO]SYSTEM
/[NO]SYSTEM qualifies a previous SET STEP INTO command or a current
STEP /INTO command. If you are at a call to a system routine (in Pl space),
/SYSTEM causes the debugger to step into that routine. This is the default.
/NOSYSTEM causes the debugger to step over that system routine (see
description of /OVER qualifier).

CD-209

STEP

DESCRIPTION

EXAMPLES
iJ DBG> STEP

STEP command qualifiers determine the exact stepping behavior. In general,
when you enter a STEP command, the debugger does the following:

1 Executes an instruction or a set of instructions.

2 Reports the instruction or line that follows the last instruction executed.

3 Reports the source line corresponding to the line or instruction that
follows the last instruction executed (but only if the SOURCE parameter
is in effect by virtue of STEP /SOURCE or SET STEP SOURCE and source
lines are available).

4 Issues the prompt.

The following qualifiers affect the location to which you step:

/BRANCH
/CALL
/EXCEPTION
/INSTRUCTION
/INSTRUCTION=(opcode-list)
/LINE
/RETURN

The following qualifiers affect what output is seen on a step:

/[NO]SILENT
/[NO]SOURCE

The following qualifiers affect what happens at a routine call:

/INTO
/[NO]JSB
/OVER
/[NO]SHARE
/[NO]SYSTEM

If you plan to enter several STEP commands with the same qualifiers, you
can first use the SET STEP command to establish new default qualifiers (for
example, SET STEP INTO NOSYSTEM makes the STEP command behave
like STEP /INTO /NOSYSTEM). Then you do not have to use those qualifiers
with the STEP command. You can override the current default qualifiers for
the duration of a single STEP command by specifying other qualifiers.

Related commands: (SET, SHOW) STEP, GO, SET BREAK/EXCEPTION.

stepped to FORSQUARE$MAIN\%LINE 4

CD-210

4: OPEN(UNIT=8, FILE='DATAFILE.DAT', STATUS='OLD')

This command causes the debugger to execute the next line (by default). The
PC is then positioned at the beginning of line 4.

STEP

a1 DBG> STEP/INSTRUCTION
stepped to MAIN\MAIN+14: MOVL 222,RO

~ DBG> STEP/INTO

This command causes the debugger to execute the next instruction. The PC is
then positioned at instruction MOVL, located at MAIN\MAIN+14.

stepped to routine SUB1: MOVAL L-oooo060C,R11

This command causes the debugger to step into the routine that is being
called at the current PC value. The PC is then positioned at routine SUBl.

CD-211

SYMBOLIZE

SYMBOLIZE

FORMAT

PARAMETERS

QUALIFIERS

DESCRIPTION

EXAMPLES

iJ DBG> SYMBOLIZE %R5
address PROG\%R5:

PROG\X

CD-212

Converts a virtual address to a symbolic representation, if possible.

SYMBOLIZE address-expression{, ...]

address-expression
Specifies an address expression to be symbolized. Do not use the asterisk
wildcard character (*).

None.

If the address is a static address, it is symbolized as the nearest preceding
symbol name, plus an offset. If the address is also a code address and a line
number can be found that covers the address, the line number is included in
the symbolization.

If the address is a register address, the debugger displays all symbols in all
set modules that are bound to that register. The full path name of each such
symbol is displayed. The register name itself ("%RS", for example) is also
displayed.

If the address is a stack location in the call frame of a routine in a set module,
the debugger searches for all symbols in that routine whose addresses are
relative to the Frame Pointer (FP) or the Stack Pointer (SP). The closest
preceding symbol name plus an offset is displayed as the symbolization of
the address. A symbol whose address specification is too complex is ignored.

If the debugger can find no symbolization for the address, a message is
displayed.

Related commands: SET MODE [NO]SYMBOLIC, SET MODE [NO]LINE,
SHOW SYMBOL, (SET, SHOW, CANCEL) MODULE,
EVALUATE/ ADDRESS.

This example shows that the local variable X in routine PROG is located in
register RS.

SYMBOLIZE

~ DBG> SYMBOLIZE %HEX 27C9E3
address 0027C9E3:

MOD5\X

This command directs the debugger to treat the integer literal 27C9E3 as a
hexadecimal value and convert that address to a symbolic representation, if
possible. The address converts to the symbol X in module MODS.

CD-213

TYPE

TYPE

FORMAT

PARAMETERS

QUALIFIERS

CD-214

Displays lines of source code.

TYPE [[mod-name \lline-num{:line-num 1
{,{mod-name \lline-num[:line-num lf, ... 11

mod-name
Specifies the module that contains the source lines to be displayed. If you
specify a module name along with the line numbers, use standard path name
notation: insert a backslash (\) between the module name and the line
numbers.

If you do not specify a module name, the debugger uses the current scope (as
established by a previous SET SCOPE command, or the PC scope if no SET
SCOPE command was entered) to find source lines for display. If you specify
a scope search list with the SET SCOPE command, the debugger searches for
source lines only in the module associated with the first named scope.

line-num
Specifies a compiler-generated line number (a number used to label a source
language statement or statements).

If you specify a single line number, the debugger displays the source code
corresponding to that line number.

If you specify a list of line numbers, separating each with a comma, the
debugger displays the source code corresponding to each of the line numbers.

If you specify a range of line numbers, separating the starting and ending line
numbers in the range with a colon, the debugger displays the source code
corresponding to that range of line numbers.

You can display all the source lines of a module by specifying a range of line
numbers starting from J and ending at a number equal to or greater than the
largest line number in the module.

After displaying a single line of source code, you can display the next line of
that module by entering a TYPE command without a line number-that is,
by entering a TYPE command and then pressing the RETURN key. You can
then display the next line and successive lines by repeating this sequence, in
effect, reading through your source program one line at a time.

None.

DESCRIPTION

EXAMPLES
iJ DBG> TYPE 160

module COBOLTEST

TYPE

The TYPE command displays the lines of source code that correspond to
the specified line numbers. The line numbers used by the debugger to
identify lines of source code are generated by the compiler. They appear in a
compiler-generated listing and in a screen-mode source display.

When specifying a module name with the TYPE command, note that the
module must be set. Use the SHOW MODULE command to determine
whether a particular module is set. Then use the SET MODULE command, if
necessary.

In screen mode, the output of a TYPE command is directed at the current
source display, not at an output or DO display. The source display shows the
lines specified and any surrounding lines that fit in the display window.

Related commands: SET MODE [NO]SCREEN, EXAMINE/SOURCE, SET
STEP [NO]SOURCE, STEP /[NOJSOURCE, SET (BREAK, TRACE, WATCH)
/[NO]SOURCE, (SET, SHOW, CANCEL) SCOPE.

160: START-IT-PARA.
DBG> TYPE
module COBOLTEST

161: MOVE SC1 TO ESO.

~ DBG> TYPE 160: 163
module COBOLTEST

In this example, the first TYPE command displays line 160, using the current
scope to locate the module containing that line number. The second TYPE
command, entered without specifying a line number, displays the next line in
that module.

160: START-IT-PARA.
161: MOVE SC1 TO ESO.
162: DISPLAY ESO.
163: MOVE SC1 TO ES1.

This command displays lines 160 through 163, using the current scope to
locate the module.

~ DBG> TYPE SCREEN_I0\7,22:24

This command displays line 7 and lines 22 through 24 in module
SCREEN_IO.

CD-215

WHILE

WHILE

Executes a sequence of commands conditionally.

FORMAT WHILE boolean-expression DO (command[; ...])

PARAMETERS boolean-expression

QUALIFIERS

DESCRIPTION

EXAMPLE

Specifies a language expression that evaluates as a Boolean value (TRUE or
FALSE) in the currently set language.

command
Specifies a debugger command. If you specify more than one command,
separate them with semicolons.

None.

The WHILE command evaluates a Boolean expression in the current language.
If the value is TRUE, the command list in the DO clause is executed. The
command then repeats the sequence, reevaluating the boolean-expression and
executing the command-list until the expression is evaluated as FALSE.

If the boolean-expression is FALSE, the WHILE command terminates.

Related commands: FOR, REPEAT, EXITLOOP.

DBG> WHILE ex .EQ. 0) DO (STEP/SILENT)

CD-216

This command tells the debugger to keep stepping through the program until
X no longer equals 0 (FORTRAN example).

Part 111 Appendixes
Part Ill contains debugger reference information.

A Command Defaults

This appendix identifies the defaults associated with debugger commands.

Command

@file-spec

CALL

DEFINE

DEFINE/KEY

DELETE/KEY

DEPOSIT

DISPLAY

EDIT

ENABLE (DISABLE) AST

EVALUATE

EXAMINE

EXPAND

Default

For any field of the file specification that is not
specified, the default is SYS$DISK:[]DEBUG.COM.
To change the default, use the SET A TSIGN
command.

Arguments are passed by address (%ADDR).

DEFINE/ ADDRESS

DEFINE/KEY /ECHO/NOIF _ST ATE/NOLOCK_
ST A TE/LOG/NOSET _ST A TE/NOTERMINATE

DELETE/KEY /LOG/NOST A TE

Language expressions are interpreted according to
the currently set language. Address expressions
that are associated with compiler generated
types are treated according to that type. Other
address expressions are treated as having the type
longword integer.

DISPLAY /DYNAMIC /NOMARK_CHANGE/POP.
The current display kind, window, and size remain
unchanged.

EDIT /NOEXIT. The default is to invoke the
VAX Language Sensitive Editor in a spawned
subprocess. This may be changed with a SET
EDITOR command. The default source file to be
edited is the file whose source code appears in
the current source display. The default position of
the editing cursor is either the start of the line that
is centered in the current source display,, or the
start of line 1 if the editor was set to /NOST ART_
POSITION.

ENABLE AST

Language expressions are interpreted according to
the currently set language.

The contents of program locations that are
associated with a compiler generated type are
interpreted and displayed according to that type.
The contents of other locations are interpreted and
displayed as longword integers.

EXPAND/DOWN, /UP: 1 line. EXPAND/LEFT,
RIGHT: 1 column.

A-1

Command Defaults

A-2

Command

EXTRACT

MOVE

SCROLL

SEARCH

SELECT

SET ATSIGN

SET BREAK

SET DEFINE

SET DISPLAY

SET EDITOR

SET IMAGE

SET KEY

SET LANGUAGE

SET LOG

SET MARGINS

SET MAX _SOURCE_FILES

SET MODE

SET OUTPUT

SET PROMPT

SET RADIX

Default

If you specify /SCREEN_LA YOUT, the
default specification for the output file is
SYS$DISK:[]DBGSCREEN.COM. Otherwise,
the default specification for the output file is
SYS$DISK:[]DEBUG.TXT.

MOVE/DOWN, /UP: 1 line. MOVE/LEFT, RIGHT: 1
column.

SCROLL/DOWN, /UP: 3/4 of window height.
SCROLL/LEFT, /RIGHT: 8 columns.

SEARCH/NEXT /STRING. If no module name is
specified, the debugger uses the current scope
to find a module and searches that module for an
occurrence of the string. The current scope is that
established by a previous SET SCOPE command,
or the PC scope if no SET SCOPE command was
entered. Also, if no string is specified, the string
specified in the last SEARCH command, if any, is
used.

SELECT /SCROLL

SET ATSIGN SYS$DISK:[]DEBUG.COM

SET BREAK/INTO/ JSB/SHARE/SYSTEM
/NOSILENT /SOURCE

SET DEFINE ADDRESS

SET DISPLAY /DYNAMIC/POP /SIZE:64. The
default window is either H 1 or H2, alternating
between these two with each newly created
display. The default display kind is "output".

SET EDITOR/NOST ART_POSITION

The current image is the main image.

SET KEY /ST ATE=DEFAUL T

The default language is the language of the module
that contains the image transfer address (main
program).

SET LOG SYS$DISK:[]DEBUG.LOG

SET MARGINS 1 :255 (left margin: 1, right margin:
255)

SET MAX_SOURCE_FILES 5

SET MODE DYNAMIC, NOG_FLOAT, KEYPAD,
LINE, NOOPERANDS, NOSCREEN, NOSEPARATE,
SCROLL, SYMBOLIC

SET OUTPUT NOLOG, NOSCREEN_LOG,
TERMINAL, NOVERIFY

SET PROMPT/NOPOP 'DBG> '

For all languages except BLISS and MACRO: SET
RADIX DECIMAL. For BLISS and MACRO: SET
RADIX HEXADECIMAL.

Command

SET SCOPE

SET SEARCH

SET SOURCE

SET STEP

SET TERMINAL

SET TRACE

SET TYPE

SET WATCH

SPAWN

STEP

TYPE

Command Defaults

Default

The debugger looks up a symbol specified without
a path name prefix according to the scope search
list 0, 1, ... ,N (where N is the number of calls
in the call stack). If the symbol is not found, the
debugger searches the run-time symbol table, then
the global symbol table if necessary.

SET SEARCH NEXT ,STRING

When searching for a source file, the debugger
uses the full file specification that is stored in the
run-time symbol table (RST).

SET STEP SOURCE, NOSILENT, OVER, LINE

The values of /PAGE and /WIDTH default to those
set at DCL level (see the VMS DCL Dictionary or
enter the DCL command HELP SET TERMINAL).

SET TRACE/INTO/JSB/SHARE/SYSTEM
/NOSILENT /SOURCE

The default type for program locations that are
associated with a compiler generated type is
that type. The default type for other locations is
longword integer.

For static variables: SET WA TCH/NOSILENT
/SOURCE. For nonstatic variables: SET WATCH
/NOSILENT /OVER/SOURCE.

SPAWN/WAIT

STEP /OVER/LINE

If no module name is specified, the debugger uses
the current scope to find a module and searches
that module for source lines for display. The
current scope is that established by a previous
SET SCOPE command, or the PC scope if no SET
SCOPE command was entered. Also, if no line
is specified after a single source line has been
displayed with the TYPE command, the next line in
that module is displayed by default.

A-3

B Predefined Key Functions

When you invoke the debugger, certain predefined functions (commands,
sequences of commands, and command terminators) are assigned to keys
on the numeric keypad, to the right of the main keyboard. By using these
keys you can enter certain commands with fewer keystrokes than if you
were to type them at the keyboard. For example, pressing the COMMA (,)
keypad key is equivalent to typing GO and then pressing the RETURN key.
Terminals and workstations that have an LK201 keyboard have additional
programmable keys compared to those on VTlOO keyboards (for example,
"Help" or "Remove"), and some of these keys are also assigned debugger
functions.

To use function keys, keypad mode must be enabled (SET MODE KEYPAD).
Keypad mode is enabled when you invoke the debugger. If you do not want
keypad mode enabled, perhaps because the program being debugged uses the
keypad for itself, you can disable keypad mode by entering the SET MODE
NOKEYPAD command.

The keypad key functions that are predefined when you invoke the debugger
are identified in summary form in Figure B-1. Tables B-1 through B-4
identify all key definitions in detail. Most keys are used for manipulating
screen displays in screen mode. To use screen mode commands, you must
first enable screen mode by pressing keypad key PF3 (SET MODE SCREEN).

If you want to use the keypad keys to enter numbers rather than debugger
commands, enter the command SET MODE NOKEYPAD.

B.1 DEFAULT, GOLD, and BLUE Functions
A given key typically has three predefined functions:

• One function is entered by pressing the given key by itself. This is the
DEFAULT function.

• A second function is entered by pressing the PFl key and then the given
key. This is the GOLD function, because PFl is also called the GOLD
key.

• A third function is entered by pressing the PF4 key and then the given
key. This is the BLUE function, because PF4 is also called the BLUE key.

In Figure B-1, the DEFAULT, GOLD, and BLUE functions are listed within
each key's outline, from top to bottom respectively. For example, pressing
keypad key 0 enters the command STEP (DEFAULT function); pressing key
PFl and then key 0 enters the command STEP /INTO (GOLD function);
pressing key PF4 and then key 0 enters the command STEP /OVER (BLUE
function).

8-1

Predefined Key Functions
B.1 DEFAULT, GOLD, and BLUE Functions

Figure B-1 Keypad Key Functions Predefined by the Debugger

r F17 "" F18 F19

DEFAULT MOVE EXPAND

(SCROLL I (EXPAND +I

\... .J

f' PF1 PF2 PF3

GOLD HELP DEFAULT SET MODE SCREEN

GOLD HELP GOLD SET MODE NOSCR

GOLD HELP BLUE DISP/GENERATE

7 re "" 9

DISP SRC,INST.OUT SCROLL/UP DISPLAY next

DISP INST.REG.OUT SCROLL/TOP

SCROLL/UP ...

\.. .,,J
'(;

""'
5 rs

""'
SCROLL/LEFT EX/SOU .0\%PC SCROLL/RIGHT

SCROLL/LEFT:255 SHOW CALLS SCROLL/RIGHT:255

SCROLL/LEFT ... SHOW CALLS 3 SCROLL/RIGHT ...

\.. ..I \. ~

1 r2 "" 3

EXAMINE SCROLL/DOWN SEL/SCROLL next

EXAM-(prevj SCROLL/BOTTOM SEL/OUTPUT next

SCROLL/DOWN ... SEL/SOURCE next

\.. ..I
0 .

STEP RESET

STEP/INTO RESET

STEP/OVER RESET

'
LK201 Keyboard:

Press

F17

F18

F19

F20

VT-100 Keyboard:

Type

SET KEY /ST A TE=DEFAUL T

SET KEY /ST A TE=MOVE

SET KEY /ST A TE=EXP AND

SET KEY /ST A TE=CONTRACT

F20
"""'

CONTRACT

(EXPAND -I

PF4 '
BLUE

BLUE

BLUE

-
DISP next at FS

DISP SRC, OUT

' GO

SEL/INST next

ENTER

ENTER

./

Keys 2,4,6,8

SCROLL

MOVE

EXPAND

CONTRACT

Keys 2,4,6,8

SCROLL

MOVE

EXPAND

CONTRACT

"EXPAND"

"CONTRACT"

EXPAND/UP
EXPAND/UP:999

EXPAND/UP:5

EXPAND/UP:•1

EXPAND/UP:-999

EXPAND/UP:-5

EXPAND/DOWN:-1

EXPAND/DOWN:-999

EXPAND/DOWN:-5

ZK-4774-85

All command sequences assigned to keypad keys are terminated (executed
immediately) except for the BLUE functions of keys 2, 4, 6, and 8. These
unterminated commands are symbolized with a trailing ellipsis (...) in
Figure B-1. To terminat~ the command, supply a parameter and then press
RETURN. For example, to scroll down 12 lines, do the following:

B-2

Predefined Key Functions
B.1 DEFAULT, GOLD, and BLUE Functions

1 Press key PF4

2 Press keypad key 2

3 Type :12 at the keyboard

4 Press the RETURN key

B.2 Key Definitions Specific to LK201 Keyboards
Table B-1 lists keys that are specific to LK201 keyboards and do not appear
on VTlOO keyboards. For each key, the table identifies the equivalent
command and, for some keys, an equivalent keypad key that you may
use if you do not have an LK201 keyboard.

Table 8-1 Key Definitions Specific to LK201 Keyboards

Equivalent
LK201 Key Command Sequence Invoked Keypad Key

F17 SET KEY /ST ATE=DEFAUL T None

F18 SET KEY /ST A TE=MOVE None

F19 SET KEY /ST A TE=EXPAND None

F20 SET KEY /ST A TE=CONTRACT None

Help HELP KEYPAD SUMMARY None

Next Screen SCROLL/DOWN 2

Prev Screen SCROLL/UP 8

Remove DISPLAY /REMOVE %CURSCROLL None

Select SELECT /SCROLL %NEXTSCROLL 3

B.3 Keys That Scroll, Move, Expand, and Contract Displays
By default, keypad keys 2, 4, 6, and 8 scroll the current scrolling display.
Each key controls a direction (down, left, right, and up, respectively). By
pressing keys Fl8, Fl9, or F20, you can place the keypad in the MOVE,
EXP AND, or CONTRACT states. When the keypad is in the MOVE state,
keys 2, 4, 6, and 8 may be used to move the current scrolling display down,
left, and so on. Similarly, in the EXP AND and CONTRACT states, the four
keys may be used to expand or contract the current scrolling display. (See
Figure B-1 and Table B-2. Alternative key definitions for VTlOO keyboards
are described later in this section.)

To scroll, move, expand, or contract a display, proceed as follows:

1 Press key 3 repeatedly, as needed, to select the current scrolling display
from the qisplay list.

2 Press key Fl7, Fl8, Fl9, or F20 to put the keypad in the DEFAULT
(scroll), MOVE, EXPAND, or CONTRACT state, respectively.

B-3

Predefined Key Functions
8.3 Keys That Scroll, Move, Expand, and Contract Displays

3 Press keys 2, 4, 6, and 8 to perform the desired function. Use the PFl
(GOLD) and PF4 (BLUE) keys to control the amount of scrolling or
movement.

Table B-2 Keys That Change the Key State

Key Description

PF 1 Invokes the GOLD function of the next key you press.

PF4 Invokes the BLUE function of the next key you press.

F 17 Puts the keypad in the DEFAULT state, enabling the scroll-display
functions of keys 2, 4, 6, and 8. The keypad is in the DEFAULT state
when you invoke the debugger.

F 18 Puts the keypad in the MOVE state, enabling the move-display
functions of keys 2, 4, 6, and 8.

F19 Puts the keypad in the EXPAND state, enabling the expand-display
functions of keys 2, 4, 6, and 8.

F20 Puts the keypad in the CONTRACT state, enabling the contract-display
functions of keys 2, 4, 6, and 8.

If you have a VTlOO keyboard, you can simulate the effect of LK201 keys
F17 through F20 by defining the key sequences GOLD-KP9 and BLUE-KP9
(currently undefined) as shown below. With these definitions, pressing
GOLD-KP9 puts the keypad in the DEFAULT (scroll) state; pressing BLUE­
KP9 cycles the keypad through the DEFAULT, MOVE, EXPAND, and
CONTRACT states (like cycling through keys Fl 7 through F20). You may
want to store these key definitions in a command procedure, such as your
debugger initialization file.

DEFINE/KEY/IF_STATE=(GOLD,MOVE_GOLD,EXPAND_GOLD,CONTRACT_GOLD)-
/TERMINATE KP9 "Set Key/State=DEFAULT/Nolog"

DEFINE/KEY/IF_STATE=(BLUE)-
/TERMINATE KP9 "Set Key/State=MOVE/Nolog"

DEFINE/KEY/IF_STATE=(MOVE_BLUE)-
/TERMINATE KP9 "Set Key/State=EXPAND/Nolog"

DEFINE/KEY/IF_STATE=(EXPAND_BLUE)-
/TERMINATE KP9 "Set Key/State=CONTRACT/Nolog"

DEFINE/KEY/IF_STATE=(CONTRACT_BLUE)­
/TERMINATE KP9 "Set Key/State=DEFAULT/Nolog"

B.4 Online Keypad Key Diagrams

B-4

Online HELP for the keypad keys is available by pressing the Help key and
also the PF2 key, either by itself or with other keys (see Table B-3). You can
also use the SHOW KEY command to identify key definitions.

Predefined Key Functions
B.4 Online Keypad Key Diagrams

Table B-3 Keys That Invoke Online Help to Display Keypad Diagrams

Key or
Key Sequence

Help

PF2

PF1-PF2

PF4-PF2

F18-PF2

F 18-PF 1-PF2

F 18-PF4-PF2

F19-PF2

F 19-PF 1-PF2

F 19-PF4-PF2

F20-PF2

F20-PF 1-PF2

F20-PF4-PF2

Command Sequence Invoked

HELP KEYPAD SUMMARY

HELP KEYPAD DEFAULT

HELP KEYPAD GOLD

HELP KEYPAD BLUE

HELP KEYPAD MOVE_DEFAULT

HELP KEYPAD MOVE_GOLD

HELP KEYPAD MOVE_BLUE

HELP KEYPAD EXPAND_DEFAULT

HELP KEYPAD EXP AND_GOLD

HELP KEYPAD EXP AND_BLUE

HELP KEYPAD CONTRACT _DEFAULT

HELP KEYPAD CONTRACT_GOLD

HELP KEYPAD CONTRACT_BLUE

Description

Shows a diagram of the keypad keys and
summarizes each key's function

Shows a diagram of the keypad keys and their
DEFAULT functions

Shows a diagram of the keypad keys and their
GOLD functions

Shows a diagram of the keypad keys and their
BLUE functions

Shows a diagram of the keypad keys and their
MOVE DEFAULT functions

Shows a diagram of the keypad keys and their
MOVE GOLD functions

Shows a diagram of the keypad keys and their
MOVE BLUE functions

Shows a diagram of the keypad keys and their
EXPAND DEFAULT functions

Shows a diagram of the keypad keys and their
EXPAND GOLD functions

Shows a diagram of the keypad keys and their
EXPAND BLUE functions

Shows a diagram of the keypad keys and their
CONTRACT DEFAULT functions

Shows a diagram of the keypad keys and their
CONTRACT GOLD functions

Shows a diagram of the keypad keys and their
CONTRACT BLUE functions

B.5 Debugger Key Definitions
Table B-4 identifies all key definitions.

Table B-4 Debugger Key Definitions

Key

0

State

DEFAULT

GOLD

BLUE

DEFAULT

Command Invoked or Function

STEP

STEP/INTO

STEP/OVER

EXAMINE. Examines the logical successor of
the current entity, if one is defined (the next
location).

B-5

Predefined Key Functions
B. 5 Debugger Key Definitions

B-6

Table B-4 (Cont.) Debugger Key Definitions

Key

2

3

4

State

GOLD

BLUE

DEFAULT

Command Invoked or Function

EXAMINE A. Enables you to examine the logical
predecessor of the current entity, if one is
defined (the previous location).

Undefined

SCROLL/DOWN

GOLD SCROLL/BOTTOM

BLUE SCROLL/DOWN (not terminated). To terminate
the command, supply the number of lines to be
scrolled (:n) and/or a display name.

MOVE MOVE/DOWN

MOVE_GOLD MOVE/DOWN:999

MOVE_BLUE MOVE/DOWN:5

EXPAND EXPAND /DOWN

EXPAND_GOLD EXPAND/DOWN:999

EXPAND_BLUE EXPAND/DOWN:5

CONTRACT EXPAND/DOWN:-1

CONTRACLGOLD EXPAND /DOWN :-999

CONTRACLBLUE EXPAND/DOWN:-5

DEFAULT

GOLD

BLUE

DEFAULT

GOLD

BLUE

MOVE

MOVE_GOLD

MOVE_BLUE

EXPAND

EXPAND_GOLD

EXPAND_BLUE

CONTRACT

CONTRACT_GOLD

CONTRACT _BLUE

SELECT /SCROLL %NEXTSCROLL. Selects as
the current scrolling display the next display in
the display list after the current scrolling display.

SELECT /OUTPUT %NEXTOUTPUT. Selects the
next output display in the display list as the
current output display.

SELECT /SOURCE %NEXTSOURCE. Selects the
next source display in the display list as the
current source display.

SCROLL/LEFT

SCROLL/LEFT:255

SCROLL/LEFT (not terminated). To terminate
the command, supply the number of lines to be
scrolled (:n) and/or a display name.

MOVE/LEFT

MOVE/LEFT:999

MOVE/LEFT: 10

EXPAND /LEFT

EXPAND/LEFT:999

EXPAND /LEFT: 10

EXPAND/LEFT:-1

EXP AND /LEFT :-999

EXPAND/LEFT:-10

Predefined Key Functions
B.5 Debugger Key Definitions

Table B-4 (Cont.) Debugger Key Definitions

Key

5

6

7

8

State

DEFAULT

GOLD

BLUE

DEFAULT

GOLD

BLUE

MOVE

MOVE_GOLD

MOVE_BLUE

EXPAND

EXPAND_GOLD

EXPAND_BLUE

CONTRACT

CONTRACT _GOLD

CONTRACT _BLUE

DEFAULT

GOLD

BLUE

DEFAULT

GOLD

BLUE

MOVE

MOVE_GOLD

MOVE_BLUE

EXPAND

Command Invoked or Function

EXAM/SOURCE . %SOURCE_SCOPE\ %PC;
EXAM/INST .0\ %PC. In line (noscreen) mode,
enables you to see the source line or instruction
to be executed next. In screen mode, centers
the current source display on the next source
line to be executed, and the current instruction
display on the next instruction to be executed.

SHOW CALLS

SHOW CALLS 3

SCROLL/RIGHT

SCROLL/RIGHT:255

SCROLL/RIGHT (not terminated). To terminate
the command, supply the number of lines to be
scrolled (:n) and/or a display name.

MOVE/RIGHT

MOVE/RIGHT:999

MOVE/RIGHT: 10

EXPAND /RIGHT

EXPAND/RIGHT:999

EXPAND/RIGHT: 10

EXPAND/RIGHT:-1

EXP AND /RIGHT :-999

EXPAND/RIGHT:-10

DISPLAY SRC AT LH1, INST AT RH1, OUT
AT S45 I PROMPT AT S6; SELECT /SCROLL
/SOURCE SRC; SELECT /INST INST; SELECT
/OUT OUT. Displays the SRC, INST, OUT, and
PROMPT displays with the proper attributes.

DISPLAY INST AT LH1, REG AT RH1, OUT AT
S45, PROMPT AT S6; SELECT /SCROLL/INST
INST; SELECT /OUT OUT. Displays the INST,
REG, OUT, and PROMPT displays with the
proper attributes. Useful for MACRO.

Undefined

SCROLL/UP

SCROLL/TOP

SCROLL/UP (not terminated). To terminate the
command, supply the number of lines to be
scrolled (:n) and/or a display name.

MOVE/UP

MOVE/UP:999

MOVE/UP:5

EXPAND/UP

B-7

Predefined Key Functions
B.5 Debugger Key Definitions

Table B-4 (Cont.) Debugger Key Definitions

Key

9

PF1

PF2

PF3

PF4

COMMA

MINUS

ENTER

B-8

State

EXPAND_GOLD

EXPAND_BLUE

CONTRACT

CONTRACT _GOLD

CONTRACLBLUE

DEFAULT

GOLD

BLUE

DEFAULT

GOLD

BLUE

DEFAULT

GOLD

BLUE

DEFAULT

GOLD

BLUE

Command Invoked or Function

EXPAND/UP:999

EXPAND/UP:5

EXPAND/UP:-1

EXPAND /UP:-999

EXPAND/UP:-5

DISPLAY %NEXTDISP. Displays the next display
in the display list through its current window
(removed displays are not included).

Undefined

Undefined

See Table B-2.

See Table B-3.

SET MODE SCREEN; SET STEP NOSOURCE.
Enables screen mode and suppresses the output
of source lines that would normally appear in the
output display (since that output is redundant
when the source display is present).

SET MODE NOSCREEN; SET STEP SOURCE.
Disables screen mode and restores the output
of source lines.

DISPLAY /GENERATE. Regenerates the contents
of all automatically updated displays.

See Table B-2.

GO

Undefined

SELECT /INSTRUCTION %NEXTINST. Selects
the next instruction display in the display list as
the current instruction display.

DISPLA y %NEXTDISP AT s 12345 I PROMPT
AT S6; SELECT /SCROLL %CURDISP. Displays
the next display in the display list at essentially
full screen (top of screen to top of PROMPT
display). Selects that display as the current
scrolling display.

Undefined

DISPLAY SRC AT H 1, OUT AT S45, PROMPT
AT S6; SELECT /SCROLL/SOURCE SRC; SELECT
/OUT OUT. Displays the SRC, OUT, and
PROMPT displays with the proper attributes.
This is the default display configuration for all
languages except MACRO.

Enables you to enter (terminate) a command.
Same effect as RETURN.

Predefined Key Functions
B. 5 Debugger Key Definitions

Table B-4 (Cont.) Debugger Key Definitions

Key State

PERIOD Default

Next Default
Screen

Prev Default
Screen

Remove Default

Select Default

F17

F18

F19

F20

CTRL/W

CTRL/Z

Command Invoked or Function

Cancels the effect of pressing state keys which
do not lock the state, such as GOLD and BLUE.
Does not affect the operation of state keys
which lock the state, such as MOVE, EXPAND,
and CONTRACT.

SCROLL/DOWN

SCROLL/UP

DISPLAY /REMOVE %CURSCROLL. Removes the
current scrolling display from the display list.

SELECT /SCROLL %NEXTSCROLL. Selects as
the current scrolling display the next display in
the display list after the current scrolling display.

See Table B-2.

See Table B-2.

See Table B-2.

See Table B-2.

DISPLAY /REFRESH

EXIT

B-9

C Screen Mode Reference Information

C.1 Display Kinds

This appendix contains summarized reference information related to screen
mode. The following topics are covered:

• Display kinds

• Display attributes

• Predefined displays

• Screen-related built-in symbols

• Screen dimensions and predefined windows

The SET DISPLAY and DISPLAY commands accept these display-kind
keywords and parameters:

DO (command[; ...])

INSTRUCTION

INSTRUCTION (command)

OUTPUT

REGISTER

Specifies an automatically updated output display.
The commands are executed in the order listed
each time the debugger gains control. Their
output forms the contents of the display. If you
specify more than one command, they must be
separated by semicolons.

Specifies an instruction display. If selected
as the current instruction display with the
SELECT /INSTRUCTION command, it displays the
output from subsequent EXAMINE/INSTRUCTION
c()mmands.

Specifies an automatically updated instruction
display. The command specified must be
an EXAMINE/INSTRUCTION command. The
instruction display is updated each time the
debugger gains control.

Specifies an output display. If selected as the
current output display with the SELECT /OUTPUT
command, it displays any debugger output that is
not directed to another display. If selected as the
current input display with the
SELECT /INPUT command, it echoes debugger
input. If selected as the current error display
with the SELECT /ERROR command, it displays
debugger diagnostic messages.

Specifies an automatically updated register
display. The display is updated each time the
debugger gains control.

C-1

Screen Mode Reference Information
C.1 Display Kinds

SOURCE

SOURCE (command)

Specifies a source display. If selected as the
current source display with the SELECT /SOURCE
command, it displays the output from subsequent
TYPE or EXAMINE/SOURCE commands.

Specifies an automatically updated source display.
The command specified must be a TYPE or
EXAMINE/SOURCE command. The source
display is updated each time the debugger gains
control.

C.2 Display Attributes

C-2

The SELECT command assigns an attribute to a display according to the
qualifier used with that command. The following list identifies each of the
SELECT command qualifiers, its effect, and the display kinds to which you
can assign that attribute.

SELECT

/ERROR

/INPUT

/INSTRUCTION

/OUTPUT

EFFECT

Selects the specified display as the current error display.
Directs any subsequent debugger diagnostic message to that
display. It must be either an output display or the PROMPT
display. If no display is specified, selects the PROMPT
display as the current error display.

Selects the specified display as the current input display.
Echoes any subsequent debugger input in that display.
It must be an output display. If no display is specified,
unselects the current input display: debugger input is not
echoed to any display.

Selects the specified display as the current instruction
display. Directs the output of any subsequent EXAMINE
/INSTRUCTION command to that display. It must be an
instruction display. Keypad key s~quence BLUE-COMMA
selects the next instruction display in the display list as
the current instruction display. If no display is specified,
unselects the current instruction display: no display has the
instruction attribute.

Selects the specified display as the current output display.
Directs any subsequent debugger output to that display,
except where a particular type of output is being directed
to another display (such as diagnostic messages going to
the current error display). The specified display must be
either an output display or the PROMPT display. Keypad
key sequence GOLD-3 selects the next output display in the
display list as the current output display. If no display is
specified, selects the PROMPT display as the current output
display.

SELECT

/PROGRAM

/PROMPT

/SCROLL

/SOURCE

Screen Mode Reference Information
C.2 Display Attributes

EFFECT

Selects the specified display as the current program display.
Tries to force any subsequent program input or output to
that display. Currently, only the PROMPT display may be
specified. If no display is specified, unselects the current
program display: program output is no longer forced to the
PROMPT display.

Selects the specified display as the current prompt display,
where the debugger prompts for input. Currently, only the
PROMPT display may be specified. You cannot unselect the
PROMPT display.

Selects the specified display as the current scrolling display.
Makes that display the default display for any subsequent
SCROLL, MOVE, or EXPAND command. You can specify
any display (however, note that the PROMPT display cannot
be scrolled). /SCROLL is the default if you do not specify a
qualifier with the SELECT command. Key 3 selects as the
current scrolling display the next display in the display list
after the current scrolling display. If no display is specified,
unselects the current scrolling display: no display has the
scroll attribute.

Selects the specified display as the current source display.
Directs the output of any subsequent TYPE or EXAMINE
/SOURCE command to that display. It must be a source
display. Keypad key sequence BLUE-3 selects the next
source display in the display list as the current source
display. If no display is specified, unselects the current
source display: no display has the source attribute.

By default, when you invoke screen mode, the predefined displays are
selected for attributes as follows:

Attribute Predefined Display

Error PROMPT

Input no display selected

Instruction no display selected

Output OUT

Program PROMPT

Prompt PROMPT

Scroll SRC

Source SRC

C.3 Predefined Displays
Properties of the predefined displays SRC, OUT, PROMPT, INST and REG
are summarized in this section.

C-3

C.3.1

C.3.2

C.3.3

Screen Mode Reference Information
C.3 Predefined Displays

SRC (Source Display)
SRC is an automatically updated source display. It shows the source code of
the module being debugged, if that source code is available. The arrow points
to the source line corresponding to the current PC value (where execution is
suspended).

The default characteristics of the SRC display are the following:

Display kind

Attributes

Position

Size

Dynamic

source (examine/source . %source_scope\ %pc)

scroll, source

H1

64 lines

yes

%SOURCE_SCOPE is a built-in scope that signifies scope 0 when source
lines are available for scope 0. Otherwise, %SOURCE_SCOPE signifies
scope N, where N is the first level down the call stack where source lines
are available. Thus, when source lines are available for the module where
execution is suspended, the SRC display is centered on the line corresponding
to the current PC value. If source lines are not available for that module, the
debugger attempts to display source lines in tq.e caller of that module (scope
1). If source lines are also not available at that\level, the debugger tries scope
2, and so on. When displaying source lines th<h are not associated with the
module where execution is suspended, the debugger issues the following
message:

%DEBUG-I-SOURCESCOPE, Source lines not available for .O\%PC.
Displaying source in a caller of the current routine.

OUT (Output Display)
OUT shows all debugger output that is not directed to another display.

The default characteristics of the OUT display are the following:

Display kind

Attribute

Position

Size

Dynamic

output

output

S45

100 lines

yes

PROMPT (Prompt Display)

C-4

PROMPT is the display in which the debugger prompts for input and, by
default, forces program output and prints debugger diagnostic messages.

PROMPT has different properties and restrictions than other displays. This is
to eliminate possible confusion when manipulating that display:

• You cannot hide, remove, permanently delete, or scroll PROMPT.

• You can contract PROMPT down to 2 lines. You cannot contract
PROMPT horizontally.

C.3.4

C.3.5

Screen Mode Reference Information
C.3 Predefined Displays

The default characteristics of the PROMPT display are the following:

Display kind

Attributes

Position

Size

Dynamic

INST (Instruction Display)

program

error, prompt, program (no other display may have the prompt
or program attributes)

S6

Not applicable (PROMPT is not scrollable)

yes

INST is an automatically updated instruction display. It shows the instruction
stream of the routine being debugged. The instructions displayed are decoded
from the image being debugged. The arrow points to the instruction at the
current PC value.

The default characteristics of the INST display are the following:

Display kind

Attributes

Position

Size

Dynamic

REG (Register Display)

instruction (examine/instruction .0\ %pc)

none

H1, removed

64 lines

yes

REG automatically shows the current values (in hexadecimal format) of all
VAX machine registers (RO through Rl l), the four condition code bits (C,V,
Z, and N) of the processor status longword (PSL), and the top several values
on the stack and on the current argument list. Values in this display are
highlighted when they change as you execute the prO"gram.

/

The default characteristics of the REG display are th'e following:

Display kind

Attribute

Position

Size

Dynamic

register

none

RH 1 , removed

64 lines

yes

If the register window is resized, the debugger automatically reformats the
displayed information to adapt to the new window size. The debugger always
displays the contents of registers RO through Rl 1, AP, FP, SP, PC, and PSL.
If the resized window is too small to display all the register inf~rmation,
you can scroll vertically or horizontally to view any information 'that may
be hidden. If the resized window is larger than necessary to display register
information, the debugger fills the remaining space with information (in
hexadecimal format) contained in the user stack.

C-5

Screen Mode Reference Information
C.4 Screen-Related Built-in Symbols

C.4 Screen-Related Built-in Symbols

C.4.1

C.4.2

The following built-in symbols are available for specifying displays and screen
parameters in language expressions:

• %SOURCE_SCOPE-Used to display source code. %SOURCE_SCOPE
is described in Section C.3.1.

• %PAGE, %WIDTH-Used to specify the current screen height and width.

• %CURDISP, %CURSCROLL, %NEXTDISP, %NEXTINST,
%NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE-Pseudo-display
names, used to specify displays in the display list.

Screen Height and Width
The built-in symbols %PAGE and %WIDTH return, respectively, the current
height and width of the terminal screen. These symbols may be used in
various expression, such as for window specifications. For example, the
following command defines a window named MIDDLE that occupies a region
around the middle of the screen:

DBG> SET WINDOW MIDDLE AT (%PAGE/4,%PAGE/2,%WIDTH/4,%WIDTH/2)

Pseudo-Display Names

C-6

Each time you refer to a specific display with a DISPLAY or SET DISPLAY
command, the display list is updated and reordered, if necessary. The most
recently referenced display is put at the tail of the display list, since that
display is pasted last on the pasteboard (the display list may be identified by
entering a SHOW DISPLAY command).

The debugger accepts seven pseudo-display names that refer to displays
relative to their positions in the display list. These names, listed below,
enable you to refer to displays by their relative positions in the list instead of
by their explicit names. Pseudo-display names are used mainly in keypad or
command definitions.

Pseudo-display names treat the display list as a circular list. Therefore, you
can enter any commands that use pseudo-display names to cycle through the
display list until you reach the display you want.

%CURDISP

%CURSCROLL

%NEXTDISP

Refers to the current display. This is the display most recently
referenced with a DISPLAY or SET DISPLAY command-the
least occluded display.

Refers to the current scrolling display. This is the default
display for the SCROLL, MOVE, and EXPAND commands, as
well as for the associated keypad keys (2, 4, 6, and 8).

Refers to the next display in the list after the current display.
The next display is the display that follows the topmost
display. Because the display list is circular, this is the display
at the bottom of the pasteboard-the most occluded display.

Screen Mode Reference Information
C.4 Screen-Related Built-in Symbols

%NEXTINST Refers to the next instruction display in the display list after
the current instruction display. The current instruction display
is the display that receives the output from
EXAMINE/INSTRUCTION commands.

%NEXTOUTPUT Refers to the next output display in the display list after the
current output display. An output display receives debugger
output that is not already directed to another display.

%NEXTSCROLL Refers to the next display in the display list after the current
scrolling display.

%NEXTSOURCE Refers to the next source display in the display list after the
current source display. The current source display is the
display which receives the output from TYPE and
EXAMINE/SOURCE commands.

C.5 Screen Dimensions and Predefined Windows
On a VT-series terminal, the screen consists of 24 lines by 80 or 132 columns.
On a workstation, the screen is larger in both height and width. The
debugger can accommodate screen sizes up to 100 lines by 255 columns.

The debugger has many predefined windows that you can use to position
displays on the screen. The SHOW WINDOW command identifies all
predefined and user defined windows. The predefined windows are expressed
in terms of fractions of the screen dimensions (for example, quarters, halves,
and so on). Therefore, the positions and dimensions of the predefined
windows that are indicated by the SHOW WINDOW command are adjusted
for the screen dimensions.

In addition to the full height and width of the screen, the predefined windows
include all possible regions that result from dividing the screen vertically into
halves, thirds, quarters, sixths, and eighths, and horizontally into left and
right halves.

The following conventions apply to the names of predefined windows. The
prefixes L and R denote left and right windows, respectively. Other letters
denote the full screen (FS) or fractions of the screen height (H: half, T: third,
Q: quarter, S: sixth, E: eighth). The trailing numbers denote specific fractions
of the screen height, starting from the top. For example:

• Windows Tl, T2, and T3 occupy the top, middle and bottom thirds of the
screen, respectively.

• Window RH2 occupies the right bottom half of the screen.

• Window LQ23 occupies the left middle two quarters of the screen.

• Window S45 occupies the fourth and fifth sixths of the screen.

The horizontal boundaries (start-column, column-count) of the predefined
windows for the default terminal screen width of 80 columns are as follows:

• Left hand windows: (1,40)

• Right hand windows: (42,39)

C-7

Screen Mode Reference Information
C.5 Screen Dimensions and Predefined Windows

C-8

The vertical boundaries (start-line, line-count) of the predefined windows for
the default terminal screen height of 24 lines are as follows:

Window Name Start-line,Line-count Window Location

FS (1,23) Full screen

H1 (1, 11) Top half

H2 (13, 11) Bottom half

T1 (1,7) Top third

T2 (9,7) Middle third

T3 (17,7) Bottom third

01 (1,5) Top quarter

02 (7,5) Second quarter

03 (13,5) Third quarter

04 (19,5) Bottom quarter

S1 (1,3) Top sixth

S2 (5,3) Second sixth

S3 (9,3) Third sixth

S4 (13,3) Fourth sixth

S5 (17,3) Fifth sixth

S6 (21,3) Bottom sixth

E1 (1,2) Top eighth

E2 (4,2) Second eighth

E3 (7,2) Third eighth

E4 (10,2) Fourth eighth

E5 (13,2) Fifth eighth

E6 (16,2) Sixth eighth

E7 (19,2) Seventh eighth

ES (22,2) Bottom eighth

D Built-in Symbols and Logical Names

This appendix identifies all of the debugger built-in symbols and logical
names.

D.1 SS$_DEBUG Condition

D.2 Logical Names

SS$_DEBUG (defined in SYS$LIBRARY:STARLET.OLB) is a condition you
can signal from your program to invoke the debugger. Signaling
SS$_DEBUG from your program is equivalent to typing CTRL/Y followed by
the DCL command DEBUG at that point.

You can pass commands to the debugger at the time you signal it with
SS$_DEBUG. The commands you want the debugger to execute should
be specified as you would enter them at the DBG > prompt. Multiple
commands should be separated by semicolons. The commands should be
passed by reference as an ASCIC string. See your language documentation
for details on constructing an ASCIC string.

For example, to invoke the debugger and enter a SHOW CALLS command at
a given point in your program, you could insert the following code in your
program (BLISS example):

LIB$SIGNAL(SS$_DEBUG, 1, UPLIT BYTE(%ASCIC 'SHOW CALLS'));

You can obtain the definition of SS$_DEBUG at compile time from
the appropriate STARLET or SYSDEF file for your language (for
example STARLET.L32 for BLISS or FORSYSDEF.TLB for FORTRAN).
You can also obtain the definition of SS$_DEBUG at link time in
SYS$LIBRARY:STARLET.OLB (this method is less desirable).

The following list identifies debugger-specific process logical names.

Logical
Name Description

DBG$1NIT Points to your debugger initialization file. Default: no debugger
initialization file. DBG$1NIT accepts a full or partial VMS file
specification as well as a search list.

DBG$1NPUT Points to the debugger input device. Default: SYS$1NPUT.

DBG$0UTPUT Points to the debugger output device. Default: SYS$0UTPUT.

You can use the DCL commands ASSIGN or DEFINE to assign values to
these logical names. For example, the following command tells the debugger
the location of your debugger initialization file:

$DEFINE DBG$INIT DISK$: [JONES.COMFILES]DEBUGINIT.COM

D-1

Built-in Symbols and Logical Names
D.2 Logical Names

See Section 7.2 for information on debugger initialization files. See
Section 8.2 for information on using DBG$INPUT and DBG$0UTPUT to
debug screen-oriented programs at two terminals.

D.3 Built-in Symbols

D.3.1

The debugger's built-in symbols provide options for specifying entities in
your program and enable you to control the debugger's scanning of language
expressions. Most of the debugger built-in symbols have a percent sign (%)
prefix. Descriptions of these symbols are organized as follows in the next
sections:

• %RO through %Rl 1, %PC, %PSL, %SP, %AP, %FP-Used to specify the
VAX registers.

• %NAME-Used to construct identifiers.

• %P ARCNT-Used in command procedures to count parameters passed.

• %BIN, %DEC, %HEX, %OCT-Used to control radix.

• Period (.), RETURN key, circumflex ("), backslash (\), %CURLOC,
%NEXTLOC, %PREVLOC, %CURVAL-Used to specify program
locations and the current value of an entity.

• Plus sign (+), minus sign (-), multiplication sign (*), division sign (/),
at sign (@), period (.), bit field operator (<p,s,e>), %LABEL, %LINE,
backslash (\)-Used as operators in address expressions.

• %ADAEXC_NAME, %EXC_FACILITY, %EXC_NAME,
%EXC_NUMBER, %EXC_SEVERITY-Used to obtain information about
exceptions.

• %ACTIVE_TASK, %CALLER_TASK, %NEXT_TASK, %TASK,
% VISIBLE_ TASK-Used to specify tasks in Ada tasking programs.

• %CURDISP, %CURSCROLL, %NEXTDISP, %NEXTINST,
%NEXTOUTPUT, %NEXTSCROLL, %NEXTSOURCE-Used in screen
mode to specify displays in the display list (these built-in symbols are
described in Appendix C).

• %PAGE, % WIDTH, %SOURCE_SCOPE-Used to specify the current
terminal-screen height and width, and to display source code in screen
mode (these built-in symbols are described in Appendix C).

Specifying the VAX Registers

D-2

The debugger built-in symbol for a VAX register is the register name preceded
by the percent sign (%). These symbols are identified in the following list.

D.3.2

D.3.3

Built-in Symbols and Logical Names
0.3 Built-in Symbols

Symbol

%RO ... %R11

%AP (R12)

%FP (R13)

%SP (R14)

%PC (R15)

%PSL

Description

General purpose registers RO ... R 11

Argument pointer

Frame pointer

Stack pointer

Program counter

Processor status longword

For example, the following EXAMINE command obtains the contents of the
PC (the address contained in the PC):

DBG> EXAMINE %PC
MOD\%PC: 1553

You can abbreviate registers by leaving out the percent character (for example,
RO instead of %RO). However, if you do not use the percent character, the
debugger may interpret these symbols as program variables you have defined,
not as debugger built-in symbols. The debugger interprets these symbols as
debugger built-in symbols only if your program does not contain variables of
the same names.

Constructing Identifiers
The %NAME built-in symbol enables you to construct identifiers that are not
ordinarily legal in the current language. The syntax is as follows:

%NAME 'character-string'

In the following example, the variable with the name '12' is examined:

DBG> EXAMINE %NAME '12'

In the following example, the compiler-generated label P.AAA is examined:

DBG> EXAMINE %NAME 'P.AAA'

Counting Parameters Passed to Command Procedures
The %PARCNT built-in symbol may be used within a command procedure
that accepts a variable number of actual parameters (%P ARCNT is defined
only within a debugger command procedure).

%P ARCNT specifies the number of actual parameters passed to the current
command procedure. In the following example, command procedure
ABC.COM is invoked and three parameters are passed:

DBG> ©ABC 111,222,333

Within ABC.COM, %PARCNT now has the value 3. %PARCNT is then used
as a loop counter to obtain the value of each parameter passed to ABC.COM:

DBG> FOR I = 1 TO %PARCNT DO (DECLARE X:VALUE; EVALUATE X)

D-3

D.3.4

D.3.5

Built-in Symbols and Logical Names
D.3 Built-in Symbols

Controlling Radix
The built-in symbols %BIN, %DEC, %HEX, and %OCT may be used in
address expressions and language expressions to specify that an integer
literal that follows (or all integer literals in a parenthesized expression that
follows) should be interpreted in binary, decimal, hexadecimal, or octal radix,
respectively. Use these radix built-in symbols only with integer literals.

For example:

DBG> EVALUATE/DEC %HEX 10
16
DBG> EVALUATE/DEC %HEX (10 + 10)
32
DBG> EVALUATE/DEC %BIN 10
2
DBG> EVALUATE/DEC %OCT (10 + 10)
16
DBG> EVALUATE/HEX %DEC 10
OA

DBG> SET RADIX DECIMAL
DBG> EVALUATE %HEX 20 + 33 Treat 20 as hexadecimal, 33 as decimal)
65 Resulting value is decimal
DBG> EVALUATE %HEX (20+33) Treat both 20 and 33 as hexadecimal
83
DBG> EVALUATE %HEX (20+ %OCT 10 +33) ! Treat 20 and 33 as
91 ! hexadecimal and 10 as octal
DBG> SYMBOLIZE %HEX 27C9E3 ! Symbolize a hexadecimal address
DBG>DEP/INST %HEX 5432 = 'MOVL ~0%DEC 222, R1'

! Treat address 5432 as hexadecimal, and operand 222 as decimal

Specifying Program Locations and the Current Value of an Entity

D-4

The following built-in symbols enable you to specify program locations and
the current value of an entity.

Symbol

%CURLOC
. (period)

%NEXTLOC
RETURN key

%PREVLOC
A (circumflex)

%CURVAL
\ (backslash)

Description

Current logical entity-the program location last referenced by
an EXAMINE or DEPOSIT command.

Logical successor of the current entity-the program location
that logically follows the location last referenced by an
EXAMINE or DEPOSIT command. Because the RETURN key is
a command terminator, it can be used only where a command
terminator is appropriate (for example, immediately after
EXAMINE, but not immediately after DEPOSIT).

Logical predecessor of current entity-the program location
that logically precedes the location last referenced by an
EXAMINE or DEPOSIT command.

Value last displayed by an EVALUATE or EXAMINE command,
or deposited by a DEPOSIT command.

In the following example, the variable WIDTH is examined; the value 12
is then deposited into the current location (WIDTH); this is verified by
examining the current location:

D.3.6

Built-in Symbols and Logical Names
D.3 Built-in Symbols

DBG> EXAMINE WIDTH
MOD\WIDTH: 7
DBG> DEPOSIT . = 12
DBG> EXAMINE .
MOD\WIDTH: 12
DBG> EXAMINE %CURLOC
MOD\WIDTH: 12

In the next example, the next and previous locations in an array are examined:

DBG> EXAMINE PRIMES(4)
MOD\PRIMES(4): 7
DBG> EXAMINE %NEXTLOC
MOD\PRIMES(5): 11
DBG> EXAMINE ~
MOD\PRIMES(6): 13
DBG> EXAMINE %PREVLOC
MOD\PRIMES(5): 11
DBG> EXAMINE A

MOD\PRIMES(4): 7

Examine next location

Note that using the RETURN key to signify the logical successor does not
apply to all contexts. For example, you cannot press the RETURN key after
typing the command DEPOSIT to indicate the next location, whereas you can
always use the symbol %NEXTLOC for that purpose.

Using Symbols and Operators in Address Expressions
The symbols and operators that may be used· in address expressions are
listed below. A unary operator has one operand. A binary operator has two
operands.

Symbol

%LABEL

%LINE

\ (backslash)

Description

Specifies that the numeric literal that follows is a
program label (for languages like FORTRAN that have
numeric program labels). You can qualify the label
with a path name prefix that specifies the containing
module.

Specifies that the numeric literal that follows is a line
number in your program. You can qualify the line
number with a path name prefix that specifies the
containing module.

When used within a path name, delimits each element
of the path name. In this context, the backslash
cannot be the leftmost element of the complete path
name.

When used as the prefix to a symbol, specifies that
the symbol is to be interpreted as a global symbol.
In this context, the backslash must be the leftmost
element of the symbol's complete path name.

D-5

Built-in Symbols and Logical Names
D.3 Built-in Symbols

D-6

Symbol

At sign(@)
Period (.)

Bit field <p,s,e>

Plus sign (+)

Minus sign (-)

Multiplication sign (*)

Division sign (/)

Description

Unary operators. In an address expression, the at
sign (@) and period (.) each function as a "contents­
of" operator. The "contents-of' operator causes its
operand to be interpreted as a virtual address and
thus requests the contents of (or value residing at)
that address.

Unary operator. You can apply bit field selection
to an address-expression. To select a bit field, you
supply a bit offset (p), a bit length (s), and a sign
extension bit (e), which is optional.

Unary or binary operator. As a unary operator,
indicates the unchanged value of its operand. As
a binary operator, adds the preceding operand and
succeeding operand together.

Unary or binary operator. As a unary operator,
indicates the negation of the value of its operand. As
a binary operator, subtracts the succeeding operand
from the preceding operand.

Binary operator. Multiplies the preceding operand by
the succeeding operand.

Binary operator. Divides the preceding operand by
the succeeding operand.

The following examples illustrate the use of built-in symbols and operators in
address expressions. ·

%LINE and %LABEL Operators

The following command sets a tracepoint at line 26 of the module where
execution is currently suspended:

DBG> SET TRACE %LINE 26
DBG>

The next command displays the source line associated with line 47:

DBG> EXAMINE/SOURCE %LINE 47
module MAIN

47: procedure SWAP(X,Y: in out INTEGER) is
DBG>

The 'next command sets a breakpoint at label 10 of module MOD4:

DBG> SET BREAK MOD4\%LABEL 10
DBG>

Path Name Operators

The following command displays the value of the variable COUNT that is
declared in routine ROUT2 of module MOD4. The backslash (\) path name
delimiter separates the path name elements:

DBG> EXAMINE MOD4\ROUT2\COUNT
MOD4\ROUT2\COUNT: 12
DBG>

Built-in Symbols and Logical Names
0.3 Built-in Symbols

The following command sets a breakpoint on line 26 of the module
QUEUE_MANAGER:

DBG> SET BREAK QUEUE_MANAGER\%LINE 26
DBG>

The following command displays the value of the global symbol X:

DBG> EXAMINE \X
DBG>

Arithmetic Operators

The order in which the debugger evaluates the elements of an address
expression is similar to that used by most programming languages. The order
is determined by the following three factors, listed in decreasing order of
precedence (first listed have higher precedence):

1 The use of delimiters (usually parentheses or brackets) to group operands
with particular operators

2 The assignment of relative priority to each operator

3 Left-to-right priority of operators

The debugger operators are listed in decreasing order of precedence as
follows:

1 Unary operators ((.), (@), (+), (-))

2 Multiplication and division operators ((*), (/))
3 Addition and subtraction operators ((+), (-))

For example, when evaluating the following expression, the debugger first
adds the operands within parentheses, then divides the result by 4, then
subtracts the result from 5.

5-(T+5)/4

The following command displays the value contained in the virtual memory
location X + 4 bytes:

DBG> EXAMINE X + 4

Contents-of Operator

The following examples illustrate use of the contents-of operator. In the next
example, the instruction at the current PC value is obtained (the instruction
whose address is contained in the PC and which is about to execute):

DBG> EXAMINE .%PC
MOD\%LINE 5: PUSHL S~#8

In the next example, the source line at the PC value one level down the call
stack is obtained (at the call to routine SWAP):

DBG> EXAMINE/SOURCE .1\%PC
module MAIN
MAIN\%LINE 134: SWAP(X,Y);

D-7

D.3.7

Built-in Symbols and Logical Names
D.3 Built-in Symbols

For the next example, assume that the value of pointer variable PTR is
7FFOOOOO hexadecimal, the virtual address of an entity that you want
to examine. Assume further that the value of this. entity is 3FFOOOOO
hexadecimal. The following command shows how to examine the entity:

DBG> EXAMINE/LONG .PTR
7FFOOOOO: 3FFOOOOO

In the next example, the contents-of operator (at sign or period) is used
with the current location operator (period) to examine a linked list of three
quadword-integer pointer variables (identified as Ll, L2, and L3 in the
illustration that follows). P is a pointer to the start of the list. The low
longword of each pointer variable contains the address of the next variable;
the high longword of each variable contains its integer value (8, 6, and 12
respectively).

+------+
P: I 9B40 1--+ L1 L2 L2

+------+ I +------+ +------+ +------+
+-->I 9BDA 1--->I 9BF4 1--->I 0000 I

1------1 1------1 1------1
I a I I 6 I I 12 I
+------+ +------+ +------+

DBG> SET TYPE QUADWORD; SET RADIX HEX
DBG> EXAMINE .P Examine the entity whose address

is contained in P.
00009BC2: 00000008 00009BDA High word has value 8, low word

has address of next entity (9BDA).
DBG> EXAMINE©. Examine the entity whose address

is contained in the current entity.
00009BDA: 00000006 00009BF4 High word has value 6, low word

has address of next entity (9BF4).
DBG> EXAMINE . . Examine the entity whose address

is contained in the current entity.
00009BF4: OOOOOOOC 00000000 High word has value 12 (dee.), low word

has address 0 (end of list).

Bit-Field Operator

The following example shows how to use the bit-field operator. For example,
to examine the address expression X_NAME starting at bit 3 with a length of
4 bits and no sign extension, you would enter the following command:

DBG> EXAMINE X_NAME <3,4,0>

Obtaining Information About Exceptions

0-8

The following built-in symbols enable you to obtain information about
the current exception and use that information to qualify breakpoints or
tracepoints.

D.3.8

Built-in Symbols and Logical Names
D.3 Built-in Symbols

Symbol Description

Name of facility that issued the current exception

Name of current exception

%EXC_FACILITY

%EXC_NAME

%ADAEXC_
NAME

Ada exception name of current exception (for Ada programs
only)

%EXC_NUMBER

%EXC_SEVERITY

For example:

Number of current exception

Severity code of current exception

DBG> EVALUATE %EXC_NAME
"FLTDIV_F"
DBG> SET BREAK/EXCEPTION WHEN (%EXC_NAME = "FLTDIV_F")

DBG> EVALUATE %EXC_NUMBER
12
DBG> EVALUATE/CONDITION_VALUE %EXC_NUMBER
%SYSTEM-F-ACCVIO, access violation at PC !XL, virtual address !XL
DBG> SET BREAK/EXCEPTION WHEN (%EXC_NUMBER = 12)

Specifying Ada Tasks
The following built-in symbols may be used to specify the tasks of an Ada
tasking program in debugger commands (these built-in symbols apply only to
Ada tasking programs).

Symbol Description

%ACTIVE_ TASK Currently active task-the task that executes when a GO or
STEP command is entered.

%CALLER_ TASK Task that is the entry caller of the active task during a task
rendezvous.

%NEXT_ TASK Next task on debugger's task list after the task that is
currently visible.

% TASK n Specifies a task by means of its task ID (n is a decimal
integer assigned by the VAX Ada run-time library to each
task as it is created).

% VISIBLE_ TASK Currently visible task-the task that is the context for an
EXAMINE command, for example.

Two examples follow. See the VAX Ada documentation for additional details.

DBG> EXAMINE MONITOR_TASK
MOD\MONITOR_TASK: %TASK 2

DBG> WHILE %NEXT_TASK NEQ %ACTIVE DO (SET TASK %NEXT_TASK; SHOW CALLS)

D-9

E Summary of Debugger Support for Languages

The debugger supports most of the VMS-supported languages. Debugger
support is summarized in this chapter for the following language keywords
(used with the SET LANGUAGE command): ADA, BASIC, BLISS, C,
COBOL, DIBOL, FORTRAN, MACRO, PASCAL, PLI, RPG, SCAN, and
UNKNOWN. For each language, the following information is provided:

• Supported operators in language expressions

• Supported constructs in language expressions and address expressions

• Supported data types

• Any other language-specific features (for example, event keywords in the
case of AD A and SCAN)

For further information, refer to the documentation furnished with a particular
language.

E.1 Debugger Support for Language ADA

E. r.1

This section includes information about debugger support for ADA.

Operators in Language Expressions
Supported ADA operators in language expressions follow:

Kind

Prefix

Prefix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Prefix

Infix

Infix

Infix

Infix

Symbol

+

+

I
MOD

REM

ABS

&

/=

>

Function

Unary plus (identity)

Unary minus (negation)

Addition

Subtraction

Multiplication

Division

Modulus

Remainder

Exponentiation

Absolute value

Concatenation (only string types)

Equality (only scalar and string types)

Inequality (only scalar and string types)

Greater than (only scalar and string types)

E-1

E.1.2

E.1.3

Summary of Debugger Support for Languages
E.1 Debugger Support for Language ADA

Kind Symbol Function

Infix >= Greater than or equal (only scalar and string types)

Infix < Less than (only scalar and string types)

Infix <= Less than or equal (only scalar and string types)

Prefix NOT Logical NOT

Infix AND Logical AND (not for bit arrays)

Infix OR Logical OR (not for bit arrays)

Infix XOR Logical exclusive OR (not for bit arrays)

Note: The debugger does not support

• Operations on entire arrays or records

• The short-circuit control forms: and then, or else

• The membership tests: in, not in

• User-defined operators

Constructs in Language and Address Expressions

Data Types

E-2

Supported constructs in language and address expressions for ADA follow:

Symbol Construct

() Subscripting

Record component selection

. ALL Pointer dereferencing

Supported ADA data types follow:

ADA Type

INTEGER

SHORT _INTEGER

SHORT _SHORT _INTEGER

SYSTEM.UNSIGNED_QUADWORD

SYSTEM.UNSIGNED_LONGWORD

SYSTEM.UNSIGNED_ WORD

SYSTEM. UNSIGNED_BYTE

FLOAT

SYSTEM.F _FLOAT

SYSTEM.D_FLOAT

VAX Type Name

Longword Integer (L)

Word Integer (W)

Byte Integer (B)

Quadword Unsigned (OU)

Longword Unsigned (LU)

Word Unsigned (WU)

Byte Unsigned (BU)

F _Floating (F)

F _Floating (F)

D_Floating (D)

E.1.4

Summary of Debugger Support for Languages
E.1 Debugger Support for Language ADA

ADA Type

LONG_FLOAT

VAX Type Name

D_Floating (D), if pragma LONG_FLOAT(D_
FLOAT) is in effect. G_Floating (G), if
pragma LONG_FLOA T(G_FLOA T) is in
effect.

SYSTEM.G_FLOAT

SYSTEM.H_FLOAT

LONG_LONG_FLOA T

Fixed

G_Floating (G)

H _Floating (H)

H_Floating (H)

(None)

STRING

BOOLEAN

BOOLEAN

Enumeration

Arrays

Records

Access (pointers)

Tasks

Predefined Attributes

ASCII Text (T)

Aligned Bit String (V)

Unaligned Bit String (VU)

For any enumeration type whose value
fits into an unsigned byte or word: Byte
Unsigned (BU) or Word Unsigned (WU),
respectively. Otherwise: No corresponding
VAX data type.

(None)

(None)

(None)

(None)

Supported ADA predefined attributes follow:

Attribute

P'CONSTRAINED

P'FIRST

P'FIRST

P'FIRST(N)

P'LAST,

Debugger Support

For a prefix P that denotes a record object with
discriminants. The value of P'CONSTRAINED reflects the
current state of P (constrained or unconstrained).

For a prefix P that denotes an enumeration type or a subtype
of an enumeration type. Yields the lower bound of P.

For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the lower bound
of the first index range.

For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the lower bound
of the N-th index range.

For a prefix P that denotes an enumeration type, or a
subtype of an enumeration type. Yields the upper bound of
P.

For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the upper
bound of the first index range.

E-3

E.1.5

Summary of Debugger Support for Languages
E.1 Debugger Support for Language ADA

Tasking States

E.1.5.1

E.1.5.2

E-4

Attribute

P'LAST(N)

P'LENGTH

P'LENGTH(N)

P'POS(X)

P'PRED(X)

P'SIZE

P'SUCC(X)

P'VAL(N)

Debugger Support

For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the upper
bound of the N-th index range.

For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the number of
values of the first index range (zero for a null range).

For a prefix P that is appropriate for an array type, or that
denotes a constrained array subtype. Yields the number of
values of the N-th index range (zero for a null range).

For a prefix P that denotes an enumeration type or a subtype
of an enumeration type. Yields the position number of the
value X. The first position is 0.

For a prefix P that denotes an enumeration type or a subtype
of an enumeration type. Yields the value of type P which
has a position number one less than that of X.

For a prefix P that denotes an object. Yields the number of
bits allocated to hold the object.

For a prefix P that denotes an enumeration type or a subtype
of an enumeration type. Yields the value of type P which
has a position number one more than that of X.

For a prefix P that denotes an enumeration type or a subtype
of an enumeration type. Yields the value of type P which
has the position number N. The first position is 0.

Support for ADA tasking states is as follows:

Task States
The following task-state keywords may be used with the
SHOW TASK/STATE command:

Task State Description

RUNNING Currently running on the processor. This is the active task.

READY Eligible to execute and waiting for the processor to be made
available.

SUSPENDED Suspended-that is, waiting for an event rather than for the
availability of the processor. For example, when a task is
created, it remains in the suspended state until it is activated.

TERMINATED Terminated.

Task Substates
The following task-substate keywords may appear in a SHOW TASK display:

E.1.6 Events

Summary of Debugger Support for Languages
E.1 Debugger Support for Language ADA

Task Substate

Abnormal

Accept

Activating

Activating tasks

Completed [abn]

Completed [exc]

Completed

Delay

Dependents

Dependents [exc]

Entry call

Invalid state

1/0 or AST

Not yet activated

Select or delay

Select or term.

Select

Shared resource

Terminated [abn]

Terminated [exc]

Terminated

Timed entry call

Description

Task has been aborted.

Task is waiting at an accept statement that is not inside
a select statement.

Task is elaborating its declarative part.

Task is waiting for tasks it has created to finish
activating.

Task is completed due to an abort statement, but is not
yet terminated. In Ada, a task awaiting dependent tasks
at its "end" is called "completed". After the dependent
tasks are terminated, the state changes to terminated.

Task is completed due to an unhandled exception, but is
not yet terminated. In Ada, a task awaiting dependent
tasks at its "end" is called "completed". After the
dependent tasks are terminated, the state changes to
terminated.

Task is completed. No abort statement was issued, and
no unhandled exception occurred.

Task is waiting at a delay statement.

Task is waiting for dependent tasks to terminate.

Task is waiting for dependent tasks to allow an
unhandled exception to propagate.

Task is waiting for its entry call to be accepted.

There is a bug in the VAX Ada run-time library.

Task is waiting for 1/0 completion or some AST.

Task is waiting to be activated by the task that created
it.

Task is waiting at a select statement with a delay
alternative.

Task is waiting at a select statement with a terminate
alternative.

Task is waiting at a select statement with neither an
else, delay, or terminate alternative.

Task is waiting for an internal shared resource.

Task was terminated by an abort.

Task was terminated because of an unhandled
exception.

Task terminated normally.

Task is waiting in a timed entry call.

The following ADA event keywords may be used with the /EVENT qualifier
of the SET BREAK, SET TRACE, CANCEL BREAK, and CANCEL TRACE
commands. You can also display these event keywords with the SHOW
EVENT__F ACILITY command.

E-5

Summary of Debugger Support for Languages
E.1 Debugger Support for Language ADA

Exception-Related Events

Event Keyword

HANDLED

HANDLED_OTHERS

Description

Triggers when an exception is about to be handled
in some Ada exception handler, including an others
handler (see Chapter 7).

Triggers only when an exception is about to be
handled in an others Ada exception handler (see
Chapter 7).

Task Exception-Related Events

Event Keyword Description

RENDEZVOUS_EXCEPTION Triggers when an exception begins to propagate
out of a rendezvous.

DEPENDENTS_EXCEPTION Triggers when an unhandled exception causes a
task to wait for dependent tasks in some scope
(includes unhandled exceptions, such as task
rundown signals, that are internal to the VAX Ada
run-time library). Often immediately precedes a
deadlock.

Task Termination Events

Event Keyword Description

TERMINATED Triggers when a task is terminating, whether
normally, by abort, or by exception.

EXCEPTION_ TERMINATED Triggers when a task is terminating due to an
unhandled exception.

ABORT_ TERMINATED Triggers when a task is terminating due to an
abort.

Low-Level Task Scheduling Events

Event Keyword

RUN

PREEMPTED

ACTIVATING

SUSPENDED

Description

Triggers when a task is about to run.

Triggers when a task is being preempted from the
RUN state, and its state changes to READY.

Triggers when a task is about to begin its
activation (that is, at the beginning of the
elaboration of the declarative part of its task
body).

Triggers when a task is about to be suspended.

E.2 Debugger Support for Language BASIC
This section includes information about debugger support for BASIC.

E-6

E.2.1

E.2.2

E.2.3

Summary of Debugger Support for Languages
E.2 Debugger Support for Language BASIC

Operators in Language Expressions
Supported BASIC operators in language expressions follow:

Kind Symbol Function

Prefix + Unary plus

Prefix Unary minus (negation)

Infix + Addition, String concatenation

Infix Subtraction

Infix Multiplication

Infix I Division

Infix Exponentiation

Infix Exponentiation

Infix Equal to

Infix <> Not equal to

Infix > < Not equal to

Infix > Greater than

Infix >= Greater than or equal to

Infix => Greater than or equal to

Infix < Less than

Infix <= Less than or equal to

Infix =< Less than or equal to

Prefix NOT Bit-wise NOT

Infix AND Bit-wise AND

Infix OR Bit-wise OR

Infix XOR Bit-wise exclusive OR

Infix IMP Bit-wise implication

Infix EQV Bit-wise equivalence

Constructs in Language and Address Expressions
Supported constructs in language and address expressions for BASIC follow:

Symbol Construct

() Subscripting

Record component selection

Data Types
Supported BASIC data types follow:

E-7

Summary of Debugger Support for Languages
E.2 Debugger Support for Language BASIC

Note:

BASIC Type VAX Type Name

BYTE Byte Integer (B)

WORD Word Integer (W)

LONG Longword Integer (L)

SINGLE F _Floating (F)

DOUBLE D_Floating (D)

GFLOAT G_Floating (G)

HFLOAT H _Floating (H)

DECIMAL Packed Decimal (P)

STRING ASCII Text (T)

RFA (None)

Arrays (None)

Records (None)

1 Expressions that overflow in the BASIC language do not necessarily
overflow when evaluated by the debugger. The debugger tries to
compute a numerically correct result, even when the BASIC rules
call for overflows. This difference is particular 1 y likely to affect
DECIMAL computations.

2 BASIC constants of the forms [radix]"numeric-string"(type] (such as
"12.34"GFLOAT) or n% (such as 25% for integer 25) are not supported
in debugger expressions.

E.3 Debugger Support for BLISS
This section includes information about debugger support for BLISS.

E.3.1 Operators in Language Expressions
Supported BLISS operators in language expressions follow:

Kind Symbol Function

Prefix Indirection

Prefix + Unary plus

Prefix Unary minus (negation)

Infix + Addition

Infix Subtraction

Infix Multiplication

Infix I Division

Infix MOD Remainder

E-8

E.3.2

E.3.3

Summary of Debugger Support for Languages
E.3 Debugger Support for BLISS

Kind Symbol Function

Infix Left shift

Infix EOL Equal to

Infix EOLU Equal to

Infix EOLA Equal to

Infix NEO Not equal to

Infix NEOU Not equal to

Infix NEOA Not equal to

Infix GTR Greater than

Infix GTRU Greater than unsigned

Infix GTRA Greater than unsigned

Infix GEO Greater than or equal to

Infix GEOU Greater than or equal to unsigned

Infix GEOA Greater than or equal to unsigned

Infix LSS Less than

Infix LSSU Less than unsigned

Infix LSSA Less than unsigned

Infix LEO Less than or equal to

Infix LEOU Less than or equal to unsigned

Infix LEOA Less than or equal to unsigned

Prefix NOT Bit-wise NOT

Infix AND Bit-wise AND

Infix OR Bit-wise OR

Infix XOR Bit-wise exclusive OR

Infix EOV Bit-wise equivalence

Constructs in Language and Address Expressions

Data Types

Supported constructs in language and address expressions for BLISS follow:

Symbol

[]

[fldname]

<p,s,e>

Construct

Subscripting

Field selection

Bit field selection

Supported BLISS data types follow:

E-9

Summary of Debugger Support for Languages
E.3 Debugger Support for BLISS

BLISS Type VAX Type Name

BYTE Byte Integer (B)

WORD Word Integer (W)

LONG Longword Integer (L)

BYTE UNSIGNED Byte Unsigned (BU)

WORD UNSIGNED Word Unsigned (WU)

LONG UNSIGNED Longword Unsigned (LU)

VECTOR (None)

BITVECTOR (None)

BLOCK (None)

BLOCKVECTOR (None)

REF VECTOR (None)

REF BITVECTOR (None)

REF BLOCK (None)

REF BLOCKVECTOR (None)

E.4 Debugger Support for Language C

E.4.1

This section includes information about debugger support for C.

Operators in Language Expressions

E-10

Supported C operators in language expressions follow:

Kind

Prefix

Prefix

Prefix

Prefix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Symbol

*

&

SIZEOF

+

I
%

<<
>>

!=

>
>=

Function

Indirection

Address of

Size of

Unary minus (negation)

Addition

Subtraction

Multiplication

Division

Remainder

Left shift

Right shift

Equal to

Not equal to

Greater than

Greater than or equal to

E.4.2

E.4.3

Summary of Debugger Support for Languages
E.4 Debugger Support for Language C

Kind Symbol Function

Infix < Less than

Infix <= Less than or equal to

Prefix (tilde) Bit-wise NOT

Infix & Bit-wise AND

Infix Bit-wise OR

Infix Bit-wise exclusive OR

Prefix Logical NOT

Infix && Logical AND

Infix II Logical OR

Constructs in Language and Address Expressions

Data Types

Supported constructs in language and address expressions for C follow:

Symbol Construct

[] Subscripting

Structure component selection

-> Pointer dereferencing

Supported C data types follow:

C Type

INT

UNSIGNED INT

SHORT INT

UNSIGNED SHORT INT

CHAR

UNSIGNED CHAR

FLOAT

DOUBLE

ENUM

STRUCT

UNION

Pointers

Arrays

Note

VAX Type Name

Longword Integer (L)

Longword Unsigned (LU)

Word Integer (W)

Word Unsigned (WU)

Byte Integer (B)

Byte Unsigned (BU)

F _Floating (F)

D_Floating (D)

(None)

(None)

(None)

(None)

(None)

1 Symbol names are case-sensitive for language C, meaning that uppercase
and lowercase letters are treated as different characters.

E-11

Summary of Debugger Support for Languages
E.4 Debugger Support for Language C

2 Since the exclamation point (!) is an operator in C, it cannot be used
as the comment delimiter. When the language is set to C, the debugger
instead accepts /* as the comment delimiter. The comment continues
to the end of the current line. (A matching * / is neither needed nor
recognized.) To permit debugger log files to be used as debugger input,
the debugger still recognizes ! as a comment delimiter if it is the first
nonblank character on a line.

3 The debugger accepts the prefix asterisk (*) as an indirection operator
in both C language expressions and debugger address expressions. In
address expressions, prefix"*" is synonymous to prefix"." or"@" when
the language is set to C.

4 The debugger does not support any of the assignment operators in C (or
any other language) in order to prevent unintended modifications to the
program being debugged. Hence such operators as=,+=, -=, ++, and-are
not recognized. To alter the contents of a memory location, you must do
so with an explicit DEPOSIT command.

E.5 Debugger Support for Language COBOL

E.5.1

This section includes information about debugger support for COBOL.

Operators in Language Expressions

E-12

Supported COBOL operators in language expressions follow:

Kind

Prefix

Prefix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Symbol

+

+

I
**

NOT=

>
NOT <
<

NOT>

NOT

AND

OR

Function

Unary plus

Unary minus (negation)

Addition

Subtraction

Multiplication

Division

Exponentiation

Equal to

Not equal to

Greater than

Greater than or equal to

Less than

Less than or equal to

Logical NOT

Logical AND

Logical OR

E.5.2

E.5.3

Summary of Debugger Support for Languages
E.5 Debugger Support for Language COBOL

Constructs in Language and Address Expressions
Supported constructs in language and address expressions for COBOL follow:

Symbol Construct

() Subscripting

OF Record component selection

IN Record component selection

COBOL Data Types
Supported COBOL data types follow:

COBOL Type

COMP

COMP

COMP

COMP-1

COMP-2

COMP-3

INDEX

Alphanumeric

Records

Numeric Unsigned

Leading Separate Sign

Leading Overpunched Sign

Trailing Separate Sign

Trailing Overpunched Sign

Note

VAX Type Name

Longword Integer (L,LU)

Word Integer (W, WU)

Quadword Integer (Q,QU)

F _Floating (F)

D_Floating (D)

Packed Decimal (P)

Longword Integer (L)

ASCII Text (T)

(None)

Numeric string, unsigned (NU)

Numeric string, left separate sign (NL)

Numeric string, left overpunched sign (NLO)

Numeric string, right separate sign (NR)

Numeric string, right overpunched sign (NRO)

1 The debugger can show source text included in a program with the COPY
or COPY REPLACING verb. However, when COPY REPLACING is
used, the debugger always shows the original source text as it appear~d
before text replacement. In other words, the original source file is shown
instead of the modified source text generated by the COPY REPLACING
verb.

2 The debugger cannot show the original source lines associated with the
code for a REPORT section. You can see the DATA SECTION source
lines associated with a REPORT, but no source lines are associated with
the compiled code that generates the report.

E-13

Summary of Debugger Support for Languages
E.6 Debugger Support for Language DIBOL

E.6 Debugger Support for Language DIBOL
This section includes information about debugger support for DIBOL.

E.6.1 Operators in Language Expressions
Supported DIBOL operators in language expressions follow:

Kind Symbol Function

Prefix # Round

Prefix + Unary plus

Prefix Unary minus (negation)

Infix + Addition

Infix Subtraction

Infix * Multiplication

Infix I Division

Infix II Division with fractional result

Infix .EO. Equal to

Infix .NE. Not equal to

Infix .GT. Greater than

Infix .GE. Greater than or equal to

Infix .LT. Less than

Infix .LE. Less than or equal to

Infix .NOT. Logical NOT

Infix .AND. Logical AND

Infix .OR. Logical OR

Infix .XOR. Exclusive OR

E.6.2 Constructs in Language and Address Expressions
Supported constructs in language and address expressions for DIBOL follow:

Symbol Construct

() Substring

[] Subscripting

Record component selection

E.6.3 Data Types
Supported DIBOL data types follow:

E-14

Summary of Debugger Support for Languages
E.6 Debugger Support for Language DIBOL

DIBOL Type VAX Type Name

11 Byte Integer (B)

12 Word Integer (W)

14 Longword Integer (L)

Pn Packed Decimal String (P)

Pn.m Packed Decimal String (P)

On Numeric String, Zoned Sign (NZ)

Dn.m Numeric String, Zoned Sign (NZ)

An ASCII Text (T)

Arrays (None)

Records (None)

E. 7 Debugger Support for Language FORTRAN

E.7.1

This section includes information about debugger support for FORTRAN.

Operators in Language Expressions
Supported FORTRAN operators in language expressions follow:

Kind

Prefix

Prefix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Infix

Prefix

Infix

Infix

Symbol

+

+

I

II
.EQ.

.NE.

.GT.

.GE.

.LT.

.LE.

.NOT.

.AND.

.OR.

Function

Unary plus

Unary minus (negation)

Addition

Subtraction

Multiplication

Division

Exponentiation

Concatenation

Equal to

Not equal to

Greater than

Greater than or equal to

Less than

Less than or equal to

Logical NOT

Logical AND

Logical OR

E-15

E.7.2

E.7.3

E.7.4

Summary of Debugger Support for Languages
E. 7 Debugger Support for Language FORTRAN

Kind

Infix

Infix

Infix

Symbol

.XOR.

.EQV.

.NEQV.

Function

Exclusive OR

Equivalence

Exclusive OR

Constructs in Language and Address Expressions
Supported constructs in language and address expressions for FORTRAN
follow:

Symbol Construct

() Subscripting

Record component selection

Predefined Symbols

Data Types

E-16

Supported FORTRAN predefined symbols follow:

Symbol

.TRUE .

. FALSE.

Description

Logical True

Logical False

Supported FORTRAN data types follow:

FORTRAN Type VAX Type Name

LOGICAL*1 Byte Unsigned (BU)

LOGICAL*2 Word Unsigned (WU)

LOGICAL*4 Longword Unsigned (LU)

INTEGER*2 Word Integer (W)

INTEGER*4 Longword Integer (L)

REAL*4 F _Floating (F)

REAL*S D_Floating (D)

REAL*S G_Floating (G)

REAL*16 H_Floating (H)

COMPLEX*8 F _Complex (FC)

COMPLEX*16 D_Complex (DC)

COMPLEX*16 G_Complex (GC)

Summary of Debugger Support for Languages
E. 7 Debugger Support for Language FORTRAN

FORTRAN Type

CHARACTER

Arrays

Records

Note

VAX Type Name

ASCII Text (T)

(None)

(None)

1 Even though the VAX type codes for unsigned integers (BU, WU, LU) are
used internally to describe the LOGICAL data types, the debugger (like
the compiler) treats LOGICAL variables and values as being signed when
used in language expressions.

2 The debugger prints the numeric values of LOGICAL variables or
expressions instead of TRUE or FALSE. Normally, only the low-order
bit of a LOGICAL variable or value is significant (0 is FALSE and 1 is
TRUE). However, VAX FORTRAN does allow all bits in a LOGICAL
value to be manipulated and LOGICAL values can be used in integer
expressions. For this reason, it is at times necessary to see the entire
integer value of a LOGICAL variable or expression, and that is what the
debugger shows.

3 COMPLEX constants such as (1.0,2.0) are not supported in debugger
expressions.

E.8 Debugger Support for Language MACRO

E.8.1

This section includes information about debugger support for MACRO.

Operators in Language Expressions
Language MACRO does not have expressions in the same sense as high­
level languages. Only assembly-time expressions and only a limited set
of operators are accepted. To permit the MACRO programmer to use
expressions at debug-time as freely as in other languages, the debugger
accepts a number of operators in MACRO language expressions that are not
found in MACRO itself. In particular, the debugger accepts a complete set of
comparison and boolean operators modeled after BLISS. It also accepts the
indirection operator and the normal arithmetic operators.

Kind Symbol Function

Prefix @ Indirection

Prefix Indirection

Prefix + Unary plus

Prefix Unary minus (negation)

Infix + Addition

Infix Subtraction

Infix * Multiplication

E-17

E.8.2

Summary of Debugger Support for Languages
E.8 Debugger Support for Language MACRO

Kind Symbol Function

Infix I Division

Infix MOD Remainder

Infix @ Left shift

Infix EOL Equal to

Infix EOLU Equal to

Infix NEO Not equal to

Infix NEOU Not equal to

Infix GTR Greater than

Infix GTRU Greater than unsigned

Infix GEO Greater than or equal to

Infix GEOU Greater than or equal to unsigned

Infix LSS Less than

Infix LSSU Less than unsigned

Infix LEO Less than or equal to

Infix LEOU Less than or equal to unsigned

Prefix NOT Bit-wise NOT

Infix AND Bit-wise AND

Infix OR Bit-wise OR

Infix XOR Bit-wise exclusive OR

Infix EOV Bit-wise equivalence

Constructs in Language and Address Expressions

E-18

Supported constructs in language and address expressions for MACRO follow:

Symbol Construct

[] Subscripting

<p,s,e> Bitfield selection as in BLISS

Note

The DST information generated by the MACRO assembler treats a label
that is followed by an assembler directive for storage allocation as an array
variable whose name is the label. This enables you to use the array syntax of
a high-level language when examining or manipulating such data.

In the following example of MACRO source code, the label LAB4 designates
hexadecimal data stored in four words:

LAB4: .WORD "X3F,5[2], "X3C

The debugger treats LAB4 as an array variable. For example, the next
command displays the value stored in each element (word):

E.8.3 Data Types

Summary of Debugger Support for Languages
E.8 Debugger Support for Language MACRO

DBG> EXAMINE LAB4
.MAIN.\MAIN\LAB4

[0]: 003F
[1]: 0005
[2] : 0005
[3] : 003C

DBG>

The next command displays the value stored in the fourth word (the first
word is indexed as element "O"):

DBG> EXAMINE LAB4[3]
.MAIN.\MAIN\LAB4[3]: 03C
DBG>

Supported MACRO data types follow:

MACRO Type VAX Type Name

(Not applicable) Byte Unsigned (BU)

(Not applicable) Word Unsigned (WU)

(Not applicable) Longword Unsigned (LU)

(Not applicable) Byte Integer (B)

(Not applicable) Word Integer (W)

(Not applicable) Longword Integer (L)

(Not applicable) F _Floating (F)

(Not applicable) D_Floating (D)

(Not applicable) G_Floating (G)

(Not applicable) H _Floating (H)

(Not applicable) Packed decimal (P)

E.9 Debugger Support for Language PASCAL
This section includes information about debugger support for PASCAL.

E.9.1 Operators in Language Expressions
Supported PASCAL operators in language expressions follow:

Kind Symbol Function

Prefix + Unary plus

Prefix Unary minus (negation)

Infix + Addition, concatenation

Infix Subtraction

E-19

E.9.2

E.9.3

Summary of Debugger Support for Languages
E.9 Debugger Support for Language PASCAL

Kind Symbol Function

Infix * Multiplication

Infix I Real division

Infix DIV Integer division

Infix MOD Modulus

Infix REM Remainder

Infix ** Exponentiation

Infix IN Set membership

Infix Equal to

Infix <> Not equal to

Infix > Greater than

Infix >= Greater than or equal to

Infix < Less than

Infix <= Less than or equal to

Prefix NOT Logical NOT

Infix AND Logical AND

Infix OR Logical OR

Constructs in Language and Address Expressions
Supported constructs in language and address expressions for PASCAL
follow:

Symbol Construct

[] Subscripting

Record component selection

Pointer dereferencing

Predefined Symbols

E-20

Supported PASCAL predefined symbols follow:

Symbol

TRUE

FALSE

NIL

Meaning

Boolean True

Boolean False

Nil pointer

E.9.4

E.9.5

Summary of Debugger Support for Languages
E.9 Debugger Support for Language ·PASCAL

Built-In Functions

Data Types

Supported PASCAL built-in functions follow:

Symbol Meaning

SUCC Logical successor

PRED Logical predecessor

Supported PASCAL data types follow:

PASCAL Type VAX Type Name

INTEGER Longword Integer (L)

INTEGER Word Integer (W,WU)

INTEGER Byte Integer (B,BU)

UNSIGNED Longword Unsigned (LU)

UNSIGNED Word Unsigned (WU)

UNSIGNED Byte Unsigned (BU)

SINGLE F _Floating (F)

DOUBLE D_Floating (D)

DOUBLE G_Floating (G)

QUADRUPLE H_Floating (H)

BOOLEAN (None)

CHAR ASCII Text (T)

VARYING OF CHAR Varying Text (VT)

SET (None)

FILE (None)

Enumerations (None)

Subranges (None)

Typed Pointers (None)

Arrays (None)

Records (None)

Variant records (None)

Note

The debugger accepts PASCAL set constants such as [l,2,5,8 .. 10] or [RED,
BLUE] in PASCAL language expressions.

E-21

E.10

Summary of Debugger Support for Languages
E.10 Debugger Support for Language PL/I

Debugger Support for Language PL/I
This section includes information about debugger support for PL/I.

E.10.1 Operators in Language Expressions
Supported PL/I operators in language expressions follow:

Kind Symbol Function

Prefix + Unary plus

Prefix Unary minus (negation)

Infix + Addition

Infix Subtraction

Infix * Multiplication

Infix I Division

Infix Exponentiation

Infix II Concatenation

Infix Equal to

Infix A = Not equal to

Infix > Greater than

Infix >= Greater than or equal to

Infix A< Greater than or equal to

Infix < Less than

Infix <= Less than or equal to

Infix A> Less than or equal to

Prefix Bit-wise NOT

Infix & Bit-wise AND

Infix Bit-wise OR

E.10.2 Constructs in Language and Address Expressions
Supported constructs in language and address expressions for PL/I follow:

Symbol Construct

() Subscripting

Structure component selection

-> Pointer dereferencing

E-22

E.10.3 Data Types

Summary of Debugger Support for Languages
E.10 Debugger Support for Language PL/I

Supported PL/I data types follow:

PL/I Type VAX Type Name

FIXED BINARY Longword Integer (L)

FIXED DECIMAL Packed Decimal (P)

FLOAT BINARY F _Floating (F)

FLOAT DECIMAL F _Floating (F)

FLOAT BIN/DEC D_Floating (D)

FLOAT BIN/DEC G_Floating (G)

FLOAT BIN/DEC H_Floating (H)

BIT Bit (V)

BIT Bit Unaligned (VU)

CHARACTER ASCII Text (T)

CHARACTER VARY ING Varying Text (VT)

FILE (None)

Labels (None)

Pointers (None)

Arrays (None)

Structures (None)

Note

The debugger treats all numeric constants of the form nor n.n in PL/I
language expressions as packed decimal constants, not integer or floating­
point constants, in order to conform to PL/I language rules. The internal
representation of 10 is therefore OCOl hexadecimal, not OA hexadecimal. You
can enter floating-point constants using the syntax nEn or n.nEn. There is no
PL/I syntax for entering constants whose internal representation is Longword
Integer. This limitation is not normally significant when debugging, since the
debugger supports the PL/I type conversion rules. However, it is possible to
enter integer constants by using the debugger's %HEX, %OCT, and %BIN
operators.

E.11 Debugger Support for Language RPG
This section includes information about debugger support for RPG.

E-23

Summary of Debugger Support for Languages
E.11 Debugger Support for Language RPG

E.11 .1 Operators in Language Expressions
Supported RPG operators in language expressions follow:

Kind Symbol Function

Prefix + Unary plus

Prefix Unary minus (negation)

Infix + Addition

Infix Subtraction

Infix * Multiplication

Infix I Division

Infix Equal to

Infix NOT= Not equal to

Infix > Greater than

Infix NOT < Greater than or equal to

Infix < Less than

Infix NOT> Less than or equal to

Prefix NOT Logical NOT

Infix AND Logical AND

Infix OR Logical OR

E.11.2 Constructs in Language and Address Expressions

E.11.3 Data Types

E-24

Supported constructs in language and address expressions for RPG follow:

Symbol Construct

() Subscripting

Supported RPG data types follow:

RPG Type

Longword

Word

Packed Decimal

Character

Overpunched Decimal

Arrays

Tables

VAX Type Name

Longword Integer (L)

Word Integer (W)

Packed Decimal (P)

ASCII Text (T)

Right Overpunched Sign (NRO)

(None)

(None)

E.12

Summary of Debugger Support for Languages
E.11 Debugger Support for Language RPG

Note

The debugger supports access to all RPG indicators and labels used in the
current program. You can thus examine labels such as * DETL and indicators
such as •INLR and •INOl through •IN99.

Debugger Support for Language SCAN
This section includes information about debugger support for SCAN.

E.12.1 Operators in Language Expressions
Supported SCAN operators in language expressions follow:

Kind Symbol Function

Prefix + Unary plus

Prefix Unary minus (negation)

Infix + Addition

Infix Subtraction

Infix * Multiplication

Infix I Division

Infix & Concatenation

Infix Equal to

Infix <> Not equal to

Infix > Greater than

Infix >= Greater than or equal to

Infix < Less than

Infix <= Less than or equal to

Prefix NOT Complement

Infix AND Intersection

Infix OR Union

Infix XOR Exclusive OR

E.12.2 Constructs in Language and Address Expressions
Supported constructs in language and address expressions for SCAN follow:

Symbol Construct

() Subscripting

Record component selection

-> Pointer dereferencing

E-25

Summary of Debugger Support for Languages
E.12 Debugger Support for Language SCAN

E.12.3 Data Types

E-26

Supported SCAN data types follow:

SCAN Type VAX Type· Name

BOOLEAN (None)

INTEGER Longword Integer (L)

POINTER (None)

FIXED STRING (n) TEXT with CLASS=S

VARYING STRING (n) TEXT with CLASS=VS

DYNAMIC STRING TEXT with CLASS=D

TREE (None)

TREEPTR (None)

RECORD (None)

OVERLAY (None)

Note

1 There is no specific support for the following datatypes: FILE, TOKEN,
GROUP, SET. Examining a FILL variable displays the contents of the
specified variable as a string by default, and so may have little meaning.
If the characteristics of the fill are known, then the appropriate qualifier
(/HEX, and so on) applied to the command produces a more meaningful
display.

2 The following examples show how to examine SCAN TREE and
TREEPTR variables. To dump an entire SCAN tree or subtree:

DBG> EXAMINE tree_variable([subscript], . . .)

To dump the contents of a SCAN subtree:

DBG> EXAMINE treeptr_variable

To dump an entire SCAN subtree:

DBG> EXAMINE treeptr_variable->

3 DEPOSIT is not supported for SCAN TREE variables. You may set
breakpoints on any SCAN label, line number, MACRO, or PROCEDURE.

E.12.4 Events

Summary of Debugger Support for Languages
E.12 Debugger Support for Language SCAN

The following SCAN event keywords may be used with the /EVENT qualifier
of the SET BREAK, SET TRACE, CANCEL BREAK, and CANCEL TRACE
commands. You can also display these event keywords with the SHOW
EVENT_FACIIJTY command.

Event

TOKEN

PICTURE

INPUT

OUTPUT

TRIGGER

SYNTAX

ERROR

Description

A token is built.

An operand in a picture is being matched.

A new line of the input stream is read.

A new line of the output stream is written.

A trigger macro is starting or terminating.

A syntax macro is starting or terminating.

Picture matching error recovery is starting or terminating.

E.13 Debugger Support for Language UNKNOWN
This section includes information about debugger support for UNKNOWN.

E.13.1 Operators in Language Expressions
Supported operators in language expressions follow:

Kind Symbol Function

Prefix + Unary plus

Prefix Unary minus (negation)

Infix + Addition

Infix Subtraction

Infix Multiplication

Infix I Division

Infix Exponentiation

Infix & Concatenation

Infix II Concatenation

Infix Equal to

Infix <> Not equal to

Infix 1= Not equal to

Infix > Greater than

Infix >= Greater than or equal to

Infix < Less than

Infix <= Less than or equal to

E-27

Summary of Debugger Support for Languages
E.13 Debugger Support for Language UNKNOWN

Kind Symbol Function

Infix EOL Equal to

Infix NEO Not equal to

Infix GTR Greater than

Infix GEO Greater than or equal to

Infix LSS Less than

Infix LEO Less than or equal to

Prefix NOT Logical NOT

Infix AND Logical AND

Infix OR Logical OR

Infix XOR Exclusive OR

Infix EOV Equivalence

E.13.2 Constructs in Language and Address Expressions

E.13.3 Data Types

E-28

Supported constructs in language and address expressions for UNKNOWN
follow:

Symbol Construct

[] Subscripting

() Subscripting

Record component selection

Pointer dereferencing

When the language is set to UNKNOWN, the debugger understands all data
types accepted by other languages except a few very language-specific types,
such a picture types and file types. In UNKNOWN language expressions, the
debugger accepts most scalar VAX Standard data types.

Note

1 For language UNKNOWN, the debugger accepts the dot-notation for
record component selection. If C is a component of a record B which
in turn is a component of a record A, C can be referenced as /1 A.B.C".
Subscripts can be attached to any array components; if B is an array, for
instance, C may be referenced as /1 A.B[2,3].C".

2 For language UNKNOWN, the debugger accepts both round and square
subscript parentheses. Hence, A[2,3] and A(2,3) are equivalent.

Index

A
/ABORT qualifier• CD-142
/AC

See I ASCIC qualifier
/ACTIVE qualifier• CD-142
%ACTIVE_ TASK• D-9
/AD

See I ASCID qualifier
%ADAEXC_NAME•8-15, D-8
Address expression

compared to language expression • 3-7
current entity• 3-8, D-4
DEPOSIT command• 3-3, CD-44
EVALUATE/ADDRESS command•2-13,

3-12,CD-60
EXAMINE command• 3-2, CD-62
EXAMINE/SOURCE command• 5-4
logical predecessor• 3-8, D-4
logical successor• 3-8, D-4
SET BREAK command • 2-10, CD-96
SET TRACE command•2-10, CD-147
SET WATCH command• 2-17, CD-156
symbolic• 3-4
SYMBOLIZE command• 3-13, CD-212
type of•3-4

/ADDRESS qualifier• 7-6, CD-35, CD-60,
CD-195

/AFTER qualifier• CD-97, CD-14 7, CD-156
Aggregate

DEPOSIT command• 3-16, 3-18, CD-44
EXAMINE command• 3-16, 3-18, CD-62
SET WATCH command• 2-18

I ALL qualifier
CANCEL BREAK command• CD-14
CANCEL DISPLAY command• CD-16
CANCEL IMAGE command• CD-17
CANCEL MODULE command• CD-19
CANCEL TRACE command• CD-25
CANCEL WATCH command• CD-28
CANCEL WINDOW command• CD-29
DELETE command• CD-40
DELETE/KEY command• CD-42
EXTRACT command• CD-73
SEARCH command• CD-90
SET IMAGE command• CD-110

/ALL qualifier (cont'd.)

SET MODULE command• CD-123
SET TASK command• CD-142
SHOW DISPLAY command• CD-169
SHOW KEY command• CD-17 4
SHOW TASK command• CD-198
SHOW WINDOW command• CD-205

%AP• 3-22, D-2
Apostrophe (')

ASCII string delimiter• 3-16
instruction delimiter• 3-21

/APPEND qualifier• CD-73
Array type• 3-16
/ ASCIC qualifier• CD-44, CD-62
/ ASCID qualifier• CD-44, CD-62
/ASCII qualifier• CD-45, CD-62
ASCII string type•3-16, 3-26, CD-44, CD-62,

CD-153
/ ASCIW qualifier• CD-45, CD-63
/ ASCIZ qualifier• CD-45, CD-63
AST (asynchronous system trap) • 8-16

CALL command• 8-17, CD-10
disabling• CD-50
displaying AST handling conditions• CD-163
enabling• CD-5 7
SHOW CALLS command• 8-1 7

AST-driven program
debugging• 8-16

Asterisk (*)

HELP command• CD-79
multiplication operator• D-6

/AST qualifier• 8-17, CD-11
At sign(@)

contents-of operator• D-6
execute-procedure command• 7-1, CD-7
SET A TSIGN command• CD-95
SHOW A TSIGN command• CD-164

ATTACH command•2-6, CD-9
Attribute

display•6-3, 6-16, CD-92, CD-189
/AW

See I ASCIW qualifier
/AZ

See / ASCIZ qualifier

lndex-1

Index

B
Backslash (\)

current value• 3..,...5
global-symbol specifier• 4-9, CD-131 , D-5
path name delimiter• 4-8, 5-4, D-5

%BIN•3-12, D-4
/BINARY qualifier• 3-11 , CD-58, CD-60, CD-63
Bit field operator (<p,s,e>) • D-6
/BOTTOM qualifier• CD-87
/BRANCH qualifier•CD-14, CD-25, CD.;_97,

CD-148, CD-208
Breakpoint

canceling• 2-17, CD-14
defined• 2-10
delayed triggering of• 2-15, CD-97
displaying• CD-165
DO clause• 2-15
exception • 8-10, CD-96
predefined• 8-10
setting• 2-10, CD-96
source display at • 5-7
WHEN clause• 2-15

/BRIEF qualifier• CD-17 4
Built-in symbol• C-6, D-2
/BYTE qualifier• CD-45, CD-63

c
/CALLABLE_EDT qualifier• CD-107
/CALLABLE_LSEDIT qualifier• CD-107
/CALLABLE_ TPU qualifier• CD-107
CALL command• 7-11, CD-10

and ASTs•8-17, CD-10
%CALLER_ TASK• D-9
/CALL qualifier•CD-14, CD-25, CD-97, CD-148,

CD-208
/CALLS qualifier• CD-123, CD-198
Call stack

displaying• 1-13, 8-12, CD-166, CD-193
CANCEL ALL command• CD-13
CANCEL BREAK command• 2-17, CD-14
CANCEL DISPLAY command•6-9, CD-16
CANCEL IMAGE command• 4-13, CD-1 7
CANCEL MODE command • CD-18
CANCEL MODULE command• 4-6, CD-19
CANCEL RADIX command• 3-11 , CD-2 1
CANCEL SCOPE command•4-10, CD-22

lndex-2

CANCEL SOURCE command• 5-3, CD-23
CANCEL TRACE command• 2-17, CD-25
CANCEL TYPE/OVERRIDE command• 3-25,

CD-27
CANCEL WATCH command• 2-17, CD-28
CANCEL WINDOW command• 6-12, CD-29
Case sensitivity • 8-9
Catchall handler• 8-13
Circumflex n • 3-8, D-4
/CLEAR qualifier• CD-52
Colon(:)

range delimiter• 3-17, CD-62
Command format

debugger• CD-3
Command procedure

debugger• 7-1
default directory• CD-95, CD-164
displaying commands in• CD-126
exiting• CD-7, CD-69, CD-84
invoking• CD-7
log file as• 7-5
passing parameters to• 7-2, CD-32
recreating displays• 6-19, CD-7 3

/COMMAND qualifier• 7-6, CD-35
Comment

format• CD-4
Compiler

compiler generated type• 3-4
/DEBUG qualifier• 4-2, 5-1
/LIST qualifier• 5-1
/NOOPTIMIZE qualifier• 4..,...2, 8-1

Condition handler
debugging• 8-10

/CONDITION_ VALUE qualifier• CD-58, CD-63
Contents-of operator• 3-6, 3-19, D-6
CONTINUE command• 2-5
CTRL/C • 2-5, CD-30
CTRL/W • CD-30, CD-53
CTRL/Y • 2-3, 2-4, 2-5, CD-30
CTRL/Z • 2-4, CD-30
%CURDISP • C-6
%CURLOC • 3-8, D-4
Current

display• 6-3, 6-16, CD-92, CD-189
entity• 3-8, 3-19, D-4
image•4-13, CD-110, CD-173
language• 3-10, CD-113, CD-176
radix•3-10, CD-129, CD-185
scope•4-10, CD-131, CD-186
type•3-24, CD-153, CD-203
value• 3-5, D-4

%CURSCROLL • C-6
%CURVAL•3-5, D-4

D
/D_FLOAT qualifier• CD-45, CD-63
Data type

see Type
/DATE_ TIME qualifier• CD-45, CD-63
DBG$1NIT • 7-4, D-1
DBG$1NPUT•8-5, D-1
DBG$0UTPUT•8-5,D-1
DEBUG command• 2-3, 2-5
Debugger command

dictionary• CD-3
format• CD-3
repeating• CD-75, CD-85, CD-216
summary• 1-25

/DEBUG qualifier• 2-1, 4-2, 4-4, 5-1
shareable image• 4-11

Debug symbol table

see DST
%DEC• 3-12, D-4
/DECIMAL qualifier• 3-11, CD-58, CD-60,

CD-63
DECLARE command• 7-2, CD-32
/DEFAULT qualifier• CD-63
DEFINE command• 7-6, CD-35

displaying default qualifiers for• CD-168
setting default qualifiers for• CD-102

/DEFINED qualifier• CD-195
DEFINE/KEY command• 7-8, CD-37
DELETE command • 7-6, CD-40
DELETE/KEY command• 7-8, CD-42
DEPOSIT command• 3-3, CD-44
/DIRECTORY qualifier• CD-175
/DIRECT qualifier• CD-195
DISABLE AST command• 8-17, CD-50
Display

See also Source display
attribute• 6-3, 6-16, CD-92, CD-189
canceling• 6-9, CD-16
contracting• 6-10, CD-71
creating• 6-10, CD-103
current• 6-3, 6-16, CD-92
default configuration• 6-2
defined• 6-2
expanding• 6-10, CD-71
extracting• 6-19, CD-7 3

Display (cont'd.)

hiding• 6-9, CD-53, CD-104
identifying• 6-9, CD-169
kind• 6-3, 6-12, C-1
list• 6-3, CD-169, C-6
moving• 6-9, CD-82
pasteboard• 6-3, CD-54, CD-105
predefined• 6-4, C-3
removing• 6-9, CD-53, CD-105
saving • 6-19, · CD-86
scrolling• 6-8, CD-87
selecting• 6-16, CD-92
showing• 6-9, CD-51
window•6-2, 6-11, C-7

DISPLAY command• 6-9, CD-51
DO clause

example• 2-15
exiting• CD-69, CD-84
format • CD-4

DO display• 6-13, C-1
/DOWN qualifier• CD-71, CD-82, CD-87
DST (debug symbol table)

creating• 4-4
shareable image• 4-13
source line correlation• 5-1

Dynamic mode
image setting• 4-13
module setting • 4-6

Dynamic module setting• CD-120
/DYNAMIC qualifier• CD-52, CD-104

E
/ECHO qualifier• CD-37
EDIT command• CD-55
/EDIT qualifier•CD-23, CD-136, CD-191
ENABLE AST command• 8-17, CD-5 7

Index

/ERROR qualifier• 6-17, CD-92
EVALUATE/ADDRESS command•2-13, 2-19,

3-12,CD-60
EVALUATE command• 3-5, CD-58
Event facility, setting• CD-109
Eventpoint

See Breakpoint

See Tracepoint

See Watchpoint
/EVENT qualifier•2-16, CD-14, CD-25, CD-97,

CD-148
EXAMINE command• 3-2, CD-62

lndex-3

Index

EXAMINE/INSTRUCTION command•3-19, 6-6,
C-5

EXAMINE/SOURCE command• 5-4, 6-4, C-4
Exception breakpoint or tracepoint

canceling• 8-11, CD-14, CD-25
qualifying• 8-15, D-8
resuming execution at• 8-11
setting• 8-11, CD-97, CD-148

Exception condition• 8-10
Exception handler

debugger as• 2-22
debugging • 8-10

/EXCEPTION qualifier• 8-10, CD-14, CD-25,
CD-97 I CD-148, CD-208

Exclamation point(!)
comment delimiter• CD-4
log file• 7-5

%EXC_FACILITY • 8-15, D-8
%EXC_NAME•8-15,D-8
%EXC_NUMBER•8-15,D-8
%EXC_SEVERITY•8-15, D-8
Execution

as controlled by debugger• 2-22
discrepancies caused by debugger• 2-23
interrupting with CTRL/Y • 2-3, 2-5, CD-30
monitoring with SHOW CALLS command•

1-13, CD-166
monitoring with tracepoint• 2-10, CD-14 7
resuming after exception break• 8-11
starting or resuming with CALL command•

7-11, CD-10
starting or resuming with GO command• 1-11,

CD-77
starting or resuming with STEP command• 2-7,

CD-208
suspending with breakpoint• 2-10, CD-96
suspending with exception breakpoint• 8-11,

CD-97
suspending with watchpoint • 2-17, CD-156

$EXIT• 8-16
EXIT command• 2-4, 8-16, CD-69
Exit handler

debugging• 8-16, CD-69
execution sequence of• 8-16
identifying• 8-16, CD-17 2

EXITLOOP command• 7-10, CD-70
/EXIT qualifier• CD-55
EXP AND command • 6-10, CD-71
Expression

See Address expression

See Language expression

lndex-4

EXTRACT command• 6-19, CD-73

F
File

see Command procedure

see Initialization file
see Log file

see Source file
Final handler• 8-13
/FLOAT qualifier• CD-45, CD-63
FOR command• 7-9, CD-7 5
%FP•3-22,D-2
/FULL qualifier• CD-198

G
/G_FLOA T qualifier• CD-45, CD-63
/GENERA TE qualifier• CD-53
Global symbol

see Symbol
Global symbol table

see GST
GO command• 1-11, CD-77
GST (global symbol table)

creating • 4-4
shareable image• 4-12

H
/H_FLOAT qualifier• CD-45, CD-63
Handler

condition• 8-13
Help

on line• CD-79
HELP command• 1-7, CD-79
%HEX•3-12, D-4
/HEXADECIMAL qualifier• 3-11, CD-58, CD-60,

CD-63
/HIDE qualifier•CD-53, CD-104
/HOLD qualifier• CD-142, CD-198
Hyphen(-)

line-continuation character• CD-4
subtraction operator• D-6

I
Identifier

search string• 5-6
/IDENTIFIER qualifier• 5-6, CD-90
IF command• 7-10, CD-81
/IF _ST A TE qualifier• 7-9, CD-38
Image

see also Shareable image
privileged, securing• 4-5
shareable, debugging• 4-11

Indirection operator

See Contents-of operator
Initialization

debugging session• 2-1, 8-7
Initialization code• 8-9
Initialization file

debugger• 7-4, D-1
Input, debugger

DBG$1NPUT • 8-5, D-1
/INPUT qualifier• 6-17, CD-92, CD-129, CD-206
Instruction

depositing• 3-19, 3-21
display (INST) • 6-6, C-5
display kind• 6-13, C-1
examining• 3-19
operand• 3-19, CD-64, CD-120
replacing• 3-21

/INSTRUCTION qualifier•6-6, 6-17, CD-14,
CD-25, CD-45, CD-64, CD-92, CD-98,
CD-148,CD-208

Integer type• 3-14, 3-24, 3-26
Interrupt

debugging session• 2-5, CD-30
program• 2-3, CD-30

/INTO qualifier•CD-98, CD-149, CD-156,
CD-209

Invoking
debugger• 2-1

J
/JSB qualifier•2-14, CD-98, CD-149, CD-209

K
Key definition

creating• 7-8, CD-37
debugger predefined• B-1
deleting• 7-8, CD-42
displaying•7-8, CD-174

Index

Keypad mode•7-8, CD-37, CD-120, CD-174,
B-1

Key state•7-8, CD-37, CD-174, B-1

L
%LABEL•2-11, D-5
Language

current• 3-10, CD-113
identifying• CD-176
multilanguage program• 8-7
setting • 3-10, CD-113
support by debugger• E-1

Language expression
compared to address expression• 3-7
DEPOSIT command• 3-3, CD-44
EVALUATE command• 3-5, CD-58
FOR command• 7-9, CD-7 5
IF command• 7-10, CD-81
REPEAT command• 7-10, CD-85
WHEN clause• 2-15
WHILE command• 7-10, CD-216

Language-Sensitive Editor• CD-55
Last-chance handler• 8-13
/LEFT qualifier• CD-71, CD-82, CD-87
Lexical function

see Built-in symbol
LIB$1NITIALIZE • 8-9
%LINE•D-5

EXAMINE command• 3-19
EXAMINE/SOURCE command• 5-4
GO command• CD-77
SET BREAK command• 2-11
SET TRACE command• 2-11
STEP command• 2-7

Line mode• CD-120
Line number

see also %LINE
source display• 5-1, 5-3, 5-4
traceback information • 1-13, 4-3

lndex-5

Index

/LINE qualifier• 2-14, CD-14, CD-25, CD-64,
CD-98,CD-149,CD-209

LINK command• 4-4, 5-1
shareable image• 4-11

/LIST qualifier• 5-1
/LOCAL qualifier• 7-6, CD-35, CD-40, CD-195
Local symbol

see Symbol
/LOCK_ST A TE qualifier• CD-38
Log file

as command procedure• 7-5
debugger•7-5,CD-126
name• 7-5, CD-115, CD-177

Logical name
debugger• D-1

Logical predecessor• 3-8, 3-19, D-4
Logical successor• 3-8, 3-19, D-4
/LOG qualifier• CD-38, CD-42
/LONGWORD qualifier• CD-46, CD-64

M
Margin

source display• 5-8, CD-116, CD-178
/MARK_CHANGE qualifier•CD-53, CD-104
Memory

effectof debugger•2-23
MicroVAX

see V AXstation
Mode

CANCEL MODE• CD-18
dynamic• 4-6, 4-13
SET MODE [NO]DYNAMIC command• 4-6,

4-13, CD-120
SET MODE [NO]G_FLOA T command• CD-120
SET MODE [NO]KEYPAD command• 7-8,

CD-121
SET MODE [NO]LINE command• CD-121
SET MODE [NO]OPERANDS command• 3-19,

CD-121
SET MODE [NO]SCREEN command• 6-1 ,

CD-121
SET MODE [NO]SCROLL command• CD-121
SET MODE [NO]SEP ARA TE command• 8-5,

CD-120
SET MODE [NO]SYMBOLIC command• 3-13,

CD-120
SHOW MODE• CD-180

/MODIFY qualifier• CD-98, CD-149

lndex-6

Module
see also Shareable image
canceling• 4-6, CD-19
information about• 4-6, CD-181
setting• 4-5, CD-123
traceback information • 4-3

/MODULE qualifier• CD-23, CD-136
MOVE command• 6-9, CD-82
Multilanguage program

debugging• 8-7

N
%NAME•D-3
%NEXTDISP • C-6
%NEXTINST • C-7
%NEXTLOC•3-8,D-4
Next location

See Logical successor
%NEXTOUTPUT • C-7
/NEXT qualifier• 5-6, CD-90
%NEXTSCROLL • C-7
%NEXTSOURCE•C-7
%NEXT_ TASK• D-9
Nonstatic variable• 2-19, 3-1
/NOOPTIMIZE qualifier• 4-2, 8-1
NOP (No Operation) instruction• 3-21

0
Object code • 8-1
Object module• 4-2, 5-1
%OCT• 3-12, D-4
/OCT AL qualifier• 3-11, CD-58, CD-60, CD-64
/OCT A WORD qualifier• CD-46, CD-64
Operand

instruction • 3-19, CD-64, CD-120
/OPERANDS qualifier•3-19, CD-64, CD-120
Operator

address expression • D-5
language expression • E-1

Optimization
effect on debugging• 8-1

/OPTIMIZE qualifier• 4-2, 8-1
/OPTIONS qualifier• 4-11
Output

configuration, displaying• 7-2, 7-5, CD-184

Output (cont'd.)

configuration, setting• 7-2, 7-5, CD-126
debugger, DBG$0UTPUT • 8-5, D-1
display (OUT) • 6-5, C-4
display kind• 6-14, C-1

/OUTPUT qualifier• 6-17, CD-93, CD-129,
CD-206

/OVER qualifier• CD-99, CD-149, CD-15 7,
CD-209

/OVERRIDE qualifier• 3-25, CD-21, CD-27,
CD-129, CD-154,CD-185,CD-203

Override type• 3-25

p
/PACKED qualifier•CD-46, CD-64
%PAGE•C-6
/PAGE qualifier•6-20, CD-145
Parameter

debugger command procedure• 7-2, CD-32
%PARCNT•7-2,D-3
Pasteboard • 6-3
Path name

abbreviating• 4-9
numeric• 4-9
relation to symbol• 4-8
symbol search• 4-7
syntax•4-8
to specify debugger scope• 4-8

%PC
see PC

PC (program counter)
built-in symbol (%PC)• 3-22, D-2
content of• 1-10, 3-19
EXAMINE/INSTRUCTION command• 6-6,

6-14,C-5
EXAMINE/OPERANDS command• 3-19
EXAMINE/SOURCE command• 5-4, 6-4,

6-16, 6-18, C-4
scope•4-7
SHOW CALLS display• 1-13, CD-166

Period (.)
contents-of operator•3-6, 3-19, D-6
eurrent entity • 3-8, D-4

Pointer type • 3-18
/POP qualifier• CD-53, CD-105

debugger window (V AXstation) • CD-128
Predecessor

See Logical predecessor

Previous location

See Logical predecessor
%PREVLOC•3-8,D-4
Primary handler• 2-22, 8-13
/PRIORITY qualifier• CD-143, CD-199
Program

display kind• 6-16, C-1
Program counter

see PC
/PROGRAM qualifier• 6-1 7, CD-93
Prompt

debugger (DBG >) • 1-6, CD-128
display (PROMPT) • 6-5, C-4

/PROMPT qualifier• 6-18, CD-93
Pseudo-display name• C-6
%PSL • 3-22, D-2
PSL (processor status longword)• 3-23
/PSL qualifier• CD-64
/PSW qualifier• CD-64
/PUSH qualifier• CD-53, CD-105

Q
/QUADWORD qualifier• CD-46, CD-64
QUIT command• 2-4, CD-84
Quotation mark (")

ASCII string delimiter• 3-16
instruction delimiter• 3-21

R
Radix

canceling• CD-21
conversion • 3-10, D-4
current• 3-10, CD-129
displaying• CD-185
multilanguage program• 8-8
setting• CD-129
specifying • 3-10

Range
colon (:) • 3-17, CD-62

Real type • 3-14
Record

source line correlation• 5-1
Record type • 3-18
/REFRESH qualifier• CD-53
Register

DEPOSIT command• 3-22

Index

lndex-7

Index

Register (cont'd.)

display (REG) • 6-7, C-5
display kind• 6-15, C-1
EXAMINE command• 3-22
PSL•3-23
symbol•D-2
variable•2-19, 3-1

/RELATED qualifier• CD-19, CD-123, CD-181
/REMOVE qualifier• CD-53, CD-105
REPEAT command• 7-10, CD-85
/RESTORE qualifier• CD-143
RETURN key

logical successor• 3-8, D-4
/RETURN qualifier•CD-99, CD-150, CD-209
/RIGHT qualifier• CD-71, CD-82, CD-87
Routine

calling• 7-11, CD-10
EXAMINE/SOURCE command• 5-4
multiple invocations of• 4-9
SET BREAK command• 2-11
SET TRACE command• 2-11
SHOW CALLS command• 1-13
traceback information• 4-3

RST (run-time symbol table)• 4-5
and symbol search• 4-7
deleting symbol records in• 4-6, CD-19
displaying modules in• 4-6, CD-181
displaying symbols in•4-8, CD-195
inserting symbol records in• 4-6, CD-123
shareable image• 4-13

RUN command• 2-1, 2-2, 4-4

see also Execution
shareable image• 4-12

Run-time symbol table

see RST

s
SA VE command• 6-19, CD-86
Scalar type• 3-14
Scope

canceling• 4-10, CD-22
current• 4-10, CD-131
displaying• 4-10, CD-186
PC•4-7
SEARCH command• 5-6, CD-89
search list• 4-7, 4-10, CD-131 , CD-186
setting• 4-10, CD-131
specifying with path name • 4-8

lndex-8

Scope (cont'd.)

TYPE command• 5-4, CD-214
Screen display

see Display
Screen management

debugging screen oriented program• 8-5
Screen mode • 6-1 , CD-120

summary reference information• C-1
Screen oriented program

debugging• 8-5
Screen size

displaying• 6-20, CD-201
%PAGE, % WIDTH symbols• C-6
setting• 6-20, CD-145

/SCREEN _LAYOUT qualifier• CD-73
SCROLL command• 6-8, CD-87
Scroll mode • CD-120
/SCROLL qualifier• 6-18, CD-93
SEARCH command• 5-6, CD-89

displaying default qualifiers for• 5-7, CD-188
setting default qualifiers for• 5-7, CD-134

Search list
scope•4-7,4-10, CD-131,CD-186
source file• 5-2, CD-23, CD-136, CD-191

Security
image•4-5

SELECT command• 6-16, CD-92
Semicolon (;)

command separator• CD-4
Separate window

debugger (V AXstation) • 8-5, CD-120
SET ATSIGN command• 7-2, CD-95
SET BREAK command•2-10, 5-7, 8-10, CD-96
SET DEFINE command• 7-6, CD-102
SET DISPLAY command• 6-10, CD-103
SET EDITOR command • CD-107
SET EVENT _FACILITY command• CD-109
SET IMAGE command• 4-14, CD-110

effect on symbol definitions• CD-36
SET KEY command• 7-9, CD-112
SET LANGUAGE command•3-10, CD-113
SET LOG command• 7-5, CD-115
SET MARGINS command• 5-8, CD-116
SET MAX_SOURCE_FILES command• 5-3,

CD-119
SET MODE command• CD-120
SET MODE [NO]DYNAMIC command• 4-6, 4-13,

CD-120
SET MODE [NO]G_FLOA T command• CD-120
SET MODE [NO]KEYPAD command• 7-8,

CD-120,B-1

SET MODE [NO]LINE command• CD-120
SET MODE [NO]OPERANDS command• 3-19,

CD-120
SET MODE [NO]SCREEN command• 6-1, CD-120
SET MODE [NO]SCROLL command• CD-120
SET MODE [NO]SEP ARA TE command• 8-5,

CD-120
SET MODE [NO]SYMBOLIC command• 3-13,

CD-120
SET MODULE command• 4-6, CD-123
SET OUTPUT command• CD-126
SET OUTPUT [NO]LOG command• 7-5, CD-126
SET OUTPUT [NO]SCREEN_LOG command• 7-5,

CD-126
SET OUTPUT [NO]TERMINAL command• CD-126
SET OUTPUT [NO]VERIFY command• 7-2,

CD-126
SET PROMPT command • CD-128
SET RADIX command•3-10, 8-8, CD-129
SET SCOPE command•4-10, 5-4, CD-131
SET SEARCH command • 5-7, CD-134
SET SOURCE command• 5-2, CD-136
SET STEP command• 5-7, CD-139
SET TASK command• CD-142
SET TERMINAL command• 6-20, CD-145
SET TRACE command•2-10, 5-7, 8-10,

CD-147
SET TYPE command• 3-24, CD-153
SET TYPE/OVERRIDE command•3-25, CD-153
SET WATCH command•2-17, 5-7, CD-156
SET WINDOW command• 6-12, CD-161
/SET _ST A TE qualifier• 7-9, CD-38
Shareable image

see also Module
CANCEL IMAGE command•4-13, CD-17
debugging• 4-11
SET BREAK/INTO command• 2-14, CD-99
SET IMAGE command• 4....: 14, CD-110
SET STEP INTO command•2-9, CD-140
SET TRACE/INTO command• 2-14, CD-150
SHOW IMAGE command• 4-13, CD-173
STEP /INTO command• CD-209

/SHAREABLE qualifier• 4-11
/SHARE qualifier•2-14, CD-99, CD-150,

CD-181, CD-209
SHOW AST command• 8-1 7, CD-163
SHOW ATSIGN command•7-2, CD-164
SHOW BREAK command• 2-11, CD-165
SHOW CALLS command• 1-13, 2-3, 2-5, 8-11,

8-1 7 I CD-1 66
SHOW DEFINE command• 7-6, CD-168
SHOW DISPLAY command• 6-9, CD-169

Index

SHOW EDITOR command• CD-170
SHOW EVENT_FACILITY command• 2-16,

CD-171
SHOW EXIT_HANDLERS command• 8-16,

CD-172
SHOW IMAGE command•4-13, CD-173
SHOW KEY command•7-8, CD-174
SHOW LANGUAGE command• 3-10, CD-176
SHOW LOG command•7-5, CD-177
SHOW MARGINS command•5-9, CD-178
SHOW MAX_SOURCE_FILES command• 5-3,

CD-179
SHOW MODE command• CD-180
SHOW MODULE command• 4-6, CD-181
SHOW OUTPUT command•7-2, 7-5, CD-184
SHOW RADIX command•3-10, CD-185
SHOW SCOPE command• 4-10, CD-186
SHOW SEARCH command• 5-7, CD-188
SHOW SELECT command• 6-18, CD-189
SHOW SOURCE command• 5-2, CD-191
SHOW ST ACK command• 8-12, CD-193
SHOW STEP command• 2-8, CD-194
SHOW SYMBOL command•4-8, CD-195
SHOW SYMBOL/DEFINED command• 7-6
SHOW TASK command• CD-198
SHOW TERMINAL command•6-20, CD-201
SHOW TRACE command• 2-11, CD-202
SHOW TYPE command• 3-24, CD-203
SHOW WATCH command• 2-17, CD-204
SHOW WINDOW command• 6-12, CD-205
/SILENT qualifier• 2-15, CD-99, CD-150,

CD-15 7 I CD-209
/SIZE qualifier• CD-54, CD-105
Slash(/)

division operator• D-6
SMG$

debugging screen oriented program• 8-5
Source directory

displaying• 5-2, CD-191
search list• 5-2, CD-23, CD-136

Source display• 1-7, 5-1, 6-1
discrepancies in• 8-1
display kind• 6-15, C-1
EXAMINE/SOURCE command• 5-4, 6-4,

6-15,C-4
line-oriented • 5-3
margins in• 5-8, CD-178
not available• 1-10, 5-1, 6-4, CD-136, C-4
SEARCH command• 5-6, CD-89
SET BREAK command• 5-7
SET STEP command• 5-7, CD-139
SET TRACE command• 5-7

lndex-9

Index

Source display (cont'd.)

SET WATCH command• 5-7
SRC, predefined • 6-4, C-4
STEP command• 5-7
TYPE command• 5-3, CD-214

Source file
correct version of• CD-136, CD-191
defined• 5-2
file specification• 5-2
location•5-2, CD-23, CD-136, CD-191
maximum number• 5-3, CD-119, CD-179
not available• 5-2, CD-136

Source line correlation• 5-1
/SOURCE qualifier•5-4, 5-8, 6-4, 6-18, CD-65,

CD-93,CD-99,CD-150,CD-157,C0-209
%SOURCE_SCOPE•6-16,C-4
%SP•3-22,D-2
SPAWN command•2-6, CD-206
SRC source display• 6-4, C-4
SS$_DEBUG condition• CD-30, D-1
Stack

see also Call stack
variabte•2-19, 3-1

/ST ART _POSITION qualifier• CD-107
/STATE qualifier•7-8, CD-43, CD-112, CD-175,

CD-199
/STATIC qualifier• CD-157
Static variable• 2-19, 3-1
/ST A TISTICS qualifier• CD-199
STEP command• 2-7, 5-7, CD-208

displaying default qualifiers for• CD-194
setting default qualifiers for• CD-139

STOP command• 2-4
/STRING qualifier• 5-6, CD-90
String type• 3-16, 3-26
Successor

See Logical successor
Symbol

see also DST, GST, RST
built-in• C-6, D-2
compiler generated type• 3-4
defining• 7-6, C0-36
displaying•4-8, 7-6, CD-36, CD-195
global• 4-3, 4-9
image setting• 4-13
local•4-3
module setting• 4-5
multiply-defined• 4-7
not in symbol table• 4-5, 4-14
not unique• 4-8
relation to address expression • 3-4

lndex-10

Symbol (cont'd.)

relation to path name• 4-8
search conventions• 4-7
shareable image • 4-13
SHOW SYMBOL command• 4-8
traceback information • 4-3
universal• 4-5, 4-11

Symbolic mode• 3-13, CD-120
/SYMBOLIC qualifier• 3-13, CD-65
SYMBOLIZE command•2-13, 3-13, CD-212
Symbol record

see Symbol
Symbol table

see DST, GST, RST
/SYSTEM qualifier• 2-14, CD-99, CD-150,

CD-209
System space

SET BREAK command • CD-99
SET STEP command • CD-140
SET TRACE command• CD-150
STEP command• CD-209

T
%TASK•D-9
Tasking

SET TASK command• CD-142
SHOW TASK command• CD-198

/TASK qualifier• CD-46, CD-65
/TEMPORARY qualifier• CD-99, CD-150,

CD-157
Terminal

debugger, input/output• 8-5
Terminal screen size

see Screen size
/TERMINATE qualifier• 7-8, CD-38
Termination

debugging session• 2-4, CD-69, CD-84
execution of handlers at• 8-16

/TIME _SLICE qualifier• CD-143, CD-199
/TOP qualifier• CD-87
Traceback

compiler option• 4-3
link option• 4-4
SHOW CALLS display• 1-13

/TRACEBACK qualifier•2-3, 4-4, 4-5
shareable image• 4-12

Tracepoint
canceling• 2-17, CD-25
defined• 2-10

Tracepoint (cont'd.)

delayed triggering of• 2-15, CD-14 7
displaying• CD-202
DO clause• 2-15
exception • 8-10, CD-14 7
setting• 2-10, CD-14 7
source display at• 5-7
WHEN clause• 2-15

Transfer address• 2-1, 8-7
Type

address expression• 3-4, 3-24
array• 3-16
ASCII string• 3-16, 3-26
compiler generated• 3-4, 3-14
conversion, numeric• 3-7
current• 3-24, CD-153, CD-203
displaying• CD-203
integer• 3-14, 3-26
override• 3-25, CD-153
pointer• 3-18
real• 3-14
record • 3-18
scalar• 3-14
SET TYPE command• 3-24, CD-153
symbolic address expression• 3-4
VAX instruction • 3-19

TYPE command• 5-3, CD-214
Type override•3-25, CD-27, CD-154, CD-203
/TYPE qualifier• 3-27, CD-46, CD-65, CD-196

u
Universal symbol

see Symbol
/UP qualifier• CD-71, CD-82, CD-87
/USE_CLAUSE qualifier• CD-196

v
/VALUE qualifier• 7-6, CD-35
Variable

as override type• 3-27
examining and depositing• 3-14
initialized• 3-1
nonstatic • 2-19, 3-1
optimized code• 8-1
register• 2-19, 3-1
stack local•2-19, 3-1

Variable (cont'd.)

static• 2-19
uninitialized• 2-23

Variable name
address expression• 3-7
DEPOSIT command• 3-3
EXAMINE command• 3-2
language expression• 3-6
SET WATCH command• 2-17

VAX Language-Sensitive Editor• CD-55
VAXstation

Index

debugger commands for• CD-5
debugging screen oriented program• 8-5
popping debugger window• CD-128
screen size• 6-20, CD-145
separate debugger window• 8-5, CD-120

Verify
SET OUTPUT VERIFY command• CD-126

Virtual memory address
examining• 3-13
obtaining•2-13, 3-12
specifying eventpoint • 2-13
symbolizing• 3-13

/VISIBLE qualifier• CD-143
%VISIBLE_ TASK• D-9

w
/WAIT qualifier• CD-206
Watchpoint

aggregate• 2-18
canceling• CD-28
defined• 2-17
displaying• CD-204
nonstatic (stack or register) variable• 2-19
setting• 2-17, CD-156
source display at• 5-7
static variable• 2-19

WHEN clause
example• 2-15
format • CD-4

WHILE command•7-10, CD-216
%WIDTH•C-6
/WIDTH qualifier• 6-20, CD-145
Window

debugger, popping (V AXstation) • CD-128
debugger, separate (V AXstation) • 8-5,

CD-120
screen mode, creating definition for• 6-12,

CD-161

lndex-11

Index

Window (cont'd.)

screen mode, defined• 6-2
screen mode, deleting definition of• 6-12,

CD-29
screen mode, identifying• 6-12, CD-205
screen mode, predefined• CD-205, C-7
screen mode, specifying• 6-11

/WORD qualifier• CD-46, CD-65
Workstation

see V AXstation

lndex-12

Reader's Comments VMS Debugger Manual
AA-LA59A-TE

Please use this postage-paid form to comment on this manual. If you require a written reply to a software
problem and are eligible to receive one under Software Performance Report (SPR) service, submit your
comments on an SPR form.

Thank you for your assistance.

I rate this manual's: Excellent

Accuracy (software works as manual says) D
Completeness (enough information) D
Clarity (easy to understand) D
Organization (structure of subject matter) D
Figures (useful) D
Examples (useful) D
Index (ability to find topic) D
Page layout (easy to find information) D

I would like to see more /less

What I like best about this manual is

What I like least about this manual is

I found the following errors in this manual:

Page Description

Additional comments or suggestions to improve this manual:

I am using Version ___ of the software this manual describes.

Name/Title

Company

Mailing Address

Good Fair Poor

D D D
D D D
D D D
D D D
D D D
D D D
D D D
D D D

Dept.

Date

Phone

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 33 MAYNARD MASS.

POST AGE WILL BE PAID BY ADDRESSEE

DIGIT AL EQUIPMENT CORPORATION
Corporate User Publications-Spit Brook
ZK01-3/J35 110 SPIT BROOK ROAD
NASHUA, NH 03062-9987

111 11.11 11 1.11.1 .. 1.1 .. 1 •• 1.1 ••• 1.11 .. 1

-- Do Not Tear - Fold Here --

