
A SWL APOLOGIA 

J. Keffe 
l. Kerr 
J. Merner 
C. Schwarcz 

15 September i 973 

SE? 25 1973 

IDD '::::;D 



. . 

. A SVvLAPOLOGIA' 15 September. 1973 

Svbjec! 
~'~ 

LO 

2.0 

3.0. 

4.0 

5.0 

.' Page:i .' 

"' ," 

TABLE OF CO NTENTS 

II'ffRODLlCTION •••• ." . . . . . . . . . • • '0 • • .. • • • ." "" 

CO NTROL STRUCTURES • • • • • • • • •• • • ••••• 
2.1 Loop and Escape Statements. • ....... '. 
2.2' Incremenl' on 'Fori sj'<:;lternenr • ~ .• 0 ........... . 

". 2~3 . Procedure Variables .................... . 
2.4.. '. Label Variables •••. ~ .................. : •••• 
2.5 IOrif' Clause on 'IPStatement •••••••••••• 
2.6 'EIsel ClaUse on 'Case' Statement • • ••.••••• 
2.7 Functions Declared as Procedures •••••••• 0 •• 

. "2'.8 Coprocesses...." ••••••• c", ........... "0 •••.• ". 

DATA STRUCTURES:. • •• • • • • ..... • .. • • • •• 0 • .• .. • • • 

3 .. 1 .' Variable Bound Arrays.. • •••••••••• 
• 0 

. 3.2S lice Notation • .. • • • • • • • • • • .'. • • • • 
3.3 Stora!=le Classes • • • • • • •••. . •. • . _ _ -
? A 
...... . -. 
3.5 
3.6 
3.7 
3.8 
3.9 
3.10 

c ___ ~ _.,,_ 
""'~~'U\"ool",,) .... • ................ ' •••••• 

Read-Only Variables •••••••••••••••• 0 .• 

Initialization.' ................ .. 
.', ,. 

Structured Data Constructors • • • • '.. • • • • •• 
Union of Type •• ~ '0. . ••• .• • .. • ' •• 

Heaps, StackS, Queues, and Sequences'. • • 
Relative Pointers 0 •••••••••••• 0 ........ . 

SYNTACTIC CHANGES • c" • • · .... • 0 ••• · . · . · . 
4.1 
4.2 
A.3 
4.4 
4.5 
4.6 
4.7 

Character Set •• .e. • • •. • • • •..• • • • • .. 0 .• • .• 

Unique Delimiters •• 0 ••••••••••••••••• 

Declaral'ions • • • • .••••••••••••.••• 
Identifiers ••• ," •• " •••••••••• e .••••• " ••• 

label Identifiers ........ o· •••••••••• 

I nteger Constants 
Comments •••• 

'. 
'. 
. . . • 

• • • 
· • · 0 • 
• . • • • 

• · • · • . • . · • .. • • .. o' 0 · . 
. /v'IACHI NE DEPENDENT FEATURES · 0 · 0 • · • • · .. • . • .: . 
5.1 I Loe' Function. • .• • • •.• • • • • ..' • .• • • • .• 
. 5 .2 . ·C e II 'J ype • • ...... • • ~ • • • • • • • • • • • .0 • • • • • 

5.3 Crammed Records'. • • • • • • • • • •. • • • ••• 
5'~4 Mac·hinc. Code .•••••••••• ' •• -••••••• 
5.5.Machine Dependent Types •••••• 0 0 • • • 

Page 

1 ;"'1 

2-1 
2-1· 
2-2 
2-2 
2 ... 2 

.2-2" 
2-3 
2-3" 
2-4 

3 .. 1' . 
3-1 . 
3-1 
3-2 ' ... ,.. 

.v-,e.. 

3-3 
3-3 
3-3 
3-4 
3-5 
3-5 

4-1 ... ' 
4-1 
4-2 
4-3 
4~" 
4-4 
4-4 
4-4 

5-1 
5 .. 1 
5-1 
5;"2 
5-3 
5-3 



A SWLAPOLOGIA '. 15 September 1973 . 
'. Page:. ii , 

~ubiec~ . 

6.0 

. ~ .. '. 
. ..... 

'TABLE OF CO NTENTS 

fage' 
. . .'. ~ 

}/ilSCELLANcOUS CHANGES • •• •• • • ••• • • •• 6-1 
6:1 '. Corr;pile·~Time Expressi~ns ••••••••••.••• .;6~1 
6 .. 2 . 12eSJi·ri' 'Dlo.cks '.. , •• ~ ." 0 ". • • • • _, • • • 6'-l" 
6'.3 0 perators., .~ ~'. .•••• e. • • • ". • • • • • • • •.•• 6-1 

:""~6~4"""""" Paramt~tet'.s'"... ".0 •.•••. ' • " ............ !It.' • ", •. ; 6 .... 2· ," 
6.5 '. DesignaHonal Assignment· • • • • • • • • • • • • 6-3 
6.6 Compile-Time Facilities. • • • • •• ••.•• • • • • •• 6-3 
6.7' Files and I/O . . .• ••• • • • • • • • • • • .6.-4 
6.8 <Maximum Set Size. • • • • • •• • • •• • • •• 6-5 
6.9 Type . ~hecking •• • • • • • • • • • • • • •• • • •• 6-5 

'. 601 0 .. Type Conversion.. •• • • •• • ,; • • • • • • ••• 6-6 



A SWL APOLOGIA 

15 September. 1973 
Page: . ·.1-1. 

'1.0 i NTRODUCTIO N 

(S\VL) Project was odginally charged with the responsi-
.. . .' . 

bilHy of designing a s)'sh~ms implementation language which would. be as compatible as 

.possible wHh Pascal. . This proved tobe a somewhat ambiguous goal, as there are at 

leasl' six sources which could reasonably be usedasa definition.of the Pascal lari

guag~ I and n? two of the:nogree in all respects.' 

The Pascal references which were used during the design .of i'he.SWL are: 

.. 1. No. Wirth, liThe Programming Language Pas~al", Acta Informatica 1 ,. 35~3' 

(.1971).·· This paper describes the original Pascal language . 

. 2. . N • Wirth, The Programming Language Pascal (Revised Report) I E.T.H.· 
~ ... t J:a.iI. t. '1('\-'-1"\\ ""1"'1- .. _.' f .• , " "'. J. I -. 
£-VII<"II· \l'lVVCIIIUCi" i/I£..I.·.IIII~"€t'ulI' uc" ... I,uc;>1.i iU"l:jvu8o::: WI 11 <"11. I" 

basically similar to that described .by (1), but which'differs substantially 
. . 

in certain areas. 

3.' C.A.R. Hoare and N. Wirth, An Axiomatic Definition of the Programming 

~anguage Pascal, E.T.H. Zurich (November 1972) .. This report represents 

on attempt ata rigorous, formal definition of the language described by 

4. 

5. 

(2) •. 

The June 1972 Pascal 6000 Compi ler. This isa compiler which imple-

meni's the language described by (1) . .. 
The .. December'1972 Pascal 6000 Compiler. This compiler contai nssome 

of themodifitations required for the language described by (2)~ ·It was 

intendedf'o bridge fhe gop between (1) end (2). until 0 nevi compiler was 

completed for (2).' 



A S\'lL APOLO CIA 

1LO Introduction 15 September 1973 
Page: F .. 2 

6. The fi":lrch 1973 Pascal SrGck fvbchine Compiler. This compi ler imp le

W,;;i1;S Im)sr of the icnguc:g8 described b,' (2) ,and compiles code for a 

hypoi'hetical stack machine. The compiler will uLtimately evolve into a 

PCl~CGl 60CO compiler for (2) .. 

In the fo! lo\'{ing sectio~1s of this document I an attempt is mode to list the changes 

that were made to Pascal in the design of the SWL t and the reasons for thes~ changes 

aredisclJssed. The changes are described primari Iy re lative to the revised Pascal 

report and the December '}972 Pascal 6000 compi !er t as these are the reference sources 

with which CDC and NCR Pascal users are most fami liar • 

. The changes are grouped into five sections: Control Structures, Data Structures/ 

5~'~~~,:,~!-: (hr1M:::!""C:. M.,rhinp [)p~pndentfeatures. and iv\isceiianeousCnanges.' . irH:!!>t:: 

categories are rather arbitrary, and were chosen merely for ease. of presentation. 

Some overlap exists between different groups: procedure variables/ for example/ 

represent an enhancement to the control structures as well as being a new data type. 

~ In such cases I the changes were placed arbitrarily in one group or the other • 

Wherever possible, reference is· made to the appropriate sections of the SWL Specifica

tion document which describes the language features in detail. Such references take 

the form of a section number enclosed in brackets (e.g., (5.3J). 



A SWL APOLOGIA 

2.0Conl'rolStrudures 
2.1 loop and Escape Starements 

2.0CO·l'rmOL STRUCTURES 

2. 1 
··loopor,C! Escape Statements 

15 September ·1973 
Page 2-1 .. 

The chonges discussed in this section include ~ew controls\'atements (e.g.,.loop, 

return, :,~, etc.), new darafypes i'hol' are relai'edtoconh-ol mechanisms (e.g., 
". ~ 

label, procedure and coprocess variables), and modifications of existing Pascal con-

tro IstrfU ctures •.. 

201 LOOPANDESCAPE STATEMENTS [10.2.4, 10.3.5-10.3.7J 

The loop statement and the escape, statements (continue,exit, and return}.were intro

duced to replace the use of the goto statement in common programming situations 

which ~onot require the. fl:J1I generality of the goto. This wilfehcourage the 

wrITIng or niore mgmy si-rucrureu programs anosnouio Improve .ooTnr:eaoooiiiiy uno 

reliobtl ity •.. 

. The (oop statement has the effect of repeatedly executing the statements· contained. 

wB-hin the loop-loopend pair. This action continues until altered by the execution 

of some control statement within the loop- typically I an exit statement which 

causes control to pass to the statement following the end of the loop. 

The eontinuestatament is used to start a new iteration of a for, repeat I while; or loop. 
- ". ., 

statement •. The exit statement is used to terminate the execution of d structured 

statemenl, and may also be used to 'cause control to exit from an enclosing proce

dure. The return statement is provided as a convenient form of exit from the nearest 

enclosing procedure. 

While the loop and exit statements are not contained in any Pascal. language des-:

criptions; they are implemented in i"he May 1973 Pascal stack machine compiler •. 
. ' 



ASWL,APOLOGIA' 

2.0 ControlStrucl~ures 
2 .. 2 Increment on IforlStatement 

, , , 

2.2 
Increment on i For'Statement 

15 ,September 1973' 
Page 2-2, 

In order to alloy! greater flexibility in the control of the indexvdriable" an optional 

by' clause was added to the for statement. When specified, this dauseallovlS incre

ments of other than + 1 and -1. 

2.3 PROCEDURE VAR.lABLES [4.1.9, 10.3.1] 

,While Pascal allows only formal parameters to be, d~c1ared with type procedure, in 

SWL this concept' has been extendeclso that any variable can be declared to bea 

procedure variable. This extension was required t~allow the implementation of 
. . . '. 

loaders, debug packages, ond table";driven systems. 
. . . . 

, 2.4 LABEL VARIABLES [4.1.8, 10.3.8] 

Label variables are provided primarily to allow satisfactory handling of error, conditions. 
. ',':...... 

la,bel variables allow dynamic srock unstacking, including the 'sHuation in which, con

t~ol is returned to a procedure in a different compilation unit ,and alsa provide for 

alternate rerurn points from' procedures when they are used os formal parameters. 

2 .. 5 'ORIF t CLAUSE ON IIF' STATEMENT [10.2.3] 

. . '. 

A programm ing construct that arises frequently in Pascal is the following: 

if CONDl then STATl 

elSe if COi'JD2 then STAT2 
, . 

• '. 
else if CONDN then STATN '--



A SVYLAPOLOG L4 

2.0 Control Structures 
2.5 IOdf l 'C!ouse on11f' Srdemen!' 

... , 1 I i ne prOD em 

2.6 
'Eisel Clause on ICase'Statement 

15Sepfember 1973 
Poge 2-3 

in rsolHy l"he ek."! clauses become more and 

more deeply nested, and this artificial nesHnghas two unforTunate implications: 

10 An automatic source code forrnCllter will make the nesting explicit by 

. progressively indenl'ing eQch al~ernative across the page. This is 

especially serious if there are more than just a few alternatives. 

20 . The unique enclingdel imiter principle adopted for SWL (described later 

in Section 4.2) forces the programmer to code numerousifend symbols 

after the last alternative. 

These difficulties are avoided by using the orif construc!", which is essentially equiva

lent "0 else ~f without its inherent nestinq. 

2.6 IELSE' CLAUSE ON ICASE' STATEMENT . [1O.2.8J 

It often occurs that only a few cases in the possible range of a case' ~;riable require 

special handling l while all the others may be grouped together 'and handled in a 

uniform way (frequently CIS an error condition). The else clause provides a way of 

describing this situation concisely and conveniently. 

2.7 FUNCTIONS DECLARED AS PROCEDURES [4.1.9, 8.0, 8.3J 

Although the Pascal concept of not allowing functions to cause side-effects has some 

merit I it was decided that such a restrictton in SWL would be too severe. Functions 

in SVIL can therefore be viewed as procedures which return a value, and hence they 

can call other procedures and alter nonlocal variables. 

In orcler to make the distinction behveen SV/L functions and Pascal functions explicit I 

! • ! 
Vln Jen return .a va !u:..:. 



A SVYL APOLOGIA 

2.0 
2.8 

./ 

Control Structures 
Coprocesses 

2.8 COPROCESSES [::"1.10[8.0, 10.3.2-10.3.4J 

2.8 
Coprocesses 

15 September ·}973 
Page 2-4 

A set of corouHnesis a sel' of concurrently ccl"ive procedures which link together 

t'hrough a mechanism "."hi ch combines the features of "call" and "return". Some 

programs can be coded conveniently only through the. use of coroutines - an example 

is the case of a compiler that performs macro exp·ansion and syntactic analysis in the 

same pass. To simulate coroutines in a block structured language is difficult and re-· 

quires dropping into implementation dependent code. 

Coprocesses are a generalization of coroutines in which more them one· instance of a 

particular coroutine may be active at a time. This provides the equivalent of synchronous 

nrnr<:>c" tn nnnthpr . . 

explicitly by the programmer. The coprocess facilities therefore combine .the advantages 

of coroutines and parol lei processes, while avoiding the additional overhead required 

by asynchronous multiprocessing. 

Provision is made in SWL for creating a new coprocess and sto"ring its identity in a 

coprocess variable, transferring control to a coprocess and saving the state of the 

current one, and destroying a coprocess. 



ASWL APOLOGIA 

3.0 
3.1 

Datd Structures . . 

Variable Bound Arrays 

3.0 '. DATA STRUCTLlR.ES . 

3.1 
Var'ioble Bound, Arroys, 

15 'September 1973 
Page: . 3~1 

The topics dis-:llSSGd in this section include data types, data srructuringmethods,' 

attributes of variables, and storage allocation control. 

3.1 . VARIABLE BOUND ARRAYS [4.2.2] 

Pascal requires the bounds of all arrays to be known aI' compile time, making it 

impossible to code procedures which accept array parameter~,of. arbitrary size or to 

create array variables whose bounds are not knownuntjl runtime. This restriction 

has been relaxed in SWLwith j'heintroduction of variable bound arrays and adaptable 

arrays. 

A voriable bound array is a local array variable, one or more bounds of which is cn 

expression which can ani}' be evaluated at run time. In this case, the array bounds 

are evaluated upon entering the block in which the array is declared. 

Adaptable arrays contain one or more indefinite hounds, indicated by coding an 

asteriskinst.ead of an actual bound. They may be used as formal parameters,' in which 

case the indefinite . bounds assume {'he bounds of the actual parameter I. as arrays which 

are' t~ be explicitly allocated, in which case the actual bounds are specified in the 

allocate statement, or they may be made to designate an· actual array by means of 

the designdtional assignment statement. 

3.2 SLICE NOTATION [10.1.1J 

Since Pascal treats character stringsds arrays of characters, the most convenient way 

of denoting a substring is through the use of array slice notation .. An array' slice is.· 

an arra), reference in which a wbscriptrangeis specified in place of the usual index 

expression. The resulting subarraycan then be used in an array.assignment statement, 



A SWL APOLOGIA 

3,0 . Data Structures 
3.3 Storage Classes 

3.3 
Storage C las~es 

15 Septernber1973 
Page: 3-2· 

.. passed as a· parameter to ci procedure i or used genera lIy wherever an ordinary array 

can be used .. · 

3.3 STORAGE CLASSES 5.2.1/7.1.1..21 7J .1.3 

Si nce SWL is requ ired ·to support separate campi lot ion of procedures, it was necessary 

to provide a number of new storage classes. These· storage closse~ are: 

1. ~tic"; The st?,rage for the variable is allocated at load time, and 
. . 

the value of the variable is· maintained from bloc::kexit fo block 

.reentry. 

2. xdcl - The variable is treated as a static variable, and in oddiHon 
-. ... • ••• 1 I ,. .,: I 

. ITS name IS KnownexrernallY ana may oe occe::.::.eu nUHI· UIIII;:I 

compilation units by variables declared as xref. 
.. -

. 3.xref- The identifier being declared refers to an xdcl variable 

declared in another compilation unit. 

4. external ... Storage for an external variable is shared in common 

with external variables declared with the same nome in other 

compilation units. 

3.4 SEGMENTS [7.1.1.2,7.2J 

To allow greater control over the allocation of static variables and permit improved .. 
. . . . : .. . 

locality of memory references, provision is made in SWL for' naming memory segments 

and specifying that ced-ain variables and procedures are to be stored in' particular 

segments. lnaddition,a segment may be restricted to some combination of read, 
. . 

write l and execute access privileges/ in \'1hich case the compiler vii II assist in 

. detecHng violations or !hese privi leges. 



A SV;;ft.APOLOGIA 

.3.0 . Dal'a Structures 
3.5 Read-Only Variables' 

3.5 
Read-Only Variables 

15 September 1973 
Page: 3-3 

A need exisfs for vClficbleswhose value is del-ermined when the variable is declared, . 

and is then to b~ left unaltered. Examples of this are the tables for a table-driven 

compi ler I an array of character strings for error messages, etc. The advantage of 
. . 

being oble to specify tho!' a variable is not i'o be altered subsequent to initialization 

is not only that the compiler can assist in detecting violations of thisintenf, but 

also tha1' more extensive .~ptimization can be performed. This shou Id resu It in improved 

efficiency as well as reliability. 

3.6 INITIALIZATION [7.1.2J 

... .... .... • • I • .• .f 

. Although the I"ascallanguage l1as no prOVISion Tor InlTla IIZlng vanaole:> orner illUII 

by explicit assignment statements, the Pascal 6000 compilers provide the value state..; 

ment which can be used for this purpose. This method was discarded in SWLin 

. favor of an initialization clause as part of the variable declaration statement. In 

SWL, therefore, the initializal'ion information is specified in the same place as other 

declarative information for a variable/greatly improving the readability of the 

program. 

3.7 STRUCTURED DATA CONSTRUCTORS [6.2J 

Astrucl'vred data constructor is a mechanism for. describing some value of a structured 

type. Pascal already has such a mechanism for sei"si in SVv'Lthe concept was extended 

to include arrays and records as 'Nell. The prime justification for structured data 

CII.:msITuctorsis their use for initializing structured variables, but .they can be used to 

. c;uvClnioge ine>:prcssions os \vell. 



A SWL APOLOGIA 

. '3.0 Data Structures. 
3.8 Uniooof Type 

.. . 

3.8 
Union of Type 

15 September 1973 
Page: ·3-4 

Essentia-lly three. kinds. of dai-a comiTucl'orsare provided: one that builds on ordered 

list of elem8rits (i .c./ an array or record), a .sec.ond that builds an unordered set of 

elements (i.e' l a set), and a thirdl~hat builds a value of OIly specific structured' type. 

It was difficult to decide on suB-able 'bracketing char~cTers for the first two constructs. 

Braces were chosen for set constructors as being the most natura I viith respectto . 

traditional moi-·hematical notation .. Although either parentheses or angle brackets would 

have been suitable for ar~~y and. record constructors, both lead to ambigiJities in the 

language so square brackets were chosen instead. 

3.8 UNION OF 1iYPE .... [4.2.4] 

... 00 l: • fl' 1. .. r t"'\l'l .""'" _ 1 __ 1~ ____ .-I .z.L._ 0 ___ ._1 _-: ____ i. _t ... _ .. : __ 4-
'" "luuI0t' ut;::\...I=>: IVII ... : ••. J .. l'r.:: \.H::~I~ll yl . .J1t'- Y"':'''' .. IV U."."'!""'''''U'''''"' .......... "" ... 'V~. -_ •• _-1"'- __ .... _ .. _ ... , 
recordsz and to re!?iloceit with the concept of union of type as· used in Algol 68. 

The reasons for maKing this change are: 

1. Whereas fields of a Pascal. variant record can be accessed under the 

guise of any of the variants without any checking of the tag field 

being imposed by the compi ler I a SWL union of type can be accessed 

only after first ensuring that the actual type of the value is the one 

intended ... In this respect the SWL construct is more restrictive than 

the Pascal construct I and it should eliminate some programming errors 

as well as some· questionable programming practices. 

2. Union of type allows procedures to be written which accept parameters 

.. \'/hichcan assume values of more than one type. 



A SV/L P,POLOGiA 3.9 
Heaps/ Stacks, Queues/ and 
Sequences 

3.0 Data Structures· 
3.9 Heaps/ Stocks, Queues, end Sequences 

15 September 1973 
Page: 3-5 

3. D;ffer8nr\'criCl;1~S of c vorianr record frequently have several fields in 

common. Unless they appear in the fixed part of the record I Pascal 

" .1 I ! f·1 f' I J h • requir·::;s mo,' COCl o· lnese Ie 0:; ,ave a unique field identifier. This 

restriction does nor exisi' with union of lype .. 

3.9 HEAPS I STACKS I QUEUES I AND SEQUENCES [4.2.5-4.2.8/ lOA] 

Heapsl stacks/queues, and sequences were introduced as new data types in SWL 

to provide more coni"rol over storage allocation (improving memory reference locality) 

and to facilitate the handling of certain data structures. 

Heaps are areas of memory out of which variables can be allocated and freed. Since 

heaps can be local to a block, any unfreed storage in the heap is automatically re

turned when control exits from the block. 

Stocks f queues J and sequences are also areas of memory in y"hich variables can be 

'stored and removed, but they assume an addiHonal structuring ~f these variables. 

Stacks and queues are intended for the commonly used structures that their names 

imply, while sequences are used to store any data structure which is sequentially 

decodable by an algorithm provided by the programmer. Sequences are useful for 

describing slTuctures such as blocks of variable length arrays, where each array is 

preceded ~y an integer indicating its length. 

3.10 RELATiVE POI NTERS [4.1.7J 

R~lative pointers were introduced to 01 low data structures to be moved from one area 

of memOiY to another withoul' rcqu iri n9 a II poi nters to the data to be updated. An 

additionol advanl'cge of. relative pointers is that they can be more compact to store 

than regu lor poi nrers. 



A SWL APOLOGIA 

,,3.0 Daf·a Structures' 
, 3.10 Relative Pointers 

3.10 
Relative PoInters 

'15 'September 1973" 
Page:,,3~ . 

Each storogG reference using 0 relcl"ive poini·cr must speCify which memory area the 

. pointer is to be based on for that reference.' 



ASWL APOLOGIA 

4.0 Syntactic Changes 
4.1 Character Set 

4.1 
Character Set 

15 September. 1973 
Page: 4",1 

The ChC1n~jeS discI.!ssed in this section are those that involve a change in syntax only, 

and do not have any effect on the funcHon~1 capabi lities of the . language. 

4. i CHARACTER SET 

It was assumed that ASCII will·be the official charader set for the Integrated Produd 

Since Pascal uses ~~vera! characters that .are not contained in ASCII, some 

character set changes were required. These changes are summarized in the following 

fable. 

v & 

<= >= /= 

Since some SWL symbols are outside the CDC 63-character ASCII subset, alternate 

representations are provided to allow thecornpi lertobe accommodated on CYBER 

70 equipment. 

SWL symbol 

& 

{ I 

Alternate representation 

OR AND 

:] 

NOT 



A SWLAPOLOGIA 

4.0 . SyntacficCh.anges 
4.2 Uniquz Delimiters 

4.2 
Unique Delimiters 

15 September 1973 
Page: 4-2 

One of j-he ChCfflS18S tha!- gives f-he fJfeoresi' appearance of incompatibi lity with Pascal 

istheccncepf" of unique ending delimiters. As a result of adopting· this policy, each 

structuredsraremenl- is fermi noted with a symbol that is unique to that statement type. 

For example, a while loop in Pascal such as 

while COND do 

begin 

$]; 

SN 

in SWl becomes 

while COND do 

Sl; 

SN 

whilend 

The reasons for adopting the principle of unique ending delimiters are: 

1. The added redundancy in the source text allows the compiler to defect 

unbalanced delimiters at a much earlier stage, permitting it to issue 

more meaningful diognos!-ics and perform more intelligent error recovery. 



ASWL APOLOGIA 

4.0 Syntactic Change~ 
4~3' Declarations· 

4-.3 
DGclarations 

15 'September 1973 
Page: 4-3 

2. The unicrJ~: d,;;lirnir·afs creo greer aid to the human reader in matching 

the beginning and end of structured statements .. This is especially true 

if the pro.9,mn is abq formaned into paragraphs that refled the nesting 

strudure. 

3. Structured si·atemeni"s such as .:"hi Ie and for are usually composed of a 

list of component statements, rather than jusl· a singlestal"ement. In 

Pascal the list of statements must be explicitly bracketed by a begin

~~ pair. In SWLthis bracketing .is inherent in the structured state

ment itself, which in most cases provides for a more nai'uraland 

readable construct. 

existing Pascal program into one which uses unique delimiters. 

4.3 DECLARATIONS [5.1, 6.1,6.3.1, 7.1, 7.2, 8.0J 

Pasco! requires a strict ordering of constant definitions, type· definitions, variable 

declarations, and procedure declarations. It was decided that this ordering was not . 
acceptable for SWL, because of the requirement to be able· to group together all 

the constant I type r variable, and procedure declarations fora particular functional 

module. This is necessary so that the declarations can be stored away as standard 

source text , and included into user programs as required. 

As well as allowing arbitrary ordering of the different kinds of declarations, it was 

decided tho!· each declaration section should be made inl·o a single sl·atement r with 

the comp~nent declarations being separated by commas insl'ead of semic"olons as in 

Pa~caL This guards agoinst the possibility of a minor error causing the misinlerprel·ation 

of an enlire decloraHon section, end al~o 5cems [0 be a more consistent use of the 

semicolon. 



. . 

A SV/L APOLOGIA 

·4.0 S}'ntactic Changes 
4.4 Idenl'ifiers 

11.4 IDE NT! Fl E:;S [3.1] 

4.4 
Identifiers 

15 .. Septem.ber1973 . 
Page: ',4-4 

To improve readabilitYi i·he maximum length of SWL identifiers. was ·increasedto· 31 

characters, and the underscore \'/05 inhoduced OS an alphabetic character. The . . . . 

pound sign/dollar sigf},andat sign (#,$; and @:}areconsidered to be alphabetic 

and may elso be used within identifiers. 

4.5 LABEL IDENTIFIERS .' [10.0] 

Labels in SWL are denoted by identifiers, rather than by integers as in Pascal. 

Identifiers 'can be made far more' meaningful, and their use should lead to more 

readab Ie programs. 

4.6 INTEGER CONSTANTS [6.3] 

SWL provides for describing integer constants in decimal notation or in base 2, 4, 

-S,or 16 notation. The additional notations are required for describing machine 

dependent values in a convenient and readable fashion. 

4.7 COMMENTS [3.1] 

The comment delimiters were changed from braces' in Pascal to quotation marks C') 

. in SWL. This decisionwos arrived at for the following reosons: 

1. Bracketing symbols were in high demand for use as structured dato 

conSfrJctors t and broces seemed the most oppropriote, for set 

constructors. ' 



- ASWL ,APOLOCI/\ 

4.0' Syntactic Changes 
,4.7 Comments' ' 

·t7 
Comments 

15 September 1973 , 
Page:,4-5 

2:" Dr(Jec5 do nol' cppear in the CDC 63~choracter ASCII subset. Although 

em all'ernai'e represenration could. have been provided for use with 

CYSER 70 equi pmcnt r it VIaS Fe Jt~hat for such a common language 

"element as comments asing!e r u~Iform repr~sentation wqs preferable. 

3. The quotation mark was not required for use as any other symbol in 

the language . 

4. Quotation marks proved to give adequate visibility to comments, 

and we~e found to have a natural .and pleasi ng appearance. 

5. PL/I-style comments { /* and * /), the only other serious contender, 

were rejected as they were felt to be unnafural and ugly. 

Another: change in the syntax of comments was motivated by a concern for the' 

chaotic effects of inadvertantly dropping the closing delimiter of a com~ent.' (Note 

that a similar problem exists even when the opening and closing delimiters are distinct. 

Jhis case is actually more insidious r since the compiler reco'vers at the end of the' 

next comment andfhe error congo undetected.) In order to detect this situation at 

an early stager the restriction was made i'hat semicolons may not appear within 

comments. 



A SWL I~POLOGIA 

'5.0 Machi ne Dependent Features 
5.1 sLoe,' Functi~n 

5.1 
S LocI function 

,15 September 1 973 
Page: 5-,1 

The longuoge feat~res discussed in this section are those that are concerned with the 

hardware representation of variables or with actual machine instructions. This is not 

meant to imply 1 however 1 thor programs which use an'y of these features are 

necc=~y' machine dependent. Itis possible, for example 1 to write a machine 

independent memory allocation procedure using type cell and the' size, align~ent I 

and location functions. In fact, crammed records were introduced for the very 

purpose of allowing convenient transfer of information between machines of 

different arch itecture. 

5.1 sLOC' FUNCTION [11.2.11, 11.3.1, 13.2J 

It is sometimes necessary to be able to reinterpret some arbitrary part of memory 

according tc a particular type. This facility is provided in SyvL by theloc function, 

which returns the location of a variable. Use of the loc function is restricted to 

'0 direct assignment to a pointer variable, which may then be used to access memory 

according to the type of the pointer. 

The lac function may be applied only to directly addressable variables, thereby 
-' -

excluding elements of packed structures. 

5.2 CELL TYPE [13.1.1, 11.3.2-11.3.4J 

It Was felt j'hat there was a need for untyped storage in SWt, to be used for such 

applications as memory allocation routines, storage areas for interpreters, etc. A 

cell is defined to be the sma! lest unit of memory directly addressable by a pointer I 

and could be a word, a byte! or a bit, depending on the architecture of the 

,. I I • 
parrlCU cr nloctllne. 



A SV/L APOLOGIA 

'" 5,0 M~chine Dependent Features 
5.3 Crammed Records 

5.3 
Crammed Records ," 

15 September' 1973 
Page: '5-2 

"f'!.", 0"'1.,; ,",,,, .. ,",,!,',~ 'I c'~-,r.:""al ~ .. ,.., V ~ !..,l",s C ty e cell, 'IS 1·I'u,..,'t of 0<:'s'19n'me'nt. O'th'e'r" I !., . 1 .' I ,0 j' ~.I l .•• ! ,J. ',~ I " • ~ ... I • a r • a,-, .~, 0 I P I _ 

types of,access to eel! variables can be made in conjunction with th~"lbc function. 

In order to allow cell varidbles to be used in a machineindepcnclent way, a number 

of standard procedures are provi ded v/h ich re late the size of a ce II in a parl'i cu lar 

'implementation to the other SWL dat~ types. These functions are: 

1. size (arg) - returns the number af cells requiredta contain a variable 

,of the some type as larg', 

2. maligned (arg,offset I bose) - provides the offset and bose alignment 

of largl in terms of cells. 

required for a variable of the some .type as largl, 

5.3 CRAMMED RECORDS [11.3~2, 11.3.4, 13.1.2] 

Crammed records are provided to accommodate those situations where the programmer 

must have ·bit by bit control over the representaHon used for a data structure. For 

the representation of a crammed record, the bits required to store a particular field 

follow immediately after the previous field, regardless of ony natural storage unit 

boundaries. " 

Explicit control over the size of a: field and its alignment is achieved through the 

. optional use of the width and maligned attributes. 



A SWLAPOLOGIA 

5,0 . M:Jchine Dependent· Features 
: 5.4 Machine Code 

./ 

SA· MACH! NE CODE [14.4] 

5.4 
. Machine Code 

15 September '1973 
Page: 5-3 

AHhough ihenecd l'o€scap~ to inachine code should be comparatively rare, it was 

sHIJ felt n~cessary to allow the general"ion of machine code instructions directly in 

SWL. In order to control the use of this facility, all machine code statements must 

be cont~ined withinlcode blo~ksll which are groups of SWLstatements and machine 

code statements bracketed by s;ode-codend symbols. The machine~ode statements are 

distinguished by prefixing.rhem with an exclamation. point, and their syntax and 

. semantics are I~ft to the code generai'or for the particular machine involved~ 

5.5 MACHINE DEPENDENT TYPES (14.1, 14.2) 

Apart from the requirement to be aOle TO generaTe SpeCIII(; t" • . t 
1II0(;11I11t: ~UUt: 

. ... . .. ' ".-
111;)11 U~IJVII", 

there is the more common need to deal with mdchi ne dependent types and storage 

classes. Examples of these would be a page table entry type, register storage class,' 

-etc ~ All usage of such machine dependent types and storage closses mu~t appear 

~within Icode blocks'. Variables declared with machinedep~ndent storage class but 

normal type may be used in normal SWL statements, but variables declared with 

machine dependent type are restricted to assignments I equality tests, and machine . 

code statements. 



A SWL APOLOGIA 

6.0 
6.1 

'·/\i$ce!laneous Changes 
Compi le-Ti rne ro', • 

r.:xpreSSlOns 

6.1 CO/'/IPl LE-T! ME EX PRESSIO NS 

6.1 
Campi le-Time Expressions 

. 
15 September. 1973 
Page: 6-1 

SWL alloVis expressions that can be evalualed· ai' compile time to be used wherever 

constants are allowed. This reduces the amount of hand computation required of 

fhe progrornmer and provides constants with a greater information va lue (e.g.,. 

4 * page_size instead of 4096). 

6.2 'BEGI Nl BLOCKS [10.2.1] 

It was decided to provide begin-end blocks which aHaw local declarations. This 

nprmits more ettlclent use or STOraf:JC rona a:Juw:> 1110(.11,);) . 1_ L_ ........ :.L. __ ... ,:.t.... 
I v IJ~ ,,, 1 • I • "-" • .. •• t I ~ • 

which are local to the macro body. 

6,3 OPERATORS [9.2J 

The .following changes were made to the operators: 

1. In Pascal the division operator (I), when operating on two integers, 

results in a quotient of type real. Since it was felt that real numbers 

have minimal utility in a systems implementation language, this be

havior was judged to be undesirable/and that the result should be 

thaf' of integer division with truncation. This definition was adopted, 
, . 

and the Pascal integer division operator (div) was removed from the 

kmguage. 



A SWL APOLOGIA 

6.0 Iv'li see llaneous 0 C hangcs 
6 A Parameters 

6.4 
Parameters 

15 September 1973 
Page: 6-2 

2. iI- 'Nas decichd ihcdolhe 'noll operofor should be extended to sets in 

()fcbr to be able to determine the complement of QseL The ti Ide 

(~-) is used to represent" ihis operaIoor. 

3.H was felt that the minL)s sign, being an arithmetic operator, was 

nor appropriate for set difference. The tilde (-L already a unary 0 

sel' operaioor I was exrended to serve as the set difference operator. 

4. An 'exclusive or' operator (xor) was added to the language .0 

5. A rep operator is provided in SWL to form a list of repeated values, 

e.g., 

is equivalent to 

EXP2,EXP2/ •• • , EXP2 

where EXP2 is repeated EXPl times. 

6.4 PARAMETERS [4.1.9,8.2, 10.3.1] 

'Nhile the default ,method of passing parameters in Pascal is by value, it was felt that 

the more efficient method of passing parameters by reference (used for var parameters 

in Pascal) should be made more widely' .applicable and its use encouraged. To ensure 

that iohe programmer is fu Ily aware of which method is be ing used, no defau It is 

allowed and either ref or val must be specified. In order to allow constants and 

read·"only variables to be passed by reference, an additional option - ref read -

is providedi in this CO:;2 the compiler assists in detecting assignments to the parameter. 



A SWL APOLOGIA 

6.0 
6.5 

Miscellaneous Changes 
Desi gnal'iona !Assl gnment 

6.5 
Dcsignational Assignment 

15 'September 1973 
Page: 6-3 

The d::::signationa! ossi gnrn0On'l" stc:!'emenr is used to assign a reference to the variable 

on the righ}-hand side of the assignment 10 the variable on thelefl-hand side. 

The variable on the left-·hand side must be a reference variable, i .e. 1 a pointer 

varioble r an adoprable Ciroy, a procedure variable, or a label variable. The 

designotional assignment was judged to be a more satisfactory solution than achieving 

the Same result by an ordinary assignment, with a built-in function returning a 

reference on the right-hand side. 

Because of the sirn.narHy of the designational assignment statement and the 'conforms 

. to and be~ornesl operator (::=L the same representation is used for both. 

6.6 COMPfLE-ntlIE FACILITIES [12.0] 

There is a wide range of possible compi Ie-time faci lities which can be included in 

. the design of a Mgh-Ievel languoge- from none at all (the ·mostcommon approach), 

to a simple text replacement macro facility { to a PL/l-Ievel facility which provides 

cornpile-timevariables and conditionai compilation, to a powerful macro facility 

which offers an extensive list of compile-time statements, optional and keyword 

macro parameters, access to the compiler1s symbol ,table, etc. 

The correct choice for SWL was not obvious. The decision hinged upon the question 

of whether or not macros were intended to be the sole means for. handling system 

interfaces. If so, then an extensive ser of compile-time facilities would be required, 

greatly increasing the complexity of the front end of the compi fer and substantially 

decreasing compi lation speed. 



A S\VL APOLOGIJ-I, 

6.0 Miscellaneous Changes 
6.7 Files arid I/O 

6.7 
Files and I/O 

15 'September 1973 
Page: 6-4 

!,. ,\ <' I I ,I ,. I dl' t' /. f ·'·d d r f en Tne C'l riGi ncnCl! some orner means or ian tng sys em Inter aces were provl e I 

then the additional burden of powerful compileo-time facilities was felt to be un-

It was decided j'hat unn! there exisl's a clear need for something more powerful, the 

compile-rime faci !ities in SWL would be kept to a minimum. In particular, the 

following features are provided: 

1. Compile-time variables of type integer and boolean. 

2. A compi Ie-time assignment statement for all-ering the value of 

compile-time variables . 

.., 
w. 

4. A simple, parameterized text substitution facility. 

6.7 FILES AND I/O [4.2.9, 10.5J 

It was decided that adequate I/O facilities must be provided for within the SWL 

itself l since the alternative would likely be a ,Proliferation of incompatible I/O 

packages. The Pascal file variable was felt to be inadequate, however,since the 

components of a particular file variable must all be of the same type. The concept 

of a file was cha~ged, therefore, to the more traditional one which allows access 

to the file only through actual transfer of information to or from a regular variable. 
o • 

A basic set of sequential file operations is provided in SWL: get, put, rewind, file 

mode reset; write end-of-file, and end-of-file test. This set is not intended to be 

cornpfei'e 1 but further extensions must vlOit unti J more is known about the I PL data 

rfl~nag8rnent system. 



A SWL APOLOGIA 6.8 

6.0 
6.8 

6.8 

Miscellaneous Changes 
Maximum Sel" Size 

["'{ 2 11 
j. • ..J 

Maximum· Set Size· 

15 September 1973 . 
Page:6~5 

. Whi Ie the Pcsca!!anguClge s?8cifies· no lirniton the number.of elements that can be 

contained in a sel"rthe Pascal compi lers have made the restriction that a set must 

fit within one word of memory. Such a restriction is not made in SWL, and whi Ie 
. . 

there may be some implementation dependent upper bound, sets of at least 256 

elemenl"s will be allowed. This accommodates the important case of set of char. 

6.9 TYPE CHECKING [4.1.7,4.1.9,4.2.1-4.2.4J 

Most Pascal operations are defined only for two operands of the same type. Previous 

Pos.cai compilers have performed this type checking ina highly restrictive way, 

In SVIlL this r.equirement is relaxed substantially f and the following rules are used to 

determine whether two types are compatible: 

1. Record types are compatible if the corresponding component types 

are compatible and the field selector identifiers a·re the same. 

2. Array types are compatible if they have compatible element types, 

thesarne number of di mensions I and the same extent {but not 

necessarily the same bounds} for each dimension. 

3. Procedure types are compatible if the types of all the para'meters 

(including the return value t " if any) are compatible. The names 

of the forma I param8ters need nor agree .. 

4 •. Se!" types are compatible if the base types are the same scalar 



'A SWL' ApOLOGIA' 

6.0 'MiscellaneousChonges 
.. , 6~ 10typ~ Conver'siOn 

6.10 'TYPE CONVERSlON ,[11.2.4··11.2.6J 

6.10 
Type Conversion .. 

15 . September 1973 
Poge: 6-6 

Pascal's lord' and 'chr' functions allow conversion between variables of type intege:~ 

and type character~ It \'laS, decided that SWLshould' also provide for conversion 

between type integer and any user-defined 'ordinal type. Tohondle all these 

conversions in a uniform Way", one may designate a conversipo function from, one 

scalar iype to another by prefixing the tCH:get type with a dollar sign,e.g., 

type color = (red, 'green, 'blue); -' 
vc·r A: color,

B: integer; 

#~,:= $color (2); 

lfj' ,-t=, $i nteger (red); 

Ordincr¥ types are assumed to have zero-origin representation •. 

-,-,-, 


