
Digital Equipment Corporation
Maynard, Massachusetts

PDP-8 Family

Programmer's Reference Manual

BK SABR
ASSEMBLER

DEC-08-ARXB-D

PDP-8
BK SABR ASSEMBLER
PROGRAMMER'S REFERENCE MANUAL

For additional copies of this document, order No. DEC-08-ARXB-D from Program Library,

Digital Equipment Corporation, Maynard, N"oss. 01754 Price $2 .00

DIGITAL EQUIPMENT CORPORATION o MAYNARD, MASSACHUSETTS

Your attention is invited to the last two pages of this
manual. The Reader 1s Comments page, when filled in
and returned, is beneficial to both you and DEC. All
comments received are considered when documenting
subsequent manuals, and when assistance is required,
a knowledgeable DEC representative wi 11 contact you.
The Software Information page offers you a means of
keeping up-to-date with DEC's software.

1st Printing Apri I 1969
2nd Printing (Rev) March 1970

Copyright© 1969, 1970 by Digital Equipment Corporation

Documents Referenced {avai I able from DEC's Program Library):

Introduction to Programming, C-18
8K FORTRAN Programmer's Reference Manual, DEC-08-KFXB-D
Paper Tape System User's Guide, DEC-08-NGCC-D
PDP-8/I Disk Monitor System, DEC-08-SDAB-D

The following are trademarks of Digital Equipment Corporation,
Maynard, Massachusetts:

PDP
FLIP CHIP
DIGITAL

ii

DEC
FOCAL
COMPUTER LAB

CONTENTS

Page

CHAPTER 1
THE SABR LANGUAGE

1.1 Introduction 1-1

1.2 The Character Set 1-2

1.3 Statements 1-2

l .3. l Labels 1-3

1 .3 .2 Operators 1-3

1 .3 .3 Operands 1-4

1 .3 .4 Comments 1-4

1 .3 .5 Format Effectors 1-5

1.4 Symbols 1-6

1 .4. 1 Permanent Symbo Is 1-6

1 .4.2 User-Defined Symbo Is 1-6

1 .4.3 Equivalent Symbols 1-6

1 .4.4 Incrementing Operands 1-7

1 .4.5 The Symbol Table Listing 1-8

1.5 Constants 1-8

l .5. l Numeric Constants 1-9

l .5 .2 ASCII Constants 1-9

1.6 Litera Is 1-9

CHAPTER 2
PSEUDO-OPERATORS

2. l Assembly Control 2-1

2.2 Symbol Definition 2-4

2.3 Data Generating 2-5

2.4 Externa I Subroutine 2-7

2 .4.1 The CALL and ARG Statements 2-8

2.4.2 The ENTRY and DUMMY Statements 2-9

2 .4.3 The RETRN Statement 2-10

2.4.4 Picking up Subprogram Arguments 2-10

iii

CONTENTS (Cont)

Page

CHAPTER 3
THE ASSEMBLED BINARY CODE

3 .1 The Binary Output Tape 3-1

3.2 The Loader Relocation Codes 3-1

3.3 Page Assembly 3-3

3 .3.1 Page Format 3-4

3.3.2 Page Escapes 3-4

3.3.3 Multiple Word Instructions 3-5

3.3.4 Run-Time Linkage Routines 3-5

3.3.5 Skip Instructions 3-7

3.4 Program Addresses 3-8

3.5 The Symbol Table 3-8

CHAPTER 4
SABR OPERATING PROCEDURES

4.1 Loading SABR in a Basic PDP-8 System 4-1

4.2 Loading SABR in a Disk Monitor System 4-1

4.3 Operating SABR 4-2

4.4 Operating Procedure for use as FORTRAN Pass 2 4-3

4.4.1 Method 1 4-4

4.4.2 Method 2 4-4

4.4.3 Method 3 4-5

CHAPTER 5
THE LINKING LOADER

5 .1 Introduction 5-1

5.2 Loading with the Linking Loader 5-1

5.3 Loading Information Options 5-2

5.4 How to Load the Linking Loader 5-3

5.5 Operation of the Linking Loader 5-3

iv

CONTENTS (Cont)

CHAPTER 6
DEMONSTRATION PROGRAM

APPENDIX A
ASCII CHARACTER SET

APPENDIX B
PERMANENT SYMBOL TABLE

APPENDIX C
ERROR MESSAGES

APPENDIX D
FREE PAGE 0 LOCATIONS

APPENDIX E
THE LIBRARY SUBPROGRAMS

APPENDIX F
SAMPLE OF AN ASSEMBLY LISTING

APPENDIX G
OPERATING PROCEDURES

APPENDIX H
DISK LINKING LOADER

v

PREFACE

This manual contains a detailed description of the 8K SABR Symbolic Assembly
System. The SABR (Symbolic Assembler for Binary Relocatable programs) program
ming language is similar to that of PAL III with many additional features. It is an
advanced one-pass assembler for use with a PD P-8/I, -8/L, -8, -8/S, or -5 com
puter with at least 8K (up to 32K) words of core memory and an ASR-33 Teletype;
a high-speed photoelectric paper tape reader and punch is not required, although
it is highly recommended.

DEC offers four symbolic assemblers for use on PDP-8 family computers: as follows:

a. PAL III Symbolic Assembler, the basic 4K assembly system. It is a two-
pass assembler with an optional third pass which produces an octal/symbolic
assembly program listing, and is highly recommended for the computer with 4K
words of core memory. It is an excel lent assembly language for the less ex
perienced programmer yet powerfu I enough to satisfy the needs of the advanced
programmer.

b. MACR0-8 Symbolic Assembler, essentially PAL III with the following ad
ditional features: user-defined macros, double precision integers, floating
point constants, arithmetic and Boolean operators, literals, text facilities,
and automatic off-page I inkage generation. It is recommended for the com
puter with 4K words of core memory when any of the additional features listed
above are desired.

c. PAL-D Symbolic Assembler, essentially MACR0-8 excluding macros. It
is used only in the PDP-8/I Disk Monitor System and requires 4K words of core

memory.

d; 8K SABR Symbolic Assembler; primarily for experienced programmers to
use with a computer that has 8K to 32K words of core memory. It differs from
the preceding assemblers in its operating procedures, character set, pseudo-ops,
execution of the assembled program, and especially in its assembled output

(relocatable binary code).

It is assumed that the reader is familiar with assembly language programming. For
an elementary approach to this type of programming, we recommend D'EC's publica
tion, Introduction To Programming (specify Order No. C-18), avai I able from the
Program Library (address on Title page).

vii

CHAPTER l

THE SABR LANGUAGE

1. 1 INTRODUCTiON

SABR (Symbolic Assembler for Binary Reiocatable programs) is an advanced one-pass symbolic

assembler. It translates symbolic programs written in the SABR language into binary relocatable code

acceptable to the computer. SABR programs are core page independent. Therefore, programs may be

written without regard to the 128-word core page of the computer. SABR automatically generates off

page and off-field references for direct or indirect statements. It also automatica i iy connects instruc

tions on one page to those that overflow onto the next. The list of available pseudo-ops is extensive,

including external subroutine calling, argument passing, and conditional assembly. SABR offers an op

tional second pass to produce a side-by-side octal/symbolic listing of the assembled program.

The relocatable binary tapes produced by SABR are loaded into any field of core memory

using the 8K Linking Loader, as are the I ibrary of subprograms. These subprograms may be cal led by any

SABR program.

In addition to being a stand-alone symboiic assembler, SABR aiso acts as the second pass of

the 8K FORTRAN cbmpi ler (see 8K FORTRAN Programmer's Reference Manual, DEC-08-KFXB-D).

SABR requires a PDP-8/1 1 -8/L / -8 1 -8/S, or -5* computer with at !east 8K words of core

memory and an ASR-33 Teletype. A high-speed photoelectric paper tape reader and punch is not neces

sary, although it is highly recommended.

The assembler system is furnished on four appropriately identified paper tapes. The SABR

Assembler and 8K Linking Loader tapes are punched in binary coded format and are loaded into core

memory using the Binary Loader (see PDP-8/I System User's Guide, DEC-08-NGCB-D). The two

library of subprograms tapes are punched in relocatable binary coded format and are loaded into core

memory using the BK Linking Loader as explained in this manual.

With the exception of a few minor differences (and an entirely different list of pseudo-ops),

the symbolic programming language for SABR is similar tothe PAL III language. However, the binary

output from SABR is in relocatable binary code and is quite different from the PAL III binary output.

The rest of this chapter describes the SABR language in full. For a more elementary approach to assem

bly language programming, we recommend DEC's new Introduction To Programming (specify Order No.

C-18), available from the Program Library (address on Title page).

*The PDP-5 computer requires a PDP-8 extended memory control modification.

1-1

l. 2 THE CHARACTER SET

a. Alphabetic:

Besides the normal alphabetic characters A, B, C, ... , X, Y, Z, the following
characters are considered to be alphabetic by SABR:

[I eft bracket,
] right bracket,
\ back slash,

up arrow.

b. Numeric:

0, 1, 2, ... , 8, 9

c. Special:

I

II

.JI.
TT

Comma

Slash

Left parenthesis

Quote

Minus sign

Number sign

RETURN
(carriage return)

Semicolon

LINE FEED

FORM FEED

SPACE

TAB

RUBOUT

delimits a symbolic address label

indicates start of a comment

indicates a literal
(D indicates numeric literal is decimal;
(K indicates numeric literal is octal

precedes an ASCII constant

negates a constant

increases value of preceding symbol by one

terminates a statement

terminates an instruction

ignored

ignored

separates and delimits items on the statement line

same as space

ignored

All other characters are i I lega I except when used as ASCII constants fo I lowing a quote (11
),

or in comments or text strings.

Legal characters used in ways different from the above and all illegal characters cause the

error message C (Illegal Character) to be printed by SABR.

1.3 STATEMENTS

SABR symbolic programs are written as a sequence of statements, and are usually prepared

on a teletype with the aid of the Symbolic Editor program. Each statement is written on a sing le I ine

and is terminated by typing the RETURN key (carriage return/I ine feed sequence, abbreviated CR/LF).

1-2

SABR statements are virtually format free, because elements of a statement are not placed in numbered

columns with rigidly controlled spacing between elements, as in punched-card oriented assemblers.

A statement line is composed of one or all of the following elements: label, operator, op

erand, comment, and/or format effectors. The types of elements in a statement are identified by the

order of appearance in the line and by the separating or delimiting character which follows or precedes

the e I ement.

Statements are written in the general form

label, operator operand /comment

SABR interprets and processes the statements, generating one or more machine (binary) in

structions or data words during assembly.

An input line may be up to 72
10

characters iong, including spaces and tabs. Any characters

beyond this limit are ignored.

l. 3. 1 Labels

A label is a symbolic name or location tag created by the programmer to identify the address

of a statement in the program. Subsequent references to the statement can be made merely by referenc

ing the label. If present, the label is written first in a statement and is terminated by a comma.

Examples:

0200
0201

0000
1200

SAVE,
ABC,

0
TAD SAVE

Where SAVE and ABC are the labels, the statements are in location 0200 and 0201, and generate the

instructions 0000 and 1200.

1.3.2 Operators

An operator may be any one of the following items.

a. A mnemonic memory reference instruction fol lowed by an operand.

b. A mnemonic memory reference instruction fol lowed by an I fol lowed by an operand.
This creates an indirect memory reference instruction.

c. A single mnemonic microinstruction (operate or IOT instruction) or a string of such in
structions separated by spaces or tabs. Combinations of microinstructions are formed by inclusive ORing
the octal values of the instructions. Group l operate instructions can be combined with Group l in
structions only, and Group 2 with Group 2 only, except for the CLA instruction which may be combined
with either group. IOT instructions may not be combined with operate instructions. (Refer to Appen
dix B for a summary of all microinstructions.)

1-3

d. A pseudo-operator (Refer to Chapter 2, Pseudo-Operators) .

Operators are terminated with a space or tab if an operand fol lows, otherwise they may be

terminated with either a semicolon, slash, or carriage return.

l .3 .3

Examples:

0200
0201
0202
0203

1320
1550
7004
7620

TAD
TAD I
RAL

SAVE
POINTR

SNL SMA CLA

PAGE

A 11 SAB R operators a re Ii sted in Appendix B .

Operands

Operands may occur in three ways:

a. Fol lowing a memory reference instruction, and separated from it by a space or tab; the
operand is the address of the data to be accessed by the instruction. This address may be a user-defined
address symbol or a numeric constant. If a symbol is used as the operand, it must be defined somewhere
in the program. Constant addresses must be used with great care because the assembled program wi 11 be
relocatable. If the memory reference instruction is indirect (fol lowed by I) the operand is the address
of the address of the data to be accessed. An opeicmd fo!!o;ving c direct memory reference instruction
may also be a literal.

b. As the argument of a pseudo-operator.

c. On a line with no operator. In this case, the operand is cal led a parameter. A para
meter may be a numeric constant, a literal, or a user-defined address symbol.

Examples:

0200 0200 ABC, 200;-320; II M
0201 7460
0202 0315
0203 0176 POINTR, PGOADR

REORG 1000
1000 1576 START I TAD I POINTR
1001 1375 TAD (3

1.3.4 Comments

A programmer may add notes to a statement fol lowing a slash mark. Such comments do not

affect assembly processing or program execution, but they are useful in the program listing for later

analysis and debugging. Entire I ines of comments may be present in the program.

NOTE

None of the special characters or symbols have signi
ficance when they appear in a comment.

1-4

i .3 .5

Examples:

/THIS IS A COMMENT LINE.
/THIS TOO. TAD; CALL; # 11 -2 (+ = !

A
A,

Format Effectors

TAD SAVE /COMMENT

Spaces and tabs are the formatting characters, usually used in the body of a symbolic pro

gram to provide a neat page. They can separate elements of a statement / as between an instruction

and a comment. For example, the lines

GO, TAD TOTAL/MAIN LOOP
DCA I SAVE
TAD BUFPTR
SZA CLA/CHECK FOR END LOOP
JMP GO

are much easier to read when written as:

GO, TAD
DCA I
TAD
SZA CLA
JMP

TOTAL
SAVE
BUFPTR

GO

/MAIN LOOP

/CHECK FOR END LOOP

The RETURN key (CR/LF) is both a statement and a line terminator. The semicolon may be used to

terminate an instruction without terminating a statement line. This allows the programmer to place

several I ines of coding on a single line. If, for example, he wishes to write a sequence of instructions

to rotate the contents of the accumulator (AC) and link (L) six places to the right, it might look like

RTR
RTR
RTR

But, with the semicolon, the programmer may place all three RTR's on a single line, separating each

RTR with a semicolon and terminating the line with the RETURN key. The above sequence of instruc

tions cou Id then be written

RTR; RTR; RTR (terminated with the RETURN key)

This format is particularly useful when creating a list of data.

Example:

0200
0201
0202
0203

0020
0050
7750
0062

LIST I 20; 50; -30; 62

Null lines may also be used as format effectors. A null line is a line containing only a carriage return,

and possibly spaces or tabs. Such lines appear in the listing simply as blank lines.

1-5

l .4 SYMBOLS

Symbols are composed of legal alphanumeric characters. There are two major types of

symbols, permanent symbols and user-defined symbols, and there are variations within each major type.

A symbol is delimited by a nonalphanumeric character.

1.4.1 Permanent Symbo Is

Permanent symbols are predefined and maintained in SABR's permanent symbol table. They

include all of the basic instructions and pseudo-ops listed in Appendix B. These symbols may be used

without prior definition by the user. The OPDEF and SKPDF pseudo-operators are used to define instruc

tion operators not included in the permanent symbol table.

l .4 .2 User-Defined Symbols

A user-defined symbol is a string of from one to six legal alphanumeric characters delimited

by a nonalphanumeric character. User-defined symbols are composed according to the following rules.

a. The characters must be legal alphanumerics, which are:

ABCD ... XYZ [\J t and 0123456789.

b. The first character must be alphabetic.

c. The symbol should not contain more than six characters. Only the first six characters
of any symbol are meaningful, the remainder, if any, are ignored. Therefore, a symbol such as
INTEGER would be interpreted as INT EGE since the seventh character is ignored, and because the two
symbols GEORG El and GEORGE2 differ only in the seventh character, they would be treated as the
same symbol, GEORGE.

d. A user-defined symbol cannot be the same as any of the predefined permanent symbols,
and,

e. A user-defined symbol must be defined only once. Subsequent definitions of the same
symbol wil I be ignored and cause SABR to type the error message M (Multiple Definition).

A symbol is defined by appearing as a symbolic address label (Refer to Section l .3. 1) or by

appearing in an ABSYM, COMMN, OPDEF or SKPDF statement (Refer to Chapter 2, Pseudo-Operators).

No more than 64 different user-defined symbois may occur on any one core page.

1 .4.3 Equivalent Symbols

When an address label appears alone on a line, i.e., with no instruction or parameter, the

iabel is assigned the value of the next address assembled.

1-6

Foi example,

TAGl I

TAG2, 30
TAG3,

TAG 1 and TAG2 are equivalent in that they are assigned the same value. Therefore, a TAD TAG 1

will reference the data at TAG2. TAG3, however, is not equivalent to TAG2. TAG3 would be de

fined as 1 greater than T AG2.

1 .4.4 Incrementing Operands

Because SABR is a one-pass assembler and also sometimes generates more than one machine

instruction for a single user instruction, operand arithmetic is impossible; i.e., statements of the form

TAD TAG+3
TAD LISTl - LIST2
JMP • + 6

are i I legal.

However, in one special case such references are possible. By appending a number sign

(#)to an address operand, the user will reference a location exactly one (1) greater than the location

of the address operand. Thus TAD Loe# is equivalent to the PAL language statement TAD LOe+ 1.

Example:

ExampJe:

0200
0201
0202
0203

0400
0401

0020
0030
1200
1201

0200
0201

LOe,

START I

A,
B,

20
30
TAD
TAD
PAGE
LOe
Loe#

NOTE

LOe
Loe#

/GET 20
/GET 30

In assembling# - references, SABR does not attempt to
determine if multiple machine code words are generated
at the symbolic address referenced.

START I TAD I
NOP

LOe /Loe IS OFF-PAGE
/USER HOPES TO MODIFY

TAD (7500 /SMA
DeA START#

1-7

The user hopes to change the NOP instruction to an SMA. However, this is not possible

because the TAD I LOC wi 11 be assembled as three machine code words; if ST ART is at 0200, the NOP

will be at 0203. The SMA will be inserted at 0201, thus destroying the second word of the TAD I LOC

execution.

To avoid this error, the user should carefully examine the assembly listing before attempting

to execute a program with # - references •

In the previous example, the proper sequence is:

START,
VAR,

TAD I
NOP

LOC

TAD (7500
DCA VAR

The # - sign feature is intended primarily for use in manipulating DUMMY variables, in

picking up subroutine arguments in external subroutines, and returning from external subroutines. Refer

to Section 2 .4 .4 for a fut I explanation of how this is done.

1.4.5 The Symbol Table Listing

Symbols are listed in alphabetic order at the end of the assembly pass (Pass 1) with their

relative addresses beside them.

The fol lowing flags are added to special types of symbols.

ABS
COM
OP
EXT

UNDF

l .5 CONSTANTS

The address is absolute.
The address is in COMMON.
The symbol is an operator.
The symbol is an external and may or may not be defined. If not
defined, there is no difficulty; it is in another program.
The symbol is not an external symbol and has not been defined in
the program. This is a programmer error. No earlier diagnostic
can be given because it is not known that the symbol is undefined
unti I the end of Pass l .
A location is reserved for the instruction containing the undefined
symbol, but nothing is placed in it.

There are two types of constants: numeric and ASCII. These are discussed individually

below. ASCII constants are used only as parameters. Numeric constants may be used as parameters

or as operand addresses .

Example:

0200 1412 TAD I 12

1-8

Constant operand addresses are treated as absolute addresses, just as a symbol defined by an

ABSYM statement. References to them are not generally relocatable. Therefore, they should be used

only with great care. The primar1 use of constant operand addresses is to ieference locations in page

0. (See Appendix D for a list of free locations in page 0 of each field.) All constant operand addresses

are assumed to be in the field into which the program is loaded by the Linking Loader.

Constants may not be added or subtracted to/from each other or to/from symbols.

1.5.1 Numeric Constants

A numeric constant consists of a singie string of from one to four digits. It may be preceded

by a minus sign(-) to negate the constant. The digit string will be interpreted as either octal or1deci

mal according to the latest permanent mode setting by an OCTAL or DECIM pseudo-op. Octal mode is

assumed at the beginning of assembly. The digits 8 and 9 must not appear in an octal string.

l .5 .2

Examples:

0200
0201

0202

ASCII Constants

5020
7575

0120

A, 5020
-203
DEC!M
80

Eight-bit ASCII values may be created as constants by typing the ASCII character imme

diately following a double quotation mark (11
). A minus may be used to negate an alpha constant. The

minus sign must precede the quotation mark.

Examples:

0200
0201
0202

0273
7477
0207

A,
_,.A
II

II

' I -301
I BELL FOLLOWS II

The following characters are illegal as alpha constants: carriage return, line feed, form

feed, rubout .

l . 6 LITERALS

The use of I iterals is a special and convenient way of generating constant data in a program.

Literals are normally used by TAD and AND instructions, as in the fol lowing examples:

1-9

0200 0376 A, AND (777
0201 1375 TAD (-50
0202 1374 TAD ("C

0374 0303
0375 7730
0376 0777

A literal is always a numeric or ASCII constant and must be preceded by a left parenthesis.

The value of the literal will be assembled in a table near the end of the core page on which the instruc

tion referencing it is assembled. The instruction itself will be assembled as an appropriate reference to

the location where the numeric value of the literal is assembled. Literals may not be referenced in

directly.

The current numeric conversion mode can be changed on a purely local basis for a literal by

inserting a D for decimal or a K for octal between the left parenthesis and the constant.

Examples:

(D32 becomes 0040 (octal)
(K-32 becomes 77 46 (octal)

This usage does not alter the prevailing permanent conversion mode.

A literal may also be used as a parameter (i.e., with no operator). In such a case the

numeric value of the literal is assembled as usual in the literal table near the end of the core page

currently being assembled, and a relocatable pointer to the address of the I iteral is assembled in the

location where the literal parameter appeared.

Example:

0200 0376 01 A, (20

0376 0020

This feature is intended primarily for use in passing external subroutine arguments with the

ARG pseudo-op (see Section 2 .4. l).

1-10

CHAPTER 2

PSEUDO-OPERA TO RS

2 .1 ASSEMBLY CONTROL

END

PAUSE

DEC IM

OCTAL

Every program or subprogram to be assembled must contain the END
pseudo-op as its last line. If this requirement is not met 1 an error
message (E) is given.

The PAUSE pseudo-op causes assembly to halt. It is designed to
allow the user to break up large source tapes into several smaller
ones. To do this 1 the user need on iy pi ace a PAUSE statement at
the end of each section of this source except the last. Then when
assembly halts at a PAUSE 1 he may remove the source tape just read
from the reader and insert the next one. Assembly may then be
continued by pressing the console CO NTi nue switch.

WARNING

The PAUSE pseudo-op is designed specifically for use at
the end of partia I tapes and should not be used otherwise.

The reason for this is that the reader routine may have read data
from the paper tape into its buffei that is actually beyond the
PAUSE statement. Consequently 1 when CONTinue is pressed
after the PAUSE is found by the line interpreting routine 1 the
entire content of the reader buffer fol lowing the PAUSE is destroyed 1

and the next tape begins reading into a fresh buffer. Thus, if there
is any meaningful data on the tape beyond the PAUSE statement 1 it
wi II be lost.

Initially the numeric conversion mode is set for octal conversion.
However 1 if the user wishes, he may change it to decimal by use of
the DECIM pseudo-op.

If the numeric conversion mode has been set to decimal 1 it may be
changed back to octal by use of the OCTAL pseudo-op.

No matter which conversion mode has been permanently set, it may
always be changed locally for literals by use of the (Dor (K syntax
described earlier.

Examples:

0200 0320 START I 320
DEC IM

0201 0500 320
0202 0377 01 (K320
0203 1000 512

OCTAL
0204 0512 512

2-1

LAP

EAP

PAGE

REORG

CPAGE

0205
0206

0376 01
0320

0376 1000
0377 0320

(0512
320

END

The assembler is initia I ly set for automatic generation of jumps
to the next core page when the page being assembled fi I ls up
(Page Escapes), or when PAGE or REORG pseudo-ops are en
countered. This feature may be suppressed by use of the LAP
(Leave Automatic Paging) pseudo-op.

If the user has previously suppressed the automatic paging
feature, it may be restored to operation by use of the EAP
(Enter Automatic Paging) pseudo-op.

The PAGE pseudo-op causes the current core page to be assembled
as is. Assembly of succeeding instructions wi II begin on the next
core page. No argument is required.

The REORG pseudo-op is similar to the PAGE pseudo-op, except
that a numerical argument specifying the relative location within
the subprogram where assembly of succeeding instructions is to
begin must be given. A REORG below 200 may not be given. A
REC RG shou Id a I ways bs to ths fl iSt addisss of a core page . If a
REORG address is not the first address of a page, it wi 11 be con
verted to the first address of the page it is on.

Examples:

0200 7200 START, CLA
PAGE

0400 7040 CMA
REORG 1000

1000 7041 CIA

The CPAGE pseudo-op followed by a numerical argument N specifies
that the following N words of code* must be kept together in a single
unit and not be split up by page escapes and literal tables. If the N
words of code wi 11 not fit on the current page of code, the current
page is assembled as if a PAGE pseudo-op had been encountered. The
N words of code wi !! then be assembled as a unit on the next core page.

NOTE

N must be less than or equal 200 (octal) in nonautomatic
paging mode or less than or equal 176 octal in automatic
paging mode •

*Normally data. However, if these N words are instructions (for example, a JMS with
arguments), it is the user 1s responsibility to count extra machine instructions which must
be inserted by SAB R.

2-2

IF

Example:

START I CLA
LAP
CPAGE 200
NAME 1
NAME2

/INHIBIT PAGE ESCAPE
/CLOSES THE
/CURRENT PAGE
/&ASSEMBLES THE
/NAMES ON THE
/NEXT PAGE.

ihe conditional pseudo-op, iF, is used with the foi iowing syntax:

IF NAME, 7

The action of the pseudo-op, so given, is to first determine
whether the symbol NAME has been previously defined. If
NAME is defined, the pseudo-op has no effect. If NAME is
not defined, the next seven symbolic instructions (not counting
null lines and comment lines) wi II be treated as comments
and not assembled.

Example:

/ABSYM NAME 176
IF NAME, 2 /THE NEXT LINE TO BE

CLL RTL /ASSEMBLED WILL BE
RAL /"DCA LOC".

/IF THE SLASH BEFORE 11ABSYM NAME 176 11 IS
/REMOVED, THE 11 CLL RTL" AND 11 RAL 11 WILL
/BE ASSEMBLED.

DCA LOC

Norma fly the symbol referenced by an IF statement shouid be
either an undefined symbol or a symbol defined by an ABSYM
statement. If this is done, the situation mentioned below
cannot occur.

WARNING

In a situation such as the fol lowing, a specia I
restriction applies.

/EXAMPLE:
NAME, 0

IF NAME, 3

2-3

The restriction is that if the line NAME, 0 happens to occur
on the same core page of instructions as the IF statement, then,
even though it is before the IF statement, NAME wi 11 not have
been previously defined when the IF statement is encountered,
and on the first pass (though not in the listing pass) the three
lines after the IF statement wi 11 not be assembled. The reason
for this is that location tags cannot be defined unti I the page
on which they occur is assembled as a unit.

2 .2 SYMBOL DEFINITION

ABSYM

OPDEF
SK PDF

COM MN

An absolute core address may be named using the ABSYM
pseudo-op. This address must be in the same core field as the
subprogram in which it is defined. The most common use of
this pseudo-op is to name page zero addresses not used by the
operating system. These addresses are listed in Appendix D.

Operation codes not already included in the symbol table
may be defined by use of the OPDEF or SKPDF pseudo-ops.
Non-skip instructions must be defined with the OPDEF pseudo
op and skip-type instructions must be defined with the SKPDF
pseudo-op.

Examples of ABSYl·.1, OPDEF end SKPDF syntax:

ABSYM
ABSYM
OPDEF
SK PDF
SK PDF

TEM
AX
DTRA
DTSF
SMZ

177
10
6761
6771
7540

NOTE

/PAGE ZERO ADDRESSES

/A NON-SKIP INSTR.
/SKIP-TYPE INSTRUCTIONS

ABSYM, OPDEF and SKPDF definitions must be
made before they are used in the program.

The COMMN pseudo-op is used to name locations in field l as
externa Is so that they may be referenced by any program. If any
COMMN statements are used, they must occur at the beginning
of the source, before everything else including the ENTRY state
ment. COMMON storage is always in field l and is allocated
from location 0200 upwards. Since the top page of field l is re
served, no more than 384010 words of COMMON storage may be
defined.

A COMMN statement normally takes a symbolic address label,
since storage is being allocated. However, COMMON storage
may be allocated without an address label.

2-4

A COMMN statement always takes a numerical argument which
specifies how many words of COMMON storage to be allocated;
however, aO argument is allowed. A COMMNstatement
with 0 argument allocates no COMMON storage; it merely de
fines the given location symbol at the next free COMMON
location.

The syntax of the COMMN statement is shown below.

Example:

A, COMMN 20
B, COMMN 10

COM MN 300
c, COMMN 0
D, COMMN 10

ENTRY SUB RUT

In this example 20 words of COMMON storage are allocated from
0200 to 0217, and A is defined at location 0200. Then, 10 words
are a 11 ocated from 0220 to 0227, and B is defined at 0220. Notice
that if A is actually a 30 word array, this example equates B(l) with
A(21).

The example continues by allocating COMMON storage from 0230 to
0527 with no name being assigned to this block. Then 10 words are
allocated from 0530 to 0537 with both C and D being defined at 0530.

2 .3 DAT A GENERATING

BLOCK The BLOCK pseudo-op given with a numerical argument N wi II
reserve N words of core by placing zeros in them. This pseudo-op
creates binary output, and thus may have a symbolic address label.

Before the N locations are reserved, a check is made to see if
enough space is avai fable for them on the current core page. If
not, this page is assembled and the N locations are reserved on
the next core page. The action here is similar to that of the
CPAGE pseudo-op. Similar restrictions on the argument apply.

/EXAMPLE OF HOW LARGE BLOCK STORAGE
/WITHIN A SUBPROGRAM AREA MAY
/BE ACHIEVED:

LAP
BLOCK 200
BLOCK 200
BLOCK 100
EAP

2-5

/INHIBIT PAGE ESCAPES
/RESERVE 500
/(OCTAL) LOCATIONS

/RESUME NORMAL CODING

As a special use, if the BLOCK pseudo-op is used with a location
tag (but with no argument or a zero argument), no code zeros are
assembled; instead the symbolic address label is made equivalent
to the next relative core location assembled. (This is equivalent
to using a symbolic address label with no instruction on the same
line.)

Examples:

LIST, BLOCK 3

NAMEl, BLOCK
NAME2, BLOCK 0
NAME3,
NAME4, BLOCK 2

/ASSEMBLES AS
/3 ZEROS WITH
/

11 LIST" DEFINED
/AT THE lST LOCATION
/DEFINES NAME 1 =
/NAME2 = NAME3 =
/NAME4

TEXT The TEXT pseudo-op is used to obtain packed six-bit ASCII text
strings. Its function and use are a I most exactly the same as for
the BLOCK pseudo-op except that instead of a numerical argument,
the argument is a text string. In particular, a check is made to be
sure that the text string will fit on the current page without being
interrupted by literals, etc.

The text string argument must be contained on the same line as the
TEXT pseudo-op. Any printing character may be used to delineate
the text string. This character must appear at both the beginning
and the end of the string. Carriage return, line feed and form feed
are illegal characters within a text string (or as delineators). All
characters in the string are stored in simple stripped six-bit form.
Thus, a tab character (ASCII 211) will be stored as an 11, which
is equivalent to the six-bit for the letter I. In general, characters
outside the ASCII range of 240-337 should not be used.

Example:

0200
0201
0202
0203
0204
0205
0206
0207
0210
0211

2405
3024
4005
3001
1520
1405
4061
6263
5273
7700

TAG, TEXT /TEXT EXAMPLE 123*; ?/

2-6

2 .4 EXTERNAL SUBROUTINE

SABR and the Linking Loader possess extensive capabilities for calling external subprograms

and for passing arguments between them. In addition to the foci lities mentioned in this section,

COMMON storage is also available (refer to Section 2 .2).

For example, a user wishes to write a long main program, MAIN, which uses two major

subroutines, S 1 and S2. S 1 requires two arguments and S2 requires one argument. The user would

then write MAIN, S 1 and S2 as three separate programs in the fol lowing fashion:

MAIN,

ENTRY
s l ,

ENTRY
S2!

CLA

END

Sl
BLOCK 2

RETRN Sl
END
S2
BLOCK 2

RETRN S2
END

/START OF MAIN

He would then assemble each of these subprograms with SABR and load all of them with the

Linking Loader.

MAIN would contain statements in the form

CALL
ARG
ARG
CALL
ARG

2, s 1
x
y
1, S2
z

Also Sl could contain CALLs to S2 or S2 CALLs to Sl.

In addition, any of the subprograms could make use of DUMMY variables.

During the loading process all of the proper addresses will be saved in tables so that when

the user begins execution of MAIN, the Run-Time Linkage Routines (see Section 3 .3 .4), which were

automatically loaded, will be able to execute the proper reference. Thus, MAIN will be able to

fully use S 1 and S2 and be able to pass data to and receive it from them.

The particular pseudo-operators required to make use of these foci Ii ties are described

next.

2-7

2 .4. l The CALL and ARG Statements

The CALL and ARG statements are the usual means of calling an external subroutine. For

example, a subroutine named SUBR with two arguments can be called by another program with the

instruction sequence:

TAG,
Nl I

N2,
ETC,

CALL
ARG
ARG

2 I SUBR
(50
LOCATN

A CALL statement must contain both the number of arguments and the ENTRY point of the

subprogram being cal led in that order and separated by a comma. Arguments may or may not have

address labels. Constant arguments may be specified as literals for the reason explained below. How

ever, true constant arguments may also be specified.

The above instructions are assembled as follows:

TAG,

Nl I

N2,

CPAGE 6

JMS LINK
020X (06)

CDF CUR (05)

POINTER

CDF CUR or CDF 10

LOCATN

/Make sure the fol lowing
/2N + 2 words wi II
/fit on the current core page.
/Ca II the CALL Linkage Routine,
/where 2 =the number of
/arguments and X =
/the loca I number of the
/subprogram being called
/viz., SUBR.
/Field address of argument
/in form of a CDF instruction.
/Address in the literal
/table where the 50 is
/ assemb I ed .
/Field of the argument
/depending on whether it is
/or is not in COMMON.
/Address of argument.

When a subprogram is referenced in a CALL statement, the Run-Time Linkage Routine,

LINK; always executes the transfer to the subprogram as follows.

First, it assumes that the ENTRY point to the subprogram is a two-word block. Into the

first word of this block it places the number of the field where the CALL to the subprogram occurred.

In the second word, it places the address where the CALL occurred, plus 2. In the example above

SUBR would receive a 62Ml where TAG is in field M, and SUBR# would receive the address of Nl.

If there were no arguments, SUBR# would receive the address of ETC. Thus, the two-word block

at the ENTRY point serves as storage for the 15-bit address vector for picking up arguments and also

for returning from the subprogram.

2-8

Execution of the subprogram begins at the first location following the two-word ENTRY

block.

The number of arguments in a CALL sequence must be less than 64
10

• The ARG statement

may be used only in conjunction with a CALL statement.

When the ARG pseudo-op is used with a literal, as in the above examples, the actual literal

(50 in this case) wi II be generated in the litera I table, and in the location following the CDF CUR,

there will be generated a relocatable pointer to the literal. This is the same as using a literal as a

parameter.

If the . .l\.RG statement is used with a true constant argument, the constant itself is assembled

in the location following the CDF instruction. In this case, the CDF is useless and is always just a

meaning less space fi lier.

The advantage of using the ARG - literal method is that it allows a subroutine to pick up

an argument which is sometimes a variable and sometimes a constant.

2 .4.2 The ENTRY and DUMMY Statements

ENTRY

DUMMY

The ENTRY pseudo-op is used at the beginning of a subprogram to
name its entry point, and define this symbol as an external for the
Linking Loader.

The ENTRY statement must occur before the symbolic name of the
entry point appears as a symbolic address label. The actual entry
location must be a two-word reserved space so that both the return
address and field can be saved when the routine is called.

Example:

ENTRY
SUBROU,

SUBROU
BLOCK 2
CLA

For convenience of picking up subprogram arguments following a
CALL statement, an ENTRY acquires all the properties of a
DUMMY variable.

A DUMMY variable is a special type of variable in the FORTRAN/SABR
system. It must be so defined in the subprogram which references it.
When referenced directly a DUMMY variable is treated the same as
any other local symbol. However, when referenced indirect~y it causes
a ca II to the DUMMY Variable Run-Time Linkage Routine. This Link
age Routine assumes that the DUMMY variable is a two-word vector
such that the first word is a 62N 1 (where N =the field of the address
to be referenced) and the second word contains the actua I 12-bit
address to be referenced .

2-9

2.4.3

DUMMY variables are used for passing arguments to and from
subroutines. (See Section 2.4.4.)

Example:

ENTRY
DUMMY
DUMMY
AI,

x,
Y,

The RETRN Statement

AI
x
y
BLOCK 2

M
N

The RETRN statement is used to return from a subprogram to the calling program. The name

of the subprogram being returned from must be specified so that the Return Linkage Routine can determine

the action required / and because a subprogram may have differently named entry points. It is possible

for the careful user to return to the location following the fast colt of any subprogram merely by specify

ing it in a RETRN statement.

Example:

TAG, RETRN SUBROU

Before the RETRN statement is used, the user must be sure to increment the pointer in the

second word of the subprogram entry to the proper point beyond all the arguments following the CALL

statement. An example of how this is done is given below.

2.4.4 Picking up Subprogram Arguments

An advanced technique for picking up subprogram arguments is provided because:

a. Subprogram arguments are two-word addresses and a subprogram CALL is executed by the
Run-Time Linkage Routine.

b. The calling program and subprogram may reside in different fields.

A subprogram entry point is assumed to have been defined as a two-word reserved block and

defined as an ENTRY. The appearance of the subprogram name in an ENTRY statement gives the two

word block the properties of a DUMMY variable. This means that when the subprogram name is referen

ced indirectly this generates a call to the DUMMY Variable Run-Time Linkage Routine where the details

of locating and picking up the argument address words are worked out. Thus, the user, need only use

the number sign feature to increment the argument pointer in the second word of the entry point.

2-10

The fol lowing example shows how SUBR would pick up the arguments 50 and LOCATN in the

example and deposit them in LOCl and LOC2.

Example:

/MAIN
MAIN,

TAG,
Nl I

N2,
ETC,

PROGRAM
CLA

CALL
ARG
ARG

END

/SUBROUTINE

ENTRY SUBR
DUMMY TEM

SUBR, BLOCK 2

TAD I SUBR

DCA TEM
INC SUBR#
TAD I SUBR

DCA TEM#
TAD I TEM
DCA LOCl
INC SUBR#

2,SUBR
(50
LOCATN

/fHIS GIVES YOU THE FIELD ADDRESS
/(CDF CUR) OF THE (50
/I.E., THE CONTENTS OF Nl
/fO FIRST WORD OF DUMMY
/MOVE ARG PTR TO Nl#
/GET ADDRESS OF (50
/I.E., CONTENTS OF Nl#
/fO 2ND WORD OF DUMMY
/PICK UP THE 50

/MOVE ARG PTR TO N2

Similar method to pick up contents of LOCATN.

TEM,

INC
RETRN
BLOCK

SUBR#
SUBR
2

/MO VE PTR FOR RETURN AT ETC

Constant arguments are specified as literals because the subprogram may not know that a

constant argument is being used. Hence, specifying constant arguments as litera Is wi II ensure that

the second word of every assembled argument is actually the address of the argument.

a constant:

The ARG statement may be used with a constant (e.g., if a constant address is intended).

The following technique may be used if SUBR can assume that the first argument is always

2-11

Example:

/MAIN PROGRAM
TAG, CALL 2, SUBR
Nl, ARG 50
N2, ARG LOCATN
ETC,

END

/SUBROUTINE

ENTRY SUBR
DUMMY TEM

SUBR, BLOCK 2
INC SUBR# /MOVE ARG PTR TO Nl#
TAD I SUBR /THIS GETS THE 50

/IMME DIA TEL Y
DCA LOCl
INC SUBR# /GET C(LOCATN) IN

/THE USUAL WAY

2-12

CHAPTER 3

THE ASSEMBLED BINARY CODE

Because SABR is not a one-for-one assembler, it is necessary to give a general description of

the type of code which it produces. The ordinary user needs only a general understanding of this topic;

a more detailed discussion is included for the advanced user.

3. l THE BINARY OUTPUT TAPE

SABR outputs each machine instruction on binary output tape as a 16-bit word contained in

two 8-bit frames of paper tape. The first four bits contain the relocation code used by the Linking

Loader to determine how to load the data word. The last twelve bits contain the data word itself.

Relocation
Code

High Order of
Data Word

Low Order of Data Word

first frame

second frame

The assembled binary tape is preceded and followed by leader/trailer code 200. The check

sum is contained in the last two frames of tape before the trailer code. It appears as a normal 16-bit

word as shown below.

0 0 0
High Order of
Checksum

Low Order of Checksum

first frame

second frame

All assembled programs have a relative origin of 0200.

3.2 THE LOADER RELOCATION CODES

The four-bit relocation codes issued by SABR for use by the Linking Loader are al I explained

below. The codes are given in octal.

00 Absolute Load the data word at the current loading address. No change
is required.

Example:

0205

0242
0356

5277

7500
0020

3-1

JMP LOC where
LOC is at 0277
(on page)
SMA
20 (a constant)

01

03

04

05

Simple
Relocation

External
Symbol
Definition*

Reorgin*

CDF
Current

*Does not appear in assembly listings.

Add the relocation constant to the word before loading it.
(The relocation constant is 200 less than the actual address
where the first word of the program is I oaded .) Items with this
code are a I ways program addresses.

Example:

0376 0520 01 A, LOC2

In the above example, LOC2 is at relative address 0520. If the
first word of the program (relative address 0200) is loaded at
1000, then the actual address of A is 1176 and location 1176
will be loaded with the value 1320, which will be the actual
address of LOC2 when loaded.

The data word is the relative address of an entry point.
Before entering this definition in the Linkage Tables so that the
symbol may be referenced by other programs at run-time, the
Linking Loader must add the relocation constant to it.

The six frames of paper tape fol lowing the two-frame definition
are the ASCII code for the symbol.

Example:

03 l address
address I ow order

L
0
c
2
space
space

Change the current loading address to the value specified by the
data word plus the relocation constant.

The data word is always a 6201 (CDF) instruction which has been
generated automatically by SABR. The code 05 indicates to the
Linking Loader that the number of the field currently being
loaded into must be inserted in bits 6-8 before loading.

Example:

0300 6201 05 A, TAD LOC2
0301 1776 where LOC2 is off page so that

the TAD instiUction must be indiiect.

0376 0520 01

If the program containing this code is being loaded into field 4,
relative location 0300 will be loaded with 6241.

Such an instruction is referred to in this document as CDF Current.
They are generated automatically by SABR when a direct reference
instruction must be assembled as an indirect, and there is the pos
sibility that the current data field setting is different from the field
where the indirect reference occurs.

3-2

06 Subroutine
Linkage
Code

The data word is a special constant enabling the Linking Loader
to perform the necessary linking for an external subroutine call.
(c. f., CALL Pseudo-op, Section 2 .4) The structure of the data
word is shown below.

Bits 0 - 5 Bits 6 - 11

4- number of arguments _. 4- local program __,.

10

12

17

Leader/Trailer*
and
Checksum

Transfer*
Vector

3 .3 PAGE ASSEMBLY

fol lowing the CALL number assigned
to the extern a I
subroutine being
called.

Before the 12-b it, two-part code word is I oaded into memory, a
global external number wi 11 be substituted for the local external
symbol number in the right half of the data word.

Example:

0200
0201

4033
0307 06

CALL 3, SUB

ARG X
ARG Y
ARG Z

Here, SUB has been assigned the local number 07 during
assembly. At loading time this number wil I be changed to the
global number (for example, 23), which is assigned to SUB. In
this example, 0323 would actually be loaded at relative address
0201.

This code represents normal leader/trailer. At the first occur
rence of this code fol lowing the assembled program, the computer
word contains the checksum.

The data \A/ord is the highest location in Field 1 assigned to
COMMON storage by the program. This item will occur
exactly once in every binary tape and it must be the first word
after the leader. If no COMMON storage has been allocated
in the program, the data word wi 11 be 0177.

Signifies that reference to an external symbol occurs in the
assembled program. The 12-bit data word is meaningless. The
next six frames contain the ASCII code for the symbol.

The Linking Loader uses this definition to create a transfer table,
whereby local external symbol numbers assigned during assembly
of this particular program can be changed to the global external
symbol number when several programs are being loaded.

SABR assembles page-by-page rather than one instruction at a time. This is accomplished

by bui I ding various tables as instructions are read. When a ful I page of instructions has been collected

*Does not appear in assembly listings.

3-3

{counting literals, off-page pointers and multiple word instructions) the page is assembled and punched.

Several pseudo-ops also cause a page to be assembled.

3.3. 1 Page Format

A normal assembled page of code has a format as shown below.

xooo
Assembled

Instructions

Page Escape

Li tera Is and
Off-Page

Pointers

X377 Page Escape

Literals and off-page pointers are intermingled in the table at the end of the page.

3.3.2 Page Escapes

Under normal circumstances SABR is in Automatic Paging Mode. This mode causes SABR to

connect each assembled core page of code to the next page by an appropriate jump. This is called a

Page Escape . For the I ast page of code, SABR I eaves the Automatic Paging Mode and issues no Page

Escape. Also., a pseudo-op is available to turn off this Automatic Paging Mode.

There are two types of Page Escapes, depending on whether or not the last instruction is a

skip instruction. If the last instruction was not a skip instruction, the Page Escape is as fol lows:

last instruction (non-skip)
5377 (JMP to x 177)
I iterals
and
off-page
pointers

x177/NOP

If the last instruction was a skip instruction, the page escape takes four words as follows:

last instruction (a skip)
5376 (JMP to x 176)
5377 (JMP to x 177)
I iterals
etc.

xl76/SKP
x177/SKP

3-4

3.3.3 Multiple Word Instructions

Certain instructions in the source program require SABR to assemble more than one instruc-

tion (e.g., off-page indirect references and indirect references where a data field re~setting may be

required). In the I isting, the source instruction wil I appear beside the first of the assembled binary

words.

A difficulty arises when a multiple word instruction follows a skip instruction. In such a

case, extrn instructions must be assembled to enable the skip to be effected exactly as desired by the

programmer.

3.3.4 Run-Time Linkage Routines

The routines described in this section are entirely automatic. The user needs to know nothing

about them except to better understand the program assembly listing.

Many of the multiple word instructions involve use of special linking routines called the

Run-Time Linking Routines. These routines make up a special portion of the 8K FORTRAN/SABR

System. They are used at execution time by al I user programs to carry out the linkage for cal Is to

externai subroutines and for al i the various forms of off-fieid and off-page indirect memory references.

Since the Linkage Routines are needed by al I user programs, their use is entirely automatic.

The user need not consider them either at programming time or at loading time. SABR determines when

cal Is to the Linkage Routines are required in the user's program and automatically generates such cal Is.

The Linking Loader a!·ways automatica! !y !cads the Linkage Routines.

The residence of the Linkage Routines is described in Appendix D.

There are seven Linkage Routines:

a. change Data Field to current and skip CDFSKP

b. change Data Field to one (COMMON) and skip CD ZS KP

c. off page indirect reference linkage OPISUB

d. off bank (COMMON) indirect reference linkage OBISUB

e. DUMMY variable indirect reference linkage DUMSUB

f. subroutine CALL linkage LINK

g. subroutine RETURN linkage RTN

The fol lowing is a description of the individual Linkage Routines.

a. CDFSKP is cal led when a direct off-page memory reference, requiring that the data
field be reset to the current field, fol lows a skip-type instruction.

3-5

Example:

Program

SZA
DCA LOC

Assembled
Code

7440
4045
7410
3776

Meaning

call CDFSKP
SKP in case AC = 0 at .-2
execute the DCA via a pointer near the end of
the page.

b. CD ZS KP is cal led when a direct memory reference is made to a location in COMMON
(which is always in Field 1), the action of CDZSKP is the same as that of CDFSKP except that it
always executes a CDF 10 instead of a CDF current.

Example:

Program

SZA
DCA CLOC

Assembled
Code

7440
4051
7410
3776

Meaning

call CDZSKP
SKP in case AC = 0 at .-2
execute the DCA via a pointer near the end of
the page.

c. OPISUB is cal led when there is an indirect reference to an off page location.

Example:

Program

DCA I PTR

Assembled
Code

4062
0300 01
3407

Meaning

call OPISUB
relative address of PTR
execute the DCA I via 0007

d. OBISUB is called when there is an indirect reference to a location in COMMON. In
such a case it is assumed that the location in COMMON which is being indirectly referenced points to
some location that is also in COMMON.

Example:

Program

DCA I CPTR

Assembled
Code

4055
1000
3407

Meaning

call OBISUB
address of CPTR in Field l
execute the DCA I via 0007

e. DUMSUB is cal led when there is an indirect reference to a DUMMY variable. In such
a case, DUMSUB assumes that the DUMMY variable is a two-word vector in which the first word is a
62N l, where N =the field of the address to be referenced, and the second word is the actual address
to be referenced •

3-6

Example:

Program Assembled
Code

DCA ! D UMV AR 4067
0300 01
3407

Meaning

ca!! DUMSUB
relative address of DUMVAR
execute DCA I via pointer
in location 0007

f. LINK is called to execute the linkage required by a CALL statement in the user's
program. When a CALL statement is used, it is assumed that the entry point of the subprogram is named
in the CALL and that this entry point is a two-word, free biock fol lowed by the executable code of the
subprogram. LINK leaves the return address for the CALL in these two words in the same format as a
DUMMY variabie.

program.

3.3.5

Example:

Program

CALL 2, SUBR

ARG X

ARG C

Assembled
Code

4033
0205 06
62Ml
0300 01
6211
1007

cal I LINK
code word

Meaning

X resides in field M
relative address of X
C is in COMMON
absolute address of C

g. RTN is cal led to execute the linkage required by a RETRN statement in the user's

Example:

Program

RETRN SUBR

Skip Instructions

Assembled
Code

4040
0005 06

Meaning

call RTN
number of the subprogram being returned from
(SUBR)

In page escapes and in multiple word instructions, skip-type instructions must be distin

guished from non-skipping instructions. For this reason, a special pseudo-op, SK PDF, must be used

to define skip instructions not in the permanent symbol table.

This also explains why both ISZ and INC are included in the permanent symbol table. ISZ

is considered to be a skip instruction and INC is not. INC should be used to conserve space when the

programmer desires only to increment a memory word with no possibility of a skip resulting.

Example l shows the code which is assembled for an indirect reference instruction to an off

page location following an INC instruction and Example 2 shows the same instruction following an ISZ

instruction. In Example 1, it is assumed there is no possibility of the INC instruction actually causing

a skip.

3-7

Example

INC POINTR
TAD LOC2

Example 2

ISZ
TAD I

3 .4 PROGRAM ADDRESSES

COUNTR
LOC2

0220
0221
0222
0223

0220
0221
0222
0223
0224
0225

2376
4062

01} 0520 off page indirect execution
1407

2376
7410 skip to execution
5226

01}
jump over execution

4062
0520 off page indirect execution
1407

Since each assembly is relocatable, the addresses specified by SABR always begin at 0200

and all other addresses are relative to this address. At loading time, the Linking Loader will properly

adjust all addresses. For example, if 0200 and 1000 are the relative addresses of A and B, respectively,

in the assembled program, and if A is loaded at 2000, then B will be loaded at 1000 + 1600 or 2600.

Al I programs to be assembled by SABR must be arranged to fit into one field of memory not

counting page 0 of the field or the top page (7600 - 7777) of the field. If a program is too large to

fit into one field, it shou Id be split into several subprograms.

Explicit CDF or CIF instructions are not needed by SABR programs because of the avail

ability of external subroutine calling and COMMON storage. Explicit CDF or CIF instructions cannot

be properly assembled by SABR.

3.5 THE SYMBOL TABLE

Entries in the symbol table are variable in length. A one or two character symbol requires

three symbol table words. A three- or four-character symbol requires four words, and a five- or six-char

acter symbol, five words. Thus, for long programs it may be to the user's advantage to use short sym-

bols wherever possible.

The symbol table, not counting permanent symbols, contains 2644
10

words of storage. How

ever, this space must be shared with the table when unresolved forward and external references are

temporarily stored as two-word entries. If we may assume that a program being assembled never has

more than 100
10

of these unresolved references at any one time, this leaves 2464
10

words of storage

for symbols. Using an average of four words per symbol, this al lows room in the program for 616
10

symbols.

Symbol table overflow is a fatal error condition which generates the error message S.

3-8

CHAPTER 4

SABR OPERATING PROCEDURES

This chapter describes how to assemble a program source using SABR. The procedure for

loading a binary tape of an assembled program is described in Chapter 6.

4. l LOADING SABR IN A BASIC PDP-8 SYSTEM

2

3

4

5

6

7

Procedure

Make sure the Binary Loader is in memory, say in field n.

Set the console switches as fol lows:

Instruction Field = n, Switch Register= 7777.

Press LOAD AD Dress.

Insert the SABR binary tape into the reader.

If using the high-speed reader, depress Switch Register Bit 0.

Press ST ART.

SABR will now be loaded into memory by the Binary Loader; portions of
SABR wi 11 load into field 0 and field 1.

4.2 LOADING SABR IN A DISK MONITOR SYSTEM

2

3

4

Procedure

.J.

Make sure the Disk Monitor is in memory. (Type CTRL/C
1

or ST ART at 07 600.)

When the Monitor responds with a dot, call the system Loader as follows:

.LOAD) ()represents typing the RETURN key)

Insert the SABR binary tape in the reader.

Answer the loading command dialogue as fol lows:

* IN-R:) for high speed reader or *IN-T:) for ASR reader

*
*ST=)
t <CTRL/P> t <CTRL/P>

After typing the second CTRL/P t it is necessary to reposition the tape in the
reader for Pass 2.

t CTRL/C and CTRL/P are typed by holding down the CTRL key while typing the C or P key.

4-1

5

6

Procedure

SABR is now loaded into memory, partly in field 0 and partly in field l. It
may be saved on the user's system device by responding to the monitor's dot
as follows:

. SAVE SABR! 0-7177;200)

. SAVE SABl ! 700, 1700-12427; ~

SABR is now saved on the user's system device and may be cal led as follows:

• SABl)
.SABR)

The field l portion must be called first.

4.3 OPERATING SABR

It is assumed that the programmer has written his program in SABR language and punched this

source program on paper tape in ASCII code. The source tape may have been sp Ii t into severe I separate

tapes by placing a PAUSE statement at the end of each section except the last. The last tape must have

an END statement at the end.

After SABR has been ioaded into memory, it is used to assembie the source program. In Pass

l the relocatable binary version of the user's program is created and, at the end of this pass, the symbol

table is either typed or punched, according to whether this listing is to be typed or punched. Pass 2 is

the listing pass. The assembly is carried out as follows.

2

3

NOTE

If SABR has been saved on the System I/O device, as
in Section 4.2, it will start automatically at Step 3
below when called into memory. The source tape (first
section) should be inserted in the reader before opera
tion begins.

Procedure

Set the console switches as fol lows:

Data field = 0, Instruction Field = 0, Switch Register = 0200.

Press LOAD AD Dress and ST ART.

SABR now types a sequence of two or three questions;

HIGH SPEED READER?
HIGH SPEED PUNCH?
LISTING ON HIGH SPEED PUNCH?

4-2

4

5

6

7

8

9

10

11

Procedure

These questions must be answered with Y if the answer is yes. Any other
answer is assumed to be no. The third question is typed oniy if the second
is answered Y. If the third is answered Y, both the symbol table and the
listing are punched on the high-speed paper tape punch. Otherwise, they
are typed on the teletypewriter. The user need not wait for the ful I question
to be typed before responding.

As soon as SABR has echoed the user's response to the last question, turn on
the punch device and, if it is being used, the ASR reader. If the low-speed
reader is used, the error message E indicates that the user has waited too
I ong before turning the reader on. The user must begin again.

At this point, Pass l begins. SABR reads the source tape and punches the
binary tape. After the binary tape has been completed, SABR types or
punches the program symbol table.

If the source tape is in several sections (separate tapes with PAUSEs at the
end of all except the last), SABR halts at the end of each section. At this
point, insert the next section in the reader and then press CONTinue.

At the end of Pass 1, SABR halts.

If an assembly listing is desired, reposition the beginning of the source tape
in the reader and if using the ASR reader, set it to ST ART, and then press
CONTinue.

At the end of Pass 2, SABR again halts. To restart SABR for assembling
another program, press CONTinue.

To restart SABR at any time, press STOP, set the Switch Register= 0200,
press LOAD AD Dress and START. However, the first pass must always be
repeated.

After assembling in a Disk Monitor environment, control may be returned
to Monitor by restarting at iocation 7600.

4.4 OPERATING PROCEDURE FOR USE AS FORTRAN PASS 2

In addition to being a stand-alone assembler, SABR also serves as Pass 2 of 8K FORTRAN

compilation. For this purpose, the use of SABR is slightly different from that described in Section 4.3.

However, SABR must stil I be loaded into memory as described in Section 4. l or 4.2. This difference in

the operation of SABR is due only to the unusual format of the FORTRAN Compiler Pass l.

The Compiler, in one pass, converts the user's FORTRAN source into a symbolic machine

language program tape. SABR then converts the symbolic tape into relocatable binary. However, the

symbolic tape produced by the Compiler is not a standard format SABR language tape. It is arranged

as shown below.

4-3

L
E

F

A
0

D
R

Main part of program;
T END

E
R

Executable code.
R

s
E
p Symbol Definitions
A Common, Arrays,
R Data and
A Program Entry
T point.
0
R

\ 'True Start

3 ft of blank tape

T
p R
A A
u I
s L
E E

R

The tape is arranged this way because the data at the end of the tape cannot be inserted in

the midst of the executable code, and some data which should be at the beginning of the tape is not

known until later. Thus, the true start of the symbolic program is near the end of the symbolic tape,

preceded by a segment of leader/trailer code and fol lowed by a PAUSE statement.

To assemble such a tape with SABR, one of three methods must be followed. Actually, the

general procedure is the same as that described in Section 4. 3, but it differs in special details. The

differences are aii covered by the three methods expiained beiow.

4.4. l Method l

The simplest method is to cut the symbolic tape into two parts. The cut should be made at

the middle of the blank tape which separates the executable code from the symbol definitions. The

latter section of the tape should then be marked "Section 1 11 and the former section (the executable

code} should be marked "Section 2. 11 Assembly then proceeds with the two-part symbolic tape exactly

as described in Section 4. 3.

4.4.2 Method 2

The user may avoid actually cutting the symbolic tape by manipulating the tape as if it were

in two parts as explained above. The tape should initially be inserted in the reader with the separator

blank tape over the read-head. When SABR halts at the PAUSE statement at the physical end of the

tape, the user should reposition the tape, putting the physical beginning of the tape in the reader.

Then press CONTinue. The assembly pass will end at the separator blank tape code. The assembly

listing can be produced in a similar manner, pressing CONTinue to start the listing pass.

4-4

4.4.3 Method 3

The third method requires SABR to pass over the symbolic tape two times for each pass of the

assembiy. However, it ai iows the tape to be inserted at its physi cai beginning. It is based on the fact

that a symbolic tape output by the FORTRAN Compiler has as its physical first line the special pseudo

op, FORTR. This pseudo-op has no effect except when a symbolic tape output by the Compiler is as

sembled using this third method.

2

3

4

5

Procedure

Insert the symboi i c tape in the reader at its physi cai beginning.

Start SABR as usual.

Sensing the FORTR statement as the first line, SABR ignores all further
data until after it passes over the END statement. SABR then begins the
actual assembly by processing the symbol definitions, etc., which are at
the latter end of the tape.

Then, SABR halts at the PAUSE statement which is at the physical end of
the tape. At this time the user should reposition the symbolic tape in the
reader at the physical beginning of the tape, and then press CONTinue.
SABR now assembles the executable code portion of the tape in the normal
way.

If an assembly listing is desired, proceed as in Method 2 after SABR finishes
the assembly pass.

4-5

CHAPTER 5

THE LINKING LOADER

5. 1 INTRODUCTION

Relocatable binary program tapes produced by SABR assembly are ioaded into memory by using

the 8K System Linking Loader. The Linking Loader is capable of loading and linking a user's program

and subprograms in any fields of memory. It is even capable, in a special way, of loading programs

over itself. The Linking Loader also has options which give storage maps and core availability.

The Linking Loader requires a PDP-8/I, -8/L, -8, -8/S or -5 Computer with at !east 8K

words of core memory. Either high-speed or ASR paper tape input is acceptable, however, a high

speed reader is highly recommended.

The software requirements are:

a. Binary paper tape copy of the Linking Loader

b. Relocatable binary paper tape copies of both Part 1 and Part 2 of the 8K System Library

c. The relocatable binary paper tapes of the user's own program and subprograms which
have been produced by assembling his programs with SABR.

5.2 LOADING WITH THE LINKING LOADER

Generally speaking, the Linking Loader is capable of loading any number of user and Library

programs into any field of PDP-8 memory. These programs are loaded consecutively via the high-speed

reader (or the ASR reader). The choice of which field to load each program into is a Switch Register

option. Usually, several programs may be loaded into each field. Because of the space reserved for

the Linkage Routines the available space in field 0 is three pages smaller than in all other fields.

Any COMMON storage reserved by the programs being loaded is allocated in field 1 from

location 0200 upwards. The space reserved for COMMON is obviously subtracted from the available

loading area in field 1. The program reserving the largest amount of COMMON storage must be loaded

first.

The Linking Loader uses the following special method to enable loading data over itself.

When the Linking Loader encounters data which must be loaded over itself, it punches this data onto

paper tape in RIM format. Then, after the user has finished loading all his relocatable binary program

tapes, he simply loads the RIM format tape using the standard RIM loader.

The Run-Time Linkage Routines which are necessary to execute SABR programs (see Section

3. 3.4) are automatically loaded into the required areas of every field by the Linking Loader as a part

of its initialization. For the user, the only required knowledge of these routines is the particular areas

of core they occupy (see Appendix D).

5-1

The 8K System Library subprograms (See Appendix E), which may be used by any SABR pro

gram, are loaded in the same way as any other relocatable binary programs. Only those library pro

grams which the user's programs actually call need to be loaded.

5.3 LOADING INFORMATION OPTIONS

During the loading operation with the Linking Loader, two user options are available to

obtain information about what has al ready been loaded. The Switch Register is used to select these

options. Either option may be selected after any program has finished loading.

I WARNING I
If the ASR punch is turned on, it must be turned off
before selecting these options.

The Switch Register bits used are as follows:

BIT 0 = l selects the Core Availability option;
BIT l = 1 selects the Storage Map option.

The Core Avai iabi iity option causes the number of free pages of memory In every fie id of

memory to be typed in a list on the Teletype. For example, if the user has a 16K configuration, a list

like the following might be typed.

0002
0010
0030
0036

(number of free pages in field O)
(number of free pages in field l)
(number of free pages in field 2)
(number of free pages in field 3)

The number of pages initially available in field 0 is 0033 and in all other fields is 0036.

The Storage Map option causes a list of all program entry points to be typed, along with

the actual address at which they have been loaded. The entry points of programs which have been called

but which have not been loaded are also listed along with a U flag for undefined. Such flagged pro

grams must be loaded before execution of the user's programs is possible. The Core Availability list is

automatically appended to the Storage Map. A sample is shown below.

MAIN
READ
WRITE
IOH
SETERR
ERROR
TTY OUT
HS OUT

10200
01055
01066
03031
00000 u
00000 u
00000 u
00000 u

5-2

TT YIN
HSIN
FDV
CLEAR
!FAD
FMP
ISTO
STO
FLOT
FAD
DIV
!REM
FSB
FLOAT
FIX
IFIX
CHS
0011
0033

00000 u
00000 u
04722
05247
05131
04632
05074
04447
05210
04010
00000 u
00000 u
04000
05046
04513
04561
05231

5.4 HOW TO LOAD THE LINKING LOADER

The Linking Loader must be ioaded into the highest avaiiabie fieid of memory.

2

3

4

5

6

7

Procedure

Make sure the Binary Loader is in memory, for example, in field m.

Let h represent the number of the highest field in the user's configuration.

Set the console switches as follows:

Data Field= h, Instruction Field= m, Switch Register= 7777.

Press LOAD AD Dress.

Place the binary paper tape of the Linking Loader in the reader.

If using a high-speed reader, depress Switch Register Bit 0.

Press START. The Linking Loader will now be loaded into memory.

5.5 OPERATION OF THE LINKING LOADER

The Linking Loader is used to load the user's relocatable programs and 8K Library

subprograms as outlined below.

NOTE

The program or subprogram which uses the largest
amount of COMMON storage should be loaded
first. (The Library subprograms do not use COM
MON.)

5-3

2

3

4

5

6

7

8

9

10

Procedure

After the Linking Loader has been loaded into the highest memory field, h,
the user should set the console switches as fol lows: Data Field= h, Instruction
Field= h, Switch Register= 0200.

Press LOAD ADDress.

Place the relocatable binary tape for the first program to be loaded in the
reader. Position the tape with leader code in the reader.

Set Switch Register to 0000. Then, if loading via the ASR reader is required,
raise Switch Register Bit 6. If the user does not have a high-speed punch, he
should raise Switch Register Bit 7. Finally, set Switch Register Bits 9-11 to
the number of the field into which the first program or subprogram is to be
loaded.

Switch Register*

I ~ I 0 I 21
3

1
4

1
5

1 ~ 1
7

1° I : I 1° I 11 I
'"---....._,..---)

Number of
Loading Field

0 VI)>)>
0

0 V'l V'l .., .., ;::c ;::c Cl> 0
"U co ..,

"U
0 Cl> Cl> c

co 0 :J

~
3 a_ g.. Q Cl>

"U
..,

Example:

If the user wishes to load his first program into field 3, and if he has no high
speed VO device, then he should set the Switch Register to 0063 before the next step.

Press START.

The user's relocatable binary program wi 11 now be loaded. When loading is
completed, the Linking Loader halts.

The user may now either load another program or select one of the options in
steps 9 and 10.

To load another program, insert the program relocatable binary tape in the
reader, set Switch Register Bits 9-11 to the number of the field the program
is to be loaded into, and then press CONTinue.

To select the Core Availability option, set Switch Register Bit 0 = 1, and
press CONTinue.

To select the Storage Map option, set Switch Register Bit 1 = 1, and press
CONTinue.

If the ASR punch is turned on for possible RIM format data punching, as ex
plained in Section 5.2, ensure that it is turned off before selecting either of
the options. Turn it on again after the typing of the option is completed.

*Al I other Switch Register bits are irrelevant.

5-4

11

Procedure

The user may continue loading more programs as in step 8 after using either
of the options.

Any time the Linking Loader halts, the user may access memory directly via
the DEPosit and EXAMine console switches. After this is done the Linking
Loader may be restarted via the console switches at location 7200 (in the
highest field, where the Linking Loader resides).

5-5

CHAPTER 6

DEMONSTRATION PROGRAM

The following demonstration program is aSABRprogramshowingthe use ofthe libraryroutines.

The program is written to add two integer numbers, convert the result into floating-point, and type the

result in both integer and floating-point format. The source program was written and listed using the

Symbolic Editor; the Disk Monitor System was used during assembly; and the assembled program was then

ioaded and run using the 8K Linking Loader.

The system configuration consisted of a PDP-8/I with 8K words of core, DF32 Disk, ASR33

Teletype, and high-speed reader and punch. The Disk Monitor System, Symbolic Editor, and SABR

Assembler were available on the disk. The ASR33 paper tape reader was used during assembly for

demonstration (printout) purposes.

Demonstration Program

Program

ENTRY START

START, CALL
TAD
TAD
DCA
CALL
ARG
CALL
ARG
CALL
ARG
ARG
CALL
ARG
CALL
ARG
CALL
ARG
HLT

0,0PEN /INITIALIZE IO DEVICES
A /COMPUTE C = A + B
8
c
J,FLOAT /CONVERT TO FLOATING POINT
c
1, STO
D
2,WRITE /INITIALIZE THE IO HANDLER
N /DEVICE NUMBER 1 = TELETYPE
FORMT /FORMAT SPECIFICATION
1,IOH /TYPE THE INTEGER NUMBER
c
1, I OH
D
1, I OH
0

/TYPE THE FLOATING POINT NR

/COMPLETE THE IO

FORMT, TEXT "C 'THE ANSWERS ARE',IS,F7.2)"
N, 1
A, 2
g, 2
c, 0
D, BLOCK 3

END

6-1

Comment

After writing the source pro
gram it was printed and punch
ed using the Symbolic Editor.

Demonstration Program

*
.SABl
• Sl\BK

PDP-8 SABR DEC-08-A282-12
HIGH SPEED READER? N
HIGH SPEED PUNCH? Y
LI S TI N G 0 1-.J H I G H SP D:: D P !J r-.J CH ? N

E AT

HIGH S?~ED READER? N
HIGH SPEED PUNCH? Y
LISTING ON HIGH SPEED PUNCH? N

A 0257
B 026:,~

c 0 261
D 0262
FLOAT 00t2l0EXT
FORMT 0240
IOH 0000EXT
N 0256
OPEN 0000EXT
START 0200EXT
STD 000f3EXT
WRITE 000(2lEXT

6-2

Comment

CTRL/C was typed after the asterisk
to return control to the Disk Monitor.

SABR was transferred from the disk
into core.

The source program tape was placed
in the teletype reader.

When started, SABR printed its
identification and initial dialogue
questions which were answered.

The TTY reader must be set to START
within 3 seconds after typing N to the
last question. Otherwise, as was the
case here, the error message wi ti
appear, and SABR must be restarted
at location 0200, as was done here.

The initial dialogue questions are
repeated and again answered.

After typing the N to the last ques
tion, the TTY reader was immediately
set to ST ART and assembly commenced.

The Symbol Table concluded the
assembly.

Here the source program tape was
again placed in the TTY reader and
the CONTinue switch was depressed.
The program listing was printed.

Demonstration Program

ENTRY START

0200 4033 S T_l\RT, CALL 0, OPEN /I NI TI ALI ZE IO DEVICES
0201 001~2 06
0202 1257 TAD A /COMPJTE c = A + B
0203 1260 TAD B
02l;;J4 3261 DCA c
020 5 40 3 3 CALL 1,FLOAT /CONVERT TO FLO_C\TI NG POINT
02t;;J6 010 3 06
020 7 6201 05 ARG c
0 2 l:?J 0261 0 1
0211 4033 Ci\LL 1, STO
0212 010 4 06
0213 6201 05 ARG D
0214 0262 0 1
0215 4033 CALL 2, WRITE /I NI TI ALI ZE TH~ IO HANDLER
0216 0205 06
0217 6201 05 ARG N /DEVICE NUMBER 1 = TELETYPE
0220 0256 01
0221 6201 05 ARG FORMT /FORMAT SPEC I FI CATI ON
0222 0240 01
0223 4033 CALL 1, I OH /TYPE THE: INTEGER NUMBER
0224 0106 06
0225 6201 05 ARG c
0226 0261 0 1
0227 4033 CALL 1, I OH /TYPE THE FLOATING POINT NR
0230 010 6 06
023i 6201 05 ARG D
0232 0262 0 1
0233 4033 CALL 1, I OH /COMPLETE TH2: IO
0234 010 6 06
0235 621 1 ARG 0
0236 0000
0237 7402 HLT

0240 52J 4 7 FORMT, TEXT "C 'THE ANSWERS ARE',I5,F7.2)"
0241 2410
0242 - 0540
0243 011 6
0244 2327
0245 0522
0246 2340
0247 0122
0250 0547
0251 5411
0252 6554
0253 0 667
0254 5662
0255 5100
0256 0001 N, 1
0257 02102 A, 2
0260 0002 g, 2
0261 0000 c, 0
0262 0000 o, BLOCK 3
0263 0000
0264 0000

END

6-3

Demonstration Program

Program

PDP-8 LINKING LOADER DEC-08-A283-05

ST,~RT 0100(2}
OPEl\J 06125
FLO,AT 05034
STO 04444
WRITE 0130 2
IO:-! 03142
READ 01271
SETERR 06200
ERRO~ 06303
TTY OUT 0 6027
HS OUT 0 6~j 5 5
TTYIN 060 12!0
HSIN 0 6045
FDV 0 4 71 1
CLEAR 05227
IFAD 0 51 1 6
FMP 04623
ISTO 0 50 61
FLOT 0 5153
FAD 0 4010
DIV 0 5445
IREM 05616
FSB 0 42l 0 0
FIX 0 4510
IFIX 04556
CHS 0 521 1
ABS 0 5636
IABS 05670
MPY 05400
IRDS'tJ 05713
CKI 0 0 6121
EXIT 0 6142
CLRERR 0 6231
0004
0036

6-4

Comment

The 8K Linking Loader was loaded
into core using the Binary Loader,
and started at location 0200 of field l.

When started, the Linking Loader
printed its identification.

Library Tape Part l was loaded into
core by placing the tape in the TTY
reader, setting the reader to START,
and pressing CONTinue.

After loading the library subprograms,
Switch Register bit l was set to l, and
CONTinue was pressed to get the
storage page of the programs and sub
programs loaded into core.

The last two numbers represent the
number of free {available) pages in
each core field -- 0004 free pages
in field 0, and 0036 free pages in
field l.

Program

THE ANSWERS ARE 4

6-5

Comment

To execute the compiled program,
the 5'witch Register was set to 01000,
the starting address of the main pro
gram (determined from the Storage
Map).

The LOAD ADDress switch was press
ed and then START switch was pressed.

The program ran as planned, producing
the desired results.

APPENDIX A
ASCII* CHARACTER SET

Character Code Character Code Character Code

NULL 200 0 260 A 301
BELL 207 l 261 B 302
TAB 211 2 262 c 303

LINE FEED 212 3 263 D 304
FORM 214 4 264 E 305

RETURN 215 5 265 F 306
SPACE 240 6 266 G 307

241 7 267 H 310
II 242 8 270 I 311
243 9 271 J 312
$ 244 272 K 313
% 245 273 L 314
& 246 < 274 M 315

247 275 N 316
250 > 276 0 317
251 ? 277 p 320

* 252 Q 321
+ 253 R 322

254 s 323
255 T 324

. 256 u 325
I 257 v 326

w 327
x 330
y 331
z 332
r 333 L

\ 334
] 335

336
337

RUBOUT 377

*An abbreviation for U.S.A. Standard Code for Information Interchange.

A-1

APPENDIX B

PERMANENT SYMBOL TABLE

Memory Reference Instructions

Mnemonic Code Operation Event Time

AND 0000 combine C(AC) and C(MEM) by logical AND
and store result in AC

TAD 1000 combine C(AC) and C(MEM) by two's
complement addition and store result in AC
with carry added to the LINK

ISZ 2000 increment C(MEM) and skip if result is 0
INC 2000 same as ISZ except should be used only when it

is known that an actual skip cannot occur (see
Section 3 .3 .5)

DCA 3000 deposit C(AC) into MEM and clear the AC
JMS 4000 jump to subroutine (actually deposit the current

value of the PC into MEM and jump to /V\E.M + 1)
JMP 5000 jump to MEM location

I 0400 indirect memory reference

Operate Microinstructions: Group 1

l""I A 7200 clear AC '- L...r"\

CLL 7100 clear LINK 1
CMA 7040 comp I ement AC 2
CML 7020 complement LINK 2
RAR 7010 rotate AC and LINK 1 bit right 4*
RTR 7012 rotate AC and LINK 2 bits right 4*
RAL 7004 rotate AC and LINK l bit left 4*
RTL 7006 rotate AC and LINK 2 bits left 4*
IAC 7001 increment AC 3
CIA 7041 negate AC (CMA IAC combined) 1 ,3
STA 7240 set AC (C LA CMA combined) 1,2
STL 7120 set LINK (CLL CML combined) 1,2
NOP 7000 no operation 1

Operate Microinstructions: Group 2

CLA 7600 clear AC 2
SMA 7500 skip if AC negative 1
SZA 7440 skip if AC zero 1
SPA 7510 skip if AC positive or zero l
SNA 7450 skip if AC non-zero 1
SNL 7420 skip if LINK non-zero 1
SZL 7430 skip if LINK zero 1

* 3 for PDP-8

B-1

Mnemonic

SKP
SPC
OSR

HLT

Program Interrupt
ION
IOF
Keyboard/Reader
KSF
KRB

Teleprinter/Punch
TSF
TLS

Code

7410
7710
7404

7402

High-Speed Reader (Type PC02)
RSF
RRB
RFC
High-Speed Punch (Type PC03)
PSF
PLS

ABYSM
ARG
BLOCK
CALL
COMMN
CPA GE
DECiM
DUMMY
EAP
END
ENTRY
FORTR
IF
LAP
OCTAL
OP DEF
PAGE

Operate Microinstructions: Group 2 (Cont)

Operation

skip unconditiona I ly
(SPA CLA combined}
inclusive OR switch register with C(AC);
result to AC
halt

IOT Microinstructions

6001
6002

6031
6036

6041
6046

turn interrupt on
turn interrupt off

skip if keyboard/reader flag= 1
c fear AC & read keyboard buffer, and
cf ear keyboard flag

skip if teleprinter/punch flag = 1
load teleprinter/punch buffer,
select and print, and c I ear teleprinter/
punch flag

skip if reader flag = l
read reader buffer and c I ear flag

Event Time

l
l
3

4

6011
6012
6014 clear flag and buffer and fetch character

6021
6026

skip if punch flag =l
clear flag and buffer, load and punch

Pseudo-Operators

Direct Absolute Symbol Definition
Argument for Subroutine Cal I
Reserve Storage Block
Ca 11 Externa I Subroutine
Common Storage Definition
Check if Page Will Hold Data
Dec i ma I Conversion
Dummy Argument Definition
Enter Automatic Paging Mode
End of Program
Define Program Entry Point
Assemble FORTRAN Tape
Conditional Assembly
Leave Automatic Paging
Octal Conversion
Define Non-Skip Operator
Terminate the Page

B-2

Pseudo- Operators (Cont)

Mnemonic Code Operation

PAUSE Pause for Next Tape
REORG Terminate Page and Reset Origin
RETRN Return from External Subroutine
SK PDF Define Skip-Type Operator
TEXT Text String

Floating-Point Accumulator

ACH 20* high-order word
Ar't..A

1-\\,,..IV\ 21* middle woid
ACL 22* low-order word

*The Floating Point Accumulator is in field 1.

B-3

C. l SABR

APPENDiX C

ERROR MESSAGES

Because SABR is a one-pass automatic paging assembler for binary relocatable programs,

object errors are difficult to correct. If there are errors in the source, the assembled binary code will

be virtually useless. Both errors E and S are fatal; assembly halts when they are encountered. The

other types of errors are not fatal, but they cause the line in which they occur to be treated as a com

ment and thus essentially ignored. An address label on such a line will remain undefined and no space

is reserved in the binary output for the erroneous data.

During the assembly pass error messages are typed on the teletype as they occur.

Example:

c AT LOC -+-0004

This means that an error of type C has occurred at the fourth instruction after the location tag

LOC. This line count includes comment lines and blank lines.

During the listing pass, the error is typed in the address field of the instruction line.

The following error messages may occur.

A Too many or too few ARGs follow a CALL statement.

C An i I legal character appears on the line. This could possibly be an 8 or 9 in an

octal digit string or an alphabetic character in a digit string.

M A symbol is multiply defined (occurs only during Pass 1). It is impossible to

resolve multiple definitions during Pass 2; therefore, listings of programs which

contain multiple definitions wil I have unmarked errors.

An illegal syntax has been used. Below are listed the types of illegal syntax

that may occur.

a. A pseudo-op with improper arguments.

b. A quote mark with no argument.

c. A non-terminated text-string.

d. A memory reference instruction with improper address.

e. An i I legal combination of micro-instructions.

E There is no END statement.

C-1

S one of the following:

a. The symbol table has overflowed. This can be corrected by using fewer

symbols, using shorter symbols, or by breaking the program into smaller parts.

b. Common storage has been exhausted.

c. /vbre than 64 different user-defined symbols have occurred in a core page.

d . /vbre than 64 externa I symbo Is have been dee la red •

One further type of error may occur. This is an undefined symbol. Because SABR is a one

pass assembler, an undefined symbol cannot be determined unti I the end of the assembly pass, so the

error diagnostic UNDF is given in the symbol table listing. (Refer to the discussion of the Symbol

Table at the end of Appendix F .)

C .2 LINKING LOADER

If during the process of loading a program or subprogram the Linking Loader encounters an

error, the user is notified by an error message; the partially loaded program or subprogram is ignored,

removed from the field, and core is freed. The error messages are typed out in the form

ERROR xx xx

where XXXX is the error code number.

Error Code

0001

0002

0003

0004

0005

Explanation

More than 6410 subprogram names have been seen by
the Loader (6410 subprogram names is the capacity of
the Loader's symbol table}.

The current field is full, or load was to nonexistent
memory.

The current subprogram has too large a COMMON
storage assignment. (Subprogram with largest common
storage declaration must be loaded first.) This is a
semi-fatal error. Re-initialize the Linking Loader as
explained below and reload the programs in the proper
order.

Checksum error in input tape. If the error persists, re
assembly is necessary.

Illegal Relocation Code has been encountered. This
can occur only if the relocatable binary tape is bad or
if the user is using it improperly (e.g., not starting at
the beginning of the tape, or reader error, or punch
error). If the error persists, re-assembly is necessary.

Recovery from errors 2, 4, and 5 is accomplished by repositioning the tape in the reader to

the leader code at the beginning of the subprogram and then pressing CONTinue. When attempting to

recover from one of these errors, no other program should be loaded before reloading the program which

C-2

caused the error. Obviously, on Error 2 a different field should be selected before pressing CON-

tinue.

The entire loadina Process mav be restarted via the console switches. at anv time bv re-
"' I I I r - - - - -- / - -

initializing the Linking Loader. To do this, set the console switches as fol lows: Data Field = h (the

field where the Linking Loader resides), Instruction Field = h, Switch Register = 6200; then press LOAD

AD Dress and ST ART.

C.3 LIBRARY PROGRAM

During execution, the Library programs check for certain errors and type out the appropriate

error messages in the form

11 XXXX 11 ERROR AT LOC NNNN

where XXXX specifies the type of error, and NNNN is the location of the error. When an error is

encountered, execution stops, and the error must be corrected.

When multiple error messages are typed, the location of the last error message is relevant to

the user program. The other error messages are to subprograms cal led by the statement at the relevant

location.

Error Code

11 ALOG 11

11 ATAN 11

11 D1vz 11

11 EXP 11

11 FIPW 11

11 FMTl 11

11 FMT3 11

11 FMT411

11 FMT5 11

II FLPVv'll

11 FPNT 11

11 SQRT 11

Explanation

Attempt to compute log of negative number

Result exceeds capacity of computer

Attempt to divide by 0

Result exceeds capacity of computer

Error in raising a number to a power

Multiple decimal points

E or • in integer

II lega I character in I, E, or F field

Multiple minus signs

Invalid FORMAT statement

Negative number raised to floating power

Floating - point error may be caused by:
Division by zero; floating - point overflow;
attempting to fix too large a number.

Attempt to square root a negative number

C-3

To pinpoint the location of a Library execution error:

Step

2

3

4

Procedure

From the Storage Map, determine the next lowest
numbered location (external symbol) which is the
entry point of the program or subprogram containing
the error.

Subtract in octal the entry point location of the pro
gram or subroutine containing the error from the LOC
of the error in the error message.

From the assembly symbol table, determine the
relative address of the external symbol found in step
l and add that relative address to the result of step 2.

The sum of step 3 is the relative address of the error,
which can then be compared with the relative add
resses of the numbered statements in the program.

C-4

APPENDIX D

FREE PAGE 0 LOCATIONS

Because the Library Linkage Routines must be in core when SABR assembled programs are run,

certain core locations are not available as fol lows:

Field 0 Locations 0400 - 0777
Fi e I d 0 , l , 2 , . . . Locations 0007 and 0033 - 0073

Thus in every field of memory the following page 0 locations are available to the user:

0000 - 0006
0010 - 0017
0023 - 0032
0074 - 0177

for interrupts, debugging, etc.
auto-index registers
arbitrary
arbitrary

Locations 20, 21, 22 in field l are used for the Floating-Point Accumulator. The user

should use these locations with great care.

When using the Library routines, locations 20-32 in the field where the routines reside, are

used for temporary storage by the routines.

Locations 176 and 177 in the field where the I/O handler routines (IOH) reside are used for

temporary storage by the 1/0 handler.

D-1

APPENDIX E

THE LIBRARY SUBPROGRAMS

The Library is a set of subprograms which may be CALLed by any FORTRAN/SABR program.

The relocatable binary versions of these subprograms are arranged in two paper tapes for the convenience

of the user. Part 1 contains those subprograms which are used by almost every FORTRAN/SABR program.

All the Library subprograms are described below.

Many of the subprograms reference the Floating-Point Accumulator located at ACH, ACM,

ACL (20, 21, 22 of field 1),

E. l INPUT/OUTPUT

READ is called to initialize the I/O handler before reading data. WRITE is called to initia

lize the I/O handler before writing data. IOH is called for each item to be read or written. IOH must

also be called with a zero argument to terminate an input-output sequence. (Refer to Chapter 6.)

All of these programs require that the Floating-Point Accumulator be set to zero before they

are called.

Examples:

rAI I
\.,.r'\L.L.

ARG
ARG

CALL
ARG

2, READ
(n
fa

l ,IOH
data l

CALL 1,IOH
ARG data 2

CALL 1,IOH
ARG 0

CALL 2,WRITE
ARG (n
ARG fa

/n =DEVICE NUMBER
/fa =ADDR OF FORMAT

/data l =ADDR OF HIGH
/ORDER WORD OF
/FLOATING POINT NUMBER

The following device numbers are currently implemented:

1. Teletype keyboard/printer

2. High-speed reader/punch

E-1

E .2 FLOATING-POINT ARITHMETIC

FAD is called to add the argument to the Floating-Point Accumulator

CALL 1, FAD
ARG addres

FSB is called to subtract the argument from the Floating-Point Accumulator.

CALL l ,FSB
ARG addres

FMP is called to multiply the Floating-Point Accumulator by the argument.

CALL l ,FMP
ARG addres

FDV is called to divide the Floating-Point Accumulator by the argument.

CALL l ,FDV
ARG addres

CHS is called to change the sign of the Floating-Point Accumulator

r A 1 1 " rue
'-r'\L .. L. Vt'-11..I

All of the above programs leave the result in the Floating-Point Accumulator. The address

of the high-order word of the floating-point number is 11 addres 11
•

STO is cal led to store the contents of the Floating-Point Accumulator in the argument address

CALL
ARG

l ,STO
storag /storag =ADDRESS WHERE

/RESULT IS TO BE PUT

IFAD is called to execute an indirect floating point add to the Floating-Point Accumulator.

CALL
ARG

l ,IFAD
ptr /ptr =2-word POINTER

/TO HIGH ORDER
/ADDRESS OF FLOATING
/POINT ARGUMENT

ISTO is called to execute an indirect floating point store.

CALL l ,ISTO
ARG ptr

CLEAR is ca I led to c fear the Floating-Point Accumulator.

CALL 0 ,CLEAR

E-2

FLOT is caiied to convert the integer contained in the AC (processor accumulator) to a

floating point number and store it in the Floating-Point Accumulator.

FIX is called to convert the number in the Floating-Point Accumulator to a 12-bit signed

integer and leave the result in the AC.

CALL O,FIX

ABS leaves the absolute value of the floating point number at 11addr 11 in the Floating-Point

Accumulator.

CALL
ARG

E .3 INTEGER ARITHMETIC

1,ABS
addr

MPY is called to multiply the integer contained in the AC by the integer contained in

11addr. 11 The result is left in the AC.

CALL
ARG

1,MPY
addr

DIV is called to divide the integer contained in the AC by the integer contained in 11addr. 11

The result is left in the AC.

CALL
ARG

1,DIV
addr

!REM leaves the remainder from the last executed integer divide in the AC.

CALL
ARG

1 ,IREM
0

(The argument is ignored.)

!ABS leaves the absolute value of the integer contained in 11addr 11 in the AC.

CALL
ARG

1 ,IABS
addr

IRDSW reads the value set in the console switch register into the AC.

CALL 0 ,IRDSW

E-3

E .4 SUBSCRIPTING

SUBSC is called to compute the address of a subscripted variable. The address is left in the

AC. When SUBSC is cal led, it assumes that the AC contains the first dimension of the array. This

dimension should be positive if the subscripted variable is an integer, and negative if the subscripted

variable is a floating point number.

Example:

Assume S is a 20
8

X 20
8

floating-point array.

TAD (20
CIA
CALL 3 ,SUBSC
ARG i 1 /i 1 =ADDRESS OF 2ND

/SUBSCRIPT
ARG i2 /i2 =ADDRESS OF lST

/SUBSCRIPT
ARG base /BASE ADDRESS

/OF ARRAY

E .5 FUNCTIONS

SQRT leaves the square root of the floating-point number at 11addr 11 in the Floating-Point

Accumulator.

CALL l ,SQRT
ARG addr

SIN, COS, TAN leave the specified function of the floating-point argument at 11addr 11 in

the Floating-Point Accumulator.

CALL l ,SIN
ARG addr

AT AN leaves the arctangent of the floating-point number at 11addr 11 in the Floating-Point

Accumulator.

CALL 1 ,ATAN
ARG addr

ALOG leaves the natural logarithm of the floating-point number of 11addr 11 in the Floating

Poi nt Ace umu lator.

CALL l ,ALOG
ARG addr

E-4

EXP raises 11 e 11 to the power specified by the floating-point number at 11addr 11 and leaves

the result in the Floating-Point Accumulator.

CALL 1,EXP
ARG addr

Ai I of these subprograms require that the Fioating-Point Accumulator be set to zero before

they are called.

E .6 POWERS (IIPOW I IFPOW I FIPOW I FFPOW)

These routines are called by FORTRAN to implement exponentiation. The address of the

first operand is in the AC (floating-point or processor depending on mode), and the address of the

second is an argument. The address of the result is in the appropriate AC upon return.

Function Mode of Mode of Mode of
Name Operand l Operand 2 Result

(Base) (Exponent)

II POW Integer Integer Integer
IFPOW Integer Floating point Floating point
FIPOW Floating point Integei Floating point
FFPOW Floating point Floating point Floating point

CALL
ARG

2,FFPOW
addr 2 /ADDRESS OF OPERAND 2

E .7 LIBRARY ORGANIZATION

Part l. 11 IOH 11 contains IOH I READ I WRITE
11 FLOAT 11 contains FAD I FSB I FMP I FDV I STO, FLOT, FLOAT,

FIX, IFIX, IFAD, ISTO, CHS, CLEAR
11 INTEGER11 contains IREM, ABS, IABS, DIV, MPV, IRDSW
11 UTILITY 11 contains TTYIN, TTYOUT, HSIN, HSOUT, OPEN, CKIO
11 ERROR11 contains SETERR, CLRERR, ERROR

Part 2. 11SUBSC 11 contains SUBSC
11 POWERS 11 contains IIPOW, IFPOW I FIPOW, FFPOW I EXP I ALOG
11 SQRT 11 contains SQRT
11TRIG 11 contains SIN, COS, TAN
11 ATAN 11 contains ATAN

E-5

E .8 DECTAPE I/O ROUTINES

RTAPE and WTAPE (read tape and write tape) are the DECtape read and write subprograms

for the 8K FORTRAN and 8K SABR systems. The subprograms are furnished on one relocatable binary

coded paper tape which must be loaded into field 0 by the 8K Linking Loader, where they occupy one

page of core.

RTAPE and WTAPE allow the user to read and write any amount of core-image data onto

DECtape in absolute, non-file-structured data blocks. tv\any such data blocks may be stored on a

single tape, and a block may be from 1 to 4096 words in length.

RTAPE and WTAPE are subprograms which may be called with standard, explicit CALL state

ments in any 8K FORTRAN or SABR program. Each subprogram requires four arguments separated by

commas. The arguments are the same for both subprograms and are formatted in the same manner. They

specify the following:

a. DECtape unit number (from 0 to 7).

b. Number of the DECtape block at which transfer is to start. The user may direct the
DECtape service routine to begin searching for the specified block in the forward direction rather
than the usual backward direction by making this argument the two's complement of the block number.

c. Number of words to be transferred (1 < N < 4096).

d. Core address at which the transfer is to start.

In 8K FORTRAN, the CALL statements to RTAPE and WTAPE are written in the following

format (arguments are taken as decimal numbers):

CALL RTAPE (6, 128,388,LOCA)

In 8K SABR, they are written in the following format (arguments may be either octal or decimal numbers):

CALL 4, WTAPE
ARG (6
ARG (200
ARG (604
ARG LOCB

/WOULD BE SAME FOR RTAPE
/DATA UNIT NUMBER
/STARTING BLOCK NUMBER IN OCTAL
/WORDS TO BE TRANSFERRED IN OCTAL
/CORE ADDRESS, START OF TRANSFER

In these examples, LOCA and LOCB may or may not be in COMMON.

As a typical example of the use of RTAPE and WTAPE, assume that the user wants to store

the four arrays A, B, C, and Don a tape with word lengths of 2000, 400, 400, and 20 respectively.

Since PDP-8 DECtape is formatted with 1612 blocks (numbered 1-2700 octal) of 129 words each (for a

total of 207,948 words), A, B,C, and D will require 16, 4, 4, and 1 blocks respectively. Each array

must be stored beginning at the start of some DECtape block. The user may write these arrays on tape

as follows:

E-6

CALL WTAPE (O, 1,2000,A)
CALL WTAPE (0,17,400,B)
CALL WTAPE (O ,21 ,400 ,C)
CALL WTAPE (O ,25 ,20 ,D)

The user may also read or write a large array in sections by specifying only one DECtape

block (129 words) at a time. For example, B could be read back into core as follows:

CALL RTAPE (0, 17,258,B(l))
rA• ' RTAoi: (O i 9 1 ?9 B f?59)\
""' I I I ... I I I I ' ,..... I

CALL RTAPE (O ,20, 13 ,B(388))

As shown above, it is possible to read or write less than 129 words by starting at the begin

ning of a DECtape block. It is impossible, however, to read or write starting in the middle of a block.

For example, the last 10 words of a DECtape block may not be read without reading the first 119 words

as well.

A DECtape read or write is normally initiated with a backward search for the desired block

number. To save searching time, the user may request RT APE or WTAPE to start the block number

search in the forward direction. This is done by specifying the negative of the block number. This

should be used only if the number of the next block to be referenced is at least fourteen block numbers

greater than the last block number used. For example, if the user has just read array A and now wants

array D, he may write:

CALL RTAPE (O, 1 ,2000 ,A)
CALL RTAPE (0,-25,20,D)

E. 9 DISK I/O ROUTINES (preliminary)

ODISK and CDISK (open disk and close disk) and RDISK and WDISK (read disk and write

disk) are the four DECdisk (DF32/DS32) input and output subprograms for the 8K FORTRAN and 8K

SABR systems. They are furnished on one relocatable binary-coded paper tape which is loaded into

core using the Linking Loader, where they occupy eight pages of core.

E.9.1 ODISK and CDISK

ODISK is used to open (activate) a file (named using the Linking Loader D function) so that

the file can be read or written using RDISK or WDISK. CDISK will close (deactivate) a file which was

opened with ODISK so that the contents of the file cannot be altered.

The ODISK and CDISK subprograms may be called with standard, explicit CALL statements,

in any 8K FORTRAN or 8K SABR program. ODISK requires one argument when opening a file. How

ever, it requires two arguments when specifying or changing the size (in blocks) of a file. CDISK

always requires only one argument.

E-7

The first argument of both ODISK and CDISK is the logical number (from 1 through 10

inclusive} of the file as it was named using the Linking Loader. (Refer to Section H .3 .1 for a discussion

of logical file numbers.) The second argument to ODISK is the number of blocks (from 1 through 128)

to be saved for the fi I e •

In 8K FORTRAN, the CALL statements to ODISK and CDISK are written in the following

format (arguments must be decimal integer numbers}:

CALL ODISK (1)

when opening a file, or

CALL OD ISK (l ,5}

when specifying or changing the size of a fi I e, and

CALL CDISK (1)

when closing an opened file.

In 8K SABR, the CALL statements to ODISK and CDISK are written in the following

format (arguments may be either octal or decimal numbers}:

CALL 1, ODISK
ARG (1
ARG (5

/LOGICAL FILE NUMBER
/NUMBER OF BLOCKS, OCTAL

when specifying or changing the size of a file, and

CALL 1 ,CDISK
ARG (1

when closing an opened file.

/LOGICAL FILE NUMBER

ODISK prepares the file named for data transfer. When running the user program using the

Disk Monitor System, ODISK uses Disk Monitor 1/0 and the three scratch blocks on disk zero for a

window whenever a fi I e is opened .

All open files should be closed before terminating program execution, thus preserving the

contents of the files.

E.9.2 RDISK and WDISK

The RDISK and WDISK subprograms may be called with standard, explicit CALL statements

in any BK FORTRAN or 8K SABR program. The ODISK subprogram must be used to open the file con

cerned before using the RDISK or WDISK subprograms.

E-8

Each of these subprograms requires four arguments, arranged as listed below:

1. Logical file number (determined using the Linking Loader D function).
')
~. Logical block of the file number (block number of the file where data transfer is to

begin),

3 . Number of words to be transferred (from 1 through 4096)

4. Core address where data transfer is to start (field O) •

Both RDISK and WDISK require the arguments above.

!n 8K FORTRAN, the CALL statements to RDISK and WDISK are written in the fol !owing

format (arguments are taken as decimal numbers):

CALL RD ISK (4 ,2 ,55, LOCA)

when reading file 4, beginning with block 2, transferring 55 words, starting at the location of tag

LOCA, which may be the name of an array defined in a DIMENSION statement. WDISK would be

formatted in the same fashion.

In 8K SABR, the CALL statements to RDISK and WDISK are written in the fol lowing format

(arguments may be either octal or decimal numbers):

CALL 4, RDISK
ARG (4
ARG (2
ARG (55
ARG LOCA

WDISK would be formatted in the same fashion.

/SAME FOR WD IS K
/LOGICAL FILE NUMBER
/BLOCK 0 F FILE
/WO RDS TO TRANSFER, OCTAL
/CORE ADDRESS OF START, FIELD 0

A variable number of words may be transferred. It is not necessary to transfer in 200-word

blocks, as with the Disk /v\onitor System.

E-9

APPENDIX F

SAMPLE OF AN ASSEMBLY LISTING

This program is offered only to i I lustrate many of the features and formats of a SABR program.

The program cannot be run.

PDP-8 SABR DEC-08-A2B2
High Speed Reader ? Y
High Speed Punch? Y
Listing on High Speed Punch? N

DTCA
DTSF
LOC
MUL
NAME
POINTR
SUB
St
St2
S2
S3
S4
TAG
x
y
z

0200
0201

0202
0203
0204
0205
0206
0207
0210

67620P
67710P
OOOOUNDF
OOOOEXT
lOOOCOM
1013
0200EXT
0202
0214
0214
0227
0233
0177ABS
0400
0401
0402

6762
6771

0177

200

0000
0000

0000
4067
0200 01
1407
7106
7006
6211

/SAMPLE OF SABR CODE

OP DEF
SKPDF
/ABSYM
ABSYM

NAME,

SUB,

st/

F-1

DTCA
DTSF
LOC
TAG
DECIM
COMMN
ENTRY
DUMMY
LAP
BLOCK

EAP
OCTAL
0
TAD I

CLL RTL;

DCA

6762
6771
176
177

8
SUB
x

2

SUB

RTL

NAME#

0211 3776
0212 6201 05 INC POINTR
0213 2775

st 2,
0214 4033 S2, CALL 3,MUL
0215 0302 06
0216 6201 05 ARG x
0217 0400 01
0220 6201 05 ARG (20
0221 0374 01
0222 6201 ARG -1
0223 7777
0224 1373 TAD (D-49

IF LOC, 1
PAUSE

0225 1372 TAD (-"?
0226 5200 JMP SUB

CPAGE 4
0227 4233 S3, JMS S4
0230 0004 4
0231 0200 NAME
0232 0371 01 (37
0233 6762 S4, DTCA
0234 5377
0371 0037
0372 7501
0373 7717
0374 0020
0375 1013 01
0376 1001
0377 7000

PAGE
0400 0000 x, 0
0401 0214 01 Y, St2
0402 2301 Z, TEXT "SAMP @ = */?456 II
0403 1520
0404 0075
0405 4052
0406 5777
0407 6465
0410 6600
0411 L. 771

U/ I I DTSF
0412 5376
0413 5377
0576 7410
0577 7410

REORG 1000
1000 7410 SKP
1001 7410 TAD I St2
1002 5206
1003 4062
1004 0214 01

F-2

1005 1407
1006 1377 TAD (333
1007 6211 DCA NAME
1010 3776
1011 4040 RETRN SUB
1012 0001 06
1013 0000 POINTR, 0
1176 1000
1177 0333

END

For a multiple word instruction the actual instruction line is typed beside the first

instruction.

0650
0651
0652
0653
0654

6201
5774
7106
7006
7006

05 LOC2, JMP NAME /OFF PAGE

CLL RTL; RTL; RTL

For an erroneous instruction, the error flag appears in the address field. The instruction

is not assembled.

0700 7200

0701 7402

N2, CLA
CLL SKP
HLT

The page escape and literal and off-page pointer table are typed with nothing except the

correct address, value and loader code.

0770
0771

7006
7500

0772 5376
0773 5377
0774 0200 01
0775 0020
0776 7410
0777 7410

F. 1 THE SYMBOL TABLE

N3, RTL
SMA

Symbols are listed in alphabetic order at the end of the assembly pass (Pass 1) with their

relative addresses beside them.

The following flags are added to special types of symbols.

ABS The address is absolute.
COM The address is in COMMON.
OP The symbol is an operator.

F-3

EXT

UNDF

The symbol is an external and thus, may or may not be defined. If not
defined there is no difficulty; it is in another program.
The symbol is not an external symbol and has not been defined in the program.
This is a programmer error. No earlier diagnostic can be given because it is
not known unti I the end of Pass 1 that the symbol is undefined.
A location is reserved for the instruction containing the undefined symbol, but
nothing is placed in it.

F-4

APPENDIX G

OPERATING PROCEDURES

This appendix is a condensation of Chapter 4. The figures referenced (in parentheses) are

found in the PDP-8/I System User's Guide, DEC=08=NGCC-D.

G. l LOADING THE SABR ASSEMBLER

G.2

2

3

ASSEMBLING (Pass 1)

Procedure

Load the SABR Assembler using BIN (See Figure B-2); IF= 1
SR== 7777. When loaded, parts of the Assembler wi 11 be in
field 0 and field 1.

To load the Assembler on the disk, proceed in step sequence,
otherwise, begin at step 4, below.

With the Disk Monitor in memory, cal I the Disk System
Loader by typing:

.LOAD

and load the SABR assembler onto the disk (see PDP-8/I
Disk/DECtape Monitor System, DEC-D8-SDAB-D).

Save the Assembler by typing:

.SAVE SABR!0-7177; 200

.SAVE SABl !~, 1700 - 12427;)
1t)e

See section 4.4 for alternate methods of assembling.

Step

4

5

6

7

Procedure

Insert source program tape into the tape reader.

Set DF==O, IF==O, SR==0200, press LOAD ADD, START, and
answer SABR's initial dialogue.

Turn the appropriate punch and reader ON; the tape reads
in and the binary tape is punched.

If the program is in sections, when a PAUSE is encountered,
insert the next section of tape into the tape reader and
press CONT; assembly is completed when SABR halts after
producing the relocatable binary tape.

SABR may be restarted to assemble another program by
starting over at step 4 above •

SABR may be restarted at any time by pressing STOP and
starting over at step 4.

G-1

~ ;.J.z.if
171.~31)/~'

8

Procedure

To generate an assembly listing, proceed in step sequence,
otherwise, begin at step 9.

Insert the source program tape(s) into the reader and press
CONT.

G .3 LOADING THE LINKING LOADER

10

11

Procedure

Set DF=highest field in the configuration, IF= 1, SR=7777,
and press LOAD ADD.

Insert Linking Loader tape into the appropriate reader: if
ASR reader, turn reader ON; if high-speed reader, set
SR=3777.

Press START; the Linking Loader will be read into core
memory.

G .4 LOADING PROGRAMS AND SUBPROGRAMS

Step

i2

13

14

15

Procedure

Set DF and IF=to DF in step 9 above, SR=0200, and
press LOAD ADD.

Insert relocatable binary tape (first, program or sub
program with largest amount of COMMON storage) into
the reader with I eader code over reader head •

Set SR as explained in Section 5 .5.

Press START; the relocatable binary program wil I be
I oaded into core memory •

Repeat from step 13 for subsequent program or subprogram tapes ~select an option (core

availability or storage map) as explained in Section 5.3.

G .5 EXECUTING THE SABR PROGRAM

Step

25

26

27

Procedure

Set DF and IF=to field of MAIN program, and SR=to
starting address of MAIN program (determined from
storage map) •

Turn punch ON and/or insert data tape in reader, as
required.

Press LOAD ADD and ST ART.

Program execution will begin.

G-2

APPENDIX H

DISK LINKING LOADER

H. l INTRODUCTION

The Disk Linking Loader (LLDR) is used to load and execute 8K FORTRAN compiled and 8K

SABR assembled user programs when the system configuration includes one or more DECdisks and the

Disk Monitoi System. Such user progrnms exist as a main program with several subprograms (including

necessary 8K library subprograms), all of which must be on punched paper tape in relocatable binary

format. LLDR loads these multiple-part programs in a page-wise relocatable manner, and links all

calls to and returns from external subprograms.

The user communicates with LLDR via the keyboard in a simple, straightforward manner;

LLDR types *OPT - and the user responds with a one-letter code which causes LLDR to perform one of

seven possible functions (operations).

LLDR, unlike the standard BK Linking Loader (Chapter 5), is entirely keyboard oriented and

makes extensive use of the disk. For example:

a. It allows user programs to be loaded over LLDR itself by utilizing temporary disk storage
in the Disk Monitor System environment.

b. it provides two ievels of program overlaying so that much larger programs can be run.
Up to eight files (programs and subprograms) can be loaded into each overlay area. Overlay files are
saved on the disk and called into core as needed at program execution time.

c. It provides several utility and convenience features such as storage map listing, a
listing of necessary subprograms not present in core, a listing of available (unoccupied) core, and
automatic program starting .

d. It includes load-time monitoring via the keyboard rather than the console switches,
and several other minor features.

LLDR accepts paper tape input only, from either the low- or high-speed readers, as do both

the 8K FORTRAN and BK SABR systems. However, the user program (during execution) can use both

DECdisk and DECtape for input/output.

The operating system (Run-Time Linkage Routines) necessary for execution of BK FORTRAN

and BK SABR programs is contained within the LLDR program, and its use is entirely automatic.

Two loading techniques are provided: normal loading and overlay loading. In normal load

ing, each file is loaded into a separate core area where it remains during execution. In overlay load

ing, several files are sequentially loaded into the same core area and saved on the disk. At execution

time, each file is brought from the disk into core when it is needed. LLDR provides two levels of

overlay, and each al lows up to eight files per overlay level. A normally loaded program may call a

program in either overlay level, and a program in either overlay level may cal I a program in the other

level.

H-1

The fol lowing main stipulations should be remembered when using LLDR.

a. A program in an overlay level may not call another external program in the same over
lay level, except as explained in Section H .4.

b. Common storage (i.e., data storage accessible by al I programs and subprograms) is
always located in field l.

c. The program or subprogram which requests the largest amount of common storage must
be loaded first.

d. No one program or subprogram may be greater than 4K in length.

e. Programs may not be loaded across field boundaries, although they may be loaded into
any available field.

f. Overlay files may not be loaded over LLDR, although normal files may be.

LLDR requires a PDP-8/I, -8/L, -8, or -8/S computer with at least 8K words of core, an

ASR-33 Teleprinter, and at least one DECdisk. A high-speed paper tape reader is optional but highly

recommended. LLDR can use al I avai I able core memory and disk storage.

H .2 LOADING, SAVING, AND STARTING LLDR

LLDR is furnished on punched paper tape in binary-coded format, and is loaded into field 0

by the standard Binary Loader (refer to PDP-8/I System User's Guide, DEC-08-NGCC-D).

Before using LLDR or saving it as a systems program on the disk, it should be properly

initialized for the amount of core available and for the type of paper tape reader to be used. LLDR is

initially set for a basic configuration of SK words of core and a high-speed paper tape reader. With

any other configuration, LLDR should be started and initialized as explained in Section H .2 .2. Com

plete loading, saving, and cal ling procedures are given below for both basic and expanded configurations.

The following procedures assume that the user is familiar with the Disk N\onitor System, and that the

system is avai I able for use.

H .2 .1 Basic Configuration

The user with SK of core and a high-speed reader should use the following procedures.

a. Determine that the Disk l\.A.onitor is in memory. (Type CTRL/C* or START at 07600 .)

b. When N\onitor responds with a dot, call the system loader by typing

.LOAD) () represents typing the RETURN key)

*CTRL/C is typed by holding down the CTRL key while typing the C key.

H-2

c. Insert the LLDR binary tape in the high-speed reader.

d. Answer the loading command dialogue as follows:

*IN-R:)
*
*ST=)
t <CTRL/P> t <CTRL/P>

Keys shown within angle brackets
are not echoed on the teleprinter
when typed by the user.

After each up-arrow which is typed by the Monitor, the user types CTRL/P by holding down the CTRL
key while typing the P key; this is equivalent to pressing the CONT switch when loading manually.

H.2.2

e. LLDR is now loaded into core; save it on the disk by typing

..:.SAVE LLDR!0-6777;200)

f. LLDR may now be called to load relocatable binary programs by typing

.LLDR ~

Expanded Configuration

The user, with any configuration other than the basic configuration mentioned above, should

use the fol lowing procedure:

a. Determine that the Disk Monitor is in memory. (Type CTRL/C or START at 07600 .)

b. When Monitor responds with a dot, call the system loader by typing

.:.LOAD)

c. Insert the LLDR binary tape in the appropriate reader.

d. Answer the loading command dialogue as fol lows:

*IN-R: ~ (R: for high-speed reader
-*- T: for ASR reader)
*ST=7400)
_! <CTRL/P > t <CTRL/P >

e. LLDR is now loaded into core. It automatically starts at location 7400, causing it to
type out its initialization questions. Answer the questions as shown below.

*GIVE SIZE OF MEMORY IN K-12)

*HIGH SPEED READER? Y

(user typed 12)

(user typed Y)

When answering the first question, the user should type the amount of available core memory after K-;
the user should type Y for yes, or N for no in answer to the second.

by typing
f. When the above questions have been properly answered, LLDR may be saved on the disk

.SAVE LLDR!0-6777;200 ~

g. LLDR may now be called to load relocatable binary programs by typing

.LLDR)

H-3

whereas the LLDR system program wil I be transferred from disk storage into core memory, and automati
cally started (executed) so that it types out its version number and *OPT-. It then waits for the user to
specify which of the seven optional functions is to be performed. The version number and option re
quest might appear as shown below.

PDP-8 DISK w LINKING w LOADER w DEC-08-A2C7-03
*OPT-

LLD R is now in core, started, and ready for use .

H .3 LLDR Functions

When LLDR has been initialized and started as described in the preceding section, it types

its program version number (also found on the paper tape identification label) and option statement and

then waits for the user to specify the desired function to be performed. For example:

PDP-8 DEC-08-A2B4-02
*OPT-

The user's response to *OPT- is in the form of a one-letter code fol lowed by the RETURN key. LLDR's

functions and corresponding one-letter function codes are listed below.

Code Function

c Core avai labi I ity listing

D Disk file assignment

E Exit with halt

L Normal loading

M Storage map I isting

0 Overlay loading

s Start main program

u Un loaded program Ii sting

Functions may be cal led whenever needed or desired, except that the M, U, and S functions

must not be cal led first.

Upon completion of a function (except E or S), LLDR will request another by repeating the

option statement (*OPT-).

Any error made by the user when responding to an option statement will cause LLDR to type

a question mark, ignore the response, and repeat the option statement.

LLDR may be stopped (e.g., to make a program patch) and restarted without altering the

state of the computer by using the console STOP switch and restarting at 00600. This method may be

used at any time after completion of any function other than D, except during overlay loading or

wh i I e a tape is actual I y being read .

H-4

At any time during the use of LLDR (except while a tape is being read in), control may be

returned to the Disk Monitor. This is done by typing CTRL/C; however, when CTRL/C is typed, all

data temporarily stored on the disk is lost.

H .3 .1 Disk File Assignment Function (D)

If the user's programs or subprograms create or use disk data files with the RDISK and WDISK

library functions, the D function must be the first function used. The D function performs the prelimi

nary job of entering the names of user files into the disk directory. This prepares the way for using the

RDISK and WDISK iibrary functions, which aiiow the user to read and write data on the disk at execu

tion ti me.

Use of the D-function proceeds as shown below:

PDP-8 DEC-08-A2B4-0l

*OPT-D)
*FILES-ABC, WXYZ, Ml I /\Kl., 5H, R, 3, p)
*OPT-

where a directory entry is assigned to each of the eight fi!e names. File names may be from one to four

characters in length, and up to ten files may be specified. All such files must be named in one execu

tion of the D function.

The order in which the data files are named for the D function is especially important. The

reason for this is that when the user's program references disk data files using the RDISK and WDISK

library functions, he must reference these files not by name but by logical number (1,2, ... , 10).

This logical number is determined by the order in which he names the files for the D function. For

example, if files have been named in the D function as shown in the previous example, the user's pro

gram wi 11 reference fi I e M 1 by statements of the form

CALL RDISK (3 I •••)

because M 1 was the third fi I e named.

Before using the D function the user should study thoroughly the operation and use of the

RDISK and WDISK I ibrary functions in Section E-9.

The disk directory will accommodate ten file names. If the directory is too full to accommo

date al I files named, a meaningful error message is printed by LLD R. In the example above, if the

directory had room for only four files, the error message

DISK WILL NOT HOLD 5H & FOLLOWING FILES

would have been printed. If this happens, the entire D function request is ignored and LLDR prints

another *OPT- to allow the user to repeat the D function with fewer files or to specify a different

function.

H-5

After the D function has been performed, LLDR will again print *OPT- for the user to con

tinue with the process of loading his program. After the D function has been used or when a different

function has been called, the D function is no longer available--if called a second time or after a

different function, it is treated as an illegal function code.

Again, if the D function is to be used, it must be the first function used. If it is not chosen

as the first function, it is not available for use until a fresh image of LLDR is brought into core from the

disk.

H.3.2 Loading Functions (L and O)

The two loading functions, L for normal loading and 0 for overlay loading, are avai I able

for use at any time. These are the principal functions of LLDR--to load relocatable programs for exe

cution. These functions use the standard technique of link-loading as described in Chapter 5, which

applies specifically to the relocatable binary code (Chapter 3) produced by the 8K FORTRAN/SABR

system.

Programs and subprograms may be loaded in any order and into any field. The only restric

tions are listed below.

a. The subprogram which requires the largest amount of common storage must be loaded
first .

b. No subprogram may be loaded across a core field boundary; i.e., no subprogram may be
longer than 4K in length.

c. A maximum of 64 subprograms may be loaded, including multiple entry points for single
programs.

LLDR loads subprograms in the order presented and into the field specified (see below) from

the lowest available memory upward. Common storage is allocated in the lower portion of field 1

before loading actually starts. A maximum of 3840 words of common storage fills field 1.

LLDR loads in a page-wise relocatable fashion (each program begins at the start of a new

core page), establishing external links so that each subprogram is properly executed.

H .3 .2. 1 Normal Loading (L)

In normal loading, the user's program is loaded directly into core memory where it remains

available for, throughout, and after execution. The core area occupied by each normally loaded

program is the property of that program, and no other program can be loaded into its core area.

To perform normal loading, the user responds to *OPT- with the letter L. When this is ..___,,.,..

done, LLDR types a request for the number of the field in which the user wishes to load. This specified

field must exist in the configuration. For example:

H-6

*OPT-L)
*FIELD-2)

Had field 2 been nonexistent, the fol !owing \Vou!d have occurred:

*OPT-L)
*FIELD-2)
?
*OPT-

where LLDR ignored the user's response, typed the question mark, and repeated the option statement.

When LLDR is satisfied with user response, it then types an up-arrow. At this point LLDR

wi 11 pause and wait for the user to pi ace his reiocatabie binary tape in the tape reader, and to type

CTRL/P which causes LLDR to load the program into core. When the program has been loaded, LLDR

will type another up-arrow and pause for user response. If the user wishes to load another program into

the same field, he need only place the tape in the reader and then type another CTRL/P (or press the

CONTinue switch and then type CTRL/P is using the low-speed tape reader). When the user no longer

wishes to load into the same field, he should respond to the up-arrrow by typing the RETURN key, and

LLDR will type another option statement.

The user may respond to an up-arrow with CTRL/N, which causes LLDR to by-pass the next

program on a multi-program tape. This situation may, for example, occur with a library subprogram

tape.

A typical example of normal loading is shown below, where three programs are loaded into

field 0 and two into field 1, with one program being by-passed.

*OPT-L)
*FIELD-0)
* ..!. <CTRL/P> _!_ <CTRL/P> l_ <CTRL/P> _!_)

*OPT-L)
*FIELD-1)
* .!.. <CTRL/P> t <CTRL/N > _!_ <CTRL/P> _!)

*OPT-

If the low-speed reader had been used in the example above, the CONTinue switch would have been

pressed just before each CTRL/key combination.

H .3 .2 .2 Overlay Loading (O)

Overlay loading allows the user to load as many as 16 subprograms into the same core area.

The user may load one or two overlay levels (each 0 function cal I constitutes an overlay level) of sub

programs (files) with up to eight files per level. Overlay loading is possible only when no two subpro

grams of the same level need to be in core at the same time, i.e., they do do not ca 11 each other.

H-7

Al I subprograms loaded during the operation of an 0 function are loaded into the same core

area (overlay level) and automatically saved in separate files on the disk. At execution time each file

is called back into core as needed. No protection is given to the file of this overlay level that was

previously in core. It is completely overwritten in core. Overlay files should use common storage for

data which must remain in core.

Files in a given level may be loaded in any order, provided they are all loaded during the

same execution of 0 function. Files in a given level need not be the same length; enough core is

allocated for the largest file in the level.

Loading with the 0 function is quite similar to loading a string of programs in the same field

using the L function. An example is given below, where three files are loaded into the first level and

two files into the second level, with one file being passed over.

*OPT-0)
*FIELD-1 ~

:..! <CTRL/P > ~ <CTRL/P > .! <CTRL/P > _!_ J
*OPT-0)
*FIELD-1)
* t <CTRL/P > _!_ <CTRL/N > _! <CTRL/P > _!)

*OPT-

Loading of a single overlay level is terminated with the RETURN key. Loading of an overlay level wi 11

automatically be terminated after eight files have been loaded.

As with the L function, if the low-speed reader had been used in the example above, the

CONTinue switch would have been pressed just before each CTRL/key combination.

When the main program is removed from core, linkage to its overlay files is broken. There

fore, for subsequent execution, files must be reloaded with the main program.

H .3 .2 .3 Error Messages

When LLDR detects an error during loading of a program, it types an error message of the

fol lowing form:

ERROR OOOn

where n is a number from 1 to 6, representing the type of error detected. If the error is fatal, control

returns to the Disk Monitor. If it is not fatal, the user may be able to continue loading (see below).

Error No.

2

3

Error

Attempt to load more than 64 subprograms

Field overflow

Subprogram with largest common assignment
not loaded first

H-8

Fatal?

Yes

No

Yes

Error No.

4

5

6

Error

Checksum error

Improper or damaged tape or reader error

Disk overflow

A discussion of each non-fatal error is given below.

Fata!?

No

No

No

Error 2 - During normal loading, loading may be continued in a different memory field.

During overlay loading, the entire overlay level must be reloaded into a different memory field.

Errors 4 and 5 - During either type of loading, the user may reposition the faulty tape in the

.. do ,..,,....,..j f. 1no r-i wl/D ; "' r·" t-h I I - I ea ... r 1 I y I'"'"' ;u.. 1 •• I I espon .. e v 11 e • 1ew ut-' a •• ow . If the error persists , reassemb i y or hardware

maintenance wi 11 be necessary.

Error 6 - Occurs during normal loading only when the user is loading into the upper portion

of field O; the program which caused the error must be loaded into a different field. During overlay

loading, the current overlay level will be closed with only the files that were loaded successfully. The

file which caused the overflow (the last file read) and succeeding files will have to be loaded normally.

H .3 .3 Uti I ity Functions (C, M, and U)

H .3 .3 .1 Core Availability (C)

The user may at any time request a list of the number of pages available for loading in each

core field. The following example assumes that the user has a 16K computer (4 fields):

*OPT-C ~
0033
0036
0036
0036

*OPT----
The numbers listed are the octal number of free pages left in fields 0, 1, 2, and 3, respectively.

H . 3 .3 . 2 Storage Map (M)

During the link-loading process, LLDR builds a list of external symbols; i.e., main program

and subprogram entry points and their actual starting addresses. This list forms a complete storage map

of all programs loaded, as shown below:

H-9

*OPT-M)
MAIN
READ
WRITE
IOH
SET ERR
TTYIN

FLOAT
FIX

*OPT-

10200
01055
01066
03031
00000 u
00000 u

05046
04513

Starting addresses are expressed in five octal digits - the first digit represents the memory field and the

other four the address in that field. The U means that the stated subprogram has been called but has

not been loaded, and therefore must be loaded before successful execution is possible.

Listing of the storage map may be prematurely terminated by typing CTRL/P.

H .3 .3 .3 Unloaded Program Listing (U)

This function is used to obtain a list of those subprograms which must still be loaded before

successful execution is possible. All symbols flagged with a U in a storage map listing will be listed

as shown below:

H.3.4

*OPT-U
SET ERR
TTYIN
TTY OUT
HSIN
HSOUT

*OPT-

This listing may also be prematurely terminated by typing CTRL/P.

Exit Functions (E and S)

The E function is used to cause a halt after al I loading is complete. The S function is used

to automatically start execution of the loaded program at the beginning of the main program.

Both of these functions signal LLDR that loading is complete. They each cause any data

which has been temporarily saved on the disk (except overlay files) to be read into core.

When the E function is used, LLDR reads in al I data temporarily stored on the disk and then

halts. The user's entire program (except overlay files) will be in core, ready for patching, execution,

or saving on the disk.

H-10

When the S function is used, LLDR checks for a subprogram called MAIN (such as a

FORTRAN main program). If found, execution will automatically start at the starting address of MAIN.

If MAIN is not found / the S function is executed as an E function.

H .4 TECHNIQUES, OVERLAY LOAD ING

In general, any group of subprograms which do not call each other (either directly or in

directly) may be loaded into the same overlay level. A typical situation fol lows:

MAIN
A
B
c
D
E,F,G,H

contains calls to
contains cal Is to
contains cal Is to
contains calls to
contains calls to
contain no external calls

A, BI c I DI E
""' r r
Ll 1C1 r
D,G
DI E, H
E

The above combination may be loaded as fol lows:

Normal Overlay 0 Overlay 1

MAIN A D
E B F

G
H

If D contains a call to any other than E, it would be better to load D normally and put E in overlay 1.

If F were to call B, the above loading situation would not work; A would be calling B indirectly, and

these two are in the same overlay level.

It is possible, however, to call another program in the same overlay level only if the called

program never attempts to return to the calling program. In this way, simple chaining may be achieved.

For example, a very long FORTRAN main program can be split into sections with each section termina

ted by a cal I to the next. Such a situation is shown below.

MAIN

MAIN2

MAIN3

MAINS

A, B,C

calls A, B, C and is terminated by a call to MAIN2

calls A, B, C and is terminated by a call to MAIN3

calls A, B, C and is terminated by a call to MAIN4

cal Is A, B, C and stops

contain no external calls

The above combination may be loaded as fol lows:

H-11

Overlay 0

MAIN
MAIN2
MAIN3

MAINS

Overlay l

A
B
c

When the MAIN program is contained in an overlay area, the E function cannot be used un

less MAIN is loaded last into the overlay level. The S function wil I work with the above combination

since it works regardless of the order in which the segments of MAIN are loaded.

With FORTRAN programming alone, a subprogram other than a MAIN program may not be

chained. However, this is possible with careful assembly language programming. An example of such

programming is shown below, where SUB is split into a two-part chain, SUB and SUB2. MAIN is a

standard FORTRAN program containing cal Is to SUB in the form:

CALL SUB (A 1, A2, A3)

SUB is written as a standard FORTRAN program which does part of the work for the entire subroutine

chain, including processing arguments Al and A2. It is written with two arguments and concludes with

CALL SUB2(Z

where Z is any dummy argument. After SUB has been compiled and before the intermediate compiler

symbolic is assembled, it should be edited to include the insertions enclosed in brackets.

[X, COMMN2]
ENTRY SUB

SUB, BLOCK 2

TAD
DCA
TAD
TAD
DCA
CALL
ARG
END

SUB
x
(-2
SUB#
xu
l ,SUB2
z

/SAVE RETURN FIELD

/-2* NO. OF ARGS TO BE PASSED
/SAVE ARGUMENT ADDRESS

SUB2 is also a standard FORTRAN program containing the latter portion of the entire subroutine, in

cluding the processing of argument A3. The actual contents of SUB2 is coded in FORTRAN just as if

it were a subroutine taking one argument. After SUB2 has been compiled, the compiler symbolic out

put is edited as shown below:

H-12

COMMN 2]
ENTRY SUB2

SUB2, BLOCK 2

l r TAD
I

I DCA

l TAD
DCA

x
SUB2
xH
SUB2#

RETRN SUB2
END

/REPLACE ARG POINTER

/CONTINUE WITH NORMAL FORTRAN
/CODE, CONCLUDING WITH

H .5 USER PROGRAM EXECUTION

If the user chooses not to execute his program automatically with the S function, he may

determine the exact address for the start (using the storage map or assembly listing), and execute his

program, using the console switches or the Disk Monitor.

At execution ti me, the Run-Ti me Linkage Routines (see Section 3 .3 .4) must be in core.

These routines accomplish the necessary linkage for all calls to and returns from external subprograms,

aii off-page indirect references, and all off-field references (including those to common and passing

subroutine arguments).

If 1 during execution of a user program, a call is made to a nonexistent program or subprogram,

an unconditional halt wil I occur and control will return to the Disk Monitor. This error is fatal. All

other execution-time errors are covered in Section C-3.

Program execution may be terminated at any time by typing CTRL/C. However, when

CTRL/C is typed, all overlay files stored on the disk are lost.

H .6 STORAGE ALLOCATION

The following core availability map allows the user to plan his loading.

Field 0

0000-0777

1000-4377

4000-7577

7600-7777

Used by the Run-Time Linkage Routines and not available
to the user for loading.

Avai I able for any loading.

Residence of LLDR during loading. Available for normal
loading (by automatic use of temporary disk storage), but
not available for overlay loading.

Disk Monitor permanent residence.

H-13

ABSY/v·\ Pseudo-Op 1-6; 2-4; B-2

Addresses, Program 3-8

Alpha Constants 1-9

Alphabetic Characters 1-2

Alphanumerics 1-2, -6

ARG Pseudo-Op 2-11; B-2

ASCII Constants 1-9

Character Set App. A

Assembled Binary Code Ch. 3

Assembly

Control 2-4

FORTRAN Pass 2 4-3, -4, -5

Listing 6-3, -4; F-1 , -4

Page 3-3

Pass l 4-2; G-1

Automatic Paging Mode

Enter 2-2

Leave 2-2

Binary Output, Relocatable 3-1

Blank Lines 1-5

BLOCK Pseudo-Op 2-5; B-2

CALL Pseudo-Op 2-8; B-2

CDF Current 3-2

CDFSKP Linkage Routine 3-5

CDZSKP Linkage Routine 3-6

Character Set 1-2; App. A

II legal 1-2

Codes, Loader Relocation 3-1, -2, -3

Comments 1-4

COMMN Pseudo-Op 1-6; 2-4

COMMON Storage 2-4, -7; 5-1

High 3-3

INDEX

Constants 1 =8

ASCII 1-9

Illegal Alpha 1-9

Numeric 1-9

Conversion, Numeric 1-10

Core Availability Option 5-2

CPAGE Pseudo-Op 2-2; B-2

Data Generating 2-5, -6

DECIM Pseudo-Op 2-1; B-2

Demonstration Programs 6-1

DUMMY Pseudo-Op 2-9; B-2

Variables 2-7

DUMSUB Linkage Routine 3-6

EAP Pseudo-Op 2-2; B-2

Page Escapes 3-4

Elements / Statements 1-3

END Pseudo-Op 2-1; B-2

ENTRY Pseudo-Op 2-9; B-2

Error Messages App • C

Library Programs C-3

Linking Loader C-2

SABR C-1

Escapes, Page 3-4

Equivalent Symbols 1-6

Executing a SABR Program, Operating

Procedures G-2

External, Subroutines 2-7, -8, -9

Flags, Symbol Table 1-8

Floating-Point Accumulator B-3; App. E

FI oati ng- Point Arithmetic, Library Subprograms

E-2

Format Effectors 1-5

INDEX (Cont)

Format, Page 3-4

FORTRAN Pass 2

Assembly Methods 4-4, -5

Operating Procedures 4-3, -4, -5

FORTR Pseudo-Op 4-5; B-2

Free Core, Page 0, D-1

FUNCTIONS, Library Subprograms E-4

Hardware, Required

SABR 1-1

Linking Loader 5-1

IF Pseudo-Op 2-3; B-2

Illegal

Alpha Constants 1-9

Characters 1-2

Incrementing Operands 1-7

Input/Output, Library Subprograms· E-1

Instructions

IOT 1-3

Memory Reference 1-3, B-1

Skip 3-7

Micro (Group 1 and 2) 1-3; B-1, -2

Multiple Word 3-5

Sequence of 1-5

Integer Arithmetic, Library Subprograms E-3

Introduction

SABR 1-1

Linking Loader 5-1

IOH Routines D-1; E-1

IOT Instructions 1-3; B-2

Labels

Example Of 1-3

Language, SABR Ch. 1

LAP Pseudo-Op 2-2; B-2

Page Escapes 3-4

Legal Characters 1-2

Library Subprograms App. E.

Error Messages C-3

Floating-Point Arithmetic E-2

Functions E-4

Input/Output E-1

Integer Arithmetic E-3

Organization E-5

Powers E-5

Subscripting E-4

LINK Linkage Routine 3-7

Linking Loader Ch. 5

Information Options 5-2

Error Messages C-2

Demonstration Of 6-4, -5

System Requirements 5-1

Loading 5-1, -3

Memory Map Option 5-2

Operation Of 5-3

Listing

Symbol Table 1-8; F-1, -3, -4

Pass 2, Assembly 6-3; F-1, -2, -3

Literals 1-9, -10

Loader Relocation Codes 3-1

Loading Procedures

Information Options 5-2

Linking Loader 5-1; G-2

Programs and Subprograms G-2

SABR: Basic 4-1; G-1

Disk Monitor 4-1

INDEX (Cont)

Memory Map Option, Linking Loader 5-2

Memory Reference Instructions 1-3; B-1

Methods, FORTRAN Pass 2 Assembly 4-4, -5

Microinstructions (Group 1 and 2) 1-3; B-1 -2

Mode, Numeric Conversion 1-10

Multiple Word Instructions 3-5

Nul I Lines 1--5

Numeric Constants 1-9

Numeric Conversion, Mode 1-10

OBISUB Linkage Routine 3-6

OCTAL Pseudo-Op 2-1; B-2

OPDEF Pseudo-Op 1-6; 2-4; B-2

Operands 1-4

Incrementing 1-7

Operating Procedures App. G

Assemb Ii ng G~ 1

Executing the SABR Program 4-2; G-2

FORTRAN Pass 2, 4-3 -4, -5

Loading Programs and Subprograms G-2

Loading SABR G-2

In Core 4-1

In Disk Monitor System 4-1

Operation, Linking Loader 5-3

Operators 1-3

Options, Switch Register 5-4

Core Availability 5-2

Storage Map 5-2

Tape Reader 4-1; 5-3

Page Assembly 3-3

Escapes 3-4

Format 3-4

PAGE Pseudo-Op 2-2; B-2

Pass 1, Assembly 4-2

Pass 2, Listing 4-2

FORTRAN 4-3 -4, -5

PAUSE, Pseudo-Op 2-1; B-3

Permanent Symbols 1-6; App. B

POWERS, Library Subprograms E-5

Program Addresses 3-8

Programs, Loading Procedures G=2

Pseudo-Operators

Arguments To 1-4

Description Of Ch. 2

List Of B-2, -3

REORG Pseudo-Op 2-2; B-3

Relocatable Binary 3-1

Requirements

Hardware and Software 1- l

Software 1 = 1

RETRN Pseudo-Op 2-1 O; B-3

RTN Linkage Routine 3-7

Run-Time Linkage Routines 3-5

SABR

Error Messages C- 1

Language 1- 1

Operating Prodecures Ch. 4

System Requirements 1-1; App. G

Sample of Assembly Listing App. F

Sequence of Instructions 1-5

SKIP Instructions 3-7

SKPDF Pseudo-Op 1-6; 2-4; B-3

Software Required

Linking Loader 5-1; App. G

SABR 1-1; App. G

Special Characters 1-2

Statements 1-2, -5

Comments 1-4

Elements 1-3

Format Of 1-3

Format Effectors 1-5

Labels 1-2

Operands 1-4

Operators 1-3

Storage, COMMON 2-7; 3-3; 5-1

Storage Map, Option 5-2

Subprogram Arguments, Picking Up 2-10

Subroutines, External 2-8, -10

Subscripting, Library Subprograms E-4

Switch Register Options 5-4

Core Availability 5-2

Storage Map 5-2

Tape Reader 4- 1; 5-3, -4

Symbolic Tape Editor 1-2; 6-1

Symbol Definition 2-4

Symbols 1-6, -7, -8

Equivalent 1-6

External Definition 3-2

Incrementing Operands 1-7

Permanent 1-6; B- 1 , -2, -3

Symbol Table Listing F-1, -3, -4

Types of 1-6

User-Defined 1-6

Symbol Table 3-8

Listing F-1, -3, -4

Special Flags 1-8

System Configuration

SABR 1-1

Linking Loader 5-1

INDEX (Cont)

Text Pseudo- Op 2-6; B-3

User-Defined Symbols 1-6

Variables, DUMMY 2-7, -9

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes, software probiems, and documenta
tion corrections are published by Software Information Service in the following newsletters.

Digital Software News for the PDP-8 Family
Digital Software News for the PDP-9/15 Family
PDP-6/PDP- l 0 Software Bulletin

These newsletters contain information applicable to software available from Digital's Program Library.

Please complete the card below to place your name on the newsletter mailing list.

Questions or problems concerning DEC Software should be reported to the Software Specialist at your nearest DEC
regional or district sales office. In cases where no Software Specialist is available, please send a Software Trouble
Report form with details of the problem to:

Software Information Service
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

These forms, which are available without charge from the Program Library, should be fully filled out and accompa
nied by teletype output as well as listings or tapes of the user program to facilitate a complete investigation. An
answer will be sent to the individual and appropriate topics of general interest will be printed in the newsieiter.

New and revised software and manuals, Software Trouble Report forms, and cumulative Software Manual Updates
are available from the Program Library. When ordering, inciude the document number and a brief description of
the program or manual requested. Revisions of programs and documents will be announced in the newsletters and
a price list will be included twice yearly. Direct all inquiries and requests to:

Program Library
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 017 54

Digital Equipment Computer Users Society (DECUS) maintains a user Library and publishes a catalog of programs
as well as the DECUSCOPE magazine for its members and non-members who request it. For further information
please write to:

DECUS
Digital Equipment Corporation
146 Main Street
Maynard, Massachusetts 01754

Send Digital's software newsletters to:

My computer is a

Name __________________ _

Company Name ______________ _

Address _________________ __

PDP-8/1 0
LINC-8 0
PDP-9 0
PDP-IO 0

PDP-8/L 0
PDP-12 0
PDP-15 0
OTHER 0

(zip code)

Please specify

My system serial number is ___________ (if known)

·•·•········•············•·· Fold Here

..•..............•...•... Do Not T car - Fold Here and Staple ··

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by: mamanmn
Digital Equipment Corporation
Software Quality Control
Building 12
146 Main Street
Maynard, Mass. 01754

FiRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

READER'S COMMENTS

8K SABR

DEC-08-ARXB-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its
publications. To do this effectiveiy :ve need user feedback - your critical evaluation of this manual.

Please comment on this manual's completeness, accuracy, organization, usability, and readability.

DEC also strives to keep its customers informed of current DEC software and publications. Thus, the following period
ically distributed publications are available upon request. Please check the appropriate boxes for a current issue of the
publication(s) desired.

0 Software Manual Update, a qu·arterly collection of revisions to current software manuals.

0 User's Bookshelf, a bibliography of current software manuals.

0 Program Library Price List, a list of currently available software programs and manuals.

Name --------------- Organization

Street-------------- Department

City ___________ State-------------- Zip or Country ____ _

.. Fold Here .. .

................................. Do Not ·r car · Fold Here and Stapl·e

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

ma man ma
Digital Equipment Corporation
Software Quality Control
Building 12
146 Main Street
Maynard, Mass. 01754

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

Digital Equipment Corporation
Maynard, Massachusetts

printed in U.S.A.

~nmnomo

