
VAX DATATRIEVE
User's Guide

Order No. AA-K080D-TE

December 1985

This manual is a guide to the interactive use of VAX
DATATRIEVE. It describes how to use DATATRIEVE
to manipulate data and its use with forms and database
management products. It also includes information on
improving performance and working with remote data.

OPERATING SYSTEM: VMS

Micro VMS

SOFTWARE VERSION: VAX DATATRIEVE V3

digital equipment corporation, maynard, massachusetts

The information in this document is subject to change without notice and should
not be construed as a commitment by Digital Equipment Corporation. Digital
Equipment Corporation assumes no responsibility for any errors that may appea1
in this document.

The software described in this document is furnished under a license and may be
used or copied only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment
that is not supplied by DIGJTAL or its affiliated companies.

Copyright© 1984. 1985 by Digital Equipment Corporation. All rights reserved.

The postage-paid READER'S COMMENTS form on the last page of this
document requests your critical evaluation to assist us in preparing future
documentation.

The following are trademarks of Digital Equipment Corporation:

ACMS
CDD
DATATRIEVE
DEC
DECgraph
DECnet
DEC slide

DEC US
MicroVAX
Micro VMS
PDP
Rdb/ELN
Rdb/VMS
TDMS

UNIBUS
VAX
VAXcluster
VAX Information Architecture
VMS
VT

How to Use This Manual

Technical Changes and New Features

Part 1 Understanding DATATRIEVE

Understanding DATATRIEVE

Contents

xiii

xvii

1.1 StartingandEndingaDATATRIEVE Session 1-1
1.2 Writing a DATATRIEVE Session toa Log File 1-2
1.3 DATATRIEVE Concepts and Terminology 1-3

1.3.1 Databases 1-3
1.3.2 DATATRIEVE Domains 1-3
1.3.3 Common Data Dictionary 1-4
1.3.4 Commands and Statements 1-5
1.3.5 Procedures 1-6
1.3.6 DATATRIEVE Command Files 1-6
1.3. 7 DATATRIEVE View Domains . 1-6
1.3.8 DATATRIEVE Tables 1-7
1.3.9 DATATRIEVE Collections 1-7
1.3.10 Distributed Data 1-7

1.4 WhatDATATRIEVE CanDofortheProgrammer 1-8
1.5 The Sample Domains, Records, and Data Files 1•9
1.6 Using SET Commands to Control Output 1-10

1.6.1 Changing the Columns-Page Setting 1-10
1. 6 .1.1 Increasing the Columns-Page Setting1-11
1. 6.1. 2 Decreasing the Columns-Page Setting1-11

1.6.2 Using SET ABORT1-12
1.6.3 Using SET PROMPT 1-12
1.6.4 Using SET SEARCH 1-13
1.6.5 Using SET FORM 1-13
1.6.6 Using SET VERIFY 1-13
1.6. 7 Using SET SEMICOLON 1-14
1.6.8 UsingSETLOCK_WAIT 1-14

1. 7 Controlling the Input of Dates and Currency. ~1-15
1.8 IssuingDATATRIEVE Commands from DCL Command Level 1-16
1.9 Using a DATATRIEVE Startup Command File 1-17

iii

2

Part 2 Manipulating Data

Writing Record Selection Expressions
2.1 Displaying All the Records in a Domain.
2.2 Limitingthe Number of Records in the Record Stream.
2. 3 Identifying the Records That Meet a Test

2.3.1 Comparing Records by Pattern Recognition
2.3.2 Grouping Records When Values Fall Within a Range .
2.3.3 Grouping Records Based on a MISSING VALUE .
2.3.4 Grouping Records by Reference to a Table
2.3.5 Summary of the Relational Operators
2.3.6 Setting Up Multiple Tests with Compound Booleans .

. 2-3

. 2-4

. 2-E

. 2-E
. . 2-E

.2-H

.2-1]
. .2-1]

. .. 2-U

2 .4 Joining Records from Two or More Sources2-V
2.4.1 UsingCROSStoCombineTwoDomains......... . .2-H
2.4.2 Joining Records from Collections Based on the Same Domain .. 2-H
2.4.3 Using CROSS to Cross a Domain with Itself2-lt

2.5 Finding the Unique Field Values in the Record Stream.
2.6 Sorting the Record Stream by Field Values

.2-1!

. .2-2:

3 Entering New Data
3.1 UsingtheSTOREStatement
3.2 The Effect of TAB on Prompts from STORE Statements .

3.3 UsingDirectAssignments
3 .4 Using Prompting Expressions in STORE Statements .

. . 3-:

. . 3-:

. . 3-:

. . 3-·

4 Modifying Data
4.1 Modifying Records in the CURRENT Collection 4-

4.1.1 Modifying a Selected Record in the CURRENT Collection 4-
4.1.2 Modifying All Records in the CURRENT Collection. . 4-

4.2 Modifying All Records in a Record Selection Expression. . . 4-
4.2.1 Modifying Records Controlled by a FOR Statement. . . 4-
4.2.2 Including the RSE Within the MODIFY Statement. . .4-1

4.3 Common Context Errors. .4-1
4. 3 .1 Modifying All Records Rather Than Just the Selected Record . .4-1
4.3.2 Modifying the Wrong Selected Record. . .4-1
4.3.3 Modifying Records in the Wrong RSE . . .4-1

4.4 Using DATATRIEVE Prompts . .4-1

4.5 Ensuring Valid Values.4-1

iv

Using View Domains
5.1 Views Using Subsets of Records .
5.2 Views Using Subsets of Fields ..
5.3 Views Using More Than One Domain ..
5.4 Advantages and Disadvantages of Using Views .

Using Hierarchies

. 5-2

. 5-4
. . 5-5

. 5-7

6.1 Defining Records with Repeating Fields 6-3
6.1.1 Defining Lists with a Fixed Number of Occurrences. . . . 6-6
6 .1. 2 Defining Lists with a Variable Number of Occurrences 6-7
6.1.3 Defining Sublists to Nest Lists Within Lists 6-9

6.2 Retrieving Values from Repeating Fields.6-10
6.2.1 Retrieving Repeating Field Values with FIND and SELECT ... 6-12
6.2.2 Retrieving Repeating Field Values with Nested FOR Loops ... 6-14
6.2.3 Retrieving Repeating Field Values with Inner Print Lists 6-16
6.2.4 Retrieving Repeating Field Values with the Context Searcher .. 6-20
6.2.5 Retrieving Repeating Field Values by Flattening Hierarchies .. 6-21

6.2.5.1 Using the CROSS Clause to Flatten Hierarchies 6-23
6.2.5.2 Using Inner Print Lists to Flatten Hierarchies 6-25
6.2.5.3 Using Nested FOR Statements to Flatten Hierarchies. .6-27

6.3 Modifying Values Stored in Repeating Fields6-29
6.3.1 Modifying Repeating Field Values with FIND and SELECT ... 6-29
6.3.2 Modifying Repeating Field Values with FOR and MODIFY

Statements 1 • / ••••••••••••••••••• 6-32
6.3.3 Changing the Length of a Variable-Length List 6-34

6.4 Creating Hierarchies with Multiple RS Es6-36
6.4.1 Creating Hierarchies with View Domains6-3 7
6.4.2 Using Inner Print Lists to Create Dynamic Hierarchies 6-39
6.4.3 Using Nested FOR Statements to Create Dynamic Hierarchies .6-41

Part 3 Programming in DATATRIEVE

Using DATATRIEVE Procedures
7 .1 Defining a Procedure . .
7. 2 Invoking a Procedure
7 .3 Contents of a Procedure

7.3.1 Commands and Statements ..
7.3.2 Arguments and Clauses .
7.3.3 Comments

7.4 Editing a Procedure
7. 5 Troubleshooting Procedures
7. 6 Aborting Procedures

7-1
7-2
7-3
7-3
7-4
7-5
7-5
7-6
7-7

v

7. 7 Sample Procedures 7-:
7.8 How to Nest Procedures Within Procedures 7-1 1

7.9 Using a Procedure in a Compound Statement 7-1
7 .10 Generalizing Procedures . 7 -1
7 .11 Maintaining Procedures. 7 -1

7 .11.1 Displaying Procedure Nam es . 7 -1
7.11.2 Displaying Procedures 7-1
7 .11. 3 Deleting Procedures . 7 -1

7 .12 Protecting Procedures. 7 -1

8 Using Command Files
8.1 UsingDATATRIEVECommandFiles 8-

8.1.1 CreatingaDATATRIEVE Command File 8-
8.1.1.1 ADT,EDIT,andSETGUIDEinCommandFiles 8-
8.1.1.2 Comments in Command Files 8-

8.1.2 Invoking a Command File 8-
8.1. 2 .1 Invoking a Command File from Within DAT ATRIEVE . . 8-
8 .1. 2. 2 Invoking a Command File Outside of DAT A TRI EVE . . . 8-

8.1.3 SampleDATATRIEVECommandFile 8-
8.1.4 Invoking a Command File from a Procedure 8-
8.1. 5 Invoking a Command File from Another Command File 8-
8.1. 6 Aborting Command Files 8-1
8.1. 7 Maintaining Command Files .8-1
8.1.8 Protecting Command Files 8-1

8.2 Using DCL Command Files 8-1
8.2.1 Reassigning SYS$INPUT in Command Files That Require

Interactive Input .8-1
8.2.2 Command Files with an Invalid CDD$DEFAULT Can Damage

theCDD 8-1

9 Using DATATRIEVE Variables
9 .1 Declaring Variables . 9·
9.2 Local Variables 9·
9.3 Global Variables 9·
9 .4 Using Variables to Assign Values to Fields 9·
9.5 Changing the Value ofa Variable 9·
9.6 Using Context Variables 9·

vi

Part 4 Optimizing DATATRIEVE

J Restructuring Data
10.1 A Sample Domain .10-2
10.2 Adding Fields to a Record Definition 10-3
10.3 Entering Data in the New File 10-4
10.4 Creating Record Subsets .10-5
10.5 Combining Data from Two or More Domains. 10-5
10.6 Using the Alias Clause to Restructure a Domain 10-6
10. 7 Changing the Organization of a Data File.10-8
10.8 Further Examples of Restructuring Domains10-8
10.9 Better Data Organization 10-10

1 Designing Better Records
11.1 Flat Records and Hierarchical Records11-1

11.1.1 Restructuring a Hierarchical File to a Flat File11-4
11.1. 2 Defining Several Smaller Related Records11-6
11.1.3 Restructuring a Large Record into Several Smaller Records . .11-7
11.1.4 Creating a Hierarchical View of Flat Records 11-9

11.2 Choose Keys for Optimization11-10
11.3 Using Tables .11-10
11.4 Using COMPUTED BY Fields 11-11

11.4.1 Computing Age 11-12
11.4.2 Quarterly Summaries 11-12

2 Improving DATATRIEVE Performance
12.1 Choosing a File Organization

12 .1.1 Choosing the Primary and Alternate Keys.
. .. 12-1
. .. 12-2

12.2 Designing Files 12-3
12.2.1 Using EDIT/FDL to Design Your File 12-4

12.2.1.1 Questions EDIT/FDLAsks. 12-5
12.2.1.2 Answers to the EDIT/FDL Prompts. 12-6
12.2.1.3 Selecting Optimum Bucket Size 12-6

12.2.2 Creating the Data File 12-9
12.2.3 Optimizing Global Buffers 12-9
12.2.4 Redesign and Maintenance 12-14

12.2.4.1 Calculating a Fill Factor 12-14
12.2.4.2 Adding Data to the File 12-15

vii

12.3 Choosing Optimal Queries 12-li
12.3.1 Using EQUAL Rather Than CONTAINING 12-lj
12.3.2 Using STARTING WITH RatherThan CONTAINING 12-li
12.3.3 Using Domains Rather Than Collections in an RSE 12-1'
12.3.4 UsingtheCROSSClauseandNestedFORLoops 12-1'
12.3.5 Choosing Domains or Collections as Record Sources 12-1:
12.3.6 Choqsing the Order of Domain Names in the CROSS Clause .12-1:
12.3.7 OrderofDoll\ainsinNestedFORLoops 12-21
12.3.8 Nested FOR Loops Followed by a Conditional Statement ... 12-2

12.4 Timing Procedures to Improve Efficiency 12-2
12.5 DATATRIEVE's Evaluation of Compound Booleans 12-2:
12. 6 Summary of Rules . 12-2·

Part 5 DATATRIEVE and the VAX Information
Architecture

13 Using Forms with DATATRIEVE
13.1 Associating a Form with a Domain13-

13.1.1 The FORM IS Clause 13-
13.1.2 The DISPLAY FORM Statement 13-

13.2 Defining Forms. 13-
13.2.1 Defining Form Field Names 13-
13.2.2 Defining Data Type and Length of Form Fields 13-

1'3.2.2.1 Numeric Fields with Decimal Points or Signs 13-
13.2.2.2 Usage DATE Fields 13-1

13.2.3 Specifying User Entry and Validation Criteria 13-1
13.2.4 Defining Multiple Screen Forms and Forms with Scrolled

Areas 13-1
13.2.5 Using Default Values 13-1
13.2.6 Defining Forms for Domains That Contain Repeating Fields .13-1

13.3 Inserting Forms in Library Files 13-1
13.3.1 Inserting Forms in TDMS Library Files 13-1
13.3.2 Inserting Forms in an FMS Library 13-1

13.4 Using Forms to Display and Collect Data 13-1
13.4.1 Enabling and Disabling Form Use 13-1
13.4.2 Displaying Data with Forms 13-1
13.4.3 Storing Data with Forms 13-1

13.4.3.1 Storing Data in Hierarchical Records with Forms 13-2
13.4.4 Modifying Data with Forms ~ 13-2

13.4.4.1 Modifying Data in Hierarchical Records with Forms .. 13-2
13.4.5 Handling Numeric Data 13-2

viii

13..4.6 Restrictions on Using Forms 13-26
13.4.6.1 DATATRIEVEandFMS 13-26
13.4.6.2 DATATRIEVE Command Files and Forms Products .. 13-27
13.4.6.3 Modifying Data Using View Domains and FORM IS .. 13-28
13.4.6.4 Special Graphics Characters in Forms 13-29

4 Using DATATRIEVE with DBMS
14.l AdvantagesofUsingDATATRIEVE 14-2
14.2 Defining a Database: TheDEFINE DATABASE Command 14-4
14.3 Acce$sing the Database 14-5

14. 3 .1 Readying an Entire Database Directly14-6
14.3.2 Defining and Readying DBMS Domains 14-8
14.3.3 Results of the READY Command 14-10

14.3.3.1 The SHOW FIELDS Command 14-12
14.3.3.2 The SHOW SETS Command 14-12

14.4 Forming a DATATRIEVE Query 14-13
14.5 Forming a DATATRIEVE/DBMS Query 14-15

14.5.1 Forming a DATATRIEVE Collection of DBMS Records ... 14-16
14.5.1.1 Using the FIND Statement 14-16
14.5.1.2 Using the SELECT Statement 14-17

14.5.2 Forming a Record Stream of DBMS Records 14-18
14.6 Forming a DATATRIEVE/DBMS Query of Data Related by Sets .14-19

14.6.1 Forming Collections of DBMS Set Data 14-20
14.6.2 Forming Record Streams of DBMS Set Data 14-21
14.6.3 UsingOWNERandMEMBERClauses to Identify Sets 14-22

14.6.3.1 The MEMBER Clause.14-24
14.6.3.2 The OWNER Clause 14-24

14.6.4 Using the SET SEARCH Command toAccess Sets 14-25
14. 7 Finding Data from Two or More Domains 14-27

14. 7.1 Walking the Sets .14-28
14.7.2 UsingtheCROSSClause 14-30
14.7.3 Using View Domains 14-31

14. 7.3.1 Hierarchical Views 14-31
14. 7.3.2 Flat Views.14-32

14.8 Sample Procedures Using DBMS Domains
14.9 Modifying Individual Fields in a Record
14.10 Storing DBMS Records and Modifying Sets .. .

14.10.1 Storing and Connecting Records
14.10.1.1 Automatic Insertion
14.10.1.2 Manual Insertion

. .14-33

. .14-35
. ... 14-36
. ... 14-36

. 14-37

. 14-40

ix

14.10.2 Erasing, Disconnecting, and Reconnecting Records with
Sets 14-4

14.10.2.1 Erasing DBMS Records 14-4
14.10.2.2 Disconnecting and Reconnecting DBMS Records from

Sets 14-4
14.10.2.3 Disconnecting and Connecting DBMS Records from

Sets 14-4
14 .10.3 Summary of Membership Characteristics14-4
14.10.4 Writing Changes to the Database. 14-4

14 .11 Optimizing Performance . 14-4

15 Using DATATRIEVE with Rdb

x

15.1 Getting Started with DATATRIEVE and Rdb 15-

15.2 Creating a Path Name for the Database 15-

15.3 Accessing the Database 15-
15.3.1 ReadyinganRdbDatabaseDirectly 15-
15.3.2 Defining and Readying Rdb Domains 15-
15.3.3 Results of the READY Command 15·

15.4 UsingViews. 15·
15 .4 .1 Using Rdb Views15·
15. 4. 2 Defining and Using View Domains15·

15. 5 Displaying Information About Readied Relations and Domains . . . 15-1

15.6 Ending Access to Domains, Relations, and Views 15-1

15. 7 Storing and Maintaining Data in an Rdb Database 15-1
15. 7.1 Using the COMMIT Statement 15-1
15.7.2 UsingtheROLLBACKStatement 15-1

15.8 Querying the Database, Writing Reports, and Using Collections .. 15-1

15.9 UsingRdb's Segmented String Data Type in DATATRIEVE 15-1
15.9.1 Defining Segmented String Fields in Rdb 15-~
15.9.2 Displaying Segmented String Fields in DATATRIEVE. .15-~

15.9.3 Storing and Modifying Segmented String Fields in
DATATRIEVE. .15-~

15.9.4 Restrictions and Usage Notes for Segmented String Fields .. 15-~
15.10 Modifying the Structure of an Rdb Domain or Relation 15-~
15.11
15.12

Ensuring Data Security
Validating Data for Rdb Relations and Domains ...

... 15-~

. .. 15-~

15 .13 Optimizing Performance . 15-~

6 Accessing Remote Data
16.1 Defining Network Domains and Accessing Remote Domains

16.1.1 Defining Network Domains
16.1.2 Accessing Remote Domains

16.1.2 .1 Readying a Network Domain
16.1.2.2 Readying a Remote Domain Directly

16.1.3 Results of Accessing Remote Domains.
16.1.4 Restrictions on Using Remote Domains

Name Recognition and Single Record Context

.. 16-1

. .16-2

. .16-5

. . 16-5

. . 16-6

. . 16-6

. . 16-7

Al Establishing the Context for Name Recognition A-1
A.1.1 The Right Context Stack . A-2

A.1.1.1 The Content ofa Context Block A-2
A.1.1.2 Global Variables A-4
A.1.1.3 Collections
A.1.1.4 Record Streams
A.1.1. 5 Local Variables .
A.1.1.6 VERIFY Clause in the STORE Statement
A.1.1. 7 VALID IF Clause in a Record Definition

A.1.2 Using Context Variables and Qualified Field Names
A. l. 2 .1 Context Variables as Field Name Qualifiers
A.1.2.2 Other Field Name Qualifiers
A.1.2.3 The Effect of the CROSS Clause on Name Recognition

A.1.3 The Left Context Stack for Assignment Statements
A.2 Single Record Context

A.2.1 The SELECT Statement and the Single Record Context .. .
A.2.2 The CURRENT Collection as Target Record Stream ..
A.2.3 The OF rse Clause and Target Record Streams ..
A.2.4 FOR Statements and Target Record Streams ...

Sample Database Definitions and Procedures
B.1 RMS Data Definitions and Procedures.
B.2 DBMS Data Definitions and Procedures
B.3 Rdb Data Definitions and Procedures

Index

Examples

. . A-4

.. A-6

. . A-8

. . A-8

. . A-8

. . A-9

. . A-9

. A-10

. A-13

. A-14

. A-17

. A-18
·~A-24

. A-26

. A-28

.. B-1

. . B-7

. B-11

6-1 The FAMILY Record Definition 6-8
6-2 The Hierarchical Records in FAMILIES 6-8
6-3 PRINT Statement with Inner Print List 6-17
7-1 Sample Procedure Using the Report Writer. 7-9
8-1 Sample Command File Using the Report Writer 8-6

xi

xii

Figures
6-1 A Flat Record: YACHT. 6-"
6-2 A Hierarchical Record: FAMILY REC. 6-~

11-1 Structure ofa Hierarchical Record .11-!
11-2 The Structure of a Flat Record 11-:
11-3 Joining FOLKS and CHILDREN with CROSS 11-'
11-4 Structure of CURRENT REC 11-1!
12-1 Flat File Structure 12-:
12-2 A File with Two Levels oflndex 12-·
12-3 EDIT/FDL Display oflndex Depth versus Bucket Size 12-'
13-1 Corresponding Fields in a Domain and Form 13-ll
13-2 Corresponding Fields in the Form PERSON and the Domain

PERSONNEL 13-2~
13-3 Corresponding Fields in YACHT_ FORM2 and YACHTS 13-2:
14-1 DBMS Set CONSISTS OF 14-:
14-2 Single Set Occurrence 14-:
14-3 The Parts of an RSE 14-1·
14-4 Set Relationships in Sample DBMS Database 14-2·
14-5 DBMS Set Relating Three Domains 14-2:
14-6 DBMS Set CLASS PART 14-3~
15-1 Sample Rdb Relation .
15-2 Sample Rdb Database
A-1 Duplicate Field Names in YACHTS and OWNERS

Tables

.. 15-

. .15-
. .. A-

1-1 Defining the Logical Name DTR$DA TE _IN PUT. 1-1
1-2 Currency Symbols 1-1
2-1 Conditional Comparisons for an RSE 2-1
12-1 DATATRIEVE's Priority in Choosing Keys 12-2
13-1 Matching Form Field Definitions to Numeric Record Fields 13-1
14-1 Insertion. Retention. and Database Operations 14-4

How to Use This Manual

is manual explains the concepts and terminology of the VAX DAT A TRI EVE
tware, also referred to as DATATRIEVE in this manual. It discusses how to
:ine domains, records, tables, and procedures and how to catalog them in the
.X Common Data Dictionary. also referred to simply as CDD. It describes var­
s ways of managing data stored in RMS files, VAX Rdb/VMS (also referred to
Rdb), and VAX DBMS (also referred to as DBMS) databases and how to
rieve information from them.

tended Audience

is manual is intended for people who either:

Have read or done the examples in the VAX DATATRIEVE Handbook

Have experience using DAT A TRIEVE-11

Have experience in applications programming

'OU have no prior experience with DATATRIEVE, the VAX DATATRIEVE
~ndbook provides information on the basic tasks of managing information with
.T ATRIEVE and can help you get started with DAT ATRIEVE applications.

>erating System Information

verify which versions of your operating system are compatible with this ver-
1 of VAX DATATRIEVE, check the most recent copy of the following:

For the VMS operating system -- VAXNMS Optional Software Cross
Reference Table, SPD 25.99.xx

For the Micro VMS operating system -- Micro VMS Optional Software Cross
Reference Table, SPD 28.99.xx

xiii

Structure

This manual is divided into five major parts, two appendixes, and an index:

Partl

Part2

Part3

Part4

Part5

Understanding DATATRIEVE

Explains basic terminology and concepts of VAX
DATATRIEVE (Chapter 1).

Manipulating Data

Describes how to write record selection expre~sions, store and
modify data, and use view domains and hierarchies (Chapters 2
through 6).

Programming in DAT ATRIEVE

Illustrates programming in DAT ATRIEVE through use of pro­
cedures, command files, and variables (Chapters 7 through 9).

Optimizing DAT ATRIEVE

Explains how to change record and file definitions, design the
most efficient records, and improve performance of
DATATRIEVE applications (Chapters 10 through 12).

DAT ATRIEVE and the VAX Information Architecture

Explains how to use TDMS and FMS forms in a DATATRIEV:
application, how to access data in DBMS and in Rdb databases
and how to access remote data (Chapters 13 through 16).

Appendix A presents a detailed discussion of DAT ATRIEVE context; Appendix
lists the sample data definitions created during the DAT ATRIEVE installation
procedure.

Related Manuals
For other information on the topics covered in this book, see:

VAX DATATRIEVE Handbook

VAX DATATRIEVE Guide to Writing Reports

VAX DAT AT RIEVE Reference Manual

VAX DATATRIEVE Guide to Using Graphics

VAX DAT AT RIEVE Guide to Programming and Custom,izing

VAX Common Data Dictionary Utilities Reference Manual

xiv

onventions
nee CDD Version 3.1, CDD path names include a leading underscore. For
~ample:

R> SHOW DICTIONARY
e default directory is _CDD$TOP.DTR32.WEAGER

rnmples of output in DATATRIEVE manuals do not reflect this change. You do
it need to enter CDD path names with the leading underscore.

rmbols used in examples:

RET>

TAB>

CTRL/x>

ilor

This symbol tells you to press the RETURN key on the
keyboard of your terminal.

This symbol tells you to press the TAB key on the key­
board of your terminal.

This symbol tells you to press the CTRL (control) key
and a letter key (Z. C, or Y) at the same time. If you
press CTRL/Z, the word Exit appears in reverse video; if
you press CTRL/Y. the word Interrupt appears in
reverse video. Examples of video output in this book do
not include either word: instead the conventions AZ and
Ay are used.

Colored ink in examples shows user input. Unless other­
wise indicated, you enter each input line by pressing the
RETURN key.

A vertical ellipsis in an example means that information
not directly related to the example has been omitted.

mbols and conventions used in syntax formats:

>PERCASE WORDS Uppercase words are DATATRIEVE keywords. Enter
them exactly as shown.

1ercase words Lowercase words are generic terms that indicate entries
you must provide.

Braces mean you must choose one. but no more than
one, of the enclosed entries.

xv

[1

II ff

''

xvi

Brackets mean you have the option of choosing one, but
no more than one, of the enclosed entries.

A horizontal ellipsis means you have the option of
repeating the preceding element of the syntax format.

A vertical ellipsis in a syntax format means you can
repeat the syntax element on the preceding line.

These are called double quotation marks.

These are called single quotation marks.

Technical Changes and New Features

1is section describes the new features for DAT A TRIEVE documented in this
anual.

~rsion 3.3 of DATATRIEVE provides limited support for the Rdb segmented
ring data type. This support lets you store and retrieve Rdb records that contain
!lds with the segmented string data type.

~e Section 15.9 for more information on using segmented strings with
t\TATRIEVE.

~e the Release Notes for a description of all technical changes to
t\TATRIEVE.

xvii

Part 1
Understanding DATATRIEVE

Understanding DATATRIEVE 1

1is chapter reviews basic DAT A TRI EVE concepts that were presented in
h.apter 1 of the VAX DATATRIEVE Handbook and explained in greater detail
later chapters of the Handbook. If you have read the Handbook, you will find
ost information in this chapter familiar.to you. If you have some programming
tckground, this chapter provides basic information about DAT ATRIEVE and
1e range of functions it performs. In addition, there is a section that explains
>tional software products you can use with DATATRIEVE that might be avail­
>le on your system .

. 1 Starting and Ending a DATATRIEVE Session

l start a DATATRIEVE session, begin at DCL command level and use the com­
and RUN SYS$SYSTEM:DTR32xx. The suffix xx is sometimes necessary to
entify the image of DATATRIEVE you want to run. See the person who
stalled DAT A TRIEVE on your system to determine if you need to specify a suf­
< and, if you do, what characters you type in place of xx. For example, if you
ant to run the version of DATATRIEVE that uses TDMS, you may need to
elude the suffix TD:

RUN SYS$SYSTEM:DTR32TD
.x Datatrieve V3
:c Query and Report System
·pe HELP for help
'R>

h.e startup banner shows that you have successfully invoked DAT ATRIEVE.
ote that the message you receive in response to your request should specify the
~rsion of VAX DAT ATRIEVE you are running. If it does not, consult the person
sponsib)e for VAX DAT A TRIEVE at your site.

1-1

To simplify this command. you can assign a symbol to it in your LOGIN.COM
file. To use DTR32 to invoke the version of DATATRIEVE inthe previous exam·
pie, enter:

$ DTR32 : == SYSSYSTEM: DTR3·2TD
$ DTR32
VAX Datatrieve V3
DEC Query and Report System
Type HELP for help
DTR>

To end your DAT A TRIEVE session if you are at a DTR > prompt, type EXIT am
press the RETURN key or use CTRL/Z. Either returns you to the VMS system
prompt. If you are at a CON>, DFN>, or RW> prompt, use CTRL/Z to get to
the DTR ~ prompt. Then use CTRL/Z again or type EXIT and press the
RETURN key.

1.2 Writing a DATATRIEVE Session to a Log File

You can use the DATATRIEVE OPEN command to create a record of your
DATATRIEVE session in a file in a VMS directory. At ariy point in the session
you can issue the CLOSE command and save all of the session up to that point. I
you do not end the creation of the log file with a CLOSE command,
DATATRIEVE automatically closes the file when you EXIT from DATATRIEVE

In this example the log file name is MONTHLY RPT.LOG, but you can specify
any file name you want: -

DTR> OPEN MONTHLY_RPT.LOG
DTR> :MONTHLY_RPT

DTR> CLOSE
DTR> EXIT

! Do not enter the file name following CLOSE.

See the VAX DATATRIEVE Reference Manual for more information about the
OPEN and CLOSE commands.

1-2 Understanding DATATRIEVE

3 DATATRIEVE Concepts and Terminology

te following sections review these concepts and terms:

Databases

DAT A TRIEVE domains

Common Data Dictionary

Commands and statements

Procedures

Command files

DATATRIEVE view domains

Tables

Distributed data

3.1 Databases

!\ T ATRIEVE can access three different types of databases:

File-structured databases that you set up with DATATRIEVE

Databases that you create using VAX Rdb

Databases that you create using VAX DBMS

rnmples in this book show you how to create your own file-structured databases.
lapters 14 and 15 explain how to access data stored in DBMS and Rdb
1tabases.

3.2 DATATRIEVE Domains

hen you manage information with DAT A TRIEVE, you acce~s data through con­
ructs called domains. A doinain definition establishes a name for a set of data
td tells DAT ATRIEVE where that data is described and where the data is
ored. A domain definition contains the name of the domain, the name of a
cord fdata description). and the name of a data file.

the domain is a DATATRIEVE DBMS domain or DATATRIEVE Rdb domain,
contains the name of a DBMS or Rdb database .

. Understanding DATATRIEVE 1-3

You create the domain definition, and the record definition and file that the
domain uses. You can do this by invoking ADT (Application Design Tool), or you
can create all three definitions using different forms of the DEFINE command.
Chapter 1 of the VAX DATATRIEVE Handbook discusses using ADT to create i
database. Chapters 10, 11, and 12 of the handbook discuss defining domains,
records, and files without ADT.

If you want to use DAT A TRIEVE to access a database managed by VAX Rdb or
VAX DBMS, you do not create record or file definitions because the database is
not file-structured. The database has already been created using VAX Rdb or
VAX DBMS. However, you may want to create a domain definition to let
DATATR.IEVE know how and where your data is stored. Chapter 14 and Chapte1
15 describe DBMS and Rdb domains in greater detail.

After you have created a DATATRIEVE domain, you refer to its data by using
the domain name in your DAT A TRIEVE commands and statements.

1.3.3 Common Data Dictionary

DATATRIEVE uses the VAX Common Data Dictionary (CDDl to store data defi·
nitions and procedures. The CDD is a VAX software product that you always hav1
on your system if you are using DATATRIEVE.

In an information management system, reliable data definitions are as important
as the data itself. The manager of the system or the person in charge of data
administration must know how data is represented and how it is used by different
applications running on the system. Shared data definitions must be
unambiguous, and sensitive data definitions must be protected. The CDD assists
in these tasks by providing a central storage place for data definitions and a data
security system for their protection.

The CDD is actually a hierarchy of dictionaries. A dictionary is to the CDD what
a directory is to the VMS operating system. Just as you enter a default directory
when you log in to your VMS system, you enter a default dictionary when you
start DATATRIEVE. As you can create new VMS directories and move from one
to another, you can create new dictionaries and move among them using
DATATRIEVE commands.

Remember, however, that dictionaries do not contain data files. They store only
definitions and the se~urity information connected with those definitions. Data
files always reside in VMS directories.

1-4 Understanding DATATRIEVE

3.4 Commands and Statements

muse commands and statements to manage information with DATATRIEVE.
ost of the commands deal with the CDD and perform the data description func­
ms of DATATRIEVE. The following two commands, for instance, tell
\TATRIEVE you want CDD$TOP.DTR$USERS.WARTON to be your current
::tionary, and you plan to store records in a domain named PERSONNEL:

R> SET DICTIONARY CDD$TOP.DTR$USERS.WARTON
R> READY PERSONNEL WRITE
R>

~her examples of commands are DEFINE DOMAIN, REDEFINE DOMAIN,
)IT, DELETE, FINISH, and RELEASE.

atements, on the other hand, perform the query, report, and data manipulation
n.ctions of DATATRIEVE. The two statements after the READY command in
e following example store a record in PERSONNEL and then display that
::ord. In the store operation, DATATRIEVE prompts you to enter each field in
e record:

~> READY PERSONNEL WRITE
~> STORE PERSONNEL
ter ID: 99039
ter EMPLOYEE STATUS: TRAINEE
ter FIRST NAME: MAYBEL
ter LAST NAME: STREP
lier DEPT~ T32
ter START_DATE: <TAB><RET>
lier SALARY: 20456
lier SUP_ID: 23456

~> PRINT PERSONNEL WITH ID = "99039"

[) STATUS

)39 TRAINEE

~>

FIRST
NAME

MAYBEL

LAST
NAME

STREP

DEPT

T32

START
DATE

SUP
SALARY ID

$20,456 23456

her DATATRIEVE statements include FIND. MODIFY, DISPLAY, SELECT,
d so on.

~u can combine statements into compound statements (BEGIN-END, THEN),
mplex logical structures with loops (FOR, REPEAT, WHILE), and conditional

Understanding DATATRIEVE 1-5

transfers (IF-THEN-ELSE, ABORT). The following statements retrieve and ther
display records of all the employees in department T32:

DTR> FOR PERSONNEL WITH DEPT EQUAL "T32" PRINT

ID STATUS
FIRST
NAME

38462 EXPERIENCED BILL
48573 TRAINEE SY
83764 EXPERIENCED LES

DTR>

LAST
NAME

SWAY
KELLER
WHART

DEPT
START
DATE

SUP
SALARY ID

T32 5-May-1980 $54,000 00012
T32 2-Aug-1981 $31,546 87289
T32 4-Apr-1980 $41,029 87289

See the VAX DATATRIEVE Reference Manual for a description of all the
DATATRIEVE commands and statements.

1.3.5 Procedures

Many applications of VAX DAT A TRI EVE involve sequences of commands and
statements that recur frequently. You can avoid retyping such a sequence by sto1
ing it in the CDD as a procedure. With the DEFINE PROCEDURE command,
you give the recurring sequence a name and enter both the name and the
sequence into the CDD. You invoke the procedure by typing either a colon(:) or
EXECUTE, followed by the procedure name. DAT ATRIEVE then executes the
statements and commands in the procedure. Refer to Chapter 7 for a discussion
of DAT A TRIEVE procedures.

1.3.6 DATATRIEVE Command Files

You can use DAT A TRI EVE command files in much the same way you use
DAT ATRIEVE procedures. Procedures are stored in the Common Data
Dictionary. and command files are stored in a VMS directory. Both contain only
DAT ATRIEVE commands and statements. You invoke command files at the
DTR> prompt by typing the at sign(@), followed by the command file
specification.

1.3.7 DATATRIEVE View Domains

You might want to access data repeatedly that is in more than one domain or
restrict someone's access to a subset of the information that is in a domain. You
can create a special type of DAT ATRIEVE domain, a view domain, to help accon
plish these functions. The definition of a view domain is stored in the CDD, and
you can use a view domain in much the same way as you would a "simple"
domain. Chapter 5 tells you how to create and use view domains.

1-6 Understanding DATATRIEVE

3.8 DATATRIEVE Tables

iother type of definition you can create with DATATRIEVE and store in the
)D is a table definition. DATATRIEVE tables let you:

Specify one value and retrieve another associated with it

Validate data according to the presence or absence of a data item in the table

\TA TRIEVE lets you define and use two types of tables: dictionary tables and
main tables. See Chapter 12 of the VAX DATATRIEVE Handbook and the
apter on designing better records in this manual for more information on
fining and using tables.

3.9 DATATRIEVE Collections

\TA TRI EVE collections are temporary groups of records that you pull together
>m a larger set of data. The following example creates a collection named
~PTT32 that contains all employee records from Department T32 and then iso­
:es tlw records of those employees earning more than $30,000:

R.> FIND DEPTT32 IN PERSONNEL WITH DEPT EQ "T32"
records found]

R.> FIND WELLPAID IN DEPTT32 WITH SALARY GT 30000
records found]
~> PRINT
record selected, printing whole collection.

D STATUS
FIRST
NAME

LAST
NAME DEPT

START
DATE

SUP
SALARY ID

i62 EXPERIENCED BILL
573 TRAINEE SY
764 EXPERIENCED JIM

SWAY
KELLER
MEADER

T32 5-May-1980 $54,000 00012
T32 2-Aug-1981 $31,546 87289
T32 4-Apr-1980 $41,029 87289

1e collections DEPTT32 and WELLPAID are available for use until you decide
remove them or until you exit from DATATRIEVE. Collections are useful
ten you are learning DATATRIEVE or first thinking about an application.
dug FIND statements parallels the way most of us think when retrieving data;
:it is, we use a series of steps to narrow down a group of records to just the ones
·want.

~.10 Distributed Data

[th VAX DATATRIEVE~ you can easily access domains defined on other sys­
ns that are linked to yours by DECnet. The other system must have VAX
\.TATRIEVE. DATATRIEVE-11, or DATATRIEVE-20 installed.

Understanding DATATRIEVE 1-7

1.4 What DATATRIEVE Can Do for the Programmer

You do not have to have a programming background to use DATATRIEVE.
However, if you do have programming experience, you probably want to know
how DAT A TRIEVE is different from the languages you have used before.

DATATRIEVE is a fourth-generation language. Its syntax is more "English-like'
than that of COBOL or BASIC, and it has a strong nonprocedural aspect. It
executes commands as you type them, and you can often simply tell
DAT A TRI EVE what information you want by name, instead of specifying how to
obtain that information.

DAT A TRIEVE provides the same data storage capabilities that you have with
other languages. It can store and retrieve data using existing RMS data files of
any type. It can also create sequential and multikey indexed files. However, you
cannot create a relative file with DATAT1'1EVE.

DAT ATRIEVE allows you to set up data hierarchies (as in a COBOL group item)
and repeating fields (as in a COBOL OCCURS clause). Retrieving data from
repeating fields (called lists in DATATRIEVE terminology) is not as easy as
retrieving data from other types of fields. Be sure to take this fact into consider­
ation before you decide to use DATATRIEVE's OCCURS clause.

In COBOL or BASIC, each program describes the structure of input and output
records. DAT A TRIEVE lets you define records and store record definitions sepa­
rately from a program. Then you can write any number of programs that use the
records you have defined, without redefining the record each time.

DAT A TRI EVE also handles other common language functions automatically,
without the need for language statements. For instance, DATATRIEVE:

• Finds data files, opens them, 'and performs input/output operations

• Labels columns in an output display

• Converts data types

• Formats data for output

• Handles conditions like end-of-file and matching

t-8 Understanding DATATRIEVE

s a result, you can save many lines of code, get applications running quickly, and
:tve code that is more readable than languages such as COBOL or BASIC.

sing the DAT A TRIEVE Call Interface, you can also include DAT ATRIEVE
.nctions in a program written in another language. The Call Interface is used
ost often in two ways:

You can use the linkage section of your program to do file access entirely
through DATATRIEVE. In this way, the calling program does not need to
specify the structure of the data, and you do not need to relink programs
when the data files change.

You can write a program that passes commands and statements to
DATATRIEVE. The program can present the user with a customized inter­
face, such as a menu. In this way, you can "hide" DATATRIEVE from users
who do not know how to use its commands and statements.

1e VAX DATATRIEVE Guide to Customizing and Progranuningexplains how
1u can use DAT ATRIEVE with other languages.

,5 The Sample Domains, Records, and Data Files

1e VAX DATATRIEVE installation kit includes several sample domains:
i\MILIES, PERSONNEL, and YACHTS, among others. The domain definitions
td the record definitions (FAMILY REC, PERSONNEL REC, and YACHT, for
:ample) are stored in the Common -Data Dictionary in the directory called
DD$TOP.DTR$LIB.DEMO.

ie data files, such as FAMILY.DAT, PERSON.DAT, and YACHT.DAT. are
ored in the library directory DTR$LIBRARY.

you want to use these domains to follow the examples in the VAX
I\ TA TRIEVE documentation and to practice using DAT A TRI EVE commands
ld statements, you should copy the data files to your default VMS directory.
m can use the VMS COPY command to transfer the data files to your default
\1S directory. For example, to copy FAMILY.DAT, enter:

COPY DTR$LIBRARY:FAMILY.DAT *

1 get access to the domain and record definitions stored in the Common Data
ctionary, you can set your default dictionary directory to the DEMO directory.
:ter you invoke VAX DATATRIEVE, enter this command:

R> SET DICTIONARY CDD$TOP.DTR$LIB.DEMO
R>

Understanding DATATRIEVE 1-9

To see that the sample domain and record definitions are in place, use the SHOV
command:

DTR> SHOW DOMAINS, RECORDS
Domains:

ANNUAL_REPORT;l FAMILIES;! KETCHES;2
OWNERS_SEQUENTIAL;l PAYABLES;!
PETS;1 PROJECTS;! SAILBOATS;l
YACHTS;l YACHTS_SEQUENTIAL;l

Records:

DTR>

ANNUAL_REC;l
PAYABLES_REC;1
SALES_REC;1

DAB;l FAMILY_REC;l
PERSONNEL_REC;1 PET_REC;1
YACHT;l

OWNERS;l
PERSONNEL;!
SALES;l

OWNER_RECORD;l
P_ROJECT _REC; 1

The results of this command vary from one system to another. but you should be
sure that the domain and record definitions you need are listed among those tha1
DAT A TRI EVE displays on your terminal.

If you cannot copy the data files from DTR$LIBRARY, cannot get access to the
DEMO directory, or cannot find the domain and record definitions in the DEMO
directory, see the person responsible for VAX DATATRIEVE on your system.

1.6 Using SET Commands to Control Output

When you invoke VAX DATATRIEVE, it sets several characteristics that contrc
your display of input and output. You can display these settings with the SHOW
SET UP command:

DTR> SHOW SET_UP
Set-up:

DTR>

Columns-page: 80
No abort
Prompt
No search
Form
No verify
No semicolon
No lock wait

The settings shown in the example are the default settings. You can change the~
characteristics at any time during a DATATRIEVE session by using the forms c
the SET command discussed in the following pages.

1.6.1 Changing the Columns-Page Setting

The default for the columns-page setting is 80 characters. the width of most vidE
display screens. You can change this setting to fit your application and terminal
characteristics;

1-10 Understanding DATATRIEVE

,6.1.1 Increasing the Columns-Page Setting -- You may want to increase the
>lumns-page setting if you have a VTl 00-family or hardcopy terminal. Before
>u can display lines more than 80 characters long, you must set your terminal to
low the display of long lines .. This is a two-step process:

l. Use the DCL SET TERMINAL command to tell your system to increase
the width· of lines it can send you:

$ SET TERMINAL/WIDTH=132
$

Alternatively, within DAT A TRI EVE you can use the function:

DTR> FN$WIDTH(132)
DTR>

Use the SET COLUMNS PAGE command to increase the length of the
line DAT A TRIEVE can display on your terminal. The maximum limit on
the columns-page setting is 255.

DTR> SET COLUMNS_PAGE = 132
DTR>

'hatever the column setting on your terminal, you can continue a long input line
r using a hyphen H at the end of the line. When you use a hyphen,
AT A TRI EVE does not check the syntax of your input until you press RETURN
ter a line that does not end in a hyphen. If the line you want to extend ends
:th a complete word, separate the hyphen from the word by entering a space.
therwise, DAT A TRI EVE considers the characters at the beginning of the next
ie to be part of the same character string.

)U cannot enter more than 255 characters on an extended input line.

6.1.2 Decreasing the Columns-Page Setting -- To decrease the number of
lumns displayed. simply enter a SET COLUMNS_PAGE command:

R> SET COLUMNS_PAGE = 60
R>

Understanding DATATRIEVE 1-11

1.6.2 Using SET ABORT

When DATATRIEVE executes an ABORT statement in a command file or procE
dure while SET NO ABORT is in effect, it affects only the compound statement
containing the ABORT statement. If SET ABORT is in effect, DATATRIEVE
terminates the remainder of the command file or procedure. The same rules app]
if you enter a CTRL/Z in response to a prompt.

If DAT A TRIEVE encounters a syntax or logical error, in a command file or procE
dure, it returns you to the DTR> prompt whether or not you have used SET
ABORT.

SET NO ABORT is the default se~ting when you invoke DATATRIEVE.

See Chapters 7 and 8 for a discussion of using ABORT and NO ABORT in con­
trolling procedures and command files.

1.6.3 Using SET PROMPT

When you invoke DATATRIEVE, SET PROMPT is in effect. If you press
RETURN before finishing a command or statement, DAT ATRIEVE prompts yo
for the remaining required elements of that command or statement.

The following sequence of commands and statements shows how DAT A TRI EVE
responds when SET PROMPT is in effect. After the line of text indicates the
next required element, DAT ATRIEVE displays the CON> (continuation) promi:
As long as the syntax of a command or statement is incomplete, DATATRIEVE
uses CON> to tell you it is ready for further input.

DTR> READY
[Looking for dictionary path name]
CON> YACHTS
DTR> FIND
[Looking for "FIRST", domain name, or collection name]
CON> FIRST
[Looking for value expression]
CON> 1
[Looking for name of domain, collection, or list]
CON> YACHTS
[1 record found]
DTR>

Notice that DATATRIEVE stops prompting as soon as you enter elements that
comprise a syntactically complete command or statement. For example, READ~
YACHTS is complete, and DAT ATRIEVE does not prompt for any further ele­
ment. Similarly, when you enter FIND FIRST 1 YACHTS, DATATRIEVE does
not prompt you for a CROSS clause, a Boolean expression, or a SORTED BY
clause.

1-12 Understanding DATATRIEVE

hen SET NO PROMPT is in effect, DATATRIEVE does not display the text
out the next required element. It does, however, use the CON> prompt when
e syntax is incomplete. This identical sequence of inputs shows how
~TATRIEVE responds when SET NO PROMPT is in effect:

R> SET NO PROMPT
R> FIND
N> FIRST
N> 1
N> YACHTS
record found]

R.>

>te that SET NO PROMPT does not suppress the messages DATATRIEVE
;plays about the results of commands and statements.

).4 Using SET SEARCH

1u activate the DAT ATRIEVE Context Searcher with the SET SEARCH com­
md. The Context Searcher is a facility to help you get easy access to list items
d DBMS sets. It automatically searches lists and DBMS sets when necessary
resolve the names of data items. NO SEARCH is the default setting. See
tapter 6 for a discussion of the Context Searcher.

;.s Using SET FORM

~T FORM is the default when you start a DATATRIEVE session. You can con-
11 whether or not DATATRIEVE uses forms to display records on your VT52-,
~100- or VT200-family terminal. SET FORM must be in effect both when you
t access to a domain whose definition includes a FORM clause and when you
ter PRINT, STORE, or MODIFY commands related to that domain. SET NO
>RM prevents DATATRIEVE from using its forms interface. See Chapter 13
·a discussion of using forms with DATATRIEVE.

i.6 Using SET VERIFY

~ T ATRIEVE 's SET VERIFY command displays lines from DATA TRIEVE
nmand files when those command files are invoked. It also displays the con-
1ts of the edit buffer when you exit an edit buffer from within DA TATRIEVE.

:T VERIFY does not display lines from command files run from the DCL
>mpt in an invocation command line, unless the command file itself contains a
:T VERIFY command. And SET VERIFY does not display lines from
~ T ATRIEVE procedures stored in the CDD, whether they are run from within
~TATRIEVE or from the DCL prompt. (See the section later in this chapter for
ire information on issuing DATATRIEVE commands from the DCL prompt.)

Understanding DATATRIEVE 1-13

SET NO VERIFY turns off display of command file lines. The SHOW SET UP
command tells you whether SET VERIFY or SET NO VERIFY is in effect durin
your DATATRIEVE session.

There are comparable DCL settings, SET VERIFY and SET NOVERIFY. If DC
SET VERIFY is in effect, lines from DATATRIEVE command files run from thE
DCL prompt are displayed.

You may want to use SET VERIFY as a debugging tool for DAT ATRIEVE proc~
dures. You can do this by either:

• Creating your DAT A TRI EVE procedures in a command file at VMS level
and executing them at the DTR > prompt

• Writing your DATATRIEVE procedures to a command file from an edit
buffer or with the EXTRACT command, deleting the DEFINE
PROCEDURE or REDEFINE PROCEDURE syntax, and executing that
command file from DAT ATRIEVE

If there is a syntax error, you can see exactly where it occurs in the procedure.
After you have debugged a procedure, you can then store it in the CDD.

1.6. 7 Using SET SEMICOLON
f

When you change the setting to SET SEMICOLON, DATATRIEVE requires
that you put a semicolon at the end of every statement you enter. DATATRIEVl
returns a CON> prompt each time you press RETURN to tell you the statemen
is still incomplete. SET NO SEMICOLON is the default at the start of your
DATATRIEVE session.

If you are entering a compound statement incorporating more than one logically
complete statement. SET SEMICOLON enables you to end a component state­
ment at the end of a line without having DATATRIEVE execute the statement
immediately. When you have entered all the parts of the statement, you enter a
semicolon and DAT ATRIEVE executes the entire statement.

1.6.8 Using SET LOCK WAIT

SET NO LOCK WAIT is the default setting. With this setting. DATATRIEVE
tries to access a-locked record for 12 seconds. If the record does not become
accessible during that period, you receive an error message and DAT ATRIEVE
continues. If you have LOCK WAIT set, DATATRIEVE keeps accessing a locke
record indefinitely until it becomes available. For a discussion of locked· records,
see the material on the READY command in the VAX DATATRIEVE Referenc
Manual.

1-14 Understanding DATATRIEVE

. 7 Controlling the Input of Dates and Currency

rou can define VMS logical names to control the way DATATRIEVE handles the
1terpretation of dates and currency symbols. You can control the format
>ATATRIEVE uses to interpret the input of dates by defining the Logical Name
>TR$DATE INPUT. This logical name affects only the interpretation of the
1put of dates and has nothing to do with the edit strings used for the output of
ates.

'ou define DTR$DATE INPUT with a three-character string containing one D
)r day, one M for month, and one Y for year. Enclose the three-character string
l quotation marks.

'he command DEFINE DTR$DATE INPUT "MDY" defines a date input of
3/12/09 as March 12. 1909. tMDY is-the default interpretation DATATRIEVE
ses for input of dates if you do not define DTR$DATE_INPUT.)

'able 1-1 shows the different combinations you can use.

able 1-1: Defining the Logical Name DTR$DATE_INPUT

Format Input Definition

"MDY" 03/12/09 March 12 1909

"DMY" 03/12/09 December 3 1909

"YDM" 03/12/09 September 12 1903

"YMD" 03/12/09 December 9 1903

"DYM" 03/12/09 September 3 1912

"MYD" 03/12/09 March 9 1912

he format you choose also controls the format DAT A TRI EVE uses to convert
x-digit numeric strings (such as 810210) to dates.

ou can define DTR$DATE INPUT at DCL command level (indicated by the dol­
r sign prompt), or you can put the appropriate DEFINE command in your login
>mmand file.

Understanding DATATRIEVE 1-15

Table 1-2 shows the three logical names you can define to control.the currency
defaults of the VMS operating system.

Table 1-2: Currency Symbols

Logical Name

SYS$CURRENCY

SYS$DIGIT _SEP

SYS$RADIX_POINT

Default

$

The following examples demonstrate the effects of redefining these logical names
In the first example, you redefine the default values:

$ DEFINE SYS$CURRENCY "#"
$ DEFINE SYS$DIGIT_SEP II. II

$ DEFINE SYS$RADIX_POINT II' II

In the next example, you can see the results of the changed definitions:

DTR> DECLARE NUM PIC 9(6)V99.
DTR> NUM = 12345.67
DTR> PRINT NUM USING $$$,$$$.99

NUM

#12.345,67

DTR>

1.8 Issuing DATATRIEVE Commands from DCL Command
Level

When you define a DCL symbol for invoking VAX DATATRIEVE. make sure y01
use the dollar sign ($)instead of the DCL RUN command. For example, define
the name as the equivalent of SYSSYSTEM:DTR32, not RUN
SYS$SYSTEM:DTR32. Defining the symbol this way lets you include
DATATRIEVE commands and statements on the same line you use to start VAX
DATATRIEVE. For example:

$ DTR32 :== SYSSYSTEM:DTR32
$ DTR32 READY YACHTS; PRINT FIRST 3 YACHTS

DCL command lines that contain DAT A TRI EVE commands and statements are
also_called invocation command lines. On a command line like this. you can put
any legal combination of DAT A TRI EVE commands and statements. including th1
invocations of DATATRIEVE procedures and command files. Separate each com­
mand or statement with a semicolon.

1-16 Understanding DATATRIEVE

A. T ATRIEVE executes the commands and statements in the sequence you enter
em. When DATATRIEVE finishes executing those commands and statements,
automatically ends your session and returns to the DCL prompt.

1is example shows how the invocation command line operates:

DTR32 READY YACHTS; PRINT FIRST 3 YACHTS

LENGTH
OVER

.NUF ACTURER MODEL RIG ALL WEIGHT BEAM PRICE

.LB ERG 37 MK II KETCH 37 20,000 12 $36,951

.LBIN 79 SLOOP 26 4,200 10 $17,900

.LBIN BALLAD SLOOP 30 7,276 10 $27,500

your invocation command line contains any of the following elements.
AT A TRI EVE prompts you for input before returning you to DCL command
vel:

STORE and MODIFY statements without USING clauses

Prompting value expressions

ADT

SET GUIDE

EDIT

the DCL command line that invokes DATATRIEVE is embedded in a DCL
1mmand procedure and DAT A TRI EVE prompts for input, you must reassign
te logical name SYS$INPUT. See the section on using DCL command files in
hapter 8 for more information .

. 9 Using a DATATRIEVE Startup Command File

you frequently start your DAT A TRI EVE sessions with the same series of com­
ands and statements, you can put them in a DAT A TRI EVE command file:

With a text editor, create a file containing the DATATRIEVE commands
and statements just as you would enter them in an interactive session but
without any of the DATATRIEVE prompts fDTR >, CON>, DFN >.
RW>l.

Understanding DATATRIEVE 1-17

Here is a sample command file:

DECLARE X USAGE DATE.
X = "NOW"
IF FN$HOUR(X) BT 6 11 THEN PRINT SKIP, "GOOD MORNING." ELSE

IF FN$HOUR(X) BT 12 16 PRINT SKIP, "GOOD AFTERNOON." ELSE
PRINT SKIP, "YOU STILL HERE?"

READY CDD$TOP.DTR$LIB.DEMO.YACHTS,
CDD$TOP.DTR$LIB.DEMO.OWNERS,
CDD$TOP.DTR$LIB.DEMO.FAMILIES

SHOW READY
SHOW DICTIONARY

2. In your LOGIN.COM file or at DCL level. use the DCL DEFINE command
to define DTR$ST ARTUP as a logical name for your startup command file:

$ DEFINE DTR$STARTUP "device: [username]DTRSTART.COM"

When you invoke DAT A TRIEVE. it translates the logical name
DTR$ST ARTUP and executes the command file, including any output it
generates, before it displays the first DTR> prompt on your terminal.

You can include in your DTR$ST ARTUP file any of the SET commands to es tab·
lish the default settings for your DAT A TRIEVE session. You can also establish
synonyms for any DATATRIEVE keywords. using the DECLARE SYNONYM
command. See the description of DECLARE SYNONYM in the VAX
DAT AT RIEVE Ref ere nee Manual.

1-18 Understanding DATATRIEVE

. Part 2
Manipulating Data

Writing Record Selection Expressions 2

ice you have defined and stored your data. you probably want to manipulate it
some way. Typical operations that you perform when you access data are:

Displaying a group of records (PRINT, LIST, REPORT, or PLOT
statements)

Forming a temporary collection of records (FIND statement)

Updating or changing a group of records (MODIFY statement)

~fore performing any of these operations, you must first decide which records
1u want to work with. You select those target records using a record selection
:pression (RSEl. The RSE identifies which records you want to work with and
rms a record stream, that is, a group of records from a domain or collection.
A.TA TRI EVE performs the specified operation on every record in the record
ream.

1e selected records can come from any of the following sources:

Domains

Collections

Lists

Rdb relations

DBMS records

2-1

The RSE determines the content of the record stream. By including various
clauses in the RSE, you can:

• Specify the number of records in the record stream (FIRST n, ALL clauses)

• Limit the record stream to records that meet a conditional test (WITH
clause)

• Reduce the records in a record stream to unique values (REDUCED TO
clause)

• Sort the records according to the values of one or more fields (SORTED BY
clause)

• Join records from one or more domains or collections (CROSS clause)

• Access member or owner records of a DBMS set, (MEMBER, OWNER, or
WITHIN clauses)

You may want to select records using a combination of these ways. An RSE can
include any or all of the clauses listed. The following FIND statement includes a
record selection expression that combines records from different sources, limits
the records in the record stream to those that meet a particular condition, and
sorts the records according to the value of two fields:

FIND EMPLOYEES CROSS
JOB_HISTORY OVER
EMPLOYEE_ID WITH

JOB_END MISSING SORTED BY
DEPARTMENT_CODE, LAST_NAME

When you are writing complex RSEs like this one, it is useful to indent parts of
the expression so that you can easily see which relations are being crossed, whicl
field values are used for selecting the records, and which fields are used for the
sorting. The indentation helps you to see different parts of the RSE: it does not
affect how the statement executes.

This chapter presents many examples to teach you how to use RSEs, an impor­
tant tool of the DAT ATRIEVE language. It begins with simple RS Es and shows
you how to use each clause of the RSE so that you can build complex RSEs. The
examples show RSEs in PRINT statements, but you can also use them in all of
the following DAT A TRIEVE statements:

• ERASE

• FIND

• FOR

• LIST

2-2 Writing Record Selection Expressions

MATCH

MODIFY

PLOT

REPORT

Restructure

addition. you can use RSEs to specify subsets of records when you define view
mains. See Chapter 5 for examples of RSEs in view domain definitions .

.is chapter illustrates all of the previously listed operations except for accessing
~ords in a DBMS set, which is discussed in Chapter 14. In addition. a form of
~ RSE allows you to access list items from hierarchical records. This is dis-
5sed in Chapter 6.

1 Displaying All the Records in a Domain

3. domain does not contain many records, you may want to display all of the
~ords. In that case, you use the simplest form of an RSE, the domain name by
elf. Because you want DAT A TRI EVE to print all of the records in that domain,
ll do not use any clauses of the RSE to select specific records. For example:

t> READY PERSONNEL
t> PRINT PERSONNEL

STATUS
FIRST
NAME

>12 EXPERIENCED CHARLOTTE
391 EXPERIENCED FRED
)43 EXPERIENCED CASS
543 TRAINEE JEFF
l32 TRAINEE THOMAS
l56 TRAINEE HANK
l62 EXPERIENCED BILL
l65 EXPERIENCED JOANNE
l85 EXPERIENCED DEE
l75 EXPERIENCED GAIL
i73 TRAINEE SY
)01 EXPERIENCED DAN
343 TRAINEE BART
)23 EXPERIENCED LYDIA
r54 EXPERIENCED JIM
~75 EXPERIENCED MARY

LAST
NAME

SPIVA
HOWL
TERRY
TASHKENT
SCHWEIK
MORRISON
SWAY
FREIBURG
TERRI CK
CASSIDY
KELLER
ROBERTS
HAMMER
HARRISON
MEADER
NALE VO

DEPT

TOP
F11
098
C82
F11
T32
T32
E46
D98
E46
T32
C82
098
F11
T32
D98

START
DATE

SUP
SALARY ID

12-Sep-1972 $75,892 00012
9-Apr-1976 $59,594 00012
2-Jan-1980 $29,908 39485
4-Apr-1981 $32,918 87465
7-Nov-1981 $26,723 00891
1-Mar-1982 $30,000 87289
5-May-1980 $54,000 00012

20-Feb-1980 $23,908 48475
2-May-1977 $55,829 00012
2-May-1978 $55,407 00012
2-Aug-1981 $31,546 87289
7-Jul-1979 $41,395 87465
4-Aug-1981 $26,392 39485

19-Jun-1979 $40,747 00891
4-Apr-1980 $41,029 87289
3-Jan-1976 $56,847 39485

(continued on next page)

Writing Record Selection Expressions 2-3

87289 EXPERIENCED LOUISE
87465 EXPERIENCED ANTHONY
87701 TRAINEE NATHANIEL
88001 EXPERIENCED DAVID
90342 EXPERIENCED BRUNO
91023 TRAINEE STAN
99029 EXPERIENCED RANDY

DTR>

DEPALMA G20
IACOBONE C82
CHONTZ F11
LITELLA G20
DONCHIKOV C82
WITTGEN G20
PODERESIAN C82

28-Feb-1979 $57,598 00012
2-Jan-1973 $58,462 00012

28-Jan-1982 $24,502 00891
11-Nov-1980 $34,933 87289
9-Aug-1978 $35,952 87465

23-Dec-1981 $25,023 87289
24-May-1979 $33,738 87465

After you ready the domain. the PRINT PERSONNEL statement displays all th
records in the PERSONNEL domain. The source for the RSE is PERSONNEL,
the name of the domain.

To indicate clearly that you want the record stream to include all the records, y01
can include the keyword ALL before the source of the RSE. Because the ALL is
optional, PRINT ALL PERSONNEL is equivalent to PRINT PERSONNEL.

2.2 Limiting the Number of Records in the Record Stream

There are several ways to limit the number of records in the record stream. One
way is to restrict the record stream to the first n records in the domain or collec­
tion. This type of RSE is useful when you know the order of records and the exai
number of records you wish to access.

To specify the number of records in the record stream, type FIRST followed by c
number before typing the source for the RSE. For example:

DTR> PRINT FIRST 5 PERSONNEL

ID STATUS
FIRST
NAME

LAST
NAME

00012 EXPERIENCED CHARLOTTE SPIVA
00891 EXPERIENCED FRED HOWL
02943 EXPERIENCED CASS TERRY
12643 TRAINEE JEFF TASHKENT
32432 TRAINEE THOMAS SCHWEIK

DTR>

DEPT
START
DATE

SUP
SALARY ID

TOP 12-Sep-1972 $75,892 00012
F11 9-Apr-1976 $59,594 00012
098 2-Jan-1980 $29,908 39485
C82 4-Apr-1981 $32,918 87465
F11 7-Nov-1981 $26,723 00891

In this case. the RSE is FIRST 5 PERSONNEL. DATATRIEVE displays the
first five records in PERSONNEL, according to their order in the data file. An
RSE can have the form FIRST n domain-name or FIRST n collection-name. If n
is larger than the number of records in the domain or collection. DAT A TRI EVE
displays all the records in that source.

2-4 Writing Record Selection Expressions

3 Identifying the Records That Meet a Test

ten you are interested in grouping similar records together, regardless of their
ysical position in the data file. You can restrict the record stream to those
~ords that satisfy a specific condition by using the WITH clause of the RSE.
fferent types of WITH clauses reflect different types of relationships between
~ values of the same field for different records. Records can be grouped if they
~related by the following conditions:

There is a pattern to the characters comprising the field values

The field values fall into a specified range

The value for a field is or is not missing

A field value can or cannot be found in a table

L 1 Comparing Records by Pattern Recognition

iu can group records if the characters of a field value match or do not match a
~cified value. For example:

t> PRINT YACHTS WITH RIG "MS"

LENGTH
OVER

mFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

~ERICAN 26-MS MS 26 5,500 08 $18,895
lSTWARD HO MS 24 7,000 09 $15,900
JORD MS 33 MS 33 14,000 11
[NOSEY 39 MS 39 14,500 12 $35,900
lGGER FD M/S MS 35 17,600 11

t>

is statement causes DAT A TRIEVE to examine each record of the YACHTS
main. displaying only those records with the value MS for the RIG field.
~TATRIEVE tests each record of YACHTS. identifying and then displaying
:h record that meets the specified condition. The WITH clause lets you limit
~ record stream to the records you wish to access.

e expression RIG= "MS" is a Boolean expression. A Boolean expression con-
1ls a comparison between value expressions. A Boolean expression is either true
false, depending on the values of the field and the value expression specified.
e term that relates the value expressions is called a relational operator. In this
1mple. the relational operator is an equal sign (=).

Writing Record Selection Expressions 2-5

When you use EQUAL (or= or EQ)., NOT EQUAL (NE), or CONTAINING
(CONT), you can list more than one value expression in the same Boolean. The
following queries specify a group of value expressions for DAT ATRIEVE to com­
pare with each field value:

DTR> PRINT YACHTS WITH BUILDER = "ALBIN", "ALBERG"

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600
ALBERG 37 MK II KETCH 37 20,000 12 $36,951

DTR> PRINT YACHTS WITH RIG NE "SLOOP", "KETCH"

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

AMERICAN 26-MS MS 26 5,500 08 $18,895
EASTWARD HO MS 24 7,000 09 $15,900
FJORD MS 33 MS 33 14,000 11
LINDSEY 39 MS 39 14,500 12 $35,900
ROGGER FD M/S MS 35 17,600 11

DTR>

Note that the EQUAL(=) and NOT_ EQUAL operators are case-sensitive:

DTR> FIND YACHTS WITH BUILDER = "Albin"
[O records found]
DTR> FIND YACHTS WITH BUILDER NOT_EQUAL "Albin"
[113 records found]

Because the names of builders in the YACHTS domain were entered in upperca~
letters. DA TA TRI EVE does not find any record for a builder named "Albin."

However. the CONT or CONTAINING operator is indifferent to the case of the
letters and searches only for a particular sequence of letters. This operator also
finds matches if there is agreement with a substring derived from the field value
The CONT operator finds the" ALBIN" records if you specify" Albin" or "bin" i

three-letter substring) or any other stting of letters unique to ALBIN:

DTR> FIND YACHTS WITH BUILDER CONT "Albin"
[3 records found]
DTR> FIND YACHTS WITH BUILDER CONT "bin"
[3 records found]

2-6 Writing Record Selection Expressions

the next example, DAT A TRIEVE finds and displays each record that contains
;her the substring "alb" or the substring "pears" in the value for BUILDER:

R.> PRINT YACHTS WITH BUILDER CONT "alb", "pears"

LENGTH
OVER

NUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

LBERG 37 MK II KETCH 37 20,000 12 $36,951
LBIN 79 SLOOP 26 4,200 10 $17,900
LBIN BALLAD SLOOP 30 7,276 10 $27,500
LBIN VEGA SLOOP 27 5,070 08 $18,600
EARS ON 10M SLOOP 33 12,441 11
EARS ON 26 SLOOP 26 5,400 08
EARS ON 26W SLOOP 26 5,200 09
EARS ON 28 SLOOP 28 7,850 09
EARS ON 30 SLOOP 30 8,320 09
EARS ON 35 SLOOP 35 13,000 10
EARS ON 36 SLOOP 37 13,500 11
EARS ON 365 KETCH 36 17,700 11
EARS ON 39 SLOOP 39 17,000 12
EARSON 419 KETCH 42 21,000 13

R.>

hen you want to find records with a field value starting with a particular
bstring. use the STARTING WITH relational operator. For example, you might
mt to display data on all builders beginning with the letter /1 A 11 or with the
bstring /1 AI":

R.> PRINT YACHTS WITH BUILDER STARTING WITH "A"

LENGTH
OVER

NUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

LBERG 37 MK II KETCH 37 20,000 12 $36,951
LBIN 79 SLOOP 26 4,200 10 $17,900
LBIN BALLAD SLOOP 30 7,276 10 $27,500
LBIN VEGA SLOOP 27 5,070 08 $18,600
:v1ERICAN 26 SLOOP 26 4,000 08 $9,895
"1ERICAN 26-MS MS 26 5,500 08 $18,895

~continued on next page~

Writing Record Selection Expressions 2-7

DTR> PRINT YACHTS WITH BUILDER STARTING WITH "AL"

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951
ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600

DTR>

Note that the STARTING WITH relational operator is case-sensitive. If you do
not specify the correct case of each character in the substring, DAT ATRIEVE
does not find the record:

DTR> FIND YACHTS WITH BUILDER STARTING WITH "al"
[O records found]
DTR>

2.3.2 Grouping Records When Values Fall Within a Range

DAT A TRI EVE lets you use a variety of relational operators to test if a field valu
for a record falls within a specified range. These operators are:

• GREATER_THAN (>,GT. or AFTER)

• GREATER_ EQUAL (GE)

• LESS THAN(<, LT, or BEFORE)

• LESS_EQUAL (LE)

• BETWEEN (BT)

For example:

DTR> PRINT PERSONNEL WITH SALARY GREATER_THAN 54000

ID STATUS
FI~ST
NAME

00012 EXPERIENCED CHARLOTTE
00891 EXPERIENCED FRED
39485 EXPERIENCED DEE
48475 EXPERIENCED GAIL
84375 EXPERIENCED MARY
87289 EXPERIENCED LOUISE
87465 EXPERIENCED ANTHONY

LAST
NAME

SPIVA
HOWL
TERRI CK
CASSIDY
NALEVO
DEPALMA
IACOBONE

2-8 Writing Record Selection Expressions

DEPT

TOP
F11
D98
E46
098
G20
C82

START
DATE

SUP
SALARY ID

12-Sep-1972 $75,892 00012
9-Apr-1976 $59,594 00012
2-May-1977 $55,829 00012
2-May-1978 $55,407 00012
3-Jan-1976 $56,847 39485

28-Feb-1979 $57,598 00012
2-Jan-1973 $58,462 00012

R> PRINT PERSONNEL WITH SALARY GREATER_EQUAL 54000

D STATUS
FIRST
NAME

012 EXPERIENCED CHARLOTTE
891 EXPERIENCED FRED
462 EXPERIENCED BILL
485 EXPERIENCED DEE
475 EXPERIENCED GAIL
375 EXPERIENCED MARY
289 EXPERIENCED LOUISE
465 EXPERIENCED .ANTHONY

LAST
NAME

SPIVA
HOWL
SWAY
TERRI CK
CASSIDY
NALEVO
DEPALMA
IACOBONE

DEPT

TOP
FU
T32
D98
E46
D98
G20
C82

START
DATE

SUP
SALARY ID

12-Sep-1972 $75,892 00012
9-Apr-1976 $59,594 00012
5-May-1980 $54,000 00012
2-May-1977 $55,829 00012
2-May-1978 $55,407 00012
3-Jan-1976 $56,847 39485

28-Feb-1979 $57,598 00012
2-Jan-1973 $58,462 00012

>te the difference between the two record streams. Bill Sway, who earns exactly
4.000. is included in the record stream when the Boolean expression is
:ALARY GREATER EQUAL 54000." But he is excluded when the
lEATER THAN operator is used. In other words, GREATER EQUAL
~ludes a record if a field value is equal to the value expression specified, but
lEATER THAN leaves the record out.

le LESS THAN and LESS EQUAL operators work in a similar manner. The
~SS EQUAL operator includes a record if a field value is either less than or
Lial to the value expression specified.

le BETWEEN operator is the equivalent of the GREATER EQUAL and
~SS EQUAL operators combined. It searches for records with field values that
~ within the range specified or equal to either of the value expressions that
termine the range. In the following example. the Boolean expression identifies
ecord stream that includes records with values for SALARY of $30,000 and
4,000:

i> PRINT PERSONNEL WITH SALARY BETWEEN 30000 AND 54000

FIRST LAST START SUP
STATUS NAME NAME DEPT DATE SALARY ID

)43 TRAINEE JEFF TASHKENT C82 4-Apr-1981 $32,918 87465
156 TRAINEE HANK MORRISON T32 1-Mar-1982 $30,000 87289
162 EXPERIENCED BILL SWAY T32 5-May-1980 $54,000 00012
)73 TRAINEE SY KELLER T32 2-Aug-1981 $31,546 87289
)01 EXPERIENCED DAN ROBERTS C82 7-Jul-1979 $41,395 87465
)23 EXPERIENCED LYDIA HARRISON F11 19-Jun-1979 $40,747 00891
r54 EXPERIENCED JIM MEADER T32 4-Apr-1980 $41,029 87289
>01 EXPERIENCED DAVID LITELLA G20 11-Nov-1980 $34,933 87289
~42 EXPERIENCED BRUNO DONCHIKOV C82 9-Aug-1978 $35,952 87465
>29 EXPERIENCED RANDY PO DERES IAN C82 24-May-1979 $33,738 87465

ro additional relational operators that separate records according to ranges are
~FORE and AFTER. These operators are useful for comparing values for date

Writing Record Selection Expressions 2-9

fields. BEFORE can be used interchangeably with LESS THAN, and AFTER car
be substituted for GREATER_THAN. For example:

DTR> PRINT PERSONNEL WITH START_DATE AFTER "1-Jan-1981"

FIRST LAST START SUP
ID STATUS NAME NAME DEPT DATE SALARY ID

12643 TRAINEE JEFF TASHKENT C82 4-Apr-1981 $32,918 87465
32432 TRAINEE THOMAS SCHWEIK FU 7-Nov-1981 $26,723 00891
34456 TRAINEE HANK MORRISON T32 1-Mar-1982 $30,000 87289
48573 TRAINEE SY KELLER T32 2-Aug-1981 $31,546 87289
49843 TRAINEE BART HAMMER 098 4-Aug-1981 $26,392 39485
87701 TRAINEE NATHANIEL CHONTZ FU 28-Jan-1982 $24,502 00891
91023 TRAINEE STAN WITTGEN G20 23-Dec-1981 $25,023 87289

DTR>

This query finds all employees who started after January 1, 1981. If there had
been an employee who started on that date, the record would not have been
included.

2.3.3 Grouping Records Based on a MISSING VALUE

If a missing value for a field is defined in the record definition using the
MISSING VALUE IS field definition clause, you can search for records that
either have or do not have the missing value.

For example, in the PERSONNEL domain, a MISSING VALUE clause has been
included in the record definition of the SUP ID field. That missing value is set as
zero. You can form an RSE that asks DAT A TRI EVE to search for any records
containing the MISSING VALUE:

DTR> FIND PERSONNEL WITH SUP_ID MISSING
[O records found]

You can also ask DATATRIEVE to search for records in which a field does not
contain the MISSING VALUE you specified in the record definition:

DTR> FIND PERSONNEL WITH SUP ID NOT MISSING
[23 records found] -
DTR>

2-10 Writing Record Selection Expressions

1.4 Grouping Records by Reference to a Table

me domains are associated with domain or dictionary tables that refer to one of
~ fields in the record. You can form an RSE that causes DAT A TRIEVE to look
the field value in the table. If the field value is in the table, DAT ATRIEVE
:ludes the record in the record stream. An example of a table-based RSE is:

tSONNEL WITH SUP_ID IN SUP_TABLE

cords with supervisor identification numbers in the SUP TABLE are included
the record stream. -

LS Summary of the Relational Operators

ble 2-1 summarizes all of the relational operators available to form Boolean
::>ressions in the WITH clause of an RSE.

ble 2-1: Conditional Comparisons for an RSE

Type of Relationship of Relational
omparison Values in Boolean Operator Boolean Expression

Pattern Exact match (case- = BUILDER = "ALBIN"
. ecognition sensitive) . EQUAL "ALBIN"= BUILDER

EQ

No match (case- NE BUILDER NE "ALBIN"
sensitive). NOT_EQUAL "ALBIN" NE BUILDER

NOTEQUAL

Substring matches CONT BUILDER CONT "bin"
(not case- CONTAINING
sensitive).

Beginning STARTING WITH BUILDER STARTING
substring matches WITH "AL"
(case-sensitive).

(continued on next page)

Writing Record Selection Expressions 2-11

Table 2-1: Conditional Comparisons for an RSE (Cont.)

Type of Relationship of Relational
Comparison Values in Boolean Operator Boolean Expression

Value Within First value is > PRICE > 50000
a Range greater. GT 50000 > PRICE

GREATER_ THAN

Date field value AFTER START _DATE AFTER
is later than the "1-Jan-1981"
value expression.

First value is GE PRICE GE 50000
greater than or GREATER_ EQUAL 50000 GE PRICE
equal.

First value is < PRICE < 20000
less. LT 20000 < PRICE

LESS_ THAN

Date field value BEFORE START _DATE BEFORE
is earlier than "1-Jan-1981"
the value
expression.

First value is LE PRICE LE 20000
less than or equal. LESS_EQUAL

First value is BT PRICE BETWEEN 30000
between the two BETWEEN AND 54000
values or equal
to one.

Field Value Field value is the MISSING PRICE MISSING
Missing MISSING VALUE.

Look Up in Field value is in IN table-name RIG IN RIG_ TABLE
Table the table.

2.3.6 Setting Up Multiple Tests with Compound Booleans

To set up multiple tests for records, you can join two or more Boolean expres­
sions. The expressions that join Boolean expressions are called Boolean operator

There are four Boolean operators:

AND OR NOT BUT

2-12 Writing Record Selection Expressions

,ing AND, OR, and BUT, you can join two or more Boolean expressions to form
,ingle Boolean expression. NOT allows you to reverse the value of a Boolean
pression.

you link Boolean expressions with AND or BUT, the resulting Boolean expres­
m is true only if all the Boolean expressions linked with AND or BUT are true.

you link Boolean expressions with OR, the resulting Boolean expression is true
any one of the Boolean expressions linked with OR is true.

you precede a Boolean expression with NOT, the resulting Boolean expression
true if the Boolean expression following NOT is false. The reverse is also true:
e resulting Boolean expression is false if the Boolean expression following NOT
true.

le following examples show the use of Boolean operators:

R> PRINT PERSONNEL WITH START_DATE BEFORE "1-Jan-1979" AND
N> SALARY LT 36000

D STATUS
FIRST
NAME

342 EXPERIENCED BRUNO

LAST
NAME DEPT

START
DATE

SUP
SALARY ID

DONCHIKOV C82 9-Aug-1978 $35,952 87465

le first query shows that Bruno Donchikov is the only employee who started
fore January 1, 1979 and is earning less than $36,000.

R> PRINT PERSONNEL WITH DEPT = "TOP" OR SALARY > 54000

D STATUS
FIRST
NAME

012 EXPERIENCED CHARLOTTE
891 EXPERIENCED FRED
485 EXPERIENCED DEE
475 EXPERIENCED GAIL
375 EXPERIENCED MARY
289 EXPERIENCED LOUISE
465 EXPERIENCED ANTHONY

'R>

LAST
NAME

SPIVA
HOWL
TERRI CK
CASSIDY
NALEVO
DEPALMA
IACOBONE

DEPT

TOP
F11
D98
E46
D98
G20
C82

START
DATE

SUP
SALARY ID

12~Sep-1972 $75,892 00012
9-Apr-1976 $59,594 00012
2-May-1977 $65,829 00012
2-May-1978 $65,407 00012
3-Jan-1976 $56,847 39485

28-Feb-1979 $67,598 00012
2-Jan-1973 $58,462 00012

1e second query displays data on all employees who are either in the TOP
~partment or earning more than $54,000.

Writing Record Selection Expressions 2-13

DTR> PRINT PERSONNEL WITH SALARY > 54000 BUT DEPT = "TOP"

ID STATUS
FIRST
NAME

LAST
NAME DEPT

START
DATE

SUP
SALARY ID

00012 EXPERIENCED CHARLOTTE SPIVA TOP 12-Sep-1972 $75,892 00012

DTR>

The third query displays data on all employees who earn more than $54,000 but
who also are in the department TOP.

2.4 Joining Records from Two or More Sources

RSEs let you work with records from different sources. The CROSS clause of tli
RSE lets you form record streams by combining data from two or more sources
records. It forms temporary relationships between records stored in different da
files based on the relationship between field values in the different files. Joining
records with the CROSS clause allows you to treat the data as though it derived
from one data file.

With the CROSS clause. you can:

• Combine records from several domains, collections, or both.

• Compare and combine records from one domain.

• Substitute a single statement for nested FOR loops when comparing
records.

• Flatten hierarchical domains to ease access to the items in hierarchical list~
Chapter 6 discusses hierarchical domains.

2-14 Writing Record Selection Expressions

rhis is the format of the RSE containing the CROSS clause:

-FIRST n]
ALL

[context-var IN] rse-source

:cROSS [context-var IN] rse-source [OVER field-name]][...]

WITH boolean-expression] [REDUCED TO reduce-key [, ...]]

:SORTED BY sort-key[, ...]]

rhe format for rse-source is:

domain-name
collection-name
list
rdb-relation-name
db ms-record-name [MEMBER

OWNER
WITHIN

[OF] [context-name.set-name]]

~.4.1 Using CROSS to Combine Two Domains

~uppose you want to find the prices of individual boats in the YACHTS dornain
;hat belong to boat owners stored in the OWNERS domain. You want to combine
)WNERS records with YACHTS records that have the same MODEL and
MANUFACTURER. The RSE that forms this temporary combination of records
son the second input line of the following PRINT statement. The group field
rYPE. which includes both MANUFACTURER and MODEL, is the primary key
:or the YACHT.DAT file. It is defined as NO DUP; as a result, no two boats can
1ave the same value for TYPE.

Writing Record Selection Expressions 2-15

DTR> PRINT NAME, TYPE, PRICE OF
CON> YACHTS CROSS OWNERS OVER TYPE

NAME MANUFACTURER MODEL PRICE

STEVE ALBIN VEGA $18,600
HUGH ALBIN VEGA $18,600
JIM C&C CORVETTE
ANN C&C CORVETTE
JIM ISLANDER BAHAMA $6,500
ANN ISLANDER BAHAMA $6,500
STEVE ISLANDER BAHAMA $6,500
HARVEY ISLANDER BAHAMA $6,500
TOM PEARSON 10M
DICK PEARSON 26
JOHN RHODES SWIFTSURE

DTR>

The OVER TYPE phrase takes the place of WITH OWNERS.TYPE =
YACHTS.TYPE. This RSE forms a record stream of 11 records.

2.4.2 Joining Records from Collections Based on the Same Domain

In many cases, you will want to combine and compare records from the same
domain. For instance, you may want to find those yachts built by different build­
ers but with the same kind of rigging, or you may want to find any trainees who
make more than experienced employees. In crosses like these, you must distin­
guish separate record selection expressions that refer to the same domain.
DAT A TRI EVE provides several ways to perform such crosses. One way is to use
an alias to rename a domain. This operation temporarily creates two domains
from one so you can ready and join them as if they were two separate sources.

When you use the CROSS clause to form and combine two collections from the
same domain, you must establish context for both collections. In order for
DATATRIEVE to join records from collections based on a single domain, you
must ready the domain twice, once using an alias. Otherwise, DAT A TRIEVE doe~
not include records from both sources in the join.

This example shows what happens when you ready YACHTS once, form two col­
lections, AMERICAN YACHTS and ALBIN YACHTS, and join the collections
with a CROSS clause:- -

DTR> READY YACHTS
DTR> FIND AMERICAN_YACHTS IN YACHTS WITH BUILDER = "AMERICAN"
[2 records found]
DTR> FIND ALBIN_YACHTS IN YACHTS WITH BUILDER = "ALBIN"
[3 records found]

(continued on next page)

2-16 Writing Record Selection Expressions

R> LIST AMERICAN_YACHTS CROSS ALBIN_YACHTS OVER RIG

NUFACTURER
DEL
G
NGTH_OVER_ALL
SPLACEMENT
AM
ICE
NUFACTURER
DEL
G
NGTH_OVER_ALL
SPLACEMENT
AM
ICE

ALBIN
79
SLOOP
26
4,200

10
$17,900
ALBIN
79
SLOOP
26
. 4,200
10
$17,900

!\TATRIEVE does not include the records with BUILDER= "AMERICAN" in
e join.

you ready the source domain twice, once under an alias, DAT A TRI EVE cor­
ctly joins the records from both sources. In the following example.
!\. T ATRIEVE treats each collection as though it originated from a different
main:

R> READY YACHTS, YACHTS AS EXTRA
R> FIND AMERICAN_YACHTS IN YACHTS WITH BUILDER = "AMERICAN"
records found]

R> FIND ALBIN_YACHTS IN EXTRA WITH BUILDER = "ALBIN"
records found]

R> LIST AMERICAN_YACHTS CROSS ALBIN_YACHTS OVER RIG

NUFACTURER
DEL
G
NGTH_OVER_ALL
SPLACEMENT
AM
ICE
NUFACTURER
DEL
G
NGTH_OVER_ALL
SPLACEMENT
AM
ICE

AMERICAN
26
SLOOP
26
4,000

08 "
$9,895

ALBIN
79
SLOOP
26
4,200

10
$17,900

Writing Record Selection Expressions 2-17

If at any time you forget how you have used an alias, use the SHOW READY
command to see the domain name behind the alias. For example:

DTR> READY YACHTS, YACHTS AS EXTRA
DTR> SHOW READY
Ready sources:

EXTRA: Domain, RMS sequential, protected read
<CDD$TOP.DTR$LIB.DEMO.YACHTS;1>

YACHTS: Domain, RMS sequential, protected read
<CDD$TOP.DTR$LIB.DEMO.YACHTS;1>

No loaded tables.

2.4.3 Using CROSS to Cross a Domain with Itself

Another way to compare and combine records from the same source is to use
either the CROSS clause (without aliases), nested FOR loops. or view domains.
See the FOR statement section in the VAX DATATRIEVE Ref ere nee Manual
for more information about nested FOR loops. View domains are discussed in th
views chapter in this book. This section explains how to use CROSS to compare
records from the same domain.

Consider the question of how to find the yachts whose manufacturers make boa1
with more.than one type of rigging. To do this, you need to loop through the
YACHTS domain twice. First, you must search through all yachts and group
them by manufacturer. Then. you must search through these collections to find
those yachts with different riggings.

You can cross and compare the necessary record streams in a single RSE conta]
ing a CROSS clause:

DTR> PRINT BUILDER, A.RIG, RIG OF A IN YACHTS CROSS
[Looking for name of domain, collection, or list]
CON> YACHTS OVER BUILDER WITH A.RIG GT RIG

MANUFACTURER RIG RIG

AMERICAN SLOOP MS
CHALLENGER SLOOP KETCH
CHALLENGER SLOOP KETCH
GRAMPIAN SLOOP KETCH

PEARSON SLOOP KETCH

DTR>

The variable A (A IN YACHTS) is called a context variable. A context variable i
a temporary name that identifies a record stream to DAT ATRIEVE . See
Chapter 9 for an extended discussion of how to use context variables. Appendix
contains detailed information about how DAT ATRIEVE establishes and inter­
prets context variables.

2-18 Writing Record Selection Expressions

i the above example, DAT A TRI EVE establishes two sources, one called A IN
ACHTS and the other called YACHTS. The OVER clause controls the compari­
m of records from the two sources. For each record from the source A IN
AC HTS, DATATRIEVE retrieves only the records from the source YACHTS
iat have the same BUILDER value as the record from A IN YACHTS. The
oolean expression WITH A.RIG GT RIG selects from the record stream the
:tirs of records that have different values for RIG. The resulting record stream
mtains information only about builders who make more than one type of rig.

ou could use the Boolean expression WITH A.RIG NE RIG to select the records
ith two different RIG values. But if you use NE instead of GR. you get two com­
.nations for every pair of records that meet the criteria of the RSE. Using the
T operator eliminates this duplication.

ne advantage this method has over nested FOR loops is that the statement with
ie CROSS clause is shorter than an equivalent statement with a FOR loop. (The
vo methods take approximately the same amount of time to process.)

.5 Finding the Unique Field Values in the Record Stream
requently, a record stream contains several records that have the same values
1r a specific field. To find the unique field values (that is, to eliminate duplicate
eld values from the record stream), use the REDUCED TO clause of the RSE.

p to this point, the RSE clauses have let you limit the number of records in the
~cord stream. The REDUCED TO clause of the RSE lets you limit the fields
ithin each record in the record stream.

or example, if you want to know the name of all of the departments in the
ERSONNEL domain, you can use this query:

:R> FIND PERSONNEL REDUCED TO DEPT
r records found]
~R> PRINT CURRENT

~PT

12
>8
l6
.1
!O
12
IP

o process the RSE. DATATRIEVE searches the values for DEPT and finds
~ven unique values. DAT A TRI EVE then generates a collection of seven records
ith values for the DEPT field only.

ometimes you want to know all the unique combinations of values for several

Writing Record Selection Expressions 2-19

fields in the record. To find the combinations of values for DEPT and STATUS,
use the RSE "PERSONNEL REDUCED TO DEPT, STATUS":

DTR> FIND PERSONNEL REDUCED TO DEPT, STATUS
[12 records found]
DTR> PRINT CURRENT

DEPT STATUS

C82 EXPERIENCED
C82 TRAINEE
D98 EXPERIENCED
D98 TRAINEE
E46 EXPERIENCED
F11 EXPERIENCED
FU TRAINEE
G20 EXPERIENCED
G20 TRAINEE
T32 EXPERIENCED
T32 TRAINEE
TOP EXPERIENCED

DATATRIEVE finds 12 unique combinations of values and forms a collection wit
12 records. Each record in the collection has values for only two fields, DEPT anc
STATUS.

The REDUCED TO clause is a powerful tool for forming relational queries. For
example, the following query uses two RSEs to display the names of all the supe1
visors and the departments they manage:

DTR> FOR A IN PERSONNEL REDUCED TO SUP_ID
[Looking for statement]
CON> PRINT DEPT, NAME, ID OF PERSONNEL WITH ID= A.SUP_ID

FIRST LAST
DEPT NAME NAME ID

TOP CHARLOTTE SPIVA 00012
FU FRED HOWL 00891
D98 DEE TERRI CK 39485
E46 GAIL CASSIDY 48475
G20 LOUISE DEPALMA 87289
C82 ANTHONY IA COB ONE 87465

DTR>

This query finds every employee who is a supervisor, that is, whose ID equals
one of the values specified by the REDUCED TO clause. The RSE "A IN
PERSONNEL REDUCED TO SUP ID" asks DATATRIEVE to develop a
record stream (A) with all of the supervisor IDs. Then for each supervisor ID, .
DATATRIEVE searches through all the PERSONNEL records again for matche
on the ID field. When DATATRIEVE finds a match, it displays the ID. NAME,
and DEPT of the employee.

2-20 Writing Record Selection Expressions

o do this, the RSE must include a context variable, A, to refer to the SUP ID of
le first record stream. The context variable is then used in the Boolean expres­
on ID = A.SUP ID. If you used the Boolean expression ID = SUP ID,
1ATATRIEVE would consider SUP ID to be a field in the records of the second
~cord stream. DAT ATRIEVE would then find all employees whose personal ID is
le same as their supervisor's ID. (That is, all employees who supervise them­
~lves.) The value expression A.SUP ID unambiguously refers to a field value
·om records in the first record stream. See Chapter 9 and Appendix A for more
tformation about context variables .

. 6 Sorting the Record Stream by Field Values

Then you use a PRINT statement to display a record stream, the order of the
~cords is determined by the keys defined for the data file. However, you can use
ie SORTED BY clause of the RSE to impose a different sort order on the record
;ream.

or example, the records in PERSONNEL are already sorted by ID, the primary
ay for the data file. But if you are interested in the employees for each depart­
tent, you can sort the records by DEPT. To break down each department into
{perienced workers and trainees, specify STATUS as an additional sort key. The
1llowing query sorts the first nine PERSONNEL records according to DEPT and
TATUS:

LR> PRINT FIRST 9 PERSONNEL SORTED BY DEPT, STATUS

FIRST LAST START SUP
rn STATUS NAME NAME DEPT DATE SALARY ID

r465 EXPERIENCED ANTHONY IA COB ONE C82 2-Jan-1973 $58,462 00012
>342 EXPERIENCED BRUNO DONCHIKOV C82 9-Aug-1978 $35,952 87465
~029 EXPERIENCED RANDY PODERESIAN C82 24-May-1979 $33,738 87465
>001 EXPERIENCED DAN ROBERTS C82 7-Jul-1979 $41,395 87465
~643 TRAINEE JEFF TASHKENT C82 4-Apr-1981 $32,918 87465
~943 EXPERIENCED CASS TERRY D98 2-Jan-1980 $29,908 39485
>485 EXPERIENCED DEE TERRI CK D98 2-May-1977 $55,829 00012
b375 EXPERIENCED MARY NALE VO D98 3-Jan-1976 $56,847 39485
>843 TRAINEE BART HAMMER D98 4-Aug-1981 $26,392 39485

~R>

he SORTED BY clause overrides the order of the records in the data file. but it
)es not change the physical order of the records in the data file.

ou can also sort a record stream according to a value expression based on a field
ilue. For example. you could sort by the year of ST ART_ DATE by using the

Writing Record Selection Expressions 2-21

value expression FN$YEAR (START_DATE) as a sort key:

DTR> READY PERSONNEL
DTR> FIND FIRST 9 PERSONNEL SORTED BY FN$YEAR (START_DATE)
DTR> PRINT ID, NAME, SALARY,
CON> (FN$YEAR (START_DATE)) ("EMPLOYED"/"SINCE") USING 9999

FIRST LAST EMPLOYED
ID NAME NAME SALARY SINCE

00012 CHARLOTTE SPIVA $75,892 1972
87465 ANTHONY IACOBONE $58,462 1973
84375 MARY NALE VO $56,847 1976
00891 FRED HOWL $59,594 1976
39485 DEE TERRI CK $55,829 1977
48475 GAIL CASSIDY $55,407 1978
90342 BRUNO DONCHIKDV $35,952 1978
99029 RANDY PO DERES IAN $33,738 1979
87289 LOUISE DEPALMA $57,598 1979

DTR>

The SORTED BY clause lets you produce reports with data records divided into
groups. In the last example, using the value expression FN$YEAR
jSTART DATE) as a sort key lets you report on employees grouped by the year
they were first employed. For more information on creating such control group
reports, see the VAX DATATRIEVE Guide to Writing Reports. For information
on DATATRIEVE functions such as FN$YEAR, see the VAX DATATRIEVE
Reference Manual.

2-22 Writing Record Selection Expressions

Entering New Data 3

h.is chapter explains how to enter new data in RMS domains using the STORE
atement, prompting value expressions, and the TAB key. In addition, refer to
le following chapters for advanced topics:

Using Forms with DAT ATRIEVE -- for information on storing data with
forms

Using DATATRIEVE with DBMS -- for information on storing data in
DBMS databases

Using DATATRIEVE with Rdb-- for information on storing data in Rdb
databases

, 1 Using the STORE Statement

)U can create a record in the data file with the STORE statement. You can also
:e the STORE statement to assign values to fields. When you enter a STORE
atement followed by a domain name, DAT A TRIEVE prompts you for the values
each field in the record. If you enter a field list or the USING clause,
f\ T ATRIEVE prompts you to enter only the specified fields. DA TATRIEVE
1es not prompt you to enter REDEFINES or COMPUTED BY fields.

R> READY OWNERS WRITE<RET>
R> STORE OWNERS<RET>
ter NAME: BILL<RET>
ter BOAT NAME: GLOOM<RET>
ter BUILDER: DOWN EAST<RET>
ter MODEL: 32T<RET>
R> FIND OWNERS WITH BOAT_NAME = "GLOOM"<RET>
record found]

3-1

DTR> SELECT; PRINT<RET>

NAME

BILL

DTR>

GLOOM

BOAT
NAME BUILDER MODEL

DOWN EAST 32T

When you respond to a DAT ATRIEVE prompt, you must suppl¥ a value, a space,
or a TAB character, not a value expression. You cannot supply the name of a vari·
able or a field and expect DAT ATRIEVE to use the value associated with the
variable or the value associated with the field. DAT A TRIEVE interprets the namE
in either case as a character string literal and uses the literal as the value when
making the assignment.

3.2 The Effect of TAB on Prompts from STORE Statements

If you respond with a TAB and RETURN to a prompt from a STORE statement:

• If the field has a default value specified in its field definition, DAT A TRIEVE
uses the default value to initialize the field.

• If the field has a missing value but not a default value specified in its field
definition, DAT A TRIEVE uses the missing value to initialize the field.

• If the field has a default value and a missing value specified in its field defini
tion, DATATRIEVE uses the default value to initialize the field.

• If the field has neither a default value nor a missing value specified in its
field definition. DAT A TRIEVE initializes numeric fields as 0 and alphabetic
and alphanumeric fields as spaces.

3.3 Using Direct Assignments

With the USING clause of the STORE statement, you can limit the number of
fields to which you assign new values. In the USING clause, you specify only
those fields you want to change.

When you store values in the fields of a new record with the USING clause of a
STORE statement, DATATRIEVE uses the values you assign to initialize the
fields specified in the USING clause. To initialize the fields that you do not
include in the USING clause, DATATRIEVE takes one of three actions:

• If a field has a default value specified in its field definition. DAT ATRIEVE
uses the default value to initialize the field. whether or not there is also a
missing value specified.

3-2 Entering New Data

If a field has a missing value but not a default value specified in its field defi­
nition, DAT ATRIEVE uses the missing value to initialize the field.

If a field has neither a DEFAULT VALUE clause nor a MISSING VALUE
clause, DAT A TRI EVE initializes the field with spaces if it is alphabetic or
alphanumeric or with 0 if it is numeric.

Lis example shows the different actions DAT A TRI EVE takes when you assign a
1ited number of values with the USING clause of a STORE statement:

R> SHOW TEST_1<RET>
~AIN TEST_! USING TEST_REC ON TEST1.DAT;<RET>

R> SHOW TEST REC<RET>
CORD TEST_REC USING

TOP.
03 DEF_VAL1 PIC X(7)

DEFAULT VALUE IS "DEFAULT".
03 MISS_VAL1 PIC X(7)

MISSING VALUE IS "MISSING".
03 BOTH_! PIC X(7)

DEFAULT VALUE IS "DEFAULT"
MISSING VALUE IS "MISSING".

03 NEITHER_STR PIC X(3).
03 NEITHER_NUM PIC 999.
03 DEF_VAL2 PIC X(7)

DEFAULT VALUE IS "DEFAULT".
03 MISS_VAL2 PIC X(7)

MISSING VALUE IS "MISSING".
03 BOTH_2 PIC X(7)

DEFAULT VALUE IS "DEFAULT"
MISSING VALUE IS "MISSING".

i> READY TEST_! WRITE<RET>
l> STORE TEST 1·USING<RET>
>oking for statement]
~> BEGIN<RET>
>oking for statement]
~> DEF VAL1 = "ONE"<RET>
~> MISS VAL1 = "TWO"<RET>
~> BOTH-1 = "THREE"<RET>
~> END<RET>
t> FIND TEST 1<RET>
record found]

(continued on next page)

Entering New Data 3-3

DTR> PRINT ALL<RET>

DEF
VAL1

MISS
VAL1

BOTH NEITHER NEITHER DEF
1 STR NUM VAL2

MISS
VAL2

BOTH
2

ONE TWO THREE 000 DEFAULT MISSING DEFAULT

DTR> STORE TEST_1<RET>
Enter DEF_VAL1: FOUR<RET>
Enter MISS VAL1: FIVE<RET>
Enter BOTH-1: SIX<RET>
Enter NEITHER STR: <TAB><RET>
Enter NEITHER=NUM: <TAB><RET>
Enter DEF_VAL2: <TAB><RET>
Enter MISS_VAL2: <TAB><RET>
Enter BOTH 2: <TAB><RET>
DTR> FIND TEST_1;SELECT LAST; PRINT<RET>

DEF
VAL1

MISS
VAL1

BOTH NEITHER NEITHER DEF
1 STR NUM VAL2

MISS
VAL2

BOTH
2

FOUR FIVE SIX 000 DEFAULT MISSING DEFAULT

DTR>

3.4 Using Prompting Expressions in STORE Statements

In the USING clauses of STORE, you can use prompting value expressions to
control your input to records in data files. You can use two forms of prompting
value expressions: *.prompt and **.prompt. These value expressions let you con·
trol DAT ATRIEVE prompts for input.

Both forms of prompting value expressions require you to respond by entering
values, not value expressions. You cannot enter the names of variables or fields.
and you cannot enter expressions from DAT A TRI EVE tables or arithmetic. sta­
tistical, or concatenated expressions. You must enter numeric or character strin!
literals appropriate to the data type of the field for which you are supplying a
value. Do not enclose character string literals in quotation marks when you supp
a value to a prompt. If you do, DATATRIEVE treats the quotation marks as par
of the value.

If a *.prompt is part of a USING clause in a STORE statement, DATATRIEVE
prompts you for a value each time it executes the statement. If the STORE stat4
ment is in a REPEAT, FOR, or WHILE loop, DATATRIEVE prompts you each
time it executes the loop.

3-4 Entering New Data

: a **.prompt is part of a USING clause in a STORE statement and i(the
TORE statement is in a REPEAT, FOR, or WHILE loop, DATATRIEVE
rompts you only once, regardless of how many times it executes the loop. The
*.prompt is useful for assigning one value to a number of records when you have
>assign unique values to other fields in each of those records. The following
~ample shows the difference between the two types of prompting value
~pressions:

rR> SET NO PROMPT
rR> READY PHONES WRITE
rR> REPEAT 2
JN> STORE PHONES USING
JN> BEGIN
JN> DEPARTMENT= **.DEPARTMENT
JN> LOCATION = **.LOCATION
JN> NAME= *.NAME
JN> NUMBER= *.NUMBER
JN> END
iter DEPARTMENT: CED<RET>
iter LOCATION: MK3<RET>
iter NAME: Gardens, Marvin<RET>
1ter NUMBER: 555-1776<RET>
iter NAME: D'Ecor, Espree<RET>
iter NUMBER: 555-1812<RET>
rR>

Entering New Data 3-5

Modifying Data 4

'his chapter explains how to use the MODIFY statement to change data in exist-
1g records. In addition, refer to the following chapters for advanced topics:

Using Hierarchies -- for information on modifying records with repeating
fields (fields defined with an OCCURS clause in the record definition)

Using Forms with DATATRIEVE -- for supplementary information on modi­
fying data with forms

Using DATATRIEVE with DBMS -- for supplementary information on
modifying data stored in DBMS databases

Using DAT A TRIEVE with Rdb -- for supplementary information on modify­
ing data stored in Rdb databases

'he MODIFY statement has the following formats:

ormat 1

IODIFY [ALL] field-name [, ...]

USING statement-1

[VERIFY [USING] statement-2]

[OF rse]

ormat 2

IODIFY [ALL] rse

USING statement-1

[VERIFY [USING] statement-2]

4-1

When you modify records, you must ready the associated domain for modify or
write access. Then perform the following five steps:

• Decide on a record source (domain or collection).

• Specify the records you want from the record source.

• Specify the fields whose values you want to change.

• Assign new values to those fields.

• Optionally. specify any validation requirements that are not part of the
record definition.

The order of these steps may be the easiest and most logical, but keep in mind
that when you write the DATATRIEVE statements that carry out a modify
operation. the order in which you specify the logical steps can vary.
DAT A TRI EVE also lets you choose among alternative methods to accomplish th4
same logical step. In addition, you do not have to include syntax for all the steps
in the MODIFY statement itself.

This abundance of alternatives can be confusing when you first start to use
DATATRIEVE. If you always think about DATATRIEVE syntax and examples
in terms of which statement or clause accomplishes which logical step, you will
find it easier to write the statements best suited to what you want to do.

The following examples illustrate some of the ways to modify data. The text pre­
ceding each example describes the objective of the modify operation. Comments
to the right of the DAT ATRIEVE input lines identify the logical steps in the
modify operation. In the first two examples, the NO PROMPT setting is in effect
so DATATRIEVE's "Looking for ... " prompts do not appear. These informational
prompts do not affect the outcome of the statements and commands you enter.

• Change one DEPT value in the PERSONNEL domain. In this case, you
work with records directly from the domain and change all records contain­
ing the value. Note that you specify the record source and the record you
want in the MODIFY statement itself:

DTR> READY PERSONNEL MODIFY
DTR> PRINT LAST_NAME, DEPT OF PERSONNEL WITH DEPT = "F11"

LAST
NAME DEPT

HOWL F11
SCHWEIK F11
HARRISON F11
CHONTZ F11

4-2 Modifying Data

DTR> MODIFY PERSONNEL -
CON> WITH DEPT = "FU"
CON> USING DEPT =
CON> "F12"
DTR>

<--- Specify record source
< --- Select records
< --- Specify field
< --- Assign value

DTR> PRINT LAST_NAME, DEPT OF PERSONNEL WITH DEPT = "F12"

LAST
NAME DEPT

HOWL F12
SCHWEIK F12
HARRISON F12
CHONTZ F12

Modify the price of one record in YACHTS. Because you are working with a
selected record from the CURRENT collection, you specify in the MODIFY
statement only the name of the field you want to change:

DTR> READY YACHTS MODIFY
DTR> FIND YACHTS WITH BUILDER = "ALBIN"
[3 records found]
DTR> PRINT MANUFACTURER, MODEL, PRICE
No record selected, printing whole collection.

MANUFACTURER

ALBIN
ALBIN
ALBIN

DTR> SELECT 3

MODEL

79
BALLAD
VEGA

DTR> MODIFY PRICE
Enter PRICE: 20,000
DTR>

PRICE

$17,900
$27,500
$18,600

! < --- Specify field
! < --- Assign new value

DTR> PRINT MANUFACTURER, MODEL, PRICE OF CURRENT

MANUFACTURER

ALBIN
ALBIN
ALBIN

MODEL

79
BALLAD
VEGA

PRICE

$17,900
$27,500
$20,000

Modifying Data 4-3

• Modify the records of all yachts manufactured by Albin to reflect a 10
percent price increase. Because you are working with the CURRENT collec­
tion, you. do not include the name of the record source in the MODIFY state­
ment itself. You do, however, include the keyword ALL in the MODIFY
statement so that DAT A TRI EVE knows you are not modifying a selected
record:

DTR> READY YACHTS MODIFY
DTR> FIND YACHTS WITH BUILDER = "ALBIN"
[3 records found]
DTR> PRINT MANUFACTURER, MODEL, PRICE
No record selected, printing whole collection.

MANUFACTURER

ALBIN
ALBIN
ALBIN

MODEL

79
BALLAD
VEGA

DTR> MODIFY ALL -
[Looking for statement]
CON> USING PRICE =

PRICE

$17,900
$27,500
$18,600

[Looking for value expression]
CON> PRICE * 1.1
DTR>

< --- Specify records

< --- Specify field

<--- Assign values

DTR> PRINT MANUFACTURER, MODEL, PRICE OF CURRENT

MANUFACTURER

ALBIN
ALBIN
ALBIN

DTR>

BEAM

79
BALLAD
VEGA

PRICE

$19,690
$30,250
$20,460

As you can see, DATATRIEVE gives you a great deal of flexibility when you
modify records. You can write statements so that DAT A TRI EVE prompts you to
enter values for the fields you want to change. or you can specify field values
directly. Your MODIFY statement can process records in an RSE, or it can
default to the CURRENT collection.

The following sections explain:

• Modifying records in a collection

• Modifying records in a record selection expression

• A voiding common mistakes in modifying records

4-4 Modifying Data

Using DAT A TRI EVE prompts when modifying data

Checking for valid values in the MODIFY statement

ote that the optional clause VERIFY [USING] validation-statement clause is
eluded in all syntax formats so that you can determine where you include that
mse in the MODIFY statement. Section 4.5 discusses what the VERIFY clause
.n contain and provides examples of its use.

ote also that no matter what form of the MODIFY statement you choose, you
nnot modify the value of an index key field that has been defined so that
1anges are not allowed. For example, you can never modify the value of a field
at is the primary key for an indexed data file.

, 1 Modifying Records in the CURRENT Collection

>rming a collection and then using that collection as the record source for a
odify operation is generally easier than trying to include the record selection
ntax in the same DAT ATRIEVE statement that specifies fields and assigns
Jues. The FIND statement forming the collection specifies the record source
td does most of the work to select the records you want. You can then simply
pe PRINT ALL and press the RETURN key to check the contents of the entire
Bection before and after the modify operation. You can also select a record and
en type PRINT and press RETURN to display the same information for a par­
~ular record.

Note -----------

While it may be easier to use a collection as a record source,
DATA TRIEVE generally works slower when retrieving records from
collections. For more information on optimizing DATATRIEVE que­
ries, see the chapter on improving performance in this manual. See
Chapter 14 of the VAX DATATRIEVE Handbook for a discussion of
the advantages and disadvantages of using collections.

1.1 Modifying a Selected Record in the CURRENT Collection

ter you form a collection and display the records it contains. use the SELECT
atement to pick the record to be modified. SELECT 1 specifies the first record
~played, SELECT 2 specifies the second record displayed. and so forth. After
u enter your SELECT statement, print the results to make sure you have the
cord you want. If you discover you picked the wrong record. you can enter
~LECT NONE and reenter a SELECT statement with a corrected record occur­
nce value.

Modifying Data 4-5

You have a choice of the following formats to modify the selected record:

MODIFY [VERIFY [USING] validation-statement]

DAT ATRIEVE prompts once for each elementary field in the record definition
and changes the field values to the ones you enter. You can simply type MODIF"')
and press the RETURN key, and DATATRIEVE gives you the opportunity to
change each field in the selected record.

MODIFY field [,. ..) [VERIFY [USING] validation-statement]

DAT ATRIEVE prompts once for each elementary field that you name and once
for each elementary field that is subordinate to each group field that you name.
The values of those fields are changed to the ones you enter. For example. if you
want to change only LAST NAME and ZIP in a PERSONNEL record, you can
enter MODIFY LAST NAME, ZIP. Then DATATRIEVE prompts you only for
those fields. -

MODIFY USING assignment-statement
[VERIFY [USING] validation-statement]

The assignment statement in the USING clause may be a series of PRINT and
assignment statements that you include in a BEGIN-END block.

If you name an elementary field in an assignment statement, DAT A TRIEVE
changes its value to the one you specify. For example:

DTR> MODIFY USING FIRST_NAME = "CASSANDRA"
DTR>

If you name a group field, DAT A TRIEVE gives you an error message stating
"illegal assignment to a group field."

You are prompted to enter a value for a field only when the assignment statemer
contains a prompting value expression for the field value.

FIND list-field
SELECT n
MODIFY item-field [VERIFY [USING] validation-statement]

Use this format to modify fields subordinate to a field defined with an OCCURS
clause in a record definition or a view definition. The chapter on using hierarchiei
describes this format in detail. ,

4-6 Modifying Data

)DIFY [ALL] list-item OF list

:e this format to modify all occurrences of fields subordinate to a field defined
~h an OCCURS clause in a record definition or a view definition. The chapter on
[ng hierarchies describes this format in detail.

1.2 Modifying All Records in the CURRENT Collection

vou want to change values in all the records of the CURRENT collection, you
ve the choice of the following formats:

)DIFY ALL [VERIFY [USING] validation-statement]

\TA TRI EVE prompts you once for each field in the record definition. The val­
s you enter for fields change those fields in ei•ery record in the collection. Use
.s format with care when your collection contains more than one record. Rarely
you want to make every field in every record identical.

)DIFY ALL field[, ...] [VERIFY [USING] validation-statement]

\ TATRIEVE prompts once for each elementary item specified or implied by the
ld name or names you specify. The values you enter for fields change those
lds in every record in the collection.

:e this format with care when the CURRENT collection contains more than one
:ord. If you enter the statement MODIFY ALL LAST NAME and respond to
\TATRIEVE's prompt by entering SMITH, every record in the CURRENT col­
tion then contains SMITH in the LAST NAME field. You use this format only
change values that you want to be identical among records in the collection.
r example. you might want to modify a field like SUPERVISOR ID in a collee-
n of records for employees that share the same supervisor. -

)DIFY ALL USING assignment-statement
[VERIFY [USING] validation-statement]

e assignment statement in this format can be a series of PRINT and assign­
mt statements in a BEGIN-END block.

vou name an elementary field in an assignment statement. DA TATRIEVE
anges its value in every record in the collection. If you .name a group field,
\ T ATRIEVE changes the value of each elementary field in the group in every
:ord in the collection.

u are prompted to enter a value for a field only when the assignment statement
1tains a prompting value expression.

Modifying Data 4-7

This format of the MODIFY statement has the same effect as the preceding for­
mat. For example, if you enter the statement MODIFY ALL USING
LAST NAME = "SMITH". every record in the CURRENT collection contains
SMITH in the LAST NAME field.

4.2 Modifying All Records in a Record Selection Expression

The previous section showed that when you work with the CURRENT collection
or a selected record. the MODIFY statement does not need to contain a record
source or which particular records to modify. You can display records and changE
values using relatively few keystrokes.

When you do not want the MODIFY statement to assume a CURRENT collectic
or a selected record for the modify operation, you have to specify both the record
source and exactly which records you want to change as an RSE. You must
include the RSE either in the MODIFY statement itself or in the FOR statemen
component of a compound statement that also includes the MODIFY statement.
If you plan for a display of records before and after the modify operation (defi­
nitely a good idea). you must include PRINT statements as well.

Modifying records in an RSE is the best method to use when writing procedures,
Usually procedures contain compound statements, and you cannot use the
DAT ATRIEVE statements that create and manipulate collections in compound
statements. Writing compound statements that modify data is not difficult if y01
keep in mind the logical steps to a modify operation and make sure you include a
of them in the statements you form.

4.2.1 Modifying Records Controlled by a FOR Statement

The FOR statement lets you modify each record in a record stream. The FOR
statement creates a stream of records that are processed, one by one, by the ne}(
statement. In a modify operation, that next statement can be either a MODIFY
statement or a BEGIN-END block that includes a MODIFY statement.

You can choose among the following formats:

FOR rse MODIFY [VERIFY [USING] validation-statement]

DAT A TRI EVE prompts once for every elementary field in the record definition
for each record in the record stream. In short. you can individually change all th1
fields in every record.

For example. if you enter FOR YACHTS WITH BUILDER = "ALBIN"
MODIFY, you can change every field in every record that specifies Albin as the
manufacturer.

4-8 Modifying Data

)R rse MODIFY field [, ...]
[VERIFY [USING] validation-statement]

AT A TRIEVE prompts once for each elementary field that you name and once
reach elementary field that is subordinate to each group field that you name in
le MODIFY statement. You can change every record, but only the fields
1ecified.

you enter FOR YACHTS WITH BUILDER= "ALBIN" MODIFY PRICE, for
~ample, you can change only the price field in every record that specifies Albin
: the manufacturer.

)R rse MODIFY USING statement
[VERIFY [USING] validation-statement]

1e statement in the USING clause can be a BEGIN-END block that contains
.e PRINT and assignment statements you want DAT A TRIEVE to apply to each
cord in the record stream. DATATRIEVE changes values in every record for as
any fields as have assignment statements. DAT A TRI EVE does not prompt for
llues unless you include prompting value expressions in the assignment
atements.

1e following statement uses this format:

R PERSONNEL WITH ID = EMPLOYEE_VARIABLE
MODIFY USING

BEGIN
PRINT ID, EMPLOYEE_NAME, DEPT, SUP_ID, SKIP
FIRST_NAME =*."first name (all caps) or TAB character"
LAST_NAME = *."last name (all caps) or TAB character"
DEPT= *."department code (all caps) or TAB character"
SUP_ID =*."supervisor ID number or TAB character"
PRINT SKIP, ID, EMHLOYEE_NAME, DEPT, SUP_ID

END

1e FOR rse limits the record stream to the record that has an ID field matching
e contents of a variable called EMPLOYEE VARIABLE. The statements inside
e BEGIN-END block within the USING clause do three things:

Print the values of the fields that are being changed

Prompt the user to modify only certain fields of the record

Print the new values of the fields that were modified

Modifying Data 4-9

The procedure FOR RSE MODIFY, which includes this statement, uses
EMPLOYEE _v ARIABLE to check that the user entered an existing employee
ID:

DTR> SHOW FOR_RSE_MODIFY
PROCEDURE FOR_RSE_MODIFY
SET ABORT
DECLARE EMPLOYEE_VARIABLE PIC 9(5).
EMPLOYEE_VARIABLE =*."employee ID number"
WHILE NOT ANY PERSONNEL WITH ID = EMPLOYEE_VARIABLE

BEGIN
PRINT SKIP
PRINT "Invalid employee number."
DECLARE GET_OUT PIC X(5).
GET_OUT =*."any letter if you want to stop, TAB to try again"
IF GET_OUT NOT = "" THEN

ABORT "Exit from procedure" ELSE
EMPLOYEE_VARIABLE = *."employee ID number"

END
READY PERSONNEL MODIFY
SET NO ABORT
FOR PERSONNEL WITH ID = EMPLOYEE_VARIABLE

MODIFY USING
BEGIN

PRINT ID, EMPLOYEE_NAME, DEPT, SUP_ID, SKIP
FIRST_NAME =*."first name (all caps) or TAB character"
LAST_NAME =*."last name (all caps) or TAB character"
DEPT= *."department code (all caps) or TAB character"
SUP_ID =*."supervisor ID number or TAB character"
PRINT SKIP, ID, EMPLOYEE_NAME, DEPT, SUP_ID

END
FINISH PERSONNEL
END_PROCEDURE

DTR>

See the chapter on using procedures in this manual and the VAX DATATRIEVl
Handbook for information on procedures and compound statements.

FOR rse MODIFY list-rse USING
assignment-statement [VERIFY [USING] validation-statement]

FOR rse FOR list-rse MODIFY [field-name [,. ..]]
[VERIFY [USING] validation-statement]

You can use these two formats to change the values of records with repeating
fields. See the chapter on using hierarchies for more information.

If you include the CURRENT collection as the RSE in a FOR statement. you ca1
easily display all the records that are changed by simply entering PRINT ALL.

4-10 Modifying Data

'his is useful when the RSE that gathers the records to be modified can no longer
•cate them after the modify operation.

: you do specify a collection as the record source in a FOR statement, keep in
iind that DAT ATRIEVE cannot do keyed retrieval on a collection. When you are
-orking with a large collection, therefore, the FOR statement should not attempt
>limit further the records being processed (FOR CURRENT WITH ANY ... is
ne example). If it does, DAT ATRIEVE could process the modification more
.owly for each record than when it can use collection records in. sequential order.
o optimize performance when you specify a collection as the record source in a
OR statement, have the FIND statement that forms the collection do all the
~cord selection work.

.efer to the chapter on improving DAT A TRI EVE performance for more detailed
tformation about improving DATATRIEVE's response time .

. 2.2 Including the RSE Within the MODIFY Statement

icluding the records to be modified as part of the MODIFY statement is some­
hat trickier than specifying the same information in FIND, FIND and SELECT,
~FOR statements. Depending on what you want to do, you must specify the
SE immediately after the keyword MODIFY (or MODIFY ALL), or you must
rite the RSE at the end of the statement. It is, therefore, easier to make syntax
~rors when you try to include an RSE in the MODIFY statement.

ou should not include an RSE within a MODIFY statement that changes hierar-
1ical records (records that contain a list field or records from a view domain that
~cesses more than one simple domain). If you do. DAT A TRI EVE may trap you
l an endless loop of "Re-enter" prompts for the repeating field values.

ou cannot specify different field values for each record in the MODIFY state­
tent RSE as you can when you modify records using a FOR statement RSE. The

/
[0D)FY statement RSE means you supply only one value for each elementary
eld you specify by name or imply with a group field name. The va]ue you enter
lplies to every record. Therefore. make sure you specify records that should con­
Lin identical values for the field or fields you are changing.

eeping these cautions in mind, you can choose among the following formats:

ODIFY [ALL] [VERIFY [USING] validation-statement] OF rse

'se with care. If you simply enter a domain name, you can make every record in
te domain identical.

Modifying Data 4-11

MODIFY [ALL]field [, ...]
[VERIFY [USING] validation-statement] OF rse

MODIFY [ALL] rse USING
assignment-statement [VERIFY [USING] validation-statement]

MODIFY [ALL] USING
assignment-statement [VERIFY [USING] validation-statement]
OF rse

The assignment statement in these formats can also be a series of assignment
and PRINT statements in a BEGIN-END block.

4.3 Common Context Errors

Sections 4.1 and 4.2 contain the correct formats to modify the records you want
to change from the record source you intend to use. This section describes some
problems you can encounter if you inadvertently use the wrong format or combin
format elements incorrectly. When you make this kind of mistake,
DAT ATRIEVE either displays an error message or modifies records from the
wrong record source, depending on the type of error you make.

4.3.1 Modifying All Records Rather Than Just the Selected Record

If you want to modify a selected record, do not include the keyword ALL in the
MODIFY statement.

If you type MODIFY ALL, you are telling DATATRIEVE either to target the
entire collection for the modify operation or to expect an RSE in the MODIFY
'statement. Because there may be times when this is your intention.
DAT A TRI EVE does not display an error message. If you create this situation
unintentionally, you can make all the records in the CURRENT collection identi­
cal for the field values you supply when you intended to change values in only orn
of those records.

4.3.2 Modifying the Wrong Selected Record

This error can occur if you forget to enter a SELECT statement for the
CURRENT collection. There may be times when you have more than one collec­
tion in your workspace, and the collections formed before the CURRENT one
have selected records. When you enter a MODIFY statement appropriate for a
selected record and your CURRENT collection does not have one, DATATRIEVJ
tries to apply the modify operation to the selected records you do have available.
It modifies the most recently selected record to which it can apply your state­
ment. If your statement contains a field name that is not in any of the available
selected records. DAT A TRI EVE does not modify any record but tells you that tr
field name is used out of context.

4-12 Modifying Data

1ere may be times when you want to modify a selected record in a collection
her than the CURRENT one. In this case, you can enter SELECT NONE
atements to "unselect" records associated with any collections formed after the
te containing the selected record you want to change. In effect, this process
leases selected records from the currect collection, and you can repeat it until
1u reach the individual records selected from the target collection.

1e error you want to avoid in this situation is entering too many or too few
~LECT NONE statements. You can use the PRINT statement to see which is
e current selected ·record. You can also use SHOW CURRENT or SHOW
JLLECTIONS to make sure that you are working with the collection you want.

3.3 Modifying Records in the Wrong RSE

1is error occurs when you intend to modify records using a FOR statement
SE. but you also intentionally include an RSE or the keyword ALL in the
ODIFY statement itself. If you do this, you are telling DATATRIEVE to
odify records specified in the MODIFY statement for as many iterations as
ere are records in the FOR statement RSE. (The only time you want to do
mething like this is when you modify repeating fields in a hierarchical record.
·hen you modify hierarchical records, however, the RSE in the MODIFY state­
ent specifies an OCCURS field name as the record source, rather than a true
cord source, such as a domain or collection.) If you inadvertently include two
SEs in the combined statements that carry out a modify op~ration, the results
n be unexpected.

the following example, the user intends to change the last name in the first
~RSONNEL record. The superfluous RSE in the FOR statement causes
ATATRIEVE to prompt for the field as many times as there are records in the
~RSONNEL domain:

R> SET NO PROMPT
R> FOR PERSONNEL MODIFY FIRST 1 PERSONNEL USING BEGIN
N> PRINT
N> LAST_NAME *."last name"
N> END

FIRST LAST START SUP
D STATUS NAME NAME DEPT DATE SALARY ID

012 EXPERIENCED CHARLOTTE SPIVA TOP 12-Sep-1972 $75,892 00012
ter last name: WHITE
012 EXPERIENCED CHARLOTTE WHITE TOP 12-Sep-1972 $75,892 00012
ter last name: <TAB>
012 EXPERIENCED CHARLOTTE WHITE TOP 12-Sep-1972 $75,~92 00012
ter last name: <TAB>
012 EXPERIENCED CHARLOTTE WHITE TOP 12-Sep-1972 $75,892 00012

Modifying Data 4-13

A correct statement in the previous example, would have been either:

MODIFY FIRST 1 PERSONNEL USING . . .

or

FOR FIRST 1 PERSONNEL MODIFY USING . . .

In the following example, the user intends to modify the DEPT field of only the
employee record with ID number 34456. Because of the keyword ALL in the
MODIFY statement, however, DATATRIEVE uses the value entered to modify
the DEPT field of all the records in the CURRENT collection:

DTR> FIND PERSONNEL WITH DEPT = "T32"
[4 records found]
DTR>
No record selected, printing whole collection.

ID STATUS
FIRST
NAME

34456 TRAINEE HANK
38462 EXPERIENCED BILL
48573 TRAINEE SY
83764 EXPERIENCED JIM

LAST
NAME

MORRISON
SWAY
KELLER
MEADER

DTR> FOR PERSONNEL WITH ID = 34456
CON> MODIFY ALL DEPT
Enter DEPT: F11
DTR> PRINT

DEPT

T32
T32
T32
T32

No record selected, printing whole collection.

FIRST LAST
ID STATUS NAME NAME DEPT

34456 TRAINEE HANK MORRISON F11
38462 EXPERIENCED BILL SWAY F11
48573 TRAINEE SY KELLER F11
83764 EXPERIENCED JIM MEADER F11

DTR> ! YIPES!!!!
DTR>

To avoid this. the user could enter either:

SELECT 1; MODIFY DEPT

or

FOR PERSONNEL WITH ID = 34456 MODIFY DEPT

4-14 Modifying Data

START SUP
DATE SALARY ID

1-Mar-1982 $30,000 87289
5-May-1980 $54,000 00012
2-Aug-1981 $31,546 87289
4-Apr-1980 $41,029 87289

START SUP
DATE SALARY ID

1-Mar-1982 $30,000 87289
5-May-1980 $54,000 00012
2-Aug-1981 $31,546 87289
4-Apr-1980 $41,029 87289

~.4 Using DATATRIEVE Prompts

~here are two ways you can get DATATRIEVE to prompt you for values:

Using forms of the MODIFY statement that do not require a USING clause

Including a prompting value expression in the Assignment statements within
the USING clause (for example. USING LAST_NAME = *."last name")

laving DAT A TRIEVE prompt you to enter values has the following advantages:

You do not have to type in all the Assignment statements.

If you enter an invalid value or one that is too large for the field.
DATATRIEVE displays an error message and reprompts so you can try
again.

You do not have to enter nonnumeric values in quotation marks. In fact.
DAT ATRIEVE treats quotation marks as part of the value, so you should
not use them unless they are actually part of the field value.

If you press TAB and then the RETURN key in response to a prompt for a
field value, DAT A TRI EVE leaves the value of the field unchanged, regard­
less of any DEFAULT or MISSING values defined for the field. This can be
useful if you are prompted to enter values for fields you decide not to
change.

If you respond with CTRL/Z to a prompt for a field value, DAT A TRI EVE
does not change any field in the record you are currently changing. This is
useful if you realize you made a mistake entering earlier values for that
record.

Remember. however, that entering CTRL/Z does not affect records you have
finished modifying, only the one you are working with when you enter
CTRL/Z. CTRL/Z also aborts the statement being executed. This means. for
example, that if your statement is processing ten records and you enter
CTRL/Z while modifying the fifth record, you do not get a chance to modify
the remaining five records. You must reenter the statement to modify the
fifth through tenth records.

Jsing prompting value expressions within the USING clause of a MODIFY state­
nent is a very flexible method for assigning values to fields.

Modifying Data 4-15

In the following example, the double asterisk prompts mean that the user is
prompted to enter one field value that applies to all the records in the collection.
The single asterisk prompts mean that the user is prompted to enter a field value
for each record:

DTR> SET NO PROMPT
DTR> READY YACHTS MODIFY
DTR> FIND YACHTS WITH BEAM = 0
[5 records found]
DTR> FOR CURRENT MODIFY USING
CON> BEGIN
CON> PRINT SPECS
CON> LOA= **.LOA
CON> DISP = *.WEIGHT
CON> BEAM= *.BEAM
CON> PRICE= PRICE* 1.1
CON> END

LENGTH
OVER

RIG ALL WEIGHT BEAM PRICE

SLOOP 32 9,500 00
Enter LOA: 33
Enter WEIGHT: 12000
Enter BEAM: 10
SLOOP 32 11,000 00 $29,500
Enter WEIGHT: <TAB><RET>
Enter BEAM: 11
SLOOP 31 13,600 00 $32,500
Enter WEIGHT: 15000
Enter BEAM: 12
SLOOP 35 23,200 00
Enter WEIGHT: <TAB><RET>
Enter BEAM: 13
SLOOP 32 14,900 00 $34,480
Enter WEIGHT: <TAB><RET>
Enter BEAM: 9
DTR> PRINT ALL

LENGTH
OVER

MANUFACTURER MODEL RIG ALL

METALMAST GALAXY SLOOP 33
O'DAY 32 SLOOP 33
RYDER S. CROSS SLOOP 33
TA CHIAO FANTASIA SLOOP 33
WRIGHT SEAWIND II SLOOP 33

DTR>

WEIGHT BEAM PRICE

12,000 10
11,000 11 $32,450
15,000 12 $35,750
23,200 13
14,900 09 $37,928

You must respond to a prompt with a value rather than a value expression.
For example. if you want to increase a price field by ten percent and let
DATATRIEVE do the calculation. you must use direct assignment.

4-16 Modifying Data

1ATATRIEVE will not let you enter PRICE * 1.1 in response to a prompt. If you
re writing a procedure that needs this flexibility, you can prompt for part of the
alue expression. For example, you can prompt for the price increase and include
1e arithmetic calculation of the new value for PRICE in your Assignment state-
1ent (PRICE = PRICE * *."price increase") .

. 5 Ensuring Valid Values

IATATRIEVE always checks the record definition that applies to the record you
re changing to ensure that new field values have the correct length and data
rpe. It also applies any VALID IF clauses in the record definition to the changed
eld values. DAT ATRIEVE displays an error message and leaves the existing
eld value untouched if a modify operation tries to enter a value that the record
efinition does not allow.

'he VERIFY clause of the MODIFY statement lets you supplement the valida­
on requirements in the record definition. It can also help you enforce security
ieasures for modification procedures.

'he format of the VERIFY clause is:

ERIFY [USING] validation-statement

'he validation statement can be a series of statements within a BEGIN-END
lock.

1he VERIFY clause in the following example ensures that the first and last
ames entered for an employee begin with a capital letter:

fR> FOR PERSONNEL WITH ID= *."ID number for record being changed"
JN> MODIFY VERIFY USING
JN> BEGIN
JN> WHILE FIRST_NAME NOT BT "A" AND "Z"
JN> BEGIN
JN> PRINT SKIP, "Invalid first name"
JN> FIRST_NAME = *."first name using CAPS"
JN> END
JN> WHILE LAST_NAME NOT BT "A" AND "Z"
JN> BEGIN
JN> PRINT SKIP, "Invalid last name"
JN> LAST_NAME *."last name using CAPS"
JN> END

JN> END

rote that DATATRIEVE does all verification only after all the data is entered for
1e record being modified.

Modifying Data 4-17

Using View Domains 5

l'his chapter introduces the concept of view domains.

\.view is a special type of domain that lets you select some (or all) fields in some
or all) records from one or more domains. Using a vie~, you can refer tcr fields
md field values in different domains without duplicating their records or data.

(ou define a view by creating a domain definition for it in the Common Data
)ictionary (CDD). A view lets you read and modify selected field values. Because
here is no data stored for a view, you cannot store or erase the records you
etrieve with a view. Although you can combine records from various domains
vith the CROSS clause of the RSE, a view is the only type of domain that you
:an define in the CDD for working with data in more than one domain.

{ ou define a view with the DEFINE DOMAIN command. The format of the com­
nand for defining a view is:

)EflNE DOMAIN view-path-name OF domain-path-name-1 [. ...] [~~ING J
level-number-1 field-name-1 OCCURS FOR rse-1 .

level-number-2 field-name-2 I OCCURS FOR rse-n I
FROM domain-path-name-n

[FORM [IS] form-name [IN] form-library]

\.fter the keyword OF, you must list each domain that the view uses. You can
pecify the domains in any order, separating them with commas. You must end
~ach field definition with a period and end the view definition with a semicolon.

5-1

You use two claus'es to define the fields in a view:

• OCCURS FOR

• FROM

The top-level field must be defined with an OCCURS FOR clause. The record
selection expression in the first OCCURS FOR clause determines the number of
records in the view. Each subsequent OCCURS FOR clause creates a list within
the view. Consequently, a view that contains more than one OCCURS FOR
clause is always a hierarchy. !The first OCCURS FOR clause does not make the
view a hierarchy. It only establishes the source record stream for the view.)

See Chapters 6 and 11 for a discussion of view domains that are hierarchies.

You establish the fields of data for the view with the FROM clause. It specifies
the name of the field and the domain from which it derives. The domain must be
the same domain named in the previous OCCURS FOR clause. The field name
must be either a field name or a query name from that domain.

To ready a view, you must have the proper access privilege, and you must also
have the same access privilege to the domain that the view uses. You ready a vie~
domain directly; do not ready the domain that the view uses.

The next section shows how to define a view that contains a subset of records in
the YACHTS domain. It uses that view to illustrate some general properties of
views.

5.1 Views Using Subsets of Records

A view lets you work with a specific subset of records from another domain. For
instance, you may want to work with the records for ketches only and no other rig
type. The following example shows a view definition that allows you to work with
four fields of the yachts that are ketches:

DTR> DEFINE DOMAIN KETCHES
DFN> OF YACHTS BY
DFN> 01 KETCH OCCURS FOR YACHTS WITH RIG EQ "KETCH".
DFN> 03 TYPE FROM YACHTS.
DFN> 03 LOA FROM YACHTS.
DFN> 03 PRICE FROM YACHTS.
DFN> ;
DTR> READY KETCHES
DTR> PRINT FIRST 4 KETCHES

5-2 Using View Domains

LENGTH
OVER

.NUF ACTURER MODEL ALL PRICE

LB ERG 37 MK II 37 $36,951
HALLENGER 41 41 $51,228
!SHER 30 30
!SHER 37 37

R>

ie view domain KETCHES, which is based on the single domain YACHTS, is
it hierarchical because there is only one OCCURS FOR clause.

m cannot store or erase records in a view. Otherwise, you c,an use a view just as
u would any other domain. For example:

R> READY KETCHES MODIFY
R> FIND KETCHES WITH PRICE EQ 0
records found]

R> PJUNT ~LL

LENGTH
OVER

NUFACTURER MODEL ALL PRICE

I SHER 30 30
I SHER 37 37
EARS ON 365 36
EARS ON 419 42

~> FOR CURRENT PRINT THEN MODIFY PRICE

LENGTH
OVER

mf ACTURER MODEL ALL PRICE

£SHER 30 30
lier PRICE: $30,000
£SHER 37 37
lier PRICE: 45,000
~ARSON 365 36
lier PRICE: 32000
~ARSON 419 42
Ger PRICE: 54000

(continued on next page)

Using View Domains 5-3

DTR> PRINT ALL

LENGTH
OVER

MANUFACTURER MODEL ALL PRICE

FISHER 30 30 $30,000
FISHER 37 37 $45,000
PEARSON 365 36 $32,000
PEARSON 419 42 $54,000

DTR> FINISH
DTR>

Views using a subset of records are also useful with DBMS domains and Rdb rel
tions and domains. See Chapters 14 and 15 for information about DBMS and R<
views.

5.2 Views Using Subsets of Fields
One type of view lets you refer to a subset of fields from the records of another
domain. For example. the record definition for YACHTS contains seven elemen­
tary fields and three group fields:

DTR> SHOW YACHT
RECORD YACHT USING
01 BOAT.

.

03 TYPE.
06 MANUFACTURER PIC X(10)

QUERY_NAME IS BUILDER.
06 MODEL PIC X(10).

03 SPECIFICATIONS
QUERY_NAME SPECS.
06 RIG PIC X(6)

VALID IF RIG EQ 11 SLOOP","KETCH 11
, 11 MS 11 , 11 YAWL 11

•

06 LENGTH_OVER_ALL PIC XXX
VALID IF LOA BETWEEN 15 AND 50
QUERY_NAME IS LOA.

06 DISPLACEMENT PIC 99999
QUERY_HEADER IS "WEIGHT"
EDIT_STRING IS ZZ,ZZ9
QUERY_NAME IS DISP.

06 BEAM PIC 99 MISSING VALUE IS 0.
06 PRICE PIC 99999

MISSING VALUE IS 0
VALID IF PRICE>DISP*1.3 OR PRICE EQ 0
EDIT_STRING IS $$$,$$$.

DTR>

If you want to work with only a few fields of the record, you can create a record
definition for those fields and then create a domain and a data file containing on
record for each record in YACHTS. The result is a data file that duplicates som«
field values in an existing data file (YACHT.DAT). Maintaining these two files s
that they always contain the same field values would be difficult.

5-4 Using View Domains

ou can define a view, however, that lets you look at just the fields in YACHTS
lat you need, without duplicating field values. You also avoid the additional time
id overhead of creating another record definition and creating and updating two
tta files:

'R> DEFINE DOMAIN MAKERS
'N> OF YACHTS BY
'N> 01 BOAT OCCURS FOR YACHTS.
'N> 03 TYPE FROM YACHTS.
N> 03 RIG FROM YACHTS.
N> ;
'R> READY MAKERS
'R> PRINT FIRST 6 MAKERS

NUFACTURER MODEL RIG

LB ERG 37 MK II KETCH
LBIN 79 SLOOP
LBIN BALLAD SLOOP
LBIN VEGA SLOOP
MERI CAN 26 SLOOP
MERI CAN 26-MS MS
AYFIELD 30/32 SLOOP
LOCK I. 40 SLOOP
OMBAY CLIPPER SLOOP
UC CANEER 270 SLOOP

R>

3 Views Using More Than One Domain

ie preceding sections showed how to use view domains to define a subset of
cords or fields from a single domain.

ews can also use more than one domain. There are two general ways different
mains can be combined in a view:

Combine record streams by using more than one OCCURS FOR clause.
Each OCCURS FOR clause has its own RSE. and DATATRIEVE creates a
hierarchical relationship between the record streams specified in each RSE.

For example. the sample domain SAILBOATS uses two OCCURS FOR
clauses to create a hierarchical relationship between two record streams:

DTR> SHOW SAILBOATS
DOMAIN SAILBOATS OF YACHTS, OWNERS USING
01 SAILBOAT OCCURS FOR YACHTS.

03 BOAT FROM YACHTS.
03 SKIPPERS OCCURS FOR OWNERS WITH TYPE =BOAT.TYPE.

05 NAME FROM OWNERS.

DTR>

Using View Domains 5-5

Chapter 6 discusses creating hierarchies with view domains in more detail.

• Use a CROSS clause in the RSE of the OCCURS FOR clause to refer to
more than one domain. The remainder of this section discusses using the
CROSS clause in a view domain.

To illustrate how to use the CROSS clause in a view to combine records from
more than one domain, look at the CROSS example in the chapter on using
record selection expressions. Recall that this PRINT statement displays the
NAME field from the OWNERS domain and the TYPE and PRICE fields from
the corresponding records in the YACHTS domain:

DTR> PRINT NAME, YACHTS.TYPE, PRICE OF YACHTS CROSS OWNERS OVER TYPE

OWNER
NAME MANUFACTURER MODEL PRICE

STEVE ALBIN VEGA $18,600
HUGH ALBIN VEGA $18,600
JIM C&C CORVETTE
ANN C&C CORVETTE
JIM ISLANDER BAHAMA $6,500
ANN ISLANDER BAHAMA $6,500
STEVE ISLANDER BAHAMA $6,500
HARVE ISLANDER BAHAMA $6,500
TOM PEARSON 10M
DICK PEARSON 26
JOHN RHODES SWIFT SURE

DTR>

You can define a view domain, CROSS_SAILBOATS, to get the same results:

• Include the RSE YACHTS CROSS OWNERS OVER TYPE after the
OCCURS FOR clause.

• Specify the fields you want to include in the domain--NAME, TYPE. and
PRICE--in the FROM clauses of the view domain.

The following example shows the definition for CROSS SAILBOATS. It shows
how a simple PRINT statement produces the same results as the previous PRIN
statement that used the CROSS clause.

DTR> SHOW CROSS_SAILBOATS
DOMAIN CROSS_SAILBOATS OF YACHTS, OWNERS USING
01 SAILBOAT OCCURS FOR YACHTS CROSS OWNERS OVER TYPE.

03 NAME FROM OWNERS.
03 TYPE FROM YACHTS.
03 PRICE FROM YACHTS.

DTR> READY CROSS_SAILBOATS

5-6 Using View Domains

t> PRINT CROSS_SAILBOATS

~ER
~E MANUFACTURER MODEL PRICE

~VE ALBIN VEGA $18,600
rn ALBIN VEGA $18,600
~ C&C CORVETTE
~ C&C CORVETTE
~ ISLANDER BAHAMA $6,500
~ ISLANDER BAHAMA $6,500
~VE ISLANDER BAHAMA $6,500
tvE ISLANDER BAHAMA $6,500
~ PEARSON 10M
~K PEARSON 26
IN RHODES SWIFT SURE

t>

4 Advantages and Disadvantages of Using Views

1ce you can define a view with any RSE that you might type interactively, view
mains are convenient substitutes for typing complex record selection expres­
ns you use often.

te of the greatest advantages of a view is that you can use it to combine fields
im an Rdb database with fields from RMS (file-structured) domains and DBMS
mains. You can have a single view that brings together data from these differ­
t types of databases.

view domain is also a convenient way to create a dynamic hierarchy. By using
~ OCCURS FOR clause, you can create temporary list fields. You then have the
llity to display data in hierarchical form without being tied to hierarchical
~ords for other tasks.

iu can also use a view to mask the data in certain fields from users who do not
ed to see it. Select the fields you want the user to see from each underlying
main and define a view that uses only those fields. However, because users
ist also have access to the underlying domains, views cannot keep users from
;rieving sensitive data directly from those domains.

te very important disadvantage of using views lies in the danger of modifying
~ords from multiple sources. You must be careful when you modify values in a
~w based on more than one domain. If the field you are changing is stored in
>re than one data file, you are updating only one of those files for each field
lue you enter.

Using View Domains 5-7

If the view refers to a second domain based on the value of a field in the first
domain, a change to a field value in the first domain can cause DAT ATRIEVE ti
select an unexpected record from the second domain. When you use a form to
modify such a view, the field value you see on the screen may not be the value y~
are actually modifying. See the chapter on forms in this book for an example of
this problem in modifying a view.

Observe the following cautions and restrictions when you use views that refer to
more than one domain:

• Try to avoid updating with a view.

• Set up view domains that minimize duplicate fields.

• Remember that when a view contains more than one OCCURS FOR rse ea
OCCURS FOR rse after the first creates a list field. All the rules and restri
tions for handling hierarchical data apply to those fields.

• Do not modify a field in a view that uses the FORM IS clause when that fie
forms the basis for selecting records from a second domain. (See the chaptE
on forms in this book for an example of this restriction.)

5-8 Using View Domains

Using Hierarchies 6

DATATRIEVE, the term hierarchy refers to a one-to-many relationship
:tween record sources.

'ith hierarchies, you can nest record streams to see a single record from one
cord source displayed with a combination of records from another record source.
iis nesting establishes a "parent-child" relationship between the two record
reams. For each record in the outer, "parent'' record stream, you see all records
the inner, "child" record stream. Parent records are displayed even if there are
• corresponding child records in the inner record stream.

>me examples of how this can be useful are:

One team with several players

One project with several workers

One employee with several previous jobs

One library with many books

One computer with several users

>r instance. a hierarchy could nest record streams from the YACHTS and
WNERS domains. A parent-child relationship between YACHTS and OWNERS
uld link the YACHTS record with a given make and model, ALBIN VEGA, say,
th all OWNERS records that had the same make and model fields.

~re is how DATATRIEVE displays such a hierarchy. It shows each YACHTS
cord and a list of records from OWNERS of people who bought that make and

6-1

model boat. Note that the hierarchy includes the YACHTS record for a boat, eve1
if there are no corresponding records in the OWNERS domain:

LENGTH
OVER OWNER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE NAME BOA1

ALBERG 37 MK II KETCH 37 20,000 12 $36,951
ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600 STEVE DELIVERA

HUGH IMPULSE
AMERICAN 26 SLOOP 26 4,000 08 $9,895
AMERICAN 26-MS MS 26 5,500 08 $18,895
BAYFIELD 30/32 SLOOP 32 9,500 10 $32,875
BLOCK I. 40 SLOOP 39 18,500 12
BOMBAY CLIPPER SLOOP 31 9,400 11 $23,950
BUCCANEER 270 SLOOP 27 5,000 08
BUCCANEER 320 SLOOP 32 12,500 10
C&C CORVETTE SLOOP 31 8,650 09 JIM EGRET

ANN EGRET
CABOT 36 SLOOP 36 15,000 12

The ability to nest record streams is a powerful feature of DATATRIEVE. By se1
ting up a parent-child relationship between record streams, you can see parent
records whether or not there are any records in the child record stream. Using
hierarchies is the only way to display records in this way. Joining YACHTS and
OWNERS with a CROSS statement does not show the YACHTS records that de
not have a corresponding records in the OWNERS domain:

DTR> PRINT BOAT, NAME, BOAT_NAME OF YACHTS CROSS OWNERS OVER TYPE

LENGTH
OVER OWNER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE NAME BOA'.

ALBIN VEGA SLOOP 27 5,070 08 $18,600 STEVE DELIVERJ
ALBIN VEGA SLOOP 27 5,070 08 $18,600 HUGH IMPULSE
C&C CORVETTE SLOOP 31 8,650 09 JIM EGRET
CkC CORVETTE SLOOP 31 8,650 09 ANN EGRET
ISLANDER BAHAMA SLOOP 24 4,200 08 $6, 500 JIM POTEMKII
ISLANDER BAHAMA SLOOP 24 4,200 08 $6,500 ANN POTEMKII
ISLANDER BAHAMA SLOOP 24 4,200 08 $6, 500 STEVE POTEMKII
ISLANDER BAHAMA SLOOP 24 4,200 08 $6,500 HARVE MANANA
PEARSON 10M SLOOP 33 12,441 11 TOM LONE TRJ
PEARSON 26 SLOOP 26 5,400 08 DICK PURSUIT
RHODES SWIFTSURE SLOOP 33 14,000 10 JOHN STRIDER

DTR>

6-2 Using Hierarchies

ou can create a hierarchiCal relationship in two ways:

Within a record definition by using the OCCURS clause to define a repeating
field. DAT A TRI EVE sees repeating fields as an inner record within a record.
Records with repeating fields are also called hierarchical records.

Between different types of records by nesting record streams:

Hierarchical view domains

Inner print lists

Nested FOR statements

Nesting record streams creates a hierarchy between nonhierarchical records.
(Any records without repeating fields are nonhierarchical. They are also
called "flat" records.)

Both methods let you show parent records with any and all child
records. Creating hierarchies between flat records by nesting record
streams is preferable because you can directly modify and retrieve data
using the flat records. This avoids the complexities of accessing repeat­
ing fields to modify and retrieve data, but lets you create hierarchies
when you need their advantages.

iis chapter describes:

Defining records with repeating fields

Retrieving values from repeating fields

Modifying values stored in repeating fields

Creating hierarchies from flat records by nesting record streams

1 Defining Records with Repeating Fields

~pea ting fields in a DAT A TRIEVE record definition are similar to fields defined
th the OCCURS clause in COBOL and to one-dimensional arrays in BASIC.

Using Hierarchies 6-3

When a record definition contains a repeating field. it means that there can be
multiple occurrences of each field subordinate to the repeating field. In
DAT A TRI EVE syntax, repeating fields are also called lists. Fields subordinate tc
the list are called list items.

~etrieving data from repeating fields is not as easy as retrieving.data from other
types of fields. For this reason. avoid using repeating fields when defining
records. You can get the display advantages of repeating fields by nesting record
streams from separate flat records.

However. you may have to use repeating fields to define a record for a data file
that already exists. Or. you may _have to use an existing record that contains
repeating fields. (See the chapter entitled Designing Better Records for informa­
tion on restructuring a record with repeating fields into several flat records.)

The examples on the following pages are based on the FAMILIES domain that i~
part of the VAX DAT A TRIEVE installation kit. The parent-child relationship
common to all hierarchies is illustrated literally in the ·record definition for
FAMILIES: for each record in FAMILIES~ there is one set of parents to several
children.

Records without repeating fields are often called flat records because the elemen·
tary fields in them are logically equivalent to each other. When you print a flat
record, all the elementary fields are displayed in the order defined by the level
numbers assigned to the fields. Figure 6-1 shows this logical equivalence imposec
by the level numbers in the record definition YACHT.

01 BOAT

03 TYPE 03 SPECIFICATIONS

05 BUILDER l 05 MODEL 05 RIG l 05 LOA l 05 DISP l 05 BEAM 105 PRI

MK-01:

Figure 6-1: A Flat Record: YACHT

You can define a flat record for information about a family. Each record contains
the names of the father and mother and the names and ages of the number of

6-4 Using Hierarchies

ids you pick as the maximum number for the record. The following sample
~cord definition works for families with up to two kids:

FAMILY.
03 PARENTS.

06 FATHER PIC X(10).
06 MOTHER PIC X(10).

03 KIDS.
06 FIRST_KID.

09 KID_NAME PIC X(10).
09 AGE PIC 99 EDIT_STRING IS Z9.

06 SECOND_KID.
09 KID_NAME PIC X(10).
09 AGE PIC 99 EDIT_STRING IS Z9.

vhen you print a record with this definition, DAT A TRIEVE prints the field val­
es in the following order:

FATHER MOTHER

iNIE ANNE

KID
NAME

SCOTT

AGE
KID
NAME

2 BRIAN

AGE

0

'he display generated by the flat record does not group the information about the
ids in a way that suggests the parent-child relationship. In addition, the flat
~cord lets you store information about two kids only. A repeating field provides a
>rmat that groups the information to convey the list items are subordinate to the
ther elementary fields in the record. It also lets you store information about
iore than two kids.

1 hierarchical records, the repeating field is equivalent to the other elementary
elds with the same level number, and the list items are subordinate to the list.
igure 6-2 shows this logical subordinf}tion of the list items to the list and the
ther elementary fields in the FAMILY record. The record stores the same type
f information for each of the kids, and each field containing that information is
escribed only once in the record definition. The record itself, however. can con­
iin many fields of the same description -- one set for each kid.

:xample 6-1 shows the actual record definition that corresponds to the logical
cructure illustrated in Figure 6-2.

Using Hierarchies 6-5

0 1 FAMILY

03 PARENTS 03 NUMBER_KIDS 03 KIDS OCCURS 1 TO 10 TIMES

08 FATHER l 08 MOTHER 08 EACH_KID

08 KID_NAME 08 AGE

08 EACH_KID

08 KID-NAME 08 AGE
t t t

t t t

t t t

06 EACH_KID

08 KID_NAME 08 AGE

ZK-0003-

Figure 6-2: A Hierarchical Record: FAMILY_ REC

The OCCURS clause in the record definition is the key to the hierarchical struc­
ture. Lists can be variable- or fixed-length, depending on the syntax of the
OCCURS clause in the record definition. The list in the FAMILY record is a
variable-length list: it repeats items a variable number of times according to a
value stored in another record field (NUMBER_ KIDS).

6.1.1 Defining Lists with a Fixed Number of Occurrences

If you define a hierarchical record with a list that occurs a fixed number of times.
every record in the domain contains enough space to store the same number of
list items. The OCCURS clause format for fixed-length lists is OCCURS n
TIMES. where n is the number of occurrences.

You can use OCCURS n TIMES with an elementary or group field. A record defi·
nition can contain any number of OCCURS clauses in this format, any place in
the record.

Using an OCCURS clause in a record definition eliminates the redundancy qf
defining the same fields for each kid and establishes the group field KIDS as a

6-6 Using Hierarchies

;t. This record definition uses a fixed-length list to provide a hierarchical struc­
tre for the information about families with two kids:

FIXED_LENGTH_FAMILY.
03 PARENTS.

06 FATHER PIC X(10).
06 MOTHER PIC X(10).

03 KIDS OCCURS 2 TIMES.
06 KID_NAME PIC X(lO).
06 AGE PIC 99 EDIT_STRING IS Z9.

you define the record using OCCURS 2 TIMES. it is displayed in the following
1rmat:

KID
FATHER MOTHER NAME AGE

tNIE ANNE SCOTT 2
BRIAN 0

his record definition causes the group field KIDS to repeat twice (OCCURS 2
IMES) in each record. Each elementary field subordinate to KIDS repeats twice .

. 1.2 Defining Lists with a Variable Number of Occurrences

sing the OCCURS ... DEPENDING clause in a field definition creates a hierar-
1ical record that allows a variable number of list items from one record to
1other. This format lets you vary the number of list items in the records of a
)main:

CCURS min TO max TIMES DEPENDING ON field-name

ou can have only one field in a record definition with an
CCURS ... DEPENDING clause in this format. It must appear at the end of the
~cord definition.

ach record in the sample FAMILIES domain contains the names of the parents,
ie number of kids, and the name and age of each kid. The record definition for
AMILIES uses the OCCURS ... DEPENDING clause to define KIDS as a
:triable-length list. The actual number of list items in a record depends on the
:iJue of the NUMBER KIDS field. If the value is 0. the record contains no data
)Out kids. If the value-of NUMBER KIDS is 1. the record contains data about
1e kid, and so on. Each occurrence of the KIDS field contains the group field
ACH KID. EACH KID in turn contains two elementary fields: KID NAME and
GE. EACH KID is a group field in the list. Like other group fields. it allows you
>refer to its-subordinate fields with one name. (Note that DATATRIEVE does
ot let you use the OCCURS field name as you would a group field name in your

Using Hierarchies 6-7

statements. To DAT ATRIEVE, the OCCURS field name identifies what it sees a
a record stream source within the record itself. For more information, see Sectior
6.2.)

Example 6-1 shows the record definition associated with FAMILIES.

Example 6-1: The FAMILY Record Definition

01 FAMILY.
03 PARENTS.

06 FATHER PIC X(10).
06 MOTHER PIC X(10).

03 NUMBER_KIDS PIC 99 EDIT_STRING IS Z9.
03 KIDS OCCURS 0 TO 10 TIMES DEPENDING ON NUMBER_KIDS.

06 EACH_KID.
09 KID_NAME PIC X(10) QUERY_NAME IS KID.
09 AGE PIC 99 EDIT_STRING IS Z9.

When you display the fields in FAMILIES, DATATRIEVE identifies the field
KIDS as a list:

DTR> SHOW FIELDS FAMILIES
FAMILIES

FAMILY
PARENTS

FATHER <Character string>
MOTHER <Character string>

NUMBER_ KIDS <Number>
KIDS <List>

EACH_KID
KID_NAME (KID) <Character string>
AGE <Number>

DTR>

The output of the PRINT command shows the relationship between
NUMBER KIDS and the fields KID NAME and AGE. Example 6-2 shows all
the records in the FAMILIES domain. The values of KID NAME and AGE
appear as a list in records with the number of kids greater than zero.

Example 6-2: The Hierarchical Records in FAMILIES

DTR> PRINT FAMILIES

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7
RALPH 3

(continued on next page)

6-8 Using Hierarchies

xample 6-2: The Hierarchical Records in FAMILIES (Cont.)

[M LOUISE 5 ANNE 31
JIM 29
ELLEN 26
DAVID 24
ROBERT 16

JHN JULIE 2 ANN 29
JEAN 26

JHN ELLEN 1 CHRISTOPHR 0
mm ANNE 2 SCOTT 2

BRIAN 0
fEARMAN SARAH 1 DAVID 0
JM ANNE 2 PATRICK 4

SUZIE 6
~SIL MERIDETH 6 BEAU 28

BROOKS 26
ROBIN 24
JAY 22
WREN 17
JILL 20

JB DIDI 0
ERO ME RUTH 4 ERIC 32

CISSY 24
NANCY 22
MICHAEL 20

JM BETTY 2 MARTHA 30
TOM 27

EORGE LOIS 3 JEFF 23
FRED 26
LAURA 21

/\ROLD SARAH 3 CHARLIE 31
HAROLD 35
SARAH 27

DWIN TRINITA 2 ERIC 16
SCOTT 11

TR>

.1.3 Defining Sublists to Nest Lists Within Lists

~lthough you can use only one OCCURS ... DEPENDING clause in a record defi-
ition, you can define any number of fixed-length lists within a variable-length
st.

'he sample record definitio;1 PET REC is an extension of the FAMILY record
hat illustrates sublists. The repeating field PET occurs twice for each kid, so
ach kid in each family can record the data for two pets they own:

TR> SHOW PETS
OMAIN PETS USING PET_REC ON PET.DAT;

Using Hierarchies 6-9

DTR> SHOW PET_REC
RECORD PET_REC
01 FAMILY.

03 PARENTS.
06 FATHER PIC X(10).
06 MOTHER PIC X(10).

03 NUMBER_KIDS PIC 99 EDIT_STRING IS Z9.
03 KIDS OCCURS 0 TO 10 TIMES DEPENDING ON NUMBER_KIDS.

DTR>
DTR>

06 EACH_KID.
09 KID_NAME PIC X(10) QUERY_NAME IS KID.
09 KID_AGE PIC 99 EDIT_STRING IS Z9.
09 PET OCCURS 2 TIMES.

13 PET_NAME PIC X(10).
13 PET_AGE PIC 99.

READY PETS
PRINT FIRST 2 PETS

NUMBER KID KID PET
FATHER MOTHER KIDS NAME AGE NAME

JIM LORAINE 2 GARY 24 POP
SODA

SUE 23 MOUSE
SHORTY

JIM ANN 2 URSULA 7 SQUEEKY
FRANK

RALPH 3

DTR>

6.2 Retrieving Values from Repeating Fields

PET
AGE

03
04
03
08
03
07
00
00

When you retrieve a value from a record containing a repeating field, you cannot
always apply the same statements you do for other records. The following
sequence of statements shows what can happen when you try to print the repeat­
ing field KIDS from the hierarchical record families:

DTR> READY FAMILIES
DTR> SHOW FAMILY_REC
RECORD FAMILY_REC
01 FAMILY.

03 PARENTS.
06 FATHER PIC X(10).
06 MOTHER PIC X(10).

03 NUMBER_KIDS PIC 99 EDIT_STRING IS Z9.
03 KIDS OCCURS 0 TO 10 TIMES DEPENDING ON NUMBER_KIDS.

06 EACH_KID.
09 KID_NAME PIC X(10) QUERY_NAME IS KID.
09 AGE PIC 99 EDIT_STRING IS Z9.

6-10 Using Hierarchies

iR> PRINT FATHER OF FAMILIES

FATHER

:M
:M

'R> PRINT MOTHER OF FAMILIES

MOTHER

IN
IUISE

'R> PRINT KIDS OF FAMILIES
.INT KIDS OF FAMILIES

.pected end of statement, encountered "OF".
'R>

)U can print the names of fathers and mothers successfully. But when you try to
'int the list field KIDS, you get an error message. If you form a collection, you
n again print information on fathers and mothers but not kids:

'R> FIND FAMILIES
3 records found]
R> PRINT ALL FATHER

FATHER

M
M

R> PRINT ALL MOTHER

MOTHER

N
UISE

R> PRINT ALL EACH_KID
ACH_KID" is undefined or used out of context
R> PRINT ALL KIDS
IDS" is undefined or used out of context
R> PRINT ALL KIDS OF FAMILIES
INT ALL KIDS OF FAMILIES

pected end of statement, encountered "OF".

Using Hierarchies 6-11

In the first two examples, you get a message stating that the field name is
undefined or used out of context. The third example results in the same message
you got in the previous example. To retrieve the information, you can apply one o
the following methods to set up a DAT ATRIEVE context:

• Use a FIND statement to establish a context for the list. Then use a
SELECT statement to identify one record in the collection.

• Use nested FOR rse loops. The outer FOR loop forms a target stream of
hierarchical records and the inner FOR loop forms a stream of list items
within a hierarchical record.

• Use inner print lists (ALL print-list OF rse) to form a stream of list items
within a record stream.

The following sections describe these methods for retrieving items from lists.

6.2.1 Retrieving Repeating Field Values with FIND and SELECT

You use the FIND statement to find all the records in the file that meet your
specifications. Then you can use the SELECT statement to request any one of
these records:

DTR> READY FAMILIES
DTR> FIND FAMILIES
[14 records found]
DTR> SELECT 3; PRINT

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JOHN JULIE 2 ANN 29
JEAN 26

When you have selected a record that contains a list, you can treat the list as
though it were a source of records like a domain or collection. You can continue CJ

follows:

DTR> PRINT KIDS

KID
NAME AGE

ANN 29
JEAN 26

You can also combine the FIND and SELECT statements to single out one list
item. Then the context of the selected list item allows you to use the list item

6-12 Using Hierarchies

:ime by itself in a PRINT statement. Continue the previous example by forming
collection of the KIDS list field and selecting a list item from the collection:

~R> FIND KIDS
! records found] ·
~R> SELECT 2; PRINT

KID
NAME AGE

:AN 26

'R> PRIN-T AGE

~E

'R>

ou can use the same technique to get at nested repeating fields, such as the
8T field in the hierarchical record PET REC:

'R> READY PETS
'R> SHOW PET_REC ! Here's what the record for PETS looks like:
:CORD PET _REC

FAMILY.
03 PARENTS.

06 FATHER PIC X(10) .
06 MOTHER PIC X(10).

03 NUMBER_KIDS PIC 99 EDIT_STRING IS Z9.
03 KIDS OCCURS 0 TO 10 TIMES DEPENDING ON NUMBER_KIDS.

06 EACH_KID.
09 KID_NAME PIC X(10) QUERY_NAME IS KID.
09 KID_AGE PIC 99 EDIT_STRING IS Z9.
09 PET OCCURS 2 TIMES.

13 PET_NAME PIC X(10).
13 PET_AGE PIC 99.

R> ! First, form a collection of the records in the PETS domain:
R> FIND PETS
records found]

R> SELECT 3; PRINT

NUMBER KID KID PET PET
FATHER MOTHER KIDS NAME AGE NAME AGE

M LOUISE 5 ANNE 31 FRANK 14
FRANK 14

JIM 29 00
00

ELLEN 26 00
00

DAVID 24 00
00

ROBERT 16 00
00

Using Hierarchies 6-13

DTR> ! Second, form a collection of the "records" in the
DTR> ! KIDS repeating field:
DTR> FIND KIDS
[5 records found]
DTR> SELECT 1; PRINT

KID
NAME

ANNE

KID
AGE

PET
NAME

31 FRANK
FRANK

PET
AGE

14
14

DTR> Third, form a collection of the "records"
DTR> in the PET repeating field:
DTR> FIND PET
[2 records found]
DTR> ! Finally, you can print a field subordinate to
DTR> ! the nested repeating field PET:
DTR> SELECT 1; PRINT PET_AGE

PET
AGE

14

You cannot retrieve the value of repeating fields from more than one record usin~
only FIND and SELECT statements.

6.2 .2 Retrieving Repeating Field Values with Nested FOR Loops

To retrieve values from list items by nesting FOR loops, start from the top of th€
hierarchy and work toward the list items you want to retrieve. In the following
example, the source for the RSE in the first or outer FOR loop is the hierarchical
domain FAMILIES. The source in the second loop is the list item KIDS:

DTR> FOR FAMILIES
[Looking for statement]
CON> FOR KIDS WITH AGE < 10
[Looking for statement]
CON> PRINT KID_NAME

KID
NAME

URSULA
RALPH
CHRISTOPHR
SCOTT
BRIAN
DAVID
PATRICK
SUZIE

DTR>

6-14 Using Hierarchies

ie FOR statement preceding the PRINT statement in the following example
)ps through all the records in FAMILIES. For each of those records, the RSE
the PRINT statement retrieves only the first kid whose age is less than 10:

R> FOR FAMILIES
coking for statement]
N> PRINT KID_NAME OF FIRST 1 KIDS WITH AGE < 10

KID
NAME

SULA
RISTOPHR
OTT
VID
TRICK

R>

te OF rse clause in the PRINT statement serves the same purpose as a nested
)R rse statement. The inner RSE (FIRST 1 KIDS WITH AGE < 10) identifies
ms from the list field KIDS that are included within a FAMILIES record iden­
ied by the outer FOR rse statement.

te equivalent statement using nested FOR rse statements is:

~ FAMILIES FOR FIRST 1 KIDS WITH AGE < 10 PRINT KID_NAME

1r nested repeating fields, use the same technique, but nest FOR statements
>re than one level. The following example uses the hierarchical domain PETS as
~record source for the outer FOR loop. The repeating field KIDS is the source
· the second FOR loop, and the nested repeating field PET is the source for the
iermost FOR loop. The example prints the MOTHER and KID NAME fields to
ow which PET record and KIDS occurrence the PET occurrence comes from:

i> FOR PETS WITH ANY KIDS
~> BEGIN
~> PRINT MOTHER
~> FOR KIDS WITH ANY PET
~> BEGIN
~> PRINT COL 10, KID_NAME
~> FOR PET WITH PET_AGE GT 2
~> PRINT COL 20, PET_NAME, PET_AGE
~> END
~> END

(continued on next page)

Using Hierarchies 6-15

MOTHER

LORAINE

KID
NAME

GARY

PET PET
NAME AGE

POP 03
SODA 04

SUE
MOUSE 03
SHORTY 08

ANN
URSULA

SQUEEKY 03
FRANK 07

RALPH
LOUISE

ANNE
FRANK 14
FRANK 14

JIM
ELLEN
DAVID
ROBERT

DTR>

6.2.3 Retrieving Repeating Field Values with Inner Print Lists

The simplest way to print a repeating field is to print the entire record containin
the repeating field:

DTR> READY FAMILIES
DTR> PRINT FIRST 1 FAMILIES

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7
RALPH 3

DTR>

To print selected fields from the record, you must specify a print list in the
PRINT statement. (Print lists consist of field names or other value expressions
and modifiers.~ To specify a list item in a print list. you must use an inner print
list. which has the format:

ALL print-list OF rse

6-16 Using Hierarchies

t the print-list clause of the inner print list, you include the list items you want
•display. The OF rse clause of the inner print list creates a context for the item
. the hierarchical list. Example 6-3 prints the name of the mother and informa­
on about her children for the first FAMILIES record.

Kample 6-3: PRINT Statement with Inner Print List

:R>
:R>
:R>
:R>
:R>
'.R>
'.R> I
'.R> PRINT MOTHER,

MOTHER

IN

KID
NAME

URSULA
RALPH

print-list I
----------------------- I I Inner Print List I I

I ___________ 11

I I print-list I 11
I I I II
ALL KID_NAME, AGE OF KIDS OF FIRST

AGE

7
3

!All kids from first family

1 FAMILIES

t this example, ALL KID NAME, AGE OF KIDS is an inner print list. It is also
i element of the outer print list that includes the field MOTHER as another ele­
ent. This outer print list is associated with the target record stream formed by
te OF FIRST 1 FAMILIES clause.

h.e syntax of the type of PRINT statement that includes an inner print list is:

~INT print-list, ALL print-list OF rse-1 [,print-list] OF rse-2

1 this syntax. ALL print-list OF rse-1 is the inner print list. The argument rse-1
eates a record stream from occurrences of a repeating field. That inner record
ream is itself within the record stream formed by rse-2.

the inner print list is the first element in the outer print list, you must precede
1e inner print list with another mandatory keyword, ALL. The following example
similar to the previous one. However, it displays information about children in
.e first FAMILIES record first, then prints the mother's name:

'R> PRINT ALL ALL KID_NAME, AGE OF KIDS, MOTHER OF FIRST 1 FAMILIES

KID
NAME AGE MOTHER

.SULA 7 ANN

.LPH 4

R>

Using Hierarchies 6-17

The syntax of this type of PRINT statement that includes an inner print list as
the first element of the outer print list is:

PRINT ALL ALL print-list OF rse-1 [,print-list] OF rse-2

There is only one difference between this syntax diagram and the previous one:
you need an extra ALL when the first print list element in the outer print list is
an inner print list.

There are two important points to remember when working with inner print lists.

• To DATATRIEVE, an inner print list is just another print-list element in th4
outer print list.

• An inner print list establishes context for items in a list.

While inner print lists can complicate statements, they allow you to control com­
pletely how DAT A TRI EVE displays repeating fields. By using the repeating field
as the source for an RSE in an inner print list, you can specify which occurrences
of the repeating field DATATRIEVE displays. The next example shows the
results of limiting one or both of the R.SEs in a PRINT statement with an inner
print list:

DTR> ! Limit the RSE for the inner print list
DTR> ! to the first occurrence of KIDS from every family:
DTR> PRINT MOTHER, !Print list for rse-2
CON> ALL KID_NAME, AGE - !Print list for rse-1
CON> OF FIRST 1 KIDS - !rse-1, uses KIDS as record source
CON> OF FAMILIES !rse-2, uses FAMILIES as record source

KID
MOTHER NAME AGE

ANN URSULA 7 !First kid from every family
LOUISE ANNE 31
JULIE ANN 29
ELLEN CHRISTOPHR 0
ANNE SCOTT 2
SARAH DAVID 0
ANNE PATRICK 4
MERIDETH BEAU 28
DIDI
RUTH ERIC 32
BETTY MARTHA 30
LOIS JEFF 23
SARAH CHARLIE 31
TRINITA ERIC 16

6-18 Using Hierarchies

R> ! Limit both RSEs to print the first occurrence
R> ! of KIDS in the first FAMILIES record:
R> PRINT MOTHER, !Print list for rse-2
N> ALL KID_NAME, AGE - !Print list for rse-1
N> OF FIRST 1 KIDS - !rse-1, uses KIDS as record source
N> OF FIRST 1 FAMILIES !rse-2, uses FAMILIES as record source

KID
NAME MOTHER

N URSULA

AGE

7 !First kid of first family

R>

st as with FOR loops, you can nest inner print lists to retrieve desired informa­
m from nested repeating fields.

le following example. like the previous example. retrieves only the information
>m the first occurrence of the repeating field KIDS from a single record. It uses
e PETS domain. however. and nests a third print list to display information
>m the nested repeating field PET:

R> PRINT MOTHER,
N> ALL KID_NAME, KID_AGE,
N> ALL PET_NAME, PET_AGE -
N> OF FIRST 1 PET -
N> OF FIRST 1 KIDS -
N> OF PETS WITH MOTHER = "ANN"

MOTHER

N

R>

KID
NAME

URSULA

KID
AGE

PET
NAME

7 SQUEEKY

PET
AGE

03

!Print list for rse-3
!Print list for rse-2
!Print list for rse-1
!rse-1, uses PET as record source
!rse-2, uses KIDS as record source
!rse-3, uses PETS as record source

!First pet of first kid of
!family whose mother is Ann

;ing nested inner print lists may require nesting the keyword ALL as well. If
e inner print list is the first element in the outermost print list, you must pre­
de it with as many ALL keywords as there are OF RSE phrases in the print
:itement.

Using Hierarchies 6-19

The following example prints only the names of pets for the first two records in
the PETS domain and requires three ALL keywords:

DTR> PRINT ALL -
CON>
CON>
CON>
CON>

ALL
ALL PET_NAME
OF PET -

OF KIDS -
CON> OF FIRST 2 PETS

PET
NAME

POP
SODA
MOUSE
SHORTY
SQUEEKY
FRANK

DTR>

!Print list for rse-3
!Print list for rse-2
!Print list for rse-1
!rse-1, uses PET as record source
!rse-2, uses KIDS as record source
!rse-3, uses PETS as record source

6.2.4 Retrieving Repeating Field Values with the Context Searcher

You can save yourself the difficulty of typing complex inner print lists when deal
ing with lists and sublists. The VAX DAT ATRIEVE Context Searcher helps you
get access to list items. It constructs inner print lists for you once you establish c

single record context for it to work on. When you use the name of a list or sublis·
item (even sublist items at the sixth level of a hierarchical record). it searches
through the names of list items~ constructing the inner print lists needed to
retrieve the value.

You activate the Context Searcher with the SET SEARCH command. When ym
invoke DATATRIEVE. SET NO SEARCH is in effect unless you have a SET
SEARCH command in your DTR$STARTUP file.

The following example shows how the Context Searcher simplifies some of the
previous examples that used inner print lists:

DTR> SET SEARCH
DTR> READY FAMILIES
DTR> ! Compare with results from
DTR> ! PRINT MOTHER; ALL KID_NAME OF KIDS. FATHER OF FIRST 1 FAMILIES
DTR> PRINT MOTHER, KID_NAME, FATHER OF FIRST 1 FAMILIES
Not enough context. Some field names resolved by Context Searcher.

KID
MOTHER NAME

ANN URSULA
RALPH

6-20 Using Hierarchies

FATHER

JIM
JIM

l'R> ! Compare with results from
l'R> ! PRINT MOTHER, EACH_KID OF KIDS OF FIRST 1 FAMILIES
l'R> PRINT MOTHER, EACH_KID OF FIRST 1 FAMILIES
>t enough context. Some field names resolved by Context Searcher.

KID
MOTHER NAME AGE

JN URSULA 7
RALPH 3

l'R> Compare with results from
l'R> PRINT ALL ALL EACH_KID OF KIDS OF
l'R> FIRST 1 FAMILIES WITH NUMBER_KIDS = 3
l'R> PRINT EACH_KID OF FIRST 1 FAMILIES WITH NUMBER_KIDS = 3
>t enough context. Some field names resolved by Context Searcher.

KID
NAME AGE

~FF 23
tED 26
lURA 21

l'R> ! Compare with results from
l'R> ! PRINT ALL ALL ALL PET_NAME OF PET OF KIDS OF FIRST 2 PETS
l'R> PRINT PET_NAME OF FIRST 2 PETS
>t enough context. Some field names resolved by Context Searcher.

JP

PET
NAME

JDA
>USE
IORTY
~UEEKY
tANK

rR>

2.5 Retrieving Repeating Field Values by Flattening Hierarchies

nother way to simplify retrieving values from repeating fields is to "flatten" the
ierarchical structure of the record. To flatten a hierarchy means to repeat all
elds in the record for each occurrence of the repeating field.

lattening the hierarchical domain FAMILIES would mean repeating the
ATHER. MOTHER. NUMBER KIDS. and the entire list within KIDS fields for
ich occurrence of the KIDS repe-ating field. The next two examples compare how
ie first two records of FAMILIES look when first displayed normally and then
attened.

Using Hierarchies 6-21

Normal display:

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7
RALPH 3

JIM LOUISE 5 ANNE 31
JIM 29
ELLEN 26
DAVID 24
ROBERT 16

Flattened display:

NUMBER KID KID
FATHER MOTHER KIDS NAME AGE NAME AGE

JIM ANN 2 URSULA 7 URSULA 7
RALPH 3

JIM ANN 2 URSULA 7 RALPH 3
RALPH 3

JIM LOUISE 5 ANNE 31 ANNE 31
JIM 29
ELLEN 26
DAVID 24
ROBERT 16

JIM LOUISE 5 ANNE 31 JIM 29
JIM 29
ELLEN 26
DAVID 24
ROBERT 16

JIM LOUISE 5 ANNE 31 ELLEN 26
JIM 29
ELLEN 26
DAVID 24
ROBERT 16

JIM LOUISE 5 ANNE 31 DAVID 24
JIM 29
ELLEN 26
DAVID 24
ROBERT 16

JIM LOUISE 5 ANNE 31 ROBERT 16
JIM 29
ELLEN 26
DAVID 24
ROBERT 16

All the fields repeat. including the entire KIDS list, for each occurrence of the
repeating fields KIDS. The repetition of the KIDS list in the flattened display
makes it cumbersome and hard to read. For a more readable display, you can lim:
the fields to only those you want to see (see the next sections).

6-22 Using Hierarchies

ou can flatten hierarchies in three different ways to achieve the same results:

With the CROSS clause

With inner print lists

With nested FOR loops

he next sections discuss these methods.

2.5.1 Using the CROSS Clause to Flatten Hierarchies -- To create the flat-
ned display in the previous example, use a PRINT statement with the CROSS
a use.

'R> PRINT FAMILIES CROSS KIDS

NUMBER KID KID
FATHER MOTHER KIDS NAME AGE NAME AGE

:M ANN 2 URSULA 7 URSULA 7
RALPH 3

:M ANN 2 URSULA 7 RALPH 3
RALPH 3

1WIN TRI NITA 2 ERIC 16 ERIC 16
SCOTT 11

1WIN TRI NITA 2 ERIC 16 SCOTT 11
SCOTT 11

ATATRIEVE treats KIDS as a domain in this statement. For each "record" in
e KIDS "domain," DATATRIEV.E prints the corresponding record from the
i\MILIES domain (including the list field KIDS in those records) and the KIDS
·ecord."

)U can limit the flattened FAMILIES records displayed by the CROSS clause
' using the same techniques you use with two separate domains. DAT ATRIEVE
[ns the appropriate KIDS "records" with the corresponding FAMILIES record.

mit the display to joining FAMILIES to first two records of the KIDS
lomain":

R> PRINT FIRST 2 1AMILIES CROSS KIDS FIRST 2 in this
statement refers to the KIDS
"domain," not FAMILIES.

NUMBER KID KID
FATHER MOTHER KIDS NAME AGE NAME AGE

M ANN 2 URSULA 7 URSULA 7
RALPH 3

M ANN 2 URSULA 7 RALPH 3
RALPH 3

Using Hierarchies 6-23

Limit the display to joining FAMILIES with the KIDS "record" containing
"URSULA":

DTR> PRINT FAMILIES CROSS KIDS WITH KID_NAME CONTAINING "URSULA"

FATHER

JIM

DTR>

NUMBER
MOTHER KIDS

KID
NAME

ANN 2 URSULA
RALPH

AGE
KID
NAME

7 URSULA
3

AGE

7

The preceding displays included the KIDS repeating field and all the list items it
contained. To keep from seeing the entire KIDS list for each KIDS "record" dis­
played, specify only the fields you want displayed in the PRINT statement.

DTR> PRINT FATHER, MOTHER, NUMBER_KIDS, KID_NAME, AGE OF FAMILIES CROSS

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7
JIM ANN 2 RALPH 3

EDWIN TRINITA 2 ERIC 16
EDWIN TRINITA 2 SCOTT 11

DTR>

You can nest CROSS clauses to retrieve "records" from nested repeating fields.
The following statement uses the PETS domain, which has the nested repeating
field PET within the repeating field KIDS. It prints the first 4 "records" in the
PET "domain" joined with KIDS "domain," which is itself joined with the PETS
domain. The statement prints only the elementary fields of the flattened PETS
record, omitting the list fields.

DTR> PRINT FATHER, MOTHER, NUMBER_KIDS, -
CON> KID_NAME, KID_AGE, PET_NAME, PET_AGE
CON> OF FIRST 4 PETS CROSS KIDS CROSS PET

NUMBER KID KID PET PET
FATHER MOTHER KIDS NAME AGE NAME AGE

JIM LORAINE 2 GARY 24 POP 03
JIM LORAINE 2 GARY 24 SODA 04
JIM LORAINE 2 SUE 23 MOUSE 03
JIM LORAINE 2 SUE 23 SHORTY 08

DTR>

6-24 Using Hierarchies

~you often need to retrieve values in a repeating field of the same domain, you
m set up a view domain that contains the flattened records. For instance, you
)uld define a view. FLAT FAMILY VIEW, that uses a CROSS clause to flatten
1e FAMILIES records: - -

fR> SHOW FLAT_FAMILY_VIEW
JMAIN FLAT_FAMILY_VIEW

OF FAMILIES USING
FLAT_FAMILY OCCURS FOR FAMILIES CROSS KIDS.

03 FATHER FROM FAMILIES.

rR>

03 MOTHER FROM FAMILIES.
03 NUMBER_KIDS FROM FAMILIES.
03 KID_NAME FROM FAMILIES.
03 AGE FROM FAMILIES.

'ou can then use simple PRINT statements to retrieve the repeating field values
ou need:

fR> READY FLAT_FAMILY_VIEW
fR> PRINT FIRST 2 FLAT_FAMILY_VIEW

NUMBER KID
FATHER MOTHER KIDS NAME AGE

IM ANN 2 URSULA 7
IM ANN 2 RALPH 3

fR> PRINT FLAT_FAMILY_VIEW WITH AGE GT 30

NUMBER KID
FATHER MOTHER KIDS NAME AGE

IM LOUISE 5 ANNE 31
~ROME RUTH 4 ERIC 32
!\.ROLD SARAH 3 CHARLIE 31
!\.ROLD SARAH 3 HAROLD 35

TR>

.2.5.2 Using Inner Print Lists to Flatten Hierarchies -- For any PRINT state-
1ent you use with the CROSS clause, there is an equivalent PRINT statement
sing inner print lists that produces the same results. The following PRINT

Using Hierarchies 6-25

statements show the inner print lists that duplicate the results of examples in the
previous section:

DTR> ! Du~licate the PRINT FAMILIES CROSS KIDS statement:
DTR> PRIN ALL ALL FAMILY, EACH_KID OF KIDS OF FAMILIES

FATHER

JIM

JIM

EDWIN

EDWIN

MOTHER

ANN

ANN

TRINITA

TRINITA

NUMBER KID
KIDS NAME

2 URSULA
RALPH

2 URSULA
RALPH

2 ERIC
SCOTT

2 ERIC
SCOTT

KID
AGE NAME

7 URSULA
3
7 RALPH
3

16 ERIC
11
16 SCOTT
11

AGE

7

3

16

11

DTR> ! Duplicate the PRINT FIRST 2 FAMILIES CROSS KIDS statement:
DTR> PRINT ALL ALL FAMILY, EACH_KID OF FIRST 2 KIDS OF FIRST 1 FAMILIES

NUMBER KID KID
FATHER MOTHER KIDS NAME AGE NAME AGE

JIM ANN 2 URSULA 7 URSULA 7
RALPH 3

JIM ANN 2 URSULA 7 RALPH 3
RALPH 3

DTR> Duplicate the PRINT FAMILIES CROSS KIDS WITH
DTR> ! KID_NAME CONTAINING "URSULA" statement:
DTR> PRINT ALL ALL_ FAMILY, EACH_KID -
CON> OF KIDS WITH KID_NAME CONTAINING "URSULA" OF FAMILIES

NUMBER KID KID
FATHER MOTHER KIDS NAME AGE NAME AGE

JIM ANN 2 URSULA 7 URSULA 7
RALPH 3

6-26 Using Hierarchies

'R> ! Duplicate the PRINT FATHER, MOTHER, NUMBER_KIDS,
'R> ! KID_NAME, AGE OF FAMILIES CROSS KIDS statement:
'R> PRINT ALL ALL FATHER, MOTHER, NUMBER_KIDS, KID_NAME, AGE -
IN> OF KIDS OF FAMILIES

NUMBER KID
FATHER MOTHER KIDS NAME AGE

M ANN 2 URSULA 7
:M ANN 2 RALPH 3

MIN TRINITA 2 ERIC 16
1WIN TRINITA 2 SCOTT 11

'R> Duplicate the PRINT FATHER, MOTHER, NUMBER_KIDS, KID_NAME, KID_AGE,
'R> ! PET_NAME, PET_AGE OF FIRST 4 PETS CROSS KIDS CROSS PET statement
'R> PRINT ALL ALL ALL FATHER, MOTHER, NUMBER_KIDS, KID_NAME, KID_AGE, -
1N> PET_NAME, PET_AGE OF FIRST 4 PET OF KIDS OF FIRST 1 PETS

NUMBER KID KID PET PET
FATHER MOTHER KIDS NAME AGE NAME AGE

M LORAINE 2 GARY 24 POP 03
M LORAINE 2 GARY 24 SODA 04
M LORAINE 2 SUE 23 MOUSE 03
M LORAINE 2 SUE 23 SHORTY 08

'R>

2.5.3 Using Nested FOR Statements to Flatten Hierarchies -- For any
RINT statement you use with the CROSS clause, there are equivalent nested
:>R statements that produce the same results. The following nested FOR state­
ents duplicate the results of CROSS statements in the previous section:

'R> ! Du~licate the PRINT FAMILIES CROSS KIDS statement:
'R> FOR AMILIES FOR KIDS PRINT FAMILY, EACH_KID

FATHER

M

M

MOTHER

ANN

ANN

TRINITA

TRINITA

NUMBER KID
KIDS NAME

2 URSULA
RALPH

2 URSULA
RALPH

2 ERIC
SCOTT

2 ERIC
SCOTT

KID
AGE NAME

7 URSULA
3
7 RALPH
3

16 ERIC
11
16 SCOTT
11

AGE

7

3

16

11

Using Hierarchies 6-27

DTR> ! Duplicate the PRINT FIRST 2 FAMILIES CROSS KIDS statement:
DTR> FOR FIRST 1 FAMILIES FOR FIRST 2 KIDS PRINT FAMILY, EACH_KID

NUMBER KID KID
FATHER MOTHER KIDS NAME AGE NAME AGE

JIM ANN 2 URSULA 7 URSULA 7
RALPH 3

JIM ANN 2 URSULA 7 RALPH 3
RALPH 3

DTR> Duplicate the PRINT FAMILIES CROSS KIDS WITH
DTR> ! KID_NAME CONTAINING "URSULA" statement:
DTR> FOR FAMILIES FOR KIDS WITH KID_NAME CONTAINING "URSULA" -
CON> PRINT FAMILY, EACH_KID

NUMBER KID KID
FATHER MOTHER KIDS NAME AGE NAME AGE

JIM ANN 2 URSULA 7 URSULA 7
RALPH 3

DTR> Duplicate the PRINT FATHER, MOTHER, NUMBER_KIDS, KID_NAME, AGE
DTR> ! OF FAMILIES CROSS KIDS statement:
DTR> FOR FAMILIES FOR KIDS PRINT FATHER, MOTHER, NUMBER_KIDS, KID_NAME,

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7
JIM ANN 2 RALPH 3

EDWIN TRINITA 2 ERIC 16
EDWIN TRINITA 2 SCOTT 11

DTR> ! Duplicate the
DTR> ! PRINT FATHER, MOTHER, NUMBER_KIDS,
DTR> ! KID_NAME, KID_AGE, PET_NAME, PET_AGE -
DTR> ! OF FIRST 4 PETS CROSS KIDS CROSS PET statement
DTR> FOR FIRST 1 PETS FOR KIDS FOR FIRST 4 PET -
CON> PRINT FATHER, MOTHER, NUMBER_KIDS,
CON> KID_NAME, KID_AGE, PET_NAME, PET_AGE

NUMBER KID KID PET
FATHER MOTHER KIDS NAME AGE NAME

JIM LORAINE 2 GARY 24 POP
JIM LORAINE 2 GARY 24 SODA
JIM LORAINE 2 SUE 23 MOUSE
JIM LORAINE 2 SUE 23 SHORTY

DTR>

6-28 Using Hierarchies

PET
AGE

03
04
03
08

.3 Modifying Values Stored in Repeating Fields

he techniques used to retrieve data from repeating fields can be adapted for
todifying data. This section shows two methods of modifying data stored in
~peating fields:

Use FIND and SELECT statements to establish context, and then use the
MODIFY statement.

Use FOR statements in combination with the MODIFY statement to estab­
lish context with nested record streams.

his section also describes how to change the length of a variable-length list (a
~peating field defined with the OCCURS DEPENDING clause). For more infor­
tation about using the MODIFY statement. see Chapter 4 in this manual and
ie VAX DATATRJEVE Handbook.

.3.1 Modifying Repeating Field Values with FIND and SELECT

Then you try to change the values stored in repeating fields. you encounter the
1me complications that occur when retrieving data from repeating fields.

or instance, you cannot directly modify a field subordinate to a repeating field.
nee you have selected a record that contains a repeating field. follow these steps:

Use the FIND statement to create a collection of the occurrences of the
repeating field.

Use the SELECT statement to single out one of those occurrences.

Use the MODIFY statement to change the value of the desired field of the
occurrence you selected.

he following example uses this method. It modifies the AGE field in the repeat­
.g field KIDS in the FAMILIES domain.

~R> ! Create a named collection from FAMILIES domain:
~R> FIND FIRST 1 FAM IN FAMILIES
. record found]
~R> PRINT ALL

NUMBER KID
FATHER MOTHER KIDS NAME AGE

:M ANN 2 URSULA 8
RALPH 3

'R> ! Select a record from the named collection:
'R> SELECT

Using Hierarchies 6-29

DTR> MODIFY AGE ! Won't work because AGE is subordinate to KIDS list fi
"AGE" is undefined or used out of context.
DTR> ! So, create another collection from the list field KIDS:
DTR> FIND KIDS
[2 records found]
DTR> ! Now select an occurrence of the list field,
DTR> ! in this case the second:
DTR> SELECT 2
DTR> PRINT

KID
NAME AGE

RALPH 3

DTR> MODIFY AGE ! Now we can modify the AGE field
Enter AGE: 4
DTR> ! Check to see that the field was really modified:
DTR> PRINT

KID
NAME AGE

RALPH 4

DTR> RELEASE CURRENT
DTR> PRINT

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 8
RALPH 4

DTR>

Note that when you modify a selected record. the field you specify following
MODIFY can never be the OCCURS field itself. In the preceding example, this
means that you cannot enter MODIFY KIDS. If you want to modify all the fields
in each occurrence of the repeating field. you can enter the name of a top-level
group field subordinate to the OCCURS field (not all record definitions contain
such a field)~ or you can specify all the elementary fields subordinate to the
OCCURS field. In the context of the preceding example, this means that you car:
enter MODIFY EACH KID (group field) or MODIFY KID NAME, AGE (list of
elementary fields) in order to enter a value for each elementary field in the list
occurrence.

If you want to change the values of all occurrences of fields subordinate to a
repeating field. you can add the keyword OF, followed by the name of the repeat­
ing field. Use this general format:

MODIFY [ALL] list-item OF list

6-30 Using Hierarchies

IATATRIEVE prompts you to enter a value for the field you specify following
1e MODIFY statement or for each of its elementary items if you specify a group
eld.

rote that this format differs from the preceding one by including the OF list
.ause. When you include this clause, you modify all occurrences in the list at
nee. There are likely to be few times when you want to do that. This format can
e useful. however. when you want to modify items in a variable length list (one
ith an OCCURS ... DEPENDING ON clause) and 1one of the following conditions
. true:

There is more than one occurrence stored in the list and you want all occur­
rences to contain the same value for the field or fields you modify.

There is only one occurrence stored in the list.

he following examples illustrate each of these conditions.

rR> FIND FAMILIES WITH FATHER = "ARNIE"
l record found]
rR> PRINT
> record selected, printing whole collection.

NUMBER KID
FATHER MOTHER KIDS NAME AGE

lNIE ANNE 2 SCOTT 2
BRIAN 0

~R> ! Oops ... Scott and Brian are twenty-year-old twins!
~R> SELECT
~R> MODIFY AGE
lGE" ~s undefined or used out of context.
'R> MODIFY AGE OF KIDS
Lter AGE: 20
~R> PRINT

NUMBER KID
FATHER MOTHER KIDS NAME AGE

~NIE ANNE 2 SCOTT 20
BRIAN 20

'R> FIND FAMILIES WITH FATHER = "JOHN"
~ records found]

Using Hierarchies 6-31

DTR> PRINT
No record selected, printing whole collection.

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JOHN JULIE 2 ANN 29
JEAN 26

JOHN ELLEN 1 CHRISTOPHR 0

DTR> SELECT 2
DTR> PRINT

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JOHN ELLEN 1 CHRISTOPHR 0

DTR> MODIFY AGE
"AGE" is undefined or used out of context.
DTR> MODIFY AGE OF KIDS
Enter AGE: 1
DTR> PRINT

NUMBER
FATHER MOTHER KIDS

KID
NAME AGE

JOHN ELLEN 1 CHRISTOPHR 1

DTR>

6.3.2 Modifying Repeating Field Values with FOR and MODIFY Statements

You can modify values stored in repeating fields without using collections by nes
ing record streams with the FOR and MODIFY statements.

Remember that you can treat the repeating field, or list, as a source of records
like a domain or collection. Two formats for nesting record streams based on
repeating fields have different results in modifying values:

FOR rse MODIFY list-rse USING assignment-statement

In this format. list-rse is a record selection expression that uses the repeating
field as the record source. The first RSE specifies the record source and specific
records to be modified~ The list-rse specifies the repeating field and the particula
occurrences in the list to be modified.

You supply only one value for each field you specify in the USING clause. If the
list-rse specifies more than one occurrence in the list. each field value you supply
applies to them all.

6-32 Using Hierarchies

'he following example modifies the name of one child in the FAMILIES domain:

TR> ! Use SET NO PROMPT to turn off the "[Looking for ...]" prompts
TR> SET NO PROMPT
TR> ! The outer RSE specifies a single record
TR> ! from the FAMILIES domain:
TR> FOR FAMILIES WITH FATHER = "TOM" AND MOTHER = "ANNE"
JN> ! The inner RSE within the MODIFY statement uses the
JN> ! repeating field KIDS as a record source and
JN> ! specifies a single occurrence of KIDS~ Had it
JN> ! specified more occurrences, they all would be
JN> ! modified 1with the value specified in the USING clause:
JN> MODIFY KIDS WITH KID_NAME = "PATRICIA" USING
JN> BEGIN
JN> ! Print the occurrence of KIDS specified:
JN> PRINT
JN> ! Change the value of the subordinate field KID_NAME:
JN> KID NAME = "PATRICK"
JN> ! Print the modified occurence of KIDS:
JN> PRINT
JN> END

KID
NAME AGE

lTRICIA 4

KID
NAME AGE

lTRICK 4

rR>

Tith this format, you can modify only a single occurrence of a repeating field or
ve all occurrences specified in the list-rse the same value. The next format
iows how to process independently more than one occurrence in the same
:atement.

JR rse FOR lisHse MODIFY [field-name[, ...]]

se this format to independently process more than one occurrence of a repeating
~Id in the same statement. When you use this format, DAT A TRI EVE prompts
m to enter field values for as many times as there are occurrences of the repeat­
g field.

you do not specify field names, DATATRIEVE prompts you to enter values for
l fields subordinate to the repeating field.

Using Hierarchies 6-33

The following example uses this format to change the value of all the occurrences
of the KIDS repeating field in the first FAMILIES record:

DTR> FOR FIRST
CON>
CON>
CON>
CON>
CON>
CON>

1 FAMILIES

CON>
CON>
CON>

FOR KIDS

CON>
CON>
CON>
CON>
CON>
CON>
CON>
CON>
CON>
CON>
CON>

KID

BEGIN
PRINT
MODIFY AGE

PRINT
END

NAME AGE

URSULA 7
Enter AGE: 8

KID
NAME AGE

URSULA 8
RALPH 3
Enter AGE: 4
RALPH 4

DTR>

The RSE in the outer FOR statement
specifies a single record in
FAMILIES. If it specified more,
DATATRIEVE would prompt for
values for repeating fields in each
record.

The inner FOR statement specifies
all occurrences of KIDS in the
record or records in the outer
FOR statement. It could have
limited the RSE to a single
occurrence of the repeating field.

The MODIFY statement specifes that
only the AGE field subordinate to
the KIDS repeating field will be
changed.

6.3.3 Changing the Length of a Variable-Length List

If you define a repeating field with the OCCURS DEPENDING clause. you may
be able to change the number of list items (the number of times a repeating field
repeats), depending on how you define the data file for the domain:

• The most restrictive case is a data file that you define without the MAX or
KEY clauses. This creates a sequential file with variable-length records. In
such a file. you can change only the number of list items up to the value you
first store in the field referred to in the OCCURS DEPENDING clause. Y01
cannot exceed that number because DAT ATRIEVE determirles the length c
each record when you first store it.

6-34 Using Hierarchies

For FAMILIES, which uses a sequential file with variable-length records,
this means you cannot increase the value specified for NUMBER KIDS
above that entered when the record was first stored: -

DTR> FIND FIRST 1 FAMILIES; SELECT
DTR> PRINT

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 8

DTR> MODIFY NUMBER_KIDS
Enter NUMBER_KIDS: 3

RALPH 4

Error using RMS file "DTR$LIBRARY:FAMILY.DAT".
%RMS-F-RSZ, invalid record size
DTR>

Becaµse you cannot increase NUMBER KIDS, you cannot add information
on new children to a FAMILIES record.-

If you specify the MAX clause when defining the data file (whether the file is
indexed or sequential} you create a file with fixed-length records. In a domain
based on such a file, you can change the number of list items only up to the
maximum value specified in the OCCURS DEPENDING clause. You cannot
exceed that value, since the MAX clause in the file definition causes
DATATRIEVE to create a fixed-length RMS file based on the maximum
value in the OCCURS DEPENDING clause.

The least restrictive case is a data file you define using the KEY clause but
not the MAX clause. This creates an indexed file with variable-length
records. In such a file, you can change the number of list items to any num­
ber you want. The following example shows how to increase the number of
list items for a domain based on an indexed file with variable-length records.

DTR> READY INDEXED_FAMILIES·WRITE
DTR> FIND FIRST 1 INDEXED_FAMILIES
[1 Record found]
DTR> PRINT
No record selected, printing whole collection

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 2 URSULA 7
RALPH 3

Using Hierarchies 6-35

DTR> SELECT
DTR> MODIFY NUMBER_KIDS
Enter NUMBER_KIDS: 4
DTR> FIND KIDS
[4 records found]
DTR> SELECT 3
DTR> MODIFY
Enter KID_NAME: NICKY
Enter AGE: 2
DTR> SELECT 4
DTR> MODIFY
Enter KID_NAME: TAM
Enter AGE: 1
DTR> PRINT FIRST 1 INDEXED_FAMILIES

NUMBER KID
FATHER MOTHER KIDS NAME AGE

JIM ANN 4 URSULA 7
RALPH 3
NICKY 2
TAM 1

DTR>

6.4 Creating Hierarchies with Multiple RSEs

The complications that occur when you have to retrieve or modify data stored in
repeating fields make it a good idea to avoid using hierarchical records.

However, you can have the benefits of hierarchical records without the disadvan·
tages by creating hierarchies from flat records. There are several advantages to
hierarchies based on flat records.

• Because they are based on flat records. you avoid the complications of
retrieving and modifying data stored in records with repeating fields. You
can simply print or modify fields directly in domains based on the flat
records.

• Like records with repeating fields. they let you display a parent-child rela­
tionship between data when you want to.

• They offer more flexibility because the parent-child· relationship is not
imposed by the record definition.

• There is no limit to the number of occurrences of the 11 child 11 record stream
In records with repeating fields. the OCCURS clause limits how many valu
a repeating field can store.

6-36 Using Hierarchies

1his section describes three techniques for combining record streams to form
ierarchies:

View domains

Inner print lists

Nested FOR statements

:ach of the techniques creates a hiearchical relationship without using repeating
elds in a record definition. Instead, they nest record streams from separate
omains to create the one-to-many relationship characteristic of a hierarchy .

. 4.1 Creating Hierarchies with View Domains

'iew domains do-not form hierarchies unless they nest more than one record
tream. For instance, view domains that use only fields from a single domain are
ot hierarchical.

'iews that combine data from two record sources with the CROSS clause are not
ierarchical either. because the record streams are joined (a one-to-one relation­
hip between the record streams) instead of nested (a one-to-many relationship
etween the record streams). The view described in the section on flattening
ierarchies with the cross clause was an example of this kind of view.

lowever. any view domain definition that uses more than one OCCURS FOR
lause creates a hierarchy. It creates a parent-child relationship between the RSE
pecified in the first OCCURS FOR clause and the RSE specified in the second.

'o access a hierarchical view. you need to use the techniques to retrieve values
~om repeating fields that are shown in this chapter. (You access a nonhierarchical
iew as you would any other flat domain. See the chapter on Using View Domains
>r details.) A hierarchical view domain contains more than one OCCURS FOR
lause. DAT A THIEVE considers the second and following OCCURS FOR clauses
s lists. or repeating fields. For example. the SAILBOATS domain is a hierachical
iew based on two domains, YACHTS and OWNERS.

TR> SHOW SAILBOATS
OMAIN SAILBOATS
OF YACHTS, OWNERS BY
1 SAILBOAT OCCURS FOR YACHTS.

03 BOAT FROM YACHTS.
03 SKIPPERS OCCURS FOR OWNERS WITH TYPE EQ BOAT.TYPE.

05 NAME FROM OWNERS.

rote that the second OCCURS FOR clause in SAILBOATS refers to the field
ame TYPE twice. since the OWNERS and YACHTS domains both have a field
f that name. You can qualify a field name by adding a prefix to it to differentiate

Using Hierarchies 6-37

it from the other field with the same name. In this case, BOAT.TYPE specifies
the TYPE field in the YACHTS domain and distinguishes it from the TYPE field
in the OWNERS domain. See Appendix A for more information about qualified
field names.

After you ready SAILBOATS, the SHOW FIELDS command shows that the sec
ond OCCURS FOR clause creates a hierarchy:

DTR> READY SAILBOATS
DTR> SHOW FIELDS SAILBOATS
SAILBOATS

SAILBOAT
BOAT

TYPE <Indexed field>
MANUFACTURER (BUILDER) <Character string, indexed key>
MODEL <Character string, indexed key>

SPECIFICATIONS (SPECS)
RIG <Character string>
LENGTH_OVER_ALL (LOA) <Character string>
DISPLACEMENT (DISP) <Number>
BEAM <Number>
PRICE <Number>

SKIPPERS <List>
NAME <Character string>

DTR>

The SKIPPERS field is a list field that repeats for each YACHTS record in the
outer stream. To refer to field values contained in the list, you must use one of
the methods in this chapter. For example, use multiple FIND and SELECT stat€
ments to print then modify the names of owners of a certain TYPE of yacht:

DTR> READY SAILBOATS WRITE
DTR> FIND OWNED IN SAILBOATS WITH ANY SKIPPERS
[6 records found]
DTR> PRINT ALL

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM

ALBIN VEGA SLOOP 27 5,070 08

C&C CORVETTE SLOOP 31 8,650 09

ISLANDER BAHAMA SLOOP 24 4,200 08

PEARSON 10M SLOOP 33 12,441 11
PEARSON 26 SLOOP 26 5,400 08
RHODES SWIFTSURE SLOOP 33 14,000 10

DTR> SELECT 3
DTR> FIND SKIPPERS
[4 records found]

6-38 Using Hierarchies

OWNER
PRICE NAME

$18,600 STEVE
HUGH
JIM
ANN

$6,500 JIM
ANN
STEVE
HARVE
TOM
DICK
JOHN

R> PRINT ALL

NER
ME

M
N
EVE
RVE

R> SELECT 2
R> MODIFY NAME
ter NAME: ANNE
R> PRINT BOAT, ALL SKIPPERS SORTED BY NAME OF OWNED

LENGTH
OVER

NUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE
OWNER
NAME

LBIN VEGA SLOOP 27 5,070 08 $18,600 HUGH
STEVE

&C CORVETTE SLOOP 31 8,650 09 ANN
JIM

SLANDER BAHAMA SLOOP 24 4,200 08 $6,500 ANNE
HARVE
JIM
.STEVE

EARS ON 10M SLOOP 33 12,441 11 TOM
EARS ON 26 SLOOP 26 5,400 08 DICK
.HODES SWIFT SURE SLOOP 33 14,000 10 JOHN

'R>

:m can use also inner print lists to display the owners of ISLANDER BAHAMA
tchts directly:

'R> PRINT ALL -
1N> ALL NAME OF SKIPPERS SORTED BY NAME -
1N> OF SAILBOATS WITH ANY SKIPPERS AND
1N> MANUFACTURER = "ISLANDER"

1NER
.ME

:NE
.RVE
M
'EVE

'R>

4.2 Using Inner Print Lists to Create Dynamic Hierarchies

1e preceding examples used the view domain SAILBOATS. based on the
ACHTS and OWNERS domains. To create this view, you needed to use a view
>main definition. But you can create the same effect dynamically by using an

Using Hierarchies 6-39

inner print list. The inner print list can include an RSE that references one
domain, while the outer RSE refers to a second domain. The following example
produces the same display as printing the SAILBOATS view domain:

DTR> PRINT BOAT, !Print list for rse-2
CON> ALL NAME !Print list for rse-1
CON> OF OWNERS WITH TYPE =BOAT.TYPE - !rse-1, uses OWNERS
CON> OF YACHTS !rse-2, uses YACHTS

LENGTH
OVER OWNER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE NAME

ALBERG 37 MK II KETCH 37 20,000 12 $36,951
ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600 STEVE

HUGH
AMERICAN 26 SLOOP 26 4,000 08 $9,895
AMERICAN 26-MS MS 26 5,500 08 $18,895

DTR>

Here, the inner print list is ALL NAME OF OWNERS WITH TYPE =
BOAT.TYPE. The inner print list serves to relate each owner of a particular mak1
and model with that make and model boat in the outer stream, formed from the
YACHTS domain.

A second example generates a display of yacht and owner information for any
yacht that has an owner. This query adds a restriction on the outer RSE using th
ANY rse Boolean expression:

DTR> PRINT BOAT, !Print list for rse-2
CON> ALL NAME !Print list for rse-1
CON> OF OWNERS WITH TYPE= BOAT.TYPE - !rse-1, uses OWNERS
CON> OF YACHTS WITH ANY !rse-2, uses YACHTS
CON> OWNERS WITH TYPE= BOAT.TYPE !rse for ANY clause of rse-2

LENGTH
OVER OWNER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE NAME

ALBIN VEGA SLOOP 27 5,070 08 $18,600 STEVE
HUGH

CctC CORVETTE SLOOP 31 8,650 09 JIM
ANN

ISLANDER BAHAMA SLOOP 24 4,200 08 $6,500 JIM
ANN
STEVE
HARVE

PEARSON 10M SLOOP 33 12,441 11 TOM
PEARSON 26 SLOOP 26 5,400 08 DICK
RHODES SWIFT SURE SLOOP 33 14,000 10 JOHN

DTR>

6-40 Using Hierarchies

.4.3 Using Nested FOR Statements to Create Dynamic Hierarchies

ou can also create dynamic hierarchies by nesting FOR statements. Although
ested FOR statements are logically equivalent to inner print lists or view
omains with nested OCCURS clauses, DATATRIEVE displays the data differ-
1tly.

he following example uses nested FOR statements to retrieve the same informa­
on that printing the SAILBOATS view domain retrieves:

rR> FOR YACHTS
JN> BEGIN
JN> PRINT BOAT
JN> FOR OWNERS WITH TYPE= BOAT.TYPE
JN> PRINT NAME
JN> END

LENGTH
OVER

l\NUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

l\LBERG 37 MK II KETCH 37 20,000 12 $36,951
l\LBIN 79 SLOOP 26 4,200 10 $17,900
l\LBIN BALLAD SLOOP 30 7,276 10 $27,500
l\LBIN VEGA SLOOP 27 5,070 08 $18,600

~NER
l\ME

TEVE
UGH
AMERICAN 26 SLOOP 26 4,000 08 $9,895
AMERICAN 26-MS MS 26 5,500 08 $18,895

TR>

r ou can control the printing format to make the display similar to that produced
y printing the SAILBOATS view domain:

TR> FOR YACHTS
ON> BEGIN
ON> PRINT BOAT
ON> FOR OWNERS WITH TYPE= BOAT.TYPE
ON> PRINT COL 60, NAME (-)
ON> END

Using Hierarchies 6-41

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951
ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600

STEVE
HUGH

AMERICAN 26 SLOOP 26 4,000 08 $9,895
AMERICAN 26-MS MS 26 5,500 08 $18,895

DTR>

6-42 Using Hierarchies

Part 3
Programming in DATATRIEVE

Using DATATRIEVE Procedures 7

ften you want to execute the same series of DATATRIEVE commands and
atements over and over again, and you may want to have other users execute
tose same commands and statements. You have to retype the input each time,
1less you put the commands and statements in a procedure. By using proce-
1res, you can develop the series of steps once and then simply invoke the proce-
1re each time you want to do the same thing again. A procedure is a fixed
~quence of DAT A TRI EVE commands and statements you create, name, and
ore in the Common Data Dictionary .

. 1 Defining a Procedure
lr almost any series of commands and statements you use repeatedly, you can
tveyourself time by defining a procedure. Perhaps there is a simple query you
lve to enter frequently using a particular database. You might, for instance,
[sh to know all the manufacturers of large yachts:

'R> READY YACHTS
'R> FIND BIGGIES IN YACHTS WITH LOA GT 40 SORTED BY BUILDER
~ records found]
'R> PRINT ALL

LENGTH
OVER

.NUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

HALLENGER 41 KETCH 41 26,700 13 $51,228
OLUMBIA 41 SLOOP 41 20,700 11 $48,490
ULFSTAR 41 KETCH 41 22,000 12 $41, 350
SLANDER FREEPORT KETCH 41 22,000 13 $54,970
A UT OR SWAN 41 SLOOP 41 17,750 12
EWPORT 41 s SLOOP 41 18,000 11
LYMPIC ADVENTURE KETCH 42 24,250 13 $80,500
EARS ON 419 KETCH 42 21,000 13

R>

7-1

Although this sequence is short, putting it in a procedure and invoking the proce­
dure is useful if you need to produce the display frequently.

To define a procedure, enter the DEFINE PROCEDURE command at
DATATRIEVE command level:

DEFINE PROCEDURE procedure-name

DATATRIEVE then prompts with DFN > to indicate that it expects a procedure
definition. Enter the commands or statements that form the procedure definition.
DATA TRIEVE continues to prompt with DFN > until you enter the keyword
END PROCEDURE on a line by itself.

DTR> DEFINE PROCEDURE BIG_YACHTS
DFN> READY YACHTS
DFN> FIND BIGGIES IN YACHTS WITH LOA GT 40 SORTED BY BUILDER
DFN> PRINT ALL
DFN> END_PROCEDURE
DTR>

As soon as you enter END PROCEDURE. DATATRIEVE stores the procedure
definition in your default dictionary directory. DAT ATRIEVE does not check for
syntax errors when you enter the procedure definition but does check when you
invoke the procedure.

7.2 Invoking a Procedure

You invoke a procedure by preceding its name with the keyword EXECUTE or
with a colon (:).

procedure-name
EXECUTE

To invoke a procedure, you must have P WASS_THRU), S (SEE), and E
(EXECUTE_EXTEND) access to it.

The content of a procedure determines where you can invoke it. In general, you
can invoke a procedure anywhere you can use the commands or statements
contained in the procedure. For example, if the procedure contains
DAT A TRIEVE commands and statements, you can invoke it at the
DAT ATRIEVE command level:

DTR> :BIG_YACHTS

7-2 Using DATATRIEVE Procedures

~ou cannot invoke a procedure during an ADT, EDIT, or Guide Mode session.
~ ou cannot include a procedure in a domain, record. or table definition.

>AT ATRIEVE does not display the contents of procedures as they execute, even
: you issue the SET VERIFY command.

r ou do not have to enter DAT ATRIEVE to invoke a procedure. You can invoke a
mcedure from the VMS command level. For example, if DTR32 is your DCL
ymbol for invoking DATATRIEVE, you can invoke BIG YACHTS with this
ommand line at the system prompt: -

DTR32 EXECUTE BIG_YACHTS

Jter DAT A TRI EVE executes the last command or statement in the file, you are
utomatically returned to the system prompt.

·ou can use the colon to execute a procedure from VMS level, but you must pre­
ede it with a semicolon(;):

DTR32; :BIG_YACHTS

or DATATRIEVE procedures that are run often from VMS level, you can also
efine a DCL symbol for the entire command line shown in the last example:

BIG_YACHTS :== "''DTR32'; :BIG_YACHTS"

sers can run DAT ATRIEVE procedures this way simply by entering at VMS
>mmand level the symbol you define .

. 3 Contents of a Procedure

procedure can contain any number of the following DATATRIEVE elements:

Full DAT A TRIEVE commands and statements

Command and statement clauses and arguments

Comments

3.1 Commands and Statements

hen you execute BIG_YACHTS, the results are the same as entering the
~ADY command and the FIND and PRINT statements at command· 1evel.

Using DATATRIEVE Procedures 7-3

DTR> :BIG_YACHTS

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CHALLENGER 41 KETCH 41 26,700 13 $51,228
COLUMBIA 41 SLOOP 41 20,700 11 $48,490
GULFS TAR 41 KETCH 41 22,000 12 $41,350
ISLANDER FREEPORT KETCH 41 22,000 13 $54,970
NAUTOR SWAN 41 SLOOP 41 17,750 12
NEWPORT 41 s SLOOP 41 18,000 11
OLYMPIC ADVENTURE KETCH 42 24,250 13 $80,500
PEARSON 419 KETCH 42 21,000 13

DTR>

7.3.2 Arguments and Clauses

Besides full commands and statements. a procedure can contain simply an argu­
ment or clause from a command or statement. For example, it can contain a
record selection expression:

DTR> DEFINE PROCEDURE BIG_YACHTS_RSE
DFN> BIGGIES IN YACHTS WITH LOA GT 40 SORTED BY BUILDER
DFN> END PROCEDURE
DTR> -

Having separated the FIND statement from the record selection expression, you
can invoke the procedure to complete a FIND command:

DTR> FIND :BIG_YACHTS_RSE
[8 records found]
DTR>

In fact. you can use this procedure in any command or statement containing an
RSE argument. such as the PRINT statement:

DTR> PRINT ALL :BIG_YACHTS_RSE

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CHALLENGER 41 KETCH 41 26,700 13 $51,228
COLUMBIA 41 SLOOP 41 20,700 11 $48,490
GULFS TAR 41 KETCH 41 22,000 12 $41,350
ISLANDER FREEPORT KETCH 41 22,000 13 $54,970
NAUTOR SWAN 41 SLOOP 41 17,750 12
NEWPORT 41 s SLOOP 41 18,000 11
OLYMPIC ADVENTURE KETCH 42 24,250 13 $80,500
PEARSON 419 KETCH 42 21,000 13

7-4 Using DATATRIEVE Procedures

.3.3 Comments

Vben you define a procedure, you can include comments, which DAT ATRIEVE
tores in the CDD.

: you want to display comments on the terminal when you (or another user)
x.ecute your procedure, you can use the PRINT command, as shown in the fol-
1wing example:

fR> DEFINE PROCEDURE YACHTS_REPORT
<'N> PRINT "THIS REPORT REQUIRES AN ESTABLISHED COLLECTION"
<'N> PRINT "SORTED BY BUILDER"
<'N>
;oN>
;oN>

Then you execute the procedure, the first two lines print a message on the
~rminal:

rR> :YACHTS_REPORT
IIS REPORT REQUIRES AN ESTABLISHED COLLECTION
lRTED BY BUILDER

nless you use PRINT statements to display comments and messages in a proce-
1re, DATATRIEVE does not display any of its contents. This is true whether or
)t SET VERIFY is in effect. You can, however, include comments that are not
splayed during execution by placing an exclamation point (!) before each com­
.ent line:

'R> DEFINE PROCEDURE YACHTS_REPORT
'N> ! LATEST VERSION 01-Apr-84
'N> PRINT "THIS REPORT REQUIRES AN ESTABLISHED COLLECTION"
'N> PRINT "SORTED BY BUILDER"
'N>
'N>
'N>
R> :YACHTS_REPORT
IS REPORT REQUIRES AN ESTABLISHED COLLECTION
RTED BY BUILDER

Ju can use comments in a procedure to explain the purpose of its parts and.
mce. make it easy for you and others to maintain.

4 Editing a Procedure
hen you invoke a procedure. DAT A TRI EVE executes each command or state­
ent in the procedure as if it were entered directly at DATATRIEVE command
rel. Some errors may occur during execution of the procedure. A typing error,
r instance. can result in a syntax error in an otherwise correctly formatted com­
and. If an error occurs during execution, DATATRIEVE prints an error mes­
ge and terminates the procedure. You can correct the error by using the
\.TATRIEVE Editor.

Using DATATRIEVE Procedures 7-5

Invoke the Editor with the following command:

EDIT procedure-name

When you find the error, use the appropriate Editor commands to correct it.

7 .5 Troublesh'ooting Procedures

You can put an entire series of statements into a procedure and then tell
DAT A TRI EVE to execute the procedure. If you have made any errors,
DATATRIEVE stops executing the procedure when it finds the first error and
sends you an appropriate error message. The following example contains two
errors:

DTR> DEFINE PROCEDURE WAGE_REPORT
DFN> REPORT WAGES
DFN> SET REPORT_NAME = WEEKLY WAGE REPORT
DFN> SET COLUMNS-PAGE = 70
DFN> PRINT LAST_NAME, GROSS_PAY, FICA,
DFN> FEDERAL_TAX, STATE_TAX,
DFN> GROSS_PAY - (FICA + FEDERAL_TAX + STATE_TAX)-
DFN> ("NET PAY") USING $$,$$$.99
DFN> AT BOTTOM OF REPORT PRINT SKIP 2, COL 1, "TOTAL:",
DFN> TOTAL GROSS_PAY USING $$$,$$$.99,
DFN> TOTAL FICA USING $$$,$$$.99,
DFN> TOTAL FEDERAL_TAX USING $$$,$$$.99,
DFN> TOTAL STATE_TAX USING $$$,$$$.99,
DFN> TOTAL (GROSS_PAY - (FICA + FEDERAL_TAX +
DFN> STATE_TAX)) USING $$$,$$$.99
DFN> END REPORT
DFN> END-PROCEDURE
DTR> :WAGE'REPORT
REPORT WAGES
SET REPORT_NAME = WEEKLY WAGE REPORT

Expected header segment, encountered "WEEKLY".

If you would like to refer to the record definition for the WAGES domain. see th
record definition appendix in the VAX DATATRIEVE Guide to Writing Report~

To correct the error in the SET REPORT,NAME command. use the Editor and
place quotation marks(",,, around WEEKLY WAGE REPORT. Then invoke th
procedure again:

DTR> :WAGE REPORT
"WAGES" is-not a readied source, collection, or list
DTR> EDIT WAGE_REPORT

Using the Editor, place the READY WAGES command before the report state­
ment and invoke the procedure again.

7-6 Using DATATRIEVE Procedures

R> :WAGE_REPORT

WEEKLY WAGE REPORT 9-Aug-1984
Page 1

LAST GROSS FEDERAL STATE
NAME PAY FICA TAX TAX NET PAY

AKE $1,000.00 $103.86 $204-· 77 $.01 $691. 36
NN $1,500.00 $145.87 $297'~ 98 $54.32 $1,001. 83
LL $500.00 $52.93 $79.75 $32.98 $334.34
NES $999.99 $103.85 $204.76 $57.90 $633.48
ONY $1,900.98 $145.87 $375.98 $75.90 $1,303.23
ARK $9,500.00 $145.87 $999.84 $106.90 $8,247.39

TAL: $15,400.97 $698.25 $2,163.08 $328.01 $12,211.63

6 Aborting Procedures

m can abort a procedure by including an ABORT statement in it. If the abort
nditions ·arise and SET ABORT is in effect, DATATRIEVE aborts the proce­
lre and prints a message on your terminal. If SET NO ABORT is in effect,
t\ TA TRI EVE aborts the statement that contains the ABORT but continues to
.ecute the other commands and statements in the procedure.

ie default setting in DATATRIEVE is SET ABORT. You can ensure that SET
30RT is in effect by including that statement in the procedure definition. For
ample:

R> DEFINE PROCEDURE BIG_YACHTS_QUERY
N> SET ABORT
N> DECLARE LENGTH PIC 99
N> VALID IF LENGTH GT 35.
N> LENGTH= *."MIN LOA"
N> IF LENGTH GT 42
N> THEN ABORT "NO BOATS THAT BIG"
N> FIND BIGGIES IN YACHTS WITH LOA GE LENGTH
N> SORTED BY BUILDER
N> PRINT BUILDER, RIG, LOA, PRICE OF BIGGIES
N> END_PROCEDURE
R>

you invoke BIG YACHTS QUERY and supply a length of 35 or smaller,
\TA TRI EVE reprompts you for a valid length. If you supply a length greater
an 4 2. the procedure aborts, prints the specified abort message. and returns you
the DATATRIEVE command level.

Using DATATRIEVE Procedures 7-7

DTR> :BIG_YACHTS_QUERY
Enter MIN LOA: 35
Validation error for LENGTH
Re-enter MIN LOA: 43
ABORT: NO BOATS THAT BIG
DTR>

If you assign a value between 36 and 42 to LENGTH, DATATRIEVE prints the
appropriate collection:

DTR> :BIG_YACHTS_QUERY
Enter MIN LOA: 39

LENGTH
OVER

MANUFACTURER RIG ALL PRICE

BLOCK I.
CHALLENGER
COLUMBIA
GULFS TAR
ISLANDER
LINDSEY
NAUTOR
NEWPORT
OLYMPIC
PEARSON
PEARSON

SLOOP
KETCH
SLOOP
KETCH
KETCH
MS
SLOOP
SLOOP
KETCH
SLOOP
KETCH

39
41
41
41
41
39
41
41
42
39
42

$51,228
$48,490
$41,350
$54,970
$35,900

$80,500

7. 7 Sample Procedures

With the information from previous chapters on commands, statements, and pro
cedures, you have enough techniques available to design numerous procedures.
Later sections of this chapter describe:

• Including procedures within other procedures (nesting)

• Using procedures in compound statements

• Aborting procedures

• Generalizing procedures so they work on more than one domain

• Maintaining procedures to accommodate changes you want to make in then

Use the following examples as models for procedures you create yourself.
Example 7-1 shows you how to create a procedure that uses the Report Writer t1
write a summary report of yacht data.

7-8 Using DATATRIEVE Procedures

~xample 7-1: Sample Procedure Using the Report Writer

TR> DEFINE PROCEDURE YACHT_SUMMARY
FN> SET ABORT
FN> PRINT "THIS REPORT REQUIRES AN ESTABLISHED COLLECTION,"
FN> PRINT "SORTED BY LOA AND BEAM."
FN> PRINT "HAVE YOU ESTABLISHED A COLLECTION?" ----------(1)
FN> IF *."YES OR NO" CONTAINING "N" THEN
FN> ABORT "SORRY, NO COLLECTION. " -------------------------(2)
FN> REPORT ON *."OUTPUT DEVICE OR FILE" ------------------(3)
PN> SET REPORT_NAME="EXAMPLE: REPORT FROM A PROCEDURE"
~N> SET LINES_PAGE=55, COLUMNS_PAGE=60
PN> PRINT BUILDER, MODEL, LOA, BEAM, PRICE
[i'N> AT BOTTOM OF LOA PRINT SKIP, "AVERAGE PRICE =", AVERAGE PRICE, SKIP
fi'N> AT BOTTOM OF REPORT PRINT COL 17,"NUMBER OF BOATS=", COL 42, COUNT,
PN> SKIP, "AVERAGE PRICE OF ALL BOATS=", AVERAGE PRICE
PN> END_REPORT
PN> END_PROCEDURE
rR>

'he example illustrates some statements that are particularly useful in
rocedures:

L. Use the PRINT statement to display a message to whoever invokes the
procedure.

~. The prompting value expression *."YES OR NO" requires the user to
respond to the question: HA VE YOU ESTABLISHED A COLLECTION?
The Boolean expression CONTAINING checks the user's response to the
question.

If you invoke YACHT SUMMARY and answer NO to the first prompt, the
procedure aborts: -

DTR> :YACHT_SUMMARY
THIS REPORT REQUIRES AN ESTABLISHED COLLECTION,
SORTED BY LOA AND BEAM.
HAVE YOU ESTABLISHED A COLLECTION?
Enter YES OR NO: NO
ABORT: SORRY, NO COLLECTION.
DTR>

If you answer YES to the first prompt. but, in fact, you do not have a cur­
rent collection, the Report Writer aborts the procedure and prints an error
message:

DTR> :YACHT_SUMMARY
THIS REPORT REQUIRES AN ESTABLISHED COLLECTION,
SORTED BY LOA AND BEAM.

(continued on next page)

Using DATATRIEVE Procedures 7-9

HAVE YOU ESTABLISHED A COLLECTION?
Enter YES OR NO: YES
A current collection has not been established.
DTR>

3. The prompting value expression *."OUTPUT DEVICE OR FILE" allows
the user to select the device or file to contain the report when
DAT ATRIEVE executes the procedure.

If you make a collection of YACHTS with LOA between 36 and 3 7 and pric
not equal to zero, the following report results:

DTR> READY YACHTS
DTR> FIND YACHTS WITH LOA BETWEEN 36 37 AND PRICE NE 0
[5 records found]
DTR> SORT CURRENT BY LOA, BEAM
DTR> :YACHT_SUMMARY
THIS REPORT REQUIRES AN ESTABLISHED COLLECTION,
SORTED BY LOA AND BEAM.
HAVE YOU ESTABLISHED A COLLECTION?
Enter YES OR NO: YES
Enter OUTPUT DEVICE OR FILE: TT:

REPORT FROM A PROCEDURE 01-Apr-1984
Page 1

LENGTH
OVER

MANUFACTURER MODEL ALL BEAM PRICE

ISLANDER 36 36 11 $31,730
I. TRADER 37 36 12 $39,500

AVERAGE PRICE = $35,615

IRWIN 37 MARK II 37 11 $36,950
NORTHERN 37 37 11 $50,000
ALBERG 37 MK II 37 12 $36,951

AVERAGE PRICE = $41,300

NUMBER OF BOATS 5
AVERAGE PRICE OF ALL BOATS $39,026

7 .8 How to Nest Procedures Within Procedures
A nested procedure is a procedure within another procedure. You can use this
technique to create one procedure that can be used by several other procedures.

7-10 Using DATATRIEVE Procedures

he following procedure calculates the price per pound of a boat and assigns a col­
nn header and edit-string for that value expression. You cannot invoke this pro­
dure by itself, but you can invoke the PRICE PER POUND procedure in
10ther procedure that prints the builder, model, and price per pound of all boats
the CURRENT collection. These commands define the two procedures:

'R> DEFINE PROCEDURE PRICE_PER_POUND
'N> PRICE/DISPLACEMENT ("PRICE" /"PER" /"POUND") USING
'N> $$9.99
'N> END_PROCEDURE
'R>

'R> DEFINE PROCEDURE PRICE_REPORT
N> PRINT ALL BUILDER, MODEL, :PRICE_PER_POUND
N> END_PROCEDURE
'R>

·hen you invoke the procedure PRICE REPORT, DATATRIEVE displays the
ree fields on the terminal. The following example uses the BIG YACHTS pro­
dure to establish the CURRENT collection and PRICE_REPORT to print a
lOrt report:

R> :BIG_YACHTS; :PRICE_REPORT

LENGTH
OVER

NUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

HALLENGER 41 KETCH 41 26,700 13 $51,228
OLUMBIA 41 SLOOP 41 20,700 11 $48,490
ULFSTAR 41 KETCH 41 22,000 12 $41,350
SLANDER FREEPORT KETCH 41 22,000 13 $54,970
AUTOR SWAN 41 SLOOP 41 17,750 12
EWPORT 41 s SLOOP 41 18,000 11
LYMPIC ADVENTURE KETCH 42 24,250 13 $80,500
EARS ON 419 KETCH 42 21,000 13

PRICE
PER

NUFACTURER MODEL POUND

BALLENGER 41 $1.92
OLUMBIA 41 $2.34
ULFSTAR 41 $1. 88
SLANDER FREEPORT $2.50
AUTOR SWAN 41 $0.00
EWPORT 41 s $0.00
LYMPIC ADVENTURE $3.32
EARS ON 419 $0.00

R>

Using DATATRIEVE Procedures 7-11

When nesting procedures, do not allow a procedure to invoke itself or you create
an infinite loop.

7 .9 Using a Procedure in a Compound Statement
You can invoke a procedure in a REPEAT statement to execute it a number of
times or in a FOR statement to apply it to a record stream. You must, however,
use care when invoking a procedure in these statements. For example. the follow·
ing statement is syntactically correct, but produces results you may not expect:

REPEAT 5 :procedure-name

This statement does not execute the procedure five times. When DATATRIEVE
encounters the first complete statement in the procedure, it assumes that the
REPEAT statement is also complete. Therefore, it executes the first statement ii
the procedure five times. DAT ATRIEVE then executes the remaining statement:
in the procedure once each.

To repeat the entire procedure, enclose the procedure can or the procedure defini·
tion in a BEGIN-END block. For example. the following sequence of statements
puts a procedure call in a BEGIN-END block and repeats the procedure five
times:

DTR> REPEAT 5 BEGIN
[Looking for statement]
CON> :HEAVY_SLOOP
CON> END
DTR>

The following example includes a FOR statement and a BEGIN-END block in a
procedure definition and invokes the procedure in a REPEAT statement:

DTR> SHOW HEAVY_SLOOP
PROCEDURE HEAVY_SLOOP
FOR YACHTS WITH BUILDER= *."MANUFACTURER"

BEGIN
IF RIG = "SLOOP" AND DISP GE 10000
PRINT BOAT

END
END_PROCEDURE

7-12 Using DATATRIEVE Procedures

TR> REPEAT 3 :HEAVY_SLOOP
nter MANUFACTURER: CAL

LENGTH
OVER

ANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

CAL 3-30 SLOOP 30 10,500 10
CAL 35 SLOOP 35 15,000 11
nter MANUFACTURER: PEARSON
PEARSON 10M SLOOP 33 12,441 11
PEARSON 35 SLOOP 35 13,000 10
PEARSON 36 SLOOP 37 13,500 11
PEARSON 39 SLOOP 39 17,000 12
nter MANUFACTURER: NAUTOR
NAUTOR SWAN 41 SLOOP 41 17,750 12

TR>

f you invoke a procedure in a FOR statement, you must use the same technique:
nclose the call or the procedure definition in a BEGIN-END block. For instance:

OR rse BEGIN :procedure-name END

:.emember, if you use a procedure in a loop, do not include any commands or a
'IND, SELECT. DROP. SORT. or REDUCE statement in that procedure.
•ATATRIEVE does not accept commands or any of these statements in BEGIN­
:ND blocks or other compound statements .

. 10 Generalizing Procedures

'ou can generalize procedures so that they operate on numerous domains. Be
1re that the generalized procedures meet the following two conditions:

The corresponding fields in the various domains have the same name.

The procedure refers to an alias rather than to the domain name.

or example, you might want to keep separate domains for boats from different
eographical areas, perhaps one each for boats from the east, west, and south
)asts. If the domains WEST YACHTS, EAST YACHTS, and
OUTH_YACHTS have the same record definition and data file format, you can
se one procedure on all three.

Using DATATRIEVE Procedures 7-13

1. When you ready each domain, rename it with an alias, using the AS
clause in the READY command. To create the alias ALL YACHTS for the
domain WEST YACHTS, respond to the DTR> prompt with this READY
command: -

DTR> READY WEST_YACHTS AS ALL_YACHTS
DTR>

You have established an alias for the WEST YACHTS domain. During your
current session, DAT A TRI EVE recognizes all references to the alias
ALL YACHTS as references to WEST YACHTS. - -

2. When you define a procedure, refer to the alias rather than to a domain
name. In procedures you have already defined, you can use the EDIT
procedure-name command to change domain names to an alias. Thus, you
can generalize the procedure BIG YACHTS QUERY by changing the
domain name YACHTS in the FIND statement to ALLY ACHTS:

DFN> FIND BIGGIES IN ALL_YACHTS WITH LOA GE LENGTH -
DFN> SORTED BY BUILDER

3. When you invoke the BIG YACHTS QUERY procedure, DATATRIEVE
applies it to the domain readied with-the alias ALL YACHTS. After you
have executed the BIG YACHTS QUERY procedure, you can use it on
another domain. You must first use the FINISH command to remove the
readied domain WEST YACHTS under the alias ALL YACHTS from your
workspace. Then you can ready the next domain you want the procedure
BIG_YACHTS_QUERY to work on:

DTR> READY WEST_YACHTS AS ALL_YACHTS
DTR> SHOW READY
Ready sources:

ALL_YACHTS: Domain, RMS indexed, protected read
<CDD$TOP.DTR$LIB.DEMO.WEST_YACHTS;1>

No loaded tables.

DTR> :BIG_YACHTS_QUERY
Enter min LOA: 39

LENGTH
OVER

MANUFACTURER RIG ALL PRICE

GOOBER
HE ILE
INVEIGH

MS 40
SLOOP 41
KETCH 41

$42,000
$61, 400
$48,950

7-14 Using DATATRIEVE Procedures

DTR> FINISH
DTR> SHOW READY
No ready sources.
No loaded tables.
DTR> READY EAST_YACHTS AS ALL_YACHTS
DTR> SHOW READY
Ready sources:

ALL_YACHTS: Domain, RMS indexed, protected read
<CDD$TOP.DTR$LIB.DEMO.EAST_YACHTS;1>

No loaded tables.

DTR>

11 Maintaining Procedures

>u can maintain the procedures stored in your default dictionary directory with
e SHOW. EDIT, and DELETE commands.

11.1 Displaying Procedure Names

m can list the names of all procedures in your default directory with the SHOW
mmand:

R> SHOW PROCEDURES
ocedures:

BIG_YACHTS;l BIG_YACHTS_QUERY;1
MS_SEARCH;l PHONE_REP;l TEST;1

R>

11.2 Displaying Procedures

CHEAP;1
YACHT_SUMMARY;l

you want to display a procedure on your terminal, you can use the SHOW com­
md and specify the name of the procedure to be displayed. You must· have P
A.SS_THRU), S (SEE), and R (READ) access privilege to the procedure.

~> SHOW MS_SEARCH
JCEDURE MS_SEARCH
~DY YACHTS
'JD YACHTS WITH RIG = "MS"
~ CURRENT PRINT BUILDER,
JILDER VIA COMPANLTABLE) ("ADDRESS")
)_PROCEDURE

i>

Using DATATRIEVE Procedures 7-15

7.11.3 Deleting Procedures

You can delete a procedure from your default dictionary directory with the
DELETE command. You must have P (PASS THRU) and X (EXTEND) access
privileges to the parent directory and P (PASS THRU) and either D
(LOCAL_ DELETE) or G (GLOBAL_DELETE) access to the procedure.

DTR> SHOW PROCEDURES
Procedures:

BIG_ YACHTS
MS_SEARCH

BIG_YACHTS_QUERY CHEAP

DTR> DELETE BIG_YACHTS;
DTR> SHOW PROCEDURES
Procedures:

PHONE_REP YACHT_SUMMARY

BIG_YACHTS_QUERY CHEAP
PHONE_REP YACHT_SUMMARY

DTR>

MS_SEARCH

Note that the DELETE command must end with a semicolon (:).

To be able to recover your procedure if deleted, you should maintain a backup
copy (especially if it is a long procedure). Use the DAT A TRI EVE EXTRACT corr
mand to copy your procedure to a command file for backup.

7.12 Protecting Procedures

When you define a procedure, DAT A TRIEVE stores the procedure definition in
your default dictionary directory and creates an access control list for the proce­
dure. DAT A TRIEVE automatically stores one access control list entry that speci
fies your username as the only valid identification and grants you C (CONTROL)
D (LOCAL DELETE), E (EXTEND/EXECUTE), H (HISTORY), M (MODIFY).
R (READ).-S (SEE). U (UPDATE), and W (WRITE) access privileges.

You can modify the access control list to give various types of access privilege to
other users. To execute the procedure, a user must have P (PASS THRU), S
(SEE), and E (EXTEND/EXECUTE) privileges. -

7-16 Using DATATRIEVE Procedures

Using Command Files 8

,his chapter discusses two types of command files:

DAT ATRIEVE command files that contain only DAT A TRI EVE commands
and statements.

DCL command files that contain a list of DCL commands. A DCL command
file can also invoke DATATRIEVE and contain DATATRIEVE commands
and statements.

'his chapter describes how to use DAT ATRIEVE command files and provides
ome points to keep in mind when using DCL command files with DATATRIEVE
nd the CDD.

,.1 Using DATATRIEVE Command Files

IA TA TRIEVE command files are similar to procedures. Both contain fixed
~quences of DAT A TRI EVE commands and statements, and both allow you to
~ecute frequently used operations. There are, however, some differences between
Jmmand files and procedures:

You invoke a command file using an at sign (@) before its name, and you
invoke a procedure using a colon (:).or EXECUTE before its name.

Command files reside outside DATATRIEVE in a VMS directory, and proce­
dures are stored in the Common Data Dictionary. Because of this, command
files have the added security of VMS file protection and access control lists,
while procedures can take advantage of CDD history and access control
lists.

8-1

• You can display the commands and statements in a command file as they
execute by issuing the SET VERIFY command. SET VERIFY does not work
with procedures.

• You cannot invoke command files inside a compound statement, such as a
FOR statement or a BEGIN-END block. You can execute procedures inside
compound statements.

Use command files for the following purposes:

• You can create a DTR$STARTUP command file (see Chapter 1) that con­
tains any DAT ATRIEVE commands and statements you want executed each
time you use DATATRIEVE.

• You can create and then invoke command files to add definitions of diction­
ary objects to the Common Data Dictionary. You can change the definitions
of these dictionary objects by editing them with the DATATRIEVE Editor.

• You can easily move DAT A TRIEVE procedures and data definitions around
the CDD from within DATATRIEVE with command files. Use the
EXTRACT command to copy a dictionary object to a command file. Use the
SET DICTIONARY command to move to the desired CDD dictionary and
invoke the command file. Use the same technique with EXTRACT ALL to
copy all dictionary objects from one dictionary to another.

• You can use command files to aid in debugging DAT A TRI EVE procedures.
By initially creating procedures as command files and using SET VERIFY,
you can see statements and commands as they are processed. You can also
convert existing procedures to corµmand files for the same purpose. See the
chapter on using procedures and compound statements in the VAX
DATATRIEVE Handbook for details.

• You can use the EXTRACT command to create command files as backup
files to maintain the integrity of the CDD. You can use your backup files of
domain, record, file. and procedure definitions if something happens to cor­
rupt the CDD and you need to restore the definitions it previously contained

8-2 Using Command Files

1.1.1 Creating a DATATRIEVE Command File

{ ou create a command file with a text editor. You can edit command files with
ither the DAT A TRIEVE Editor or any of the various VMS editors.

~o create a new command file or edit an existing command file from within
>ATATRIEVE. follow these steps:

1. Invoke the DATATRIEVE Editor with the EDIT command.

2. Delete the contents of the editing buffer, which will be the last statement or
command DATATRIEVE executed.

3. To create a new command file. enter the DATATRIEVE commands and
statements just as you would at the DAT ATRIEVE prompt. (Do not include
the prompts DTR >, CON >, DFN >. or RW >.) To edit an existing com­
mand file, use the INCLUDE file-spec editing command to copy the com­
mand file into the editing buffer.

4. To store the new or changed command file, use the WRITE file-spec editing
command to copy the contents of the buffer to a VMS file.

5. Finally, either exit or quit from the DATATRIEVE Editor. If you use EXIT,
DATATRIEVE will execute the command file without requiring an explicit
invocation command.

o use any of the VMS editors, you must exit from DAT ATRIEVE and create or
iit the command file as you would any other file.

ote that by default DATATRIEVE expects a file type of either .COM or .DTR.
you use either file type, you do not have to supply it when you invoke the com­
.and file.

1.1.1 ADT, EDIT, and SET GUIDE in Command Files -- If you put an ADT.
DIT. or SET GUIDE command in a command file, DATATRIEVE puts you into
te requested mode and waits for you to respond to the prompt. When you exit
om the Editor. Guide Mode. or ADT, DATATRIEVE executes the next line in
le command file. If that line is a valid response to the prompts of the Editor.
uide Mode. or ADT. but not a valid DATATRIEVE command or statement.
AT A TRI EVE ignores it. displays an error message on your terminal, and
turns you to command level.

1.1.2 Comments in Command Files -- You can include comments in a com­
and file by placing an exclamation point(!) before each comment line. If you
me the SET VERIFY command, the comments appear on your terminal when
u invoke the file. along with all the commands and statements in the file.

Using Command Files 8-3

8.1.2 Invoking a Command File

When you invoke a command file, DAT ATRIEVE executes each command or
statement as if you had entered it directly from your keyboard. If you issue a SE1
VERIFY command, or if the command file contains a SET VERIFY command,
DATATRIEVE displays each command and statement as it executes on your ter­
minal screen. If an error occurs, DAT A TRI EVE prints an error message and ter­
minates the execution of the command file.

If SET ABORT is in effect. DATATRIEVE returns to command level without
executing the rest of the procedure or command file.

If SET NO ABORT is in effect, DATATRIEVE aborts the current statement and
then processes any statements and commands remaining in the procedure or
command file.

8.1.2.1 Invoking a Command File from Within DATATRIEVE -- From within
DATATRIEVE, you invoke a command file stored in a VMS directory by preced­
ing the file specification with an at sign (@). To invoke a command file, you must
enter it on a line by itself. for example:

DTR> ©BIGBOAT.COM

If the file type is .COM or .DTR and the file is in your default VMS directory, y01
need enter only the file name:

DTR> ©PRT

If the command file is in another user's directory, you invoke it by specifying all
the necessary information in the following format:

device: [userna me]filename. type;version

For example:

DTR> ©DBA2: [WEAVER]BIGBOAT.COM;3

To invoke a command file in another user's VMS directory, you must have R
(READ) access to that directory.

You cannot invoke command files while you are in ADT or Guide Mode.

You can invoke a command file in response to the RW> prompt of the Report
Writer. The file must begin with valid report statements. After you complete thE

8-4 Using Command Files

eport specification in the file with an END REPORT statement, you can follow
he specification with other valid DATATRIEVE commands or statements .

. 1.2.2 Invoking a Command File Outside of DATATRIEVE -- You need not
nter DAT A TRIEVE to invoke a command file. You can invoke a command file
rom the VMS command level. For example, if DTR32 is your symbol for invok-
1g DATATRIEVE, invoke PRT.COM in your default VMS directory with this
ommand line at the system level prompt:

DTR32 ©PRT

.fter DAT A TRIEVE executes the last command or statement in the file, you are
utomatically returned to the system prompt.

'or DATATRIEVE command files that arerrun often from VMS level. you can
lso define a DCL symbol for the entire command line. For example. the com-
1and line in the previous example can be defined as follows:

PRT :== 11 • 'DTR32·' ©PRT"

r sers can run DAT ATRIEVE command files at the VMS command level simply
v entering the symbol you define .

. 1.3 Sample DATATRIEVE Command File

xample 8-1 shows a command file similar to the YACHT SUMMARY proce-
ire defined in the chapter on using procedures. This example illustrates both the
milarities and the differences between procedures and command files. The com­
tand file here is called YSUM.COM. You invoke it with the command file invoca­
on command(@).

i contrast to the sample procedure, if SET VERIFY is in effect, the sample com-
1and file prints each comment, statement, and command in the file as
ATATRIEVE encounters it.

rhen DATATRIEVE processes the statement with the *."YES OR NO"
·ompting value expression, it pauses in the execution of the command file to
ait for the user's response to the question. "HA VE YOU ESTABLISHED A
OLLECTION?" As in the sample procedure YACHT SUMMARY, the Boolean
~pfession"CONTAINING checks your response to the question, and, if the
sponse contains a letter N anywhere. the command file aborts.

'hen DATATRIEVE encounters the *."OUTPUT DEVICE OR FILE" prompt,
pauses again for you to select the device or file for output of the report.

ote that except for the report name. the report produced by the command file is
e same as the one produced by the procedure YACHT_ SUMMARY.

Using Command Files 8-5

Example 8-1: Sample Command File Using the Report Writer

!
!THIS COMMAND FILE, YSUM.COM, PRODUCES A SUMMARY REPORT OF YACHT DATA
SET ABORT
!THIS REPORT REQUIRES AN ESTABLISHED COLLECTION,
!SORTED BY LOA AND BEAM.
!
!HAVE YOU ESTABLISHED A COLLECTION?
IF *."YES OR NO" CONTAINING "N" THEN

ABORT "SORRY, NO COLLECTION."
REPORT ON *."OUTPUT DEVICE OR FILE"
SET REPORT_NAME="SAMPLE REPORT"/"FROM A COMMAND FILE"
SET LINES_PAGE=55, COLUMNS_PAGE=60
PRINT BUILDER, MODEL, LOA, BEAM, PRICE
AT BOTTOM OF LOA PRINT SKIP, "AVERAGE PRICE =",

AVERAGE (PRICE), SKIP
AT BOTTOM OF REPORT PRINT COL 13,"NUMBER OF BOATS=",

COL 33, COUNT, SKIP, "AVERAGE PRICE OF ALL BOATS=",­
AVERAGE (PRICE)

END_REPORT

When you have readied the domain and established the appropriate collection,
issue the SET VERIFY command and invoke the command file with an at sign
(@)and without the .COM file type. DATATRIEVE prints each command and
statement as it is executed.

DTR> READY YACHTS
DTR> FIND FIRST 5 YACHTS WITH LOA BETWEEN 36 3J AND PRICE NE 0
[5 records found]
DTR> SORT BY LOA, BEAM
DTR> SET VERIFY
DTR> ©YSUM
SET ABORT
!THIS REPORT REQUIRES AN ESTABLISHED COLLECTION,
!SORTED BY LOA AND BEAM.

!HAVE YOU ESTABLISHED A COLLECTION?
IF *."YES OR NO" CONTAINING "N" THEN

ABORT "SORRY, NO COLLECTION."
Enter YES OR NO: YES
REPORT ON *."OUTPUT DEVICE OR FILE"
SET REPORT_NAME="SAMPLE REPORT"/"FROM A COMMAND FILE"
SET LINES_PAGE=55, COLUMNS_PAGE=60
PRINT BUILDER, MODEL, LOA, BEAM, PRICE
AT BOTTOM OF LOA PRINT SKIP, "AVERAGE PRICE=",

AVERAGE (PRICE), SKIP
AT BOTTOM OF REPORT PRINT COL 17,"NUMBER OF BOATS=",

COL 40, COUNT, SKIP, "AVERAGE PRICE OF ALL BOATS ='~, -
AVERAGE (PRICE)

END_REPORT
Enter OUTPUT DEVICE OR FILE: TT:

8-6 Using Command Files

SAMPLE REPORT
FROM A COMMAND FILE

1-Aug-1985
Page 1

LENGTH
OVER

MANUFACTURER MODEL ALL BEAM

ISLANDER 36 36 11
I. TRADER 37 36 12

AVERAGE PRICE =

NORTHERN 37 37 11
IRWIN 37 MARK II 37 11
ALBERG 37 MK II 37 12

AVERAGE PRICE =

NUMBER OF BOATS = 5
AVERAGE PRICE OF ALL BOATS

.1.4 Invoking a Command File from a Procedure

PRICE

$31,730
$39,500

$35,615

$50,000
$36,950
$36,951

$41, 300

$39,026

ou can invoke a command file from a procedure you define with the DEFINE
ROCEDURE command.

or example, suppose you create a procedure PICKBOATS to form a collection of
)ats that cost over $10,000. Within the procedure you can invoke the sample
>mmand file from the previous section, YSUM. to generate the report. Since
ICKBOATS starts off with the SET VERIFY command, the contents of YSUM
~ut not PICKBOATS} appear automatically on the screen when you execute
ICKBOATS.

he procedure PICKBOATS contains some PRINT statements after the
)YSUM command to illustrate that DATATRIEVE processes all statements in a
~ocedure before those in a nested command file.

~R> SHOW PICKBOATS
~OCEDURE PICKBOATS
n VERIFY
~ADY YACHTS
:ND YACHTS WITH PRICE GT 10000 SORTED BY LOA, BEAM
'SUM
:INT "These lines come AFTER the ©YSUM command"
:INT "in the PICKBOATS procedure."
:INT "Notice that DATATRIEVE processes them"
~INT "BEFORE the commands in YSUM."
ID_PROCEDURE

(continued on next page)

Using Command Files 8-7

DTR> :PICKBOATS
These lines come AFTER the ©YSUM command
in the PICKBOATS procedure.
Notice that DATATRIEVE processes them
BEFORE the commands in YSUM.

SET ABORT
!THIS REPORT REQUIRES AN ESTABLISHED COLLECTION,
!SORTED BY LOA AND BEAM.

!HAVE YOU ESTABLISHED A COLLECTION?
IF *."YES OR NO" CONTAINING "N" THEN ABORT "SORRY, NO COLLECTION."
Enter YES OR NO: Y
REPORT ON *."OUTPUT DEVICE OR FILE"
SET REPORT-NAME="SAMPLE REPORT"/"FROM A COMMAND FILE"
SET LINES-PAGE=55, COLUMNS-PAGE=60
PRINT BUILDER, MODEL, LOA, BEAM, PRICE
AT BOTTOM OF LOA PRINT SKIP, "AVERAGE PRICE=",
AVERAGE PRICE, SKIP
AT BOTTOM OF REPORT PRINT COL 17, "NUMBER OF BOATS=".
COL 40, COUNT, SKIP, "AVERAGE PRICE OF ALL BOATS=", AVERAGE PRICE
END_REPORT
Enter OUTPUT DEVICE OR FILE: TT:

SAMPLE REPORT 1-Aug-1985
FROM A COMMAND FILE Page 1

LENGTH
OVER

MANUFACTURER MODEL ALL BEAM PRICE

EASTWARD HO 24 09 $15,900

AVERAGE PRICE = $15,900

IRWIN 25 25 12 $10,950

AVERAGE PRICE = $10,950

GRAMPIAN 26 26 08 $11,495
AMERICAN 26-MS 26 08 $18,895
WESTERLY CENTAUR 26 08 $15,245
TANZER 26 26 09 $11, 750
ALBIN 79 26 10 $17,900

DTR>

8-8 Using Command Files

tis important to remember that a command file within a procedure is always
~xecuted after all the other statements in the procedure.

L 1.5 Invoking a Command File from Another Command File

r ou can invoke procedures and command files from within a command file. For
:xample, the command file MSMOD readies the YACHTS domain then executes
he command file MOD. MOD contains a loop with a FOR statement and a
JEGIN-END block of statements that allow the user to modify prices
nteractively:

TR> SET VERIFY
TR> ©MSMOD

MSMOD contains only the next two lines:
EADY YACHTS WRITE
MOD

MOD contains the following lines:

OR YACHTS WITH RIG = "MS"
BEGIN

PRINT
IF *."Y TO MODIFY, N TO SKIP" CONTAINING "Y"
THEN MODIFY PRICE ELSE
PRINT "NO CHANGE"
IF *."Y TO CONTINUE, N TO ABORT" CONTAINING "N"
ABORT "END OF PRICE CHANGES"

END

LENGTH
OVER

~NUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

~MERI CAN 26-MS MS 26
~ter Y TO MODIFY, N TO SKIP: Y
lter PRICE: 19350
lter Y TO CONTINUE, N TO ABORT: Y
~ASTWARD HO MS 24
lter Y TO MODIFY, N TO SKIP: N
J CHANGE
lter Y TO CONTINUE, N TO ABORT: N
30RT: END OF PRICE CHANGES
fR> FIND YACHTS WITH RIG = "MS"
) records found]
fR> SELECT
rR> PRINT

LENGTH
OVER

5,500 08 $18,950

7,000 09 $15,900

\NUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

\MERI CAN 26-MS MS 26 5,500 08 $19,350

lR>

Using Command Files 8-9

Recall that you cannot use commands in compound statements. Because the at
sign(@) is a command (the Invoke Command File command), you cannot use the
at sign within a compound statement. In other words, you cannot invoke com­
mand files from within compound statements.

When embedding command files within other command files (also called nesting),
do not allow a command file to invoke itself, either directly or indirectly, doing so
may create an infinite loop.

8.1.6 Aborting Command Files

To abort a command file that contains an error, include an ABORT statement in
the file. If the responses meet the abort conditions and SET ABORT is in effect,
DAT ATRIEVE aborts the command file and prints the message specified for the
ABORT statement. If SET NO ABORT is in effect, DATATRIEVE aborts the
command or statement that contains the ABORT but continues to execute the
remaining commands and statements in the file.

8.1. 7 Maintaining Command Files

VMS directories, not the CDD, store the command files. If you adopt the conven
tion of using .COM as the file type for command files, you can display the names
of your command files on your terminal by requesting a directory listing of
*.COM at the DCL command level. You can adopt any other convention you wisl
and use the wildcard in the same manner.

$ DIRECTORY *.COM

YSUM.COM;l WIDTH.COM;l SAMPLE.COM;l

·You can display the contents of a command file with the DCL TYPE command:

$ TYPE SAMPLE.COM

You can delete a command file from your directory with the DCL DELETE
command:

$ DELETE SAMPLE.COM;*

8.1.8 Protecting Command Files

Command files have more protection from unauthorized use than DAT A TRIEVI
procedures do. Each procedure does have its own access control list that
DAT A TRI EVE checks when someone invokes the procedure, but whoever has
access to the CDD has read and write access to procedures. Command files. on
the other hand, have VMS protection. To prevent people from using your com­
mand files. you can change the VMS protection to deny R (READ) access to
others.

8-10 Using Command Files

2 Using DCL Command Files

!\TA TRI EVE lets you execute commands, statements, procedures, and com­
and files from DCL command level. You can do this by defining a symbol to
voke DAT ATRIEVE and following the symbol with any legal DATATRIEVE
mmand. (See Chapter 1 for details.)

m can embed such a DCL command line in a DCL command file. When you do
is, you have to keep in mind some special precautions. This section describes
ose precautions.

2.1 Reassigning SYS$1NPUT in Command Files That Require Interactive
Input

r default. DCL command procedures expect any data or other input to come
>m the command procedure itself. The DCL command file will not work if it
v-okes DATATRIEVE and DATATRIEVE requires input from the terminal.
~cause of this, you must reassign the logical name SYS$INPUT.
\TATRIEVE requires input from the terminal when it:

Executes any command, statement, procedure, or command file that
prompts the user for input

Uses a forms product

1 reassign the logical name SYS$INPUT so the DCL command procedure
pects input from the terminal, precede the command that invokes
\TATRIEVE with this ASSIGN command:

SIGN/USER_MODE SYS$COMMAND SYS$INPUT

the symbol to invoke DATATRIEVE is DTR32, and the procedure
tOMPTER requires terminal input, that means the DCL command file must
ntain the following lines:

~SSIGN/USER_MODE SYS$COMMAND SYS$INPUT
)TR32 EXECUTE PROMPTER

!.2 Command Files with an Invalid CDD$DEFAUL T Can Damage the COD

:i DCL command file uses an equivalence to the logical name CDD$DEFAULT
:tt is not a valid CDD path name, subsequent commands in the file could delete
otherwise damage CDD directories.

Using Command Files 8-11

There are several ways to assign an invalid CDD$DEFAULT:

• You might misspell the name of a dictionary directory in assigning
CDD$DEFAULT: for example, you might type CDD$TOP.SOLES instead
of CDD$TOP.SALES.

• You might delete the directory you specified as the CDD$DEFAULT and
forget to specify another CDD$DEFAULT.

• You might assign a logical name to CDD$DEFAULT. CDD$DEFAULT is
already a logical name. The CDD translates only one logical name, so it
assumes that the logical name you assigned to CDD$DEFAULT is a full or
relative path name, not another logical name.

When the DMU utility cannot use the CDD$DEFAULT you have defined. it sets
your default dictionary directory to CDD$TOP, the only node certain to exist in
every CDD. This action can cause a problem if it occurs during execution of a
command file. For example. consider what might happen when the following com
mand file executes:

$ ON WARNING THEN EXIT
$ RUN SYS$SYSTEM:DMU
DELETE/ALL
EXIT

Before DMU can execute the DELETE/ALL command, it must find the default
directory. If it finds an invalid default directory, it issues DMU and CDD error
messages and sets the default directory to CDD$TOP. The DCL command ON
WARNING THEN EXIT does not stop execution of the command file because
DMU continues to execute in spite of the error. Instead of deleting every direc·
tory and object under the default directory, DMU deletes everything under
CDD$TOP. Similar, but less drastic results can occur in any command file that
has an invalid CDD$DEFAULT and attempts to alter the dictionary in any way.

If a command file invokes DATATRIEVE and CDD$DEFAULT is incorrectly
defined. no DATATRIEVE commands can execute. You cannot run
DATATRIEVE when CDD$DEFAULT is incorrectly defined. However, you can
run DATATRIEVE if CDD$DEFAULT is not defined at all or if you type
DEASSIGN CDD$DEFAULT. In this case. DATATRIEVE sets your default die
tionary directory to CDD$TOP and you run the risk of unintentionally altering
CDD$TOP.

There are several safeguards you can implement to help protect the CDD agains1
this type of error:

• Check the translation of CDD$DEF A ULT before executing a command file
that alters the dictionary.

8-12 Using Command Files

Limit everyone except the system manager or data administrator to
PASS THRU privilege at CDD$TOP. Then, if users unintentionally set their
default directories to CDD$TOP, they are unlikely to have sufficient privi­
leges to alter the dictionary.

Always define CDD$DEFAULT as a path name, not a logical name.

Use full path names rather than relative path names in command files that
alter the dictionary.

Avoid the use of powerful commands, such as DELETE/ALL. in command
files.

Using Command Files 8-13

Using DATATRIEVE Variables 9

variable is a symbol whose value can change as you execute a program. You can
1e the letter A as a variable. for instance. The name of the variable stays the
lme. but its value can change as DAT ATRIEVE acts upon it. You use variables
DATATRIEVE:

To assign values to fields in STORE and MODIFY statements

As counters in FOR, REPEAT, and WHILE loops

As conditional values in Boolean expressions

To specify field names that would otherwise be ambiguous

1 Declaring Variables

m declare a variable with a statement in this form:

:CLARE variable-name variable-definition.

te variable name is the name you give to the variable. The variable definition
nsists of field definition clauses. When you declare a variable, you can use any
the DATATRIEVE definition clauses except OCCURS and REDEFINES. You
ist include at least one PIC, COMPUTED BY or USAGE clause. You can also
e the QUERY-HEADER, EDIT-STRING, SIGN, MISSING VALUE, and
~FAULT VALUE clauses.

declare the variable A to be a three-digit numeric value with an initial value of
·o, you use this variable name and variable definition:

t> DECLARE A PIC 999.
t> A = 0

9-1

If you print the variable, it looks like this:

DTR> PRINT A

A

000

You can define two kinds of variables:

• Local variables

• Global variables

You use the DECLARE statement to define both local and global variables. A
variable you define within a BEGIN-END statement is a local variable, and you
can use it only within that statement. A variable you define at DAT ATRIEVE
command level is a global variable. It remains in your workspace until you release
it or exit from DATATRlEVE. Use the assignment statement (variable= value)
to set the variable to a particular value. For example:

DTR> DECLARE BIG PIC X(5).
DTR> BIG = "YES II

DTR> PRINT BIG

BIG

YES

The initial value for variables in numeric fields is 0. In alphanumeric strings. it is
spaces. These are the default values if you do not specify a different default value
or missing value.

You can also use a date field as a variable, as in this example:

DTR> DECLARE Y USAGE DATE EDIT_STRING DD-MMM-YY.
DTR> Y = "TODAY"
DTR> PRINT Y

y

19-May-84

9-2 Using DATATRIEVE Variables

.2 Local Variables

·ou define local variables with DECLARE statements entered in BEGIN-END
nd THEN statements. The local variable has an effect only within the clause or
~atement in which you declare it.

1 the following example, the local variable declared in the inner statement super­
~des one with the same name declared in the outer statement. Notice that the
[fferent value or different data type assigned to the inner variable has no effect
1 the value of the variable in the outer statement. Note also that neither local
:triable exists when DAT A TRI EVE finishes executing the compound statements
mtaining them both:

rR> SET NO PROMPT
rR> BEGIN
lN> DECLARE X PIC XXX.
lN> X = "TOP"
lN> PRINT X
lN> BEGIN
lN> DECLARE X PIC 9. 99.
IN> X = 1. 23
IN> PRINT X
IN> END
IN> PRINT X
IN> END

IP

23

p

R>

3 Global Variables

1ppose you want to assign to each boat in YACHTS a new price that is two­
irds of the present price. Using a COMPUTED BY clause in a global variable!
u can apply a single formula to every yacht. as in the next example. Use the
8CLARE statement to create the variable. Use a COMPUTED BY clause with

Using DATATRIEVE Variables 9-3

a value expression to calculate the changed values:

DTR> READY YACHTS MODIFY
DTR> DECLARE FIRE_PRICE COMPUTED BY PRICE/1.5
CON> EDIT_STRING IS $99,999.99.
DTR> FIRE PRICE = 0
DTR> FOR FIRST 5 YACHTS PRINT BOAT, FIRE_PRICE

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM

ALBERG 37 MK II KETCH 37 20,000 12
ALBIN 79 SLOOP 26 4,200 10
ALBIN BALLAD SLOOP 30 7,276 10
ALBIN VEGA SLOOP 27 5,070 08
AMERICAN 26 SLOOP 26 4.,000 08

DTR>

FIRE
PRICE PRICE

$36,951 $24,634.00
$17,900 $11,933.33
$27,500 $18,333.33
$18,600 $12,400.00

$9,895 $06,596.67

The variable FIRE PRICE declared at DATATRIEVE command level remains in
the workspace throughout the session. It changes its value whenever the value of
PRICE changes. (See Appendix A for a discussion of context changes.~ The vari­
able remains in your workspace until you release the variable with a RELEASE
statement or declare another global variable with the same name.

9.4 Using Variables to Assign Values to Fields

You can use variables to assign values to fields in the USING clauses of STORE
and MODIFY statements. You cannot, however, use a variable to respond to a
prompt for a field value, whether the prompt is the result of the STORE or
MODIFY statement or of a prompting value expression in an assignment
statement.

In the USING clause of the STORE and MODIFY statements, you can supply
values for fields by using value expressions on the right side of assignment state­
ments. In some circumstances, you can use variables in those assignments to con·
trol the uniformity of input data.

In this example. WORK is a domain you want to contain uniform names. The
domain is indexed on WHO and allows duplicates:

DTR> SHOW WORK REC
RECORD WORK_REC

USING
01 TOP.

03 JOB PIC X(15).
03 RESPONSIBLE_PERSON PIC X(4)

QUERY_NAME WHO.

9-4 Using DATATRIEVE Variables

IJAME TABLE translates the varying inputs into uniform values to store in the
vork domain:

1TR> SHOW NAME_ TABLE
'ABLE NAME_ TABLE
DIT_STRING IS X(16)

ED
D ED
M ED

ED
FRED

H FRED
RED FRED

FRED
RICK
RICK

BL RICK
ICK RICK
L : RICK
LSE "NOT A VALID NAME"
ND_ TABLE

n the following STORE statement, the USING clause uses the variable
~ERSON with a prompting value expression for the responsible person. The table
ranslates the value supplied to that prompt and stores the uniform results in the
eld WHO:

fR> SET NO PROMPT
fR> DECLARE PERSON PIC X(16).
fR> READY WORK WRITE
fR> REPEAT 3 STORE WORK USING
JN> BEGIN
JN> JOB= *.JOB
JN> PERSON= *.WHO
JN> WHO = PERSON VIA NAME_TABLE
JN> END
iter JOB: CLEANING
it er WHO: ~
it er JOB: DRYING
iter WHO: FR
iter JOB: SELLING
iter WHO: R
rR> PRINT WORK

JOB

.EANING
iYING
~LLING

'R>

ED

RESPONSIBLE
PERSON

NOT A VALID NAME
RICK

Using DATATRIEVE Variables 9-5

9.5 Changing the Value of a Variable
You can change the value of a variable with an assignment statement, using any
DAT ATRIEVE value expression on the right side of the statement. You can also
use a prompting value expression to change the value of a variable. This example
declares a variable and changes that value first with an assignment statement
and then with a prompting value expression:

DTR> DECLARE X PIC XXX.
DTR> X = 0
DTR> PRINT X

x

0

DTR> X = "ABC"; PRINT X

x

ABC

DTR> X =*."VALUE FOR X"
Enter VALUE FOR X: LIP
DTR> PRINT X
x

LIP

DTR>

9.6 Using Context Variables
DATATRIEVE provides a different kind of variable from the ones previously dis
cussed in this chapter. This is called a context variable. Instead of storing values
context variables serve as labels that identify a record stream to DATATRIEVE
You assign context variables to be temporary names of particular record streami
In this way you can make clear the domain from which a record stream originate
or you can create two different record streams based on the same domain.

In most cases. DATATRIEVE will know to what record stream a field name
applies without needing context variables. For example, DAT ATRIEVE does no·
need context variables in the following store statement:

DTR> ! First, define a domain that will hold a subset
DTR> ! of YACHTS records, namely, those that
DTR> ! cost more than $20,000.
DTR> DEFINE DOMAIN RITZY_ONES USING YACHT ON RITZY;
DTR> DEFINE FILE FOR RITZY_ONES
DTR> READY RITZY_ONES WRITE

9-6 Using DATATRIEVE Variables

>TR> ! The FOR statement includes a STORE USING statement
>TR> ! to store the desired records in RITZY_ONES.
,TR> ! Note that you don't need context variables.
,TR> FOR YACHTS WITH PRICE > "$20, 000"
:ON> STORE RITZY_ONES USING
:ON> BEGIN
:ON> TYPE = TYPE
:oN> PRICE = PRICE
:oN> END

n this example. DATATRIEVE assigns the values of TYPE and PRICE of all
•oats in YACHTS that cost more than $20,000 records in to a new domain called
UTZYONES.

>hould you so choose, however, you can use context variables to identify record
treams and to qualify field names. This makes your statements and procedures
~ss ambiguous and easier to maintain. For example, you can perform the preced-
1g store operation as follows:

TR> FOR Y IN YACHTS WITH PRICE > "$20,000"
ON> STORE R IN RITZY_ONES USING
ON> BEGIN
ON> R.TYPE = Y.TYPE
ON> R.PRICE = Y.PRICE
ON> END

1 certain cases. however, you must use context variables to identify a record
tream explicitly. When you need to access the same domain two or more times in
ne statement. or when you need to compare record streams from the same
omain. you must use context variables. In all other cases, you can use the
omain name for qualifying field names, or else DATATRIEVE resolves the con­
~xt automatically (as in the first example above).

ut when you must establish two record streams from the same domain. or when
)U cross a domain over itself. you use context variables to label different record
;reams. By qualifying each field name with the context variable and a period U.
lU indicate clearly to DAT ATRIEVE how to evaluate field references. In the
love example, DAT A TRIEVE looks to the R stream to evaluate R. TYPE and to
ie Y stream to evaluate Y. TYPE. Thus DA TATRIEVE allows you to create two
r more) record streams from the same domain without confusing or mixing
~cords.

or example, assume that you are interested in finding the average payroll of
Leh department in the PERSONNEL domain. You need to access all the records
PERSONNEL twice, once to group them by department and again to compute

te average salary.

Using DATATRIEVE Variables 9-7

Using context variables allows you to distinguish the references to PERSONNEL
so that you can perform both operations within the same statement:

DTR> FOR D IN PERSONNEL REDUCED TO DEPT
CON> PRINT D.DEPT, AVERAGE SALARY OF S IN PERSONNEL WITH -
CON> S.DEPT = D.DEPT

AVERAGE
DEPT SALARY

C82 $40,493
098 $42,244
E46 $39,658
FU $37,892
G20 $39, 185
T32 $39,144
TOP $75,892

DATATRIEVE reduces the PERSONNEL domain to unique occurrences of the
DEPT field. This record stream is identified by the context variable D. Then, for
each value of DEPT in the D stream, DATATRIEVE calculates the average sal­
ary of all records in the S stream that have matching values for DEPT.

For another example, assume that you wish to find how much of the compaJily's
workforce each department employs. You can perform the query in the following
manner:

DTR> FOR D IN PERSONNEL REDUCED TO DEPT
CON> PRINT D.DEPT, 100 * ((COUNT OF PER IN PERSONNEL -
CON> WITH PER.DEPT = D.DEPT)/ COUNT OF PERSONNEL) ("PCT") USING Z9.9%

DEPT PCT

C82 21. 7%
098 17.4%
E46 8.7%
FU 17.4%
G20 13.0%
T32 17.4%
TOP 4.3%

This statement sets up an inner loop of records from the PERSONNEL domain
identified by the context variable PER and an outer loop of records from the san
domain identified by the label D. For each group of records with the same depar
ment. DAT A TRI EVE counts the records and divides it by the total number of al
records in PERSONNEL. The context variables D and PER allow you to refer t~
the same records in the PERSONNEL domain twice. Thus you can print out all
the department names and count all their members in the same statement.

9-8 Using DATATRIEVE Variables

ection 2.4 contains an example illustrating the use of context variables to com­
tre record streams from the same domain. Appendix A contains more examples
· context variables and presents detailed information about how DAT A TRI EVE
~solves context.

Using DATATRIEVE Variables 9-9

Part 4
Optimizing DATATRIEVE

Restructuring Data 1 O

1is chapter describes how to create new domains with data from existing ones.
~u might do this to:

Add new fields to the record definition associated with the domain

Change field definitions to affect the values stored in the data file

Rearrange the fields in the record definition

Combine data from two or more domains

Create a copy of a domain for testing

Change the file organization

Change the index structure (key fields)

Create a domain that contains a subset of records contained in another
domain

>w you create the new domain depends on whether you want to keep the old
main. If you want to keep the old domain, follow these three steps when creat­
~ the new domain:

Define the new domain, its record, and its data file.

Ready the new domain for WRITE access and the old domain for READ
access.

Use the DAT A TRIEVE Restructure statement to transfer field values from
the old data file to the new one.

rou want to use any old procedures on the new domain, you must edit them
hey refer to fields not included in the new domain. Follow your standard

10-1

DAT ATRIEVE editing procedure to make the necessary changes, using:

EDIT procedure-name

If the old procedures refer only to fields included in the new domain, you need not
change the procedures. You can ready the new domain with the old domain name
as an alias (READY NEW AS OLD) and execute the old procedures.

If you do not want to keep the old domain, you can still use the old procedures if
you follow these steps:

1. Define the new domain (NEW), record (NEW_ REC), and file (NEW.DAT).

2. Use the Restructure command to transfer the data from the old domain
(OLD) to the new one (NEW).

3. Delete the definition of the old domain (OLD).

4. Enter another domain definition that uses the old domain name (OLD), the
new record definition (NEW_ REC), and the new data file (NEW.DAT):

DTR> DEFINE DOMAIN OLD USING NEW_REC ON NEW.DAT;
DTR>

5. Check the old procedures for any references to field names not included in
the new record definition, and edit where necessary.

Note ------------

You cannot use DATATRIEVE to restructure DBMS or Rdb domains.
You must use RDO to restructure Rdb domains. You must use the
VAX DBMS DDL compilers and DBO utility to restructure databases.
However, you can store data from DBMS or Rdb domains in RMS
domains.

10.1 A Sample Domain

PROJECTS is a sample domain you can create to practice restructuring:

DTR> SHOW PROJECTS, PROJECT_REC
DOMAIN PROJECTS USING PROJECT_REC ON PROJECT;
RECORD PROJECT_REC
01 PROJECT_REC.

03 PROJ_CODE PIC 9(3) QUERY_NAME IS CODE.
03 PROJ_NAME PIC X(10) QUERY_NAME IS NAME.
03 MANAGER_NUM PIC 9(5) QUERY_NAME IS NUM.

10-2 Restructuring Data

he data file PROJECT.DAT is a sequential file and contains these records:

rR> PRINT PROJECTS

lOJ PROJ .MANAGER
>DE NAME NUM

)2 GROUNDS 00006
)5 BUILDING 2 00003
)8 SHED 00002
~8 RESEARCH 00006
17 PUB REL 00008
'3 MATERIALS 00002

:&>

0.2 Adding Fields to a Record Definition
:>create a new domain with two fields added to PROJECT_ REC, you follow
tese steps:

Define a new domain:

DTR> DEFINE DOMAIN NEW_PROJECTS
DfN> USING NEW_PROJECT_REC ON NEWPROJ;

Edit the record definition to change the name of the record and add the
desired field definitions. Note that with EDIT BACKUP in effect,
DAT ATRIEVE does not delete the original record definition when you exit
the edit buffer.

DTR> EDIT PROJECT_REC
1 REDEFINE RECORD PROJECT_REC USING
* c
REDEFINE RECORD NEW_PROJECT_REC USING
01 NEW_PROJECT_REC.

03 PROJ_CODE
03 PROLNAME
03 PROJ_COST
03 MANAGER_NUM
03 MGR_NAME

I

* exit

PIC 9(3) QUERY_NAME IS NUM.
PIC X(10) QUERY_NAME IS NAME.
PIC 9(6)V99 EDIT_STRING IS $$$,$$9.99.
PIC 9(5).
PIC X(15).

[Record NEW_PROJECT_REC is 40 bytes long]

DTR>

Define a new data file for NEW PROJECTS. This example creates an
indexed file to replace the sequential file associated with PROJECTS:

DTR> DEFINE FILE FOR NEW_PROJECTS KEY=PROJ_CODE
DTR>

Restructuring Data 10-3

You are now ready to transfer the data from the old domain to the new one.

10.3 Entering Data in the New File

To transfer data from the old domain to the new one, you must first ready both
domains. Ready the new domain for WRITE or EXTEND access, and ready the
old one for READ access. Then use the Restructure statement to transfer the
data:

DTR> READY NEW_PROJECTS WRITE
DTR> READY PROJECTS
DTR> NEW_PROJECTS = PROJECTS
DTR>

For each field name in NEW PROJECT REC that matches a field name in
PROJECTS REC, the Restructure statement transfers field values from each
record in PROJECTS to a record in NEW PROJECTS. For a field in the new
record definition that does not match a field in the old one, DATATRIEVE
initializes the field according to its data type and its field definition.

If the field has a DEFAULT VALUE clause, DATATRIEVE initializes the field
with the default value. If the field has a MISSING VALUE clause and no
DEFAUL\f VALUE clause, DATATRIEVE initializes the field with the missing
value. If the field has neither a DEFAULT VALUE clause nor a MISSING
VALUE clause, DATATRIEVE initializes a numeric field as 0 and an alphabetic
or alphanumeric field as spaces.

The data file associated with your new domain now has records in it. When you
display the contents of the new domain on your terminal, you can see the two ne~
fields and the same values contained in the PROJECTS domain:

DTR> PRINT NEW_PROJECTS

PROJ PROJ PROJ MANAGER MGR
NUM NAME COST NUM NAME

002 GROUNDS $0.00 00006
005 BUILDING 2 $0.00 00003
008 SHED $0.00 00002
018 RESEARCH $0.00 00006
037 PUB REL $0.00 00008
073 MATERIALS $0.00 00002

DTR>

10-4 Restructuring Data

[).4 Creating Record Subsets

~u can create the new domain from a subset of the old domain's records. You
1ecify the limiting conditions in the RSE of the Restructure statement. For
:ample, you can limit a domain to the projects of two managers:

R> READY NEW_PROJECTS WRITE
R> READY PROJECTS
R> NEW_PROJECTS = PROJECTS WITH MANAGER_NUM EQ 2, 6
R> PRINT NEW_PROJECTS

OJ PROJ PROJ MANAGER MGR
M NAME COST NUM NAME

2 GROUNDS $0.00 00006
8 SHED $0.00 00002
8 RESEARCH $0.00 00006
3 MATERIALS $0.00 00002

R>

>te that the Restructure statement relies on record definitions having the same
Id names. If you want to change field names, you can either edit the record
finition after the restructure operation or use a STORE USING statement
;tead of the Restructure statement. The chapter on Designing Better Records
atains an example of STORE USING to restructure data.

~.5 Combining Data from Two or More Domains

tother reason for creating a new domain is to combine the data from two or
>re existing domains. If you frequently use the same CROSS clause to form
~ord streams and you cannot use a view domain because you need to store
~ords in the domain. you can define a new domain to meet your needs.

r example, when you enter data in the file of NEW PROJECTS, you can also
:lude the names of the managers from another domain, MANAGERS:

l> SHOW MANAGERS, MANAGER_REC
~AIN MANAGERS USING MANAGER_REC ON MGk;
:ORD MANAGER_REC USING
MANAGER.
03 MANAGER_NUM PIC 9(5).
03 MGR_NAME PIC X(S).

;playing the records from MANAGERS shows that values in the field
\NAGER_NUM correspond to the values in the MANAGER_NUM field in the

Restructuring Data 10-5

domain PROJECTS:

DTR> READY MANAGERS; PRINT MANAGERS

MANAGER MGR
NUM NAME

00002 BLOUNT
00003 GERBLE
00005 GORFF
00006 PUFFNER
00008 FEBNELL

DTR>

Using a CROSS clause in the RSE of the Restructure statement, you can match
MANAGERS records with the corresponding PROJECTS records. The OVER
clause allows you to match those records with matching values in the
MANAGER NUM fields. You must ready all three domains to transfer the data
from PROJECTS and MANAGERS to NEW PROJECTS:

DTR> READY NEW_PROJECTS WRITE
DTR> READY PROJECTS
DTR> READY MANAGERS
DTR> NEW_PROJECTS = PROJECTS CROSS MANAGERS OVER MANAGER_NUM
DTR>

Displaying the records in NEW PROJECTS shows the result of the Restructure
with a CROSS clause in the RSE. Notice that the value of PROJ COST in each
record is 0: the field did not exist in either of the source domains:

DTR> PRINT NEW_PROJECTS

PROJ PROJ PROJ MANAGER MGR
NUM NAME COST NUM NAME

002 GROUNDS $0.00 00006 PUFFNER
005 BUILDING 2 $0.00 00003 GE RB LE
008 SHED $0.00 00002 BLOUNT
018 RESEARCH $0.00 00006 PUFFNER
037 PUB REL $0.00 00008 FEB NELL
073 MATERIALS $0.00 00002 BLOUNT

DTR>

10.6 Using the Alias Clause to Restructure a Domain

You can use the Alias clause to restructure a domain. When you use this method
you can make use of the difference betwebn the record definition in the CDD and

10-6 Restructuring Data

;he record definition controlling a readied domain in your workspace. For exam­
lle, when you ready YACHTS as OLD YACHTS, the record definition YACHT is
lssociated with the data file YACHT.DAT. If you then edit and redefine the for­
nat of the record definition YACHT, this change to the record is not associated
vith the readied domain (OLD YACHTS). It is only associated with YACHTS the
iext time you ready the domafn.

rhis method lets you make use of the difference between the record definition
n the CDD and the record definition controlling a readied domain in your
rnrkspace. The change in the record definition does not take effect until you use
he FINISH command to finish the domain and the READY command to ready it
gain. Simply readying the domain again does not activate the new record
lefinition.

'ou can make use of this fact if you want to change a record definition or change
he type of file organization of a domain's data file. Follow these steps to change
he record definition or file type without redefining the domain. In both cases, you
efine a new data file and transfer the data with the Restructure statement:

1. Ready the domain as an alias:

~.

' I,

DTR> READY YACHTS AS OLD_YACHTS
DTR> SHOW READY
Ready sources:

OLD_YACHTS: Domain, RMS sequential, protected read
<CDD$TOP.INVENTORY.YACHTS;1>

No loaded tables.

DTR>

Change the record definition with the EDIT record-path-name command,
creating a later version of the same record definition.

Define a new data file for the domain. This creates a new version of the file
associated with the readied domain but does not interfere with the link
between the domain you already readied and the original version of the data
file. Do not use the SUPERSEDE option of the DEFINE FILE command:

DTR> DEFINE FILE FOR YACHTS KEY = TYPE
DTR>

Ready the domain as a different alias and specify the WRITE access mode.
This READY command uses the new version of the record definition and

Restructuring Data 10-7

opens the new data file created by the DEFINE FILE command:

DTR> READY YACHTS AS NEW_YACHTS WRITE
DTR> SHOW READY
Ready sources:

NEW_YACHTS: Domain, RMS indexed, protected write
<CDD$TOP.INVENTORY.YACHTS;1>

OLD_YACHTS: Domain, RMS sequential, protected read
<CDD$TOP.INVENTORY.YACHTS;1>

No loaded tables.

DTR>

5. Now use the Restructure statement to move the data from the original data
file to the· new one. DAT ATRIEVE transfers data from fields in the original
data file into fields with the same names in the new data file.

DTR> NEW_YACHTS = OLD_YACHTS
DTR>

10. 7 Changing the Organization of a Data File
You can also use the Alias clause of the READY command to change the organi­
zation of a data file associated with a domain. This example replaces the indexed
data file associated with YACHTS with a sequential data file:

DTR> READY YACHTS AS OLD
DTR> DEFINE FILE FOR YACHTS
DTR> READY YACHTS AS NEW WRITE
DTR> NEW = OLD
DTR> FIND NEW
[113 records found]
DTR>

10.8 Further Examples of Restructuring Domains
This example defines an indexed file for a new domain based on FAMILY REC.
The records of the source domain, FAMILIES, are in a sequential file. The coll)­
plex Boolean expression in the RSE of the Restructure statement limits the num
her of records transfered to the new domain. The new domain contains the
records of only those families who have no kids younger than 15:

DTR> READY FAMILIES
DTR> DEFINE DOMAIN NEWFAMS USING FAMILY_REC ON FAMS;
DTR> DEFINE FILE FOR NEWFAMS MAX, KEY = MOTHER (DUP)
DTR> READY NEWFAMS WRITE
DTR> NEWFAMS = FAMILIES WITH NOT ANY KIDS WITH AGE LE 15
DTR> FIND NEWFAMS
[8 records found]
DTR> FIND FAMILIES
[16 records found]
DTR>

10-8 Restructuring Data

rhe next example defines a new domain called YACHTS PRICE LIST, which
~ontains only the fields TYPE and PRICE from the old YACHT record definition.
rhe DEFINE RECORD command shortens the length of the MODEL field from
;en to eight bytes and provides a MISSING VALUE edit string for the PRICE
fold. The FIND statements following the Restructure statement check the num­
>er of records transferred and the accuracy of the transfer (with the CROSS
fause in the second FIND). The PRINT statement shows the effect of the new
\.fISSING VALUE edit string:

1TR> DEFINE DOMAIN YACHTS_PRICE_LIST USING YPL_REC ON YPL.DAT;
1TR> DEFINE RECORD YPL_REC USING
1FN> 01 BOAT.
FN> 03 TYPE.
FN> 05 BUILDER PIC X(10).
FN> 05 MODEL PIC X(8).
FN> 03 PRICE PIC 9(5) MISSING VALUE IS 0
FN> EDIT_STRING $$$,$$$?"NOT LISTED".
FN> ;
Record is 23 bytes long.]
TR> DEFINE FILE FOR YACHTS_PRICE_LIST KEY = TYPE
TR> READY YACHTS_PRICE_LIST AS YPL WRITE
TR> READY YACHTS
TR> SHOW READY
eady sources:

YACHTS: Domain, RMS indexed, protected read
<CDD$TOP.DTR32.WAJ.YACHTS;1>

YPL: Domain, RMS indexed, protected write
<CDD$TOP.DTR32.WAJ.YACHTS_PRICE_LIST;1>

> loaded tables.

rR> YPL = YACHTS WITH LOA GT 35
rR> FIND YACHTS WITH LOA GT 35
~3 records found]
rR> FIND YPL
~3 records found]
~R> FIND A IN YPL CROSS B IN YACHTS OVER
.ooking for field name]
IN> TYPE WITH A.PRICE NE B.PRICE
I records found]
'R> FIND YPL WITH PRICE MISSING
2 records found]
'R> PRINT FIRST 3 CURRENT

UILDER MODEL

OCK I. 40
BOT 36
WN EAST 38

R>

PRICE

NOT LISTED
NOT LISTED
NOT LISTED

Restructuring Data 10-9

10.9 Better Data Organization

DAT ATRIEVE provides you with many alternative strategies for record design.
You can save design time and processing time by choosing the best strategy for
your data. The chapter on designing better records offers suggestions for organiz­
ing data efficiently at the beginning of the data design process and for reorganiz­
ing existing data in the most efficient ways. It contains examples of reorganizing
data with both the Restructure and STORE ... USING statements.

10-1 O Restructuring Data

Designing Better Records 11

'AX DATATRIEVE offers great flexibility in defining records, tables. and
ariables. There are usually several alternative strategies for organizing your data
) make data access easier and faster. Before deciding how to define your data,
~y to determine the types of queries and reports that you want to produce. This
h.apter offers some suggestions for organizing your data in the most efficient
·ays.

·ou may also want to change the organization of existing data. This chapter pro­
[des examples using DATATRIEVE's Restructure and STORE USING state­
tents to reorganize the data.

eep the following points in mind when organizing or reorganizing data:

• Consider using flat records rather than hierarchical records for greater ease
of accessing data.

Define several related records, rather than one large record containing every
field.

Choose keys carefully to optimize performance for accessing data and joining
related records.

Use tables to validate data, to make data entry easier, and to use as little
storage space as possible.

Use virtual (COMPUTED BY) fields wherever possible to save storage and
make data entry easier.

1.1 Flat Records and Hiera·rchical Records
hen defining a record. you can choose to use lists (hierarchies) or to break off
ch list item into separate records (flat files). It is usually easier to access data in
tt files than in hierarchical files. This point can be illustrated with the sample
main FAMILIES.

11-1

The data stored in FAMILIES could be organized in flat records or in hierarchical
records. FAMILIES happens to use a hierarchical record organization, a record
containing the repeating list field KIDS. Figure 11-1 illustrates the structure of
the record FAMILY.

01 FAMILY

03 PARENTS 03 NUMBER_K IDS 03 KIDS OCCURS 1 TO 1 0 TIMES

08 FATHER I 08 MOTHER 08 EACH_KID

09 KID_NAME 09 AGE

08 EACH_KID

09 KID_NAME 09 AGE
08 EACH_KID

09 KID_NAME 09 AGE

ZK-0003-1

Figure 11-1: Structure of a Hierarchical Record

VAX DATATRIEVE supports lists or hierarchies created using the OCCURS
clause in record definitions. You can consider the list field to be a small domain
within each record of the large domain. For example, you can view each record in
FAMILIES as containing several KIDS "records." To access one of the KIDS
"records." you must do two things:

• Identify a specific record in FAMILIES.

• Identify the KIDS "record" within that FAMILIES record.

In the following example, two FOR loops are required to modify ELLEN's age:

DTR> FOR FAMILIES WITH FATHER = "JIM" AND MOTHER = "LOUISE"
CON> FOR KIDS WITH KID NAME = "ELLEN"
CON> MODIFY AGE -
Enter AGE: 26
DTR>

Sometimes nested FOR loops are not sufficient to access data stored in a list. If
you want to sort all the records in FAMILIES by the age of the children, you

11-2 Designing Better Records

LISt first flatten the records in FAMILIES with the CROSS clause:

R> FOR FAMILIES CROSS KIDS SORTED BY AGE
N> PRINT PARENTS, KID_NAME, AGE

FATHER

EARMAN
HN
NIE
NIE
M
M

R>

MOTHER

SARAH
ELLEN
ANNE
ANNE
ANN
ANNE

KID
NAME AGE

DAVID 0
CHRISTOPHR 0
BRIAN 0
SCOTT 2
RALPH 3
PATRICK 4

i alternative to this complex syntax and high performance overhead is to orga­
ie the records in a flat file to begin with, as Figure 11-2 shows.

01 FAMILY~FLAT_REC

03 PARENTS 03 EACH_KID

)5 FATHER 1 05 MOTHER 05 KI O_NAME l 05 AGE

MK-01594-00

~ure 11-2: The Structure of a Flat Record

ds is the complete record definition of FAMILY_FLAT_REC:

~> SHOW FAMILY_FLAT_REC
~ORD FAMILY_FLAT_REC USING
FAMILY_REC.
03 PARENTS.

05 FATHER PIC X(10).
05 MOTHER PIC X(10).

03 EACH_KID.
05 KID_NAME PIC X(10).
05 AGE PIC 99

EDIT_STRING IS Z9.

Designing Better Records 11-3

Each record of FAMILY FLAT has elementary fields for FATHER, MOTHER,
KID NAME, and AGE. This simplifies the task of modifying a child's age. For
example, to modify Ellen's age:

DTR> MODIFY AGE OF FAMILy_FLAT WITH FATHER = "JIM" AND
CON> KID_NAME = "ELLEN"

To sort by the age of children, you can enter:

DTR>PRINT FAMILY_FLAT SORTED BY AGE

Because FAMILY FLAT does not have hierarchical records like FAMILIES,
VAX DAT A TRI EVE does not have to flatten records before sortin~ them. This
gives you better performance along with easier access to data. There are addi­
tional costs, however. for storing the same parent information with each child in
the family. This issue is discussed in Chapter 12.

11.1.1 Restructuring a Hierarchical File to a Flat File

You can use a Restructure statement to convert the records in FAMILIES to
FAMILY FLAT. After defining the domain, record, and file for FAMILY FLAT,
enter the -following statements: -

DTR> READY FAMILIES
DTR> READY FAMILY_FLAT WRITE
DTR> FAMILY_FLAT = FAMILIES CROSS KIDS

The Restructure statement contains a CROSS clause so that each child is in a
separate record, paralleling the structure of FAMILY FLAT. A PRINT stateme1
displays the records of FAMILY_ FLAT: -

DTR> PRINT FAMILY_FLAT

KID
FATHER MOTHER NAME AGE

JIM ANN URSULA 7
JIM ANN RALPH 3
JIM LOUISE ANNE 31
JIM LOUISE JIM 29
JIM LOUISE ELLEN 26
JIM LOUISE DAVID 24
JIM LOUISE ROBERT 16
JOHN JULIE ANN 29

(continued on next page)

11 ·4 Designing Better Records

A.ROLD
A.ROLD
DWIN
DWIN

rR>

SARAH
SARAH
TRINITA
TRINITA

HAROLD
SARAH
ERIC
SCOTT

35
27
16
11

row all of the data for parents and their children has been stored in
'AMILY FLAT, but one problem remains. In joining FAMILIES on the
st field KIDS, you leave out any records of FAMILIES with parents but no
tiildren. In fact, there is one such record in FAMILIES:

fR> PRINT FAMILIES WITH NOT ANY KIDS

FATHER

lB

NUMBER
MOTHER KIDS

DIDI 0

KID
NAME AGE

ut this record from FAMILIES is not included in the record stream formed by
AMILIES CROSS KIDS, because the KIDS list is empty. As a result, the
.estructure statement does not store the data about ROB and DIDI in
AMILY FLAT:

rR> FIND FAMILY_FLAT WITH FATHER = "ROB"
) records found]
rR>

o include records of parents without children in FAMILY FLAT, you need a
~parate storing operation: -

~R> FOR A IN FAMILIES WITH NOT ANY KIDS
.ooking for statement]
IN> STORE FAMILY_FLAT USING PARENTS = A.PARENTS

ow the transfer of data from FAMILIES to FAMILY_ FLAT is complete:

'R> PRINT FAMILLFLAT WITH FATHER = "ROB"

FATHER MOTHER

IB DIDI

'R>

KID
NAME AGE

Designing Better Records 11-5

11.1.2 Defining Several Smaller Re-lated Records

Though VAX DAT ATRIEVE lets you define very large records, you may be bet­
ter off dividing a large record into several smaller related records. If you include
all the fields in one large record, you can access any portion of the-data by
readying only one domain. However, if you need information from only one field,
DAT ATRIEVE still must read through the large record.

Another problem with large, all-inclusive records is that several records can dupli·
cate the same information. Not only is this expensive to store, but you may have
problems when updating data if you do not change the information in all the rel­
evant records.

This problem could occur with the FAMILY FLAT records discussed in the pre­
vious section. Parent information is stored in each child's record. If the marital
status of the parents should change, each of the children's records would have to
be updated. You can avoid this problem by storing parent data in one domain
(FOLKS) and children's data in a second domain (CHILDREN).

The two domains could each have an ID field, representing an ID assigned to eac~
set of parents. In the FOLKS domain, you store the ID along with the parents'
names. In the CHILDREN domain, you store the parent ID along with the
children's names. The record definitions of FOLK REC and CHILD REC follow:

DTR> SHOW FOLK_REC
RECORD FOLK_REC USING
01 FOLK_REC.

03 ID PIC 99
EDIT_STRING IS Z9.

03 PARENTS.
05 FATHER PIC X(10).
05 MOTHER PIC X(10).

DTR> SHOW CHILD_REC
RECORD CHILD_REC USING
01 CHILD_REC.

03 ID PIC 99
EDIT_STRING IS Z9.

03 KID_NAME PIC X(10).
03 AGE PIC 99

EDIT_STRING IS Z9.

DTR>

- -

When you need information about both parents and children, you can join the
FOLKS records with the CHILDREN records over the common ID field. Figure
11-3 illustrates the result of this relational join. The boldface lines enclose the
suggested key fields.

11-6 Designing Better Records

FOLK-REC CHILD_REC

FATHER MOTHER ID ID K ID_NAME AGE

~ l
FOLKS CROSS CH I LOREN Ql.IER ID

FATHER MOTHER ID K ID_NAME AGE

MK-01595-00

~ure 11-3: Joining FOLKS and CHILDREN with CROSS

.1.3 Restructuring a Large Record into Several Smaller Records

\TA TRIEVE simplifies the conversion of large records to several smaller
~ords. This point is illustrated by converting the larger records of
~MILY FLAT to the smaller records of FOLKS and CHILDREN.

1th FOLKS and CHILDREN have an ID field that indicates a unique set of par­
ts. Because FAMILY FLAT has duplicate occurrences for sets of parents 'one
·each of their children). you need to determine the unique sets of parents in the
~ords of FAMILY FLAT before assigning ID values. Use the REDUCED TO
,use in the record -selection expression to find the unique values. Then use a
'ORE USING statement to store values in FOLKS, assigning values for ID
Gh RUNNING COUNT. The following DATATRIEVE session uses these
Ltements:

t> READY FAMILY_FLAT
t> READY FOLKS WRITE
t> FOR A IN FAMILY_FLAT REDUCED TO PARENTS
~> STORE FOLKS USING
~> BEGIN
~> ID = RUNNING COUNT
~> FATHER = A.FATHER
~> MOTHER = A.MOTHER
~> END

this example shows, the STORE USING statement is another way to
;tructure a domain. A PRINT statement displays the records in the new

Designing Better Records 11-7

domain FOLKS:

DTR> PRINT FOLKS

ID FATHER

1 ARNIE
2 BASIL
3 EDWIN
4 GEORGE
5 HAROLD
6 JEROME
7 JIM
8 JIM
9 JOHN

10 JOHN
11 ROB
12 SHEARMAN
13 TOM
14 TOM

DTR>

MOTHER

ANNE
MERIDETH
TRI NITA
LOIS
SARAH
RUTH
ANN
LOUISE
ELLEN
JULIE
DIDI
SARAH
ANNE
BETTY

To store records in the related CHILDREN domain, you need the ID and parent
data from FOLKS and the children data from FAMILY FLAT. The record selec­
tion expression FAMILY FLAT CROSS FOLKS OVER PARENTS gives you all
the necessary information. You can use this RSE as the right-hand part of a
Restructure statement for the CHILDREN domain:

DTR> READY FAMILY_FLAT, FOLKS
DTR> READY CHILDREN WRITE
DTR> CHILDREN = FAMILY_FLAT CROSS FOLKS OVER PARENTS

A PRINT statement displays the records in the new CHILDREN domain:

DTR> PRINT CHILDREN

KID
ID NAME AGE

1 SCOTT 2
1 BRIAN 0
2 BEAU 28
2 BROOKS 26
2 ROBIN 24

11 0
12 DAVID 0
13 PATRICK 4
13 SUZIE 6
14 MARTHA 30
14 TOM 27

DTR>

11-8 Designing Better Records

rote that for ID number 11, a record was stored without a child's name. This is
1e record for ROB and DIDI, the only couple in the database without children.
~ecause this record is stored in CHILDREN, DATATRIEVE is able to match a
'OLKS record and a CHILDREN record for ROB and DIDI. As a result,
IATATRIEVE includes information about ROB and DIDI when the FOLKS and
HILDREN domains are joined over the ID field:

fR> FOR FOLKS CROSS CHILDREN OVER ID
JN> PRINT FATHER, MOTHER, ID, KID_NAME, AGE

FATHER

iNIE
iNIE
~SIL

JB

rR>

MOTHER ID
KID
NAME

ANNE
ANNE
MERIDETH

DIDI

1 SCOTT
1 BRIAN
2 BEAU

11

AGE

2
0

28

0

1.1.4 Creating a Hierarchical View of Flat Records

ou can also use a view domain to display data in the FOLKS and CHILDREN
)mains. By using two OCCURS FOR clauses in the view domain definition, you
·eate a hierarchical relationship between FOLKS and CHILDREN. Printing the
~cords in the view domain gives a display similar to the original FAMILIES
)main.

he following example shows a view domain, FAMILY VIEW, that simulates the
;ructure of the original hierarchical domain F AMILIE-S using the flat domains
OLKS and CHILDREN:

rR> SHOW FAMILY_VIEW
JMAIN FAMILY_VIEW OF FOLKS, CHILDREN USING
, PARENTS, OCCURS FOR FOLKS.

03 FATHER FROM FOLKS.
03 MOTHER FROM FOLKS.
03 KIDS OCCURS FOR CHILDREN WITH ID= FOLK_REC.ID.

05 KID_NAME FROM CHILDREN.
05 AGE FROM CHILDREN.

(continued on next page)

Designing Better Records 11-9

DTR> PRINT FAMILY_VIEW

KID
FATHER MOTHER NAME AGE

ARNIE ANNE SCOTT 2
BRIAN 0

BASIL MERIDETH BEAU 28
BROOKS 26
ROBIN 24
JAY 22
WREN 17
JILL 20

EDWIN TR IN IT A ERIC 16
SCOTT 11

ROB DIDI 0
SHEARMAN SARAH DAVID 0
TOM ANNE PATRICK 4

SUZIE 6
TOM BETTY MARTHA 30

TOM 27

DTR>

11.2 Choose Keys for Optimization

DATATRIEVE performs best if you choose key fields for indexed records wisely.
This is especially important when you use the CROSS clause. Chapter 12 in this
manual has more information on key optimization.

11.3 Using Tables

Tables are useful in record definitions both for validation and for saving storage
space. The record for PERSONNEL can be improved by using tables. The curren1
definition of PERSONNEL REC contains this field definition:

05 EMPLOYEE_STATUS PIC IS X(11)
QUERY_NAME IS STATUS
QUERY_HEADER IS "STATUS"
VALID IF STATUS EQ "TRAINEE","EXPERIENCED".

EMPLOYEE STATUS is an 11-byte field that takes only two values: TRAINEE
or EXPERIENCED. Rather than storing the 11 bytes for each record, you could
use a table to translate the value for a 1-byte status code. This device saves 10
bytes of storage per record and reduces time for data entry.

11-10 Designing Better Records

[ere is a definition for the dictionary table STATUS_TABLE:

rR> DEFINE TABLE STATUS_TABLE
1N> E EXPERIENCED
1N> T TRAINEE
1N> END_ TABLE

ou can now edit PERSONNEL REC, deleting the EMPLOYEE STATUS field
1d adding two new fields that reference the table. EMP STATUS CODE vali­
:ites entries for the status code by checking the table. EMP STATUS, a virtual
eld, translates these code entries to either "EXPERIENCE-D" or "TRAINEE":

05 EMP_STATUS_CODE PIC X
QUERY_NAME IS S_CODE
VALID IF EMP_STATUS_CODE IN STATUS_TABLE.

05 EMP_STATUS COMPUTED BY
EMP_STATUS_CODE VIA STATUS_TABLE.

ecause the new definition defines a record with 10 fewer bytes, you need to
~fine a new file for PERSONNEL. The following procedure illustrates how to
~fine a new file for PERSONNEL and restructure the data to match the new
~cord definition with the STORE USING statement:

~R> SHOW RESTRUCTURE_PERSONNEL
tOCEDURE RESTRUCTURE_PERSONNEL
~ADY PERSONNEL AS OLD
~FINE FILE FOR PERSONNEL KEY = ID
~ADY PERSONNEL AS NEW WRITE
IR 0 IN OLD STORE N IN NEW USING

BEGIN

END
ID_PROCEDURE

'R>

N.ID = O.ID
CHOICE

0.EMPLOYEE_STATUS = "EXPERIENCED" THEN
N.EMP_STATUS_CODE = "E"
O.STATUS = "TRAINEE" THEN
N.EMP_STATUS_CODE = "T"

END_CHOICE
N.FIRST_NAME = O.FIRST_NAME
N.LAST_NAME = O.LAST_NAME
N.DEPT = O.DEPT
N.START_DATE = O.START_DATE
N.SALARY = O.SALARY
N.SUP_ID = O.SUP_ID

1.4 Using COMPUTED BY Fields

1e revised definition PERSONNEL REC uses a COMPUTED BY field to trans­
te values by using a table. COMPUTED BY fields save storage space and can
~Ip ensure accurate data.

Designing Better Records 11-11

11.4.1 Computing Age

You can use COMPUTED BY fields to perform date calculations. Instead of
entering a value for a person's age, you can enter a value for the birth date. Then
you can define a COMPUTED BY field to calculate the age.

For example. FAMILIES and FAMILY FLAT contain an AGE field. To keep the
value of AGE accurate, you need to update the field continually. Instead, you
could substitute the following two fields:

05 BIRTH_DATE USAGE IS DATE.

05 AGE COMPUTED BY ("TODAY" - BIRTH_DATE)/365.25
EDIT_STRING IS ZZ9.

TODAY is a date value expression that always takes the value of the current sys­
tem date. Note that the factor 365.25 takes account of leap years.

11.4.2 Quarterly Summaries

You can also use COMPUTED BY fields to compute the fiscal quarter from a
date value. The following examples use the domain CURRENT SALES. The
record includes a field for the salesperson's ID, the date of the sale, and the
amount of the sale. Figure 11-4 illustrates the structure of the record.

01 CURRENT_REC

03 ID l 03 SALES_OATE l 03 AMOUNT

MK-01596-00

Figure 11,,~4: Structure of CURRENT_ REC

The record definition is:

DTR> SHOW CURRENT_REC
RECORD CURRENT_REC USING
01 CURRENT_REC.

03 ID PIC IS 9(5).
03 SALES_DATE USAGE DATE.
03 AMOUNT PIC IS 9(5)V99

EDIT_STRING IS $$$,$$$.99.

DTR>

11-12 Designing Better Records

{ou can add several COMPUTED BY fields to the record definition to calculate
he fiscal quarter, quarterly sales, and yearly sales. The QTR field calculates the
iscal quarter from the date field SALES_ DATE through a dictionary table: For
~xample:

05 SALES_DATE USAGE IS DATE.
05 QTR COMPUTED BY

(FORMAT SALES_DATE USING NN) VIA QTR_TABLE
EDIT_STRING IS "Q"9.

'he FORMAT value expression in QTR returns the numerical value for the
1onth of SALES DATE. (For more information on FORMAT value expressions
ee the chapter on defining and calculating values in the VAX DATATRIEVE
landbook and the chapter on value expressions in the VAX DATATRIEVE
lef ere nee M anu.al. l DAT A TRIEVE evaluates the COMPUTED BY clause, look-
1g up this value in a table and finding the numerical value for the fiscal quarter.
>AT ATRIEVE then displays this value, preceding the quarter number with the
~tter Q. The table QTR_TABLE is defined as:

TR> SHOW QTR_TABLE
f\BLE QTR_TABLE

QUERY_HEADER IS "QTR"
EDIT_STRING IS 9

1 3
2 3
3 3
4 4
5 4
6 4
7 1
8 1
9 1

10 2
11 2
12 2

m_TABLE

rR>

he preceding table assumes that the first quarter begins on July 1. the second
1 September 1, and so on. Different tables may be appropriate depending on an
·ganization's official calendar. If quarter breaks do not occur on the first of the
tonth. you may need a table that associates a quarter number with each of the
35 days of the year. When you look up the value in such a table, use (FORMAT
TART_DATE USING JJJ) as the code field.

he CHOICE or IF-THEN-ELSE value expressions increase the flexibility of
OMPUTED BY fields because you can assign values based on conditional tests.
ou might want to display the sales amounts for each quarter in a separate col­
nn. You could define the following four virtual fields for the sales of different

Designing Better Records 11-13

quarters:

05 Q1_SALES COMPUTED .BY IF QTR EQ 1 THEN AMOUNT ELSE 0.

05 Q2_SALES COMPUTED BY IF QTR EQ 2 THEN AMOUNT ELSE 0.

05 Q3_SALES COMPUTED BY IF QTR EQ 3 THEN AMOUNT ELSE 0.

05 Q4_SALES COMPUTED BY IF QTR EQ 4 THEN AMOUNT ELSE 0.

The values of the virtual fields for quarterly sales are either 0 or the sales
amount, depending on the value for QTR.

You can also include a COMPUTED BY field in the record to calculate total sales:

05 TOTAL_SALES COMPUTED BY
(Q1_SALES + Q2_SALES + Q3_SALES + Q4_SALES).

Now you can produce the desired output by entering a SUM statement:

DTR> SHOW SUMMING
PROCEDURE SUMMING
READY CURRENT_SALES
FIND CURRENT_SALES
SUM Q1_SALES ("Q1") USING $$$$,$$$.$$ I

Q2_SALES ("Q2") USING $$$$,$$$.$$ I

Q3_SALES ("Q3") USING $$$$,$$$.$$ I

Q4_SALES ("Q4") USING $$$$,$$$.$$ I

TOTAL_SALES ("TOTAL") USING $$$$,$$$.$$ BY ID
END_PROCEDURE

DTR> :SUMMING

ID Q1 Q2 Q3 Q4 TOTAL

11111 $2,150.91 $2,807.11 $2,748.39 $2,389.90 $10,096.31
12345 $7,805.69 $3,801.44 $9,973.94 $8,672.99 $30,254.06
22222 $5,693.29 $3,836.24 $7,274.76 $6,325.88 $23,130.17
23456 $10,311.18 $1,447.40 $13,175.40 $11,456.87 $36,390.85
33333 $7,679.00 $6,854.45 $9,812.05 $8~532.22 $32,877.72
34567 $2,338.91 $14,294.89 $2,988.61 $2,598.79 $22,221.20
44444 $8,868.17 $10,890.45 $11,331.55 $9,853.52 $40,943.69
45678 $8,999.99 $11,339.01 $11,499.99 $9,999.99 $41,838.98
55555 $23,288.42 $1,979.92 $29,757.42 $25,876.02 $80,901~78
56789 $11,111.06 $14,197.04 $14,197.46 $12,345.62 $51,851.18
66666 $9,000.01 $21,832.99 $11,500.01 $10,000.01 $52,333.02
77777 $6,593.10 $30,463.98 $8,424.52 $7,325.67 $52,807.27
88888 $4,500.00 $38,694.00 $5,750.00 $5,000.00 $53,944.00
99999 $4,499.99 $44,249.51 $5,749.99 $4,999.99 $59,499.48

$112,839.72 $206,688.43 $144,184.09 $125,377.47 $589,089.71

DTR>

Note that this procedure uses the SUM statement to generate totals across each
row for the different ID numbers.

11-14 Designing Better Records

Improving DATATRIEVE Performance 12

1AT ATRIEVE performance depends on many factors. Among them are file
rganization, selection of keys, and forming queries that take advantage of
ey optimization. Here are some helpful hints and techniques that can reduce
1AT A TRI EVE' s response time.

2.1 Choosing a File Organization
1AT A TRIEVE allows you to define indexed or sequential files for your data.
equential files require less storage, but DAT ATRIEVE must search records one
r one according to their physical order in the file. This organization may be opti­
tal in certain cases. For example. a domain's records may contain a field for the
irrent date, and so records are physically arranged in the order in which they
ere stored. If you access groups of records in chronological order, you may find
tis organization efficient.

t other cases, your access needs may not be suited to this type of physical orga­
zatiOn. You may need to access a group of records with some common charac­
~ristic that is distributed throughout the file. If the records are stored in a
~quential file, DAT A TRIEVE may have to read all the records to find the ones
tat are requested. You also may want to erase records from the file. Although
m can modify all the fields in a record from a sequential file to contain spaces or
~ros, you cannot use DAT A TRI EVE to erase a record from a sequential file.

1 these cases. an indexed file is probably a better choice. Although indexed files
quire more storage. they provide DAT A TRI EVE with an index based on one or
ore key fields. To retrieve records, DAT A TRI EVE may be able to perform a fast
arch through the key-based index. rather than an exhaustive search through
e records.

your data is stored in an indexed file, you should structure queries to take
lvantage of keyed access. This enables DAT ATRIEVE to use the indexes to the
e. The next sections provide guidelines to help you do this.

12-1

12.1.1 Choosing the Primary and Alternate Keys

When defining data, try to decide which field of the record is likely to be named
most often in queries. Make that field the primary key of an indexed file for the
domain. For example. if you are setting up a PERSONNEL domain, you might
predict that most users will seek information on an employee based on his or her
ID. In that case, make the ID field the primary key.

It is also desirable that the primary key be unique. That is, the primary key
should be sufficient to identify the record. This is the default for primary keys in
DATATRIEVE. Though it is legal in DATATRIEVE to have duplicate values for
the primary key, too many duplicates slow performance so,that a search of such a
file may even take longer than a search of a sequential file. Allowing duplicate val
ues can also create very large files.

DATATRIEVE does not allow you to change the value of a primary key field.
Therefore, do not select as a primary key any field you expect to update. (If you
must change the value in a primary key, you have to erase the record and store it
again.)

If the best field for the primary key does not uniquely identify the record. find
another field such that the two fields jointly can determine the record. You can
then designate a group field, encompassing the two fields, as the primary key. Fo
example, in the YACHTS domain, the group field TYPE (consisting of BUILDEF
and MODEL) is the primary key, uniquely determining each record in YACHTS.

If you use a group field as a primary key, keep in mind that DATATRIEVE can
perform keyed access only on the first elementary field within the group field.
For example, DATATRIEVE optimizes on the BUILDER field of YACHTS, the
first elementary field of TYPE. But DATATRIEVE cannot do keyed access on
the second elementary field. MODEL. Any queries based on MODEL require
DATATRIEVE to do an exhaustive search through the records in YACHTS.

In addition, group field keys should not contain numeric items. DAT ATRIEVE
cannot do keyed access on a numeric elementary field when it is part of a multipl1

field key.

If there are other fields that will be used often in queries, you can define them as
alternate keys. Alternate keys can have duplicate values. However, if you expect
to have many duplicate values for a field, do not define it as a key; access can be
faster and the file is smaller when the field is not a key.

Try to keep your index structure as simple as you can. Defining many alternate
key fields that you expect to update frequently can cause performance problems
later on. RMS must allocate disk space for your file's index just as it allocates
storage for your file's data. Frequent updates to key fields mean that your index
becomes fragmented, stored in many small pieces on different parts of the disk.
When this happens, DAT ATRIEVE takes longer to read the index than it did
when you first created the file. You can correct this problem using RMS utilities.

12-2 Improving DATATRIEVE Performance

2.2 Designing Files
: a file is large and randomly accesssed, the DEFINE FILE command in
~AT ATRIEVE may not result in optimized file design.

~ATATRIEVE, for example, uses a default for an RMS file with the following
arameters:

A bucket size of 2 (512-byte) disk blocks

A contiguous allocation of 3 blocks

Global buffer count of 0

File extent of 0 blocks

he RMS defaults for the DEFINE FILE syntax can cause data in a large
tdexed file to become scattered over your disk, requiring time-consuming I/O
:iput/output) operations.

wo important considerations are bucket size and index structure. These two file
;tributes are related; that is, the smaller the bucket size, typically the deeper the
idex structure. Frequently, a major problem is that bucket size is too large. and
ie resulting index structure is too flat.

bucket is the unit of transfer between storage devices and I/O buffers in mem­
'Y· A bucket size can be from 1 to 32 blocks (each block containing 512 bytes).
s a general rule, a small bucket size is optimal for randomly accessed records.
lowever, buckets must contain enough room for record insertion or bucket split­
ng occurs. Bucket splits fragment your data and increase 1/0 overhead and
me.)

flat file has an index structure with only one level. If your file contains more
tan a few hundred records, a single level index bucket (also called a root bucket)
m be very large. A large root bucket results in slow access time for a particular
tta record. Figure 12-1 shows the structure of a flat file.

DATA

ROOT
BUCKET

DATA

gure 12-1: Flat File Structure

Index
Bucket

Data
Buckets

MK-01602-00

Improving DATATRIEVE Performance 12-3

Flat file structure and nonoptimal bucket size may be the most significant rea­
sons for slow access time. A file with two or three levels of index structure and
smaller bucket size allows you to access data much more quickly. Figure 12-2
shows a file with two index levels.

INDEX
BUCKET

DATA
BUCKET

DATA

DATA
BUCKET

DATA

ROOT
INDEX

BUCKET

INDEX
BUCKET

DATA
BUCKET

DATA

INDEX
BUCKET

DATA
BUCKET

DATA

Figure 12-2: A File with Two Levels of Index

DATA
BUCKET

DATA

INDEX
BUCKET

DATA
BUCKET

DATA

MK-01603-00

The following sections describe RMS utilities that help you design a file with
more optimal bucket size and index depth. They also explain how to optmize
other file attributes such as global buffers.

12.2.1 Using EDIT/FOL to Design Your File

By using the RMS utility File Definition Language (EDIT/FDL) to create a
large indexed file. you have more flexibility in creating and managing files than
you have with DATATRIEVE. EDIT/FDL can calculate the file allocation, file
extent. and bucket size, thus optimizing 1/0 operations and minimizing file
fragmentation.

Before invoking FDL, you need to determine the following about your record and
data file:

• The total number of records your file will contain

• The number. size, and data type of your index keys

• The size of the record in bytes

12-4 Improving DATATRIEVE Performance

1 the next four sections you learn how to invoke EDIT/FDL and use the Design
hase to describe the attributes of your DATATRIEVE file.

2.2.1.1 Questions EDIT/FOL Asks -- When you have determined the basic
1cts about your file, you can invoke the EDIT/FDL utility using the following
Jmmand line:

DIT/FDL/SCRIPT =DESIGN filespec.fdl

his command invokes the prompting form of the FDL utility. EDIT/FDL asks
ff the following information about your file:

L. Whether the file is to be indexed

~. The number of indexed keys

L How you want EDIT/FDL to display your file design (on a line plot or on a
surface plot graph)

L What kind of emphasis you want EDIT/FDL to use when selecting bucket
size (smaller buffers [buckets] or flatter files) ·

>. The number of records that will be initially loaded in the file

>. How you will load records into the file

r. If the records will be loaded in order of ascending primary key

L The number of additional records you will add after the initial file load

I. If additional records will be added in order of ascending primary key

). The fill factor of the buckets for each index key

Whether the record format is fixed or variable

~. The mean and maximum record size in bytes

~. The data type and length of each field

l. If you will allow duplicates in the key field

1. If you want global buffers

1. The bucket size you want to select from the three choices EDIT/FDL
recommends

~e the help facility within EDIT/FDL to learn more about the utility and the
lide on tuning VAX RMS for information about file parameters.

Improving DATATRIEVE Performance 12-5

12.2.1.2 Answers to the EDIT/FOL Prompts -- Your answers to most of the
questions asked by EDIT/FDL depend on obvious information you have about
your file, such as record size, number of records, and number of index keys. For
other questions, the following list suggests answers you can give to the prompts:

• When prompted for the type of display you would like to see, enter
LINE PLOT. This tells EDIT/FDL you want the bucket size and index depth
it selects displayed on a line plot graph.

(Line_plot Surf ace_plot)
Key 0 Design Mode (keyword)[-]: Line_plot

• When prompted for the emphasis you want EDIT/FDL to use in selecting
bucket size, enter small. This tells EDIT/FDL to use smaller buffers (or
buckets) rather than flatter files.

(Smaller_buff ers Flatter_files)
Emphasis for Default Bucket_size (keyword) [SMALL] : Small

• When prompted for how you will initially load records into the file, answer
RMS Puts. This tells EDIT/FDL that DATATRIEVE will write records to
these files.

• When prompted for the number of additional records you will add, enter 0.
This question is useful only if you are converting an old data file.

• When prompted for fill factor, select 100 (for 100%). DATATRIEVE will fill
the buckets to maximum capacity when it places data in a file, regardless of
the figure you enter here.

• In the Final Design phase of EDIT/FDL, when prompted to answer whether
Global Buffers are desired, answer no. After you exit EDIT/FDL you will cal
culate a global buffer count using the procedure in the section on Optimizing
Global Buffers.

After you answer the initial questions, EDIT/FDL displays a resulting graph that
shows the relation of bucket sizes to index depths for the file you have described.
The next section describes this graph, shown in Figure 12-3, and explains how to
select optimum bucket size.

12.2.1.3 Selecting Optimum Bucket Size -- In EDIT/FDL you select a bucket
size, first for your file's primary key structure and then for alternate key struc­
tures. The bucket size you select for your primary key is also the size of your datj
buckets. This bucket size then determines the resulting index depth of your file.

12-6 Improving DATATRIEVE Performance

fter you have selected an emphasis for bucket· size (smaller buffers [or buckets]
ther than flatter files) EDIT/FDL calculates a ratio of bucket size to index
~pth.

displays this ratio on the LINE PLOT graph in EDIT/FDL (Figure 12-3). The
tio is based on all the questions you-answer. including the size of your records,
e number of records you will initially load in your file, the number of records you
.pect to add later, and the emphasis you select.

•: s:
e:

lex 7:
&:

1th 5:
•: 4 J: 3
2: 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1: 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1
~+---+----+----+----+----+----+-+

1 5 10 15 20 25 30 32
Bucket Size (nuber of blocks)

'-ProlOfie Versi111 3 KT-Kes O T9pe Strinf Fl-Final Desi!fn Phase
·-1up Kes o Values Yes KL-Kes o Lengttr 21 KP-Kes o Positi111 o
-Data Record COip OX KC-Data Kes COip OZ IC-Index Record COip OZ
-•cket Fill 100% RF-Record Fonat Fixed RS-Record Size 212
~ ltethod Fast_Conv IL-Initial Load 1000 AR-Added Records 10000

Illich File Para11eter <llnelanic)[refreshl : fd

MK-01597-00

aure 12-3: EDIT/FOL Display of Index Depth versus Bucket Size

Improving DATATRIEVE Performance 12-7

The line graph EDIT/FDL displays shows the ratio of bucket size to index depth
that results from the file parameters you have selected. For example, the graph i
Figure 12-3 shows that if you select:

• A bucket size of 1 block, you get an index depth of 4

• A bucket size of 2 blocks, you get an index depth of 3

• A bucket size of 3 through 18 blocks, you get an index depth of 2

• A bucket size of 19 through 32 blocks, you get in an index depth of 1

The points at which index size changes are called breakpoints. For example, the
index depth changes:

• From 4 to 3 at a bucket size of 2 blocks (the breakpoint is 2)

• From 3 to 2 at a bucket size of 3 blocks (the breakpoint is 3)

After viewing the graph, to specify bucket size you must select the Final Design
(FD) Phase of EDIT/FDL. EDIT/FDL then displays the following information:

Bucket Size Emphasis: (Smaller_buffers
Bucket size Breakpoints: (2, 3, 13)

Key 0 Bucket size (1-32) [3]:

It shows the breakpoints (2, 3. and 13) and a default bucket size (3). (The third
breakpoint, 13, represents a middle point in the range of all the remaining bucke
sizes and is unimportant for your selection.)

EDIT/FDL has suggested a bucket size of 3. Note, however, that when you selec
a bucket size, EDIT/FDL lets you specify any bucket size from 0 to 32. Basically
though, you want to choose the smallest bucket size (the breakpoint) that corre­
sponds to 2 or 3 levels of index. In this example, a bucket size of 3 corresponds t
2 levels of index. Always select the smallest bucket size from the range, in this
case, 3 buckets rather than 4 to 18.

Note then, in this example the default bucket size of 3 is acceptable. It is the
smallest bucket size that corresponds to an index depth of 2. You should always
check the default bucket size as it may not be the most optimal.

While many file parameters have a significant effect on file performance, bucket
size and index depth are the most important.

After you select a bucket size for your primary key structure (which is also the
bucket size for your data), you answer the same series of questions about your
alternate key structure and then select a bucket size for that key.

12-8 Improving DATATRIEVE Performance

w you can exit EDIT/FDL and create your data file. You should remember the
~ket sizes you selected for primary and alternate keys, as you will use them to
:ign global buffers to your file.

2.2 Creating the Data File

;er you exit EDIT/FDL, it creates a file definition file containing the attributes
i described. The file has an extension of .FDL. You use this file to create an
pty data file with the attributes you described in EDIT/FDL.

ter the command:

EATE/FDL = filespec.fdl filespec.dat

~spec.dat is the empty data file you are creating using the RMS CREATE
1ity. The utility uses the file and record attributes you defined in the FDL
spec to create this data file.

2.3 Optimizing Global Buffers

.er you have created the data file. you will want to assign global buffers to your

. Allocating buffers for indexed files gives RMS more space to store the index
acture in memory. Locating a record takes less time if the record's index is
red in one of the buffer areas.

a general rule, allow enough global buffers to equal the number of index buck­
in all the key structures (primary plus alternates) plus 5.

find out how many global buffers to assign. you can run the DAT A TRI EVE
cedure provided in this section. It first calculates the number of index buckets
rour file and then the number of global buffers you should assign .

. s procedure prompts you for:

The bucket size of a primary key structure (calculated in EDIT/FDL)

The size of the record in bytes

The number of records in the file

The fill factor of the primary key (you specified 100 in EDIT/FDL)

~ procedure gives you the number of index buckets RMS provided for the
nary key structure. It then calculates the number of index buckets in the

Improving DATATRIEVE Performance 12-9

alternate key structure. It prompts you for:

1. The bucket size for the alternate key (calculated in EDIT/FDL)

2. The size of the alternate key

3. The fill factor of the alternate key

4. The number of duplicates you will allow in the alternate key

It then calculates the number of index buckets in the alternate key structure, th
total number of index buckets, and the global buffer count.

DEFINE PROCEDURE BUCKETS

!==~================+
! I

This procedure calculates the number of index buckets I
in an RMS indexed file containing FIXED length records I
and then specifies a GLOBAL BUFFER count. I

!===+
!
DECLARE MORE PIC X

VALID IF MORE= "Y","N","y","n".
DECLARE PRIMARY_DONE PIC X

VALID IF DONE= "Y","N", y","n".
DECLARE KEY_PROMPT PIC X

VALID IF KEY_PROMPT = "P","A","p","a".
DECLARE BUCKET_SIZE PIC 9(2)

VALID IF BUCKET_SIZE BETWEEN 1 AND 32.
DECLARE KEY_SIZE PIC 9(3)

VALID IF KEY_SIZEBETWEEN 1 AND 125.
DECLARE REC_SIZE PIC 9(4).
DECLARE NUM_RECS PIC 9(6).
DECLARE REC_OVHD PIC 9(2).
DECLARE KEY_OVHD PIC 9(1).
DECLARE NUM_DUPS PIC 9(3).
DECLARE FILL_FACTOR PIC 9(3)V99.
DECLARE TMP_DRPB PIC 9(5)V99.
DECLARE DRPB PIC 9(5).
DECLARE NUM_DB PIC 9(5).
DECLARE NUM_IB PIC 9(5).
DECLARE TMP_NUM_DB PIC 9(5)V99.
DECLARE TMP_NUM_IB PIC 9(5)V99.
DECLARE PREV_NUM_BUCK PIC 9(5).
DECLARE IRPB PIC 9(5).
DECLARE TOT_IDB PIC 9(5)

EDIT_STRING IS ZZZZ9.
DECLARE GRAND_NUM_IDB PIC 9(5)

EDIT_STRING IS ZZZZ9.
DECLARE !COUNT PIC 9.
!===

12-10 Improving DATATRIEVE Performance

KEy_ovHD = 3
MORE = "Y"
GRAND_NUM_IDB = 0
NUM_RECS = 0
PRIMARY_DONE = "N"
PRINT II "·

PRINT "**"
PRINT "* *"
PRINT "* This procedure calculates the number of index buckets *"
PRINT "* in an RMS indexed file containing FIXED length records *11

PRINT "* and then specifies a GLOBAL BUFFER count. *11

PRINT "** 11

r.'HILE MORE EQ "Y"
3EGIN
TOT_IDB = 0
PRINT II II

CHOICE
(PRIMARY_DONE EQ "N") THEN BEGIN
KEY_PROMPT =*."Primary or Alternate key structure (P or A) 11

KEY_PROMPT = FN$UPCASE(KEY_PROMPT)
END

ELSE KEY_PROMPT = "A"
END_ CHOICE
CHOICE

(KEY_PROMPT EQ "P") THEN BEGIN
PRIMARY DONE = "Y"
BUCKET_~IZE =*·"bucket size of the primary key structure (0-32) "
REC_SIZE =*."record size in bytes (1-9999) "
KEY_SIZE = *."size of the primary key in bytes (1-125) "
NUM_RECS =*."number of records in the file (0 - 999,999) "
FILL_FACTOR = *."fill factor of the primary key structure (0 - 100) 11

FILL_FACTOR = FILL_FACTOR / 100.0
REC_OVHD = 7
END
ELSE BEGIN

BUCKET_SIZE =*."bucket size of the alternate key struc.(0-32) "
KEY_SIZE = *."size of the alternate key in bytes ,(1-125) "
REC_SIZE = KEY_SIZE
CHOICE

(NUM_RECS EQ 0) THEN
NUM_RECS =*."number of records in the file (0 - 999,999) 11

END_CHOICE
FILL_FACTOR = *."the fill factor of the alternate key (0 - 100) "
FILL_FACTOR = FILL_FACTOR / 100.0
NUM_DUPS =*."the number of dup keys in the alternate key (0 - 100) "
CHOICE

(NUM_DUPS EQ 0) THEN REC_OVHD = 9
ELSE REC_OVHD = (8 + (5 * NUM_DUPS))

END_CHOICE
END

END_CHOICE

Find the floor number of data records per bucket.

'MP_DRPB = (((BUCKET_SIZE * 512) * FILL_FACTOR) - 15) / -
(REC_SIZE + REC_OVHD)

IRPB = FN$FLOOR(TMP _DRPB)

(continued on next page)

Improving DATATRIEVE Performance 12-11

Find ceiling number of data buckets.
!
TMP_NUM_DB = (NUM_RECS / DRPB) + 0.49
NUM_DB = (TMP_NUM_DB)
!
IRPB = (((BUCKET_SIZE * 512) * FILL_FACTOR) - 15) / -

(KEY_SIZE + KEY_OVHD)
PREV_NUM_BUCK = NUM_DB
NUM_IB = 0
!COUNT = 0
WHILE (NUM_IB NE 1)
BEGIN
!COUNT !COUNT + 1

! Find ceiling number of index buckets.
!
TMP_NUM_IB = (PREV_NUM_BUCK / IRPB) + 0.49
NUM_IB = (TMP_NUM_IB)
CHOICE

(NUM_IB GT 1)THEN BEGIN
TOT_IDB = TOT_IDB + NUM_IB
PREV_NUM_BUCK = NUM_IB
END

END_CHOICE
END
TOT_IDB = TOT_IDB + 1
PRINT " II

PRINT 11 ===11
PRINT II II

CHOICE
(KEY_PROMPT EQ 11P11) THEN
PRINT "NUMBER OF TOTAL INDEX BUCKETS FOR -
PRIMARY KEY STRUCTURE==> 11 , TOT_IDB(-) ELSE
PRINT "NUMBER OF TOTAL INDEX BUCKETS FOR ALTERNATE KEY -
STRUCTURE==> ", TOT_IDB(-)

END_CHOICE
PRINT II "

PRINT 11 =="
PRINT II II

!
MORE= *."Y to calculate more index structures, N to exit 11

MORE = FN$UPCASE(MORE)
GRAND_NUM_IDB = GRAND_NUM_IDB + TOT_IDB
END;
PRINT II "

PRINT 11 ***"
PRINT II II

PRINT "NUMBER OF TOTAL INDEX BUCKETS FOR ALL KEY -
STRUCTURES==> ", GRAND_NUM_IDB(-)

PRINT II II

!
!Add 5 to the number of index buckets
!
GRAND_NUM_IDB = GRAND_NUM_IDB + 5
PRINT "Set the GLOBAL BUFFER attribute on -

the file to 11 , GRAND_NUM_IDB(-)
PRINT " "
PRINT "**11
PRINT II "

END_PROCEDURE;

12-12 Improving DATATRIEVE Performance

e following example illustrates how the procedure works to calculate the num­
. of global buffers you should assign to your file.

t> :buckets

'***
* This procedure calculates the number of index buckets *

in an RMS indexed file containing FIXED length records *
and specifies the number of GLOBAL BUFFERS. *
'***

;er Primary or Alternate key structure (P or A) : P
;er bucket size of the primary key structure (0-32) : 3
;er record size in bytes (1-9999) : 1000
;er size of the primary key in bytes (1-125) : 21
;er number of records in the file (0 - 999,999) : 10000
.er fill factor of primary key structure (0 - 100) : 100

IBER OF TOTAL INDEX BUCKETS FOR PRIMARY KEY STRUCTURE ==> 83

,er Y to calculate more index structures, N to exit : y

,er Primary or Alternate key structure (P or A) : a
,er bucket size of the alternate key structure (0-32) : 2
,er size of the alternate key in bytes (1-125) : 12
er number of records in the file (0 - 999,999) : 10000
,er fill factor of the alternate key structure (0 - 100) : 100
er number of dup keys in alternate key structure (0 - 100) : 2

IBER OF TOTAL INDEX BUCKETS FOR ALTERNATE KEY STRUCTURE ==> 6

er Y to calculate more index structures, N to exit : n

**

BER OF TOTAL INDEX BUCKETS FOR ALL KEY STRUCTURES ==> 89

the GLOBAL BUFFER attribute on the file to 94

**

>

~ procedure calculated that there are 83 index buckets for the primary index
·in the sample file you described and six index buckets for the alternate key. It
led five to the total index buckets and arrived at a global buffer count of 94.

Improving DATATRIEVE Performance 12-13

After you have the correct global buffer count, you can adjust the count using the
SET FILE/GLOBAL BUFFERS command:

SET FILE/GLOBAL_ BUFFERS = n filespec.dat

12.2.4 Redesign and Maintenance

It is important to maintain files you use in DATATRIEVE applications, particu­
larly if they are large indexed files. If you have added or deleted many records,
changed the number of indexed keys, or adjusted the size of your records, you
may have a badly fragmented file or a file bucket size or global buffer count that
may be causing poor 1/0 performance.

It is easiest to go through the same set of procedures you used to create your ini­
tial file. Invoke EDIT/FDL and create a new .FDL file description. Before invok­
ing EDIT/FDL. you need to know:

• The same information you needed when you first created your file such as
record size and key size

• A fill factor for the file you are redesigning

You may want to use the RMS Analyze Utility to remember such information as
record size, number of keys, and key sizes. You can enter the ANALYZE com­
mand as in the following example:

ANALYZE/RMS FILE Filename.dat

12.2.4.1 Calculating a Fill Factor -- You should calculate a new fill factor
before invoking EDIT/FDL. The fill factor is important when redesigning your
file. The fill factor ensures that when you move the data from your old frag­
mented file to your new redesigned file, RMS leaves room in the buckets for add
tional records to be added after you load the file. This room reduces the amount
bucket splitting that occurs when you add records to the file at a later time. Use
the following formula to calculate the fill factor:

Fill Factor = 100 - ((the number of records to be added/
(the number of initial records in the file) ... 100))

For example. if your file contains 10,000 records now and you intend to add
approximately 1000 more before you redesign again, you would specify a fill fact
of 90:

Fill Factor = 100 - ((1000/(10,000) * 100))

12-14 Improving DATATRIEVE Performance

The easiest way to determine the number of records in your file is by invoking
DATATRIEVE and entering the statements:

JTR> READY ~omain-name
JTR> PRINT COUNT OF domain-name

Now that you know the fill factor and the other information for which EDIT/FDL
prompts you, you can invoke the utility and design a new .FDL file:

::DIT/FDL/SCRIPT =DESIGN filespec.fdl

12.2.4.2 Adding Data to the File ··After you redesign your file. you will want
~o move data from the existing file into a new data file. It is best to use the RMS
:;oNVERT utility to load large files. It is much faster than DATATRIEVE and
oads data more optimally.

Jse the following command line to create a data file using your new .FDL to
lescribe the file and to load that new file with data from the old file:

::;oNVERT/FDL = filespec.fdl oldfile.dat newfile.dat

~or more information on file tuning and RMS utilities refer to the guide on tuning
fAXRMS.

12.3 Choosing Optimal Queries

)nee you establish the file organization, you should try to choose queries that are
nost efficient. The following sections indicate guidelines for optimal queries.

12.3.1 Using EQUAL Rather Than CONTAINING

~ query is a request for DAT A TRIEVE to identify all the records that satisfy a
pecified condition. A Boolean expression that tests records with the EQUAL (=)
elational operator is more efficient than a Boolean with CONTAINING (CONT).
:-'his rule is most significant if the Boolean expression references a key field:

TR> PRINT YACHTS WITH BUILDER = "PEARSON"

TR> PRINT YACHTS WITH BUILDER CONT "PEARSON"

dthough both queries yield the same results, the first query is about twice as fast
s the second one.

>AT A TRIEVE gives optimal performance in the first case because the query
pecifies an exact match for the MANUFACTURER (BUILDER) field, the first
lementary field of the key field TYPE. DATATRIEVE conducts a fast search
hrough the index to retrieve the desired records.

Improving DATATRIEVE Performance 12-15

In the second case, DATATRIEVE must search through the values of BUILDER
looking for matches with the string following CONT. DATATRIEVE must check
all substrings of each BUILDER value that are equal in length to the string speci­
fied in the Boolean.

To take advantage of the increased efficiency of EQUAL(=), you must specify a
value that matches the field value exactly. EQUAL(=) is case-sensitive, but
CONT is not case-sensitive. In the last example, if a record had the value
"Pearson" for BUILDER, only the second query would find the record.

To get around the case-sensitivity problem, you can use the DAT ATRIEVE func­
tion FN$UPCASE in procedures that store data to ensure that all text fields are
entered as uppercase. Then you can be sure a search using the EQUAL operator
will find all the records you want to locate. Otherwise. to use the EQUAL opera­
tor you must remember the case of each character of a field value.

12.3.2 Using STARTING WITH Rather Than CONTAINING

To improve performance. you can sometimes substitute the STARTING WITH
relational operator for CONTAINING. This operator allows you to find records in
which the beginning substring of the field value exactly matches the specified
value expression. If you name a key field in the query, DATATRIEVE is able to
use a key-based index. Remember that this operator is case-sensitive.

Of the following two queries, the first query is more efficient because of the keyed
access. DAT A TRIEVE does not have to check all possible substrings of each
BUILDER value:

DTR> PRINT YACHTS WITH BUILDER STARTING WITH "ALB"

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951
ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600

DTR> PRINT YACHTS WITH BUILDER CONTAINING "ALB"

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBERG 37 MK II KETCH 37 20,000 12 $36,951
ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600

DTR>

12-16 Improving DATATRIEVE Performance

12.3.3 Using Domains Rather Than Collections in an RSE

DAT A TRIEVE cannot use indexes to retrieve records from a collection. In gen­
~ral, then, to get the best performance on key-based queries, use a domain rather
;han a collection as the source for the RSE.

rhe previous section noted that DATATRIEVE can do a keyed retrieval if you
1se the ST AR TING WITH relational operator. The potential gain in performance
s lost if you form a collection. For example, the following queries use STARTING
NITH, but DATATRIEVE uses the key-based index only in the first case:

ITR> PRINT YACHTS WITH BUILDER STARTING WITH "AL"

ITR> FIND YACHTS; PRINT CURRENT WITH BUILDER STARTING WITH "AL"

rhe first query is substantially faster because DAT A TRI EVE can do a search
hrough the index of YACHTS. DATA THIEVE must do an exhaustive search in
he second case.

2.3.4 Using the CROSS Clause and Nested FOR Loops

f you have two domains that share a common field, you can relate their records
~ither with the CROSS clause or with nested FOR loops. For example, the
{ ACHTS and PAY ABLES domains share the field TYPE. The following queries
earch for records from these two sources:

TR> PRINT PAYABLES CROSS YACHTS OVER TYPE

'he query has the form /1 PRINT rse". The same results can be achieved with
1ested FOR loops. For example:

TR> FOR A IN PAYABLES
ON> FOR YACHTS WITH TYPE= A.TYPE
ON> PRINT A.PAYABLE, BOAT

,his query is processed about as fast as the previous example with CROSS.
>ATATRIEVE is able to use the key-based index to YACHTS. Note these fea­
~res of the two queries:

Domains are used rather than collections as record sources. so that
DATATRIEVE can use its key-based index to the records of YACHTS.

The OVER clause uses TYPE. a key field only for YACHTS. Because TYPE
is not a key field in PAYABLES, the queries specify PAYABLES before
YACHTS.

Improving DATATRIEVE Performance 12-17

• The YACHTS record stream contains many more records than PAYABLES,
and is best placed in the second position in each query.

The next sections explain why these principles affect DATATRIEVE's
performance.

12.3.5 Choosing Domains or Collections as Record Sources

To form a query that relates two record sources, you can use either collections or
domains. Keep in mind that DAT ATRIEVE can do keyed access only for domains
and only if the domain is other than the first record source specified. In other
words, when you use CROSS or nested FOR loops to access two domains and you
relate those domains through a common key field, DAT A TRIEVE can use keyed
access for searching the second domain in the CROSS clause or the domain in the
second FOR loop.

If all other conditions are equal, it is better to use a domain name rather than a
collection name in the second position of a key-based relational query. There is
one more factor to consider, however: collections are efficient to use if you need to
refer back to the same group of records in the same DAT A TRI EVE session. In
such a case, you may get better performance by forming and naming a collection,
so that DAT A TRIEVE does not have to retrieve the same group of recor~s over
and over again.

Be aware. of this tradeoff when choosing a record source. You gain efficiency with
a domain when you can use keyed access. On the other hand, you gain efficiency
with a collection if you reduce the number of times DAT A TRI EVE must isolate
the same small group from a large body of records. A collection can also reduce
the number of records in the record stream and help improve the performance of
CROSS.

12.3.6 Choosing the Order of Domain Names in the CROSS Clause

DATATRIEVE can use a key-based index only for the domain that is specified
second in the CROSS clause.

When using the CROSS clause, you can relate two domains that have a common
field. This field can be specified in the OVER clause or in a Boolean expression
that is part of the WITH clause. (In the following example, the clause OVER
TYPE is equivalent to WITH TYPE =TYPE.) If this field is a key for only one oi
the domains, you get a faster response if you specify that domain second in the
CROSS clause:

DTR> PRINT PAYABLES CROSS YACHTS OVER TYPE

12-18 Improving DATATRIEVE Performance

ACHTS is listed second because TYPE is a key field only for YACHTS, not for
A.YABLES. If PAYABLES had been listed second, DATATRIEVE's response
ould have been substantially slower. The query as shown is more than ten times
ster than if you list PAYABLES after YACHTS.

second guideline is to specify the smaller record stream first in the CROSS
a use:

'R> PRINT BOAT, NAME, BOAT_NAME OF OWNERS CROSS YACHTS OVER TYPE

1is query is more than twice as fast as the same query with the order of the
1mains reversed. Since the YACHTS record stream is much larger than the
WNERS record stream, you can save time by allowing DATATRIEVE to use
e key-based index for YACHTS. DATATRIEVE gets each record in OWNERS,
relatively small number, and then evaluates the OVER clause by means of the
dex to YACHTS.

the reverse order is used, DATATRIEVE gets each record in YACHTS (113 in
I and then evaluates the OVER clause by means of the index to OWNERS.
nee there are only 10 OWNERS records, a search through the key-based index
1es not save much time. In the other case, a search through the YACHTS index
ves a search through all 113 YACHTS records.

hat is crucial is the number of records in each record stream, not the records in
e record source. If you are only interested in Alberg' s yachts, it is more efficient
place YACHTS WITH BUILDER= "ALBERG" in the first position.
\TATRIEVE evaluates the Boolean using the index to BUILDER and finds one
~ord. Then DATATRIEVE loops through the OWNERS records only once to
n the two record streams. Though the record source (the YACHTS domain) has
my records, the record stream based on the source is very small.

1ese principles are important when you use CROSS with more than two
mains. Assume that you have domains A, B, and C and you relate them in the
lowing expression:

[NT A CROSS B OVER X CROSS C OVER Y

)(is a key for B, and Y is a key for C, DATATRIEVE uses both keys in evalu­
ng the entire expression. DA TA TRIEV'E does not use the keys if X is a key
ly for A, and Y is a key only for B.

r example, you could relate the three domains PAYABLES, OWNERS, and
~CHTS. OWNERS and YACHTS both have TYPE as a key field, so

Improving DATATRIEVE Performance 12-19

DATATRIEVE is able to use both the index to OWNERS and the index to
YACHTS in evaluating the following expression:

DTR> FOR PAYABLES CROSS OWNERS OVER TYPE CROSS YACHTS OVER TYPE
DTR> PRINT TYPE, RIG, NAME, BOAT_NAME, PRICE, WHSLE_PRICE

BOAT WHSLE
MANUFACTURER MODEL RIG NAME NAME PRICE PRICE

ALBIN VEGA SLOOP STEVE DELIVERANCE $18. 600 $14. 251
ALBIN VEGA SLOOP HUGH IMPULSE $18. 600 $14. 251
ISLANDER BAHAMA SLOOP JIM POTEMKIN $6,500 $4,951
ISLANDER BAHAMA SLOOP ANN POTEMKIN $6,500 $4,951
ISLANDER BAHAMA SLOOP STEVE POTEMKIN $6,500 $4,951
ISLANDER BAHAMA SLOOP HARVEY MANANA $6,500 $4 ;951

DTR>

12.3.7 Order of Domains in Nested FOR Loops

Nested FOR loops can produce the same results as CROSS, and similar rules
apply. Include the domain that has the key field in the second or inner FOR loop
For example:

DTR> FOR A IN PAYABLES
CON> FOR YACHTS WITH TYPE= A.TYPE
CON> PRINT A.ORDR_NUM, BOAT, A.INVOICE_DUE, A.BILL_PAID

This query is about ten times faster than:

DTR> FOR A IN YACHTS
CON> FOR PAYABLES WITH TYPE= A.TYPE
CON> PRINT ORDR_NUM, A.BOAT, INVOICE_DUE, BILL_PAID

In the first case. DAT A TRI EVE knows that the YACHTS records are ordered
according to TYPE. DATATRIEVE can do a fast search through the index to
YACHTS for matches on TYPE, before executing the PRINT statement. This
process is substantially faster. ·

In the second case, however, DATATRIEVE must evaluate the Boolean "WITH
TYPE = A. TYPE" without the benefit of a key-based index. because TYPE is
not a key field for PAYABLES. For each record in YACHTS, DATATRIEVE
must do a search through all of the PAY ABLES records to find matches on
TYPE.

The same rule holds concerning the relative size of the two record streams. If or
record stream has many more records than the other and both have the same k4
field, the larger record stream should be included in the second (inner) FOR looI

12-20 Improving DATATRIEVE Performance

12.3.8 Nested FOR Loops Followed by a Conditional Statement

rry to avoid using nested FOR loops to control the execution of a conditional
itatement. The following example removes the Boolean expression from the RSE
md places it within an IF-THEN statement. It is extremely inefficient:

tTR> FOR A IN PAYABLES
:ON> FOR YACHTS
:ON> BEGIN
:ON> IF TYPE= A.TYPE AND LOA> 40 THEN
:oN> PRINT A.PAYABLE, BOAT
'.ON> END

)ATATRIEVE gets one record from YACHTS and one from PAYABLES. It
ests for the truth of the condition "TYPE = A. TYPE" AND LOA > 40. Because
here are 30 records in PAYABLES and 113 records in YACHTS, DATATRIEVE
nust go through this procedure 30 X 113 (3390) times. Because DATATRIEVE
s evaluating the conditions for every record of YACHTS individually, the index
o YACHTS based on TYPE is not used.

"he query is improved when the test is part of the WITH clause of the RSE (or in
he OVER clause of CROSS). DATATRIEVE does not have to get every record of
~ACHTS 30 times. For each of the 30 PAYABLES records, DATATRIEVE can
lo a fast search through the index to YACHTS.

Vherever possible, you should include conditional tests as Boolean expressions
rithin the RSE. This effectively limits the number of records that DATATRIEVE
:as to process. For example:

TR> FOR A IN PAYABLES CROSS YACHTS OVER
ON> TYPE WITH LOA > 40
ON> PRINT A.PAYABLE, BOAT

2.4 Timing Procedures to Improve Efficiency
1he recommendations in the previous sections were verified by timing alternative
rocedures with DATATRIEVE's timing functions, FN$INIT TIMER and
'N$SHOW TIMER. The first of these functions initializes a timer, and the sec­
nd calculates the elapsed time. A good comparative measure is the CPU time
xpended by several alternative procedures that produce the same output. You
iay find that the extra effort needed to time procedures may be repaid by
IATATRIEVE's improved performance.

: you will be invoking a procedure frequently and have a choice between two que­
es, you can time each query to see which one is most efficient. To save CPU
me, you might include only a subset of the records in your tests.

Improving DATATRIEVE Performance 12-21

For example, suppose you want to display information on manufacturers who
make boats with more than one type of rig. This kind of query requires that you
compare records within the same domain, YACHTS. The first solution, using
nested FOR loops followed by a conditional, requires DATATRIEVE to search
and compare the 113 records in YACHTS 113 times. When this inefficient query
was invoked. the timing functions indicated that it required 50.04 seconds of CPU
time:

DTR> SHOW TIME1E
PROCEDURE T]ME1E
FN_$INIT_TIMER
FOR A IN YACHTS
FOR B IN YACHTS

IF B.BUILDER = A.BUILDER AND B.RIG GT A.RIG
THEN PRINT B.BUILDER, A.RIG, B.RIG

FN_$SHOW_TIMER
END_PROCEDURE

However, a PRINT statement with a CROSS clause in an RSE achieved the same
result with the expenditure of only 3.02 seconds of CPU time:

DTR> SHOW TIME1B
PROCEDURE TIME1B
FN_$INIT _TIMER
PRINT BUILDER, A.RIG, RIG OF A IN YACHTS CROSS

B IN YACHTS OVER BUILDER WITH A.RIG GT B.RIG
FN_$SHOW_TIMER
END_PROCEDURE

In these procedures, FN$INIT TIMER starts timing the processing of the
records and FN$SHOW TIME-R displays the elapsed time following completion
of the processing. -

12.5 DATATRIEVE's Evaluation of Compound Booleans

DAT ATRIEVE sets up a priority when it evaluates compound Boolean expres­
sions that include key fields. For any domain, the key that is chosen depends on
three factors:

• Exact or range retrieval

Exact retrievals use EQUAL or STARTING WITH.

Bounded range retrievals use BT.

Range retrievals use GT, GE, LE, or LT.

12-22 Improving DATATRIEVE Performance

Key is NO DUP or DUP

Primary or alternate key

~yed retrieval is performed on Booleans that use the relational operators
~UAL, STARTING WITH, BEFORE, AFTER, GT, GE, LE, LT, or BT. Table
-1 indicates DATATRIEVE's priority in choosing keys. Each line represents a
mbination of the three attributes noted. The lines of the table are arranged in
der of diminishing priority.

ble 12·1: DATATRIEVE's Priority in Choosing Keys

'ype of Retrieval Dup/NoDup Type of Key

~xact NODUP Primary

Alternate

DUP Primary

Alternate

~ounded Range NODUP Primary

Alternate

DUP Primary

Alternate

~ange NODUP Primary

Alternate

DUP Primary

Alternate

Improving DATATRIEVE Performance 12-23

12.6 Summary of Rules

The following guidelines can help you take advantage of DATATRIEVE's ability
to use a key-based index to retrieve records:

• When defining data, make the field most commonly used in queries the pri­
mary key. If that field does not uniquely determine a record, combine it witt
another field so the combined fields uniquely determine a record. Allowing
duplicate values of a primary key slows performance.

• If you decide to make a group field the primary key, the order of the subordJ
nate elementary fields is important. The field most commonly used in queriE
should be the first elementary field listed. Remember that DAT A TRI EVE
cannot do keyed access on group field keys that contain numeric items.

• If there are other fields that will often be used with the primary key in que­
ries, you can designate them as alternate keys.

• Use EQUAL(=) instead of CONTAINING (CONT) in the Boolean expres­
sion of an RSE, when searching for records based on a key field value.

• When searching for field values beginning with a specified substring, use
STARTING WITH instead of CONTAINING (CONT). This rule is most
important when your search is based on a key field.

DAT A TRIEVE allows you to relate records from the same domain or two differ­
ent domains with the CROSS clause or nested FOR loops. When the relationshi1
is based on a key field of at least one of the domains. keep these guidelines in
mind:

• If the field is a key for only one of the domains, make sure that domain is n
specified first in the CROSS clause or included in the first FOR loop.

• Use a domain rather than a collection as the second record source.
DAT A TRIEVE cannot do keyed access on collections. A collection, howeve1
can help performance when it greatly reduces the number of records that
DATATRIEVE must evaluate in a relational query. In addition, forming an
naming a collection is useful if you need to use the same subset of records
severa] times within a DAT ATRIEVE session.

• Try not to use a conditional statement following nested FOR loops or follo~
ing a FOR loop that contains an RSE with a CROSS clause. A better
approach is to include the conditional test in a Boolean expression within tl
RSE in the CROSS clause or in the second FOR loop.

• When relating two or more record streams, do not specify the largest recor1
stream in the first position of the CROSS clause or in the first FOR loop.

12-24 Improving DATATRIEVE Performance

Part 5
DATATRIEVE and the

VAX Information Architecture

Using Forms with DATATRIEVE 13

A form is a terminal screen image used to display and collect information. You
can use forms to display, modify, and store data managed by DATATRIEVE.

You can often format a data display more attractively using a form image than
you can without one. This is particularly true when you need to display records
longer than the maximum number of characters your terminal screen can accom­
modate on one line. In addition, nontechnical users are often more comfortable
entering data through a form interface. They can see all the fields requiring input
and can judge the size of each field before they begin to enter data. If they are
modifying or storing data and make errors entering data in a field, they can back
llp to that field and correct the error.

To use forms with DATATRIEVE, you must have VAX TDMS software or VAX
FMS software (called simply TDMS and FMS) installed on your system. When
you install DATATRIEVE, you specify which of these forms products you want to
llSe.

To create a forms application, you need to:

• Use a forms editor to define a form

• Insert the form definition in a request library file (TDMS) or form library
(FMS)

• Associate the form definition with a DAT A TRIEVE domain

Make sure that SET FORM is in effect when your application executes

fhe following sections discuss each of these steps in greater detail. Because your
form definition depends, at least partly, on how you plan to use the form, step 3 is
:liscussed first.

13-1

13.1 Associating a Form with a Domain

You can use a form to display data from RMS domains, view domains, DBMS
domains, Rdb domains, and remote domains.

When working with remote domains, you can use forms to store data into a
remote domain and to display a selected record or a record from a record stream
containing no other records. You cannot, however, use forms to display group
fields from remote domains.

There are two ways you can associate a form definition with a domain:

• Use the FORM IS clause within a domain definition to identify a form with
a particular domain. DATATRIEVE uses that form with any STORE,
MODIFY, DISPLAY, or PRINT statement that refers to that domain.

• Use the DISPLAY FORM statement within a DATATRIEVE statement to
map data to and from specific form and record fields. For example, include
the DISPLA Y_FORM statement within a FOR, STORE, or MODIFY
statement.

Using either method, you must specify both the name of the form and the file
specification of the library file containing the form. There are advantages to
using each method. The FORM IS clause lets you use a form by specifying a sin­
gle line of syntax in a domain definition. The DISPLAY FORM statement lets
you specify exactly which fields you want to map between a form and a record and
lets you associate more than a single form with a domain.

DISPLAY_FORM is the method you should use if you intend to map
numeric data between forms and records. Using the DISPLAY_ FORM
statement with the FORMAT value expression ensures that decimal
points and signs are mapped correctly. FORMAT value expressions are
discussed in the VAX DATATRIEVE Handbook and the chapter on
value expressions in the VAX DATA TRI EVE Reference Manual.

You can see examples of what form displays look like with some of the sample
DATATRIEVE domains. To see the examples, make sure your system has a
version of DATATRIEVE installed with the TDMS or the FMS forms interface

13-2 Using Forms with DATATRIEVE

d follow these steps:

Set your default VMS directory to one that contains the data files for the
YACHTS, SAILBOATS, and FAMILIES domains. If you do not have these
data files in one of your directories, set your default directory to the system
directory with the sample data:

$ SET DEFAULT DTR$LIBRARY

or

$SET DEFAULT SYS$COMMON:[DTR]

Invoke DATATRIEVE and set your current dictionary to the sample forms
dictionary:

DTR> SET DICTIONARY CDD$TOP.DTR$LIB.FORMS

Make sure that the form setting is in effectfor your session. (SET FORM is
the DATATRIEVE default, but you may have run procedures that include
the SET NO FORM command.)

DTR> SET FORM

Ready the YACHTS, SAILBOATS, or FAMILIES domain.

Print some records from the domain. Records appear one at a time. Press
the RETURN key each time you want to display a new record. You return
to the DTR> prompt once all the records you requested have been dis­
played.

Press CTRL/C and then the RETURN key if you want to stop the display
operation before all the records have been displayed.

1.1 The FORM IS Clause

rou include the FORM IS clause in a domain definition, you can have
,TA TRI EVE automatically use the form to display records.

:? syntax for defining a domain that automatically uses a form is:

FINE DOMAIN path-name USING record-path-name ON file-spec
=ORM [IS] form-name [IN] form-library;

Using Forms with DATATRIEVE 13-3

The following examples show the use of the FORM IS clause in domain defini­
tions. Note that form-library can be a TDMS request library file or an FMS form
library. The default file type for TDMS request library files is .RLB; the default
file type for FMS form libraries is .FLB:

DEFINE DOMAIN YACHTS_F
USING YACHT ON YACHT.DAT
FORM IS YACHTF IN DTRFMS.FLB;

DEFINE DOMAIN PERSONNEL_F
USING PERSONNEL_REC ON [MORRISON]PERSON.DAT
FORM IS PERSON IN [KELLER]FORMSLIB;

DEFINE DOMAIN REMOTE_FAMILIES USING FAMILIES AT NOVA"LINTER TAD"
FORM IS FAM IN NOVA"LINTER TAD": :DB3: [LINTER]DTRTDMS;

DEFINE DOMAIN SAILBOATS
OF CDD$TOP.DTR$LIB.DEMO.YACHTS, CDD$TOP.DTR$LIB.DEMO.OWNERS BY
01 SAILBOAT OCCURS FOR YACHTS.

03 BOAT FROM YACHTS.
03 SKIPPERS OCCURS FOR OWNERS WITH TYPE EQ BOAT.TYPE.

05 NAME FROM OWNERS.
FORM IS SAIL IN DTR$LIBRARY:FORMS

DEFINE DOMAIN PART USING PART OF DATABASE PARTS_DB
FORM IS PARTF IN PARTS.FLB;

There are some disadvantages to using the FORM IS clause:

• The field names in the form definition must exactly match the correspondir
field names in the record definition for the domain.

• You must define a form field for every field in the corresponding record to
avoid unexpected mapping results.

• You cannot match form field names to names of REDEFINES fields or to
query names.

• You may get unexpected results when mapping numeric fields.

• You cannot prevent the operator from entering data in all the fields on the
form when you specify the MODIFY or STORE statements, unless the fiel~
were defined as Display Only by the form definer.

• When the operator presses the RETURN key or ENTER key after a STOFl
or MODIFY operation, data is returned from all the fields on a form. includ
ing data that may have been previously mapped to a Display Only field. Th:
may lead to unexpected input.

• You cannot use more than the single form that you specify in the domain
definition to store or modify data associated with that domain.

13-4 Using Forms with DATATRIEVE

You cannot ready a domain if it contains a FORM IS clause and
DATATRIEVE has not been installed with a forms package.

You may have to take special steps to use the FORM IS clause with applica­
tions that use FMS and callable DATATRIEVE. See Section 13.4.6.1 for
more information.

You must exercise caution when your application modifies view domains that
use the FORM IS clause. See Section 13.4.6.3 for more information.

13.1.2 The DISPLAV FORM Statement

rhe format of the DISPLAY FORM statement is:

)ISPLAY_FORM form-name [IN} form-library <--- 1

[USING statement-1 J

[RETRIEVE [USING} statement-2}

<--- 2

<--- 3

r;torm-library can be a TDMS request library file or an FMS forms library. The
lefault file type for TDMS request library files is .RLB; the default file type for
i'MS form libraries is .FLB. In the following example, parts corresponding to the
hree sections of the statement format are labeled for clarity:

TR> MODIFY YACHTS USING
ON> -+

ON> DISPLAY_FORM YACHT_FORM IN FORMSLIB
ON> -+
ON> USING I
ON> BEGIN I
ON> PUT_FORM MANUFACT = MANUFACTURER I 2
ON> PUT_FORM MODEL = MODEL I
ON> PUT_FORM PRICE = PRICE I
ON> END - I
ON> -+
ON> RETRIEVE I
ON> BEGIN I 3
ON> PRICE = GET_FORM PRICE I
ON> END I
TR> -+

lote that. because you specify both record and form field names in the
HSPLAY_FORM syntax, form and record field names need not match.

'he DISPLAY FORM statement gives you four kinds of control not provided by
tie FORM IS clause of the domain definition:

You can associate more than one form definition with a domain. Therefore,
you can design a variety of forms to fit different purposes.

The first part of the DISPLAY FORM statement format gives you this con­
trol. In the example, the DISPLAY_ FORM statement is embedded in a

Using Forms with DATATRIEVE 13-5

MODIFY statement and associates the form YACHT FORM with the
domain YACHTS. -

• You specify which record field values you want to map to or display on the
form.

Only values from record fields you explicitly assign to form fields are dis­
played on the form. This allows you to mask sensitive data from certain
users. The USING clause, number 2 in the format diagram, gives you this
control. In the example, only the values for the record fields
MANUFACTURER, MODEL, and PRICE are displayed on their corre­
sponding form fields.

If you omit the USING clause of the DISPLAY FORM statement, no record
field values are displayed on their corresponding form fields. You might want
to omit the USING clause if you are storing records rather than modifying
records.

• You specify the form fields you want to return to the record.

Only values from form fields explicitly assigned to record fields are returned
to the record. The RETRIEVE clause, number 3 in the format diagram,
gives you this control. In the example, only the value in the form field
PRICE replaces the existing value in the record.

If you omit the RETRIEVE clause of the DISPLAY FORM statement, no
form field values entered by the user or sent to the form by DATATRIEVE
are returned to their corresponding record fields. Omit the RETRIEVE
clause if you do not want to collect data from the form, and you want to pre­
vent inadvertent data modification during a display-only operation.

• You specify the format to display, store, and modify numeric fields correctly.

Using the FORMAT value expression with the-DISPLAY FORM statement
lets you control data transfer between numeric record fields and form fields.
(See Section 13.2.2.1 for information on mapping numeric data types and
13.4.5 for information on using the FORMAT value expression.)

The only time you can use the DISPLAY FORM statement without embedding it
in another statement and without using the optional USING and RETRIEVE
clauses is when you simply want to display the form itself. In this case, you must
end the statement with a semicolon(;) to avoid getting an error message. For
example:

DTR> DISPLAY_FORM YACHT IN DTR$LIBRARY:FORMS;

This type of DISPLAY FORM statement lets you see the form before you use it,
without exiting from DAT ATRIEVE. You cannot enter data in the form that is

13-6 Using Forms with DATATRIEVE

iisplayed. You can use this particular DISPLAY FORM syntax to display a form
~hat is associated with a domain by the FORM IS clause.

13.2 Defining Forms

\form definition contains information that specifies:

The screen image of the form. The screen image includes background text
and the pictures of the fields in which data can be collected and displayed.

The length and data type of each field.
""

A set of attributes for each field.

Video highlights for the form.

The name of a help form that the operator can display.

(ou can use the TDMS Form Editor or the FMS Form Editor to define a form.
rhe VAX TDMS Forms Manual explains how to use the Form Definition Utility
FDU) to create and modify a TDMS form. The Introduction to VAX PMS
~xplains how to create and modify an FMS form.

)ections 13.2.1to13.2.6 discuss some considerations you should keep in mind
11hen creating a form to use with DATATRIEVE. The discussion assumes you are
amiliar with the process of creating a form definition. If you are unfamiliar with
he forms product you intend to use with DATATRIEVE, you should create a few
ample forms before reading these sections.

3.2.1 Defining Form Field Names

'ou specify form field names in the Assign phase of your form definition. Any
:ames you specify during the Layout phase of your form definition are back­
wund text. not field names.

f the form you are creating will be referred to in the FORM IS clause of a domain
efinition, use the following guidelines when naming form fields:

If there are any hyphens in the DATATRIEVE field name. they should be
defined as underscores to FMS because DAT A TRI EVE converts all hyphens
to underscores when it converts names to uppercase.

Form field names can be up to31 characters long. The form field names
must match the field names in the DATATRIEVE domain.

If you convert an FMS Version 1 form definition to FMS Version 2 or TDMS
and you want to associate the converted form with a DATATRIEVE domain,

Using Forms with DATATRIEVE 13-7

make sure that the form field names match the record field names. Suppose,
for example, you have an FMS Version 1 form with the form field MANUFA
corresponding to the record field MANUFACTURER. If you convert that
form to FMS Version 2 or TDMS, be sure to edit your new form definition
and change the name of the form field to MANUFACTURER.

• When using FMS to define a form, make sure that you define a form field for
each record field. When using TDMS. make sure that you define a record
field for each form field. When the record field is a COMPUTED BY field,
define a counterpart form field and select the Display Only attribute. The
Display Only attribute prevents users from modifying the field's data.

In FMS, if you do not define a form field for each record field, incorrect val­
ues may be mapped to record fields.

If the form you are creating will be referred to only in DISPLAY FORM state­
ments, the DATATRIEVE field names and form field names need not match. In
addition, you do not have to define a form field for each record field.

When you are using the DISPLAY FORM statement, you can define a form field
for a DAT ATRIEVE variable. You -may want to define a form field that maps to a
variable to use in conditional statements. For example, you could collect an
employee ID from a form field and return it to a variable. You could then use this
ID to search a domain and display related employee data on the same form.
Remember, however, that DATATRIEVE does not process form field values when
the form user presses TAB to move to another field. The user. must press the
RETURN key before DAT ATRIEVE can evaluate and process data. In this exam·
pie, the user would have to enter the employee identification code, ignore the
remaining fields on the form, and press RETURN.

If you do not spell a record field name correctly (in DISPLAY FORM assignment
statements) or do not spell a form field name correctly (either-in the form defini­
tion referred to by the FORM IS clause or in the DISPLAY FORM assignment
statements). DATATRIEVE ignores the values in those fields. You receive no
error messages to alert you to possible field name errors.

13.2.2 Defining Data Type and Length of Form Fields

When you define a form, you match the form fields with the corresponding record
fields in two ways:

• Use a form field picture that describes the same data type as the record defi­
nition. The field pictures control the type of data a user enters in the form
field at run time.

For example. if you define a form field of all 9s; a user cannot move to the
next form field if they enter anything but a digit in that form field.

13-8 Using Forms with DATATRIEVE

Though defining a form field picture controls the type of data a user enters,
it is not the same as defining a data type. For example, you can match an
alphabetic field picture on a form with a record definition of PICA, or you
can match a field picture of 9s on a form with a DAT ATRIEVE record defini­
tion of PIC 9s. DATATRIEVE receives data from both TOMS and FMS as
strings, however, so you cannot completely match form and record definition
data types. For example, if your record definition defines a field as PIC 9(4)
USAGE COMP, when you define a form field you can specify the form field
characters 9999, but you cannot match COMP.

Make sure your form field has the same length as your record field.

For example, if the record field is defined as PIC X(25). use 25 Xs for the
form field. If the form field is longer than the record. field, the form user
might receive a truncation error message and reenter prompt after pressing
the RETURN key. If the form field is shorter than the record field, existing
values for alphanumeric fields are truncated in the form display. A form field
shorter than the record field might make it impossible for the form user to
enter a valid value.

1te that regardless of the form pictures or record data types you assign,
\TA TRI EVE passes all values between forms and records as text strings. This
ects how it handles numeric field values. as discussed in the following sections
data types requiring special treatment in form definitions .

. 2.2.1 Numeric Fields with Decimal Points or Signs -- When matching
meric record fields that contain signs or decimal points with form field pictures,
1 may want to follow some of the guidelines in this section. These guidelines
swne that you are using the DISPLAY FORM statenient with the FORMAT
lue expression. This is the recommended method of handling numeric data
>es. (See Section 13.4.5 for examples of the FORMAT value expression.)

For numeric record fields that contain an implied decimal point (such as a V
in the PICTURE clause or a SCALE clause) but not a sign, you can include a
decimal field-marker character (FMS) or a decimal constant (TOMS) in the
corresponding place on the form field.

You do this during the Layout phase of defining your form.

In the Assign phase of your form definition, you might decide to avoid the
fixed decimal characteristic. Because values are passed from the form to
DAT A TRI EVE as text strings, specifying fixed decimal does not scale
numeric values for storage.

If you do assign the fixed decimal attribute to a numeric form field,
perhaps because the form might also be used in applications other than

Using Forms with DATATRIEVE 13-9

DATATRIEVE, follow these guidelines:

Define the associated record field with an implied decimal field, for
example, PIC 99V99.

Define the form field, if it is an FMS form, as 99.99 with fixed decima]
clear character 0, and zero fill attributes.

Define the form field, if it is a TDMS form, as 99.99 with Fixed Decim
and Zero Fill attributes.

• If you want a field to have both a decimal point and a sign (either explicit 01

implicit), in FMS use N instead of 9 for the form field.

In TDMS, you cannot combine a signed numeric field picture (N),with the
Fixed Decimal attribute. To get the effect of a scaled signed number, you c~
use the N field without the Fixed Decimal attribute in TDMS. TDMS
assigns a scale factor to fields you describe with an N picture based on the
field picture. For a field you describe as NNN.NNN in the Layout phase of
TDMS, it defaults a scale factor of -3. while a field you describe as NN.NN
assigned a scale factor of -2.

Table 13-1 provides examples that match form fields to numeric record fields
when using the DISPLAY FORM statement. Use the FORMAT value expressio
as illustrated in the example following Table 13-1 and in Section 13.4.5 to ensur1

correct mapping between numeric fields.

Table 13-1: Matching Form Field Definitions to Numeric Record Fields

Record Field Form Field Form Field Attributes

PIC 999V99 999.99 You can use 9 or N because the data is
unsigned.

PIC S9(4)V99 NNNNN.NN An N is required for a signed field. The
decimal point must agree with the record
field.

WORD SCALE -3 NNN.NNN The field must be large enough for the
maximum value, sign, and decimal places.

REAL NNNNNNNNN The number of Ns is flexible, but no deci-
mal point is included because the record
field contains no implied decimal point.

LONG SCALE -4 NNNNNNN.NNNN Similar to the preceding WORD example.

13-10 Using Forms with DATATRIEVE

Then you use the DISPLAY FORM statement to map numeric fields use the fol-
1wing technique: -

When mapping fields to a form, use the FORMAT VALUE expression with
an edit string and multiply the data from the record field (as described by the
edit string) by the scaling factor

When getting the fields from a form, you divide by the scaling factor before
storing the data.

he following procedure illustrates a typical method for mapping numeric fields
~ing a form.

~FINE PROCEDURE FORMAT
~ADY TE8T_FORMAT WRITE
mIN
lR TE8T _FORMAT
mm
)I8PLAY_FORM TEST_FORMAT_FORM IN
:LINTOV]TESTFORM.RLB USING
BEGIN

PUT_FORM UNSIGNED_FIXED_DEC = -
FORMAT(lOO * UNSIGNED_FIXED_DEC) USING 99999

PUT_FORM SIGNED_DECIMAL = -
FORMAT(lOO * SIGNED_DECIMAL) USING 8999999

PUT_FORM SCALE_FACTOR_3 = -
FORMAT(lOOO * SCALE_FACTOR_3) USING S99999

PUT_FORM PLAIN_N = PLAIN_N
PUT_FORM SCALE_FACTOR_4 = -

FORMAT(lOOOO * 8CALE_FACTOR_4) USING 899999
END RETRIEVE USING
BEGIN

END

UN8IGNED_FIXED_DEC = -
(GET_FORM UNSIGNED_FIXED_DEC/100)

SIGNED_DECIMAL = -
(GET_FORM 8IGNED_DECIMAL/100)

8CALE_FACTOR_3 = -
(GET_FORM 8CALE_FACTOR_3/1000)

PLAIN_N = PLAIN_N
SCALE_FACTOR_4 = -

(GET_FORM SCALE_FACTOR_4/1000)

ID
ID-PROCEDURE

l.2.2.2 Usage DATE Fields -- You should define date fields as 11 Xs on your
rms. DATATRIEVE displays the field in the default date format (DD-MMM­
YYY). Use 23 Xs to display both date and time.

Using Forms with DATATRIEVE 13-11

If you want to display the date in other than the default format, you can do so
with the DISPLAY FORM statement. Define a variable that is computed by a
format value for the date field and then display the variable rather than the date
field on the form. In the following example, FIELD2, rather than FIELDl, can bE
mapped to the form:

Record field:

03 FIELD! USAGE DATE.

Variable:

03 FIELD2 COMPUTED BY FORMAT(FIELD1) USING MMMBDDBYYYY.

You might want to add a COMPUTED BY date field such as FIELD2 to the
record definition if your installation uses the specified date format as the com­
pany standard.

When the date field is defined as 11 Xs on your form, the form user can enter om
of a variety of values and DATATRIEVE stores the date correctly. For example,
DATATRIEVE stores the date value April 16, 1972 for any of the following
entries:

4/16/72

16 4 1972

APR 16 1972

1972/APR 16

You can also use both the PUT FORM and GET FORM components of the
DISPLA Y_FORM statement to map date fields. (See Sections 13.4.3 and 13.4.4).

13.2.3 Specifying User Entry and Validation Criteria

DATATRIEVE validation clauses (in the record definition or DATATRIEVE
statement, are not applied to any field until the form user finishes with a record
and presses the RETURN key. After the RETURN key is pressed.
DATATRIEVE fooks at the data returned to the record fields and applies the
record or statement validation clauses. If data in a field is invalid. the user is
prompted again for valid data for that field.

Validation associated with the form fields can prevent users from entering incor­
rect data. Using 9s or N s for numeric form fields. for instance, ensures that forrr
users cannot tab to the next form field if they accidently enter nonnumeric char­
acters. Even though the Fixed Decimal attribute is not passed to DATATRIEVE
when field values return from the form, you can specify the attribute in your forr
definition if you decide it helps the user enter data correctly.

13-12 Using Forms with DATATRIEVE

hoosing the Fixed Decimal, Right Justify, Left Justify, and Zero Fill attributes
1 affect how the user enters data and therefore can affect what data is returned
• the record field.

ssign the Display Only attribute to any fields that the user cannot store into or
.odify. This will prevent the user from entering data in a field. Your
!SPLAY FORM statement can prevent the user modifications from reaching
te stored record. but cannot prevent the user from entering that data in the form
~Id. It is also good practice to prevent form users from entering changes that are
>t stored.

TDMS allows users to assign Field Validators to form fields.
DATATRIEVE ignores these validators, however, and does not use
them in any DATATRIEVE/TDMS application.

L2.4 Defining Multiple Screen Forms and Forms with Scrolled Areas

either FMS nor TDMS supports forms that span multiple screens.
~ T ATRIEVE does not support forms that contain scrolled regions.

you modify and store data using the DISPLAY FORM statement, however,
u can display a series of individual forms to collect and display data within a
1gle procedure. Note that only one form can appear on the screen at a time.

:.2.5 Using Default Values

~TATRIEVE's default value and missing value are displayed on the form fields
ien you use the FORM IS clause or the PUT FORM component of the
:SPLAY FORM statement. The form user generally sees default and missing
lues only during a store operation. Do not specify default values in your form
finition. DAT A TRIEVE does not store these values in the record .

. 2.6 Defining Forms for Domains That Contain Repeating Fields

m can define a matching form field for a Pepeating record field (one that
~ludes an OCCURS clause). For example, a form for the FAMILIES domain
Lild specify KID NAME and AGE as indexed fields. You create an indexed ele­
mt to match each occurrence of the record field.

you are using TDMS, align all occurrences of the repeating fields vertically or
rizontally in the Layout phase of your form definition. Then. in the Assign
ase, specify the index attribute for the repeating items.

Using Forms with DATATRIEVE 13-13

If you are using FMS, follow these steps:

1. In the Layout phase of your form definition, specify the background text
and field characters for the first occurrence of the repeating item.

2. Enter the Assign phase, and specify the attributes you want for the item.
Type 1 for the index attribute.

3. Enter the' Layout phase again and use the form editor's cut and paste func·
tion to create all additional occurrences of the repeating item. FMS auto­
matically assigns the correct attributes for these additional occurrences.

Whether you are using TDMS or FMS. make sure you create enough repeating
form fields to accommodate the maximum number of occurrences defined in the
record definition.

13.3 Inserting Forms in Library Files

After you define a form with the TDMS or FMS Editor, you must insert it in a
form library. The following two sections describe how to do this for both TDMS
and FMS forms.

13.3.1 Inserting Forms in TOMS Library Files

To insert a TDMS form in a library, use the TDMS Request Definition Utility
(RDU) to create a request library definition.,and build a request library file.

For example, to use the form definitions YACHT_FORM and PERSON in a
DATATRIEVE application:

1. Use RD U to define a request library:

RDU> CREATE LIBRARY DTR_TDMS
RDUDFN> FORM IS YACHT_FORM;
RDUDFN> FORM IS PERSON;
RDUDFN> FILE IS "FORMSLIB";
RDUDFN> END DEFINITION;
RDU>

2. Build the request library file:

RDU> BUILD LIBRARY DTR_TDMS

Information from the form definitions YACHT FORM and PERSON is
built into the request library file FORMSLIB.RLB.

3. Use DAT A TRIEVE to display the form:

DTR> DISPLAY_FORM YACHT_FORM IN FORMSLIB;

13-14 Using Forms with DATATRIEVE

ep in mind that a TDMS request library definition and the request library file
itain other information and instructions, but DATATRIEVE uses only the ref­
mce to the TDMS form.

rou modify your form definitions in any way, you must rebuild the request
rary file. To do this, enter RDU and rebuild the request library using the same
JILD LIBRARY command. For example:

J> BUILD LIBRARY DTR_TDMS

>MS extracts your latest form definitions from the CDD to include in the
rary.

r more information on using RDU to create and modify request libraries, refer
the VAX TDMS Request Manual.

r information about converting FMS forms for use with TDMS and
~TA TRI EVE see the discussion of conversion command procedures in the VAX
>MS Forms Manual .

. 3.2 Inserting Forms in an FMS Library

u use the FMS/LIBRARY command to perform operations on form files and
m libraries. After you have defined an FMS form, create a form library for the
m definition and insert the forms:

~MS/LIBRARY/CREATE FORMSLIB.FLB YACHTF,PERSON

fS inserts the form definitions Y ACHTF and PERSON in the form library
IRMSLIB.FLB.

rou modify the form, replace the modified form in the library. For example:

~MS/LIBRARY/REPLACE FORMSLIB.FLB PERSON

r information about converting FMS Version 1 and Version 2 form definitions
TDMS form definitions, refer to the discussion of the Form Converter Utility
Ghe VAX F MS Utilities Ref ere nee Manual or the discussion of conversion com­
.nd procedures in the VAX TDMS Forms Manual.

r information about converting FMS Version 1 forms to FMS Version 2 forms,
er to the VAX PMS Utilities Reference Manual .

. 4 Using Forms to Display and Collect Data

~er you define a form and insert the form definition in a form library, you can
~ the form. The following sections explain how to use DAT ATRIEVE com­
.nds and statements to display, collect, store, and modify data on a form.

Using Forms with DATATRIEVE 13-15

13.4.1 Enabling and Disabling Form Use

The command SET [NO] FORM determines whether DATATRIEVE uses a forrr.
If SET FORM is in effect and you ready a domain whose definition includes the
FORM IS clause, or you use the DISPLAY FORM statement, DATATRIEVE
opens the form library specified. -

If SET NO FORM is in effect, DATATRIEVE does not open a form library, and
you cannot use a form. When you are using a domain whose definition includes a
FORM IS clause. it is sometimes useful to review the contents of many records
quickly. SET NO FORM allows you to override form display and use regular
screen display. ·

Note that if you use a DATATRIEVE image installed without a forms package,
using SET NO FORM does not let you use a domain definition that contains a
FORM IS clause. You must edit the domain definition to remove the form refer­
ence or install DATATRIEVE with a forms package.

The default is SET FORM.

You can see if SET FORM is in effect by using the SHOW SET UP command.
You can see which forms are currently loaded by entering SHOW FORMS. To
release a form loaded with the DISPLAY FORM statement from your workspac«
use the RELEASE form-name command~

13.4.2 Displaying Data with Forms

When DATATRIEVE uses forms to display records, only one record at a time is
displayed on the screen. To proceed to 'the next record, press the ENTER key or
the RETURN key. If you want to skip the rest of the records, position the curs01
on a nonnumeric field and press CTRL/C and then the RETURN key.

The following example shows how to display records from a domain whose defini
tion includes the FORM IS clause:

DTR> SET FORM
DTR> READY YACHTS_FORM
DTR> PRINT FIRST 10 YACHTS_FORM

The PRINT statement in this example causes DAT A TRI EVE to use a form to
display the first record i~ YACHTS_FORM. DATATRIEVE displays all the field
you included in your form definition. You can press the RETURN key to display
the next record. Continue pressing the RETURN key until the tenth record is
displayed. The next time you press the RETURN key, you get the DTR>
prompt.

13-16 Using Forms with DATATRIEVE

f you want to display values for only a few fields, you can use a form with a
)ATATRIEVE view domain or you can use the DISPLAY FORM statement.
{our DISPLAY FORM statement can refer to an entirely different form than the
me specified in the FORM IS clause. It can also refer to the same form.

i'or example. suppose you want to display only the type and price of the first ten
·achts on the YACHT FORM form. The fields MANUFACTURER, MODEL,
.nd PRICE in YACHTS correspond to the fields MANUFACT, MODEL,and
>RICE in the YACHT_ FORM form. Use the following statements:

TR> FOR FIRST 10 YACHTS
ON> DISPLAY_FORM YACHT_FORM IN FORMSLIB USING
ON> BEGIN
ON> PUT_FORM MANUFACT = MANUFACTURER
ON> PUT_FORM MODEL = MODEL
ON> PUT_FORM PRICE = PRICE
ON> END

Vith the DISPLAY FORM statement, you can use a number of forms to display
ata in one domain. -For example, suppose you create two forms for YACHTS:
'YPE and SPECS. The form TYPE contains the fields MANUFACT and
tlODEL, corresponding to the MANUFACTURER and MODEL fields in
'ACHTS. The form SPECS contains fields that correspond to the remaining
'ACHTS fields.

'he following example shows how to display each of the first 10 YACHTS records
n two forms. For each record in the FOR loop, first the TYPE form is displayed
nd then the SPECS form is displayed:

OR FIRST 10 YACHTS
BEGIN
DISPLAY_FORM TYPE IN FORMSLIB USING

BEGIN
PUT_FORM MANUFACT = MANUFACTURER
PUT_FORM MODEL = MODEL
END

DISPLAY_FORM SPECS IN FORMSLIB USING

END

BEGIN
PUT_FORM LENGTH
PUT_FORM DISPLACE
PUT_FORM RIG
PUT_FORM BEAM
PUT_FORM PRICE
END

= LOA
= DISPLACEMENT
=RIG
= BEAM
= PRICE

rote that when you use the DISPLAY FORM statement. the names of the fields
i the domain and the names of the for-m fields need not match. For example, you
m design a form. PAY FORM, that contains the fields BADGE, START, and
AY. These fields correspond to the fields ID, START DATE, and SALARY in
ie PERSONNEL domain, as illustrated in Figure 13-i

Using Forms with DATATRIEVE 13-17

Fields in
the form
PAYFRM

Fields in
the domain
PERSONNEL

BADGE 4'----• ID
START START_DATE
PAY SALARY

MK-01136-00

Figure 13-1: Corresponding Fields in a Domain and Form

The next example shows how to display the fields ID, START DATE, and
SALARY from PERSONNEL using the form PAY _FORM: -

DTR> READY PERSONNEL
DTR> FOR PERSONNEL
CON> DISPLAY FORM PAY_FORM IN FORMSLIB USING
CON> BEGIN
CON> PUT_FORM BADGE = ID
CON> PUT_FORM START = START_DATE
CON> PUT_FORM PAY = SALARY
CON> END

13.4.3 Storing Data with Forms

To store records in a domain that is defined to include a FORM IS clause, use the
STORE statement:

DTR> READY YACHTS_FORM FOR WRITE
DTR> STORE YACHTS_FORM

DAT A TRI EVE displays the YACHT FORM form, including any default and
missing values you specify in your record definition. Then DAT ATRIEVE waits
for you to enter data.

While entering data, you can use:

• The TAB key to move to the next field

• The BACKSPACE key to move to the previous field

• The right and left arrow keys to move within a field

• The LINE FEED key to delete the contents of a field

• CTRL/C to stop storing and prevent the current record from being stored

When you finish entering data, press ENTER or the RETURN key.
DATATRIEVE attempts to store the record as it appears on the screen. If there

13-18 Using Forms with DATATRIEVE

e any validation errors, DAT ATRIEVE displays an error message at the bottom
the screen and lets you change the field that caused the error.

>te that the FORM IS clause does not give you field-level access in a store
eration. If you enter a STORE USING statement and the FORM IS clause is
ur only association of a domain with a form, DAT ATRIEVE does not display
e form. If you want a STORE USING statement to display a form, you must
~lude a DISPLAY FORM statement. Interactive data entry on a form displayed
th DISPLAY FORM is the same as that described for FORM IS.

you use the DISPLAY_FORM statement to store, you must use its RETRIEVE
mse.

1r example, suppose you receive information for YACHTS in parts. The first
:ormation you receive is the manufacturer, model, rig. and overall length. You
mt to store this information and later modify your records to include further
ta.

m can define a new form, YACHT FORMl with the fields VENDOR, MODEL,
G, and LENGTH. The following procedure shows how to use the form
~CHT_FORMl to store partial records in the domain YACHTS:

JCEDURE STORE_YACHTS_1
my YACHTS WRITE
JRE YACHTS USING
DISPLAY_FORM YACHT_FORM1 IN FORMSLIB RETRIEVE USING

BEGIN
MANUFACTURER = GET_FORM VENDOR
MODEL = GET_FORM MODEL
RIG = GET_FORM RIG
LOA = GET_FORM LENGTH

END
) _PROCEDURE

:ing both the PUT FORM and GET FORM components of the
SPLAY_FORM statement, you can-store values in fields without data entry
im the form user. This is particularly useful when storing values into date fields
d primary keys. If you specify the Display Only attribute for these fields in your
m definition, you can prevent the form user from overriding the values you
1d to the form. By not selecting the Display Only attribute, you can allow the
m ·user to modify such values.

r example. suppose you create the form PERSON to store data into
:RSONNEL. Figure 13-2 shows the fields in the form PERSON and
·responding fields in the domain PERSONNEL.

Using Forms with DATATRIEVE 13-19

Fields in
the form
PERSON

Fields in
the domain
PERSONNEL

ID ID
STATUS ~---~ EMPLOYEE_STATUS
NAME EMPLOYEE_ NAME

FIRST _NAME
LAST_NAME

DEPT ~---•• DEPT
DATE START_DATE
SALARY SALARY
SUP_ID 4 • SUP_ID

MK-01137-00

Figure 13-2: Corresponding Fields in the Form PERSON and the Domain
PERSONNEL

The procedure STORE PERSON shows how you can use the form PERSON to
store PERSONNEL records:

Task: store a new employee record. Generate a unique badge
number, but allow the user to override it.
The default starting date is "TODAY", but the user can override
that also.

PROCEDURE STORE_PERSON
STORE PERSONNEL USING
BEGIN

Display the ID and DATE on the form.

DISPLAY_FORM PERSON IN FORMSLIB USING
BEGIN

PUT-FORM ID = 1 + MAX ID OF PERSONNEL
PUkFORM DATE = FORMAT "TODAY" USING DD-MMM-YYYY

END RETRIEVE USING

The rest of the fields on the form are empty.
Retrieve data the user enters on the form.

The form PERSON has one field for a name. The domain
PERSONNEL has fields for FIRST_NAME and LAST_NAME.
Get the first and last name from the form name string.

13-20 Using Forms with DATATRIEVE

BEGIN

DECLARE BLANK_POSITION WORD.
BLANK_POSITION = FN$STR_LOCATE (GET_FORM NAME, " ")
FIRST_NAME = FN$STR_EXTRACT (GET_FORM NAME, 1,

BLANK_POSITION)
LAST_NAME = FN$STR_EXTRACT (GET~FORM NAME,

BLANK_POSITION + 1, 50)

ID = GET_FORM ID
START_DATE = GET_FORM DATE
IF (GET_FORM STATUS CONT "T")

THEN STATUS = "TRAINEE" ELSE STATUS = "EXPERIENCED"
DEPT = GET_FORM DEPT
SALARY = GET_FORM SALARY
SUP_ID = GET_FORM SUP_ID

END
:ND;

13.4.3.1 Storing Data in Hierarchical Records with Forms -- To store data in
L hierarchical record, use the STORE statement and the DISPLAY FORM state­
nent. This procedure uses the DISPLAY FORM statement to store data in the
iierarchical record for the domain FAMILIES:

1EFINE PROCEDURE STORE_LISTS
.EADY CDD$TOP.DTR$LIB.DEMO.FAMILIES WRITE

The variable, A, is used to establish context for the
list field KIDS.

TORE A IN FAMILIES USING
EGIN

DISPLAY_FORM FAMILY IN DTR$LIBRARY:FORMS RETRIEVE USING
BEGIN

MOTHER = GET_FORM MOTHER
FATHER = GET_FORM FATHER
NUMBER_KIDS = GET_FORM NUMBER_KIDS

The MATCH statement transfers the data retrieved
from the form with the GET_FORM KID_NAME and AGE value
expressions to the KIDS fields. In other words, each A.KIDS
field value is transferred from the form to each KIDS record.

END
ND
ND_PROCEDURE

MATCH KIDS, A.KIDS
BEGIN

END

KID_NAME = GET_FORM KID_NAME
AGE = GET_FORM AGE

ee Chapter 6 for more information about hierarchical records.

Using Forms with DATATRIEVE 13-21

13.4.4 Modifying Data with Forms

To modify records in a domain that uses a form, use the MODIFY statement:

DTR> READY YACHTS_F MODIFY
DTR> FOR YACHTS_F WITH BUILDER= *."BUILDER"
DTR> MODIFY

DAT ATRIEVE uses the form YACHTF to display the record you specify. You
can now modify the fields in that record. To move through the form, use the same
keys you use while storing.

If there are any validation errors. DATATRIEVE displays the error message at
the bottom of the screen and lets you change the field that caused the error. If
you try to modify a key field that is defined with the NO CHANGE attribute,
however, DAT A TRI EVE prints an error message and does not modify any fields
in the record. Because primary key fields are defined NO CHANGE by default,
you lose all the modifications you make to a record when you try to modify its pri­
mary key field. If you do not change the primary key field, there is no problem. If
you do try to modify a primary key field. DAT A TR.I EVE returns an error and
ignores the other modifications to the record. To avoid the error, you may want to
define primary key form fields as display only form fields.

Note that the FORM IS clause does not give you field-level access in a modify
operation. If you enter a MODIFY USING statement and the FORM IS clause is
your only association of a domain with a form, DAT A TRIEVE does not display
the form. If you want to use a MODIFY USING statement to display a form, you
must include a DISPLAY FORM statement.

You can include the DISPLAY FORM statement within a MODIFY USING
statement to modify data in a domain, whether or not a form is already assigned
to the domain with the FORM IS clause.

If you use DISPLAY FORM to modify, you include all sections of the statement.
The PUT FORM statements display the data users are to modify, and the
GET_FORM value expressions store their changes.

In Section 13.4.3, the procedure STORE YACHTS 1 created records with data
for the fields MANUFACTURER, MODEL, RIG, and LENGTH OVER ALL.
Suppose you now have data for the rest of the fields and want to -update-the
records you stored. You do not want to modify the data already entered; you want
to enter values only for the fields DISPLACEMENT, BEAM, AND PRICE.

13-22 Using Forms with DATATRIEVE

One way to perform this task is to create a new form, YACHT_FORM2. This
form contains fields that correspond to all the fields in YACHTS, as illustrated in
F'igure 13-3.

Fields in
the form
VFRM2

"1ANUFA
"10DEL
=tlG
.ENG TH

)ISPLA
3EAM
'RICE

Fields in
the domain
YACHTS

4'-------...... MANUFACTURER
MODEL
RIG

...... ---~ LENGTH_OVER_ALL

..., ______ ...,. DISPLACEMENT

~------...... BEAM
~------...... PRICE

Display

I Modify

MK-01138-00

~igure 13-3: Corresponding Fields in YACHT_FORM2 and YACHTS

Vhen creating the form YACHT FORM2, you can assign the Display Only
,ttribute to the first four fields. In this way, you allow the form user to enter data
inly for the last three fields.

~he procedure STORE_YACHTS_2 shows how to modify data on a form:

ROCEDURE STORE_YACHTS_2
EADY YACHTS MODIFY

Modify only YACHTS that are missing data.

OR YACHTS WITH DISPLACEMENT = 0
ODIFY USING

BEGIN

Use the form YACHT_FORM2 to display entire records.

DISPLAY_FORM YACHT_FORM2 IN FORMSLIB USING

Display the fields for which data has been entered.
These fields are defined as Display Only to TDMS or FMS.
The user cannot enter data in them.
(If you do not define these fields as Display Only, the
user can change the form fields. However, DATATRIEVE
ignores the changes.)

(continued on next page)

Using Forms with DATATRIEVE 13-23

BEGIN
PUT_FORM MANUFACT = MANUFACTURER
PUT_FORM MODEL = MODEL
PUT_FORM RIG = RIG
PUT_FORM LENGTH = LOA

END RETRIEVE USING

Get new data from the form.

BEGIN
DISPLACEMENT = GET_FORM DISPLACE
BEAM = GET_FORM BEAM
PRICE = GET_FORM PRICE

END
END

END_PROCEDURE

13.4.4.1 Modifying Data in Hierarchical Records with Forms ··To modify
data in a hierarchical record, use the MODIFY statement and the
DISPLAY FORM statement. This procedure uses the DISPLAY FORM state­
ment to modify data in the hierarchical record domain FAMILIES:

DEFINE PROCEDURE MODIFY_LIST
READY CDD$TOP.DTR$LIB.DEMO.FAMILIES WRITE
FIND ALL FAMILIES WITH FATHER CONT *."father's name"
FOR CURRENT
BEGIN

MODIFY USING DISPLAY_FORM FAMILY IN DTR$LIBRARY:FORMS USING
BEGIN

PUT_FORM FATHER = FATHER
PUT_FORM MOTHER = MOTHER
PUT_FORM NUMBER_KIDS = NUMBER_KIDS

The FOR loop establishes context for the KIDS field.

FOR KIDS
BEGIN

PUT_FORM KID_NAME = KID_NAME
PUT_FORM AGE = AGE

END
END RETRIEVE USING
BEGIN

FATHER = GET_FORM FATHER
MOTHER = GET_FORM MOTHER
NUMBER_KIDS = GET_FORM NUMBER_KIDS

(continued on next page)

13-24 Using Forms with DATATRIEVE

The FOR loop establishes the context for retrieving
modified values from each occurrence of KIDS that
satisfies the RSE and for storing those values in
the KIDS record.

END
m
m-PROCEDURE

FOR KIDS MODIFY USING
BEGIN

KID_NAME = GET_FORM KID_NAME
AGE = GET_FORM AGE

END

ee Chapter 6 for more information about hierarchical records.

3.4.5 Handling Numeric Data

[any numeric fields are stored with a fractional component and a sign. These
elds may include a PICTURE string that explicitly specifies a sign and decimal
)int, for example, PIC S999V99. However, numeric values for some fields
iclude a sign and fractional component in storage, even though there is no pic­
tre string to al~rt you to this fact. Some exam pl es are record fields defined as
SAGE REAL, US~GE WORD SCALE IS -2. or USAGE LONG SCALE IS -3.
ectiun 13.2.2.1 explains how to define form fields that can contain both a sign
id a decimal point.

you use the FORM IS clause to transfer data to and from record fields that
dude a fraction and a sign in storage, results can be undesirable. As a general
Lle, never include the FORM IS clause in a domain definition when its record
~finition includes these numeric fields. Always use the DISPLAY FORM state­
ent to store. display. and modify such numeric fields. When you use the
!SPLAY FORM statement, you can assume control of the format and scale of
le text string passed between the record field and the form field.

J.e following example illustrates how you handle numeric data that includes a
~cimal point and a sign. The CB BALANCE field in the CHECKBOOK domain
defined as PIC S999V99. The associated BALANCE field on the CHECKS
rm is defined as NNNN.NN.

1e DISPLAY FORM statement transfers the value from the record field as a
J.ole number and uses a FORMAT value expression to specify the text string as
should appear on the form field. The edit string in the example includes a minus
~n Has a numeric insertion character so that only negative values are displayed
th a sign. As an alternative, you can use a plus sign (+) if you want positive as
~ll as negative values displayed with signs.

~cause the value CB BALANCE is stored with two decimal digits. the
JT FORM assignment statement must multiply the field value by 100 before
msferring it to the form field. The Assignment statement in the RETRIEVE
ction divides the whole number value from the form field by 100 before storing

Using Forms with DATATRIEVE 13-25

it in the record field. Note that a FORMAT expression edit string is not neces­
sary when the form field value returns to the record field:

DTR> MODIFY CHECKBOOK USING
DTR> DISPLAY_FORM CHECKS IN FORMSLIB USING
CON> PUT_FORM BALANCE =
CON> FORMAT (100 * CB_BALANCE) USING
CON> -99999 RETRIEVE USING
CON> CB_BALANCE = (GET_FORM BALAN'CE) / 100

You must multiply and divide values by the appropriate power of 10 for the recor1
field definition. The example multiplies and divides values by 100 because the
record field stores two decimal places. If, for example, the record field you are
handling includes a SCALE IS -3 clause, you multiply and divide values by 1000.

Form fields that include a decimal point and are defined as 9s require the same
treatment in a DISPLAY FORM statement. Because such fields cannot include c
sign character, however, you omit the plus { +) or minus (-) character from the
edit string in the FORMAT value expression.

13.4.6 Restrictions on ·Using Forms

The following sections describe restrictions on using DAT ATRIEVE with forms.
They also provide examples of alternatives to these restricted uses of forms.

13.4.6.1 DATATRIEVE and FMS -- When you use the DISPLAY FORM state­
ment with FMS forms, DATATRIEVE passes a default field descriptor of 255
characters. If you try to concatenate fields from an FMS form, you get unex­
pected results. You can explicitly specify the description of a form field using the
FORMAT value expression. Include an edit string in the USING clause of the
FORMAT value expression so that DATATRIEVE does not use the 255-
character default for an FMS form field.

The following example specifies field lengths for the fields MANUFACTURER
and MODEL using FORMAT value expressions:

DECLARE FLD PIC X(30).
DISPLAY_FORM YACHT_FORM IN FORMSLIB;

BEGIN
PUT_FORM MANUFACTURER = MANUFACTURER
PUT_FORM MODEL = MODEL

END RETRIEVE USING
FLD = FORMAT (GET_FORM MANUFACTURER) USING X(20) I -

FORMAT (GET_FORM MODEL) USING X(6);

13-26 Using Forms with DATATRIEVE

V"hen DAT A TRI EVE concatenates the MANUFACTURER and MODEL fields,
. uses 20 characters for MANUFACTURER and 6 characters for MODEL
istead of 255 characters for each field .

. n additional restriction concerns the use of FMS forms with the DAT ATRIEVE
all Interface. If you have an application program that displays FMS forms and
lso calls upon the DATATRIEVE Call Interface to display forms using the
ORM IS clause in a domain definition, you must save and restore the FMS ter­
tinal control areas after each call to DATATRIEVE. This restriction applies only
> use of the DAT ATRIEVE Call Interface with domains using the FORM IS
ause. You can avoid the restriction by using DISPLAY FORM instead of
ORM IS. -

ee the Introduction to VAX FMS for more information about FMS terminal con­
ol areas. See the FMS documentation for more information about the restriction
i using the DAT A TRIEVE Call Interface.

J.4.6.2 DATATRIEVE Command Files and Forms Products -·This restriction
id its workaround apply only to V2 and later of FMS and Vl and later of TDMS.

ATATRIEVE uses SYS$INPUT to get its commands from VMS command
es. Both FMS and TDMS also use SYS$INPUT to get terminal input.
1erefore, you cannot use both DAT A TRIEVE and a forms product in the same
mmand file unless you set up that file using the following steps:

The default interactive assignment for SYS$INPUT is your terminal. When
you run a command file, SYS$INPUT is the command file itself. Therefore,
your command file must assign SYS$INPUT to SYS$COMMAND (the
default device name of your terminal) so that the forms product can get input
from the terminal. That assignment must precede the invocation of
DATATRIEVE:

$ ASSIGN/USER_MODE SYS$COMMAN0 SYS$INPUT

Then you must include all the DAT A TRI EVE commands and statements in
a procedure that is invoked by the command file.

1e resulting command file takes this form:

~SSIGN/USER_MODE SYS$COMMAND SYS$INPUT
DTR EXECUTE procedure-name

Using Forms with DATATRIEVE 13-27

13.4.6.3 Modifying Data Using View Domains and FORM IS -- You must be
very careful when modifying records in a view based on more than one domain.
The restriction documented here applies to modifying a field in a view when the
modified field is the basis for selecting records from another domain. Although
this restriction applies to views, it is included here to illustrate how the use of a
form with views can mask modification errors.

You unintentionally modify data if you try to modify fields when all of the follow­
ing conditions are true:

• You modify records in a view domain that uses FORM IS.

• The view selects records from another domain based on the value of a field i
the view.

• You modify the field that forms the basis for selecting records from the sec­
ond domain.

The following example shows what happens when you try to modify fields that
refer to other domains in a view using a form. The sample view domain
SAILBOATS has been edited to create the example.

The view domain containing a FORM IS clause:

DOMAIN SAILBOATS
OF YACHTS, OWNERS BY

01 SAILBOAT OCCURS FOR YACHTS.
03 BOAT FROM YACHTS.
03 SKIPPERS OCCURS FOR OWNERS WITH BUILDER EQ BOAT.BUILDER.

05 NAME FROM OWNERS.
FORM IS SAIL IN DTR$LIBRARY:FORMS

SAILBOATS refers to the OWNERS domain based on the value for BUILDER.

Here are the OWNERS records before the modification:

DTR> READY OWNERS
DTR> PRINT OWNERS

OWNER
NAME BOAT NAME BUILDER

SHERM MILLENNIUM FALCON ALBERG 35

MODEL

STEVE DELIVERANCE ALBIN VEGA
HUGH IMPULSE ALBIN VEGA

13-28 Using Forms with DATATRIEVE

{ou modify SAILBOATS:

TR> FOR FIRST 1 SAILBOATS WITH ANY SKIPPERS MODIFY

>ATATRIEVE displays the first record that meets the criterion WITH
lUILDER EQ BOAT.BUILDER on the form, and you modify the record to
1clude a new value for BUILDER:

YACHT SPECIFICATION DATA

Builder: ALBERG Changed to ALBIN Model: 37 MK II

Length: 37 Beam: 12 Disp: 20000

Rig: KETCH PRICE: 36951

Owners: SHERM

~ATATRIEVE updates all the fields on a form when a you press ENTER or
.ETURN to complete data entry. Because you changed ALBERG to ALBIN, the
Nner name from the updated record appears in the next record for which there is
BUILDER named ALBIN.

HERM now replaces STEVE in that OWNERS record.

rR> PRINT OWNERS

INER
lME BOAT NAME BUILDER

!ERM MILLENNIUM FALCON ALBERG
tERM DELIVERANCE ALBIN

IMPULSE ALBIN
:M EGRET cite

MODEL

35
VEGA
VEGA
CORVETTE

l.4.6.4 Special Graphics Characters in Forms -- When you design a form
:ing characters from the VTlOO Special Graphics set, the characters might not
ttomatically work from one form invocation to the next. If this problem occurs,
ess CTRL/W to repaint the form.

Using Forms with DATATRIEVE 13-29

Using DATATRIEVE with DBMS 14

his chapter describes the commands, statements, and clauses that let you use
AX DATATRIEVE with VAX DBMS databases.

you already use DATATRIEVE, you can skip the section that deals with
1rming a DATATRIEVE query statement. This chapter discusses basic DBMS
mcepts. For more information about DBMS concepts, read the VAX DBMS
itroduction to Database Administration and VAX DBMS Introduction to Data
fonipulation.

you use DBMS but are not familiar with DATATRIEVE, you can supplement
tis chapter by reading the chapter on writing record selection expressions in this
anual and Chapter 1 of the VAX DATATRIEVE Handbook on basic
AT A TRI EVE concepts. You can also read the chapter in the VAX
ATATRIEVE Guide To Writing Reports on creating reports from a DBMS
1tabase.

1 this chapter, you learn to:

Create a database definition in DATATRIEVE that represents a DBMS
database

Access the DBMS database either by readying it directly or by defining
domains for each DBMS record and readying the domains

Locate DBMS records in a variety of ways

Print whole records or parts of records

Store and modify records

Erase records

Connect. reconnect. and disconnect records from sets

14-1

• Define and access view domains and hierarchical DBMS records

• Create procedures and indirect command files that access DBMS records
and sets

This chapter uses examples in the PARTS sample database included with the
DATATRIEVE User Environment Test Package (UETP) and installed on your
system. The following command sets the CDD default to the directory that con­
tains the database domain definitions used in this chapter:

DTR > SET DICTIONARY CDD$TOP.DTR$LIB.DEMO.DBMS

14.1 Advantages of Using DATATRIEVE

Although VAX DBMS has its own interactive query language to access DBMS
data, you may prefer to use DAT ATRIEVE. By using DAT A TRI EVE syntax with
a few special DBMS extensions, you can:

• Find and manipulate groups of records

• Modify, update, and erase DBMS data

• Create reports

• Plot graphs

• Relate data stored in RMS files and Rdb databases with data stored in
DBMS databases

• Use FMS or TDMS forms to access and change DBMS data

Using DAT ATRIEVE, you can access individual records, groups of records, and
records related according to information in a DBMS set. A set is a DBMS data
structure that establishes a relationship among records.

For example, in the sample PARTS database, there is a set named
CONSISTS OF. This set, illustrated in Figure 14-1, contains pointers that iden­
tify which employees (in the EMPLOYEES domain) work for which divisions (in
the DIVISIONS domain).

A single record in the DIVISIONS domain is called a single record occurrence. A
single record occurrence is the data of a single record in the database. For exam­
ple, the SOFTWARE division is a single record occurrence.

This single record occurrence is related to another set of records by the informa­
tion in a single set occurrence of the set. A single set occurrence contains one
owner record occurrence and zero or more member record occurrences.

14-2 Using DATATRIEVE with DBMS

DIVISIONS

CONSI TS_OF ~---- Set name

EMPLOYEES

MK-01130-01

igure 14-1: DBMS Set CONSISTS_ OF

1 a DBMS database, relationships between records are always described in sets.
or example, the single owner record occurrence of the SOFTWARE division is
mnected to employee records by the information in a single occurrence of the set
ONSISTS_OF. Figure 14-2 shows this relationship.

SOTRE I
:;ONSISTS_OF Single set occurrence

HUTCHINGS

MK-01140-01

gure 14-2: Single Set Occurrence

he information that employees HUTCHINGS, IACOBONE, and PASCAL work
,r the SOFTWARE division is described in the single set occurrence of the
ONSISTS OF set.

l addition to manipulating data, a big advantage of using DAT A TRI EVE with
BMS data is that you can easily format that data by using DATATRIEVE
·aphics and Report Writer. See the VAX DATATRIEVE Guide to Graphics and
AX DATATRIEVE Guide to Writing Reports for information on using these
atures of DATATHIEVE. DATATRIEVE provides specialized syntax to work

Using DATATRIEVE with DBMS 14-3

with DBMS records and these set relationships:

• Two define commands (DEFINE DATABASE and extensions to DEFINE
DOMAIN)

• An extension to the READY command (READY database-path-name)

• Two SHOW commands (SHOW SETS and SHOW DATABASES)

• Three clauses that extend the record selection expression and refer to
records as participants in sets (MEMBER. OWNER, and WITHIN)

• An extension to the STORE statement (CURRENCY clause)

• Three statements to work with sets (CONNECT, DISCONNECT, and
RECONNECT)

• Two database commands (COMMIT and ROLLBACK)

14.2 Defin•ng a Database: The DEFINE DATABASE Command

To access DBMS records and sets, you must define the DBMS database in
DATATRIEVE terms. Using the DEFINE DATABASE command, you create a
DATATRIEVE "database instance" for the DBMS database.

The DEFINE DATABASE command:

• Defines a pointer to the DBMS database and gives the database a unique
DATATRIEVE name

• Identifies the DBMS schema, subschema, and root file you want to access
and associates it with the DAT A TRIEVE database name

• Stores the new database definition in the CDD

You must specify the name of a subschema, its schema, and the associated
database root file. in that order.

The following example defines a database instance. The CDD path name of the
schema is CDD$TOP.DTR$LIB.DEMO.DBMS.PARTS. The name of the
subschema is PART, and the root file is DTR$LIBRARY:DTRPARTDB.ROO.

DTR> DEFINE DATABASE PARTS_DB
DFN> USING SUBSCHEMA PART
DFN> OF SCHEMA CDD$TOP.DTR$LIB.DEMO.DBMS.PARTS
DFN> ON DTR$LIBRARY:DTRPARTDB.ROO;
DTR>

14-4 Using DATATRIEVE with DBMS

he format for this command is:

EFINE DATABASE dbms-database-path < ------------- (1)

[USING] [SUBSCHEMA] subschema-name <------- (2)

[OF] [SCHEMA] schema-path-name < ------- (3)

ON root-file-spec; < ------------- (4)

l. The dbms-database-path is the DAT A TRIEVE name you use for your
database instance.

~. The subschema-name is the DBMS name of the definition that defines
records and their relationship to each other. The DBMS user creates the
subschema definition when the DBMS database is created. It describes
just that portion of a DBMS database or schema needed by a particular
application.

I. The schema-path-name is the DBMS name of the definition that contains all
area, record, data item, and interrecord relationship (set) definitions. It
describes how relationships are established and discontinued in a database,
or how a record becomes a member of a set and is taken out of a set. It also
describes set order.

The DBMS user creates it in a file using the DBMS Data Definition
Language (DDL). When the DBMS user compiles this definition using the
DDL/COMPILE command, the definition is loaded into the CDD. A subse­
quent DBO/CREATE command issued by a DBMS user from DCL level
creates the database. The DBMS schema can be referenced by more than
one database instance.

The root-file-spec is the name of the database root file. A DBMS root file
contains all the information needed by DBMS to access the schema,
subschema. and the data files at run time. The DBMS user creates the root
file.

1.3 Accessing the Database

ter you define a database, you can access it in one of two ways:

Ready it directly with the READY database-path-name command

Define domains for each record in the database with the DEFINE DOMAIN
command and then ready each domain

Using DATATRIEVE with DBMS 14-5

Using the first method, you can ready all the records associated with that
database using a single READY command. The advantage of using this method is
that you need not define a domain for each record in the DBMS datab~se. The
syntax is simpler and readying a database may be faster than readying the sepa­
rate domains.

Using the second method, in addition to defining the database, you need to define
, a domain for each DBMS record. The advantage of using this method is that you

can use view domains, and you can associate a form definition with a DBMS
record in the domain definition.

The next sections discuss these two methods.

14.3.1 Readying an Entire Database Directly

When you ready a database directly, you can access all the data from:

• All or selected DBMS records associated with that database in the DBMS
subschema definition

• The sets in which those records participate

For example, if you ready PARTS DB, you can access all the records in the
PART subschema definition. When you do a SHOW READY command, you see
all the records made available by the READY command.

DTR> READY PARTS_DB

DTR> SHOW READY
Ready sources:

CLASS: Record, DBMS, shared read
<CDD$TOP.DTR$LIB.DEMO.DBMS.PARTS_DB;1>

COMPONENT: Record, DBMS, shared read
<CDD$TOP.DTR$LIB.DEMO.DBMS.PARTS_DB;1>

DIVISION: Record, DBMS, shared read
<CDD$TOP.DTR$LIB.DEMO.DBMS.PARTS_DB;1>

EMPLOYEE: Record, DBMS, shared read
<CDD$TOP.DTR$LIB.DEMO.DBMS.PARTS_DB;1>

PART: Record, DBMS, shared read
<CDD$TOP.DTR$LIB.DEMO.DBMS.PARTS_DB;1>

QUOTE: Record, DBMS, shared read
<CDD$TOP.DTR$LIB.DEMO.DBMS.PARTS_DB;1>

SUPPLY: Record, DBMS, shared read
<CDD$TOP.DTR$LIB.DEMO.DBMS.PARTS_DB;1>

VENDOR: Record, DBMS, shared read
<CDD$TOP.DTR$LIB.DEMO.DBMS.PARTS_DB;1>

No loaded tables.

DTR>

14-6 Using DATATRIEVE with DBMS

,he format for the READY command for databases is:

:EADY database-path-name

l.

I ..

·.

[SNAPSHOT]

[

PROTECTED]
SHARED
EXCLUSIVE

USING

[

READ l WRITE
MODIFY
EXTEND

{
rdb-relation-name
db ms-record-name

} [AS alias]

[SNAPSHOT]

[

PROTECTED]
SHARED
EXCLUSIVE [;~i~ l

EXTEND

[, ...]

The database-path-name is the DAT A TRIEVE name you defined for your
database instance.

The access options (PROTECTED, SHARED, and EXCLUSIVE) and the
access modes (READ, WRITE. MODIFY, and EXTEND) are discussed in
Section 14.3.3. SHARED READ is the default access for DBMS
databases.

The USING clause allows you to limit database access to specified DBMS
records. If you omit the USING clause of the READY command, all records
in the database are readied.

The dbms-record-name is the name used by the DBMS user to define
DBMS records in the subschema definition.

The alias name is a name you use to refer to the DBMS record specified. If
you include an alias, you must use it in all the DAT ATRIEVE statements
and commands that refer to the DBMS record.

:>te that you can ready selected DBMS records in the database. You need not
ady them all. You can specify access options for each record, as well as options
r the entire database.

Using DATATRIEVE with DBMS 14-7

For example:

DTR> READY PARTS_DB USING EMPLOYEE READ, DIVISION WRITE
DTR>
DTR> SHOW READY
Ready sources:

DIVISION: Record, DBMS, shared write
<CDD$TOP.DTR$LIB.DEMO.DBMS.PARTS_DB;1>

EMPLOYEE: Record, DBMS, shared read
<CDD$TOP.DTR$LIB.DEMO.DBMS.PARTS_DB;1>

No loaded tables.

DTR>

This READY command provides access to all the data from:

• The records associated with those domains (EMPLOYEE and DIVISION
records)

• The sets in which those records participate (MANAGES, CONSISTS_OF.
ALL_EMPLOYEES)

14.3.2 Defining and Readying DBMS Domains

You can also access DBMS data by defining a domain for each DBMS record you
require. DAT ATRIEVE automatically maps database records to these domains.

In the following example, you:

• Define a DBMS domain (PART_S)

• Identify the associated DBMS record type (PART)

• Identify the DATATRIEVE instance (PARTS_DB) of the DBMS database

DTR> DEFINE DOMAIN PART_S USING
CON> PART
CON> OF DATABASE PARTS_DB;
DTR>

The format for the DEFINE DOMAIN command for DBMS domains is:

DEFINE DOMAIN domain-path-name

[USING] record-path-name

[OF] [DATABASE] database-path-name

< ------ (1)

< ------ (2)

. < ------ (3)

[FORM [IS] form-name [IN] form-library]; <------ (4)

14-8 Using DATATRIEVE with DBMS

1. The domain-path-name is the name you assign the DBMS domain you are
creating. This DBMS domain is a DATATRIEVE structure that points to
the DBMS record type. To avoid confusion, this name should not be the
same as the DBMS record name and cannot be the same as the DBMS
database name.

2. The record-path-name is the name of a record type contained in the
subschema of the specified database. You must define a domain and specify '
a single DBMS record name for each record type in the DBMS database
you want to access.

3. The database-path-name is the database instance you defined in the
DATATRIEVE DEFINE DATABASE command.

!. The form-name is the name of a form associated with the DBMS domain.
The form-library is the file specification of a form library.

or the full syntax of this command, see the VAX DATATRIEVE Reference
f anual.

he following examples define domains for all the records (in addition to the
ART record defined above) in the DBMS PARTS database. The domains are
LASSES, COMPONENTS, DIVISIONS. EMPLOYEES, QUOTES,
UPPLIES, VENDORS.

"ote that you establish a domain definition for each record type you want to
~cess in the PARTS_DB database. (Blank lines separate the definitions for
arity.)

rR> DEFINE DOMAIN CLASSES USING
lN> CLASS OF DATABASE PARTS~DB;
LR>
rR> DEFINE DOMAIN QUOTES USING
lN> PR_QUOTE OF DATABASE PARTS_DB;
rR>
rR> DEFINE DOMAIN SUPPLIES USING
JN> SUPPLY OF DATABASE PARTS_DB;
rR>
IR> DEFINE DOMAIN VENDORS USING
JN> VENDOR OF DATABASE PARTS_DB;
~R>
~R> DEFINE DOMAIN EMPLOYEES USING
IN> EMPLOYEE OF DATABASE PARTS_DB;
~R>
~R> DEFINE DOMAIN COMPONENTS USING
IN> COMPONENT OF DATABASE PARTS_DB;
'R>
'R> DEFINE DOMAIN DIVISIONS USING
IN> DIVISION OF DATABASE PARTS_DB;
'R>

Using DATATRIEVE with DBMS 14-9

As with the database or DAT ATRIEVE RMS domains, you must ready DBMS
domains before you can access data from those domains. When you use the
READY command on a DBMS domain, you get access not only to a record type,
but to the sets in which the record type participates.

For example, the following command readies the domains EMPLOYEES and
DIVISIONS:

DTR> READY EMPLOYEES, DIVISIONS

It provides access to all the data from:

• The records associated with those domains (EMPLOYEE and DIVISION
records)

• The sets in which those records participate (MANAGES, CONSISTS_OF,
ALL_ EMPLOYEES)

The format for the READY command is:

READY domain-path-name [AT node-spec] [AS alias-1]

[

PROTECTED]
SHARED
EXCLUSIVE

[SNAPSHOT]

[

READ l WRITE
MODIFY
EXTEND

[, ...]

Note -----------

You must ready all participants in a set (both owner and member
domains) to access data identified by that set. The descripton of all of
the arguments to the READY command is in the VAX DATATRIEVE
Reference Manual.

14.3.3 Results of the READY Command

When you ready a DBMS database, DBMS record, or a DBMS domain. all the
realms in which a DBMS record participates are automatically readied. A realm i
one or more schema areas and is defined in a subschema. A realm lets you restric
or grant access to sections of a database.

Ask your system administrator for a listing of the realms for the subschema you
are using. The realms are ultimately associated with storage areas, DBMS units
contained in single files. It is actually these files that are opened, through a
READY command that readies at least one of the domains in that file.

14-10 Using DATATRIEVE with DBMS

{ou can ready a database or a domain as SHARED, PROTECTED, or
~XCLUSIVE. The READY options you choose determine the level of VAX
)BMS locking. Locking affects both you and other active users. You can also
pecify how you access the domains or records for READ, WRITE, MODIFY, or
~XTEND access.

;ee the VAX DATATRIEVE Reference Manual and the VAX DBMS Database
Jesign Guide for information on access options and modes.

\Then used with DBMS domains, DBMS records or the entire DBMS database,
he READY command has these effects:

Each specified domain or DBMS record is readied with the requested
access.

The default access mode is SHARED READ. If you do not specify
EXCLUSIVE or PROTECTED access, DATATRIEVE always readies for
SHARED access.

When you ready more than a single domain or DBMS record in the realm:

If you enter a SHOW READY command, you see the DBMS records
and domains with the access option and mode you specified in the
READY command. For example:

DTR> READY PARTS_DB USING SUPPLY, VENDOR EXCLUSIVE WRITE

DTR> SHOW READY
Ready sources:

SUPPLY: Record, DBMS, shared read
<CDD$TOP.DTR$LIB.DEMO.DBMS.PARTS_DB;1>

VENDOR: Record, DBMS, exclusive write
<CDD$TOP.DTR$LIB.DEMO.DBMS.PARTS_DB;1>

However, other users' access to those records or domains is limited by
the most restrictive access you specify in a READY command. This
restrictive access applies until you ready the DBMS domain or record
again, or until you do a final FINISH on the database. (The
DATATRIEVE FINISH command ends access to DBMS domains and
records and executes a DBMS COMMIT. See Section 14.10.4 for more
information.) Thus, DATATRIEVE applies the access mode and option
of the most restrictive domain or DBMS record in the realm to all
domains in that realm.

In the preceding example, therefore. as long as VENDOR is readied
with EXCLUSIVE WRITE, the access applied to SUPPLY is also
EXCLUSIVE WRITE.

Using DATATRIEVE with DBMS 14-11

• To change access to a domain or a DBMS record, you must ready the domair
or DBMS reco'rd again. Because DATATRIEVE will ready other domains or
DBMS records in the realm again if the new access is more restrictive,
changing access to one domain or record may actually result in the entire
realm being readied again.

• If you print, modify, or store data into a domain, record, or database,
DAT A TRI EVE allows you to reready with a more restrictive access only
after you do a COMMIT, a FINISH on the record or domain, or a
ROLLBACK. DATATRIEVE displays a message indicating it is releasing
the collections automatically to allow such a reready.

EXCLUSIVE WRITE access lets you store and modify records but prevents
other users from even retrieving records from the domain until you end your
access to it or ready it again with a different access mode.

You can use the SHOW command to see:

• The database records or domains that are readied (SHOW READY)

• The fields in the records that are readied (SHOW FIELDS)

• The sets that are made accessible, plus the access mode and access option
with which you readied the database or domain (SHOW SETS)

14.3.3.1 The SHOW FIELDS Command -- The following SHOW FIELDS com­
mand displays the fields of the record types EMPLOYEE and DIVISION:

DTR> SET DICTIONARY CDD$TOP.DTR$LIB.DEMO.DBMS
DTR> READY EMPLOYEES, DIVISIONS
DTR> SHOW FIELDS

DIVISIONS
DIVISION

DIV_NAME <Character string>
EMPLOYEES

EMPLOYEE
EMP_ID (ID) <Number>
EMP_LAST_NAME (LAST_NAME) <Character string>
EMP_FIRST_NAME (FIRST_NAME) <Character string>
EMP_PHONE (PHONE_NUMBER) <Number>
EMP_LOC (LOCATION) <Character string>

No global variables are declared.

14.3.3.2 The SHOW SETS Command -- Using the SHOW SETS command,
you can see the sets in which the DBMS domains and record types participate.
The SHOW SETS command identifies the domains that participate in the sets, i
you defined domains. Otherwise, it shows the DBMS records that participate in
each set.

14-12 Using DATATRIEVE with DBMS

n DATATRIEVE, because you can define a domain for each DBMS record, a
HOW SETS command indicating the domains implicitly shows the DBMS
~cords that participate in the sets.)

or example, two domains, EMPLOYEES and DIVISIONS (and their associated
~cords, EMPLOYEE and DIVISION), participate in the set MANAGES. When
ou have defined domains, if you enter a SHOW SETS command, you see the
omain names you defined. The EMPLOYEES domain represents the
MPLOYEE record and the DIVISIONS domain represents the DIVISION
~cord.

rR> SHOW SETS
Set: MANAGES

Owner: EMPLOYEES
Member: DIVISIONS, automatic optional

Set: CONSISTS_OF
Owner: DIVISIONS
Member: EMPLOYEES, manual optional

Set: ALL_EMPLOYEES
Member: EMPLOYEES, automatic fixed

h.e terms "member" and "owner" refer to set characteristics that are described
the section on finding and printing DBMS records.

h.e terms "automatic", "manual", "optional", and "fixed" are discussed in the
dion on erasing and disconnecting 'records and sets.

1e next section on finding data in a DBMS database discusses sets further.

~.4 Forming a DATATRIEVE Query

nee you have defined and readied your DBMS database, you may want to:

Find and display a record or records from that database

Find data related to that record through DBMS set relationships

.\TATRIEVE provides you with an English-like query language for DBMS
tabases.

iis section discusses how to form a simple DATATRIEVE query; it is for DBMS
ers unfamiliar with DATATRIEVE. The next section discusses how to add the
'\. TATRIEVE clauses (WITHIN, MEMBER. and OWNER.) to find records
lated by a set.

Using DATATRfEVE with DBMS 14-13

In DATATRIEVE, you can access a single record at a time or you can work
with a group of records. Using the DATATRIEVE record selection expression
(RSE), you can query, print, modify, or store data in a DBMS database. A
DATATRIEVE RSE identifies and limits the records you want to include in a
record stream, as shown in Figure 14-3.

DTR> FIND FIRST 3 EMPS IN EMPLOYEES WI TH IN CONSISTS-OF

® ©
restriction name clause rse source set clause

clause (context variable)

CON> WITH EMP-LOC= 11 45878 11
- SORTED BY EMP_F I RST -NAM

® ®
condition clause sort clause

MK-01598-00

Figure 14-3: The Parts of an RSE

An RSE consists of the following components:

1. An optional restriction clause (ALL or a number) -- to tell DAT A TRIEVE
how many records to include in a record stream.

2. An optional name clause -- to qualify or provide a name for the record
source. You can use this name later to identify the record stream and to
access records in that stream. The clause is also called a context variable
when you use it to name a record stream or modify field names in a FOR
loop.

3. A required record source -- to identify an RMS, Rdb, or DBMS domain
name. a view or network domain, a DBMS record name, an Rdb relation
name, a collection. or a list.

4. A DBMS set clause (WITHIN. OWNER, or MEMBEm -- to identify a set
name and the relationship to that set.

5. An optional selection condition (WITH Boolean expression) -- to tell
DATATRIEVE what values to look for in a record.

6. An optional sort clause (SORTED BY) -- to sort the record stream in the
order you specify.

14-14 Using DATATRIEVE with DBMS

1e format for the RSE follows. Note that it includes the components just identi­
~d as well as the following two additional elements:

An optional relational clause (CROSS) -- to combine data from more than
one domain

An optional reduction clause (REDUCED TO) -- to retain only unique values

IRST n] [context-var IN] rse-source

.LL

:ROSS [context-var IN] rse-source [OVER field-name]] [...]

{ITH boolean-expression] [REDUCED TO reduce-key[, ...]]

ORTED BY sort-key[, ...]]

he format for rse-source is:

domain-name
collection-name
list
rdb-relation-name
dbms-record-name [MEMBER

OWNER
WITHIN

[OF] [context-name.set-name]]

nte that the domain name in the preceding syntax includes DBMS domains as
~II as Rdb, RMS, view. and remote domains. Note that the MEMBER,
WNER, and WITHIN set-name syntax is used only with a DBMS domain name
DBMS record name.

>r a more complete explanation of RSE syntax. see Chapter 5 of the VAX
ATATRIEVE Ref ere nee Manual and the chapter on writing record selection
:pressions in this manual. For an example of the CROSS clause, see the section
this chapter on using the CROSS syntax.

t.5 Forming a DATATRIEVE/DBMS Query

rpically, you can use two methods to form a DATATRIEVE query that accesses,
BMS data:

The FIND and SELECT statements. to establish a collection of records and
point to a specific record from that collection

The FOR statement, which uses an RSE to form a temporary record stream

Using DATATRIEVE with DBMS 14-15

These statements are discussed and illustrated in the next sections.

14.5.1 Forming a DATATRIEVE Collection of DBMS Records

You can access DBMS data in DATATRIEVE by forming a collection. A collec­
tion is a group of records that you can access until you:

• Form a new collection (unless you assign a name to the new or old
collection).

• Remove the collection with the RELEASE command.

• Finish the domain that owns the collection using the FINISH command.

14.5.1.1 Using the FIND Statement -- You form a collection using the
DAT A TRI EVE FIND statement. You can create collections from a readied
DBMS domain or from a DBMS record in a database you have readied through
DATATRIEVE.

When you form a collection, DAT ATRIEVE gives that collection the name
CURRENT. You can access this collection with the name CURRENT, or you car
assign an additional name for a collection and use this name to access the
collection. You use the name clause as illustrated in the RSE format to name a
collection.

If you name a collection, it is not deleted when you form another collection.
Therefore, you can have several named collections of records available at any tim
in DATATRIEVE.

The following example, for instance, forms a collection from the DBMS record
EMPLOYEE. readied when you readied the PARTS_DB database:

1. Form a collection of the first five employees and assign the name EMP to
that collection.

2. Form a second collection by limiting the EMP collection to those employee
with EMP_LOC = 45678 and assign the name EMP45.

3. Show that DAT ATRIEVE retains information about both collections
EMP45 (also CURRENT) and EMP.

4. Print the CURRENT collection.

5. Print the EMP collection.

14-16 Using DATATRIEVE with DBMS

'R> READY EMPLOYEE
'R> FIND FIRST 5 EMP IN EMPLOYEE <------------- (1)

records found]
'R> FIND EMP45 IN EMP WITH EMP _LOC = "45678" < ----- (2)

records found]
'R> SHOW COLLECTIONS < ------------- (3)
,llections:

EMP45 (CURRENT)
EMP

'R> PRINT CURRENT < ------------- (4)

Pho-ne
.ent Last Name----------- First Name- Number Loe

998 HILL OLA 124567 45678
2234 HORT! BRUCE 124567 45678.

'R> PRINT EMP < ------------- (5)

Phone
.ent Last Name----------- First Name Number Loe

5624 FRASER BOB 8902345 23456
2333 HOFFMAN MIKE 4568901 89012
998 HILL OLA 124567 45678

:2234 HORT! BRUCE 124567 45678
7777 PASCAL RICHARD 4568901 89012

ote that you can still access the records in the EMP collection after you create a
:cond collection with the FIND statement. As long as you name the collections,
AT ATRIEVE retains them when you create new collections.

you name a collection, you can use this name as a context variable in an RSE to
odify a record stream. Later sections contain examples showing how you can do
.is.

LS.1.2 Using the SELECT Statement -- After you form a collection, you use
.e SELECT statement to choose a record from that collection. This selected
cord is the target of other DATATRIEVE statements such as PRINT.
ODIFY. and ERASE. The SELECT statement establishes DBMS currency for
record.

:>u can specify the record you want to access either by using an integer
ELECT 5 gets the fifth record of the collection) or by such syntax as FIRST,
EXT, LAST, and so on.

Using DATATRIEVE with DBMS 14-17

In the following example, the SELECT statement:

1. Selects the first record in the EMP45 collection, which is also the
CURRENT collection. When you do not specify a collection name, the
SELECT statement defaults to the first record in the CURRENT
collection.

2. Selects the second record in the EMP collection.

DTR> SELECT < --------------------------- (1)
DTR> PRINT

Phone
I dent Last Name--------...:. __ First Name Number Loe

998 HILL OLA 124567 45678

DTR> SELECT 2 EMP
DTR> PRINT

< --------------------------- (2)

Phone
!dent Last Name----------- First Name Number Loe

12333 HOFFMAN MIKE 4568901 89012

For a complete discussion of the FIND and SELECT statements, see the FIND
and SELECT statements in the VAX DATATRIEVE Reference Manual.

14.5.2 Forming a Record Stream of DBMS Records

The FOR statement differs from using collections in that it creates a temporary
record stream that DATATRIEVE knows about only while it is executing that
statement. It places locks on fewer DBMS records than a FIND statement.

DATATRIEVE can access each record in that stream one by one, displaying.
printing, or modifying each record according to your specifications. As each
record is accessed, it becomes current.

For instance, in the following example, you:

1. Form a temporary DAT ATRIEVE record stream of employee records with
EMP LOC = 45678

2. Display only those employees in the record stream

3. Try to print the CURRENT collection, which does not exist

14-18 Using DATATRIEVE with DBMS

TR> READY EMPLOYEES
TR> FOR EMPLO:YEES WITH EMP_LOC = "46678"
Looking for statement]
ON> PRINT EMPLOYEE

< -------.---- (1)

< ----------- (2)

Phone
dent Last Name----------- First Name Number Loe

998 HILL
22234 HORTI
11141 SCHATZEL
12322 THOMPSON
12345 HUNTER

OLA
BRUCE
BETH
STEPHEN
BUTCH

124567 45678
124567 45678
124567 45678
124567 45678
124567 45678

rR> SHOW CURRENT < -------- (3)
current collection has not been established.

4.6 Forming a DATATRIEVE/DBMS Query of Data Related by
Sets

1 the previous section, you used simple DAT ATRIEVE queries to access infor-
1ation from a single DBMS record or domain.

rote that DATATRIEVE also makes set information available when you ready a
omain. In the following sections, you access information from both the data in a
:ngle record and data in records related through information in a set .

. s with DBMS data in a single record, you can use the FIND and SELECT syn­
lX to form collections, or you can use the FOR syntax to create a temporary
~cord stream.

·ote two important concepts about using DAT A TRI EVE statements to access
1BMS data related by set information:

You must use either the FIND and SELECT or the FOR statement to estab­
lish the single record context, called currency. in DBMS. DBMS needs this
single record context to find related records and sets.

You must specify a DBMS set name to identify the sets in which a record
participates, unless you use the Context Searcher. (See Section 14.6.4.)

Using DATATRIEVE with DBMS 14-19

When you access information through DBMS sets, you access:

• First, a particular record from a domain or record (for example, a department
from the DIVISIONS domain)

• Second, data related to that record from other DBMS domains or records
through a set (for example, employees from the EMPLOYEES domain
related through the set CONSISTS_ OF)

The examples in this section use the set CONSISTS OF. It represents the rela­
tionship between a department in an organization (DIVISIONS domain) and the
employees that make up that department (EMPLOYEES domain). Figure 14-1
shows this relationship.

The following sections illustrate DAT ATRIEVE syntax you use to access infor­
mation in sets.

14.6.1 Forming Collections of DBMS Set Data

As with data in a single DBMS record, you can form a collection of DBMS data
related through set information. You can then access those records by the collec­
tion name.

In the following example, for instance, you form a collection (DIV) from the
DIVISIONS domain. You form a second collection (EMP) of employee records.
The employee records in EMP collection are related to the selected record from
the DIV collection. DATATRIEVE now knows about both collections, DIV and
EMP. You can print records from both of these collections:

1. Use the FIND statement to create a collection of records from the
DIVISIONS domain. The SELECT statement identifies a single record
occurrence and establishes context (currency in DBMS) with the set
information.

2. Use the FIND statement again to establish a collection of employee infor­
mation from the.EMPLOYEES domain. By using the WITHIN set-name
syntax, you identify the set that you want DAT ATRIEVE to use. This set
identifies the employee records related to the SOFTWARE division.

14-20 Using DATATRIEVE with DBMS

TR> SET DICTIONARY CDD$TOP.DTR$LIB.DEMO.DBMS
TR> READY DIVISIONS, EMPLOYEES

------+
TR> FIND DIV IN DIVISIONS WITH DIV_NAME = "SOFTWARE"
1 record found]

I
I 1
I TR> SELECT

TR> FIND EMP IN EMPLOYEES WITHIN CONSISTS_OF
3 records found]
TR> PRINT DIV_NAME 1 EMPLOYEE OF EMPLOYEES

ivision Name---Ident Last Name----First Name

OFT WARE
OFTWARE
OFT WARE

rote that:

23451 HUTCHINGS
43215 IACOBONE
77777 PASCAL

BRUCE
ANTHONY
RICHARD

------+

------+
I
I
I
I

Phone I
Number Loe I 2

I
2346789 67890 I

124567 45678 I
4568901 89012 I

------+

1. You must identify a single record occurrence using FIND and SELECT so
that DATATRIEVE can establish context (currency in DBMS) for the
related set information.

In the first part of the example, DAT A TRIEVE uses the selected single
record, SOFTWARE, to establish context for the set information.

2. Specify the set that contains pointers relating the data from one domain (or
DBMS record) to another.

In the second part of the example, the WITHIN clause tells DATATRIEVE
to look at the single occurrence of the set CONSISTS OF. The single set
occurrence contains pointers that point from the single record occurrence
DATATRIEVE currently knows about. the SOFTWARE division, to related
records in the domain, EMPLOYEES.

4.6.2 Forming Record Streams of DBMS Set Data

ou can use the FOR loop to access the information from two domains. The
ested FOR loop in the following example creates two record streams and allows
:m to access records from each stream. In this example:

L. You form a temporary record stream of all records from the DIVISIONS
domain with a DIV NAME that contains the string VT (groups that develop
video terminals). You assign that record stream a name (VID).

~. You form a second temporary record stream of the records from the related
employee records in the EMPLOYEES domain identified by the set
CONSISTS OF

Using DATATRIEVE with DBMS 14-21

3. You print the division name and the related employee information.

DTR> FOR VID IN DIVISIONS WITH DIV_NAME CONT "VT"
CON> FOR EMP IN EMPLOYEES WITHIN CONSISTS_OF
CON> PRINT VID.DIV_NAME, EMF.EMPLOYEE

< ------- (1)
< ------- (2)
< ------- (3)

Phone
Division Name-------Ident Last Name------ First Name Number Loe

VT100 DEVELOPMENT
VT100 DEVELOPMENT
VT100 DEVELOPMENT
VT52 DEVELOPMENT
VT52 DEVELOPMENT

65437 FRANK
12333 HOFFMAN
54332 IGLESIAS
9867 FLETCHER

43221 HYNES

BEBI
MIKE
RAFAEL
BRUCE
RICH

4568901 89012
4568901 89012
2346789 67890

124567 45678
8902345 23456

Notice that you can name the record stream in the FOR statement (VIDI and use
that name to qualify a field name (VID.DIV NAME). In this example. the qualify­
ing name is not necessary to identify fields uniquely.

FOR loops allow you to access records more quickly than FIND statements. Note
that when you use a FOR loop, you need not use the SELECT syntax;
DATATRIEVE selects a single record each time through the loop. For more
information on the FOR loop, see the FOR statement in the VAX DATATRIEVl
Reference Manual.

14.6.3 Using OWNER and MEMBER Clauses to Identify Sets

In the previous section, you used the WITHIN clause to identify:

• The domain name (EMPLOYEES) from which you wanted the employee
data

• The set name (CONSISTS Ofl that identified the employee record you
wanted -

The WITHIN clause allows you to specify a set name without having to know if
the domain is a member or owner of the set.

There are two additional clauses of the record selection expression that allow you
to specify access to records through DBMS sets:

• The MEMBER clause

• The OWNER clause

The OWNER and MEMBER clauses specify whether a record is a member or an
owner of a set. In many cases, you can use the WITHIN clause in place of the
MEMBER and OWNER clauses. The SHOW SETS command lets you see

14-22 Using DATATRIEVE with DBMS

vhether a domain is a member or an owner of a set:

1TR> SHOW SETS
Set: MANAGES

Owner: EMPLOYEES < --------- (1).
Member: DIVISIONS, automatic optional

Set: CONSISTS_OF
Owner: DIVISIONS < --------- (2)
Member: EMPLOYEES, manual optional

Set: ALL_EMPLOYEES < --------- (3)
Member: EMPLOYEES, automatic fixed

,he SHOW SETS command indicates that:

1. The EMPLOYEES domain (in DBMS, the EMPLOYEE record) owns the
set MANAGES. The DIVISIONS domain (in DBMS, the DIVISION record)
is a member of the set MANAGES.

2. The DIVISIONS domain (in DBMS, the DIVISION record) owns the set
CONSISTS OF. The EMPLOYEES domain (in DBMS, the EMPLOYEE
record) is a member of the set CONSISTS_ OF.

3. The EMPLOYEES domain is also a member of the ALL EMPLOYEES
set, a system-owned set.

Note -----------

A system-owned set is a set owned by DBMS instead of a user-defined
record. System-owned sets have only one occurrence in the· database
and are used for relationships with a large number of member occur­
rences, or as entry points into a database. For more information on sys­
tem owned sets, see the VAX DBMS Database Design Guide.

igure 14-4 shows all these set relationships.

he following sections show you how to use the MEMBER and OWNER clauses
>access DBMS records.

Using DATATRIEVE with DBMS 14-23

DIVISIONS

MANAGES
CONSISTS_OF

EMPLOYEES

SYSTEM

ALL _EMPLOYEES

MK-01139--00

Figure 14-4: Set Relationships in Sample DBMS Database

14.6.3.1 The MEMBER Clause -- The MEMBER clause lets you access the
member records of a set. Conceptually, you are telling DATATRIEVE to "look
down" from a specified position (determined by a FIND/SELECT or a FOR state·
ment) and find the members of the set that are linked to the selected record.

For example, because EMPLOYEES is a member of the set CONSISTS OF, you
can use the MEMBER syntax rather than the WITHIN syntax you used-in the
previous section:

DTR> FIND DIV IN DIVISIONS WITH DIV_NAME = "SOFTWARE"
DTR> SELECT
DTR> FIND EMPLOYEES MEMBER OF CONSISTS_OF
DTR> PRINT ALL DIV_NAME, EMPLOYEE

Phone
Division Name------- Ident Last Name----------- First Name Number Lo

SOFTWARE
SOFTWARE
SOFTWARE

23451 HUTCHINGS
43215 IACOBONE
77777 PASCAL

BRUCE
ANTHONY
RICHARD

2346789 678
124567 456

4568901 890

14.6.3.2 The OWNER Clause --The OWNER clause tells DATATRIEVE to
"look up" from a position in the database, thereby giving you access to the owner
record of a set. The OWNER clause operates like the MEMBER clause; the only
difference is in the direction that DAT A TRI EVE looks.

For example. you know an employee named Richard Pascal and want to know
the division in which he works. Because DIVISIONS is the owner of the set

14-24 Using DATATRIEVE with DBMS

;oNSISTS_OF. you:

1. Form a record stream with the single employee record

2. Use the OWNER clause with the CONSISTS OF set to find the depart-
ment in which the employee works -

TR> FOR EMP IN EMPLOYEES WITH EMP_LAST_NAME= "PASCAL"
ON> PRINT ALL EMPLOYEE, DIV_NAME OF
ON> DIVISIONS OWNER OF CONSISTS_OF
TR>

Phone

< ------- (1)

< ------- (2)

dent Last Name----------- First Name Number Loe Division Name---

7777 PASCAL RICHARD 4568901 89012 SOFTWARE

TR>

4.6.4 Using the SET SEARCH Command to Access Sets

cS a DATATRIEVE user, you can use the SET SEARCH command to establish
ontext for list fields in records or for fields in hierarchical views.

1 addition, as a DAT ATRIEVE user accessing a DBMS database, you can use
1e SET SEARCH command to search for records related by set information.
'ou use this command in place of the WITHIN, OWNER, or MEMBER clauses.

'he SET SEAR.CH command instructs the DATATRIEVE Context Searcher to
noose the shortest route between DBMS record types when executing a PRINT
;atement. DAT A TRI EVE resolves the context for you so that you need not
Jecify the set relationship.

he following example executes a SET SEARCH statement and prints the
~lated division data without requiring you to specify the set CONSISTS_ OF:

rR> SET SEARCH
rR> FIND FIRST 1 EMPLOYEES
l record found]
rR> SELECT
rR> PRINT DIV_NAME
>t enough context. Some field names resolved by Context Searcher .

. vision Name-------

IG STOCKROOM

~R>

Using DATATRIEVE with DBMS 14-25

The following example walks through all occurrences of the set type
CLASS PART, instructing DATATRIEVE to display on your terminal only the
class code number. part identification numbers, and part descriptions of records
owned by CLASSES:

DTR> SET SEARCH
DTR> PRINT CLASS_CODE, PART_ID,, PART _DESC OF CLASSES
Not enough context. Some field names resolved by Context Searcher.

Part
Code Number -----------------Part Description-----------------

BR BR-1234-56 LA34
BR-3467-91 LA120
BR-8901-23 LA36

BT BT-0456-78 VT52
BT-1634-56 VT100

BU BU-0345-67 TERMINAL TABLE VT52
BU-1045-68 FREE-STANDING FRAME ASSEMBLY

CG-3256-40 VT100 KEYBOARD KED ASSY
CG-3454-38 PLASTIC KEY NUM. STYLE C
CG-4567-89 PLASTIC KEY ALPHA. STYLE A
CG-8767-78 VT100 SCREEN
CG-8901-23 VT100 HOUSING
CG-9435-61 KEY BASES
CG-9562-13 VT100 NUMERIC KEY CAP SET

In this case, the Context Searcher found many records! You can find the owners
and members of database sets by using the PRINT and SET SEARCH state­
ments. It is important to remember that SET SEARCH guesses: it always takes
the shortest route in a set structure and. therefore, might not return the right
answer.

Note that if you did not use the Context Searcher in the preceding example, the
full DATATREIVE query would use an inner print list. For the statement
"PRINT CLASS CODE, PART ID, PART DESC OF CLASSES", you would
need the following query: - -

DTR> PRINT CLASS_CODE, ALL PART_ID, PART_DESC OF
CON> PART_S MEMBER OF CLASS_PART OF CLASSES
DTR>

The expanded statement includes an inner print list.

The following example readies two more domains and instructs DAT ATRIEVE t4
display the name and description of the parts supplied by the vendor with the

14-26 Using DATATRIEVE with DBMS

iame "QUALITY COMPS":

ITR> SET SEARCH
ITR> READY SUPPLIES, VENDORS
ITR> PRINT VEND_NAME, PART_DESC OF
:ON> VENDORS WITH VEND_NAME = "QUALITY COMPS"
lot enough context. Some field names resolved by Context Searcher.

-------------Vendor Name---------------

UALITY COMPS
'T100 KEYBOARD ASSY
UMERIC KEYPAD FRAME
T52 HOUSING

.,his PRINT statement resulted in the display of all parts associated with the
pecified vendor. The PRINT statement is equivalent to:

TR> PRINT VEND_NAME, ALL ALL PART_DESC OF PART_S OWNER OF
ON> PART_INFO OF SUPPLIES MEMBER OF VENDOR_SUPPLY OF VENDORS WITH
ON> VEND_NAME = "QUALITY COMPS"

4.7 Finding Data from Two or More Domains
ri previous sections, you found records from several domains by first finding a
ingle record in one domain and then related data in a second domain through a
et relationship.

IA T ATRIEVE provides several ways for you to access records from two or more
omains, in addition to using the simple DAT ATRIEVE queries shown in the pre­
ious sections. These methods become particularly important when the data you
ant may reside in more than two domains. These methods include:

Combining the MEMBER and OWNER clauses to "walk the DBMS sets"

Using the CROSS clause of the RSE to join the data from several records or
domains

Defining a domain called a VIEW domain that lets you form simple queries
and keeps the complex set relationships in the domain definition

he example used in the following sections uses the VENDORS, PARTS, and
UPPLIES domains. The data in the VENDORS and PART S domains-has what
BMS calls a many-to-many relationship. -

)r example:

A single vendor might supply many different parts.

A single part might be supplied by many different vendors.

Using DATATRIEVE with DBMS 14-27

In a DBMS database. there cannot be a direct relationship between records
(DAT ATRIEVE domains) that have a many-to-many relationship. If you attempt
to select a particular vendor from the VENDORS domain, for instance, and then
try to display an associated part from the PART S domain, DATATRIEVE gives
you an error message indicating you have not established the correct context for
parts:

DTR> READY VENDORS, SUPPLIES, PART_S
DTR> FIND VENDOR WITH VEND_NAME = "QUALTIY COMPS"
[1 ~ecord found]
DTR> SELECT
DTR> FIND PART_S WITHIN VENDOR_SUPPLY
Set "VENDOR_SUPPLY" is undefined or used out of context.
DTR>

To relate the parts and vendor data. you must go through a third domain or
record that is owned by both the PARTS and VENDORS domains.

Figure 14-5 shows the VAX DBMS representation of this many-to-many
relation6hip.

PART _S VENDORS

PART_INFO VENDOR~SUPPL Y

SUPPLIES
MK-01135-00

Figure 14-5: DBMS Set Relating Three Domains

14. 7.1 Walking the Sets

Suppose you want information that involves access to PARTS, VENDORS, and
SUPPLIES. You want:

• The names for a specific vendor (VENDORS domain)

• The types of parts that vendor supplies (PARTS domain)

• Delivery lag time for that part (SUPPLIES domain)

14-28 Using DATATRIEVE with DBMS

, do this, you:

Ready all three DBMS domains. These READY commands also ready the
set relationships among the domains.

Find a vendor (for example, the company called QUALITY COMPS).

Find the parts supplied by QUALITY COMPS. Since you cannot directly
access part information in the PARTS domain from the VENDORS
domain, you must go through the SUPPLIES domain. To do this you:

a. Find all the member records in SUPPLIES related to the selected
VENDOR record.

b. Form a FOR loop that establishes a single record context for each
record in the SUPPLIES domain. Note that when you use a FOR loop,
you do not use the SELECT statement.

c. Print the three parts associated with that SUPPLIES record by using
the OWNER clause to find related parts through the PART_ INFO set.

tice that you must continue to provide a single record context for
1.TATRIEVE with either the FIND and SELECT statements or the FOR loop.

~> SET DICTIONARY CDD$TOP.DTR$LIB.DEMO.DBMS
~> READY VENDORS, PART_S, SUPPLIES
~>

~> FIND VENDORS WITH VEND-NAME = "QUALITY COMPS"
record found]
~> SELECT
~> PRINT VEND_ ID I VEND_NAME

1ndor
ID --------------Vendor Name---------------

89012 QUALITY COMPS

.>

< ------- (1)

< ------- (2)

.> FIND SUP IN SUPPLIES MEMBER OF VENDOR_SUPPLY < ---- (3a)
records found]
.> PRINT SUP
record selected, printing whole collection.

g Type Lag Time

MEMO 4-6 WEEKS
REPR 1-2 MONTHS
WSUP 7-8 WEEKS

(continued on next page)

Using DATATRIEVE with DBMS 14-29

DTR> FOR SUP
CON> PRINT PART_ID, PART_DESC OF
CON> PART_S OWNER OF PART_INFO

Part

<---- (3b)
<---- (3c)

Number -----------------Part Description-----------------

CG-3161-34 VT100 KEYBOARD ASSY
CG-1052-00 NUMERIC KEYPAD FRAME
CG-0956-78 VT52 HOUSING
DTR>

14.7.2 Using the CROSS Clause

You can combine records from several DBMS domains (or DBMS records readie1
by the READY command for databases) with the CROSS clause from the record
selection expression. The CROSS clause lets you compare and combine records
from two or more sources into a single record stream. It forms temporary rela­
tionships between records stored in different domains (or DBMS records) and let
you treat the data as though it were derived from one domain or record. You can
also combine data from DBMS records with Rdb or RMS records by using a
CROSS clause.

In the following example, you use the three domains from the previous section.
Using the CROSS clause, you combine several domains in one collection and
write queries against that collection. In this example, you:

1. Form a named collection (QUAL_PART) of the vendor record with a vendo
name of QUALITY COMPS.

2. Use the CROSS clause to join this vendor collection with the two other
domains. You can do this with a FIND or FOR statement that uses two
cross clauses.

3. Display the vendor and all the parts made by that vendor from the
VENDORS and PART S domains.

DTR> FIND QUAL_PART IN VENDORS WITH VEND_NAME "QUALTIY COMPS" (1)
[1 record found]
DTR> FIND QUAL_PART CROSS < ---------- (2)
CON> SUPPLIES MEMBER VENDOR_SUPPLY CROSS
CON> PART_S OWNER PART_INFO
[3 records found]
DTR> PRINT ALL VEND_ID, PART_ID, PART_DESC,SUP_TYPE <-----------(3)

Part Vendor
ID Number -----------------Part Description---------Type

55789012 CG-3161-34 VT100 KEYBOARD ASSY
55789012 CG-1052-00 NUMERIC KEYPAD FRAME
55789012 CG-0956-78 VT52 HOUSING

14-30 Using DATATRIEVE with DBMS

MEMO
REPR
WSUP

4. 7.3 Using View Domains

f you define domains for each DBMS record, you can use DATATRIEVE view
omains to access data in those records. You cannot form views of DBMS records
eadied by the READY command for databases.

rou can define a simple DATATRIEVE view domain to see a subset of fields from
single domain. The following view, for example, lets you define a view domain

flat accesses only three fields in the PARTS domain. This view is further
efined by the Boolean expression that limits the records to those with
'ART SUPPORT= "FS":

rR> DEFINE DOMAIN VIEW_PARTS_PUBLIC of PART_S USING
PN> 01 PARTV OCCURS FOR PART_S WITH PART_SUPPORT = "FS".
PN> 03 PART_ID FROM PART_S.
PN> 03 PART_DESC FROM PART_S.
~N> 03 PART_PRICE FROM PART_S.
rn>
rR>

4.7.3.1 Hierarchical Views -- You can also use view domains to combine
~cords from several DBMS domains. A view domain that describes data from
1ore than a single domain and does not use a CROSS clause is called a hierarchi-
11 view.

hierarchical view domain, unlike a CROSS clause (which also combines data
om two or more domains), lets you define the relationship of records from sev­
·al domains and store it in the CDD.

nee you define this relationship, you can display and modify data without having
1 consider set relationships. You can read and modify selected records from two
· more domains as if the data were all in one domain.

ote that because data is not stored in a view, you cannot use a STORE state­
ent with a view domain as your record source.

he following view combines the fields DIV NAME from the domain DIVISIONS
id EMP ID and EMP LAST NAME from -EMPLOYEES. Note that once you
~fine the relationship,-you can ready the domains and print records from those
>mains.

'R> SHOW DIV_ VIEW
MAIN DIV_VIEW OF DIVISIONS, EMPLOYEES USING

GRP OCCURS FOR DIVISIONS.
02 DIV_NAME FROM DIVISIONS.
02 WORKERS OCCURS FOR EMPLOYEES WITHIN CONSISTS_OF.

04 EMP_ID FROM EMPLOYEES.
04 EMP_LAST_NAME FROM EMPLOYEES.

(continued on next page)

Using DATATRIEVE with DBMS 14-31

DTR> READY DIV_VIEW
DTR> PRINT FIRST 5 DIV_VIEW

Division Name------- !dent Last Name-----------

LA34 DEVELOPMENT
SOFTWARE

RM05 DEVELOPMENT
ENG BUILD k TEST

VT100 DEVELOPMENT

65438 FRATUS
23451 HUTCHINGS
43215 IACOBONE
77777 PASCAL
99998 PAYNE
75624 FRASER
55675 HORYMSKI

0 HUMPHRY
9789 MASE

66666 PARVIAINEN
65437 FRANK
12333 HOFFMAN
54332 IGLESIAS

Note that when you define a view domain with two or more domains, the data is
displayed in hierarchical form, unless you use a CROSS clause in the view
definition.

In the previous example, the view of two domains displays one occurrence of the
field DIV NAME and a variable number of employees. In DATATRIEVE, to
access individual fields in this hierarchical structure, you must use specialized
DATATRIEVE syntax for retrieving values from list fields. See Chapter 6 for a
complete explanation of this syntax.

14.7.3.2 Flat Views --When you combine a view domain with the relational
CROSS clause. it flattens the hierarchical relationships. The following flat view
combines fields from the domains VENDORS, SUPPLIES, and PART_ S:

DTR> DEFINE DOMAIN FLAT_PART_VIEW OF PART_S, VENDORS, SUPPLIES USING
DFN> 01 A OCCURS FOR PART_S CROSS SUPPLIES MEMBER OF PART_INFO CROSS
DFN> VENDORS OWNER OF VENDOR_SUPPLY.
DFN> 02 PART_ID FROM PART_S.
DFN> 02 SUP_TYPE FROM SUPPLIES.
DFN> 02 VEND_NAME FROM VENDORS.
DFN>;
DTR>

The biggest advantage of defining a flat view is that you can refer to each of the
fields more easily than in a hierarchical view. That is, you need not use an inner
print list; you can access hierarchical fields as though they belong to a single
record. The following example prints the first five records in a flat view and then

14-32 Using DATATRIEVE with DBMS

splays a specific record from the VENDORS domain:

'R> READY FLAT_PART_VIEW
'R> PRINT FIRST 5 FLAT_PART_VIEW

Part
Number Type --------------Vendor Name---------------

:-3556-78 MEMO U.S. SEALS
-1110-85 REPR HIGH ENERGY CORP
-7896-12 REPR EMI TECHNOLOGY INC
-8767-78 WSUP ELECTRONIC SUPPLY CO.
-4058-32 CALL SYSTEMS HDWE REPS

R> PRINT VEND_NAME WITH PART_ID="CF405832"

------------Vendor Name---------------

STEMS HDWE REPS

i.s Sample Procedures Using DBMS Domains

)U can define DATATRIEVE procedures that let you query a VAX DBMS
1tabase. A DAT A TRIEVE procedure is a fixed sequence of commands and state­
ents that you create, name. and store in the Common Data Dictionary. For
most any series of commands and statements you use repeatedly, you can save
mself time by defining a procedure.

procedure can contain any number of the following DAT A TRI EVE elements:

Full DAT A TRI EVE commands and statements

Command and statement clauses and arguments

Comments

>define a procedure. you enter the DEFINE PROCEDURE command at the
rR > prompt. DATATRIEVE prompts with the DFN > prompt to indicate that
u can enter a procedure definition. You end the procedure definition with an
\lD_PROCEDURE keyword on a line by itself.

ir example, the following procedure searches for a division associated with the
1ployee name you specify.

Ready the domains EMPLOYEES and DIVISIONS.

Form a temporary record stream of the employee record you want. The
prompt option(*) lets you specify the employee's name when you execute
the procedure.

Using DATATRIEVE with DBMS 14-33

3. Display the owner oHhe CONSISTS OF set of which the employee is a
member. -

DTR> DEFINE PROCEDURE EMPLOYEE_SEARCH
DFN> READY EMPLOYEES, DIVISIONS <-------------- (1)
DFN> PRINT "This procedure searches to find"
DFN> PRINT "the division associated with"
DFN> PRINT "the employee you specify."
DFN> PRINT SKIP
DFN> FOR EMPLOYEES WITH EMP _LAST _NAME = < -------------- (2)
DFN> *."the employee's last name in capital letters"
DFN> PRINT DIVISIONS OWNER CONSISTS_OF < ------------- (3)
DFN> COMMIT EMPLOYEES, DIVISIONS
DFN> END_PROCEDURE
DTR>

To execute the procedure, enter:

DTR> :EMPLOYEE_SEARCH

This procedure searches to find
the division associated with the
employee you specify.

Enter the employee's last name in capital letters: ZOTTO

Division Name-------

RK05 DEVELOPMENT

For information on the COMMIT statement, see Section 14.10.4. In another
example, you can define a procedure to find a vendor name and all the parts pro­
duced by that vendor. This procedure:

1. Readies the domains VENDORS, SUPPLIES, and PART_S

2. Uppercases the vendor names you enter following the prompt and finds
them in the VENDORS domain

3. Finds the related records in the SUPPLIES domain

4. Uses the context from the FOR statement in step 3 to print the related
part number from the PART_S domain

5. Finishes the readied domains

14-34 Using DATATRIEVE with DBMS

rR> DEFINE PROCEDURE VENDOR_PARTS
~N> READY VENDORS, SUPPLIES, PART_S
~N> PRINT "This procedure searches to find"
~N> PRINT "the part associated with "
~N> PRINT "the vendor you specify."
~N> PRINT SKIP
~N> FOR VENDORS WITH VEND_NAME =
~N> FN$UPCASE(*." Name of Vendor ")
~N> FOR SUPPLIES MEMBER OF VENDOR_SUPPLY
~N> PRINT ALL PART_ID OF PART_S OWNER OF PART_INFO
~N> FINISH VENDORS, SUPPLIES, PART_S
~N> END_PROCEDURE
['R>

o execute the procedure. enter:

['R> :VENDOR_PARTS
iis procedure searches to find
ie part number associated with th~
~ndor you specify.

iter Name of Vendor: quality comps

Part
Number

;-3162-34
;-1052-00
;-0956-78

l'R>

4.9 Modifying Individual Fields in a Record

< -------------- (1)

< -------------- (2)

< -------------- (3)
< -------------- (4)
< -------------- (5)

ou can modify a field in a DBMS record just as you do in an RMS domain using
te DATATRIEVE MODIFY statement. The following example modifies the
MP PHONE field of the EMPLOYEE record:

l. Ready the DBMS EMPLOYEES domain for WRITE access.

~. Modify the field EMP_PHONE.

~R> READY EMPLOYEES WRITE < ------------ (1)
~R>

~R> MODIFY EMP _PHONE OF < ------------ (2)
IN> EMPLOYEES WITH EMP _ID = "53456"
Lter EMP_PHONE: 5345
~R>

Using DATATRIEVE with DBMS 14-35

For a complete discussion of the MODIFY statement in DAT ATRIEVE, see
Chapter 4. Using the syntax described in Chapter 4, you can modify all or some
fields within a single record occurrence or within a collection of records.

If you change a field that has a DBMS CHECK clause, DBMS checks the value
you enter for that field. If the value violates the CHECK clause, DAT ATRIEVE
returns a DBMS error and does not prompt for the field.

In general, modifying a record affects at least the data portion of the record. If,
however, you modify a field that is a sort key or a hash key for a set, DBMS auto·
matically reorders the members of the set. See the VAX DBMS Introduction to
Data Manipulation for more information about modifying sort or hash keys.

14.10 Storing DBMS Records and Modifying Sets

When you add a record to a DBMS database, you can affect other members of thE
sets in which the new record participates. You may also wish to disconnect a
record from a particular set occurrence and perhaps reconnect it with another set
occurrence.

DATATRIEVE provides you with several statements you can use with DBMS
domains to manipulate records as owners and members of sets:

• The STORE statement -- adds a new record to the database and automati­
cally connects the record to each set of which it is an automatic member

• The CONNECT statement -- connects a selected member record to a set

• The DISCONNECT statement -- disconnects a member record from each se1
you specify (you cannot disconnect owner records)

• The RECONNECT statement -- disconnects a member record from each set
occurrence you specify and connects the record to another set occurrence y01
specify (you cannot reconnect owner records)

14.10.1 Storing and Connecting Records

When you store a new record or when you want to connect a particular record to ~
set occurrence, the procedure you use depends on whether the set is an automatic
or manual member of a set.

14-36 Using DATATRIEVE with DBMS

nsertion into a set can be:

Automatic

DATATRIEVE automatically inserts the record into the set when you
store it.

Manual

After modifying or storing the record, you can connect it to the set of which
it is a member or leave it unconnected in the database.

'or example. when you use the SHOW SETS command you can see the charac­
eristics identified by DAT ATRIEVE for member domains:

l"R> SET DICTIONARY CDD$TOP.DTR$LIB.DEMO.DBMS
TR> READY VENDORS, SUPPLIES
TR> SHOW SETS

et: VENDOR_SUPPLY
Owner: VENDORS
Member: SUPPLIES, automatic fixed

et: ALL_VENDORS
Member: Vendors, automatic fixed

UPPLIES is an automatic member of the set VENDOR SUPPLY. The auto-
1atic characteristic indicates that when you store a new supplies record. it is
Litomatically connected to the set VENDOR_ SUPPLY.

UPPLIES is also a member of a system-owned set ALL VENDORS. It auto-
iatically participates in this set. -

he fixed characteristic means that the domain SUPPLIES must be a member of
ie set. Also. the record occurrence cannot be connected to any set occurrence
~her than the one to which it belongs when it is stored. For example, a particular
UPPLY record cannot be connected to any other vendor through
ENDOR SUPPLY than the one it was associated with at the time the record
as stored. This characteristic is discussed in the section on erasing and discon­
~cting records from sets.

he following two sections discuss automatic and manual insertion in a set.

1.10.1.1 Automatic Insertion -- If a record is an automatic member of a set,
hen you use the DATATRIEVE STORE statement to store new records in the
BMS database. the record is automatically inserted into the set.

Using DATATRIEVE with DBMS 14-37

If you are storing a new record and only want to connect it with a system-owned
set. you do not have to establish context to insert a record. After readying the
domain for WRITE access, all you need to store a record into a system-owned set
is a STORE statement. For example:

DTR> READY EMPLOYEES WRITE
DTR> STORE EMPLOYEES
Enter EMP_ID: 53456
Enter EMP_LAST_NAME: WINSLEE
Enter EMP_FIRST_NAME: JOANNE
Enter EMP_PHONE: 5324
Enter EMP_LOC: AS

DTR>

The new record automatically becomes a member of system-owned sets in which
the record (domain in DATATRIEVE) participates. For example, a new employees
record is automatically part of the ALL_ EMPLOYEES set in this example.

If a newly stored record is an automatic member of a set not owned by the
system,, though DAT ATRIEVE automatically connects the record to the set in
which the record participates, you nwst provide the context for the set occurrence
to which you want to connect the record.

Therefore, when you use the STORE statement:

• You use the CURRENCY clause to provide context for automatic members
of sets that are not owned by the system

• The record is automatically connected to each set of which it is an automatic
member

As with the display and print operations, DAT A TRIEVE uses the single-record
context you supply to identify the set occurrence (and sometimes to select the
position in that occurrence) when you modify sets or store records. If you fail to
supply the single record context, DATATRIEVE may insert a record in the wron~
place. the record may not be moved, or you may receive an error message. Once
you have established a single record context. you can use this context to store
many records without providing new single record context each time.

The following example stores a new parts record in the PART S domain and con­
nects it to a specific occurrence of the CLASS PART set. PARTS is an auto­
matic member oflthe set CLASS_PART. shown in Figure 14-6. You:

• Establish a single-record context for the record before you store the record

• Store the record using the DATATRIEVE CURRENCY clause

14-38 Using DATATRIEVE with DBMS

~
CLASS-PART ---- Set name

~
MK-01599-00

'igure 14-6: DBMS Set CLASS_PART

1. Ready the PART_S and CLASSES domains for WRITE access.

2. Use SHOW SETS to see that PARTS is an automatic member of the set
CLASS PART and that CLASS PART is owned by another domain,
CLASSES. -

3. Establish a context with the single-set occurrence of the set CLASS PART
with which you want to connect the new part record. -

You do this by using the FIND and SELECT statements to establish a
single-record occurrence of the domain CLASSES with the class code of
BR. When you select the record in the domain CLASSES, you establish
context with the correct occurrence of the set CLASS PART.

~. Store the new record in the PARTS domain and connect it to the current
occurrence of the CLASS PART set. DATATRIEVE prompts you for data
values for the new record.-

). Check the new record. Because the CLASSES record BR is still the
selected record. you can use the PRINT statement with the MEMBER
clause of the record selection expression to see if the GUDGEON record is
now a member of the class BR.

rR> READY PART_S WRITE, CLASSES WRITE
rR>
rR> SHOW SETS
~t: CLASS_PART

Owner: CLASSES
Member: PART_S, automatic mandatory

< ------------- (1)

< ------------- (2)

(continued on next page)

Using DATATRIEVE with DBMS 14-39

DTR> FIND BR IN CLASSES WITH CLASS_CODE = "BR"
[1 record found]
DTR> SELECT
DTR>
DTR> STORE PART_S CURRENCY BR.CLASS_PART
Enter PART_ID: BR902334
Enter PART_DESC: GUDGEON
Enter PART_STATUSi G
Enter PART_PRICE: 902.00
Enter PART_COST: 231.00
Enter PART_SUPPORT: X
DTR>
DTR> PRINT PART_ID, PART_DESC OF PART_S MEMBER
[Looking for set name]
CON> CLASS_PART

Part

< -------- (3)

< -------- (4)

< --------- (5)

Number -----------------Part Description----------------

BR-1234-56 LA34
BR-3467-91 LA120
BR-8901-23 LA36
BR-9023-34 GUDGEON

DTR>

Note that you use the CURRENCY clause of the STORE statement to specify
the exact set occurrence to which DATATRIEVE should connect the record. NotE
that the record being stored with a CURRENCY clause must be an automatic
member of the set.

14.10.1.2 Manual Insertion -- If a newly stored record is a manual member of a
set, you must use the CONNECT statement to insert the record into the set.
(You can also leave the record unconnected to any set.) You must establish the
context when you connect the record to the set.

The following example connects an EMPLOYEE record to a DIVISIONS set.
Because EMPLOYEES is a manual member of the set CONSISTS OF, you must
specifically insert the new employee record in the set CONSISTS_ OF.

1. Ready both the EMPLOYEES and DIVISIONS domains for WRITE
access.

2. Store the new employee record. (DBMS automatically connects the record
of the new employee to the system-owned set. ALL_ EMPLOYEES, and to
the sets owned by the employee record, MANAGES and
RESPONSIBLE_FOR.)

3. Specify each record in the DIVISIONS domain to which you want to con­
nect the new employee record. Specify the context variable DIV, so you can
use it later to qualify the set name.

14-40 Using DATATRIEVE with DBMS

4. Specify the new employee record you stored in step 2.

5. Use the CONNECT statement to connect the new employee record to the
SOFTWARE division through the set CONSISTS_OF.

6. Print the employees from the set occurrence to see that you made the cor­
rect set connection.

fR> READY EMPLOYEES WRITE, DIVISIONS WRITE
fR> STORE EMPLOYEES
1ter EMP ID: 53456
1ter EMP-LAST NAME: JANOV
1ter EMP-FIRST NAME: LESLEY
1ter EMP=PHONE~ 5324
1ter EMP _LDC: AS

< -------- (1)
< -------- (2)

rR> FOR DIV IN DIVISIONS WITH DIV_NAME = "SOFTWARE" < ----- (3)
JN> FOR EMP IN EMPLOYEES WITH
JN> EMP _LAST_NAME = II JANOV"
JN> BEGIN
JN> CONNECT EMP TO DIV.CONSISTS_OF
JN> PRINT EMP_LAST_NAME OF EMPLOYEES MEMBER
JN> DIV.CONSISTS_OF
JN> END

tst Name------

JTCHINGS
LC OB ONE
LS CAL
LNOV

~R>

< ----- (4)

< ----- (5)
< ----- (6)

ote that you connect the employee named JANOV to the occurrence of the
!VISIONS domain (DIV) through the set CONSISTS OF. Where the record is
serted into the set depends on the set-ordering criterfo defined in the schema.
ee the VAX DBMS Database Design Guide for more information on set order.

U0.2 Erasing, Disconnecting, and Reconnecting Records with Sets

ou use the ERASE statement to remove a record. Because the ERASE state­
ent can delete more than you intend, use it with caution. Accidental deletions
m occur because of the ERASE statement's "cascading effect." This cascading
feet can happen whenever the erased record is the owner of a set. Thus, if the
trrent record is an owner of a set type, ERASE deletes all of the following:

The current record

All records in sets owned by the current record

Any records in sets owned by those members. and so forth

Using DATATRIEVE with DBMS 14-41

You can remove a record trem a set either by erasing it with the DAT ATRIEVE
ERASE statement or disconnecting and reconnecting it with sets.

The removal characteristics of a record determine the way in which records can be
removed from sets, and whether they can be removed from sets. The removal
characteristic of a record is one of the following:

• Fixed

You cannot disconnect the record from its set occurrence unless you erase
the record from the database.

• Mandatory

You cannot use DISCONNECT to remove the record from a set occurrence.
However. you can use RECONNECT to move it from one occurrence of the
set type to another.

• Optional

You can use either DISCONNECT or RECONNECT to remove the record
from a set occurrence.

The following sections discuss removal from a set in more detail.

14.10.2.1 Erasing DBMS Records -- Records that are fixed members of sets,
once connected to a set occurrence, must be a member of that specific set occur­
rence until they are deleted from the database. They cannot be disconnected and
remain in the database or reconnected to some other set occurrence.

The fixed characteristic is very common with system-owned sets that are used to
keep large numbers of records on file. For example. an organization usually keep~
a generalized listing of all employees. Such a listing can be maintained by a
system-owned set. as in the PARTS database with the ALL_ EMPLOYEES set.

In a previous example. you added the record of the employee named JANOV to
the ALL EMPLOYEES set and connected it to the SOFTWARE division. The
following example erases the record JANOV from the database, deleting it from
the system-owned ALL EMPLOYEES set. As a result of being erased, the recorc
in the example is also disconnected from the SOFTWARE Group:

1. Erasing the record for JANOV from the database involves the domains
EMPLOYEES, DIVISIONS, and PARTS. Ready for WRITE access all
domains that are affected by the loss of an employee.

If you do not ready all necessary domains, you might encounter a problem
when you attempt to erase the record. Realms are ultimately associated
with storage areas, unless the files themselves are readied through a
READY command that readies at least one of the domains in that file.

14-42 Using DATATRIEVE with DBMS

Therefore, you might receive an error from DBMS stating that a particular
storage area has not been readied.

2. Find and select the record you want to erase.

If the record you erase is the owner of any sets (EMPLOYEES is owner of
the sets RESPONSIBLE FOR and MANAGES), records in member
domains (PART S and DIVISIONS) are also erased. Therefore, be sure that
you know exactly what you are erasing. Table 14-1 summarizes the effects
of erasing a record on the record and its members.

3. Make sure that this is the record you want to erase and then erase the
record.

4. Show that DAT A TRIEVE prints nothing in response to the PRINT
CURRENT statement. The current collection is now empty.

5. Try to find the record you erased.

TR> READY EMPLOYEES WRITE, DIVISIONS WRITE,
ON> PART_S WRITE
TR>
TR> FIND EMPLOYEES WITH EMP_LAST_NAME = "JANOV"
1 record found]
TR> SELECT;PRINT EMP_LAST_NAME

ast Name-----------

ANOV

TR> ERASE
TR> PRINT CURRENT
TR>
TR> FIND EMPLOYEES WITH EMP_LAST_NAME = "JANOV"
) records found]
TR>

< --------- (1)

< --------- (2)

< --------- (3)

< --------- (4)

< --------- (5)

'he employee named JANOV is no longer in the database. As a result of being
rased, his employee record has also been disconnected from all the sets of which
was a member.

4.10.2 .2 Disconnecting and Reconnecting DBMS Records from Sets
.ecords that are mandatory members of sets can move from one occurrence of
set to another. However, records with mandatory membership in a set must
ways be members of some occurrence of that set type once they have been
mnected.

he advantage of such membership is the ability to change your mind about the
:tributes of a member record.

Using DATATRIEVE with DBMS 14-43

For example, suppose your inventory supervisor wants to move a part record (ter­
minal stands) from one class of the domain CLASSES (terminal assemblies) to
another class in that same domain (video terminals). The PARTS domain, which
contains the parts record, is a mandatory member of the set CLASS_PART.

In the following example, you use the set CLASS_PART.

1. Ready the necessary domains. Because you are disconnecting a PART S
record from an occurrence of CLASSES and then connecting it to another
occurrence, you must ready both those domains for MODIFY access.

2. Display the PARTS records that contain the letters BU in their PART ID
number. You want-to move the last two parts (the terminal tables for the
VT52 and VT100) to the occurrence of CLASS_PART owned by BT.

3. For these two part records, show that they are connected to the particular
occurrence of the set CLASS PART that is owned by CLASSES record
BU. Those two records belong to the class called TERMINAL
ASSEMBLIES.

4. Now, determine where you would like to move these two records. First, find
and display all the PART S records that contain the letters BT in their
PART ID. -

5. Then, using a FOR loop, find and display the record occurrence of the
domain CLASSES to which these two records are related. This is the
record occurrence, VIDEO TERMINALS. to which you want to reconnect
your two terminal tables.

6. Create the necessary context to reconnect the terminal tables to the video
terminal set. Use nested FOR loops to create the context and a
RECONNECT statement to move the records.

7. Make sure that you actually moved the records. Find and select the
CLASSES record with the value BT for CODE.

DTR> READY PART_S MODIFY, CLASSES MODIFY

DTR> FIND PART_S WITH PART_ID CONT "BU"
[7 records found]

14-44 Using DATATRIEVE with DBMS

< -------------- (1)

< -------------- (2)

TR> PRINT PART_ID, PART_DESC OF CURRENT

Part
Number -----------------Part Description-----------------

lJ-1045-68 FREE-STANDING FRAME ASSEMBLY
lJ-2345-67 VIDEO TUBE
lJ-3161-25 VT100 NUMERIC KEYPAD ASSY
U-7014-68 VT100 MONITOR UNIT
U-7014-65 VT100 KEYBOARD UNIT
U-3456-70 TERMINAL TABLE VT100
U-0345-67 TERMINAL TABLE VT52

fR> FOR PART_S WITH PART_ID CONT "BU345670",
JN> "Bij034567" PRINT CLASSES WITHIN CLASS_PART

>de -Class Description-- St

~U TERMINAL ASSEMBLIES Y

< ---------- (3)

rR> FIND VIDEO_TERMS IN PART_S WITH PART:...ID CONT "BT" <--------(4)
~ records found]
rR> PRINT PART_ID, PART_DESC OF VIDEO_TERMS

Part
Number -------~---------Part Description---~-------------

r-1634-56 VT100
~-0456-78 VT52

~R> FOR VIDEO_TERMS PRINT CLASSES WITHIN CLASS_PART < --------(5)

•de -Class Description-- St

IT VIDEO TERMINALS G
IT VIDEO TERMINALS G

'R> FOR VT IN CLASSES WITH CODE = "BT" < ---------(6)
IN> FOR TABLES IN PART_S WITH PART_ID = "BU345670" OR
1N> PART _ID = "BU034567" RECONNECT TABLES TO VT. CLASS_PART
'R>

'R> FIND CLASSES WITH CODE = "BT"
record found]

R> SELECT

< --------------------(?)

R> PRINT PART_ID, PART_DESC OF PART_S MEMBER OF CLASS_PART

Part
Number -----------------Part Description-----------------

-0456-78 VT52
-1634-56 VT100
-0345-67 TERMINAL TABLE VT52
-3456-70 TERMINAL TABLE VT100

R>

Using DATATRIEVE with DBMS 14-45

Note that the terminal tables are now members of a new set occurrence. Check
the former location of those records to make sure they are no longer there:

DTR> FIND CLASSES WITH CLASS_CODE = "BU"
[1 record found]
DTR> SELECT
DTR> PRINT CURRENT

Code -Class Description-- St

BU TERMINAL ASSEMBLIES Y

DTR> PRINT PART_ID 1 PART_DESC OF PART_S MEMBER CLASS_PART

Part
Number -----------------Part Description-----------------

BU-1045-68 FREE-STANDING FRAME ASSEMBLY
BU-2345-67 VIDEO TUBE
BU-3161-25 VT100 NUMERIC KEYPAD ASSY
BU-7014-65 VT100 KEYBOARD UNIT
BU-7014-68 VT100 MONITOR UNIT
DTR>

The terminal tables are no longer in the occurrence of CLASS PART owned by
BU. -

14.10.2.3 Disconnecting and Connecting DBMS Records from Sets -­
Records that are optional members of sets can belong to an occurrence of a set
type or not belong to any occurrence at all. For example, the PARTS database
has two system sets, ALL PARTS and ALL PARTS ACTIVE. The ALL PARTS
set describes all parts cataloged by a firm. The ALL PARTS ACTIVE set con­
sists of all parts currently in production or inventory. As a part is retired. it may
be removed from the ALL PARTS ACTIVE set but retained in the ALL PARTS
listing of everything ever made. - -

You can U$e the DISCONNECT statement to remove OPTIONAL members of
sets from those sets. You can later use the CONNECT statement to insert the
disconnected record into another occurrence of the same set type or you can let
that record remain disconnected in the database.

The following-example disconnects a part from the ALL_PARTS_ACTIVE set:

1. Ready the necessary domains. Because you are removing a PART S recorc
from a system-owned set. you need only ready PART_ S for WRITE access.

14-46 Using DATATRIEVE with DBMS

2. Display the record that you want to remove from the
ALL_PARTS .. ACTIVE set.

Because ALL PARTS ACTIVE is a system-owned set, you do not have to
establish context with-the SELECT statement when you want to display
the members of the set.

~. Establish the context you need to disconnnect a record by specifying in a
FOR loop the record you want removed from the set. Then use the
DISCONNECT statement to remove it.

L Check the ALL PARTS ACTIVE set to make sure the record is no
longer there. DAT A TRIEVE responds with the DTR > prompt rather than
a display of the record; the part record is no longer a member of the
ALL PARTS ACTIVE set. - -

rR> READY p ART_ s WRITE < -------------- (1)
rR>
rR> PRINT PART _S MEMBER ALL_PARTS_ACTIVE WITH <------- (2)
JN> PART_ID = "BU104568"

Part Unit
Number -----------Part Description------------ST Price

r-1045-68 FREE-STANDING FRAME ASSEMBLY

'R> FOR P IN PART_S WITH PART_ID = "BU104568"
IN> DISCONNECT P FROM ALL_PARTS_ACTIVE
'R>
'R> PRINT PART_S MEMBER ALL_PARTS_ACTIVE WITH
tN> PART_ID = "BU104568"
'R>

U 0.3 Summary of Membership Characteristics

G $305

< ------- (3)

< ------- (4)

le record membership criteria limit the changes you can make to a database.
ible 14-1 summarizes the effects of various statements. on the record being
odified.

Using DATATRIEVE with DBMS 14-47

Table 14-1: Insertion, Retention, and Database Operations

Effect on Target Record Effect on Member

INSERTION
RETENTION CONNECT DISCONNECT ERASE MODIFY RECONNECT STORE ERASE ERASE

ALL

AUTOMATIC Not Possible Not Allowed Erase Reorder Not Allowed Insert Erase Erase
FIXED

AUTOMATIC Not Possible Not Allowed Erase Reorder Move Insert Erase Not Alim
MANDATORY Reorder

AUTOMATIC Insert Remove Erase Reorder Move Insert Erase Remove
OPTIONAL .Reorder

MANUAL Insert Not Allowed Erase Reorder Not Allowed No Effect Erase Erase
FIXED

MANUAL Insert Not Allowed Erase Reorder Move No Effect Erase Not Allo
MANDATORY Reorder

MANUAL Insert Remove Erase Reorder Move No Effect Erase Remove
OPTIONAL Reorder

Reorder
Notes to Table

Insert

Connects a record into an occurrence of the given set type.
Can affect set ordering. Can cause reordering within i

set occurrence.

Move

Reconnects a record from one occurrence of the given set
type to another occurrence of the same set type. This opera­
tion is equivalent to "Remove" followed by "Insert."

Remove

Disconnects a record from an occurrence of the given set
type.

14.10.4 Writing Changes to the Database

No Effect

Does not affect set membership.

Not Allowed

Returns an exception.

Not Possible

Cannot be done.

MK--005:

To write the changes you made to the database, you must enter a COMMIT
statement. If, however, you do not want to save the changes you made, you can
enter a ROLLBACK statement and leave the database as it was. The following
statement rolls back any changes:

DTR> ROLLBACK
ROLLBACK executed; collection CURRENT automatically released
DTR>

DAT A TRI EVE automatically readies database domains again after you have con
mitted or rolled back.

• A COMMIT statement performs a DBMS COMMIT RETAINING.

• A ROLLBACK statement is equivalent to a DAT ATRIEVE ABORT.

The DATATRIEVE FINISH and EXIT commands end access to domains or
DBMS records. The FINISH command executes a DBMS COMMIT (without th

14-48 Using DATATRIEVE with DBMS

ETAINING argument) when you finish the last readied domain or record, or
1ish them all at once. The EXIT command also executes a DBMS COMMIT
atement.

There is an important difference between the DATATRIEVE EXIT
command and the DBQ EXIT command: the DATATRIEVE EXIT
command executes a DBMS COMMIT statement; the DBQ EXIT com­
mand issues a DBMS ROLLBACK.

) write changes to the database, end access to the domains or DBMS records,
td remain in DATATRIEVE, use the FINISH command. To write changes to
.e database and end your DAT A TRI EVE session as well as access to domains
td records, use the EXIT command:

'R> FINISH
'R> EXIT

i.11 Optimizing Performance

·hen using DATATRIEVE to work with DBMS databases, keep in mind the fol­
wing considerations:

Unless you specify otherwise, DATATRIEVE always starts reading database
areas at page one, line one. DBMS is designed to optimize access paths to
records through set chain pointers, indexes, and hashing algorithms. Use a
set name whenever possible to optimize your database access paths and pre­
vent sequential reads of database areas.

To minimize record locking, be sure to issue COMMIT or ROLLBACK state­
ments regularly to explicitly end database transactions. Locks prevent other
users from accessing a record and can prevent access to other records
because that record contains pointer information that also gets locked.

Using DATATRIEVE with DBMS 14-49

Using DATATRIEVE with Rdb 15

'ou can use VAX DATATRIEVE to access VAX Rdb databases. the DIGITAL
1mily of relational database management systems. Rdb provides the advantages
fa database management system, including data security and integrity. At the
:ime time~ its relational model of data organization is easier to understand and to
se than the network fCODASYL-style) model of data organization.

~AT A TRIEVE alone provides excellent data access when your database contains
~wer than 5000 records. If your database is larger than that, using Rdb for data
~orage optimizes response time for your DAT A TRIEVE queries, data mainten­
rice, and report-writing tasks.

he DAT ATRIEVE statements you use for data queries and report writing are
ie same, whether you are accessing a file-structured database or an Rdb one.
: you currently use DAT A TRI EVE to create and maintain file-structured
:itabases, you need to learn some extensions to the DAT ATRIEVE language to
~cess and maintain an Rdb database.

5.1 Getting Started with DATATRIEVE and Rdb

i an Rdb database, data is organized into relations. Relations are simply tables.
table has a horizontal dimension (rows) and a vertical dimension (columns). A

tw in a relation is a set of data fields~ analogous to a record in a file. The fields in
1ch row define the columns. In this chapter, the term record refers to an entire
1w in a database relation. Figure 15-1 shows part of the structure of a relation
tlled DEPARTMENTS in the PERSONNEL database installed with the
AT A TRI EVE UETP (User Environment Test Package).

[gure 15-2 shows the relations and fields for the sample PERSONNEL
1tabase. Examples in this chapter refer to the relation and field names in the
ERSONNEL database. The data shown in the examples may be different than
te data that appears on your screen.

15-1

Column 1 Column 2
DEPARTMENT_CQDE DEPARTMENT-NAME

Row 1 ___.
Row2 ___.
Row3~
Row4~

Row 5---.

ADMN
ELEL
ELGS
ELMC
ENG

Corporate Administration
Electronics Engineering
Large Systems Engineering
Mechanical Engineering
Engineering

Figure 15·1: Sample Rdb Relation

EMPLOYEES DEGREES

EMPLOYEE-ID EMPLOYEE-ID
LAST-NAME COLLEGE-CODE
FIRST-NAME YEAR-GIVEN
MIDDLE-INITIAL DEGREE
ADDRESS-DATA DEGREE-FIELD
STREET
TOWN
STATE
ZIP JOB-HISTORY
SEX
BIRTHDAY EMPLOYEE-ID
SOCIAL-SECURITY DEPARTMENT-CODE
STATUS-CODE JOB-CODE

JOB-START
JOB-END
SUPERVISOR-ID

SALARY -HISTORY

EMPLOYEE-ID
SALARY _AMOUNT
SALARY-START DEPARTMENTS

SALARY-END
DEPARTMENT-CODE
DEPARTMENT-NAME
MANAGER-ID
BUDGET_PROJECTED
BUDGET_ACTUAL

Figure 15-2: Sample Rdb Database

15-2 Using DATATRIEVE with Rdb

Column 3
MANAGER-ID

00225
00397
00369

..
00215
00435

MK-01600-C

JOBS

JOB-CODE
WAGE-CLASS
JOB_ TITLE
MINIMUM-SALARY
MAXIMUM-SALARY

COLLEGES

COLLEGE-CODE
COLLEGE-NAME
ADDRESS-DATA
STREET
TOWN
STATE
ZIP

WORK-STATUS

STATUS-CODE
STATUS_NAME
STATUS_ TYPE

MK~01601-00

he following command sets the CDD default to the directory that contains the
:ltabase definition and the domain definitions used in this chapter.

rR> SET DICTIONARY CDD$TOP.DTR$LIB.DEMO.RDB

he examples and references in this chapter refer to Rdb/VMS. DATATRIEVE
les, however, support the family of Rdb relational database products. For exam­
es of using DAT A TRI EVE with Rdb/ELN, see the documentation for that
·oduct.

5.2 Creating a Path Name for the Database
ou must use an interactive Rclb utility, RDO in Rdb/VMS, to define your Rdb
ttabase. The VAX RdbNMS Guide to Database Design and Definition tells you
>w to do this for an Rdb/VMS database.

:>.define an Rdb/ELN database, use the data definition language compiler for
db/ELN. The VAX Rdb!ELN Application Development Guide tells you how to
>this.

l access an Rdb/VMS database with DATATRIEVE, it must have a CDD path
tme. A path name may be specified when an Rdb database is created. If the Rdb
ttabase you want to access with DAT ATRIEVE already has a path name, you
n use that path name to access the database.

you want to access an Rdb database that does not have a path name, you can
eate a path name with the DATATRIEVE DEFINE DATABASE command:

::FINE DATABASE Rdb-database-path ON root-file-spec;

jb-database-path

the path name you want to assign the database.

ot-file-spec

the file specification of the database file.

te following examples illustrate three valid commands to establish a path name
~ the PERSONNEL database:

R> DEFINE DATABASE,CDD$TOP.DEPT29.PERSONNEL ON
N> DBA2: [029.DAT]PERSONNEL.RDB;
R>

R> DEFINE DATABASE CDD$TOP.DTR$LIB.DEMO.RDB.PERSONNEL
N> ON DTR$LIBRARY:PERSONNEL;
R>

~> DEFINE DATABASE PERSONNEL ON PERSONNEL;
it>

Using DATATRIEVE with Rdb 15-3

The first two examples specify full path names and file specifications for the
databases. The third example relies entirely on current defaults, both for the
path name and the file specification.

Because VAX Rdb/ELN does not use the CDD, you must issue a DATATRIEVE
DEFINE DATABASE command to establish a path name for the Rdb/ELN
database.

15.3 Accessing the Database

After you create a path name for your Rdb database, you can access it with
DATATRIEVE in either of two ways:

• Ready the database directly.

• Define a domain for each Rdb relation that you want to access, and then
ready the domains you want to use.

15.3.1 Readying an Rdb Database Directly

Using the following syntax, you can ready an Rdb database without defining
DATATRIEVE domains for any relations:

READY database-path-name

[SNAPSHOT]

[

PROTECTED]
SHARED
EXCLUSIVE

USING

[

READ l WRITE
MODIFY
EXTEND

{
rdb-relation-name
dbms-record-name

} [AS alias]

[SNAPSHOT]

[

PROTECTED]
SHARED
EXCLUSIVE

15-4 Using DATATRIEVE with Rdb

[

READ l WRITE
MODIFY
EXTEND

[, ...]

latabase-path-name

s the CDD path name of the Rdb database.

1ccess mode

s the method (SNAPSHOT, PROTECTED, SHARED, or EXCLUSIVE) by
rhich you access the data. In Rdb, SNAPSHOT or read-only, is the default access
rlode.

ccess option

s the option (READ, WRITK MODIFY, or EXTEND) by which you access the
tdb data. ·

ISING clause

,imits access to specified relations. If you omit the USING clause of the READY
>ATABASE command. all relations in the database are readied.

~lation-name

, the name used in the Rdb utility to define the relation.

lias

; a name you use to refer to the relation specified. If you include an alias, you
mst use it in all the DAT A TRIEVE statements and commands that refer to the
~adied relation.

he following examples illustrate various ways to ready a database directly .

. eady an entire database:

rR> READY PERSONNEL
rR>

rR> READY CDD$TOP.DEPT39.PERSONNEL MODIFY
rR>

eady selected relations:

iR> READY CDD$TOP.DEPT39.PERSONNEL USING EMPLOYEES
~R>

:R> READY PERSONNEL USING EMPLOYEES, SALARY_HISTORY WRITE
:R>

Using DATATRIEVE with Rdb 15-5

The results of the READY command are discussed in Section 15.3.3 of this
chapter.

15.3.2 Defining and Readying Rdb Domains

You can define a DATATRIEVE domain for each Rdb relation that you want to
access. Then, you use the domain names to ready the database relations you want
to access.

Accessing your database through domains slows DAT A TRI EVE performance;
accessing a database directly works more quickly. However, you may want to
define domains because:

• You can define DAT A TRIEVE view domains of Rdb relations

• You can link a form definition with a domain definition using the FORM IS
syntax

You can use the DISPLAY FORM statement to link a form with a relation that is
not defined as a domain. However, if you want the relation to display data auto­
matically on a form, you must create a domain definition and include the FORM
IS clause:

DEFINE DOMAIN domain-name [USING] relation-name
[OF [DAT ABASE]] database-path
[FORM [IS] form-name [IN] form-library];

domain-name

Is the name you want for the domain. It can be the same as the relation name, bu1
it does not have to be the same.

relation-name

Is the name used to define the relation in the Rdb database.

database-path

Is the CDD path name of your Rdb database.

form-name

Is the name given the form when it was created.

form-library

Is the name of the form library.

15-6 Using DATATRIEVE with Rdb

:i'or example, the following commands define domains for the EMPLOYEES and
)ALARY HISTORY relations in the PERSONNEL database:

ITR> DEFINE DOMAIN EMPLOYEES USING EMPLOYEES OF
IFN> DATABASE CDD$TOP.DTR$LIB.DEMO.RDB.PERSONNEL;
ITR>

1TR> DEFINE DOMAIN SALARY_HISTORY USING SALARY_HISTORY OF
1FN> DATABASE CDD$TOP.DTR$LIB.DEMO.RDB.PERSONNEL
1FN> FORM IS SALARYHST IN FORMSLIB;
1TR>

\.fter you define a domain for a relation in an Rdb database. you can ready it. You
lo not supply a DAT A TRIEVE definition of the fields and indexes associated
vi th each domain. DAT ATRIEVE retrieves this information from Rdb when you
early the domains:

TR> READY SALARY_HISTORY, EMPLOYEES
TR>

5.3.3 Results of the READY Command

f you do not specify an access mode or an access option for an Rdb database, Rdb
omain, or Rdb relation, the default access is SNAPSHOT. Other users can have
tEAD. WRITE, MODIFY or EXTEND access to the database. domain. or rela­
ion. The following example shows the result of readying a database directly.
,here are no domains defined for the relations in this example:

TR> READY PERSONNEL
TR> SHOW READY
eady sources:

WORK_STATUS: Relation, Rdb, snapshot read
<CDD$TOP.DTR$LIB.DEMO.RDB.PERSONNEL;1>

DEGREES: Relation, Rdb, snapshot read
<CDD$TOP.DTR$LIB.DEMO.RDB.PERSONNEL;1>

COLLEGES: Relation, Rdb, snapshot read
<CDD$TOP.DTR$LIB.DEMD.RDB.PERSONNEL;1>

DEPARTMENTS: Relation, Rdb, snapshot read
<CDD$TOP.DTR$LIB.DEMO.RDB.PERSONNEL;1>

JOBS: Relation, Rdb, snapshot read
<CDD$TOP.DTR$LIB.DEMO.RDB.PERSONNEL;1>

SALARY_HISTORY: Relation, Rdb, snapshot read
<CDD$TOP.DTR$LIB.DEMO.RDB.PERSONNEL;1>

JOB_HISTORY: Relation, Rdb, snapshot read
<CDD$TOP.DTR$LIB.DEMO.RDB.PERSONNEL;1>

EMPLOYEES: Relation, Rdb, snapshot read
<CDD$TOP.DTR$LIB.DEMO.RDB.PERSONNEL;1>

> loaded tables.

rR>

Using DATATRIEVE with Rdb 15-7

The default access mode, SNAPSHOT, is called a read-only or "snapshot" ready.
It lets you read data without locking other users out of the database. In such an
access mode, you see a "picture" of the database, exactly as it was when you
readied the relation, domain, or database. Other users can access and change the
data in the database you have readied.

You do not see changes other users make until you issue a FINISH, COMMIT,
ROLLBACK, or another READY command. the relation or database. When you
use this access mode, there is no write locking of the database. Rdb does place
read locks in SNAPSHOT mode, however.

In order to have SNAPSHOT access, you must ready all relations that you want
to use in a database with SNAPSHOT access. Thus, when you ready a database,
relation. or domain with SNAPSHOT access, and you also ready one or more rela·
tions or domains from that database with a more restrictive mode, you actually
have SHARED READ access rather than SNAPSHOT access to all the domains
or relations. In SHARED READ mode, DATATRIEVE uses standard read locks
and you see other users' modifications as they are committed.

15.4 Using Views

A view is a "virtual" relation. Its definition specifies fields from one or more
source relations. A view contains no data. You cannot always use views for store
or modify operations, but you can use them to display records.

You might want to create a view that is a subset of the fields in a relation when
you do not want certain users to see coqfidential data. You would give these usen
access to the view, but not to the relation itself.

You might want to create a view that joins fields from more than one relation
when you know that users will often request that combination of fields. It is
simpler for users to access and display the view than it is for them to repeat a
query that accomplishes the same relational join.

You can create views using either an Rdb utility (in which case, DATATRIEVE
treats the relations as any other relations in the Rdb database}, or
DATATRIEVE. or both.

15.4.1 Using Rdb Views

You create a view relation using the RDO utility. After you create a view with thE
RDO utility. you can access it with the READY DATABASE command, just as
you can a simple relation. If you want your view to use a form automatically,
define a DAT A TRIEVE domain for it.

15-8 Using DATATRIEVE with Rdb

here are advantages to using Rdb views rather than view domains:

DATATRIEVE's response time is faster when you use Rdb views.

You can store or modify records using Rdb views if they contain fields from
only one source relation. You cannot store records using DAT A TRIEVE view
domains, even when those views access fields from only one relation.

5.4.2 Defining and Using View Domains

iew domains provide the following advantages:

You can create views that combin~ fields from an Rdb database with fields
from RMS (file-structured) and DBMS domains. The ability to combine fields
from different types of databases is a powerful feature of DAT A TRI EVE
view domains.

Your installation might decide that creating an Rdb view does not benefit
enough database users to warrant creating one. In this case, you can create a
DAT ATRIEVE view that benefits you personally.

You can refer to DAT A TRIEVE domain tables with a view domain. This
allows you to establish constraints that are not defined for the Rdb database,
but that are appropriate for your personal application.

l such cases, create a view domain with the DEFINE DOMAIN command.

EFINE DOMAIN view-path-name OF domain-path-name-1 [, ...] [~~ING J
level-number-1 field-name-1 OCCURS FOR rse-1 .

level-number-2 field-name-2 I OCCURS FOR rse-n I
FROM domain-path-name-n

[FORM [IS] form-name [IN] form-library]

You cannot base view domains directly on relations. You must first
define a DAT ATRIEVE domain for each relation the view accesses.

Using DATATRIEVE with Rdb 15-9

Refer to the VAX DATATRIEVE Reference Manual for a detailed explanation oi
the arguments and restrictions that apply to view domains.

The following examples define view domains for the PERSONNEL database. The
view domain MAILING INFO uses a subset of fields from the EMPLOYEES
domain:

DTR> DEFINE DOMAIN MAILING_INFO OF EMPLOYEES
DFN> 01 NAME_AND_ADDRESS OCCURS FOR EMPLOYEES.
DFN> 03 FIRST_NAME FROM EMPLOYEES.
DFN> 03 MIDDLE_INITIAL FROM EMPLOYEES.
DFN> 03 LAST_NAME FROM EMPLOYEES.
DFN> 03 ADDRESS_DATA FROM EMPLOYEES.
DFN> 03 STREET FROM EMPLOYEES.
DFN> 03 TOWN FROM EMPLOYEES.
DFN> 03 STATE FROM EMPLOYEES.
DFN> 03 ZIP FROM EMPLOYEES.
DFN> FORM IS MAILFORM IN FORMSLIB;
DTR>

The view domain MANAGER NAMES uses fields from both the EMPLOYEES
and DEPARTMENTS domains and a domain table, MANAGERS TABLE. that
is based on current values in the DEPARTMENTS domain. EMPLOYEE ID is
defined as a query name for MANAGER ID in the DEPARTMENTS dom-ain.
MANAGERS TABLE pairs the query name EMPLOYEE ID with the associated
DEPARTMENT CODE: -

DTR> DEFINE DOMAIN MANAGER_NAMES OF DEPARTMENTS, EMPLOYEES USING
DTR> 01 DEPARTMENT OCCURS FOR DEPARTMENTS.
DFN> 03 DEPARTMENT_CODE FROM DEPARTMENTS.
DFN> 03 DEPARTMENT_NAME FROM DEPARTMENTS.
DFN> 03 MANAGED_BY OCCURS FOR EMPLOYEES WITH
DFN> EMPLOYEE_ID IN MANAGERS_TABLE.
DFN> 06 FIRST_NAME FROM EMPLOYEES.
DFN> 06 MIDDLE_INITIAL FROM EMPLOYEES.
DFN> 06 LAST_NAME FROM EMPLOYEES.
I)FN>
DTR>

You access a view domain by readying it, just as you would a simple domain.

15.5 Displaying Information About Readied Relations and
Domains

The SHOW READY and SHOW FIELDS commands provide information about
the relations and fields you can access. For example. the following commmands
ready the domain SALARY HISTORY and show the fields you can access in the
SALARY HISTORY relatio-n.

15-10 Using DATATRIEVE with Rdb

rR> READY SALARY_HISTORY
rR> SHOW READY
'ady sources:
SALARY_HISTORY: Domain, Rdb, snapshot

<CDD$TOP.DEPT29.PERSONNEL.SALARY_HISTORY;1>
> loaded tables.

:R> SHOW FIELDS FOR SALARY _HISTORY
SALARY_HISTORY

EMPLOYEE_ ID
SALARY_AMOUNT
SALARY_START
SALARY_END

'R>

<Number>
<Number>
<Date>
<Date>

5.6 Ending Access to Domains, Relations, and Views

se the FINISH command to end access to the database or databases, or to
Jected parts of the database:

ALL

NISH
[

domain-name]
dbms-record-name
rdb-relation-name

1main-name

[, ...]

the name of a DATATRIEVE domain or view domain.

lation-name

the name of an Rdb relation or view relation.

you do not specify any names in the FINISH command, DATATRIEVE ends
cess to everything currently readied.

L7 Storing and Maintaining Data in an Rdb Database

m extensions to the DATATRIEVE language apply only when your data is
maged by a database management system. These extensions are the COMMIT
d ROLLBACK statements. To understand what these statements do, you must
derstand the way Rdb stores and updates information in your database and
w this differs from storing and updating information in a file-structured
ta base.

Using DATATRIEVE with Rdb 15-11

When you ready a file-structured domain, DAT A TRIEVE opens the data file
associated with the domain and makes any changes to the data file as you enter
them. Once the changes are made to the file, you can consider them permanent.

When you ready an Rdb database directly or when you ready Rdb domains,
DATATRIEVE makes any changes to the database as you enter them. However,
those changes are not permanent until one of the following occurs:

• You enter a COMMIT statement, either interactively or as part of a
procedure

• You enter a final FINISH statement for the last readied domain or the last
readied relation (depending upon your chosen method of database access)

• You exit from DATATRIEVE

If you decide that you do not want your entries to take effect, you can enter a
ROLLBACK statement. When you use the ROLLBACK statement. all the
changes made since execution of the last COMMIT or ROLLBACK statement
are undone. If neither statement executed, implicitly or explicitly. then the
ROLLBACK statement undoes all the changes made since the beginning of
your session.

Note that a COMMIT or a ROLLBACK affects all readied databases.

DAT A TRI EVE executes an implicit COMMIT statement when you finish your
last readied domain or relation and when you exit DATATRIEVE. In this case,
there is no chance of losing your database modifications because you forgot to
enter COMMIT before you finished all your domains or relations, or before you
exited DATATRIEVE.

If your system fails. an implicit ROLLBACK executes. In this case, Rdb undoes
all changes made to the database since execution of the last COMMIT or
ROLLBACK statement. If you open a DATATRIEVE log file at the beginning oi
your session, it is easy to find out what changes need reentry after a system fail­
ure. On a more sophisticated level, Rdb provides journaling and other facilities
that help you recover from an accident. In any event, do not rely on reports that
were generated before the system failure to determine what changes have been
permanently stored.

Once you access data (print, store. or modify it) in a domain or relation. you mus·
enter a COMMIT or ROLLBACK before you can ready the domain or relation
again. If. for instance. you want to change the access mode for a relation, you
must first issue a COMMIT or ROLLBACK.

15-12 Using DATATRIEVE with Rdb

f you are working with more than one domain or relation at a time, finishing
ne or more, but not all, readied domains or relations has no effect on data
ermanence. For instance, assume you ready three domains or relations
)NE DOMAIN, TWO DOMAIN. and THREE DOMAIN) and store data in
INE DOMAIN. You can finish ONE DOMAIN~ but data is not permanently
bored until you have explicitly finished or committed all the readied domains
>r that database .

. nother way of thinking about COMMIT and ROLLBACK statements is to
nderstand that they end transactions. When working with Rdb databases, it is
nportant to think in terms of transactions. Because Rdb gives many users
~cess to a database at the same time. it controls their activities to avoid access
mflicts and data inconsistencies. Rdb. therefore, requires each user to identify a
nit of database activity. called a transaction .

. transaction is an operation on the database that must complete as a unit or not
>mplete at all. In DATATRIEVE. a transaction on an Rdb database begins with
READY c9mmand and ends with either a COMMIT, FINISH, or ROLLBACK.
ransactions cannot be nested; they can only be performed consecutively.

ecause you cannot selectively commit or rollback some parts of a transaction
1d not others, it is important to keep transactions short. In addition, you should
y to conduct transactions with SHARED access if possible.

he next two sections discuss the COMMIT and ROLLBACK statements in
:eater detail and present some examples of their use.

:;. 7.1 Using the COMMIT Statement

he format of the COMMIT statement is:

OMMIT

rhen you enter a COMMIT statement, y9u make permanent all the changes
.ade to the database since execution of the last COMMIT or ROLLBACK state­
ent and release all locks held during the transaction. If neither of these was
~ecuted since the beginning of your session, entering COMMIT means that you
ish to make permanent all the database changes you have made during your
AT A TRI EVE session.

ote that when you issue a COMMIT statement, it affects all databases that may
~readied, including other Rdb or DBMS databases.

1e COMMIT statement maintains all collections of Rdb records. When you issue
COMMIT statement, Rdb starts a new transaction. The collection will include
immitted changes other users make to the records in your collection since you
rmed the collection.

Using DATATRIEVE with Rdb 15-13

The following examples illustr.ate explicit and implicit execution of the COMMIT
statement:

• Using an explicit COMMIT statement:

DTR> READY PERSONNEL USING JOB_HISTORY WRITE
DTR> STORE JOB_HISTORY
Enter EMPLOYEE_ID: 00166
Enter JOB_CODE: APGM
Enter JOB_START: 11-Nov-1979
Enter JOB_END: 8-Aug-1981
Enter DEPARTMENT_CODE: PRMG
Enter SUPERVISOR_ID: 00319
DTR> COMMIT

• Using the FINISH command (implicit COMMIT):

DTR> READY PERSONNEL USING JOB_HISTORY WRITE
DTR> REPEAT 2 STORE JOB_HISTORY
Enter EMPLOYEE_ID: 00164
Enter JOB_CODE: DMGR
Enter JOB_START: 9-Sept-1981
Enter JOB_END: 18-Feb-1983
Enter DEPARTMENT_CODE: MBMN
Enter SUPERVISOR_ID: 00359
Enter EMPLOYEE_ID: 12487
Enter JOB_CODE: SPGM
Enter JOB_START: 07-Jul-1980
Enter JOB_END: 9-Sep-1981
Enter DEPARTMENT_CODE: MCBM
Enter SUPERVISOR_ID: 04164
DTR> FINISH

• Exiting from DATATRIEVE (implicit COMMIT):

DTR> SHOW STDRE_JOB_HISTORY
PROCEDURE STORE~JOB_HISTORY
SET ABORT
READY PERSONNEL USING JOB_HISTORY WRITE
DECLARE REC_NUM PIC 999.
REC_NUM =*."number of records you are adding"
REPEAT REC_NUM STORE JOB_HISTORY
DTR> :STORE_JOB_HISTORY
Enter number of records you are adding: 5
Enter DEPARTMENT_CODE: ELGS

DTR> EXIT

15-14 Using DATATRIEVE with Rdb

the first example, one record is permanently stored in the relation
)B _HISTORY following the COMMIT statement.

the second example. the FINISH command does not specify any domain or
lation name and so ends access to the entire database, not just JOB HISTORY.
therefore results in an implicit COMMIT statement. In this case, two records
e permanently stored in JOB_ HISTORY after the FINISH command.

the third example. the EXIT command (or CTRL/Z entered at the DTR >
ompt) implicitly executes a COMMIT statement. The results are the same as in
e second example, except that five records are permanently stored in
>B HISTORY.

Note -----------

The use of CTRL/Y exits you from DATATRIEVE but signals
abnormal termination. When you enter CTRL/Y. Rdb executes a
ROLLBACK command. You receive no message from DATATRIEVE,
however. to tell you this has been done.

all these examples, the COMMIT statement could affect previous database
anges (those entered after execution of a COMMIT or ROLLBACK statement,
t before the READY commands in the examples). An explicit COMMIT. as in
e first example. maintains any collections of Rdb records. However, an implicit
)MMIT. as in the second and third examples. releases collections of Rdb
~ords.

It is always better to end a transaction explicitly with a COMMIT or
ROLLBACK statement than to rely on DAT ATRIEVE to interpret a
statement as an implicit end to a transaction. That way, you can be
sure which operations are included in each transaction .

. 7 .2 Using the ROLLBACK Statement

.e format of the ROLLBACK statement is:

>LLBACK

Using DATATRIEVE with Rdb 15-15

When you enter a ROLLBACK statement, you undo all the changes made to the
database since execution of the last COMMIT or ROLLBACK statement. If nei­
ther of these was executed since the beginning of your session, entering
ROLLBACK means that you wish to undo all the database changes you have
made during your DATATRIEVE session.

The ROLLBACK statement releases all collections of Rdb records.

Note that when you issue a ROLLBACK statement, it affects all readied
databases, including other Rdb and DBMS databases.

ROLLBACK has the same effect as an ABORT statement. This means that it ca
alter the flow of execution of procedures, command files, and nested statements.

If you make a mistake when entering data for one of the records you are storing,
you can still use CTRL/Z to keep that record from being stored. When you use
CTRL/Z in this way, you affect only the record on which you are working, not an:
other record entries you might have made.

The following examples illustrate the use of the ROLLBACK statement:

• Using the ROLLBACK statement interactively:

DTR> READY DEPARTMENTS WRITE
DTR> REPEAT 2 STORE DEPARTMENTS
Enter DEPARTMENT_CODE: ADMN
Enter DEPARTMENT_NAME: Corporate Administration
Enter MANAGER_ID: 00225
Enter BUDGET_PROJECTED: 50000
Enter BUDGET_ACTUAL: 52000
Enter DEPARTMENT_CODE: ELEL
Enter DEPARTMENT_NAME: Electronics Engineering
Enter MANAGER_ID: 00397
Enter BUDGET_PROJECTED: 140000
Enter BUDGET_ACTUAL: 172000
DTR> ROLLBACK

• Entering an ineffective ROLLBACK statement:

DTR> READY DEPARTMENTS WRITE
DTR> REPEAT 2 STORE DEPARTMENTS
Enter DEPARTMENT_CODE: ELGS
Enter DEPARTMENT_NAME: Large Systems Engineering
Enter MANAGER_ID: 00369
Enter BUDGET_PROJECTED: 75000
Enter BUDGET_ACTUAL: 72000
Enter DEPARTMENT_CODE: ELMC
Enter DEPARTMENT_NAME: Mechanical Engineering
Enter MANAGER_ID: 00435 ·
Enter BUDGET_PROJECTED: 42000
Enter BUDGET_ACTUAL: 42200
DTR> FINISH
DTR> ROLLBACK

15-16 Using DATATRIEVE with Rdb

Using the ROLLBACK statement in a procedure:

DTR> SHOW STORE_DEPARTMENTS
PROCEDURE STORE_DEPARTMENTS
SET ABORT
READY DEPARTMENTS WRITE
DECLARE REC_NUM PIC 999.
DECLARE COMM_OR_ROLL PIC X.
PRINT SKIP
REC_NUM =*."number of records you are adding"
DECLARE VALID_ANSWER PIC X.
VALID_ANSWER = "1"
SET NO ABORT
REPEAT REC_NUM STORE DEPARTMENTS
PRINT SKIP
COMM_OR_ROLL = *."Y if you want the records stored, N if not"
WHILE VALID_ANSWER = "1"

BEGIN
CHOICE

COMM_OR_ROLL = "N", "n" THEN
BEGIN

PRINT SKIP, "The record(s) you added will be deleted."
VALID_ANSWER = "0"
ROLLBACK

END
COMM_OR_ROLL = "Y", "y" THEN

BEGIN
PRINT SKIP, "The record(s) you added will be permanently stored."
VALID_ANSWER = "0"
COMMIT

END
ELSE

BEGIN
PRINT SKIP, "Try again ", SKIP
COMM_OR_ROLL = *."Y if you want the records stored, N if not"

END
END_ CHOICE

END
FINISH DEPARTMENTS
PRINT SKIP, "End of access to DEPARTMENTS."
END_PROCEDURE

DTR> :STOR~_DEPARTMENTS

Enter number of records you are adding: 5
Enter DEPARTMENT_CODE: MBMF

Enter Y if you want these records stored, N if you don't: N

The record(s) you added will be deleted.

End of access to DEPARTMENTS.

DTR>

Using DATATRIEVE with Rdb 15-17

In the first example, the ROLLBACK statement means that two records are
stored in the database, then deleted. A ROLLBACK statement could also undo
changes to the database that were entered prior to either STORE statement
entry and not noted in this example.

In the second example, a FINISH command that ends access to all readied
domains immediately precedes the ROLLBACK statement. Because that FINIS:H
command implicitly executes a COMMIT statement, the two records are perma­
nently stored. ROLLBACK does not do what the user intended.

In the third example, the ROLLBACK statement means that all of the records
stored when the REPEAT statement executes are deleted. If the user enters all
five records, then those five records are deleted. If the user enters CTRL/Z while
storing data for one of the records. then execution of the REPEAT statement
stops. The rollback affects. however, many records that have been entered, plus
any other database modifications made since execution of the last COMMIT or
ROLLBACK statement or since the beginning of the DATATRIEVE session.

Note placement of the SET [NO] ABORT statements in the procedure. If the
SET ABORT statement were not in effect. the displays for storing records would
appear whether or not WRITE access to the domain or relation were secured. If
the SET NO ABORT statement were not in effect, the domain or relation would
not be finished. Because the ROLLBACK statement has the same effect as an
ABORT statement, the Assignment and PRINT statements associated with the
rollback branch of the procedure precede the ROLLBACK statement itself.

If you are designing procedures to be used by people unfamiliar with
DATATRIEVE, you probably want to include the FINISH command in your pro­
cedure, particularly if a domain or relation has been readied for protected WRITE
access. Otherwise, the domain or relation remains locked to all users after your
procedure executes. If your procedure includes a ROLLBACK option. however,
make sure that the FINISH statement does not execute before the ROLLBACK
statement. Otherwise. if the FINISH statement ends user access to the last
readied domain (or to all of them at onceL a COMMIT statement executes before
the ROLLBACK statement does.

15.8 Querying the Database, Writing Reports, and, Using
Collections

The statements you use for queries and report writing are the same for Rdb rela­
tions or domains as they are for other domains.

15-18 Using DATATRIEVE with Rdb

fere are some reminders if you plan to use collections:

A COMMIT statement maintains collections of records. (Note, however, that
if you ready the source [domain, relation, or database] for that collection with
a different access mode, the collection is not maintained).

The ROLLBACK statement releases any collections that contain Rdb
records. ·

The FINISH statement releases any collections containing records from the
domain. relation, or database being finished.

fake sure you ready domains, relations, or the database with the access you need
lr the collections you plan to create. If you inadvertently ready the database for
~EAD access, form a large collection. print some records. and then try to modify
ecords, you get an error message. At this point, you must enter COMMIT before
ou can··ready the database for MODIFY access.

V"hen designing procedures that produce reports or displays that include database
flanges, remember to enter a COMMIT statement before the PRINT or
',EPORT statement. Otherwise, in the event of a rollback, your report or display
'ill include data changes that were subsequently deleted from the database.
imilarly, any query based on assumed database modifications should be preceded
y a COMMIT statement.

5.9 Using Rdb's Segmented String Data Type in
DATATRIEVE

1AT ATRIEVE provides limited support for a special Rdb data type called
?gmented string.

ields defined with the segmented string data type can contain completely
1structured data. Segmented string fields have these special characteristics:

You can store any type of data in a segmented string field. Segmented
strings can contain ASCII text, binary code, Remote Graphics Instruction
Set (ReGJS) graphics, or any other data type.

You do not have to specify the length of data in a segmented ·string. This
makes segmented strings useful for storing data that is arbitrarily long, such
as text files or graphic data.

Rdb does not allocate any storage space for segmented string fields unless
you actually store data in the field. This makes segmented string fields· a
good choice for optional comments or descriptions associated with a record.

Using DATATRIEVE with Rdb 15-19

Using DATATRIEVE, you can display, modify, and store data in segmented
string fields.

The remainder of this section describes:

• Defining segmented string fields in Rdb

• Displaying segmented string fields in DAT A TRI EVE

• Storing and modifying segmented string fields in DATATRIEVE

• Restrictions and usage notes

15.9.1 Defining Segmented String Fields in Rdb

You cannot use DATATRIEVE to define segmented string fields. To define seg­
mented string fields. use Rdb's RDO utility.

The following example shows how to use RDO to define a segmented string field
and a relation that uses it. Once defined, you can use the relation as part of the
sample Rdb database. PERSONNEL~ created during installation of
DATATRIEVE.

The segmented string field RESUME contains the resume for an employee in thE
PERSONNEL database. The EMPLOYEE ID field links the RESUME relations
with other relations in the PERSONNEL database.

$ RUN SYS$SYSTEM: RDO
RDO> SET DICTIONARY CDD$TOP.DTR$LIB.DEMO.RDB
RDO> ! First invoke the sample PERSONNEL database:
RDO> INVOKE DATABASE PATHNAME PERSONNEL
RDO> ! Define a segmented string field called RESUME:
RDO> DEFINE FIELD RESUME
cont> DATATYPE IS SEGMENTED STRING.
RDO> ! Define a relation using RESUME and EMPLOYEE_ID, which is based
RDO> ! on an already-defined field, ID_NUMBER:
RDO> DEFINE RELATION RESUMES.
cont> EMPLOYEE_ ID
cont> BASED ON ID_NUMBER.
cont> RESUME.
cont> END RESUMES RELATION.
RDO> ! Display the fields for the relation RESUMES:
RDO> SHOW FIELDS FOR RESUMES
Fields for relation RESUMES

EMPLOYEE_ID text size is 5
based on global field ID_NUMBER

RESUME segmented string
segment_length 512

RDO> ! Use the COMMIT statement to store the
RDO> ! new field and relation for PERSONNEL:
RDO> COMMIT
RDO> EXIT

15-20 Using DATATRIEVE with Rdb

15.9.2 Displaying Segmented String Fields in DATATRIEVE

ro display data in segmented string fields from within DATATRIEVE, follow
;hese steps:

Ready the database. For best performance, use only the relations that you
need to work with (in this example, the RESUMES relation defined in the
preceding section).

Use DAT A TRI EVE PRINT or LIST statements to display data in the seg­
mented string field.

~he following example illustrates these steps:

TR> SET DICTIONARY CDD$TOP.DTR$LIB.DEMO.RDB
TR> SHOW DATABASES
atabases:

PERSONNEL

TR> ! Ready the database:
TR> READY PERSONNEL USING RESUMES
TR> ! Check that RESUMES is ready:
TR> SHOW READY
eady sources:

RESUMES: Relation, Rdb, snapshot read
<_CDD$TOP.DTR$LIB.DEMO.RDB.PERSONNEL>

o loaded tables.

TR> ! Show the fields for RESUMES:
TR> SHOW FIELDS FOR RESUMES
ESUMES

RESUMES
EMPLOYEE_ID <Character string>
RESUME <Segmented string>

fR> PRINT RESUMES WITH EMPLOYEE_ID = 99800

\1PLOYEE
ID

~9800

UECTIVE

Frank B. Harold
1492 County Road
Hicktown, US 54321

Junior Lab Technician

RESUME

>UCATION B.S. Chemical Engineering, Quinnipiac College, 1983.
Hicktown Senior High School, 1979

(continued on next page)

Using DATATRIEVE with Rdb 15-21

DTR> LIST RESUMES WITH EMPLOYE~_ID = 99800

EMPLOYEE_ID 99800
RESUME

OBJECTIVE

EDUCATION

DTR>

Frank B. Harold
1492 County Road
Hicktown, US 54321

Junior Lab Technician

B.S. Chemical Engineering, Quinnipiac College, 1983.
Hicktown Senior High School, 1979

Note ------------

You cannot use relational operators or the SORTED BY clause in
RS Es that refer to segmented string fields. See the section on restric­
tions and usage notes for more information.

15.9.3 Storing and Modifying Segmented String Fields in DATATRIEVE

The unstructured nature of segmented strings requires different conventions in
STORE or MODIFY statements than are used in updating other fields in
DATATRIEVE.

In STORE or MODIFY statements that prompt for input, DATATRIEVE
repeats the prompt for a segmented string field until you press the TAB key fol­
lowed by the RETURN key in response to the prompt. Pressing only the
RETURN key causes DAT A TRI EVE to redisplay the prompt for another seg­
ment of the field. Wressing the TAB and RETURN keys after entering text also
redisplays the prompt for another segment.)

DTR> STORE RESUMES
Enter EMPLOYEE_ID: 23456
Enter RESUME: This is the first line of the RESUME field.<RETURN>
Enter RESUME: This is the second line.<RETURN>
Enter RESUME: To end a segmented string, press the TAB key<RETURN>
Enter RESUME: then the RETURN key at the "Enter" prompt.<RETURN>
Enter RESUME: <TAB><RETURN>

, 15-22 Using DATATRIEVE with Rdb
fi

TR> ! Now print the RESUMES record just stored:
TR> PRINT RESUMES WITH EMPLOYEE_ID = 23456

MPLOYEE
ID

RESUME

23456
his is the first line of the RESUME field.
his is the second line.
o end a segmented string, press the TAB key
hen the RETURN key at the "Enter" prompt.

TR>

1 STORE or MODIFY statements with a USING clause. repeat assignment
tatements within a BEGIN-END block for each line of the segmented string
eld:

fR> MODIFY RESUMES WITH EMPLOYEE_ID = 23456 USING
JN> BEGIN
JN> RESUME "This example modifies the RESUME field"
JN> RESUME "of the same record we stored in the "
JN> RESUME "previous example. You use as many assignment"
JN> RESUME "statements as you need. End the modify or"
JN> RESUME "store operation with an END statement."
JN> END
rR> PRINT RESUMES WITH EMPLOYEE_ID = 23456

1PLOYEE
ID

RESUME

!3456
tis example modifies the RESUME field
: the same record we stored in the
·evious example. You use as many assignment
;atements as you need. End the modify or
;ore operation with an END statement.

'R>

ote that you cannot store or modify only part of a segmented string. Although
1u create separate "segments" of the field with STORE or MODIFY state-
ents. you cannot store or modify an individual segment. You must group assign­
ent statements for each line of the segmented string field in the same BEGIN­
ND block.

ie previous examples showed that you can store or modify segmented string
!Ids interactively with DATATRIEVE. You can also create a domain. record.
,d procedure to simplify storing entire files in a segmented string field.

Using DATATRIEVE with Rdb 15-23

You can use the following domain and record definitions to store files in the seg­
mented string field RESUMES:

DTR> SHOW. TEMP _RESUME
DOMAIN TEMP_RESUME TEMP_RESUME is a temporary domain used to

associate the file you want to
store in the RESUME segmented
string field with a general
record definition that divides
the file into records that
DATATRIEVE can store.

!
USING TEMP_RESUME_REC ON
TEMP_RESUME.DAT

! TEMP_RESUME.DAT is the file you want to
! store in the segmented string field.

DTR> SHOW TEMP _RESUME_REC
RECORD TEMP_RESUME_REC USING
01 TOP PIC X(255). TEMP_RESUME_REC only has one

field of 255

DTR>

characters (the maximum size
DATATRIEVE allows for a segment).
Its only purpose is to separate
the file you wish to store in a
segmented string field into
records. You can then use
DATATRIEVE to store the records
as individual segments in the
segmented string.

For example, suppose you want to add to the resume stored in the RESUMES
record for employee number 99800. The following example displays the resume,
then writes it to TEMP RESUME.DAT:

DTR> PRINT RESUMES WITH EMPLOYEE_ID = 99800

EMPLOYEE
ID

99800

OBJECTIVE

EDUCATION

Frank B. Harold
1492 County Road
Hicktown, US 54321

Junior Lab Technician

RESUME

B. S. Chemical Engineering, · Quinnipiac College, 1983.
Hicktown Senior High School, 1979

DTR> PRINT RESUME (-) OF RESUMES WITH
DTR> EMPLOYEE_ID = 99800 ON TEMP_RESUME.DAT
DTR>

15-24 Using DATATRIEVE with Rdb

~xit DATATRIEVE and make any changes you want to TEMP_ RESUME.DAT:

! You have edited TEMP_RESUME.DAT and this is how it looks:
TYPE TEMP_RESUME.DAT

BJECTIVE

Frank B. Harold
1492 County Road
Hick~own, US 54321

Junior Lab Technician

DUCATION B.S. Chemical Engineering, Quinnipiac College, 1983.
Hicktown Senior High School, 1979

MPLOYMENT Chemistry Tutor, Quinnipiac College (9/82 - 5/83)
Helped freshman chemistry students learn the
concepts of atomic weights, valence and
covalence bonding, and empirical formulas

EFERENCES Available upon request

! To store the file TEMP_RESUME.DAT into a segmented string,
! you need to know the length of the longest record in the
! file. Use the command ANALYZE/RMS:

ANALYZE/RMS TEMP_RESUME.DAT

ieck RMS File Integrity 24-JUN-1985 06:28:28.09 Page 1
>ER$DISK:[SERLE.RDBDEMO]TEMP_RESUME.DAT;2

~S FILE ATTRIBUTES

File Organization: sequential
Record .Format: variable
Record Attributes: carriage-return
Maximum Record Size: 255
Longest Record: 62

lnally, you can use a procedure. MODIFY ANY RESUME~ to update the
ESUME field for employee number 99800. The procedure:

Readies the RESUMES relation of the PERSONNEL database for MODIFY
access.

Readies TEMP RESUME.

Creates a DATATRIEVE command file called SEGMENT.COM.

Using DATATRIEVE with Rdb 15-25

• Prints statements in SEGMENT.COM to store the file
TEMP_ RESUME.DAT in the RESUME segmented string field:

A MODIFY USING statement that prompts the user for the employee
number of the employee whose resume is to be updated.

An assignment statement (RESUME =) for each line of the file·
TEMP RESUME.DAT. The clause FORMAT (TOP) USING X(62) in
the assignment statement uses the length of the longest record. deter­
mined from the ANALYZE/RMS command. for the length of the seg­
ments in the segmented string.

• Executes' the DATATR.IEVE command file SEGMENT.COM.

This example displays the procedure MODIFY ANY RESUME and executes it
to store TEMP_RESUME.DAT in the RESUME field of employee number
99800:

DTR> SHOW MODIFY_ANY_RESUME
PROCEDURE MODIFY_ANY_RESUME
!
! Take the file named in the domain TEMP_RESUME
! and store it in the RESUME field of the record
! specified by the employee number entered by the user.
!
SET COLUMNS_PAGE = 132;
READY PERSONNEL SHARED MODIFY USING RESUMES;
READY TEMP_R~SUME;
ON SEGMENT.COM
BEGIN

PRINT "MODIFY RESUMES WITH EMPLOYEE_ID = *· 'employee_id' USING BEGIN";
FOR TEMP_RESUME

PRINT "RESUME ="I I". II I I FORMAT (TOP) USING x (62) 11".";
PRINT "END";

END;
©SEGMENT
COMMIT
FINISH TEMP_RESUME
END_PROCEDURE

DTR> :MODIFY_ANY_RESUME
Enter employee_id: 99800
DTR> PRINT RESUMES WITH EMPLOYEE_ID = 99800

15-26 Using DATATRIEVE with Rdb

PLO YEE
ID

9800

JECTIVE

lJCATION

PLOYMENT

<'ERENCES

~> COMMIT
~> FINISH

Frank B. Harold
1492 County Road
Hicktown, US 54321

Junior Lab Technician

RESUME

B.S. Chemical Engineering, Quinnipiac College, 1983.
Hicktown Senior High School, 1979

Chemistry Tutor, Quinnipiac College (9/82 - 5/83)
Helped freshman chemistry students learn the
concepts of atomic weights, valence and
covalence bonding, and empirical formulas

Available upon request

e DATATRIEVE command file SEGMENT.COM created by the procedure
1ks like this:

HFY RESUMES
mME ="
mME ="

WITH EMPLOYEE_ID = *· 'employee_id' USING BEGIN
Frank B. Harold"

mME ="
mME ="
mME ="
mME ="OBJECTIVE
:UME ="
:UME ="
:UME ="EDUCATION
:UME ="
:UME =""
:UME =""
:UME ="EMPLOYMENT
:uME ="
:uME ="
:UME ="
:UME =""
'UME ="REFERENCES

1492 County Road"
Hicktown, US 54321"
"
II

Junior Lab Technician"
II

II

B.S. Chemical Engineering, Quinnipiac College, 1983."
Hicktown Senior High School, 1979"

Chemistry Tutor, Quinnipiac College (9/82 - 5/83)"
Helped freshman chemistry students learn the"
concepts of atomic weights, valence and"
covalence bonding, and empirical formulas"

Available upon request"

Using DATATRIEVE with Rdb 15-27

Note ------------

Source files for TEMP_ RESUME that contain single quotation marks
require special treatment. This is because the procedure
MODIFY_ANY_RESUME uses single quotation marks as delimiters
for the character string literals stored by the MODIFY USING state­
ment. For the orocedure to work. you must make sure the file contains
two consecutive single quotation marks for every one you want stored.

15.9.4 Restrictions and Usage Notes for Segmented String Fields

The folowing restrictions and usage notes concern defining segmented string
fields within RDO:

• When you define a segmented string field in RDO with the DAT A TYPE IS
SEGMENTED STRING clause. the SUB_TYPE designation, if any, is
ignored by DATATRIEVE.

• You cannot specify a MISSING VALUE IS clause when you define a seg­
mented string field in RDO. This is an Rdb restriction.

• You cannot specify a DEFAULT VALUE FOR DTR clause when you defini
a segmented string field in RDO: DAT ATRIEVE gives a warning message
when you ready the relation and any such default value is ignored.

• DATATRIEVE does allow the QUERY HEADER FOR DATATRIEVE an<
the QUERY NAME FOR DATATRIEVE clauses when you define a seg­
mented string field in RDO.

• If you use an EDIT STRING FOR DTRclause when you define a segmentE
string field in RDO~ you can only specify a T edit string. If you use any oth
type of edit string. DATATRIEVE issues a warning message when you reai
the relation containing the field. The length of the T edit string defaults to
the current setting of COLUMNS_PAGE. (The default for DATATRIEVE:
80.)

For example, if COLUMNS PAGE is set to 80, the default edit string
for DATATRIEVE is T(80). -The T(80) edit string is also used if no
EDIT STRING has been defined in the RDO field definition.

15-28 Using DATATRIEVE with Rdb

Therefore. the SET COLUMNS PAGE command in DATATRIEVE can be
used to change where a segmenf line breaks when printed, if no edit string
was defined for the field in RDO. (The change takes effect on READY,
COMMIT. or ROLLBACK). Changing the EDIT STRING clause in the Rdb
field definition also changes the position where a-segment line breaks when
printed in DATATRIEVE.

he following restrictions and usage notes concern the use of segmented string
elds within DATATRIEVE:

When you ready a domain or relation containing segmented string fields,
DAT ATRIEVE places the segmented string fields last in the relation,
regardless of the position of the segmented string when the relation was
defined in RDO. If more than one segmented string field is defined in a rela­
tion, the segmented string fields are placed last, in the order in which they
were defined in the relation.

The SHOW FIELDS command displays the order of the fields within
DAT A TRI EVE and denotes which fields are segmented string fields.

A segmented string field has no data type. DATATRIEVE cannot convert or
validate the contents of a segmented string field.

If a segmented string segment is longer than 255 bytes, it is output in
subsegments of 255 bytes that break at the COLUMNS PAGE setting (or at
the position in the T edit string, if one is specified in the-field definition in
RDOl. If a segment is shorter than the current COLUMNS PAGE setting,
the segment is left-justified and blank-filled. -

When you use a PRINT statement to display a segmented string field. the
header for the segmented string field begins on a separate line. following the
header lines of fields of other data types. If more than one segmented string
field is in the domain. each field has its own header. DATATRIEVE centers
the header based on the current COLUMNS_PAGE setting.

Each segment of a segmented string starts in the first column. The T edit
string defined for each segmented string field (or the COLUMNS PAGE set­
ting. if none is defined) controls where a segmented string line breaks.
DAT A TRI EVE displays a blank line for a missing segmented string.
Individual segments cannot be displayed separately.

When you use a LIST statement to display a segmented string field,
DATATRIEVE prints the segments of the field below the field header,
instead of beside it. DATATRIEVE displays a blank line for a missing seg­
mented string.

You cannot use the DISPLAY statement with a segmented string field.

Using DATATRIEVE with Rdb 15-29

• You cannot store segments larger than 255 bytes in a segmented string field
through DATATRIEVE. This is due to a general DATATRIEVE limit on the
number of characters that can be input on a line. U this segment exceeds
255, the segment will be truncated.

• You must enter all segments of a segmented string in a single STORE or
MODIFY statement. Individual segments cannot be entered or retrieved
separately.

In STORE or MODIFY statements that prompt for input. DATATRIEVE
repeats the prompt for each segment to be entered in the segmented string.

Pressing the TAB key followed by the RETURN key in response to a promp
for a segmented string field terminates the segmented string if data has
already been entered in response to previous segment prompts. Pressing the
TAB key followed by the RETURN key in response to the initial prompt for
a segmented string field results in nothing being stored in the field.

• You cannot modify portions of a segmented string field. The MODIFY state
ment creates an entirely new segmented string for a record. It does not
update an existing segmented string.

• Data can be stored in segmented strings only in response to segment
prompts or as character string literals assigned to a segmented string field i
a STORE or MODIFY USING statement. You cannot assign values of field:
or declared variables to a segmented string field.

If data is input as a character string literal in a STORE or MODIFY USINC
statement, each character string represents one segment. The field name
must be repeated for each character string literal being assigned to a seg­
ment of the segmented string field. As soon as a new field name is encoun­
tered, the string is terminated.

• You cannot retrieve or store segmented string fields from remote domains.
When you ready a remote domain, DAT ATRIEVE ignores the segmented
string fields and gives a warning message naming'the fields. DAT ATRIEVE
does ready the remote do"main. however, and you can retrieve or store fields
of other data types.

• Segmented string fields cannot be used with forms or plots.

• You cannot refer to segmented strings with the following elements of a
record selection expression:

Relational operators

Boolean operators (AND, OR. NOT. BUT)

15-30 Using DATATRIEVE with Rdb

SORTED BY clause

REDUCED TO clause

CROSS clause

>.1 O Modifying the Structure of an Rdb Domain or Relation

m cannot modify the structure of an Rdb relation or view relation using
<\TATRIEVE. If you want to add. change, or delete fields or indexes, you
llSt restructure your Rdb database using techniques described in your Rdb
cumentation.

;.11 Ensuring Data Security

ke any other domain, each Rdb domain has an associated DAT ATRIEVE ACL
at specifies access privileges. There is also an ACL associated with the database
th name. In addition, Rdb provides an access control list for each relation in
e database. When a user readies a domain, DAT A TRIEVE first checks the
main's ACL, then checks the database path ACL, and finally checks Rdb access
ivileges for the associated relation. Users are denied the requested access if any
these access control lists denies them the required privilege.

you want the Rdb access control list to be the main means of access control for
lb domains, you might consider opening up the DAT A TRI EVE AC Ls to allow
users READ, WRITE, MODIFY. and EXTEND privileges. This allows users

,ass through" to the Rdb access control list.

you are not using domains to access the database, the ACL associated with the
tabase path name and the Rdb access control list are the only means of access
ntrol. In this case, you have to maintain only two access control lists.

L 12 Validating Data for Rdb Relations and Domains

~ep in mind that when you are storing into or modifying fields whose definitions
~ common to more than one Rdb relation. you affect values only in the relations
at you specify. You do not automatically change data values in the same fields
any other relations.

te EMPLOYEE ID field definition, for example, is common to several Rdb rela­
ins in the PERS-ONNEL database. A user could assign an EMPLOYEE ID
lue for Jack Jones in the EMPLOYEES relations and give him a different
viPLOYEE ID value in the JOB HISTORY relation. You should design valida­
,n procedures to protect against -such an occurrence. Design your database so
it the minimum number of identical fields exist from one relation to another.
nit common fields to the keys you need in order to match records.

Using DATATRIEVE with Rdb 15-31

One way to check data for validity is through Rdb's VALID IF clause of the Rdb
DEFINE FIELD statement. In addition, with RdbNMS, you can use the
DEFINE CONSTRAINT statement, which is more flexible for checking validity.
(Note that one option of the DEFINE CONSTRAINT statement specifies that
the validation criteria are not evaluated until a COMMIT statement is issued. If <
database is set up to check constraints at the time a COMMIT statement
executes. validation errors can occur later than interactive DAT ATRIEVE users
expect to receive them.)

15.13 Optimizing Performance
To optimize DAT A TRIEVE performance, keep these points in mind when using
DATATRIEVE with Rdb:

• Avoid using the FIND statement unless the resulting collection contains a
small number of records. After you form a collection, DATATRIEVE cannot
use the Rdb index structure to search the data contained in the collection.
Data retrieval using keyed fields to search relations is faster than an exhaus
tive search of large collections. For the same reason, forming a new collec­
tion from another collection is likely to be time-consuming. If a collection
contains a small number of records, however, you may find that
DATATRIEVE responds more quickly when you specify that collection as a
record source.

• Using the READY DATABASE command to access your Rdb database
works more quickly than using domains defined for relations. Therefore,
define domains for relations only when you cannot do what you want by
readying the entire database directly.

• DAT A TRIEVE and Rdb use different default settings for waiting on locked
records. Using the DAT A TRI EVE default may cause Rdb to generate error
messages you do not expect. In DATATRIEVE, when your Rdb transaction
encounters a locked record, the default setting (SET NO LOCK WAIT)
causes Rdb to generate an error message and returns to the DAT A TRI EVE
prompt. In Rdb, the default setting (START TRANSACTION WAIT) is for
transaction to wait until a locked record is released and then continue the
operation.

The following example shows the error message generated when a user trie~
to update a locked record of the sample EMPLOYEES Rdb domain with th
default DAT A TRI EVE setting in effect:

DTR> MODIFY FIRST_NAME
Enter FIRST_NAME: Norman
%RDB-E-LOCK_CONFLICT, NO WAIT request failed because resource was 1
-RDMS-F-LCKCNFLCT, lock conflict on area 25
DTR>

15-32 Using DATATRIEVE with Rdb

To change the setting in DATATRIEVE, issue the SET LOCK WAIT com­
mand. Instead of generating the error messages and returning to the
DAT A TRI EVE prompt, your Rdb transaction will wait until the other user
begins another transaction and the record is released. (DAT A TRIEVE com­
mands and statements that begin Rdb transactions are READY, COMMIT,
and ROLLBACK.)

Changing the default setting to LOCK WAIT will affect performance in the
sense that your transaction must wait for a locked record to be released.

Using DATATRIEVE with Rdb 15-33

Accessing Remote Data 16

~his chapter explains how to define network domains and access distributed
lomains.

16.1 Defining Network Domains and Accessing Remote
Domains

Vi th VAX DAT A TRIEVE, you can access domains defined on other systems
.nked to yours by the DECnet network. Each system must have DATATRIEVE
1stalled. In the following discussion, the term "local" refers to your system and
he term "remote" refers to a system connected to yours by the DECnet network.

,he term "network domain" refers to the domain you define at your local node
ontaining a network address. The term "remote domain" or "distributed
omain" refers to the domain located at the remote node.
1
0 access a remote domain, you must tell DAT A TRI EVE the network address of
h.e remote domain. You can do that in one of two ways:

You can include the network address of the remote domain in the READY
command:

DTR> READY CDD$TOP.DEPT32.SMITH.PERSONNEL AT BIGVAX
DTR>

At your local node~ you can define a domain (called a network domain) that
contains the address of the remote domain. Then you ready the network
domain at your local node just as you would any domain definition:

DTR> DEFINE DOMAIN REM_PERSONNEL
DFN> USING CDD$TOP.DEPT32.SMITH.PERSONNEL
DFN> AT BIGVAX"SMITH PASSMETHROUGH";
DTR> READY REM_PERSONNEL

16-1

When you ready a remote domain, either directly using the network address
in the READY command or by readying a local domain that contains a network
address, DATATRIEVE:

• Recognizes that the desired domain resides at another node in your network

• Starts a process on that remote node

• Invokes the DAT ATRIEVE Distributed Data Manipulation Facility (DDMF)
at the remote node to process the DATATRIEVE statements that refer to
the domain at that node

• Terminates the remote process when you finish the domain

The DDMF keeps a trace file of your requests and its responses. It writes this file
to the login directory of the remote process. If the remote node is a V AXNMS
system. the trace file is NETSERVER.LOG. If the remote node is a PDP-11 sys­
tem, the trace file is DDMF.LOG.

If the DDMF is handling more than one domain, the remote process ends when
you finish the last domain.

The following sections explain the process of defining network domains and how
to access remote domains.

16.1.1 Defining Network Domains

To define a network domain, you define a DATATRIEVE domain at the local
node that specifies the link with the domain definition at the remote node.

The following example defines a network domain for a domain on a remote
VAX/VMS system:

DTR> DEFINE DOMAIN PERSONNEL
DFN> USING CDD$TOP.DTR$USERS.CUVERDALE.PERSONNEL
DFN> AT BIGVAX"CUVERDALE SESAME";
DTR>

The following example defines a network domain for a domain on a remote
PD P-11 system:

DTR> DEFINE DOMAIN CDD$TOP.DEPT39.PERSONNEL USING PERSONNEL
DFN> AT ELEVEN"*.USERNAME *.PASSWORD";
DTR>

16-2 Accessing Remote Data

'ou use the following format:

>EFINE DOMAIN path-name USING <------- (1)

remote-domain-name < ----------- (2)

AT node-spec < ----------- (3)

lee the VAX DATATRIEVE Reference Manual for the full syntax.

•he format:

1. Specifies a name for the network domain

The path name you give the network domain can be a given name, a relative
path name, or a full path name.

The results of specifying each type of name and the consequences for
extracting and moving the definition are the same for network domains as
for any other domain.

2. Specifies the name of the domain at the remote node

If the remote domain is on a VAXNMS system, you can specify the remote
domain name using either the given name or the full path name of that
domain.

If you use the full path name, your access to the remote domain is indepen­
dent of the default dictionary directory used by the remote pr;ocess running
DATATRIEVE. If you use the given name. you access either the CDD
default dictionary for that process, or a CDD dictionary identified in the
login command file of the remote process that runs DAT A TRIEVE.

If the remote domain is on a PDP-11 system, you specify only the domain's
given name. Otherwise, the format for referring to remote domains is the
same for both the VAX and the PDP-11 systems.

Note that the remote domain you refer to in a network domain definition
is no different from any other DATATRIEVE domain. It specifies the
relationship of a particular record definition and a data file. (At remote
VAXNMS systems, a DBMS or Rdb domain can also be the access path to
a DBMS or Rdb database.) The remote domain must be defined at the
remote node during a DAT A TRIEVE session running on that remote node.
A person or program local to that system can invoke DAT ATRIEVE to
enter the domain definition, or a person or program running on that system
as a remote terminal can enter the definition.

Accessing Remote Data 16-3

3. Specifies the network address

The network address corresponds to node-spec in the preceding format.

If the login procedure used by the remote process does not supply the nec­
essary login information (user name, password, and, optionally, account
name), either the person readying the network domain or the network
domain definition must supply this information.

You can use any of the following formats to specify the network address
and to provide the best level of access security for your installation:

• node-name" username password [account-name]"

Examples of this format are:

BIGVAX"WARTON KNOCKKNOCK DEPT32"

ELEVEN"LINTE LETMEIN"

When you specify the network address using this format, users do not
have to supply login information when readying the network domain.

• node-name"* .username-prompt *.password-prompt [*.account- promp·

Examples of this format are:

WINKEN"*.USERNAME *.PASSWORD *.ACCOUNT"

VAXTWO"*· 'user name' *·'password'"

PDPTWO"*. 'user name' *. 'password'"

When you specify the network address using this format, users are
prompted for login information when they ready the network domain.
This method provides the best security.

• node-name

Two examples of this format are:

BIGVAX

ELEVEN

When you specify the network address with this format, the
account used by the remote process must provide login information
automatically.

16-4 Accessing Remote Data

If you prefer, you can combine elements from the first two formats. For
example, you can explicitly specify the user name and specify a prompting
value expression for the password:

SNOOPY"CLARK *.PASSWORD"

5.1.2 Accessing Remote Domains

s you have seen, you can access a remote domain by either:

Readying a network domain (the domains you learned to define in the pre­
vious section)

Including the network address in a READY command

he next two sections show how to access a remote domain both ways.

).1.2.1 Readying a Network Domain -- Readying a network domain makes
stributed processing transparent to the DATATRIEVE user. Depending upon
>w you specify login requirements in the network address of the domain defini­
)n, the user may have to enter a user name or password. The user need not be
mcerned with the actual location of the domain, however, as that is already
~fined in the network domain definition.

1e following example readies the network domain REM PERSONNEL, whose
!finition explicitly specifies user name and password in the network address:

R> READY REM_PERSONNEL

R>
R> SHOW REM_PERSONNEL
MAIN REM_PERSONNEL USING CDD$TOP;DEPT32.SMITH.PERSONNEL

BIGVAX"SMITH PASSMETHROUGH";

ie following example readies the network domain REM SALES whose defini-
m specifies prompting value expressions for user name -and password in the net­
>rk address:

R.> READY REM_SALES
ter USERNAME: GREEB
ter PASSWORD:
R.>
R.> SHOW REM_SALES
UIN REM_SALES USING SALES AT ANODE"*.USERNAME *.PASSWORD";
R.>

Accessing Remote Data 16-5

16.1.2.2 Readying a Remote Domain Directly -- When you ready a remote
domain directly, you specify the name of the remote domain and its network
address in the READY command. The formats and results for specifying a net­
work address in the READY command are the same as those for including the
network address in a network domain definition. See the third step, specifying a
network address, in the section on defining network domains.

The following example readies a remote domain on a V AXNMS system. The
command specifies a full dictionary path name and assumes a default DECnet
account in the network address:

DTR> READY CDD$TOP.DEPT32.PERSONNEL AT BIGVAX
DTR>

The next example readies a remote domain on a PDP-11 system. The network
address specifies the login account assigned to the user VOJTEK. The prompting
value expression for the password ensures that the password is not displayed on
the terminal as it is entered:

DTR> READY PERSONNEL AT ELEVEN"VOJTEK *.PASSWORD"
DTR> Enter PASSWORD:
DTR>

16. 1.3 Results of Accessing Remote Domains

There are some facts common to both ways of accessing remote domains.

Whichever method you choose, the remote process running DAT ATRIEVE
executes a login command file, just as you do when you log in to your local sys­
tem. Depending in how you specify a network address, the remote process can 101
in to a specific account or it can log in to a default DECnet account.

For example. the command READY PERSONNEL AT BIGV AX does not specif:
a user name. Therefore. it starts a remote process using a default DECnet
account. (The guide for installing DAT ATRIEVE explains how to set up a default
DECnet account for DATATRIEVE on a VAXNMS system.) In this case, the
login procedure executes the fogin command file for the default DECnet account.

On the other hand. the command READY PERSONNEL AT BIGVAX"SWAZY
ITS ME" starts a remote process using the login account assigned to user Swazy
The login procedure executes the login command file for Swazy' s account.

In addition to providing security information such as user name and password.
you must make sure the remote process uses the correct dictionary and system
directories when it invokes DAT ATRIEVE and readies the domain for you.

16-6 Accessing Remote Data

)n a V AXNMS system, the login command file for the account used by the
emote process can include commands that set any defaults not included in the
tetwork address and needed by the remote process running DATATRIEVE.
:lowever, the login file should not execute commands that are appropriate for
riteractive mode and that might cause a network process to fail. (Assignments to
,T: can fall into this category.)

,he following example illustrates some helpful commands that you might want to
1clude in a login file for an account on a remote V AXNMS system. The example
ssumes that there are no commands preceding the first line that might cause a
etwork process to fail.

IF F$MODE() .EQS. "NETWORK" THEN GOTO NETWORK_PROCESS

NETWORK_PROCESS:
SET DEFAULT [HAMOND.PERSONNEL.DATA]
ASSIGN "CDD$TOP.HAMOND.PERSONNEL" CDD$DEFAULT
EXIT

he SET DEFAULT command moves the network process to the VAX/VMS
irectory that contains the data file. This is necessary if the login directory does
ot contain the data file and if the definition of the domain being readied does not
mtain a full file specification for the data file. The ASSIGN command sets the
~gical name CDD$DEFAULT to the dictionary containing the definition of the
)main being readied. This is necessary if this information is not included in the
~twork address. The EXIT command exits. the login command file so that subse-
1ent commands inappropriate for a network process are not executed.

or a PDP-11 system, you can use a SET DICTIONARY command in a
ATATRIEVE-11 QUERY.IN! file to access the dictionary directory you
ant to use when the remote process invokes DATATRIEVE. This is unneces­
try. of course, if the dictionary file containing the domain definition is in the
gin directory.

).1.4 Restrictions on Using Remote Domains

'hen you access data located on remote systems, note the following restrictions:

Using a simple DATATRIEVE domain that includes a remote node name in
the specification for the data file can slow DATATRIEVE response time.
Avoid using this method to access data on other systems. Instead. use the

Accessing Remote Data 16-7

methods explained in this chapter to ensure optimum DAT ATRIEVE
performance.

• The CONTAINING operator does not work with a prompt for remote
domains. For example, the following PRINT statement does not work:

PRINT REMOTE_YACHTS WITH BUILDER CONTAINING *.BUILDER

DATATRIEVE uses a fixed-length field to transmit the prompt value to the
remote server. Trailing spaces are appended to any value shorter than the
length of this field.

• You cannot use a Boolean expression containing the relational operators IN
or ANY in a record selection expression with a remote domain or collection
as its source.

• You can use remote domains or collections in a CROSS clause only if both of
the following conditions are met:

The remote domains or collections reside on the same remote node.

You access the remote domains or collections with the same account,
user name, and password.

• When validation checks are made for data entered in response to a prompt,
distributed DATATRIEVE does not reprompt when validation errors occur.
A validation error causes the statement being processed to abort.

• In a record selection expression with a remote domain as its source, you can­
not use value expressions that require computations involving remote data.

• If a remote domain contains an elementary field that is also a list field.
explicitly attempting to access it generates the error message:

[DDMF] field is not a list.

This occurs if the field is defined using the following format:

06 ABSTRACT PIC X(80) OCCURS 0 TO 10 TIMES.

16-8 Accessing Remote Data

In this case, you need to change the format of the field definition. If the field
is defined in the following way, you can explicitly access the field TEXT:

06 ABSTRACT OCCURS 0 TO 10 TIMES.
08 TEXT PIC X(80).

You cannot ready a remote Rdb database by specifying a database path name
in a READY command that uses the AT syntax. You must first create
domain definitions on the remote node for each relation you want to access.
You can then ready the database using these domains.

The following example does not work:

DTR> READY CDD$TOP.DTR$LIB.DEMO.RDB.PERSONNEL AT
[Looking for Node Specification]
CON> DEPT42"SMITH PASSWORD"
[DDMFJ You can not READY a database with an alias.
[DDMF] Statement abandoned due to error.

If you define a DAT A TRI EVE domain on the remote node for each relation
in PERSONNEL, you can ready and access each relation in the remote Rdb
database PERSONNEL. In this example, the user defines a DAT ATRIEVE
domain on the remote node DEPT42 for the Rdb relation
SALARY_ HISTORY in the database PERSONNEL.

DTR> DEFINE DOMAIN SALARY_HISTORY USING SALARY_HISTORY OF
DFN> DATABASE CDD$TOP.DTR$LIB.DEMO.RDB.PERSONNEL;
DTR>

Then the user can ready the remote domain from the local node:

DTR> READY SALARY_HISTORY AT DEPT42"SMITH PASSWORD"

Accessing Remote Data 16-9

Name Recognition and Single Record Context A

rhen you use a field name as a value expression and you display, modify, or erase
1e or more records, DAT A TRI EVE determines exaetly which record or records
e the targets of the action you propose.

>r each of these actions, DAT A TRI EVE must first determine the context within
1ich the action occurs. The context is the set of conditions that govern the way
A. T ATRIEVE recognizes field names and determines which records are the tar­
~ts of DATATRIEVE statements. Understanding the way DATATRIEVE man­
:es context is especially important when you begin nesting DAT ATRIEVE
atements .

. 1 Establishing the Context for Name Recognition

i\.TATRIEVE does not require that every field name be unique. You can use the
me name in several record definitions. You can even use the same name several
nes in the same record definition, as long as the fields with identical names do
1t have the same level number in one group field.

1r example, both the YACHTS and QWNERS domains have group fields named
{PE, and both group fields contain elementary fields you can refer to with the
mes BUILDER and MODEL. (In YACHTS, DATATRIEVE recognizes the
ery name BUILDER as equivalent to MANUFACTURER. Other query names
·YACHTS are SPECS, LOA, and DISP.) Figure A-1 shows the fields in both
mains and points out the duplicate names.

b.en you work with several record streams from the same domain, the field
mes in all record streams are identical. Whether you form collections or record
·earns of records from the YACHTS domain, DATATRIEVE has a mechanism
·identifying which record to act on when you want to retrieve or change data
m only one field of one record.

A-1

OWNERS

OWNER
NAME
BOAT_ NAME
TYPE

BUILDER
MODEL

BOAT
----j-~ 'TYPE

YACHTS

----j-~ MANUFACTURER <BUILDER>
---..;i~~ MODEL

SPECIFICATIONS <SPECS>
RIG
LENGTHOVERALL CLDA>
DISPLACEMENT CDISP>
BEAM
PRICE

MK-01592-00

Figure A-1: Duplicate Field Names in YACHTS and OWNERS

When you understand the way DAT A TRI EVE establishes the context for recog­
nizing names. you can use the names of domains, fields, collections, and variable:
to form the simple and the complex relationships DAT ATRIEVE provides. One '
the keys to mastering the use of context is understanding the two DAT A TRI EV
context stacks.

A.1.1 The Right Context Stack

When you issue a statement! DAT A TRI EVE builds a context stack, a linked list
that controls DATATRIEVE's search for names to match the ones you use in
statements. The context stack consists of context blocks. or lists of names. The~
context blocks are linked together by pointers that control the sequence of
DATATRIEVE's search for values to associate with the names you use in
statements.

DAT ATRIEVE searches the right context stack for values to associate with
names you use in print lists. Boolean expressions. and the right side of assign­
ment statements such as x = y. See Section A.1.3 for a discussion of the left co1
text stack.

A.1.1.1 The Content of a Context Block -- When you use a record selection
expression. DAT A TRI EVE creates a context block to establish a context for
name recognition. That context block contains, among other things. a list of
names.

At the top of the list is a slot for the name of a context variable (see Section
A. l. 2. 1). Next is the name of the domain referred to in the record selection
expression. The rest of the list contains the names of fields in the record associ­
ated with that domain. Those field names are arranged according to the field tre
associated with that record.

A-2 Name Recognition and Single Record Context

,he field tree contains the names of all the group fields, elementary fields,
~OMPUTED BY fields, REDEFINES fields, and lists in the record and pre­
erves the hierarchical relationships among them.

Vhen DAT A TRIEVE searches for a name in the context stack, it looks for a
alue to associate with that name. The search ends, and DAT A TRIEVE takes
1e associated value when it finds the first name that matches the one in your
tatement .

. DATATRIEVE name can consist of several names joined together. (See Section

.. 1.2.2.) They resemble dictionary path names in form and function. To be recog­
ized, these compound or qualified names you supply must represent a valid path
irough the hierarchy of a context block and the field tree it contains.

Then DAT ATRIEVE encounters a name, it begins its search in the context block
1 top of the stack. DAT A TRIEVE first looks at the slot in the context block
$erved for a collection name or the name of a context variable. For unnamed
URRENT collections, this slot contains the name CURRENT. For named
URRENT collections, the name CURRENT and the collection name are equiv­
ent. Named collections that are not the CURRENT collection have the collec-
on name in this slot.

the top block on the context stack refers to a record stream, this slot is empty
1less you use a context variable in the RSE that forms the record stream. The
mtext variable gives a record stream a temporary name; this name fills the first
ot in the context block for these named record streams.

DATATRIEVE finds that the first segment of a qualified name matches the
ime in the collection name/context variable slot, it continues its search in that
ock for a match for the rest of the name. If the name in your statement does not
atch the name in .the collection name/context variable slot, or if that slot is
npty, DATATRIEVE continues to look through the first context block to find a
atch.

ext in the context block is the name of the source of the records referred to by
.at block. For collections and record streams, that source can be the domain
tme or the name of a list for hierarchical records. The source can also be the
tme of a collection if you use the collection as the basis for a record stream in a
)R statement and use a context variable.

the source name does not match the name in your statement. DAT ATRIEVE
~xt looks for the name in the slot reserved for names.

~xt DATATRIEVE looks at the name of the top-level (the 01 level) field name.
no match occurs, DATATRIEVE looks at each succeeding field name in the
der they are displayed when you enter a SHOW FIELDS command. That order
n take you through the entire hierarchy of the field tree, traversing first the left
anch and then the right wherever there is a branching point in the hierarchy.

Name Recognition and Single Record Context A-3

If DATATRIEVE finds no match in the first block on the context stack, it goes t<
the next context block on the stack and begins its search there.

DAT ATRIEVE stops its search as soon as it finds an exact match for the name ii
your statement. Then it associates the value assigned to the name on the context
stack with the name of the field in your statement.

If DAT ATRIEVE finds no match for the name in any of the context blocks, it dis
plays a message on your terminal that the field name is either undefined or used
out of context. The only remedies are to change the context SQ that the name in
your statement resolves properly or to remove any ambiguity by qualifying the
name further with group field names or context variables.

For the sake of clarity, the following description of the various types of context
blocks starts with the bottom of the context stack, that is, with the context bloc~
that DAT ATRIEVE checks last.

A.1.1.2 Global Variables -- The bottom context block contains the names of
any global variables you have established and have not released. This block is dif·
ferent from the others on the stack because its content is not determined by a
record selection expression. Nevertheless, DATATRIEVE treats the name of a
global variable as though it were the name of a field in a simple record. Just as
DATATRIEVE associates the value of a field with the field name, DATATRIEVI
associates the value of a global variable with its name.

DAT ATRIEVE looks at the global variables last when trying to find a name to
match one in your statement. No two global variables can have the same name.
When you issue a DECLARE statement at command level (indicated by the
DTR > prompt), DAT A TRIEVE checks the names of the global variables you
have declared. If it finds one with the same name. it releases the old variable and
its value and replaces it with the new one. DAT ATRIEVE initializes the new var:
able with a default value, a missing value, a zero. or a space depending on the
clauses you include in the DECLARE statement.

A.1.1.3 Collections -- The next higher set of blocks in the context stack refer:
to existing collections. Each collection with a block on the context stack must
have one record singled out as a selected record. Although a collection can have i
number of records in it, only one of those records can be used in the search for
the context of a name. DAT ATRIEVE can assign only one value to the name.
Consequently. that one value can come from only one of the records in the
collection.

Remember. the reason for resolving the context of a name you use in a statemer
is to assign to the name a value for use in the statement.

A-4 Name Recognition and Single Record Context

or an existing collection, you can designate one record at a time as the selected
~cord for that collection. The SELECT statement lets you designate the selected
~cord in a collection by relative reference (FIRST, NEXT, PRIOR, LAST, and
TITH Boolean) or by absolute reference to the position number of the record in
ie collection. A collection has a block on the context stack only if it has a
~lected record.

you have more than one existing collection with a selected record, the block
nmediately above the one for global variables refers to a named collection with a
~lected record. That collection is the one you formed with a FIND statement
~fore you formed any of the other collections that have selected records.

he rest of the context blocks for the collections with selected records are ordered
~cording to the sequence in which you formed them. not the order in which you
itered the SELECT statements to establish the selected records.

the CURRENT collection has a selected record, the context stack contains a
ock referring to the CURRENT collection. That block is above the blocks of all
:her collections; that is, DAT A TRI EVE searches for names in the context block
· the CURRENT collection before it searches the context block of any other
>llection.

be key to understanding the way DAT A TRIEVE recognizes names is that
~cept for the global variables. the context stack is ordered on a "last-in, first-
1t" basis. The most recently formed context block is the one DATATRIEVE
~arches first.

ou do not have to rely on your memory to recall the order in which you formed
mr existing collections. You need only issue a SHOW COLLECTIONS com­
and. DAT ATRIEVE displays the most recently formed collection (always the
URRENT collection, whether it has a name or not) at the top of the list and the
>ldest" one at the bottom.

"ith the SHOW collection-name command, you can inspect each existing collec­
m to see how many records are in the collection, whether it has a selected
cord. and, if it does, what the position number of the selected record is in the
Hection.

DATATRIEVE searches the context stack and does not find a match for the
Lme in your statement, it displays an error message that may seem puzzling
lless you understand the way DAT ATRIEVE forms the context stack:

eld "name" is undefined or used out of context

m may know the name has been defined and that it is the name of a field in a
cord associated with one or more existing collections. If, however, none of the
llections containing that field have selected records, DATATRIEVE cannot tell
the field is defined or not.

Name Recognition and Single Record Context A-5

If a collection containing the named field has no selected record, that collection
has no block on the context stack. Consequently, DATATRIEVE neither finds a
match for the field name nor has a way of discovering from the search of the con­
text stack if the field name is defined at all.

The order of context blocks at the higher levels of the context stack depends on
the order in which DAT ATRIEVE encounters the elements containing names
associated with values. The order of the following sections does not imply any rel­
ative position on the stack. Only the order DATATRIEVE encounters those ele­
ments determines their order on the stack.

A.1.1.4 Record Streams -- Before DATATRIEVE looks at the context block o:
the most recently formed collection with a selected record. it looks at the context
blocks created explicitly in the statement. One type of context block created by a
statement refers to the field names of a record stream formed by a statement.

Context blocks of record streams act differently from those of collections. The
context block for a collection stays on the stack as long as the collection has a
selected record. The context block of a collection is removed from the stack only i
you release the collection or remove its selected record with a DROP statement.

The context block for a record stream. however, stays on the stack only as long a
the statement containing it is being executed. When DAT A TRIEVE finishes pro·
cessing the statement, the block added to the stack is removed from the context
stack and is not available when DATATRIEVE rebuilds the stack after it encoun·
ters the next statement.

Only three statements make lasting changes to the context stack:

• FIND

The FIND statement can remove the CURRENT collection from the contex
stack by forming a new CURRENT collection. The new CURRENT collec­
tion releases the old collection but does not put a block on the context stack
because a newly formed collection has no selected record.

• SELECT

The SELECT statement puts a collection on the context stack by establish­
ing a selected record. SELECT cannot change the relative order of collec­
tions on the stack. That order is determined by the relative order in which
you formed the collections with the FIND statement.

A-6 Name Recognition and Single Record Context

DROP

The DROP statement removes collections from the context stack by drop­
ping the selected record from the collection. The SHOW collection-name
command still notes the position number of the previously selected record,
but a parenthetical note points out that the record has been dropped:

DTR> SHOW CURRENT
Collection CURRENT

Domain: YACHTS
Number of Records: 113
Selected Record: 57 (Dropped)

DTR>

The selected record has been removed from the collection. and cannot be
retrieved unless you form a new collection that contains it.

hese three statements. however. share a restriction that separates them from all
;her statements: you cannot use FIND, SELECT, or DROP statements in com­
lund statements. They must be entered at command level by themselves.
urthermore, these statements do not form temporary record streams; they
Ject only collections.

ou can, however, have several context blocks for record streams on the context
.ack at one time. The block for a record stream stays on the context stack until
AT ATRIEVE finishes the statement. Because you can nest statements in FOR
ops, BEGIN-END blocks, IF-THEN-ELSE statements, THEN, and WHILE
atements. the inner statements can form record streams before DAT A TRI EVE
1ishes the outermost statement.

AT ATRIEVE has to keep the context of outer statements separate from that of
ner ones. It keeps them separate by putting a block on the context stack when
encounters an element that requires one. DAT ATRIEVE begins processing
mpound statements with the outermost statement and works progressively
ward the innermost one. The context blocks it forms for elements in the inner­
ost statement are at the top of the stack when the innermost statement is being
ucessed.

hen DAT A TRI EVE finishes processing the innermost statements, it removes
e blocks created by that statement. DAT ATRIEVE works its way back out
ward the outermost statement, removing blocks created by statements as soon
it finishes processing the statement.

>r example. in the case of nested FOR loops, the context block for the inner­
Dst FOR loop is higher in the stack than the blocks for the outer loops.

Name Recognition and Single Record Context A-7

When· DAT A TRI EVE completes the execution of the innermost loop, it removes
the context block of that FOR statement, leaving those of the outer FOR state­
ments on the stack. As DATATRIEVE completes each loop, the context block for
that loop is removed from the stack. This same pattern of events applies to state­
ments in BEGIN-END blocks.

When a statement that forms a record stream is followed by a second statement
that is not contained in the first, DAT ATRIEVE removes the context block cre­
ated for the first statement from the stack and puts a context block for the sec­
ond statement in its place.

For example. in a BEGIN-END block. one PRINT statement containing an OF
rse clause follows, another. The context block of the first statement is in effect
only during the execution of that first statement. That block is replaced by the
one for the second PRINT statement when DATATRIEVE begins processing the
second statement.

DATATRIEVE handles the context block of a FOR loop the same way it handles
statements containing an OF rse clause.

DAT A TRI EVE creates four other types of context bocks that affect the order of
the context stack: those for local variables, VERIFY clauses, VALID IF clauses,
and context variables.

A.1.1.5 Local Variables -- Local variables are variables defined in compound
statements~ A local variable and its effect on the context stack last only from the
DECLARE statement that defines it until DATATRIEVE completes the execu­
tion of the statement containing the DECLARE statement.

A.1.1.6 VERIFY Clause in the STORE Statement -- Like the context for local
variables. the context for resolving field names in a VERIFY clause of the
STORE statement is short-lived. The STORE statement does not access or
change any existing record. Consequently, for each STORE statement
DAT A TRIEVE creates a context block to associate the field names with the val­
ues in the new record. DAT ATRIEVE executes the VERIFY clause after you
have assigned values to all the fields prescribed by the syntax of the statement,
but before DAT ATRIEVE stores the record in the data file.

A.1.1. 7 VALID IF Clause in a Record Definition -- When you assign a value tu
a field name in either a STORE or MODIFY statement, DATATRIEVE looks in
the appropriate record definition for a VALID IF clause. If the value is
unacceptable according to the conditions specified in the VALID IF clause,
DAT ATRIEVE displays a message on your terminal and reprompts you for an
acceptable value. It uses the same context to associate the field name with your
response to the reprompt. ·

A-8 Name Recognition and Single Record Context

'he context for resolving field names in the VALID IF clause is established in one
f two ways:

By the context block set up for the STORE statement

By the context block set up for the the MODIFY statement

1 either case. the value associated with the field name is the one just assigned to
by your response to a prompt or by an assignment statement in the USING
ause of the STORE or MODIFY statement.

1ATATRIEVE executes the VERIFY clause only after the values you assign
Leet the conditions of VALID IF clauses in the record definition. As a result,
iere can be no conflict between the context established for these two clauses.
he context for the VALID IF clause no longer exists when DAT ATRIEVE
rncutes the VERIFY clause .

. 1.2 Using Context Variables and Qualified Field Names

he ways of establishing context discussed to this point deal with resolving the
mnections between names and values by finding the first instance of a valid field
:tme or variable name. When several context blocks on the stack contain fields
ith the same names, you need a way to skip over some instances of the name to
~t to the field that contains the value you want to retrieve.

AT A TRI EVE gives you two methods of forcing name recognition: context
Lriables and qualified field names. Although they require different actions from
m. these two methods have an underlying similarity.

, 1.2.1 Context Variables as Field Name Qualifiers -- A context variable is a
tmmy variable specified in a record selection expression for the purpose of name
cognition. When DAT A TRIEVE encounters a context variable, it puts a new
ock on the context stack. That new block connects the name of the context vari­
~1e with the field names and values of the records identified by the record selec­
m expression.

1e context established by the context variable lasts until DA TATRIEVE com­
etes the execution of the statement containing the record selection expression
which the context variable occurs. However. that context does not affect any
.ter loops or nesting statements that contain the statement in which you use the
ntext variable.

context variable, however, does affect all inner statements nested in the state­
ent that contains the record selection expression in which the context variable
curs.

Name Recognition and Single Record Context A-9

You can use the context variable as a prefix for each field name of the records
identified by the record selection expression. Citing a field name with a context
variable prefix can make a field name unique, even when the domains and field
trees of a record in a record stream are identical.

Putting a prefix on a field name produces a qualified field name. The context vari
able must be the first prefix added to a field name.

A.1.2.2 Other Field Name Qualifiers -- Using other qualifiers as prefixes to
field names is the second method of overriding DAT ATRIEVE 's default mecha­
nism of name recognition.

Although DAT A TRIEVE does not require that each field name be unique, each
fully qualified field name must be unique. The fully qualified field name consists c
the domain name, the top-level group field name, the names of any group field to
which the elementary field belongs, and the elementary field name. You must seJ
arate each element of the fully qualified name from the next with a period.

For example, in the domain YACHTS, the fully qualified field name of MODEL
is:

YACHTS.BOAT.TYPE.MODEL

You can use these elements in any combination that preserves their hierarchical
order to distinguish the MODEL field in YACHTS from the MODEL field in
another domain, such as OWNERS.

When DATATRIEVE encounters a qualified field name, it searches the context
stack for the first match of the name you specify. For example, if you use
BOAT.MODEL in a record selection expression, DATATRIEVE searches the
context stack for the first valid occurrence of the name BOAT and searches the
branches of the hierarchy under BOAT for the first valid occurrence of the name
MODEL.

The success of the search is not jeopardized because you omit the group field
name TYPE from the qualified name of MODEL. DATATRIEVE searches the
entire hierarchy under BOAT until it finds the first valid occurrence of TYPE.
When an intermediary group field name is omitted, DAT ATRIEVE searches the
hierarchy according to the order in which the fields of the record were defined.

Fully qualified field names are adequate when working with two or more domain
that share elementary or group field names, or both. However. when you work
with two record streams from the same domain, you must further qualify the fie
name with a context variable. This extra qualification is especially necessary wh
dealing with lists in hierarchical records.

A-10 Name Recognition and Single Record Context

~uppose you want to display information about all builders who build boats with
1ore than one type of rig. YACHT is the given name of the record associated
rith the domain YACHTS. The field tree of YACHT has the structure:

~CHTS
01 BOAT

03 TYPE
06 MANUFACTURER
06 MODEL

03 SPECIFICATIONS
06 RIG
06 LENGTH_OVER_ALL
06 DISPLACEMENT
06 BEAM
06 PRICE

ou can print the desired information with nested FOR loops. For each boat from
ie outer FOR statement, you want DATATRIEVE to loop through all the boats
1d find all the ones with the same builder. For each one it finds, you want it to
>mpare its rig with the rig of the boat from the outer loop. Then you want to sep­
·ate the ones for which the rigs are not the same. At first, you might be tempted
• use the following statement to produce the desired list:

'.R> SET NO PROMPT
'.R> FOR YACHTS
IN> FOR YACHTS WITH BUILDER = BUILDER AND
IN> RIG NE RIG
IN> PRINT BUILDER, RIG, RIG
'R>

fter a long search for records, DATATRIEVE displays no records. The problem
that the syntax above asks DAT A TRI EVE to look for a boat with a rig that is
>t equal to itself -- an obvious contradiction. Both of the fields named RIG
solve to the record stream formed by the second FOR statement. The name
UILDER also resolves to the same record stream.

"hat happens when you enter the above statement is that DAT ATRIEVE takes
e first record from YACHTS but does not look at any of the values in its fields.
ien it looks at every record in YACHTS and discovers that for every one of
em. the name of the builder equals itself, but that no rig is not equal to itself.
ms every record in YACHTS fails to meet the condition set by the statement.

'\.TA TRI EVE then takes the second record in YACHTS and once again goes
rough all the boats. finding that the two values are always equal to themselves
d thus fail to meet the impossible demands of the statement. And so it goes for
ch record: two comparisons for 113 times 113 records, and no records meet the
lf-contradictory conditions.

Name Recognition and Single Record Context A-11

The problem is how to get DAT ATRIEVE to look at the builder and rig of the
outer FOR statement when making the comparison. The context variable pro­
vides one solution:

DTR> FOR A IN YACHTS
CON> FOR YACHTS WITH BUILDER = A.BUILDER AND RIG NE A.RIG
CON> PRINT BUILDER, A.RIG, RIG

MANUFACTURER RIG RIG

AMERICAN SLOOP MS
AMERICAN MS SLOOP
CHALLENGER SLOOP KETCH

PEARSON KETCH SLOOP
PEARSON KETCH SLOOP

DTR>

In this case. the use of the context variable A forces DATATRIEVE to look to th
record stream formed by the outer FOR statement. At the same time,
DATATRIEVE recognizes the unqualified names, RIG and BUILDER. in the
context established by the most recent RSE: the one in the second FOR state­
ment. The conditions in the second FOR statement are no longer impossible. anc
information from 62 records is displayed.

The way DAT A TRI EVE treats the unqualified names in this example illustrates
another rule for context resolution: the left-hand member of a Boolean expressio
must resolve to the record selection expression of which it is a part. If you start
the Boolean in the second FOR statement with A.BUILDER, DATATRIEVE
tells you that A.BUILDER is undefined or used out of context.

Yo~ can add a second context variable in the above example to make sure the re;

olution of the names is explicitly stated:

DTR> FOR A IN YACHTS
CON> FOR B IN YACHTS WITH B.BUILDER =A.BUILDER AND B.RIG NE A.RIG
CON> PRINT B.BUILDER, A.RIG, B.RIG

A-12 Name Recognition and Single Record Context

ou gain two advantages by specifying the second context variable: clarity of
~presentation and the certainty of getting an error message from DAT ATRIEVE
you make a syntax error. Using the second context variable, however, does not
low you to violate the rule for resolving field names on the left side of Boolean
cpressions .

. 1.2.3 The Effect of the CROSS Clause on Name Recognition -- You can use
te CROSS clause of the record selection expression to produce the same record
ream as the nested FOR statements in the previous example. The CROSS
ause. however. is not constrained by the rule for resolving field names on the
ft side of Boolean expressions.

'ith the CROSS clause, you can establish more than one context variable (and,
mce, more than one context block) in a record selection expression. This is the
·ntax of the CROSS clause:

ROSS [context-var IN] rse-source [OVER field-name]] [...]

ie format for rse-source is:

domain-name
collection-name
list
rdb-relation-name
dbms-record-name [MEMBER

OWNER
WITHIN

[OF] [context-name.set-name]]

\. TATRIEVE creates a context block for each source in the CROSS clause. The
mes in all such context blocks resolve to the same record selection expression.
nsequently. adequately qualified names in the Booleans of the record selection
pression can appear on either the right-hand or left-hand side of any of the
oleans.

Name Recognition and Single Record Context A-13

For example, any of the following statements produces the same result as the
nested FOR statements of the previous example:

DTR> FOR A IN YACHTS CROSS B IN YACHTS WITH
CON> B.BUILDER = A;BUILDER AND B.RIG NE A.RIG
CON> PRINT B.BUILDER, A.RIG, B.RIG

DTR> FOR A IN YACHTS CROSS B IN YACHTS WITH
CON> A.BUILDER = B.BUILDER AND A.RIG NEB.RIG
CON> PRINT B.BUILDER, A.RIG, B.RIG

DTR> FOR A IN YACHTS CROSS YACHTS WITH
CON> BUILDER = A.BUILDER AND RIG NE A.RIG
CON> PRINT BUILDER, A.RIG, RIG

DTR> FOR A IN YACHTS CROSS YACHTS WITH
CON> A.BUILDER = BUILDER AND A.RIG NE RIG
CON> PRINT BUILDER, A.RIG, RIG

In cases where the sources specified in the CROSS clause share a field name, ym
can use the OVER clause to simplify the context specification. The field name
specified in the OVER clause must exist in the records of all the sources specifiec
in the CROSS clause. The following two statements are equivalent to the preced·
ing ones:

DTR> FOR A IN YACHTS CROSS YACHTS OVER BUILDER WITH
CON> RIG NE A.RIG
CON> PRINT BUILDER, A.RIG, RIG

DTR> FOR A IN YACHTS CROSS YACHTS OVER BUILDER WITH
CON> A.RIG NE RIG
CON> PRINT BUILDER, A.RIG, RIG

To resolve field names in a record selection expression containing a CROSS
clause, DAT ATRIEVE looks first at the context block for the last source specifiE
in the CROSS clause. If that block contains no match for the field name. it begir
looking at the context blocks for the other sources, working its way toward the
block for the first source in the clause.

Consequently. when referring to fields from two or more identical sources. only
those fields from the last source in the CROSS clause can remain unqualified. Ir
such cases, you must use context variables to establish the appropriate context
for fields from the other sources in the clause.

A.1.3 The Left Context Stack for Assignment Statements

When you make assignment statements at DAT A TRI EVE command level or as
part of STORE or MODIFY statements, DATATRIEVE must assign values to

A-14 Name Recognition and Single Record Context

te field or variable you intend. It uses the left context stack to associate the val­
~s you supply with the fields and variables you want the values assigned to.
locks on the left context stack are for records and variables that you can update.

'henever DAT ATRIEVE begins to process a statement, the left context stack
1ntains the global variables you have declared and not released. Any local
triables you declare in compound statements are also on the left context stack.
1e local variables are removed when the statement in which you declared them
tds.

>cal and global variables are on both stacks. Each type of variable has a value
at can be assigned to a field or another variable: hence, they are on the right
ntext stack. Both can be updated with new values you assign them; hence, they
e on the left context stack.

mtext blocks for a record you want to modify are also on both context stacks.
ie record has a value you can use in Boolean expressions and assignment state­
~nts. and in a MODIFY statement you can update that value. Because a field is
both stacks at the same time, you can use the old value of the field to calculate

e new value. You can use the following form of assignment statement:

~>MODIFY USING PRICE= PRICE* 1.1
~>

\.TATRIEVE retrieves the old value of PRICE associated with the name on the
:ht context stack and multiplies the old PRICE by a constant. It then associates
:i.t value with the name PRICE on the left context stack and updates the value
the PRICE field.

1en you enter a STORE statement, the only context block for the new record is
the left context stack. No record exists yet. and, of course, no values are asso­
ted with its fields. The fields can only receive values.

1wever, as soon as DATATRIEVE associates a value with a field, you can move
tt value to the right context stack and use it on the right side of assignment
tements. You can make this shift before you finish assigning values to all the
'ds of the new record. In fact. you can use the values of new fields to calculate
~ values DAT A TRI EVE stores in other new fields in the same record.

shift newly stored values to the right context stack, you include a context vari­
e with the domain name when you enter the STORE statement:

.> STORE A IN YACHTS USING . . .

Narne Recognition and Single Record Context A-15

Then, in·the USING clause, you use the context variable to qualify the names of
any field whose value you want to use on the right side of an assignment
statement:

DTR> STORE A IN YACHTS USING
CON> BEGIN
CON> Fl = value-expression
CON> F2 = value-expression
CON> F3 = A.Fl +. A.F2
CON> END
DTR>

The context variable allows you to associate a field name on the right context
stack with its new value as soon as you assign the value to the field. You cannot,
however, use a field name on the right side of an assignment statement until yot
have assigned a value to the field.

You can combine STORE and MODIFY statements to keep an audit trail of
changes made to records in a domain and to change statistical records when you
store new records.

To form an audit trail, you need a domain for the audit records. This domain can
use the same record definition as the original domain, but it must have its own
domain definition and its own data file. Here is a simple example:

DTR> SHOW AUDIT_YACHTS
DOMAIN AUDIT_YACHTS USING

YACHT ON AUD_YACHT;
DTR> FOR A IN YACHTS MODIFY USING
CON> BEGIN
CON> BUILDER= *.BUILDER
CON> MODEL = *.MODEL
CON> RIG = * . RIG
CON> LOA= *.LOA
CON> DISP = *.WEIGHT
CON> BEAM = *.BEAM
CON> PRICE= *.PRICE
CON> STORE B IN AUDIT_YACHTS USING
CON> B.BOAT = A.BOAT
CON> END
Enter BUILDER:

If you have a VERIFY USING clause in the MODIFY statement, you should pt
the STORE statement as the last statement in the VERIFY clause. If you put t
VERIFY clause after the STORE statement and the VERIFY clause aborts the
change, you have a record of the change, but you have not changed the record.

A-16 Name Recognition and Single Record Context

>U can also embed a MODIFY statement in a STORE statement. In this exam­
~' the embedded MODIFY statement updates a record of the last date a new
cord was added to the data file and records the TYPE field of the record stored.
te file LAST.DAT is a sequential file with one record in it.

R.> SHOW LAST_ENTRY
~AIN LAST_ENTRY USING LAST_REC ON LAST.DAT;
R.> SHOW LAST _REC
CORD LAST_REC USING
TOP.
LAST_DATE USAGE DATE.
TYPE PIC X(20).

i> STORE A IN YACHTS USING
~> BEGIN
~~ BUILDER= *.BUILDER
~> MODEL = *.MODEL
~> RIG = *.RIG
~> LOA = *.LOA
~> DISP = * . DISP
~> BEAM= *.BEAM
~> PRICE= *.PRICE
I> MODIFY B IN LAST_ENTRY USING
I> BEGIN
l> LAST_DATE = "TODAY"
l> B.TYPE =A.TYPE
l> END
l> END
;er BUILDER:

th the proper use of context variables, you can also store or change data in
ds shared by two or more domains.

2 Single Record Context

e DATATRIEVE statements PRINT, MODIFY, and ERASE can act on one
ord at a time or on an entire record stream or collection. The records on which
y act are called target records. You can identify target records for these state­
nts in four ways:

A SELECT statement identifies one target record in a collection.

The keyword ALL in a statement, without an OF rse clause, makes all
records in a collection the targets of the statement.

An OF rse clause in the ~tatement forms a target record stream.

The RSE clause in a FOR statement forms a stream of target records for the
statement contained in the FOR loop.

Name Recognition and Single Record Context A-17

A.2.1 The SELECT Statement and the Single Record Context

Before discussing the SELECT statement and context, a short review of facts
about collections is in order.

DATATRIEVE keeps a list of the collections you form with the FIND statemen1
The most recent one formed is always at the top of the list and is called the
CURRENT collection. The only other collections on the list are the ones to whic:
you assign a name when you form them. If you do not assign a name to the
CURRENT collection, the next collection you form becomes the new CURREN1
collection. DATATRIEVE discards the old CURRENT collection unless you givE
it a name when you form it.

With the RELEASE command, you can remove a collection from that list. If yrn
release the CURRENT collection, the next one on the list becomes the
CURRENT collection.

No collection on this list, however, is represented by a block on the context stac:
unless you use the SELECT statement to single out one record in the collection
When you select a record in a collection, DAT A TRIEVE puts a block for that
collection on the context stack. If every existing collection has a selected
record. then DATATRIEVE keeps a block on the context stack for each of thos4
collections.

The relative ages of the collections with selected records determine the order of
context blocks for collections. The "oldest" collection with a selected record is t:
bottom of the context stack. Because the CURRENT collection is always the
"youngest," its context block, if it has one, is nearest the top.

This order of context blocks for collections establishes the order DAT A TRI EVE
uses not only for recognizing field names, as described above, but also for identi
fying single target records. When you enter the most abbreviated forms of the
PRINT, MODIFY, and ERASE statements, DATATRIEVE looks on the conte~
stack for the first valid single record context to carry out the specified action. I1
looks for the "youngest" collection with a selected record and either prints the
record. erases it. or changes it.

The following sequence of examples illustrates the effect of the SELECT and
DROP statements on single record context and the subsequent actions of the
PRINT, MODIFY, and ERASE statements.

A-18 Name Recognition and Single Record Context

rm a collection of records from the YACHTS domain, call it BIGGIES, select
~third record as the target record, and display it:

l> READY YACHTS WRITE
l> FIND BIGGIES IN YACHTS W!TH LOA > 40
records found]

l> SELECT 3
t> PRINT

LENGTH
OVER

lUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

JLFSTAR 41 KETCH 41 22,000 12 $41,350

~>

>re a new record in the YACHTS domain and form a collection that consists of
tt one record. Later. you can modify and erase this record:

~> STORE YACHTS
,er MANUFACTURER: HINKLEY
,er MODEL: BERMUDA 40
,er RIG: YAWL
er LENGTH_OVER_ALL: 40
er DISPLACEMENT: 20000
er BEAM: 12
er PRICE: 82,000
,> FIND YACHTS WITH BUILDER "HINKLEY"
record found]
,>

1 now have two collections, CURRENT (the younger) and BIGGIES (the
er):

> SHOW COLLECTIONS
lections:

CURRENT
BIGGIES

> SHOW CURRENT
lection CURRENT
Domain: YACHTS
Number of Records: 1
No Selected Record

> SHOW BIGGIES
lection BIGGIES
Domain: YACHTS
Number of Records: 8
Selected Record: 3

>

Name Recognition and Single Record Context A-19

The CURRENT collection has no selected record, but BIGGIES still does.
Consequently, when you type PRINT and press the RETURN key again,
DAT ATRIEVE prints the record in the first valid single record context, that is,
the selected record in BIGGIES:

DTR> PRINT

MANUFACTURER MODEL

GULFS TAR 41

DTR>

LENGTH
OVER

RIG ALL WEIGHT BEAM PRICE

KETCH 41 22,000 12 $41,350

When you type SELECT and press the RETURN key, DATATRIEVE selects tl
first and only record in the CURRENT collection. Now when you type PRINT a:
press the RETURN key, the single record context has changed. Now the selectE
record in the CURRENT collection is the target record of the PRINT statement

DTR> SELECT
DTR> PRINT

MANUFACTURER MODEL

LENGTH
OVER

RIG ALL WEIGHT BEAM PRICE

HINKLEY BERMUDA 40 YAWL 40 20,000 12 $82,000

DTR> SHOW CURRENT
Collection CURRENT

Domain: YACHTS
Number of Records: 1
Selected Record: 1

Now modify the price of the target record and display the result. The MODIFY
and PRINT statements both act on the record in the first valid single record co1
text, that is, the selected record in the CURRENT collection:

DTR> MODIFY PRICE
Enter PRICE: 75,000
DTR> PRINT

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

HINKLEY

DTR>

BERMUDA 40 YAWL 40 20,000 12 $75,000

A-20 Name Recognition and Single Record Context

ow type ERASE and press the RETURN key. The ERASE statement also acts
i the record in the first valid single record context, and the, record for the
INKLEY boat is removed from the data file YACHT.DAT. Even though you
·ase the only record in the collection, DAT ATRIEVE does not discard the collec­
:m. It takes note that you have erased the selected record and removes the con­
xt block for the CURRENT collection from the context stack. You can verify
le change in single record context by typing PRINT and pressing RETURN.
h.e selected record from BIGGIES is again in the first valid single record
mtext:

'R> ERASE
'R> SHOW CURRENT
llection CURRENT

Domain: YACHTS
Number of Records: 1
Selected Record: 1 (Erased)

R> PRINT

LENGTH
OVER

NUFACTURER MODEL

ULFSTAR 41

RIG ALL WEIGHT BEAM PRICE

KETCH 41 22,000 12 $41,350

R>

you type MODIFY or ERASE and press the RETURN key, and no existing
llection has a selected record, DAT ATRIEVE displays a message that there is
1 target record for the action you propose:

R> ERASE
target record for ERASE.

R> MODIFY
target record for MODIFY.

R>

>Wever, if you type PRINT and press the RETURN key, and no existing collec-
1n has a selected record, DATATRIEVE displays a message that there is no
lected record and then prints out the whole collection:

~> FIND YACHTS WITH BUILDER = "ALBIN"
records found]
~>PRINT
record selected, printing whole collection

(continued on next page)

Name Recognition and Single Record Context A-21

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN 79 SLOOP 26 4,200 10 $17,900
ALBIN BALLAD SLOOP 30 7,276 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600

DTR>

You can change the single record context with the DROP statement. The DROP
statement removes the selected record from a collection but does not erase the
record from the data file. When you type DROP and press the RETURN key, am
the CURRENT collection has no selected record, DATATRIEVE displays a mes­
sage on your terminal:

DTR> FIND BIGGIES IN YACHTS WITH LOA > 40
[8 records found]
DTR> DROP
No collection with selected record for DROP.

If the CURRENT collection has a selected record, the DROP statement removes
that record from the collection when you type DROP and press the RETURN
key. If other collections have selected records, you must specify the collection
name in the DROP statement.

The CURRENT collection is BIGGIES. Select and display the first record in
BIGGIES and form a new CURRENT collection of boats built by Albin:

DTR> SELECT; PRINT

MANUFACTURER MODEL

CHALLENGER 41

LENGTH
OVER

RIG ALL WEIGHT BEAM PRICE

KETCH 41 26,700 13 $51,228

DTR> FIND YACHTS WITH BUILDER = "ALBIN"
[3 records found]
DTR>

Now select. display, and drop the first record of the CURRENT collection. Then
enter a SHOW CURRENT command to see how DATATRIEVE records the

A-22 Name Recognition and Single Record Context

suits of your actions. The SELECT creates a single record context for the cur­
nt collection, thus the target record of the PRINT statement is the selected
cord in the CURRENT collection, not in BIGGIES:

'R> SELECT
'R> PRINT

NUFACTURER MODEL

LBIN 79

R> DROP
R> SHOW CURRENT
llection CURRENT

Domain: YACHTS

LENGTH
OVER

RIG ALL WEIGHT BEAM PRICE

SLOOP 26 4,200 10 $17,900

Number of Records: 3
Selected Record: 1 (Dropped)

R>

hen you drop a selected record from a collection, you change the single record
ritext. The context block for that collection is removed from the context stack.

insequently, when you type PRINT and press the RETURN key again,
\TATRIEVE displays the selected record in BIGGIES, the record in the first
lid single record context:

t> PRINT

lUFACTURER MODEL

IALLENGER 41

~>

LENGTH
OVER

RIG ALL WEIGHT BEAM PRICE

KETCH 41 26,700 13 $51,228

like PRINT, MODIFY, and ERASE, the DROP statement does not act on the
ord in the first valid single record context. You have already dropped the
ected record in the CURRENT collection. When you type DROP and press the
:TURN key again, DAT A TRIEVE displays a message on your terminal and
~snot drop the selected record in BIGGIES. Because BIGGIES is not the
'RRENT collection, you have to specify its name in the DROP statement:

.> DROP
get record has already been dropped.
> DROP BIGGIES
> SHOW BIGGIES
lection BIGGIES
Domain: YACHTS
Number of Records: 8
Selected Record: 1 (Dropped)

>

Name Recognition and Single Record Context A-23

Now you have no valid single record context. When you type PRINT and press
RETURN, DAT ATRIEVE displays the whole CURRENT collection because ther
is no selected record in either of the two existing collections. Because you droppe
one record from the CURRENT collection, it contains only two records now:

DTR> PRINT
No record selected, printing whole collection

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ALBIN BALLAD SLOOP 30 7,276 · 10 $27,500
ALBIN VEGA SLOOP 27 5,070 08 $18,600

DTR>

To show that you have not erased the record dropped from the CURRENT collec
tion, form and display a new CURRENT collection of boats by Albin:

DTR> FIND YACHTS WITH BUILDER = "ALBIN"
[3 records found]
DTR> PRINT ALL

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM

ALBIN 79 SLOOP 26 4,200 10
ALBIN BALLAD SLOOP 30 7,276 10
ALBIN VEGA. SLOOP 27 5,070 08

DTR>

PRICE

$17,900
$27,500
$18,600

A.2.2 The CURRENT Collection as Target Record Stream

The preceding example shows the effect of the keyword ALL on a PRINT state­
ment that does not contain an OF rse clause.

Although DAT ATRIEVE acts on only one record at a time, you can identify mo1
than one record for a single DAT A TRI EVE statement to act on. With the
keyword ALL, you can make every record in the CURRENT collection the targE
of a single PRINT, MODIFY, or ERASE statement. Such a statement, howeve1
cannot also contain an OF rse clause.

If you have a CURRENT collection and type PRINT ALL and press the
RETURN key, DAT ATRIEVE displays the whole CURRENT collection. If you

A-24 Name Recognition and Single Record Context

lave no CURRENT collection, DATATRIEVE displays a message on your termi-
1al. To illustrate this effect, release all collections and enter the statement
•RINTALL:

TR> SHOW COLLECTIONS
ollections:

CURRENT
BIGGIES

TR> RELEASE CURRENT, BIGGIES
TR> SHOW COLLECTIONS
o established collections.
rR> PRINT ALL
current collection has not been established.

rR>

IATATRIEVE displays the same message on your terminal when you have no
URRENT collection and you enter either an ERASE ALL or MODIFY ALL
~atement.

Then you have a CURRENT collection and you enter an ERASE ALL state-
1ent, DATATRIEVE removes every record in the CURRENT collection from the
ita file. Although frequently useful, this operation can jeopardize valuable data if
>u use it carelessly.

he various forms of the MODIFY ALL statement change the data in each record
: the CURRENT collection. (See the article on the MODIFY statement in the
AX DATATRIEVE Reference Manual.t Make a collection of the first three
lchts with no listed price. Display the CURRENT collection, modify the PRICE
~ $30,000, display the results of the change, and change the price back to zero
dng a different form of the MODIFY ALL statement:

'R> FIND FIRST 3 YACHTS WITH PRICE = 0
: records found]
'R> PRINT ALL

LENGTH
OVER

NUFACTURER MODEL RIG ALL WEIGHT BEAM

LOCK I. 40 SLOOP 39 18,500 12
UC CANEER 270 SLOOP 27 5,000 08
UC CANEER 320 SLOOP 32 12,500 10

PRICE

Name Recognition and Single Record Context A-25

DTR> MODIFY ALL PRICE
Enter PRICE: 30,000
DTR> PRINT ALL

MANUFACTURER MODEL

BLOCK I. 40
BUCCANEER 270
BUCCANEER 320

RIG

SLOOP
SLOOP
SLOOP

LENGTH
OVER
ALL WEIGHT BEAM

39 18,500 12
27 5,000 08
32 12,500 10

DTR> MODIFY ALL USING PRICE = O; PRINT ALL

LENGTH
OVER

MANUFACTURER MODEL RIG ALL WEIGHT BEAM

BLOCK I. 40 SLOOP 39 18,500 12
BUCCANEER 270 SLOOP 27 5,000 08
BUCCANEER 320 SLOOP 32 12,500 10

DTR>

PRICE

$30,000
$30,000
$30,000

PRICE

If your collection contains many records and you mistakenly enter an ERASE
ALL or MODIFY ALL statement, you can enter a CTRL/C to prevent all the
records in the CURRENT collection from being erased or changed. How many
records get erased or changed under such circumstances depends on the speed
with which you enter the CTRL/C, the processing load on your system, and the
priority of your process.

A.2.3 The OF rse Clause and Target Record Streams

The OF rse clause in a PRINT, ERASE. or MODIFY statement lets you create a
new context for that statement. The OF rse clause specifies a target record
stream that overrides any context established for your existing collections. For
each such OF rse clause, DAT ATRIEVE puts a new block on the context stack.
When DATATRIEVE completes execution of the statement, it removes that
block from the context stack.

The following example contrasts the effect of PRINT, PRINT ALL, and PRINT
OF rse. (When the PRINT statement does not include a list of fields, you can om:
the OF from the statement.) The record selection expression here is FIRST 3
YACHTS WITH PRICE = 0. This RSE identifies a new target record stream f01
the PRINT statement that overrides the CURRENT collection as a target record
stream. It also overrides the single record context of the selected record in the
CURRENT collection:

DTR> FIND FIRST 3 YACHTS
[3 records found]
DTR> SELECT; PRINT

A-26 Name Recognition and Single Record Context

LENGTH
OVER

~NUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

~LB ERG 37 MK II KETCH 37 20,000 12 $36,951

rR> PRINT ALL

LENGTH
OVER

rnUFACTURER MODEL RIG ALL WEIGHT BEAM PRICE

~LBERG 37 MK II KETCH 37 20,000 12 $36,951
~LBIN 79 SLOOP 26 4,200 10 $17,900
tLBIN BALLAD SLOOP 30 7,276 10 $27,500

LR> PRINT FIRST 3 YACHTS WITH PRICE = 0

LENGTH
OVER

lNUF ACTURER MODEL RIG ALL WEIGHT BEAM PRICE

ILOCK I. 40 SLOOP 39 18,500 12
IUCCANEER 270 SLOOP 27 5,000 08
IUCCANEER 320 SLOOP 32 12,500 10

:R>

J reduce the risk to your data, DAT A TRIEVE forces you to include both
~ywords ALL and OF when using the OF rse clause in MODIFY and ERASE
atements. Although the results are not shown here, you must type MODIFY
id ERASE statements to resemble the following examples. The record selection
~pression used in these statements is PHONES WITH DEPT= "32T":

1DIFY ALL OF PHONES WITH DEPT = "32T"

DIFY ALL DEPT OF PHONES WITH DEPT = "32T"

DIFY ALL USING DEPT= *."NEW DEPT" OF PHONES WITH DEPT= "32T"

ASE ALL OF PHONES WITH DEPT = "32T"

riless you include assignment statements in the USING clause of a MODIFY
atement. DAT A TRI EVE prompts you once to supply a value for each elemen­
ry field specified or implied in the statement. After you respond to the last of
e prompts, DATATRIEVE begins to change each of the records in the
JRRENT collection to correspond to the values you supplied to the prompts.
m can prevent any changes from taking effect by entering CTRL/Z when
sponding to any of the prompts.

Name Recognition and Single Record Context A-27

A.2.4 FOR Statements and Target Record Streams

You can use FOR statements to create target record streams for the
DATATRIEVE statements that use single record context. Using FOR loops has
an advantage over using target record streams formed by OF rse clause and the
target record stream formed of the CURRENT collection by the keyword ALL.
The FOR statement lets you work with each record individually; you do not have
to perform the same operation on all target records. By putting STORE and
MODIFY statements and prompting value expressions in a FOR loop, you can ac
on each member of a record stream or collection one at a time.

When you put a MODIFY statement in a FOR statement, DATATRIEVE
prompts you once for each field in the record if you do not specify a field list or a
USING clause in the MODIFY statement.

This FOR statement creates a record stream of boats that have no price listed.
The MODIFY statement prompts you to supply a price for each record in the
record stream. You can put a unique value in the PRICE field for each boat:

DTR»READY YACHTS MODIFY
DTR»FOR YACHTS WITH PRICE MISSING MODIFY PRICE
Enter PRICE: 12900
Enter PRICE: 15600
Enter PRICE:

Another valuable feature of FOR loops is the complex relationships you create
between record streams when you include one FOR loop inside another. Each
FOR statement puts a block on the context stack. As a result, you can use the
context mechanism to transfer values between records.

By putting a MODIFY statement inside two FOR statements, you can automati­
cally update master records with the data from periodic transaction records:

DTR> FOR A IN DAILY_TRANSACTIONS
CON> FOR B IN MASTER_DATA WITH B.ACCOUNT = A.ACCOUNT
CON> MODIFY USING
CON> BEGIN
CON> MASTER_BAL = MASTER_BAL - WITHDRAW + DEPOSIT
CON> TOT_WITHDRAW = TOT_WITHDRAW + WITHDRAW
CON> TOT_DEPOSIT = TOT_DEPOSIT + DEPOSIT
CON> END
DTR>

The Boolean expression in this example limits the record stream for the inner
FOR statement to one record.

You can also create nested FOR statements in which DAT A TRI EVE executes a
series of statements at each level of nesting. For each owner record in the next
example. DATATRIEVE asks you if you want to modify the SPECS field of eve1
boat in the YACHTS inventory built by the manufacturer of the owner's boat.

A-28 Name Recognition and Single Record Context

'he third time through the outer loop, DAT ATRIEVE again begins the cycle of
rompting for the boats by Albin, because the third person in the OWNERS
omain also owns a boat by Albin. Notice that the record changed during the sec­
nd loop appears during the third:

fR> FOR OWNERS
JN> BEGIN
JN> PRINT SKIP, BUILDER, SKIP
JN> FOR YACHTS WITH BOAT.BUILDER = OWNER.BUILDER
JN> BEGIN
JN> PRINT SPECS
lN> IF *."DO YOU WANT TO CHANGE THIS" CONT "Y"
JN> THEN MODIFY SPECS
JN> END
JN>END

IUILDER

.BERG

LENGTH
OVER

~IG ALL WEIGHT BEAM PRICE

:TCH 37 20,000 12 $36,000
tter DO YOU WANT TO CHANGE THIS: N

.BIN

.OOP 26 4 , 200 10 $17 , 900

.ter DO YOU WANT TO CHANGE THIS: N

.OOP 30 7, 276 10 $27, 500
ter DO YOU WANT TO CHANGE THIS: N
OOP 27 5,070 08 $18,600
ter DO YOU WANT TO CHANGE THIS: Y
ter RIG: KETCH
ter LENGTH_OVER_ALL: 35
ter DISPLACEMENT: 17000
ter BEAM: 12
ter PRICE: 33000

BIN

OOP 26 4,200 10 $17,900
ter DO YOU WANT TO CHANGE THIS: N
OOP 30 7,276 10 $27,500
ter DO YOU WANT TO CHANGE THIS: N
TCH 35 17,000 12 $33,000
ter DO YOU WANT TO CHANGE THIS: N

[:

JOP 31 8,650 09
ter DO YOU WANT TO CHANGE THIS: ~z
~cution terminated by operator
i>

Name Recognition and Single Record Context A-29

Sample Database Definitions and Procedures B

his appendix contains:

Record and domain definitions used in the sample databases that come with
the VAX DATATRIEVE software.

Table and view definitions that use or supplement those domains.

Procedures that use the sample databases.

Rdb and DBMS data definitions and procedures used in the DATATRIEVE
UETP, the User Environment Test Package .

. 1 RMS Data Definitions and Procedures

CORD ANNUAL_REC
DATA.
03 DATE DATE PIC YYYY.
03 EQUIPMENT_SALES REAL EDIT_STRING ZZZ9.9.
03 SERVICES REAL EDIT_STRING ZZ9.9.
03 REVENUE COMPUTED BY EQUIPMENT_SALES + SERVICES EDIT_STRING ZZZ9.9.
03 NET_INCOME REAL EDIT_STRING ZZ9.9.
03 NET_INCOME_PER_SHARE REAL EDIT_STRING ZZ9.9.
03 RESEARCH REAL QUERY_NAME DEVELOPMENT EDIT_STRING ZZ9.9.
03 INVENTORIES REAL EDIT_STRING ZZ9.9.
03 EMPLOYEES REAL EDIT_STRING IS ZZ,ZZZ.
03 FILLER PIC X(68).

~AIN ANNUAL_REPORT USING ANNUAL_REC ON DTR$LIBRARY:ANNUAL.DAT;

B-1

!
PROCEDURE BILL_PAID
READY PAYABLES SHARED READ
REPORT PAYABLES WITH BILL_PAID MISSING AND

ITEMS_RECEIVED NOT MISSING AND
INVOICE_DUE NOT MISSING SORTED BY INVOICE_DUE

SET REPORT_NAME = "Accounts Payable"
SET COLUMNS_PAGE = 65
PRINT RUNNING COUNT ("COUNT"), MANUFACTURER,

ITEMS_RECEIVED,INVOICE_DUE,BILL_PAID,WHSLE_PRICE,
COL 55,RUNNING TOTAL WHSLE_PRICE ("TOTAL"/"OWNED") USING $$$,$$$

END_REPORT
END-PROCEDURE

!
!
PROCEDURE BILL_PAID_1
READY PAYABLES SHARED READ
REPORT PAYABLES WITH BILL_PAID MISSING AND

ITEMS_RECEIVED NOT MISSING AND
INVOICE_DUE NOT MISSING SORTED BY INVOICE_DUE

SET REPORT_NAME = "Accounts Payable"
SET COLUMNS_PAGE = 65
PRINT RUNNING COUNT (''COUNT"), MANUFACTURER,

ITEMS_RECEIVED,INVOICE_DUE,BILL_PAID,WHSLE_PRICE,
RUNNING TOTAL WHSLE_PRICE ("TOTAL"/"OWNED") USING $$$,$$$

END_REPORT
END-PROCEDURE

!
DOMAIN FAMILIES

USING FAMILY_REC ON DTR$LIBRARY:FAMILY.DAT;

!
RECORD FAMILY_REC
01 FAMILY.

!

03 PARENTS.
06 FATHER PIC X(10).
06 MOTHER PIC X(10).

03 NUMBER_KIDS PIC 99 EDIT_STRING IS Z9.
03 KIDS OCCURS 0 TO 10 TIMES DEPENDING ON NUMBER_KIDS.

06 EACH_KID.
09 KID_NAME PIC X(10) QUERY_NAME IS KID.
09 AGE PIC 99 EDIT_STRING IS Z9.

DOMAIN KETCHES
OF YACHTS BY

01 KETCH OCCURS FOR YACHTS WITH RIG EQ "KETCH".
03 TYPE FROM YACHTS.
03 LOA FROM YACHTS.
03 PRICE FROM YACHTS.

B-2 Sample Database Definitions and Procedures

~OCEDURE LOA_REPORT
:PORT ON *.FILE

SET REPORT_NAME="JIM'S VERY OWN LISTING"/"OF"/"INTERESTING SAILBOATS"/
"(BY LENGTH)"

SET LINES_PAGE=55, COLUMNS_PAGE=72
AT TOP OF LOA PRINT LOA("LENGTH")
PRINT TYPE, RIG, DISP, BEAM USING Z9 , PRICE
AT BOTTOM OF LOA PRINT SKIP, COL 32, "***AVERAGE ***"•

AVERAGE DISP, AVERAGE BEAM, AVERAGE PRICE
AT BOTTOM OF REPORT PRINT SKIP, "REPORT AVERAGES",

AVERAGE DISP, AVERAGE BEAM, AVERAGE PRICE
AT BOTTOM OF PAGE PRINT SKIP, COL 20,

"""ANOTHER SERVICE OF QUERY ENTERPRISES"""
D_REPORT
D-PROCEDURE

MAIN OWNERS
SING OWNER_RECORD ON OWNER.DAT;

MAIN OWNERS_SEQUENTIAL USING OWNER_RECORD ON DTR$LIBRARY:OWNER.SEQ;

CORD OWNER_RECORD
OWNER.
03 NAME PIC X(lO) QUERLHEADER IS "OWNER"/"NAME"

EDIT_STRING IS X(5).
03 BOAT_NAME PIC X(17) QUERLHEADER IS "BOAT NAME".
03 TYPE.

06 BUILDER PIC X(lO).
06 MODEL PIC X(lO).

~AIN PAYABLES USING PAYABLES_REC ON DTR$LIBRARY:PAYABLES.DAT;

Sample Database Definitions and Procedures B-3

RECORD PAYABLES_REC USING
01 PAYABLE.

!
!

05 ORDER_NUM PIC 9(7).
05 TYPE.

10 MANUFACTURER PIC IS X(10)
QUERY_NAME IS BUILDER
QUERY_HEADER IS "VENDOR".

10 MODEL PIC IS X(10)
QUERY_HEADER IS "ITEM_TYPE".

05 WHSLE_PRICE PIC 9(5)
EDIT_STRING IS $$$,$$$.

05 ITEMS_RECEIVED USAGE IS DATE
MISSING VALUE IS 010101
EDIT_STRING IS NN/DD/YY?"NO GOODS".

05 INVOICE_DUE USAGE IS DATE
MISSING VALUE IS 010101
EDIT_STRING IS NN/DD/YY?"NO INVCE".

05 BILL_PAID USAGE IS DATE
MISSING VALUE IS 010101
EDIT_STRING IS NN/DD/YY?"NOT PAID".

05 AGE COMPUTED BY FN$FLOOR(("TODAY" - INVOICE_DUE)/30)
EDIT_STRING IS Z9.

DOMAIN PERSONNEL USING PERSONNEL_REC ON DTR$LIBRARY:PERSON.DAT;

!
RECORD PERSONNEL_REC USING
01 PERSON.

!
!

05 ID
05 EMPLOYEE_STATUS

05 EMPLOYEE_NAME
10 FIRST_NAME

10 LAST_NAME

05 DEPT
05 START_DATE

05 SALARY

05 SUP _ID

PIC IS 9(5).
PIC IS X(11)
QUERY_NAME IS STATUS
QUERY_HEADER IS "STATUS"
VALID IF STATUS EQ "TRAINEE" I "EXPERIENCE]
QUERY_NAME IS NAME.
PIC IS X(10)
QUERY_NAME IS F_NAME.
PIC IS X(10)
QUERY_NAME IS L_NAME.
PIC IS XXX.
USAGE IS DATE
DEFAULT VALUE IS "TODAY".
PIC IS 9(5)
EDIT_STRING IS $$$,$$$.

PIC IS 9(5)
MISSING VALUE IS 0.

DOMAIN PETS USING PET_REC ON DTR$LIBRARY:PET.DAT;

B-4 Sample Database Definitions and Procedures

~CORD PET_REC
L FAMILY.

03 PARENTS.
06 FATHER PIC X(10).
06 MOTHER PIC X(10).

03 NUMBER_KIDS PIC 99 EDIT_STRING IS Z9.
03 KIDS OCCURS 0 TO 10 TIMES DEPENDING ON NUMBER_KIDS.

06 EACH_KID.
09 KID_NAME PIC X(10) QUERY_NAME IS KID.
09 KID_AGE PIC 99 EDIT_STRING IS Z9.
09 PET OCCURS 2 TIMES.

13 PET_NAME PIC X(10).
13 PET_AGE PIC 99.

IBLE PRICES FROM YACHTS USING
rPE : PRICE
.SE 0
ID_ TABLE

mcEDURE PRICE_PER_POUND
rrcE/DISP ("PRICE"/"PER"/"POUND") USING $$.99
ID-PROCEDURE

IMAIN PROJECTS USING PROJECT_REC ON DTR$LIBRARY:PROJECT.DAT;

tCORD PROJECT_REC USING
PROJECT_REC.
03 PROJ_CODE PIC 9(3) QUERY_NAME IS CODE.
03 PROJ_NAME PIC X(10) QUERY_NAME IS NAME.
03 MANAGER_NUM PIC 9(5) QUERY_NAME IS NUM .

.BLE RIG_TABLE
:LOOP" : "ONE MAST",
ETCH" : "TWO MASTS, BIG ONE IN FRONT",
~WL" : "SIMILAR TO KETCH",
l/S" : "SAILS AND BIG MOTOR",
.SE "SOMETHING ELSE"
ID_ TABLE

Sample Database Definitions and Procedures B-5

!
DOMAIN SAILBOATS

OF YACHTS, OWNERS BY
01 SAILBOAT OCCURS FOR YACHTS.

03 BOAT FROM YACHTS.

!

03 SKIPPERS OCCURS FOR OWNERS WITH TYPE EQ BOAT.TYPE.
05 NAME FROM OWNERS.

DOMAIN SALES USING SALES_REC
ON DTR$LIBRARY:SALES.DAT;

!
RECORD SALES_REC USING
01 SALESREC.

!
!

05 SALES_NAME
05 START_DATE
05 MONTHS_EMP

05 AMOUNT

05 COMM_PCT

05 RATING

PIC IS X(20).
USAGE DATE.
COMPUTED BY ("TODAY" - START_DATE)/30
EDIT_STRING IS ZZ9.
PIC IS 9(5)V99
EDIT_STRING IS $$$,$$$.99.

COMPUTED BY
CHOICE

(MONTHS_EMP LE 6 AND AMOUNT > 5000) THEN 10
(MONTHS_EMP I.E 6) THEN 05
(AMOUNT > 10000) THEN 12
ELSE 07

END_ CHOICE
EDIT_STRING IS Z9%.
COMPUTED BY
CHOICE

(MONTHS_EMP LE 6 AND AMOUNT > 5000) THEN "ABOVE
(AMOUNT > 10000) THEN "ABOVE QUOTA"
ELSE "BELOW QUOTA"

END_CHOICE.

PROCEDURE VERIFY
VERIFY USING

BEGIN
RIG = FN$UPCASE (RIG)
PRINT
DISPLAY "IF RECORD IS OK, CONFIRM WITH Y"
IF *.CONFIRM NOT CONTAINING "Y" THEN ABORT "UPDATE ABORTED"

END
END-PROCEDURE

B-6 Sam.pie Database Definitions and Procedures

ECORD YACHT USING
1 BOAT.
03 TYPE.

06 MANUFACTURER PIC X(10)
QUERY_NAME IS BUILDER.

06 MODEL PIC X(10).
03 SPECIFICATIONS

QUERY_NAME SPECS.
06 RIG PIC X(6)

VALID IF RIG-CONT 11 SLOOP","KETCH 11
,

11 MS","YAWL".
06 LENGTH_OVER_ALL PIC XXX

VALID IF LOA BETWEEN 15 AND 50
QUERY~NAME IS LOA.

06 DISPLACEMENT PIC 99999
QUERY_HEADER IS "WEIGHT"
EDIT_STRING IS ZZ,ZZ9
·QUERY _NAME IS DISP.

06 BEAM PIC 99 MISSING VALUE IS 0.
06 PRICE PIC 99999

MISSING VALUE IS 0
VALID IF PRICE>DISP*l.3 OR PRICE EQ 0
EDIT_STRING IS $$$,$$$.

lMAIN YACHTS USING YACHT ON YACHT.DAT;

>MAIN YACHTS_SEQUENTIAL USING YACHT ON DTR$LIBRARY:YACHT.SEQ;

.2 DBMS Data Definitions and Procedures

mCEDURE BOM_LIST
ffi FIRST 5 PARTS WITH PART_STATUS = "G"

BEGIN
PRINT "Part :" I I I PART_ID I I I "(" I I I PART_DESC I I I ")"
FOR CLASSES OWNER CLASS_PART

PRINT " Class :" I I I CLASS_DESC
PRINT" Cost :", PART_COST (-) USING $$$$$,$$9.999
PRINT " Price :", PART_PRICE (-) USING $$$$$,$$9.999
PRINT " Bill of Materials :"
FOR COMPONENTS MEMBER OF PART_USES

FOR PARTS OWNER PART_USED_ON
PRINT" Quantity : ", COMP_QUANTITY (-) USING ZZZ9,

" Part:" Ill PART_ID Ill"(" Ill PART_DESC Ill")"
PRINT ·sKIP
END

D-PROCEDURE

Sample Database Definitions and Procedures B-7

!
!
DOMAIN CLASSES

USING CLASS
OF DATABASE PARTS_DB;

!
DOMAIN CLASS_VIEW OF

CLASSES, PART_S, EMPLOYEES, COMPONENTS, SUPPLIES USING
01 CLASS_RECORD OCCURS FOR CLASSES.

03 CLASS_CODE FROM CLASSES.
03 PART_GROUP OCCURS FOR PART_S MEMBER OF CLASS_PART.

05 PART_DESC FROM PART_S.
05 EMPLOYEE_GROUP OCCURS FOR EMPLOYEES OWNER RESPONSIBLE_FOR.

07 EMP_ID FROM EMPLOYEES.
05 COMPONENT_GROUP OCCURS FOR COMPONENTS MEMBER OF PART_USES.

07 COMP_SUB_PART FROM COMPONENTS.
05 SUPPLY_GROUP OCCURS FOR SUPPLIES MEMBER OF PART_INFO.

07 SUP_TYPE FROM SUPPLIES.

DOMAIN COMPONENTS
USING COMPONENT

OF DATABASE PARTS_DB;

DOMAIN DIVISIONS
USING DIVISION

OF DATABASE PARTS_DB;

DOMAIN EMPLOYEES
USING EMPLOYEE

~
!

OF DATABASE PARTS_DB;

DATABASE PARTS_DB

!
!

USING SUBSCHEMA DTR_SUBSCHEMA
OF SCHEMA PARTS

ON DTR$LIBRARY:DTRPARTDB;

DOMAIN PART_S
USING PART

OF DATABASE PARTS_DB;

B-8 Sample Database Definitions and Procedures

iOCEDURE PRINT_NEW_DIVISION
JR DIVISIONS WITH DIV_NAME CONTAINING "Firmware"

PRINT ALL DIV_NAME,
ALL COL 30, EMP_LAST_NAME ("Manager"/"-----------------") OF

EMPLOYEES OWNER MANAGES,
ALL COL 60, EMP_LAST_NAME ("Personpower"/"-----------------") OF

EMPLOYEES MEMBER OF CONSISTS_OF
JD-PROCEDURE

)MAIN QUOTES
JSING QUOTE
OF DATABASE PARTS_DB;

~OCEDURE READY_PARTS
:ADY CLASSES, PART_S AS PARTS, COMPONENTS, VENDORS, SUPPLIES, QUOTES,
IPLOYEES, DIVISIONS
ID-PROCEDURE

~OCEDURE READY _PAR TS_ WRITE
:ADY CLASSES WRITE, PART_S AS PARTS WRITE, COMPONENTS WRITE, VENDORS WRITE,
PPLIES WRITE, QUOTES WRITE, EMPLOYEES WRITE, DIVISIONS WRITE
D-PROCEDURE

Sample Database Definitions and Procedures B-9

!
!
PROCEDURE RESPONSIBLE_LIST
FOR FIRST 5 OVERSEER IN EMPLOYEES

BEGIN
DECLARE TEXT PICTURE X(1000).
TEXT = EMP_FIRST_NAME I I I EMP_LAST_NAME
IF ANY PARTS MEMBER RESPONSIBLE_FOR

THEN BEGIN
TEXT = TEXT I I I "oversees production of"
TEXT = TEXT I I I COUNT OF PARTS MEMBER RESPONSIBLE_FOR
TEXT = TEXT I I I "part"
IF COUNT OF PARTS MEMBER RESPONSIBLE_FOR NOT EQUAL 1

THEN TEXT = TEXT I I "s"
TEXT= TEXT I I "·"
TEXT = TEXT I I I "He/She"
END

FOR DIVISIONS OWNER CONSISTS_OF
BEGIN
FOR MANAGER IN EMPLOYEES OWNER MANAGES

BEGIN
DECLARE COHORT_COUNT PICTURE 999.
DECLARE COHORT_NUMBER PICTURE 9.
COHORT_COUNT =

COUNT OF EMPLOYEES MEMBER OF OVERSEER.CONSISTS_OF WITH
EMP_ID NOT EQUAL OVERSEER.EMP_ID AND
EMP_ID NOT EQUAL MANAGER.EMP_ID

IF COHORT_COUNT > 0
THEN TEXT = TEXT I I I "and his/her cohort"

IF COHORT_COUNT > 1
THEN TEXT = TEXT I I "s"

COHORT_NUMBER = 0
FOR FIRST 3 EMPLOYEES MEMBER OF OVERSEER.CONSISTS_OF WITH

EMP_ID NOT EQUAL OVERSEER.EMP_ID AND
EMP_ID NOT EQUAL MANAGER.EMP_ID

BEGIN
COHORT_NUMBER = COHORT_NUMBER + 1
IF COHORT_NUMBER > 1

THEN TEXT= TEXT I I ","
IF COHORT_COUNT = COHORT_NUMBER AND COHORT_COUNT > 1

THEN TEXT = TEXT I I I "and"
TEXT = TEXT I I I EMP_FIRST_NAME I I I EMP_LAST_NAME
END

IF COHORT_COUNT > 3
THEN TEXT = TEXT 11 ", and others too numerous to mentio1

TEXT = TEXT I I I "report"
IF COHORT_COUNT = 0

THEN TEXT = TEXT I I "s"
TEXT = TEXT I I I "to"
TEXT= TEXT I I I EMP_FIRST_NAME I I I EMP_LAST_NAME
TEXT= TEXT I I ", manager of the"
END

TEXT = TEXT I I I DIV_NAME
TEXT= TEXT I I I "division."
END

PRINT SKIP, TEXT (-) USING T(70)
END

END-PROCEDURE

B-10 Sample Database Definitions and Procedures

IOMAIN SUPPLIES
USING SUPPLY

OF DATABASE PARTS_DB;

OMAIN VENDORS
USING VENDOR

OF DATABASE PARTS_DB;

l.3 Rdb Data Definitions and Procedures

OMAIN COLLEGES
USING COLLEGES OF DATABASE PERSONNEL;

JMAIN DEGREES
USING DEGREES OF DATABASE PERSONNEL;

>MAIN DEPARTMENTS
USING DEPARTMENTS OF DATABASE PERSONNEL;

IMAIN DEPARTMENT_STAFF OF DEPARTMENTS, EMPLOYEES, JOB_HISTORY
TOP OCCURS FOR DEPARTMENTS CROSS JOB_HISTORY OVER DEPARTMENT_CODE CROSS

EMPLOYEES OVER EMPLOYEE_ID WITH JOB_END MISSING.
03 DEPARTMENT_CODE FROM DEPARTMENTS.
03 DEPARTMENT_NAME FROM DEPARTMENTS.
03 EMPLOYEE_ID FROM EMPLOYEES.
03 FIRST_NAME FROM EMPLOYEES.
03 LAST_NAME FROM EMPLOYEES.

BLE DEPARTMENT_TABLE FROM DEPARTMENTS USING
PARTMENT_CODE : DEPARTMENT_NAME
SE "No department"
D_TABLE

~AIN EMPLOYEES
USING EMPLOYEES OF DATABASE PERSONNEL;

.
Sample Database Definitions and Procedures B-11

!
!
DOMAIN EMPLOYEE_EDUCATION OF EMPLOYEES, COLLEGES, DEGREES USING
01 TOP OCCURS FOR EMPLOYEES.

!

03 LAST_NAME FROM EMPLOYEES.
03 DEG OCCURS FOR DEGREES WITH EMPLOYEE_ID EQ EMPLOYEES.EMPLOYEE_

05 DEGREE FROM DEGREES.
05 DEGREE_FIELD FROM DEGREES.
05 COLL OCCURS FOR COLLEGES WITH

COLLEGE_CODE EQ DEGREES.COLLEGE_CODE.
07 COLLEGE_NAME FROM COLLEGES.

PROCEDURE EMPLOYEE_INFO
BEGIN
FOR FIRST 1 EMPLOYEES

BEGIN
PRINT NEW_PAGE, SKIP 2
PRINT COL 30, "Employee Profile", SKIP 2
FOR WORK_STATUS WITH STATUS_CODE EQ EMPLOYEES.STATUS_CODE
PRINT "Id:", COL 15, EMPLOYEE_ID(-) USING X(10),

COL 50, STATUS_NAMEI I ISTATUS_TYPE, SKIP
PRINT "Name:", COL 15, FIRST _NAME 111MIDDLE_INITIAL11"."111 LAST_NAME
IF ADDRESS_DATA NE " " THEN

BEGIN
PRINT "Address: ", COL 15, ADDRESS_DATA(-),

COL 15, STREET(-)
END ELSE PRINT "Address: ", COL 15, STREET(-)

PRINT COL 15, tOWNI l","I I ISTATEI I" "IZIP
PRINT SKIP, "Job History:"
FOR JOB_HISTORY WITH

EMPLOYEE_ID EQ EMPLOYEES.EMPLOYEE_ID SORTED BY
DESCENDING JOB_START

BEGIN
FOR JOBS WITH JOB_CODE EQ JOB_HI£TORY.JOB_CODE

BEGIN
PRINT (DEPARTMENT_CODE VIA DEPARTMENT_TABLE)("DEPT") USING 'J
JOB_ TITLE,

END

WAGE_CLASS,
MINIMUM_SALARY USING $$$,$$$,
MAXIMUM_SALARY USING $$$,$$$,
JOB_START USING NN/DD/YY,
JOB_END USING NN/DD/YY
END

PRINT "---",
SKIP, "Salary History:"

FOR SALARY_HISTORY WITH EMPLOYEE_ID EQ EMPLOYEES.EMPLOYEE_ID SORTED
DESCENDING SALARY_START
PRINT SALARY_START USING NN/DD/YY,
SALARY_END USING NN/DD/YY,
SALARY_AMOUNT USING $$$,$$$

IF ANY DEGREES WITH EMPLOYEE_ID EQ EMPLOYEES.EMPLOYEE_ID THEN
PRINT "---",

SKIP, "Education:", SKIP

(continued on next page)

B~12 Sample Database Definitions and Procedures

FOR DEGREES WITH EMPLOYEE_ID = EMPLOYEES.EMPLOYEE_ID
FOR COLLEGES WITH CQLLEGE_CODE = DEGREES.COLLEGE_CODE
BEGIN
PRINT COLLEGE_NAME, YEAR_GIVEN, DEGREE,

DEGREE_FIELD
END

PRINT "---~-----",
END
PRINT NEW_PAGE

D
D-PROCEDURE

MAIN JOBS
USING JOBS OF DATABASE PERSONNEL;

MAIN JOB_HISTORY
USING JOB_HISTORY OF DATABASE PERSONNEL;

BLE NAME_TABLE FROM EMPLOYEES USING
PLOYEE_ID : LAST_NAME
SE II "

D_TABLE

OCEDURE READY_PERSONNEL
~DY COLLEGES SHARED READ, DEGREES SHARED READ, -

DEPARTMENTS SHARED READ, EMPLOYEES SHARED READ, -
JOBS SHARED READ, JOB_HISTORY SHARED READ, -
SALARY_HISTORY SHARED READ, WORK_STATUS SHARED READ

!>-PROCEDURE

JCEDURE READY_PERSONNEL_WRITE
~DY COLLEGES WRITE, DEGREES WRITE, DEPARTMENTS WRITE,­

EMPLOYEES WRITE, JOBS WRITE, JOB_HISTORY WRITE,­
SALARY_HISTORY WRITE, WORK_STATUS WRITE

>-PROCEDURE

~AIN SALARY_HISTORY
USING SALARY_HISTORY OF DATABASE PERSONNEL;

Sample Database Definitions and Procedures B-13

!
!
PROCEDURE SALARY_REPORT
FIND FIRST 3 EMPLOYEES
FIND CURRENT CROSS SALARY_HISTORY OVER EMPLOYEE_ID
FIND CURRENT CROSS JOB_HISTORY OVER EMPLOYEE_ID WITH

JOB_START EQ SALARY_HISTORY.SALARY_START
FIND CURRENT CROSS JOBS WITH JOB_CODE EQ JOB_HISTORY.JOB_CODE
REPORT CURRENT SORTED, BY LAST_NAME, SALARY_AMOUNT
AT TOP OF EMPLOYEE_ID PRINT SKIP, COL 1,

EMPLOYEE_IDI I IFIRST_NAMEI I ILAST_NAME, SKIP 2
PRINT COL 1, JOB_START USING NN/DD/YY, JOB_TITLE,

MINIMUM_SALARY, SALARY_AMOUNT,MAXIMUM_SALARY
AT BOTTOM OF EMPLOYEE_ID PRINT
"---"
END_REPORT
END-PROCEDURE

DOMAIN WORK_STATUS
USING WORK_STATUS OF DATABASE PERSONNEL;

B-14 Sample Database Definitions and Procedures

this index, a page number followed
a "t" indicates a table reference.

~XECUTE) procedure name, 1-6,
7-2, 8-1 -

(Invoke Command File) command,
8-1, 8-4

IORT statement
using in command files, 8-10
using in procedures, 7-7
.ases
using to restructure domains, 10-2,

10-6
: clause
using to generalize procedures.

7-13
using to restructure domains. 10-6
oiding context errors
with context variables. A-9
with FIND and SELECT. 6-12
with qualified field names~ A-10 to

A-13
with the CROSS clause, A-13 to

A-14

B

Boolean expressions
compound, 12-22t

BUT Boolean operator, 2-13

c
CDD

Index

See Common Data Dictionary
Changing record definitions, 10-1
Collections

advantages of, 1-7
disadvantages of. 12-17
of DBMS records, 14-16
performance issues. 12-18

Command files
aborting, 8-10
creating, 8-3
description of, 1-6
editing, 8-3
example of, 8-5
invoking, 8-4
maintaining, 8-10
nesting, 8-9
protecting, 8-10
using, 8-1
using comments in, 8-3

Commands and statements in
DATATRIEVE, 1-5

Comments

lndex-1

in command files, 8-3
in procedures, 7-5

COMMIT statement
DBMS databases. 14-49
Rdb databases, 15-13

Common Data Dictionary, 1-4
Compound Booleans

evaluation, 12-23
Compound statements

using procedures in, 7 -12
COMPUTED BY field, 11-11 to 11-14
Conditional value expressions

IF-THEN-ELSE, 11-13
CONNECT statement, 14-41
CONTAINING relational operator

optimizing queries with, 12-15
Context block, A-2

How DATATRIEVE searches
through a context block, A-4

how DAT ATRIEVE searches
through a context block, A-2

name recognition on the "last-in
first-out" basis, A-5

Context errors ·
avoiding context errors. A-9 to

A-14
avoiding with FIND and SELECT,

6-12
Context Searcher, 6-20

activating with the SET SEARCH
command, 1-13

Context variables, 9-6 to 9-9, A-9
example, A-12

Context, single record, A-1 7
Continuation character(-), 1-11
Controlling output, 1-10
COPY command (DCL), 1-9
CROSS clause, 2-2, 2-14, 2-18

combining two domains with, 2-15
defining views with, 5-6
flattening hierarchies with, 6-21
optimizing queries with. 12-17 to

12-21 .
using with DBMS databases, 14-30

CURRENCY clause

lndex-2

using with DBMS databases, 14-3l

D
Data

accessing Rdb, 15-4
combining from two or more

domains, 10-5
modifying, 4-2
modifying using FOR statement,

4-9
segmented string field data type,

15-19
transfer between domains, 10-4

Data Manipulation Facility (DDMF)
16-2 '

Database
See DBMS databases
See Rdb databases

DATATRIEVE
exiting, 1-2
invoking, 1-1 to 1-2

Date arithmetic, 11-12
Date value expressions, 11-12
Dates

formatting, 1-15
DBMS databases, 1-3

accessing information through set
14-20

accessing using DTR domain defi­
nitions, 14-8

accessing with READY database
command, 14-6

combining the MEMBER and
OWNER clauses, 14-27

connecting members of sets, 14-41
connecting records to sets,· 14-37
defining a database instance, 14-5
defining domains. 14-9
disconnecting members of sets,

14-44
finding data from multiple domair

14-27
forming collections, 14-16

forming collections of set data,
14-21

forming record streams, 14-18
forming record streams of DBMS

set data, 14-22
forming simple queries, 14-14
modifying a single record, 14-3 5
queries for set information, 14-19
readyingdomains, 14-10
readying individual records, 14-8
RECONNECT statement example.

' 14-45
reconne¢ting members of sets,

14~44 .. '
record membership table, 14-48t
record occurrence, 14-4
record· r~xnoval. characteristics,

14-42 ·.
results ofreadying domains, 14-10
rse clause format, 14-15
rse clause in simple queries, 14-14
sample procedures using domains,

14-33
set occurrence, 14-4
sets with automatic insertion char-

acteristic, 14-38
sets with manual insertion, 14-40
sets with optiOnal members, 14-46
STORE statement with

CURRENCY clause, 14-40
storing records, 14-37
system-owned sets, 14-38
using CONNECT statement, 14-41
using CURRENCY clause to pro-

vide context, 14-38
using flat views, 14-32
using hierarchical views, 14-31
using SHOW FIELDS command,

14-12
using SHOW SETS command,

14-13
using the COMMIT statement,

14-49
using the CROSS clause, 14-30

using the DEFINE DATABASE
command, 14-5

using the DEFINE DOMAIN com-
mand, 14-9

using the ERASE statement, 14-42
using the EXIT command, 14-~9
using the FIND statement, 14r-16
using the FIND statement and

WITHIN clause, 14-21 '1

using the FINISH command, i4-49
using the MEMBER clause in the

FIND statement, 14-24
using the OWNER clause in tqe

FIND statement, 14-25
using the PRINT CURRENT $tate­

ment, 14-17
using the PRINT statement, 14-1 7
using the ROLLBACK statement,

14-49
using the SELECT statement,

14-17
using the SET SEARCH com­

mand, 14-25
using view domains, 14-31

DDMF
See Data Manipulation Facility

(DDMF)
DECLARE

Variable-name, 9-1
DECnet account

using the default account, 16-6
DEFINE DATABASE command

format, 14-5
Rdb databases, 15-3

DEFINE DOMAIN command, 1-3
DBMS, 14-8
Rdb relations, 15-9

DEFINE PROCEDURE command,
1-6, 7-2

DEFINE TABLE command, 1-7
Defining

dynamic hierarchies, 6-41
hierarchies, 6-36
procedures, 7-1
records, 11-1 to 11-14

lndex-3

Dictionaries
compared to V AXNMS directories,

1-4
DISPLAY FORM statement 13-5

handling numeric data, 13:25
storing hierarchical records with,

13-21
using to modify hierarchical

records, 13-24
Distributed data, 1-7
Distributed DAT A TRI EVE applica­

tions, 16-5 to 16-7
Domains

See also DEFINE DOMAIN
command

combining data from multiple, 10-5
defining for a DBMS database,

14-9
description of, 1-3
distributed, 16-1
network

accessing, 16-5 to 16-7
defining, 16-2 to 16-5

remote, 16-1
restructuring, 10-1, 10-2
transfer data between, 10-4
using forms with, 13-3
view, 1-6, 6-37

See also View domains
Dynamic hierarchies, 6-41

E
Editing

command files, 8-3 /

procedures, 7-5
EQUAL relational operator

optimizing queries with. 12-15
Errors

See also Context errors
avoiding when using the MODIFY

statement. 4-12
EXIT command

using with DBMS databases, 14-49
using with Rdb databases, 15-14

lndex-4

F

FDL
See File Definition Language (FD1

Fields
adding to record definition, 10-3
assigning values using MODIFY,

4-12
assigning values with STORE

statement, 3-1
File Definition Language (FDL)

choosing bucket size, 12-5
choosing index depth, 12-8
creating the data file, 12-9
plotting bucket size, 12-7
using, 12-5
using CONVERT/FOL, 12-15

File optimization
assigning global buffers, 12-14
choosing bucket size, 12-5
choosing index depth, 12-8
default characteristics of

DAT A TRI EVE files, 12-5
determining fill factor, 12-15
determining global buffers, 12-9
maintaining good performance,

12-14
minimizing fragmentation, 12-6
moving data from old file to new

file, 12-15
using FDL, 12-5

Files
changing organization of, 10-8,

12-1, 12-3
defining, 12-5
defining indexed, 12-1
defining using FDL, 12-3 to 12-15
maintaining using FDL, 12-14
optimization, 12-1 to 12-15
organization

selecting, 12-1
sequential vs. indexed, 12-1
using indexed, 12-1
using sequential, 12-1

FIND statement

advantages of, 1~7
disadvantages of, 12-17
establishing context for a list with,

6-12
performance issues, 12-18
using to modify records in repeat­

ing fields, 6-29
using to retrieve records in repeat­

ing fields, 6-12
using with DBMS records, 14-16

INISH command
using with DBMS databases, 14-49
using with Rdb databases, 15-11

N$HOUR, 1-18
N$INIT TIMER, 12-21
N$JULfAN, 11-13
N$SHOW TIMER, 12-21
N$WIDTH, 1-11
OR statement
creating hierarchies with, 6-41
flattening hierarchies with, 6-27
modifying data, 4-9
modifying list items with, 6-32
retrieving list items with, 6-14

orm field names
displaying, 13-6

ORM IS clause, 13-3, 13-28
ORMAT value expression, 13-25,

13-26
orms, 13-1
converting from FMS to TDMS,

13-7, 13-15
defining, 13-7, 13-10
DISPLAY FORM statement, 13-5
displaying-data on, 13-16
displaying field names in, 13-6
domains and, 13-3
enabling and disabling use of, 13-16
GET_ FORM value expression,

13-19
libraries. 13-14
PUT_ FORM assignment state­

ment, 13-17

storing and modifying data with,
13-18

Functions

G

FN$HOUR, 1-17
FN$INIT TIMER, 12-21
FN$SHOW_TIMER, 12-21

GET_FORM value expression, 13-19

H
Hierarchies, 6-10

creating with FOR statements,
6-41

creating with inner print lists, 6-39
creating with view domains, 6-37
dynamic, 6-41
flattening, 6-21, 11-1 to 11-5

Hyphen(-)
using as a continuation character,

1-11

Indexed files
choosing primary and alternate

keys, 12-2
default parameters, 12-4
optimization, 12-1 to 12-15
using, 12-1
versus sequential files, 12-1

Invoking
See @ (Invoke Command File)

command
procedures, 7-2

K
Key optimization, 12-2

summary, 12-24

L
List fields

See Lists or Repeating Fields

lndex-5

Lists
defining, 6-3
modifying values in, 6-29
retrieving values from, 6-1 O

Logical names
DTR$DATE INPUT 1-15
DTR$STARTUP, 1-i 7
SYS$CURRENCY, 1-16
SYS$DIGIT SEP, 1-16
SYS$RADIX POINT 1-16

Login command-files '
effect on remote access, 16-7

M
Maintaining

command files, 8-10
procedures, 7-15

MATCH, 13-21
MODIFY statement

ALL option, 4-7
assigning field values with, 4-12
avoiding errors, 4-12
examples, 4-3
including the rse, 4-11
modifying repeating fields with,

6-29
Rdb data, 15-31
USING clause with assignment­

statement, 4-6
using prompting expressions in,

4nl2
VERIFY clause, 4-17
with VERIFY clause, 4-6

Modifying data

N

in repeating fields, 6-29
restrictions, 13-28

Name recognition, A-5
Nested FOR loops

optimization, 12-17 to 12-21
Nesting

procedures, 7-1 O
Network domains

lndex-6

accessing, 16-5 to 16-7
defining, 16-2 to 16-5

NOT Boolean operator, 2-13

0
OCCURS clause, 6-6, 11-2
OCCURS ... DEPENDING clause, 6-7
Optimization

p

See also file optimization
summary, 12-24

Performance
checking with DTR timing func­

tions, 12-22
choosing optimal queries, 12-15 to

12-22
compound Boolean considerations,

12-23
file organization considerations,

12-1
optimizing file parameters, 12-5
optimizing for Rdb, 15-32

PRINT statement
using with DBMS databases, 14-11

Procedures. 7-1
aborting, 7-7
arguments and clauses in, 7-4
commands and statements in, 7-3
comments in, 7-5
contents of, 7-3
defining, 7 -1
deleting, 7 -16
description of, 1-6
editing, 7-5
examples of, 7-8
generalizing, 7-13
invoking, 7-2
maintaining, 7 -15
nesting, 7-10
protection, 7 -16
timing to improve efficiency, 12-21
using in compound statements,

7-12

using to trap errors, 7-6
·ompting expressions
in MODIFY statement, 4-12
in STORE statement, 3-4
·ompting value expressions, 9-6
·ompts
using for input prompting, 4-15
using in STORE statements, 3-2
JT_FORM assignment statement,

13-17

ialified field names, A-10
iarterly summaries, 11-12 to 11.;14

lb databases, 1-3
COMMIT statement, 15-13
creating a path name, 15-3
default access mode, 15-8
DEFINE DATABASE command,

15-3
DEFI.NE DOMAIN command, 15-9
defining view domains, 15-10
examples of readying, 15-8
optimizing performance, 15-3 2
readying, 15-8
readying some relations, 15-8
relations, 15-1
ROLLBACK statement, 15-13
segmented string data type

See Segmented string fields
storing data in an Rdb database,

15-11
using COMMIT statement, 15-14
using DATATRIEVE to access Rdb

data, 15-3
using EXIT command, 15-14
using FINISH command, 15-11,

15-14
using ROLLBACK statement,

15-16
using SHOW FIELDS command,

15-11

using SHOW READY command,
15-10

using view relations, 15-8
using views, 15-8
validating data in, 15-32

READY command
DBMS

format, 14-7
USING clause, 14-8

DBMS databases, 14-10
Rdb databases, 15-4

RECONNECT statement
using with DBMS databases, 14-45

Record definitions, 11-1 to 11-14
adding fields, 10-3
changing, 10-1
flat vs. hierarchical records, 11-1 to

11-5
large vs. small records, 11-6 to

11-8
Record selection expressions, 2-1

creating hierarchies with, 6-36 to
6-42

CROSS clause, 11-4
REDUCED TO clause, 11-7
using to form simple DBMS que-

ries, 14-14
Record streams

creating hierarchies from, 6-36 to
6-42

finding correct values in, 2-19
joining records in, 2-14
sorting by field values, 2-21
specifying records in, 2-3

Record subsets
creating, 10-5

Relations
defining domains for, 15-9

RELEASE command
to remove forms from workspace, .

13-16
Remote data, 1-7
Remote DAT ATRIEVE applications,

16-5 to 16-7
Remote domains, 16-1

lndex-7

accessing. 16-5 to 16-7
Repeating fie'lds

defining, 6-3
modifying values in, 6-29
retrieving values from, 6-10

Restructuring domains, 10-1, 10-2
adding fields, 10-3
creating record subsets, 10-5
example, 10-2
to combine data, 10-5
using aliases, 10-2. 10-6
with Restructure statement, 11-4,

11-8
with STORE USING, 11-7, 11-11

ROLLBACK statement
DBMS databases, 14-49
Rdb databases, 15-13

RSE
See Record selection expressions

RUNNING COUNT statistical opera­
tor, 11-7

s
Segmented string fields, 15-19

defining, 15-20
displaying in DATATRIEVE, 15-21
restrictions, 15-28
storing and modifying in

DATATRIEVE, 15-22
storing and modifying with a proce­

dure, 15-24
SELECT statement

identifying a particular record with,
6-12

using to modify records in repeat­
ing fields, 6-29

using to retrieve records in repeat­
ing fields, 6-12

using with DBMS databases, 14-17
Sequential files

using, 12-1
versus indexed files, 12-1

SET ABORT command, 1-12
SET COLUMNS PAGE command,

1-10. 1-11 .-

lndex-8

SET commands, 1-10
SET FORM command, 1-13, 13-16
SET PROMPT command, 1-12
SET SEARCH command, 1-13

using to access DBMS sets, 14-25
using with RMS domains, 6-20

SET SEMICOLON command, 1-14
SET TERMINAL command, 1-11
SET VERIFY command, 1-13
Sets

accessing information, 14-20
automatic insertion characteristic,

14-38
combining the MEMBER and

OWNER clauses to access
data, 14-27

connecting members, 14-46
connecting records, 14-37
disconnecting members, 14-44
forming record streams, 14-22
manual insertion characteristic,

14-40
occurrence, 14-4
optional members, 14-46
RECONNECT statement example

14-45
reconnecting members, 14-44
record membership table, 14-48t
record removal characteristics,

14-42
system-owned, 14-38
using CONNECT statement, 14-4:
using CURRENCY clause to estat

lish context, 14-40
using SHOW SETS command,

14-13
using the ERASE statement, 14-4
using the MEMBER clause, 14-23
using the OWNER clause, 14-23
using the SET SEARCH commani

for access, 14-25
SHOW FIELDS command

using with Rdb databases, 15-11
SHOW FORMS command, 13•16
SHOW READY command

using for Rdb databases, 15-10

;HOW SET UP command, 1-10,
13-16 -

angle record context, A-1 7
•orting

field values in record streams, 2-21
iTARTING WITH relational operator

optimizing queries with, 12-16
itartup command file

using, 1-14
:TORE statement

assigning field values with, 3-1
direct assignments in, 3-2
prompts, 3-2, 3-4
USING clause, 11-7
using with Rdb databases, 15-11
using with the currency clause,

14-38
~UM statement, 11-14

'ables, 11-10 to 11-11
See also DEFINE TABLE

command
description of, 1-7
dictionary, 11-11, 11-13

'erminology
DATATRIEVE, 1-3

TODAY" value expression, 11-12

rSING clause

in STORE statement, 3-2

v
Variables, 9-1 to 9-6

changing the value of, 9-6
context, A-9
declaring, 9-1 to 9-2
global, 9-2, 9-3 to 9-4
local, 9-2, 9-3
to assign values to fields, 9-4 to 9-5

VERIFY clause
MODIFY statement, 4-1 7

View domains, 1-6, 6-37

w

See also DEFINE DOMAIN
command

defining for Rdb, 15-10
restriction for modifying records,

13-28
using lists in, 6-3 7
using more than one dotnain, 5-5
using subsets of fields, 5-4
using subsets of records, 5-2
using with DBMS databases, 14-31

WITH clause
using to restrict lists. 2-5

WITHIN clause
using in the FIND statement for

DBMS sets. 14-21

lndex-9

HOW TO ORDER ADDITIONAL DOCUMENTATION

DIRECT TELEPHONE ORDERS

In Continental USA
and Puerto Rico
call 800-258-171 O

In Canada
call 800-267-6146

In New Hampshire,
Alaska or Hawaii
call 603-884-6660

DIRECT MAIL ORDERS (U.S. and Puerto Rico*)

DIGITAL EQUIPMENT CORPORATION
P.O. Box CS2008

Nashua, New Hampshire 03061

DIRECT MAIL ORDERS (Canada)

DIGITAL EQUIPMENT OF CANADA LTD.
940 Belfast Road

Ottawa, Ontario, Canada K1 G 4C2
Attn: P&SG Business Manager

INTERNATIONAL

DIGITAL EQUIPMENT CORPORATION
P &SG Business Manager

c/o Digital's local subsidiary
or approved distributor

Internal orders should be placed through the Software Distribution Center (SOC), Digital
Equipment Corporation, Northboro, Massachusetts 01532

*Any prepaid order from Puerto Rico must be placed
with the Local Digital Subsidiary:

809-754-7575

Reader's Comments

VAX DATATRIEVE
User's Guide
AA-K080D-TE

Note: This form is for document comments only. DIGITAL will use comments submitted on this
form at the company's discretion. If you require a written reply and are eligible to receive
one under Software Performance Report (SPR) service, submit your comments on an SPR
form.

Did you find this manV1al understandable, usable, and well-organized? Please make suggestions
fur improvement. ______________________________ _

Did you find errors in this manual? If so, specify the error and the page number. _____ _

Please indicate the type of user/reader that you most nearly represent.

0 Assembly language programmer
D Higher-level language programmer
D Occasional programmer (experienced)

D User with little programming experience
D Student programmer

D Other (please specify)-----------------------

Name Date _______________ _

Organization _______________________________ _

Street __________________________________ _

Zip Code City __________________ State ______ or
Country

·------Do Not Tear - Fold Here and Tape-----------------------------------

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT N0.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

A TIN: DISG Documentation ZK02-2 I N53

DIGITAL EQUIPMENT CORPORATION

110 SPIT BROOK ROAD

NASHUA, N.H. 03062

No Postage

Necessary

if Mailed in the

United States

·------Do Not Tear- Fold Here and Tape-----------------------------------

