
Digital Equipment Corporation
Maynard, Massachusetts

ADVANCED BASIC
FOR THE PDP-10

DEC-10-KJZA-D

For additional copies order No. DEC-10-KJZA-D from Program Library, Digital
Equipment Corporation , Maynard, Mass . Price $3. 50

DIGITAL EQUIPMENT CORPORATION o MAYNARD, MASSACHUSETTS

Printed in U.S.A.

1st Edition November 1968

Copyright© 1968 by Digita I Equipment Corporation

BASIC® was developed by Dartmouth College, Hanover, New Hampshire
and is copyrighted by the Trustees of Dartmouth College. We would like to
thank Dartmouth College for the privilege of using their BASIC Manua I, 4th
Edition as a format for this manual.

Instruction times, operating speeds and the like are in
cluded in this manual for reference only; they ore not to
be taken as specifications.

The following are registered trademarks of Digita I
Equipment Corporation, Maynard, Massachusetts:

DEC
FLIP CHIP
DIGITAL

PDP
FOCAL
COMPUTER LAB

®Registered: Trustees of Dartmouth College

FOREWORD

BASICR is a conversational, problem-solving language for scientific, business and educational

applications. It is used to solve simple and complex mathematical problems from your Teletype console,

and it is particularly suited to time-sharing.

With BASIC, you type your computational procedure as a series of numbered statements,

utilizing common English syntax and familiar mathematical notation. If BASIC is new to you, you

need spend only an hour or so learning the elementary commands necessary for solving almost any

problem. With experience, you may add the advanced commands needed to perform more intricate

manipulations and to express your problems more efficiently and concisely.

Once you have entered your statements via your console, simply type RUN to initiate execu

tion of your routine and receive your results instantaneously.

R Registered: Trustees of Dartmouth College

iii

CONTENTS

Page

CHAPTER 1
I NT RODUCTIO N

1.1 Special Features 1-1

1.2 Example of a BASIC Program 1-1

1.3 Formulas 1-6

1 .3 .1 Arithmetic Operations 1-6

1 .3 .2 Mathematica I Functions 1-7

1 .3 .3 Numbers 1-7

1 .3 .4 Variables 1-8

1 .3.5 Relational Symbols 1-8

1.4 Loops 1-8

1 .4 .1 FOR and NEXT Statements 1-9

1 .4.2 Nested Loops 1-11

1.5 Lists and Tables 1-11

1 .5. 1 DIM (Dimension) Statement 1-11

1 .5 .2 Examples 1-12

1.6 Running BASIC 1-14

1 .6. 1 Gaining Access to BASIC 1-14

1.6.2 Entering Your Program Statements 1-15

1 .6 .3 Executing Your Program 1-16

1.6 .4 Correcting Your Program 1-15

1.6.5 Interrupting the Execution of Your Program 1-16

1.6.6 Leaving the Computer 1-16

1.6.7 Example of BASIC Run 1-17

1.7 Errors and Debugging 1-18

1 .7. 1 Example of Finding and Correcting Program Errors 1-19

1.8 Summary of Elementary Basic Statements 1-21

1 .8 .1 LET Statement 1-22

1.8 .2 READ and DAT A Statements 1-22

1.8.3 PRINT Statement 1-23

1.8 .4 GO TO Statement 1-24

v

CONTENTS (Cont}

Page

1 .8.5 IF -- THEN Statement 1-24

1.8.6 ON ••• GO TO Statement 1-24

1 .8.7 FOR and NEXT Statements 1-25

1.8.8 DIM Statement 1-26

1.8.9 END Statement 1-26

CHAPTER 2
ADVANCED BASIC STATEMENTS

2. 1 More About The Print Statement 2-1

2.2 INT, RND, and SGN Functions, and the DEF Statement 2-4

2 .2. 1 The INT (Integer} Function 2-4

2.2.2 The RND (Random Number Generating} Function 2-4

2.2.3 The RAN DO MIZE Statement 2-6

2.2 .4 The SGN (Sign} Function 2-6

2.2.5 The DEF (Define User Function} and FNEND 2-7
(Function End} Statements

2.3 Subroutines: GOSUB and RETURN Statements 2-8

2.4 IN PUT Statement 2-9

2.5 STOP, REM (Remarks}, and RESTORE Statements 2-10

2 .5 .1 STOP Statement 2-10

2.5.2 REM (Remarks} Statement 2-10

2.5.3 RESTORE Statement 2-11

2.6 Matrices 2-11

2.6.1 MAT Statement Conventions 2-12

2.6.2 MAT c = ZER, MAT c =CON, MAT c =ION 2-13

2.6.3 MAT PRINT a, b, c 2-14

2.6.4 MAT INPUT v and the NUM Function 2-15

2.6.5 MAT b =a 2-15

2.6.6 MAT c = a + b and MAT c = a -b 2-16

2.6.7 MAT c =a * b 2-16

2.6.8 MAT c = TRN (a} 2-16

2.6.9 MAT c = (k} *a 2-16

2 .6. 10 MAT c = INV(a} and the DET Function 2-16

vi

2 .6 .11

2 .6. 12

2.7

2 .7. 1

2.7.2

2.7.3

2.7.4

2.8

2.9

CONTENTS (Cont)

Examples of Matrix Programs

Simulation of n-Dimensional Arrays

Alphanumeric Information {Strings}

Reading and Printing Strings

String Conventions

Numeric and String DATA Blocks;
RESTORE* RESTORE$ Statements

Accessing Individual Characters; the CHANGE Statement

Diagnostic Messages

Edit and Control Commands

APPENDIX A
SUMMARY OF BASIC STATEMENTS

vii

Page

2-17

2-18

2-19

2-20

2-21

2-22

2-22

2-24

2-25

1. 1 SPECIAL FEATURES

CHAPTER 1

INTRODUCTION

Advanced BASIC incorporates the following special features:

a. Matrix Computations - A special set of 13 commands designed for performing matrix
computations are included.

b. Alphanumeric Information Handling - Single and/or vectors of alphabetic/alphanumeric
strings can be read, printed, and defined in LET and IF ... THEN statements. In addition, individual
characters within these strings can be easily accessed by the user. Conversion can be performed be
tween characters and their ASCII equivalents. Also, tests can be made for alphabetic order.

c. Program Control and Storage Facilities - Facilities store programs or data on a mass
storage device (e.g., disk or DECtape) and later retrieve them for execution. The user can also input
his program from the standard, low-speed Teletype paper tape reader as well as the high-speed paper
tape reader at the PDP-10 site.

d. Program Editing Facilities - An existing program can be edited by adding or deleting
lines, renaming the program, or resequencing the line numbers. The user can merge two programs into
a single program and request a listing of his program, either in whole or in part, on his Teletype or a
high-speed line printer.

e. Formatting of Output - Controlled formatting of Teletype output includes tabbing,
spacing, and the printing of columnar headings.

f. Documentation and Debugging Aids - The insertion of remarks enables recall of needed
information at some later date. Debugging of programs is aided by the typeout of meaningful diagnostic
messages pinpointing syntactical and logical errors detected during execution.

1.2 EXAMPLE OF A BASIC PROGRAM

The following example is a complete BASIC program for solving a system of two simultaneous

lenear equations in two variables:

ax+ by= c

dx + ey = f

and then solving two different systems, each differing only in the constants c and f.

If ae - bd is not equal to 0, this system can be solved to find that

ce - bf
x = _a_e __,...b-d and af - cd

y = ae - bd

1-1

If ae - bd = 0, there is either no solution or many, but there is no unique solution. Study this example

carefully -- in most cases the purpose of each line in the program is self-evident -- and then read the

commentary and explanation.

10 READA,B,D,E,;
15 LET G = A * E - B * D ,/
20 IF G = 0 THEN 65 ,/
30 READ C, F ,/
37 LET x = (C*E - B*F) I G J
42 LET y = (A*F - C*D) I G ,J
55 PRINT X, Y ,J
60 GO TO 30,J
65 PRINT "NO UNIQUE SOLUTION II J
70 DAT A l I 2 I 4 ,J
80 DATA2,-7,5J
85 DATA 1, 3, 4, -7,J
90 ENDJ

NOTE

All statements are terminated by pressing the RETURN
key (represented in this text by the symbol ,J) • The
RETURN key echoes as a carriage return, line feed.

Each line of the program begins with a line number and serves to identify each line as a

statement. A program is made up of such statements, most of which are instructions to the computer.

Line numbers serve to specify the order in which these statements are to be performed. Before the pro

gram is run, BASIC sorts out and edits the program, putting the statements into the order specified by

their line numbers. This means that the program statements can be typed in any order, as long as each

statement is prefixed with a line number indicating its proper sequence in the order of execution. Each

statement starts after its line number with an English word which denotes the type of statement. Spaces

have no significance in BASIC, except in messages which are printed out, as in line number 65 above.

Thus, spaces may be used, or unused, at will to modify a program and make it more readable.

With this preface, the above example can be followed through step-by-step.

10 READ A, B, C, D

The first statement, 10, is a READ statement and must be accompanied by one or more DATA statements.

When the computer encounters a READ statement while executing a program, it will cause the variables

listed after the READ to be given values according to the next available numbers in the DATA state

ments. In this example, we read A in statement 10 and assign the value l to it from statement 70 and,

1-2

similarly, with B and 2, and with D and 4. At this point, the avai I able data in statement 70 has been

exhausted, but there is more in statement 80, and we pick up from it the value 2 to be assigned to E.

15 LET G = A * E - B * D

Next, in statement 15, which is a LET statement, a formula is to be evaluated. (The asterisk

"*" is obviously used to denote multiplication.) In this statement we compute the value of AE - BD,

and call the result G. In general, a LET statement directs the computer to set a variable equal to the

formula on the right side of the equal sign.

20 IF G = 0 THEN 65

If G is equal to zero, the system has no unique solution. Therefore, we next ask, in line 20,

if G is equal to zero.

65 PRINT "NO UNIQUE SOLUTION II
70 DATA 1, 2, 4
80 DATA 2, -7, 5
85 DATA 1, 3, 4, -7
90 END

If the computer discovers a "yes" answer to the question, it is directed to go to line 65,

where it prints "NO UNIQUE SOLUTION." Since DATA statements are not "executed", it then goes

to line 90 which tells it to "END" the program.

30 READ C, F

If the answer to the question "Is G equal to zero?" is "no", the computer goes to I ine 30.

The computer is now directed to read the next two entries, -7 and 5, from the DATA statements (both

are in statement 80) and to assign them to C and F respecti--1ely. The computer is now ready to solve

the system.

x + 2y = -7
4x + 2y = 5

37 LET x = (C *E - B *F) I G

42 LET y + (A*F - C*D) I G

In statements 37 and 42, we compute the value of X and Y according to the formulas pro

vided using parentheses to indicate that CE - BF is divided by G.

1-3

55 PRINT X, Y

60 GO TO 30

The computer prints the two values X and Y, in line 55. Having done this, it moves on to

line 60 where it is reverted to line 30. With additional numbers in the DATA statements, the computer

is told in line 30 take the next one and assign it to C, and the one after that to F. Thus,

x+2y=l

4x + 2y = 3

As before, it finds the solutions in 37 and 42, prints them out in 55, and then is directed in 60 to

revert to 30.

In line 30 the computer reads two more values, 4 and -7, which it finds in line 85. It then

proceeds to solve the system

x+2y=4

4x + 2y = -7

and print out the solutions. Since there are no more pairs of numbers in the DATA statement available

for C and F, the computer prints "OUT 0 F DAT A IN 30" and stops.

If we had omitted line number 55 (PRINT X, Y) the computer would have solved the three

systems and then told us when it was out of data. Had we omitted line 20 and G were equal to zero,

the computer would print "DIVISION BY ZERO IN 37" and "DIVISION BY ZERO IN 42." Had we

left out statement 60 (GO TO 30), the computer would have solved the first system, printed out the

values of X and Y, and then gone on to line 65 where it would be directed to print "NO UNIQUE

SOLUTION. II

The particular choice of line numbers is arbitrary as long as the statements are numbered in

the order the machine is to follow. We would normally number the statements 10, 20, 30, .•• , 130,

so that we can later insert additional statements. Thus, if we find that we have left out two statements

between those numbered 40 and 50, we can give them any two numbers between 40 and 50 -- say 44

a.,d 46. In regards to DATA statements, we need only put the numbers in the order that we want them

read (the first for A, the second for B, the third for D, the fourth for E, the fifth for C, the sixth for F,

the seventh for the next C, etc.). In place of the three statements numbered 70, 80, and 85, we could

have put

75 DATA l, 2, 4, 2, -7, 5, l, 3, 4, -7

1-4

or we could have written, perhaps more naturally

70 DATA l, 2, 4, 2
75 DATA -7, 5
80 DATA 1, 3
85 DATA 4, -7

to indicate that the coefficients appear in the first data statement and the various pairs of right-hand

constants appear in the subsequent statements.

The program and the resulting run is shown below exactly as it appears on the Teletype.

10
15
20
30
37
42
55
60

READ A, B, D, E J
LET G = A * E - B * DJ
IF G = 0 THEN 65 J
READ C, F ,J
LET X = (C * E - B * F) / G J
LET y = (A* F - c * D) I GJ
PRINT X, Y ,J
GO TO 30J

65
70

PRINT "NO UNIQUE SOLUTION II ,J
DATA1,2,4J

80
85
90
RUN J

DATA2,-7,5J
DATA 1, 3, 4, -7J
ENDJ

LINEAR 11 :03

4 -5.50000
0.666667 0.166667

-3.66667 3.83333
OUT OF DATA IN 30

NOTE

10/19/68

Typeouts from BASIC or from the Monitor are indicated
in this text by underscoring.

After typing the program, we type RUN followed by a carriage return which directs the

computer to execute the program. Note that the computer, before printing out the answers, printed

the name "LINEAR" which we gave to the problem (see Section l .6) and the time and date of the

computation. The message "OUT OF DATA IN 30" here may be ignored. However, in some cases it

i ndi cat es an error in the program (see Section l . 7. 2).

1-5

1.3 FORMULAS

The computer can perform innumerable operations: add, subtract, multiply, divide, extract

square roots, raise a number to a power, find the sine of a number (or an angle measured in radians),

etc.

1. 3. 1 Arithmetic Operations

The computer performs its primary function (that of computation) by evaluating formulas

similar to those used in standard mathematical calculation, with the exception that all BASIC formulas

must be written on a single line. Five arithmetic operations can be used to write a formula.

Symbol

+

*

I
t

Example

A+B

A - B

A* B

A/B

x f 2

Meaning

add B to A

subtract B from A

multiply B by A

divide A by B

find x2

If we type A+ B * C f D, the computer will first raise C to the power D, multiply this re

sult by B, and then add A to the resulting product. We must use parentheses to indicate any other

order. For example, if it is the product of Band C that we want raised to the power D, we must write

A+ (B * C) f D; or if we want to multiply A+ B by C to the power D, we write (A+ B) *Cf D. We

could add A to B, multiply their sum by C, and raise the product to the power D by writing ((A+ B) *

C) f D. The order of priorities is summarized in the fol lowing rules:

a. The formula inside parentheses is computed before the parenthesized quantity is used in
further computations.

b. In the absence of parentheses in a formula involving addition, multiplication, and the
raising of a number to the power, the computer then performs the multiplication, and the addition comes
last. Division has the same priority as multiplication, and subtraction the same as addition.

c. In the absence of parentheses in a formula involving only multiplication and division,
the operations are performed from left to right, in the order that they are read. So also does the com
puter perform addition and subtraction from left to right.

The rules tell us that the computer, faced with A - B - C, will (as usual) subtract B from A

and then C from their difference; faced with A/B/C, it wi II divide A by Band that quotient by C.

Given A f B f C, the computer will raise the number A to the power Band take the resulting number

and raise it to the power C. If there is any question in your mind about the priority, put in more

parentheses to eliminate possible ambiguities.

1-6

1.3.2 Mathematical Functions

In addition to these five arithmetic operations, the computer can evaluate several mathe

matical functions. These functions are given special 3-letter English names.

Functions lnterpretati on

SIN (X) Find the sine of X X interpreted as

cos (X) Find the cosine of X a number, or as

TAN (X) Find the tangent of X an angle measured

COT (X) Find the cotangent of X in radians

ATN (X) Find the arctangent of X

EXP (X) Find e
x

LOG (X) Find the natural logarithm of X (In X)

ABS (X) Find the absolute value of X (IX I
SQR (X) Find the square root of X (yX}

Five other functions are also available in BASIC: INT, RND, SGN, NUM, and DET; these are re

served for explanation in Chapter 2. In place of X, we may substitute any formula or any number in

parentheses following any of these formulas. For example, we may ask the computer to find J4 + x3

by writing SQR (4 + X T 3), or the arctangent of 3X - 2eX + 8 by writing ATN (3 * X - 2 * EXP (X)

+ 8).

If the value of (~) 17 is needed, the 2-line program can be written

10 PRINT (5/6) f 17

20 END

and the computer will find the decimal form of this number and print it out.

1.3.3 Numbers

A number may be positive or negative and it may contain up to eight digits, but it must be

expressed in decimal form (i.e., 2, -3.675, 12345678, -.98765432, and 483.4156). The following

are not numbers in BASIC: 14/3, ../7; and .00123456789. The computer can find the decimal expan

sion of 14/3 or ./7, but we may not include either in a list of DATA. We gain further flexibility by

use of the letter E, which stands for "times ten to the power." Thus, we may write .0012345678 as

.12345678E-2 or 12345678E-ll or 1234.5678E-6. We do not write E7 as a number, but write 1E7 to

indicate that it is 1 that is multiplied by 107 •

1-7

l .3.4 Variables

A numerical variable in BASIC is denoted by any letter, or by any letter followed by a

single digit1• Thus, the computer will interpret E7 as a variable, along with A, X, N5, IO, and 01.

A variable in BASIC stands for a number, usually one that is not known to the programmer at the time

the program was written. Variables are given or assigned values by LET and READ statements. The

value so assigned will not change until the next time a LET or READ statement is encountered with a

value for that variable. However, all variables are set equal to 0 before a RUN. Thus, it is only

necessary to assign a value to a variable when a value other than 0 is required.

Although the computer does little in the way of "correcting" during computation, it will

sometimes help if an absolute value hasn't been indicated. For example, if you ask for the square root

of -7 or the logarithm of -5, the computer will give the square root of 7 with the error message that you

have asked for the square root of a negative number, or it will give the logarithm of 5 with the error

message that you have asked for the logarithm of a negative number.

1.3.5 Relational Symbols

Six other mathematical symbols of relation are used in IF-THEN statements where it is neces

sary to compare values. An example of the use of these relation symbols was given in the sample program

in Section l.

Any of the following six standard relations may be used:

Symbol

<
<=

>
>=

<>

Example

A= B

A <B

A<=B

A >B

A>=B

A<>B

Meaning

A is equal to B

A is less than B

A is less than or equal to B

A is greater than B

A is greater than or equal to B

A is not equal to B

1.4 LOOPS

We are frequently interested in writing a program in which one or more portions are performed

not just once but a number of times, usually with slight changes each time. In order to write the sim

plest program in which the portion to be repeated is written just once, we use a loop.

l
In this chapter we will discuss only numerical variables. See Section 2.7 for
alphanumeric "string variables."

1-8

The programs which use loops can, perhaps, be best illustrated and explained by two versions

of a program for the simple task of printing out a table of the positive integers l through l 00 together

with the square root of each. Without a loop, our program would be 101 lines long and read

10 PRINT 1, SQR (1) J
20 PRINT 2, SQR (2) J
30 PRINT 3, SQR (3) J

990 PRINT 99, SQR (99) J
1000 PRINT 100, SQR (lOO)J
1010 END,/

With the following program, using one type of loop, we can obtain the same table with far

fewer lines of instruction, 5 instead of 101:

10 LET X = l ,/
20 PRINT X, SQR (X),/
30 LET X = X + l J
40 IF X < = 100 THEN 20,J
50 END J

Statement 10 gives the value of l to X and "initializes" the loop. In line 20 both l and its square root

are printed. Then, in line 30, X is increased by 1, to 2. Line 40 asks whether X is less than or equal

to 100; an affirmative answer directs the computer back to line 20. Here it prints 2 and 42: and goes

to 30. Again X is increased by 1, this time to 3, and at 40 it goes back to 20. This process is re

peated -- line 20 (print 3 and ./3), line 30 (X = 4),· line 40 (since 4 < 100 go back to line 20), etc.

-- until the loop has been traversed 100 times. Then, after it has printed 100 and its square root,

X becomes 101. The computer now receives a negative answer to the question in line 40 (X is greater

than 100, not less than or equal to it), does not return to 20 but moves on to line 50, and ends the

program. All loops contain four characteristics: initialization (line 10), the body (line 20), modifi

cation (line 30) and an exit test (line 40).

1.4. l FOR and NEXT Statements

BASIC provides two statements to specify a loop, the FOR and NEXT statements.

10 FOR X = 1 TO 100 J
20 PRINT X, SQR (X) J
30 NEXT X J
50 END,/

1-9

In line 10, X is set equal to 1, and a test is set up, like that of line 40 above. Line 30 carries out two

tasks: X is increased by 1, and the text is carried out to determine whether to go back to 20 or go on.

Thus, lines 10 and 30 take the place of lines 10, 30, and 40 in the previous program.

Note that the value of X is increased by l each time we go through the loop. If we want a

different increase, we could specify it by writing

10 FOR X = l TO 100 STEP 5,J

and the computer would assign l to X on the first time through the loop, 6 to X on the second time,

11 on the third, and 96 on the last time. Another step of 5 would take X beyond 100, so the program

would proceed to the end after printing 96 and its square root. The STEP may be positive or negative,

and we could have obtained the first table, printed in reverse order, by writing line 10 as

10 FOR X = 100 TO l STEP -lJ

In the absence of a STEP instruction, a step-size of+ l is assumed.

More complicated FOR statements are allowed. The initial value, the final value, and the

step-size may all be formulas of any complexity. For example, if N and Z have been specified earlier

in the program, we could write

FOR x = N + 7*Z TO (Z-N) I 3 STEP (N-4*Z) I l 0 ,J

For a positive step-size, the loop continues as long as the control variable is less than or

equal to the final value. For a negative step-size, the loop continues as long as the control variable

is greater than or equal to the final value.

If the initial value is greater than the final value (less than, for negative step-size} the body

of the loop will not be performed at all, but the computer will immediately pass to the statement follow

ing the NEXT. As an example, the following program for adding up the first n integers will give the

correct result 0 when n is 0.

10 READ NJ
20 LETS= OJ
30 FOR K = l TO N J
40 LET S = S + K J
50 NEXT KJ
60 PRINT SJ
70 GO TO lOJ
90 DATA 3, 10, OJ
99 ENDJ

1-10

1.4.2 Nested Loops

Nested loops, loops within loops, can be expressed with FOR and NEXT statements. They

must be nested and not crossed as the following skeleton examples illustrate:

Allowed Allowed Not Allowed

~FORX FOR X ~FORX FOR Y FOR Y FOR Y

[NEXT Y [FOR Z NEXT X

NEXT X NEXT Z NEXT Y

[FORW
NEXTW

-NEXT Y

[FOR Z
NEXT Z

NEXT X

1.5 LISTS AND TABLES

In addition to the ordinary variables used by BASIC, there are variables which can be used

to designate the elements of a list or of a table. Lists are used where we might ordinarily use a single

subscript, and tables are used where we might use a double subscript, for example, the coefficients of

a polynomial (a0 , a 1, a2, •••) or the elements of a matrix (bi, j). The variables which we use in BASIC

consist of a single letter, which we call the name of the list or table followed by the subscripts in

parentheses. Thus, we might write A(O), A(l}, A(2), etc., for the coefficients of the polynomial and

B(l, 1), B(l,2}, etc. for the elements of the matrix.

We can enter the list A(O), A(l), •.. A(lO} into a program very simply by the lines:

10 FOR I= 0 TO 10 J
20 READ A(I) ,J
30 NEXT IJ
40 DATA 2, 3, -5, 2.2, 4, -9, 123, 4, -4, 3J

1.5. l DIM (Dimension) Statement

We need no special instruction to the computer if no subscript greater than l 0 occurs. How

ever, if we want larger subscripts, we must use a DIM statement, to indicate to the computer that it

1-11

has to save extra space for the list or table. When in doubt, indicate a larger dimension than you ex

pect to use. For example, if we want a list of 15 numbers entered, we might write

10 DIM A(25},/
20 READ NJ
30 FOR I = l TO NJ
40 READ A(I}J
50 NEXT I,/
60 DATA 15.I
70 DAT A 2 I 3 I 5 I 7 I 11 I 13 I 17 I 19 I 23 I 29 I 31 I 37 I 41 , 43 I 47,.J

Statements 20 and 60 could have been eliminated by writing 30 as FOR I= l TO 15, but the program

as typed allows for the lengthening of the list by changing only statement 60, so long as it does not

exceed 25.

We would enter a 3x5 table into a program by writing

10 FOR I = l TO 3 .I
20 FOR J = l TO 5 J
30 READ B (I,J}J
40 NEXT J ,/
50 NEXT I,/
60 DATA2,3,-5,-9,2J
70 DATA 4, -7, 3, 4, -2,/
80 DAT A 3 I -3 I 5 I 7 I 8 J

Here again, we may enter a table with no DIM statement, and it will handle all the entries from B(O,O}

to B(lO, 10). If you try to enter a table with a subscript greater than 10, without a DIM statement, you

will get an error message telling you that you have a subscript error. This is easily rectified by entering

the line

5 DIM B(20,30},J

if, for instance, we need a 20-by-30 table.

The single letter denoting a list or a table name may also be used to denote a simple variable

without confusion. However, the same letter may not be used to denote both a list and a table in the

same program. The form of the subscript is quite flexible, and you might have the list item B(I+K} or

the table items B(I,K) or Q(A(3,7), B - C).

1.5.2 Examples

Below are the statements and run of a problem which use both a list and a table. The pro

gram computes the total sales of five salesmen, all of whom sell the same three products. The list P

1-12

gives the price/item of the three products and the table S tells how many items of each product each

man sold. Product 1 sells for $1.25 per item, product 2 for $4.30 per item, and product 3 for $2.50

per item; also, salesman 1 sold 40 items of the first product, 10 of the second, and 35 of the third, and

so on. The program reads in the price list in lines 40 through 80, using data in lines 910 through 930.

The same program could be used again, modifying only line 900 if the prices change, and only lines

910 through 930 to enter the sales in another month.

This sample program did not need a DIM statement, since the computer automatically saves

enough space to allow all subscripts to run from 0 to 10. A DIM statement is normally used to save more

space, but in a long program, requiring many small tables, DIM may be used to save less space for

tables, in order to leave more for the program.

Since a DIM statement is not executed, it may be entered into the program on any line be

fore END; it is convenient, however, to place DIM statements near the beginning of the program.

10 FOR I = l TO 3 J
20 READ P(I) ,/
30 NEXT I J
40 FOR I = 1 TO 3 ,)
50 FOR J = 1 TO 5,/
60 READ S(I,J),;
70 NEXT J J
80 NEXT I J
90 FOR J = 1 TO 5 J

100 LETS= 0 J
110 FOR I= 1 TO 3 J
120 LETS= S+ P(I)*S(I,J),/
130 NEXT I J
140 PRINT "TOTAL SALES FOR SALESMAN" J, "$"SJ
150 NEXT J J
900 DATA 1.25, 4.30, 2 .50 ,J
910 DATA 40, 20, 37, 29, 42 J
920 DATA 10, 16, 3, 21, BJ
930 DAT A 35, 47, 29, 16, 33 J
999 ENDJ

NOTE

Statements may be indented for visual identity of
the various loops within the program.

READY

RUN,/

SALESl 11 :06 10/20/68

1-13

1.6

1.6. 1

TOTAL SALES FOR SALESMAN 1 $180.500
TOTAL SALES FOR SALESMAN 2 $211.300
TOTAL SALES FOR SALESMAN 3 $131.650
TOTAL SALES FOR SALESMAN 4 $166.550
TOTAL SALES FOR SALESMAN 5 $169.400

RUNNING BASIC

Gaining Access to BASIC

You can gain access to BASIC by first performing any steps required for obtaining service

from the Monitor. In the case of the Time-sharing Monitors (see Section 1.5.7 for an example of run

ning under a time-sharing Monitor), such steps include logging into the system (see the PDP-10 System

User's Guide or the Time-Sharing Monitors: Multiprogramming Monitor (10/40), Swapping Monitor

(10/50) manual). Then, once the Monitor has responded with a period to indicate it is ready to receive

a Monitor command, type

• R BASICJ

BASIC then responds with

NEW OR OLD --

Respond with

NEWJ

(or RUN dev: BASIC, if the BASIC is not
on the system device, SYS:)

if you are about to create a new program; BASIC will then ask you for the name of your new program

and wi II check to see that the name does not already exist. Or, if you want to work with a previously

created program, type

OLDJ

BASIC will then ask for the name of the program and will replace the current contents of user core with

the program of that name from the storage device (disk or DECtape). Program names can be any com-

bination of letters and digits (characters other than letters or digits may be used, but * ; I $

should be avoided) but must not exceed six characters in length. In the previous examples in this man

ual, we have used program names such as LINEAR and SALESl. If you are recalling an old program,

you must use exactly the same name as the one you assigned the program when you saved it (see Section

2. 9).

1-14

1.6. 2 Entering Your Program Statements

BASIC then responds with

READY

and you can now begin to type your program. Make sure that each line begins with a line number con

taining no more than five digits and containing no spaces or non-digit characters. Also be sure to start

at the beginning of the Teletype line. Press the RETURN key upon completion of each line.

If, in the process of typing a statement, you make a typing error and notice it before you

terminate the line, you can correct it by pressing the RUBOUT key once for each character position to

be erased, going backwards until you reach the character in error. Then continue typing, beginning

with the character in error.

10 PRNIT \\\INT 2, 3 J (Note that the RUBOUT key echoes
as a backslash \)

Also, you can press the ALTMODE key (if a Teletype Model 35) or the ESC key (if a Teletype Model

33) or the PREFIX key (if a Teletype Model 37) to delete the entire line being typed.

1.6.3 Executing Your Program

After typing your complete program (do not forget to end with an END statement), type RUN

followed by the RETURN key. BASIC types the name of your program, the time of day, the current

date, and then analyzes your program. If your program is runnable, BASIC will execute it and type

out any results you requested via PRINT statements. The typeout of results does not guarantee that

your program is correct (the results could be wrong), but it does mean that there were no "grammatical"

errors (e.g., missing line numbers, misspelled words, illegal syntax). If there are errors of this type,

BASIC types a message (or several messages) to you. A list of these diagnostic messages is given in

Section 2.8 with their meanings.

1.6.4 Correcting Your Program

If you receive an error message typeout informing you, for example, that line 60 is in error,

you can correct it by typing in a new line 60 to replace the erroneous one. If you want to eliminate

the statement on line 110 from your program, you can do this by typing

110

1-15

followed by the RETURN key. If you want to insert a statement between Ii nes 60 and 70, you can do

this by typing a line number between 60 and 70 (e.g., 65) followed by the statement.

1.6.5 Interrupting the Execution of Your Program

If, for some reason, the results being typed out seem to be incorrect, and you want to stop

the execution of your program, y9u type

re (Hold down the CTRL key and at the same time
depress the C key.)

Monitor responds with a period and waits for you to type a Monitor command. If you wish to reinitialize,

type either

• START J or • REENTER,/

BASIC wi 11 respond with

READY

whereupon you can modify or add statements and/or type RUN. If you wish to continue at the point

where you interrupted the execution, type

• CONT J

If you want to run some program other than BASIC, type

..:.... R progname J

if the program is on the system device (SYS:), or

.:... RUN dev: progname J

if the program is on some other device.

1.6.6 Leaving the Computer

When you wish to leave the computer, type

TC

1-16

Monitor responds with a period. Now type

• KJOB J

Monitor responds with

CONFIRM:

If you simply want to get off the machine and delete all files you may have created, type

KJ

Other options available following the typeout of CONFIRM: are listed for you if you respond to the

CONFIRM: message with a carriage return (RETURN key) only. The Monitor will then list all options

available along with the response required to request each option.

1.6.7 Example of BASIC Run

A simple example of using BASIC under a time-sharing Monitor is given below:

.!. fC

.!.LOGIN J

JOB7 3.19

~27 ,20 ,J

u

0927 29-0CT -68 TTY3

.!.R BASIC J

NEW OR OLD -- NEW J

NEW FILE NAME -- SAMPLEJ

READY

10 FOR N = 1 TO 7J.

20 PRINT NI SQR(N)J

GO TO MONITOR LEVEL

REQUEST LOGIN

MONITOR TYPES OUT YOUR ASSIGNED
JOB NUMBER, THE CURRENT VERSION
NUMBER OF THE MONITOR

MONITOR REQUESTS YOUR PROJECT
PROGRAMMER NUMBER; TYPE IT IN

MONITOR TYPES OUT MASK; TYPE
YOUR PASSWORD OVER IT

MONITOR TYPES OUT THE TIME OF DAY,
THE CURRENT DATE, AND YOUR TELE
TYPE UNIT NUMBER

INSTRUCT MONITOR TO BRING BASIC
INTO CORE AND START ITS EXECUTION

BASIC ASKS WHETHER NEW OR
OLD PROGRAM IS TO BE RUN

BASIC ASKS FOR NEW FILENAME

BASIC IS NOW READY TO RECEIVE
STATEMENTS

TYPE IN STATEMENTS

1-17

30 NEXT NJ

40 PRINT "DONE"J

50 ENDJ

RUN J RUN PROGRAM

SAMPLE 11:14 10/20/68

2 1.41421

3 1.73205 -
4 2

5 2.23607 -
6 2.44949

7 2.64575

DONE

f C

_._KJOB J

CONFIRM:KJ

JOB 7 I USER 27 I 20 OFF TTY3 AT 0930 ON 29-0CT-68
FILES DELETED: 0, FILES SAVED: 0, RUNTIME 0 MIN, 01 SEC

1.7 ERRORS AND DEBUGGING

Occasionally the first run of a new problem will be free of errors and give the correct an

swers, but more commonly errors will be present and have to be corrected. Errors are of two types:

(1) errors of form (or grammatical errors) which prevent the running of the program; (2) logical errors

in the program which cause the computer to produce wrong answers or no answers at all.

Errors of form will cause error messages to be printed, and the various types of error messages

are listed and explained in Section 2.8. Logical errors are harder to uncover, particularly when the

program gives answers which seem to be nearly correct. In either case, after the errors are discovered,

they can be corrected by changing lines, by inserting new lines, or by deleting lines from the program.

As indicated in the last section, a line is changed by typing it correctly with the same line number; a

line is inserted by typing it with a line number between those of two existing lines; and a line is de

leted by typing its line number and pressing the RETURN key. Notice that you can insert a line only

if the original line numbers are not consecutive integers. For this reason, most programmers will begin

using arbitrary line numbers that are multiples of five or ten.

1-18

These corrections can be made at any time--whenever you notice them--either before or

after a run. Since BASIC sorts lines out and arranges them in order, a line may be retyped out of se

quence. Simply retype the offending line with its original line number.

1.7.1 Example of Finding and Correcting Program Errors

As with most problems in computing, we can best illustrate the process of finding the errors

(or "bugs") in a program, and correcting (or "debugging") it, by an example. Let us consider the prob

lem of finding that value of X between 0 and 3 for which the sine of X is a maximum, and ask the

machine to print out this value of X and the value of its sine. Although we know that ir/2 is the cor

rect value we shall use the computer to test successive values of X from 0 to 3, first using intervals of

• 1, then of .01, and finally of .001. Thus, we shall ask the computer to find the sine of 0, of • 1 of

.2, of .3 ••• , of 2. 8, of 2. 9, and of 3, and to determine which of these 31 values is the largest. It

will do it by testing SIN(O) and SIN (.1) to see which is larger, and calling the larger of these two

numbers M. Then it will pick the larger of Mand SIN (.2) and call it M. This number will be checked

against SIN (.3). Each time a larger value of Mis found, the value of X is "remembered" in XO.

When it finishes, M will have been assigned to the largest value. It will then repeat the search, this

time checking the 301numbers0, .01, 02, .03, ••• , 2.98, 2.99, and 3, finding the sine of each

and checking to see which has the largest sine. At the end of each of these three searches, we want

the computer to print three numbers: the value XO which has the largest sine, the sine of that number,

and the interval of search.

right side.

Before going to the Teletype, we write a program such as the following:

10 READ D
20 LET XO= 0
30 FOR X = 0 TO 3 STEP D
40 IF SIN (X) <= M THEN 100
50 LET XO= X
60 LET M =SIN (XO)
70 PRINT XO, X, D
80 NEXT XO
90 GO TO 20

100 DATA.1, .01, .001
110 END

We shall list the entire sequence on the Teletype and make explanatory comments on the

1-19

NEW OR OLD--NEW J
NEW FILE NAME--MAXSIN J
READY
10 READ DJ
20 LWR XO= OJ
30 FOR X = 0 TO 3 STEP DJ
40 IF SINE \ (X) < = M THEN lOOJ
50 LET XO=XJ
60 LET M = SIN(X) J
70 PRINT XO, X, DJ
80 NEXT T \XO J
90 GO TO 20 J
20 LET XO=O J
100 DATA .1, .01, .001 J
110 ENDJ
RUN J

MAX SIN 11 :35

ILLEGAL VARIABLE IN 70
NEXT WITHOUT FOR IN 80
FOR WITHOUT NEXT IN 30

70 PRINT XO, X, D.,I

40 IF SIN(X) < = M THEN 80J
80 NEXT XJ
RUNJ

10/20/68

Notice the use of the RUBOUT key (echoes as a
\) to erase a character in Ii ne 40, which shou Id
have started IF SIN (X) etc., and in line 80.

After typing line 90, we notice that LET was
mistyped in line 20, so we retype it, this
time correctly.

After receiving the first error message, we inspect
line 70 and find that we used XO for a variable
instead of XO. The next two error messages re
late to lines 30 and 80 having mixed variables.
This is corrected by changing line 80.

We make both of these changes by retyping lines
70 and 80. In looking over the program, we
also notice that the IF-THEN statement in 40
directed the computer to a DATA statement and
not to line 80 where it should go.
This is obviously incorrect. We are having every
value of X printed, so we direct the machine to
cease operations by typing Seven while it is run
ning. Note that the 'S' does not print. We

MAXSIN 11 :36 10; 20; 68 notice that SIN(O) is compared with Mon the
__________________._ __ first time through the loop, but we had assigned

o. 100000
0.200000
0.300000

20J
RUNJ

MAX SIN

0. 100000
0.200000

11 :37

UNDEFINED LINE NUMBER 20 IN 90

o. l
0.1

10/20/67

a value to XO but not to M. However, we re
call that all variables are set equal to zero before
a RUN so that line 20 is unnecessary.

90 GO TO 10 J Of course, line 90 sent us back to line 20 to re-
RUN ,J peat the operation arid not back to line 10 to pick
MAXSIN 11 :43 10; 20; 67 up a new value for D. We retype line 90 and then
-------------------type RUN again.

o. 1 0. 1
0.2 0.2
0.3

0. l
o. 1

We are about to print out the same table as before.
It is printing out XO, the current value of X, and
the interval size each time that it goes through the
loop.

1-20

70 J
85 PRINT XO, M, DJ
5 PRINT "X VALUE", "SIN", RESOLUTION"J
RUN J

MAX SIN 11 :44 10/20/67

ILLEGAL VARIABLE IN 5

We fix this by moving the PRINT statement outside
the loop. Typing 70 deletes that line, and line
85 is outside of the loop. We also realize that we
want M printed and not X. We also decide to put
in headings for our columns by a PRINT statement.

There is an error in our PRINT statement: no left
quotation mark for the third item.

5 PRINT "X VALUE", "SINE",
RUN,/

"RESOLUTION" J Retype line 5, with all of the required quotation
marks.

MAXSIN 11 :47 10/20/67

X VALUE SINE RESOLUTION These are the desired results. Of the 31 numbers
~~~~~~~~~~~~~~~~~~~ 

1.60000 0.999574 0.100000 (0, .1, .2, .3, ... ,2.8, 2.9, 3) it is 1.6 which 
1.57000 1.000000 0.01000 has the largest sine, namely .999574, similarly 

-=---=~=--~~~---::---::-=-'="',,....-~~---.,,,.....-:,-=-=--:-~ 

1.57099 1.000000 0.00100 for finer subdivisions. 
-O~U~T=--=-O~F~D~A~T~A~I~N~l~O~~~~~~~~~ 

LIST J 

MAX SIN 11 :48 

5 PRINT "X VALUE", "SINE", 
10 READ D 
30 FOR X = 0 TO 3 STEP D 
40 IF SIN(X) < = M THEN 80 
50 LET XO=X 
60 LET M = SIN(X) 
80 NEXT X 
85 PRINT XO, M, D 
90 GO TO 10 
l 00 DA TA • l, . 01, . 001 
110 END 

READY 

SAVE,/ 
READY 

10/20/67 

"RESOLUTION II 

Having changed so many parts of the program, we 
ask for a list of the corrected program. 

The program is saved for later use. 

A PRINT statement is inserted to check on the machine computations. For example, if we 

were to check M, we could have inserted 65 PRINT M, and seen the values. 

1.8 SUMMARY OF ELEMENTARY BASIC STATEMENTS 

In this section we shall give a short description of each of the types of BASIC statements 

discussed earlier in this chapter and add one statement to our list. In each form, we shall assume a 

line number, and use brackets to denote a general type. Thus, [variable] refers to any variable, 

which is a single letter, possibly followed by a single digit. 

1-21 



1.8.1 LET Statement 

This statement is not of algebraic equality, but a command to the computer to perform cer

tain computations and assign the answer to a certain variable. Each LET statement is of the form: LET 

[variable] = [formula] . More generally several variables may be assigned the same value by a single 

LET statement. Examples of assigning a value to a single variable are given in the following two 

statements: 

100 LET X = X + 1 
259 LET W7 = (W-X4 f 3) * (Z - A/ (A - B) - 17 

Examples of assigning a value to more than one variable are given in the following statements: 

1.8.2 

50 LET X = Y3=A(3,1) = 1 The variables X, Y3, and A(3, 1) are assigned 
the value 1. 

90 LET W = Z= 3"'X-4*X f 2 The variables Wand Z are assigned the value 
3*X-4*X f 2 

READ and DAT A Statements 

We use a READ statement to assign to the listed variable values obtained from a DATA state

ment. Neither statement is used without the other. A READ statement causes the variables listed in it 

to be given in order, the next available numbers in the collection of DATA statements. Before the pro

gram is run, the computer takes all of the DATA statements in the order they appear and creates a large 

data block. Each time a READ statement is encountered anywhere in the program, the data block 

supplies the next available number or numbers. If the data block runs out of data the program is assumed 

to be done and we get an OUT OF DATA message. 

Since we have to read in data before we can work with it, READ statements normally occur 

near the beginning of a program. The location of DATA statements is arbitrary, as long as they occur 

in the correct order. A common practice is to collect all DATA statements and place them just before 

the END statement. 

Each READ statement is of the form: 

READ [sequence of variables] 

and each DATA statement is of the form: 

DAT A [sequence of numbers] 

1-22 



Examples: 150 READ x, Y, z, Xl I Y2, Q9 
330 DATA4, 2, l.7 
340 DATA 6.734E-3, -174.321, 3.1415927 

234 READ B (K) 
263 DATA 2, 3, 5, 7, 9, 11, 10, 8, 6, 4 

10 READ R (I,J) 
440 DATA -3, 5, -9, 2.37, 2.9876, -437.234E-5 
450 DATA 2.765, 5.5576, 2.3789E2 

Remember that only numbers are put in a DATA statement, and that 15/7 and ../3 are formulas, not 

numbers. 

1.8.3 PRINT Statement 

The common uses of the PRINT statement are: (l) to print out the result of some computations, 

(2) to print out verbatim a message included in the program, (3) a combination of the two, and (4) to 

skip a line. 

a. Examples of type (1): 

100 PRINT X, SQR (X) 
135 PRINT X, Y, Z, B*B-4*A*C, EXP(A-B) 

The first will print X and then, a few spaces to the right of that number, its square root. The 

second wi II print five different numbers: 

2 A-B 
X, Y, Z, B -4AC, and e 

The computer will compute the two formulas and print up to five numbers per line in this format. 

b. Examples of type (2): 

100 PRINT "NO UNIQUE SOLUTION" 
430 PRINT "X VALUE", "SINE", "RESOLUTION" 

Both have been encountered in the sample programs. The first prints that sample statement; the second 

prints the three labels with spaces between them. The labels in 430 automatically line up with three 

numbers called for a PRINT statement -- as seen in MAXSIN. 

c. Examples of type (3): 

150 PRINT "THE VALUE OF X IS" X 
30 PRINT "THE SQUARE ROOT OF" X, "IS" SQR()<) 

1-23 



If the first has computed the value of X to be 3, it will print out: THE VALUE OF XIS 3. If the 

second has computed the value of X to be 625, it will print out: THE SQUARE ROOT OF 625 IS 25. 

d. Example of type (4): 

250 PRINT 

The computer will advance the paper one line when it encounters this command. 

1.8.4 GO TO Statement 

An example of requesting a different order of commands occurs in the MAXSIN problem 

where the computer has printed out XO, M, and D in line 85. To go through the same process for a 

different value of D, we directed the computer to revert to line 10 with a GO TO statement. Each is 

in the form of GO TO Cline number]. 

Example: 150 GO TO 75 

1.8.5 IF -- THEN Statement 

To jump a normal sequence of commands, we use an IF -- THEN statement, sometimes called 

a conditional GO TO statement, such as line 40 of MAX SIN. 

Examples: 

IF [formula] [relation] [formula] THEN [line number] 

40 IF SIN (X) < = M THEN 80 
20 IF G = 0 THEN 65 

The first asks if the sine of X is less than or equal to M, and skips to line 80 if so. The 

second asks if G is equal to 0, and skips to line 65 if so. In each case, if the answer to the question 

is no, the computer will go to the next line. 

1.8.6 ON .•• GO TO Statement 

The IF--THEN--instruction allows a 2-way fork in a program. ON allows a many-way 

switch. For example: 

80 ON X GO TO 100, 200, 150 

1-24 



This causes the fol lowing: 

If X = l, the program goes to line l 00, 

If X = 2, the program goes to line 200, 

If X = 3, the program goes to line 150 

More generally, in place of X any formula may occur, and there may be any number of line 

numbers in the instruction, as long as it fits on a single line. The value of the formula is computed and 

its integer part is taken. If this is 1, the program transfers to the line whose number is first on the list; 

if it is 2, to the second one, etc. If the integer part of the formula is below 1, or larger than the 

number of line numbers listed, an error message is printed. To increase the similarity between the ON 

and IF-THEN instructions, the instruction 

75 IF X > 5 THEN 200 

may also be written as 

75 IF X > 5 GO TO 200 

Conversely, "THEN" may be used in an "ON" statement. 

1.8.7 FOR and NEXT Statements 

Every FOR statement is of the form 

FOR [variable] = [formula] TO [formula] STEP [formula] 

Most commonly, the expressions will be integers and the STEP omitted. In the latter case, 

a step-size of +l is assumed. The accompanying NEXT statement is simple in form, but the variable 

must be precisely the same one as that following FOR in the FOR statement. Its form is 

Examples: 

NEXT [variable] 

30 FOR X = 0 TO 3 STEP D 
80 NEXT X 

120 FOR X4 = (17 + COX(Z))/ 3 TO 3*SQR(l0) STEP 1/4 
235 NEXT X4 

240 FOR X = 8 TO 3 STEP -1 

456 FOR J = -3 TO 12 STEP 2 

1-25 



Notice that the step-size may be a variable (D), a formula (1/4), a negative number (-1), 

or a positive number (2). In the example with lines 120 and 235, the successive values of X4 will be 

.25 apart, in increasing order. In the next example, the successive values of X will be 8, 7, 6, 5, 4, 

3. In the last example, on successive trips through the loop, J will take on values -3, -1, 1, 3, 5, 7, 

9, and 11. If the initial, final, or step-size values are given as formulas, these formulas are evaluated 

upon entering the FOR statement. The control variable can be changed in the body of the loop; of 

course, the exit test always uses the latest value of this variable. If you write 50 FOR Z = 2 TO -2, 

without a negative step-size, the body of the loop will not be performed and the computer will proceed 

to the statement immediately following the corresponding NEXT statement. 

1.8.8 DIM Statement 

To enter a list or a table with a subscript greater than 10, use a DIM statement to retain 

sufficient space. 

Examples: 20 DIM H(35) 
35 DIM Q(5, 25) 

The first would enable us to enter a list of 35 items (or 36 if we use H(O)), and the latter a 

table 5 x 25, or by using row 0 and column 0 we get a 6 x 26 table. 

1.8.9 END Statement 

Every program must have an END statement, and it must be the statement with the highest 

line number in the program. 

Example: 999 END 

1-26 



CHAPTER 2 

ADVANCED BASIC STATEMENTS 

2.1 MORE ABOUT THE PRINT STATEMENT 

The PRINT statement permits a greater flexibility for the more advanced programmer who 

wishes a different format for his output. The Teletype line is divided into five zones of fifteen spaces 

each. A comma is a signal to move to the next print zone or, if the fifth print zone has just been 

filled, to move to the first print zone of the next line. If a label (expression in quotes) is followed by 

a semicolon, the label is printed with no space after it. If a variable is followed by a semicolon, its 

value is printed in the fol lowing format: 

snnn •• n 

L_numeric value 
[J I_ one space 

sign: space if positive; - if negative 

If you were to type the program 

lOFORI= 1TO15J 
20 PRINT I ,J 
30 NEXT I.; 
40 END,) 

the Teletype would print 1 at the beginning of a line, 2 at the beginning of the next line, finally 

printing 15 on the fifteenth line. But, by changing line 20 to read 

20 PRINT I, J 

the number is printed in the zones, reading 

2 3 4 5 
6 7 8 9 10 

11 12 13 14 15 

If you wanted the numbers printed in this fashion, but compressed, change line 20 to replace the comma 

by a semicolon: 

20 PRINT I; J 

and the result would be printed 

2-1 



2 3 4 5 6 7 8 9 10 11 12 13 14 15 

A label inside quotation marks is printed as it appears and the end of a PRINT statement 

signals a new line, unless a comma or semicolon is the last symbol. 

Thus, the instruction 

50 PRINT X, Y,; 

will print two numbers and then return to the next line, while 

50PRINTX, Y,J 

will print these two values and no return -- the next number to be printed will appear in the third zone, 

after the values of X and Yin the first two zones. 

Since the end of a PRINT statement signals a new line 

250 PRINT,; 

will cause the Teletype to advance the paper one line, put a blank line for vertical spacing of your 

results, or complete a partially filled line. 

50 FORM= l TO NJ 
110 FOR J = 0 TO M,J 
120 PRINT B (M,J); J 
130 NEXT J J 
140 PRINT J 
150 NEXT M,/ 

This program will print B(l,O) and next to it B(l, 1). Without line 140, the Teletype would then go on 

printing B(2,0), B(2, 1), and B(2,2) on the same line, and then B(3,0), B(3, 1) etc. Line 140 directs 

the Teletype, after printing the B(l, 1) value corresponding to M = 1, to start a new line and after 

printing the value of B(2, 2) corresponding to M = 2, etc. 

The instructions 

50 PRINT "TIME-"; "SHAR"; "ING";,) 
51 PRINT II ON"; II THE"; II PDP-10",/ 

will result in the printing of 

TIME-SHARING ON THE PDP-10 

2-2 



Formatting of output can be control led even further by use of the function TAB, in the form 

TAB(n), where n is the desired print position (O through 74). 

Insertion of TAB(l7) causes the Teletype to move to column 17, as if a tab had been set 

there. For this purpose the positions on a line are numbered from 0 through 74, and 75 is assumed to be 

the 0 position again. 

More precisely, TAB may contain any formula as its argument. The value of the formula is 

computed, and its integer part is taken. This in tum is treated modulo 75, to obtain a value from 0 

through 74, as indicated above. The Teletype is then moved forward to this position (unless it has 

already passed this position, in which case the TAB is ignored). 

For example, inserting the following line in a loop: 

55 PRINT X; TAB(l2); Y; TAB(27); Z ,/ 

will cause the X-value to start in column 0, the Y-values in column 12 and the Z-values in column 27. 

The following rules are to interprete your printed results: 

a. If a number is an integer, the decimal point is not printed. If the integer contains more 
than eight digits, it will be printed in the format 

n.nnnnnEp 
'---= ~ 

[
j L----E (~ponent) followed by p (power of 10) 

l__ next five digits 

first digit 

For example, it will take 32,437,580,259 and write it as 3.24376E+l0. 

b. For any decimal number, no more than six significant digits are printed. 

c. For a number less than 0. 1, the E notation is used unless the entire significant part of 
the number can be printed as a 6-digit decimal number. Thus, 0.03456 means that the number is 
exactly .0345600000, while 3.45600E-2 means that the number has been rounded to .0345600. 

d. Trailing zeros after the decimal point are not printed. The following program, in which 
we print out powers of 2, shows how numbers are printed. 

10 FOR N = -5 TO 30,/ 
20 PRINT 2 f N;J 
30NEXTNJ 
40 ENDJ 
RUNJ 

POWERS 11 :54 10/20/68 

2-3 



0.03125 0.0625 0. 125 0.25 0.5 l 2 4 8 16 32 64 128 256 512 

1024 2048 4096 8192 16384 32768 65536 131072 262144 524288 

1048576 2097152 4194304 8388608 16777216 33553332 67108864 

1.34218 E+8 2.68435 E+8 5.36871 E+8 1.07374 E+9 

2.2 INT,RND, AND SGN FUNCTIONS, AND THE DEF STATEMENT 

Five functions were listed in Section 1.3 but not described. We will discuss INT, RND and 

SGN here and leave NUM and DET until the MAT section (Section 2.6). 

2.2. l The INT (Integer) Function 

The INT function appears in algebraic computation as [x], and gives the greatest integer 

under x. Thus INT (2.35) = 2, INT (-2.35) = -3, and INT (12) = 12. One use of the INT function is 

to round numbers to the nearest integer by asking for INT (X + .5). This will round 2.9, for example, 

to 3, by finding INT (2.9 + .5) =INT (3.4) = 3. It can also be used to round to any specific number 

of decimal places. For example, INT (lO*X T 2 + .5) / 10 T 2 will round X correct to two decimal 

places, and INT (X*lO TD+ .5)/10 TD round X correct to D decimal places. 

2.2.2 The RND (Random Number Generating) Function 

The function RND produces a random number between 0 and 1. RND does not require an 

argument. 

If we want the first twenty random numbers, we write the program below and we get twenty 

6-digit decimals. 

lOFOR L= l TO 20J 
20 PRINT RND I J 
30NEXTLJ 
40 ENDJ 
RUN J 

RNDNOS 13:24 

0.406533 0.88445 
0.863799 0.880238 
0.570427 0.897931 
5.00548 E-2 0.393226 

RUNJ 

10/20/68 

0.681969 0.939462 0.253358 
0.638311 0.602898 0.990032 
0.628126 0.613262 0.303217 
0.680219 0.632246 0.668218 

2-4 



RNDNOS 13:25 10/20/68 

0.406533 0.88445 0.681969 0.939462 0.253358 
0.863799 etc. 

The second RUN gave exactly the same "random" numbers as the first RUN to facilitate the 

debugging of programs. If we want twenty random 1-digit integers, we could change line 20 to read 

20 PRINT INT (lO*RND),J 
RUNJ 

and we would then obtain 

RNDNOS 

4 
8 
5 
0 

8 
8 
8 
3 

13:26 

6 
6 
6 
6 

10/20/68 

9 
6 
6 
6 

2 
9 
3 
6 

To vary the type of random numbers (20 random numbers ranging from 1 to 9 inclusive) 

change line 20 as follows: 

20 PRINT INT {9*RND + l);J 
RUNJ 

RNDNOS 13:28 10/20/68 

4 8 7 9 3 8 8 6 6 9 6 9 6 6 3 1 4 7 6 7 

to obtain random numbers which are integers from 5 to 24 inclusive, change line 20 to 

20 PRINT INT (20*RND + 5); J 
RUNJ 

RNDNOS 13:28 10/20/68 

13 22 18 23 10 22 22 17 17 24 16 22 17 17 11 6 12 18 
17 18 

If random numbers are to be chosen from the A integers of which Bis the smallest, call for INT (A*RND 

+B). 

2-5 



2.2.3 The RANDOMIZE Statement 

As noted when we ran the first program of this section twice, we got the same numbers in the 

same order each time. However, we can get a different set by use of the instruction RANDOMIZE as 

in the following program. 

5 RANDOMIZE J 
10 FOR L = 1 TO 20 J 
20 PRINT INT(lO*RND);~ 
30 NEXT L J 
40 END,/ 
RUNJ 

RNDNOS 13:32 10/20/68 

9 4 2 6 6 3 8 4 9 8 6 5 8 6 2 6 0 

RUNJ 

RNDNOS 13:33 10/20/68 

4 6 6 6 0 5 3 8 4 0 8 0 5 8 0 

RANDOMIZE (RANDOM) resets the numbers in a random way. For example, if this is the 

first instruction in a program using random numbers, then repeated RUNs of the program will produce 

different results. If the instruction is absent, then the "official list" of random numbers is obtained in 

the usual order. It is suggested that a simulated model should be debugged without this instruction, so 

that one always obtains the same random numbers in test runs. After the program is debugged, one in-

serts 

RANDOM 

before starting production runs. 

2.2.4 The SGN (Sign) Function 

The SGN function is one which assigns the value 1 to any positive number, 0 to zero, and 

-1 to any negative number. Thus SGN (7.23) = 1, SGN (O) = 0, and SGN (-.2387) = -1. For example, 

the statement 50 ON SGN(X) + 2 GO TO 100, 200, 300 will transfer to 100 if X < 0, to 200 if X = 0, 

and to 300 if X >O. 

2-6 



2.2.5 The DEF (Define User Function) and FN END (Function End) Statements 

Define any function you expect to use repeatedly by a DEF statement. The name of the de

fined function must be three letters, the first two of which are FN. Hence, you may define up to 26 

functions, e.g., FNA, FNB, etc. Where you frequently need the function e-x2 + 5, introduce the 

function by the line 

30 DEF FNE(X) = EXP(-X t 2 + 5) 

and later on call for various values of the function by FNE(. 1 ), FNE(3.45), FNE(A+2), etc. Such de

finition can be a great time saver when you want values of some function for a number of different values 

of the variable. 

The DEF statement may occur anywhere in the program, and the expression to the right of the 

equal sign may be any formula which can be fitted onto one line. It may include any combination of 

other functions, including ones defined by different DEF statements, and it can involve other variables 

besides those denoting the argument of the function. 

Each function defined may have zero, one, two, or more variables. For example: 

10 DEF FNB(X,Y)= 3*X*Y -Yf 3 
105 DEF FNC(X,Y,Z,W)= FNB(X,Y)/FNB(Z,W) 
530 DEF FNA = 3.1416*R t 2 

In the definition of "FNA" the current value of R is used when FNA occurs. Similarly, if FNR is de

fined by 

70 DEF FNR(X) = SQR(2 + LOG(X) - EXP(Y*Z)*(X + SIN(2*Z) ) ) 

you can ask for FNR(2.7), and give new values to Y and Z before the next use of FNR. 

The method of having multiple line DEFs is illustrated by the 'max' function. In this the 

possibility of using 'IF ••• THEN' as part of the definition is a great help: 

10 DEF FNM(X,Y) 
20 LET FNM = X 
30 IF Y < = X THEN 50 
40 LET FNM = Y 
50 FNEND 

The absence of the '='sign in line 10 indicates that this is a multiple line DEF. FNEND in line 50 

terminates the definition. The expression 'FNM' without an argument serves as a temporary variable 

for the computation of the function value. The fol lowing example defines N-factorial: 

2-7 



10 DEF FNF(N) 
20 LET FNF = l 
30 FOR K = l TO N 
40 LET FNF = K * FNF 
50 NEXT K 
60 FNEND 

Any variable which is not an argument of FN in a DEF loop will have its current value in the program. 

Multiple line DEFs may not be nested and there must not be a transfer from inside the DEF to outside 

its range, or vice-versa. 

2.3 SUBROUTINES: GOSUB AND RETURN STATEMENTS 

When a particular part of a program is to be repeatedly performed, it is most efficiently pro

grammed as a subroutine and entered with a GOSUB statement; the number is the line number of the 

first statement in the subroutine. For example, 

90 GOSUB 210 

directs the computer to jump to line 210, the first line of the subroutine. The last line of the subroutine 

should be a RETURN command to the earlier part of the program. 

350 RETURN 

wi II revert to the first Ii ne numbered greater than 90. 

A program for determining the greatest common divisor (GCD) of three integers using the 

Euclidean Algorithm, illustrates the use of a subroutine. The first two numbers are selected in line 30 

and 40 and their GCD is determined in the subroutine, lines 200 through 310. The GCD just found is 

called X in line 60, the third number Yin line 70, and the subroutine is entered from line 80 to find the 

GCD of these two numbers. This number is, of course, the greatest common divisor of the three given 

numbers and is printed out with them in line 90. 

A GOSUB inside a subroutine to perform another subroutine is called "nested GOSUBs." It 

is necessary that you exit from a subroutine only with a RETURN statement. You may have several 

RETURNs in the subroutine so long as exactly one of them will be used. 

10 PRINT "A", "B", "C", "GCD"J 
20 READ A, B,C J 
30 LET X = AJ 
40 LET Y =BJ 
50 GO SUB 200 J 
60 LET X = G,/ 

2-8 



2.4 

70 LET Y =CJ 
80 GOSUB 200J 
90 PRINT A, B, C, G J 

100 GO TO 20J 
110 DATA 60,90, 120J 
120 DATA 38456, 64872, 98765J 
130 DATA 32,384,72J 
200 LET Q = INT(X/Y}J 
210 LET R= X - Q*YJ 
220 IF R = 0 THEN 300J 
230 LET X = YJ 
240 LET Y = RJ 
250 GO TO 200J 
300 LET G = Y J 
310 RETURN.I 
320 ENDJ 
RUNJ 

GCD3NOS. 13:38 

A B c 

60 90 120 

10/20/68 

GCD 

30 

38456 64872 98765 l 

32 384 72 8 

OUT OF DATA IN 20 

INPUT STATEMENT 

There are times when it is desirable to have data entered during the running of a program. 

This is particularly true when one person writes the program and saves it on the storage device as a 

I ibrary program 1 , and other persons use the program and supply their own data. Data may be entered 

by an INPUT statement, which acts as a READ but accepts numbers of alphanumeric data from the Tele

type keyboard. For example, to supply values for X and Y into a program, type 

40 INPUT X, Y J 

prior to the first statement which is to use either of these numbers. When it encounters this statement, 

BASIC will type a question mark. The user types two numbers, separated by a comma, presses the 

RETURN key, and BASIC goes on with the rest of the program. No number can be greater than 8 digits 

in length. 

l 
See SAVE command, Section 2. 9. 

2-9 



Frequently an INPUT statement is combined with a PRINT statement to make sure that the 

user knows what the question mark is asking for. You might type 

20 PRINT "YOUR VALUES OF X, Y, AND Z ARE"; J 
30 INPUT X, Y, Z ,/ 

and BASIC will type out 

YOUR VALUES OF X, Y, AND Z ARE? 

Without the semicolon at the end of line 20, the question mark would have been printed on the next 

line. 

Data entered via an INPUT statement is not saved with the program. Therefore, INPUT 

should be used only when small amounts of data are to be entered, or when necessary during the running 

of the program. 

2.5 STOP, REM (REMARKS), AND RESTORE STATEMENTS 

Several other useful BASIC statements are STOP, REM and RESTORE. 

2.5.1 STOP Statement 

STOP is equivalent to GOTO xxxxx, where xxxxx is the line number of the END statement 

in the program. For example, the following two program portions are exactly equivalent. 

2.5.2 

250 GO TO 999 

340 GO TO 999 

999 END 

REM (Remarks) Statement 

250 STOP 

340 STOP 

999 END 

REM provides a means for inserting explanatory remarks in the program. BASIC completely 

ignores the remainder of that line, allowing you to follow the REM with directions for using the program, 

with identifications of the parts of a long program, or with any other information. Although what follows 

REM is ignored, its line number may be used in a GOTO or IF-THEN statement. 

100 REM INSERT DATA IN LINES 900-998. THE FIRST 
110 REM NUMBER IS N, THE NUMBER OF POINTS. THEN 
120 REM THE DATA POINTS THEMSELVES ARE ENTERED, BY 
200 REM THIS IS A SUBROUTINE FOR SOLVING EQUATIONS 

2-10 



300 RETURN 

520 GOSUB 200 

There is a second method for adding comments to a program. Place an ' (apostrophe) at the 

end of the line, followed by a remark. Everything following the ' is ignored except when the line ends 

in a string (see Section 2.7). 

2.5.3 RESTORE Statement 

The RESTORE statement permits READing the data in the DATA statements of a program more 

than once. Whenever RESTORE is encountered in a program, BASIC restores the data block pointer to 

the first number. A subsequent READ statement wi II then start reading the data all over again. How

ever, if the desired data is preceded by code numbers or parameters, superfluous READ statements should 

be used to pass over these numbers. As an example, the following program portion reads the data, re

stores the data block to its original state, and reads the data again. Note the use of line 570 (READ X) 

to "pass over" the value of N, which is already known. 

100 READ N 
110 FOR I == 1 TO N 
120 READ X 

200 NEXT I ..... 
560 RESTORE 
570 READ X 
580 FOR I== 1 TO N 
590 READ X 

700 DATA. 
710 DATA ••.•• 

2.6 MATRICES 

There is a special set of thirteen instructions for matrix computations, identified by the start

ing word 'MAT'. They are 

MAT READ a, b, c 

MATc=ZER 

MAT c= CON 

MAT c ==ION 

Read the three matrices, their dimensions 
having been previously specified. 

Fi II out c with zeroes. 

Fill out c with ones. 

Set up c as an identity matrix. 

2-11 



2.6.1 

MAT PRINT a, b, c 

MAT INPUT v 

MAT b= a 

MAT c =a+ b 

MAT c =a - b 

MAT c =a* b 

MAT c = TRN(a) 

MAT c = (k) *a 

MAT c = INV (a) 

MAT Statement Conventions 

Print the three matrices (semicolons can be 
used immediately following any matrix which 
you desire to be printed in a closely packed 
format). 

Ca II s for the input of a vector. 

Set the matrix b equa I to the matrix a. 

Add the two matrices a and b. 

Subtract the matrix b from the matrix a. 

Multiply the matrix a by the number b. 

Transpose the matrix a. 

Multiply the matrix a by the number k. The 
number k, which must be in parentheses may 
also be given by a formula. 

Invert the matrix a. 

The following convention has been adopted for MAT: while every vector has a component 

0, and every matrix has a row 0 and a column 0, the MAT instructions ignore these. Thus if in a MAT 

instruction we have a matrix of dimension M-by-N, the rows are numbered 1, 2, ••• , M, and the 

columns 1, 2, ••• , N. 

The DIM statement may simply indicate what the maximum dimension is to be. Thus, if we 

write 

DIM M(20,35) 

then M may have up to 20 rows and up to 35 columns. This statement is to save enough space for the 

matrix, and hence, the only care at this point is that the dimensions declared are large enough to 

accommodate the matrix. However, in the absence of DIM statements all vectors may have up to 10 

components and matrices up to 10 rows and 10 columns. This is to say that in the absence of DIM 

statements this much space is automatically saved for vectors and matrices on their appearance in the 

program. The actual dimension of a matrix may be determined either when it is first set up (by a DIM 

statement) or when it is computed. Thus 

10 DIM M(20,7) 

50 MAT READ M 

2-12 



will read a 20-by-7 matrix for M, while 

50 MAT READ M(17 ,30) 

will read a 17-by-30 matrix for M, provided sufficient space has been saved for it by writing, for 

example, 

2.6.2 

10 DIM M(20,35). 

MAT c = ZER, MAT c =CON, MAT c =ION 

The three instructions 

MAT M = ZER 
MAT M=CON 
MAT M =ION, 

which set up a matrix M with all components zero, all components equal to one, and as an identity 

matrix, respectively, act like MAT READ as far as the dimension of the resulting matrix is concerned. 

For example, 

MAT M = CON(7,3) 

sets up a 7-by-3 matrix with 1 in every component, while 

MAT M=CON 

sets up a matrix, with ones in every component, and of dimension 10-by-10 unless previously dimen

sioned otherwise. It should be noted, however, that these instructions have no effect on row and 

column zero. Thus 

10 DIM M (20,7) 

20 MAT READ M(7,3) 

35 MAT M= CON 

70 MAT M = ZER (15,7) 

90 MAT M = ZER (16, 10) 

will first read in a 7-by-3 matrix for M. Then it will set up a 7-by-3 matrix of all ls for M (the actual 

dimension having been set up as 7-by-3 in line 20.) Next it will set up Mas a 15-by-7 all zero matrix. 

2-13 



(Note that although this is larger than the previous M, it is within the limits set in 10.) But it will 

result in an error message in line 90. The limit set in line 10 is (20 + 1) x (7 + 1) = 168 components, 

and in 90 we are calling for (16 + 1) x (10 + 1) = 187 components. Thus, although the zero rows and 

columns are ignored in MAT instructions they play a role in determining dimension limits. So, for 

example 

90 MAT M = ZER(25,5) 

would not yield an error message. 

It, perhaps, should be noted that an instruction such as MAT READ M(2,2) which sets up a 

matrix and which as we have said ignores the zero row and column does however affect the zero row 

and column. The redimensioning which may be implicit in an instruction causes the relocation of 

some numbers and so they may not appear subsequently in the same place. Thus even if we have first 

LET M{l,O) = M(2,0) = 1, and then MAT READ M(2,2) the values of M(l,O) and M(2,0) will now 

be 0. Thus, when using MAT instructions, it is best not to use row and column zero. 

2.6.3 MAT PRINT a, b, c 

The instruction 

MAT PRINT A, B; C 

will cause the three matrices to be printed with A and C in the normal format (i.e., with five compon

ents to a line and starting each new row on a new line) and B closely packed. 

Vectors may be used in place of matrices, as long as the above rules are observed. Since 

a vector like V(I) is treated as a column vector by BASIC, a row vector has to be introduced as a matrix 

that has only one row, namely row 1. Thus 

DIM X(7), Y(0,5) 

introduces a 7-component column vector and a 5-component row vector. 

If V is a vector then 

MAT PRlNT V 

will print the vector Vas a column vector. 

2-14 



MAT PRINT V, 

will print Vas a row vector, five numbers to the line, while 

MAT PRINT V; 

will print Vas a row vector, closely packed. 

2.6.4 MAT INPUT V and the NUM Function 

The instruction 

MAT INPUT V 

will call for the input of a vector. The number of components in the vector need not be specified. 

Normally the input is limited by having to be typed on one line. However by ending the line of input 

with & (before carriage return) the machine will ask for more input on the next line. Note that, 

although the number of components need not be specified, if we wish to input more than 10 numbers 

we must save sufficient space with a DIM statement. After the input the function NUM will equal 

the number of components and V(l), V(2), ••• , V(NUM) will be the numbers inputted. This allows 

variable length input. For example 

5 LETS= 0 
10 MAT INPUT V 
20 LET N = NUM 
30 IF N = 0 THEN 99 
40 FOR I= l TO N 
45 LET S = S + V(I) 
50 NEXT I 
60 PRINT S/N 
70 GO TO 5 
99 END 

a II ows the user to type in sets of numbers, which are averaged. The program takes advantage of the 

fact that zero numbers may be inputted, and uses this as a signal to stop. Thus, the user can stop by 

simply pushing "carriage return" on an input request. 

2.6.5 MAT b =a 

This sets b up to be the same as a and in doing so dimensions b to be the same as a, provided 

sufficient space has been saved for b. 

2-15 



2.6.6 MAT c = a + b and MAT c = a-b 

For these to be legal, a and b must have the same dimensions, and enough space must be 

saved for c. These statements cause c to assume the same dimensions as a and b. Instructions such as 

MAT A= A± Bare legal - the indicated operation is performed and the answer stored in A. Only a 

single arithmetic operation is allowed so MAT D =A+ B - C is illegal but may be achieved with two 

MAT instructions. 

2.6.7 MAT c =a * b 

For this to be legal, it is necessary that the number of columns in a be equal to the number 

of rows in b. For example, if matrix A has dimension L-by-M and matrix B has dimension M-by-N then 

C =A* B will have dimension L-by-N. It should be noted that while MAT A= A+ B may be legal, 

MAT A= A* B will result in errors because in multiplying two matrices, we will destroy components 

which would be needed to complete the computation. MAT B =A* A is, of course, legal provided A 

is a 'square' matrix. 

2.6.8 MAT c = TRN(a} 

This lets c be the transpose of the matrix a. Thus if matrix A is an M-by-N, matrix C will 

be an N-by-M matrix. 

2.6.9 MAT c = (k) *a 

This lets c be the matrix a multiplied by the number k (i.e., each component of a is multi

plied by k to form the components of c). The number k, which must be in parentheses, may be replaced 

by a formula. MAT A= (K) *A is legal. 

2.6.10 MAT c = INV(a) and the DET Function 

This lets c be the inverse of a. (a must, of course, be a 'square' matrix.) The function DET 

is available after the execution of the inversion, and will equal the determinant of a. This enables the 

user to decide whether the determinant was large enough for the inverse to be meaningful. In particular, 

attempting to invert a singular matrix will not cause the program to stop, but DET is set equal to 0. Of 

course, the user may actually want the determinant of a matrix; he may obtain this by inverting the 

matrix and then seeing what value DET has. 

2-16 



2.6. 11 Examples of Matrix Programs 

We close this section with two illustrations of programs involving matrices. The first one 

reads in A and B in line 30 and in so doing sets up the correct dimensions. Then, in line 40, A+ A 

is computed and the answer is called C - this automatically dimensions C to be the same as A. Note 

that the data in line 90 results in A being 2-by-3 and B being 3-by-3. Both MAT PRINT formats are 

illustrated, and one method of labeling a matrix print is shown. 

10 DIM A(20,20),B(20,20),C(20,20)J 
20 READ M,NJ 
30 MAT READ A(M,N) ,B(N,N)J 
40 MAT C =A +A,J 
50 MAT PRINT C; ,/ 
60 MAT C =A * B,/ 
70 PRINT ,J 
75 PRINT 11A * B =II ,J 
80 MAT PRINT CJ 
90 DATA 2,3,J 
91 DATA 1,2,3,J 
92 DATA 4,5,6J 
93 DATA 1,0,-1 J 
94 DAT A 0, -1 , -1 J 
95 DATA -1,0,0J 
99 ENDJ 
RUN J 

MATRIX 13:48 

2 4 6 
8 10 12 

A*B= 

-2 -2 -3 
-2 -5 -=-9" 

The second example inverts an n-by-n Hilbert Matrix 

1/2 1/3. 1/n 

10/20/68 

1 
1/2 
1/3 

1/3 1/4 . 
1/4 1/5 . 

1/n + 1 
1/n + 2 

1/n 1/n + 1 1/n + 2 1/2n-1 

2-17 



Ordinary BASIC instructions are used to set up the matrix in lines 50 to 90. Note that this 

occurs after correct dimensions have been declared. Then a single instruction results in the computation 

of the inverse, and one more instruction prints it. The fact that the function DET is available after an 

inversion is also taken advantage of in line 130 to print the value of the determinant of A. In this 

example we have supplied 4 for N in the DATA statement and have made a run for this case. 

5 REM THIS PROGRAM INVERTS AN N-BY-N HILBERT MATRIXJ 
10 DIM A(20,20),B(20,20)J 
20 READ NJ 
30 MAT A= CON(N,N)J 
50 FOR I = 1 TO NJ 
60 FOR J = 1 TO NJ 
70 LET A(I,J) = 1/(1 +J - l)J 
80 NEXT JJ 
90 NEXT I.I 

100 MAT B = INV(A) J 
115 PRINT 11 INV(A) = II,,/ 
120 MAT PRINT B; J 
125 PRINTv' 
130 PRINT "DETERMINANT OF A= II DET J 
190 DATA 4v' 
199 ENDJ 
RUN J 

HILMAT 13:52 10/20/68 

INV(A) = 

16.0001 -120.001 240.003 -140.002 
-120.001 1200.01 -2700.03 1680.02 
240.003 -2700.03 6480.08 -4200.05 

-140.002 1680.02 -4200.05 2800.03 

DETERMINANT OF A= 1.65342 E-7 

A 20-by-20 matrix is inverted in about .5 seconds. However, the reader is warned that 

beyond n = 7 the Hilbert matrix cannot be inverted because of severe round-off-errors. 

2.6.12 Simulation of n-Dimensional Arrays 

Although it is not possible to create n-dimensional arrays in BASIC, the method outlined 

below will simulate them. The example is of a 3-dimensional array but it has been written in such a 

way that it could be changed to 4 or higher dimensions easily. We use the fact that functions can have 

any number of variables and we set up a 1-to-1 correspondence between the components of the array 

and the components of a vector which will equal the product of the dimensions of the array. For 

2-18 



example, if the array has dimensions 2, 3, 5 then the vector will have 30 components. A multiple 

line DEF could be used in place of the simple DEF in line 30 if the user wished to include error messages. 

The printout is in the form of two 3-by-5 matrices. 

2.7 

10 DIM V(lOOO)J 
20 MAT READ D(3)J 
30 DEF FNA(I,J,K) = ( ( 1-1) * D(2) + (J-1)) *D(3) + KJ 
50 FOR I = 1 TO D (l)J 
60 FOR J = 1 TO D (2) J 
70 FOR K = 1 TO D (3)J 
80 LET V(FNA(I,J,K)) =I+ 2*J +KT 2,) 

90 PRINT V(FNA(I,J,K) ),J 
100 NEXT KJ 
110 NEXT JJ 
112 PRINT,/ 
115 PRINT J 
120 NEXT I J 
900 DATA 2,3,5.,J 
999 END .I 

RUN J 

3-ARRAY 

4 7 
6 9 
8 1T 

5 8 
7 10 
9 12 

08:07 

12 
14 
16 

13 
15 
17 

ALPHANUMERIC INFORMATION (STRINGS) 

10/27/68 

19 
21 
23 

20 
22 
24 

28 
30 
32 

29 
31 
33 

Our discussion of BASIC in previous sections dealt only with numerical information. However, 

BASIC will also handle alphabetic or alphanumeric information. We define a string to be a sequence 

of characters, each of which is either a letter, a digit, a space, or some other printable character. 

We may introduce variables for single strings and 'string' vectors (but not 'string' matrices). 

Any ordinary variable followed by a$ will stand for a string. For example A$ or C7$ can denote strings. 

A vector variable followed by$, e.g. V$ ( ), will denote a list of strings. Thus, V$ (7) is the 7th 

string in the list. 

2.7.1 Reading and Printing Strings 

First of all, strings may be read and printed. For example, 

2-19 



10 READ A$, B$, C$ 
20 PRINT C$; B$; A$ 
30 DATA ING, SHAR, TIME-
40 END 

will print the word "time-sharing." Note that the effect of the semicolon in the PRINT statement is 

consistent with that discussed in the section on PRINT, i.e. with alphanumeric output the semicolon 

causes close packing whether that output is in quotes or is the value of a variable. Commas and TABs 

may be used as in any other PRINT statement. The loop 

70 FOR I = l TO 12 
80 READ M$(1) 
90 NEXT I 

wi II read a Ii st of 12 strings. 

In place of the READ and PRINT, corresponding MAT instructions may be used for lists. For 

example, MAT PRINT M$; will cause the members of the list to be printed without spaces between them. 

We may also use INPUT or MAT INPUT. After a MAT INPUT the function NUM will equal the number 

of strings inputted. 

As usual, lists are assumed to have no more than 10 elements, otherwise a DIM statement is 

required. The statement 

l 0 DIM M$(20) 

saves room for twenty strings in the M$-I i st. 

In the DATA statements, numbers and strings may be intermixed. Numbers will be assigned 

only to numerical variables, and strings only to string-variables. Strings in DATA statements are re

cognized by the fact that they start with a letter. If not, it must be enclosed in quotes. The same 

requirement holds for a string containing a comma. For example: 

90 DATA 10, ABC, 5, "4FG", "SEPT. 22, 1968", 2 

The only convention on INPUT is that a string containing a comma must be enclosed in quotes. 

With a MAT INPUT a string containing a comma or an ampersand (&}must be enclosed in 

quotes. For example: 

"MR. & MRS. SMITH", MR. JONES 

is in correct format for a response to a MAT INPUT. 

2-20 



2.7.2 String Conventions 

In the three ways of getting string information into a program (DATA, INPUT or MAT INPUT), 

leading blanks are ignored unless the string, including the blanks, is enclosed in quotes. Strings (in 

quotes) or string-variables may occur in LET and IF-THEN statements. The following two examples are 

self-explanatory: 

10 LET Y$ = "YES 11 

20 IF Z7$ = "YES" THEN 200 

The relation "< "is interpreted as "earlier in alphabetic order." The other relational symbols work in 

a similar manner. In any comparison, trailing blanks in a string are ignored. Thus, 

"YES"= "YES ". 

We illustrate these possibilities by the fol lowing program which reads a list of strings, and 

alphabetizes them: 

10 DIM L$(50) 
20 READ N 
30 MAT READ l$ (N) 
40 FOR I = l TO N 
50 FOR J = l TO N-1 
60 IF L$(J) = L$(J + 1) THEN 100 
70 LET A$ = L$(J) 
80 LET L$(J) = L$(J + 1) 
90 LET L$(J + 1) =A$ 

100 NEXT J 
110 NEXT I 
120 MAT PRINT L$ 
900 DATA 5, ONE, TWO, THREE, FOUR, FIVE 
999 END 

If we omit the $signs in this program, it serves to read a list of numbers and prints them in increasing 

order. 

A rather common use is illustrated by the following: 

330 PRINT "DO YOU WISH TO CONTINUE"; 
340 INPUT A$ 
350 IF A$= "YES" THEN 10 
360 STOP 

2-21 



2.7.3 Numeric and String DATA Blocks; RESTORE* RESTORE$ Statements 

Numeric and string DATA are kept in two separate blocks, and these act independently of 

each other. Therefore, RESTORE will retain both the numerical data and the string data. RESTORE* 

will retain only the numerical data and RESTORES$ only the string data. 

2.7.4 Accessing Individual Characters; the CHANGE Statement 

In BASIC it is very easy to obtain the individual digits in a number by using the function 

INT. It is possible to obtain the individual characters in a string with the instruction CHANGE. The 

use of CHANGE is best illustrated with examples. 

5 DIM A(65)J 
10 READ A$J 
15 CHANGE A$ TO AJ 
20 FOR I = 0 TO A(O)J 
25 PRINT A(I); J 
30 NEXT IJ 
40 DATA ABCDEFGHIJKLMNOPQRSTUVWXYZJ 
45 ENDJ 

RUNJ 

CHANGE 13:55 10/20/68 

26 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 
82 83 84 85 86 87 88 89 90 

The instruction CHANGE A$ TO A in line 15 has caused the vector A to have as its zero 

component the number of characters in the string A$ and to have certain numbers in the other compon

ents. These numbers are the BASIC 'code' numbers for the characters appearing in the string (e.g. , 

A(l) is 65 - the BASIC code number for A). 

2-22 



The BASIC code for the printable characters is 

Character BASIC Code No. Character BASIC Code No. 
(Decimal) (Decimal) 

II II 32 11@11 64 
111 II 33 11A11 65 
111111 34 11B11 66 
11# II 35 11c11 67 
11$11 36 11D11 68 
11311 37 "E11 69 
11&11 38 11F11 70 
11111 39 11G11 71 
II( II 40 11H11 72 
II) II 41 11111 73 
"*" 42 lljll 74 
"+II 43 11K11 75 
II II 44 11L11 76 I 
II II 45 11M11 77 
II II 46 11N11 78 
"/" 47 11011 79 
11011 48 11p11 80 
11111 49 "Q" 81 
11211 50 llR" 82 
11311 51 11s11 83 
11411 52 llT" 84 
11511 53 11u11 85 
11611 54 11y11 86 
11711 55 "W" 87 
11911 56 11x11 88 
11911 57 11y11 89 
11.11 58 11z11 90 
11.11 59 II (II 91 I 

11<11 60 "\" 92 
11_11 61 "] II 93 
">II 62 llt II 94 
11711 63 

Additional symbols useful on output are 

- (backward arrow) 95 
LF (line feed) 10 
CR (carriage return) 13 

This is not a complete list; there are 128 characters numbered 0 through 127. Some of these numbers 

duplicate the above (on some Teletypes); some are for Teletypes with upper and lower case letters, and 

some are use I ess • 

2-23 



The other use of CHANGE is illustrated by 

10 FOR I= 0 TO 5 
15 READ A(I) 
20 NEXT I 
25 DATA 5, 65, 66, 67, 68, 69 
30 CHANGE A TO A$ 
35 PRINT A$ 
40 END 

This will print ABCDE because the numbers 65 through 69 are the code numbers for A through 

E. Before CHANGE is used in the 'vector to string' direction, we must give the number of characters 

which are to be in the string as the zero component of the vector. Above, A{O) is read as 5. A final 

example: 

5 DIM V{l28) 
10 PRINT "WHAT DO YOU WANT THE VECTOR V TO BE"; 
20 MAT INPUT V 
30 LET V{O) = NUM 
40 CHANGE V TO A$ 
50 PRINT A$ 
60 GO TO 10 
70 END 
RUN 

EXAMPLE 13:59 10/20/68 

WHAT DO YOU WANT THE VECTOR V TO BE? 40,32,45,60,45,89,90 
{ -<-YZ 

WHAT DO YOU WANT THE VECTOR VTO BE? 32,33,34,35,36,37,38,39,40,41,42,43& 
? 44,45,46,47,48,49,50 
T II # $ % & I {) * +, - . I 012 

WHAT DO YOU WANT THE VECTOR V TO BE? 4 

Note that in this example we have used the availability of the function NUM after a MAT 

INPUT to find the number of characters in the string which is to result from line 40. Giving the input 

"4" on the last request obtains the response EOT {end of transmission), which turns off the Teletype. 

2.8 DIAGNOSTIC MESSAGES 

Most messages typed out by BASIC are self-explanatory. A full listing of these messages 

and their meanings will be made available in the near future. 

2-24 



2.9 EDIT AND CONTROL COMMANDS 

Several commands for editing BASIC programs and for controlling their execution enable you 

to: delete lines, list your program, change or resequence line numbers with set increments, save pro

grams on a file-structured storage device (disk or DECtape), replace old programs on the storage device 

with new programs, call in programs from the storage device, etc. These commands are summarized 

below. 

Command 

DELETE n 

DELETE n 1, n2 

LENGTH 

LIST 

LIST --n 

LIST --n1,n2 

LIST NH 
LISTNH --n 
LISTN H --n l 'n2 

NEW 

OLD 

RE NAME fname 

REPLACE 

RUN 

SAVE 

SAVE fname 

SCRATCH 

REQUENCE n 

RESEQUENCE n, k 

RESEQUENCE n, f, k 

Action 

Delete line number n. 

Delete line numbers n1 through n2 • 

Print length of source program (expressed as number of 
characters). 

List program with heading. 

List program with heading, beginning at line number n. 

List program with heading, from line number n1 through n2 • 

Same as above, but with heading suppressed. 

BASIC wil I ask for new program name and wi 11 check 
that it does not already exist. 

BASIC will ask for program name and will replace current 
contents of user core with existing program of that name 
from the storage device. 

Change name of program currently in user core. 

Replace old file of current name with contents of user 
core. 

Compile and run program currently in core. 

Save the contents of user core as file whose filename 1 
is current program name and whose extension is • BAS 

l 
Save user core as fname . BAS • 

Delete all program statements from user core. 

Change line numbers ton, n + 10, .••. 

Change line numbers ton, n + k, •••.• 

Change line numbers from line f upward to n, n + k, •.•• 

1SAVE commands will not overwrite an existing file of the same name (use REPLACE, instead). 

2-25 



Command 

SYSTEM 

WEAVE fname 

Tc 

Action 

Exit to Monitor. 

Read program statements from the file named fname. BAS 
(existing statements in user core are replaced by new 
statements having same line numbers). 

To stop a running program, type TC followed by REENTER. 

2-26 



APPENDIX A 

SUMMARY OF BASIC STATEMENTS 

Elementary BASIC Statements 

The following subset of the Advanced BASIC command repertoire includes the most commonly 

used commands and is sufficient for solving most problems. 

LET [variable] = [formula] 

DATA [data list] 

READ [sequence of variables] 

PRINT [arguments] 

GO TO [line number] 

IF [formula] [relation] [formula] 

{ THEN } . 
GO TO [I 1 ne number] 

[Go TOL . 
ON [x]'\...THEN J [line number 1 ,] 

[line number 2 ,] .•• , [line number n] 

FOR [variable] = [formula1] TO 
[formula2J STEP [formura3J 

NEXT [variable] 

DIM [variable] (subscript) 

END 

Assign the value of the formula to the specified 
variable. 

DAT A statements are used to supply one or more 
numbers or alphanumeric strings to be accessed by 
READ statements. READ statements, in turn, assign 
the next available datum in the DATA string to the 
variables listed. Numeric and alphanumeric data 
are kept in separate tables; however, they both may 
be entered in the same DATA statement. 

Type the values of the specified arguments, which 
may be variables, text, or format control characters. 

Transfer control to the line number specified and 
continue execution from that point. 

If the stated relationship is true, then transfer 
control to the I ine number specified; if not, continue 
in sequence. 

If the integer portion of x = 1, transfer control to 
line number1, if x = 2, to line number2 , etc, 
[x] may be a formu I a • 

Used for looping repetitively through a series of 
steps. The FOR statement initializes the variable 
to the value of formula 1 and then performs the 
following steps until the NEXT statement is en
countered . The NEXT statement increments the 
variable by the value of formula3 (if omitted, the 
increment value is assumed to be +1); the resultant 
value is then compared to the value of formula 2 • 
If variable <formula , control is sent back to fhe 
step fol lowing the FdR statement and the sequence 
of steps is repeated; eventually, when variable > 
formula3 , control continues in sequence at the -
step folfowing NEXT. 

Enables the user to enter a table or array with a 
subscript greater than 10 (i.e., more than 10 items). 

Last statement to be executed in the program. This 
statement must be present. 

A-1 



FORMULAS: In addition to the common arithmetic operators of addition (+), subtraction (-), 

multiplication (*), division (/), and exponentiation (t), Advanced BASIC 

includes the following elementary functions: 

SIN (x) 

COS (x) 

TAN (x) 

Advanced BASIC Statements 

GOSUB [line number] 

r[line number] 

Subroutine\.. 

INPUT [variable(s)] 

Matrix Instructions 

MAT READ a, b, c 

MAT c = ZER 

MAT c =CON 

MAT c =ION 

MAT PRINT a, b, c 

MAT INPUT v 

MAT b =a 

MAT c =a+ b 

MAT c =a - b 

MAT c =a * b 

MAT c = TRN(a) 

MAT c = (k) *a 

MAT c = INV(a) 

RETURN 

COT (x) 

ATN (x) 

EXP (x) 

LOG (x) 

ABS (x) 

SQR (x) 

Simplifies the execution of a subroutine at several 
different points in the program by providing an auto
matic return from the subroutine to the next sequen
tial statement following the appropriate GOSUB 
(the GOSUB which sent control to the subroutine). 

Causes typeout of a ? to the user and waits for user 
to respond by typing the value(s) of the variable(s). 

(NOTE: The word "vector" may be substituted for 
the word "matrix" in the following explanations.) 

Read the three matrices, their dimensions having 
been previously specified. 

Fill out c with zeroes. 

Fill out c with ones. 

Set up c as an identity matrix. 

Print the three matrices. 

Input a vector • 

Set matrix b = matrix a. 

Add the two matrices, a and b • 

Subtract matrix b from matrix a. 

Multiply matrix a by matrix b. 

Transpose matrix a. 

Multiply matrix a by the number k. (k, which must 
be in parentheses, may also be given by a formula.) 

Invert matrix a. 

A-2 



STOP 

REM 

RESTORE 

Equivalent to GO TO [line number of END 
statement] . 

Permits typing of remarks within the program. The 
insertion of short comments following any BASIC 
statement is accomplished by preceding such com
ments with an apostrophe('). 

Sets pointer back to beginning of string of DATA 
values. 

FORMULAS: Some advanced functions include the fol lowing: 

I NT (x) Find the greatest integer not greater than x. 

RND 

SGN (x) 

Generate random numbers between 0 and 1. The 
same set of random numbers can be generated re
peatedly for purposes of program testing and 
debugging. The statement 

RANDOMIZE 

can be used to cause the generation of new sets of 
random numbers. 

Assign a value of 1 if x is positive; 0 if x is O; or 
-1 if xis negative. 

Two special functions are used with matrix computations. 

(NUM) Equals number of components following an INPUT. 

DET Equals the determinant of a matrix after inversion. 

The user can also define his own functions by use of the DEFine statement. For example, 

line number DEF FNC(x) =SIN (x) + TAN(x) - 10 

(Define the user function FNC as the formula SIN(x) + TAN(x) - 10.) 

NOTE that DEFine statements may be extended onto more than one I ine; al I other statements are 
restricted to a single line. 

A-3 



READER'S COMMENTS 

ADVANCED BASIC for PDP-10 
DEC-10-KJZA-D 

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its publications. 
To do this effectively, we need user feedback: your critical evaluation of this manual and the DEC products described. 

Please comment on this publication. For example, in your judgment, is it complete, accurate, well-organized, well-

written, usable, etc? ____________________________________ _ 

Did you find this manual easy to use? ______________________________ _ 

What is the most serious fault in this manual? ___________________________ _ 

What single feature did you like best in this manual? _________________________ _ 

Did you find errors in this manual? Please describe·--------------------------

\ 

Please describe your position·---·-------------------------------
Name: _____________________ Organizatio • .__ ________________ _ 

Stree.__ ___________________ State. ______________ Zi,_ ___ _ 



•·•·•••·•••·•••··••·•·••··••••····•·•·•·····••·••·•·•·••••••••·••••••••···••·•·••·••··••· Fold Here ........•................................................................................. 

•••••••.••••.••..••.••....••.••.•.........•..••...........•.•.............•. Do Not Tear - Fold Here and Staple •••·•··••···•••••••••···••••····•••····•··•·········•·········•·· 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

mama am a 
Digital Equipment Corporation 
Software Quality Control 
Building 12 
146 Main Street 
Maynard, Mass. 01754 

FIRST CLASS 

PERMIT NO. 33 

MAYNARD, MASS. 



DIGITAL EQUIPMENT CORPORATION o MAYNARD, MASSACHUSETTS 

Printed in U.S.A. 




