i
.
!
i
M

sofFtware
handbook

dlilgliltlall

The information in this document is subject to change without notice and
should not be construed as a commitment by Digital Equipment Corpo-
ration. Digital Equipment Corporation assumes no responsibility for any
errors that may appear in this manual.

Copyright © 1978, by Digital Equipment Corporation

PDP, UNIBUS
are trademarks of
Digital Equipment Corporation

This handbook was designed, produced, and typeset
by DIGITAL’s Sales Support Literature Group
using an in-house text-processing system
operating on a DECSYSTEM-20.

CHAPTER 1

CHAPTER 2

CHAPTER 3

CONTENTS

INTRODUCTION TO PDP-11 SOFTWARE

OVERVIEW 1
HARDWARE/SOFTWARE SYSTEMS 2
OPERATINGSYSTEMS, 2
COMMUNICATIONS SOFTWARE 4
DATA MANAGEMENTSERVICES 4
LANGUAGES AND LANGUAGE PROCESSORS 4
PDP-11 CENTRALPROCESSORS 5

CPU/OPERATING SYSTEM COMPARATIVE CHART 6
OPERATING SYSTEMS

OVERVIEW 9
COMPONENTS AND FUNCTIONS 10
PROCESSINGMETHODS 12
DATAMANAGEMENT................ ... 14
DATASTORAGE 17
I/0 DEVICES AND PHYSICAL

DATA ACCESS CHARACTERISTICS 19
FILE PROTECTION/FILENAMING 23
USERINTERFACES.................. ...t 26
PHYSICAL DEVICE CHARACTERISTICS 27
FILE STRUCTURES AND ACCESS METHODS 29
DIRECTORIES AND DIRECTORY ACCESS
TECHNIQUESt 33
I/OCOMMANDSt 36
MONITOR AND COMMAND LANGUAGE

COMMANDS 37
SYSTEMUTILITIESo i 41
OPERATING SYSTEM COMPARATIVE CHART44
LANGUAGE PROCESSORS

OVERVIEW 47
LANGUAGE TRANSLATION SYSTEMS

DEFINITION 48
ASSEMBLERSl 48
COMPILERS 49
MODULARITY .. 50
ASSEMBLY LANGUAGE ROUTINES 50
LIBRARYROUTINESooaa.. 50

CHAPTER 4

CHAPTER 5

PROGRAM DEVELOPMENT FACILITIES 51

ASSEMBLERS AND LANGUAGE COMPILERS. 52
PDP-11 COBOLCOMPILER 56
INCREMENTAL COMPILERS 57

FOREGROUND/BACKGROUND OPERATING
SYSTEM RT-11

OVERVIEW 61
FUNCTIONS AND FEATURES 62
OPERATING ENVIRONMENTS 63
RT-11 Single Job Monitor 63
RT-11 Foreground/Background Monitor 63
RT-11 Extended Memory Monitor 64
FACILITIES AVAILABLEINRT-11FB/XM 64
SYSTEM COMMUNICATION.t 65
IndirectFiles i 66
Keyboard Monitor Commands 66
TEXTEDITOR ... 75
UTILITY PROGRAMS 76
ASSEMBLED PROGRAM ALTERATION............ 79
SYSTEM SUBROUTINE LIBRARY 80
SYSTEM SUMMARY i

RESOURCE-SHARING TIMESHARING SYSTEM
RSTS/E

OVERVIEW ... 83
FUNCTIONS AND FEATURES 84
SYSTEM CONFIGURATION AND OPERATION. 88
SystemCode......... 88
Language Processors (BASIC-PLUS) 89
Timesharing Operations Overview 90
SYSGEN 91
SYSTEM MANAGEMENT UTILITY PROGRAMS94
DEVICE AND FILECONVENTIONS 97
USERINTERFACE 103
System and Installation Defined

(CCLYCommandsccoiiiineennnn.. 103
General System Utility Programs 107
Batch Processing 108
SYS SYSTEM FUNCTIONS AND

THEPEEKFUNCTION 114
RSTS/ESYSTEM SUMMARY 115

CHAPTER6

CHAPTER7

CHAPTER 8

REAL-TIME MULTIPROGRAMMING SYSTEM
RSX-11M AND RSX-11S

OVERVIEW
FUNCTIONS AND FEATURES....................
SYSTEM ORGANIZATION
RSX-11S SYSTEM COMPONENTS
SYSTEM CONVENTIONS.
DEVICES
FILESTRUCTURES
FILESPECIFIERS i iiiiian..
RSX-11 MCRCOMMANDS
INDIRECTFILES..........
RMS-11 RECORD MANAGEMENT SERVICES
SYSTEMUTILITY PROGRAMS
RSX-11M SYSTEM SUMMARY
INTERACTIVE APPLICATION SYSTEM IAS
OVERVIEW i

IAS EXECUTIVE ORGANIZATION
Active TaskList
Timesharing Scheduler
Batch Processing
COMMAND LANGUAGE INTERPRETERS
Program Development System
PDSCommands................. ... iiiian...

SYSTEM CONTROL INTERFACE
TIMESHARING CONTROL PRIMITIVES
IASSYSTEM SUMMARY
DIGITAL’S STANDARD MUMPS-11

OVERVIEW i
FUNCTIONS ANDFEATURES....................

EXECUTIVE AND SYSTEM FEATURES
JobScheduling
I/OMonitor

USERINTERFACE...........
TERMINALS AND ANCILLARY I/O DEVICES
DATAMANAGEMENT
DATASTORAGEELEMENTS
DSM DISK STRUCTURE AND

CHAPTER9

CHAPTER 10

CHAPTER 11

CHAPTER 12

GLOBALARRAYS i 207

LANGUAGE AND UTILITIES209
THE MUMPS LANGUAGE 212
Expressions. 212
DSM-11 Commands Summary 215
DSM-11 SYSTEM SUMMARY 225
TRAX

OVERVIEW e 227
AN APPLICATION EXAMPLE228
TRAX SYSTEM ORGANIZATION 232
APPLICATION TERMINAL LANGUAGE/
FORMSCONTROLoiiiiiiiiaian, 237
BASIC TRAXTERMINOLOGY 241
SUPPORT ENVIRONMENT FEATURES 245
SYSTEM GENERATION 248
FILE ACCESS/RECOVERY METHODS............ 254
TSTLIBRARY .. 256
TRAXCOMMUNICATIONScuiet. 257
DECNET PHASE Il

OVERVIEW e 261
TECHNICAL INTRODUCTION 262
DECNET AND THE PDP-11 PRODUCTS 262
DECNET/RT .. e 263
DECNET/E peeeee e 263
DECNET-11M i 264
DECNET-11D ...t e 265
DECNET-11S e 265
DECNET-IAS ... e 266
DECNET/PDP-11 OPERATING SYSTEMS CHART 267
SORT-11

OVERVIEW i 271
FUNCTIONS ANDFEATURES. 272
DATAFILES 273
COMMAND STRING AND SPECIFICATION FILE ..274
SORT FILE PROCESSING OPTIONS.............. 278
RECORD MANAGEMENT SYSTEM RMS

OVERVIEW 281
FUNCTIONS ANDFEATURES.................... 282
FILEORGANIZATION 283

Vi

CHAPTER 13

CHAPTER 14

CHAPTER 15

RMS FILEORGANIZATIONS 284

Sequential/Relative 284
Indexed 285
RMSACCESSMODES, 288
Sequential ACCESSot 289
Random ACCESSttt 290
Record’sFile Address 291
DynamiCACCESSot 291
FILEATTRIBUTES i 292
RECORDFORMATS e 293
PROGRAM OPERATIONS ONRMSFILES 298
DATA BASE MANAGEMENT SYSTEM DBMS
OVERVIEW i 307
FEATURES it 308
DATAORGANIZATION i, 309
PHYSICAL SPACE MANAGEMENT 310
DATABASEUTILITIES 312
DATA MANIPULATION LANGUAGE 316
COBOL/DML COMPILATION 319
PROGRAMMING REQUIREMENTS 320
DATATRIEVE-11

OVERVIEW e 323
QUERY/REPORT GENERATION/

DATA DEFINITION FEATURES 324
BASICCOMMANDS i 325
ESSENTIAL TERMINOLOGY 326
SPECIAL SYNTACTICALSYMBOLS 329
SUMMARY OF COMMANDS 335
A SAMPLE DATATRIEVESESSION 338
MACRO-11

OVERVIEW e 343
LANGUAGE i 344
SYMBOLS AND SYMBOL DEFINITIONS 345
DIRECTIVES i 348
MACRO DEFINITIONS/REPEAT BLOCKS 355
MACRO CALLS AND STRUCTURED MACRO
LIBRARIES i 356
ASSEMBLER OPERATION 357
ASSEMBLER ENVIRONMENTS 361

vii

CHAPTER 16

CHAPTER 17

CHAPTER 18

CHAPTER 19

BASIC

OVERVIEW 365
FUNCTIONS ANDFEATURES. 366
LANGUAGEELEMENTS 367
FUNCTIONS 371
PROGRAMMING EXAMPLE 372
GRAPHICS AND LABORATORY

PERIPHERALS SUPPORT 373
BASICFILES L 374
COMPILEROPERATION 376
BASIC OPERATING ENVIRONMENTS 377
BASIC-PLUS (V6C)

OVERVIEW 383
FUNCTIONS ANDFEATURES.................... 384
BASIC-PLUS LANGUAGE SUMMARY 385
SUMMARY OF BASIC-PLUS STATEMENTS 390
IMMEDIATE MODE OPERATIONS 394
DATA FORMATS AND OPERATIONS 395
BASIC-PLUS-2

OVERVIEW 399
FEATURES 400
CONSTANTS, AU 400
VARIABLES 401
FORMING EXPRESSIONS 403
SUBPROGRAMS 405
MODIFYING STATEMENTS. 406
FILES 407
SUMMARY OF STATEMENTS 409
coBOL

OVERVIEW 415
FUNCTIONS AND FEATURES.................... 416
STRING MANIPULATION 418
ON-LINEPROGRAM EXECUTION 418
FILE ORGANIZATION 419
LIBRARY FACILITY 419
DEBUGGING FEATURES........................ 419
COMPILER IMPLEMENTATION 420
COBOL OPERATING ENVIRONMENTS 421

viii

CHAPTER 20

CHAPTER 21

CHAPTER 22

CHAPTER 23

UTILITY PROGRAMS 422

LANGUAGE IMPLEMENTATION 424
DIBOL-11/DECFORM

OVERVIEW 437
DIBOLFEATURES 438
PROGRAMSTRUCTURE 438
DIBOL-11 STATEMENTS 438
SUBROUTINELIBRARYcciiiun... 443
DECFORMFEATURES 443
DECFORM TECHNICALOVERVIEW 444
APPLICATIONEXAMPLE. 448
FORTRAN

OVERVIEW i 451
SPECIFICATIONS AND STANDARDS 452
PDP-11 FORTRAN LANGUAGE DESCRIPTION453
FORTRAN IV FUNCTIONS AND FEATURES 462
FORTRANIVCOMPILER 462
FORTRAN IV OPERRL?\IG SYSTEM

ENVIRONMENTS ..o, 469
FORTRAN IV-PLUS FUNCTIONS AND FEATURES 471
FORTRANIV-PLUSCOMPILER 475
FORTRAN IV-PLUS OPERATING SYSTEM
ENVIRONMENTSt 479
APL

OVERVIEW e 481
FEATURES ANDFUNCTIONS.................... 482
LANGUAGEELEMENTS 485
INPUT/OUTPUT OPERATIONS 491
SYSTEMCOMMANDS 494
APL STATEMENT EXECUTION 495
RPG I

OVERVIEW i, 499
DESCRIPTION i 500
LANGUAGE SPECIFICATIONS 500
FEATURES it 500
File Support for Peripherals...................... 501
File Organizations 501
Record Access Methods 501

CHAPTER 24 FOCAL

OVERVIEW 503
FEATURES 504
GRAPHICSSUPPORT ... 505
MINIMUM FOCAL SYSTEM REQUIREMENTS506
COMMAND INTERPRETER 506
PROGRAM STORAGEAREA 507
VARIABLESTORAGEAREA 507
FOCALCOMMANDS., 508
FOCALFUNCTIONS e 510

APPENDIX A GLOSSARY

PREFACE

This handbook describes the major operating systems, communica-
tions software, data management services, and programming lan-
guages available for the PDP-11 family of computers. It is intended for
the system manager or programmer who needs a brief introduction to
the range of PDP-11 software products and who is interested in deter-
mining which products best suit a particular processing environment.

The technical descriptions provided in this handbook are not intended
to be functional descriptions or operating procedures. This handbook
is intended to be used in conjunction with the PDP-11 Processor
Handbooks and the PDP-11 Peripherals Handbook to introduce the
PDP-11 family’s products. Complete technical information can be
found in the set of software manuals that accompany each product.

Because DIGITAL is constantly developing new products and improv-
ing current ones, the information in this document is subject to
change. In this connection, version numbers have been provided for
each software product that specify what release of the software is
being discussed. Users should consult their sales and software sup-
port representatives to obtain the latest information about a product’s
features and characteristics.

Xi

CHAPTER 1
INTRODUCTION TO PDP-11 SOFTWARE

OVERVIEW

Upward compatibility is the star feature of PDP-11 software. This fami-
ly of interactive software products has been designed to be compati-
ble with DIGITAL’s line of PDP-11 processors—ranging from board
microcomputers to full multi-purpose computer systems. All of these
processors are built upon a common architecture that uses a similar
instruction set and input/output system; programs developed on one
PDP-11 processor may therefore run on any other PDP-11 processor
without major conversion.

This is the first of three chapters dealing with basic PDP-11 concepts.

FEATURE TOPICS

o Hardware/Software Systems

® Operating Systems

e Communications Software

e Data Management Services

e Languages and Language Processors

® PDP-11 Central Processors

e CPU/Operating System Comparative Chart

INTRODUCTION

HARDWARE/SOFTWARE SYSTEMS

The PDP-11 computer family is a wide range of compatible processors
complemented by a variety of peripheral devices, software, and ser-
vices.

This handbook discusses the software that is available for the PDP-11
family of computers. Operating systems and programming languages
may be available on either large or small hardware/software systems,
but not.both. For example, COBOL is available only on the larger
systems. Other languages may be available on a wide range of sys-
tems, but may vary in characteristics signficant for a particular appli-
cation. For example, FORTRAN |V is available on both large and small
systems, but compilation speed may vary from system to system, de-
pending on the hardware configuration.

The flexibility of PDP-11 hardware/software systems allows the user to
select both the most appropriate hardware for a particular applica-
tion’s needs, and the operating system and languages that can serve
immediate needs and still allow for possible growth.

DIGITAL offers a variety of operating systems, languages, data
management services and communications software for the PDP-11
computer family. This handbook is structured around these major
aspects of PDP-11 software:

BASIC CONCEPTS Discusses the essential terms connected
wuth PDP-11 operating systems and lan-
guage processors.

OPERATING SYS- Discusses individual PDP-11 operating sys-
TEMS tems in detail.

DECnet Discusses the family of PDP-11 software
products used by the major operating sys-
tems to form communications networks.

DATA MANAGERS Discusses the major PDP-11 data manage-
ment services individually and in depth.

LANGUAGES Discusses individual PDP-11 language op-
tions in detail.

It is assumed that the reader is familiar with operating system software
and programming languages in general.

OPERATING SYSTEMS
An operating system not only provides access to the features of a
processor in its size range, it also organizes a processor and peripher-

INTRODUCTION

als into a useful tool for a certain range of applications. For example,
the operating systems that run on the small processors are generally
intended for dedicated applications. The operating systems that run
on large processors are multi-purpose, and can provide a variety of
services. The major operating systems to be discussed are:

RT-11

DSM-11

RSTS/E

RSX-11M

RSX-11S

IAS

Real-Time Operating System for PDP-11 Proces-
sors.

A small, single-user foreground/background system
that can support a real-time application job’s
execution in the foreground and an interactive or
batch program development job in the background.

DIGITAL Standard Mumps Operating System for
PDP-11 Processors.

A small to large sized timesharing system that offers
a unique fast access data storage and retrieval sys-
tem for large data base processing.

Resource-sharing Timesharing System/Extended
Operating System for PDP-11 Processors.

A moderate to large sized timesharing system that
can support up to 63 concurrent jobs, which in-
cludes interactive terminal user jobs, detached jobs,
and batch processing.

Real-Time Multiprogramming Executive Operating
System for PDP-11 Processors.

A small to moderate sized real-time multiprogram-
ming system compatible with RSX-11D that can be
generated for a wide range of application environ-
ments — from small, dedicated systems to large,
multi-purpose real-time application and program
development systems.

Real-Time Multiprogramming Executive Operating
System for PDP-11 Processors.

A small, execute-only member of the RSX-11 family
for dedicated real-time multiprogramming applica-
tions (requires a host RSX-11M or VMS system).

Interactive Application System for PDP-11 Proces-
sors.

A large, multi-user timesharing system, allowing
real-time applications execution concurrent with
timeshared interactive and batch processing.

3

INTRODUCTION

TRAX A dedicated high-volume transaction processing
system offering real time and batch in a multi-user
commercial environment.

Included in each chapter describing the operating systems are: a gen-
eral description of the requirements for the system, the moni-
tor/executive characteristics, the file structures and data handling fa-
cilities, the user interfaces, the programmed monitor services, the
system utilities, and the language processors supported.

COMMUNICATIONS SOFTWARE

DIGITAL has provided the PDP-11 family of computers with a particu-
larly useful range of communication software products. DECnet is a
set of software tools that allows all DIGITAL systems to communicate
programs and data among themselves. DECnet/11 software is de-
signed specifically to connect he major PDP-11 operating systems
together in a communications network.

DATA MANAGEMENT SERVICES

The PDP-11 family provides a full range of data management tools.
The choice extends from the input/output support; to sequential and
relative logical file/record support with a multi-key index sequential
option; to a complete CODASYL-standard data base management
system. The four main PDP-11 data managers discussed in this
handbook are:

e SORT-11

e RMS-11

e DBMS

e DATATRIEVE-11

LANGUAGES AND LANGUAGE PROCESSORS

All PDP-11 operating systems offer a variety of programming lan-
guage processors. A programming language is a tool that enables the
user to state a problem that a computer can solve. A programming
language is designed to be easily understood and manipulated by
humans, while a language processor translates the problem into the
machine’s language.

In general, the language processors available to run under an operat-
ing system are commensurate with the kind of applications for which
the operating system is designed. For example, a real-time application
environment could be a laboratory in which a scientific programming
language is useful for problem solving.

INTRODUCTION
The programming languages discussed in this handbook are: APL,

BASIC, BASIC-PLUS, BASIC-PLUS-2, COBOL, DIBOL, FORTRAN IV,
FORTRAN IV-PLUS, MACRO, RPG Il, FOCAL, and DSM.

Table 1-1 Language Table

MACRO RT-11, RSX-11, RSX-11D, IAS, TRAX, VAX/VMS
FORTRAN IV RT-11, RSX-11, RSX-11D, IAS, RSTS/E, VAX/VMS
FORTRAN V- RS8X-11,RSX-11D, VAX/VMS

PLUS

BASIC-11 RT-11, RSX-11,IAS

BASIC-PLUS-2 RSX-11, RSX-11D, IAS, TRAX, VAX/VMS

BASIC-PLUS RSTS/E

RPGII RSX-11M, RSTS/E

DIBOL RT-11, RSTS/E

coBOL RSX-11, RSX-11D, RSTS/E, TRAX, VAX/VMS

PDP-11 CENTRAL PROCESSORS

The PDP-11 family of processors is ordered in incremental steps of
speed and size, and organized into four groups by their typical appli-
cations:

e PDP-11 microcomputers (LSl-based) for stable, programmable
dedicated applications.

e PDP-11 minicomputers (11/04) for dedicated applications which
may be planned for upward growth.

® PDP-11 system computers (11/34, 11/45) for multiple application
tasks.

® PDP-11 high-throughput computers (11/55, 11/60, 11/70) for muilti-
purpose simultaneous application tasks.

This handbook uses these processor groups as the basis for discuss-
ing the range of hardware and software systems available in the PDP-
11 family. An operating system that is designed to make maximum use
of a particular processor is normally available on any processor in the
same group. In addition, an operating system that runs on a particular

5

INTRODUCTION

group of processors can often also run on processors in the group
above or below it. As a general guide to size range, each processor
group supports certain amounts of memory which will enable a system
to possess specific operating capabilities:

In the following table, for example, the relationship between specific
operating systems and the central processing units they may run on is
charted. The features and capabilities listed there are intended as
general guidelines and do not constitute strict rules for configuration.

[LSI-11BASED RT-11 Foreground/Background or Single-
11/04 Job Operating System
11/34 16K to 256K bytes of memory. In 16K bytes:
11745 Single-Job (SJ) operation; subset MACRO in-
11/55 cluded; BASIC, FORTRAN IV, FOCAL as op-
11/60 tions. In 32K bytes: Foreground/Background
11/70 (FB) or SJ operation; languages can support
string operations, laboratory and graphics per-
ipherals; full MACRO assembler included;
multi-user BASIC available as option support-
ing as many as 4 users (under SJ monitor). MU
BASIC supports as many as 8 users in 48K
bytes under SJ monitor and as many as 4 in
56K bytes under FB monitor.
Languages: MACRO included; FORTRAN 1V;
BASIC, MU BASIC, FOCAL, and APL are op-
L tions
—
11/04 DSM-11 DIGITAL Standard MUMPS-11 (Mul-
11/34 ti-User)
11745 64K to 1Mb of memory. 64K bytes will allow
11/55 approximately 2 to 4 users to operate simulta-
11/60 neously. A maximum of 63 jobs may be sup-
11/70 ported depending on processor and partition
size, supports many users accessing a
common data base for easy applications de-
velopment.
| Languages: DSM-11 included.

11/34
11/45
11/55
11/60
11/70

LSI-11 BASED
11/04

11/34

11/45

11/55

11/60
-11/70
VAX-11/780
I

11/04
11/34
11/55
11/60
11/70

INTRODUCTION

RSTS/E General Purpose Timesharing Sys-
tem

96K to 248K bytes of memory, or 96K to 3840K
bytes on 11/70. Depending on disk and memo-
ry configuration, RSTS/E can support a maxi-
mum of 63 jobs.

Languages: BASIC-PLUS and MACRO includ-
ed; COBOL, BASIC-PLUS-2, FORTRAN IV,
DIBOL, RPG I, DATATRIEVE-11, and APL are
options.

RSX-11S Execute-Only Real-Time Multi-Pro-
gramming System

16K to 3840K bytes of memory. 8K-byte sys-
tem allows 4K for user tasks. 16K bytes re-
quired for on-line task loading or support for
tasks written in FORTRAN.

Languages: Program development on host
RSX-11D/M, IAS, or VAX/VMS.

RSX-11M Small-to-Moderate-Sized Real-
Time Multi-Programming System

32K to 248K bytes of memory or 32K to 3840K
bytes on 11/70. At least 48K bytes are required
for full MACRO support, concurrent program
development and application tasks execution
or memory management support. Error log-
ging supported.

Languages: MACRO included; FORTRAN IV
and FORTRAN IV-PLUS, BASIC, BASIC-
PLUS-2, COBOL, RPG, DATATRIEVE, and
CORAL 66 are options.

11/45
11/55
11/60
11/70

11/04
11/34
11/45
11/60
11/70

INTRODUCTION

IAS Multi-Purpose Multi-Programming Sys-
tem

128K to 248K bytes of memory or 128K to
3840K bytes on 11/70. Timeshared interactive
and batch job processing with concurrent real-
time applications execution. Depending on
disk and memory configuration, as many as 10
interactive users can be supported on an
11/60; as many as 20 interactive users on an
11/70. Error logging supported.

Languages: MACRO included; FORTRAN 1V,
FORTRAN IV-PLUS, COBOL, BASIC, BASIC-
PLUS-2, RPG, and CORAL 66 are options.

TRAX Dedicated Transaction Processing
System

192K to 3840K bytes on 11/70. Interactive
transaction processing characterized by sets
of predefined procedures with multi-user pro-
tection builtin.

Languages: COBOL, BASIC-PLUS-2,
FORTRAN 1V, APL, and DATATRIEVE are op-
tions.

CHAPTER 2
OPERATING SYSTEMS

OVERVIEW

The success of the PDP-11 family of operating systems is largely attri-
butable to its ability to handle many diverse data processing applica-
tions. For example, RT-11 provides a single-user environment with
foreground/background processing; RSTS/E provides a multi-user
environment with economical timesharing; RSX-11M provides a multi-
user on-line environment with data collection and process control;
DSM-11 (MUMPS) provides the same with data base information sys-
tems; and IAS provides a multi-user environment with simultaneous
timesharing, real-time, and batch processing.

Basic concepts pertaining to the structure of these systems are pre-
sented in this chapter.

FEATURE TOPICS

e Components and Functions

® Processing Methods

e Data Management

Data Storage and Transfer Mode

1/0 Devices and Physical Data Access Characteristics
Physical Device Characteristics

File Structures and Access Methods

Directories and Directory Access Techniques

File Protection/File Naming

User Interfaces

- Special Terminal Commands’

- 1/0 Commands

- Monitor and Command Language Commands

e System Utilities

e Operating System Comparative Chart

OPERATING SYSTEMS

INTRODUCTION

Operating systems have two basic functions: they provide services for
application program development and act as an environment in which
application programs run. The character that an operating system
has, that is, the services and environment it supplies, is appropriate
only for a certain range of program development and application re-
quirements, in order to serve selected needs efficiently. Operating
systems for the PDP-11 family of computers, however, share many
similar program development techniques and processing environ-
ments.

COMPONENTS AND FUNCTIONS

An operating system is a collection of programs that organizes a set of
hardware devices into a working unit that people can use. Figure 2-1
illustrates the relationship between users, the operating system, and
the hardware. PDP-11 operating systems basically consist of two sets
of software: the monitor (or executive) software and the system utili-
ties.

|
I

APPLICATION OPERATING
K= “prOGRAMs K——— SYSTEM K——>1 haroware :
I

Figure 2-1 Computer System

An operating system monitor is an integrated set of routines that acts
as the primary interface between the hardware and a program running
on the system, and between the hardware and the people who use the
system. The monitor’s basic functions can be divided among the rou-
tines that provide the following services:

e device and data management

® user interface

® programmed processing services
e memory allocation

® processor time allocation

In general, a monitor can have two distinct operating components: a
permanently resident portion and a transient portion. When a monitor

10

OPERATING SYSTEMS

is loaded into memory and started, all of the monitor is resident in
memory. lts first duty is to interface with the operator running the
system. The monitor simply waits until an operator requests some
service, and then performs that service. In general, these services
include loading and starting programs, controlling program execution,
modifying or retrieving system information, and setting system param-
eters. In most systems, these functions are serviced by transient
portions of the monitor.

In some cases, when the monitor initiates another program’s execu-
tion, the transient portion of the monitor can be over-written by the
loaded program or swapped out. The permanently resident portion
remains in memory to act on requests from the program. These gener-
ally include 1/0 services such as file management, device dependent
operations, blocking and unblocking data, allocating storage space,
and managing memory areas. In large systems, these services might
also include inter-task communication and coordination, memory pro-
tection and parity checking, and task execution scheduling.

The dividing line between permanently resident and transient portions
of the monitor, however, is not strictly based on user-interface func-
tions and program-interface functions. In some systems, special mon-
itor routines that service either the operator or programs might be
stored on the system device, and are called into memory only as
needed. The concern for space in small systems usually determines
what portions of the monitor are resident at any time. The programmer
or operator can control the size of the monitor, based on the needs for
memory.

In some cases, the user can adjust the size of the monitor by
eliminating features that are not needed in an application environ-
ment. RSTS/E, RSX-11M, and RSX-11S are examples of such sys-
tems. The RSX-11S system’s monitor (called an executive) is always
permanently resident when the system is operating. In this case, the
user concerned with size can eliminate routines that perform unneed-
ed operations. In general, however, all PDP-11 operating systems are
designed to be flexible enough to operate in a relatively wide range of
hardware environments.

System utilities are the individual programs that are run under control
of the monitor to perform useful system-level operations such as
source program assembly or compilation, object program linking, and
file management.

System utility programs enhance the capabilities of an operating sys-
tem by providing users with commonly performed general services.
There are three classes of system utilities: those used solely or primar-

11

OPERATING SYSTEMS

ily for program development, those used for file management, and
those used to perform special system management functions.

Program development utilities include text editors, assemblers and
compilers, linkers, program librarians, and debuggers. File manage-
ment utilities include file copy, transfer, and deletion programs, file
format translators, and media verification and clean-up programs.
System management utilities vary from system to system, depending
on the purpose and functions the system serves. Some examples are
system information programs, user accounting programs, and error
logging and on-line diagnostic programs.

PROCESSING METHODS

The basic distinctions among operating systems are in the processing
methods they use to execute programs. The distinctions to be dis-
cussed here are:

® single-user vs. multi-user

® single-job vs. foreground/background

e foreground/background vs. multi-programmming

® timesharing vs. event-driven multi-programming

A single-user operating system views demands upon its resources as
emanating from a single source. It has only to manage the resources
based on these demands. As a result, these systems do not require
account numbers to access the system or data files. RT-11 is a single-
user operating system.

A multi-user operating system receives demands for its resources
from many different individuals. The system must manage its re-
sources based on these demands. For example, several users may
want sole access to the same device at the same time. The system
must control access to these devices. In addition, the individuals may
be using the system for different purposes, implying that some privacy
must be maintained. As an effect, a multi-user system normally has an
account system to manage different user’s files. The IAS, RSTS/E, and
RSX-11M systems are all multi-user systems, and all provide device
allocation control and file accounts. In the case of the IAS, RSTS/E
and systems, the file account structure is also used to keep track of the
amounts of system resources an individual uses. Furthermore, the
RSTS/E system extends privacy by protecting individual users at a
system level from the effects of any other users of the system.

An RT-11 system can operate in two modes: as a single-job system, or
as a foreground/background system. In a foreground/background
system, memory for user programs is divided into two separate re-

12

OPERATING SYSTEMS

gions. The foreground region is occupied by a program requiring fast
response to its demands and priority on all resources while it is pro-
cessing; for example, a real-time application program. The back-
ground region is available for a low-priority, preemptable program; for
example, a compiler.

Two independent programs, therefore, can reside in memory, one in
the foreground region and one in the background region. The fore-
ground program is given priority and executes until it relinquishes
control to the background program. The background program is al-
lowed to execute until the foreground program again requires control.
The two programs effectively share the resources of the system. When
the foreground program is idle, the system does not go unused. Yet,
when the foreground program requires service, itis immediately ready
to execute. I/0 operations are processed independently of the
requesting job to ensure that the processor is used efficiently as well
as to enable fast response to all I/0 interrupts.

The basis of foreground/background processing is the sharing of a
system’s resources between two tasks. An extension of fore-
ground/background processing is multiprogramming. In multipro-
grammed processing, many jobs, instead of only two, compete for the
system’s resources. While it is still true that only one program can
have control of the CPU at a time, concurrent execution of several
tasks is achieved because other system resources, particularly 1/0
device operations, can execute in parallel. While one task is waiting for
an I/0 operation to complete, for example, another task can have
control of the CPU.

The RSX-11 family of operating systems employs multiprogrammed
processing based on a priority-ordered queue of programs demand-
ing system resources. In this case, memory is divided into several
regions called partitions, and all tasks loaded in the partitions can
execute in parallel. Program execution, as in the RT-11 fore-
ground/background system, is event-driven. That is, a program re-
tains control of the CPU until it declares a significant event—normally
meaning that it can no longer run, either because it has finished
processing, or because it is waiting for another operation to occur.
When a significant event is declared, the RSX-11 executive gives con-
trol of the CPU to the highest priority task ready to execute. Further-
more, a high-priority task can interrupt a lower-priority task if it re-
quires immediate service.

The RSTS/E and MUMPS-11 systems also perform concurrent execu-
tion of many independent jobs. RSTS/E and MUMPS-11, however,
process jobs on a timesharing rather than an event-driven basis, since

13

OPERATING SYSTEMS

this is best suited for an interactive processing environment. Each job
is guaranteed a certain amount of CPU time (a time slice), and jobs
receive time one after another, in a round-robin fashion based on job
priority levels set by the system. The system itself manages timeshar-
ing processing to obtain the best overall response depending
generally on whether jobs are compute-bound or I/0-bound. The sys-
tem manager or privileged users can also specify the minimum guar-
anteed time for a particular job when it gets service, as well as modify-
ing its priority.

The IAS system effectively combines event-driven and timeshared
processing in order to handle both real-time processing needs and
interactive timesharing needs. In IAS, /0 tasks and any user-desig-
nated real-time tasks are assigned high priorities and receive service
on an event-driven basis. All other tasks run at lower priorities on a
timeshared basis, using any CPU time remaining after real-time, high-
priority tasks have been serviced.

DATA MANAGEMENT

Digital computers deal with binary information only. The way in which
people interpret and manipulate the binary information is called data
management.

This section describes PDP-11 software data management structures

and techniques, from the physical storage and transfer level to the

logical organization and processing level. This includes:

e ASCII and binary storage fprmats — how binary data can be in-
terpreted

e physical and logical data structures — the difference between how
data storage devices operate and how people use them

e file structures — how physical units of data are logically organized
for easy reference

e file directories — how files are located and retrieved

e file protection — how files are protected from unauthorized users

e file naming conventions — how files are identified

Physical and Logical Units of Data

Physical units of data are the elements which digital computer devices
use to store, transfer and retrieve binary information. A bit (binary
digit) is the smallest unit of data that computer systems handle. An
example of a bit is the magnetic core used in some processor memo-
ries that is polarized in one direction to represent the binary number 0
and in the opposite direction to represent the binary number 1.

14

OPERATING SYSTEMS

In PDP-11 computers, a byte is the smallest memory-addressable unit
of data. A byte consists of eight binary bits. An ASCII character code
can be stored in one byte. Two bytes constitute a 16-bit word. A word
is the largest memory-addressable unit of data. Some machine in-
structions are stored in one word.

The smallest unit of data that an 1/0 peripheral device can transfer is
called its physical record. The size of a physical record is usually fixed
and depends on the type of device being referenced. For example, a
card reader can read and transfer 80 bytes of information, stored on
an 80-column punched card. The card reader’s physical record length
is 80 bytes.

A block is the name for the physical record of a mass storage device
such as disk, DECtape or magnetic tape. An RK05 disk block consists
of 512 contiguous bytes. Its physical record length is 512 bytes.

Physical blocks can be grouped into a collection called a device or a
physical volume. This collection generally has a size equal to the ca-
pacity of the device medium. The term physical volume is generally
used with removable media, such as disk packs or magnetic tape.

Logical units of data are the elements manipulated by people and user
programs to store, transfer and retrieve information. The information
has logical characteristics, for example, data type (alphabetic, deci-
mal, etc.) and size. The logical characteristics are not device
dependent; they are determined by the people using the system.

A field is the smallest logical unit of data. For example, the field on a
punched card used to contain a person’s name is a logical unit of data.
It can have any length determined arbitrarily by the programmer who
defines the field.

A logical record is a collection of fields treated as a unit. It can contain
any logically related information, in any one of several data types, and
it can be any user-determined length. Its characteristics are not device
dependent, but can be physically defined. For example, a logical rec-
ord can occupy several blocks, or it can reside in a single block, or
several logical records can reside in a single block. lts characteristics
are determined by the programmer.

A file is alogical collection of data that occupies one or more blocks on
a mass storage device such as a disk, DECtape or magnetic tape. A
file is a system-recognized logical unit of data. Its characteristics can
be determined by the system or the programmer.

A file can be a collection of logical records treated as a unit. An exam-
ple is a employee file which contains one logical record in the file for
each employee. Each record contains an employee’s name and ad-

15

OPERATING SYSTEMS

dress and other pertinent information. If the logical record length is 50
bytes and there are 200 employees, the complete employee file could
be stored in 20 512-byte blocks. Depending on the file structure used
in the system, the blocks could be scattered over the disk, or could be
located one after the other.

A logical volume is a collection of files that reside on a single disk or
DECtape. It is the logical equivalent of a physical device unit (a physi-
cal volume) consisting of physical records, such as a disk pack. The
files on a volume may have no specific relationship other than their
residence on the same magnetic medium. In some cases, however,
the files on a volume may all belong to the same user of the system.

Figure 2-2 illustrates some of the kinds of physical and logical units of
data that PDP-11 computer systems handle.

PHYSICAL UNITS_OF DATA LOGICAL UNITS OF DATA_
D or E air JonEs | e
ON OFF
SET NOT SET
T T T T T] e [sones [4] 122-76-5931 R
8BTS 7 6 5 4 3 2 1 0 N
FIELD FIELD FIELD
LOGICAL
RECORDS
- - FILI
: ll[]l]l‘]|||l|]wow 1 JONES [J]122-76-5931 E
6 2 [CHAO |M|224-62-1892
SWB- - -8 7------3210
BIrs 3 [BEAN [5]298-67-1976
HIGH-ORDER BYTE LOW-ORDER BYTE 4
s
0 phvsicat
RECORD
eg. A DISK BLOCK :
256 WORDS H
(512 BYTES)
| 225
LOGICAL
FILE ABC DAT VOLUME
FILE XFER FOR
PHYSICAL
N\ v, FILE SYS. AV
A DISK
L FILE XFER OBJ

Figure 2-2 Physical and Logical Data Storage

16

OPERATING SYSTEMS

Data Storage and Transfer Modes

All PDP-11 operating systems use two basic methods of data storage:
ASCII and binary. Data stored in ASCIlI format conform to the Ameri-
can National Standard Code for Information Interchange, in which
each character is represented by a 7-bit code. The 7-bit code
occupies the low-order seven bits of an 8-bit byte. Depending on the
operating system’s storage techniques, the high-order bit may be
used for parity checking and special formatting, or it may be ignored.
Text files such as source programs are examples of data stored in
ASCII format.

Binary storage always uses all eight bits of a byte to store information.
The significance of any bit varies depending on the kind of information
to be stored. Machine instructions, 2’'s complement integer data, and
floating point numeric data are some examples of data stored in bina-
ry format.

Figure 2-3 illustrates the way in which binary data can be interpreted
as either ASCII data or machine instructions. The figure shows two
examples of a word of storage containing the same sequence of bits,
interpreted first as two ASCII characters and second as a machine
instruction. When a word of storage is interpreted as two ASCII char-
acters, the binary digits are grouped into octal digits in a bytewise
manner. Each byte is grouped into three octal digits. The low-order
two octal digits contain three binary digits. The high-order octal digit
contains two binary digits. When a word of storage is interpreted as a
machine instruction, the binary digits are grouped into six octal digits
in a wordwise manner. Proceeding from the low-order binary digit,
each group of three binary digits is interpreted as an octal digit. The
single remaining high-order binary digit is interpreted as an octal digit.

17

81

DATA INSTRUCTION
(SINGLE OPERAND)

_SEEEEES EEEENSElSESEESSERSEEREEN

15 15
| R N J “ _ \
7-BIT ASCI1 CODE 7-BITASCII CODE OP CODE MODE REGISTER
PARITY BIT PARITY BIT
SAME
INTERPRETED AS TWO BYTES)/PA'I'B’FERN\‘ INTERPRETED AS A WORD

CTeTele e[Tofe[Tole o o] [+] [eTelelel Te[T [o[o [e o o e ['[1]

OCTAL 0 1 2 1 0 3 OCTAL 0 0 5 1 0 3
N J - J — P S N
HIGH-ORDER BYTE LOW-ORDER BYTE OP CODE MODE REGISTER
LF {LINE FEED) C (UPPER CASE C) COMPLEMENT DIRECT 3

INSTRUCTION: COM R3

SAME

,/PATBTlERN\
Flelele e Tele o o e [[o[1] [leleloli e[oo oo [s [\ [[o]1]

OCTAL 0 1 2 0 1 5 OCTAL 0 0 5 0 1 5
“ J < I — J \ J
HIGH- ORDER BYTE LOW-ORDER BYTE OP CODE MODE REGISTER
CR (CARRIAGE RETURN) LF (LINE FEED) CLEAR DEFFERED 5

Figure 2-3 ASCIl and Binary Storage INSTRUCTION: CLR @ 5

SWILSAS ONILYHIJO

OPERATING SYSTEMS

In large, sophisticated systems such as RSTS/E, RSX-11, and IAS, the
way in which data are stored on the byte or bit level is rarely a concern
of the application programmer. The operating system handles all data
storage and transfer operations. In smaller systems such as RT-11, the
programmer can become involved in data storage formats. A particu-
lar application may require the selection of a particular storage format.

The data storage format is related to the way in which data are trans-
ferred in an I/O operation.

Formatting can also be applied at a higher level to define the type of
data file being processed. In the RT-11 system, there are four types of
binary files; each type signifies that a special interpretation applies to
the kind of binary data stored. For example, a memory image file is an
exact picture of what memory will look like when the file is loaded to be
executed. A relocatable image file, however, is an executable program
image whose instructions have been linked as if the base address
were zero. When the file is loaded for execution, the system has to
change all the instructions according to the offset from base address
zero.

1/0 Devices and Physical Data Access Characteristics

In a PDP-11 computer system, data moves from external storage de-
vices into memory, from memory into the CPU registers, and out
again. The window from external devices to memory and the CPU is
called the 1/0 page. Each external 1/0 device in a computing system
has an external page address assigned to it. Figure 2-4 illustrates the
data movement path in a PDP-11 computing system.

19

OPERATING SYSTEMS

PHYSICAL ORGANIZATION

< UNIBUS >

[T 1111 Hm

! CPU MAIN

L1 | MEMORY CONTROLLER CONTROLLER EXTERNAL
1/0 PAGE
FROM THE PROGRAM'S VIEWPOINT
'
1/0 PAGE
CPU -— MAIN DEVICE
MEMORY /
VECTORS

~

Figure 2-4 Memory and I/0 Devices

Although all external devices transmit and receive data through the
UNIBUS, devices differ in their ability to store, retrieve or transfer data.
Almost all PDP-11 operating systems provide device independence
between devices that have similar characteristics and, where possible,
between differing devices in situations where the data manipulation
operations are functionally identical. Primarily, PDP-11 operating sys-
tems differentiate between:

e file-structured and non-file-structured devices

® block-replaceable and non-block-replaceable devices

Terminals, card readers, paper tape readers, paper tape punches and
line printers are examples of devices that do not provide any means to
store or retrieve physical records selectively. They can transfer data
only in the sequence in which they occur physically.

In contrast, mass storage devices such as disk, DECtape, floppy disk,
magnetic tape and cassette have the ability to store and retrieve physi-
cal records selectively. For example, an operating system can select a
file from among many logical collections of data stored on the medi-
um.

20

OPERATING SYSTEMS

Mass storage devices are called file-structured devices since a file,
consisting of a group of physical records, can be stored on and re-
trieved from the device. Terminals, card readers, paper tape read-
ers/punches and line printers are called non-file structured devices
because they do not have the ability selectively to read or write the
physical records constituting a file.

Finally, mass storage devices differ in their ability to read and write
physical records. Disk and DECtape devices are block-replaceable
devices because a given block can be read or written without
accessing or disturbing all the other blocks on the medium. Magnetic
tape and cassette are not block-replaceable devices.

A device’s physical data access characteristics determine which data
transfer methods are possible for that device. Non-file structured de-
vices allow sequential read or write operations only. Non-block re-
placeable devices allow sequential or random read operations, but
allow sequential write operations only. Block-replaceable devices al-
low both sequential and random read or write operations. Figure 2-5
summarizes the read/write capabilities of each category of 1/0 device.

21

OPERATING SYSTEMS

PAPER TAPE LINE PRINTER

X XXXXXX
| Xxx
| XXXXXX

SEQUENTIAL READ OR WRITE ONLY

FILE-STRUCTURED

E E
1\ (FJ HEADEi DATA 9 HEADER DAJA

MAGNETIC TAPE AND CASSETTE

READ AND WRITE SEQUENTIAL
NON-BLOCK REPLACEABLE

BLOCK REPLACEABLE

DIRECTORY DIRECTORY

NIninIninInEn 0y
ooy S &

READ & WRITE SEQUENTIAL OR RANDOM

22

OPERATING SYSTEMS

File Protection

Master File and User File Directories form the basis for file access
protection in multi-user systems. Unauthorized users cannot access a
file unless they know the account under which it is stored and can
obtain access to that account. Account systems and file access pro-
tection techniques are related.

Multi-user systems identify the individuals who use the system by
account numbers called User Identification Codes (UIC). The system
manager normally gives a user an account number under which the
user can log in to the system and obtain access to its services. In
general, a UIC consists of two numbers: the first number is used to
identify a group of users, the second number is used to uniquely
identify an individual user in the group.

In RSTS/E systems, an individual file can be protected against read
access or write access where distinctions are made on the basis of the
UIC account number under which a file is stored. For example, a file
can be read protected against all users who are not in the same ac-
count group and write protected against all users except the owner.

The RSX-11/1AS file system provides a protection scheme for both
volumes and files. It is possible to specify protection attributes for an
entire volume as well as for the files in the volume. A file or an entire
volume can be read-, write-, extend- or delete-protected. Distinctions
are made on the basis of account number, where the system recog-
nizes four groups of users: privileged system users, owner, owner’s
group, and all others.

File Naming

The most common way users communicate their desire to process
data is through file specifications. A file specification uniquely identi-
fies and locates any logical collection of data which is on-line to a
computer system.

A compiler, for example, needs to know the name and location of the
source program file that it is to compile; it also needs to know the
name that the user wants to use for the output object program and
listing files it produces. Most PDP-11 operating systems share the
same basic format for input and output file specifications.

In the RT-11 system, a file specification consists of the name of the
device on which the file resides, a file name, and a file name extension
in the following format:

dev:filnam.ext
The colon is part of the device name, separating it from the file name

23

OPERATING SYSTEMS

on the right. The period is part of the file name extension, separating it
from the file name on the left.

PDP-11 operating systems use the same device names for the devices
they can access. A device name consists of a two-letter mnemonic
and, for multiple devices of the same kind, a one-digit number indicat-
ing the device unit number. For example, the name “DK1:” is used to
identify the RK11 disk drive unit number 1. The name “DPO0:” identifies
the RP11 disk drive unit number 0.

In the RT-11 system, a file name is a 1- to 6-character alphanumeric
name designated by the user. For example, “SYMBOL”, “RL12”, and
“NORT4” are examples of file names. In the RSTS/E and RSX-11M
systems, a file name can be up to nine characters long.

A file name extension is a 1- to 3-character alphanumeric name
preceeded by a period. The extension can either be assigned by the
user or, if unspecified, assigned by the system. The extension general-
ly indicates the format of a file. System-assigned and recognized ex-
tensions make it easy for the user and the system to distinguish
between different forms of a file. For example, a file having the exten-
sion “.FOR” is recognized by the FORTRAN compiler as a source
program written in FORTRAN. A file with the extension “.OBJ” is re-
cognized by the Linker as an object program, a legal input file. When
in the process of compiling and linking a FORTRAN program, the user
has only to specify a file name to the compiler and Linker. The
FORTRAN compiler will compile the file whose extension is “.FOR”
and produce a file with the same file name whose extension is “.0OBJ".
The Linker will link the file whose extension is “.OBJ”.

In multi-user systems such as RSTS/E and RSX-11M, a distinction
must be made between files stored under various accounts on a de-
vice. Two different users can have a file named “REFER.OBJ” on a
disk. In these systems, therefore, a file specification has an additional
component to identify the user file directory or account under which
the file is stored. The basic file specification is expanded to use the
following format:

dev:[ufd]filnam.ext

The account number or user file directory is always enclosed in brack-
ets. It consists of the project or group number followed by a comma
and a programmer or user number. For example, “[12,4]” is an exam-
ple of an account or user file directory.

RSTS/E systems also include a protection code as part of the file
specification, to indicate the protection that the file receives. A com-
plete RSTS/E file specification could be:

24

OPERATING SYSTEMS

DK1:[200,210]BINFOR.DAT <60>

RSX-11 systems extend the basic file specification format by adding a
version number identification after the file name extension. For exam-
ple, when a file is first created using the editor, it is assigned a version
number of 1. If the file is subsequently opened for editing, the editor
keeps the first version for backup and creates a new file using the
same file specification, but with a version number of 2. A complete
RSX-11 file specification could be:

DPO0:[15,7]PREPT.MAC;1

In most cases, the user does not have to issue a complete file
specification. The PDP-11 operating systems use default values when
a portion of a file specification is not supplied. The file name extension
defaults, as indicated previously, depend on the kind of operation
being performed.

The device name, if omitted, is normally assumed to be the system
device. For example, the file specification “FILE.DAT” is equivalent to
the specification “DKO:FILE.DAT”, if the system device is RK11 drive
unit 0. Most systems also allow the user to omit the unit number. If
omitted, the unit number is assumed to be unit number 0. For exam-
ple, DT: is equivalent to DTO:; it signifies DECtape drive unit 0.

If the account number is omitted from the file specification, the system
assumes that it is the same as the UIC under which the user logged in
or under which the operation is being performed. For example; if the
user logged in under UIC 200,200 and issues a file specification “DK3:
SAMPL.DAT", itis interpreted as “DK3:[200,200]SAMPL.DAT”.

If the version number is omitted from an RSX-11/1AS file specification,
the system assumes that the file specification refers to the latest ver-
sion of thefile.

For references to file-structured devices, a file specification must in-
clude a file name. The device mnemonics, however, are also used to
refer to non-file structured devices. In this case, a file name is irrele-
vant. For example, an operation to read through a deck of cards and
print the information on a line printer is issued in most systems as
follows:

#LP:=CR:

The # indicates that an input/output command is being issued; it is
printed on the terminal by the program that requests the 1/0 com-
mand. The user types the command LP:=CR:. The = separates the
input file specification on the right from the output file specification on
the left. The device name LP: signifies that the line printer is to be used
as the output device, and the device name CR: signifies that the card

25

OPERATING SYSTEMS

reader is to be used as the input device. A file name, if used, would be
ignored, since the system can not symbolically reference data on non-
file structured devices.

In addition to relying on defaults in the file specification, the user can
also put an asterisk in place of a file name, file name extension,
account number, or version number to indicate a class of files. The
asterisk convention, also called the wildcard convention, is commonly
used in PDP-11 operating systems when performing the same opera-
tion on related files. For example, the file specification DP1:
[2,1]PROG.* refers to all files on DP1: under account [2,1] with a file
name PROG and any extension. The file specification DK:[*,*
JFILE.SAV refers to the files under all accounts on RK11 drive unit 0
named FILE.SAV. The file specification DT:*.OBJ refers to all files on
the DECtape mounted on drive unit 0 that have the extension .OBJ.

USER INTERFACES

A user interface refers to both the software that passes information
between an operator and a system and the language that a system and
an operator use to communicate. In the latter sense, a user interface
consists of commands and messages. Commands are the instructions
that the user types on a terminal keyboard (or gives to a batch proces-
sor) to tell the system what to do. Messages are the text that a system
prints on a terminal (or line printer) that tells the operator what is going
on; for example, prompting messages, announcements and error
messages. This section discusses commands, the portion of the user
interface that tells the system what to do, and prompting messages,
the messages the system prints wher, it is ready to receive commands.

There are basically four types of commands used in PDP-11 operating

systems:

® monitor or command language commands — used to request ser-
vices from the system as a whole

e [/0 commands — used to direct any kind of I/O operation (often a
part of monitor commands)

® special terminal commands — these use keys on a terminal for
special functions

® system program commands — commands used in system pro-
grams that perform operations relevant only for the individual pro-
gram

Since system program commands are relevant only for individual sys-
tem programs, and not for operating systems in general, this section
discusses monitor and command language commands, /O com-
mands and special terminal commands only.

26

OPERATING SYSTEMS

Special Terminal Commands

Special terminal commands are a set of keys or key combinations
that, when typed on a terminal, are used to perform special functions.
For example, a user normally types the carriage return key at the end
of an input command string to send the command to the system,
which responds immediately by performing a carriage return and line
feed on the terminal. The key labeled RUBOUT or DELETE is used to
delete the last character typed on the input line.

The most significant special terminal commands are those used with
the key labeled CTRL (control). When the CTRL key is held down (like
the shift key) and another key is typed, a control character is sent to
the system to indicate that an operation is to be performed.

For example, a line currently being entered (whether as part of a
command or as text) will be ignored by the system by typinga CTRL/U
combination (produced by holding down the CTRL key and typing a U
key). The user can then enter a new input line. The CTRL/U function is
the same as typing successive RUBOUT keys to the beginning of a
line. CTRL/U is standard on PDP-11 operating systems.

Another example is the CTRL/O function. If, during the printing of a
long message or a listing on the terminal, the user types a CTRL/O, the
teleprinter output will stop. The program printing the output, however,
will still continue. The user can type a CTRL/O again to resume output.
CTRL/O is a standard function on PDP-11 operating systems.

Physical Device Characteristics

and Logical Data Organizations

One of the most important services an operating system provides is
the mapping of physical device characteristics into logical data or-
ganizations. Users do not have to write the software needed to handle
input and output to all standard peripheral devices, since appropriate
routines are supplied with the operating system.

There are generally two sets of routines provided in any operating
system, depending on its complexity:

e device drivers or handlers

e file management services

Device drivers and handlers can perform the following operations to

relieve the user of the burden of 1/0 services, file management, over-
lapping I/0 considerations and device dependence:

e drive I/0 devices
® provide device independence
® block and unblock data records for devices, if necessary

27

OPERATING SYSTEMS

e allocate or deallocate storage space on the device
e manage memory buffers

These routines may exist in the system as part of the monitor or execu-
tive, as in RT-11, MUMPS-11, RSTS/E, RSX-11M or RSX-118S, or they
may be provided as separate tasks, as in IAS.

An operating system can also provide a uniform set of file manage-
ment services. For example, the RT-11 system provides file manage-
ment services through the part of the monitor called the User Service
Routine (USR). The User Service Routine provides support for the RT-
11 file structure. USR loads device handlers, opens files for read/write
operations, and closes, deletes and renames files.

In summary, an operating system maps physical device
characteristics into logical file organizations by providing routines to
drive 1/0 devices and to interface with user programs. Figure 2-6
illustrates the transition between the user interface routines and the
1/0 devices.

PROGRAM
OR
USER INTERFACE USER
FILE
MANAGEMENT
ROUTINES
OPERATING SYSTEM
1/0
MANAGEMENT

ROUTINES |
HARDWARE INTERFACES PERIPHERAL

DEVICES

Figure 2-6 Device Control and File Management Services

As an example of the mapping of physical characteristics into logical
organizations, the RSX-11 and IAS systems’ device drivers and
handlers and file management services allow the user application pro-
gram to treat all file-structured devices in the same manner. All of
these devices appear to the user program to be organized into files
consisting of consecutive 512-byte blocks which are numbered start-

28

OPERATING SYSTEMS

ing from block one of the file to the last block of the file. In reality, the
blocks may be scattered over the device and, in some cases, the
device’s actual physical record length may not be 512 bytes.

In RSX-11/1AS terminology, the actual physical records on the device
(for example, the sectors on a disk) are called physical blocks. At the
device driver or handler level, the system maps these physical blocks
into logical blocks. Logical blocks are numbered in the same relative
way that physical blocks are numbered, starting sequentially at block
zero as the first block on the device to the last block on the device. At
the user interface level, the operating system maps logical blocks into
virtual blocks. Virtual block numbers become file relative values, while
logical block numbers are volume relative values.

Figure 2-7 illustrates the mapping between physical, logical and virtual
blocks in RSX-11 and IAS systems. The figure shows two disk device
types which have different physical record lengths. In this case, the
blocks constituting a file are scattered over the disk. The file is a total
of 5 blocks long. At the logical block level, the operating system views
the file as a set of non-contiguous blocks. At the virtual block level, the
user software views the file as a set of contiguous, sequentially num-
bered blocks.

_HARDWARE SYSTEM SOFTWARE USER-LEVEL SOFTWARE

5 LOGICAL BLOCKS
3 svresmu)cx BLOCK 29 |31 BYTES/BLOCK BLOCK

BLOCK 30 BLOCK

MU {7 BLOCK 31 | ([BLOK
BLOCK 32 BLOCK
\ ij BLOCK 33 BLOCK

5 VIRTUAL BLOCKS
512 BYTES/BLOCK

NI

10 PHYSICAL BLOCKS 5 LOGICAL BLOCKS 5 VIRTUAL BLOCKS
256 BVTESIBLOCK BLOCK 29 512 BYTES/BLOCK BLOCK 512 BYTES/BLOCK

1

K
5 Q\ BLOCK 30 BLOCK 2
ok (01 BLOCK31 | <—————>| BLOCK 3
TYPE2 “ BLOCK 32 BLOCK 4
BLOCK 33 BLOCK 5

Figure 2-7 Physical, Logical and Virtual Blocks

File Structures and Access Methods

A file structure is a method of organizing logical records into files. It
describes the relative physical locations of the blocks constituting a
file. The file structure or structures that a particular operating system
employs is a product of the way in which the system views the particu-
lar I/0 devices and the kinds of data processing requirements the
system fulfills.

29

OPERATING SYSTEMS

File structure is important because a file can be effective in an applica-
tion only if it meets specific requirements involving:

SIZE Growth of the file may require a change in the file
structure or repositioning of the file.

ACTIVITY The need to access many different records in a file or
frequently access the same file influences data
retrieval efficiency.

VOLATILITY The number of additions or deletions made to a file
may affect the access efficiency.

An access method is a set of rules for selecting logical records from a
file. The simplest access method is sequential: each record is pro-
cessed in the order in which it appears. Another common access
method is direct access: any record can be named for the access. The
non-block replaceable devices, such as paper tape and magnetic
tape, can only be processed sequentially. The block-replaceable de-
vices, such as disk and DECtape, can be processed by either access
method, but direct access takes greatest advantage of the device
characteristics.

PDP-11 operating systems provide a variety of file structures and ac-
cess methods appropriate to their processing services. All PDP-11 file
structures are, however, based on some form of the following basic file
structures:

FILE STRUCTURE ACCESS METHODS

Linked Sequential
Contiguous Sequential or Direct Access
Mapped Sequential or Direct Access

Linked files are a self-expanding series of blocks which are not physi-
cally adjacent to one another on the device. The operating system
records data blocks for a linked file by skipping several blocks
between each recording. The system then has enough time to process
one block while the medium moves to the next block to be used for
recording. In order to connect the blocks, each block contains a point-
er to the next block of the file. Figure 2-8 shows the format of a linked
file.

30

OPERATING SYSTEMS

| DIRECTORY ENIRY:| [DIRECTORY ENTRY:|
! (4 BLOCKS FROM - - 1{6 BLOCKS FROM L———
| #1046) i : | #7352) !
_________ 1 ttTm T T 1
BLOCK # 1046 { . i
Joxe: 1052 ---s BLOCK #7352:
DATA E DATA
1
1
Q i BLOCK #¢ 7353
B - DATA
BLOCK #1052: 1060 |---=
1
DATA i BLOCK # 7354:
I
] i DATA
|
]
[__J
] BLOCK #7355:
BLOCK # 1060: 1064 |- DATA
|
DATA H
; BLOCK #7356
TN |
| DATA
S —
BLOCK #1064 0000 BLOCK #7357
FINISH
DATA

Figure 2-8 Linked and Contiguous File Structures

Linked file structure is especially suited for sequential processing
where the final size of the file is not known. It readily allows later
extension, since the user can add more blocks in the same way the file
was created. In this way, linked files make efficient use of storage
space. Linked files can also be joined together easily.

The blocks of contiguous files are physically adjacent on the recording
medium. This format is especially suited for random (direct access)
processing, since the order of the blocks is not relevant to the order in
which the data is processed. The system can readily determine the
physical location of a block without reference to any other blocks in
the file. Figure 2-8 also shows the format of a contiguous file.

Mapped files are virtually contiguous files; they appear to the user
program to be directly addressable sets of adjacent blocks. The files
may not, however, actually occupy physically contiguous blocks on the
device. The blocks can be scattered anywhere on the device. Separate
information, called a file header block, is maintained to identify all the

31

OPERATING SYSTEMS

blocks constituting a file. This method provides an efficient use of
storage space and allows files to be extended easily, while still main-
taining a uniform program interface. Figure 2-9 illustrates a mapped

file format.

DATA

LOGICAL _AREA 1
BLOCK {VIRTUAL

FILE HEADERBLOCK [= #7221 B;oclzx
FILE LD. :
DATA AREA PTR 1 — #222 #2
DATA AREAPTR 2
DATA AREA PTR 3 |— #223 #3
#224 #4
#225 #5
DATA
LOGICAL AREA 2
BLOCK [yiRTUAL
L———= #172 | BLOCK

#6
#173 #7
#174 #8

DATA
LOGICAL AREA 3

BLOCK [virTUAL
> #450 | BLOCK

#9

Figure 2-9 Mapped File Structure (Non-Contiguous File)

If desired, a mapped file can be created as a contiguous file to ensure
the fastest random accessing, in which case it is both virtually and
physically contiguous.

The basic file structures discussed above can be modified or com-
bined to extend the features of each type for special-purpose logical
processing methods. Some examples are indexed files and global
array files.

Indexed files are actually two contiguous files. One file acts as an
ordered map of a second file containing the target data. The index
portion or map contains either an ordered list of key data selected
from the target data records or pointers to data records in the second

32

OPERATING SYSTEMS

file, or both. The target data records can be processed in the order of
the index portion, or the target data records can be selected by
searching through the index portion for the key data identifying the
records. These methods of logically processing the target data are
called indexed sequential access and random access by key, respec-
tively.

Global DSM-11 (MUMPS) array files display a special form of linked
file structure. The arrays themselves are a logical tree-structured or-
ganization consisting of one or more subscripted levels of elements.
All elements on a particular subscripting level are stored in a single
chain of linked blocks. At the end of each block in the chain is a
pointer to the next block in the chain. The levels of the array (all the
block chains) are linked together through pointers in the first block of
each chain. This file structure ensures that the time it takes to access
any element of the array is minimal.

Directories and Directory Access Techniques

Just as file structure and access methods are required to locate rec-
ords within files, directory structures and directory access techniques
are required to locate files within volumes.

A directory is a system-maintained structure used to organize a vol-
ume into files. It allows the user to locate files without specifying the
physical addresses of the files. It is a direct access method applied to
the volume to locate files.

RT-11 supports the simplest kind of file directory. When disk and tape
media are initialized for use, the system creates a directory on the
device. Each time a file is created, an entry is made in the directory
that identifies the name of the file, its location on the device, and its
length. When access to the file is requested thereafter, the system
examines the directory to find out where the file is actually located.
The system can access the file quickly without having to examine the
entire device.

In multi-user systems such as RSTS/E, IAS, and RSX-11M, two differ-
ent kinds of directories are used to enable the system to differentiate
between files belonging to different users. They are the Master File
Directory and the User File Directories. These directories are
maintained as files themselves, stored on the volume for which they
provide a directory.

A Master File Directory (MFD) is a directory file containing the names
of all the possible users of a particular device. A User File Directory
(UFD) is a directory file containing the names of all the files created by
a particular user on a device. The system first checks the Master File

33

OPERATING SYSTEMS

Directory to locate the User File Directory for the particular user, and
then checks the User File Directory to locate the file. Figure 2-10 illu-
strates the use of the Master and User File Directories.

FILE_LIST
FILE PROG
UFD TOM
FILE_LIST
FILE PROG T
FILE MAP .
’——> e
FILE PROG
MASTER]
FILE
DIRECTORY UFD_MARY
UFD TOM FILE PROG T
UFD MARY FILE DATA
UFD MIKE FILE OBS
FILE OBS
[FD_MIKE FILE LIST
FILE LIST
FILE LOAD | ~
FILE LOAD
L——>

Figure 2-10 Master and User File Directories

RSTS/E creates an MFD on each disk when it is initialized. On all disks
except the system disk, the MFD catalogs other user accounts on the
disk. The MFD on the system disk has a special purpose, since it
maintains a catalog of the accounts under which users can log in, in
addition to the user accounts on the disk. A UFD exists on each disk
for each account under which files are created. A UFD for an account

34

OPERATING SYSTEMS

is not created until a file is created by the user under that account.
DECtape devices are considered to be single-user devices, and the
RSTS/E system maintains only a single directory on DECtapes.

The RSX-11M and IAS systems also employ MFD and UFD files on file-
structured volumes. As with RSTS/E systems, the number of directory
files required depends on the number of users of the volume. For
single-user volumes, only an MFD is needed. For multiple-user vol-
umes, an MFD and one UFD for each user are required. An MFD is
automatically created when the volume is initialized for use. A UFD is
created only by the system manager or priviledged user.

File access in RSX-11M and IAS systems, however, is not limited to
using the MFD and UFD files. The basis of file access using the MFD
and UFD in these systems is a special file called the index file. Like the
MFD, an index file is created on each volume when it is initialized. Files
in these systems are mapped files, and the Index File contains the file
header for each file stored on the volume, including the MFD. Each file
is uniquely identified by a file ID. A file header contains the file’s ID and
the physical location (logical record number) of each series of contigu-
ous blocks constituting a file. By knowing a file’s ID and searching
through the index file, a program can locate a file (and any block within
the file) without having to use the MFD and UFD directories. Figure 2-
11 illustrates how an index file is used to access files on a volume.

FILE HEADER BLOCK

——FILE
INDEX FILE /
FILE HEADER #1

FILE HEADER BLOCK

FILE HEADER #2
FILE HEADER #3 \
——=FILE

FILE HEADER BLOCK

——=FILE

Figure 2-11 Index File Access

35

OPERATING SYSTEMS

All of these operating systems also permit non-block replaceable
media, such as cassettes and magnetic tape, to be given a file struc-
ture. These media have no directory because a directory could not be
updated and replaced. Instead, each file is preceded by one or more
header records which contain the directory information such as the
file’s name. The operating system can locate a file by scanning the
volume and reading each file header until the correct one is found. The
file can then be processed by a sequential access method.

1/0 Commands

As mentioned above, users communicate their intentions to process
data files by issuing I/0 commands consisting of at least one file
specification. Normally, the I/0 commands used in a system are stan-
dard throughout that system; in addition, most PDP-11 operating sys-
tems share the same basic I/0 command string format.

For example, in RT-11 systems, the monitor includes a command
string interpreter routine that parses and validates I/0 command
strings. The command string interpreter routine is used both by the
monitor and the system programs to obtain a definition from the user
of the input file or files to be processed and a definition of the output
file or files to be created. User-written programs can also call the
command string interpreter to obtain /0 specifications from the oper-
ator at aterminal.

A standard I/0 command string consists basically of one or more
input and/or output file specifications. In all systems except IAS, an
1/0 command string uses the following general format:

filespec =filespec

where filespec is a file specification and the equal sign (=) represents
a character (usually equal sign or less-than sign) that separates an
input file specification on the right from an output file specification on
the left. If there is more than one input file specification or output file
specification, they are separated from each other by commas. For
example, if there are two output file specifications and three input file
specifications:

filespec,filespec=filespec,filespec,filespec

If the program requesting an I/0 command string does not need either
an input or output file specification, the equal sign (or less-than sign) is
not present in the 170 command string.

As an example, the user can run the RT-11 operating system’s Linker
system utility to link one or more object program files and produce an
executable program file and a load map. The I/0 command issued to
the Linker could be:

36

OPERATING SYSTEMS

*DK:RESTOR.SAV,DK1:RESTOR.MAP=DK:RESTOR.OBJ/B:500
Where:

* Is the prompting character printed by the
Linker program indicating that it wants an
I/0 command string. After it is printed, the
user types the remaining characters on the
line.

DK:RESTOR.SAV Is the name of the executable program file
to be created. It will be stored on the disk
cartridge mounted on the RK11 drive unit
zero.

DK1:RESTOR.MAP Is the name of the load map file to be creat-
ed. It will be stored on the disk mounted on
RK11 drive unit 1.

DK:RESTOR.OBJ Is the name of the object module (input file)
to be used to create RESTOR.SAV.
/B:500 Is a command string switch indicating that

the RESTOR.SAV program is to be linked
with its starting address at location 500.

Command string switches are simply ways of appending qualifying
information to an I/0 command string. The switches used vary from
program to program. They are not usually required in an 1/0 com-
mand string, since most programs assume default values for any
switch.

Monitor and Command Language Commands

The primary system/user interface is provided in PDP-11 operating
systems by either monitor software or special command language
interface programs that run under the monitor. The monitor software
and command languages allow the user to request the system to set
system parameters, load and run programs, and control program exe-
cution.

An input command line consists of the command name (an English
word that describes the operation to be performed) followed by a
space and a command argument. For example, the command torun a
program is the word RUN followed by the name of the file containing
the program. If the command name is long, it can usually be abbreviat-
ed. For example, the command to set the system’s date to August 15,
1984 could be DA 15-AUG-84. The system could also accept “DA 27-
AUG-75". A command input line is normally terminated by typing the

37

OPERATING SYSTEMS

carriage return key on the console keyboard, although in some sys-
tems the key labeled ALTMODE is also used. Typing the carriage
return key (or ALTMODE key) tells the system that the command line
is ready to be processed.

In the RT-11 system, a monitor component called the keyboard moni-
tor performs the function of notifying the user that the monitor is ready
for input by printing a period at the left margin. The user enters a
command string on the same line following the period, and terminates
the command string by typing the carriage return key.

In the RSTS/E system, the monitor and the BASIC-PLUS language
processor share the responsibility for interpreting commands. The
system prints the word READY on the terminal and then spaces down
two lines. The user then enters a command on the new line and termi-
nates the line by typing the carriage return key. There are three types
of commands the user can issue: RSTS/E monitor commands, such
as RUN, ASSIGN, or RENAME; BASIC-PLUS immediate mode
statements, such as PRINT, INPUT, or OPEN; or Concise Command
Language commands.

A Concise Command Language (CCL) command is used to run and
pass arguments automatically to designated programs stored in the
system library. The programs can be system utilities supplied with the
operating system, or can be user-written console routine programs
that perform special application operations. For example, RSTS/E in-
cludes a system utility called PIP that performs a variety of file manipu-
lation operations, including a file copy operation. The dialog normally
used to run the PIP utility and issue a copy command is:

READY The system prints READY.

RUN $PIP The user runs PIP.

PIP Vnnn PIP announces itself.
*FILEB.DAT=FILEA.DAT PIP prints an asterisk to request
*1C an I/0 command and the user is-

sues a copy command. PIP prints
an asterisk, indicating thatthe
operation was performed and
that it is ready to accept another
command; the user types a
CTRL/C to abort PIP and return
to the monitor.

READY The system prints READY.

The standard RSTS/E system also includes a CCL command named
PIP that can be issued to perform any of PIP’s normal functions. If

38

OPERATING SYSTEMS

used as a CCL command, the dialog to perform the same copy opera-
tion is:

READY The system prints READY.

PIP FILEB.DAT=FILEA.DAT The user issues the CCL com-
mand and the argument that tells
PIP to copy FILEA.DAT to Fli-
LEB.DAT.

READY The system prints READY.

A CCL command not only provides an easy-to-use command inter-
face, it can also provide protection from unauthorized use of certain
programs. For example, if a particular program performs several op-
erations, some of which should not be available to unauthorized users,
the system manager can prevent those users from issuing the RUN
command to run the program, but can allow them to perform safe
operations by using CCL commands.

In the RSX-11 systems, a command interface called the Monitor
Console Routine (MCR) allows the user to perform system level opera-
tions. When MCR is activated, it prints the characters MCR> on the
terminal. The user enters a command on the same line as the prompt,
and terminates the line with a carriage return or an ALTMODE. If the
line is terminated with a carriage return, MCR prints a prompt and is
ready to receive another command. If the line is terminated with an
ALTMODE, MCR does not reactivate. To reactivate MCR at a terminal,
the user types a CTRL/C.

There are two kinds of commands that MCR accepts: general user
commands and privileged user commands. General user commands
provide system information, run programs, and mount and dismount
devices. Privileged user commands control system operation and set
system parameters.

To run a system utility, the user can type the utility’s name in response
to an MCR prompt. When the utility is loaded, it prints a prompt to
request a command string. The user can then enter a command string.
When it completes the operation, the user can enter another com-
mand or type CTRL/Z to terminate the program. For example, to run
the PIP utility program:

MCR>PIP
PIP>command string
PIP>1Z

MCR>

39

OPERATING SYSTEMS

If the user wants to issue only one command to the utility, the user can
type the command string on the same line with the MCR request to run
the utility. For example:

MCR>PIP command string
MCR>

In the IAS system, system/user interfaces are provided by programs
called Command Language Interpreters (CLI). The standard system
includes a CLI called the Program Development System. When it is
activated, it prints the prompt PDS> on the terminal to indicate it is
ready to accept and process commands. The user has several options
for command string formats. If the user is uncertain about a com-
mand’s syntax, the user can simply type the command name and a
carriage return. PDS will ask the user to supply each portion of the
command string individually. Users can write their own Command
Language Interpreters.

PROGRAMMED SYSTEM SERVICES
All PDP-11 operating systems provide access to their services through
requests that programs or tasks can issue during execution.

The RT-11 system provides a variety of programmed requests. There
are programmed requests that perform file manipulation, data trans-
fer and other system services such as loading device handlers, setting
a mark time for asynchronous routines, suspending a program, and
calling the Command String Interpreter. Monitor services are request-
ed through macro instructions in assembly language programs, or
through calls to the system library in FORTRAN programs. The basis
of the programmed requests in RT-11 are the Emulator Trap (EMT)
instructions. When an EMT is executed, control is passed to the
monitor, which extracts appropriate information from the EMT instruc-
tion and executes the operation requested. When the operation is
performed, the monitor returns control to the program.

In the RSTS/E system, users writing BASIC-PLUS programs have ac-
cess to the monitor’s services through system function calls. The func-
tion calls allow a program to control terminal operation, to read and
write core common strings, and to issue calls to the system file proces-
sor. The file processor calls enable a program to set program run
priority and privileges, scan a file specification, assign devices, set
terminal characteristics, and perform directory operations. A system
function is called in a manner similar to normal BASIC-PLUS language
calls. When the function operation is performed, the program contin-
ues execution.

The RSX-11 and IAS executives include programmed services called

40

OPERATING SYSTEMS

executive directives. Directives can be executed in MACRO programs
using system macro calls provided with the system. The FORTRAN or
BASIC-PLUS-2 programmer can invoke directives through a
subroutine call. The system uses only the EMT 377 instruction to im-
plement directives. The directives allow the program to obtain system
information, control task execution, declare signficant events, and
perform I/O operations. After the directive is processed, control is
normally returned to the instruction following the EMT.

The RSX-11M and IAS systems also include programmed file control
services. The file control services enable the programmer to perform
record-oriented and block-oriented 1/0 operations. These services
are provided as macro calls.

The IAS system includes a special set of programmed services called
Timesharing Control Primitives. These are available for use by any
program that is written as a Command Language Interpreter (CLI).
They enable a CLI to start or control execution of other timesharing
tasks, and share access to devices with other timesharing users.

SYSTEM UTILITIES

PDP-11 operating systems provide, in general, three kinds of system
utility programs: program development utilities, file management utili-
ties, and special system management utilities.

Most PDP-11 operating systems include the following kinds of
program development utilities:

Text Editor An editor is used for on-line interactive creation and
editing of source programs or data files. An editor
uses several sets of commands that search for char-
acter strings, insert, move or delete characters or
lines, and insert, move, delete or append whole buff-
ers of data. Although a text editor is designed for
interactive use, it can also usually be run under a
batch processor if the operating system supports
batch processing.

Assembler An assembler accepts a source program written in
PDP-11 machine language and produces an object
module as output.

Linker A linker is a program that accepts relocatable object
programs created by an assembler or compiler and
produces an executable program module. Some
linkers provide facilities for overlaid program seg-
ments to enable a large program to execute in a
small memory area.

41

Librarian

Debugger

OPERATING SYSTEMS

A librarian is a program that enables a programmer
to create, update, modify, list and maintain library
files. A library file is an object module (or modules)
that is used several times in a program, used by
more than one program, or routines that are related
and simply gathered together to incorporate easily
into a program.

A debugger is a program which enables a user to
troubleshoot program errors dynamically through a
terminal keyboard. It is normally linked with a pro-
gram and runs as part of the program.

Some of the file management utilities available on many operating

systems include:
PIP

FILEX

DUMP

VERIFY

The Peripheral Interchange Program (PIP) is a gen-
eral-purpose file utility package for both the general
user and programmer and the system manager. PIP
normally handles all files with the operating systems
standard data formats. In general, the program
transfers data files from any device in the system to
any other device in the system. PIP can also delete
or rename any existing file. Some operating systems
include special file management operations in the
PIP utility, such as directory listings, device initializa-
tion and formatting, and account creation.

The File Exchange program is a special-purpose file
transfer utility similar in operation to PIP. It provides
the ability to copy files stored in one kind of format to
another format. This enables a user to create data on
one system in a special format and then transfer the
data to a device in a format that another system can
read.

DUMP displays all or selected portions of a file on a
terminal or line printer. In general, DUMP enables
the user to inspect the file in any of three modes:
ASCII, byte, and octal. In ASCII mode, the content of
each byte is printed as an ASCII character. In byte
mode, the content of each byte is printed as an octal
value. In octal mode, the content of each word is
printed as an octal value.

In general, a VERIFY program checks the readability
and validity of data on a file-structured device.

42

OPERATING SYSTEMS

Most system management utilities included in an operating system are
dependent on the function the operating system serves. The RSX-11M,
IAS, and RSTS/E systems provide special system management
utilities. For example, RSX-11M and RSTS/E include system
error logging and report programs. RSTS/E, and IAS and include user

accounting programs.

43

OPERATING SYSTEMS

RT-11 RSTS/E RSX-11M

Is Is Is

® Foreground/ ® General purpose | ® Real-time process-
background (multi- timesharing ing
tasking) ® High performance | ® Sensor based

® Single user
® Sensor based

® Operating on small
CPUs

timesharing BASIC

® Interactive environ-
ment

® Multi-language

® Data base manage-
ment

® Multi-user develop-
ment

® Protected environ- | @ Batch processing ® Building block
ment ® Basis of most com- operating system

® Easy to install and mercial applications for: L
use - Communications

- . - Commercial ap-

® High real-time plications
throughput - Turn-key appli-

® Batch processing cations

® Highiy reliable

® Full development fa-
cilities

Is not Is not Is not

® Transaction pro- ® Real-time ® Batch processing
cessing ® High volume | ® Timesharing

® Record manage-
ment

® Data base manage-
ment

transaction process-
ing

® Block mode applica-
tion terminals

® Protected environ-
ment

Includes Data Mgr./ Includes Data Mgr./
Utilities Utilities
® RME-11 ® RMS-11
® SORT-11 e DBMS
® DATATRIEVE-11 ® DATATRIEVE-11
® DMS-500 ® SORT-11
Languages Languages Languages
® BASIC-11 ® BASIC-PLUS e COBOL
® FORTRAN IV ® BASIC-PLUS-2 ® FORTRAN IV
® MACRO-11 ® COBOL ® FORTRAN IV-PLUS
® FOCAL ® FORTRANIV ® MACRO-11
® APL ® MACRO-11 ® BASIC-11
® RPG I ® BASIC-PLUS-2
® DIBOL-11 ® RPG I

Figure 2-12 Operating System Chart

44

OPERATING SYSTEMS

IAS DSM-11 TRAX-11
Is Is Is
® Real-time ® |nteractive, high- | ® High volume tran-

® Timesharing
® Batch processing

® Data base manage-
ment

® Multi-function

® Muiti-language

® Extensible executive

® High RSX/VAX/
TRAX compatibility

® Protected environ-
ment

productivity applica-
tions development
for data base man-
agement system

® Highly approachable

® Integrated lan-
guage/command
environment

® Powerful language
structure for text
processing

® Large numer of ter-
minals—up to 80

saction processing

® Batch processing

® Protected environ-
ment

® Application develop-
ment tools:
- Debug utility
- Terminal screen

language

@ Distributed function-
ality

® RSX/VAX compati-
bility

® Easy systems design

Is not

® High capacity (dedi-
cated) timesharing

® High capacity (dedi-
cated) real-time

® Operating on small
CPUs

Is not
® General timesharing
® Real-time

® Computational or
batch

® Multi-language

Is not

® Timesharing

® Sensor based

® For smaller CPUs

® Large scale batch
(IBM)

Includes Data Mgr./ Includes Data Mgr./
Utilities Utilities

® DBMS ® RMS-11

® RMS-11 ® DATATRIEVE-11
® DATATRIEVE-11 ® SORT-11

® SORT-11

Languages Languages Languages

® BASIC-11 ® DSM-11 e COBOL

® BASIC-PLUS-2 ® BASIC-PLUS-2
e COBOL ® MACRO-11

® FORTRAN IV

e MACRO-11

Figure 2-12 Operating Systems, cont.

45

R
L

46

CHAPTER 3
LANGUAGE PROCESSORS

OVERVIEW

DIGITAL’s high-level languages let you move freely among operating
systems. These languages span the breadth of the PDP-11 operating
systems, and conform to the industry standards that have been estab-
lished. In some cases, more than one version of a particular language
is available on a single operating system, each optimized to meet
particular requirements.

The basic concepts behind language assemblers and compilers and
the common functions and features of PDP-11 language processors
are presented in this chapter.

FEATURE TOPICS
e L anguage Translation Systems Definition

® Assemblers

e Compilers

e Modularity

® Assembly Language Routines

® Library Routines

e |Libraries and Object Time Systems

® Assemblers and the Language Compilers
® Program Development Facilities

e COBOL Compiler

® Incremental Compilers

PDP-11 Assemblers and Language Compilers

47

LANGUAGE PROCESSORS

LANGUAGE TRANSLATION SYSTEMS

A programming language is a system of symbols and syntax that can
be used to describe a procedure that a computer can execute. A
language processor is a program that translates one programming
language into another. A language processor reads a program written
in a language easily understood by people and translates it into a
program written in the binary language of a digital computer. The
program that the processor reads is called the source program. The
program that the processor writes is called the object program.

ASSEMBLERS

An assembler is a language processor written for a particular digital
computer. The source language it translates is called assembly lan-
guage. There is a one-to-one correspondence between most of the
mnemonics used as the assembly language operators and the binary
instructions of the computer. Some exceptions are macro calls and
assembler directives.

During the language translation process, an assembler performs a
number of error checking operations. When an error is detected, the
assembler notes the error and attempts to continue processing. At the
end of processing, the assembler produces an error listing showing all
the occurrences of errors, with substantial messages to the program-
mer. In addition to an error listing, the programmer can obtain an
assembly listing in any of several formats and a symbol table listing. In
addition, some assemblers can provide a cross reference listing for all
symbols used in the program.

Most assemblers produce an object program by making one or more
passes over the source program (reading the original source code
several times). The resultant object program is in relocatable binary
format. That is, the first instruction appears to be located in the first
word of processor memory. Since in most cases the program is not to
be loaded into the bottom of memory, the object program must be
linked to the proper memory addresses before it can be executed.

The linking program is provided as a standard program development
utility with an operating system. Figure 3-1 illustrates the fundamental
steps in producing an executable program from assembly source
code.

48

LANGUAGE PROCESSORS

SOURCE CODE

ASSEMBLER
OR
COMPILER

OBJECT CODE

LINKER
uTILITY

EXECUTABLE CODE

Figure 3-1 Fundamental Assembly or Compilation Procedure

COMPILERS

A compiler is a language processor written to translate a higher-level
language whose structure, syntax, and symbols are independent of
any particular machine. The higher-level language operators most of-
ten do not correspond directly to binary instructions. It is the compi-
ler’s job to provide algorithms for their translation.

Most compilers do not translate the source code until the entire source
program is read at least once. The translation of the source code into
object code takes place during several passes over the source code
or, if only one pass over the original source code is made, during
several phases of the compilation process. This allows the compiler to
examine the code it produces as a whole to eliminate unnecessary
instructions (code optimization). In addition, the compiler can perform
many levels of error checking and it can produce several kinds of
compilation listings, including source code listings, code generation
listings, and diagnostics.

An incremental compiler is a compiler that immediately translates
source statements into an internal format. Each source statement is
translated (and therefore can be executed) before the following state-
ment is translated. Although this method of source translation does
not enable possible object code optimization, it allows the compiler to
provide program development services not possible in multi-pass or
multi-phase compilers. For example, a syntax error detected in a

49

LANGUAGE PROCESSORS

source statement can be reported to the programmer immediately,
and the programmer can correct the statement before proceding.

One significant difference between a general compiler and an incre-
mental compiler is the characteristics of the resulting object program.
The object code produced by the general compiler requires a separ-
ate step of linking before it can be executed, as shown in Figure 3-1.
This approach enables the programmer to combine several object
programs into one executable program. This provides several advan-
tages:

Modularity

A source program may be too large to be compiled successfully as a
single unit, but, if divided into modular sections, can be compiled as
several separate units. The separate sections can be combined at the
object level to produce the resultant program. In addition, programs
that are extremely complex can be divided into several sections so
that they can be easily manipulated, debugged or modified. A change
in one module of the program will only require recompilation of that
section.

Assembly Language Routines

The compiler’s object code can be combined with the object code
produced by the operating system’s assembler. Algorithms which are
most easily written in assembly language, such as user-defined 1/0
processing, can be incorporated into a program written primarily in a
higher-level language.

Library Routines

Libraries of commonly used routines and functions written in either
assembly or the higher-level larnguage can be maintained in object
format. These routines can be selectively included in the resultant
program by the linking utility. This not only eliminates repetitive source
coding and associated errors, it also decreases the size of the source
and object programs.

The object code produced by an incremental compiler does not re-
quire an intermediate step of linking before it can be executed. The
incremental compiler actually serves two purposes: it translates the
source code into object code and it provides the environment in which
to execute the object code. That is, the steps of source code transla-
tion, linking, and execution are all provided by the translator. Figure 3-
2 illustrates this type of translator operation.

50

LANGUAGE PROCESSORS

COMPILATION | ____ OBJECT
PHASE FILE

RUN-TIME | ____ __ !
PHASE - -

SOURCE ENTERED
ON KEYBOARD

THE SOURCE CODE IS OPTIONAL: AN OBJECT
TRANSLATED IMMEDIATELY FILE CAN BE CREATED AND
SAVED FOR LATER EXECUTION

Figure 3-2 Fundamental Incremental Compiler Operation

PROGRAM DEVELOPMENT FACILITIES

A complete language translation system requires facilities for creating
and editing source programs, linking object programs into executable
programs, and debugging programs. Most PDP-11 operating systems
provide an Editor utility for source program creation and editing, and a
Librarian utility for library file creation. Operating systems also provide
a Linker utility to link and combine object modules produced by multi-
pass compilers and assemblers. Finally, operating systems also
include debugging utilities.

Some of these facilities may or may not be incorporated into the lan-
guage translator program itself. For example, an incremental compiler
may include an editing facility as part of the language translation code.
This allows the programmer to edit the program interactively as it is
being compiled and executed.

LIBRARIES AND OBJECT TIME SYSTEMS

Also included in most language translation systems is a library of the
most commonly used functions and routines. The system library is
generally a part of the language processor's Object Time System
(OTS).

A multi-pass or multi-phase compiler does not usually generate all of
the machine language code required by the program at run time.
Common sequences of code required by the program can be main-
tained in the OTS file. The compiler then flags the places where the
desired sequences are needed. The linker utility, during its pass over
the object program, selects those sequences from the OTS file and
incorporates them into the executable program module.

An incremental compiler may also have an OTS. In this case, however,
the OTS is generally part of the run-time code of the translator. When
the object code is executed by the incremental compiler’s run-time
code, the OTS is used to provide common library code sequences.

51

LANGUAGE PROCESSORS

PDP-11 ASSEMBLERS AND THE LANGUAGE COMPILERS

With three excepticns, all the operating systems described in this
handbook include the MACRO assembly language. RSTS/E does not
include MACRO, but supports it fully; DSM-11 and TRAX do not sup-
port any assembly language processor.

Two FORTRAN |V compilers are available: FORTRAN IV and
FORTRAN IV-PLUS. FORTRAN 1V is available on all the operating
systems described in this handbook except MUMPS-11. FORTRAN
IV-PLUS is available on the RSX-11 and IAS operating systems.

The MACRO assembler, FORTRAN IV compiler and FORTRAN IV-
PLUS compiler display the same external operating characteristics. In
general, they accept source code from any valid input device and
produce an object file on any valid file-structured device. If the input
device is a file-structured device, the assembler or compiler can ac-
cept several source files. If desired, an assembly or compilation listing
can also be produced as output, either as a file or on a line printer or
terminal. MACRO can also generate both a symbol table listing and a
Cross Reference Listing (CREF) if desired.

As shown in Figure 3-3, there are several methods for creating
sources. A source program can be punched on cards if a card reader
is available, or it can, in some cases, be entered directly on the termi-
nal. The common method is to create a file on a file-structured device.
The file can be created from a deck of punched cards, using the PIP
file transfer utility to copy it onto disk or DECtape. The file can also be
created on a terminal, using the operating system’s editor utility to
store it on disk or DECtape.

52

LANGUAGE PROCESSORS

SOURCE SOURCE ENTERED
DECK ON KEYBOARD

PIP
FILE TRANSFER Eﬁ:{,?f
UTILITY
N CHOICE OF)
Sgé’gﬁE SOURCE
FILE(S) SOURCE ENTERED
\ ON KEYBOARD
\
N CHOICE OF J
SYSTEM LIBRARY ASSEMBLER
(MACRO ONLY) R
COMPILER
USER MACRO
LIBRARY OBJECT
(MACRO ONLY) FILE ASSEMBLY OR

COMPILATION
LIBRARY

OBJECT FILES)
FROM ™ LINKER
EARLIER ASSEMBLIES UTILITY

OBJECT LIBRARIES
(SYSTEM OR USER)

EXECUTABLE
PROGRAM
FILE

Figure 3-3 Building an Executable User Program
Written in MACRO or FORTRAN

In addition to source program files, the MACRO assembler accepts
source library files as input. The operating system provides a system
library for MACRO containing the macro definitions for the system’s
monitor calls or executive directives. The assembler selects those
macro definitions required by the source program from the system
library file.

In RSX-11, IAS and RSTS/E systems, the MACRO assembler can also
accept a user-created macro library as input. The sources for the

53

LANGUAGE PROCESSORS

user-defined macro libraries are created in the same manner as nor-
mal source programs. The operating system’s librarian utility program
is used to create the library files. Figure 3-4 illustrates this procedure.

S
SOURCE SOURCE ENTERED
[DECK ON KEYBOARD

PIP EDITOR
UTILITY UTILITY

SOURCE
MACRO
DEFINITIONS

LIBRARIAN
UTILITY

USER
MACRO
LIBRARY

Figure 3-4 Building User MACRO Libraries

Once the assembler or compiler produces an object file, the object file
can be linked by the linker utility. The linker can accept several object
files as input. In addition, when linking object files produces a
FORTRAN compiler, the linker accepts the FORTRAN system object
library for the given compiler as input. The linker automatically selects
the required routines from the library.

Users can also create their own object library files. The source code is
created in the same manner as normal source programs. The librarian
utility is used to build the library file. Figure 3-5 illustrates the pro-
cedure.

54

LANGUAGE PROCESSORS

SOURCE CODE
AS IN FIGURE 3-3

ASSEMBLER
R
COMPILER

OBJECT

LIBRARIAN
UTILITY

OBJECT
LIBRARY
FILE

Figure 3-5 Building User Object Libraries from
Sources Written in MACRO or FORTRAN

PDP-11 assemblers and compilers differ in their internal operation.
The MACRO assembler is a two-pass assembler. It makes a first pass
over the source input to collect the symbol references, expand macros
and produce preliminary object code. A second pass is made to re-
solve symbol references and produce the completed object code and
listings.

The FORTRAN IV compiler is a multiple-phase compiler. Instead of
making multiple passes over the source program, it reads the source
program once and manipulates the source code in memory. The com-
piler operates in multiple phases. An overlay is read into memory for
each phase of the compilation process. This method enables the com-
piler to compile relatively large programs very quickly.

The FORTRAN IV-PLUS compiler is a multiple-pass compiler. It reads
the source program several times, using a work file to build the object
code. The work file is deleted when the compilation process is com-
plete. Figure 3-6 illustrates the compilation methods of the two
FORTRAN compilers.

55

LANGUAGE PROCESSORS

MULTI-PHASE COMPILATION

MEMORY AREA
SOURCE
SOURCE OBJECT
MANIPULATION FILE
COMPILER COMPILER
FILE OVERLAYS

MULTI- PASS COMPILATION

WORK
FILE

SOURCE
FILE

il

AREA

COMPILER
CODE OBJECT

BUFFERS FOR

SOURCE
MEMORY MANIPULATION
L FILE

Figure 3-6 Compilation Methods

The FORTRAN IV-PLUS compiler’s work file not only makes it possible
to compile relatively large programs, but it also allows the compiler to
examine thoroughly the object code it produces. The compiler refines
the code it produced during the initial compilation to ensure that the
program, when executed, will run as fast as possible. Therefore, al-
though the disk accesses required to read and write a work file de-
crease the speed of the compiler, the work file enables the FORTRAN
IV-PLUS compiler to produce highly optimized code.

PDP-11 COBOL COMPILER

The PDP-11 COBOL compiler can accept source input from cards,
from the terminal, or from a file created using cards or an interactive
editor. The compiler produces both an object file and an overlay de-
scription language (ODL) file which describes the overlay tree struc-
ture associated with the generated object file.

56

LANGUAGE PROCESSORS

The compiler is properly termed a multi-phase, multi-pass compiler.
The compiler makes several passes over the source program, using a
work file to contain various tables built during the compilation pro-
cess. Utilization of the work file permits compilation of large COBOL
programs consisting of approximately 6000 or more source lines. The
last pass of the compilation process produces the object and ODL
files. Figure 3-7 illustrates the COBOL compiler’s external operating
characteristics.

Once the compiler produces an object file, the object file can be linked
by the Linker utility. However, in the likely event that more than one
COBOL-produced object file must be linked to produce an executable
task, it is necessary to perform the “ODL merge” operation prior to the
linking process. The merge operation is performed by the MRG utility.
This utility merges the ODL files from more than one compilation into a
single, composite ODL file. Subsequently, the object files, together
with the composite ODL file, are linked together by the system linker to
produce an executable image. In addition to linking the object files
output by the COBOL compiler, the system linker automatically selects
the required routines from the COBOL and RMS-11 object libraries.

CHOICE OF:

SOURCE ENTERED EDITOR .
ON KEYBOARD UTILITY CHOICE O
SOURCE
FILE
SOURCE PIP
DECK uTILITY
I L OBJECT
SOURCE FILE
DECK
oBJECT
TIME _
SYSTEM
SOURCE ENTERED
ON KEYBOARD coBoL

J

COMPILER

Figure 3-7 COBOL Language Processor Operation

INCREMENTAL COMPILERS
Some of the languages available in the PDP-11 software systems
described in this handbook are processed by incremental compilers.

The BASIC language processors can accept source input from a ter-
minal or from a file generated using an Editor utility, as illustrated in
Figure 3-8. The most common method of creating a source program is

57

LANGUAGE PROCESSORS

by giving the source statements to the compiler directly through an
interactive terminal. For this reason, the BASIC language processors
include an editing facility, which allows the programmer to create, test,
and modify the source program interactively.

SOURCE ENTERED
ON KEYBOARD EDITOR
7
SOURCE ENTERED EDITOR SOURCE | ___o oscT
ON KEYBOARD OTILITY FILE COMPILER ™~ TRee \
N Y

RUN-TIME |, _

SYSTEM
(SOME LANGUAGE
BASIC SYSTEM PROCESSORS ONLY)

Figure 3-8 BASIC Language Processor Operation

58

operciing M

60

CHAPTER4
RT-11 (V3b)

OVERVIEW

RT-11 is an efficient, single-user, real-time disk operating system for
interactive program development and dedicated on-line applications.
It supports both single-job and foreground/background monitors. The
foreground handles real-time functions and has priority on system
resources; program development or batch jobs can operate in the
background whenever the foreground is not busy. The system offers
optional support for FORTRAN 1V, FOCAL, BASIC, APL, and MACRO
assembler.

RT-11 is the first of the six main PDP-11 operating systems to be
presented in this section.

FEATURE TOPICS
e Functions and Features

e Operating Environments
- RT-11 Single-Job Monitor
- RT-11 Foreground/Background Monitor
- RT-11 Extended Memory Monitor
- Facilities available in RT-11 FB/XM

® SYSTEM COMMUNICATION

e |ndirect Files
- Keyboard Monitor Commands
- Programmed Requests

e TEXT EDITOR

e Utility Programs

e Assembled Program Alteration
e System Subroutine Library

® RT-11System Summary

61

RT-11

FUNCTIONS AND FEATURES

RT-11 is an operating system designed to function in a single-user
environment. In the commercial environment it can be bundled into
variously packaged software known as CTS-300. The system uses a
wide range of peripherals and accesses up to 124K words of either
solid state or core memory. Three system monitors are provided by
RT-11: the single-job monitor (SJ), the foreground/background moni-
tor (FB), and the extended memory monitor (XM).

The single-job monitor allows one program at a time to reside in mem-
ory. The program executes until it completes or until it is interrupted
with a keyboard command.

The foreground/background monitor allows two independent pro-
grams to reside in memory at one time. The foreground program,
however, takes priority over the background program. RT-11 allows
the background program to execute whenever the foreground pro-
gram is in a wait state. Typically, the foreground program performs a
time-dependent task, such as sampling material every few seconds
and then analyzing the resultant data. A background program, on the
other hand, usually performs a time-independent task, such as file
maintenance or program development. This sharing of resources
between two tasks greatly increases the efficiency of the RT-11 sys-
tem.

The extended memory monitor provides all the features of the fore-
ground/background monitor and, in addition, allows the user to ac-
cess up to 124K words of memory. The other two monitors are restrict-
ed to 28K words of main memory.

The three monitors are upward compatible. That is, the fore-
ground/background monitor provides all the features of the single-job
monitor, and the extended memory monitor offers all the features of
the foreground/background monitor. Error logging is supported as a
SYSGEN option by all three RT-11 monitors.

In addition to the three monitors, RT-11 provides a full complement of
system programs that can perform some more specific tasks than the
keyboard monitor commands can.

RT-11 also supports a variety of language processors including
MACRO-11, an assembly language, and several high level languages,
such as FORTRAN IV, BASIC, APL, DIBOL, and FOCAL.

62

RT-11

OPERATING ENVIRONMENTS

RT-11 Single-Job Monitor

The RT-11 single-job monitor provides a single-user, single-program
system that can operate in as little as 8K words of memory. The SJ
monitor is useful for extensive program development; since the moni-
tor itself requires only 2K words of memory, there are at least 6K
words left for the program, its buffers and its tables. The SJ environ-
ment is also suitable for running programs that require a high data
transfer rate, since the SJ monitor services interrupts quickly.

All the system programs can be used under the SJ monitor. Monitor
commands and programmed requests are also available to the SJ
user. The single-job monitor does not support extended memory.

In summary, the SJ monitor is smaller and faster than the FB and the
XM monitors; it is most useful when the user is concerned with pro-
gram size versus available memory and when a dedicated system is
needed.

RT-11 Foreground/Background Monitor

Often, the central processor of a computer system spends much of its
time waiting for some external event to occur. Usually, this event is a
real-time interrupt or the completion of an 1/0 transfer. This situation
is particularly true of real-time jobs. The foreground/background en-
vironment lets the user take advantage of the unused processor ca-
pacity to accomplish lower-priority tasks.

In a foreground/background system, the foreground job is the time-
critical, real-time job, and the FB monitor gives it priority over the
background job. Whenever the foreground job reaches a state in
which no useful processing can be done until some external event
occurs, the monitor executes the background job, if possible. The
background job then runs until the foreground job is again ready to
execute. The processor then interrupts the background job and re-
sumes the foreground job.

In effect, the RT-11 foreground/background monitor allows a time-
dependent job to run in the foreground while a time-independent job,
such as program development, runs in the background. All RT-11
system programs can run as the background job in a FB system. Thus
the user can run FORTRAN, BASIC, or MACRO, for example, in the
background while the foreground is collecting, storing, and analyzing
data. In addition, the FB monitor gives the user the ability to set timer
routines, suspend and resume foreground jobs, and send data and
messages between the two jobs. The FB monitor is most often used for
laboratory work, data acquisition, and real-time applications.

63

RT-11

RT-11 Extended Memory Monitor

The extended memory monitor (XM) is an extension of the fore-
ground/background (FB) environment. Generally, comments about
the FB operation also apply to XM operation. The XM monitor permits
either foreground or background jobs to extend their effective logical
program space beyond the 32K word restriction imposed by the 16-bit
address word of the PDP-11 processors. The XM monitor manages
extended memory space as a system resource and dynamically allo-
cates it as the user program requests. A program can map selected
partitions of its addressing space, called windows, into extended
memory areas called regions.

Facilities Available Only in RT-11 FB and XM

1. Mark Time — The .MRKT programmed request allows a program
to set clock timers for specified amounts of time. When the timer
runs out, the system enters the routine that the user has specified.
The user can enter as many mark time requests as needed, provid-
ing that system queue space has been reserved. The mark time
feature is available to SJ monitor users as a SYSGEN option.

2. Timed Wait — The.TWAIT programmed request allows a program
to “sleep” until the period of time that the user has specified
elapses. A foreground program, for example, may need to act on
sample data and write it to mass storage once every few minutes.
While the foreground program is idle, the background program can
run.

3. Send Data, Receive Data — The .SDAT and .RCVD programmed
requests permit the foreground and background programs to com-
municate with each other. The send and receive data functions let
one program send messages or data of variable size blocks to the
other program. For example, data can be transferred directly from
a foreground collection program to a background analysis pro-
gram.

4. Channel Copy — The .CHCOPY programmed request allows two
programs to share the same data file.

5. Device — The .DEVICE programmed request allows the user to
turn off specific devices upon program termination.

6. Protect — The .PROTECT programmed request protects the vec-
tors that one program uses from interference by another program.

7. Channel Status — The .CSTAT programmed request returns stat-
us data about an open channel.

8. Multi-terminal support — The multi-terminal support programmed
request allows for multi-terminal systems featuring:

64

RT-11

.MTATCH
.MTDTCH
MTGET
.MTIN
.MTOUT
.MTPRNT
.MTRCTO

Facilities Available Only in RT-11 XM

An optional extension of the FB environment is the extended memory
monitor (XM), which permits extension of the logical address space for
either foreground or background jobs. Some features available to the
user only when using the XM monitor are:

1.

Create a Region — The .CRRG programmed request alows the
user to allocate a region in extended memory for the current pro-
gram.

Eliminate a Region — The .ELRG programmed request eliminates
an extended memory region and returns it to the free list so it can
be used by other programs.

Create an Address Window — The .CRAW programmed request
unmaps and eliminates conflicting address windows, creates new
windows to address extended memory, and maps new windows to
the regions the user specifies. It directs the monitor to find the
program a window into the region it has created. This request
allows the program to access the physical memory as if it were local
to the program.

Eliminate an Address Window — The .ELAW programmed re-
quest unmaps and eliminates address windows.

Map — The .MAP programmed request lets the user map address
windows.

Status — The .GMCX programmed request returns status data
about window mapping.

Unmap — The .UNMAP programmed request lets the user unmap
awindow.

SYSTEM COMMUNICATION

The monitor is the center of RT-11 system communications; it pro-
vides access to system and user programs, performs input and output
functions, and enables control of background and foreground jobs.
The user communicates with the monitor through programmed re-
quests and keyboard commands.

65

RT-11

Keyboard commands load and run programs, start or restart pro-
grams at specific addresses, modify the contents of memory, and
assign and de-assign alternative device names, to mention only a few
functions. A series of keyboard commands may be placed in a file
(called an indirect command file) if they are to be used frequently. The
series of commands can be invoked with a single keyboard command.

Indirect Files

The user can group together, as a file, a collection of keyboard
commands to be executed sequentially. This collection is called an
indirect command file, or indirect file. Indirect files are best suited for
tasks that require a significant amount of computer time and do not
require user supervision or intervention. Any series of commands that
a user is likely to type often can also run easily as an indirect file. The
indirect file concept is similar to BATCH processing. Although indirect
files lack some BATCH capabilities, they are easier to use, use the
same commands as normal operations, and generally require less
memory overhead than the BATCH processor. RT-11 BATCH is de-
scribed below.

Keyboard Monitor Commands
Table 4-1 shows the RT-11 keyboard commands and their results.

Table 4-1 RT-11 Keyboard Monitor Commands

APL Invokes the APL1anguage interpreter.

ASSIGN Associates a logical device name with a physical de-
vice.

B Sets a relocation base.

BASIC Invokes the BASIC language interpreter.

BOOT Directs a monitor to take control of the system.

CLOSE Makes permanent all output files that are currently
open after the background job terminates.

COMPILE Invokes one or more language processors to assem-
ble or compile the files specified.

COPY Performs a variety of file transfer and maintenance
operations.

66

D

DATE

DEASSIGN

DELETE

DIBOL

DIFFER-
ENCES

DIRECTORY

DUMP

E

EDIT

EXECUTE

FOCAL

FORTRAN

FRUN

GET

GT

HELP

INITIALIZE

INSTALL

RT-11

Deposits values in memory beginning at the location
specified.

Sets or displays the current system date.
Disassociates a logical device name from a physical
device.

Deletes the files specified.

Invokes the DIBOL compiler to compile one or more
source programs.

Compares two files and lists the differences between
them.

Lists information requested about a device, a file, or
a group of files.

Lists all or any part of a file in octal words, octal
bytes, ASCII characters, or Radix-50 characters.

Prints in octal the contents of a memory address.
Invokes a text editor.

Invokes one or more language processors to assem-
ble or compile the files specified; it also links object
modules and initiates execution of the resultant
program.

Invokes the FOCAL language interpreter.
Invokes the FORTRAN |V compiler to compile one or
more source programs.

Initiates execution of foreground jobs.
Loads a memory image file into memory.

Enables or disables the use of the VT11 or VS60
display hardware as the console terminal.

Lists useful information about keyboard monitor
commands and other RT-11 capabilities.

Clears and initializes a device directory.

Installs the device specified into the system.

67

LIBRARY

LINK

LOAD

MACRO

PRINT

REENTER

REMOVE

RENAME

RESET

RESUME

RUN

SAVE

SHOW

RT-11

Lets you create, update, modify, list, and maintain
library files.

Converts object modules produced by an RT-11
supported language processor into a format suitable
for loading and execution.

Makes a device handler resident in memory for use
with BATCH or foreground/background jobs.

Invokes the MACRO assembler to assemble one or
more source files.

Lists the contents of one or more files on the line
printer.

Loads a memory image file into memory and starts
execution.

Starts the program at its reentry address (the start
address minus 2).

Removes a device from the system tables.
Changes the name of a specified file or files.

Resets several background system tables and does
a general clean-up of the background area.

Continues execution of the foreground job at the
pointthe SUSPEND command was issued.

Loads a memory image file into memory and starts
execution.

Writes memory areas in memory image format to the
file and device specified.

Prints on the terminal all the devices known to the
system and any logical names assigned to those de-
vices. It has three options that all call the RESORC
program:
e CONFIGURATION
Displays information about the monitor status,
USR SWAP/NOSWAP, type of processor, special
hardware, and SYSGEN options that are in effect.

e DEVICES
Displays device information, including current
status and vectors.

68

RT-11

e TERMINALS
Displays terminal information, including unit num-
ber, type, and SET options enabled for multi-ter-
minal systems.

SQUEEZE Consolidates in a single area all unused blocks on
the device specified.

START Initiates execution of the program currently in mem-
ory at the address specified.

SUSPEND Stops execution of the foreground job.

TIME Sets or displays the current time of day.

TYPE Lists the contents of one or more files on the termi-
nal.

UNLOAD Makes handlers that were previously loaded non-
resident, thus freeing the memory space they occu-
pied.

Programmed Requests

Programmed requests are source program instructions that request
the monitor to perform monitor services. These instructions allow as-
sembly language programs to use the available monitor features. A
running program communicates with the monitor through pro-
grammed requests. FORTRAN programs have access to programmed
requests through the system subroutine library. Programmed re-
quests can, for example, manipulate files, perform input and output,
and suspend and resume program operations.

Table 4-2 shows the RT-11 programmed requests and their action.

Table 4-2 Programmed Requests

.CDFN Defines new 1/0 channels.

.CHAIN Allows background program to transfer control to
another background program that is specified in lo-
cations 500-507 (RAD50) without operator interven-
tion; saves words 500-777.

69

.CHCOPY

.CLOSE

.CMKT

.CNTXSW

.CRAW

.CRRG

.CSIGEN

.CSISPC

.CSTAT

.DATE

RT-11

Opens a channel for input and logically connects it to
a channel on another job open for either input or
output.

Terminates activity on the specified channel and
frees it for use in another operation.

Cancels one or more outstanding mark time re-
quests.

Specifies locations to be included in context switch;
addr is terminated with a 0 word; valid locations are
2-476, user job area, and 160000-177776.

Defines a virtual address window and optionally
maps it into a physical memory region.

Allocates a dynamic region in physical memory for
use by the current requesting program.

Calls Command String Interpreter (CSl) in general
mode to accept input and output file specifications;
.CSIGEN automatically opens input and output files
and loads required device handlers; gets command
string from terminal, in core string, or indirect com-
mand file; returns command line to the user if the
user so specified.

Calls Command String Interpreter (CSl) in special
mode to accept input and output file specifications;
works like .CSIGEN, but does not open files; instead,
builds a table of file specifications to simplify later
file operations; gets command string from terminal,
in core string, or indirect command file; returns com-
mand line to the user if the user so specified.

Furnishes 6 information words about an I/0 channel:
word 1 channel status

word 2 file starting block

word 3 file length

word 4 highest block writtten

word 5 device unit number

word 6 device name (RAD50)

Moves current date word into RO:
bits 14-10 month (1-12.)

bits 9-5 day (1-31.)

bit 4-0 year (72.-99)

70

.DELETE

.DEVICE

.DSTATUS

.ELAW

.ELRG

.ENTER

EXIT

.FETCH

.GMCX

.GTIM

.GTJB

.GTLIN

RT-11

Deletes named file from indicated device.

Sets up list of addresses to be loaded with specified
values upon program termination; creates a linked
list if specified.

Provides information about device characteristics:

word 1 device status

word 2 handler size

word 3 handler entry point
word 4 device size

Cancels a defined window and permits redefinition.

Deallocates a dynamic memory region and returns it
to the free list.

Allocates space on specified device and creates ten-
tative directory entry for the named file.

Terminates user background program and returns
control to the monitor, when used from a back-
ground program under FB; when used under SJ,
causes KMON to run in background area.

Loads device handier into memory from the system
device.

Returns the mapping status of a specified window.
Returns current time of day in ticks past midnight.

Passes certain job parameters back to the user pro-
gram:

word 1 job number (0=B, 2=F)

word 2 high memory limit

word 3 low memory limit
word 4 start of I/0 channel space
word 5 address of job’s impure area

with FB and XM monitors
word 6-8 reserved

Obtains a line of input from the console terminal or
an indirect command file; allows the user to specify a
text string which will be printed on the terminal to
prompt the operator for input.

71

.GVAL

-HERR

.HRESET

INTEN

.LOCK

.LOOKUP

.MAP

.MFPS

.MRKT

.MTATCH

.MTDTCH

.MTGET

.MTIN

.MTOUT

.MTPRN

.MTPS

.MTRCTO

RT-11

Returns a monitor fixed offset value in RO.

Disables user error interception and allows the mon-
itor to detect and act on fatal errors.

Resets channels, releases device handlers, and
stops all I/0 transfersin progress.

Notifies monitor that an interrupt occurred and

.

switches to “system state”; lowers processor priority
to device priority level.

Locks USR (system file processor) in memory; the
USR normally swaps into memory only when it is
needed (to open or close a file), and swaps out when
itis not needed (to read or write an open file).

Associates specified channel with a device and ex-
isting file.

Maps a previously defined address window into a
region of extended memory.

Reads priority bits from the processor word.
Schedules completion routine to be entered after a
specified time interval.

Attaches a terminal for exclusive use by the request-
ing job.

Detaches a terminal from one job and makes it avail-
able for other jobs.

Returns the status of the specified terminal to the
caller.

A multi-terminal form of .TTYIN; transfers one or
more characters to a buffer.

A multi-terminal form of .TTYOUT; prints one or
more characters from a buffer.

A multi-terminal form of .PRINT.

Sets priority bits, condition codes, and T bit in the
processor status word.

Resets CTRL/O for the specified terminal.

72

.MTSET

MWAIT

.PRINT

.PROTECT

.PURGE

.QSET

.RCTRLO

.RCVD

.RCVDC

.RCVDW

.READ

.READC

.READW

.RELEAS
.RENAME

.REOPEN

.RSUM

.SAVESTA-
TUS

RT-11

Allows the user program to set terminal and line
characteristics.

Suspends execution until all messages are transmit-
ted or received.

Outputs an ASCII string to the terminal.
Used by a job to obtain exclusive control of a vector
pair in the range 0-476.

Deactivates a channel without closing the file (tenta-
tive output file is lost).

Enlarges /0 queue for the monitor.
Enables console terminal printing (resets CTRL/0).
Posts a request to receive message and continues

execution.

Posts a request to receive message and enters spec-
ified completion routine when message is received.

Posts a request to receive message and waits until it
is received.

Initiates transfer of words from specified channel in-
to memory and continues execution.

Initiates transfer from channel to memory; continues
executing user program; enters specified routine
when transfer completes.

Transfers words from specified channel into memo-
ry; returns control to user program when the transfer
completes or when an error is detected.

Removes a device handler from memory.
Changes a file name.

Reassociates a channel with a file on which a SAVE-
STATUS was performed.

Resumes execution of a foreground job after it was
suspended.

Stores 5 words containing data concerning file defi-
nition into memory; frees channel for use:

73

.SCCA

.SDAT

.SDATC

.SDATW

.SERR

.SETTOP

.SFPA

.SPFUN

.SPND

.SRESET

.SYNCH

.TLOCK

.TRPSET

RT-11

word 1 channel status
word 2 starting block of file
word 3 length of file
word 4 reserved
word 5 even byte — 1/0 count;
odd byte — device unit
number

Inhibits CTRL/C abort; indicates that CTRL/C was
typed at the keyboard; distinguishes between single
and double CTRL/C.

Initiates message transfer; returns control to user
program immediately.

Initiates message transfers; transfers control to
specified routine when message is received.

Initiates message transfer; returns control to user
program when message is received.

Inhibits monitor from aborting jobs after fatal errors.

Requests additional memory for program and re-
turns the highest memory address available.

Sets user interrupt for floating point processor ex-
ceptions.

Provides special device-dependent functions to
magtape, cassette, diskette, and other mass storage
devices.

Suspends a foreground job.

Resets certain memory areas, dismisses device
handlers, purges currently open files, resets to 16
channels, resets I/0 queue to one element.

Enables the user program to perform certain moni-
tor programmed requests from within an interrupt
service routine. Requests requiring the USR may not
be issued.

Attempts to gain ownership of USR; if unsuccessful,
returns control with C bit set.

Allows user job to intercept processor traps to 4 and
10.

74

RT-11

.TTINR Inputs a character from the terminal; returns if none
available.

TTOUTR Outputs a character to the terminal; returns if no
room in buffers.

TTYIN Inputs a character from the terminal and waits until
operation is done.

JTYOUT Outputs a character to the terminal and waits until
operation is done.

TWAIT Suspends the running job for the specified amount
of time (number of ticks); requires queue element.

.UNLOCK Releases USR from memory.

.UNMAP Unmaps a window and flags that portion of address

space as being inaccessible.
.UNPROTECT Cancels a protected vector pair in the range 0-476.

WAIT Suspends program execution until I/0 completes to
the specified channel.

.WRITC Transfers words from memory to specified channel;
when complete, passes control to specified routine.

\WRITE Initiates transfer from memory to channel; returns
control to user program immediately.

WRITW Transfers words from memory to channel; when
transfer is complete, returns control to user pro-
gram.

TEXT EDITOR

The text editor (EDIT) is a program that creates or modifies ASCIi
source files for use as input to other system programs such as the
MACRO assembler or the FORTRAN compiler. EDIT, which accepts
commands from the user at the terminal, reads ASCI! files from any
input device, makes specific changes, and writes on any output de-
vice. EDIT allows efficient use of VT11 or VS60 display hardware, if
they are part of the system configuration.

EDIT considers a file to be divided into logical units called pages. A
page of text is generally 50-60 lines long (delimited by form-feed char-
acters) and corresponds approximately to a physical page of a pro-
gram listing. The editor reads one page of text at a time from the input
file into its internal buffers, where the page becomes available for
editing. EDIT is used to:

75

RT-11

® Locate text to be changed.

e Execute and verify the changes.

e |istan edited page on the console terminal.
e Output a page of text to the output file.

Normally, the editor operates in either command mode or text mode.
In command mode, the editor interprets all input typed on the key-
board as commands to perform some operation. In text mode, the
editor interprets all typed input as text to replace, insert into, or
append to the contents of the text buffer.

UTILITY PROGRAMS

The following sections describe the RT-11 system programs available.
The user can take advantage of nearly all of the capabilities of the RT-
11 system by using the keyboard monitor commands. However, it is
the system utility programs (and not the monitor itself) that actually
perform many of the system’s functions.

Command String Interpreter

The Command String Interpreter (CSl) is the part of the RT-11 system
that accepts a line of ASCII input, usually from the user at the console
terminal, and interprets it as a string of input specifications, output
specifications, and options for use by a system utility program.

The Peripheral Interchange Program (PIP)

The peripheral interchange program (PIP) is a file transfer and file
maintenance utility program for RT-11. PIP is used to transfer files
between any of the RT-11 devices and to merge, rename, and delete
files.

Device Utility Program (DUP)

The device utility program (DUP) is a device maintenance utility pro-
gram. DUP creates files on file-structured RT-11 devices. It can also
extend files on certain file-structured devices (disks and DECtape),
and it can compress, image copy, initialize, or boot RT-11 file struc-
tured devices. DUP does not operate on non-file structured devices
(line printer, card reader, terminal, and paper tape).

Directory Program (DIR)

The directory program (DIR) performs a wide range of directory listing
operations. It can list directory information about a specific device,
such as the number of files stored on the device, their names, and
their creation dates. DIR can list details about certain files, too, includ-
ing their names, their file types, and their size in blocks. DIR can also

76

RT-11

print a device directory summary, and it can organize its listings in
several ways, such as alphabetically or chronologically.

Linker (LINK)

The RT-11 linker (LINK) converts object modules produced by an RT-
11 supported language translator into a format suitable for loading
and execution. The linker processes the object modules of the main
program and subroutines to:

e Relocate each object module and assign absolute addresses.

e Link the modules by correlating global symbols that are defined in
one module and referenced in another.

e Create the initial control block for the linked program that the
GET,R,RUN, and FRUN commands use.

e Create an overlay structure if specified and include the necessary
run-time overlay handler and tables.

e Search libraries specified by the user, to locate any unresolved glo-
bals.

e Automatically search a default system library to locate any remain-
ing unresolved globals.

® Produce a map showing the layout of the executable module.
e Produce a symbol definition file.

The RT-11 linker requires two passes over the input modules. During
the first pass it constructs the symbol table, including all program
section names and global symbols in the input modules. After it pro-
cesses all non-library files, the linker scans the library files to resolve
undefined globals. It links only those modules that are required into
the root segment (that part of the program that is never overlaid).
During the final pass, the linker reads the object modules, performs
most of the functions listed above, and produces a load module (which
is memory image format for background jobs or for jobs that run in the
single-job environment, relocatable format for foreground jobs, and
formatted binary for use with the Absolute Loader).

The linker runs in a minimal RT-11 system of 8K words of memory; the
linker uses any additional memory to facilitate efficient linking and to
extend the size of the symbol table. The linker accepts input from any
random access device on the system; there must be at least one ran-
dom-access device (disk or DECtape) for memory image or relocata-
ble format output.

77

RT-11

Librarian (LIBR)

The librarian utility program (LIBR) lets the user create, update,
modify, list, and maintain object library files. A library file is a direct
access file (a file that has a directory) that contains one or more mod-
ules of the same module type. The librarian organizes the library files
so that the linker and MACRO assembler can access them rapidly.
Each library contains a library header, library directory (or global sym-
bol or macro name table), and one or more object modules or macro
definitions.

The object modules in a library file can be routines that are repeatedly
used in a program, routines that are used by more than one program,
or routines that are related and simply gathered together for conve-
nience. The contents of the library file are determined by the user’s
needs. Object modules in a library file from another program can be
accessed from another program by making calls or references to their
global symbols; the user then links the object modules with the pro-
gram that uses them, producing a single load module.

DUMP

DUMP is the RT-11 program that prints on the console or line printer,
or writes to a file, all or any part of a file in octal words, octal bytes,
ASCII characters, or Radix-50 characters. DUMP is particularly useful
for examining directories and files that contain binary data.

File Exchange Program (FILEX)

The file exchange program (FILEX) is a general file transfer program
that converts files from one format to another so that they can be used
with other operating systems. Transfers between any block-replace-
able RT-11 directory-structured devices can be initiated.

Source Compare (SRCCOM)

The RT-11 source compare program (SRCCOM) compares two ASCII
files and lists the differences between them. SRCCOM can either print
the results or store them in a file. SRCCOM is particularly useful when
it is necessary to compare two similar versions of a source program. A
file comparison listing highlights the changes made to a program
during an editing session.

Format Program (FORMAT)
The format program has several functions. It can be used to write
headers for an RK05 disk as well as write single or double density
sectors for an RX02 diskette.

78

RT-11

Resource Program (RESORC)

The resource program allows for the display of information about the
system configuration. This command is accessed through the SHOW
monitor command.

ASSEMBLED PROGRAM ALTERATION

Three RT-11 programs help the user debug programs and make
changes to programs that are already assembled. They are: the on-
line debugging technique (ODT), PATCH, and the object module
patching utility (PAT).

RT-11 On-Line Debugging Technique

RT-11 on-line debugging technique (ODT) is a program (supplied with
the system) that aids in debugging assembly language programs.
From the terminal, the user can direct the execution of programs with
ODT. ODT performs the following tasks:

® Prints the contents of any location for examination or alteration.

® Runs all or any portion of an object program using the breakpoint
feature.

e Searches the object program for specific bit patterns.

e Searches the object program for words that reference a specific
word.

e Calculates offsets for relative addresses.

e Fills a single word, block of words, byte or block of bytes with a
designated value.

PATCH

The PATCH utility program is used to make modifications to any RT-
11 file. PATCH can be used to examine and then to change words or
bytes in the file.

Object Patch Utility (PAT)

The RT-11 object module patch utility (PAT) allows the user to patch or
update any code in a relocatable binary object module. PAT does not
permit the examination of the octal contents of an object module; that
is a function of PATCH. An advantage to using PAT is that relatively
large patches can be added to an object module without performing
any octal calculation. PAT accepts a file containing corrections or
additional instructions and applies these corrections and additions
to the original object module.

79

RT-11

BATCH

RT-11 BATCH is a complete job control language that allows RT-11 to
operate unattended. RT-11 BATCH processing is ideally suited to fre-
quently run production jobs, large and long-running programs, and
programs that require little or no interaction with the user.

RT-11 BATCH permits the user to:
e Execute a RT-11 BATCH stream from any legal RT-11 input device.

e Qutput a log file to any legal RT-11 output device (except magtape
or cassette).

e Execute the BATCH stream with the single-job monitor or in the
background of the foreground/background monitor or with the ex-
tended memory monitor.

e Generate and support system-independent BATCH language jobs.
e Execute RT-11 monitor commands from the BATCH stream.

SYSTEM SUBROUTINE LIBRARY

The RT-11 FORTRAN System Subroutines (SYSF4) are a collection of
FORTRAN-callable routines that allow a FORTRAN user to utilize vari-
ous features of RT-11 foreground/background(FB)and single-job(SJ)
monitors. SYSF4 also provides various utility functions, a complete
character string manipulation package, and a 2-word integer support.
This collection of routines is usually placed in a default system library,
which is an object module library file called SYSLIB.OBJ. This library
file is the default library that the linker uses to resolve undefined glo-
bals and is resident on the system device (SY:). This concatenated set
of routines is in a file called SYSF4.0BJ. The installation procedures
describe how to make these routines into a library.

The following are some of the functions provided by SYSF4.

e Complete RT-11 /O facilities, including synchronous, asynchro-
nous, and completion-driven modes of operation. FORTRAN
subroutines may be activated upon completion of an input/output
operation.

e Timed scheduling of asynchronous sub jobs (completion routines).
This feature is standard on FB and optional on the SJ monitor.

e Complete facilities for interjob communication between foreground
and background jobs (FB and XM only).

® FORTRAN interrupt service routines.

e Complete timer support facilities, including timed suspension and
time-of-day information. These timer facilities support either 50 or
60 cycle clocks.

80

RT-11

e All auxiliary input/output functions provided by RT-11, including the
capabilities of opening, closing, renaming, creating, and deleting
files from any device.

e All monitor-level informational functions, such as job partition para-
meters, device statistics, and input/output channel statistics.

® Access to the RT-11 Command String Interpreter (CSI) for accep-
tance and parsing of standard RT-11 command strings.

® A character string manipulation package supporting variable-length
character strings.

e INTEGER*4 support routines that allow 2-word integer computa-
tions.

SYSF4 allows the FORTRAN user to write almost all application pro-
grams completely in FORTRAN with no assembly language coding.

LANGUAGES

Languages that run under RT-11, such as MACRO, FORTRAN, APL,
FOCAL, and BASIC, are described in individual chapters in this hand-
book.

81

RT-11 SYSTEM SUMMARY

Is

e Foreground/background
(multi-tasking)

e Single user

e Sensor based

e Operating on small CPUs
e Protected environment
Easy to install and use
High real-time throughput
Batch processing

Highly reliable

Full development facilities

Is not

e Transaction processing
e Record management

e Data base management

Languages

e BASIC-11

e FORTRAN IV
e MACRO-11

82

CHAPTERS5

RESOURCE-SHARING TIMESHARING SYSTEM
RSTS/E (V6C)

OVERVIEW
RSTS/E is a resource-sharing timesharing system supporting many
language processors. This system can also support general purpose
timesharing as well as batch processing. Each RSTS/E user can have
virtually the entire system’s processing power, utilities and peripherals
at his command during program development or execution. lts dy-
namic scheduling algorithm allocates processor time, memory space,
file space and peripherals to continually keep processing efficient.

FEATURE TOPICS

Functions and Features

System Configuration and Operation

- System Code

- Language Processors (BASIC-PLUS)

- Timesharing Operations Overview

- SYSGEN

System Management Utility Programs

Device and File Conventions

User Interface

- System and Installation Defined (CCL) Commands
- General System Utility Programs

- Batch Processing

SYS System Functions and the PEEK Function

RSTS/E System Summary

83

RSTS/E

FUNCTIONS AND FEATURES

The RSTS/E operating system allows multiple users to interact with
the system and its data structures. RSTS/E supports up to 63 users
simultaneously processing data using the BASIC-PLUS, COBOL, BA-
SIC-PLUS-2, FORTRAN IV, APL, or RPG Il language processors. BA-
SIC-PLUS jobs may vary in size up to 16K-word programs, and can
use chaining and interjob communication features to execute even
larger programs. Programs using other languages can have a maxi-
mum size of 28K words. RSTS/E also includes a comprehensive set of
easy-to-use system utilities for the system manager and timesharing
users. The system also supports line printer spooling and execution of
up to 8 batch streams. It may also be offered as part of variously
packaged commercial hardware/software systems as CTS-500. When
RSTS/E is packaged as CTS-500, certain otherwise optional software
is bundled into the system.

RSTS/E can support a maximum of 63 concurrent jobs. The actual
number of jobs a configuration can support depends on the character-
istics of the application(s), the processor, processor options, disk
drives, and the amount of memory available. As a general rule,
RSTS/E can support up to 63 jobs on a PDP-11/70. On a PDP-11/34,
11/35, 11/40, 11/45, 11/50, 11/55, or 11/60 processor, RSTS/E can
be expected to support less than the 63 job maximum. In most cases,
the practical maximum is 32 jobs or fewer on these processors.

RSTS/E requires at least 64K words of memory for most configura-
tions. Installations making use of the commercial features of COBOL,
BASIC-PLUS-2, RPG II, DIBOL with CTS-500, and/or RMS-11K will
generally need at least 80-96K words of memory. For those installa-
tions that need only BASIC-PLUS and a limited subset of the RSTS/E
utilities, it may be possible to operate with as little as 48K words of
memory. To support more than a few multiusers simultaneously, addi-
tional memory may be required.

A minimum peripheral complement includes a console terminal and a
disk system. The system device can be a single RP02, RP03, RP04,
RPO05, RP06, RM02, or RMO03 disk system or a dual drive RK05, RK06,
RKO07, or RLO1 disk system. A TE10, TE16, or TS03 magnetic tape
system is required for system generation and back up unless the disk
system includes three RK05s, two RL0O1s, two RKO06s, or two RK07s.

On a PDP-11/34, PDP-11/35, PDP-11/40, PDP-11/45, PDP-11/50,
PDP-11/55, or PDP-11/60, memory can expand up to 124K words; on
a PDP-11/70, up to 1920K words. In addition, RSTS/E can support
multiple disk, DECtape, magnetic tape and floppy disk drives, multiple
line printers, a card reader, a paper tape reader/punch, and a variety

84

RSTS/E

of terminal interfaces. All of these devices can be available to any
terminal user. The terminals can be accessed under program control
for input and output. A single program can control any number of
terminals up to a maximum of 127.

RSTS/E users can expect efficient operation because the operating
system dynamically allocates processor time, memory space, file
space and peripherals to best suit changing demands. The system
manager and designated privileged users have access to the moni-
tor’'s system management commands either interactively using system
utilities or under program control. Additional system commands and
utility programs are also available to all users.

The RSTS/E file system provides a wide range of on-line processing
capabilities. Files can be accessed randomly or sequentially, either
through BASIC-PLUS, or through the RMS-11 (Record Management
Services) subsystem. Single and multi-key ISAM is optionally avail-
able with RMS-11K software. Files can contain alphanumeric string,
integer numeric, floating point numeric or binary data. Files can be
created, updated, extended or deleted interactively either from the
user’s terminal or under program control. Files can be sorted by the
SORT-11 program. Files can be protected from access on an individu-
al, group or system basis. Files can also be accessed by many users
while being updated on-line.

RSTS/E provides the ability to back up files selectively or totally. Back-
up can be done on-line without disrupting users or it can be done off-
line.

DECnet/E provides the RSTS/E system with communications software
for programs written in BASIC-PLUS and BASIC-PLUS-2. This soft-
ware offers point-to-point, task-to-task, and network file transfer
communications facilities.

RSTS/E also supports an emulator for the IBM 2780 terminal and
permits communication between DIGITAL systems and IBM Remote
Job Entry programs supporting OS/HASP, OS/ASP, DOS POWER
and OS/RJE or a second DIGITAL-supplied 2780 emulator.

DATATRIEVE-11 provides RSTS/E with a file maintenance, report
generation and query facility.

Table 5-1 summarizes the components of RSTS/E. A complete list of
the hardware and software supported by RSTS/E is provided in the
RSTS/E Software Product Description.

85

RSTS/E

Table 5-1 RSTS/E System

System type

CPUs supported

Memory ranges

Minimum peripherals

Additional CPU hard-
ware

General timesharing system using the BA-
SIC-PLUS interpreter with optional lan-
guage support of COBOL, FORTRAN 1V,
RPG I, BASIC-PLUS-2, and APL. (DIBOL is
also available in CTS-500 systems.)

PDP-11/40 with Extended Instruction Set
and Memory Management; PDP-11/34,
PDP-11/45 or PDP-11/60 with Memory
Management Unit; PDP-11/70

Minimum: 64K words memory for most in-
stallations, though it is possible to configure
an adequate 48K system if only the BASIC-
PLUS interpreter is to be used.

Maximum: 124K words on PDP-11/34, 35,
40, 45, 50, 55, 60
1920K words on PDP-11/70

Console terminal

Disk system: RP02, RP03, RP04, RP05,
RP06, RM02, RM03

Dual drive RK05, RK06, RK07, or RLO1
TS03, TU45, TE10, or TE16 magnetic tape
systems (not required if at least three
RKO05s, three RLO1s, two RKO06s, or two
RKQ7s are included)

PDP-11/34,45,60 or PDP-11/70 FP11 Float-
ing Point Processor

PDP-11/40 KE11-F Floating Instruction Set
PDP-11/34 KK11-A Cache Memory Option

86

Additional peripherals

Optional software

RSTS/E

Up to eight line printers (LP11, LP05, LS11,
LV11 or LA11).

Up to a total of eight RKO5s; up to four
RLO1s; up to eight RK06s and RKO7s; up to
a total of eight RP02s, RP03s, RP04s,
RPO0O5s, or RP06s; up to a total of eight
RMO02, or RM03 disk drives.

Up to a total of eight RSO3 or RS04 disk
drives, or up to eight RS-11 disk drives.

Up to a total of eight TS03, TE10, TE16, and
TU45 magnetic tape drives.

Up to four RX11 floppy disk systems for a
maximum of eight RX01 drives.

Card reader (CR11 punched, CM11 marked
or CD11 high-speed punched card reader).
PC11 paper tape reader/punch.

Up to a total of 127 terminal line interfaces,
of which up to 16 can be single-line (KL11,
DL11, LC11, DC11, or DJ11), and the re-
mainder multi-line interfaces (DZ11s or
DH11s with or without DM11s).

Up to a total of 127 terminals: LA30, LA36,
LA180, VTO05, VT50, VT52, VT55, LT33,
LT35, RT02, or IBM 2741-compatible termi-
nals.

COBOL, RPG Il, BASIC-PLUS-2, APL,
FORTRAN IV Language Processors (DI-
BOL/DECFORM is also available on CTS-
500 systems);

SORT-11 File and index Sort Program;
RMS-11K Record Management Services.
DMS-500 RSTS/E Commercial Extensions
Package,

RSTS/2780 Remote Job Communications
Package,

DECnet/E Communications System.
DATATRIEVE-11 Query and Report Gener-
ator.

87

RSTS/E

SYSTEM CONFIGURATION AND OPERATION

RSTS/E system software exists as system code, language processing
code, and system program code. The system code and language pro-
cessing code are tailored at system generation time according to the
hardware configuration on which the system runs and the software
features which are chosen by the system manager. Once the system is
generated, the system code language processing code are frozen and
alterable only by patching or generating new code. The system pro-
gram code exists in a library of programs executable by the system
software or by individual users on the system. The library of programs
is alterable and expandable during timesharing without requiring re-
generation of the system.

System Code

The RSTS/E system code is stored on the system disk as a save-
image library (SIL). A save-image library, when loaded into memory, is
immediately executable by the PDP-11 computer. The system code
comprises many distinct elements which are either resident in memo-
ry or on disk during timesharing. Permanently resident elements are
the following:

e interrupt and trap vectors

e small and large system buffers

e system information and data tables
e disk and device drivers

o file processor modules

Optionally, the following are also resident modules:
e RJ2780 — Remote Job Entry handler
o DECnet/E — Network Communications handler

The following are either permanently resident or disk resident (over-
lay) elements, the choice to be selected at system generation time.

o file processor modules
e infrequently used utility routines

The following is loaded only at system start-up time.
e system initialization code

RSTS/E operations start when the system disk is bootstrapped. The
bootstrap routine loads the initialization code which determines the
hardware configuration and performs many consistency checks to
ensure the integrity of the software. When checking is completed, the
initialization code remains resident and allows many options, some of
which are described below.

88

RSTS/E

When timesharing operations are started, the initialization code is
overlaid by the permanently resident system code and the system
default run-time system. As timesharing operations proceed, infre-
quently used overlay code and system and user programs are loaded
from disk as needed.

Language Processors
The BASIC-PLUS language processor generally serves as the system
default run-time system. However, any of the languages mentioned
above may also be used for applications programs. The language
processors reside on the system disk in machine executable form and
can be either permanently resident in memory or temporarily resident
(swappable). If, for example, BASIC-PLUS were the system default
RTS operating under RSTS/E, the system disk would contain the fol-
lowing sets of elements:
1. Permanently resident elements

- BASIC-PLUS text editor and analyzer

- BASIC-PLUS incremental compiler

- BASIC-PLUS run-time system

2. Temporarily resident elements
- auxiliary run-time systems for other language processors
- objecttime systems
- language processors
- object time systems run as user jobs

In this example, the BASIC-PLUS code is loaded into memory at the
start of timesharing operations and remains resident during the ses-
sion. The code analyzes all BASIC-PLUS statements and generates
and executes intermediate (compiled) code. Many monitor services
are available to a BASIC-PLUS program through system function
calls.

The auxiliary run-time system associated with a given language pro-
cessor or object time system is loaded into memory only when a re-
quest is made to execute that language compiler or to execute acom-
piled program written in that language. The language compiler is
swapped out to disk as required, just as any normal user job would be.

The run-time system may vary in size from 2K words to 16K words,
and is generally shared among users.

System Program Code

A library of programs is produced and stored on disk during the sys-
tem library build procedures of system generation. Both the system
and users execute these programs to perform system housekeeping
and common utility functions. The system manager can use the pro-

89

RSTS/E

grams to monitor and regulate system usage. Some library programs
can be tailored by aitering the source statements supplied by DIGITAL
and recompiling to replace the current copy on the system disk.

Timesharing Operations Overview

To begin a timesharing session, a user logs in to the system by enter-
ing an account number and password at a terminal. The user is as-
signed an account number and password by the system manager.

Immediately after the user logs in, his terminal is under the control of
the keyboard monitor of the system default run-time system. The ter-
minal is also in edit mode, and is returned to edit mode when any
program execution is completed or whenever a CTRL/C is typed at the
terminal. If, for example, BASIC-PLUS is the main language
processor, the terminal edit mode would be the BASIC-PLUS com-
mand level. In edit mode, the system examines each ASCII text line
entered by the user and determines whether that line is a system or an
installation-defined command, an immediate mode statement, or a
program statement. (Installation-defined commands are made possi-
ble by the concise command language (CCL) facility described below.)
System and installation-defined commands are executed immediately
after being entered. Immediate mode statements are first translated
into an intermediate code, which is placed in the user’s job area, and
are executed immediately by the run-time system. Program state-
ments (lines of ASCII text preceded by line numbers) are stored in
their ASCIlI form in a temporary disk file under the user’s account.
Each program statement is also compiled into its intermediate code
representation, which is placed in the user’s area of memory.

A user job area is initialized at log-in time and set to a size of 1K or 2K
words, depending on the run-time system being used. When BASIC-
PLUS is used, the user job area is initially 2K words. The job area can
grow in increments of 1K words to a maximum size set by the system
manager at the start of timesharing operations. Intermediate code
created in the user’s job area upon entry of program statements in edit
mode is not executed automatically. The related program statements
being created can be changed. A copy of the intermediate code of the
program can be transferred to disk storage or to an external storage
medium.

A user changes from edit mode to run mode by typing the RUN system
command or the CHAIN immediate mode statement. In run mode, the
run-time system interpretively executes the intermediate code stored
in the user’s job area. When a program finishes execution, the terminal
is returned to edit mode, signaled by the printing of the READY mes-
sage. The user can interrupt the run-time system by typing CTRL/C,

90

RSTS/E

which also returns the terminal to edit mode. Note: “edit mode” is so
named because at that point the current BASIC-PLUS program can be
edited by retyping any line. When a language other than BASIC-PLUS
is used, an editing program must be run to make any changes in the
programs.

When the terminal is in run mode, a privileged user can detach the
running job from the terminal. This allows the user to login again, open
up another job area, and run another job. The detached job runs
unattended, but is still associated with the account under which the
user logged in. To regain control of a detached job running under
account, the user can log in on any free terminal and attach the job to
that terminal.

The RSTS/E system allows jobs to run (in either edit mode or run
mode) one at a time. A job runs until it either enters an I/0 wait state or
exhausts the time quantum which either the system or the system
manager has assigned to it. At the point when the currently running
job ceases to run, the scheduler finds the next job that is ready to run
and begins running that job. Meanwhile, the interrupt-driven 1/0 de-
vice handlers are processing requested data transfers. Upon
completion of a transfer, the scheduler marks the job that requested
the transfer as ready to run again and starts it from the point at which
execution ceased.

RSTS/E attempts to keep as many jobs in memory as possible. When
more memory is required to run a job than is available, the system
temporarily swaps some jobs out of memory and stores them in one of
the swap files defined by the system manager.

When it is again their turn to run, the jobs in the swap files are
swapped back into memory. Jobs waiting for keyboard input and jobs
waiting for device I/0 completion are most likely stored in the swap
files, while jobs currently running or involved in disk or magtape data
transfers are necessarily in memory.

As the system processes each job, it maintains accounting information
in memory concerning that job. When the job is logged off the system,
this information is used to update the accounting information stored
on the disk for that account.

System Generation

System generation is normally a one-time operation in which the sys-
tem manager defines the hardware configuration and selects the basic
software options. The system manager needs to perform a system
generation only when the system is first installed or when the hard-
ware configuration changes. Both the monitor and the BASIC-PLUS

91

RSTS/E

code can be generated in one operation or either can be generated
separately. Software options can be included in the system to increase
processing power or can be excluded from the system to conserve
memory.

In addition to defining the number and kinds of peripherals and pro-
cessing hardware during system generation, the system manager de-
fines special configuration options. Some of these options are dis-
cussed below.

Pseudo Keyboards

The system manager can define the system to have one or more
pseudo keyboards. A pseudo keyboard is a non-physical device that
has the characteristics of a physical terminal but that has no terminal
associated with it. As such, a pseudo keyboard has both input and
output buffers from which a program can extract output and to which a
program can force input. Using a pseudo keyboard as a
communications device, a user can write a program to control other
jobs. In addition, each copy of the BATCH system program requires
one pseudo keyboard to run jobs in a batch stream. If the installation
plans to run several copies of BATCH simultaneously, at least that
number of pseudo keyboards must be defined.

Multiple Terminal Service

The multiple terminal service option allows one BASIC-PLUS program
to interact with several users simultaneously by servicing their termi-
nals on one I/0 channel. This eliminates the need to run separate
copies of the same program when several terminals must perform a
similar function.

Maximum Number of Jobs

With sufficient hardware, RSTS/E can support up to 63 simultaneous
jobs. The maximum number of jobs that can be run efficiently de-
pends on the available memorv space and the number and types of
disks and processor options on the system. When a job is started, itis
given a number by the system. Jobs are numbered sequentially from
one to the maximum number of jobs the system can handle. Jobs
include both attached jobs and detached jobs. The maximum number
of jobs must be specified at system generation since it determines the
size of some monitor tables. The number can be lowered during sys-
tem initialization to adjust to changing requirements, but it can not be
increased above the configured maximum unless the system is regen-
erated.

Floating Point Precision and Scaled Arithmetic
The system manager can select either single precision (2-word) or
double precision (4-word) floating point numeric format. If the system

92

RSTS/E

has floating point hardware, the system manager can select a floating
point math package that will increase processing speed by using the
hardware instructions. The scaled arithmetic feature is included in all
4-word floating point math packages. Scaled arithmetic avoids loss of
precision in floating point calculations; it is therefore very useful in
calculating sums of money that cannot be manipulated easily as integ-
er quantities.

System-Wide Logical Names

RSTS/E allows the system manager to assign up to 50 logical names
on a system-wide basis. Any user can type a system-wide logical name
to access the device (and, optionally, the account) it represents.

File Processor Buffering

The optional file processor (FIP) buffering module accelerates file
processing on the RSTS/E system. The module reduces the number
of accesses to disk by maintaining more than one disk directory block
in memory. The system manager can enhance FIP buffering by allo-
cating additional memory to extended buffer space for use as a cache
for disk directory blocks.

System Initialization

After generating the system, the system manager bootstraps the
RSTS/E system to load the initialization (INIT) code into memory. The
INIT code is a collection of routines used to create the file structures,
system files, and start up conditions required for normal operation of
the RSTS/E system. The INIT code is essentially one large stand-alone
program with many functions. Immediately after a system generation,
several options must be used before the RSTS/E system can be
brought up for timesharing. Thereafter, the initialization code provides
the mechanism for altering critical system files and parameters as
installation requirements change. INIT includes routines which ensure
the integrity of disk file structures and perform many checks on the
hardware configuration. Options are provided which enable the sys-
tem to function even when certain hardware elements are inoperative.
Finally, the initialization code is responsible for loading the RSTS/E
Monitor into memory for normal timesharing operations.

Once the default system initialization and start-up parameters are set
up, the system manager does not have to repeat manual start-up each
time the system is started. Using the automatic restart feature, the
RSTS/E system can recover and restart the timesharing session auto-
matically after a system malfunction or power failure. When the system
is started in automatic restart mode, control by-passes all parts of the
start-up code that call for operator intervention.

93

RSTS/E

After system generation, however, or if the system manager chooses
to reset system parameters, the system manager must run the ini-
tialization code options. Some of these options are:

HARDWARE Reports on the survey of the hardware system taken
when the system disk was booted. Also lets the sys-
tem manager provide more information about the
hardware (e.g., non-standard addresses of devices).

DSKINT Initializes a disk cartridge or disk pack to contain a
RSTS/E file structure and removes bad blocks from
the user available space on the volume.

REFRESH Creates or rebuilds the system files in account [0,1]
on any initialized RSTS/E disk; rebuilds the storage
allocation table for a disk; adds blocks to the
BADB.SYS system file, the system list of bad blocks.

DEFAULT Establishes or changes the default start up condi-
tions such as the maximum number of jobs which
can be run and the maximum size of a job. It also
allows the user to change the system default run-
time system or to put it into high-speed semiconduc-
tor memory ifitis available.

START Brings the RSTS/E system up for normal timeshar-
ing operations. In addition, START allows the user to
set the maximum number of jobs, maximum job size
and memory relocation parameters to override the
DEFAULT specifications for this timesharing session
only.

System Management Utility Programs

RSTS/E includes system utility programs for both the system manager
and general user. Some system management utilities are privileged
programs and can be run only by the system manager. Other utilities
are not privileged and can be run by the general user, but have privi-
leged features that can be executed only by the system manager.

System management utilities include: initialization and maintenance
programs, resource management and accounting programs, system
error logging and analysis programs, operator services and spooling
programs, and user communication programs.

94

RSTS/E

System Initialization and Maintenance

INIT

SHUTUP

UTILTY

TTYSET

SYSTAT

VT5DPY
VT50PY

PRIOR

or

Controls system startup operations. This includes
mounting disks, adding system files, defining CCL
commands, establishing auxiliary run-time systems,
setting terminal characteristics, enabling LOGINSs,
starting system programs, and sending messages to
terminals. The system manager can create control
files that perfeorm timesharing start-up automatically.

Performs an orderly system shut down operation.

Allows the system manager to: enable/disable LOG-
INs, broadcast messages, Kill, suspend, or detach a
job; reset system date and time; enable and disable
disk caching; mount and dismount private disks; add
and remove system files; lock and unlock disks;
clean disks; zero user accounts; control run-time
systems; add and delete CCL commands; and add
and remove system logical names.

Sets terminal characteristics.

Monitors system status, including active jobs, device
assignments, auxiliary run-time systems and de-
tached jobs.

Displays the system status on a VT05, VT50, or VT52
DECscope and updates the status at given intervals.

Reports and allows the system manager to change
the priority, run burst and maximum size assigned to
an existing job.

Resource Management and Accounting

DSKINT

REACT

UMOUNT

SYSCAT

Initializes a disk for use on a RSTS/E system.
Creates or deletes user accounts on disks.

Allows the user to mount or dismount disk packs and
magtapes.

Prints a current directory listing of any disk.

95

MONEY

RSTS/E

Extracts system accounting information for any se-
lected account or all accounts; accounting informa-
tion includes amount of CPU time used, the KCT
factor (use of 1K words of memory for one-tenth of a
second), amount of connect-time, device usage
time, and disk storage usage.

Operator Services and Spooling Programs

OPSER

QUEMAN

SPOOL

BATCH

Establishes interjob communications on which the
controlled (on-line) programs QUEMAN, SPOOL,
BATCH and BACKUP depend. Provides the means
by which an operator can interact with the controlled
jobs. Defines a terminal (the operator services con-
sole — OSC) on which OPSER broadcasts informa-
tion.

Manages the queuing of jobs to spooling programs.
Collects queue requests, maintains a file of all pend-
ing requests and a table of all on-line spooling pro-
grams.

Handles requests made for line printer output and
maintains communications paths with both OPSER
and QUEMAN.

Executes files containing batch job commands that
have been queued on a batch device and maintains
communication paths with both OPSER and QUE-
MAN.

Error Logging and Analysis

ERRCPY

ERRINT

ERRDIS

Retrieves error-related data logged automatically by
the RSTS/E monitor. Upon occurrence of a
hardware error, monitor routines save the contents
of the device registers and send a message to
ERRCPY to retrieve the data and store itin a special-
ly formatted disk file (the error logging file).

Initializes and validates the error logging file.

Produces summaries of error-related data and for-
mats them for output to a terminal or line printer.
Allows the system manager to obtain a summary or
detailed report of the error-related data preserved
by the ERRCPY program; to zero the contents of the
error logging file; or to obtain a list of potentially bad
disk blocks.

96

RSTS/E

ANALYS Retrieves and reports on the critical contents of
memory obtained when a system crash occurs.

oDT Allows the system manager to open a file, a device,
or memory as an address space and examine or
change word or byte contents. The user can also list
the contents of system table locations.

User Communication

GRIPE Allows the general user to communicate comments
about the system to the system manager.

PLEASE Communicates directly with the operator services
program OPSER and, when OPSER is not running,
sends text to the system console terminal (KBO:).
Operators may run PLEASE to send commands to
OPSER. Users who are not valid operators may run
PLEASE to send text to the operator services con-
sole (OSC).

TALK Enables users to broadcast messages to other users
terminals.

DEVICE AND FILE CONVENTIONS

RSTS/E provides a device access structure that allows many users to
share the resources of the system in a consistent manner. This section
describes the device and file naming conventions, the public and pri-
vate disk structures, and the account system used by RSTS/E.

File Specifications
The file specification for any user-identifiable coliection of data is
completely described by some or all of the following information:

dev:[proj,proglfilnam.ext<prot>/option(s)

where “dev:” is a physical or logical device name, “[proj,prog]” is a
user account number, “filnam” is a user-specified file name, “.ext” is a
file name extension, “<prot>" is a file protection code and “/op-
tion(s)” is one or more file specification options.

For non-file structured devices such as paper tape, line printer, or
terminal devices, only the device designator is required in a file speci-
fication. For file-structured devices such as disk, DECtape or magnetic
tape, RSTS/E requires that the user at least specify a file name in
addition to the device designator. File name extension, account num-
ber and protection code all have system defaults, and need only be
specified if the system default is not to be used to identify the file.

97

RSTS/E

RSTS/E recognizes the following default extensions:

.B2S

.BAC

.BAS

.CBL

.CMD

.CTL

.DAT

.DIR

.FOR

.LOG

LST

.MAC

.0BJ

.ODL

.SAV

.TMP

.TSK

WRK

BASIC-PLUS-2 source file

BASIC-PLUS compiled program (binary format)
BASIC-PLUS source program file (ASCIl format)
COBOL source program file (ASCII format)

Indirect command input file for running a system

. program

Batch control file containing batch commands
Data file

Directory file

FORTRAN source program file (ASCII format)
Batch output log file

Listing file

MACRO source subprogram file (ASCII format)

Compiled or assembled object program file (binary
format)

Overlay Description Language input file
Executable program file (binary format)
Temporary file created by a system program
Executable program file (binary format)

Utility program work file

The account number field (containing the project and programmer
numbers) identifies the owner of the file. If it is omitted, the owner is
assumed to be the current user. This field is meaningful only for disk
and magtape files; it has no significance for DECtape files or files on
non-file structured devices.

98

RSTS/E

The account number can be represented by special characters to
indicate special system or user-defined accounts. For example, use of
the $ character (dollar sign) in the project-programmer field indicates
that the file is stored under the system library account ([1,2]), where all
standard utility programs are stored. Other special account number
characters are:

! Account [1,3] or installation-defined account

% Account [1,4] or installation-defined account
& Account [1,5] or installation-defined account
Account [n,0] where “n” is the current account pro-

ject number

@ Assignable account

The accounts associated with the !, % and & characters can be
changed during system installation. The # character is unique because
the system interprets it according to the account under which the user
is running. For example, if the user is running under account [10,20]
and specifies the # character, the system interprets it to mean account
[10,0]. This feature allows each project on the system to have its own
library of files.

When creating or renaming a file, a protection field can be specified.
Files can be protected against reading, writing, and deleting for three
classes of users where distinctions are made on the basis of the pro-
ject and programmer number of the user attempting to access the file.
The three classes of users are:

owner the individual user

projectgroup all users having the same project number as the
owner (termed the owner’s project group)

others all other users not in the owner’s group

The protection code assigned to a file consists of a selected sum of the
following numbers:

1 Read protect against owner
2 Write protect against owner
4 Read protect against owner’s project group

99

RSTS/E

8 Write protect against owner’s project group

16 Read protect against all others

32 Write protect against all others

64 Executable program; can be run only

128 Program with temporary privileges (normally occurs

only when file’s protection includes <64>)

For example, in creating a compiled BASIC-PLUS file, a default pro-
tection code of <124> is supplied. This permits only the owner to
access the file, since 124 = 64 + 32 + 16 + 8 + 4.

However, when any of the above protection codes are combined with
code 64, they may take on different meaning. If code 64 is combined
with code 1, for example, the new meaning is “Read/Write protected
against owner.”

A file specification option or options may be included as the final
element of the specification. These options may specify the size to
which a disk file is pre-extended, the minimum number of contiguous
disk blocks forming a cluster, and the read/write mode in which the
file's data is passed to the device driver.

System Accounts and Libraries

RSTS/E systems have three system accounts that are integral to the
operation of the system and have auxiliary accounts for more efficient
operation of the system. The MFD account is used on the system
device and other disk devices in the system to control system access.
The system library account is used by the RSTS/E system to manage a
library of generally available and restricted use system programs and
message and control files. A third special system account contains
RSTS/E Monitor files and routines which are critical to the operation of
the system.

Of particular interest to the system manager is the accounting infor-
mation maintained on each user account in the MFD on the system
device. This accounting information is normally accessed through the
system accounting utility programs. The system manager or privileged
users can also access and change this information in BASIC-PLUS
using the SYS monitor functions. Table 5-2 summarizes the account-
ing information maintained in the MFD.

100

RSTS/E

Table 5-2 Account Information Stored in the MFD on the System
Device

TYPE DESCRIPTION EXPLANATION

Identification Project-program- Account number
mer number under which a user
logs in and creates

files.

Password Password required
to gain access to the
system.

Accumulated Usage CPU time Processor time the
account used to
date

Connect time Number of minutes
the user has been
connected to the
system via a termi-
nal or remote line.

Kilo-core ticks Core use factor.
One KCT is the
usage of 1K words
of memory for one
tenth of a second.

Device time Peripheral device
time the account
has used.

Disk Storage Quota Number of 256-
word blocks the
user is allowed to
retain at logout time.

Privileged Capabilities and System Operation

Privilege is a special condition for a user job. With privilege, a job has
capabilities not available to other, nonprivileged jobs. These capabili-
ties are:

® unlimited access on the system

e ability to designate privileged programs

® use of privileged aspects of system programs

101

RSTS/E

e use of privileged SYS system functions and the PEEK function

A job has privilege under one of the following conditions:
e |tis alogged-out job (a job without an account).

e ltisrunning under a privileged account.

e ltis running a privileged program.

A logged-out job has privilege because the system must perform cer-
tain privileged operations to log a job in to the system. The privilege
remains in effect as long as the job remains logged out.

A job running under a privileged account has privilege. A privileged
account is one whose project number is 1. The system library account
[1,2] is an example of a privileged account. Such a job running under a
privileged account has permanent privilege. The privilege remains in
effect until the job is logged out or the job changes to a nonprivileged
account (one whose project number is not 1).

A privileged program is an executable file with a protection code of
<192> (the sum of the privileged protection <128> and the compiled
file protection <64>) or greater. A job running such a privileged pro-
gram has temporary privilege unless it is running under an account
which has permanent privilege. The job gains the temporary privilege
when it runs a privileged program. The privilege remains until the
pogram exits or until the program drops its temporary privilege.

This last type of privilege is necessarily temporary because users of
both privileged and nonprivileged accounts may be able to run a privi-
leged program. If the privilege were not temporary, an unexpected
halt in the job would leave the system vulnerable to unwarranted
tampering.

A temporarily privileged job can rely on the normal protection mecha-
nisms built into the system. Under programmed control, the job can
either permanently or temporarily relinquish (drop) its temporary pri-
vilege. This ability allows a job to perform privileged operations selec-
tively. For example, a job could set itself up initially using privileged
capabilities and then drop its privilege permanently because further
processing does not require privilege. Alternatively, a job could tem-
porarily drop and later regain its temporary privilege depending on the
type of processing required.

The following paragraphs summarize privileged capabilities.

Unlimited Access
No file in the RSTS/E system can be protected against a privileged
job. A privileged job can create and delete files under any account

102

RSTS/E

number on any disk. Such unlimited access does not generate the
normal PROTECTION VIOLATION error.

Ability to Designate Privileged Programs

A program is privileged when it is an executable file and has a protec-
tion code of <192> or greater. Only the system manager or other
users running under privileged accounts can create or modify
privileged programs.

Use of Privileged Features of System Programs

If a program is designated privileged and is not protected against
execution, any user can run the program with temporary privilege.
Temporary privilege means that system operations normally reserved
to a user of a privileged account can be executed while running under
a nonprivileged account.

The ability to designate a program as privileged allows the system
manager to extend use of privileged functions to non-privileged users.
For example, the program TTYSET allows general users to change
characteristics of their terminals. Such an action is a privileged system
function executable only by owners of privileged accounts. With tem-
porary privilege, however, execution of the function by the owner of a
nonprivileged account does not generate the normal PROTECTION
VIOLATION error.

The same TTYSET program additionally allows a privileged user to
change characteristics of other terminals. A check is built into the
program to ensure that a user attempting to change the characteristics
of a terminal other than his own is indeed a permanently privileged
user. In effect, the execution of some privileged functions is made
available to the nonprivileged user but other privileged features are
available only to those users logged into the system under privileged
accounts.

USER INTERFACE

This section describes the system facilities available to the general
user, including the system and installation-defined commands, the
system utility programs and the batch processing commands.

System and Installation-Defined (CCL) Commands

The RSTS/E system commands issued by the user at a terminal are
easy-to-use English words or abbreviations. The system accepts both
long and short command formats for inexperienced and experienced
users. It responds with understandable statements and, if a command
does not supply complete information, prompts the user for remaining
data.

103

RSTS/E

RSTS/E system commands include the following:

Table 5-3 lists the standard system commands.

Table 5-3 RSTS/E System Commands

Login/logout Commands

HELLO
LOGIN

LOG

|

ATTACH, ATT

BYE

These commands allow the user to log in to the sys-
tem by specifying an account number and password.
The system also notifies the user what job number is
assigned, whether any other users are logged into
the system under the same account, and what, if any,
jobs are running detached under the account. The
user can choose to attach to a detached job. If the
user is already logged in and issues a HELLO com-
mand, the user can change accounts or attach to
another job without logging off the system.

Allows the user to log off the system. Checks the
user’s disk quota to ensure that the user does not
exceed the limit allowed by the system manager.
Closes and saves any files remaining open.

Device Assignment Commands

ASSIGN

DEASSIGN

REASSIGN

Allows the user to reserve a device for use by a sin-
gle job, associate one or more logical names with a
particular device, assign a specific account to the
assignable account number “@,” or change the de-
fault protection code given to files created under an
account.

Allows the user to release a device or all devices
previously reserved for user by a job, cancel a logi-
cal name for a device, or cancel the association
between the @ account and a specific account.

Transfers the control of a particular device to anoth-
er job.

Program Execution and File Manipulation Commands

RUN

RUNNH

Executes a specified compiled program. If the pro-
gram does not exist as a compiled program, RUN
loads the BASIC-PLUS source program into the job
area, compiles and runs it.

Executes the program currently in the job area.

104

RSTS/E

CONT Restarts execution of the program currently in the
user’s job area where it was interrupted (either by a
STOP statement in the program or a CTRL/C issued
from the terminal).

CCONT Same as CONT but detaches job.

In addition to the standard commands, some system programs can be
run by typing a unique system command called a Concise Command
Language (CCL) command. CCL commands allow a user to enter one
command that runs a system utility and specifies a single command
for the utility to execute. The number of CCL commands which can be
defined varies from system to system, depending on the number of
“small buffers” configured into the system. An average system prob-
ably includes a fairly standard set of CCL commands for certain
RSTS/E utility programs. The system manager has the option of freely
adding to, deleting from, or modifying the standard set of CCL com-
mands.

The precedence of CCL commands is above that of RSTS/E com-
mands and BASIC-PLUS immediate mode statements. As a result, the
system manager can control the use of a command or immediate
mode statement. For example, the system manager could define a
CCL command named BYE that performs certain operations before
allowing a user to log off the system. As another example, the system
manager could define a PRINT command that performs operations
different from those of the BASIC-PLUS immediate mode PRINT
statement. The CCL command has no effect on a BASIC-PLUS state-
ment preceded by a line number since numbered lines can contain
only valid BASIC-PLUS statements.

The user types the CCL command and the program command on one

line and enters it to the system. For example, the user can run the PIP

system utility to print a copy of a file on the line printer in either of two

ways:

1. RUN $PIP The user issues the RUN command for the PIP pro-
gram stored in the system library account ($ = [1,2]).

LP:=FILE PIP requests a command by printing “”. The user
issues the request to print a copy of FILE on the line
printer. When PIP finishes the request, it prints
another “*” to prompt another command.

“AC The user types a CTRL/C to terminate PIP and re-
turn to system command level.

105

READY

2. PIP
FILE

READY

LP:=

RSTS/E

The system prints READY on the terminal to indicate
thatitis ready to accept a system command.

The user issues the CCL command PIP to run the
PIP program and issues the request to print a copy
of FILE on the line printer.

When PIP finishes executing the request, the system
prints READY on the terminal to indicate that it is
ready to accept a system command.

Although CCL commands are installation dependent, DIGITAL defines
a standard set of commands which are listed below. Note that the
UMOUNT system program is designed to be run only through the
MOQOUNT and DISMOUNT CCL commands.

CCL Command Associated Program

ATTACH LOGIN
BYE LOGOUT
CREATE EDIT
DISMOUNT UMOUNT
DIRECTORY DIRECT
EDIT EDIT
HELLO LOGIN
HELP PIP
LOGIN LOGIN
MOUNT UMOUNT
PIP PIP
PLEASE PLEASE
QUEUE QUE

SET TTYSET
SYSTAT SYSTAT
UTILTY UTILTY

In addition to the system commands and CCL commands, RSTS/E
supports the following special control character commands:

CTRL/C

CTRL/O

CTRL/S

CTRL/Q

CTRL/U

Stops any current program execution and returns
the system to command mode.

Suppresses or enables output to the user terminal.

Suspends output on a terminal until a CTRL/Q is
received.

Resumes output interrupted by a CTRL/S.
Deletes the current line entered.

106

CTRL/Z

CTRL/R

RSTS/E

Used as an end-of-file character.

Retypes current terminal input line.

General System Utility Programs

In addition to the system management utility programs, RSTS/E in-
cludes several utility programs available to the general user. These
programs include system information and terminal utility programs,
file utility programs, and special service programs. Like the system
management utilities, they are stored in the system library account
and are called and executed by issuing the RUN system command or,
if itis available, the appropriate CCL command.

General system utilities include the following:

System Information Programs

SYSTAT

QUOLST

MONEY

GRIPE

TTYSET

INUSE

Provides current system information concerning job,
device, and buffer status. This includes identifying
the active jobs in the system, the accounts under
which they are running, their size, their associated
keyboard if attached, and their current activity. It al-
so identifies which devices are assigned and to
which job they are assigned.

Provides current system information, including the
number of free blocks remaining on the system
structure, the number of blocks used by an account,
the number of free blocks remaining in an account,
and its disk quota.

Prints the current account status, including the
amount of CPU time, connect time, kilo-core ticks
and disk blocks used.

Allows the user to communicate comments to the
system manager.

Allows a user to establish terminal characteristics for
the terminal. The user can call a macro command
that establishes the standard characteristics for a
selected type of terminal or select an individual com-
bination of characteristics.

Prints the message “IN USE” at a terminal to allow a
user to leave the terminal momentarily.

107

RSTS/E

File Manipulation Programs

EDIT

PIP

COPY

BACKUP

DIRECT

FILCOM

Allows the user to create or modify text or program
files.

Allows the user to transfer files from one device to
another, merge files, delete files, zero a device direc-
tory or list a device directory.

Copies all the information on a disk, DECtape or
magtape device.

This comprises a package of programs which allow
the user to preserve and recall files stored under one
or more user accounts by transferring multiple files
from the private or public disk structure to a private
disk, a DECtape or a magtape.

Prints directories of selected file-structured devices.

Compares two text files line by line and prints any
differences found.

Special Service Programs

MAC
MACRO

LINK

TKB
(Task Builder)

QUE

RUNOFF

Assemble MACRO-11 source code into object for-
mat. MAC operates under the RSX-11 run-time sys-
tem; MACRO operates under the RT-11 run-time
system.

Links object modules produced by FORTRAN or
MACRO into an executable image which runs under
the RT-11 run-time system.

Builds an executable image by linking object mod-
ules produced by the MAC assembler or language
processors other than FORTRAN. The resulting task
image runs under the RSX run-time system specified
by the user.

Creates jobs that are to be executed by spooling
programs such as BATCH and SPOOL. It also lists
pending requests and kills pending requests.

Generates a formatted listing of a text file containing
special RUNOFF text format commands.

Batch Processing
The capability to execute a batch of commands allows the user to
submit jobs to be run without terminal dialog. Batch processing is

108

RSTS/E

particularly useful in executing large data processing operations for
which interactive requirements are not a factor.

Batch input can be submitted from standard job control files on a
random access file-structured device or from an 1/0 device such as
the card reader. Such input consists of elements of the batch control
language and is collectively referred to as a batch stream. It is possible
to execute multiple streams simultaneously by running multiple copies
of the BATCH program. The capability to run more than a single batch
stream is controlled by the system manager.

To request the running of a batch job, the user runs the library pro-
gram QUE and specifies the batch control file or files as in the follow-
ing example:

RUN $QUE

QUE Vnnnn - RSTS Vnnnn

#Q BA:BATJOB=FILE1,FILE2,FILE3.DAT
#

Or, if QUE is available as a CCL command:
QUE BA:BATJOB=FILE1,FILE2,FILE3.DAT

The user normally queues a batch job to device BA:. The job and log
files in this example will be named BATJOB, and the files FILE1.CTL,
FILE2.CTL, and FILE3.DAT will be concatenated to form the batch
control file. The log file BATJOB.LOG will be printed after the job is
complete.

The BATCH command set consists of the following control com-
mands:

$JOB Marks the beginning of a job and assigns a job
name.

$EOJ Marks the end of a job.

$BASIC Calls the BASIC-PLUS compiler to compile a source
program.

$RUN Executes a specified program.

$CREATE Creates afile consisting of data in the input stream.

$DATA Marks the beginning of an input stream.

$EOD Marks the end of an input stream.

$DELETE Deletes a specified file.

109

RSTS/E

$COPY Copies a specified file.
$PRINT Prints a specified file on the line printer using the
spooler.

$DIRECTORY Produces adirectory listing.

$MESSAGE Logs a message on the system console terminal.
SMOUNT Requests system operator to logically mount a de-
vice.

$DISMOUNT Cancels a logical device assignment and requests
operator to dismount a device.

Data Formats
Under BASIC-PLUS, RSTS/E allows users to store data in any of three
formats.

STRING A sequence of ASCIl characters treated as a unit.
One ASCII character is stored in one byte and
strings are normally variable length.

INTEGER A number in the range -32768 to +32767. Integers
are stored in two bytes in 2’s complement represen-
tation. Integer operations provide economies in
space as well as increases in processing speed over
floating-point operations.

FLOATING A number approximately in the range of 107% to 10%8.

POINT Floating point numbers can be stored either in 2-
word format, which allows up to seven decimal digits
of precision, or 4-word format, which allows up to 17
decimal digits of precision.

To perform decimal calculation on a system having 4-word floating
point numeric storage, the user has an option to scale the numbers
stored in the system. The user can specify the number of decimal
places in fractional numbers by use of the SCALE system command.

With the scaled arithmetic feature, the scale factor can be set to an
integer value between 0 and 6. The system uses the scale factor to
preserve the accuracy of fractional numbers to the selected number of
decimal places. The value 0 is used to disable the scale factor, and
allow the system to perform calculations using standard double preci-
sion floating point arithmetic.

110

RSTS/E

With a scale factor between 1 and 6 in effect, the system, upon input of
a floating point number, internally moves the decimal place the select-
ed number of places to the right and rounds it to an integer. The
system performs all subsequent calculations with the floating point
integers and, in turn, translates the result of each arithmetic operation
into a floating point integer with the selected scale factor. On output
the system moves the decimal point to the left of the selected number
of places and passes the result to the output format routines.

Scaled arithmetic conversion thus avoids the loss of precision inher-
ent in representing fractional numbers in binary notation, since the
system can represent the integer accurately in floating point format.

File Access Techniques
Under BASIC-PLUS, RSTS/E provides three methods of file access:

Formatted For standard sequential I/0 operations.
ASCII

Virtual Arrays For random access of large data files. A virtual array
is stored on disk and can contain string, integer and
floating point matrices.

Record I/0 Allows the user to have complete control over 1/0
operations.

Formatted ASCII data files are the simplest method of data storage,
involving a logical extension of the BASIC-PLUS PRINT and INPUT
statements. The INPUT statement allows data to be entered to a run-
ning program from an external device, for example; the user’s key-
board, a disk, DECtape, or paper tape reader. The PRINT statement
causes the output of a specified string of characters to a selected
device.

The PRINT-USING statement allows the user to control output format-
ting. A special set of formatting characters allows the user to format
strings and numeric fields with tabs, special characters and punctua-
tion. For example, the user can format check amounts with asterisk-fill
for protection.

The RSTS/E virtual array facility provides the means for a BASIC-
PLUS program to operate on data structures that require fast random
access processing yet are too large to be accommodated in memory
at one time. To accomplish this, RSTS/E uses the disk file system for
storage of data arrays, and maintains only portions of these files in
memory at any given time.

All references to virtual arrays are ultimately located via file addresses

111

RSTS/E

relative to the start of the file. No symbolic information concerning
array names, dimensions, or data types is stored within the file. Thus,
different programs may use different array names to refer to the data
contained within a single virtual array file.

Virtual arrays are stored as unformaited binary data. This means that
no I/0 conversions (internal form to ASCIl) need to be performed in
storing or retrieving elements in virtual storage. Thus, there is no loss
of precision in these arrays, and no time wasted performing conver-
sions.

Any data element in a virtual array is completely contained within a
single element (256 words) of disk storage. This restriction has no
effect on integers and floating-point items, where the size of data items
is fixed (1-word integer, 2- or 4-word floating point numbers), but does
limit the maximum length of a virtual string to 512 characters (512
bytes). The number of data elements stored in each disk segmentis a
function of the size of each element.

Strings in virtual storage occupy pre-aliocated space in the virtual file,
and thus differ from strings in memory, where space is allocated
dynamically. A disk segment containing virtual strings can be consid-
ered to be a succession of fields, each of the maximum string length.
When a virtual string is assigned a new value, it is stored left-justified
in the appropriate field. If the new string value is shorter than the
maximum length, the remainder of the field is filled with zeros. When
the string is retrieved, its length is computed as the maximum string
length minus the number of zero-filled bytes.

The third type of I/0, record 1/0, permits a program to have complete
control of 1/0 operations. Record 1/0 is the most flexible and efficient
technique of data transfer available under BASIC-PLUS, although itis
less simple to use than formatted ASCII 1/0 or virtual array 1/0.

Input and output to record 1/0 files is performed by the BASIC-PLUS
GET and PUT statements. These statements allow the user to read or
write specific blocks (physical records) of a file, where the block size is
dependent on the type of device being accessed. For example, disk
file blocks are always 512 bytes long, while records from a keyboard
device are one line long, where a line is delimited by a carriage return
or similar terminating character. With disk files, the program has the
capability of performing random access 1/0 to any block of the file.
Furthermore, using record |I/0O operations, the user can create a logi-
cal organization for file formats by controlling record length.

Normally, the system permits only one user at a time to have write
privileges on any given file, to prevent loss of data if two users try to

112

RSTS/E

write the same block of a file. However, in certain applications (for
example, sales order-entry applications) it might be normal for several
users to be updating a single master file. For this reason, a special
UPDATE option is available with RSTS/E Record 170 operations that
permits multiple users to have write access to a file while guarding
against simultaneous writing of a single physical record. In this case,
write privileges are gained on a record-by-record basis, and no two
users can have write access to the same record simuitaneously, al-
though multiple users can open the file for write operations.

Logical Disk Structures
Access to all executable code and to system and user data on the
RSTS/E system is accomplished through a logical structure of files.

The logical disk structure is divided into two types: public and private.
The file structure on a disk, whether it is designated public or private,
is the same.

A public disk is a disk on which any user can create files. Every user
has an account on a public disk. There is always at least one public
disk on the system, which is called the “system disk.” All public disks
together on a system are called the “public structure” because the
system itself treats all of the public disks together as a unit. For exam-
ple, when a program creates a file in the public structure, that file is
placed on the public disk with the most space available. This is done to
ensure proper distribution of files across the disks in the public struc-
ture. The actual determination of which disks on a particular system
are public and which are private is left to the system manager.
Therefore, this allocation will vary from system to system.

The system disk contains the system code. Language processors and
the library of system programs are contained on the public structure.
Storage of active user jobs which are temporarily swapped out of
memory are in swapping files, at least one of which is on the system
disk. When a system includes one or more fixed head disks in its
configuration, it is frequently advantageous to put some swapping files
on a fixed head disk. Remaining space on the system disk and all
space on other public disks is available for general storage of user
programs and data files.

Any remaining disk drives in the RSTS/E disk structure can be devot-
ed to private disk packs or disk cartridges. A private disk is one that
belongs to a few user accounts, conceivably to a single user account.
Files can be created only under these accounts, and can be read (or
written) by other users only if the protection code of the file permits. A
user who does not have an account on a private disk cannot create a
file onit.

113

RSTS/E

Private disks are always referenced by a physical or logical device
name, for example, “DK1:” for the RKO05 disk drive unit 1, or “CREDIT:”
for the device assigned the logical name CREDIT. The public structure
is normally referenced by default; when no device name is given, the
system assumes the public structure. It also has the specific name
“SY:”. The system will not allow two files of the same name to exist in
the public structure for a single user.

All public disks must be physically on-line and logically mounted
whenever the system is running and must be accessible to all users
during timesharing operations. Private disks can be logically mounted
and dismounted and interchanged as needed during timesharing op-
erations.

Control of and access to files in the RSTS/E system is accomplished
by two structures called a Master File Directory and a User File Direc-
tory. A Master File Directory, or MFD, exists on each disk initialized for
use on the RSTS/E system. The MFD is treated as an account on the
disk, has a project-programmer number [1,1], and catalogs other ac-
counts on the disk. The MFD on the system disk is a special case,
since it maintains a catalog of the accounts which can be used to log in
to the system. MFD accounts on other disks contain entries of ac-
counts which can create files on that disk. Any user gains access to
any file on a private disk if the protection code of the file permits.
However, only those users whose accounts are entered in the MFD of
the private disk can create files on the disk.

A user File Directory, or UFD, exists for each account under which files
are created. The UFD contains éccounting and retrieval information
for each file stored under that account. A UFD for an account on a
public disk is not created until a file is created under that account on
that disk.

SYS SYSTEM FUNCTIONS AND THE PEEK FUNCTION

SYS system function calls allow a user program written in BASIC-
PLUS to perform special I/0 functions, to establish special character-
istics for a job, to set terminal characteristics, and to request execution
of special monitor operations. The function calls are available in the
BASIC-PLUS and BASIC-PLUS-2 languages. They are system depen-
dent and their format allows a variable number of parameters through
the use of concatenated strings of binary values.

There are twelve SYS functions. With one exception, all the functions
can be called by nonprivileged user programs. A special SYS function
can be used to issue calls to FIP, the file processor. SYS calls to FIP
allow the user to select a FIP function. Some of the FIP functions can
be called only by privileged user programs.

114

RSTS/E

The twelve SYS functions are listed below:

Cancel CTRL/O

Enter tape mode

Enable echoing

Disable echoing

Enable delimiterless
character input mode

Exit to Editor with no
prompt message

Get core common

Cancels the effect of the user’s typing a
CTRL/O on a specified terminal.

Disables the terminal echo feature (useful
when reading a paper tape with the low
speed teletypewriter paper tape reader).

Reverses the effects of an enter tape mode
function call or a disable echoing function
call.

Prevents the system from echoing informa-
tion typed on a specified terminal. For ex-
ample, information such as a password is
not displayed but is accepted as input by
the system.

Allows less than a full line to be accepted as
input from the terminal. Normally, the sys-
tem waits until a line terminated by a car-
riage return, line feed, form feed, CTRL/D
combination or escape character has been
typed before accepting input. In delimiter-
less character mode, one or more charac-
ters typed at the terminal are passed im-
mediately to the program by the next
keyboard input request statement without
waiting for a delimiting character.

Exits from the program but does not clear
the program from memory, does not printa
prompting message and does notclose
files. Thus, this exit allows the user to con-
tinue running the program.

Allows a program to extract a single string
from a data area loaded by another pro-
gram previously run by the same job. The
data area is called the core common area.

115

Put core common

Exit and clear program

Call to FIP

Cancel all type-ahead

Return information on
last opened file

RSTS/E

Allows a program to load a single string in a
string common data area called core com-
mon. This string can be extracted later by
another program, running under the same
job and called by the CHAIN statement. This
function allows a program to pass a limited
amount of information when a CHAIN state-
ment is executed.

Clears the current program from memory
and returns control to the user’s private
run-time system. Optionally, transfers con-
trol to a specified run-time system and es-
tablishes it as the job’s private default run-
time system. Cancels all type-ahead. Re-
turns information on last open file.

Causes a dispatch call to the system file
processor.

Allows a program to clear all unsolicited in-
put from a terminal’s buffers. This is partic-
ularly useful for screen-oriented applica-
tions where the echoing of unsolicited input
would ruin the visual effect of “painted”
templates.

Allows a program to determine the device
and account on which it is stored, or to de-
termine where the most recently opened file
resides.

FIP calls allow the user program to perform a variety of file, device, job
and system operations. Nonprivileged user programs can issue the
following FIP function calls:

Monitor Information Calls

Read Accounting Data

Reports the following accounting data for
the program’s account:

Account number — project number, pro-
grammer number

CPU time — amount of processor time used
KCT use — one KCT (kilo-core tick) is the
use of 1K words of memory for one-tenth of
asecond

116

Get Monitor Tables

Return Error Message
Device Assignments
Assign/Reassign De-
vice

Deassign a Device

Deassign all Devices

RSTS/E

Connect time — amount of time the termi-
nal has been connected

Device use time — amount of time spent
using devices excluding the public disks
Disk storage — number of disk blocks allo-
cated

Logout quota — number of disk blocks al-
lowed to retain at logout time

Reports Monitor information such as the
number of configured terminals, maximum
number of jobs, address of the memory al-
location table, address of the job status ta-
ble, etc.

Extracts the error message text corres-
ponding to an error code.

Reserves an 1/0 device for use by a job, if it
is available. Reassign transfers device con-
trol to another job.

Releases a device to the device pool for use
by other jobs.

Releases all devices previously assigned to
a job.

Directory and File Control Calls

Filename String Scan

Directory Lookup on
Index

Magtape Directory
Lookup

Disk Directory Lookup

Disk Wild Card
Directory Lookup

Determines whether file naming syntax is
valid. For example, it can check whether a
given file name is valid.

Searches for and reports a directory entry
by its index position in the directory.

Searches for and reports a directory entry
on a magnetic tape device.

Searches for and reports a directory by
filename entry on a disk device for a speci-
fied file.

Searches for and reports directory entries
on a disk device for all files with (a) speci-
fied character(s) occurring in the file name
or extension.

117

Job Control Call
CTRL/C Trap Enable

Communications Call

Send a Message

RSTS/E

Allows a program to control processing
when a CTRL/C is typed on the terminal.

Allows a job to send a message to an eligi-
ble receiving job.

FIP calls that can be used by privileged programs are:

Monitor Information Calls

Read or Reset Ac-
counting data

Accounting Dump

Change Date and Time

Job Control Calls

Change Password or
Quota

Change priority, run
burst or maximum size

Set Special Run Priori-
ty

Lock/Unlock Job in
Memory

Drop and Regain
(Temporary) Privileges

Allows a program to reset accounting data
for any job after reading the data.

Allows a program to dump accumulated ac-
counting data.

Changes the date and time values main-
tained by the system.

Allows a program to change a user’s pass-
word or logout disk space quota.

Allows a privileged user to give a running
job an increased or decreased chance of
gaining run time in relation to other running
jobs, and to determine how much CPU time
the job can have if it is compute bound.

Allows a program to raise the priority of a
job slightly above that of other jobs in its
priority class.

Prevents unnecessary swapping by forcing
the job executing the call to remain in mem-
ory. The call eliminates swapping time
between run bursts.

Allows an executable program to either
temporarily or permanently drop temporary
privileges. A program normally issues this
call after it has used temporary privilege to
set itself up. If a program temporarily drops
its temporary privilege, it can use this call to
regain the privilege.

118

Create Job

Kill Job
Login

Logout

Detach

Reattach

Set Terminal Charac-
teristics

System Control Calls
Set Logins

Enable Logins

Disable Logins

System Shutdown

Broadcast

Force Terminal Input

RSTS/E

Creates a new job and causes it to run a
specified program.

Terminates a job under program control.
Logs ajob in to the system.

Logs out a job that was initiated by a user at
a terminal.

Dissociates the calling job or another speci-
fied job from its terminal. This frees the ter-
minal for other use and makes the noninter-
active job immune from interruption by
someone typing a CTRL/C at the terminal.

Attaches a detached job to a terminal.

Performs the same functions as the system
program TTYSET. Allows a user to set lower
case, baud rate, scope operation, etc., on a
specified terminal.

Sets the number of allowable logins to a
specified number.

Sets the number of logins allowed to the
maximum number possible.

Sets the number of logins allowed on the
system to one. If no jobs are active on the
system, one user can log in. Once one user
is logged in, no other users can log in to the
system. The exception is the console termi-
nal, from which it is possible to log in de-
spite having the number of logins restricted.

Logs the current (and only) job off the sys-
tem and bootstraps the initialization code
from the system disk.

Allows the user program to print a message
on another user’s terminal.

Allows the user program to force data entry
on another user’s terminal. The forced data
is seen as input by the system.

119

File Management Calls
Create User Account

Delete User Account

Change File Statistics

Set Disk Access

Clean a Disk
Communication Calls

Declare a Message Re-
ceiver

Remove a Receiver

RSTS/E

Allows the user program to create an entry
in the MFD on a disk for an account.

Allows the user program to remove a MFD
entry for an account on a disk.

Allows the program to change a file’s crea-
tion date or time or date of last access in the
UFD entry for thefile.

Allows the program to logically mount or
dismount a disk pack and to lock or unlock
a disk pack (allow or prevent access).

Rebuilds the Storage Allocation Table on a
disk.

Notifies the system that an eligible receiver
job is ready to receive messages. The sys-
tem sets up a message queue and relays
messages sent from other jobs when the
program asks for a message.

Notifies the system that a receiving job is no
longer eligible to receive messages.

The PEEK function allows a privileged user to examine any word loca-
tion in the monitor part of memory. The program can examine words
in small or large buffers, in the resident portion of the file processor,
and in the low core and tables section of memory. The function does
not allow a user program to examine the contents of another user’s

program.

The PEEK function is normally used to examine either addresses re-
turned by Get Monitor Table calls or addresses of fixed monitor loca-

tions.

120

RSTS/E

RSTS/E SYSTEM SUMMARY

Is
e General purpose timesharing

® High performance timesharing BASIC
® Interactive environment

e Multi-language

® Batch processing
®

Basis of most commercial applications

Is not

® Real-time

e High volume transaction processing
e Block mode application terminals

Includes Data Management/Utilities
e RMS-11

SORT-11

DATATRIEVE-11

DMS-500

Languages
BASIC-PLUS
BASIC-PLUS-2
coBOL
FORTRAN IV
MACRO-11
RPG I
DIBOL-11

121

122

CHAPTER 6

REAL-TIME MULTI-PROGRAMMING SYSTEMS
RSX-11M (V3.1) AND RSX-11S (V2.1)

OVERVIEW
RSX-11M is the primary PDP-11 real-time operating system. It
supports multi-tasking, dynamic memory management, multiple pro-
gramming languages, interactive program development and a wide
range of equipment interfaces. Task scheduling in RSX-11M is event
driven, in contrast to systems which use a static scheduling mecha-
nism to determine a task’s eligibility to execute. RSX-11S, a subset of
RSX-11M, provides a dedicated execute-only environment for moni-
toring and controlling many real-time processes concurrently.

FEATURE TOPICS

Functions and Features

- Common RSX-11 Operating System Concepts

- Multiprogramming
- Priority Scheduling

System Organization

- RSX-11M Executive and Memory Structures

RSX-11S System Components
System Conventions

Devices

File Structures

File Specifiers

RSX-11 MCR Commands (Table 6-1)
Indirect Files (Command Files)
System Directives

File Control Services (FCS)

RMS-11 Record Management Services
System Utility Programs

RSX-11M System Summary

123

RSX-11M AND RSX-11S

FUNCTIONS AND FEATURES

RSX-11 is a unique family of compatible real-time multiprogramming
operating systems for the PDP-11 computers. The RSX-11 family in-
cludes RSX-11M, a compact, efficient operating system, and RSX-
118, a small, execute-only operating system for dedicated application
environments. The RSX-11 operating systems comprise a compatible
hierarchy. RSX-11S is a memory-based proper subset of RSX-11M,
fully compatible internally. A program written to execute as a task
under RSX-11S will execute under RSX-11M without change.

RSX-11M includes an executive, MCR services, FCS or RMS file sys-
tem, and a complete set of system utility programs. Under RSX-11M,
programs can be written in MACRO, FORTRAN IV or FORTRAN IV-
PLUS, COBOL-11, BASIC-11, or BASIC PLUS II.

RSX-11M is a multi-user system. More than one terminal user can
interface with the Monitor Console Routine (MCR) services simulta-
neously. An MCR facility allows users to create a file containing execu-
table commands to control common sequences of operations. The
MCR facility in RSX-11M systems also allows the user to create indi-
rect command files using a procedure control language to effect a
multi-stream batch capability.

RSX-11S requires a host RSX-11M, RSX-11D or VAX system for
program development and system generation. Tasks can be written in
MACRO, FORTRAN 1V, or FORTRAN IV-PLUS, assembled or com-
piled, subsequently linked on the host system, and then transported to
an RSX-11S system for execution. The minimum RSX-11S system
includes an executive (with incorporated device drivers) and a special
FCS that contains no support for file-structured devices. The user can
also add a subset of RSX-11M’s MCR services if the hardware configu-
ration includes a terminal. If on-line task loading is desired, the user
can include an On-line Task Loader (OTL) utility. If the user wants to
save a system image for subsequent re-booting, the user can include
the System Image Preservation (SIP) utility.

Since RSX-11S is a memory-only system, it does not support a file
system, non-resident tasks, task checkpointing, dynamic memory al-
location or program development. It does, however, support data stor-
age on all devices supported by RSX-11M. Its purpose is to provide a
run-time environment for the execution of tasks on a small system with
avery modest complement of peripherals.

RSX-11M runs on any of the PDP-11 processors except the LSI-11.
The minimum system requires a console terminal and either one of the
larger disks plus a magnetic tape system, or an RKO5 disk system with
a secondary storage device. Without a Memory Management Unit, the

124

RSX-11M AND RSX-11S

system can support between 16K and 28K words of memory. With
memory management, memory can range between 24K and 124K
words or up to 1920K words with a PDP-11/70. At least 24K of memory
is required for concurrent applications execution and program devel-
opment. A program or shared data area may be anywhere from 32
words in size to as large as the system memory size minus the size of
the operating system.

The minimum configuration for an RSX-11S system is a PDP-11
processor (including the LSI-11) with at least 8K words of memory and
one load device. At least 16K words are required for on-line task
loading or the execution of tasks written in FORTRAN IV-PLUS. With a
Memory Management Unit, memory can expand up to 124K words or
1920K words with a PDP-11/70.

The operating systems support a broad range of peripherals including
card readers, line printers, fixed-head disks and a variety of laborato-
ry, industrial control, and communications equipment. Note that al-
though the maximum configuration for an RSX-11S system is the
same as that for an RSX-11M, RSX-11S is a memory based system
and does not support disks or magnetic tape as file-structured de-
vices.

COMMON RSX-11 FAMILY OPERATING SYSTEM CONCEPTS

The RSX-11 family of operating systems is designed to provide a re-
source-sharing environment ideal for multiple real-time activities. The
basic facilities that the RSX-11 family provides for handling multiple
requests for services while maintaining real-time response to each’
request are:

e multiprogramming

e priority scheduling

e contingency exits

e power-fail shutdown and auto-restart

In addition, RSX-11M provides:

e disk based operation

e checkpointing

e dynamic memory allocation (optional)

The basic unit of work which these operating system facilities service
is called the task. A task consists of one or more programs written in a
source language such as MACRO or FORTRAN, assembled or com-

piled into an object format, and then built into a task image by the
linker utility called the Task Builder. In addition to the normal linkage

125

RSX-11M AND RSX-11S

functions of combining object modules or creating overlays, the Task
Builder sets up the basic task attributes that determine the task’s
resource requirements and relationship to other tasks in the system.
The significant task attributes that affect a task’'s operation in a real-
time multiprograming environment are:

e Partition — the section of memory where the task will reside when it
executes.

® Priority — the task’s relationship to other tasks competing for sys-
tem resources.

e Checkpointability — the task’s ability to be swapped out of memory
when it is not executing to make room for a task of higher priority
thatis ready to run.

Once a task is built, it can be installed in the system and executed.
Task installation simply registers a task’s attributes with the system.
The task is not in memory, nor is it in competition for system re-
sources. An installed task can be put in active competition for system
resources by the operator or by another active task in the system.

When an installed task is activated, the system will allocate necessary
resources, bring the task into memory for execution, and place it in
competition with other active tasks. Task installation is the basis for
efficient task operation. An installed task uses very little memory
resource; yet, when the task is needed to service a real-time event, it
can be introduced into the system quickly since its basic parameters
are already known to the system.

Tasks can also share code and data among themselves through the
common partition facility. A common partition is made accessible to
the system and to tasks by installing the common partition and the
tasks which intend to use it.

The following paragraphs describe how task execution is handied by
the RSX-11 systems.

Multiprogramming

Multiprogramming is the concurrent execution of two or more tasks
residing in memory. In a single processor, only one task can have
control of the CPU at a time. When that task does not need CPU time
(for example, when it is waiting for input from a terminal), another task
that needs CPU time can execute. In the RSX-11 family, the multipro-
gramming of tasks is accomplished by logically dividing availablie
memory into a number of named partitions. Tasks are built to execute
out of a specific partition, and all partitions in the system can operate
in parallel.

126

RSX-11M AND RSX-11S

In general, RSX-11 systems can have two kinds of partitions: system
controlled and user controlled. System controlled partitions are in-
tended for the execution of tasks where the user wishes the system to
implicitly handie the allocation of memory. User controlled partitions
are intended for the execution of tasks where the user wants to handle
the allocation of memory.

A system controlled partition is dynamically allocated by the system to
contain as many tasks as will fit simultaneously in the partition. Tasks
are allocated a contiguous region in the partition, and are relocated
using the hardware Memory Management Unit. The Memory Manage-
ment Unit provides the facilities necessary for memory management
and task relocation and protection. Systems using the Memory Man-
agement Unit are called mapped systems because the hardware al-
lows the system to map virtual memory addresses into direct physical
addresses. Only mapped RSX-11M systems can have system con-
trolled partitions.

A user controlled partition is allocated to only one task at a time. The
user has complete control over system activity in this type of partition.
As a result, it provides an ideal environment for a real-time task’s
execution.

In RSX-11M or RSX-118S systems, a user controlled partition can be
subdivided into as many as seven non-overlapping subpartitions. The
subpartitions occupy the identical physical memory occupied by the
main partition. Tasks built to execute in the subpartitions can execute
in parallel. Tasks cannot, however, be resident in a main partition and
its subpartitions simultaneously. If a main partition is occupied, the
subpartitions can not be. All subpartitions can have tasks residing in
them; therefore, up to seven potentially parallel task executions can
exist within a pre-empted user-controlled main partition. The goal of
subpartitioning is to reclaim large memory areas when a task
requiring a main partition is no longer active.

Furthermore, RSX-11M and RSX-11S systems can be mapped or un-
mapped systems. If the hardware configuration does not include a
Memory Management Unit, the RSX-11M system is an unmapped sys-
tem. If a Memory Management Unit is available, the RSX-11M or RSX-
11S system can be a mapped system. Mapped systems can have both
system controlled and user controlled partitions. Unmapped systems
can have only user controlled partitions.

From the operator’s point of view, almost no differences exist between
mapped and unmappped RSX-11 systems. One difference exists,
however, in installing tasks into a partition. In unmapped systems, a
task is linked to be installed and run in a partition with a specific base

127

RSX-11M AND RSX-118

address. It can not run in any partition whose base address is not the
same. In mapped systems, a task can be installed into any partition
large enough to contain it.

Mapped RSX-11M or RSX-11S systems provide automatic memory
protection. The memory area assigned to a task is protected from
other tasks executing in the system. Each task has an absolute ad-
dress range in which to execute. A task can reference and alter memo-
ry only within that specific task area which it owns.

Priority Scheduling

Task scheduling in the RSX-11 family is primarily event-driven, in con-
trast to systems which use a time slice mechanism for determining a
task’s eligibility to execute. The basis of event-driven task scheduling
is the software priority assigned to each active task. A task’s default
priority is set when the task is built. It can be altered once it is installed
by an MCR command from the console. Priorities can also be changed
dynamically from within a task.

Tasks are run at a software priority level ranging from a low of 1 to a
high of 250. The executive grants central processor resources to the
highest priority task capable of execution. That task retains control of
the central processor until it declares a significant event.

A significant event occurs when a task issues a system directive that
implicitly or explicitly suspends a task’s execution, or when an external
interrupt occurs that can affect a task’s execution. For example, a task
can issue a directive that indicates it wants to wait until an 1/0 opera-
tion is complete before continuing execution; a significant event is
declared when the 1/0 operation is complete. A special system direc-
tive also exists that allows a task to stimulate the event-driven task-
scheduling mechanism explicity.

When a significant event is declared, the executive interrupts the exe-
cuting task and searches for a task capable of executing. The highest
priority task that has all the resources it needs to run and can make
use of the resources it needs will be the task that gains control of the
CPU.

Event flags are associated with significant events. When a significant
event occurs, the event flag indicates the specific cause of the inter-
rupt.

There are 64 event flags: 1 through 32 are local to the task, while event
flags 33 through 64 are common to all tasks. A task can set, clear, test,
and wait for any event flag or combination of event flags to achieve
efficient synchronization between itself and other tasks in the system.

128

RSX-11M AND RSX-11S8

For example, upon completion of I/0 requests, the executive normally
sets a requester-indicated event flag and declares a significant event.
If a requesting task instructs the system that it cannot run until an
event flag is set (signaling task /0O completion), other eligible tasks of
lower priority may run. In the scan of the active task list, a task that is
awaiting I/0 completion is bypassed until a significant event is
declared, usually upon task I/0 completion.

Although event-driven scheduling is the primary RSX-11 task-sche-
duling mechanism, it is not the only mechanism available. As an option
during system generation, RSX-11 systems allow the user to supple-
ment event-driven task scheduling with time-based round robin sche-
duling for some or all tasks.

In RSX-11M and RSX-11S systems, round robin scheduling is based
on a priority range specified by the user during system generation. All
tasks that have priorities within the specified range are scheduled
using a time-slice algorithm. Tasks with higher or lower priorities than
the specified range receive service in an event-driven manner. As a
whole, the task range also receives service in an event-driven manner,
but CPU time is shared among the tasks within the range.

Traps

Subroutines entered automatically as the result of an unanticipated
synchronous condition (for example, an attempt to execute an illegal
instruction) or as the result of an asynchronous condition anticipated
or unanticipated (for example, an I/0 completion) are called task trap
routines.

Task traps are another means of governing task execution. While sig-
nificant events have a system-wide scope, traps are local to a task.
Traps interrupt the sequence of instruction execution in the task and
cause control to be transferred to a pre-specified point in the pro-
gram. In this way, traps provide the ability to service certain conditions
without continuously testing for their existence.

When a task plans to use the trap facility, it must contain a trap service
routine. This routine is automatically entered when the trap occurs
using the task’s normal priority and privilege. If a service routine is not
supplied, the action taken by the executive is dependent upon the type
of trap.

There are two types of traps: Synchronous System Traps (SSTs) and
Asynchronous System Traps (ASTs).

SSTs provide a means of servicing fault conditions within a task, such
as memory protection violation and floating point unit exceptions.
These conditions, which are internal to a task and are not significant

129

RSX-11M AND RSX-11S

events, occur synchronously with respect to task execution. In these
cases, if an SST service routine is not included in the task, the task’s
execution is aborted.

ASTs commonly occur as the result of a significant event and thus
occur asynchronously with respect to a task’s execution. A task does
not have direct or complete control over when ASTs occur. ASTs are
for information purposes, such as signifying an I/0 completion that a
task wants to know about immediately.

If an AST service routine in not provided, a trap does not occur and
task execution is not interrupted.

It should be emphasized that SSTs are only initiated by the executive;
no further action is taken. That is, they appear to the executive just like
normal task execution. The executive, having initiated an SST, cannot
determine that the task is in the SST service routine. Thus, an SST
service routine can be interrupted by another SST or an AST. SSTs
can be nested.

SSTs are caused by activities internal to the task, while ASTs occur as
a result of an external event. The executive keeps track of all ASTs,
queues them first-in, first-out, and is aware that a task is executing an
AST.

Power Failure Restart
Power failure restart is the ability of a system to smooth out intermit-
tent short-term power fluctuations with no apparent loss of service and
without losing data, all the while maintaining logical consistency within
the system itself and the application tasks. Power failure affects abso-
lute response time and peak load capacity differently from the facili-
ties previously discussed, since it applies to the aggregate system
performance rather than to increasing performance when the system
is actually in operation. A system is not performing when it is shut
down, and if the executive can reduce the shutdown periods with
power failure restart, aggregate performance is increased.

1. When power begins to fail, the processor traps to the executive
which stores all register contents.

2. When power is restored, the executive again receives control and
restores the previously preserved state of the system.

3. The executive then informs any tasks that have requested power
failure restart notifications through the Asynchronous System Trap
mechanism that a power failure has occurred. These tasks can
then, if required, make the restorations of state they deem neces-
sary.

130

RSX-11M AND RSX-11S

4. The executive schedules all device drivers that were active at the
time the power failure occurred at their powerfail entry point. Dri-
vers have the option of always being scheduled on power recovery,
or of being scheduled only when the driver has outstanding 1/0.

These drivers can then, if required, make those restorations of state
(for example, repeating I/0 requests) that they deem necessary. This
approach is quite efficient because the repeating of /0 is placed
nearest the source most likely to contain instructions on how to make
the restoration.

Disk-Based Operation (RSX-11M)

Except in some dedicated applications, the total code in a system
always exceeds the available main memory. A disk-based system
uses random access peripherals both as an extension of executive
main memory and as the principal data interchange medium. The use
of disk as the system data storage medium provides the base for
program development facilities, a common file system, checkpointing,
and rapid initiation of tasks. The Task Builder makes it possible for the
user to build overlaid tasks and call these overlays from disk. The total
effect is to extend significantly the achievable peak load while still
maintaining system response time requirements.

Task Checkpointing (RSX-11M)

Effective multiprogramming is achieved when many tasks reside in
memory simultaneously, spending some of their residency waiting for
1/0 completion, waiting for synchronization with other tasks, or being
unable in some way to continue execution. While one or more tasks
are waiting, another task can utilize the central processor’s resources.

This multiprogramming scheme normally applies only to memory-re-
sident tasks. Once a task is in memory, the executive allows it to run to
completion in a multiprogrammed fashion even if its memory is re-
quired for the execution of a higher priority, non-resident task. How-
ever, if it is desirable to free memory for execution of a higher priority
task, a task can be declared checkpointable when it is task built or
installed.

A checkpointable task can be swapped out of memory when a higher
priority task requests the partition in which it is active. Checkpointing
is another way of making it possible to load the processor with as
much work as it can possibly absorb, and still meet its real-time com-
mitments.

In RSX-11M systems, task priority normally determines which tasks
can checkpoint other tasks. A checkpointable task currently active in a
partition, but of a lower priority than another task requesting the parti-
tion, can be pre-empted and rolled-out to disk. Later, after the higher

131

RSX-11M AND RSX-11S

priority task has completed its execution, the lower priority task can be
rolled-in and restored to active execution at the point where it was
previously interrupted.

The system extends the checkpoint capability by disregarding the
priority of a task in cases where the task currently active in a partition
is waiting for terminal input. A task requesting a partition can check-
point a task of higher priority if that task is waiting for terminal input.

Dynamic Memory Allocation (RSX-11M)

Dynamic memory allocation is an extension of the RSX-11 multipro-
grammed partition structure. Dynamic memory allocation allows the
system to respond rapidly to changing requirements for system re-
sources.

RSX-11M allows the user to load and execute more than one task in a
system-controlled partition. If a task loaded into a system-controlled
partition does not fill the entire partition, another task can be loaded
into the space either above or below it, as long as the remaining
contiguous physical space is large enough to contain it.

The executive keeps an internal list of the available areas of memory in
the system-controlled partitions, together with a list of all tasks re-
questing to run in those partitions. Tasks are brought in from the disk
on a priority basis and are loaded into the first available memory area
in the partition. The executive continues to load tasks as long as there
is sufficient contiguous physical memory available in the partition.
When a task terminates, the memory it occupies becomes available
again.

If the dynamic memory allocation option is included in an RSX-11M
system, the user can also include the automatic memory compaction
option. Normally, a task can not be loaded into a system-controlled
partition unless there is sufficient contiguous space for it between
other tasks loaded in the partition. When a task terminates, it can leave
a space which is insufficient to load another task, but, considered
together with other unused areas, can be used to contain a task. If
automatic memory compaction is included in the system, the tasks in a
system-controlled partition will be moved to obtain a large enough
area in the partition to load another task.

SYSTEM ORGANIZATION AND COMPONENTS

The following sections discuss the basic design elements of RSX-11M
and RSX-11S operating systems. In RSX-11 systems, total system
structure is essentially dependent on the decisions that the user
makes during system generation. The user defines the system or-
ganization and chooses the executive services appropriate for the

132

RSX-11M AND RSX-11S

particular applicationé environment. This procedure is referred to as
system generation (SYSGEN).

There are three basic functional uses for which memory is allocated.
The amount of memory allocated to each function is specified by the
user during system generation. The the functional memory spaces are
for:

e the RSX-11 executive and system dynamic memory

e the partition space for tasks and shared commons

RSX-11M and RSX-11S systems are designed to provide the most
efficient use of system resources during system operation. To be use-
ful to a wide range of applications and still obtain maximum system
performance for a given operating environment, RSX-11M/S systems
require the user to become reasonably involved in system generation.

System generation for RSX-11M/S systems provides the user with
absolute control over system features and capabilities. Users con-
cerned about size can eliminate the executive services that are not
essential to a particular applicaton.

RSX-11M Executive and Memory Structures

For RSX-11M/S system generation, the user specifies the sizes and
base addresses of the partitions, and selects the executive services
and amount of dynamic memory needed for the particular application.
System generation is performed in two phases: the first phase defines
the hardware configurations and software options, the second phase
builds the complete system. Some system generation parameters can
be changed on-line, for example, partition configuration. If executive
services are to be changed, however, the user must regenerate the
system.

RSX-11M system generation requires the user to allocate partitions. In
RSX-11M systems, the user can define and delete partitions on-line.
RSX-11M systems have two kinds of shared commons: libraries and
global common blocks. The shared commons require their own parti-
tions, and are not loaded automatically when tasks require them.
Commons are fixed and must be explicitly loaded before a task requir-
ing them.

MCR Command Buffer

The MCR command buffer holds the data for a requested MCR func-
tion task. The buffer is set up by the MCR dispatch task. The dynamic
memory required for the buffer is returned to the pool after the GET
MCR COMMAND LINE directive passes the command line to the MCR
function task.

133

RSX-11M AND RSX-11S

The RSX-11M basic executive organization is illustrated in Figure 6-1.
The individual regions are explained below; most of the regions are
directly affected by system generation parameters.

Trap Vectors

This region contains the hardware trap and interrupt vectors and re-
quires 128 words. This region is expandable during system generation
to a maximum of 256 words.

System Stack
Used for nesting interrupts and internal calls made by the executive.
Forty words are required.

System Common Data
Contains pointer filled in during system generation.

System Tables

Contain the data used to control system operation. Included are parti-
tion descriptions, the system task directory, and device tables. The
total size of the table region is established by system generation con-
figuration selections.

Dynamic Storage Region

The executive has continuing needs for temporary storage. Such
storage is acquired, used, and returned to the available pool. If a given
executive service requests dynamic storage, and it is unavailable, the
executive will inform the user task, which usually waits for some stor-
age to become available. The size of this region is important, for if itis
too small, waiting periods will be induced; if it is too large, system
effectiveness is lowered, since fewer tasks can fit in memory. The size
of the region is a system generation parameter.

134

RSX-11M AND RSX-11S

16K
USER TASKS <___ USER DEFINED
PARTITIONS AREA
8K
FILE SYSTEM/ EXECUTIVE SYSPAR
TASK TERMINATION ROUTINE / | <—— PARTITION AREA [CAN

BE MOVED DURING
MONITOR CONSOLE ROUTINE SYSTEM GENERATION)

CAN BE EXPANDED
DYNAMIC STORAGE AREA - DURING SYSTEM

- GENERATION OR VIA
AN MCR COMMAND
TASK LOADER FOR

NON-RESIDENT TASKS

SYSTEM TABLES

TERMINAL DRIVER

DEVICE DRIVERS

LOADABLE DEVICE . CAN BE ADDED
DRIVERS PARTITION DURING SYSTEM
B GENERATION
DISK DRIVERS

EXECUTIVE SERVICES

BASIC EXECUTIVE

SYSTEM COMMON DATA

SYSTEM STACK SPACE

TRAP VECTORS

Figure 6-1 Basic RSX-11M Executive 16K Word System

The Basic Executive

The basic executive includes the code that controls the multiprogram-
ming environment, performs task checkpointing and power fail re-
start, and handles system traps. During system generation, the user
has the option of including or omitting the following services:

e task checkpointing

® task checkpointability during terminal input
o Memory Management Unit support

e dynamic memory allocation

automatic memory compaction

1/0 rundown (automatic system clean-up after a task aborts and
leaves files in an indeterminate state)

135

RSX-11M AND RSX-11S

® asynchronous system trap support

e external (user-written) MCR function support

e task termination and device-not-ready messages
e power failure recovery

e GET PARTITION PARAMETERS directive support
o GET SENSE SWITCHES directive support

e EXTEND TASK directive support

e GET TASKPARAMETERS directive support

o ALTER PRIORITY directive support

e SEND/RECEIVE directives support

e Memory Management directives support

e automatic install, request, and remove-on-exit support (RUN com-
mand option)

logical device assignment support

setting upper/lowercase conversion for terminal input

multi-user protection support

transparent terminal READ/WRITE support

RMS record locking

executive-level round-robin scheduling

executive-level disk swapping

user-written device driver support

executive debugging tool

® panic/crash dump and system failure reporting

e device error and timeout logging

® |oadable device drivers

o ANSI magtape support

e direct connect to user tasks of hardware interrupts directive

The following processor options support can be included or omitted:
® Floating Point Processor support

® FIS support

® programmable clock support

e watchdog timer support

® parity memory support

136

RSX-11M AND RSX-11S

Executive Directive Services

This region contains the service routines which respond to the direc-
tives issued by users to request executive services. These programs
make use of the basic executive.

Device Drivers

Three fixed drivers can be included in the basic 8K executive:
® disk

e cassette, DECtape, magnetic tape, line printer or floppy disk
e terminal (basic DL11 driver only)

These are multi-unit drivers that can service up to the maximum
devices controlled by the respective hardware interfaces. Drivers can
be either fixed in memory with the executive or they can be loadable,
allowing for more efficient memory use.

Task Loader for Nonresident Tasks

This loader is a task and operates out of its own partition. Thus, it can
run in parallel with system and user tasks. The loader, which is device
independent:

1. Loads tasks on initial load requests.

2. Writes checkpointable tasks to disk when required.

3. Returns previously checkpointed tasks to active competition for
processor resources.

File System, Monitor Control Routine (MCR) and Task Termination
(TKTN)

These three routines function as tasks. In the minimum system, they
execute out of the same partition.

As distributed, the RSX-11M system generates a file system that runs
in 2K words. The user has the option of building a larger file system
with greater processing speed and increased function.

Panic Dump and Crash Modules

These two routines respond to system software failures, providing
core dumps and selective analysis. They are not included (or shown)
in the basic 8K system, but are mentioned because of their fundamen-
tal importance in error analysis. Most program development systems
(as opposed to dedicated on-line systems) will likely include these
routines.

In a 16K systern with an 8K executive, the remaining 8K words are
available for user task partitions. In 16K-word systems, partition defi-
nitions cannot be altered without regenerating the system. In systems
with more than 16K words of memory, the user can re-define partitions

137

RSX-11M AND RSX-11S8

on-line using an MCR console command. Figure 6-2 illustrates a typi-
cal memory organization for a large mapped RSX-11M system.

124K
SYSTEM CONTROLLED

USER TASKS GEN PARTITION

34.5K
LOADABLE DEVICE <«—— DRVPAR

26.5K
e

22K
BIG FILE SYSTEM <«+—— FCPPAR

20K
MCR AND TKTN TASKS <—— SYSPAR

DYNAMIC STORAGE
REGION

TERMINAL AND SYSTEM
DISK
DISK DRIVERS

EXECUTIVES
(INCLUDES ALL SERVICES)

Figure 6-2 Memory Organization for a Large Mapped RSX-11M System

RSX-11S System Components

RSX-11S requires an RSX-11M, RSX-11D, or VAX system for system
generation and program development. An RSX-11S system is gener-
ated from the RSX-11M system using the standard system generation
process. The maximum hardware and software configuration is the
same as that of an RSX-11M system with the exceptions of file system
support, non-resident tasks, task checkpointing, and dynamic memo-
ry allocation.

Since it is based on RSX-11M, RSX-11S enjoys most of the inherent
features and generation capability of that system. For example, RSX-
11S automatically supports all of the peripheral devices that RSX-11M
supports, including hardware features such as floating point proces-
sors, parity memory, and memory management. All are selectable at
system generation and can be included in an RSX-11S system at the
cost of memory use.

The basic software building blocks for an RSX-11S system are:

1. The generatable features of the RSX-11M Executive (2.5K to 4K)

2. A special File Control Services (FCS) (1.25K) that contains no sup-
port for directory devices.

138

RSX-11M AND RSX-11S

3. AIIRSX-11M I/0 device drivers

4. Subset MCR (2K)

5. On-line Task Loader (2.5K)

6. System Image Preservation Program (1.5K)

The minimum software system is an executive. The smallest executive

that can be generated requires 2.5K words of memory. Services that
are omitted from the 2.5K executive include:

® address checking

e Asynchronous System Traps (required for FORTRAN)
e |/O rundown

e task termination and device-not-ready notification

e external MCR functions (user-written functions)

e install, request, and remove-on-exit support

e SEND, RECEIVE, GET TASK PARAMETERS, GET SENSE SWITCH-
ES and GET PARTITION PARAMETERS directives

e parity memory support
e network support
e all /O drivers

Although omitted from the minimum executive, these features can be
generated into an RSX-11S system at the cost of memory use.

The minimum RSX-11S software system must include the executive
and the 1/0 device drivers. For example, two to four small 1/0 device
drivers could be added to the minimum executive at the cost of an
additional 1.5K words of memory. In an 8K word system,
approximately 4K words would be available to application tasks.

If operator communication is required, subset MCR can be included in
a system at a cost of 2K of memory. In an 8K system this still leaves
approximately 2K for application tasks.

The On-Line Task Loader (OTL) can be included in an RSX-11S sys-
tem if the on-line loading of tasks is desired.

Tasks are created on a host RSX-11M system, transferred to the load
medium using RSX-11M’s File Exchange Utility (FLX), and then loaded
into a running RSX-11S system using OTL. The minumum size for OTL
is 2.5K words. In 2.5K words, however, OTL supports only one load
device. On-line task loading requires a 16K-word system, since ap-
proximately 8.5K words will be required for system software (2.5 exe-
cutive, 2K MCR, 1.5K device drivers, and 2.5K OTL).

139

RSX-11M AND RSX-11S8

The System Image Preservation Program (SIP) is an on-line utility task
that provides the capability to save the image of a running system into
a load device medium in bootstrapping format. The saved system can
subsequently be restored by bootstrapping it from the load device
medium. The minimum size for SIP is 1.5K words. In 1.5K words, it can
support only one load device.

The standard RSX-11M File Control Services (FCS) record I/0O pack-
age contains a large amount of code to support file-structured de-
vices. (RSX-11S contains no file support and this code is therefore
unnecessary.) The special version of FCS provided with RSX-11S is
the standard FCS without the file support code. This provides a
significant size reduction.

SYSTEM CONVENTIONS

To simplify operations, RSX-11 systems observe certain conventions
with respect to devices, file structures, file naming, operator com-
mands, and indirect files.

Devices

The RSX-11 systems support a variety of peripheral devices. They are
referred to by a 2-letter name and an optional 1- or 2-digit unit number
followed by a colon. For example, TT12: represents user terminal
number 12. Peripheral devices can be referred to by mnemonics, by
pseudo-device names, or, in task references, by logical unit numbers.
In addition, RSX-11M systems support logical device name assign-
ments.

Pseudo device names are associated with normal device mnemonics
assigned by the system manager. They permit the system manager to
dynamically determine the physical devices that will send or receive
information. RSX-11M supports the following pseudo devices:

SY: System device: indicates the device on which the
system disk is mounted.

T Terminal interface: indicates the terminal with which
a particular task is associated. Each terminal has a
unique TI. The Tl of each task is assigned to the
requesting terminal.

CL: Contro! log: indicates the device normally used for
the listing of files. The CL device is normally redirect-
ed to the line printer.

CO: Console output: indicates the device by which the
system can communicate with the system manager.
The CO device is normally redirected to the system
console.

140

RSX-11M AND RSX-11S

Logical unit numbers (LUNs) provide the mechanism for programs to
maintain device independence. The logical unit numbers used in a
program can be assigned by means of device mnemonics to any avail-
able peripheral device that performs the desired function. LUNS can
be assigned by the programmer at task-build time, or by the task itself
at run time. Because the system provides LUN assignments, it is not
always necessary to assign a LUN to a task. Furthermore, LUNs can be
changed by an MCR function for any installed, inactive, non-fixed task.

RSX-11M has an additional facility for associating a logical name with
a physical device, called logical device assignment. Logical device
assignments are a convenient way to associate logical names with
physical devices. There are two types of logical device assignments:
local and global. Local assignments apply only to commands and
tasks initiated from the terminal on which the assignment was made.
Global assignments apply to all commands or tasks. If a logical name
is defined as both global and local, the local assignment overrides the
global assignment. Logical device names can be the same as physical
device names or can be any character string using the syntax for
device names.

File Structures

RSX-11M supports a common file structure for disk calied Files-11. In
addition, RSX-11M supports ANSI Standard Level 3 format for single
or multi-volume magnetic tape files.

Files-11 is a general purpose file system that provides a facility for the
dynamic creation, extension, and deletion of files on disk. It includes a
scheme for volume and file protection which allows the owner of a
volume or file to deny all access or certain kinds of access to all users,
groups of users, or particular users in the system. This scheme for
volume and file protection provides the key to the system protection,
in that only users with access privileges are allowed access.

A Files-11 volume is a collection of files which reside on a single disk.
The system can directly address each file on the volume by means of
file pointers which reside in the volume’s directory files.

Each Files-11 volume has two kinds of directory files that are used for
file management: the Master File Directory (MFD) file, and User File
Directory (UFD) files.

The Master File Directory (MFD) file is automatically generated by the
file system when a volume is initialized as a Files-11 volume, and is
used to store pointers to all of the User File Directory (UFD) files on the
volume.

141

RSX-11M AND RSX-11S

User File Directory (UFD) files are created as needed. They are used to
store pointers to all of the files belonging to, or associated with, the
user whose account number (User Identification Code or UIC) corre-
sponds to the UFD file name.

All Files-11 files, whether MFD, UFD, or user files, have the same basic
format. All files have a file header area, and one or more data area(s).
Figure 6-3 illustrates the Files-11 file format.

FILE HEADER AREA

FILE OWNER FIELD (UIC)

FILE NAME FIELD
(FROM 1-9 ALPHANUMERIC CHARS.)

FILE TYPE FIELD

VERSION NUMBER FIELD

FILE PROTECTION FIELD

DATA POINTER FIELD(s)

DATA AREA A POINTER

DATA AREA N POINTER

DATA AREA A DATA AREA B

) i

Figure 6-3 Sample Files-11 File Structure

The file header area contains all the pertinent information required by
the file system to process the file. For the purposes of this introduc-
tion, the user need be familiar with only the following fields:

File Owner Field The file owner field contains the account
number (UIC) of the user who created the
file.

142

RSX-11M AND RSX-11S

File Name Field The file name field contains the name as-
signed to the file when it was created. File
names can be a maximum of nine alphanu-
meric characters long.

File Type Field The file type field contains the mnemonic
that identifies the file by its functionality; for
example, FTN defines a FORTRAN source
file.

Version Number Field The version number field identifies the par-
ticular version or generation of the file.

File Protection Field The file protection field contains a code that
describes who is allowed to access the file:
system, owner, group, or world. It also de-
scribes the type of access allowed; read,
write, extend or delete.

Data Pointer Field The data pointer field describes the physi-
cal allocation of the file on the volume. Each
data area pointer describes aphysically
contiguous portion of the file.

By establishing pointers to blocked data in the file’s header area, as
opposed to storing the data immediately following the file header, the
system accomplishes two things: all files on the volume have the same
structural format regardless of functionality; and all fragmented or
non-contiguous areas of the volume can be put to use, that is, a file
can be expanded merely by attaching another pointer to a blocked
data area in its file header.

Users always address data in a file-relative manner. The translation of
file-relative address into physical addresses is performed by the file
system and is completely transparent to the user.

File Specifiers
Any system component that needs to refer to files does so using a
standard file command string with the following general format:

Output file specifications = input file specifications

There can be several file specifications on either side of the equal sign.
Optional switches are used to indicate desired operations other than
default operations. File specifiers have the following format:

dev:[uiclfilename.type;version/switch
where:

143

dev:

[uic]

filename

type

version

/switch

RSX-11M AND RSX-118

is the physical device on which the volume contain-
ing the desired file is mounted (for example DBO: or
DK1:).

is the User Identification Code that specifies the user
file directory containing the desired file.

is the name of the file. File names can be up to nine
alphanumeric characters in length. File name and
type are always separated by a period.

is the designator distinguishing among various
forms of files. For example, a FORTRAN source file
might be named COMP.FTN, while the object file
associated with that program might be named
COMP.OBJ.

is a number used to differentiate among versions of
a file. For example, when a file is first created using
the text editor, itis assigned a version number of 1. If
the file is subsequently opened for editing, the editor
keeps the original file for back-up and creates a new
file with the same file-name and type designations,
but with a version number of 2.

is usually an optional qualifier. Switches are normali-
ly used either to direct the execution of a task, or to
qualify an input parameter.

If any of the file specifier elements except the file name is omitted from
the file specifier, the system can use a default value. A task can also
establish defaults for a file. The system default for the device name is
the system device. The default for the user file directory specification
is the UFD that corresponds to the UIC under which the task is run-
ning. The default for the version specification is the latest version
number. For RSX-11M systems, the defaults for the type specification
vary according to the operation to be performed. The common set of

file types is:
.CMD

.DAT
.DIR

.FTN

An indirect file containing a list of task or MCR com-
mands for a task. (In RSX-11M the commands can
also be MCR commands.)

A data file, as opposed to a program file
A directory file, for example, a UFD directory
A FORTRAN source program

144

RSX-11M AND RSX-11S

.LST A listing file

.MAC A MACRO-11 source program

-MAP A task builder memory allocation listing file

.MLB A user macro library

.ODL An overlay description file

.OLB An object module library

.SML The system macro library

.STB A symbol table file

.TSK A task image file

.CRF A cross reference file that will be appended to the
map file

.SYS A system image file

MCR Operator Commands and Terminal Control

The Monitor Console Routine (MCR) is the terminal interface between
the user and the RSX-11 operating system. In the system, terminais
can have either of two functions: command or slave. The system does
not accept any unsolicited input from a slave terminal; its 1/0 is com-
pletely under task control. A command terminal is used to activate
MCR and interface with the system using MCR system commands.
The SET command can be used to characterize a terminal as a slave
or command terminal.

MCR’s system commands enable the general user to perform the
following functions:

® gain access to the system

e initiate and terminate execution of system or user programs

In addition, the privileged user can perform the following additional
functions:

e adjust, modify, and control the system environment

The privileged MCR user has complete control over the system’s oper-
ation.

145

RSX-11M AND RSX-11S

In RSX-11M, the privileged characteristic is associated with certain
terminals, as determined by the system manager initially during
system generation and subsequently by setting terminal characteris-
tics using the SET command. Non-privileged commands can be in-
voked at any command terminal. Privileged commands can be in-
voked only at privileged terminals.

In RSX-11M, the MCR task itself processes most of the standard MCR
commands, but will callindependent command tasks to process some
commands. The MCR organization makes it possible for users to add
operator console services to meet their application needs.

The RSX-11 systems include four different kinds of MCR commands;
initialization commands, informational commands, task control com-
mands, and system maintenance commands. Table 1 lists the RSX-11
MCR commands, and indicates the systems in which they are avail-
able.

Table 6-1 RSX-11 MCR Commands

Initialization Commands
COMMAND SYSTEMS FUNCTION

BOOT M Boostraps a system that exists as a
task image file on a file-structured
volume. It provides a convenient
means for terminating one system
and starting another. For example,
BOOT can be used for terminating
a real-time system and starting a
program development system.

TIME M&S Lists the time and date maintained
in the system clock calendar. A
privileged user can change the
time and date.

MOUNT M Declares that a volume is logically
on-line for access by the system.

DISMOUNT M Declares that a volume is logically
off-line and cannot be accessed by
the system.

INITVOLUME M Initializes a volume for use by the
system.

146

RSX-11M AND RSX-11S

COMMAND SYSTEMS

INSTALL M
SET M
UFD M
HELLO M
BYE M

Informational Commands
COMMAND SYSTEMS

ACTIVE TASK M&S
LIST

BAD M

DEVICES M

FUNCTION

Installs a task in the system by
making an entry in the System
Task Directory; this allows the op-
erator to subsequently run the in-
stalled task. This function is per-
formed by the On-line Task Loader
utility in RSX-11S systems.

Allows the user to establish or alter
a variety of parameters, including
terminal device characteristics,
command or slave terminal char-
acteristics, and default UIC for a
terminal.

Creates a User File Directory on a
volume and enters its name in the
Master File Directory.

Allows the user to log in to the sys-
tem and be identified as a valid
user.

Logs a user off the system. The on-
ly valid command that MCR recog-
nizes after BYE is HELLO.

FUNCTION

Lists the active tasks in the system,
indicating the tasks’ current status,
for example, task suspended, wait-
ing for 170, etc.

Locates any unusable blocks on a
disk.

Prints the symbolic names of all
device units known to the system.
Indicates if a device handler is re-
sident, a volume is mounted, or to
what device a symbolic device
name is assigned.

147

COMMAND
LUNS

PARTITIONS

TASKLIST

HELP

BRO

RSX-11M AND RSX-11S

SYSTEMS
M

M&S

M

M

Task Control Commands

COMMAND
ALTER

FIX

UNFIX

ASSIGN

REASSIGN

REDIRECT

SYSTEMS

M

M

M&S

FUNCTION

Prints a list of the physical device
units and corresponding logical
unit numbers for an indicated task.
Itis used to determine which physi-
cal devices a task requires.

Lists a description of each memory
partition including partition name,
base address and use. It also lists a
description of each memory-re-
sident sharable library and global
command block.

Lists a description of each task in-
stalled in the system, including
task name, version number, de-
fault partition name, priority and
size.

Displays contents of HELP file.

Broadcasts a message to one or a
set of terminals.

FUNCTION

Allows the user to change the pri-
ority of a task.

Allows the user to fix a task in its
partiton in memory. A fixed task
gets faster response to requests
for execution. (A function exists in
OTL for RSX-11S systems to fix a
task when it is loaded).

Frees fixed tasks from memory.
Assigns a logical device name to a
physical device.

Reassigns a Logical Unit Number
(LUN) from one physical device to
another.

Redirects all I/0 requests from one
physical device to another.

148

RSX-11M AND RSX-11S

COMMAND SYSTEMS FUNCTION

LOAD M Makes a specified device driver re-
sident in memory and ready to ho-
nor |/0 requests.

UNLOAD M Unloads a specified device driver
from memory.

RUN M&S Initiates the execution of an in-
stalled task. An installed task can
be started immediately, started a
specified time from when the com-
mand is issued, started a specified
time from the next time unit, or
started at an absolute time of day.
A special option of the RSX-11M
RUN command allows the user to
run a task that has not been in-
stalled; when issued, the task isin-
stalled, run and removed on exit. in
all cases except the latter, the user
can specify a reschedule interval
for the task.

CANCEL M&S Cancels any pending periodic re-
scheduling for a task.

ABORT M&S Terminates execution of a speci-
fied task.

CLQUEUE M

RESUME M&S Continues execution of a previous-
ly suspended task.

REMOVE M&S Removes a task name from the
system task directory (opposite of
INSTALL).

System Maintenance Commands

COMMAND SYSTEMS FUNCTION

SAVE M Copies the memory image of the

system to the system disk so that a
bootstrap can reload it and start up
the system. (In RSX-11S systems,
the System Image Preservation
utility performs this function.)

149

COMMAND

OPEN

BRK

RSX-11M AND RSX-11S

SYSTEMS FUNCTION

M&S Allows the privileged user to exam-
ine or modify a word in memory.

M Breaks to the Executive Debugging
Tool (XDT).

In addition to the MCR commands available to control system execu-
tion, an RSX-11 system provides the following special terminal control

characters:
CTRL/C

CTRL/Z

CTRL/I

CTRL/K

CTRL/L

CTRL/U

CTRL/O

CTRL/S

CTRL/Q

CTRL/R

Activates MCR at a terminal. The system types the
prompt “MCR>". Note that, unlike most other PDP-
11 systems, the RSX-11 family does not use CTRL/C
to affect the execution of any currently running tasks
other than MCR.

Logical end-of-file; when typed in response to a
prompt from most utility programs, CTRL/Z causes
the program to exit.

Causes a horizontal tab.

Causes a vertical tab of four lines.
Causes eight line feeds.

Cancels the current input line.

Enables or disables output to a terminal.

Temporarily suspends output to the terminal. This
feature enables users with high-speed terminals to
fill the display screen, stop output with a CTRL/S
and then continue with a CTRL/Q.

Resumes printing of characters on the terminal from
the point at which printing was interrupted using
CTRL/S.

Causes the system to reprint the current line entered
in the terminal buffer and allows the user to view
exactly what has been entered so far.

Indirect Files (Command Files)
An indirect file is a sequential file containing a list of commands. Rath-
er than typing commonly used sequences of commands, the user can

150

RSX-11M AND RSX-11S

type the sequence once and store it on a file using the Editor utility
program. To execute the sequence, the user types an “at” sign (@)
and then the command file name. The affected task locates the indi-
rect file and executes the command it contains.

Thére are two types of indirect files, indirect task command files and
indirect MCR command files.

The commands contained in an indirect task command file are task
specific. They can be interpreted only by a specific task such as the
MACRO assembler, the Task Builder, or another utility program. The
indirect file is specified in place of the command line normally given to
the task when it is run. For example, to give an indirect file to the
MACRO assembler to execute, the user types:

MCR>MAC@MDFIL.CMD

which causes MACRO to read and execute the file CMDFIL.CMD for all
of its commands.

RSX-11M supports an indirect command file processor for MCR com-
mand processing. In this case, the indirect file contains commands to
the MCR console interface. To execute a series of MCR commands
using the indirect MCR command file processor, the user types the
“at” sign followed by an indirect file’s name in response to the MCR
prompt. For example, to execute a series of MCR commands con-
tained in the file name BEGIN.CMD, the user types:

MCR>@BEGIN.CMD.

In addition to the standard MCR commands, the RSX-11M indirect
command file processor can accept special commands that allow the
user to control command file processing. These special commands
provide the following capabilities:

INITIATE PARALLEL TASK EXECUTION

It is possible to request initiation of a task and not wait for the task to
terminate before having the next command line processed. Normally,
the indirect file processor passes a task initiation command line to
MCR and then waits until the command is executed before continuing.
In this case, however, the indirect file processor can initiate a task,
pass a command string to it, and continue processing the indirect file
command lines in parallel with the initial task’s execution.

WAIT FOR A TASK TO FINISH EXECUTION
Indirect command file processing can be suspended until a particular
task has terminated.

TESTIF ATASKISINSTALLED OR NOT INSTALLED
A test can be made to determine whether a particular task is installed

151

RSX-11M AND RSX-11S

in the system or not. If the task is installed, the remainder of the
command line is ignored.

TESTIFATASKIS ACTIVE OR NOT ACTIVE

A test can be made to determine whether a task is active or not. If the
task is active, the rest of the command line is processed. If the task is
not active, the rest of the command line is ignored.

SUSPEND EXECUTION FOR A SPECIFIED TIME INTERVAL

Indirect file processing can be suspended for a specified number of
clock ticks, seconds, minutes, or hours. When the interval is exhaust-
ed, indirect file processing continues at the point where it was
interrupted.

PROVIDE COMMENTARY

Comments can be included in the command file. Comments are dis-
played on the entering terminal and are convenient to provide expla-
nation or to give instructions to the user who issued the command file.

PAUSE FOR OPERATOR ACTION

It is possible to suspend indirect file processing until the user at the
entering terminal performs some action. The file processor prints a
message on the terminal to notify the user. To continue indirect com-
mand file processing, the user types a RESUME command.

ASK A QUESTION AND WAIT FOR A REPLY

It is possible to print a message on the entering terminal, suspend
indirect command file processing until input is received, and then set a
specified symbol true or false depending on the input contents. If the
symbol is not already defined, an entry is made in the symbol tabie
and its value set.

DEFINE A SYMBOL

A symbol can be defined or its value can be changed. A symbol can
represent either a true or false value. When a symbol is first defined, a
symbol table entry is made and set to a specified value. A symbol can
have any alphanumeric name up to six characters long.

TEST IFASYMBOL IS TRUE OR FALSE

The value of a symbol can be tested at the beginning of a command
line. If the test is true, the rest of the command line is processed. If the
testis false, the remaining part of the command line is not processed.

TESTIF ASYMBOL IS DEFINED OR NOT DEFINED
A test can be made to determine whether a symbol has been defined
or not. If it is defined, the rest of the command line is processed. If is is
not defined, the rest of the command line is ignored.

DEFINE LABELS
A command line in the command file can be labeled.

152

RSX-11M AND RSX-11S

BRANCH TO A LABELED LINE

Control can be transferred from one line in an indirect file to another
line in an indirect file by an unconditional branch to a labeled line. A
branch can transfer processing to a labeled line before the branch
command line or after the branch command line.

BRANCH TO A LABELED LINE ON DETECTING AN ERROR

Control can be transferred from one line in an indirect file to another
line if an error occurs. If the conditional branch on error line is pro-
cessed, control is passed to a specified command line if one of the
following errors is detected: undefined symbol reference, symbol ta-
ble overflow, undefined label, or syntax error. This feature enables the
user to gain control to clean up before aborting execution.

COMBINED LOGICAL TEST

Tests can be combined using Boolean AND and OR directives. In
addition, an implied logical AND is effected if multiple tests are placed
on the same line; the command on the line is executed only if all tests
are true.

MCR indirect files can reference other MCR indirect files. Up to four
levels of indirect MCR command files can be specified. Each time a
new level is entered, all symbols previously defined are masked out of
the symbol table and only symbols defined in the current level are
available. When control returns to a previous level, the symbols
defined in that level are available again.

RSX-11M can execute multiple MCR indirect files simultaneously.
Several users at MCR command terminals can initiate MCR indirect
command file processing. This effectively provides multiple-stream
“batch” processing in RSX-11M systems.

FILE CONTROL SERVICES

RSX-11 file control services enable the user to perform record orient-
ed and block oriented |/O operations and to perform additional func-
tions required for file control, such as open, close, wait, and delete
operations. To invoke FCS functions, the user issues macro calls to
specify desired file control operations. The FCS macros are called at
assembly time to generate code for specified functions and opera-
tions. The macro calls provide the system-level file control primitives
with the necessary parameters to perform the file access operations
requested by the user. Figure 6-4 illustrates the file access operation.

153

RSX-11M AND RSX-11S

[USER—ISSUED MACRO CALL [

[FILE CONTROL SERVICES ‘

LFILE CONTROL PRIMITIVES]

PERIPHERAL DEVICE HARDWARE
(e.g., DISK, TERMINAL)

Figure 6-4 File Access Operation

FCS is a set of routines that is linked with the user program at task-
build time from a resident system library or a system object module
library. These routines, consisting of pure, position-independent code,
provide a user interface to the file system, enabling the user to read
and write files on file-structured devices and to process files in terms
of logical records.

Logical records are regarded by the user program as data units that
are structured in accordance with application requirements, rather
than existing merely as physical blocks of data on a particular storage
medium.

FCS provides the capability to write a collection of data (consisting of
distinct logical records) to a file in a way that enables the data to be
retrieved at will. Data can be retrieved from the file without having to
know the exact form in which it was written to the file.

FCS thus provides a sense of transparency to the user so that records
can be read or written in logical units that are consistent with an
applications requirement.

File Access Method

RSX-11 supports both sequential and direct access to files. The se-
quential access method is device-independent, that is, it can be used
for both record-oriented and file-structured devices (for example,
card reader and disk, respectively). The direct access method can be
used only for file-structured devices.

Data Formats for File-Structured Devices
Data is transferred between peripheral devices and memory in blocks.
A data file consists of virtual blocks, each of which may contain one or

154

RSX-11M AND RSX-11S

more logical records. In FCS, a virtual block in a file consists of 512
bytes.

Records in a virtual block can be either fixed or variable in length. The
first two bytes of a variable-length record contain a value defining the
length of that record (in bytes), excluding the record length bytes.

Virtual blocks and logical records within a file are numbered sequen-
tially, starting with one. A virtual block number is a file-relative value,
while a physical block number is a volume-relative value. For example,
the first virtual block in a file is always virtual block number 1, but at
the same time it could also be physical block number 156.

Block 1/0 Operations

The READ and WRITE macro calls allow the user to read and write
virtual blocks of data from and to a file without regard to logical rec-
ords in a file. Block 1/0 operations provide a very efficient means of
processing file data, since such operations do not involve the blocking
and deblocking of records within the file. Also, in block 1/0 operations,
the user can read or write files in an asynchronous manner; control
can be returned to the user program before the requested 1/0 opera-
tion is completed.

When block 1/0 is used, the number of the virtual block to be pro-
cessed is specified as a parameter in the appropriate READ and
WRITE macro call. The virtual block so specified is processed directly
in a buffer reserved by the program in its own memory space.

As implied above, the user is responsible for synchronizing all block
1/0 operations. Such asynchronous operations can be coordinated
through an event flag specified in the READ and WRITE call. The event
flag is used by the system to signal the completion of the 1/0 transfer,
enabling the user to coordinate those block 1/0 operations which are
dependent on each other.

Record I/0 Operations

The GET and PUT macro calls are provided for processing record-
oriented files. GET and PUT operations perform the necessary block-
ing and deblocking of the records within the virtual blocks of the file,
allowing the user to read or write individual records.

In preparing for record 1/0 operations, the user program must specify
the format of the records. For example, it must specify whether the
records are fixed or variable in length, or whether records that are to
be output to a carriage-control device are to contain carriage-control
information, which can be either at the beginning of the record or
embedded within the records.

155

RSX-11M AND RSX-11S

For sequential access files, 1/0 operations can be performed for both
fixed and variable length records. For direct access files, 1/0 opera-
tions can be performed only for fixed length records.

In contrast to block 1/0 operations, all record 1/0 operations are syn-
chronous; control is returned to the user program only after the
requested I/0 operation is performed.

Because GET and PUT operations process logical records within a
virtual block, only a limited number of GET or PUT operations result in
an actual I/0 transfer, that is, when the end of a data block is encoun-
tered. Therefore, all GET and PUT I/0 requests will not necessarily
involve a physical transfer of data.

The File Storage Region

The file storage region (FSR) is an area allocated in the user program
as the working storage area for record 1/0 operations. The FSR con-
sists of two program sections which are always contiguous to each
other. The first program section of the FSR contains the block buffers
and the block buffer headers for record 1/0 processing. The user
determines the size of the area at assembly time. The number of block
buffers and associated headers is based on the number of files that
the user intends to open simultaneously for record I/0O operations.

The second program section of the FSR contains impure data that is
used and maintained by FCS in performing record 1/0O operations.
Portions of this area are initialized at task-build time, and other por-
tions are maintained by FCS. This program section is intentionally
isolated from the user to preserve its integrity.

The size of the FSR can be changed, if desired, at task-build time.

The data flow during record I/0 operations is depicted in Figure 6-5.
Note that blocks of data are transferred directly between the FSR
block buffer and the device containing the desired file. The blocking
and deblocking of record during input is accomplished in the FSR
block buffer during output. Note also that FCS serves as the user
interface to the FSR block buffer pool. All record I/O operations initiat-
ed through GET and PUT calls are totally synchronized by FCS.

Data Transfer Modes

When record 1/0 is used, a program can gain access to a record in
either of two ways after the virtual block has been transferred into the
FSR from afile:

156

RSX-11M AND RSX-11S

MOVE MODE Individual records are moved from the FSR
buffer (as shown in Figure 6-5). Move mode
simulates the reading of a record directly
into a user record buffer, thereby making
the blocking and deblocking of records
transparent to the user.

LOCATE MODE The user program accesses records direct-
ly in the FSR block buffer. Program over-
head is reduced in locate mode, since rec-
ords can be processed directly within the
FSR block buffer.

BLOCK
BUFFER
POOL
BLock

//g FFER~

DEVICE % FCS

o

705

W%

IMPURE

USER
RECORD
BUFFER

DATA

Figure 6-5 Record 1/0 Operations

Shared Access to Files

FCS permits shared access to files according to established conven-
tions. Two macro calls, among several available in FCS for opening
files, can be issued to invoke these functions. The OPNS macro call is
used specifically to open a file for shared access. The OPEN call, on
the other hand, invokes generalized open functions which have shared
access implications only in relation to other I/0 requests then issued.

OPNS allows several active read-access requests and one write-ac-
cess request for the same file. OPEN allows multiple read-access
requests for the same file, but does not permit concurrent write ac-

157

RSX-11M AND RSX-11S

cess. Note that shared access during reading does not necessarily
imply the presence of read requests from several separate tasks. The
same task can open the same file using different logical unit numbers.

Spooling Operations

FCS provides facilities at both the macro and subroutine level to
queue files for subsequent printing. A task issues the PRINT macro
call to the queue a file for printing on the system line printer.

FCS Macros and Macro Use
FCS includes four basic kinds of macro that simplify the user’s inter-
face to the system’s file control primitives. The four kinds are:

e initialization macros

e file-process macros

® command line processing macros
e the CALL macro

The initialization and file-processing macros are used to establish the
data base description and the necessary temporary storage areas
needed to perform |I/O operations. The command line processing
macros are used to dynamically process I/0 commands entered from
aterminal. The CALL macro is used to invoke file control routines.

The initialization and file-processing macros set up the following

structures to define the data base:

e A file data block (FDB) that contains execution-time information
necessary for file processing. It defines the basic characteristics of a
file, i.e., record type, record, size, access privileges, etc.

e A data set descriptor that is accessed by FCS to obtain the file
name, type, version number, and location which are necessary to
open a specified file. The data set descriptor is used when a pro-
gram accesses a given set of known or pre-defined files.

e A default file name block that is accessed by FCS to obtain default
file information required to open a file. This is accessed when com-
plete file information is not specified in the data set descriptor. It is
used by programs written to access a general set of files.

There are two types of initialization macros: assembly-time macros
and run-time macros. Data supplied during assembly of the source
program establishes the initial values in the FDB. Data supplied at
run-time can either initialize additional portions of the FDB or change
values established at assembly time. Furthermore, the data supplied
through the file-processing macros can either initialize portions of the
FDB or change previously initialized values. The user not only has a

158

RSX-11M AND RSX-11S

broad range of control over defining the data base characteristics, but
also has control over when the definitions are made.

File processing macros also determine the way in which files are pro-
cessed. These macro calls are invoked and expanded at assembly
time. The resulting code is then executed at run time to perform the
following operations:

OPEN

OPNS

OPNT

OFID

GET

GETR

GETS

PUT

PUTR

PUTS

READ

WRITE

DELETE

WAIT

PRINT

Opens and prepares a file for processing.

Opens and prepares a file for processing; allows
shared access to the file (depending on the mode of
access).

Creates and opens a temporary file for processing.

Opens an existing file using the file identification
provided in the filename block.

Reads logical records from a file.

Reads fixed-length records from a file in random-

© access mode.

Reads records from a file in sequential access mode.
Writes logical records to afile.

Writes fixed-length records to a file in random mode.
Writes records to afile in sequential mode.

Reads virtual blocks from afile.

Writes virtual blocks to afile.

Removes a named file from the associated volume

directory and deallocates the space occupied by the
file.

Suspends program execution until a requested
block 1/0 is performed.

Queues a file for printing on a special terminal or line
printer.

In summary, the file-processing macros allow the user to specify ran-
dom access or sequential access to files, and perform block oriented

159

RSX-11M AND RSX-11S

or record oriented file processing. In addition, the PRINT macro allows
the user to spool files to a line printer or terminal device.

The command line processing macros allow the user to access special
routines available in the system object library. The Get Command Line
(GCML) routine accomplishes all the logical functions associated with
the entry of a command line from a terminal, an indirect command file,
or an on-line storage medium. The Command String Interpreter (CSl)
routine takes command lines from the GCML input buffer and parses
them into appropriate data set descriptors required by FCS for open-
ing files.

The CALL macro allows the user to access a special set of file control
routines. These routines allow a MACRO program to perform the fol-
lowing operations: find, insert, or delete a directory entry, rename a
file, extend a file, mark a temporary file for deletion, and delete a file,
among other operations.

RMS-11 RECORD MANAGEMENT SERVICES

Digital Equipment Corporation’s Record Management Services pro-
vides a set of general purpose file handling capabilities. RMS-11 al-
lows user-written application programs to create, access, and main-
tain data files with efficiency and economy.

RMS-11’s variety of file organizations and access modes gives the
user the ability to choose those methods best suited to the application.
RMS-11 files can be organized sequentially, relatively, and by the in-
dexing method. Based upon these file organizations, RMS-11 records
can be accessed in a number of ways:

® Sequentially

e Randomly by relative record number or by indexing on one or more
keys or by a unique Record’s File Address (RFA).

e By dynamic access, a mixture of sequential and random access
modes.

e Directly by physical location of data.

RMS-11 complements DBMS-11, DIGITAL’'S data base management
system, by providing file and record handling capabilities for those
applications whose size and data structures do not suggest the need
for central data administration and the complete data base manage-
ment services of DBMS-11. Thus, DIGITAL customers are provided
with a growth path from keyed access data management to data base
management.

RMS-11 includes a set of utility programs for the creation and
maintenance of files, and a set of operating system routines through

160

RSX-11M AND RSX-118

which records are transmitted to and from user programs. Under
RMS-11, records are regarded by the user program as logical data
units that are structured and accessed in accordance with application
requirements. As a result, programmers can retrieve data from a file
without having to know the exact format and internal structure main-
tained by operating system routines. Thus, the RMS-11 user has a
sense of transparency with the file system interface because RMS-11
handles much of the data buffering and shared access control respon-
sibilities. Other major features of RMS-11 are:

® Collections of record entries are organized by RMS-11 so that no

pre-sorting is required in the creation of indexed files.

e When new records are inserted into an indexed file, RMS-11 incre-
mentally reorganizes the file, thereby retaining the ablility to access
records efficiently and eliminating the need for overflow areas.

e Support of both fixed length and variable length records furnishes
efficient space utilization and access. Additional
space/performance controls give the user flexibility in the configu-
ration of buffer space and storage areas.

e For applications that require data file organizations supporting ac-
cess by one or more user-specified key values, RMS-11’s file han-
dling capabilities can be extended by adding the multi-keyed access
option. This option provides both generic and approximate key
searches to maximize data retrieval capabilities.

e Concurrent access features enable data sharing in multi-user, multi-
application environments, and reduce redundant data occurrences.
System controlled record locks provide data integrity during con-
current access.

® Multi-level file private control provides protection against unauthor-
ized data access.

® Application programming is simplified through multiple high-level
languages.

® RMS-11 used with ANS-74 COBOL programs provides compatibility
across systems for decreased training costs and maximum program
portability.

® RMS-11 includes a comprehensive set of utilities for file creation
and maintenance.

DEFINE: creates and defines the attributes of a file.
DISPLAY: displays the attributes of a single file or a group of files.

CONVERT: provides for easy transfer and conversion of data from
any specified input file to a given output file.

161

RSX-11M AND RSX-118S

BACKUP: protects against the loss of data due to hardware failure
or software error by creating a back-up copy on an alternate storage
device.

RESTORE: restores previously backed-up files to their original
state.

SYSTEM UTILITY PROGRAMS

The RSX-11M system provides a wide variety of system utility pro-
grams. RSX-11S provides two utility programs, the On-Line Task
Loader and the System Image Preservation program. This section
describes the RSX-11M system utilities.

There are two sets of system utilities: those used primarily for program
development and debugging, and those used for general purpose file
manipulation. The common set of program development utilities is:

EDI and EDT Editors

The editors are used to enter source programs or data files into the
system and to modify them as needed. A large set of easy-to-use
commands makes the editors effective program development tools.
EDI is the traditional editor and EDT is the newer line-oriented editor
which has video terminal features.

SLP Source Input Program
SLP is an editing program used to create and maintain source lan-
guage files on disk.

TKB Task Builder

The task builder creates loadable memory images from assembled or
compiled tasks. It links relocatable object modules and resolves any
references to global symbols, common areas, and shared libraries.
The task builder is used to specify a task’s attributes, such as check-
pointability, priority, etc. The task builder is also used to create shara-
ble commons. The task builder provides an overlay descriptor lan-
guage to construct task overlays. The overlay descriptor language
simplifies the process of dividing a task into overlaid segments and
specifying load methods. Finally, if it is requested by the task-build
command, the user can obtain a cross reference of all global symbols
defined or referenced in the task. There are three different task build-
ers supplied: a small one for small systems, a larger one which
supports all of the features and a third one in which certain features
have been omitted in order to produce very fast executions.

LBR Librarian
LBR provides the capability to create and maintain disk-resident li-
braries of object modules and user-defined macros.

162

RSX-11M AND RSX-11S

ODT On-Line Debugger

ODT aids the user in debugging programs that have been assembled
or compiled and task built. From the keyboard,the user interacts with
ODT to:

e print or change the contents of a location in the task

® run the program using the breakpoint features to halt the program
at specified points

e search the program for a specific bit pattern

e calculate offsets for relative addresses

Trace capability is also provided to aid in the debugging of FORTRAN
programs.

ZAP Task Patch

ZAP provides a facility for examining and modifying task image files
and data files. With ZAP, permanent patches can be made to task
image or data files without having to re-create the file.

PAT Object Module Patch
PAT allows the patching or updating of code in a relocatable binary
object module.

XDT Executive Debugging Tool
XDT, a subset of ODT, is an interactive debugging tool for executive
modules, I/0 drivers and interrupt service routines.

BAD Block Locator

BAD is a utility which determines the number and location of bad
blocks on disks and records this information on the last good block of
the disk. RSX-11M will read this information when the disk is initial-
ized.

PMD Post-Mortem Dump

PMD is a debugging tool that can generate a memory dump for a task
that terminates abnormally (called a post-mortem dump) or an edited
memory dump for a running task (called a snapshot dump). Snapshot
dumps can be requested any number of times during task execution.
In general, both post-mortem and snapshot dumps provide the follow-
ing information: contents of the CPU registers, including the stack
pointer, program counter, processor status word, and floating point
registers (if the program used the latter), the task status code, event
flags set, overlays that were in memory at the time, outstanding 1/0
requests, LUN assignments, etc.

The set of general purpose file manipulation programs includes:

163

RSX-11M AND RSX-11S

PIP Peripheral Interchange
PIP is used to copy files from one device to another, for example, from
disk to printer, to rename files, to list files, and to delete files.

FLX File Exchange

FLX is a special purpose file copy utility. It can copy a file in Files-11
format and covert it to either RT-11 or DOS/BATCH format on another
device, or copy a file in either RT-11 format or DOS/BATCH format on
another device, or copy a file in either RT-11 or DOS/BATCH format
and convert it to Files-11 format. It can also copy files in Files-11, RT-
11 or DOS/BATCH format to another device in the same format. Valid
RT-11 devices for ccpy operations are RK11 disk, cassette, and DEC-
tape. Valid DOS/BATCH devices for copy operations are RK11 disk,
DECtape, magnetic tape, and cassette. RSX-11M also supports RT-11
format on floppy disks and both RT-11 and DOS/BATCH formats on
paper tapes. (Note that RSTS/E can use the DOS/BATCH format for
DECtapes. It is therefore possible to use FLX to transfer files to and
from RSTS/E systems as well.) Furthermore, FLX can initialize a cas-
sette in RT-11 or DOS/BATCH format, list RT-11 or DOS/BATCH
cassette directories, and delete files on RT-11 or DOS/BATCH vol-
umes.

DMP File Dump
DMP enables the user to obtain the listing of Files-11 files or volumes
in either ASCII or octal format.

DSC Disk Save and Conipress

DSC enables the user to backup/restore disk volumes to magnetic
tape or other disks and to combine unused blocks on disks to create
contiguous blocks. DSC comes both as a stand-alone and an on-line
program.

VFY File Verification

VFY checks the consistency and accuracy of the Files-11 file structure
on a Files-11 device, for example, a disk. It also prints the number of
available blocks in a volume, locates files that could not otherwise be
accessed, and lists the names of files on the volume.

CMP File Compare Utility

CMP is a utility which will compare, line by line, two ASCII files. Its
output can be either a new file with all the differences encountered, a
listing of one with change bars marking the differences, or an output
suitable for input to the SLP utility.

164

RSX-11M AND RSX-11S

RSX-11M SYSTEM SUMMARY

Is

Real-time processing

Sensor based

Data base management

Multi-user development

Building block operating system for:
- Communications

- Commercial applications

- Turn-key applications

Is not

e Batch processing

e Timesharing

e Protected environment

Includes Data Management/Utilities
e RMS-11

e DBMS

DATATRIEVE-11

SORT-11

Languages

e COBOL

FORTRAN IV
FORTRAN IV-PLUS
MACRO-11
BASIC-11
BASIC-PLUS-2
RPG Il

165

e

CHAPTER7

INTERACTIVE APPLICATION SYSTEM
IAS (V2)

OVERVIEW

IAS supports concurrent real-time, timesharing, and batch process-
ing, making it the ideal multi-purpose operating system. Since an |IAS
system also offers powerful easy-to-use program development, it is a
natural host for smaller RSX-11 based systems in a distributed com-
puting arrangement. It also offers its users data base management
capabilities.

FEATURE TOPICS
e Functions and Features

e |AS Executive Organization and Services
- Active Task List
- The Timesharing Schedule
- Batch Processing
- System Generation and Initializaton

e Command Language Interpreters
- Program Development System (PDS)
- PDS Commands (Table 7-2)

e System Control Interface (SCI)
e Timesharing Control Primitives
® |AS System Summary

167

IAS

OPERATING SYSTEM FUNCTIONS AND FEATURES

IAS is a large general purpose operating system that runs on a PDP-
11/70, PDP-11/60, PDP-11/55 or PDP-11/45 processor. It is a multi-
user timesharing system that supports concurrent interactive, batch
and real-time applications. It includes the MACRO assembler. As op-
tions, FORTRAN IV, FORTRAN IV-PLUS, COBOL, SORT, CORAL-66,
BASIC, and BASIC-PLUS-2 language processors can be added, as
well as the RMS and DBMS data and record management facilities.
IAS features:

e multiple programming languages: FORTRAN, BASIC,COBOL,

CORAL-66, SORT, and MACRO

® a single, easy-to-learn and use interactive command language
e priority scheduling for real-time tasks
e submission of batch jobs from interactive terminals

e timesharing services for development of interactive applications
programs

® a simple internal software interface for the development and use of
special-purpose, multi-user interactive applications

® a sophisticated file system providing device independence; file pro-
tection; sequential, random, and relative file access; and, optionally,
multi-keyed ISAM

e dynamic allocation of system resources
® use of shared, reentrant code to minimize memory requirements

® system management facilities for system configuration, generation
and control

e facilities to account for and restrict the use of system resources

IAS supports a variety of peripherals useful in batch and real-time
applications, including line printers, card readers and laboratory peri-
pherals.

As an interactive time-sharing system, IAS presents an easy-to-use
system interface. The program development system, PDS, provides a
computing environment that supports most application processing re-
quirements of IAS users. As such, it presents to IAS terminal users a
standard interface which requests and processes valid passwords and
user names before making system facilities available to the user. The
interface allows the user to create programs, submit jobs to the batch
stream, and issue commands to create and manipulate program and
data files.

As a batch system, IAS services multiple queues of batch jobs.
FORTRAN, MACRO, and COBOL jobs can be submitted to batch. The

168

IAS

user interface for batch processing is the same as the PDS interactive
interface. Therefore, programs can be developed in interactive mode
and run in production in batch mode. The system manager can control
the amount of service that batch jobs receive from the processor. In
particular, the system manager can guarantee a minimum processor
time for batch processing.

As a generalized, flexible base for executing interactive applications,
IAS provides support for application-specific user interfaces for appli-
cations such as data entry, bank teller terminals or engineering com-
putation, where it is necessary or desirable to present a customized
interface to terminal users (operators, for example).

Further, IAS supports the concurrent execution of multiple interactive
applications. Thus, a data processing application and the program
development system can execute concurrently and be serviced jointly
by the timesharing facilities of the system.

The interactive application facility is further enhanced by the capability
of the FORTRAN IV-PLUS compiler and IAS to develop and support
sharable programs. For the user, this means that system overhead
(memory occupancy and swapping time) is minimized. Also, the user
can allocate specific application interfaces and deallocate them as
required. This facility is flexible and extendable. The system is easily
modified and additional applications are easily added.

The special-purpose interfaces can be written and checked out using
the IAS program development system and then installed by the system
manager for use on specific terminals. IAS provides a number of sys-
tem services that can be called from the application program to en-
hance the function of these special-purpose interfaces.

IAS was built from the RSX-11D operating system. It provides, there-
fore, the RSX-11D real-time processing facilities of
multiprogramming, priority scheduling, power-fail restart, contingen-
cy exits, disk-based operation and task checkpointing of real-time
tasks. Real-time, interactive, and batch operations can occur concur-
rently and, normally, in that order of priority.

IAS system operations are managed by two executives. The real-time
executive schedules real-time activities according to their priorities
and manages the system resources not allocated to the timesharing
activities. The timesharing executive schedules timesharing users on
the basis of a time-slicing algorithm when real-time activities do not
take precedence. Batch processing normally uses processor time
available after interactive users are serviced. Both batch tasks and
interactive tasks run under control of the timesharing scheduler.

169

IAS

Table 7-1 provides a summary of the IAS system’s features.

Table 7-1 IAS System Summary

System type Concurrent interactive, batch, and real-time
processing system with multi-language
support

CPUs supported PDP-11/70, PDP-11/60 (in 11/40

mode),PDP-11/55, and PDP-11/45 with
memory management

Memory size range Minimum: 64K words
Maximum: 124K words, 1920K words on a
PDP-11/70

Batch processing Standard spooled queue and optional uns-
pooled card reader

Languages MACRO and optionally FORTRAN 1V,

FORTRAN IV-PLUS, COBOL, BASIC, BA-
SIC-PLUS-2, and CORAL-66

System tasks and spe- VFY File and Media Verification Program,

cial utilities and special BAD Bad Blocks Reporting Pro-
gram CDA Core Dump Analyzer, PRE
Media Preservation Program, Error Log-
ging and Diagnostics Package

File system RSX-11 family’s Files-11

IAS EXECUTIVE ORGANIZATION AND SERVICES

To provide system flexibility, the IAS operating system is controlled by
a system monitor consisting of a real-time executive kernel and a
timesharing executive. The primary functions of the kernel include
memory and disk management, supervision of privileged tasks (in-
cluding real-time tasks and device handlers), file management, and
maintenance of the general integrity of the system. The kernel main-
tains the Active Task List (ATL) to control task dispatching.

The timesharing executive controls both interactive and batch pro-
cessing. It controls the execution of timesharing tasks by time slicing
and by swapping tasks in and out of memory.

The Active Task List
The kernel coordinates the dispatching of all tasks on the system by
scanning the entries in the Active Task List (ATL). The ATL is a priori-

170

IAS

ty-ordered list of all resident active tasks in the system. Because of
their requirement for immediate service, the 1/0 device-handler tasks
are put at the top of the ATL. For the same reason, any user-designat-
ed real-time tasks are assigned to high-priority levels. The timesharing
executive, which runs at a lower priority than I/O and real-time tasks,
controls the scheduling of user timesharing tasks by inserting tasks in
the ATL. Figure 7-1 illustrates the priority structure of the ATL.

HIGHEST w
PRIORITY

REAL-TIME TASKS
E.G.I/0 HANDLERS,
SPOOLERS, USER
REAL-TIME TASKS

TSSI

TIMESHARING
USER TASK

BATCH
PROCESSOR

BATCH
USER TASK

S % 1L

TSSNUL

INACTIVE
TIMESHARING TASKS

Figure 7-1 Schematic Diagram of ATL Structure
171

IAS

The timesharing scheduler uses two tasks, TSS1 and TSSNUL, to
control the dispatching of tasks. The timesharing scheduler task TSS1
selects a task for executing by placing its entry in the ATL at a priority
of one less than itself. The scheduler task then gives up control (for
example, waits for an event flag such as time slice complete) to allow
the kernel to dispatch the user task. TSSNUL is the null job and runs
continuously in a loop so that tasks below it on the ATL can never
execute. When a timesharing task is not executing, TSS1 places the
ATL entry for that task below that of TSSNUL. TSSNUL always
executes at priority 1.

The Timesharing Scheduler

The prime objective of the scheduler is to reduce as far as possible the
average response time to all user demands. In order to do so, the
scheduler distinguishes between various levels of user importance
and urgency of service. The scheduler maintains a number of round-
robin queues, or levels, of tasks to be scheduled. The scheduler scans
each level (high to low) in a round-robin fashion until it finds a memo-
ry-resident runnable task. A non-resident ready-to-run task will cause
the swapping system to be activated.

A task which uses a full time quantum is transferred to the next lower
level unless it is already at the lowest level. Tasks at lower levels are
not scheduled as often as tasks at higher levels. Tasks allocated to a
lower priority level are given a longer time quantum when next activat-
ed. Thus, large jobs are run and swapped less frequently, but in com-
pensation, receive more processor time once activated.

To prevent tasks from being starved of processor time because the
scheduler is continuously scheduling higher priority tasks, a means of
promoting tasks from one level to the level above is provided. If, over a
given period of time, no scheduling has been performed at a given
level, then a task at that level is moved to the bottom of the level above.

If the scheduler finds a runnable task that is not resident, then the task
must be loaded into memory to receive its quantum of CPU time.
Space is created in memory by moving resident tasks to create the
required contiguous space, and, if necessary, by writing inactive tasks
to the swap area on disk(s).

Two time factors are associated with every task. The quantum deter-
mines the amount of CPU time a job may have before it is swapped out
of main memory. The time slice is the maximum CPU time a task is
allowed to use before a rescheduling operation is performed.

The time quantum for a particular task is determined by:
Q=At+C
172

IAS

where:

A is a factor (in clock ticks) assigned to a task when it is
loaded: for example, 1 tick per 1K words in the task.

t is a time factor associated with the scheduling level; t
increases as the level number increases.

C is the minimum guaranteed quantum for the system.

The quantum for a task at a low scheduling level may be quite large. In
order not to block other higher priority tasks awaiting service, the
scheduler calculates the quantum of the task, and then allocates the
task a number of time slices. At the end of each time slice, the schedu-
ler will try to run higher priority tasks. However, the task will not be
swapped until its quantum has expired. If the task enters a wait state,
however, the quantum will be set to zero. In this case, therefore, it will
be made available for swapping.

The time slice parameter can be adjusted to achieve the desired
compromise between responsiveness and system throughput. If the
time slice is set to its maximum value, all tasks will execute without
interruption for their entire quantum. The time slice should never be
smaller than the maximum quantum for a Level 1 task. All the parame-
ters of the scheduling algorithm can be adjusted by the system man-
ager to tailor IAS scheduling to the needs of the local installation.

Batch Processing

Batch runs as if it were another timesharing terminal. The batch com-
mand language is the same as the general purpose interactive pro-
gram development command language, and it is processed by the
same command language interpreter (see below).

The batch processor obtains its command input from a queue of com-
mands. The batch queue is maintained independently, thus enabling
jobs to be submitted to the queue at any time. The processor can
service two types of queues. The system can maintain a spooled
queue which consists of: 1) batch job files submitted from interactive
terminals, and 2) command input from the card reader (if the card
reader is designated as a spooled device). The batch processor can
also service a queue of commands directly from the card reader if it is
designated as an unspooled device.

Batch processing is initiated and terminated by the system manager.
The batch processor executes at the batch scheduling level where it is
serviced by the timesharing scheduler. Batch processing shares CPU
time with interactive tasks, but its priority for service is always below
that of the active tasks.

173

IAS

To assure that batch processing receives adequate service, the sys-
tem manager can specify the percentage of CPU time to be made
available to it, and the lengtih of time (quantum) batch should run when
it does receive service. For example, the system manager could direct
IAS to devote ten percent of the available time to batch jobs in 2-
second quanta. Tasks in the batch level are not subject to the promo-
tion/demotion mechanism of the timesharing scheduler; that is, tasks
remain in the batch level for as long as they are executing.

Batch user tasks share space with the interactive tasks (if any) current-
ly executing. While any space not currently in use by batch is used for
interactive processing, batch can be guaranteed space so that re-
quirements up to that maximum will always be satisfied by swapping
interactive tasks out of memory if necessary.

Executive Data Structures

The IAS system maintains a number of common areas in which the
various executive tasks store information and communicate with each
other. SCOM contains system tables, the kernel node pool, lists, and
some servicing routines. SYSRES, the System Resident Library, con-
tains common routines which will be used by most tasks. IASCOM is a
library containing timesharing nodes, lists, tables,and common
routines for manipulating the timesharing data structures. IASBUF is a
buffer area used for communication between the timesharing control
primitives, IASCOM, and the timesharing executive.

1/0 Services and Device Independence

Input and output constitute a significant part of all programmed activi-
ty. Thus, IAS provides a variety of services to perform these opera-
tions.

The IAS file system is a collection of system services that permits the
user to view I/0O as a transaction between a program and a named,
protected collection of records known as a file. The file system man-
ages all data transfers and provides the mechanism whereby a file
intended for a record-oriented device, such as a line printer, can be
dynamically directed to an area on magnetic storage.

Access to a user’s files stored on a disk, DECtape or labeled magnetic
tape is controlled by a protection specification on each file. When
creating a file, a user can specify whether other users may have ac-
cess to the file and, if so, whether they may modify the file or merely
read it.

One of the goals of any file system is to make the user program
independent of the I/0 hardware. Thus, while the storage characteris-

174

IAS

tics of a medium are organized around physical records, the user
deals only with logical records.

To provide greater device independence, the IAS user will in general
use logical units instead of referring directly to physical devices. IAS
provides a set of logical unit numbers (LUNs) which are not associated
with specific physical devices or files until run time. In the source
program, all device and file references use LUNs. These LUNs may be
assigned to particular devices by a command issued before the
program is executed.

Sharing of Common Routines

In a system designed to support many users, there is a high probability
that many tasks will use the same code sequences, such as mathe-
matical routines and specialized 1/0 routines.

The common code could be built directly into each task requiring it,
but this might result in several copies of the same code occupying
memory space at the same time. The alternative employed by IAS is to
put the common code where all users can share it, so that only one
copy of the code is required. The IAS system uses shared code heavi--
ly.

Under IAS, shared areas may be data areas (global common), sets of
common routines (libraries), or the pure (read-only) areas of complete
tasks (shared tasks). Global common areas allow simultaneously ac-
tive tasks to share data. A sharable library consists of routines which
may be interrupted to service another request, then resume execution
later at the point of interruption. Users who write reentrant routines
can include their own sharable libraries in the I1AS system. Shared
code does not need to be permanently resident; it can be loaded at the
time a task which uses it is run. Programs written in either FORTRAN
IV-PLUS or MACRO can be shared.

System Generation and Initialization

System generation is the process by which a collection of system
services is tailored to meet local physical constraints and performance
requirements.

IAS consists of a set of independent program segments which can be
linked selectively to eliminate services not required at a given installa-
tion. For example, a system manager might eliminate the device
handlers for devices notincluded in the hardware configuration.

During system generation, the system manager also defines and
names the partitions in which programs will execute. This normally
includes defining a timesharing partition and any special partitions
dedicated to the execution of real-time applications.

175

IAS

After generating the system, the system manager runs a special start-
up task to initialize the timesharing system. The start-up task prompts
for a series of parameters that specify the system configuration for the
current session. The parameters can be entered at the terminal, or
read from a predefined file. The values specified for the start-up para-
meters override the defaults specified at system generation.

The start-up parameters include:

e Terminals to beallocated for timesharing use

e Devices to be made available for timesharing users
e Devices to be used for swapping

e System control parameters

e Partition names for timesharing

e Partition names for executive tasks

Once the start-up parameters are established, the system operator
enables general timesharing users to access the system by allocating
timesharing terminals to the system’s command language interpret-
ers.

COMMAND LANGUAGE INTERPRETERS

A command language interpreter (CLI) is a task which interfaces with a
person who uses the IAS system. PDS, the program development
system CLI supplied with IAS, allows the general user to access all
non-privileged facilities of the system. Another CLI called the system
control interface (SCI) allows the system operator to alter the state of
the system, to designate user interfaces (CLIs), and to allocate facili-
ties to each user.

Normally, PDS is the standard CLI to which a general terminal in the
IAS system is allocated. Using the SCI interface, the system operator
can designate a specific task other than PDS as the CLI for a terminal.
For example, the system operator might set aside one terminal to be
used solely for program editing. When EDIT is designated as the only
CLI for that terminal, EDIT will be invoked when CTRL/C is typed, and
a user at that terminal will not be able to issue commands to anything
except the editor.

Users can write their own CLI tasks. The CLI tasks can be installed and
allocated timesharing terminals. This means that the system can pre-
sent a number of different terminal interfaces. A user-written CLI task
can define its own command language, which can be as simple and
understandable as required. It can be specifically designed for a par-
ticular application operation. Application terminal users do not, there-
fore, have to learn a generalized command language such as PDS to
perform their subset of daily activities.

176

IAS

A CLI is written as a normal, non-privileged user task which can use, in
addition to the standard system directives and file system facilities, the
IAS system’s timesharing control primitives (see below). A CLI can be
written in any language which provides the facilities it requires; for
example, a CLI that wishes to use the system QIO directive must be
written in FORTRAN, MACRO or BASIC (with user-defined functions).

After a task has been installed as a CLI, IAS automatically provides
certain task execution controlling functions. For example, when
CTRL/C is typed on a terminal allocated to a CLI, a copy of the non-
shared part of the CLI is activated. If the task specifically requests the
information, IAS will inform the task of any events happening at its
terminal or terminals.

The following two sections describe the two standard CLI tasks provid-
ed with the IAS system: PDS, the program development system, and
SCI, the system control interface.

Program Development System (PDS)

A typical timesharing user interfaces with IAS through the program
development system (PDS) command language interpreter. Under
PDS, users can create, compile, link, load, and run programs. They
can submit jobs to the batch stream, use various peripheral devices,
and obtain system information.

PDS is a prompt-oriented system. After PDS is activated at a terminal,
either by the autostart mechanism or by typing a CTRL/C, PDS invites
the input of a command by issuing the prompt “PDS>". The user
replies by typing a command name and its parameters, if any, followed
by a carriage return. If a user does not supply all the parameters
required in a command, the system will prompt the user for them.
Additionally, the user can issue the HELP command to display the
commands available.

As an example, the user can log in to the system, using the LOGIN
command, in two ways. If the user desires the prompts, the user can
simply type the command LOGIN in response to the PDS prompt.

PDS> LOGIN The user issues the command.

USERID? SMITH The user ID is a 1- to 12-character user
name which identifies a person to the sys-
tem. PDS requests a user ID.

PASSWORD? PDS requests a password. The password is
not displayed.

177

IAS

USER SMITH UIC[200,200] TTO07: TASK 25 22:30:07 27-SEP-77

PDS validates the user name and password
and accepts the user to the system by print-
ing information relevant to the user’s job.

If the user types a user name after issuing the LOGIN command, PDS
does not prompt for a user name, it prompts only for the password.

PDS> LOGIN SMITH

PASSWORD?

USER SMITH UIC[200,200] TTO7: TASK 25 22:30:52 27-SEP-77
PDS>

As another example, the user can issue a command to rename afile in
any of three ways. If the user simply types the command name RE-
NAME, PDS prompts for the old file specification and the new file
specification parameters.

PDS> RENAME
OLD? MATRIX.FTN
NEW? BACKUP.TMP
PDS>

If the user does not want the prompts, the user can enter the entire
command on one line.

PDS> RENAME MATRIX.FTN BACKUP.TMP
PDS>

If the user issues the command name followed by a carriage return,
but does not need the second prompt, it is also acceptable to enter the
command parameters on the line with the first prompt.

PDS> RENAME
OLD? MATRIX.FTN BACKUP.TMP
PDS>

The user can supply PDS commands in a file rather than typing them
in one at a time on the terminal. The user creates a file containing the
commands PDS is to execute, called an indirect file. To execute the
commands in the file, the user replies “@filename” to a PDS prompt,
where “filename” is the name of the indirect file. PDS processes the
file in the same manner that it processes commands typed individually
on the console. The commands, as well as any error messages that
occur during the execution of the commands, will be displayed on the
user’s output device.

For example, suppose the user creates an indirect file named
PERF.CMD containing the PDS commands to compile, link and run

178

IAS

the source program PERF.FTN. By typing the command
“@PERF.CMD” in response to a PDS prompt, PDS will execute the
command file.

PDS> @PERF.CMD The user issues the indirect file
' command.
FORTRAN/LIST:PTEST PERF The first command requests the

FORTRAN compiler to compile
the source program named
PERF.FTN (the .FTN extension is
assumed by default) and pro-
duce an object program (named
PERF.OBJ by default) and a list-
ing file named PTEST.LST (the
.LST extension is assumed by
default).

22:34:17 TASK TERMINATION CORE SIZE 20K CPU TIME 01.05

PDS prints a message when
compilation is complete.

LINK PERF The second command requests
the linker to link the object pro-
gram named PERF.OBJ. (The
.OBJ extension is assumed by
default.)

22:35:49 TASK TERMINATION CORE SIZE 15K CPU TIME 14.41
PDS prints a message when link-
ing is complete.

RUN PERF The third command requests
PDS to execute the program
PERF.TSK (the extension .TSK is
assumed by default).

22:35:58
22:37:12 TASK TERMINATION CORE SIZE 10K CPU TIME 00.13

PDS prints messages regarding
program execution.

PDS> After processing the command
file, PDS indicates that it is ready
to accept another command.

There are several types of PDS commands; commands that provide
access or system information, commands that allocate resources,

179

IAS

commands that manipulate files, and commands that control task exe-
cution. The system manager can designate certain PDS commands as
privileged or non-privileged for any particular user. That is, when de-
fining the user accounts, the system manager specifies which PDS
commands each user can issue. For example, some PDS commands
control real-time task execution. Only tnose users who have been
given real-time execution privileges can issue the real-time execution
control commands.

Except for the LOGIN, LOGOUT, JOB, and EOJ commands, all non-
privileged commands can be issued in either interactive or batch
mode. When a command is issued in batch mode, it requires a dollar
sign ($) preceding the first character of the command name.

Table 7-2 lists the general PDS commands. Commands that contain
the term “real-time” in their description are available only to the users
with real-time execution privileges. All other commands: listed are
non-privileged.

Table 7-2 PDS Commands Summary

System Initialization Commands

SET Used to change system and device defaults
for a particular user.

PASSWORD Changes password.

LOGIN Initiates an interactive session at a terminal.

LOGOUT Ends an interactive session at a terminal.

JOB Denotes start of a batch job.

EOD Denotes end of data in a batch job.

EQOJ Denotes end of a batch job.

System Informational Commands
HELP Displays a list of all available commands.

SHOW Displays system and device defaults and
various types of system status information.

MESSAGE Sends a message to the system operator.

180

Job Control Commands

ALLOCATE

DEALLOCATE

ASSIGN

DEASSIGN

CANCEL

MOUNT

DISMOUNT

GOTO

ON

STOP

INSTALL

RUN

ABORT

CONTINUE

QUEUE

SUBMIT

ALTERPRIORITY

FiX

UNFIX

IAS

Reserves a device for single user access.
Releases a device.
Associates a user-specified logical name or

a physical device with a logical unit number.

Disassociates a logical name or physical
device with a logical unit number.

Cancels the periodic scheduling of requests
for a real-time task.

Requests mounting of a volume or volume
set.

Requests operator to dismount a volume.
Transfers control in an indirect command
file or batch command file.

Allows for testing of errors in an indirect or
batch command file.

Prevents all further processing in a batch or
indirect command file.

Install a real-time task.
Initiate execution of a user program (used
also for real-time task execution).

Kills a suspended user program or com-
mand.

Restarts a previously suspended program
or command.

Queues a file for printing or queues a batch
job.

Submits a job for batch execution.

Changes priority of a real-time user task.

Inhibits the checkpointing of areal-time
task.

Allows a real-time task to be checkpointed.

181

CANCEL

REMOVE

IAS

Cancels periodic rescheduling of a real-
time task.

Removes an installed real-time task.

File Manipulation Commands

APPEND

COMPARE

COPY

CREATE

DELETE

MERGE

DIRECTORY

DUMP

PRINT

RENAME

SORT

TYPE

INTIALIZE

UNLOCK

Appends one or more file(s) to another.
Allows the line-by-line comparison of two
input files.

Copies one or more files.

Creates a disk file from card or terminal in-
put or creates a directory file.

Deletes one or more files.

Takes records from a sequential, indexed,

or relative file and merges them with an in-
dexed or relative file.

Displays the names of files in the indicated
directory.

Produces a printed listing in ASCII (or octal)
of the contents of afile.

Prints afile or files on the system’s printer.
Changes the name of afile.

Sorts a file into a specified sequence.
Types afile at the user’s terminal.

Initializes a foreign (DOS and RT11) vol-
ume.

Unlocks a file that was locked.

PDS Program Development Commands

EDIT

MACRO

Invokes the interactive editor or, optionally,
the line editor.

Invokes the MACRO assembler.

182

IAS

LINK Invokes the linker to link together
FORTRAN and/or MACRO object modules.

LIBRARIAN Invokes the librarian to create object pro-
gram libraries.

FORTRAN Invokes either the FORTRAN IV or
FORTRAN IV-PLUS compiler.

COBOL Invokes the COBOL language processor.

BASIC Invokes the BASIC subsystem.

CORAL Invokes the CORAL-66 compiler.

In addition to the PDS commands, IAS supports special terminal con-
trol commands issued from the terminal. These control commands
are:

CTRL/C Returns control to PDS (suspends a running program).
CTRL/U Deletes currentline.

CTRL/I Skips to next tab position.

CTRL/K Vertical tab.

CTRL/L Form feed.

CTRL/O Enables/disables terminal output.

CTRL/R Retypes the current input line.

CTRL/S Suspends current output until CTRL/Qis typed.
CTRL/Q Resumes current output.

CTRL/Z Generates an end-of-file.

In addition to the general PDS commands, 1AS includes special PDS
commands available only to the system manager. The system manag-
er must be logged in under the system management account to gain
access to these privileged PDS commands. There are three types of
privileged PDS system management commands:

® accounting commands to authorize users and report system use

e real-time system control commands

e volume and file control commands

System Control Interface (SCI)

The system operator communicates with IAS through the system con-
trol interface (SCl) command language interpreter. The SCl command
language uses the same syntax and conventions as the PDS com-
mand language, including prompting for missing parameters. Indirect
SCl command files are also supported.

183

IAS

SCI commands enable the operator to monitor the system in four
different areas:

e command language interpreter control
® overall system and task control

e peripheral device control

® system information

The command language interpreter (CLI) commands allow the opera-
tor to install and remove CLI tasks, allocate and deallocate resources
(e.g., terminals) to a CLI task, and abort a CLI task at a particular
terminal. These commands are used both to initialize a timesharing
system and to modify the system’s characteristics during system
operation.

The system and task control commands enable the operator to: load
and unload device handlers which are not permanently resident;
mount and dismount volumes; set the system parameters to suit the
current workload; and shut down the system. These commands also
enable the operator to have ultimate task execution control. For exam-
ple, the operator can terminate any task in the system. This can be
useful when, for example, a batch task loops indefinitely because of
internal errors,.

Peripheral device control commands provide the operator with the
facility to service user requests for access to disk packs, magnetic
tapes or other removable media. Additionally, the operator can control
the output spooling mechanism and the type of printer forms being
used.

The system information commands allow the system operator to dis-
play system information such as the active task list, CLI allocations,
partition names and sizes, date and time, and device status.

TIMESHARING CONTROL PRIMITIVES

IAS provides an installation with a convenient mechanism for imple-
menting special-purpose interactive applications systems such as in-
ventory control, order entry, on-line file update, etc. Programs written
in either FORTRAN IV-PLUS or MACRO are ideally suited for this
purpose since the program, if reentrant, can be shared by multiple
users. The programmer writes a program as if it were responding to
only one terminal, thus eliminating many of the problems associated
with interactive multi-user applications. If the application requires spe-
cial system services or interlocks between users, it can use the system
directives, the file system, and the IAS timesharing coordination facili-

184

IAS

ties to perform these functions. The timesharing facilities are provided
through a set of routines called timesharing control primitives (TCP).

A task designated as a CLI obtains service from TCP by issuing calls to
specify desired operations. TCP runs at a higher priority level than the
timesharing scheduler to provide a high service level to CLI tasks and
to ensure that up-to-date system information is always available to the
timesharing executive. TCP presents a kernel handler interface to the
system; the basic method is through a QIO (Queue I/0) directive.

There are eight kinds of TCP routines available to the user writing a
CLI. For protection purposes, the system operator can control the
privileges of a CLI task. When installing the CLI task, the operator
specifies which TCP facilities the CLI can use. The following sections
describe the TCP routines.

CLI Control Primitives

These primitives provide the necessary CLI authorization and alloca-
tion to terminals required to establish the timesharing environment.
This group provides the facilities for dynamically controlling the CLI
population of the system and the allocation of terminals to those CLlIs.
The CLI control primitives are:

Initialize a CLI

A task is initialized either at system start-up by the IAS executive or at
any subsequent time by the system manager. The CLI must already be
installed. It can be initialized as a batch subsystem (the default is
interactive).

Allocate Terminals to a CLI
Allocates or starts up a CLI task for specified terminals or processing
spooled input.

Relinquish Terminals for a CLI
Releases the terminals that the calling CLI is servicing.

Task Initiation and Control
Task initiation and control primitives enable a CLI to submit tasks to
timesharing either on behalf of the terminal user or for the CLI's own
purposes. They also provide the facilities for the CLI subsequently to
control the execution of those tasks by suspending, continuing, or
aborting the tasks. They are:

Task String Parse
Parses a command string, identifying a task name. It also identifies
whether or not a parameter string is present in the command.

185

IAS

Set Up aJob Node
Sets up the information in a job node to enable successful scheduling
of a task on submission of the job node to the scheduling queue.

Queue Job Node
Queues a specified job node to be run under IAS. The scheduling level
at which the task is to run initially can be specified.

Set Task Termination
Enables a CLI to abort a task previously submitted for scheduling.

Set Task Continue
Enables a task to be continued after being suspended, either as a
result of a suspend request or a CTRL/C issued from the terminal.

Set Task Event Flag
Allows a CLI to communicate with a task which it has previously
initiated by setting a local event flag for that task.

Buffer Management
A CLI can claim and relinquish buffers by using this group of primi-
tives. They are:

Claim IAS Buffer
Allows a single buffer to be picked from the IAS buffer pool.

Relinquish IAS Buffer
Relinquishes a buffer by returning it to the buffer pool.

Terminal Event Control Primitives

The terminal event control primitives enable TCP to communicate to
the CLI events that occur asynchronously with the current CLI activity.
For example, TCP can notify the CLI of task termination for the CLI's
terminal user, of a CLI exit requested, or that a CTRL/C was received
on a terminal. This mechanism allows the CLI to make decisions as to
its subsequent actions. The primitives are:

Declare Terminal Event
Declares a terminal event for the CLI to service.

Service Terminal Event
Invoked by the CLI task to service asynchronous events occuring for
its terminal user.

Job Node Management

Every task submitted for scheduling under IAS timesharing must have
an associated job node. The job node management primitives enable
a calling CLI task to control the allocation of job nodes to its user and
therefore the user’s ability to run tasks.

186

IAS

Claim Job Node

Enables a job node to be picked from the job node pool for the
requestor. Normally the job node is claimed on behalf of a terminal
belonging to the requesting CLI task, but a CLI can claim a job node
for its own use.

Assigna UIC

Assigns a user identification code to a job node. The assigned job
node usually belongs to a terminal node but it could also be a floating
node claimed by the CLI for some other purpose.

Relinquish a Job Node

Releases a job node currently allocated to the terminal serviced by the
calling CLI or releases a specified job node previously claimed by the
calling CLI.

System Management

The system management primitives enable the system manager to
obtain information about the system and reset the tuning parameters.
Access to the system tuning parameters (batch and interactive quanta,
maximum number of interactive jobs, etc.) is available only to the
system manager.

Set or Report the Timesharing Task Promotions Period

Reports and optionally changes the timesharing promotion period.
During timesharing tasks execution, the system allocates tasks among
the scheduling levels according to their activity. A task that uses a full
time quantum in a high level is transferred to the next lowest level,
where the quantum size is greater. The goal is to move highly interac-
tive tasks to high levels, while CPU-bound tasks move to low levels. To
avoid having tasks in low levels becoming starved for CPU time, tasks
are periodically promoted. If, during the promotion period, no task in a
level has been scheduled, the task at the top of that level is promoted
to the bottom of the next highe level.

Set or Report the Batch Quantum

Reports the current values of the batch time quantum, the time
between batch schedules, and optionally gives new values to one or
both of the parameters.

Set or Report the Timesharing Quantum

Reports the current value of and optionally changes the time quantum
allocated to a specific scheduling level. The IAS scheduler relies on
the quantum values increasing with level number.

Set or Report the Timesharing Quantum Constants
Reports and optionally gives new values to the constants used in cal-

187

IAS

culating the time quantum given to each task in each scheduling level.
The quantum given to a task is determined by the relationship:

Q=At+C
C represents the minimum quantum given to any task and t represents
the timesharing quantum allocated to a specific scheduling level. A,
the allocation factor, is a function of task size, where A = N/M. N is the
number of clock ticks allocated for M number of 1000-byte blocks of

task size. Using this TCP, the task can modify the values for C, N and
M.

‘Report Task Characteristics
Reports the limits associated with user tasks which run under the
timesharing system:

e maximum allowed number of timesharing tasks
® maximum task size

e maximum number of user LUNs assigned

e maximum number of currently assigned devices
Report Time Statistics

Reports the following system statistics:

® elapsed time since start-up

e elapsed time since start of statistics collection

e total time given to timesharing

total time given to executing timesharing tasks

total time when no execution occurred

total time given to batch

Report Task Information

Reports information about the active timesharing user tasks in the
system. Any one of the following can be requested: report all user
tasks in the system; report all tasks initiated from a specific terminal.

Device Manage ment Primitives

This group of primitives controls the allocation of devices to timeshar-
ing users. It enables the control of muitiple users of the system who
wish to make use of peripheral devices. It allows any number of inter-
active users (and optionally one batch user) to have simultaneous
access to Files-11 volumes or directory devices and exclusive use of
foreign volumes and non-directory devices. The primitives also allow
the assignment and deassignment of LUNs to devices which are effec-
tive for all subsequent timesharing user tasks run on the CLI.

188

IAS

Assign LUN to Device

Assigns a terminal user’s LUN to: 1) a specified volume mounted on a
given device unit; 2) a specified device; 3) a specified volume mounted
on any of the devices of the specified device type. In all cases the
device must be one which is allocated as available to timesharing.

Deassign LUN
Deassigns the device assigned to a given LUN for a terminal user or
deassigns all LUNs for a given device for a user.

Check Device Allocation
Checks whether a device is in the timesharing user’s device map and
is on-line.

Record On-Line Volume

Records the information about volumes mounted for the timesharing
users. The number of timesharing users using a device is incremented
and a device table entry is made for the requestor’s terminal, signify-
ing that the volume has been mounted.

Check Device For Mount

Called by the MOUNT program when the MOUNT utility is being run on
behalf of a timesharing user. It ensures that the device can be
mounted successfully for the user by checking for a free device map
entry and checking that no other user has the device’s exclusive use.

Relinquish Volume

Makes a device available to other users if the current user has exclu-
sive control. If the user does not have exclusive control of the device,
the system is notified that the device is no longer needed by the user
(that it can be dismounted as far as the current user is concerned).

CLI Service

These primitives provide service functions to CLI tasks. Information
about the user task currently running for the CLI (name, size, CPU time
used so far) and devices currently assigned to the CLI’s terminal user
are provided. Additionally, the CLI can control the terminal context for
its user terminal—the CLI can inhibit or allow the action of CTRL/C on
the terminal via this mechanism, as well as using it to record the CLI's
own context information.

Set or Report Terminal Context
Reports and optionally changes the context of the terminal. Control
context governs whether a CTRL/C is recognized at a terminal.

Give Job Statistics

Returns the task time and CPU time used for the task currently run-
ning for the terminal being serviced by the calling CLI task. It also
returns the device and LUN information for the terminal user.

189

IAS

Report Terminals foraCLI
Reports the terminals in the system for the requesting CLI task.

SYSTEM TASKS AND SPECIAL UTILITIES
IAS provides a common command language for all standard system
program development utilities such as the editor, linker and librarian.

In addition to the standard program development utilities, IAS also
provides two special system tasks called VERIFY and BAD BLOCKS.
These tasks are available only to the system manager. VERIFY is used
verify the consistency and validity of the files on a Files-11 volume.
BAD BLOCKS is used to locate any unusable blocks on a disk and is
normally run prior to disk volume initialization.

The system manager or operator also has available a special utility
called CDA. CDA (Core Dump Analyzer) is a task that executes on-line
with other tasks to capture system information at the time of crash. It
provides the capability to later analyze the state of the system at the
time the crash occurred.

General users have access to a special utility called PRESERVE. PRE-
SERVE is a multi-user task that creates copies of disk, magnetic tape
or DECtape volumes. PRESERVE can also be booted into memory as
a stand-alone program.

IAS SYSTEM SUMMARY

Is
e Real-time
e Timesharing

Batch processing

Data base management
Multi-function

Extensible executive

High RSX/VAX/TRAX compatibility
Protected environment

Is not

e High capacity (dedicated) timesharing
e High capacity (dedicated) real-time

e Operating on small CPUs

190

IAS

Includes Data Management/Utilities
e DBMS

e RMS-11

e DATATRIEVE-11

e SORT-11

Languages
BASIC-11
BASIC-PLUS-2
COBOL
FORTRAN IV
MACRO-11

191

i1

Iy

T
| Ki;{t i

i

CHAPTER8

DIGITAL STANDARD MUMPS
DSM-11 (V.1)

OVERVIEW

DSM-11 is a multi-user data base management system that inciudes
both an operating system and a high-level language. The DSM-11
language has text handling capabilities that facilitate the inspection of
any piece of data for content (such as keywords) or for any format.
Other text-handling capabilities permit several pieces of text to be
combined into one, and divided into segments. Since DSM-11 is an
on-line program development and data storage and retrieval system
with effective string manipulation capabilities and an M-tree file struc-
ture, a programmer can write, debug, or modify a program to develop
a working application quickly.

FEATURE TOPICS
e Functions and Features

® Executive and System Features
- Job Scheduling
- 1/0 Monitor

® User Interface

e Terminals and Ancillary 1/0 Devices

e Data Management

e Data Storage Elements

e DSM Disk Structure and Global Arrays
® | anguage and Utilities

® The MUMPS Language
- Expressions
- DSM-11 Commands Summary

e DSM-11 System Summary

193

DSM-11

INTRODUCTION — FUNCTIONS AND FEATURES

DSM-11 is an interactive multi-user data base management operating
system. The capabilities of the system are heavily oriented toward
string manipulation using the high-level Standard MUMPS language,
DIGITAL Standard MUMPS, ANSI STD X11.1-1977. The system re-
lieves the user of any concern for programming peripheral devices or
for structuring data bases in the traditional sense.

Language processing by the system is interpretive. This greatly facili-
tates program development by eliminating the need to load editors,
assembilers, linkers, etc. The DSM application programmer is relieved
of assembly language programming. The major concerns of the appli-
cation programmer are developing the proper logical hierarchy for a
data base and developing efficient logic for the data processing re-
quirements.

The DSM language is provided with its own stand-alone operating
system. In addition to supporting the Standard MUMPS language and
providing all operating system capabilities, the system affords the user
a unique data base structure and access method. Data which is re-
ferred to symbolically is automatically stored and linked in sparse,
hierarchical structures called M-trees. The physical and logical
allocation of mass storage for the tree-structured data base is handled
completely by the operating system so that the programmer can con-
centrate on application data relationships. The data base thus created
can either be made available to all system users or be restricted to a
class of users.

The DSM-11 operating system runs on any of the PDP-11/34, 11/60,
and 11/70 central processors. The system permits up to 63 simulta-
neous users, operating on any of up to 80 terminals, to interact with a
common data base. The system is specifically designed to manipulate
strings of data and to expand or contract the data storage areas
through dynamic, problem-orierted procedures.

The operating system is highly modular and resides permanently in
memory. The system uses between 20K and 32K words of memory,
depending on the hardware configuration and system software op-
tions selected during system generation. During system generation,
the remaining memory is subdivided into user partitions. Machines
with no more than 32K words of memory can have 2 to 4 user parti-
tions. Machines with more than 32K words can have a maximum of 63
partitions.

A partition holds one active user’s program, local data, and system
overhead data. There is no fixed correspondence between terminals
and partitions. Indeed, jobs can run without having terminals associat-
ed with them, and multiple terminals can be attached to one job.

194

DSM-11

Partition assignment is performed dynamically at log-in time, and is
also permitted during execution. The recommended size for partitions
is approximately 4K bytes each, but they do not all have to be the
same size; the maximum partition size is 16K bytes. When logging in, a
user is assigned the next available partition. If the requested size is not
available, the next largest partition will be assigned.

Each active user requiring CPU time obtains a time slice in turn. A
checkpoint form of timesharing is used whereby a program is allowed
to execute until its time slice has expired, plus any additional time
required to complete a current operation. Control then passes to the
next job (in priority order) requiring service. The software is entirely
memory resident; there is no swapping to disk.

Additional features include:

e variable-sized data elements and logical records

e random access of data using muiltiple keys

e avariety of terminal and peripheral devices

system utilities for backup, validation, and reporting

easy writing, storing, and debugging of programs

on-line modification of system configuration, system utilities, and
system library

inter-task memory-to-memory communication facilities
choice of ANSI standard and EBCDIC magnetic tape labeling
journaling at system level

spooling

data base access by more than one CPU

e stand-alone backup program (fast, flexible, error tolerant)

Table 8-1 summarizes the supported hardware of the DSM-11 operat-
ing system.

Table 8-1 DSM-11 Supported Hardware

CPUs sup- PDP-11/34,PDP-11/45,PDP-11/60, or PDP-11/70
ported

Memory Minimum: 32K words (allows 2 to 4 users)
ranges Maximum: 124K words on 11/34, 11/60; 1 megabyte
on 11/70

195

DSM-11

Disk systems Both fixed-head and removable pack disk systems
can be used for on-line storage of user programs,
the data base, and system utility programs. The
maximum size system can provide more than 1.4
billion bytes of on-line storage. RK11, RK06, RK07,
RPO04, RP05, RP06, RM02, RMO03.

Minimum Console terminal

peripherals A disk system (RK11, RK06, RK07, RP04, RPO5,
RP06, RM02, or RM03)
A tape system (TS03, TU10, TU16, or TU45 magnetic
tape system)

Additional Maximum 16 single-line controllers (DL11)
peripherals Maximum multiplexers: 56 DH11s (16 lines) or 6
DZ11s (8 lines) with a maximum of 80 terminals total
DMC11 Synchronous Communications Interface
Industry compatible magtape (TS03, TU10, TU16,
TU45; up to 4 drives each)
CR11 card reader
LP11 line printer

EXECUTIVE AND SYSTEM FEATURES

Job Scheduling

The executive implements the timesharing aspects of the system and
permits partitioned multiprogramming using dynamic assignment of
memory-resident user partitions. In a timesharing environment, jobs
are generally highly interactive and normally require little processing
time between 1/0 requests. The executive passes control from one
user to another in order to use the central processor as much as
possible. Because jobs are resident in memory partitions, the execu-
tive can switch from user to user in minimum time.

The executive uses a set of priority-weighted queues to administer its
scheduling algorithm. Jobs waiting to run can be placed in either one
of two sets of wait queues, depending on the priority set by the appli-
cation system designer. These queues are the Wait 1, Wait 2, and Wait
3 queues, and the Wait A, Wait B, and Wait C queues. The priorities
are Wait 1, Wait A, Wait 2, Wait B, Wait 3 and Wait C queues. Initially, a
job starts in the highest priority wait queue. When a job reaches the
front of this queue, it is placed in the run queue, where it executes for
the duration of its time slice. The number of DSM commands executed
is incremented with the interpretation of each command. The counter
is reset upon the completion of an input message. When a job is
swapped out, if the command count is less than 20, the job is placed in

196

DSM-11

the Wait 1 or Wait A queue. If the command count is greater than 20
and less than 8192, the job is placed in the Wait 2 or Wait B queue.
Otherwise, the job is placed in the Wait 3 or Wait C queue.

If the job is still executing, and has not issued an 1/0 request (which
would change its priority) by the end of this time slice, it is placed in
the lowest priority wait queue. When it reaches the front of this queue,
it is allocated another time slice and is once again placed in the run
queue. After this point, the executive circulates the job between the
lowest priority wait queue and the run queue. When the job becomes
170 bound, the executive places the job at the end of the highest
priority wait queue (unless the I/0 was disk 1/0, in which case the job
is placed at the front of the highest priority wait queue). Note that the
time slice given to any job in any wait queue always remains the same,
regardless of the wait queue in which the job is placed. This queueing
algorithm gives priority to the most highly interactive jobs in the sys-
tem.

1/0 Monitor

When a job becomes I/0 bound, the executive places the job in the
appropriate hung state that signals the /O monitor to start its process-
ing. The I/0 monitor initiates and processes the I/0 activity through its
interrupt handlers.

The DSM interpreter and the I/0 monitor communicate through buff-
ers for terminal 1/0 character processing, but the /O monitor
supervises the asynchronous filling and emptying of these buffers to
overlap output with that program’s processing whenever possible.

The 1/0 monitor creates a terminal-independent environment in which
an application program can run with any terminal of the hardware
system regardless of its specific speed and formatting characteristics.
At terminal log in, a partition initially “owns” one terminal. It may sub-
sequently acquire other terminals in the system, or it may release the
original terminal and continue as a detached job.

The 1I/0 monitor also supervises the peripheral 1/0 devices of the
system, including the magtape drive, card reader and line printer.

User Interface

Most users of the DSM-11 system gain access to the system’s pro-
grams using a special log-in sequence which involves one or two
access codes (depending on the privileges of the user). These codes,
provided by the system manager, are the User Class ldentifier code or
UCI, and the Programmer Access Code or PAC.

The DSM-11 system can have up to 10 UClIs (classes of user). A UCI

197

DSM-11

allows access to the programs and globals listed in the program and
global directories for that UCI. A user who is permitted simply to run
programs needs to know only the UCI and the name of the programs
for that UCI.

Users who are allowed to create or modify programs and global files
must know the system’s PAC. This code permits system operation in
direct mode. In direct mode, a programmer can issue DSM com-
mands at the keyboard, as well as create, modify and delete global
data and programs associated with the UCI under which the user
logged in.

If the user intends to program, the partition is initialized and control is
passed to the interpreter for the subsequent programming session. If
the user desires activation of a service program, the requested pro-
gram is loaded from the disk into the partition and execution of that
program commences. In either case, the user retains the partition until
logging off the system or until the requested program finishes execut-
ing.

DSM-11 also employs a concept known as ‘““tied terminals.” An
attempt to log in at a tied terminal activates the task to which the
terminal is tied and limits the user to the resources associated with
that task. Normally, the user gains access to the system by typing a
CTRL/C, entering a UCI or UCI and PAC code, and then selecting a
program or command to execute. When the user types a CTRL/C ata
tied terminal, the task to which the terminal is tied is immediately
activated. This capability gives the system manager an effective con-
trol mechanism for system access.

To log in to the system, the user types the CTRL/C keys or the BREAK
key on the terminal. If the terminal is not tied, DSM responds by
requesting a UCI code. The terminal user can respond in one of two
ways. If the user is not a privileged user, the response consists of a UCI
code followed by the name of the program to be executed. In this case,
DSM logs in the user if the UCI is valid, executes the named programs
and logs off the user.

If the user is a privileged user, the response consists of a UCI code
followed by the PAC. In the latter case, DSM enters direct mode,
indicated by its printing a greater than character (>) on the terminal. In
direct mode, the programmer can:

e execute DSM commands immediately

® enter program code

® run programs and access global files listed in the UCI directories
® run library utility programs

198

DSM-11

All application programs, system utilities and library programs are
written in Standard MUMPS language. This language allows an appli-
cation programmer to write a program and debug, edit, run, and mod-
ify it in a single interactive session at a terminal. This minimizes the
programmer’s time in solving a problem, the computer time needed in
checking it out, and the elapsed time required to obtain a final running
program. The interpreter is that part of the operating system responsi-
ble for these services. The executive and the I/O monitor serve to
enable the interpreter to operate efficiently.

The interpreter examines and analyzes all Standard MUMPS language
statements, executing in turn the desired operations. Each Standard
MUMPS language statement undergoes identical processing each
time itis executed by the interpreter. Intermediate code is not generat-
ed. Comprehensive error checking is also performed to ensure proper
language syntax.

In addition, the interpreter stores and loads programs through the disk
storage system. During program execution, the interpreter can overlay
external program segments invoked by an active program. Proper
linkages are set up to return to the invoking program when execution
of the segments terminates.

A number of major advantages are obtained from the use of the inter-
preter as the major component of the DSM system. First, programs
written in an interpretive language do not require any compiling or
assembling. Errar comments during execution are printed at the pro-
grammer’s terminal and allow quick recovery, program modification
and re-execution. All program debugging and modification operations
are performed in the DSM language directly at the terminal. This
makes modification convenient, particularly in an environment where
the troubleshooting necessary to interface a program with an applica-
tion area is a time-consuming process. The DSM environment allows a
programming session to take the form of a conversational dialog
between the programmer and the terminal device.

Almost any DSM command or function can be executed from the
keyboard in direct mode. When a command is entered, the DSM lan-
guage interpreter executes the command immediately and gives the
appropriate response to the programmer. A command line can con-
sist of several Standard MUMPS commands and arguments, com-
ments, and data. For example, the programmer can enter the com-
mand line:

>WRITE"7+5=",7+5

This command tells DSM to print the characters 7+5= on the terminal,
evaluate the arithmetic expression 7+5 and print the result on the

199

DSM-11

terminal. DSM therefore responds by immediately printing:

7+5=12
>

To create a program, the programmer enters a paragraph of code
which may consist of one or more lines. Each paragraph begins with a
label and a TAB character; subsequent lines begin with just a TAB and
are addressed via the label plus an offset. For example:

>A WRITE "7+5=",7+5,!
WRITE "THIS IS ATEST",!
>

In order to print the second line of this program on the terminal, one
would typeP A+1.

Entering lines of code in this manner signals the system to store the
line in the program buffer of the user’s partition rather than to execute
it immediately. DSM responds only by printing the > character. The
programmer must explicitly request DSM to execute the stored com-
mand line. For example:

>DO A
7+5=12
THISISA TEST
>

The DO command tells DSM to begin executing at the line labeled A of
the stored program, and it will continue to execute until it encounters a
control command such as GOTO ¢r QUIT, or arrives at a point where
there is nothing else to interpret.

Once a program has been created, the programmer can store the
contents of the partition’s program buffer on disk or on a secondary
storage device such as magnetic tape. The program can then be
reloaded into the program buffer from the disk or secondary storage.
A program can be modified when it is loaded in the program buffer by
adding new lines or by replacing, deleting, or modifying existing lines
of code.

Terminals and Ancillary 1/O Devices

In addition to the disk devices reserved for use by the DSM data base
supervisor, DSM allows users to have access to terminals and ancilla-
ry 1/0 devices such as the card reader and magnetic tape devices.
Each I/0 device has a unique identification number in the system.

Ownership of terminals and ancillary I/0 devices is established using
the OPEN command. Once ownership is established, 1/0 may proceed

200

DSM-11

using the I/0 commands available. In general, the programmer need
not be concerned with specific characteristics of 1/0 devices, since
data transfers consist of ASCII strings not greater than 255 characters.
There are, however, certain physical operating characteristics of these
devices which may be of interest to the programmer: for example,
rewinding a magtape or a form feed on the line printer. There are also
logical characteristics such as use of special characters to indicate
end of a logical record or end-of-medium (EOM). The omission of
such characters can result in logical records of unlimited length (ex-
cept for physical device limitations such as length of tape).

The unique identification number of each 1/0 device always repre-
sents the same device regardless of the hardware configuration of the
particular system. For example, the console terminal is always device
#1 and the line printer is always device #3. If a particular system does
not have a line printer, then device #3 is non-existent, and any attempt
to reference it generates an error.

The commands which affect input and output operations to the termi-
nals and ancillary devices are: READ, PRINT, WRITE, WRITE* and
ZLOAD. The WRITE command is used to output both local and global
data, as well as literals, constants and format control characters. The
WRITE* command is used primarily to take advantage of special fea-
tures of I/0 devices, which are specified, generally, by non-printing
ASCIl codes. The WRITE* command accepts numeric arguments, the
low-order seven bits of which are taken as the decimal representation
of the ASCII code. For example, the command W*10 is used to output
aline feed character.

In addition to the standard |I/O peripheral devices such as the line
printer and magnetic tape drives, DSM has two special “devices.”
They are the Sequential Disk Processor and the CPU-CPU device.

The Sequential Disk Processor (SDP) allows the user to access the
disk physically as an assignable sequential 1/0 device. The SDP can
access only the disk space that is explicitly set aside for its use. Other
disk space, including the global data base structure, can not be
accessed. Sequential disk processing allows the user to impose any
file structure on the SDP space.

The CPU-CPU device is a DMC11 synchronous interface, full- or half-
duplex, that connects the DSM-11 CPU to another CPU. The other
CPU does not necessarily have to be a DSM-11 system, but does have
to recognize DMC-11 protocols. This device allows a DSM program to
communicate with a program running on another central processor.

In an attempt to connect more users to a common data base, DSM-11
allows a system to be connected syntactically to up to four other sys-

201

DSM-11

tems. Functionally, these' routines will allow a user on one system to
lock global nodes or read or write global data from the other systems.

Spooling

DSM-11 also includes the ability to spool output to line printers. The
spooling device is a file-structured mechanism used for temporary
storage of information. Typically, one would direct the output of sever-
al programs to separate files on this device. These files would then be
processed one at a time by a de-spooling program which would write
them to an output device such as the line printer. After a file had
finished printing, it would be erased from the structure.

In order to aid in classifying these spool files, a destination code ac-
companies each file, in addition to its own unique file index number.
The destination code is a value which is in the range of (1) to (255).
This code is recorded in the directory entry for each file for easy
access. By using this code, a file can easily aid in retrieving a particular
group of files.

For instance, let us say that there are two de-spooling routines running
on a DSM system, each handling one printer (devices 3 and 4). The
user may choose to designate files which have a destination code of 3
to be written to device #3 and those with a destination code of 4 to be
printed on device #4.

Each de-spooling routine would attempt to access any existing file
with an associated destination code (3 for device #3, 4 for device #4). If
no file exists with this destination cede, an error code is returned in the
system variable $ZA. The de-spooling routine would then recognize
that and would sleep for a specific period and then try again.

If the open was successful, the de-spooler would read from that file
and output it to its associated printer. Upon completion of this (end-of-
file is indicated by a $ZA error code), the file would be erased by use of
an option on the CLOSE command.

In this way, actual file numbers become relatively unimportant, and
several files with the same destination may be open simultaneously.

In the released version of DSM-11, the despooling routine (%
DSPOOL) uses this destination code as the intended output device
and will process all spool files in a serial manner. It is suggested that
the user examine this routine and use it as a model for customizing the
spooling facilities to the particular installation environment.

The system global 1%SPOOL is used by %DSPOOL and %DEVIL for
communication with other routines. An entry point QUIT4%DSPOOL is
provided to shut down the de-spooling routines. The routine %DEVIL

202

DSM-11

is a device error monitor routine which scans for printer errors and
indicates them on the console device. It then re-enables the printer for
are-try.

Journaling

DSM-11 also supports the technique known as journaling. Journaling
is a technique whereby an additional copy of any data that is modified
on the disk is made on another device. In the DSM system, any item
that is changed on the data base is also written on to the magnetic tape
for a journai record. Should a catastrophic failure to the disk occur, it
is always possible to bring back the journal tape entries and restore to
the previous backup copy, bringing the system right up to date as of
the time of the failure. This journaling is transparent to the MUMPS
application programmers. It runs at the system level, built in to the
operating system so that MUMPS programs need not be modified or
specially written to handle journaling. All desired changes to the data
base are recorded automatically on to the journaling system. Journal-
ing also has the capability of writing transactions delimiters.

It is frequently important in data base systems to be sure that all of a
particular grouping of items, or a particular transaction, is updated on
the device. With DSM-11, it is possible to write transaction delimiters
onto the journal so that the restore program can be sure that it has an
entire transaction before it does the restore.

The journaling in the DSM-11 system is double buffered. This is a
performance enhancement that means the system should very rarely
have to wait for the magnetic tape to catch up with the data base
changes. All entries being made to the tape are written into one buffer.
While that buffer is being written out on to the tape, the updated
transactions are being written to the second buffer. This ping-pong
effect can keep the magtape moving at optimum speed, and not bog
the system down waiting for the tape transport activity.

The journaling is optional either by the entire system or by specific job.
It is important to note that, once included in a system during system
build, journaling is assumed. A user must take an overt action to stop
the journaling, rather than one to start it. When a particular operation
doesn’t need journaling, such as a batch process that can easily be
repeated, then the journaling can be stopped to enhance system per-
formance.

DATA MANAGEMENT

Data Base Supervisor
The data base supervisor consists of a group of routines which pro-

203 ¥

DSM-11

vide physical as well as logical control of the various disk systems
which store the data base.

in DSM, all file information is referenced symbolically, in the context of
hierarchical global variables and arrays. This replaces the standard
technique of sequentially accessing the blocks constituting files on
secondary memory devices. Instead, the content and structure of the
tree-structured symbol tables are logically mapped into the physical
storage medium of the system. The data base supervisor maps logical
information from global arrays into directories of fixed-size blocks.
Maps of unused disk blocks are maintained to facilitate the dynamic
allocation of disk storage space to files. These storage allocation maps
are bit maps in which there is a correspondence between the map
address and the bit position within the map, and the disk address of
the block.

Whenever a file needs a block, the system references a table which
governs the allocation of data for that particular user. This table has
entries in it which indicate the block number where a scan for an
empty block is to be started. Types of blocks allocated in this way are:
global directory, global pointer, routine directory, routine pointer and
global data blocks. Given a starting location, the system references a
master allocation table to determine the availability of blocks in the
desired area. (This map is known as the master map and is kept in
main memory.) Having thus found the region where an available block
is to be found, the appropriate map block is referenced for the specific
block number.

DSM utilizes a data retrieval method known as disk cache. Once a
block of data accomodating a given level of subscripting is referenced,
its address is placed in the partition’s overhead area and the block
remains in memory until a reference to a different block is made.
When a level is reached, often no further disk access need be made to
reference associated information. At system generation, the system
manager has the option to establish a buffer pool of up to the equiva-
lent of 64 disk block buffers. Disk data blocks will be kept in the buffer
pool as a function of frequency of use. Frequently used blocks will
tend to remain in memory, thus reducing the number of disk accesses.
Furthermore, when data are updated, care is given to repacking, and
sometimes reorganizing, the individual data elements within a chain,
to ensure maximum use of space for variable length data.

When a part of a global structure is deleted, it is attached to a garbage
chain. The garbage collector routine removes blocks from the tree-
structured chain and updates the storage allocation maps according-
ly.

204

DSM-11

Data Storage Elements

All user data, whether numeric or string, are stored in the system as
ASCII character strings. DSM interprets these strings in one of two
ways: as numbers, such as those used in calculations, or as strings,
such as names and addresses.

Numbers in DSM are signed numbers which can be up to 27 signifi-
cant decimal digits long. Examples of numbers are:

2.08
151.95
403,222
.6379465

A data value has the form of a number if it satisfies the following
restrictions.

1. It contains only digits and the characters ‘-’ and ‘,’ (the + character
is not necessary. The number +403,222 is equivalent in value to
403,222.

. Atleast one digit is present.
. A decimal point (.) occurs no more than once.
. The number zero is represented by the one-character string ‘0’.

a A~ W N

. The representation of each positive number contains no hyphen (-)
character.

6. The representation of each negative number contains the hyphen
(-) character followed by the representation of the positive number
which is the absolute value of the negative number. (Thus, the
following restrictions describe positive numbers only.)

7. The representation of each positive integer contains only digits and
no leading zeros.

8. The representation of each positive number less than 1 consists of
a decimal point (.) character followed by a non-empty digit string
with no trailing zero.

9. The representation of each positive non-integer greater then 1 con-
sists of the integer part of the number followed by the fractional part
of the number.

String data in DSM is any contiguous series of legal DSM characters
that are to be considered a single data entity. Strings in DSM can be
up to 255 characters long. Examples of strings are:

HELLO, MY NAME IS
55 SECONDS
2,564,843,485,076,193

205

DSM-11

FRIENDS, ROMANS, COUNTRYMEN,...
FROP%X10.CF

Program data values can be expressed as literals, constants or
variables. Three types of variables can be created in Standard
MUMPS programs: simple variables, subscripted variables and global
variables. Variables can be created, modified and deleted using the
SET, READ, and KILL commands.

System variables are a fourth type of variable. These variables, main-
tained by the operating system, contain general information for use by
all Standard MUMPS programs. With one exeception, system vari-
ables are read-only and cannot be altered as can normal variables.

A subscript is a value enclosed in parentheses which is appended to a
variable name to identify uniquely a number of data elements which
are to reside under that variable name. All the subscripted variables
residing under a common name are collectively referred to as an
array. An array can consist of variables which have more than one
level of subscripting, and when more than one level is used for giobal
array subscripts, they are separated by commas.

A sparse array is an array in which only those elements which are
explicitly defined or which are required to support the array structure
actually exist. Unlike other languages which may require a declaration
of the maximum size of an array to preallocate space, DSM dynamical-
ly allocates storage for all arrays only as needed, thus conserving
storage space.

Local variables are variables that reside in the same partition as the
commands which created them and are used as scratch or transient
data. These variables are accessible only to programs running in the
same partition. Simple variables have no subscript, for example, ABC,
R45, X, %D. Subscripted variables can have multiple levels of sub-
scripting, with numeric or string subscripts. For example: ABC(2),
R49(“LIST”), ABC(4+B(C*D)/0.89).

Global variables are multi-subscripted arrays. Unlike local variables,
they are external to a program’s partition, providing a common data
base available to all programs in a given user class. There is no logical
limit to the number of subscripts that can be used. The physical limit is
63 characters for a complete global reference. Like subscripted local
variables, global arrays also reside in sparse arrays and are created
simply by reference in a program. Each global array is identified by a
unique name which is similar to a local variable name in a program,
but is always preceded by an up-arrow character (}).

206

DSM-11

Array elements, which are often called nodes, can contain either a
numeric or string data value. Nodes may be either pointer nodes or
data nodes. Pointer nodes are stored as required by the system at the
higher levels of the tree. All data are stored in a well-ordered form in
data blocks—regardless of the number of subscripts.

A global variable node can be referenced in a program using a special
abbreviated syntax called naked syntax. The naked syntax facility per-
mits the programmer to abbreviate the global reference.

In form, only the up-arrow and subscripts are explicitly stated. The
global name is assumed from the last global reference made. Thus, if
a reference to 1ABC(2) is to be made after referencing tABC(1), only
the subscript is specified: 1(2). The first subscription in the naked
reference replaces the last subscript in the previously completed glo-
bal reference. Thus if ABC(2,3,4) is referenced sucessfully, then a
reference to $(1,2,3) would refer to fABC(2,3,1,2,3).

In addition to storing global data files, the disk is also used to contain
Standard MUMPS language programs, which include both user-creat-
ed programs and system utility programs.

The availability .of programs and global data to users is controlled by
the system’s protection scheme. Up to 10 classes of user can be de-
fined within the system. Each user class has access only to those
programs and globals residing in that class. In addition, specially
named library programs residing in UCI #1 (the system UCI) can be
accessed by all users.

The DSM Disk Structure and Global Arrays

The primary devices used by the DSM-11 system are the disk units
allocated to the storage of DSM globals and DSM programs. Each UCI
defined by the system manager has two directories associated with it:
the global directory (that is, the file directory) and the program directo-
ry.

Directories for programs and globals are normally stored on the sys-
tem disk. Storage area for programs and globals usually begins on the
same disk unit as the associated directories. As programs and globals
increase in size and number, storage area will ultimately flow across
physical disk unit boundaries. This is completely transparent to the
user. The general user does not have to be concerned with any DSM-
11 disk device unit naming to retrieve globals or programs from any of
the disks allocated for this purpose.

The system manager can locate the directories on any disk unit in the
system. The system manager can also limit program and global stor-
age to specific disk units in the system.

207

DSM-11

Globals are logically organized as multidimensional tree-structured
arrays. An element of an array has a logical name consisting of the
global name and the subscript(s) uniquely identifying the element. For
example, ABC(2,3.4,JONES) is the name of the element in the global
called ABC whose first subscript is 2, whose second subscript is 3.4,
and whose third subscript is JONES. The elements of a global array
are called nodes.

The user’s global directory contains the names of all the globals it can
reference, together with the pointers to the tree structures for each of
the globals.

The basic new data structure is organized along the lines of “multiway
B-trees.” A general discussion of multiway trees can be found in
Knuth, “Sorting and Searching,” Volume 3, Chapter 6.2.4.

Essentially, the new structure consists of three types of disk blocks:
directory, pointer, and data blocks. The organization and growth of
data blocks will first be described, and, in so doing, the others will be
explained.

All of the data are stored in blocks called data blocks. Each piece of
data is stored with the set of subscripts that is required to access the
data. The subscripts are concatenated to form the “node name,” and
the associated data in the node’s “value.” Thus a data block may look
as follows:

A 1 3, HELLO A 5,YES A 19 3 2 BYE
1st NODE 2nd NODE 3rd NODE

In this example, 1A(1,3) = “HELLO.” All of the nodes are kept in order
by node name, and $A(5) would preceed tA(5,0).

Let us assume that this is the only data block, and that in attempting to
add tA(2), we find that the block is not large enough. A new block is
allocated, and part of the block is placed in the new data block. Anoth-
er block is also allocated, and it contains the first node name of each of
the data blocks with an associated pointer to each data block. Our
structure may now look as follows:

A 13 A5 POINTER
BLOCK
A 1 3 HELLO A 2, THERE A 5, YES A 19 3 2,BYE

The top block in this diagram is a pointer block. Other nodes will be
inserted in the data blocks, and other splits will occur causing new
entries to be inserted in the pointer block. Eventually, the pointer block
will become so full that it too must split. When this split occurs, a

208

DSM-11

higher level pointer block is allocated, and the process repeats itself.
Every time the bottom pointer level splits, a new node is inserted in a
higher level pointer block until it, too, splits.

Note that all of the data are stored at the bottom level, and that,
although deletions may result in the collection of certain data and
pointer blocks, the same number of pointer block levels will always
exist between any data block and the top pointer block.

The number of pointer block levels depends upon the file size (num-
ber of elements and length of subscripts). In small files, the number of
pointer levels may be one or two. Large files will require three levels.

The complete segregation of pointer and data blocks permits the sys-
tem considerable freedom in block allocation. All of the pointer blocks
may be stored on a couple of cylinders, thus reducing the head motion
which is the major factor in access time.

LANGUAGE AND UTILITIES

A set of DSM language utility programs provides the user with the
tools to maintain and service the system efficiently. All these utilities
are written as Standard MUMPS language programs, and as such can
be easily modified and extended to suit the needs of a particular
installation.

The utility programs consist of two operationally distinct groups: sys-
tem utility programs and library utility programs. The system utility
programs provide functions for use by the system manager. They
reside on the disk under the control of the system UCI (UCI #1), and
are accessible only to those individuals possessing the system UCI
code.

Library utility programs provide general services which are available
to all system users, regardless of UCI. These programs also reside
under the system UCI but employ a naming convention which distin-
guishes them from system utilities.

Tables 8-2 and 8-3 briefly describe the system utility and library pro-
grams.

Table 8-2 System Utility Program Summary

BBD Bad Block Deallocator
STU System Startup
STA System Status

209

DSM-11

SSD System Shut Down

RJD Restore Job/Devices
PAN Partition Analysis

DDR Device Descriptor Rpt
CTK Caretaker

KTR Caretaker Rptr

JPC Job Priority Change
BCS Broadcaster

DGAM Disk Growth Area Management
DAT Sets date in SHOROLOG
TIM Sets time in $SHOROLOG

DSM Backup and Utility System

The Standard MUMPS Backup and Utility System (SMBU) is a boot-
able, stand-alone system. SMBU allows the user to back up or save
the significant data from DSM disks so that in the event of a system
failure, the disks can be restored to their former states. In addition,
SMBU performs the following important utility functions:

1. Labels disks and magtapes for identification purposes and for pre-
vention of inadvertent distruction of important data.

2. Formats and tests disks; initializes disks to be used in a DSM
environment.

3. Makes exact image copies of magtape and disk volumes to back up
non-MUMPS data.

4. Allows the direct allocation or deallocation of individual blocks on a
DSM disk.

Once loaded into memory, SMBU begins executing automatically.
Thereafter, the user need only answer the question it asks in order to
have it perform the operations desired. If in doubt as to the way to
answer a particular question, the user can type the single character ‘H’
(followed by a carriage-return) and receive a list of sample answers to
the question, showing the format in which the answer is expected.

210

DSM-11
Note that if the user types ‘H’ in response to the first question SMBU

asks, he will receive an “SMBU Command Summary”—a brief de-
scription of all SMBU commands, explaining the use of each.

Table 8-3 Library Utility Program Summary

%BDLMP Block Dump — dumps requested global blocks.

%CP Character Print — turns echoing of characters on
and off.

%D Writes out the date equivalent of whatever is in $HO-
ROLOG.

%DO Decimal to octal subroutine

%DOC Decimal-octal converter

%ED Routine Editor

%FL Routine first line list

%GBA Gobal Block Analysis

%GD Global Directory

%GL Global Lister

%GP Global Place

%GR Global Restore

%GS Global Save

%GSEL Global Name Selector

%GU Global Utilization

%GUCI Get current UCI name and number

%H Takes care of all date and time conversions.

%l0S 1/0 device selector

%JRNL Turns journaling off and on.

211

DSM-11

%LT Prints out lock table

%0D Octal to decimal subroutine

%PROTECT Global Protect — changes protection codes of differ-
ent globals.

%RBA Routine Block Analysis

%RD Routine Directory

%RLST Routine List

%RS Routine Save

%RSE Routine Search

%RSEL Routine Name Selector

%RR Routine Restore

%T Writes out the time equivalent of whatever is in $HO-

ROLOG.

The MUMPS Language

ANSI STANDARD MUMPS X11.1-1977 contains a large repertoire of
capabilities; its basic orientation is procedural, much like FORTRAN or
COBOL. Its capabilities are primarily directed toward the processing
of variable-length string data, although mixed mode operations are
expressly permitted. In addition, standard algebraic and Boolean op-
erations are available.

Language processing is in every sense interpretive. Each line of
Standard MUMPS code undergoes identical processing each timeitis
executed. The language interpreter has two operating modes: pro-
gram execution mode (indirect mode) and program creation mode
(direct mode). In direct mode, programs can be created, modified,
debugged, stored, and executed in whole or in part. Indirect mode
permits the execution of these programs.

The following paragraphs discuss some of the major elements of the
Standard MUMPS language.

Expressions
An expression is a value description that can be made in the Standard
MUMPS language. An expression is any legal combination of oper-

212

DSM-11

ands and operators. Expression elements include such basic lan-
guage elements as literals, constants, simple variables and subscript-
ed variables. Also included are function references and subexpres-
sions, which are simply legal expressions enclosed in parentheses.
The following are examples of expression elements:

123.34 constant

ABC simple variable

“ABCD” literal

MX(5) local subscripted variable
XYZ(2,5) global variable
SLENGTH(Z2) function reference
(A+B-(C/D)) subexpression

The operators in an expression serve to represent the various
arithmetic and logical computations of the Standard MUMPS lan-
guage. Table 8-4 lists the Standard MUMPS expression operators.

Table 8-4 Summary of Expression Operators

Type Symbol Function

Addition

Subtraction or Unary Minus
Multiplication

Division

Modulo

Integer divide

Arithmetic

Relational Less than

Greater than

Equality

Less than or equal to
Greater than or equal to

Not equal to

AND
OR

Contains

Follows

Pattern verification
Equality

Not

String Concatenation Concatenation

CTVAILVA —F>] +

Boolean

= Qo

String Relationali

| o=

Indirection Indirection*

@

213

DSM-11

*Indirection allows data values to be executed as Standard MUMPS
code.

Indirection is denoted by the character @ followed by an atomic
expression. The value of the expression is substituted for the occur-
rence of indirection before the rest of the line is interpreted. There are
three basic types of indirection.

1. Argument indirection, where the indirection occurs in place of a
command argument, and the value must be one or more complete
command arguments.

2. Name indirection, where the indirection occurs in any context
where a named variable can occur and the value of an indirection
must be a complete variable name.

3. Pattern indirection, where the indirection occurs in place of a pat-
tern and the value must be a pattern.

Of special importance are the relational string operators. They provide
facilities for determining the characteristics of string data. The opera-
tors return true or false results. They are:

String Contains ([) — The string specified by the left operand is exam-
ined for the occurrence of the string specified by the right operand. If a
match is found, the resultis true.

String Follows (]) — The string specified by the left operand is com-
pared character-for-character with the string specified by the right
operand to establish relative position according to the ASCII collating
sequence. If the string specified by the left operand follows that speci-
fied by the right operand, the result is true.

Pattern Verification (?) — The string specified by the left operand is
examined for the occurrence of the character patterns specified by the
pattern specification codes. If a matching condition exists, the resultis
true. The pattern specification codes can be preceded by a single
decimal integer to specify the number of occurrences of a particular
character type. The pattern specification codes are:

Verify upper and lowercase alphabetics
Verify 33 control characters

Verify entire set of 128 characters
Verify 26 lowercase alphabetics

Verify 10 numerics

Verify punctuation

Verify upper case alphabetics or any
string of characters delimited

by punctuation marks

cozrmoX»

214

DSM-11

Commands

A command is the basic unit of expression in the Standard MUMPS
language. A command is a mnemonic which symbolizes the action to
be performed, for example GOTO or SET. The command name can be
abbreviated to one letter. It usually takes one or more arguments
which specify the objects of the action to be performed. Several Stan-
dard MUMPS commands can be present on a command line. Pro-
gram comments can be appended to any command line using a semi-
colon to separate the command line from the comment text.

Standard MUMPS uses alphanumeric tags plus offsets to identify lines
of code, and programs are arranged in a paragraph concept. Stan-
dard MUMPS commands are executed from left to right within a line
and sequentially from one line to the next (assuming no control com-
mands are encountered). For example, INIT is a tag which identifies
the first line of the INIT paragraph; INIT + offset addresses
subsequent lines of the INIT paragraph without the need to tag every
line of code.

Certain commands permit the optional use of an argument or argu-
ment list. The indirection syntax operator, symbolized by @, provides
dynamic argument definition. In form, the command argument is re-
placed by the indirection syntax operator immediately followed by a
variable name. During execution, the contents of that variable name
are taken as the argument. For example:

1.15 S ARG="15+3/6" ;variable ARG is set to value
1.20 W @ ARG ;contents of ARG are evaluated and output

An optional Boolean-valued expression preceded by a colon can be
used as part of an argument to specify conditional execution. For
example:

GOTO 3:A>B ;control is transferred to paragraph 3 if A is greater than
B

Commands can be issued in either indirect mode or direct mode un-
less specified otherwise. Table 8-5 summarizes the DSM commands.

Table 8-5 DSM-11 Commands Summary

BREAK Stops aroutine at a specified point to allow examina-
tion of routine variables. BREAK allows an argument
which returns a Boolean value (1 = true, 0 = false). A
true argument allows a given job to be interrupted,
whereas a false argument prevents a job from being
interrupted.

215

CLOSE

DO

ELSE

FOR

GOTO

HALT

HANG

KILL

LOCK

DSM-11

Releases one or more designated devices from
ownership.

Initiates execution of the MUMPS code at the
specified argument.

Provides the means for testing the sense of the
previously executed IF command. When the sense of
the preceding IF is false, commands following the
ELSE on the line are executed. Otherwise, control
passes to the next program step. This command can
be issued in indirect mode only.

Produces efficient looping by repeating commands
residing on the same line for a specific set of variable
values. QUIT terminates a FOR loop.

Program control is permanently transferred either to
a line of code in the same routine, to the start of a
new routine, or to a particular line of code in a new
routine. Note that if return of control is required, the
DO command should be used. This command can
be issued in indirect mode only.

First LOCK (see below) with no arguments and
CLOSE of all devices opened by this job are execut-
ed (although these are not stated explicitly). Then
execution of the current process is terminated. HALT
does not take an argument.

Suspends program execution for a specified time
interval. When the interval is up, program execution
resumes at the command following the HANG.

Effects a change in a program’s operation based on
the validity of one or more Boolean-valued expres-
sions. If all expressions are true, the remainder of
the command line is processed. If any expression is
false, the next step is executed. It can be used with-
out arguments; the condition tested is the value of
system variable $T, which is set by the last IF state-
ment. The ELSE command is used to test the logical
reverse of an IF.

Used to delete both local and global variables, with
specified arguments or exclusive arguments.

Program convention for notifying other users that a
particular node of a global and all nodes to which it

216

OPEN
QUIT

READ

SET

WRITE

USE

VIEW

XECUTE

DSM-11

points (all its descendants) are not to be referenced.
This allows the program to protect global data which
may be accessed by several programs simulta-
neously for updating. LOCK without arguments
releases all nodes previously locked.

Obtains ownership of one or more devices.

Terminates the execution of a logical process, in-
cluding the execution of a line or program. QUIT is
often used to terminate prematurely operations
which are executed within the range of the DO, FOR,
and XECUTE commands.

Reads one or more lines of characters into specified
local variables. Additional optional arguments are a
message to be written and the format control char-
acters, and timing information. A timed READ en-
ables the program to continue processing if the time
interval elapses before any input is received. This is
particularly useful in applications where terminals
are either infrequently attended or unattended.

Assigns the result of an expression to a specified
variable.

Specifies the output of data and format control to the
current device. When an argument includes an as-
terisk followed by an integer value, one character
whose code is the number represented by the integ-
er is sent to the current device. The effect of this
character at the device is device dependent.

Designates a specific device as the current device
for input and output. Before a device can be named
in the argument of a USE command, its ownership
must have been established through execution of an
OPEN command.

Permits the reading and writing of memory locations
and disk storage blocks in the system’s data base.
The use of the VIEW command is restricted by sev-
eral levels of protection.

Provides a means of interpreting Standard MUMPS
code which arises during program execution. Each
argument of the XECUTE command is interpreted as
if it were a line of Standard MUMPS code.

217

Z Commands

DSM-11

The following commands are known as Z commands. These com-
mands are the DSM-11 extensions to the DSM language, and can be
used only under DSM-11.

The Z commands may be abbreviated to their first two characters, i.e.,
ZINSERT may be abbreviated to ZI.

ZG(0)

ZI(NSERT)

Resumes execution of a routine after a BREAK com-
mand. If an error occurs while in the BREAK state or
if CTRL/C is typed, continuation is not possible using
the ZGO0O command, because system error
processing removes the break state from the user’s
partition.

Example:

>8X=0FI=1:1 SX=X+1B:X=15
<BKERR> B:X=15

>ZGO

ZI(NSERT) “stringexpr’:label

where “string expr” is the line the user wishes to
insert in his routine. Note that the contents of “strin-
gexpr” should have a space, not a TAB after the
label (if a line label is specified within “stringexpr”).
where :label is the label of the line just previous to
where “stringexpr” is to be inserted; :label can also
be a line label plus offset, when no label exists on the
line previous to the insert.

Inserts one or more routine lines into the user’s rou-
tine. May be used in two basic ways:

1. Toinsert one or more new lines into a routine

2. Toreplace an existing line or lines in a program
To insert or replace one or more lines in a routine,
ZINSERT starts inserting lines after the line pointer.
ZINSERT can insert only one line at a time; a new

ZINSERT command must be given for each line to be
inserted. Toinsert aline in the following routine,

>ONE<TAB>;This is test line one
>THREE<TAB>;This is test line three

the user simply types:
>ZINSERT“TWO;This is test line two”:ONE

218

ZJ(OB)

DSM-11

This will insert the line labeled TWO after line ONE.
Toreplace line THREE, the user types

>ZINSERT “THREE W ““HELLO””;This is test line
three”:TWO

Notice that HELLO has two sets of double guotes.
This will cause HELLO to print out as “HELLO”. One
set of double quotes would print HELLO.

At this point, ZREMOVE can be used to delete the
last line in the routine.

Example:

To insert a line at the beginning of the previous rou-
tine, type:

>ZINSERT “FIRST ;this routine prints out test lines™:
+0

The +0 inserts this line as the first line of the routine.
ZJ(OB) entryref[“MGR”]:8

where entryref is of the form:

[label]frnam

Starts a new partition executing the job frnam, start-
ing at label. This will occur only if a partition is avail-
able. If the job is successfully started, $TEST is set to
true (1). If a partition is not available, $TEST is set to
false (0). An if without arguments can be used by the
starting job to determine whether the desired job
was started. The optional square brackets allow the
manager to start programs in any user area
specified by the literal “MGR”, and the optional co-

lon allows specification of a particular partition size,
in a number of 512-byte increments.

Examples:
1. >ZJOBtAA:8
Starts job fAA in a new 4K-byte partition.

>W ST
1

To confirm that }AA was sucessfully started, check
$T. A result of 1 means succesful start.

2. >ZJOB CHKR1AA

219

ZL(OAD)

ZR(EMOVE)

ZS(TORE)

DSM-11

Starts job tAA in a new partition, starting at label
CHKR.

ZL(OAD) rnam

Loads routines from disk, sequential disk area or
magtape into the user’s partition.

Examples:

1. >ZLOAD CALC

Loads a routine named CALC from disk.
2.>047U477ZL

Loads a routine from magtape unit into your parti-
tion.

ZR(EMOVE) [zremovearg,...]

where zremovearg has the form label or label1:la-
bel2

where label, label1, and label2 are labels of existing
lines in a routine.

In the argumentless form, deletes all lines in a rou-
tine. With arguments, deletes all lines from label1 to
label2 inclusive.

Examples:

1. ZREMOVE

Deletes all routine lines currently in user’s partition.
>ZR BREAKO:BREAK2

Deletes all lines starting with BREAKOQO and continu-
ing through BREAK2.

ZS(TORE) rnam

Without an argument, stores the routine buffer under
the name that is in the partition vector. If the partition
vector does not contain a routine name (that is, when
the special variable $ZNAME is equal to the null
string), the routine must be stored with a name
(pnam).

If the partition vector does not contain a routine
name, and the user attempts to store a routine with-
out specifying a name, a <NOPGM> error is gener-
ated.

220

ZU(SE)

Functions

DSM-11

To delete a routine from a disk or tape file, use ZRE-
MOVE to clear the partition, and then file that empty
partition under the name of the routine to be deleted.

Example:

>ZR

ZREMOVE clears the user’s partition.
>ZSTORE ROU

ZSTORE then stores the user’s empty partition un-
der the name ROU, a routine to be deleted. ROU is
now deleted.

ZU(SE) dev#

Allows temporary use of a terminal device which
another job actually owns. This command is primari-
ly intended for use in a broadcast utility routine and
for error response queries to the console device.

The user need not OPEN or CLOSE this device. If the
device specified in this command is valid, the service
is temporarily set as the user’s current device. The
I0D package arbitrates as to which job accesses the
device at any one time. READs should always be
preceded by a prompt that identifies the requested
information in the same READ command. This wili
always guarantee that the prompt will appear direct-
ly in front of the input, identifying the request. When-
ever output is performed by the read command, the
input buffer is flushed so that typed-ahead informa-
tion will not mistakenly be processed.

The legal device values for this command are:
1 4--19 64-11

A function performs an operation and returns a value based on the
outcome of that operation. A function name is always prefixed by a
dollar sign ($). Functions are listed in alphabetical order, and may be
abbreviated to their first two characters, with the $ counting as the first
character. Table 8-6 lists and defines the currently specified functions.

221

$ASCII

$CHAR

$DATA

$EXTRACT

$FIND

$JUSTIFY

$LENGTH

SNEXT

$PIECE

RANDOM

SELECT

$TEXT

SVIEW

DSM-11

Table 8-6 Functions

Selects a character of an ASCII string and returns
the code of that ASCII string as a decimal integer.

Translates a siring of decimal integers into a string of
ASCII characters.

Returns an integer indicating whether the named
variable (specified as an argument to $DATA) either
contains data, or has ‘descendants,’ or both.

Returns a character or substring of a string expres-
sion, selected by position number.

Returns an integer specifying the end position, plus
one, of a specified substring within a given string.

Returns the value of an expression, right-justified
within a field of a specified size.

Returns the length (number of characters) of a
string.

Returns the lowest numeric subscript value on the
same level but numerically higher than the last sub-
script of the named global or local variable.

Returns a substring of a specified string that is de-
limited by a specific character.

Returns a pseudo-random integer uniformly distrib-
uted in the closed interval (0, intexpr-1).

Returns the value of one of several expressions in a
list, selected by the truth values in a second list of
expressions.

Returns the text content of a specified line of the
routine in which the function appears.

Returns an integer between 0 and 65535, equal to
the contents of the memory location specified in the
argument.

$Z Function Descriptions

There are certain functions, called $Z functions, which are DSM-11
specific. These functions are provided as extensions to DSM, making
many more options available to the user. These functions may be
abbreviated to their first three characters. (The $Z counts as the first

two characters).

222

DSM-11

$Z(SORT) $Z(SORT) (glvn(subscript ,...))

Identifies the next subscript at the same level as the
given global or local variable. Identical to $NEXT,
except for the following differences:

SNEXT

® numeric collating sequence

e starting pointis —1

e failure condition is —1

$zSs
e string collating sequence

e starting point is the null string
e failure condition is the null string

System Variables

A number of special reference-only variables are defined within the
system to control the flow of information and to provide system infor-
mation to Standard MUMPS programmers. These variables are main-
tained and updated by the system for each job partition. They can be
examined by various Standard MUMPS commands (WRITE, SET, etc.)
but, with the exeception of the $E variable, can not be altered by the
program. All special variables can be abbreviated to their first two
characters, except for $Z variables, which can be abbreviated to their
first three characters. Table 8-7 lists the special variables.

Table 8-7 Special Variables

$HOROLOG Contains the current date and time.
$10 Identifies the current 1/0 device.
$JOB Contains the job number (positive integer) of each

executing DSM job.

$STORAGE Returns an integer number of characters of free
space available for use in the current partition.

$TEST Contains a truth value computed from execution of
the most recent IF command containing an argu-
ment, or an OPEN, LOCK, or READ with a timeout.

223

$X

$Y

$z

DSM-11

Contains a non-negative integer value that points to
the next column position to be output.

Points to current line number.

Reserved for DSM-11 specific extensions:

$Z Special Variables

$ZA

$ZB

$ZE(RROR)

Used with device 1/0.

When magtape is the current device, $ZA contains
an integer whose bit pattern displays the magtape
hardware status register (drive status register for the
TJE16). When the sequential disk processor is the
current device, $ZA contains either the current disk
block address or the error status. When a terminal is
the current device, $ZA contains the error status.
When another processor is the current device, the
low order byte of $ZA contains a count of unsuccess-
ful 170 transmissions (message state only) and the
high order byte describes error conditions (message
and terminal state).

Refer to the DSM-11 Programmers Guide for bit as-
signments.

Used with terminal type devices; returns the last
word of the DDB containing information on the status
of a particular device. For the sequential disk pro-
cessor, $ZB returns the byte offset into the current
block. For the DMC-11, $ZB returns, in the low byte
only, the current message number (in message
mode). For a remote device, $ZB returns the modem
timer value.

Aids error detection in routines. Can be set to enable
error trapping. To enable the error trap, $ZE is set
equal to a line reference. The line reference may
include a reference to a routine, such as SET $ZE=
“label + intexprfrnam”. When an error occurs, con-
trol passes to the line and/or routine referenced by
$ZE; $ZE is then reset to indicate both the error code
and the line and routine which were executing at the
time of the error.

The error trap is disabled by setting $ZE to the null
string.

224

DSM-11

Example:
S $ZE=“ERR+2{STAT”

On error, control passes to routine STAT at line
ERR+2 (the line whose position is +2 from the line
labeled ERR).

$ZN(AME) Contains the name of the current routine, unless $ZN
was set by an argumentless ZREMOVE, in which
case $ZN contains the null string. To reset $ZN, a
ZLOAD DO, GOTO or an argumentless ZREMOVE
command must be made; $ZN can also be reset by
transfers to other routines.

DSM-11 SYSTEM SUMMARY

Is
e Interactive, high-productivity applications development for data
base management system

e Highly approachable

e [ntegrated language/command environment

e Powerful language structure for text processing
e |Large numer of terminals—up to 80

Is not

® General timesharing

® Real-time

e Computational or batch
® Multi-language

Languages
e DSM-11

225

226

CHAPTER9

TRANSACTION PROCESSING SYSTEM
TRAX (V.1)

OVERVIEW

TRAX is specially designed to handle high volume transaction
processing in a commercial environment. The system provides for
easy interactive application development. It utilizes its own “smart”
terminal and terminal language, provides for distributed processing
and programming in high-level languages, and offers high data
throughput.

FEATURE TOPICS
e Introduction
® Trax System Organization

® VT-62 Application Terminal
- Screens
- Application Terminal Security

® Application Terminal Language/Forms Control
e BASIC TRAX-11 Terminology

e Support Environment Features
- Program Development/Text Preparation
- Compilation and Linking
- Batch and Spooling

e System Generation
- On-line Diagnostics
- Software/Hardware Error Logging

o TRAX Station Structure

e Station Message Processing

e Exchange Structure

o File Access/Recovery Methods

® System Utilities

e TST Library

¢ TRAX Communications

e TRAX Languages/Data Manager Options
o TRAX System Summary

227

TRAX

INTRODUCTION — WHAT IS TRAX?

TRAX is a high-volume transaction handling data processing system
designed for easy application development. It has been designed by
DIGITAL as a dedicated system to optimize interactive commercial
transaction processing through use of an efficient multitasking archi-
tecture, a simplified programming style, and a wide array of program
development features.

TRAX is a totally integrated hardware and software system. It employs
its own forms-oriented terminal, the VT62, a smart terminal with built-
in data formatting capabilities, driven exclusively by TRAX software.
Data entered into forms at application terminals provide the basic
input to TRAX transaction processors.

AN APPLICATION EXAMPLE
An order entry application provides an example of the benefits of
TRAX on-line transaction processing.

When an order is entered in any system, inventory or customer credit
may be insufficient. In a batch transaction processing system, these
insufficiencies are usually discovered only after batches of orders are
keypunched and processed. Since credits and debits, and shipments
sent and received, are also applied to the data base in batches, the
credit and inventory records against which batched customer orders
are checked may be out of date: recent payments may not yet be
processed, so credit or inventory problems reported during batch
order processing may not really exist—or a problem may not be dis-
covered until the order is picked (and stock found insufficient) or the
credit department holds the shipment.

With TRAX, on-line access to the data base permits order entry appli-
cations to report credit or inventory problems to the terminal user
while the customer is still on the phone. Shipments made, stock re-
ceived, and debits and credits are applied on-line, as they occur. So
credit and inventory checks during order entry are made against rec-
ords that reflect the moment’s reality, not the status of files updated
periodically in batch runs. Should a credit problem be discovered, the
TRAX terminal user can do a customer status or credit lookup
transaction and discuss the problem while the customer is still on the
phone. If inventory is insufficient, the customer can be offered a partial
shipment or a substitute item recommended by the TRAX application
program.

Typically, the VT62 terminal user selects the desired transaction from
a transaction selection form, as shown.

228

TRAX

TRANSACTION SELECTION

Add Customer Record
Add Stock Record
Apply Payments
Chandge Customer Data
Change Stock

Cash Sale

DISPLAY Back Orders
DISPLAY Customer Data
DISPLAY Invoice
DISPLAY Order
DISPLAY Stock

Enter Order

Process Back Orders
Received Stock

Ship Order

EODCST
ADDSTK
APPPAY
CHNCST
CHNSTK
CSHSAL
DPYBCK

DPYCST
DPYINV
DPYORD
DPYSTK
ENTER

PROBCK
RCVSTK
SHPORD

[0 T T T O T O B A B A |

Screen 1 Transactions available are displayed on the terminal.

Moving the terminal’s cursor to the desired transaction on the transac-
tion-selection form, the terminal user presses the SELECT key. The
terminal confirms the transaction chosen, the Enter Order transaction,
by highlighting itin reverse video, as illustrated.

TRANSACTION SELECTION

Add Customer Record
Add Stock Record
Apply Payments
Change Customer Data
Chande Stock

Cash Sale

DISPLAY Back Orders
DISPLAY Customer Data
DISPLAY Invoice
DISPLAY Order
DISPLAY Stock

[T T S A O RO I B

-DPYSTK

PROBCK - Process Back Orders
RCVSTK - Received Stock
SHPORD - Ship Order

Screen 2 Terminal confirms selected transaction.

When the ENTER key is depressed, a form will appear with the cursor
positioned at the beginning of the “customer ID number” field. A cus-

tomer can be identified either by ID number or by name, as the screen
below illustrates.

229

TRAX

Customer Identification

Customer #: [0]
Customer Name: |

Screen 3 Terminal displays first form of Enter Order transaction.

Customer Identification

Customer #:
Customer Name:

Screen 4 Operator types customer name where prompted by form.

If the ENTER key is pressed at this point, another form will appear that
allows the operator to enter general information about the order.

Common typing errors are detected locally in the terminal. For exam-
ple, if the letter ‘T’ is entered into the system in place of the number ‘6’
in a Zip Code, an error message will be displayed. The error detection
is made without CPU involvement. The screen below illustrates this
process.

Enter Order ID Information

Order ID:

Customer Purchase Order ¥
Order Taker:

Order Date (DD-MMM-YY):

Shipping Instructions:
Ship to:

Screen 5 Operator types ordering information.

230

TRAX

Enter Order ID Information

Order ID:

Customer Purchase Order §:
Order Taker:

Order Date (DD-MMM-YY):
Shipping Instructions:
Ship to:

Screen 6 Terminal responds instantly to typing errors.

If the ENTER key is depressed at the completion of this step, a mes-

_ sage will appear that reads “transaction. complete,” as illustrated be-
low.

Stock

[~]

gl

3

Description of Item Available Extended

Screen7 Operatbr enters order.

Once the customer order information has been sent to the CPU by
depressing the ENTER key, TRAX immediately supplies a form, as
shown below, for entry of the item description and quantity ordered
information.

231

TRAX

TRANSACTION COMPLETE
_Stock _ Description of Item Each Available Extended

H Gasket $2.00 23 $12.00

Screen 8 Successful completion of transaction is quickly confirmed.

TRAXSYSTEM ORGANIZATION

The TRAX applications environment consists of transaction
processing support services and a transaction processor. A transac-
tion processor is a collection of data tables and software capable of
processing an application’s transactions. It and the accompanying
TRAX support services are the elements that make TRAX a uniquely
efficient system.

The TRAX support environment provides support services for all non-
transaction processing activities, including application batch process-
ing, application development (both transaction processing and batch
processing), and management and control of the entire system. The
batch processors and support terminals shown in Figure 9-1 can be
used interchangeably for any of these activities, because batch pro-
cessors are the full equivalent of support terminals. In other words, the
batch language is the same as the support terminal language.

APPLICATIONS SUPPORT
ENVIRONMENT ENVIRONMENT

TRAX
OPERATING
/ SYSTEM

SUPPORT
ENVIRONMENT
SERVICES,

N
TRANSACTION
PROCESSORS

o\

UPPORT .

TERMINALS

’\
APPLICATION ‘
TERMINALS

APPLICATION
TERMINALS

,—
CabtBion))
PROCESSORS
Figure 9-1 TRAX System Structure
232

TRAX

VT62 APPLICATION TERMINAL

The VT62 is an applications-only terminal designed to optimize TRAX
transaction processing. It optimizes system performance with block
mode transmission and locally buffered menus, forms, and error-
checking. For example, messages specific to the form displayed are
loaded by the host with the form into the terminal, for local error
detection without CPU intervention.

Figure 9-2 VT62 Terminal

A block-mode terminal, rather than communicating character-by-
character with the host, transmits whole screen loads of data at once,
considerably reducing CPU involvement. The VT62 is also a multidrop
terminal. Up to eight VT62s can be hung on a line and polled by the
processor.

233

TRAX

The VT62 communicates as specified by DIGITAL’s DECnet standard
DDCMP protocol. It operates asynchronously at speeds up to 9600
baud and synchronously up to 4800 baud. It can operate in full or half
duplex using either dedicated<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>