

DECUS PRODUCTION OF THE SIGNEWSLETTER

MAY 1983

VOLUME 9 - 2

Contributions to the newsletter should be sent to:

Ken Demers
MS-44
United Technologies Research Center
East Hartford, Conn. 06108
(203) 727-7139 or 7240

Other communications can be sent to:

John T. Rasted JTR Associates 58 Rasted Lane Meriden, Conn. 06450 (203) 634-1632

or

RT-11 SIG C/O DECUS One Iron Way MRO2-1/C11 Marlboro, Mass. 01752 (617) 467-4141

TABLE	OF CONTENTS
FROM	THE EDITOR
	Subscription Service Comments 2
	Subscription Service Comments 2 Publications Subscription Service Form 3
USER	INPUT
	One User's View of RT-11 5 Statistical Analysis Program 7
	Statistical Analysis Program 7
TSX	
	TSX-Plus Real Time Support Facility 26
	LIBRARY
	New and Revised Library Submissions 35

Copyright © Digital Equipment Corporation 1983 All Rights Reserved

This is the next to last issue of the "Mini-Tasker" that you will receive for free. I have always felt that the "Mini-Tasker" is priceless due to the information it makes public that is not obtainable anywhere else in print. However, if you are wondering if a yearly subscription to the "Mini-Tasker" is really worth \$12 (\$8.33, \$7.50 etc.), the following is a list of the immediate improvements you will see in the newsletter.

1. There will be a published schedule of the dates you will receive your issues. The tentative 1983-84 schedule is September 1983, December 1983, March 1984, and June 1984. That is the minimum number of issues you will receive. It is more likely that six issues will be published (based on the current amount of material being received from RT-11 users). 2. The future newsletters will contain articles developed from notes written by the newly formed Symposia scribe service. This service will allow local journalism and computer science students from colleges near a Symposia, to attend Symposia sessions of interest to each SIG. These notes will be edited into articles and included into the "Mini-Tasker" as soon after a Symposia as possible. The sessions being covered at the St. Louis Symposia for RU-11 are:

- a. RT-11 Version 5 overview
- b. creation & handling of multi-volume directories
- c. MACDBG/RT-11 a user's critique
- d. RT-11 Link internals
- e. RTEM-11 the RT emulation
- f. RT-11 user application workshop
 g. FORTRAN IV/RT & its relation to FORTRAN standards
- h. FORTRAN/RT tutorial EIS, FIS, FPU
- i. RT-11 MACRO/FORTRAN interactions
- j. RT-11 XM gotchas and workarounds
- k. DRTS a multi-processor operating system
- 1. how to use logical disks with RT-11 Version 5
- m. RT-11 users speakout! (workshop)
- n. RT-11 feedback session

They should really generate many informative articles. 3. The "Mini-Tasker" will be getting more timely information

directly from the RT-11 development group at DEC.

I hope that the approximately 7,500 of you that currently receive the "Mini-Tasker" will continue to do so in the future.

Ken Demeis

PUBLICATIONS SUBSCRIPTION SERVICE

The past few years have brought an almost explosive growth in DIGITAL products and DECUS membership. Growing even faster is the information we need to exchange with each other. The DECUS mission is simple - to promote the exchange of information among users of Digital Equipment Corporation products and services.

The main means for exchanging this information are DECUS publications: newsletters, proceedings and catalogs. DECUS publications are the result of the efforts of many active volunteers. Too often, the newsletter editors and staffs have been limited by lack of resources such as equipment, travel and training. The publications service fee will help DECUS volunteers to publish regular, timely newsletters.

Each user service fee includes the latest DECUS Library catalog. The user may then choose from a list of 14 different newsletters and the DECUS Symposia Proceedings. Some of the Special Interest Group newsletters have been grouped to reduce your costs. Each group counts as one selection. If you choose, one or both of the Symposia Proceedings can be substituted for a newsletter(s). Please note that Symposium attendees receive a copy of the Proceedings as part of their registration and will not have to order one through subscription.

OFFERINGS

- MUMPS/Structured Languages Newsletter
- LABS/HMS/Site Management Newsletter
- Office Automation/DIBOL/COBOL/Graphics Newsletter (includes 12-Bit)
- VAX/VMS Newsletter (Pageswapper)
- RSX/IAS Newsletter (Multi-Tasker)
- RT-11 Newsletter (Mini-Tasker)
- RSTS Newsletter (Cache Buffer)

- Large Systems Newsletter (At-Large)
- **EDUSIG Newsletter (EDUSIG)**
- DATATRIEVE Newsletter (Wombat Examiner)
- **NETWORKS Newsletter (NETwords)**
- SS&OS Newsletter (Toolkit)
- **BASIC Newsletter**
- APL Newsletter (Special Character Set)
- Fall Proceedings
- Spring Proceedings

The Data Management SIG articles will be included in the appropriate operating system SIG publications rather than in a separate newsletter.

MEMBERS and DIGITAL Employees: When placing an order the following prices will apply:

One (1) publication

\$ 12.00/year

Up to six (6) publications

\$ 45.00/year

Up to three (3) publications

\$ 25.00/year

All publications

\$120.00/year

Employees of Digital Equipment Corporation who subscribe to this service are automatically members of DECUS, so should check the price box marked "Members" on the order form.

For DIGITAL Employees, we will be able to cross charge your cost center. Please be sure to include your BADGE NUMBER and COST CENTER on the order form where indicated. Direct payment will not be necessary.

NON MEMBERS: When placing an order the following prices will apply:

One (1) publication

\$ 24.00/year

Up to six (6) publications

\$ 90.00/year

Up to three (3) publications

\$ 50.00/year

All publications

\$240.00/year

Special Interest Groups can only publish material they receive from users. To insure continued publication of all newsletters, please contribute articles to those publications in which you are interested.

DISCLAIMER

Neither DECUS nor Digital Equipment Corporation is responsible for the material contained in a newsletter. Absolutely no refunds will be made for any reason. No changes are to be made to a subscription in mid-year. You may, however, place a new order at any time. The number of issues published by a Special Interest Group in a subscription year is the responsibility of the SIG and is not guaranteed by DECUS or DIGITAL.

DECUS SUBSCRIPTION SERVICE ORDER FORM

RETURN TO: Subscription Service

DECUS

One Iron Way, MRO2-1/C11 Marlboro, MA 01752

- All checks payable to DECUS
- All orders MUST be paid in full
- No refunds will be made
- Prices indicated are FY'84 prices

Name .	(First)	(Last)		.DECUS Membership No. —	
Compa	ny/Affiliation	,,			
-	Address			Mail Stop	
-	State/Country				
PUBL	ICATIONS SUBSCRIPTION SELECTION				
CODE	PUBLICATION	r	CODE	PUBLICATION	
MSL LHS OAD VAX RSX RT SPR FAL	MUMPS/STRUCTURED LANGUAGE LABS/HMS/SITE MGMT NEWSLET OA/DIBOL/COBOL/GRAPH NEWSL VAX/VMS NEWSLETTER RSX/IAS NEWSLETTER RT11 NEWSLETTER Spring Proceedings Fall Proceedings	TER	LGS LA EDU EC DTR DA NTW NE SOS SS BAS BA APL AF	TS NEWSLETTER ARGE SYSTEMS NEWSLET DUSIG NEWSLETTER ATATRIEVE NEWSLETTER TWORKS NEWSLETTER &OS NEWSLETTER ASIC NEWSLETTER PL NEWSLETTER LL PUBLICATIONS PRODU	3
	C PLAN: This plan allows you to e one (1) selection for one year	Insert Code From Above:		Member/DIGITAL Employee	\$ 12.00 \$ 24.00
	DARD PLAN: This plan allows you eive up to three (3) selections at one rice.			Member/DIGITAL Employee	\$ 25.00 \$ 50.00
	UXE PLAN: This plan allows you to e up to six (6) selections for one year.			Member/DIGITAL Employe	s 45.00 \$ 90.00
public	This will allow you to receive all sations listed above for one year ally one price.	ALL		Member/DIGITAL Employee	\$120.00 \$240.00
Specia	erstand that neither DECUS nor Digital al Interest Group or the contents of any e no refunds even if I decide to cancel r	publication publis	ation is respo	L AMOUNT OF ORDER \$_ onsible for any publication no cial Interest Group. I also un	ot published by a
	ture	•	· · · · · · · · · · · · · · · · · · ·	Date	
DIGIT	TAL Employees Only: Badge No	·	* ************************************	C.C	
Cost (Center Manager's Signature			C.C.	

From: Tim Parker

Brisham & Women's Hospital Neurophysiology Dept. 75 Francis St. EEG +2

/D Francis St. EEU T

Boston, MA 02115

RE: Wish lists, etc.

After reading the wish lists in the March issue of the Mini-Tasker, I am finally moved to write regarding my view of RT11's shortcomings. Hence a list of random notes..

- 1) Why is no one talking of UNIX-like characteristics for RT?? I am currently considering writing a SH handler and SHELL to emulate UNIX command interpretation (Ideas?? Suggestions??). Notes on the subtleties of BATCH internals would be very useful. This would get around the problem of command passing, command names, and other such things.. The current set of monitor commands is very useful, but the present implementation allows no flexibility. MUNG and MAKE possibly should not be standard SJ features, but the user should have the option to add them without extreme difficulty. Would it be unreasonable to ditch R/RUN F/Srun alltogether and interpret the first word in a command line as a program to run? Is this too revolutionary??
- 2) RE: Upper/Lower case conversion... Dive into RMON and move the case conversion code from interupt time to .TTYIN/.TTINR time. This has the added benefit of allowing lower case command files. (BEWARE.. CSI is not happy about lower-case switches in some places.. Best to keep your switches upper case).. This allows the terminal to echo whatever is typed at the keyboard and still provides the case conversion for situations where it is needed. Also the problem of editor special mode is gotten around. (How many times have you typed ahead after issuing the exit command to your editor and had KMON reply with illegal command messages?. I consider this a bug, and am anxious to see a patch of this sort in the RT11 product..)...
- 3) DECUS 'C' Wonderful. This is the prime motivation for #1 (above), as this style of user interface seems the most sensible. Now all we need is to pass the command line onward so we can ditch the Arsv:

request at run-time. Doesn't

.fix mufile.txt

make more sense than

.RUN FIX Army: MYFILE.TXT

77

- 4) The command file interpreter should be smarter. Wouldn't it be nice to be able to squeeze the device on which your command file resides without risk to life and limb? O.K... I admit this can be avoided by where the command file is placed on the disk, but isn't this alittle crazy? I suggest either .LOOKUP at each call to the command file (Insane for floppy users!!) or an internal flag set by SQUEEZE to force command files to be .LOOKUP'd afterward to insure no oddities. .SAV files generally contain lousy command
- 5) There should be a terminal pass-all mode. I have recently patched my monitor to do this, checking bit 0 of the JSW. This, coupled with editor special mode, allow me to talk directly to the terminal without having to worry about ^C/^S/^Q/^O etc. Make for easier EMACS implementations. XON/XOFF is nice, but the monitor should provide the rope with which to hang yourself if you don't want it.
- 6) "T as on TOPS-10/20 would be nice something that would spit out such goodies as PC/PS, Program running (for command files with TT: QUIET set..), High memory limit (?), Overlay status (?), I/O status, etc.. This function, as on TOPS-10/20 should be optional (I.E. the user should be able to disable it) to keep from blowing real-time processes away..
- 7) There should be a system EMT to disable (all) tty input. The familiar code:

ttint: rti

ttset: mov @#tt.int,ttssv
mov #ttint,@#tt.int

return

syntax!!

ttrst: mov ttsav:@#tt.int return

should look familiar to anyone who has some all out for data-collection performance... but what happens if you forset the call to ttrst?? What happens on a KMON/RMON failure or trap to 4/10?? REBOOT TIME!! TT: disable should be reset by the monitor at exit time, resardless of the cause of exit.

- 8) CLRBFI should be a standard RT system call. For those of you unfamiliar with TOPS-10/20, this call clears the (tt:) input buffer. Useful for error handling and elimination of unwanted type-ahead (How many times have you stuttered on the return and over-run an important PAUSE??? Very frustrating....
- 9) I want WALLPAPER. (From VMS) Very nice for debussing, correspondence re: system buss, command file building, SYSGEN, and so on.. Am I dreaming too much? BATCH has it, why can't us interactive slobs have it too?
- 10) There should be an option to extend file names beyond 6 characters. Is 9 characters unreasonable?? Also, is it so unreasonable to have extension-less file names that typing

.TYPE MYFILE

comes back with not found messages for MYFILE.LST?? What earthly reason for .LST over any other logical choice (nothing at all, .TXT, .MAP, .RNO, .POD <CMU - "Prince Of Darkness" - SCRIBE output file for DIABLO>, .MAC, .FOR, .PAS, .C ... I could go on for hours..).. I know it's big-system-ish, but why not have it look for MYFILE.* and report ambiguity if it finds more than one? I.E. if I have MYFILE.HLP and MYFILE.TXT, should it complain about no matching file or should it type them both or should it complain that MYFILE is not a unique file spec? Has this even been considered??

11) Editors. Has anyone out there got a good display editor? TECO is great, and the Screen versions kicking around are hard to beat, but there are several limitations I find horrible. I.E. the paging scheme. I want to be able to back up without limitations. Also, the long startup time of most screen versions is akin to watching paint dry. If no one out there has one, I would be very interested in hints/suggestions/help re: implementing one using the DECUS C. <Why C?? I have no use for FORTRAN as a reasonable programming language Eyes - I am one of those structured programming bigots], and I don't have the time or the energy to do it all in MACRO.> I am especially interested in other peoples ideas regarding internal swapping algorithms and command sets/structures...

There you have it. My Want/Gripe/Grump/So-Fix-It-Yourself list...

P.S. How many people are running DECUS C under RT?? From the release it seems that most are running under RSTS/RT.. I have several patches for FWILD/FNEXT and am working on DTOA, FSCANF, and ATOF with a mind to killing off the last few RT native buss..

Sincerely Tim Parker

APPLICATION NOTE: RT 11 (FORTRAN IV SOURCES.)

DOST1: A READY-TO-USE PROGRAM FOR STATISTICAL ANALYSIS OF THE CONTENTS AND THE STRUCTURE OF EXITING BIBLIOGRAPHIC FILES.

BY DANIEL GUINIER

LABORATOIRE DE PHYSIOLOGIE COMPAREE DES REGULATIONS GROUPE DE LABORATOIRES DU CNRS DE STRASBOURG-CRONENBOURG 23 RUE DU LOESS B. P. 20 CR 67037 STRASBOURG CEDEX FRANCE *****************

INTRODUCTION : *******

BEFORE HANDLING EFFICIENTLY BIBLIOGRAPHIC RECORDS, IT IS NECESSARY TO DETERMINE THE QUANTITIES AND THE STRUCTURES OF THE INFORMATION WHICH CONSTITUTE THEM.

THE REALISED PROGRAM "DOST1" FURNISHES STATISTICS ON THE NUMBERS OF CHARACTERS FOR EACH DOCUMENTATION FIELD (AUTHORS, TITLES, PUBLICATIONS, KEY-WORDS,...) AND SUB-FIELD ON THE NUMBERS OF AUTHORS AND KEY-WORDS PER ITEM AND ON THE FREQUENCY DISTRIBUTIONS OF THE AUTHOR NAMES, THE PUBLICATION NAMES, THE KEY-WORDS AND YEARS OF PUBLICATION. IT IS ALSO INTERESTING TO BE ABLE TO ELIMINATE KEY-WORDS OF LOW FREQUENCY WHICH DO NOT REPRESENT A REAL INTEREST IN A SINGLE SCANNING WITH AN APPROPRIATE SECONDARY PROGRAM EASIELY REALISABLE BY THE USER.

OUR PURPOSE IS TO APPLY THE PROGRAM "DOST1" TO THE ANALYSIS OF A DOCUMENTATION FILE HOLDING ABOUT 10000 ITEMS WITH SOME 6000 KEY-WORDS, AND TO REALISE A NEW PROGRAM THAT PERMITS OPTIMISED CONVERSATIONAL AND INTERACTIVE MANAGEMENT OF SCIENTIFIC DOCUMENTATION WITH MAXIMUM GUARANTEE AND IN DIRECT ACCESSIBLE ORGANIZED. AT PRESENT, THE STUDIED FILE IS MANAGED BY THE PROGRAM "SABIR" AT THE "CENTRE DE CALCUL DU C.N.R.S. DE STRASBOURG-CRONENBOURG" ON UNIVAC 1110. THIS WAS THE UNDERTAKING OF THE DOCUMENTATION PERSONAL OF OUR LABORATORY (G.BIELLMANN, M.-A.NEISS AND M.-J.SCHWOERER) IN COLLABORATION WITH DIFFERENT RESEARCHERS.

BIBLIOGRAPHY : ********

D. GUINIER, R. KIRSCH (1977): COMPLETE MANAGEMENT OF BIBLIOGRAPHIC FILES. (DECUS MINI-TASKER, VOL. 3, NO. 3, SEPTEMBER RT11 SIG).

Fig. AYRES, E. J. YANNAKOUDAKIS (1979) : THE BIBLIOGRAPHIC RECORD : AN ANALYSIS OF THE SIZE OF ITS CONSTITUENT PARTS. (PROGRAM, JULY, VOL. 13, NO. 3) PP. 127-142).

W.WILDGRUBE (1979): A FORTRAN IV PROGRAM FOR QUANTITATIVE CONTENT ANALYSIS. (EDUC.AND PSYCHOL MEASUREMENT, 39, PP. 695-696):

STRUCTURE OF THE PROGRAM : *****************

THE OVERLAY STRUCTURE OF THE PROGRAM IS :

		to uto uto	***	****	g Un uko	I 	D05T1	I I (I	RESIDE	NT PA	RT)
	*		***	* *	ጥጥጥጥ	T T T	*	* * * * *	*		*
I I I	DEVLEC	I I I	I I I	FIL	I I I	I I I	CUTART	I I I I I I	RTYPE	I I I	I I I I I I I I I I I I I I I I I I I
						I I I	CUTBUF	I I I			I I>FILE FOR STATISTICS
	* ********** *										FILES :
				I I I	* 10 dh 		I I I I I I I I I I I I I I I I I I I	 DFMDA	I IN I		DATA FILE (A() AND OCC) ADDRESS TABLE FILE COLLISIONS TABLE FILE

DESCRIPTION OF THE MODULES :

DOST1 : MAIN RESIDENT CALLING MODULE.

DEVLEC : READ THE ITEMS FROM ANY DEVICE OR FILE, FORMATTED OR NOT,

WITH DIRECT-ACCESS OR SEQUENTIAL ORGANIZATION.

FIL : CREATES A FORTRAN LOGICAL UNIT FROM ANY DEVICE?

OR / AND FILE WITH DIRECT-ACCESS OR SEQUENTIAL ORGANIZATION

CUTART - RETRIEVES THE DIFFERENT FIELDS IN ANY ITEM.

CUTBUF : SUBDIVIDES THE FIELDS : AUTHOR NAMES, EDITION AND

KEY-WORDS INTO SUBFIELDS.

HDAN : CALCULATES AN ADDRESS FROM CHARACTER INFORMATION

BY A "HASH-CODING" TECHNIQUE.

DEMDAN : DATA MANAGEMENT SUBROUTINE USING THREE FILES IN THIS CASE

AND THE RESULT OF THE PREVIOUS FUNCTION "HDAN".

"DFMDAN" BEGINS REALLY A DATA FILE MANAGEMENT SYSTEM WHEN ASSOCIATED TO A "HASH-CODING" FUNCTION WITH THE 3TH., 4TH. AND 5TH. FUNCTIONS COMPLETED BY THE USER (SEE END OF THE LISTING OF "DFMDAN", IN THIS CASE THE SUBROUTINE USES FOUR FILES).

RTYPE : COMPUTES STATISTICS (MERN, STANDARD-ERROR, ...)

OUTFIL: STORES STATISTICS IN THE CORRECT FILE, OUTPUTS THE RESULTS

ON THE CONTROL TERMINAL.

DESCRIPTION OF THE FORTRAN UNITS : (DEVICES OR/AND FILES)

A) INPUT OF THE BIBLIOGRAPHIC FILE (IN DEVLEC): ANY FILE, DISK, MAGTAPE (MT:). IN THE PRESENT CASE, THE RECORDS ARE UNFORMATTED WITH A LENGTH OF 512 CHARACTERS. THE EXACT STRUCTURE OF EACH RECORD IS DESCRIBED IN THE COMMENTS AT THE BEGINNING OF THE MAIN PROGRAM "DOST1".

B) MANAGEMENT OF THE DATA (IN DEMDAN): (THE THREE FOLLOWING FILES REPRESENTED BY THE 1E., 2E. AND 3E. FORTRAN UNITS NAME MUST BE DIRECTLY ACCESSIBLE FILES).

1E.FILE ("DATA FILE"): MAXIMUM LENGTH: NENR(1), 18 EQUIVALENT WORDS PER RECORD REPRESENTED BY: 4 REAL*8 (A(1), A(2), A(3), A(4)) + THE REAL NUMBER OF OCCURRENCES: OCC, (OCC=NOCC+I(1)/100 000). I(1) IS THE LOADING INDEX OF THE FILE 1 AND NOCC IS THE NUMBER OF OCCURRENCES OF AN ELEMENT FOR A GIVEN DICTIONARY (AUTHORS OR/AND PUBLICATIONS OR/AND KEY-NORDS). OCC PERMITS TO SORT NOCC IN DECREASING ORDER WITH THE POSSIBILITY OF RESTITUTION OF THE CORRESPONDING I1 BY THE SINGLE FORMULA: I1=(OCC-INT(OCC))*100000. I1 BECOMES THE POINTER OF THE CORRECT A()'S WHICH THEMSELVES CAN BE TRANSFORMED INTO CHARACTERS STRING BY THE "R50ASC()" FUNCTION OF "SYSLIB" FOR A FUTURE EDITION.

2E.FILE ("ADDRESS TABLE FILE"): MAXIMUM LENGTH: NENR(2), 2 EQUIVALENT WORDS REPRESENTED BY TWO INTEGERS: I1 AND I3 (I1 IS THE DATA POINTER AND I3 IS THE COLLISION POINTER). I(2) IS THE LOADING POINTER OF THE FILE 2. THE NUMBER OF POSSIBLE ADDRESSES IS NADR=NLOG()=NENR(2)-102, BECAUSE THE NADR+1 E. RECORD IS ASSIGNED TO THE LOADING POINTERS I(1) AND I(2), THE NADR+2 E. RECORD IS ASSIGNED TO THE LOADING POINTERS I(3) AND I(4) AND THE 100 LAST ADDRESSES (FROM NADR+3 TO NADR+102=NENR(2)) ARE RESERVED FOR THE REAL NUMBER OF OCCURRENCES FOR THE PUBLICATIONS YEARS (DATES) FROM <=1901 TO 2000.

3E.FILE ("COLLISIONS TABLE FILE"): MAXIMUM LENGTH: NENR(3), 3 EQUIVALENT WORDS PER RECORD REPRESENTED BY: I1, THE DATA POINTER, NF, THE NEXT I3 ("SON") AND NP, THE PRECEDENT I3 ("FATHER"). I(3) IS THE LOADING POINTER OF THE FILE 3.

FILE 1 :

I I I I I I I I I I I I I I I I I I I	A(1)	 I I I	A(2)	IIII	A(3)	I I I I I I I I I I I I I I I I I I I	A(4)	I (I I I I I I I I I I I I I I I I I I		I(1)=1
				FI	LE 2 :					I(1)=NENR(1)
									÷	
		I I I	I1 I I I			2)=	1			
		I I	I I I		I I I I (2)=	NADR=N	ENR(2)-10	12
		I	1(1)11	(2)	- I I (2)=	NADR+1			
		I	1(3)11	(4)	- I I (2)=	NADR+2			
		I I I	OCC D		I I C I I I	2)=	NADR+3			
		I I I			I I I I (2)=	NENR(2	•		

FILE 3 :

I I I	I1	I I I	NF	I I I	NP	I I I	I(3)=1
I I I		I I I		I I I		I I I	I(3)≠NENR(3)

C) OUTPUT (IN OUTFIL) :

-CONTROL TERMINAL FOR STATISTICS: STATISTICS ARE LISTED FOR ALL COMPLETE SERIES OF M ITEMS FROM 1 TO THE LAST ITEM REALLY ENCOUNTERED COR = TO MAXB. THE LISTING IS GENERALLY OUPUTTED ON LP: OR TT: AND REPRESENTS THE MEANS OF X(1) TO X(16) AND THE STANDARD-ERROR OF THE MEANS FOR X(1) TO X(13). FOR THE MEANING OF THE X()/S, SEE THE END OF THE LISTING OF THE SUBROUTINE "CUTART".

-FILE FOR STATISTICS: THE FILE 4 STORES THE RESULTS OF THE PRECEDING STATISTICS FOR X(1) TO X(17).

REMARKS :

THE COMPILATION OPTION /N:7 MUST BE USED WITH RT11 FORTRAN.

THE MODULARITY OF THE PROGRAM "DOST1" PERMITS THE USE OF THE LINK OPTION /O (OVERLAY): ON TWO DIFFERENT LEVELS (/O:1 AND /O:2) TO RUN THE PROGRAM WITH 16 KNORDS OF MEMORY. WITHOUT THIS OPTION, THE PROGRAM RUNS CORRECTLY WITH OUR CONFIGURATION (24 KNORDS).

SET USR NO SWAP BEFORE RUNNING THE PROGRAM.

INSTRUCTIONS TO USE :

AFTER SETTING USER SERVICE ROUTINES NO SWAP, RUN DOST1 AND ANSWER THE QUESTIONS:

```
MAX. NBR. OF ITEMS :
                                                           MAXB
STATISTICS ALL THE M ITEMS; M=
 1E. FORTRAN UNIT NAME (DEVICE AND/OR FILE) :
                                                          NAME OF FILE 1
MAX. RECORDS NUMBER :
                                                          NENR(1)
EQUIVALENT WORDS NUMBER PER RECORD :
                                                          18
 2E FORTRAN UNIT NAME (DEVICE AND/OR FILE) :
                                                          NAME OF FILE 2
-MAX. RECORDS NUMBER :
                                                           NENR(2)
EQUIVALENT WORDS NUMBER PER RECORD :
 3E. FORTRAN UNIT NAME (DEVICE AND/OR FILE) :
                                                          NAME OF FILE 3
MAX. RECORDS NUMBER :
                                                          NENR(3)
EQUIVALENT WORDS NUMBER PER RECORD ::
FILE 1 WITH AUTHORS NAMES (1) OR NOT (0) :
                                                          0 (OR 1)
FILE 1 WITH PUBLICATIONS NAME (1) OR NOT (0) :
                                                          0 (OR 1)
FILE 1 WITH KEY-WORDS (1) OR NOT (0) :
                                                          0 (OR 1)
THESE FILES ARE EXISTING AT TIME (1) OR NOT (2) :
                                                          2 (OR 1)
NAME OF THE RANDOM-ACCESS FILE FOR STAT. :
                                                          NAME OF FILE 4
FILE NAME OR / AND DEVICE NAME :
                                                           MT: (OR FILE NAME)
CONTROL TERMINAL FOR STATISTICS (LP:, TT:, FILE) : ...
                                                          LP:
```

MAXB, M, NENR(1), NENR(2) AND NENR(3) MUST BE SELECTED AS A FUNCTION OF THE EXPECTED MAXIMA.

LISTING OF THE DIFFERENT MODULES : (MAIN, SUBROUTINES AND FUNCTION)

```
С
C
   ***********************
C
С
   DOST1 : AUTHOR : DANIEL GUINIER
C
С
   DOST1 : PROGRAM FOR CONTAIN STATISTICAL ANALYSIS OF THE BASIS
C
           BIBLIOGRAPHIC ASCII FILE WHICH STRUCTURE IS :
C
C
   EXAMPLE :
C
С
C
   $1$000019$2$01/3/1/76$3$MUNSHI J.S.D., DUBE S.C. $4$***$5$0XYGEN U
C
   PTAKE CAPACITY OF GILLS IN RELATION TO BODY SIZE OF THE AIR-BREA
C
   THING FISH, ANABAS TESTUDINEUS (BLOCH), $6$***$7$ACTA PHYSIOL.ACA
C
   D. SCI. HUNG. , 1973, 44, 113-123$8$0, MO2, GILL, AIR, AIR-BREATHING, BODY
C
   WEIGHT, SURFACE GILL, TELEOSTEI, ANABAS TESTUDINEUS, $9$***&
C
C
C
0
  FOR AN ITEM CORRESPONDING TO A 256 WORDS BLOCK (512 CHARACTERS).
C
C
   DESCRIPTION OF THE DIFFERENT FIELDS (WITH '$N$' SEPARATORS) 1:
C
C
   $1$ : INTERNAL RESERVATION.
   #2# : DATE (DAY, MONTH, YEAR).
   $3$ : AUTHORS NAME AND BIRTHNAMES.
C
\bigcirc
  *4* : ----FREE----
C
  #5# : TITLE.
  #6# : ----FREE----
C
C
   $7$ : NAME OF THE REVIEW, PUBLICATION YEAR, VOL. OR NBR., PAGES.
Ē,
   $8$ : KEYWORDS (WITH SEPARATORS (1,1)).
   $9$ : ----FREE----
C
C
  8 : FOR END OF ITEM.
C
Ü
   DOST1 MUST BE COMPILED WITH THE /N!7 OPTION TO RUN.
C
C
   DOST1 MUST BE USED WITH THE "SET USR NO SWAP" SPECIFICATION.
C
C
C
  DOST1 USES 5 FILES :
C
   1 : N1 RECORDS OF 18 WORDS EQUIVALENT (4*REAL*4 RAD50 TRANS. +1 REAL*4)
C
   2 : N2=N2+2+100 RECORDS OF 2 WORDS :
       N2 : NBR. OF POSSIBLE ADDRESSES FOR THE "HASH-CODING" FUNCTION.
C
C
              (2 INTEGER*2)
C
          2 : 2 ADDRESSES FOR THE I() (2*2 INTEGER*2 ).
C
        100 : RECORD-FIELD OF THE OCCURENCES OF YEARS (1 REAL*4).
C
   3 : N3 RECORDS OF 3 WORDS FOR TREATMENTS OF COLLISIONS.
C
  4 : M RECORDS OF 17 REAL*4 FOR STATISTICS.
C
       M1 FOR THE X()
C
       M2 FOR THE MEANS OF THE X() EACH M ITEMS.
\mathbf{C}
   5 : THE ASCII FILE USE BY DEVLEC(...) FOR EACH ITEM CONTAIN (256 NORDS
```

```
FOR THE FILES DECLARATION : N2 + N3 > N1
      C
          IF N1 IS THE MAX. VALUE OF THE DICTIONARY WANTED (AUTHORS NAME,
      C
      C
          REVIEWS NAME, KEYWORDS).
      C
      C
      C
      C
      C
      C
             BYTE ART(512)
0001
0002
             INTEGER*2 NLOG(9), INDX(3), NENR(3)
0003
             REBL#4 X(17)
      C
0004
             DATA LEG, IMP/5, 7/NENR/3*0/NLOG/9*0/J2/0/0CC/0./
      \mathbb{C}
0005
             WRITE(IMP, 100)
0006
      100
             FORMAT(/#MAX.NBR.OF ITEMS : /)
0007
             READ(LEC, 200) MAXB
0008
      200
             FORMAT(I5)
0009
             WRITE(IMP,300)
0010
      300
             FORMAT( * $STATISTICS ALL THE M ITEMS;
0011
             READ(LEC,200)M1
0012
             M2=MAXBZM1
0013
             M = M1 + M2
      \mathbb{C}
      C
          FILES DECLARATION (FILES : 1 TO 3).
0014
             DO 1 I=1 3
0915
             CALL FIL(LEC, IMP, I, 1, NENR(I), NBRMOT, U, INDX(I))
0016
             WRITE(IMP,400)
0017
      400
             FORMAT('$FILE 1 WITH AUTHORS NAME (1) OR NOT (0) : ')
0018
             READ(LEC, 200)J
0019
             IF(J, NE, 0)NLOG(3) = NENR(2) + 102
0021
             WRITE(IMP,500)
0022
             FORMAT(1#FILE 1 WITH PUBLICATIONS NAME (1) OR NOT (0) . 1)
      500
0023
             READ(LEC, 200)J
0024
             IF(J, NE, \theta)NLOG(7) = NENR(2) - 102
9926
             WRITE(IMP, 600)
0027
      600
             FORMAT('#FILE 1 WITH KEY-WORDS (1) OR NOT (0) : ()
0028
             READ(LEC, 200)J
0029
             IF(J, NE, 0)NLOG(8) = NENR(2) - 102
          IND1=1 : "LOOKUP" ; IND1=2 : "ENTER".
0031
             WRITE(IMP, 700)
0032
       700
             FORMAT('*THESE FILES ARE EXISTING AT TIME (1) OR NOT.(2) : ()
             READ(LEC, 200) IND1
0033
      C.
          FILE FOR STATISTICS ON X() : (FILE : 4).
9934
             WRITE(IMP, 800)
0035
             FORMAT(1#NAME OF THE RANDOM-ACCESS FILE FOR STAT. : 1)
0036
             CALL ASSIGN(4, 1TT: 1, -1)
9037
             DEFINE FILE 4(M, 34, U, INDX4)
      \mathbb{C}
       C
          FILE 2 IS USED FOR NBR. OF OCCURENCES FOR A YEAR FROM <1900 TO 2000
```

FROM THE ADDRESS NENR(2)-99 TO NENR(2).

```
MON 20-DEC-82 10:40:38
FORTRAN IV
                 V010-03A
          ZERO THIS PART OF THE FILE 2 WHEN NECESSARY.
             IF (IND1, EQ. 1) GO TO 3
0038
0040
             I1=NENR(2)-99
0041
             I3=NENR(2)
0042
             DO 2 IND=11, 13
             WRITE(21IND)000
0043
      2
      C
          WHEN DEVLEC IS USED DON'T FORGET TO "SET USR NO SWAP"
      C
          BEFORE RUNNING THE MAIN PROGRAM.
      \mathbf{C}
      \mathbf{C}
          CALL DEVLEC(...) CAN BE CHANGE BY CALL ASSIGN(...)
      C
          AND DEFINE FILE X(...)
          IF NO SEQUENTIAL UNFORMATED DEVICE IS USED.
      С
0044
      3
             L00K=0
0045
             I = 0
             DO 4 IN=1, MAXB
0046
0047
             I = I + 1
0048
             CALL DEVLEC(LEC, IMP, ART, IN, IN, LOOK, NOCAN, IERR)
             IF (IERR, EQ. -1)STOP 'END OF FILE AND OPERATIONS !'
0049
0051
             CALL CUTART(ART, NLOG, X, IND1, IERR)
      10
0052
             IF(IERR. EQ. 0)G0 TO 5
             WRITE(IMP,888)IN, ART
9954
0055
             FORMAT(21 ERROR IN ITEM NBR. 1, 15/28(4X, 64A1/))
      888
0056
             I = I - 1
0057
             GC TO 4
      \mathbb{C}
0058
      5
             IND=X(9)-1900
0059
             IF (IND. LE.
                          0)IND=1
             IF (IND. GT. 100) IND=100
0061
0063
             IND=IND+NENR(2)-100
0064
             READ(21IND)000
0065
             000=000+1
             WRITE(21IND)000
8866
0067
             IND=MOD(I, M1)
             READ(2'NENR(2)-101)I1,K
9968
0069
             READ(21NENR(2)-100)13,K
0070
            eX(15) = I1
0071
             X(16) = I3
0072
             X(17) = I
             CALL OUTFIL(IMP, 4, M1, J2, X, IND)
0073
0074
             CONTINUE
0075
             IN=IN-1
0076
             WRITE(IMP, 900)I, IN
0077
             FORMATKIS, CORRECT ITEMS ON (, 157)
      900
0078
             STOP
0079
             END
```

```
C
      C
         ************
      C
0001
            SUBROUTINE DEVLEC(LEC, IMP, ART, MAXB, NB1, IND, NOCAN, IERR)
      C
      С
         LEC : LOGICAL FORTRAN UNIT FOR INPUT (TT:)
      C
         IMP : LOGICAL FORTRAN UNIT FOR OUTPUT (TT:)
      C
         ART : READ BUFFER (512 CAR.).
         MAXB: MAXIMUM BLOCK NUMBER.
      C
         NB1 : FIRST BLOCK NUMBER.
         IND : INDEX FOR LOOKUP IF IND=0; IN THIS CASE, DO :
      C
               "SET USR NO SWAP" BEFORE RUNNING THE CALLING PROGRAM.
      C
      C NOCAN: SYSTEM CHANNEL NUMBER.
      C
         IERR: IERR<0 IF END-OF-FILE OR ERROR IN READ OPERATION.
      C
      C
      C
         READ ANY FILE ON ANY DEVICE, FORMATED OR NOT PER BLOCK
      C
         OF 256 16 BITS WORDS FROM THE NB1 TH. TO THE MAXB TH. BLOCK.
         IF DIRECT ACCESS MEDIA : NB1 MAY BE > 1 AND
      C
         NB1 MAY BE EQUAL TO MAXB TO READ THE NB1TH. BLOCK.
0002
            BYTE ART(512)
            INTEGER*2 SPECIF(39)
0003
0004
            REAL*4 EXT(2)
      C
            DATA EXT/2*6RDATDAT/
B005
      C
      C
         LOOKUP : FILE OR / AND INPUT DEVICE
      C
         CONTAINING THE ITEMS.
            IF (IND. NE. 0) GO TO 2
0006
         TO READ ITEMS
8000
            WRITE(IMP, 100)
0009
      100
            FORMAT(/#FILE NAME OR / AND DEVICE NAME : /)
      C
      C
         STRING WITHOUT ANY SWITCHES.
0010
      1
            IF(ICSI(SPECIF, EXT, , , 0), NE. 0)GO TO 1
      C
         ASSIGN FORTRAN LOGICAL NUMBER 1 FOR THE INPUT READ-ONLY FILE.
      \mathbf{C}
         32: READ-ONLY FILE.
          4: THE FIRST I/O OPERATION DETERMINES THE NATURE OF THE FILE.
      C
         THE DEFAULT EXTENSION IS "DAT".
      C
            NOCAN=IGETO()
0012
            IF(NOCAN, LT. 0) STOP / NO CHANNEL !/
0013
            IF(IFETCH(SPECIF(16)), LT. 0)STOP / BAD FETCH !/
0015
            IF(LOOKUP(NOCAN, SPECIF(16)), LT. 0)STOP / BAD LOOKUP !/
0017
         FREE THE USR.
            CALL UNLOCK
0019
0020
            IND=1
         CONTROL DEVICE FOR STATISTICS
      r:
      \mathbb{C}
0021
            WRITE(IMP, 110)
```

```
C
          ******************
       C
 0001
             SUBROUTINE FIL(LEC, IMP, NLOGIC, IACCES, NENR, NBRMOT, U, INDX)
       C
       C
          CREATE A FILE WHICH NAME AND / OR DEVICES
          CORRESPONDING TO THE M LOGICAL FORTRAN UNIT NLOGIC.
          IACCES = 0 : SEQUENTIAL ACCES ; IACCES = 1 : RANDOM ACCES.
 0002
             WRITE(IMP, 100) NLOGIC
 0003
             FORMAT('$', I2, 'E. FORTRAN UNIT NAME (DEVICE AND/OR FILE) : ')
 0004
             CALL ASSIGN(NLOGIC, TT: (, -1)
 0005
             IF (IACCES, EQ. 0) RETURN
       C
       C
          FOR RANDOM-ACCES.
       C
 0007
             IF (NENR, GT, 0) 60 TO 1
 0009
             WRITE(IMP, 200)
 0010
       200
             FORMAT(1$MAX, RECORDS NUMBER : 1)
 0011
             READ(LEC, 300)NENR
 0012
       300
            FORMAT(15)
 0013
             WRITE(IMP, 400)
       400
 0014
            FORMAT(/$EQUIVALENT WORDS NUMBER PER RECORD : /)
 0015
            READ(LEC, 300)NBRMOT
 0016
            DEFINE FILE NLOGIC (NENR, NBRMOT, U, INDX)
       1
 0017
            RETURN
0018
            END
      C
        *************************
      C
0001
           SUBROUTINE CUTART(ART, NLOG, X, IND1, IERR)
     €
      С
         EXAMINES THE DIFFERENTS FIELDS BETWEEN '$N$' SEPARATORS
         IN THE BASIS BIBLIOGRAPHIC ASCII FILE.
      £
      C
         ************************
      C
      C
        $1$ : INTERNAL RESERVATION.
      C
        $2$ : DATE (DAY, MONTH, YEAR).
         $3$ : AUTHORS NAME AND BIRTHNAMES.
     C
     C
         $4$ : ----FREE----
         $5$ : TITLE.
     C
     \mathbf{C}
         $6$ : ----FREE----
     \Gamma
         ≉7≉ : NAME OF THE REVIEW, PUBLICATION YEAR, VOL. OR NBR., PAGES.
      C
         $8$ : KEYWORDS (WITH SEPARATORS (',')).
      \mathbf{C}
         $9$ : ----FREE----
     C
      C
        & : FOR END OF ITEM.
      C
      C
         DECIMAL VALUE OF SUB-SEPARATORS : '$'=36; '&'=38; '. (=44
      C
                                           1-1=45; 1.1=46; 121=47
      C
                                           404 TO 494=48 TO 57
      C
      C
         NLOG(): IS THE MAX.NBR.OF POSSIBLE ADDRESSES FOR FILE 1.
     C
         IF NLOG(J)>0 : VALUES OF THE JTH SUB-FIELD MOVED IN FILES 1 TO 3.
0002
           BYTE ART(512), BUF(512), CAR(128), CARN
0003
           INTEGER*2 NLOG(9)
0004
           REAL*4 X(17)
```

```
С
             I1=0
0005
             IERR=0
9996
             X(-9) = 0.
0007
             X(10) = 0.
0008
       C
         THE N FROM '$N$' MAY BE IN ANY RANK.
       C
       101
             I1 = I1 + 3
 0009
             DO 102 M=1,512
 0010
             BUF(M)=ART(I1+M)
 0011
             IF(BUF(M), EQ. 36, OR, BUF(M), EQ. 38) GO TO 103
 0012
       102
       C M CHARAGTERS FOR THIS FIELD.
       103
             M=M-1
 0014
             CARN=ART(I1-1)
 0015
             I1=I1+M
 0016
             DECODE(1,1000,CARN,ERR=999)J
 0017
       1000 FORMAT(I1)
 0018
       С
             TF(BUF(M+1), EQ. 38)G0 TO 10
 0019
0021
            GO TO (1,2,3,4,5,6,7,8,9),J
      C
      C
         ************
0022
            GO TO 101
      1
         ***************
      0
         THIS FIELD MAY BE : XX/X/X/XX OR XXXXXX/XX OR XXXXXXXXXXX
      C
0023
            CAR(1)=BUF(M-1)
0024
          CAR(2)=BUF(M)
0025
             DO 21 J=2,4
0026
      21
            CAR(J*2-1)=48
             DO 22 J=2,4
0027
0028
             JJ=2*J
0029
             MM=M-2*J
0030
             IF(BUF(MM), NE, 47)CAR(JJ-1)=BUF(MM)
0032
             CAR(JJ) = BUF(MM+1)
0033
             DECODE(M, 2000, CAR) X(2)
0034
      2000
            FORMAT(F8.6)
0035
             X(2) = X(2) + 1900
0036
             GO TO 101
         **************
      C
0037
             CALL CUTBUF(BUF, CAR, M, ICAR, NBR, 100, NLOG(3), IND1)
      3
0038
            X(3) = NBR
0039
            X(4) = ICAR
9949
            X(5)=X(4)/NBR
0041
             X(4) = M
0042
             GO TO 101
          ***********
      4
             GO TO 101
9943
      C
         ***********
       5
0044
            X(6)=M
0045
             GO TO 101
         **********666666666
      C
0046
      6
             GO TO 101
      C
         **************
0047
            CALL CUTBUF(BUF, CAR, M, ICAR, NBR,
                                             1.
                                                      0, IND1)
      C:
          IF NO LAST SUB-FIELD (X(9) TO X(10) EXCLUDED)
.0048
            X(7) = M
9949
            X(8)≃M
0050
             IF(M.EQ.ICAR)GO TO 101
```

```
CAR() CONTAINS THE LAST SUB-FIELD (YEAR OR EDITOR CONTINUATION).
       С
           TREATMENT FOR EVENTUAL EDITOR NAME CONTINUATION.
       С
 0052
              DO 71 J=2,5
       71
              IF(BUF(J+ICAR), LT. 48, OR. BUF(J+ICAR), GT. 57)GO TO 72
 0053
           NO CONTINUATION.
 0055
              CALL CUTBUF(BUF, CAR, M, ICAR, NBR,
                                                 1, NLOG(7), IND1)
 0056
              X(7) = ICAR
              DECODE(4,7000,BUF(ICAR+2))X(9)
 0057
              FORMAT(F4.0)
 0058
       7000
              GO TO 73
 0059
       C
           CONTINUATION.
 0060
              BUF(ICAR+1)=32
              GO TO 7
 0061
       73
              CALL CUTBUF(BUF, CAR, M, ICAR, NBR, 100,
 0062
                                                            0, IND1)
0063
          TREATMENT OF THE LAST SUB-FIELD (PAGES : XX-YY OR XXA-YYB).
0064
             DO 74 J=1,10
0065
      74
             CAR(J) = 32
0066
             JJ=10
0067
             DO 77 ICAR=1,2
             DO 75 J=M,1,-1
0068
0069
             IF(BUF(J), EQ. 44, OR, BUF(J), EQ. 45)60 TO 76
0071
             IF(BUF(J), LT. 48, OR, BUF(J), GT, 57) GO TO 75
0073
             CAR(JJ) = BUF(J)
0074
             JJ=JJ-1
0075
      75
             CONTINUE
      76
0076
             JJ=5
0077
             M=J-1
0078
      77
             CONTINUE
0079
             DECODE(5,7100,CAR(6))X(10)
0080
             DECODE(5,7100,CAR(1))XP
0081
      7100
             FORMAT(F5, 0)
0082
             X(10) = ABS(X(10) - XP + 1)
          PROTECTION IN THE SUB-FIELD WHEN YEAR BUT NO PAGES PRESENT.
      C
0083
             IF(X(10), GT, 1900, )X(10)=0.
             GO TO 101
0085
      C
          $$$$$$$$$$$$$$8888888$$$$$$$$$$
0086
      8
             CALL CUTBUF(BUF, CAR, M, ICAR, NBR, 100, NLOG(8), IND1)
0087
             X(11)=NBR
0088
             X(12) = ICAR
0089
             X(13)=X(12)/NBR
0090
             X(12) = M
             GO TO 101
0091
      C
          $$$$$$$$$$$999999999$$$$$$$$$$$
0092
      9
             GO TO 101
      C
      C
          RESULTS.
0093
      10
             X(1) = M + I1 - 2
0094
             X(14) = 0.
      C
          X( 1)=TOTAL NBR. OF CHAR. PER ITEM ($1$.....&).
      C
          X( 2)=DATE (YEAR, MONTH, DAY : YYYY MMDD)
      C
          X( 3)=NUMBER OF AUTHORS.
          X( 4)=TOTAL NBR. OF CHAR. FOR FIELD AUTHORS (INCLUDED 1,1 SEPARATORS).
      C
      C
         X( 5)=MEAN OF NBR. OF CHAR. PER AUTHOR NAME.
      C
          X( 6)=TOTAL NBR. OF CHAR. FOR TITLE
      С
         X( 7)=NBR. OF CHAR, FOR EDITOR NAME.
      C
          X( 8)=TOTAL NBR. OF CHAR. FOR FIELD EDITION (NAME, DATE, VOL, PAGES, ...)
          X( 9)=YEAR OF EDITION.
```

```
PAGE 004
0095
           RETURN
0096 999
           IERR=1
0097
           RÉTURN
0098
           END
          0001
             SUBROUTINE CUTBUF(BUF, CAR, M, ICAR, NBR, MAXI, NADR, IND1)
        C
        C
           SUBDIVIDE THE CONTAIN OF '$3$", '$7$', '$8$' : CORRESPONDING TO
        C
           AUTHORS NAMES, EDITION AND KEYWORDS.
        C
        C
           BUF(): BUFFER CORRESPONDING TO THE N TH. FIELD '$N$'.
           CAR(): BUFFER FOR SUB-FIELDS IN EACH FIELD '$N$'.
                ; NBR. OF CHARACTERS FOR THE N TH. FIELD.
        C
                : SUM OF CHARACTERS FOR EACH CAR() SUB-FIELD.
        C
           ICAR
               : MAX. NUMBER OF CHARACTERS POSSIBLE (EX: 128).
        C
           MAXI
        C
           NADR : IF NADROØ , MANAGEMENT OF THE CORRESPONDING FILES IN
        C
                  RANDOM-ACCESS (FORTRAN LOGICAL NBR. 1 TO 4).
        C
                  NADR IS THE MAX. NBR. OF POSSIBLE ADDRESSES.
        C
                 · NBR. OF CHAR. FOR THE TH. SUB-FIELD (<129), ONLY THE
        C
                  44 FIRST CHAR, ARE CONVERTED IN REAL*8 A(4) RADIX50
        C
                  LIKE: 4*(1 SPACE + 11 CHAR.)
        C
              BYTE BUF(512), CAR(128)
   0002
   0003
              REAL*8 A(4)
   0004
              ICAR=0
   0005
              BUF(M+1)=44
   0006
              J = 1
              DO 34 NBR=1, MAXI
   0007
   0008
              I = 0
   0009
              II=J
   0010
              DO 31 J=II, M
              IF(I.EQ. 128)GO TO 32
   9911
   0013
              I = I + 1
```

X(12)=TOTAL NBR. OF CHAR. FOR FIELD KEYWORDS (INCLUDED ',' SEPARATORS).

X(15): YALUE OF I(1) FOR THE ACTUAL I TH. ITEM.

X(16): YALUE OF I(3) FOR I. (NBR. OF COLLISIONS).

IN CALLING PROGRAM: X(14): NO. OF THE HUNDRED (50.,150.,250.,...).

X(17) : VALUE OF I.

X(10)=NBR. OF PAGES. X(11)=NBR. OF KEYWORDS.

C

C

X(13)=MEAN OF NBR. OF CHAR. PER KEYWORD.

```
0014
              CAR(I)=BUF(J)
              IF(BUF(J+1), EQ. 44)GO TO 32
  0015
        31
  0017
        32
              J=J+2
  0018
              ICAR=ICAR+I
           CONVERSION ADDRESS = H (KEY) ; ("HASH-CODING").
           RECORD NUMBER = HDAN (CAR)
              IF(NADR, EQ. 0)GO TO 33
  0019
              I2=HDAN(CAR, A, I, NADR)
  0021
              CALL DEMDAN(NADR, 12, A, IND1)
  0022
           THE SUCCESSIVE CAR() CAN BE RE-WRITTEN IN BUF(), ASSOCIATED TO
           THE I'S IN N() FROM 1 TO NCAR. IF NECCESSARY FOR MODIFICATIONS.
        C
              IF(J. GE. M) RETURN
  0023
        33
  0025
        34
              CONTINUE
  0026
              END
           ***********************
        C
  0001
              FUNCTION HDAN(CAR, A, I, NADR)
        С
        C
           RETURN THE ADDRESS FOR THE KEY CAR() CONTAINING ASCII CHAR.
        C
        C
           KTHIS "HASH-CODING" FUNCTION IS NOT WEIGHTED WITH
        C
           THE PROBABILITY DISTRIBUTION OF THE FIRST CHARACTER OF CAR).
        C
           C
        C
           CAR() IS TREATED LIKE THE 44 FIRST CHAR, OF CAR() ARE USED LIKE
        Ċ
           THE FOLLOWING FORMAT: 4*(<SPACE>,11 CHAR.).
        C
           EXAMPLE :
           FIRSTFIRSTF SECONDSECON THIRDTHIRDT FOURTHFOURT
        C
        C
           IS THE RESULT OF THE TREATMENT OF THE ORIGINAL CAR() :
        \mathbf{C}
           FIRSTFIRSTFSECONDSECONTHIRDTHIRDTFOURTHFOURTXXXXXXX...XXX
        AND THE 4*(1+11)=48 CHAR. ARE REAL*8 RADIX 50 CONVERTED AND MOVED IN A()
     C
     C
        AT THE END THE ADDRESS IN CALCULATED BY MEAN OF A(1).
     С
     C
     C
              : ACTUAL NBR. OF CHAR. DETERMINED.
     C
        NADR : NBR. OF POSSIBLE ADDRESSES.
     C
           BYTE CAR(128)
0002
0003
           REAL*8 A(4)
     С
         (SPACE) COMPLETION.
            I1=I+1
0004
           DO 1 J=I1,48
0005
     _1
0006
            CAR(J) = 32
           K1 = I / 12 + 1
0007
            IF(K1, GT, 4)K1=4
8000
            DO 4 K=4,1,-1
0010
            I1=11*K
0011
            I2=I1-10
0012
            IF(K, GT, K1)G0 T0 3
0013
            DO 2 J = I1, I2, -1
0015
            CAR (J+K)=CAR(J)
0016
      2
0017
      3
         M=I2+K-1
0018
            CAR(M) = 32
```

```
0020
            CONTINUE
        ADDRESS CALCULATION FROM A(1).
      С
         CAR(2) (AT THE BEGINING : CAR(1)) MUST BE INCLUDED IN [A-Z]!
         IF NOT; HDAN=NADR.
0021
           HDAN=NADR
            IF(CAR(2), GT, 90, OR, CAR(2), LT, 65) RETURN
0022
0024
           HDAN=(DLOG(DABS(A(1)))+89.14405060)*(NADR-1)/5.56083+1.5
I IS RETURN WITH THE VALUE I-K1
0025
           RETURN .
0026
           END
   **********************
      SUBROUTINE DEMDAN(NADR, 12, A, IND)
C
C.
   DATA FILE MANAGEMENT SYSTEM USING THREE FILES TO INSERT OR GET AND ONE
   FILE MORE TO DELETE OR MODIFY.
   THE ACCESS IS REALIZED BY A "HASH-CODING" FUNCTION AND THE FOUR FILES
   ARE RANDOM-ACCESSIBLE.
\mathbb{C}
C
   1E.FILE: "DATA FILE". (18 WORDS).
   2E.FILE: "ADDRESSES TABLE FILE" IS ACCESS BY I2=HDAN(), (2 WORDS).
3E.FILE: "COLLISION TABLE FILE", (3 WORDS).
C
   4E. FILE : "FREE RECORDS FILE". (1 WORD). (NECESSARY IF IND)3).
C
C
          : NADR+2 POSSIBLE ADDRESSES FOR THE SECOND FILE.
   NADR
            NADR ARE ACCESSIBLE BY THE "HASH-CODING" FUNCTION
C
         AT NADR+1 : I(1), I(2)
C
         AT NADR+2 : I(3),I(4).
C
         : THE I() CONTAIN THE ACTUAL STATE OF THE INDEX.
   I \bigcirc
C
            THAT PERMITS TO SORT THE OCC() IN CORE MEMORY TO OBTAINS
C
            THE RANK FROM 1 TO I(1) FOR THE NOCC'S.
C
   000
         : REAL NUMBER OF OCCURANCES (OCC=NOCC+INDX(1)/100000.)
C
            (EX.: OCC=12,0360 MEANS NOCC=12 AND INDX(1)=360).
Ċ
          : I2=HDAN(CAR,A,I,NADR) IN THE CALLING PROGRAM.
C
           IN THE CALLING PROGRAM AND IN THE FUNCTION : HDAN() :
C
         : REAL*8 RADIX 50 TRANSFORM FOR THE 44TH. FIRST CHAR. OF CAR()
   8 ( )
Ĉ
C
        : TO ACCESS THE DIFFERENT FUNCTIONS OF DFMDAN() :
   IND
C
  =1 : TO INSERT A RECORD OR INCREMENT OCC -- (EXISTING CONFIGURATION).
   =2 : TO INSERT A RECORD
C
                                             --
                                                  (NEW CONFIGURATION).
C
   =3 : TO GET A RECORD.
0
  =4 : TO DELETE A RECORD.
C
  =5 : TO MODIFY A RECORD.
C
C
```

RAD50 TRANSFORMATION

J=IRAD50(12, CAR(M), A(K))

0019

0001

```
C
             INTEGER*2 I(4)
0002
             REAL*8 A(4), B(4)
0003
             DATA 1/4*0/12/0/
0004
             GO TO (1,2,3,4,5), IND
0005
      C
          INSERT A RECORD IN AN EXISTING CONFIGURATION.
      C
          READ I() IN FILE 2 AND FORCE A "LOOKUP" FOR THE OTHERS.
      C
             READ(1/1)B, J, J
0006
      1
             READ(2'NADR+1)I(1),I(2)
0007
             READ(2'NADR+2)I(3), I(4)
8000
             READ(3'1)J, J, J
0009
              IF(IND. LE. 3)G0 T0 11
 0010
              READ(4/1)J
 0012
      C
          FREE RECORDS OR NOT.
0013
             IF(I(4), EQ. 0)GO TO 11
0015
             READ(4/I(4))I(1)
0016
             I(4)=I(4)-1
             GO TO 211
0017
0018
      11
             I(1)=I(1)+1
0019
             GO TO 211
      C
         INSERT A RECORD IN A NEW CONFIGURATION.
      C
          ZERO THE FILE 2 AND FORCE AN "ENTER" FOR THE OTHERS.
             WRITE(1/1)B, IZ, IZ
0020
0021
             N2=NADR+2
0022
             DO 21 J=1, N2
0023
      21
             WRITE(21J)IZ,IZ
0024
             WRITE(3/1) IZ, IZ, IZ
0025
             IF(IND. GT. 3) WRITE(4/1) IZ
         FOR THE NEXT ACCESS AFTER RETURN : "LOOKUP" IF IND=1
0027
             IND=1
0028
             I(1)=I(1)+1
      C
0029
      211
             READ(2112)11,13
0030
             IF(I1, NE. 0)GO TO 221
         FREE RECORD (I1=0) IN 2ND, FILE.
-0032
             OCC=1+I(1)/100000.
0033
             WRITE(1/I(1))A,000
0034
             WRITE(2112)I(1), IZ
             GO TO 241
0035
        RECORD NOT FREE.
0036
             READ(1111)8,000
      221
0037
             DO 222 J=1,4
             IF(A(J), NE, B(J))G0 TO 231
0038
      222
        IDENTITY BETWEEN A() AND B().
0040
             I(1)=I(1)-1
         FOR CORRECT PRECISION.
0041
             J=000
0042
             OCC=J+1+I1/100000.
0043
             WRITE(1/11)A,000
0044
             GO TO 241
0045
             IF(I3. NE. 0)GO TO 232
         NON-IDENTITY BETWEEN A() AND (B() WITH NO EXISTANT COLLISION (13=0)
0047
             OCC=1+I(1)/100000.
0048
             WRITE(1/I(1))A, 000
```

```
I(3)=I(3)+1
0049
            WRITE(2'12)11, I(3)
0050
            WRITE(3'I(3))I(1), IZ, IZ
0051
0052
            GO TO 241
         WITH ONE OR MORE EXISTANT COLLISIONS.
            READ(3'13)11, IF, IP
      232
0053
         SEARCH AN EQUALITY A()=B() IN THE CHAIN
            READ(1/I1)B, OCC
0054
            DO 234 J=1,4
0055
            IF(A(J), NE. B(J))G0 TO 235
0056
      234
      C
         IF A()=B()
0058
            I(1)=I(1)-1
         FOR CORRECT PRECISION
0059
            J=000
            OCC=J+1+I1/100000.
0060
0061
            WRITE(1/I1)A, OCC
0062
            GO TO 241
            IF(IF, EQ. 0)GO TO 233
0063
      235
0065
            13=1F
0066
            GO TO 232
0067
      233
            OCC=1+I(1)/100000.
0068
            WRITE(1/I(1))A,000
0069
            I(3) = I(3) + 1
            WRITE(3/13)11,1(3),1P
0070
0071
            WRITE(3/I(3))I(1),IZ,I3
      C
      C
         ACTUALISATION OF THE I().
      C
         TO INCREASE THE VELOCITY (BUT DECREASE SECURITY),
      С
         DO ONCE IN THE CALLING PROGRAM AND ADD INTEGER*2 I(4).
0072
      241
            WRITE(21NADR+1)I(1), I(2)
0073
            WRITE(2/NADR+2)I(3),I(4)
0074
            RETURN
      C
      C
         COMPLETE THE NECESSARY FUNCTIONS (3 TO 5) FOR THIS SUBROUTINE.
      C
0075
      3
            CONTINUE
0076
      4
            CONTINUE
      5
0077
            CONTINUE
0078
            RETURN
0079
            END
      C
         С
0001
            SUBROUTINE OUTFIL(IMP, NLOGIC, M1, J2, X, IND)
      C
      C
         STORE X() IN FILE NLOGIC AND STATISTICS ALL THE M1TH.
      Ç
0002
            REAL*4 X(17), XB(17), SXB(13), Y(128)
      C
      C
         STORE.
0003
            I = I NO
0004
            IF(I, EQ, 0)I=M1
0006
            WRITE(NLOGIC/I)X
0007
            IF(IND. NE. 0) RETURN
```

```
STATISTICS. (ON FILE 4; 17 COLUMNS).
     C
           DO 2 K=1,13
8009
0010
           J1=0
0011
           XB(K)=0.
0012
           DO 1 J=1, M1
            READ(NLOGIC'J)X
0013
           IF(X(K), EQ. 0.)G0 T0 1
0014
            J1 = J1 + 1
9916
           Y(J1)=X(K)
0017
           CONTINUE
0018 1
           IF(J1. GT. 0) CALL RTYPE(J1, XB(K), STDEY, CY, SXB(K), Y)
0019 2
            XB(14)=M1*(J2+0.5)
0021
            XB(15)=X(15)
0022
            XB(16)=X(16)
0023
0024
            XB(17)=X(17)
            J2 = J2 + 1
0025
      C STORE THE RESULTS FROM M1+1 TO M INDEX.
            WRITE(NLOGIC'J2+M1)XB
0026
         OUTPUT THE RESULTS ON THE CONTROL TERMINAL.
            WRITE(IMP, 100) J2, (XB(J), J=1, 16), SXB
0027
            FORMAT( STATISTICS - GROUP NBR. (, 14, ( : 1/2(1X, 16F5, 0/))
      100
0028
      C
            RETURN
0029
0030
            END
```

TSX-Plus Real-time Support Facility

John Yardley

JPY Associates Ltd

1. What is a "Real-Time" Application?

A real-time application may be defined as one which <u>demands</u> some process to be performed within a specified time of some event. If the process is not performed, then future events may be affected. For example, a simple process to transfer data from an analogue to digital converter to a disk must perform each transfer within the sampling period of the digitising clock, otherwise data will be irretrievably lost. On the other hand, a desk-calculator say, is unlikely to be classed as a real-time process since the operator can wait almost any amount of time for the result without upsetting the calculation.

Before we look at how real-time events are handled under TSX-Plus we need to know something of the way TSX-Plus works.

2. How does TSX-Plus work?

Although TSX-Plus services several users, it does, of course only run on a single processor. This being the case, it can only execute one piece of program code at any one time. This will be either:

- a) A user's program
- or b) The TSX-Plus monitor (which includes device handlers)

The monitor is only ever executed in response to an EVENT. This may be a software event such as an EMT or TRAP instruction — or a hardware event such as a device (eg disk, terminal or clock) INTERRUPT. Once a given user program is executing, then it will continue executing until some event occurs. When this happens, TSX—Plus will first respond to the event in the appropriate way (eg taking a character from the keyboard buffer) and then pass control to the TSX—Plus SCHEDULER.

It is the job of the scheduler to decide which user job should be run after the event processing has been completed. Sometimes, when the user program has requested a service of TSX-Plus by means of an EMT instruction, the scheduler will return control to the same user program. At other times, the scheduler may decide that a different user should be given processor time.

Whenever the scheduler decides to "move" the processor from one user job to another, it must "remember" exactly the state of the current job so it may be continued at some later stage. It need only remember data items which may be destroyed by the new user program. These include the general-purpose registers (GPRs), the page address registers (PARs) and the floating-point registers (if any). The GPRs include the program counter (PC) and stack pointer (SP), so define the address at which the user program was suspended. The contents of these "shared" data areas are often said to give the CONTEXT of the job, so the scheduler is, in fact, a CONTEXT SWITCH.

2.1 How does the scheduler decide which job should run?

The scheduler first establishes the PRIORITY of every active user (NOTE: Priority here, relates strictly to software priority NOT the hardware priority associated with devices on the bus). It then runs the job which has the highest priority. Jobs which have the same priority are QUEUED to execute one after the other.

The priority of jobs can only ever change when an event occurs, since it is events which drive the scheduler. The scheduler is normally guaranteed to run periodically, since interrupts will constantly be generated by the processor clock.

As an example of the scheduler at work we may consider a system with 3 jobs executing at one of three priorities thus:

JOB	£1	NORMAL	RUNNING
JOB	£ 2	LOW	
JOB	£3	LOW	

An event occurs which makes JOB $\pounds 2$ HIGH priority. This immediately causes JOB $\pounds 2$ to run thus:

JOB £1	NORMAL	
JOB £2	HIGH	RUNNING
JOB £3	I.OW	

When an event occurs to make JOB £3 HIGH, then a later event to make JOB £1 HIGH as well, JOB £2 will continue running so long as its priority is the same or greater than any other job, thus:

JOB £1	HIGH	*
JOB £2	HIGH	RUNNING
JOB £3	HIGH	

As soon as the priority of JOB £2 drops, JOB £3 will run. This is because it became a high priority job <u>before</u> JOB £1, thus:

JOB	£1	HIGH	
JOB	£2	LOW	
JOB	£3'	HIGH	RUNNING

2.2 What are the priorities for a TSX-Plus job?

TSX-Plus assigns 12 priority levels, split into 4 classes. Jobs in the lowest three priority classes are "time-sliced". This means that they are automatically suspended after a fixed period of time. The highest priority class is reserved only for REAL-TIME COMPLETION ROUTINES (this term is used synonymously with INTERRUPT SERVICE ROUTINES) and at this level jobs may run indefinitely. The levels are as follows:

REAL-TIME COMPLETION ROUTINES	level 7 level 6 level 5 level 4 level 3 level 2 level 1	level 6 level 5 level 4 level 3 level 2		
	level O	(QUAN1A)		
HIGH	ACTIVATION CHARACTERS	(QUAN1)	- 1 	
PRIORITY	I/O COMPLETION	(QUAN1A)		
NORMAL PRIORITY	COMPUTE BOUND (Physical li & Detached J		TIME-SLICED	
LOW PRIORITY	COMPUTE BOUND (Virtual lir	(QUAN3) ne)	- 1 	

As we have said, once a job has been scheduled to run as either a level 0 completion routine, a high, normal or low priority job, it will continue to do so until either another job achieves a higher priority or its time-slice elapses. The value of the time-slice may be selected by the system manager at sysgen time or by means of a SET command. There is not usually much to be gained by altering these time-slices from their "delivered" values unless the same program is always being run on all terminals. In general, QUAN1 and QUAN1A should always be long enough to allow a job to get BLOCKED (ie waiting for some I/O to complete or a character to be typed). If a program's I/O activity is interleaved with a regular amount of computation (say 5 secs), then QUAN2 should be at least as long as the computation. It is always better that time-slice values be too great than too small.

Important points to note:

3.

- 1. Since real-time priorities are not time sliced, they can "hog" the processor indefinitely.
- 2. Low priority jobs (ie compute-bound jobs on virtual lines) will NEVER be executed while there is any other job at a higher priority. This is a fairly likely event on a system with many active users.
- 3. All user jobs execute at a processor priority of zero hence interrupts should always be serviced by TSX-Plus.

2.3 More about context switching

We have already noted that to change context from one user to another involves saving and restoring:

- 1. General purpose registers (GPRs)
- 2. Page address registers (PARs)
- 3. Page descriptor registers (PDRs)
- 4. Floating point registers

On an LSI-11/23 it may take up to 2 milliseconds to switch between memory resident jobs.

It is often asked if it takes this amount of time to switch from a user job to the TSX-Plus monitor each time an event occurs - since surely TSX-Plus uses GPRs, and PARs at very least. The answer to this is that it only takes a few microseconds to execute the switch to TSX. This is because TSX-Plus makes use of the PDP-11 KERNEL MODE of operation when executing. Whenever a event occurs while the processor is executing a user program, the processor status word is reloaded from the TRAP VECTOR. This is set up such that processor goes automatically into kernel mode. When this happens, the PDP-11 hardware switches to another set of GPRs, PARs and PDRs. On return from the trap, the processor is switched back into USER MODE.

3. Real-time Applications

There are basically three approaches to the handling of real-time applications under TSX-Plus. These are:

- 1. Programmed I/O
- 2. Interrupt service routines
- 3. Device Handlers

3.1 Programmed I/O (See Appendix I for example)

In this method, the user must first map the I/O page into his own user address space using the necessary TSX-Plus EMT. He can then do a programmed data transfer without reference to the device vector. For example, to read a character from a keyboard would involve some program code like this:

HANG: TSTB @£CSR ; NOTE THAT THIS IS BPL HANG ; A COMPUTE-BOUND LOOP

MOV @£BUFF, RO

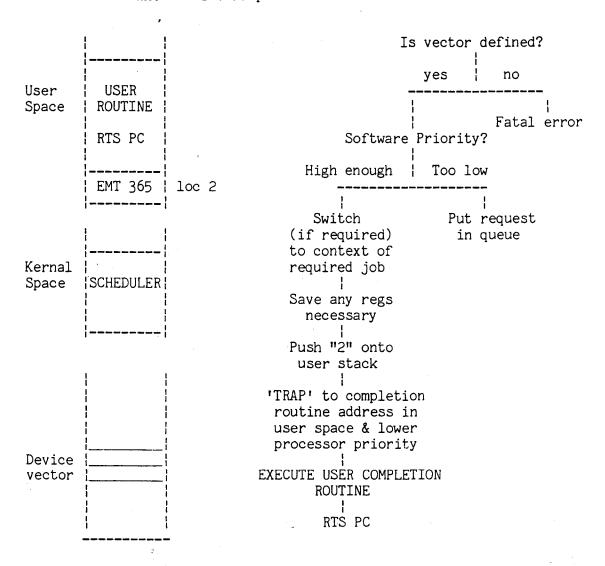
BR HANG

Because the flag check is compute-bound (after all, TSX-Plus doesn't know CSR is a device register), there is no guarantee when it will be done, since it is highly eligible for being time-sliced out. When the flag goes up, it is most likely the processor will be in the context of another job. Programmed I/O like this would be hopeless for say sampling a serial line, since failure to return to the context of the job quickly enough would result in a data overrun.

TSX-Plus version 2.2 provides a solution to this by providing an EMT to lock the processor onto a user's job. It does not change the processor's priority, so will not lock out events. Given version 2.2, programmed I/O must be fastest way to sample devices. It is of course, at the expense of other users, so must used carefully.

3.2 Interrupt service routines (See Appendix II for example)

TSX-Plus version 2.0 (and later) provides a mechanism for connecting interrupts to user real-time service routines resident in the user's address space. This involves:


- 1. Re-mapping the I/O page to gain access to device buffers and registers.
- 2. Setting up the address (in user space) of the user's completion routine.

These functions are accomplished by means of special TSX-Plus EMTs. The EMT to connect the service routine to the vector address does five things:

- 1. Checks that Real-time support has been sysgenned into TSX-Plus monitor.
- 2. Checks that there is enough space in the despatch tables for the routine address.

- 3. Checks that no other job is connected to this interrupt.
- 4. Puts "EMT 365" instruction into location '2' of user space (this is to enable user to exit from completion routine to TSX-Plus on entry '2' is pushed onto stack)
- 5. Enters vector and job information (ie completion routine address, job number, etc.) into TSX-Plus despatch tables.

When an interrupt occurs.....

Interrupt service routines (ISRs) written for RT-11 cannot be used in a TSX-Plus application without slight modification. This is because there are several fundamental differences in the way the routines are called. These are:

1. Under RT-11 it is usual to put the address of the ISR directly in the device interrupt vector. This is because the user program and monitor are in the same address space. Under TSX-Plus the user must call a special EMT to set up the ISR address.

2. In RT-11 interrupt service routines, it is recommended that the first instruction be a ".INTEN" request - this informs RT-11 that the ISR is in operation, saves registers and changes processor priority. With TSX-Plus completion routines, the .INTEN request is neither necessary nor supported - TSX-Plus always knows when a user interrupt occurs.

Problems with Interrupt Service Routines:

- 1. If the processor is not in the context of the ISR job when the interrupt occurs, then because of the context switch necessary, there can be a long delay before the routine is entered this can be 2mS if the job is in memory and 100 mS or more if job is on disk. This can result in loss of data items.
- 2. With every hardware interrupt there is an associated TSX-Plus overhead. This is the time taken by TSX-Plus to discover the routine entry address, change the processor priority, save any registers used by the real-time job, then 'trap' to the start of the service routine.

To prevent disk swapping delays, it is recommended always to have the job LOCKED into memory. This prevents the job being swapped to disk while waiting for an interrupt. TSX-Plus provides a special EMT for this purpose.

The upshot of all this is that in general, TSX-Plus real-time completion routines cannot handle interrupts at much more than 100 per second. If interrupt rates greater than this are required, then some other approach should be adopted.

3.3 Device Handlers

The use of an RT-11 device handler gives the fastest possible response to interrupts since there is no context switch overhead. Device handlers can be used for purposes other than straight block-orientated transfers to and from peripherals. The handler provides a window on TSX-Plus itself, and by clever use of SET options and .SPFUNs, user programs can do almost anything.

Conventional device handlers always call TSX-Plus (or RT-11) on every interrupt via "\$INTEN" (this is implicit in the .DRAST macro). This performs register saving, state checking, and processor priority lowering. On non-DMA devices this can be quite an overhead due to sheer volume of interrupts (the TU58 is a classic case). If the service routine is short, it is possible to do away with the call to \$INTEN in order to save time. If this is done, then the service routine must be exited with an "RTI" and not an "RTS". For long service routines, this is a dangerous practice. Leaving the processor executing at a high priority may "lock out" other interrupts - including those from user terminals.

4. Summary

In summary, we may compare the use of programmed I/O, interrupt service routines and device handlers for different classes of application.

APPLICATION	TSX-Plus Version Number				
	<2.0	<2.0 2.0,2.1			
Sampling as fast as possible in bursts,	Handler	Handler	Prog I/O (job locked)		
Constant high-speed interrupts	Handler	Handler			
Bursts of high-speed samples (up to 30 KHz) say lasting 1 sec every 10	Handler	Handler	Prog I/O or Handler		
Constant sampling at rates of less than 100 Hz	Handler	ISR or Handler	ISR or Handler		

From the table, it can be seen that handlers solve most real-time applications except the "flat-out" situation. However, it should be born in mind that handlers are usually more difficult to write and debug and that TSX-Plus must be re-sysgenned to incorporate a new handler. Also, in a time-sharing environment, it is much more important that the handler itself be "correct".

Real-time support is a compromise in any time-sharing system. The eventual best solution will always be a trade-off between speed of operation, programming difficulty, and effect on other time-shared users.

				; APPENDIX I - PROG TO DISPLAY CHARS RECEIVED FROM A SERIAL LINE ; USING TSX+ REAL-TIME SUPPORT - COPYRIGHT (C) JPY ASSOCIATES LTD!							
	· .			; PROGRAM 1 - PROGRAMMED I/O METHOD							
	176520			;	CSR=1765	520					
			#	;	.MCALL	.TTYOUT, .DEVICE, .	.EXIT,.P	RINT			
000000 000004 000006 000010 000016 000020	012700 104375 103004	0000721		GO:	MOV EMT BCC .PRINT .EXIT .DEVICE			;MAP IN THE I/O PAGE ;ERROR? ;YES - ERROR MESS ;BYE ;TIDY-UP ON EXIT			
000040 000046 000052	012737 105737 100375	000001 176520	176520	HANG:	MOV TSTB BPL MOV	£1,0£CSR 0£CSR HANG 0£CSR+2,RO		;ENABLE READ ;READY? ;NO - HANG HERE ;GET CHAR INTO RO			
000054 000060 000064 000070	013700 005237 000766	176522 176520			.TTYOUT INC BR	€£CSR HANG		;TYPE ON TERMINAL ;RE-ENABLE READ ;WAIT FOR NEXT			

```
EMT BLOCKS ETC
                                                                             ; REMAP EMT BLOCK
                                                   5,140
                                  REMAP:
                                           .BYTE
            005
                     140
000072
                                                                             :.DEVICE EMT BLOCK
                                  AREA:
                                           .BLKW
                                                    3
000074
                                                                             TURN OFF INTERRUPTS ON EXIT
                                  TIDY:
                                           .WORD
                                                   CSR
000102
         176520
                                                                             BY CLEARING CSR
                                                   0,0
                                           .WORD
                 000000
         000000
000104
                                    ERROR MESSAGE
                  .NLIST
                          BIN
         REMERR: .ASCIZ
                          /TSX MAPPING ERROR - BYE/
000110
                  .END
                          GO
                                   APPENDIX II - PROG TO DISPLAY CHARS RECEIVED FROM A SERIAL LINE
                                   USING TSX+ REAL-TIME SUPPORT - COPYRIGHT (C) JPY ASSOCIATES LTD!
                                   PROGRAM 2 - INTERRUPT SERVICE ROUTINE METHOD
        000320
                                          VECTOR=320
                                          CSR=176520
        176520
                                          .MCALL .TTYOUT .. DEVICE .. EXIT .. PRINT .. SPND
       012700
                                 ĠO:
                                          MOV
                                                                            :MAP IN THE I/O PAGE
               0001121
                                                  £REMAP, RO
000000
200004
       104375
                                          EMT
                                                  375
                                          BCC
000006
        103004
                                                  REMOK
                                                                            :ERROR?
                                                  £REMERR
                                          .PRINT
                                                                            :YES - ERROR MESS
010000
000016
                                          .EXIT
                                                                            ;BYE
                                                                            ;TIDY-UP ON EXIT
000020
                                 REMOK:
                                          .DEVICE £AREA,£TIDY
       012700 0001141
                                                  £CNCT, RO
                                                                            :CONNECT UP SERVICE ROUTIN
                                          MOV
000040
                                          EMT
200044
        104375
                                                  375
                                                  CNCTOK
        103004
                                          BCC
)00046
                                                                            :ERROR?
000050
                                          .PRINT
                                                  £CONERR
                                                                            :YES - ERROR MESS
)00056
                                          .EXIT
                                                                            :BYE
000060
        052737
                000101
                         176520
                                 CNCTOK: BIS
                                                  £101.@£CSR
                                                                            :ENABLE INTERRUPTS
                                          .SPND
000066
                                   INTERRUPT SERVICE ROUTINE
000074
       013700
                176522
                                 SERVE:
                                          MOV
                                                  @£CSR+2,RO
                                                                            GET CHAR INTO RO
                                          .TTYOUT
                                                                            ;TYPE IT ON TERMINAL
000100
000104
        005237
                176520
                                          INC
                                                  @£CSR
                                                                            ; RE-ENABLE READ
       000207
                                          RTS
                                                  PC
000110
                                                                            :BACK TO TSX
                                   EMT BLOCKS ETC
           005
                    140
                                 REMAP:
                                                  5,140
)00112
                                          .BYTE
                                                                            ; REMAP EMT BLOCK
           011
                    140
                                  CNCT:
                                                  11,140
000114
                                          .BYTE
                                                                            :CONNECT EMT BLOCK
        000320
                0000741 000007
000116
                                          .WORD
                                                  VECTOR, SERVE, 7
                                          .BLKW
                                                                            ;.DEVICE EMT BLOCK
000124
                                  AREA:
                                                   3
                                                  CSR
000132
        176520
                                  TIDY:
                                          .WORD
                                                                            ;TURN OFF INTERRUPTS ON EX
)00134
        000000
                000000
                                          .WORD
                                                  0,0
                                                                            ;BY CLEARING CSR
                 .NLIST BIN
                                   ERROR MESSAGES
        REMERR: .ASCIZ /TSX MAPPING ERROR - BYE/
)00140
```

/TSX ISR CONECTION ERROR - BYE/

)00170

CONERR: .ASCIZ

.END

GO

New & Revised DECUS Library Submissions

11-299 (rev) by Michael N. Levine, Naval Weapons Center, China Lake, CA.

INDEX is a cross referencing program that does for FORTRAN what CREF does for MACRO. A source program passed through INDEX will be checked for all of its variable name and label usage. The results will then be listed in alphabetical order, listing all the variable names and labels used in the program, the lines on which they were used, and how they were used. This revision fixed bugs and expanded the option switches.

11-472 (rev) by N. A. Bourgeois, Jr., Sandia National Laboratories, Albuquerque, NM.

KB is an RT-11 V4.0 device independent terminal handler. It can be used in either the foreground or the background (but not both simultaneously) to read and write to a DL11/DLV11 controlled terminal. Conditional code is included for use with extended memory addressing. Eleven set options are also included to permit configuration of the handler. The revision fixed a bug in the abort code.

11-595 (new) by Keith W. Hadley, University of Toronto, Ontario, Canada.

HP.SYS is a Hewlett-Packard 7470A plotter handler to be used in an RS-232 environment with XON-XOFF handshaking protocol. It is a read/write handler useful for communicating with the plotter. Since many laboratory devices use XON-XOFF, this handler might be easily modified for such devices.

11-596 (new) by Keith W. Hadley, University of Toronto, Ontario, Canada.

LG.SYS is a serial line printer handler designed specifically for the CENTRONICS 739 graphic printer. This handler takes into account many of the 739's features that the LS.SYS handler does not.

11-599 (new) by Karl Dunn, SCI Systems, Inc., Hazel Green, AL.

This is a set of routines that derive an optimal path through a set of coplanar points. They return a sequence of integers that represent ordinal point identifiers, the points having been given as a sequence of coordinates.

11-603 (new) by Dan Dill, Boston University, Boston, MA.

This TEXT System is a collection of software tools, which in combination with DECUS RUNOFF (11-530), form a comprehensive text processing system for technical manuscript preparation with NEC Spinwriters and the Technical Math / Times Roman type thimble.

11-605 (new) by John Crowell, Crow4ell, Ltd., Los Alamos, NM.

This package contains TECO command files which will perform sufficient modification of RT-11 V4.0 uncommented source files (as in the binary distribution kit) to enable generation of an RT-11 system (SJ of FB) called FART-11 to run on the SBC-11/21 FALCON microcomputer. There is also a patch for the file, SYS-GEN.CND, which will include the FALCON options in the sysgen process. If you must have FART-11, this is the recommended procedure.

11-606 (new) by G. Laurent and S. Rozenberg, INFI, Chaville, France.

SPAL-11, for Structured Programming using Assembly Language, is a set of macros, which when incorporated in the default macro library, SYSMAC.SML, provides the ability to write well constructed, clear, and maintainable programs. It makes sophisticated use of the MACRO-11 assembler and where possible the code generated has been optimized.

11-608 (new) Ron Tenny, G. W. Tenny Company, Inc., Scottsville, NY.

This is an electronic bulletin board message mailing facility written in DIBOL. The board facility allows mail to be sent to user and group accounts, and to a printer. All mail is password protected and clearance coded. This facility requires the use of a single key ISAM file.

06-Apr-83/NABourgeois

DIGITAL EQUIPMENT COMPUTER USERS SOCIETY ONE IRON WAY, MR02-1/C11 MARLBORO, MASSACHUSETTS 01752

BULK RATE U.S. POSTAGE PAID PERMIT NO. 129 NORTHBORO, MA 01532

MOVING OR REPLACING A DELEGATE?]
Please notify us immediately to guarantee continuing receipt of DECUS literature. Allow up to six weeks for change to take effect.							
Change of Address Delegate Replacement							
DECUS Membership No.:							
Name:							
Company:							
Address:							
State/Country:	etc	D	. 2	9 8	7	≥	۱
Zip/Postal Code:	l °	ŋ,	nclude	address		Ť.	١
Mail to: DECUS - ATT: Membership One Iron Way, MR02-1/C11 Marlboro, Massachusetts 01752 USA		pany, university,	nclude name of	s here.	flabel is not	9 8	