
CON TEN T S

PREFACE

1. INTRODUCTION

l. 1
1.2
1.3
1.4

Bac k ground.
Forth at OVRO.
Forth Development History.
Scope oT this Manual.

2. FORTH OVERVIEW

2.1
2.2
2.3
2.4
2. 5
2.6
2.7
2.8
2.9

Words and the Dictionary.
The Stac k.
Block Storage.
Defining new Words.
Storing and retrieving data in memory.
Controlling Forth -- The Text Interpreter.
Typewriter output.
Conditional Branches.
The Ed i tor.

3. THE STRUCTURE OF FORTH

3. 1 General Remarks.
3.2 the Stacks.
3.3 The Dictionary.

3.3.1 Branch Structure.
3.3.2 Header Section.
3.3.3 Code and Parameter Sections.
3.3.4 Expanding and Contracting the Dictionary.

3.4 Program Control -- The Address Interpreter.
3. 5 The Text Interpreter.
3.6 Error Messages -- ABORT.
3.7 Block Input/Output.
3.8 Forth Assemblers.
3.9 Compilation of : Words.
3.10 Defining Words -- iCODE.
3.11 Branches in : Words.

3.11.1 An Unconditional Branch.
3.11.2 Conditional Branches.

3.12 Interfacing with an Operating System.
3. 12. 1 To Stand Alone or Not to Stand Alone.
3.12.2 as Interfacing Techniques.

3. 13 Mul t i programming and Real-Time App I i cat ions.
3.13.1 Priority Scheduling.
3. 13.2 Round-Rob in 5ch edu ling.
3. 13.3 Schedul ing through Operating Systems.

1-1

1-1
1-2
1-3
1-4

2-1

2-1
2-3
2-3
2-4
2-7
2-8
2-9
2-9
2-14

3-1

3-1
3-2
3-4
3-4
3-8
3-13
3-16
3-17
3-22
3-24
3-25
3-26
3-28
3-30
3-33
3-33
3-33
3-36
3-36
3-38
3-39
3-39
3-42
3-42

4. FORTH VOCABULARIES

4. 1 Introduction.
4.2 Notation.
4.3 Standard Vocabula~y List.
4.4 Special vocabularies.

4.4.1 Standard Editor.
4.4.2 Cha~acter Strings.
4.4.3 The Extended Editor.
4.4.4 Deferred Operations.
4.4.5 Double Precision Math.

4.4.5.1 Data Types.
4.4.5.2 Basic Operations.
4.4.5.3 Comparison Operations.
4.4.5.4 Shift Operations.
4.4.5.5 .Multiplication, Division.

4.4.5.6
4.4.5.7
4.4.5.8

and Normalization
Mixed-mode Operations.
Number output.
Functions.

4.4.6 File
4.4.6.1
4.4.6.2

System.
Standard File System Vocabulary.
File Maintenance Vocabulary.

A P PEN DIe E S

A. PDP-11 Implementation.

B. PDP-I0 Implementation.

C. 5DS-920 Implementation.

D. OED - Guick Edito~.

E. Forth Bibliography.

4-1

4-1
4-1
4-3
4-22
4-22
4-23
4-25
4-26
4-27
4-27
4-28
4-28
4-29

4-30
4-30
4-31
4-31
4-32
4-33
4-34

PREFACE

This is the second edition of the Caltech-OVRO Forth
Manual. It reflects numerous changes that have occurred in
the 3 1/2 years since the original publication. Chief among
these has been the shift at OVRO toward diverse Forth
applications based on PDP-II systems, many running DEC
operating systems.

Both the PDP-II and PDP-I0 systems have been revised to
take advantage of a Caltech-developed innovation in the
interpreter system. SUbstantial time and core savings
result from using an address interpreter requiring only one
machine instruction. The PDP-II system has been further
refined so that only two memory words are required for
header information in Forth dictionary entries.

Another development reflected in this Manual is the
emergence of a Forth standard vocabulary. Although the
AST.Ol and AST.Ol~ docum~nts adopted by the Astronomy Forth
Users Group in the U.S. are not fully mature language
specifications, they do provide useful guidelines for new
Forth systems. 'They help to reduce the chronic problem of
Forth installations at various institutions that all have
originated from mainstream Forth, but which have diverged
under the assault of numerous clever, but non-communicating
programmers.

I tIIOU I d Ii keto than k H. W. Hammond and D. H.
Rogstad who have been responsible for many of the
developments to the PDP-II Forth at Caltech. I thank D.
Dewey, H. W. Hammond, R. B. Leighton, and D. H.
Rogstad for reviewing this manuscript. Work at the Owens
Valley Radio Observatory is supported in part by the
National Science Foundation. This work was also supported
in part by the Caltech Jet PropulSion Laboratory.

Martin S. Ewing
3 ~une 1978

This Manual was prepared on the Caltech PDP-I0 using
the TECD and RUNOFF utilities and a Printronix printer via
the VLBI GT44 computer. It is available on machine readable
med ia.

CHAPTER 1

INTRODUCTION

1. 1 BACKGROUND.

Rapid acceptance of minicomputers for interactive data
acquisition and system control has created a need for
matching software systems. High level languages like
Fortran, Algol, or PL/l are not normallv effective in
environments with limited memory and peripheral devices.
Even when these languages can be used, they are designed for
batch processing and usually lack features needed for direct
interaction with the operator. By default many progTammeTs
have been forced to use assembly language. This is
efficient for small programsi but there can be great
practical difficulties in writing and maintaining larger
assembly programs.

The Forth system meets the problem described above; it
provides a flexible programming system for minicomputers of
moderate size. A machine with BK 16-bit words and at least
one mass storage device can make effective use of Forth.
Most new laboratorv computers will have at least this size;
programming difficulties with smaller machines increasingly
outweigh the falling cost of memory and peripherals.

Forth also has important capabilities for the designer
of microcomputer systems. Microcomputer development systems
typically have some sort o~ floppy disk storage and so may
run the full, minicomputer style Forth. Systems
incorporating microcomputers, however, often have minimal
peripheral dev~ces. Forth techni~ues are useful in these
cases as a means of writing memory-efficient code and of
implementing conversational interaction with the user.

INTRODUCTION Page 1-2

A list of the salient features of Forth will include
the following:

1. Incremental compilation and assembly,

2. Push-down stack for parameters and data,
re-entrancy,

3. Simple language extensibilitYI

4. On-line editing, rapid compilation,

5. Structured programming encouraged,

6. Typewriter driven system, minimal prompting,

natural

7. Easy trade-off between compact interpretive code
and fast machine-language code, and

8. Machine independence for high level programs.

1.2 FORTH AT OVRO.

The Forth system has been adopted for numerous
applications by the California Institute of Technology Owens
Valley Radio Observatory. These include control of the 3
OVRO telescope syst~ms: the 27 m interferometer, the 40 m
telescope, and the new 10 m millimeter telescopes. These
systems require Forth's capabilities for real-time control
of antenna servos, data acquisition, user interactive
control, and easy program maintenance.

Other OVRO applications include more specialized
instruments: the Caltech-JPL Mark II VLBI Processor, and a
1024 channel autocorrelation spectrometer. In the former
case a heavy real-time control requirement was combined with
the need for geometriC model calculations of very high (64
bit) accuracy. In all cases, Forth has been used as an
intimate and highly flexible hardware debugging tool.

Forth systems at Caltech have been implemented on the
PDP-11, PDP-10, and 505-920 computers. A wide variety of
other computers has been used at other institutions; these
include the Nova, HP 2100, Varian, and Modcomp machines.

INTRODUCTION Page 1-3

1.3 FORTH DEVELOPMENT HISTORY.

The guiding spirit in the development of Forth has been
C. H. Moore, who with E. R. Rather constructed the first
Forth systems at the National Radio Astronomy Observatory.
Since that time (ca. 1973), they and others have continued
as a private company (Forth, Inc., Manhattan Beach, Ca.) to
develop the Forth system for a wide variety of applications,
both scientific and commercial. The name UForth ll is claimed
as a reg i stered trademark by Forth, Inc.

Many other individuals and organizations have adapted
Forth to their re~uirements. Most non-commercial user
activity is still in the area of astronomy; astronomy users
groups have been established both in Europe* and the U.S.**

Work by the U.S. users group has led to the adoption
of a Forth language standard, AST-01, and an extension,
AST-01X. The Caltech-OVRO Forth systems vary from that
standard to some degree. In cases where there is
disagreement, botn usages will be given. It is the
intention of the Caltech-OVRO group gradually to move to the
standard.

NOTE

AST-01 and AST-01X are
standards adopted only by the
U.S. Forth Astronomv Users
Group and have no relationship
to products offered by Forth,
Inc.

*Contact Dr. Pater W.
Andrew. Fife, U.K.

Hill, Observatory, University of St.

**Contact Dr. Robert w. Milkey, Kitt Peak National
Observatory, Tucson, Arizona.

INTRODUCTION Page 1-4

1.4 SCOPE OF THIS MANUAL.

Chapter 2 is intended as an introduction for the new
user of Forth. That Chapter and the vocabulary lists of
Chapter 4 should provide you with enough information to
begin programming at a Forth terminal.

Chapter 3 provides more detailed descriptions of the
internal mechanisms of Forth; the presentation assumes some
practical knowledge of Forth. This Chapter should help you
if you develop or maintain Forth systems.

Chapter 4 contains the "standard" Forth vocabularies.
the one used in the Caltech-OVRO Forth, AST-01, and AST-OIX.
The appendices give the implementation details for various
Caltech systems. A Bibliography sets out the (rather
sparse) publications available.

CHAPTER 2

FORTH OVERVIEW

2. 1 WORDS AND THE DICTIONARY.

The central element of the Forth system is the "~ord".
A Forth word is like a subroutine or procedure in other
languagesi executing, 01" calling, a ~ord causes a definite
sequence of actions to be performed. The reason for calling
a Forth rQutine a "word" is that it nearly always has a name
that is known to the keyboard interpreter: it can be
executed simply by typing its name. Thus Forth words are
equivalent to words of text (English or nonsense) that ~ou
can type on the keyboard.

NOTE

You must be careful to
distinguish a "Forth word",
which is like a subroutine,
from a "memory word", which is
a unit of storage (e.g. 16
bits>.

Words are defined in the dictionary, which, like
English dictionaries, is a table of word-names and their
definitions. Two types of definitions occur in the Forth
dictionary. Words may be defined in terms of other words
that are defined earlier, 01" words may be defined by a
sequence of machine language instructions. Ultimately, of
course, all Forth words must resolve into machine
i nstructi ons.

FORTH OVERVIEW Page 2-2

As a Forth user, you may type in words (more precisely,
word names) to your keyboard terminal. Forth permits a very
general and free-form input. With few exceptions, any
combination of letters, numbers, or other characters can be
used to name a word. One character, normally a "blank", is
reserved to delimit words. A few other characters are
reserved to let you correct errors in typing. (For
Caltech-OVRO PDP-I0/l1 systems "del" or "rubout" lets you
retract the last character you typed, and "CTRL-U" or ""U"
cancels the entire curre~t line you are typing.)

One rule for recognizing Forth word names may be
unfamiliar. Words are distinguished on the basis of their
first N characters and their total length. (In current
Caltech-OVRO systems N=4.) N is chosen as a tradeoff between
memory savings and freedom in choosing names. Examples of
recognizable and distinguishable Forth word names are
presented in Fig. 2. 1.

lA?@XX. :
X
FOURTEEN

ABCDEFG
ABCDXXX

ABCDEFG
ABCDEFGH

SOME-ARE-LONG

SUM

(recognizable word5)

(equivalent -- not distinguishable)

(not equivalent -- distinguishable)

Fig. 2.1 Recognition and Distinction of Forth words.

If you type in a "word" that can't be found in the
dictionary, Forth sees if the "word" makes sense as a
number. If so, the "~ord" is converted to binary and pushed
on the stack (explained below>. If a "word" you type is not
in the dictionary and is not a number, Forth issues its
standard error message -- a question mark.

FORTH OVERVIEW Page 2-3

2. 2 THE STACK.

Numbers and other data are normally handled through the
Forth "stack". This is a so-called "push-dollln" stack. Such
a stack is a way to store data such that the most recently
stored items are immediately accessible. Nelli data "pushes
dotlln ll older items. When an item is no longer required, it
is IIpopped ll off the top of the stack, making older items
available again. (The push-down stack is a last-in
first-out queue.)

The purpose of the stack is to provide you with an
efficient means of handling data and intermediate results in
the course of a calculation. (~ust as do the HP II RPN"
calculators HP-25, HP-67, etc.) La'belled variables to
hold intermediate data are not required in most cases.
Since the space used by the stack is shared by nearly all
Forth words, there is a considerable saving in memory.

Most Forth words operate on data you supply on the
stack, pop their input data, and push the results onto the
stack. For simplicity, the Forth convention is that you
must type the arguments of a function (Forth word) before
you type the word i tsel f; i. e. you must give commands in
IIreverse Polish notation". An example

(1 + 2) * (3 + 4)

may be written

12+ 3 4 + *

2.3 BLOCK STORAGE.

In most practical applications Forth requires an
auxiliary mass-storage device. IBM-style magnetic tape,
DECtape, cassette tapes, and floppy disks are all usable for
this purpose, although a high-speed disk unit is preferable.
In any case, a random-access technique is required. *
*IBM-compatible magnetic tape is conventionally used for
sequential, not random access. Random access (with update
in place) can be achieved by using preformatted tape with
long inter-record gaps.

FORTH OVERVIEW Page 2-4

The storage device is divided into fixed-length
"blocks", normally 512 words = 1024 characters long. These
blocks may be used as a sort of "virtual memory", i. e. you
may store data in blocks when you don't have enough room in
main memory. Blocks are suitable for holding large amounts
of experimental data, for example. They are also used for
the Forth system itself: the Forth binary obJect program
and the Forth source (text) for loading the standard system
and for users' applications.

Forth handles its transactions with the block storage
device in a simple and device-independent way. Blocks are
simply numbered sequentially from 0 to some high number.
Two buffers in main memory hold the last two blocks you have
used. In order to retrieve a new block, you type BLOCK,
which takes the number you've put on the top of the stack as
a block number, r~ads the block into a buffer, and returns
the address of that buffer on top of the stack.

Iof you want to change the data in a bloc k, you type
UPDATE after BLOCK. Then, before the buffer holding your
block is released for a new BLOCK command, it will be
rewritten to block storage. You can type FLUSH to rewrite
updated blocks explicitly_

2.4 DEFINING NEW WORDS.

The "standard ll Forth system has around 200 words
defined in its dictionary. These provide the functions most
commonly need in useful application programs. "Writing" a
Forth program actually consists of defining new Forth words,
which draw on the old vocabulary, and which in turn may be
used to define even more complex applications.

Forth provides a number of ways of defining new words.
The language even gives you ways of defining words that
define words. (It is an extensible language.)

The word CODE permits you to define words whose actions
are expressed directly in machine- or assembly-language
(terms used synonymously). CODE words are clearly
machine-dependent, but they give you the means to get

**Throughout the Manual Forth Ulords and typed input to Forth
will be underlined for clarity.

FORTH OVERVIEW Page 2-5

maximum execution speed. If the tightest loops of your
program are in CODE words, you may find that your Forth
program is as fast as a pure assembler program.

A sample CODE definition follows:

CODE + Q §. l:t MOV, §. 1 Q. ADD, NEXT,

Here the Forth word + is defined as three PDP-I!
instructions. Their action is to sum the top two stack
values and leave the result instead. For further
information consult Section 3.8 and the assembler
description of your particular machine.

With the word ~ (colon) you can define Forth words in
terms of other Forth words. Colon definitions are fairly
machine independent. They do not have the full speed of a
CODE word, but they are much easier to write. Colon words
often use less memory than CODE words.

Each func t i on i nvok ed (i. e. word referenc ed) ina .:....
definition takes one memory word (one byte in some
microcomputer versions>. This memory word holds a pointer
(address) to the Forth word that is to be invoked. The
computer operates in an interpretive mode while a ~ word is
being executed: a se~uence of pointers controls the
computer. The interpreter overhead is quite tolerable in
most cases ranging from 2 to 8 microseconds in the
Caltech-OVRO PDP-11/40 version. These figures are
comparable to and often somewhat better than equivalent
subroutine calls in assembler language.

This is an example of a Forth ~ definition:

.:.... .:.... CONVERT COUNT TYPE L

Here the word .:.... (period) is defined as the sequence
CONVERT, COUNT, TYPE, where these words are assumed present
in the dictionary when you type in the example. Semicolon
(L) is a word with the special meaning: "end_
definition".

There are other, more specialized, ways to define Forth
words. Numeric constants can be defined wi th the word
CONSTANT. For example,

31415 CONSTANT PI-TIMES-10000

FORTH OVERVIEW Page 2-6

defines the Forth word PI-TIMES-IOOOO. Whenever vou type
this word, the constant 31415 will be pushed on the stack.

Often you find that it is awkward to have all your data
on the stac k at once. You can store data in single named
memory words. The Forth word VARIABLE (INTEGER on older
systems) lets you reserve and name such locations. Type

13 VARIABLE ~

to define the Forth word~. When you type ~I the address of
the storage location corresponding to ~ is pushed on the
stack. The number you typed (13) sets the initial contents
of the storage location.

If you need to reserve a multiword block of memory for
data, you can use ARRAY:

25 ARRAY DATA

Th i s e xamp I e reserves 25 memory words named uDATA". When
you t y p eliDA T A" , you get b a c k the add res S 0 f the of irs t
memory word. You can add an index to the first address if
you want the address of a later .word.

,
Very often the only way you want to access data in an

array is through an indexl e. g. the .!.-th word in an array.
The preferred way to define such an array is with the ()DIM
word:

16 ()DIM FDa

Like ARRAY, ()DIM reserves the indicated number of memory
words under the name FOD. When you wish to access any of
the data in FOO, however, you must supply an index. For
examp I el

Here you are specifying the 3rd item in array FDD.
get back is the memory address of the 3rd word.

What you

()DIM is better than ARRAY because you don't have to
worry about the addressing scheme of your computer or about
the precision of your data. (In some machines, e. g.
PDP-ll, adJacent fullwords have addresses differing by 2
because they use byte addressing.)

FORTH OVERVIEW Page 2-7

2. 5 STORING AND RETRIEVING DATA IN MEMORY.

The word l is provided so you can "read out" data from
any address. You type

<address> !

where <address> is any valid memory address to retrieve the
data stored there. (The data replaces <address> on the
stack.) Thus type

to get the integer in variable ~ (initially 13).

To "write" data from the stack into a location in
memory you type

<value> <address> l

Here <value> is stored in location
concretely,

<address:>. More

stores a new value (148) in variable~. (Note that both
"148" and ~ push numbers on the stack. The "store" word [1]
stores the data away and then pops both input data from the
stack.)

Another little program might run

1. VARIABLE ABC
ABC ! MINUS ABC I

In the first line ~ is defined with initial value 1. In
the second, the address of the integer (ABC) is placed on
the stack, the value at that address is fetched (!), the
value is negated (MINUS), the address is again placed on the
stac k, (ABC), and th e negated value is stored bac kin the
integer location (l). This is a slow but feasible way to
negate an integer.

FORTH OVERVIEW Page 2-8

2.6 CONTROLLING FORTH -- THE TEXT INTERPRETER.

You normally control a Forth computer from your
terminal. The system is idle and listening for anything
from the keyboard until you type in a complete line. When
Forth gets a full line (ended with "return"), it attempts to
execute the words (or numbers) you have typed.

Many times you will want to avoid typing long,
standard, or repetitive sequences of words. For example,
once you have debugged a new word, you don't want to have to
type it in again. 'The Forth text editor (see below) lets
you store away the program (in source text form) in a block.
To define the word, or collection of words, in the future
all you need to do is type

LOAD is a word that temporarily redirects Forth's text
interpreter away from your terminal to the block number you
specify. Almost any user commands (Forth words) you could
type directly can be executed from a block via LOAD.

Each block to be loaded must end with the special word
is, which restores the text interpreter to the source
previously in effect. Note that LOADs may be nested; a
block to be loaded may contain LOADs itself.

A block might contain the following text:

If you were to load this block, Forth's response would be to
convert and push "2" on the stack (twice), add those
numbers, and type the result (4) on the typewriter. After
this, block number 13 is loaded (with whatever commands are
contained there>' Finally the L.§. returns control to the
calling program (e. g. to the typewriter).

FORTH OVERVIEW Page 2-9

2.7 TYPEWRITER OUTPUT.

Output from Forth normally comes to your terminal
(typewriter or CRT). A few basic words will suffice for
many applications. You can type a number from the stack
with the word ~ <period). Question mark 1 uses an address
on the stack and types the number that lies at that address.

The base used for numeric input and output is
determined by the variable BASE. BASE may have any value
from 2 through 10 (decimal>. Some implementations allow
base 16 as well. The special words OCTAL and DECIMAL let
you set BASE automatically. The default number base should
be decimal, but you should check this on your system.

For typing arbitrary strings of data you may use ~.
TYPE takes two numbers on the stack:

<pointer> <character count> TYPE

The nature of the pointer depends on the system. In the
PDP-ll, it is simply a byte address that indicates the first
character to be typed. For the PDP-10, it is a byte-pointer
with the same errect. Beginning with the specified
character, TYPE puts out se~uential characters until the
count is satisfied.

Terminal input and output save space by using the same
buffer in main memory. To avoid problems you should use
only one output word on a command linei you should place an
output word at the end of the command. For example

typed in as one line will give you only "123" on your
terminal. This is because "456 . II is wiped out when "123"
is typed.

2.8 CONDITIONAL BRANCHES.

Forth gives you several means to direct the flow of
execution. The methods described here work only within ~
definitions; ather similar words are available in the Forth
aS5emb lers.

FORTH OVERVIEW Page 2-10

The simplest conditional branch is specified by the
words BEGIN and END. Consider the following example:

~ EXAMPLE 1 BEGIN 1 = DUP ~ ~ L

BEGIN signals the beginning of a loop. When
gets to the END (during execution of EXAMPLE),
return to the BEGIN if and only if the current
is zero. The value is popped after testing
Forth words pop their input arguments.

the program
control will
stack value
Just as most

This is what happens when you execute EXAMPLE: The
value 1 is pushed on the stack and the program enters the
loop. Again, 1 is pushed; then subtracted from 1 to leave
O. The 0 value is duplicated (DUP) and tested by END; then
the duplicated value is popped from the stack. Since END
found a 0, control returns to BEGIN; 1 is again subtracted,
leaving -1. END finds -1 and control passes through to DROP
where the remaining -1 value is popped. Control returns to
the calling word, e. g. to the interpreter if you we~e

typing.

The BEGIN - END construction is useful for program
loops where the loop termination condition can conveniently
be expressed by leaving a zero or non-zero value on the
stac k.

A looping facility more like the Fortran DO-LOOP is
provided through the words DO, LOOP, and +LOOP. Another
examp Ie:

When you execute EX2, the constants 5 and 0 are pushed on
the stack. DO takes these numbers to be the limit and
initial index for the loop, respectively. The limit and
index disappear from the stack and are placed on a hidden
internal stack (the return stack)*. Control passes into the
loop. The word ~ retrieves the current loop index value and
pushes it on the stack. The value is typed (and popped) by
_ LOOP increments the index value by 1, then tests it
agains the limit. If the new index value is still less than
the 1 i mit I con tr 0 Ire t urn s tot h e DO (i. e. tot h e poi n t
Just after DO), Otherwise the limit and index are popped

*Thus data calculated outside the DO - ~ range can be
passed into the range without interfering with loop indices.

FORTH OVERVIEW Page 2-11

off the internal stack and control passes out of the loop.

Thus when you execute EX2, you get

o 1 234

typed on your terminal.

NOTE

The index of a DO stops one
short of the limit. The limit
gives the number of times the
loop is executed if the
initial index is O. The range
of a loop is always executed
at least once.

Words ~ and ~ are defined like 1 to let you retrieve
indices in nested ~ loops. In the word EX3, defined as

1 retrieves the innermost index, ~ the next outer, and ~ the
outermost; CR causes a carriage return. EX3 should give
you the following output. (Again, each index stops one
short of its 1 imi t.)

-1 1 3
013

-1 2 3
023

-1 1 4
014

-1 2 4
024

If you need an increment other than +1 in your loop,
you can use +LOOP. Here is an example:

,;.. EX4 Q. 2. DO 1. ~ -1 +LOOP L

Here again 0 is the limit and 5 the initial index for the
loop. EX4 proceed s 1 ike EX2, exc.ept that +LOOP takes the

FORTH OVERVIEW Page 2-12

current stack value to be the loop increment. (+LOOP tests
the index in a way that depends on the sign of the
increment. For a positive increment the test is the same as
for LOOP; when the increment is negative, the loop will run
once with the index eq,ual to the limit. Thus the output of
~ is

543210.)

Variable increments are also possible with +LOOP: whatever
wo r dis 1 eft 0 nth e s ta c k t*l en +LOOP i sex e cut e d will be
used for the increment. •

The general conditional branch in Forth will be
familiar to users of Algol or PL/1: an IF - THEN - ELSE
construction. Assume that TRUE-CLAUSE and FALSE-CLAUSE are
words that have previously been defined; then define EX5 as
follows:

_ EX5 IF TRUE-CLAUSE ELSE FALSE-CLAUSE ~ L

When you run EX5, IF tests <and pops) the current stack
value; if it is non-zero, TRUE-CLAUSE runs, otherwise
FALSE-CLAUSE runs. In general, control flows as shoUln in
the following line -

if <value>. eq.O
1------------------:

v
<value> IF <t~ue-code> ELSE <false-code> THEN

:-------------~-----------:

In some cases you only need to test for a "true"
condition, e. g.

~ EX6 IF TRUE-CLAUSE THEN L

Here TRUE-CLAUSE is run if and onl~ if the current stack
value is non-zero ("true ll

). The logical diagram is

FORTH OVERVIEW Page 2-13

if <value:>. eq.O
:--------~-----~-~---:

v
<value> IF <true-code> THEN

A more realistic example of a program using conditional
branches might look like this:

,;". FUNCTION DUP Q. ~ IE MINUS ELSE DROP Q. THEN DUP PUP * !: L

FUNCTION takes the current stack value (say ~) as input and
, retUT'ns

o if.!. . GE. 0, and

o. (Fortran notation)

Let us briefly explain what happens in FUNCTION. The
word ~ is a binaT'Y function that returns 1 if the
next-to-current stack value is less than the current value;
otherwise it returns O. MINUS replaces the current stack
value with its negative, and ~ returns the product of the
top two values.

When you executed FUNCTION, the input value (~) is
dup 1 i cated CDUP) and tested agai nst 0 (2. S>' I f ~ < 0, S.
returns 1, and IF will transfer control to the true-clause
(MINUS>' The current stack value at this time will be 1.'
since both ~ and IF will have popped the stack. MINUS then
negates 1.' and control bypasses the ELSE clause (the
false-clause) and resumes following THEN. The current stack
value (-1.) is then cubed COUP DUP !: ~), and FUNCTION is
done.

On the other hand, if x were .GE. 0, IF would transfer
to the false-clause <DROP Q). Here!. is popped and replaced
with O. Control then passes over THEN, 0 is cubed, leaving
o on the stack. Like Fortran and other common languages,
Forth lets you nest BEGIN - ENDs, DO - ~s, IF THENs,
etc., provided that the range of a nested loop or branch
lies strictly within the range of all the branches and loops
that contain it. For example,

FORTH OVERVIEW

... DO
N.L.=1

IF
2

IF
3

THEN
3

ELSE
2

THEN
2

Page 2-14

LOOP
1

is a valid ordering. (Note the indication of nesting
levels.) The following is invalid:

... DO ... IF LOOP . .. THEN

In this case the range if the IF-THEN does not lie within
the range of the DO-LOOP.

Unlike Fortran, Forth does not let you "GO TO" an
arb i trary 1 ocat i on wi th a statement labe 1 (numb er >. In
general, IF is the only way you have to make a forward Jump.
The loss is not serious if you take care to "structure" your
programs it turns out that most "GO TOs" are unnecessary.

2.9 THE EDITOR.

In preceding sections, the Forth block storage scheme
was introduced. A maJor use for block storage is to hold
text data, Forth source code for example. The way you can
enter and modify text in Forth blocks is with the Forth text
ed i tor.

In the Caltech-OVRO versions of Forth, at least two
editors are available. The basic editor (EDIT) is very
compact but gives you everything you need to modify text a
line at a time. The extended editor (XED) includes flexible
str ing man i pulat ions and lets you search for, insert, or
delete text strings anywhere in a block.

For the PDP-11 systems containing a VT-11 vector
graphics system (the Cal~ech-JPL VLBI Processor's GT44 and
the OVRO 1024-channel autocorrelator's GT40) there is a
special editor called QED. This editor uses the refreshed
display to show a block being edited and a cursor within the
block. Flexible cursor controls and text manipulations are
available. <Refer to Appendix D.)

The standard block length for Forth systems is 512
16-bit words = 1024 8-bit characters. This is
conventionally divided into 16 lines of 64 characters. * (The

*This format only applies to block to be used for text. Any
block may also be used for binary data, in which case you
can choose any format.

FORTH OVERVIEW Page 2-15

64th character of a line ~s logicall~ Just before the first
character of the next line.)

The variable BLK is used to'hold the Forth block to be
edited, thus to edit block 35, we type

If you want to list the entire block 35, you type

~s a side effect LIST sets BLK to equal the specified block.
To list blocks 35 through 40 at once, you type

To list Just one line (say the 5th) of the current
,block, you type

You can delete the second line by typing

R deletes the line by moving up all the lines following the
one you delete. The last line (16) should be filled with
blanks.

To enter new text into a block you first need the
special words ~ or L to put a line of text into an internal
buffer. Guote (") enters all text up to the next quote into
the buffer. Left parenthesis (1) does the same except that
the text line must be terminated with a right parenthesis
<1.>. Thus

and

i THIS IS 6 I&!l STRING)

bot h p I ace II TH I SIS A TEXT STR I NG" in tot he b u f fer. I f
needed, bl.anks are added to the right to make 64 characters.
Note that, 1 ike any words, II and 1 must have a blank

FORTH OVERVIEW Page 2-16

following in the input. The text string to go into the
buffer begins after this necessar~ blank. The: or L that
terminates the text is Just a "delimiter"i it needs no
preceding blank.

On~e ~ou have got the new text entered in the buffer
with : or 1, you may use it to replace (R) an existing line
or to insert (~) following an existing line. To replace
line 3 of block 10 with "Faa BAR", you could type

To insert 'THIS IS A aUOTE:
10 you can type

"' after line 12 of block

10 BLK 1. 1. THIS IS ~ GUOTE: .:1. 12 1..

(Here you must use the 1. - L construction to enter a string
containing a q,uote.) 1. inserts the line following line 12 by
first moving lines 13 through 15 down one. The old line 16
is lost.

After a I or Q operation the line that was typed or
deleted is automatically copied into the internal buffer,
ready for a possible R or~. For example

has the effect of moving line 14 to line 3, with lines 4
13 moving down one.

After an editing session you should be careful that the
updated blocks are actually written back into block storage.
Forth usually takes care of this correctly, but you still
may want to type FLUSH to make certain. You get rid of the
editor by typing FORGET EDITOR, i.e. the editor's
dictionary space is reclaimed.

CHAPTER 3

THE STRUCTURE OF FORTH.

This Chapter provides a more thorough description of
the Forth system. The reader is assumed to be familiar with
the preceding Chapters and to have had a significant amount
of· "hands-on" experience with a Forth computer. The
presentation is intended for implementers and systems
programmers, but it should be useful to more casual
programmers who want to know how to make the most efficient
use of Forth.

3. 1 GENERAL REMARKS.

It is important to stress that Forth is a complete
programming system, not merely a language. In some
versions, Forth provides all the software functions of the
computer on which it is run. This includes preparation of
programs (text editing), compilation (or assembly) of
programs, debugging and input/output operations through
direct-access or typewriter devices. In other versions of
Forth, including several Caltech-OVRO systems, Forth runs as
a Job or task under a standard operating system. The
operating system provides standard interfaces for liD,
scheduling, and memory management.

Forth has been designed around certain basic concepts
which serve to distinguish it from other systems. These
include the dictionary, the address interpreter, and the
technique of compilation. Less crucial but still
distinctive features are block 1/0, the parameter stack, the
text interpreter, and the assembly technique.

THE STRUCTURE OF FORTH. Page 3-2

Such features do not really define a language. There
is a Forth language, however: one that we can call
"standard" Forth (SF). In this language concrete words are
defined, such as ~, BLOCK, and DO. SF may be compared with
other programming languages like Fortran, Basic, or Algol~

SF could in principle be implement~d with a compiler like a
Fortran compiler, and run like Fortran in a batch
processor. * But Forth's distinctive incremental
compile/debug approach is much more productive and is well
suited to the way real minicomputers are used.

3. 2 THE STACKS.

Modern minicomputers generally have very flexible
addressing methods; these are heavily used in Forth
systems. An important example is the use of push-down
stacks. Most Forth systams use two stacks extensively: a
parameter stack and a return stack.

The parameter stack, often simply called "the stack",
is the one most visible to the applications programmer. It
is used as the primary vehicle for input and output data for
Forth words. Usually data types such as integer, double
precision integer, and floating point are intermixed freely
on the stack. Context usually suffices to distinguish
types.

The push-down stack accounts for the "unnatural"
reverse Polish notation of Forth. That is, all parameters
must be placed on the stack before they are operated upon.
Thus the algebraic expression

could be written in Forth as

The advantages derived from the stack techni~ue include
simplicity in the compiler, easy addressing at execution
time, economy of main storage, and ease of providing

*In fact a card-oriented Forth for the IBM 360 has been
developed at the NRAO.

THE STRUCTURE OF FORTH. Page 3-3

reentrant code for real-time systems. Against such
advantages must be counted the inconvenience. especially for
new Forth programmers, of placing all the arguments before
the operators.

The pa,rameter stack is commonly implemented beginning
near the high end of main memory and growing downward toward
the dictionary, which grows upward (see Fig. 3.1>'

high limit

memory
addresses

10111 limit

Figure 3. 1.

....

• " " .. " .. " " "

,

" return stack

v
v parameter stack
v

user application
dictionary

: "standard" Forth
dictionary

,,, " " .. • " " ~ I) • • " 0 I)

I Forth obJect dictionary
(kernel)

block buffer 2

block buffer 1

Memory layout of a typical Forth system.

The "return stack" is separate from the parameter
stack; it is used primarily for the execution of ~-words;
this application is described later in this Chapter .

•

THE STRUCTURE OF FORTH. Page 3-4

Various other information may be placed on the return stack.
This stack is normally used to hold indices and limits for
DO loops. Using the return stack Tor this purpose, the
implementer avoids having the loop information on the
parameter stack where it might lie in the way of data for
other calculations.

In the same vein, the word >R is deTined to take one
word from the parameter stack and save it on the return
stack. ~ has the reverse effect.

3.3 THE DICTIONARY.

The Forth dictionary is the heart of the system. All
programs written in Forth appear as ~ords or collections of
words in the dictionary. The organization of the dictionary
and the details of dictionary entries differ between various
Forth implementations. In this Section we will principally
describe the Caltech-OVRO Forth for PDP-II.

3.3. I Branch Structure.

Forth dictionaries are organized as threaded lists each
of whose elements is the definition of a word. The simplest
list structure would have a single linear thread connecting
the Forth words in the sequence of their definition. Fe~

Forth systems use this simpl~ method, since efficiency in
search time and memory space can be gained rather easily.

The dictionary list structure developed
Caltech-OVRO PDP-II systems is sketched in Fig.

for
3.2.

the

THE STRUCTURE OF FORTH. Page 3-5

:-------:
a.. ________

-~------

• 0 <-- 0 <-- 0 <--•
:-------: ------- -------
• parm • parm parm • •
:fields • fields fields •
1-------1 -------- -------
1-------1 ... -------: :-------
I link <-- link <-- • link <--I •
1-------1 -------1 1--------
I parm parm , parm , I

Ifields , fields , Ifields , I

:--------1 --------: 1---.... ---

1------- _------ :-------1
• link <-- link <-- • link <--t • l--------

c-. ______

I 1-------1
• parm parm • parm • •
:fields fields :fields • • 1------- ---_ ... _- ,-----~-I

1-------1 1------- I--aa.----
• link --- <-- • link <-- • link <--I • I

1-------1 1------- 1-------
I parm « I parm f parm • • • ,
Ifields • Ifields Ifields t

:-------1 J------- :-------

HEAD ,----------------: ------------------ : -- . . . - :.----------:
VECTOR I HEAD(O): HEAD (1) I : HEAD (15) :

I----------------I-----~------------I-- .. -:----------:
Fig. 3.2 Dictionary Organization.

The dictionary is split into 16 threads or branches. The
branch in ~hich a ~ord appears is a function of its name.
Thus to find a particular word by name, it is only necessary
to search one branch. (The scheme amounts to a "hash code"
for accessing words by name.)

THE STRUCTURE OF FORTH. Page 3-6

The head, or growing end, of the list is defined by a
16-element vector of painters. These painters aim at the
most recently defined word in each branch. A field in each
word definition in turn points to the previous word in the
same branch. (The exact target of the link may not be the
link of the previous work; some versions have the link
pointi ng to th e previ ous link plus one, for instance.) Each
branch terminates with a word having zero link field.
Definitions in different branches may be interleaved
arbitrarily in memory.

A different dictionary organization has been adopted by
most Forth users (but not Caltech-OVRO at this writing).
The principle is to divide the dictionary into branches
similar to those discussed above. In this scheme however,
the branch in which a given word appears is under control of
the user. The programmer segregates wards according to the
context of their application; such groupings are known as
"vocabularies". The words VOCABULARY and DEFINITIONS
control the branching. Figure 3.3 illustrates the
VOCABULARY technique.

THE STRUCTURE OF FORTH.

central
vocabularv
(FORTH)

Page 3-7

:--------~~~------------:

1---------------
more
(FORTH)

:---------------
I------~~-------------~-:
• •

I---------~-----I
editor

I vocabulary
: (EDITOR)
1---------------1

HEAD(EDITOR)

:---------------:
I more
I (FORTH)
:--~------~-----:

HEAD(FORTH)

Fig. 3.3 VOCABULARY branching.

:----~----------:
assembler

I vocabularv
I (ASSEMBLER)
:---------------:

.'"

HEAD(ASSEMBLER)

An unlimited number of HEAD pointers can be maintained;
each one points to the last defined word in a dictionary
branch. Branches merge as you trace back in memory until
finally all searches end at the first Forth word in the root
(FORTH) segment. A forth word in one branch cannot execute
(01" interfere with) a word in another parallel branch except
by explicit arrangement. Thus the VOCABULARY arrangement
gives you some program security and can eliminate problems
with unintentional multiple word definitions.

There are Just two circumstances in whichy6u have to
specify what branch you are using. Most obviously, you need
to say what branch will be searched when you type a Forth
word. Only one branch and its HEAD are active at a time.
Thus if EDITOR is the current branch for searching, you
cannot type a word defined only in the ASSEMBLER branch.

THE STRUCTURE OF FORTH. Page 3-8

The other circumstance is when you are definining new words:
what branch should they be compiled into?

The branches in effect for word look-ups and for
compiling do not have to be the same. For example, you may
wish to use the ASSEMBLER vocabulary when you are compiling
a CODE word in some other branch.

We briefly describe the action of VOCABULARY and
DEFINITIONS. If you type

VOCABULARY FOO

a new branch of the dictionary is formed. The branch leaves
the current dictionary branch (FORTH or the last one
specified by DEFINITIONS) at its current head. A new Forth
word EQQ is created. When you type EQQ, the dictionary
branch to be used for further dictionary searches is
switched to the FOO branch, i.e. the one you've Just
created. Similarly, any time you type FORTH, ASSEMBLER,
etc .• you switch to the corresponding branch.

If you type DEFINITIONS, the dictionary branch to be
used for compiling is switched to the current branch used
for searching.

3.3.2 Header Section.

The detailed format of a word in the dictionary varies
between Forth implementations. This section describes the
format used in the Caltech-OVRO PDP-11 Forth. This format
is notable in its very efficient use of memory. Only two
memory words of header are re~uired in most cases, even when
we use 4 characters plus count for a word name. *

Each word definition in the 16-way PDP-11 dictionary
contains a "header" which defines the word name (first 4
characters and count), precedence, and the link to the
previous word in the same dictionary branch. These data are

*Previous Forth implementations for 16-bit computers have
generally re~uired 3 - 5 words for header information and
typically recognized only the first 3 characters plus count.
The core savings for the Caltech-OVRO PDP-11 system may
exceed 1,000 memory words in a large Forth application.

THE STRUCTURE OF FORTH. Page 3-9

efficiently encoded into two 16-bit memory words as shown in
Fig. 3. 4.

THE STRUCTURE OF FORTH. Page 3-10

-------------- BIT NUMBER ----------------------
111 1 1 1 000 000 0 000
5 432 1 098 7 6 5 4 3 2 1 0

LONG LINK FIELD (ONLY IF OFFSET LINK=O). WORD 0

1--. -- -- -- -- ~- -- -- -- -- -- -- -- -- --• • • • • • • lit • • • • •

C l' : C2 C3 : C4 WORD 1

I
I

: high

C4 low L' IP: OFFSET LINK WORD 2

-- -- -- -. . . . -- -- -- -- -- -- -- -- -- -. . . .

BEGIN MACHINE INSTRUCTIONS
& PARAMETERS

First four characters of word name:

Length

Cl = Cl' * 16 + THREAD#
C2, C3, C4

THREAD# (0 - 15) is the thread in which the word
is found.
Characters are 6-bit ASCII codes.

.of word name:

L = L' + 4 if L' · nect· 0
= 4 if L' · eq. Q, C4 · neq. blank
= 3 if L' · eq. 0, C4 · eq. blank,

C3 · neq. blank
= 2 if L' · ect· 0, C4 · eQ.. C3 . ect· blank,

C2 · neq. blank
= 1 if L' · ect· 0, C4 · ect· C3 . eq.

C2 · eq. blank

Ran g e 0 f Lis 1 - 11 c h a r act e r s . Name s wit hid en tic a I
first 4 characters and lengths greater than or equal
to 11 are indistinguishable.

Fig 3.4 Dictionary Header for PDP-I!

THE STRUCTURE OF FORTH. Page 3-11

Precedence bit:

P = 1
= 0

immediate execution (compiler directive>
normal ~ord, may be compiled.

Link to previous entry:

Previous address = current address - 2 * (offset link)
(if offset link .neq. 0)

Previous address = long link field
(if offset link. eq. 0)

Long link field is absent if the link span is less
than 512 bytes.

Fig. 3.4 Dictionary Header for PDP-l1 (cont'd)

Some restrictions on the generality of Forth names have
allowed the preservation of 4 characters plus count. The
character set is limited to the 6-bit ASCII subset, which
includes nearly all of the ASCII characters except the lo~er
case alphabet. (Many terminals cannot even print lo~er

case, so the restriction is of little importance.) The ~-bit
length field (L') allows lengths of 1 to 10 characters to be
distinguished uniquely. Names of 11 or more characters are
allowed, but these will be equivalent to Forth if the first
4 characters are the same. Again, the limitation is slightl
as most practical Forth code has few names as long as 10
c harac tel's.

The following are examples of distinguishable names:

~ i ABCD ABCE ABCEl

However, the following pairs of names are indistinguishable:

ABCDl ABCD2

Cl234567890 Cl2345678901

ABCD1234567 ABCD0987654321GWERTV

THE STRUCTURE OF FORTH. Page 3-12

Even with the 6-bit coding and the restricted length
field, a further savings in bits is required to fit all the
header data into two words. This is accomplished easily
since a natural "key" for choosing a dictionary branch for a
Forth word is one of the characters of the name. In
particular the 4 low-order bits of the first character are
distributed fairly randomly and are suited for the purpose.
We define the following function:

THREAD# = HASHC NAME)

where the hashing function "HASH" is Just e~ual to the
number ex~ressed by the 4 low-order bits of the first
character of the "NAME" string.

If the HASH function is used to select a branch for the
word entry, the Forth word header does not need to contain
those bits selected by HASH; they would be redundant. Thus
the field C1' in Fig. 3.4 contains only the two highest
order bits of the first character; the low-order bits are
implied from context, i. e. from the thread number.

One bit of the Forth word
"precedence". Normally this
II immed iate" talords the bit is one.
importance for compilation; it
Section 3.9.

header is reserved for
bit is zero, but for

This bit has special
is discussed below in

The final header field consists of 8 bits reserved for
the offset link. The link points to the last previous word
in the same dictionary thread. In most cases the memorv
spanned by the link is less than 256 words (512 bytes), so
that the offset link has enough bits. In cases where the
link must cover more than 256 words, the offset link is set
to zero and an additional 16-bit "long link field" is
allocated. The long link field is a complete byte address
that may direct the dictionary search anywhere in memory.
In the special case of the first word (foot) of a dictionarv
thread, both the offset and the long link field are zero.

THE STRUCTURE OF FORTH. Page 3-13

3.3.3 Code And Parameter Sections.

A complete dictionary entry contains one or
sections in addition to the header discussed above.
are sho~n schematically in Fig. 3.5.

• • -------_.
HEADER

(2 OR 3 LOCATIONS)

CODE SECTION

(lOR MORE LOCATIONS)

:----~------------------:

PARAMETER SECTION
(OPTIONAL)

Fig. 3.5 General Forth Dictionary Entry.

two
These

Every ~ord must contai.n a code section; this is one or
more machine instructions that are executed when the Forth
word is invoked. The address of the first location of the
code section is the one compiled into address sequences in ~
definitions (see Section 3.9>' For CODE ~ords, i. e. those
defined by assembly instructions, the code .ection is
normally the final part of the dictionary entry. It ~ill

finish by "calling" the address interpreter through
executing the instruction NEXT, (~MP @(IC)+, see Section
3.4).

Other kinds of words, in particular _ words, require
an additional parameter section in their dictionary entries.
In _ words the parameter section contains compiled
addresses which direct the execution of the address
interpreter. Words defined by VARIABLE or CONSTANT use
locations in th~ parameter section to hold data.

THE STRUCTURE OF FORTH. Page 3-14

Some more concrete examples of dictionary entries for
various types of words are presented in Fig. 3.0.

THE STRUCTURE OF FORTH.

CODE WORD
,--... _------------

HEADER

MACHINE
INST. CTRS

:---------------
I JMP (!(IC)+
1---------------:

CONSTANT WORD

HEADER

,",SR IC,@4t

ADR(CONST)

VALUE

COLON WORD
:-------~-----~-.

HEADER
:---------------
I JSR lC,@4t
1---------------
I 1 ST WORD ADR
:---~-----------.

ADDITIONAL
WORD
ADDRESSES

I--------------~I
t ADR(SEMI) «

t

:---------------:
VARIABLE WORD
---------------_.

HEADER

ADR(VAR)

VALUE

Page 3-15

<-- 4537(8)

(CODE SECTIONS REFER TO FOLLOWING CODE)

SEMI: MOV (R)+,IC
JMP @(IC)+

CONST: MOV @IC,-(SP)
MOV (R)+,IC
JMP @(IC)+

VAR: MOV IC,-(SP)
MOV (R)+,IC
JMP @(IC)+

POP INST. CTR FROM RETURN STACK
"NEXT" = ADDRESS INTERPETER

MOVE VALUE TO PARAMETER STACK
RESTORE IC FROM RETURN STACK
"NEXT"

MOVE ADR. OF VALUE TO PARM. STACK
RESTORE IC FROM RETURN STACK
"NEXT"

Fig. 3.6 Common Forth Word Formats
(Caltech-OVRO PDP-II).

THE STRUCTURE OF FORTH. Page 3-16

Note a littl~ scam in the _ ~ord: the code section
instruction (~SR IC,@#address) is a double-word instruction,
but the second location is really Just the first location of
the parameter field as far as the Forth compiler is
concerned. This address and those follo~ing comprise the
se~uence that directs the address interpreter. It turns out
that the PDP-11 instruction ~SR IC,@#address has precisely
the right action to start the address interpreter; it saves
the instruction counter on the return stack and directs
execution to the code located by the first address of the
address sequence. *

3.3.4 Expanding And Contracting The Dictionary.

The Forth dictionary is initially set up ~hen the
program is loaded from disk, e. g. ~hen you type

.R FORTH

under the RT-11 opera~ing system. This initial dictionary
and its associated code is called the "obJect program" or
'U kernel". For Cal tech-OVRO systems the kerne lis defined in
Macro-11 assembly language. Other systems sometimes use
so-called "Metaforth", which is a Forth program " that
cross-compiles code from one Forth computer to generate a
ne~ kernel for another (or possibly the same) computer.

You extend the dictionary by executing "defining wards"
words that define new dictionary entries. You can do

this directly from a terminal (typing ~, CODE, "etc.) or
indirectly by LOADing blocks that contain defining words.
Th,e defining wards have the logic required to compute the
proper thread number and to enter a new element in the
corresponding dictionary branch.

At times you need to truncate the dictionary and free
up memory areas. You do this with FORGET. Type

FORGET BAR

to look up BAR in the dictionary and truncate all branches
at the highest possible memory addresses lower than the

*These elegant coding tricks for the PDP-11 were invented by
D. H. Rogstad and H. W. Hammond.

THE STRUC~URE OF FORTH. Page 3-17

beg inning of BAR.

Thus BAR and all words defined after BAR (in time
se~uence) are deleted. Judicious use of FORGET gives you a
simple overlay capability in Forth.

3.4 PROGRAM CONTROL -- THE ADDRESS INTERPRETER.

Another central element of the Forth system is the
function of the address interpreter (AI>' This code directs
the ex~cution of Forth words from address sequences in
memory. The normal termination of every CODE ~ord is an
invocation of the address interpreter.

The interpreter operates on a se~uence of memo~y
addresses ~hich lie in consecutive words of main memory.
Such an address sequence is the parameter field of a _
~ord. Each address pOints to the code section of an earlier
d ic t·ionary entry. (See Fig. 3.7.)

THE STRUCTURE OF FORTH. Page 3-18

:---------------: ----------------:
: HEADER "ABC" HEADER "Aft
:---------------1 ---------------1
I ~SR IC, @4t ••• 1------> ~SR IC,@# ...
'---------------: ---------------1

ADDRESS (A) 1 _______ 1 ADDRESS (AA) I
--------------1

(IC)---> ADDRESS (B) -------1 ADDRESS (AS) :
--------------:

ADDRESS (C) ADDRESS (SEM I) :
---------------:

ADDRESS(SEMI)
1------------_ - I~--------------

: HEADER US"
,---------------------> ~SR IC,@ •...

Forth definitions: ---------------

A AA AS
S BA
C CA
ABC ABC

ADDRESS (BA)
---------------,

ADDRESS (SEM I) :
---------------f
---------------J

HEADER "C"

----------> ~SR IC,@# ...

ADDRESS (CA)

ADDRESS(SEMI)

Fig. 3.7 Compiled address sequences.

In each _ definition an address sequence specifies the
Forth words to be run when the ~ word itself is executed.
I. e. if ABC is defined.;",. ABC ~ !! ~ L' the addresses of
words ~, ~. k' and L are found in the parameter field of
ABC. These addresses define what actions occur when ABC is
executed.

We can describe the effect of the AI in the following
general terms. A register (or memory location) is reserved
as the For t h If ins tr u c t ion c 0 un t e r " (Ie) . L ike h a r d war e

THE STRUCTURE OF FORTH. Page 3-19

instruction counters, IC points to the next (Forth)
instruction to be executed. "Instructions" to the AI are
Just the addresses of Forth words.

The Forth interpreter must pick up the address that IC
points to, increment IC to point to the next address in
sequence, and finally Jump to the code specified by the
first address. In terms of Fig. 3.7, the next invocation
of the interpreter will pick up the address of the word ~,

IC will be incremented to point to the next address (address
of ~), and control passes to the ~SR instruction in the code
section of B.*

Several computers are so appropriately designed that
the entire AI function can be achieved in a single
instruction. The DEC PDP-l1 and PDP-10 are of this type.
Fig. 3.8 displays the AIs (NEXT instructions) for 3 types
of computer.

(PDP-l1) NEXT: JMP @(IC)+ IC is a register .

(PDP-lO) NEXT: AOJA IC, @O(Ie) ditto

(8080) NEXT: LHLD IC IC is a 16-bit
MOV E,M i double-word
INX H
MOV D,M
INX H
SHLD IC
XCHQ
PCHL

Fig. 3.8 Address Interpreters for 3 Computers

The discussion to this point tells how the Forth AI
progresses through an address sequence a step at a time.
The linear flow of execution may be modified in several

*Most Forth implementations use a slightly different
algorithm for the AI. In these systems, the first word of
the code section is always an address instead of an
instruction. The address in turn points to the actual code
to be executed. Thus the AI Jump instruction must be a
double indirect Jump. In implementing the Caltech-OVRO
system for the PDP-ll, we found that core and speed savings
could be had by adopting the technique described here.

THE STRUCTURE OF FORTH. Page 3-20

ways. The simplest would be to alter IC directly in a
CODE-de~ined ~ord, and then to invoke the interpreter.

A more subtle, but more
instruction Tlo~ is performed
executed from a ~ ward. This is
above in Fig. 3.7.

useful redirection of
every time a _ word is

the situation presented

A good way to accomplish the diversion of the AI is to
store away the contents of IC on a' stack (the return stack),
and to set IC so that it points to the first word of the
parameter section of the new ~ord to be interpreted. (Done
this way, the AI algorithm is ~ecursive.)

In general, what is the appropriate instruction to put
in the code section so that the AI is redirected? We need
an instruction .that lets us push a register on a stack and
somehow "remembers" where it is when executed. Usually some
kind of subroutine call instruction is appropriate.

As we suggested already, the PDP-ll has an instruction
which does all the right operations by itself. With most
other computers you need to write a 2 or 3 word subroutine
(conventionally called COLON) to redirect the AI. The
techniques for 3 computers are illustrated in Fig. 3.9.

THE STRUCTURE OF FORTH.

(PDP-l1)

Appearance of code section~ JSR IC,@*
address1
address2

No subroutine required.

(PDP-10)

Appearance of code section: PUSH'" RP,COLON
address1
address2

Required subroutine:

(8080)

COLON: EXCH IC,O(RP)
AO~A IC,@O(IC)

Appearance of code section: CALL COLON*
address1
address2

Required subroutine: COLON: LHLD IC
XCHG
CALL RPUSH
POP. H
SHLD IC
"'MP NEXT*

Page 3-21

II really one
:: instruction

(NEXT)

two bytes
tlilO bytes

. (DE) --:>RSTK
FROM CALL INST.

*The CALL COLON and JMP NEXT instructions can be replaced'
by hardware reset (RST) instructions, with a savings
of 2 bytes per use. You must have appropriate code at
the corresponding low-memory locations.

Fig. 3.9 The COLON Function for 3 Computers.

You end a normal ~ definition with j. The semicolon
(L) compiles an address called "SEMI" into the dictionary as
the last entry in the parameter section o~ the word you're
currently defining. (L also resets the compile state.)
SEMI is the address of a machine code routine that undoes

THE STRUCTURE OF FORTH. Page 3-22

the effect of the COLON function. It must restore the old
contents of IC from the return stack. The SEMI routines for
the same 3 computers are given in Fig. 3. 10.

(PDP-II) SEMI: MOV (RP)+,IC
~MP @(IC)+ (NEXT)

(PDP-10) SEMI: POP RP, IC
AOJA IC,@O(IC) (NEXT)

(8080) SEMI: CALL RPOP
XCHG
SHLD IC
'-'HP NEXT

Fig. 3. 10 The SEMI Function fo~ 3 Computers.

The discussion and figures above indicate that the
address interpreter may be nested very deeply, limited only
by stack space. In other words, Forth ~ words can refer to
earlier ~ wards, which can refer to yet earlier blords, etc.
The time overhead for the AI recursion (or the "calling" of
one ~ blord by anoth.r) is seen to be very nominal -- about
e~uivalent to a conventional subroutine call.

In summary we can say that the address interpreter is
the engine that makes _ words go. The technique is not
new} it is also used in DEC's "threaded code" in PDP-l1
Fortran. But in combination with the text interpreter (see
below) it is responsible for the unique power of the Forth
system.

3.5 THE TEXT INTERPRETER.

In the preceding Section we discussed the address
interpreter and how Forth executes ~ words containing
compiled address sequences. There is one fundamental Forth
_ ward (00*) whose Job it is to interpret what you type in
to your terminal. This is called the .ttext interpreter"
CTI). It is distinguished from the address interpreter
because its input is text from a terminal (or block) rather

*Actually GO is an "anoneJmous" word (without a header) and
can not directly be accessed from your terminal.

THE STRUCTURE OF FORTH. Page 3-23

than addresses.

The TI is really a Forth program in its own right. In
fact it is the basic program that executes in normal Forth
systems. When you type in a word ("command") to Forth, it
is the TI that interprets your command and actually begins
execution.

A structured program (in pseudo-English) for a typical
T I foil OW5 in Fig. 3. 11.

GO: IF(Input is from typewriter)
THEN IF(Text buffer is empty)

THEN Wait for next full input line
from tvpe-..riteri

IF(Input is from typewriter)
THEN Prepare to read type-..riter buffer
ELSE Prepare to read selected block buffer;

Collect a text string (word) from buffer;

IF(Word exists in dictionary)
THEN IF(In compile state)

THEN Compile a pointer to dictionary
word;

ELSE Execute the dictionary word

ELSE IF(Input string converts to a number
in current radix)

GO TO GO;

THEN IF(In compile state)
THEN Compile a pointe,.. to "LITERAL"

follo~ed by number value
ELSE Push numbe,.. value on stack

ELSE Abort;

Fig. 3.11 A Structured Pseudo-English Text Interprete,...

We can elaborate a bit on this program. The input to the TI
can be either from the terminal ("type",,..iter") or from block
storage. Nothing happens with typewriter input until you
enter a complete line, ended with flreturn". If a block is
the input source, TI runs straight through without a pause

THE STRUCTURE OF FORTH. Page 3-24

until is is encountered. <And L§ had better be there!)

"Collecting a text string" means scanning the input
source ,until a complete word-name-candidate is found. That
is, scanning begins from the current position of an input
text pointer until the first non-blank character is found.
Then all the non-blank characters up to the next blank (or
other specified delimiter) are moved to a special place*.

Using the appropriate rules for identifying word names
with dictionary entries (e. g. first 4 characters plus
length), the TI attempts to find a match with an existing
entry in the dictionary. If a match exists, the TI will
normally simply execute that word. There is one case where,
if you type a word, you don't want it executed: this is
when you are defining a ~ word. If you are defining a _
word, the TI will store a pointer to the word in the next
available dictionary location.

If there is no matching entry, the TI will try to see
if its collected string will convert properly as a number.
If the string does make sense as a number, that number is
normally Just pushed on the stack. If you happen to be
compiling a ~ word, the TI compiles a call to a special
word "LITERAL" followed by the value, so that the number
you've typed will be pushed on the stack when you execute
your new word.

If the "word" you've typed can't be found in the
dictionary or converted as a legal number, the TI gives up
and ABORTs. All the stacks are reset, the compile state is
reset. the word itself is typed again followed by a question
mark, and F~rth starts the TI allover again.

3.6 ERROR MESSAQES -- ABORT.

The only "standard" error routine in Forth is called
ABORT. ABORT simply resets nearly everything in the Forth
system: the parameter and return stacks, the
compilelexecute state (to execute). the terminal buffer.
etc. Only the dictionary and the current state <block
contents and update flags) of the block 1/0 system are not

*Actually to the next several available dictionary locations
in case this word is to be entered in the dictionary.

THE STRUCTURE OF FORTH. Page 3-25

affected.

In addition to the res~t function, ABORT tvp~s a very
simple error message on the terminal: the name of the last
word processed bV the text interpreter followed bV a
question mark.

The action of ABORT in a real time Forth system is not
standardized. In most situations with Caltech-OVRO Forth,
an ABORT caused by an error in a background (user-terminal)
task will not affect a foreground, real-time task. This is
simply because the background task only runs when the
foreground task is finished, i. e. when the foreground task
has nothing to keep on the stacks.

3.7 BLOCK INPUT/OUTPUT.

Forth normally maintains a single direct-access file on
secondary storage (such as disk), This storage is not
logically re~uired to run Forth; micro-computers, for
example, may use a Forth system permanently "blasted" into
read-only memory. But in general purpose minicomputer
systems. much of Forth's versatility depends on ade~uate
block storage.

The conventional record size for block storage is 1024
a-bit bytes, or 512 16-bit words. Blocks are simply
numbered se~uentially from 0; thousands are typically
available.

Typical systems have two block buffers in main memory.
When you type

!l!!!!. BLOCK

Forth chooses the less recently used buffer, writes its
contents back to disk if necessary (i. e. if that block has
been UPDATEd), and then finally reads in block nnn from
disk. The buffer address is returned on the stack.

Once in main memory, a block may ~e read or altered in
an V way. I f Va u wan t toe han g e a b 10 c k ' s con t en t s .Q.D. dis k ,
you must be sure to type UPDATE following BLOCK. UPDATE
sets a flag that insures that the buffer last returned by
BLOCK will be rewritten to disk before the buf~er is reused

THE STRUCiURE OF FORTH. Page 3-26

for some other bloc k. You can t'Jpe FLUSH at any time to
force rewriting of any UPDATEd blocks to disk.

If you want to be sure that you are dealing with
"fresh" copies of disk blocks, you can type ERASE-CORE
before BLOCK. ERASE-CORE simply sets a flag that marks all
block buf~ers empty~ thus any BLOCK following will force a
read disk operation.

Forth blocks are perfectly general in the types of data
that they may hold. Ho~ever one important use for blocks is
to hold Forth text, i. e. input for the text interpreter.
In this mode a block is considered to be a single string of
1024 characters. That is, the text interpreter may scan the
entire block without any division into smaller records
(lines),

For text entry, editing, and listing, hOllJever, it is
convenient to divide the 1024 character block into 16 lines
of 64 characters. The lines have fixed length and there is
no separation (carriage return or line feed) betllJeen the
last character of one line and the beginning of the next.

When you type

!l!!.!!. ~,

Forth fetches block nnn, stores the text interpeters input
pointers on the return stack, and sets the input pointers to
the beginning of the block. The interpreter will then scan
the block executing words as they are encountered, until
told to do otherwise. Semicolon-S (;S) is the word that
must terminate the scan on each block. If ;S is not
present, the interpreter will run off the end of the block
with unpleasant results.

3.8 FORTH ASSEMBLERS.

Section 2.4 described generally how input text can be
converted into machine-language instructions. This process
is called assembly. Forth assemblers for different
computers will naturally differ according to their
instruction sets. The full assemblers for some Caltech-OVRO
systems are presented in the Appendices. This section deals
with aspects of assembly that are common to most

THE STRUCTURE OF FORTH. Page 3-27

Caltech-OVRO Forth systems.

You can assemble code any time the system is in the
execution state, i. e. when it is not compiling ~ words.
Usually you assemble code in the course of a CODE word
definition.

The assembler vocabulary consists mainly of op-code
words whose names are normally chosen to re~lect the
conventional assembler codes like MACRO-ll. In fact the
op-code nam~s are usually Just the conventional mnemonic
with an appended comma. Thus the PDP-II move instruction,
MOV, b.comes MOV, in Forth.

To assemble a machine instruction into the dictionary,
you type the address ~ields and modi~iers you need followed
by an op-code word. (Remember reverse Polish notation?)
There is normally a set of special words to help you set up
the correct addressing modes, branch conditions, etc.

A sample CODE definition for the PDP-ll might look
1 ike:

This word will add up the top 3 numbers on the stack,
leaving the sum.

The first part of the de~inition (CODE ADD3) sets up a
new dictionary entry (header only> with the name ADD3. The
code section o~ ADD3 is ~illed in with 4 machine
instructions: a MOV, two ADDs, and a ~MP (expansion of
NEXT,). The first instruction moves the contents of the top
stack location to register 0 and adds 2 bytes to the stack
pointer register. The next instruction adds the contents of
the next stack location to register 0, incrementing the
stack pointer again. The second ADD adds register 0 to the
contents of the next (originally the third) stack location
without changing the stack pointer. NEXT, expands into the
instruction ~MP @(IC)+, the address interpreter.

An equivalent MACRO-ll program would look like th is:

. WORD HEADERl

. WORD HEADER2
MOV (S)+,RO iMOVE STACK TO REG. 0
ADD (S)+,RO iADD NEXT STACK VAL. TO RO

THE STRUCTURE OF FORTH.

ADD
"'MP

RO, (8)
@(IC)+

Page 3-28

IADD TO NEXT STACK VAL.
,gO to NEXT FORTH INSTR.

Forth assemblers provide for~ard conditional branches
similar to the compiler directives IF, ~. and THEN.
These are the macro instructions IF" ELSE" and THEN. (with
L..s). In the case of the PDP-ll. these macros set up
appropriate conditional branch instructions that test a
register. An example:

<load R1> ! TST. ~ ~ <true code> ELSE, <false code> THEN,

This expands into the e~uivalent of the following MACRO
code:

<load reg. 1> set up data in register 1
TST R1 test register 1
BEQ 1$ branch if eq,ual zero
<true code> do if R1 . NE. 0
SR 2$ branch around false routine

1$: <false code> do if R1 . EQ. 0
2$: end

The "else clause" is optional, thus you can write

<load ~ 2> ~ TST. 2I!EL <true code> THEN,

which expands to

<load reg. 2>
TST R2
BLE 1$
<true code>

1$: end

3.9 COMPILATION OF ~ WORDS.

The use of ~ words has been discussed above and the
dictionary format was presented in Fig. 3.0. The process
of producing a dictionary entry from the input text is
called compilation for _ definitions. Thus compilation is
distinct from assembly, which applys to CODE words.

THE STRUCTURE OF FORTH. Page 3-29

Forth has tlilO "states": execution and compilation. In
execution state the text interpreter operates normally,
executing lIIords as they are found in the input text. The
word ~ in the text stream changes the state to compilation;
it also invokes WORD to collect the next properly delimited
word from the text stream. The word name is placed in the
next available dictionary locations in the correct
dictionary format. The link field is set to point to the
last-defined lIIord in the same dictionary branch, and the
HEAD pointer is set to point to the new entry. A call to
the COLON function is placed 1n the code section. (This is
the "half-instruction" ,",SR IC, ct.. . . 1n the PDP-ll system.)

(At this point in compilation the dictionary formally
contains the new entry, which 1s not fully defined. To
prevent false, premature references to the entry. ~ also
alters the name field slightly so that the name becomes
unrecognizable. At the conclusion of the definition, L or
; CODE restores the correct name.)

It now remains to create the parameter field of the new
_ word. In the compile state, the text interpreter (Fig.
3.11) is modified so that when an input word is found in the
die tionary it is not executed; rather, its address is
stored in the next available dictionary location.
Similarly, numbers are not immediately pushed on the stack,
but the address LIT is compiled followed by the literal
value of the number. (LIT points to a simple code routine
that picks up the number folloliling LIT's invocation point,
pushes the number on the stack, and increments IC in order
to skip to the next compiled address.) Thus the number is
not pushed on the stack until the new word is executed.

The interpreter will proceed to compile the input text
stream into the dictionary until a "compiler directive" is
encountered. A compiler directive is a word with a
precedence bit set to 1. Such lIIords are executed
immediately, ev~n when Forth is compiling.

The most common compiler directive is L' which compiles
SEMI into the dictionary and also resets the compile state.
Other compiler directives are IF, THEN, ELSE, ; CODE, etc.

If you want to make a word you've Just- defined into a
compiler directive, simply type IMMEDIATE. (Since IMMEDIATE
is itself immediate, you can make a word immediate either by
typing "IMMEDIATE" inside or outside the definition. E. g.

THE STRUCTURE OF FORTH. Page 3-30

! IMMEDIATE ~ J! ~ L . and
! ~ It ~ L IMMEDIATE

are eQ.uivalent.)

3.10 DEFINING WORDS -- ; CODE.

A special technique is available in Forth to define
words whose function will be to define words. Some of these
"defining words" are built into the kernel: ~, ,;,..,
CONSTANT, etc. A new defining word is appropriate whenever
a ne~ class of word functions is reQ.uired. The availability
of defining wards makes Forth an unusually extensible
language system.

As an example take VARIABLE, IIIhich is defined in· the
standard system. The nelll class of words provided by
VARIABLE consists of ~ords that push the address of their
parameter field on the stack. ~ may be defined a VARIABLE
by typing

1. VAR I ABLE M.

An initial value (1) is assigned to M.
created for ~ is shown in Fig. 3. 12.

The dictionary entry

:---------------:
: header
:---

UN"

~SR IC, @*

Addre.ss (VAR)
---------------:

value = 1
----------------:

Fig. 3. 12 Dictionary Entry for VARIABLE N.

The entry differs from an entry produced by CONSTANT only in
the address that appears in the sec~nd ~ord of the code
section. All VARIABLE words will have the address VAR in

THE STRUCTURE OF FORTH. Page 3-31

this location. This code must pick up the address of the
parameter field of the variable word being executed and then
push it on the stack.

The definition of VARIABLE for the PDP-II may be given
in terms of CONSTANT:

~ VARIABLE CONSTANT ; CODE g =l lk MOV, SEMI,.

The definition has two parts; the first is like a normal ~
definition. Word names appearing here are compiled into the
dicitionary. The _ part of VARIABLE contains only
CONSTANT.

The second part of the example begins with iCODE.
;CODE is a compiler directive that compiles an address
(called SCODE), and sets the system state to execution.
Following ICODE are assembly instructions. These
instructions define the code (VAR) which will be associated
with all VARIABLE words. The dictionary entry for VARIABLE
is shown in Fig. 3.13. (Note that the assembler word SEMI,
expands into two PDP-11 instructions.)

I---~-----------:
header

1---:-
"VARIABLE"

~SR IC,@#

Adr(CONSTANT) =

-----... ---------1
Adr(SCODE)

---------------:
VAR: MOV IC,-(S)

---------------:
MOV (R)+,IC

---------------1
~MP @(IC)+ (NEXT)

---------------1
Fig. 3. 13 Dictionary Entry for VARIABLE.

THE STRUCTURE OF FORTH. Page 3-32

What happens when we execute VARIABLE? First, CONSTANT
creates a dictionar~ entry using the stack value as the
constant value and the next word in the input stream as its
name. The new dictionary entr~ has a code section which
invokes CONSTANT (see Fig. 3.6), which is inappropriate for
a VARIABLE word. It is the purpose of SCODE to establish a
different code routine. When this (anonymous) word is
executed, the address part of the ~SR instruction ~f the
word Just defined is reset to point to the machine code part
of VARIABLE. Thus the resulting dictionary entry looks like
ti in Fig. 3.12.

The code routine VAR for any VARIABLE word works in the
following way. When ~ is executed (for example), VAR pushes
the contents of register IC on the stack. (It turns out
that the ~SR IC,@#VAR instruction puts the address of the
first word of the parameter field in that register.) VAR
must now restore the IC from the return stack, and execute
the NEXT function.

To summarize, ;CODE is used to create new code routines
which are associated with a defining word. All WOT'ds
defined with that defining word will employ the new code
routine. Thus a new Forth word class is defined.

A word closely related to ; CODE is L.,;... L associates
a .i--level routine with a defining word. The parameter field
address is passed on the stack. Thus an alternative
de~inition of VARIABLE would be

~ VARIABLE CONSTANT L L

The associated.i- routine is null in this case.

Defining words may be established to define any data
type or operation class; examples include VARIABLE, ARRAY,
SET, etc. If a c lass of of i xed rep eti t i ve opeT'at ions can be
identified it may be most economical of storage and
execution time to create an apPT'opriate defining WOT'd. An
example with CONSTANT: the line

1. CONSTANT ONE

defines ONE as a constant word that will push the value 1 on
the stack. This ~ill always be more efficient that using
the number 1 literally. (In the text interpreter the number
conversion is avoided, and in a compiled definition the call

THE STRUCTURE OF FORTH. Page 3-33

to LIT is not needed.)

In practice we use the name IIllt instead of ONE.
the dubious definition

11 CONSTANT 1.

Thus

Of course. you could also define 1 with the following line

1

but this way two extra storage locations are used -- for LIT
and for SEMI. Because of the return stack operation and the
extra interpreter cycles. execution of the ~ defined 1
would be much slower than the CONSTANT word.

3.11 BRANCHES IN ~ WORDS.

3.11.1 An Unconditional Branch.

An unconditional branch to any Forth word is provided
by the EXEC function. You type

<address value> EXEC

to Jump to the address specified.
a Forth word, you could type

If the address is that of

1 <word name> EXEC.

(1. returns the code section address of the word whose name
follows. Note that in non-Caltech-OVRO systems, the word ~
gives the right address. In the Caltech-QVRO system '
returns the address of the parameter field.)

EXEC works by setting up the return stack and
instruction counter to execute a word as if it were called
from a normal compiled address sequence. After the word
finishes, control passes back to the next word following
EXEC, either compiled or from the terminal, as appropriate.

THE STRUCTURE OF FORTH. Page 3-34

3.11.2 Conditional B~anches.

Use of the b~anches IF, BEGIN, etc. was described in
Chapter 2. The discussion here concerns the dictiDna~v
entries produced bV these words and the state of the stack
during compilation.

Consider 0=, which might be defined

This Ulord tests the value passed to it on the- stack; if the
value is non-zero, zero is returned. Zero input produces
one. The compiled dictionarv ent~y for Q:. is presented in
Fig. 3. 14.

header

"0="

~SR IC,@*

add~ess (XIF)

add~ess = 1$

add~ess (0)

add~ess (XSKP)

address = 2$

1$: add~ess (1)

2$: address (SEMI)
-~-------------:

Fig. 3. 14 Dictionary Entry Illustrating IF.

The words IF, ~, and THEN are compile~ directives;
they are not compiled in the 0= definition, they are
executed. Their execution does compile word add~esses and
address constants, however. The Ulord addresses are shoUln in
the figure as !IE and ~, which actually control branching
at execution time.

THE STRUCTURE OF FORTH. Page 3-35"

The example illustrates the operation of IE ~
THEN sequences. The address interpreter begins ~ith the
address XIF. XIF tests and pops the stack. A false outcome
(zero) ~ill require a branch to the "false clause", i.e.
the w,ords compiled bet~een ELSE and THEN. The branch is
carried out by loading IC with the contents of the location
following ,the address XIF (tll$"). The interpreter continues
at that location, pushing 1 on the stack.

The "true clause", between IF and ELSE, will be
executed if the stack tests true (non-zero). In this case
XIF simply increments IC so that the interpreter skips over
the address 1$. Zero is pushed on the stack. The
interpreter then encounters the address XSKP which
unconditionally loads IC ~ith the contents of the follo~ing
location (2$). Finally SEMI terminates execution of either
ca$e.

Other forms of compiled branches work like IF, THEN,
etc. Fig. 3. 1 5 i s the d i c t i 0 nar y- en tr 'l 0 fat 'l pic a 1 DO -
LOOP construction:

~ be. !. Q DO RANGE bOOP AFTER .t...

THE STRUCTURE OF FORTH. Page 3-36

header

"LP It

,""SR IC,@#

address(LIT)

4

address(O)

add 1" e s s "(X DO)

1$: : addT'ess(RANGE)

I~--------------
I addT'ess(XLOOP)
1----------------
I I.
J-;..-------------
J address(AFTER)
:--~------------
I addT'ess(SEHI)
J-----------------

Fig. 3.15 Illustration of DO - LOOP.

A few peculiarities should be explained. We assume that 0
is defined by

Q. CONSTANT Q.

as discussed above. Ho~ever ~ is not so defined in this
example; it is treated the way arbitrary numbers are. Thus
LIT must be executed ~ith aT'gument 4 to get 4 on the stack.
(IC increments after LIT picks up its argument so that the
interpT'eter resumes with the Q word. RANGE and AFTER are
Just random words predefined in the dictionary.

XDO takes the top two stack variables (0 and 4) and
pushes them on the return stack as discussed in Chapter 2.
Execution proceeds with RANGE. XLOOP incT'ements the loop
index, checks the index against the limit, and either
branches back to RANGE (by loading IC with 1$) or skips to
AFTER.

THE STRUCTURE OF FORTH. Page 3-37

3. 12 INTERFACING WITH AN OPERATING SYSTEM.

A controversial topic among Forth users is the role of
general purpose operating systems. The computer vendors
supply operating systems with varying levels of function and
complexity. Generally their purpose is to allocate.
schedule, and promote sharing of computer resources for a
single task or for several concurrent tasks. The question
is whether the function, standardization, and economy of the
operating systems are worth the overhead in speed and memory
for particular Forthish applications.

Caltech-OVRO systems have been developed both with and
without as support. In this Section we consider some
creteria for these choices.

3. 12. 1 To Stand Alone Or Not To Stand Alone.

We can attack the problem either economicall~ or
technical IV. In economic terms, the price of computer
memory (particularlv semiconductor memory) is falling
rapidly. Low cost peripherals (e. g. floppy disks) are
widely available. These technological forces tend to reduce
the economic penalty for relatively large, general purpose
operating systems.

In contrast. the cost of software development steadily
rises. So there is an economic incentive favoring
utilization of off-the-shelf software systems when possible.
Reinvention of complex scheduling and 1/0 algorithms is
rarely Justified.

Technical analysis is more difficult. One (prominent)
line of thinking is that much can be done with extremely
simple software. Thus Forth standalone systems with minimal
multiprogramming, no concurrent 110, and practically no
error recovery capabilities have been very successful. The
same thought process leads to the idea that practicallv a.ll
computing can be handled by Forth programming on 16 bit
computers with no more than 32~ memory words. (Thus the
mapping problem for larger memories is avoided.)

With standalone Forth,
MetaForth) can be developed
nearly identical structure for

cross assemblers (such as
that generate systems with
widely different types of

THE STRUCTURE OF FORTH. Page 3-38

compute~. Maintenance and development effo~t a~e ~educed
acco~dingly.

Technical arguments for Fo~th ~unning unde~ ope~ating
systems have a few maJor themes: concurrency of la~ge
tasks, reliability, and transportability. Prog~amming for
many large Jobs is simpler when large amounts of memo~y are
available. Memory is cheap~ 16 bit computers can give you
instant access to 32K words; so why not allow each task in
the system to use up to this amount?

The difficulty ~ith large tasks in a multitasking
system is that physical memory has to be· mapped into the 32K
task address space. The mapping problem is fai~ly seve~e if
you ~equire efficient use of physical memory and CPU time.
Vendors' operating systems usually cope with this problem;
development of gene~alized Fo~th memory mapping software is
a nont~ivial proJect.

Concurrency of la~ge tasks may include non-Forth tasks.
For example a Forth real-time cont~ol task may have to
co-exist ~ith Fort~an data reduction. This is feasible if
both tasks run under a common ope~ating system.

Reliability of a softwa~e system is ha~d to define.
One useful p~inciple is that a softwa~e fault in one task of
the system should be isolated from other tasks. Commonly
this feature is p~ovided by memory mapping and by ca~efully
defining use~- and system-states of the CPU. Again, it is a
maJo~ effort to p~ovide these functions in standalone Forth.

Another aspect of the ~eliability p~oblem is what to do
in the event of hardwa~e faults. Large periphe~al devices
(particularly disks) can be ve~y complex. Many ope~ating

and error recovery modes are available. The manufacturer's
device driving software (a component of operating systems)
becomes correspondingly elaborate and difficult to ~epeat in
Fo~th.

One hindrance to the wider propagation of Forth has
been that many implementations ~ constructed using the
MetaFo~th cross-compiling scheme. \ Forth defined in terms of
Forth is difficult to learn and difficult to transport to a
non-Forth computer. Implementations in the standard
assembler code of a particula~ machine can easily be
transferred to other machines of the same type, particularly
if standard file st~uctu~es and formats are obse~ved.

THE STRUCTURE OF FORTH. Page 3-39

3.12.2 OS Interfacing Techni~ues.

Implementation of Forth as a task under an operating
system such as RT-l1 or TOPS-10 is generally simpler t~an as
a standalone system. The OS provides macro instructions for
terminal and disk 1/0. Buffering and error checking are
provided by the as.

When you have to connect non-standard 1/0 devices or
respond to special hardware interrupts, the situation is a
little more complicated. The general purpose operating
systems nec.ssarily restrict your freedom of interfacing
with external d.vices, since the svstem's integrity must be
preserved for other system users. In particular for RT-ll
you must carefully observe the interrupt protocols with
appropriate use of the. INTEN and .SYNCH macros.

Of course any macro defined in the conven~ional
assemblers can be expressed in terms of the Forth assembler.
Unfortunately standard Forth lacks a true macro-processing
capability, so that it is difficult to define macros with
the generality available in the conventional assembler. The
problem is not too bad, sinc. you rarely need mor~ than a
few types of macro in a given Forth application.

3.13 MULTIPROGRAMMING AND REAL-TIME APPLICATIONS.

In real-time control or data acquisition Jobs it is
often necessary for a Forth system to interact with external
devices on a prescT'ibed time schedule, e. g. sample data
eveT'Y 10 msec OT' update telescope dT'ives eveT'Y O. 5 sec. You
usually want to be able to converse with FOT'th in a normal
\&lay while the real-time processes are running. In some
cases, unrelated users may want to share the computer at the
same time.

All such situations requiT'e some multiprogramming
scheme. Multiprogramming is the general techni~ue of
sharing the computer's time, memory, and peripheT'al devices
between multiple Job tasks or users. A number of schemes
have been used 'for Forth multiprogramming. Most
Caltech-OVRO systems use a multilevel prioT'ity scheduling
system. Other Forth systems use a round-rabin scheduler,
especially for multiuser "timesharing" applications. When
running 'under a multiprogramming operating system,

THE STRUCTURE OF FORTH. Page 3-40

independent copies of Forth may be run as separate tasks
under the operating system.

3.13.1 Priority Scheduling.

A simplified priority scheduling algorithm is used in
several Caltech-OVRO systems. Figure 3.16 illustrates the
method.

THE STRUCTURE OF FORTH.

(~ecu~rent inte~rupt)

I-------~-------:
Ireal-time task I

.1
I-~--~~~--------I

:---------------:
: interval T2
, elapsed?

I (no)
:------>:

:-----------~---I
(yes)

:-------~-------:
Ireal-time task I

.2
:----------~----:

1---------------:
• • • I

: interval T3
: elapsed?

: (no) :
:------>:

:---------------:

:---------------:
:real-time task :

4tN :
:---------------:

:---------------:
: return from :

• . .
• •

: interrupt : <------
I-~----~--------I

Page 3-41

Fig. 3. 16 Priority scheduled Multiprogramming.

THE STRUCTURE OF FORTH. Page 3-42

A recurrent interrupt (say 60 Hz) initiates the
"foreground tasks" shown in the figure. Task 1 contains
all the functions to be pe-rformed every interrupt. When
task 1 is completed a counter is examined to see if a
predetermined number of interrupts has been processed. If
the interval T2 has elapsed, the counter is reset and the
IOUler leve-l task (.2) begins. If T2. has not elapsed. a
return from interrupt instruction is performed: the
"background" (e.g. Text Interpreter) then has the use of
the machine until the next interrupt.

This multiprogramming technique lets you set up an
arbitrary number of execution levels each of which is
initiated after a certain integral number of instances of
the next higher level. If the interrupt return information
is stored carefully, the foreground structure is at least
partially reentrant. The level 1 task may interrupt the
level 2 task many times'before level 2 completes. You must
insure that there is enough time for each task level to
complete before it is next scheduled to run.

Advantages of this priority scheduling method include
'the minimal context switching requirements. simplicity. and
guaranteed servicing of high priority ,tasks. The context
that has to be preserved when entering a given foreground
level is Just the general registers including the Forth
instruction counter IC. and the hardware instruction
counter. If disk and terminal 1/0 are to be allowed from
more that one execution level. then separate buffers must be
maintained.

A lower level task in general does not have to be aware
of the .xistence of higher level tasks, except that higher
level tasks effectively slow down the computer. If a low
level task hangs up in a loop, higher level tasks will still
execute.

Problems with the method include the awkwardness of
multilevel 110, the requirement that the basic Forth
routines be reentrant. and that the programmer must see that
the completion time of an execution level never exceeds its
scheduling interval.

THE STRUCTURE OF FORTH. Page 3-43

3.13.2 Round-robin Scheduling.

A second popular Forth multiprogramming scheme is the
round-robin. As the name suggests, the principle is to
allow one task to finish, then to begin the next in a chain.
After the last task in the chain completes, the first begins
again.

The method is well suited to an environment with
multiple users all having e~ual claim to the computer.
Performance degrades gracefully as more tasks are added to
the loop.

Proper operation of the round-robin re~uires that tasks
be "cooperative", i. e. willing to relinquish rights to the
CPU in a timely way. A task does not have to complete lts
total function before it allows others to execute, but it
must release control frequently so that response time to
other users is acceptable.

The round-robin is not well matched ·to real-time
si tuations in . wh ich gua,ranteed response to external events
is required. It also lacks "robustness" in the face of any
user who wants to monopolize the CPU.

3.13.3 Scheduling Through Operating Systems.

Multiprogramming facilities are available in most
general operating systems. These range from simple
foreground-background (dual task) systems like DEC's RT-l1
to full-scale priority scheduled systems like RSX-11. For a
price, the RSX-ll system will give you priority scheduling,
time-sliCing between tasks of similar priority, and memory
protection between tasks. As discussed in the previous
Section, you save implementation expense but suffer greater
memory and CPU time overheads to implement Forth
multiprogramming through operating systems.

CHAPTER 4

FORTH VOCABULARIES.

4. 1 INTRODUCTION.

This Chapter sets out English definitions ~or the words
in several Forth Vocabularies. Three categories of words
exist: words in current Caltech-OVRO use, words in the
AST.Ol standard, and words in the AST.01X extended standard.
There is a large overlap between these categories (in
particular AST.01X includes AST.Ol). There is also no
single Caltech-OVRO vocabulary; the vocabulary presented
here is ~eighted toward the PDP-ll system used for the
Caltech-~PL VLBI Processor.

4.2 NOTATION.

Notation aT this Chapter follows that OT the AST.Ol
document (~une, 1977, Terrel Miedaner, Kitt Peak National
Observatory). Much of the following text is from that
document.

The words appear in essentially the same sequence as
their numerically sorted identifier codes. The action of
each word is described in abbreviated form: A string of
symbols indicating which parameters are to be placed on the
stack before executing the word; the word itself; then,
any parameters left on the stack by the word. In this
notation, the top of the stack is to the right.

Symbols are used as follows:

b Block number.

FORTH VOCABULARIES. Page 4-2

c
f

m n
q r
u v
nnnn
pppp
ssss
vvvv

p
s
w

7-bit ASCII character code.
Flag: O=False, non-zero=True. All words which
return a flag return O=False or l=True.

16-bit integers
Double-precision (2 cell) numbers.

The name of a ~ord.
A string of characters.
A vocabulary name.

Preceding a verbal description of each word, certain
characters may appear in parentheses. These denote some
special action or characteristics, as follow:

c

E

K

L

N

The word may be used only within a colon-definition.
A following digit (CO or C2) indicates the number of
memory cells used t&lhen the t&lord is compiled, if
other than one. A following + or - sign indicates
that the word either p'ushes a value onto the stack
or removes one from the stack du~ing compilation.
(This action is not related to its action during
execution.)

The word may not normally be compiled within a
colon-definition.

The word is a KPNO word, not currently part of the
standard.

The word causes loading and possible execution of
one or more blocks.

Non-reentrant; may not be used t&lithin an
interrupt-handler word.

T Tape systems only.

V Caltech-OVRO word, not currently part of the
standard. A following number (10, 11, 920, 8080)
indicates which type of CPU if not common to all.

X The ~ord is part of th~ AST.01X extension.

FORTH VOCABULARIES. Page 4-3

4.3 STANDARD VOCABULARY LIST.

!BLOCK

II

II

4tTe:R

m p! Stores m at address p.
byte address)

(Vl1, V8080: p is a

b !BLOCK p (Not V) Obtains a core buffer for block
b, leaving the first buffer cell address. The block
is not read from disk, and is automatically marked
as updated.

If sssss" (Not V) Transmits a message of up to 63
characters delimited by ,. to the selected output
device. Note that a null message (single blank
between Us) is not permitted.

"'sssss" (V) Enters a string of up to 63 characters
into buffer TEXT (or onto string stack in XED) for
use by editor. This word is in editor vocabularies
only. Note that a null message (single balnk
between liS) is not permitted.

#TER m (X, not V) Returns the physical unit numb~r

of the terminal device.

y. Y. nnnn p (V) Like (below), except returns the
address of the code section of nnnn.

,

(

()DIM

, nnnn p Leaves the address of the parameter field
of nnnn. A compiler directive, ' is executed when
encountered in a colon- definition: The address of
the following word's parameter field is found
immediately (at compilation), and stored in the
dictionary (after the address of LIT) as a literal
to be placed on the stack at execution time.

e.g. the sequence: 'nnnn is identical to:
LIT [, nnnn I J within a colon-de-Finition.
(Note: meaning of [differs in V!)

(ssss) Ignores a comment of up to
delimited by a right parenthesis.
between parentheses is not allo~ed.

m ()DIM nnnn (K) Defines an array
length, named nnnn. The sequence;
the address of the i-th cellon the

63 characters
A single blank

m+1 cells in
i nnnn leaves
stack. The

FORTH VOCABULARIES. Page 4-4

index i should be in the range 0 <= i <= m, but no
check is made for values outside this range.

* m n * q 16-bit integer multiply.

*1 m n p *1 q Leaves q= (m*n)/p. Retention 0' an
intermediate 32-bit product permits greater accura.cy
than the otherwise equivalent sequence: m n * p /.

+ m n + q 16-bit integer addition.

+! m p +! Adds integer m to value at address p.

+BLOC~ m +BLOCK b (not in V) leaves the sum of m plus the
number of the block currently being interpreted.

+LOOP

,CODE

I

IHOD

m +LOOP (C) Adds m to the loop index. Exit from the
loop is made when the resultant index reaches or
passes the limit, if m is greater than zerOi or
when the index is less than (passes) the limit, if m
is less than zero. The value m may be a variable.

VBOBO: This implementation has conditionals
that may be executed without compiling. DO, +LOOP
remember and restore the Text Interpreter,
respectively. The range of the loop must be all in
the message buffer (or block) at one time. In
practice, you can enclose a sequence of words by DO
and LOOP and repetitively interpret them as long as
everything can be typed on one line.

m , Stores m into the next available dictionary
cell, advancing the dictionary pointer.

m ,CODE nnnn (V) Begin a code definition named nnnn
as for CODE. Allow space for m cells for parameters
before beginning machine code. C' nnnn will give
the address of the first reserved parameter.)

m n - q 16-bit integer subtraction (m-n).

m. Prints the value on the stack as an integer,
converted according to the current number base.

m n I q 16-bit integer divide, mIn.
truncated; any remainder is lost.

The q,uotient is

m n IHaD r q 16-bit integer divide, mIn. The

FORTH VOCABULARIES. Page 4-5

0)

0<

0<=

0=

0<::>

0)

0)=

OSET

1+

1+!

1-

lSET

2*

2+

2-

2/

quotient is left on top of the s tac k, the remainder
beneath. The remainder has the sign of the
dividend, m.

m 0) q (X, not V) Inverts (toggles) the most
significant bit af m.

m 0< f Leaves a true flag if m is negative.

m 0<= f (X) True if m is zero or negative.

m 0= f True if m is zero.

m 0<::> f (X) True if m is non-zero.

m 0) f True if m is positive and non-zero.

m 0)= f ex) True if m is greater than or equal to
zero.

p OSET (V) store zero at location p.

m 1+ q (X) q = m + 1.

P 1+! ex) Add 1 to the contents of address p.

m l- et (X) q = m - 1.

P lSET (V) Store one at location p.

m 2* q (X) q = 2 * m.

m 2+ q (V) q = m + 2.

m 2- q (V) q = m 2.

m 2/ q eX) q = m / 2.

nnnn Create a dictionary entry for a
colon-definition, set compilation mode, and set the
context vocabulary equivalent to the current
vocabulary (V: no vocabularies).

:::> :) (CV) Switch mode from compilation to execution.
Compiles a word address that, at execution, will
restore IC and branch to the code beginning after
:>. If the code ends with NEXT, the return will be

FORTH VOCABULARIES. Page 4-6

j :

iCODE

i EXIT

correct.
Example: NNNN
instructions) NEXT,
(D. H. Rogstad suggests
be i< instead of :>,
function. See >: .)

:> (assemblv

that better notation would
and >: for the reverse

ee) Terminates a colon-definition and stops
comp i lati on.

l : (C) Terminates a defining word nnnn, which can
subsequently be executed to define a new ward pppp.
Subsequent use of pppp will cause the words between
; : and to be executed with the parameter-field
address of pppp on the stack. Further explained in
Section 3. 10. (Vll: parameter-field address is not
passed at present -- but should be!)

lCODE (C) stops compilation and terminates a
defining word nnnn. Switch the context vocabulary
to ASSEMBLER in anticipation of a machine-code
sequence. When nnnn is subsequently executed to
define a new word pppp, the execution-address of
pppp will point to the machine code sequence
following the ;CODE of nnnn. Then, subsequent use
of pppp (or any other word defined by nnnn) will
cause this machine-code sequence to be executed.

lEXIT (X, Not V) Terminate a
encountered
unaffected.

at execution
colon-definition when

time; compilation is

; SiS (E) Stops interpretation of a s'lmbolic block.

<

<=

m n < f True if m less than n.
bits)

(2 ' scamp I emen t,

m n <= f True if m does not exceed n.
complement, 16 bits)

16

(2's

= m n = f True if m = n.

<> m n" <> f True if m not equal to n.

<R m <R (V) See >R. OVRO has used <R and R>
notation) while AST.Ol uses >R and
notation) to signify moving data to and

(bra-ket
R> (arrow

from the

FORTH VOCABULARIES. Page 4-7

return stack, respectively.

:> m n :> f True if m :> n. (2's complement, 16 bits)

>: >: (V) Switch mode from execution to compilation.

:>=

Assembles instructions that save IC and begin the
Address Interpreter Just after >:. If the compiled
code ends with j, the return will be correct.
Example: CODE nnnn ... :>: (compiled Forth
words) ...
Note that:>: and:) can be used freely in either
CODE or: definitions.

m n :>= f
camp lement,

True if
16 bits)

m not less than n. (2's

)oR m >R (C) Push.s m onto the top of the return stack.
See I and R::>. (Vll: <R>'

::>IM :>IM nnnn (not V) Set the precedence bit of the
following word, making it a compiler directive.

? p? (N) Prints the value contained at address p in
free format, according to the current base.

?DEF

?TER

@

[

[

J

?DEF nnnn m (Not V) Returns the first memory cell
address of nnnn if nnnn can be found in the context
vocabulary; zero otherwise.

?TER c (X, not V) Returns the character code of the
last character entered at the terminal, or zero if
no character has been typed.

p @ q Leaves the contents q of memory address p.

[(Not·V) Stop compilation. The words following the
left bracket in a colon-definition are executed, not
compiled. Typically, left and right brackets are
used in conJunction with the interpreter-level
conditionals IFTRUE-IFEND to control compilation.

[ssssJ p q (V) Compile literal string ssss into the
dictionary. When control passes to [at execution
time, the starting byte address p and character
count q are returned on the stack ready for TYPE.

] (not V) Resume compilation. Words following the

FORTH VOCABULARIES. Page 4-8

]

AO<

AO<=

AO<>

AO=

AO>

AO>=

A<

A<=

A<>

A>

right bracket are compiled.

] (V) Delimiter for string compiled by t.

A nnnn (Not V) Return the compilation address of the
fallowing word; that is. the address which would be
compiled in a colon- definition. Abort if nnnn is
nat found. (V: see 7.)

p AO< f (V) Comparison of data with zero (address
mode>. p is an address pointing to the data.

p AO<= f (V) Address made compare; true if data
less than or equal to zero.

p AO<> f (V) Address mode compare; true if data not
equal to zero.

p AO= f (V) Address mode compare; true if data
eq,ual to zero.

p AO> f (V) Address mode compare; tl"ue if data
greater than zero.

p AO>= f (V) Address mode compare; true if data
greater than or equal to zero.

p q A< f (V) Address mode compare; true if first
datum less than sec and. Equivalent to p @ q @ <.

P <l A<= f (V) Address mode compare; true if first
datum less than or equal to sec and.

p q A<> f (V) Address mode compare; true if first
datum not equal to second.

p q A> f (V) Address mode compare; true if first
datum greater than second.

A>= p q A>= f (V) Address made compare; true if first
datum greater than or equal to second.

AL< p q AL< f (V) Address mode unsigned compare; true
if first datum less than second when considered as
16-bit unsigned integers.

AL<= p q AL<= of (V) Address mode unsigned compare; true

FORTH VOCABULARIES. Page 4-9

if first datum less than or equal to second.

AL= P q AL= f (V) Address mode compare; true if first
datum equal to second. (Better notation would be
A=.)

AL:>

AL:>=

ABORT

ABS

ADOPT

AND

ARRAY

p q AL:> f (V) Address mode unsigned compare;
if first datum greater than second.

true

p q AL>= f (V) Address mode unsigned compare; true
if first datum greater than or equal to second.

ABORT Enter the abort sequence, clearing all stacks,
printing a simple message, and returning control to
the terminal.

m ABS q Leaves the absolute value of a number.

m ADOPT (e, not V) Stores m into the next available
dictionary cell, advancing the dictionary pointer.
(See ,.)

m nAND q Bitwise logical AND of m and n.

m ARRAY nnnn (V) Define a word nnnn that, at
execution, will push the starting address of an
array of m cells on the stack. The m cells are not
initialized and may have random values.

ASSEMBLER

B!

B@

ASSEMBLER (X, not V) Switch the context vocabulary
pointer so that dictionary searches will begin at
the Assembler Vocabulary. The Assembler Vocabulary
is always chained to the current vocabulary.

m p B! (V) The low order 8 bits of m is stored at
the byte address p. (See \ !.)

p B@ m C.V) The a-bit byte at address p is returned
in the low order part of m. With 1 uc k, the high
order part of m contains the sign extension of the
byte. (I. e. 200(8) --:> 1 77600 (8>') (See \@.)

S, n S, (V) Compile the low-order byte of n into the
dictiona~y and increment the dicitionary pointer by
1 byte. (See \,.)

FORTH VOCABULARIES. Page 4-10

BMOVE

BASE

BEGIN

BELL

m n l' SMOVE (V) Move r bytes from area beginning at
byte address m to area beginning at byte address n.
(See \MOVE.)

BASE P An integer pointing to the current conversion
base value.

BEGIN (CO+) Mark the start of a BEGIN-END loop. The
words between BEGIN and its corresponding END will
be repetitively executed until the END-condition is
satisfied. Loops may be nested.
V8080: BEGIN and END, like DO and LOOP, may be used
at interpreter level as long as the enclosed
range fits on one line or one block.

BELL (X) Activate terminal bell or noisemaker.

BLK BLK P (N) An integer, pointing to the number of the
block being listed or edited.

BLOCK

C

CASE

CHAIN

b BLOCK p Leaves the first address of Block b. If
the block is not already in memory, it is
transferred from disk or tape into whichever core
buffer has been least recently accessed. If the
block occupying that buffer has been updated, it is
rewritten on disk or tape before Block b is read
into the buffer.

m C nnnn (V) Abbreviation for CONSTANT.

m n CASE ELSE m . . . THEN or
m n CASE THEN m
(C2+,X, not V) If m e~uals n, m is dropped from the
stack. and the words immediately following CASE are
executed until the next ELSE or THEN. If m does not
equal n, m remains on the stack and the words after
ELSE (or THEN if no ELSE is used) are executed. The
value n is always dropped.

CHAIN vvvv (X, not V) Connects the current
vocabulary to all definitions that might be entered
into Vocabulary vvvv in the future. The current
vocabulary may not be FORTH or ASSEMBLER. Any given
vocabulary may be chained only once, but may be the
obJect of any number of chainings. For example,
every user- defined vocabulary may include the
se~uence, CHAIN FORTH.

FORTH VOCABULARIES. Page 4-11

CODE CODE nnnn Creates a dictionary
definition named nnnn, and
vocabulary to Assembler.

entry
sets

Tor
the

a code
context

COM m COM q Leaves the one's complement of m.

CON m CON nnnn (X) Abbreviation of CONSTANT.

CONSTANT
m CONSTANT nnnn Creates a word which when executed
pushes m onto the stack. Since the "constant" m may
be modified by the sequence: q , nnnn ! it is
oftentimes advantageous to define a variable as a
constant, particularly if the variable is accessed
more often than it is modified.

CONTEXT CONTEXT p (X, not V) An integer that indicates at
which vocabulary dictionary searches are to begin.

CONTINUED

COpy

COUNT

b CONTINUED (not V) Continue interpretation at Block
b. The block currently being interpreted is marked
as least-recently- accessed, so that its buffer will
be used for storage of Block b, and the contents of
the alternate block will remain in memory.

m n COpy (V) Copy the contents of block m into block
n and mark block n as updated.

P COUNT (m) n (C) The count-byte n is extracted from
the first memory cell of a message string beginning
at address p, and left on the stack. The
character-address m of the firs. byte of the message
is typically left on the stack or in a register.
Whatever, COUNT is to be used in conJunction with a
following PRINT or TYPE.

CR CR Transmit carriage return/line feed codes to the
selected output devices.

CURRENT CURRENT P (X, not V) An integer that indicates the
vocabulary into which new words are to be entered.

DECIMAL DECIMAL Sets the numeric conversion base to decimal
mode.

DEFINITIONS

FORTH VOCABULARIES. Page 4-12

(vvvv) DEFINITIONS (X, not V) Sets the current
vocabulary (into which new definitions are placed)
to Vocabulary vvvv (the context vocabulary). vvvv
need not be specified explicitly.

DIM m n ... p q DIM nnnn (Vll) Creates a q dimensional
array m+1 by n+1 by by p+l memory words in
length.
To access the i, J' ... ' k-th element of array nnnn,
type i J k nnnni this will leave the
appropriate memory address on the stack.
Note: m ()DIM nnn is equivalent to m 1 DIM.

DISCARD DISCARD (N) A null-definition intended for use as a
standard REMEMBER word, as some version aT DISCARD
can always be found in the dictionary.

DO

DP

DPL

DROp·

n m DO (C) Begin a loop, to be terminated by LOOP or
+LOOP. The loop index begins at m, and may be
modified at the end of the loop by any positive or
negative value. The loop is terminated when an
incremented index reaches or exceeds n, or when a
decremented index becomes less than n. Within a
loop, the ~ord I will place the current index value
on the stack.

Loop indices are available to three levels
of nesting. Within nested loops, the word I always
returns the index of the innermost loop that is
being executed, while ~ returns the index of the
nex~ outer loop, and K returns the index of the
second outer loop.

Execution of DO places three parameters on
the return stack: The starting location of the
loop, the index limit, and the index.

V8080: DO may be used at interpreter leveli
see +LOOP.

DP p (V) Returns pointer to dictionary pointer.

DPL P (Not V) An integer, pointing to a
number-conversion parameter: The number of digits
f~llowing the fractional point on input or output.
A negative value at DPL indicates that no It. It was
ent.red on input, or that none is to be printed on
output.

m DROP Drop the topmost value from the stack.

FORTH VOCABULARIES. Page 4-13

DUMP m n DUMP (V) Dump n memory cells beginning at
address m. Dump is in current number base.

DUP m DUP m m Returns a duplicate of the topmost stack
value.

EDIT b EDIT (LX, Not V) The Editor Vocabulary is loaded,
if not already in the dictionary, becoming the
context vocabulary. Block b is listed.

EDIT EDIT (V) A constant equal to the block number of the
first block of the standard editor. Type "EDIT
LOAD" to load the standard editor.

EDITOR EDITOR (X, Not V) The name of the Editor Vocabulary.
If that vocabulary is loaded, EDITOR establishes it
as th e conte xt vocabulary, thereb y mak i ng its
definitions accessible.

ELSE ELSE (C2) Precedes the false part of an IF-ELSE-THEN
conditional or the continuation of a CASE-type
cond i tional.

END fEND (C2-) Mark the end of a BEGIN-END loop. If f
is true the loop is terminated. If f is false,
control returns to the first word after the
corresponding BEGIN.

V8080: BEGIN and END may be used at
interpreter level. See +LOOP.

ERASE-CORE
ERASE-CORE Marks all block-buffers as empty, without
affecting their actual contents. Updated blocks are
not flushed.

EXCHANGE

EXIT

F

m n EXCHANGE (V) Exchange the contents of blocks m
and n and flush.

EXIT (C, Not V) Force termination of a DO-loop at
the next opportunity by setting the loop limit equal
to the current value of the index. The index itself
remains unchanged, and execution proceeds normally
unti I LOOP or +LOOP is encountered. (V: see TERM)

F P (KV) An integer pointing to the field length
reserved for a number during output conversion.

FORTH VOCABULARIES. Page 4-14

FLUSH FLUSH Write all blocks that have been flagged as
"updated" to disk or tape. Return when output is
comp leted.

FORGET FORGET nnnn Delete nnnn and all dictionary entries
following it. Although nnnn must be in the context
vocabulary to be found, the words that follow it are
deleted no matter which vocabulary they belong to.

Normall~, FORGET should not be used within a
colan- definition, as it is not a compiler
directive. For such applications, use a word
defined by REMEMBER.

FORTH FORTH (X, not V) The name of the primary vocabulary.
Execution makes FORTH the context vocabulary. Since
FORTH cannot be chained to anyth ing, it becomes the
only vocabulary that is searched for dictionary
entries.

Unless additional user vocabulari&s are
defined, new user defintions normally become part of
the Forth Vocabular~.

FORTH FORTH b (V) A constant whose value is the number of
the first block to be loaded as part of the standard
Forth system. Thus after you do a bootstrap load
from disk or tape, you type ,"FORTH LOAD" to load the
standard system.

GCH GCH c (Not V) Get a character from the terminal,
i. e., return the ASCII code of the next character
typed. (V: See TVI.)

GO-TO

HEAD

HERE

m GO-TO (EX, Not V) Interrupt interpretation
block, resume at line m of the current block.
may only be used during loading of a block.

of a
GO-TO

HEAD P Returns a pointer to the first location of
the last word defined in the current vocabulary.

HERE P Return the address of the next available
dictionary location.

HEX HEX (XV8080) Switch the number base to hexadecimal.

I I m (C) Push the topmost return stack value onto the
user stack without disturbing the return stack.
Typically I is used to return the, index of an

FORTH VOCABULARIES. Page 4-15

12

innermost DO-loop, but it can also be used to access
values pushed onto the return stack by >R.

12 m (CV1l) Equivalent to 1 2*.
byte· addressing computers
fullwords.

12 is
to let

useful in
you index

IF f IF . .. ELSE THEN or
f IF . .. THEN
(C2+) IF is the first word of a conditional. If f
is true (non-zero), the words following IF are
executed and the wards following ELSE are not
executed. The ELSE part of the conditional is
optional. If f is false (zero), words between IF
and ELSE, or between IF and THEN when no ·ELSE is
used, are skipped. IF-ELSE-THEN conditionals may be
nested.

IARRAY IARRAY nnnn (V) Create a word nnnn that will, at
execution time, push the address of its parameter
field an the· stack. The parameter field is not
allocated or initialized. You must initialize these
values explicitly, e. g., using,.

IFEND IFEND (EX, Not V) Terminates a conditional
interpretation sequence begun by IFTRUE.

IFTRUE f IFTRUE OTHERWISE IFEND (EX, Not V)
Unlike IF-ELSE-THEN, these conditionals may be
employed during interpretation. In conJunction with
[and], they may be used within a colon- definition
to control compilation, although they are not to be
compiled. These words cannot be nested. See GO-TO.

1M> 1M> nnnn (Not V) Clears the precedence bit of nnnn.
Words with the precedence bit set ·are compiler
directives.

IMMEDIATE
IMMEDIATE (CV) Set the precedence bit of the word
Just defined in the dictionary. Like >IM, but takes
no argument.

INTEGER n INTEGER nnnn (V) Equivalent to VARIABLE.

J. J m ee) Execute J within a nested DO-loop to return
the index of the next outer loop.

FORTH VOCABULARIES. Page 4-16

J2 J2 m (CV) Equivalent to J 2*.

K K m (C) Execute K within a nested DO-loop to return
the index of the second outer loop.

K2 K2 m (CV) Equivalent to K 2*.

L< m n L< f (V) True if m less than n as unsigned
numbers. (See U<.)

L<= m n L<= f (V) True if m less than or equal to n as
unsigned numbers. (See U<=.)

L= m n L= f (V) True if m equals n.
is =.)

(Better notation

L> m n L> f (V) True if m greater than n as unsigned
numbers. (See U:>.)

L>= m n L>= f (V) True if m greater than or equal to n
as unsigned numbers. (See U:>=.·)

LAST

LINE

LIST

LIT

LOAD

LOOP

LAST p An integer painting to the address of the
last dictionarv entrv made, which is not necessarilv
a complete or valid entrv.

m LINE P Leaves
beginning of line
contained at BLK.

the character address of the
m for the block whose number is

b LIST (VK) List the block b as 16 lines of 64 ASCII
characters on the selected output device.

LIT m (C, Not V) Automatically compiled before
literal encountered in a colan-definition,
causes the contents of the next dictionary cell
be pushed on the stac k. (V: LIT is anonymous.)

each
LIT

to

b LOAD Begin interpreting block b.
terminate with is or CONTINUED.

The block must

LOOP (C) Increment the DO-loop index by one,
terminating the loop if the new index is equal to or
grea~er than the limit.

V8080: LOOP can run at interpreter level.
See +LOOP.

FORTH VOCABULARIES. Page 4-17

MAPO

MAX

MAPO p (T) An integer pointing to the first location
in the tape map.

m n MAX ~ Leaves the greater of two numbers.

MESSAGE n MESSAGE (V) Get line n relative to the first line
of block MSGBLK, strip the trailing blanks, and type
at the terminal. This word lets you define a large
number of messages on disk without tying up main
memory.

MIN

MINUS

MK!

MOD

MOVE

NAND

NEXT,

NOR

NOT

m n MIN ~ Leaves the lesser of two numbers.

m MINUS -m Negates a number (2's complement).

MK! (V) Mark the present value of DP. Eq.uivalent
to HERE MKVAR !. Useful in assembler programming
for passing parameter addresses. See MK@.

M~@ n (V) Obtain the value 0' DP that was last
marked with MK!. Equivalent to MKVAR @.
Example: MK! 123456, CODE nnnn S -) MK@ P MOV,
NEXT, This PDP-11 routine will push 123456 on the
stack. MK! and MK@ have applica.tions similar to'
,CODE and Kitt Peak pseudovariables.

m n MOD r Leaves the remainder of min, with the same
sign as m.

p q n MOVE Moves the contents of n memory cells
beginning at address p into n cells beginning at
address q.. The contents of p is moved first;
overlapping of data can occur.
(0 10 10 11 4 MOVE clears locations 10 through
14.)

m NAND n (X, Not V) Logical not-and.

NEXT, (V) An assemb ler word that may be used to
terminate a CODE word. It invokes the Address
Interpreter. In V11 and VIO NEXT, assembles a "Jump
indirect through IC and increment IC" instruction.

m NOR n (X, Not V) Logical not-or.

m NOT f (X) Equivalent to 0=.

FORTH VOCABULARIES. Page 4-18

NUMBER NUMBER Convert a character string left in the
dictionary buffer by WORD as a number, returning the
result in registers, internal temporary locations,
or on the stack. The appearance of characters that
cannot be properly interpreted will cause an error
exit.

OCTAL OCTAL Set the number base to octal.

O.

00

n O.
00.

(V) Type n as an unsigned octal number.

n 00 (V) Type n as an unsigned octal number.
preferred.

See

O. is

OR m n OR q Bitwise logical inclusive OR.

OR! m p OR! (V) Form the logical OR of m and the
contents of p. Store at address p.

OTHERWISE

OVER

PAGE

PICK

PCH

PRINT

OTHERWISE (Not V) An inteT'preter-level conditional
word. See IFTRUE.

m n OVER m n m Push the second stack value.

PAGE (Not V) Clears the terminal screen or performs
a similar action on the current terminal.

n PIC~ Returns the n-th stack value, not counting n
its elf. (2 P I C~ is e qui va len t to OVER.)

c PCH (Not V) Transmit a character to
output printer device. See TCH. (V:

the selected
See TVO.)

m n PRINT (C Not V) Transmit n characters to the
selected output printer starting at character
address m, which will have been placed on the stack
or in an internal register by COUNT.

PRINTER PRINTER (X, Not V) Select a hard-copy printer as the
output device for all output directed through PCH or
PRINT. See TERMINAL.

GBLOC~ b GBLOCKp (X, Not V) Like
while previous contents
written to output device.

BLOCK, but may return
of block are still being

FORTH VOCABULARIES. Page 4-19

R>

READ-HAP

REMEMBER

R> n (CX) Pop the
stack and push
>R.

topmost value from
it onto the user stack.

the return
See I and

READ-MAP (T, Not V) Read to the next file mark on
tape, constructing a correspondence table in memory
(the map) relating physical block position to
logical block number. The tape should normally be
rewound to its load point before executing READ-MAP.

REMEMBER nnnn (V920, Not other V) Define a word nnnn
which, when executed, will cause nnnn and all
subsequently defined words to be deleted from the
dictionary. The lIIord nnnn may be compiled into and
executed from a colon-definition. The sequence
DISCARD REMEMBER DISCARD provides a standardized
preface to any group of transient blocks.

REWIND REWIND (T, Not V) Rewind the tape to its load point,
set tin g CUR= 1 .

ROLL u (n) u (n-l) .,. u (1) n ROLL u (n-l) ... u (1) u (n)
Extract the n-th value fTom the stack, leaving it on
top and moving the remaining values into the vacated
position. (3 ROLL is equivalent to ROT; 1 ROLL is
a null 0 p era t i on; 0 ROLL i s un d e fin e d.)

ROT m n pROT n p m Rotate the topmost three stack
values.

SEMI,

SET

SHOW

SEMI, (Vll) This word must be used to terminate
PDP-ll ; CODE lIIords.

m p SET
exec uted,
address p.

nnn Defines a lIIord nnnn which, when
will cause the value m to be stored at

m n SHOW (V) Type blocks m through n at the
terminal, 3 blocks to a page.

SPACE SPACE (V) Type one space.

SPACES m SPACES (V) Type m spaces.

SWAB n SWAB m (V11) Exchange the left and right bytes of

FORTH VOCABULARIES. Page 4-20

SWAP

TCH

n.

n m SWAP m n Exchange the topmost two stack values.

c TCH (Not V) Transmit
terminal, irrespective
See PCH. (V: see TVa.)

a character code to the
of output-device selection.

TERMINAL

THEN

TYI

Tya

TYPE

TERMINAL Select the terminal as the only output
device, cancelling previous selection of printer.

THEN (CO-) Terminates an IF-ELSE-THEN conditional
sequence.

TYI c (V) Input one ~haracter c, from the keyboard.

c Tya (V) Output one character to the terminal.

m n TYPE (C) Transmits n characters to the terminal,
irrespective of output device selection, starting at
the character address m. See COUNT, PRINT.

U< m n U< f (X, Not V) Like <, but unsigned (integer
range 0 65535). (See L<>

U<=

u>

U>=

UPDATE

m n U<= f (X, Not V) Like <=,
L<=)

but unsigned. (See

m n U> f (X, Not V) Like >, but unsigned. (See L»

m n U>= f ex, Not V) Like >=,
L:>=)

but unsigned. (See

UPDATE Flag the most-recently referenced block as
updated. The block will subsequently be transferred
automatically to disk or tape should its buffer be
requ i red for storag e oT a d i fTerent bloc k. See
FLUSH.

VAR m VAR nnnn (X) Abbreviation of VARIABLE.

VARIABLE
m VARIABLE nnnn (Not V) Creates a word nnnn which,
~hen executed, pushes the address of a variable
<initialized to m) onto the stack. (V: See
INTEGER.)

FORTH VOCABULARIES. Page 4-21

VOCABULARY

WORD

XOR

VOCABULARY vvvv (EX) Define a vocabulary name.
Subsequent use of vvvv will make vvvv the context
vocabulary. The sequence vvvv DEFINITIONS will make
vvvv the current vocabularly, into which definitions
are placed.

c WORD (CN) Read the next word from the input string
being interpreted, up to 63 characters or until the
delimiter c is found, storing the packed character
string beginning at the current dictionary pointer.
(V: Delimiter c must be stored in integer DELIM,
""h i chi sse t to b I an k by WOR D.)

m n XOR q The logical exclusive OR.

\! n p \! (V) store right hand byte of n at byte
address p. (B! preferred.)

\, n \, (V) Compile right hand byte of n into next byte
of dictionary. Increment DP by 1 byte. (B,
preferred.)

\@ p \@ n (V) Return byte at ~ddress p in right hand
part of n. Left hand part of n may contain the sign
extension of the right hand byte. (S@ preferred.)

\MOVE p q r \MOVE (V) Move l' bytes beginning at address p
to area beginning at address q. (BMOVE is
preferred.)

FORTH VOCABULARIES. Page 4-22

4.4 SPECIAL VOCABULARIES.

Of the vocabularies presented here, only the standard
editor is generally used outside of Caltech-OVRO systems.
The others, however, are frequently used in our local
systems.

4.4.1 Standard Editor.

The "standard" Forth editor is a very simple editor
based on substitution of fixed-length lines in the
fixed-format block. There are 16 lines of 64 characters in
each Forth block.

Type EDIT LOAD (SYSTEM DISK EDIT LOAD <user> DISK if
file system is loaded) to load the standard editor. Type
FORGET EDITOR to release the editor vocabulary.

..

(

" ssss .. As described in standard vocabulary above .
Copies string ssss into buffer TEXT. String is
padded to the right with blanks as needed to make 64
c harac ters.

(ssss) Copies string ssss into TEXT like ".

BLK BLK p An integer that specifies the number of the
block you're currently working with.
Example: 144 BLK! to edit block 144.

BT BT Type the current block.
LIST.

Equivalent to BLK @

D n D Delete line n from the current block and move
lines n+1, n+2, ... , 16 down one line. Line 16 is
filled with blanks. The old contents of line n are
moved into buffer TEXT.

I n I Lines n+1, n+2, ... , 15 are moved down one line.
(Line 16 is lost.) The contents of TEXT are moved
into line n+1.

R n R The contents of TEXT are moved into line n.

T nT Type line n.

FORTH VOCABULARIES. Page 4-23

4.4.2 Character Strings.

Character string manipulations are a central part of
more sophisticated text editors. Standard Forth has no
support of strings; thus the following vocabular~ was
developed.

Variable length character strings (0-63 characters> ma~
be placed on a special string stack (which has a fixed
ma x imum d ep th >. Vari ous op erat ions, pref i xed by A, operate
on this stack.

Type STRINGS LOAD (STRINGS ILOAD if file system is
loaded) to load the strings vocabulary.

A@ P A@ ssss Get string ssss, located at p, and push it
on the string stack. (Byte 0 of the string is its
length.)

AI ssss P A! Pop ssss from the string stack and store
at location p.

ACLR Clear the string stack.
stack is ~ cleared by ABORT.

Note: the string

ALEN.n Get length n of top string on string stack.

A-LEN n Get length n of second string on string
stac k.

ssss ATYPE Type ssss and pop off string stack.

n AC@ c Retrieve n-th character from
push its ASCII value c on Forth stack.
is the string length.

top string,
Character 0

AC! c n AC! ASCII character c replaces n-th character
aT top string.

''''LEN!

"

n ALEN! Set length of top string to n.
to n 0 AC!.

Equivalent

ANULL ssss Push null string ssss (length 0> on
string stack.

.. ssss" Push a literal string ssss onto string
stack. Similar to II in standard editor.

FORTH VOCABULARIES. Page 4-24

((

..... SUBSTR

..... LINE

.... ·LINE!

-SPACES

..... CAT

"PAD

=STRINGS

"SUBSTR!

In compile mode: Compile ssss into the dictionary
with a call to a string literal routine that will
push ssss onto the stack at execution time.

« ssss) Like" except the delimiter is).
you enter quotes in a text string .

« lets

ssss n m SUBSTR tttt New
substring of ssss beginning
ending with character m.

string tttt is the
at character nand

n LINE ssss String ssss is drawn from line n of the
block whose number is in BLK. Trailing spaces are
deleted.

ssss n LINE!
BLK. Blanks

String ssss is stored
are added to the

characters.

ssss -SPACES tttt String tttt is
trailing blanks removed.

1'1'1'1' ssss CAT tttt Strings 1'rrr
concatenated to form string tttt.

rrrr ssss n "PAD tttt String 1'1'rr is
right . using the first character of

in line n of
right to make 64

ssss with all

and ssss are

padded to the
ssss so that the

resulting string tttt is n characters long.

rr1'r ssss =STRINGS f Compare strings r1'rr and ssss,
return f=l if equal (including in length), 0
oth erwi see

1'1'1'1' ssss n m SUBSTR! tttt Result is string rr1'r
with string ssss inserted instead of substring n
through m of rrrr. The length of ssss does not have
to equal the length of the substring to be replaced .

..... INDEX SS$S tttt '"'INDEX m Search string ssss for the first
occurrence of tttt as a substring. Returns
character position of match if found, 0 otherwise.

"STRING SS$S STRING nnnn Like CONSTANT, define nnnn, which,
wh~n executed, will push ssss on the string stack.

FORTH VOCABULARIES. Page 4-25

4.4.3 The Extended Editor.

The Forth Extended Editor (XED) is a superset of the
standard editor. In addition to the line-at-a-time
commands, it allows you to search for character strings,
alter strings identified by context, etc. XED uses the
Character Strings vocabulary described above.

Type XED LOAD (XED ILOAD if file system is loaded) to
load the extended editor. XED will automatically load
STRINGS. Type FORGET EDITOR to release the XED and STRINGS
vocabu lar ies.

FT ssss FT Find the first occurrence of ssss beginning
at the current line number (L#) in the current block
(BLK) and type the whole line containing the string.
If a match is not found in the current block,
continue at BLK + 1 etc. (You have to type 2
CTRL-Cs to stop in RT11 or RSX11.)
Example: "THIS" ·FT to find the first occurrence of
"THIS" in or after ~he current block.

FR T'rrr ssss FR Find the first occurrence of rrrr in
the current block beginning at the current line;
replace it with ssss. The resulting line is
truncated at 64 characters.
Examp Ie: "THIS"" THAT" FR to rep lace th e fi rst
occurrence of "THIS" wi th "THAT".

FD ssss FD Find the first occurrence of ssss in the
current block beginning at the current line; delete
this substring of ~he line. Pad the line back to 64
characters with blanks.

FI 1'1'1'1' ssss FI Find the first occurrence of 1'1'1'1' as
above; insert ssss immediately following 1'1'1'1'.

Truncate the line at 64 characters.

HT n HT Hold line n of current block on string stack
and type.

HR n HR Replace line n with the string on the stack
(like R), but save the old contents of line n on
string stack.

HD n HD Delete line n (like D), but hold its former
contents on the string stack.

FORTH VOCABULARIES. Page 4-26

HI n HI Insert string on line following n <like I), but
hold old contents of line 16.

LT LT Type current line number and line.

BT BT Type current block. Reset line number to 1.

L? L? Type current line number.

L1 L1 Set current line to 1.

HOLD n m HOLD Put lines n - m of current block on string
stack.

UNHOLD n m UNHOLD Replace lines n - m from string stack.

+9 +9 Increment BLK by 1.

-B -9 Decrement BLK by 1.

ENTER ENTER Beginning at the current line of the current
block, insert text exactly as typed. Each line is
terminated by the user typing a carriage return,
which fills out the current line with blanks and
advances L#. Typing more than 64 characters between
carriage returns results in a "bell" and automatic
line advance. The line number and a backslash are
output before each line is input. Input terminates
with a CTRL-Z character. BLK automatically advances
after line 16 of the current block is entered.

CLR-BLK n CLR-BLK Set block n to blanks.

4.4.4 Deferred Operations.

A class of operations modelled on the addressing modes
of the PDP-11 has been developed by H. W. Hammond. These
are particularly valuable when you need to work with
pointers to access successive elements of data structures.
Straightforward generalizations to data types other than
16~bit integers are possible.

)! m p)! Store m at the address q found at location
p. Equivalent to m p @ !.

FORTH VOCABULARIES. Page 4-27

)@ P)@ m Get the contents of address q which is found
at location p. Equivalent to ~ @ @.

)@! P)@! Equivalent to p @ @ p !.

)+! m p)+! Store m at address q found at location P'
then increment p by 2 bytes. (PDP-It
"auto-increment") Equivalent to m p @! 2 p +!.

)+@ p)+@ m Get the contents Or q found at location P'
then increment p by 2 bytes. Equivalent to p @ @ 2
p +!

-)! m p -)! Decrement contents of p by 2 bytes, then
store m at location q whose address is found at
location p. (UAuto-decrement U

) Equivalent to -2 p+!
P @ !.

-)@ p -)@ m Decrement conte~ts of p by 2, then get
contents or location q whose address is found at
location p. Equivalent to -2 p +! P @ @.

4.4.5 Double Precision Math.

The Double Precision Math Package (DPMATH) includes
operations that deal with 32-bit integers as well as a
library of mathematical functions that use 32-bit integers.
A double-precision number is represented in (PDP-ll) memory
by the high-order part in the lower word and the low-order
part in the higher word of memory. The left-most bit is the
sign, which applies to the full number.

The DPMATH vocabulary was developed first for the 27-m
interrerometer system (PDP-11/20) by H. W. Hammond. It
was carried over to the VLBI Processor (POP-11/40 = GT44)
without maJor change. The nomenclature followed the
then-current Forth usage at other sites. Since that time an
improved notation has been adopted.

The original vocabulary uses a ". II (period) postfix to
indicate double precision. The new system uses a prefixed
character to indicate precision and type. "Oil and tlF"
indicate double precision (32-bit) integer and
single-precision (32-bit) floating point, respectively.
(N.B. The VLBI Processor uses a prefix "FII !!.!:U! postfix It It

FORTH VOCABULARIES. Page 4-28

to indicate double precision floating point. We have no
agreed-upon standard notation for this case. but it seems
that a uni~ue one-character prefix ["G" ?l would be
preferable to the pre- plus post-fix scheme.) Pure stack
ope rat ion s (SWAP, DUP, etc.) use apr e fix e d II 2" 0 r If 4 ft for
double or quadruple word operations. (Such operations may
be useful even for single-precision data.)

In the following documentation the original (postfix
... It) notation is given first with the newer (preferred)
notation second in parentheses.

4.4.5.1 Data Types.

INTEGER.
u INTEGER. nnnn Like INTEGER, define nnnn which
will push the address of a 32-bit integer (initial
value u) on the stack. (2VARIABLE or 2VAR is
preferred for new systems.)

C. u C. nnnn Like CONSTANT, C. defines a 32-bit
constant nnnn which when executed will push value u
on the stack. (2CONSTANT, 2CON, or 2C preferred for
netal sy stems.)

4.4.5.2 Basic Operations. -

SWAP.

DROP.

DUP.

OVER.

(20VER

@.

u v SWAP. v u Exchange top two 32-bit numbers on
stac k. (2SWAP preferred for new systems.)

u DROP. Get rid of top 32-bit number from stack.
(Or, drop 2 16-b it numbers.) (2DROP preferred.)

u DUP. u u Duplicate top 32-bit number on stack.
Equivalent to OVER OVER. (2DUP preferred.)

u v OVER. u v u Like OVER for 32-b its.

preferred.) I U P I Store u at address p.

P @. u Get the 32-bit integer at location p. (2@
preferred.)

FORTH VOCABULARIES. Page 4-29

<R.

R>.

u <R. Move u to the return stack.
is preferred for new systems.)

R>. u Get u from the return
preferred.)

(The symbol 2>R

stac k. (2R>

+. U v +. w Compute 2's complement sum of u and v.
(D+ preferred for new systems.)

u v tal Compute u v. (D- preferred.)

MINUS. u MINUS. -u Negate u. (DMINUS preferred.)

ABS. u ABS. v Compute absolute value of u. (DABS
preferred.)

S>D n S>D u Convert a 16-bit number n into a 32-bit
number u by extending the sign to the left.

OSET. p OSET. St or e a 32-b i t z er 0 at p. (20SET is the
logically preferred but confusing alternative
notation. Solution: OOSET as a preferred
notation?)

1+!' P 1+!. Add 1 to double precision number at p.
(Dl+! preferred.)

4.4.5.3 Comparison Operations. -

The following operations provide comparisons e~uivalent
to the words with corresponding names without the terminal
n If These words take 32-bit operands and return a 16-bit
logical flag.

0=. 0<>. 0<. 0>. 0<=. 0>=.

L=. L<. L>. L<=. L>=.

<>. <. >. <=. >=.

Preferred notation:

DO= DO<:> DO< DO:> DO<= DO)-=

D= D< D:> D<= D:>=

FORTH VOCABULARIES. Page 4-30

D<> D< D> D<= D>=

The following words are comparisons in the address mode
which are comparable to their single-precision counterparts.
Note: These are used only in the VLBI Processor system. A
better notation might use a different pre¥ix ("B" ?).

AO=. AO<>. AO<. AO>. AO<=. AO>=.

AL=. AL<. AL>. AL<=. AL>=.

A<>. A<. A>. A<=. A>=.

4.4.5.4 Shift Operations. -

In the following an arithmetic shift refe~s to a shift
in whi~h the sign bit never changes ~hen shifting left.
When shifting right the sign bit is copied into successive
bits to the right. A logical shift treats the sign bit like
any other.

ASHIFT n m ASHIFT r Arithmetic shift, result
r = n * 2**(m). If m>O, shift is to left; m<O, to
1" i g h t. (ASH ma y be pre f err e d.)

LSHIFT n m LSHIFT 1" Logical shift left m places. m may be
neg at i ve. (LSH ma,=, b e pre fer 1" e d.)

ASHIFT. u m ASHIFT. v Arithmetic shift like ASHIFT, but for
32-b it integers. (DASH preferred.)

LSHIFT. u m LSHIFT. v Logical shift like LSHIFT, but for
32-b i tin t e gel" s. (DLSH pre f err e d.)

ROL n m ROL r Rotate n left m places. Bit 15 (the sign)
rotates into bit O. m may be negative.

LSL

LSR

n m LSL 1" Logical shift left n by m places.
be po sit i ve.)

(m must

n m LSR 1" Logical shift right n by m places.
must be positive.)

(m

FORTH VOCABULARIES. Page 4-31

ASL

ASR

n m ASL r Arithmetic shift left by m places.
must be positive.)

n m ASR r Arithmetic shift right by m places.
must be positive.)

(m

(m

LSL. u m LSL. v Logical 32-bit shift left by m places.
(DLSL pre fer red, m mu s t b e p 0 sit i ve.)

LSR. u m LSR. v Logical 32-bit shift right by m places.
(DLSR preferred, m must be positive.)

ASL. u m ASL. v Arithmetic 32-bit shift left by m
places. (DASL preferred, m must be positive.)

ASR. u m ASR. v Arithmetic 32-bit shift right by m
places. (DASR preferred, m must be positive.)

4.4.5.5 Multiplication, Division, And Normalization. -

*. u v *. w Compute w = u*v, low order 32 bits in
result. (D* preferred.)

I. u v I. w Compute w = u/v. (01 preferred.)

G*. u v G*. w Computer w = u*v, where u, v, and ware
scaled with the binary point to the right of the
sign bit, i. e. in the range -1 to +1. The result
is the high-order 32 bits of the product. (No
obvious preferred notation except to assign a new
prefix letter: R*?)

Q/. u v G/. w Compute w = u/v, with the same scaling as
0*. (RI preferred?)

NOR. u NOR. v n Result n is the number of bits u must be
shifted leTt so that bit 15 is different from bit
14; v is the resulting normalized 32-bit number.
(DNOR preferred.)

FORTH VOCABULARIES. Page 4-32

4.4.5.6 Mixed-mode Operations. -

The following words operate on one 32-bit and one
16-b i t number.

M* u n M* v Compute the low-order part of the product
u*n.

MIMOD u n MIMOD v m Divide 32-bit number u by 16-bit
number n to obtain 16-bit remainder m and 32-bit
quotient v. Note that remainder and quotient are in
reverse order compared to IMOD. (This definition
should be changed to correspond.)

MI u n MI v Divide 32-bit number u by 16-bit number n
to yield 32-bit quotient v.

MOVER u n MOVER u n u Push the 32-bit number on the stack
over the 16-bit number.

MSWAP u n MSWAP n u Interchange argumenta on the stack.

4.4.5.7 Number Output. -

The following words are provided in the DPMATH package
on the 27 m system and on the VLBI Processor:

DD. u n DD. Type variable u with scale factor n. n
specifies the number the number of digits to appeal'
to the right of the decimal point. E.g. 123. 1
DO. types 1. 23., wh i Ie 123. 4 DO. types 0.0123.

D.D u D.D Type the decimal value of the 32-bit number u.

00. u 00. Type the unsigned octal value of u.

The following words are provided on the 10 m system and
in some other Forth systems:

D. u D. Type u as a decimal number with as many
columns as required.

D.R u x D.R Type u as a decimal number right Justified
in a field of x columns.

FORTH VOCABULARIES. Page 4-33

SGRT.

ATAN.

SIN.

cos.

4.4.5.8 Functions.

u SGRT. v Square root. (DSGRT preferred.

u v ATAN. w Arc tan (u/v) preserving q,uadrant
information. Result w is in Binary Angular Measure
(BAM). (In BAM, 0 degrees = 0, 90 degrees =
40000 (8) , 180 = -180 - 100000 (8) , etc.) (DAT AN
preferred.)

u SIN. v Result v, scaled in the interval -1
(binary point to the right of the sign bit),
5 i ne of ang leu in BAM. (DSIN preferred.)

u COS. v Compute c 05 i ne simi lar to SIN.
preferred.)

+1
is the

CDCOS

4.4.6 File System.

The typical Caltech-OVRO Forth system has one "user" at
a time, but many users sequentially in time. In this
environment, confusion over allocations of block storage is
a significant problem. Particularly with the VLBI Processor
system, many non-.xpert persons potentially need to edit
blocks. The Forth File System (FFS) is intended to
alleviate the problem of disk allocation and protection.

FFS divides the PDP-ll Forth block file <which may be a
file within an RT-l1 or RSX-ll file structure) into lIuser
files". Each user file may contain up to 512 blocks,
numbered 0 511. A user refers to his blocks Just as in
Forth without FFS, i. e., through BLOCK, LIST, etc. Block
numbers in the user file are logical block numbers; FFS
maintains a map (User File Directory UFD) of
correspondences between logical and physical block numbers.
('tPhysical" means numbered in the sense of non-FFS systems;
FFS physical block 10 may correspond to an arbitrary
hardware disk block when running under RT-11, for example.)

A table of available disk blocks is maintained in block
"AVAILII. It is a bit map with each bit signifying the
availability <if 1) of a particular physical block. A user,
after his UFD is set up, may request up to 512 blocks to be
placed in his file. Initially, nQ blocks are allocatedi
i.e. any block reference will cause an error message. The

FORTH VOCABULARIES. Page 4-34

user must assign himself blocks using ASNBLK. Blocks are
assigned one at a time and are given specific logical block
numbers in the user's file. Blocks do not have to be
ass i 9 ned can tin u a u 51 y ; b lac k sO, 1 , an d 3 ma y b e ass i g ned
(using ASNBLK) while block 2 is unsassigned. Th~s the user
only needs to assign the particular logical blocks he will
be using.

An unneeded block can be returned to the available pool
with the word RLSBLK.

A user file is specified by a numeric constant (1
511>' A suitable constant word would normally be defined to
specify the file, e. g.: SYSTEM, STRINGS, VLBI, etc. At all
times, Forth/FFS maintains a disk "context" which specifies
the user file from which all blocks are taken. The user may
change user files by using DISK, e. g.; SYSTEM DISK. The
file must have been previously defined.

Typical user files will contain software packages such
as f I oat i ng poi nt, VLB I proc essoT' software, d iagnosti c s,
etc. A special word has been defined to load such packages:
ILOAD. If the user types DIAGNOSTICS ILOAD, the diagnostics
user file is loaded at logical block O. ILOAD preserves
context, i. e. if the. current user file is SYSTEM, SYSTEM
~ill be current after a ILOAD command. Thus ILOADs may be
nested.

A group of words that create and manipulate UFOs are
accessible through (FILES) LOAD. You must first FORGET
FILES, then type (FILES) LOAD. When (FILES) is running, FFS
is disabled. It is intended that only system ma~ntainers
("experts") will need to run (FILES).

4.4.6.1 Standard File System Vocabulary. -

The following words are loaded if FFS is implemented in
the standard system:

DISK n DISK Set current user
Normally n is provided by
SYSTEM, STRINGS, etc.

file (context) to n.
a CONSTANT word, e. g.

ASNBLK n ASNBLK Get a block from the availabl~ pool, clear
it to blanks, and assign it the logical block number

FORTH VOCABULARIES. Page 4-35

n (0 - 511) in the current user file.
previously have been unassigned.

Block n must

RLSBLK n RLSBLK Deassign logical block n from the current
user file and return it to the available pool.

ILOAD n ILOAD Load from block 0 of user file n. The user
file which was current before ILOAD is current after
ILOAD.

ICOPY m n r ICOPY Copy block m from user file nto block r
of the current user file. Example: MSE DISK 13 DHR
10 ICOPY copies block 13 of disk DHR to block 10 of
disk MSE.

IEXCHANGE
m n r IEXCHANGE Like ICOPY, but the contents of the
two blocks are exchanged.

These words are updated to imply references to logical
block numbers in the current user file:

LOAD BLOCK LIST SHOW COpy EXCHANGE

4.4.6.2 File Maintenance Vocabulary. -

The following words are accessible by typing FORGET
FILES (FILES) LOAD. In this mode, all block references are
physical.

UFD

STAV

SNAV

SMFD

UFD Get an available block and designate it as a UFD
for a new user fi Ie. The file number is typed by
UFD. This number should be defined as a constant
with the name that will be used to reference the
user fi Ie.

n STAV Set physical
corresponding bit in
e l' T' a l' sis ma de.

block
AVAIL

n "available". (Set
to 1.) No check for

n SNAV Set physical block n "not available lf
•

m n SMFD Store value m in
D ire c tor y (MFD) . Not e :

word n in Master File
n is a Ulord, not byte,

FORTH. VOCABULARIES. Page 4-36

LMFD

LUFD

XASN

TRANSFER

address.

LMFD Dump MFD block.

n LUFD Dump UFD corresponding to user file n.

m n XASN Define physical block m as logical block n
in the ~urrent user file. No checks for errors or
conflicts are made.

m n r s TRANSFER Logical block m of file n is
transferred to block r of file s. T~e data are not
moved, only ownership is transferred.

APPENDIX A

PDP-II IMPLEMENTATION.

A. 1 GENERAL CHARACTERISTICS.

The DEC PDP-11 is a 16-bit computer architecture that
has been realized in many models. OVRO operates 4 distinct
types of PDP-l1: two PDP-11/40s (VLBI Processor and 10 m
telescope control), a PDP-11/20 (27 m interferometer),
PDP-ll/03s (also known as "LSI-l1s", for remote pointing of
the 10 m antennas and of the 39 m antenna), and a PDP-ll/05
(also known as a "GT40", used for the 1024-channel
autocorrelator).

Several Forth systems have been developed for these
machines. One (for the 11/20) runs as a standalone system
using 9-track magnetic tape for block 1/0. Most of the
other systems have disk storage and so can run the DEC
operating systems. The VLBI Processor and autocorrelator
use th~ RT-l1 operating system, while the 10 m control
computer runs RSX-11/M.

Forth on the 11/20 is based on a sp~cially formatted
9-track 800 bpi tape. Direct access ("update in place") is
possible because long inter-record gaps are written after
data blocks. The se~uence of records on tape is as follows:

(beginning of tape marker)

(long inter-record gap)

(12 word label record "1")

(standard inter-record gap)

PDP-11 IMPLEMENTATION. Page A-2

(data record, 1024 bytes)

(long inter-record gap)
(12 word label record "2")

(standard inter-record gap)

(d a tar e cord 2, 1024 b Y t e s)

Label records are required to provide indexing
block can be found reliably without rewinding
its current position. The label consists of
words each containing the number of the
follow. (12 words are required so that the
treated as a "noise record".)

so that a new
the tape from
12 identical
data block to

label is not

Data records are found by referring to the labels. An
existing data record can be overwritten safely if the tape
is positioned by first reading its label record. The long
inter-record . gaps insure that label records are not erased
by updating data.

The direct access tape method is not particularly
efficient in use of tape because long interrecord gaps
account for about 60;' of the tape used. Nevertheless 1000
Forth blocks will fit in 500 feet of tape.

PDP-l1s use the standard 7-bit ASCII character set with
one character right-Justified in an a-bit byte. PDP-I1
Forth recognizes certain characters for control purposes:

CHARACTER FUNCTION

CTRL-A (RT-ll only) After you stop type out with CTRL-S,
you may type CTRL-A to type Just one more page of
text. This is useful when using CRT terminals or
II. GT ON".

CTRL-C Interrupts execution of any program and returns
control to the keyboard. Two CTRL-Cs may be
required if the program is not listening to the
keyboard.
RT-ll : RT-11 types It II and you ma'l type any monitor

PDP-II IMPLEMENTATION. Page A-3

command (e. g. REENTER or RUN). REENTER will let
you resume Forth in most cases (but not on the VLBI
Processor) .
R8X-11: RSX types "MCR>" and you may type any
monitor command, such as ABORT. Forth can not be
reentered in the current version.

CTRL-O (RT11 and RSX11) Cancels type out from a running
program, but program continues. Allows you to skip
lengthy listings. A second CTRL-O turns on type out
again.

CTRL-G (RTll) After you type CTRL~S to stop type out, you
may type CTRL-Q to resume. Type out wi 11 not stop
again unless you type CTRL-S.

CTRL-S (RTll) Stops type out from a running program in such
a way that no output wi 11 be lost; The program
continues to run until the output buffer is full.
CTRL-Q or CTRL-A may be used to restart output.

CTRL-U Cancels the entire line you have Just typed in.
Only effective before you type "return".

RUBOUT Cancels the last character you have Just typed in.
Same as DEL 01" DELETE.

The 8 PDP-11 registers are allocated according to the
following table:

REG.

o
1
2
3
4
5
6

7

NAME

T
TT

S
IC
R

FUNCTION

Gen era I 'Us e
Stack top 01' General
Multiply/Divide or General
General Use
Forth Stack Pointer
Forth Instruction Counter
Forth Return Stack Pointer and
POP-11 Hardware Stack Pointer
PDP-1t Program Counter

PDP-ll IMPLEMENTATION. Page A-4

A.2 DICTIONARY FORMAT.

The PDP-Il dictionary format was featured in Section
3.3 of this Manual and will not be repeated here.

A.3 ASSEMBLER.

Three types of instructions are supported by
Forth: zero-, one-, and two-operand instructions.
words lOP and 20P are provided to define single and
operand instructions, respectively.

PDP-1l
Forth

double

lOP defines words (like CLR,) which
argument on the stack. The argument
addressing mode and register. For example

is equivalent to the Macro-11 line

CLR R3,

which clears r.egister 3.

require
specifies

one
the

For more complicated types of addressing a set of
auxilliary words has been provided as follows~

ARGS SYMBOL VALUE ADDRESSING TYPE

r 10 register deferred
r)+ 20 auto-increment
r @)+ 30 auto-increment deferred
r -) 40 auto-decrement
r @-) 50 auto-decrement deferred
0 r I) 60 indexed
0 r @I) 70 indexed deferred

dst \ 100000 byte mode·
dst B 100000 byte mode (preferred
notation)

v # 27 immediate mode
a @# 37 absolute mode
a P 67 relative mode
a @P 77 relative deferred mode

PDP-it IMPLEMENTATION. Page A-5

In this table ~ stands for any register (0-7), 2 stands for
a 16-bit ofTset, dst stands for a complete destination
specification (e. g. ! l±), ~ stands for a 16-bit integer
value, and a Tor a 16-bit address.

Examples of typical assembler constructions for single
operand instructions follow with their Macro-11
counterparts:

3 CLR, CLR R3
Clear register 3 to zero.

8 -) T8T, T8T -(8)
Subtract 2 from register S (4) and test the data at
the location to which S now points. This is a
simple way to reserve a word on the stack.

134 1 I) INC, INC 134(Rl)
Increment the data word found at the address 134 +
(contents of register 1),

134 1 I) \ INC, INCB 134(Rl)
134 1 I) B INC, INCB 134(R1) (preferred
notation.)
Increment the data byte found at the address 134 +
(contents of register 1),

XYZ P CLR, CLR XYZ
Clear the data in variable XYZ.
the relative addressing mode.)

(The assembler uses

XYZ @# CLR, CLR @#XYZ
Clear the data in variable XYZ. (The assembler uses
the a b sol ute add res s i 11 9 mo de.) The e. and @# mod e s
are equivalent in most cases.

Double operand instructions requir~ both a source and a
destination field which can be defined with the mode words
as described above. A few examples:

8 -) 112 2 I) MOV, MOV 112(R2),-(S)
Move data from address 112 + (contents of register
2) to the stack, after having subtracted 2 from
reg i s t er S (4 >. (You use the con s t r u c t i.o n §. =l. a s a
destination to push data on the Forth stack.)

XYZ P -10 4+ MOV, MOV #-1Q,XYZ

PDP-11 IMPLEMENTATION. Page A-6

Move the immediate value (-10) into variable XVZ.

S)+ T MUL, MUL T, (5)+
Multiply register T (1) by the top stack value, pop
the stack, and return the product in T (1) and TT
(2)' Note that the MUL instruction (like DIV, ASH,
etc:.) ma y h a v eon 1 y are 9 i s t e r t y p ells 0 U r ce" Tie I d .

Conditional branches (IF, THEN, BEGIN, etc.) are
handled through the PDP-11 BR-type instructions. The
following Forth words are available as constant deTinitions:

These test the PDP-l1 condition codes the same way as the
branch instructions Bxx, where xx is replaced by one oT the
two letter codes.

To make an assembler conditional branch you give the
Tollowing assembler commands:

<set up condition codes <TST» xx IF, .<true code> THEN,

You first set up the condition codes; this can be a
byproduct aT some arithmetic (e. g. Tram an ADD instruction)
or the result aT an explicit TST or CMP operation. Next
give the two letter condition code from the list above,
followed by IF,. The IF, will assemble the appropriate
branch instruction. (Actually, the branch around the IItrue
code" must occur when the condition you specify is false, so
the branch that is assembled is the logical inverse oT the
condition type you speci-fy.)

An examp Ie:

This is assembled like the -following Macro-11 code:

lS:

CMP 2,3
BNE 1$
MOV #1, FLAG

PDP-tt IMPLEMENTATION. Page A-7

The BEGIN, - END, construction works in a similar way:

BEGIN, <loop code> xx END,

where xx is a condition from the same list. As a concrete
example

BEGIN, Q DEC, I'll END,

translates to the following Macro-ll code:

1$: DEC 0
BPL 1$

Following is a list o' the PDP-l1 Forth assembler
op-codes:

010000 20P MOV, 020000 20P CMP, 030000 20P BIT,
040000 20P BIC, 050000 20P BIS, 060000 20P ADD,
160000 20P SUB, 070000 20P MUL, 071000 20P DIV,
072000 20P ASH, 073000 20P ASHC, 074000 20P XOR,
004000 20P JSR,

5000 lOP CLR, 5100 lOP COM, 5200 lOP INC, 5300 lOP DEC,
5400 lOP NEG. 5500 lOP ADC. 5600 lOP sac, 5700 lOP TST.
6000 lOP ROR. 6100 lOP ROL, 6200 lOP ASR, 6300 lOP ASL,
0100 lOP JMP, 0200· lOP RTS. 0300 lOP SWAB, 0240 lOP CLEAR,
0260 lOP SET, 6700 lOP SXT,

NEXT, IC 30 + JMP, SEMI, IC R 20 + MOV, NEXT, i
CLC, 1 CLEAR, RTI, 2 , ; WAIT, 1 , i HALT, o ,
SEC, 1 SET, ; J, P JMP, i

Notes:

1. The following operations are invalid on the
PDP-ll/04, ./05, /10, and 120: ASH, ASHe, XOR, SXT,
MUL, DIV, .

2. Floating point operations are not defined in the
basic vocabulary.

APPENDIX B

THE PDP-10 IMPLEMENTATION.

B. 1 GENERAL CHARACTERISTICS.

The PDP-10 (DECsystem-10) is a 36-bit computer that
uses 7-b it ASCI I c harac tel' codes. The Cal tee h PDP-10 is
operated by the Computing Center and runs the TOPS-10
timesharing system with up to about 45 simultaneous Jobs.

Forth for PDP-10 has been written in the MACRO-10
assembly language to run under TOPS-10. Forth relies on the
operating system for terminal and disk 1/0. It occupies a
minimum of 4K words. but may access up to the maximum 56K
words normally allowed any (CIT) PDP-10 Jab.

The character set is the full 7-bit ASCII, with upper
and lower~case characters distinguished. (All standard
Forth words are defined in upper case.) Certain control
characters are treated specially by the operating system; a
partial list of these follows:

Character Action

CTRL-C (AC) Stop Forth and return
(Two ACS will be needed to
listening to terminal.)

to monitor level.
stop if Job is not

CTRL-O (· 0) Stop printing at the terminal. ~ob
continues running. A second·0 will resume
printing.

CTRL-G (..... G) Resume printing after suspended by AS.

CTRL-R (· R) Retype current input line. Useful after

THE PDP-10 IMPLEMENTATION. Page B-2

you've used <rubout> several times.

CTRL-S (.... ·9)
Job.

Suspend printing at terminal and suspend
I. e. no output will be lost. Resume with G.

CTRL-T (AT) Monitor types
current Job: cpu time,

a line giving
core, etc.

status of

CTRL-U (....... U)
date.

Monitor deletes entire line typed in to

<rubout> Monitor deletes last
Deleted character is echoed
«rubout> = <delete»

character typed in.
after "\" is typed.

Forth's block storage on the PDP-lO is the file found
by the file specification: D9K:FORSYS.DAT. The Forth
kernel uses "dump-mode" I/O, 2 physical blocks at a time, to
retrieve and store Forth blocks. Because a physical block
is 128 words long, the Forth block has room for 5 x 256 =
1280 characters in the standard PDP-I0 format (left
JUs t i fie d , ext r a bit = 0 >. Sot hat the 1 a s t 256 c h a r act e r s
are not wasted,. the PDP-I0 Forth ed i tor operates on 20
(decimal) lines of 64 characters.

Several words peculiar to the PDP-lO environment are
provided. ~ preserves essential Forth information and
returns to the monitor. A monitor "SAVE <filespec>" command
will then save the Forth core image in such a way that a
monitor "RUN <filespec>" command will restart Forth. In
this way it is not necessary to use the Forth LOAD each time
a program is to be run.

CORE, which takes one argument on the stack, allocates
the specified number of lK word blocks of PDP-tO memory to
the Forth Job. The stacks are moved up or down, as
appropriate. CORE will not allow you to have negative
s t a c k s; i f you sa y " Q CORE", you tal i 11 get the 1 owe s t eve n
number of kilowords in which your dictionary plus a modest
stack will fit.

A complementary word, CORE?, returns a number on the
stack which is the number of memory words unused in the
current Job, i. e. the distance between the head of the
dictionary and the initial stack pointer.

THE PDP-10 IMPLEMENTATION. Page B-3

WOPEN is required if you wish to write Forth blocks.
As Forth comes up, access to DSK:FORSYS.DAT is read-only.
WOPEN opens the file for output. WCLOSE closes the block
110 file for writing, but leaves it open for reading. WOPEN
and WCLOSE facilitate sharing of FORSYS.DAT blocks between
simultaneous Jobs. (TOPS-to allows only one Job at a time
to open a file for writing.)

If it is unnecessary to refer to any Forth blocks for a
given Forth application, you may type NOFORSYS and then SAVE
the core image .. When you run the core image, FORSYS.DAT is
not opened at all. In this situation the file does not have
to be present in your directory. (FORSYS undoes the effect
of NOFORSVS.)

The first 16 poP-tO memory words are special high-speed
registers, which are allocated for special Forth functions.
CODE words have to respect these allocations at least to the
point of restoring critical registers after use. The
current register allocations are-as follow:

Reg. # Name/status
(octal)

0-7
10
11
12
13
14
15
16
17

Available
V <available)
DP (critical)
T (critical)
TT (available)
SP (critical)
IC II

Available
RP (critical)

Register DP is the dictionary pointer; T always
contains th~ same value as the top stack value; TT is an
auxilliary register useful in multiply/divide operations;
SP is the stack pointer; IC is the Forth instruction
counter; and RP is the return stack pointer. Register 16
is left unassigned because it is the register used by
Fortran to pass parameters.

THE PDP-l0 IMPLEMENTATION. Page B-4

B.2 DICTIONARY FORMAT.

A Forth word in the PDP-l0 system has the header format
shown in Fig. B-1.

--------------------------bit number---------------------------~-------
333 3 332 2 2 2 2 2 2 222 1 1 111 1 1 1 1 1 0 0 0 0 000 0 0
5 4 3 2 1 098 7 6 5 432 1 0 9 8 7 6 5 432 1 098 7 6 5 4 321
- -• • • • • • .. • • • • • oooo oooooooooo.oo..oooooooooo..oooooo

ABSOLUTE LINK ADDRESS (ZERO)

- - - - - - - - - - - - -.

COUNT : CHAR. 1 : CHAR. 2 : CHAR. 3

- - - - - - - - - - - - - - - - - - -..

CODE SECTION (MACHINE INSTRUCTION)
1 OR MORE WORDS

- - - - - - - -....

I CHAR. 4

- - - - - -..

II

:-.-.-.-.-.- - -.-.-.- - - - - - - - - - --------------_. ..

PARAMETER SECTION (OPTIONAL)

1-.-.-. -. -.-.- - - - - - - - - - - - - - - -..

_ _ _ _ _ _ _ _ _ _ _ _ _ M

..

Fig. 8-1. Forth Word Format for PDP-lO.

Word 1 of the header contains only the 18-bit absolute
address of the preceding word in the same dictionary branch.
The right 18 bits are zeroes, not used in the current
version of the system.

Word 2 contains the name of the Forth word, in standard
PDP-lO ASCII format: 57-bit characters left-Justified in
the 36-bit word. Actually the first "character" is the
character count the number of characters in the name.
The remaining 4 characters are the first 4 characters of the
name. If a name has less than 4 characters, the remaining
characters are filled with blanks. The least significant
bit of word 2 is used for the precendence bit: a 0 is
normal, while a 1 forces execution even in the compile

THE PDp·-tO IMPLEMENTATION. Page B-5

state.

The code section begins in word 3. One or more machine
instructions must be present. Optional parameters follow
the code section.

B. 3 ASSEMBLER.

Most PDP-tO instructions are represented in Forth as
"CPU" instructions. Let ADD, be defined by the sequence

A complete add instruction may be assembled with the
sequence

This is equivalent to the Macro-tO line

ADD 5, 123,

i. e. the contents of location 123 will be added to register
5.

When you execute a CPU word like ADD" the current
stack value is taken as a register specification (possibly
including op-code modifiers). The second stack value is
taken to be a general address specification -- offset, index
register, and indirect bit. These fields are or'ed together
with the op-code, the result is stored in the next
dictionary location, and the dictionar~ pointer is
incremented.

Some Forth words are defined to assist in specifying
the general address value. For example, the sequence

pushes octal 2600Q123, then 11 onto the stack, and assembles
the Macro-10 instruction

ADD @t23(6)

into the dictionary. The effective address is then the

THE PDP-l0 IMPLEMENTATION. Page B-6

contents of the word whose address is the contents of
register 6 plus 123. (The ~ adds in 20000000, the indirect
bit.)

Op-code modifiers are also defined to reduce the total
number o~ op-codes that are needed to represent the rich
PDP-tO instruction set. For e xamp 1 e,

assembles an instruction equivalent to

ADDM 10, @123(6)'

The op-code modifiers correspond to the suf~ixes used
by Macro-tO:

I I immed iate,

MI result to memory,

BI result to both register and memory, and

SI result to self.

Additional modifiers are defined for the hal~word MOVE
instructions:

HZI fill other half with zeroes,

HOI ~ill other half with ones, and

HEI fill other half with extended sign bit.

As an example consider

123 II HI HEI HRR,

which is equivalent to

HRRME 11, 123.

A special assembly instruction ~ assembles an
unconditional Jump (JRST) requiring Just ~ stack value,
which is the address to which you want to Jump.

THE PDP-IO IMPLEMENTATION. Page B-7

Arithmetic conditional instructions (e. g. JUMP"
SKIP" CAl" CAM,) take modifiers to indicate the sense of
the condition:

LI - .LT.O GI - .GT.O

LEI - .LE.O GEl - .GE.O

EI - . E<1. 0 NI - .NE.O

AI - always

I~ no modi~ier is used, these instructions will never skip
or Jump.

The condition to be tested and the register to
tested are determined by stack values at assembly time.
same op-code modifiers used for JUMP" etc. are used.

be
The

E. g.

! LEI IF, ... THEN,

executes the contained true clause if (at execution time!)
the contents of register 4 are less than or equal to zero.

In the case that the current stack value (in register
T) is to be tested, some abbreviations are supplied:

IFL, IFLE, ~ IFA, IFGE, IFG, IFN, .

The derinitions go like:

,;.,. IFL, I LI IF, .. L·

The following table presents the definitions of the
PDP-10 assembler op-codes:

250 CPU EXCH, 251 CPU BLT, 200 CPU MOVE, 210 CPU MOVN,
204 CPU MOVS, 214 CPU MOVM, 500 CPU HLL, 544 CPU HLR,
540 CPU HRR, 504 CPU HRL, 270 CPU ADD, 274 CPU SUB,
220 CPU IMUL, 224 CPU MUL, 230 CPU InIV, 234 CPU OIV,
400 CPU SETZ, 474 CPU SETa, ·424 CPU SETA, 414 CPU SErM,
404 CPU AND, 434 CPU lOR, 430 CPU XOR, 444 CPU ECiV,
133 CPU rBP, 135 CPU LDB, 137 CPU DPB, 134 CPU ILDB,
136 CPU IDPB, 264 CPU JSR, 265 CPU ,",SP, 254 CPU JRST,
266 CPU JSA, 267 CPU JRA, 255 CPU JRCL, 256 CPU XCT,
243 CPU JFFO, 261 CPU PUSH, 262 CPU pop, 260 CPU PUSHJ,
263 CPU POPJ, 240 CPU ASH, 244 CPU ASHC, 241 CPU ROT,

THE PDP-10 IMPLEMENTATION. Page B-8

245 CPU ROTC} 242 CPU LSH} 246 CPU LSHC} 252 CPU ABJP,
253 CPU ABJN, 300 CPU CAl, 310 CPU CAM, 320 CPU JUMP,
330 CPU SKIP, 340 CPU AOJ, 3·60 CPU SOJ, 350 CPU ADS}
370 CPU SOS} 601 CPU TLN, 600 CPU TRN, 621 CPU TLl}
620 CPU TRl, 641 CPU TLC, 640 CPU TRC, 661 CPU TLO,
660 CPU TRO, 610 CPU TDN, 611 CPU TSN} 630 CPU TDl,
631 CPU TSl, 650 CPU TDC, 651 CPU TSC} 670 CPU TDO,
671 CPU TSO, 047 CPU CALLI, 051 CPU TTCALL, 132 CPU FSC,
144 CPU FADR, 154 CPU FSBR} 164 CPU FMPR} 174 CPU FDVR}
131 CPU DFN, 130 CPU UFA, 140 CPU FAD, 150 CPU FSB,
160 CPU FMP, 170 CPU FDV,

APPENDIX C

5D5920 IMPLEMENTATION.

C. 1 GENERAL CHARACTERISTICS.

The 905920 (XDS920) is a 24-bit machine using the BCD
(6-bit) character set. These two facts set its Forth
implementation apart from the more common 16-bit systems.
(The only Caltech application or this system is at the 40-m
an t enna at OVRO.)

Some Or the BCD characters cannot easily be represented
in this Manual, which is composed on an ASCII system. The
representations to be used here, along with the
corresponding octal codesl are as follow:

Character Code
<check::> 17
<backsp:> 32
<pole:> 37
<return:> 52
<blank:> 60
<tab> 72
<delta> 57
<gull> 75
<fence:> 77

Two control devices exist at the 40 m installa~ion:
the KSR-35 teletype and the keyboard/Self-Scan Display
system. The KSR-35 is a true BCD device while the
keyboard/Self-Scan uses the ASCII code. The commonly used
characters translate one-to-one between the two codes (a
software table is used Tor this purpose). Some of the less

8D8920 IMPLEMENTATION. Page C-2

common characters do not map directly;
the following table:

these are listed in

ASCII
Character Code

@ 00 .. 42
43
8'. 46
? 77

BCD
Character Code

<delta:> 57
\ 76

<check:> 17
<gull:> 75
<pole> 37

In addition the ~ollowing
ASC I I " "- " (34) : < b a c k s p). I
<return::>.

BCD characters convert to
<tab>, <blank>, <fence>, and

The following ASCII characters convert to BCD <fence>
(77): ""-II, "{" (or up-arrow), "}" (or left-arrow), "!", and
fl7. II •

The Forth word "store n <1..) is replaced by = in the '920
slJstem. Th is is an archaic Forth usage.

The following table summarizes the characters that are
recognized from either the keyboard/Self-Scan or the KSR-35
to perTorm special functions:

Function ASCII Character BCD Character

Delete last character
typed RUBOUT <backsp>

Delete entire line
typed CTRL-SHIFT-K <fence>

Program interrupt ALT-MODE <tab>

Block 110 ~or the SD8920 is maintained on a 7-track,
556 bpi magnetic tape. The tape is organized in a
direct-access format, with a header record preceding every
block. The block length is 256 24-bit words. At least 256
blocks are preformatted on the system tape. The tape format
is shown in Figure C-1.

SDS920 IMPLEMENTATION.

(Beginning oT tape - tape mark)

I------------~------------------:
: Long (3. 75 in) :

Interrecord Gap
:-------------------------------;

Header Record for data
block # 1

50 words, each equal to
012340001

:-------------------------------J
: Normal interrecord gap
; (0.75 in)
1-------------------------------:
1-------------------------------:

Data Block # 1
: 256 words of text or
: binary data
:-----~-------------------------:

I---------------------------~---:
: Long Interrecord Gap

:-------------------------------:

;--------~----------------------:
Header Record for data
block. 2

50 x 12340002
:-------------------------------:

Figure C-l SDS920 System Tape F~rmat.

Page C-3

8D8920 IMPLEMENTATION. Page C-4

A set of byte operations for the 920 has been
imp 1 emented as Pr og rammed Op erators (POPs). Th ese are
modelled on the byte instructions of the PDP-10.

A data entity called a "byte-pointer" is defined using
the following format:

OOB BOO 000 Oww www www www www.

Here wW ... w is a normal 14-bit address of a
specifies the 6-bit byte within that word.
by t e i s 00 I the rig h t mas tis 11.

920 word. BB
The left most

The following POPs all address byte-pointers:

IBP Increment Byte Pointer. Increments the byte pointer
by one byte. The word address is incremented if
nec essary. I. e. byte a of word N+l fa 11 ows by te :3
a f war d N.

DBP Decrement Byte Pointer. As IBP but moves the
byte-painter in reverse ("to the left").

LOBT

DPBT

ILOB

IDPB

Load Byte. The byte addressed
byte~pointer 1S returned in
right-Justified.

by the
the A

specified
register,

Deposit Byt~. The right-Justified 6-bit byte
supplied in A is deposited in the location specified
by the byte-pointer. Other bytes in the same word
are undisturbed.

Increment then Load Byte. Increment the
byte-pointer then load the byte into A.

Increment then Deposit Byte. Increment the
byte-pointer then deposit the byte in A through the
incremented pointer.

Note that these POPs are pseudo-machine operations. As
such they are available to the kernel assembly and to CODE
words, but not necessarily as Forth dictionary words.

SD5920 IMPLEMENTATION. Page C-5

C.2 DICTIONARY FORMAT.

SDS920 Forth is of an older generation than the other
Caltech-OVRO systems. Dictionary ~ords do not always have
code sections; rather, there is a code address field which
points to the code to b~ executed ~hen the word is
referenced.

NEXT in the 5D5920 is the routine

NEXT LDX *IC
MIN Ie
BRU *0,2

which is effectively a doubly indirect branch through IC.

Figure C.2 demonstrates the format used in the 5D5-920
dictionary.

Word 1

Word 2

Word 3

Word 4

----------------bit number---------------------
o 0 0 000 0 000 1 1 1 1 1 1 1 1 1 1 2 2 2 2
o 1 234 5 6 7 8 901 234 5 6 7 8 901 2 3

f Char. t o Link
Count Address

'- - - - - - - - - ------

-
Char.

1
- - - -

0

CI • .. CI

: Char.
2

• .. • 0 .. •

: Char.
3

: Char.
4

- -.- - ~ - - - - - - - - - - -• 0 • • .. • • .. •

: P I 01 Code
Address

- - - - - - - - - - - - - - - - - - - -.. co

Parameter 1
(optional)

Fig. C.2 5D5920 Forth Word Format.

8D8920 IMPLEMENTATION.

At least three 24-bit words are
word. The link is the 14-bit
preceding entry in the dictionary.
entry has a link o~ zero.

Page C-6

used for each Forth
absolute address of the

The first dictionary

The first 4 characters of the name of the Forth word
are stored in word 2. If the name has less than 4
characters, it is padded on the right with blanks (BCD code
12[8J). The overall length of the name (1 - 64 characters)
is contained in bits 0 - 5 of word 1.

The word precedence is contained in bits 6 and 7 of
word 3. The absolute address of the code to be executed
when the word is referenced is in bits 10 - 23 of word 3.
Note that bits 1 and 9 of word 3 (the index and indirect
bits) must be left zero.

A Forth word with precedence 2 will be executed at all
times when referenced. A word with precedence 0 will be
execut~d when Forth is irt the execution state, but compiled
when in compile state. The low order bit of the precedence
is not used.

C.3 ASSEMBLER.

Four classes of machine instructions are recognized by
the 5DS920 Forth assembler. The MCPU class includes all
memory reference instructions together with others such as
sh i fts and EOMs. The Forth word MCPU takes as input an
op-code of up to 12 bits. The op-code is associated with
the name following in the input stream. Thus

defines the assembler instruction ~ (load A register)
with op-code 0760 (octal>' Strictly, the op-code is 76. An
extra digit is provided on the right to facilitate the shift
instructions.

When referenced, LOA, will take the (then) current
stack value, "or" it with 760 * 2**12, and store the result
at the next available dictionary location. The dictionary
pointer <DP) is then incremented by one. Assume that the
val ue of DP is 1000. Th e Forth 1 i ne

SDS920 IMPLEMENTATION. Page C-7

is equivalent to the Symbol assembler line

LDA 4521

and assembles the octal number 7604521 in location 1000; DP
is incremented to 1001. All MCPU-defined words work
analogously; only the op-codes differ.

Certain words are defined to assist in specifying the
address part of an MCPU-type instruction. The wO'rd iX sets
the index bit (bit 1) of the current stack word, while il
sets bit 9, the indirect addressing bit. Thus the line

21072 iX 11 LDA,

is equivalent to the Symbol line

LDA *21072,2

it assembles the number 27661072 into the dictionary.

The word CPU is used t~ define all fixed-format
instructions that do not reference memory. An example of
this class is the register operation CLA, (clear A
register>. This instruction is defined by the line

04600001 CPU CLA,.

When CLA, is executed, the constant 4600001 is assembled
into the current dictionary location.

Two instruction classes have been defined specifically
for the W-buffer I/O instructions. WOP is used to define
the maJor EOM instructions. It takes one argument when
defining the op-code: the complete EOM code for the number
of characters/word and the unit number of the device
involved. For example,

00202001 WOP RKB,

defines th e RKB, (read keyboard) ins truc t i on for the
assembler. When referenced, RKB, uses the current and
second stack values to determine the unit number and number
of characters per word, respectively. Thus

SDS920 IMPLEMENTATION. Page C-8

is equivalent to the 920 Symbol expression

RKBW 1,4 ;

it assembles 0202601 into the dictionary.

Finally the
control EOMs or
have a "C/W" field.
which is defined

TWOP instruction class defines those
SKSs which need a unit number but do not

An example is TRT, (tape ready test)

04010411 TWOP TRT, .

The line

assembles 04010412, the equivalent of the Symbol line

TRTW2.

Recognized SDS920 assembler codes are given in the
following table:

760 MCPU LDA, 350 MCPU STA, 750 MCPU LOB, 360 MCPU STB,
710 MCPU LDX, 370 MCPU STX, 770 MCPU EAX, 620 MCPU XMA,
550 MCPU ADD, 570 MCPU ADC, 630 MCPU ADM, 610 MCPU MIN,
540 MCPU SUB, 560 MCPU SUC, 640 MCPU MUL, 650 MCPU DIV,
140 MCPU ETR, 160 MCPU MRQ, 170 MCPU EOR, 010 MCPU BRU,
410 MCPU BRX, 430 MCPU BRM, 510 MCPU BRR, 400 MCPU SKS,
500 MCPU SKE, 730 MCPU SJI(Q, 600 MCPU SKR, 700 MCPU SK~l,

530 MCPU SKN, 720 MCPU SKA, 520 MCPU SKB, 740 MCPU SKD,
460 MCPU RCH, 660 MCPU RSH, 662 MCPU RCV, 670 MCPU LSH,
672 MCPU LCY, 671 MCPU NOD, 000 MCPU HLT, 200 MCPU NOP,
230 MCPU EXU, 020 MCPU EOM, 120 MCPU MIW, 320 MCPU WIM,
130 MCPU POT, 330 MCPU PIN,

4600001 CPU CLA, 4600002 CPU CLB, 4600003 CPU CLR,
4600004 CPU CAB, 4600010 CPU CBA, 4600014 CPU XAB,
4600012 CPU BAC, 4600005 CPU ABC, 24600000 CPU CLX,
4600200 CPU CXA, 24600003 CPU ALL, 4600400 CPU CAX,
4600600 CPU XXA, 4600020 CPU CBX, 4600040 CPU CXB,
4600060 CPU XXB, 4600122 CPU STE, 4600140 CPU LDE,
4600160 CPU XEE, 4601000 CPU CNA,

SDS920 IMPLEMENTATION. Page C-9

4020400 CPU BPT1, 4020200 CPU BPT2, 4020100 CPU BPT3,
4020040 CPU BPT4, 4020001 CPU OVT, 0220001 CPU ROV,
0220002 CPU EIR, 0220004 CPU DIR, 4020004 CPU lET,
4020002 CPU lOT, 0250000 CPU ALC, 0200000 CPU DST,
0214000 CPU TOP. 0212000 CPU ASC. 4020010 CPU BET,
4021000 CPU BRT,

202004 WOP RPT, 202044 WOP PPT, 200044 WOP PTL,
203006 WOP RCB, 202006 WOP ReO, ·202001 WOP R~B,

202041 WOP TYP, 203011 WOP RTB, 202011 WOP RTD,
203031 WOP SFB, 202031 WOP SFD, 207031 WOP SRB,
206031 WOP SRD, 203051 WOP WTB, 202051 WOP WTD,
203071 WOP EFT, 207071 WOP ERT,

0212006 TWOP SRC, 4012006 TWOP CRT. 4014006 TWOP FCT.
4011006 TWOP CFT, 4010411 TWOP TRT, 4014011 TWOP FPT,
4012011 TWOP BTT, 4011011 TWOP ETT, 0214011 TWOP REW,
4013610 CPU TFT, 4012610 CPU TGT, 0214000 CPU RTS,
0213610 CPU SRR,

The assembler conditionals are listed in the following
table:

Word name

IFL,
IFLE.
IFE,

test

A.LT.O
A.LE.O
A.EG.O

Word name

IFGE,
!.E.2..!
IFN,

test

A. GE. 0
A. GT. 0
A.NE.O

(Fortran notation for arithmetic comparison is used in the
table.) These operations test the value OT the A register.
For examp Ie, IFL, assemb les instructions tJlh ich test for A
less than zero. See Section 3.8 Tor the general IF, ELSE,
THEN, constructions.

APPENDIX D

OED - GUICK EDITOR.

Dave Dewey has developed a new editor to take advantage
of the high-speed CRT available on the GT40 and GT44
versions of the DEC PDP-ll. The following is Dave's
description of his editor:

The block being edited is always visible on the screen,
so the results of any editing are immediately available to
the operator. Most commands are only a few keystrokes, and
a cursor indicates the current pOint of editing. A brief
resume of applicable commands appears below the block being
edited, and thus this instruction summary is needed only for
reference. In fact, QED will be much easier to learn by
Just reading the first page of this manual and the
experimenting with it than by attempting to digest all of
its capabilities before trying it out.

A~ LOADING THE EDITOR INTO
improved to allow editing
start-up sequence:

THE DICTIONARY GED has been
with GT ON or OFF. Typical

(Bootstrap the system>
R FORTH
FORTH LOAD

XXX DISK
appropriate name)
QED ILOAD

(replace xxx with the

GED does not redefine the standard system words, so (unlike
EDIT or XED) other FORTH programs may be loaded and run on
top of QED, as space permits. Even XED may be loaded on top
of OED. Interactive editing and debugging is thus hastened.
When you no longer need OED, remove it from the dictionary

QED - QUICK EDITOR. Page D-2

with
FORGET EDITOR

(If you have also loaded XED, the FORGET line must be typed
twice, once for each editor.)

B.:.... LOO~ MODE
To look at block NNN, use the command

NNN G
(To look at the block most recently listed or edited,
Just type

CiG
The screen will display this block as well as a summary
of the possible commands to GED while in LOOK mode.

Note: The "AU preceding a character does not mean
to . typ e a carat; rath er, it means to h a I d down th e
CTRL key while typing the character it precedes.

~!.Y.. Resu It
AX Display the next block following the current one.
AW Display the block previous to the current one.
AZ Guit--return to FORTH.
Ap Prepare to edit--switch to EDIT mode.

One can skim through a series of blocks in search of a
particular one exceedingly fast using AX and w.

~ EDIT MODE. briAssume that you have located the block
that you wish to edit, using the aforementioned commands.
A Ap will set up EDIT mode, which has these properties:

1. An L-shaped cursor will appear at the beginning
of the block. (Future references to the
"current" position in this writeup will refer to
the cursor's location. It is always between two
character locations, and its vertical bar
indicates that point.)

2. More commands are now available to the user, and
the summary at the bottom of the block grows to
reflect this.

3. The AX, AW, and AZ commands per'orm an extra
function while QED is in EDIT mode: the current
block is briefly checked for these commo·n
mistakes:

1. no It; S" in the block

GED - QUICK EDITOR. Page D-3

2. last char of the block non-blank
3. runons: last char of one line and first
char of the next one non-blank.

If there is one of these mistakes, GED will let
you know and you may fix them immediately. If,
however, this unusual block structure is
purposeful, repeating the AX, AW, or AZ will
override the error check. If all is well, the
block will be immediately flushed to the disk and
the traditional AX, ""W, or ''''z function will
occur. (Whenever you go to a new block, QED is
reset to LOOK mode.)

~ BASIC EDITING COMMANDS
<Text>: Any legal FORTH block character, including
space, will be inserted Just before the cursor. The
cursor and rest of line will move out of the way as
needed.

It is conventional in FORTH to indicate that a given line
is a continuation from the previous one by indenting the
continuation line two spaces <possibly more). The
indentation is ordinarily ignored by FORTH Just as spaces
anywhere else are. (An exception is any field which is
interpreted as literal characters, for example [... 1
or in which the spaces are not ignored.) The
only reason for the indentation is to make the block
easier to read by the programmer.

QED does the "right
characters beyond the
can occur in one of two

A. Inserting text
a line.
B. Inserting text
non-blank.

thing" with attempts to put
end of the line. Such a situation

ways:
when the cursor is at the end of

in a line whose last character is

When OED sees such an attempt,
things:

it does one or three

1. If the next line is a continuation line and it
has room for the word which is about to pop off
of the end of the current line, GED pushes that
word onto the beginning of the next one. The

GED - GUICK EDITOR. Page D-4

indentation is kept the same, and one space is
inserted between the Just-pushed word and the old
contents of that line.

2. If th e cr iter ia in #1 are not met, OED attemp ts
to do a <CR> <space> <space~ Just before the word
about to be popped off of the current line. In
other words, it starts a new continuation line.

3. If #2 was attempted but no free line was found in
the block to do the <CR>, the attempt to insert a
character is ignored. An appropriate error
message is given, and the block is left in its
previous condition.

In all three cases, QED refrains from breaking any
words--that is, any string of non-blank characters will
be put entirely on one line or the next, instead of
starting on the end of a given line and finishing at the
beginning of the following one.

As a result of this special treatment, one can insert
characters at any point in a block without paying
attention to boundary condi,tions. As long as there is
room in the block, QED will shuffle its contents to make
room for the text being inserted. The cursor moves· in
step with such shuffling. One cannot accidentally delete
any non-blank characters or lines by inserting text.

<RUBOUT>: This deletes the character preceding the cursor.
The rest of the line, as well as the cursor, moves to the
left one column. <RUBOUT> is useful not only in fixing
Just-typed data, but also in deleting any incorrect
characters before the cursor.

<CR>: <CR> first makes sure that a blank line follows the
current one. If not, it gets one from elsewhere in the
block <preferring ones near the bottom> and inserts it.
Then <CR> moves the cursor (and any chars which may
follow it) to the beginning of the next line. Notice
that <CR~ will not delete any non-blank lines--if no
blank lines are available, it aborts.

The previous commands are all that are needed to create a
FORTH block. The following ones are added to ease
editing.

QED - QUIC~ EDITOR. Page D-5

c.~ CURSOR MOVEMENT COMMANDS

~ command position or cursor

AT TOP Just before the first character of the block
AB BOTTOM Just after the last character of the block
Ay -LINE to the previous beginning-a'-line (on the current
line

unless the cursor is at column 1)
AN +LINE the next beginning-of-line
AH -WORD the previous beginning-or-word, where a word is any
seQ.uence

of non-blank charac tel's.
beginning-a'-line counts as
beginning-of-word, as does the location
space after the last word in a line.)

a
a

one

AL +WORD the
AJ -CHAR the
AI-<. +CHAR the

next beginning-of-word
previous character
next character

<TAB> or TAB the next tab stop (Tab stops are permanently
set every

AI 8 columns as usual)

Any attempt to move the cursor beyond a block boundary
(beginning or end of block) will result in a position at
that boundary_

With the exception of <TAB~, all of the cursor movement
commands may be typed with the right hand, allowing the
left one to hold down the CTRL key. If the fingers are
resting one key to the left of typist's IIhome" position,
the direction and magnitude of movement roughly
correspond to the location of the key. (See keyboard
diagram.)

C.3 DELETE PREFIX: ~
A AD changes the operation of the single character
following it. To let the user know that GED is waiting
for that second character, AD causes the cursor to start
flashing. It can have two 'unctions:

AD <cursor-moving-key> (DELETE PATH) Instead of moving the
cursor, all of the characters along the expected path are
deleted. Any lines which end up being all blank by this
process are removed.

QED - QUICK EDITOR. Page D-6

AD <CR> (CONCATENATE) In effect, this deletes the next CR,
to allow concatenation of lines. The next line is moved
to the end of the current one. No matter how many
leading blanks the following line may have, CONCATENATE
insert~ exactly one blank between the two segments of the
resultant line. (If there is insufficient room at the
end of the current line to append all of the next one, as
much as will fit is so moved. FORTH words will not be
divided.)

At the completion of CONCATENATE, the cursor is
positioned between the two resultant segments, at the end
of the original first line.

C.4 USE OF THE SAVE BUFFER
Some or all of a FORTH block may be saved. to be later
inserted--the contents may be inserted elsewhere in the
same block, in a different block, or even in a different
disk. The save buffer is particularly useful for
changing the order of lines in a block or for duplicating
portions of a block. Additionally. one can put a
template block in the save buffer to expedite the
creation of a series of similar but non-i~entical blocks.

Thr&e commands manipUlate t~e save buffer:

AF FLAG LINES Flag mode is set. While in flag mode, all
lines that the cursor touches are marked at their left
edge with a rectangular flag. (The current line is
f 1 a 9 9 e d i mme d i ate 1 y.) Th e 0 p e1' at i on 0 fall 0 t h er comma n d 5

of GED is unchanged by AF.

Flag mode, and all flags, are cleared by AV
tho sec amman d s w'h i chi nit i ali z e a b 1 0 c k (.'" X,

as well as
..... w, R, ·"'P).

AV SAVE FLAGGED LINES All flagged lines are copied into the
save buffer. The blockrs contents are unaltered, but the
previous contents of the save buffer are lost.
(Therefore, if there are no flagged lines. AV will clear
the save buffer.) At the completion of V, flag mode and
all flags are ~leared.

Notice that the only way to change the contents of the
save buffer is with ·"'V. Even if you exit from the editor
with AZ , GED faithfully remembers what was last saved.
(OED ILOAD initializes the buffer to zero; from then on,
i tis 0 n I y a 1 tel' e d b y ·,."V.)

GED - GUICK EDITOR.

If you accidentally flag more lines than you
save, Just hit AV which clears all the flags.
flags that you want and then hit AV again.

Page D-7

want to
Set the

AU UNSAVE The contents of the save buffer are inserted
before the current line. The save buffer contents are
unchanged. The cursor will then be at the beginning of
the line following the last inserted line. (If the last
inserted line was at the bottom of the block, the cursor
will be at the end of the block.)

AU will abort with a message if there are more saved
lines than free lines in the block. (These blank lines
need not be contiguous, nor need they be at the cursor.
AU will move the blank lines as needed, without changing
the order of non-blank lines.)

C.5 'RESCUE' COMMAND
The fact that editing is so easy and fast with GED means
that mis-editing is also easy. After entering edit mode
with Ap, one might attempt to delete the first line with
AD AN, but accidentally type AD AB, thus clearing the
entire block. The rescue command has been added for Just
s u c han 0 c cas ion. Rea liz e, tho ugh, t hat the b 1 o'C kyo u
see before doing a successful '''·z, AW, or ·X is the block
that will be on the disk. Flushing is automatic in that
case, and you will have to re-edit the block if it was
wrong. Assuming that you have realized your error in
time, here is the way out:

AR RESET BLOCK The block is reset to its condition Just
before EDIT mode was most recently entered: its contents
are restored and QED returns to look mode.

~ ERROR HANDLING
QED is designed to be reasonably intelligent, and it should
catch any illegal command sequences, responding with an
i nformat i ve messag e. Attemp ts to use '<:CR)- and Tex t wh en
there is insufficient room will be similarly caught. The
only way I have found to bomb the system is to hit two '~C's

in qui c k s u c c e s s i on. (Inc i d en ta 11 y , on e · C wi 11 r e turn to
RT-ll monitor without altering the previous contents of the
current block.

A side benefit
but do not

is
wish

th is:
to

if you have inadvertantly hit AD,
delete anything, Just hit any text

GED - GUICK EDITOR. Page D-8

character. GED will give you the error message and ignore
both the ~·D and the text char.)

D. 1 TREATMENT OF BAD AND UNUSUAL BLOCKS
A. UNASSIGNED BLOCKS

Any attempts to look at a block which has
assigned to the current disk context
refused, and a message will be given.

not been
will be

B. DISK 1/0 PROBLEMS Very occasionally FORTH will have
trouble reading a block from the disk. GED will
most likely crash wi th a message 1 i ke "G?". The
picture may remain on the CRT. (An attempt to list
such a block will also fail.)

If the disk I/O error occurred as a result of AX,
then the block after the current one is at fault;
if it occurred upon AW, then the previous block is
bad.

In any case, it is recommended that a new bootstrap
is done to reset any possibly altered parts of FORTH
or RT-ll.

Most likely the error occurred as a "random" glitch,
but it is possible that it is a "hard" error. To
check, try fixing the block by copying a good one
into it. Hopefully the error will be eliminated and
OED will be happy.

If the block is still bad, make note of the disk and
block number to let a "system expert" fix the block.
In the meantime, avoid any accesses of that block.
Do not Just release that block and assign
another--if you dOl some unsuspecting user will wind
up with a bad block!

C. BLOCKS WITH UNUSUAL CONTENTS FORTH blocks ordinarily
contain only SIXaIT text characters. The SIXBIT
codes are the ASCII values 040 through 137 (octal).
Here they are in numerical order:

(space) !"#$X&'()*+,-.I0123456789:;<=>?
@ABCDEFGHI~KLMNOPGRSTUVWXYZ[\JA_

Note that lower case letters are not SIXBIT.

QED - QUICK EDITOR. Page D-9

Some of the earlier FORTH blocks have been
initialized to zeros rather than spaces. Therefore,
QED wi 11 interpret a zero byte as a spac e. In fae t.
after you edit a block and exit OED, all such nulls
will have been replaced by spaces.

Any other character values are illegal. The display
will reveal such illegal characters when you look at
such a block: the dotted line which ordinarily
marks th~ position Just a.ter column 64 in each line
will be located one space to the left for each
illegal character in that line. (The illegal
characters do not print or take up space in the
1 i nee)

QED assumes that the existance of such non-SIXBIT
characters indicates that the block is used for
numeric data storage (like the Master File Directory
block) rather than for character storage. It
protects such blocks by making it illegal for you to
edit them with QED. If you really do want to edit
them. you must eliminate the bad characters by
clearing the block, copying another block into it,
or editing the bad lines with XED or EDIT.

D.2 ERROR MESSAGES
SORRY, NOT ENOUGH ROOM TO LOAD QED. MUST FORGET
SOMETHING FIRST.

This happens if you attempt to do aGED ILOAD when
there is not enough room in the dictionary for QED.
GED requires about 5200 <decimal> words of memory,
and if there isn't 5400 words of space (allowing for
stack usage) QED Just won't load.

NO SUCH BLOCK EXISTS. This message appears if you ask
QED to look at a block which has not been assigned
tot h e cur r en t dis k con t ext. C a use s : W X (0 r ,
from FORTH, G or QG)

NOT ENOUGH ROOM. This indicates that you have attempted
to inse-rt something into the block, but there isn't
enough room. In the case of CONCATENATE, the
message means that there is not sufficient free
space at the end of the current line to append even
one of the words from the next line. Causes: Text
<CR> U CONCATENATE

QED - QUICK EDITOR. Page D-10

CAN'T RUBOUT BEYOND BEGINNING OF LINE. Rubout deletes
the character Just before the cursoT'. None exists
at the beg inning of the 1 ine. Cause: <RUBOUT:>

<CHAR> IS ILLEGAL-IGNORED. Cause: anything other than a
GED command.

<CHAR> WHEN NOT IN EDIT MODE IS ILLEGAL-IGNORED. Cause:
anything other than AG AW AX AZ Ap while in look
mode.

<CHAR> AFTER AD IS ILLEGAL-IGNORED. Cause: anything
other than <CR> or a cursor-moving-key (AT AB Ay AN
AH AJ AK AL <TAB», after hitting AD.

NO SAVED LINES Cause-: '''U when SAVED LINES = O.

NQ FLAGGED LINE. Cause: AV when there are no flagged
lines.

WARNING: NO 'is' OR RUNONS FROM ONE LINE TO THE NEXT OR
LAST CHAR OF BLOCK NOT BLANK. REPEAT COMMAND TO
CONFIRM EXIT.
This message indicates that the current block is not
in the typical FORTH format and is therefore likely
incorrect. Causes: AW AX AZ (See above, under EDIT
MODE.)

NO LINE FOLLOWS THIS ONE TO CONCATENATE. Cause: AD <CR>
while the cursor is at line 16.

NON-CHARACTER DATA FOUND! FIX BLOCK BEFORE EDITINQ WITH
GED. Cause: Ap when current block has non-SIXBIT
b.ytes. (See BLOCKS WITH UNUSUAL CONTENTS, above.)

D.3 ERROR MESSAGE DEFEAT COMMAND Printing of error messages
can take an appreciable time, particularly with GT OFF.
GED allows the operator to cancel error message printing,
although the "beep" associated with an error will still
occur, alerting the user that some kind of error has
occurred. If error printing is disabled and such a beep
comes at an unexpected time, Just re-enable error
printing and repeat the command that caused the beep.

AQ FLIP ERROR PRINTING ENABLE If errors will
print, disable such printing. If errors
currently print, enable such printing.

currently
will not

GED - GUICK EDITOR. Page D-11

0.4 MIS~ELLANEOUS ERRORS
Dav~ Rogstad's correlation program alters various things
throughout the PDP-1l's memorYi some of that alteration is
not restored even by a C. On occasion I have seen aGED
print three <CR><LF>'s upon entering each block while GT was
OFF. This indicates that the VLBI program has set the bits
in the computer which show GT to be ON, even though it is
not. The remedy is to re-bootstrap the PDP-11 and then do
the e d i tin g . (You ma y a 1 sot y pet hem on ito r comma n d If. I N It
to reset these bits without reloading. - MSE)

JL.. TECHNIGUES
iTo get to the end of a line: use N or y as needed to get

to the beginning of the following line, then use AJ.

To delete the rest of the block: AD S
(kills whole block if cursor at beginning of block.)

To delete the rest of the line: D AN
(kills whole line if no chars precede cursor.)

To delete the beginning of the line: D Y
(kills previous line if cursor at column 1)

To compress several short lines of code into a few long
1 {nes:
Move the cursor to the first line of the chosen
se~uence. Do D <CR> until there is no more room in
the first line, then move to the next one and
repeat, etc.

To push words off of the end of the current line and onto
the beginning of the next one: Move the cursor to
the beginning of the current line with Y ·if it is
not already there. Hit <space~ repeatedly until the
desired number of words has been moved to the next
1 ine. Then use <RUBOUT> the same number of times to
shift the current line back to its original
position.

There are no search commands in GED, since the need for
actual searching is so rare. On those few occasions where a
search need be made one can either visually scan the blocks
with AX and W or use the FT command in XED.

1.

2.

Anon. ,
Forth,

APPENDIX E

FORTH BIBLIOGRAPHY.

Forth Introducto~

Inc., Manhattan Beach,
Programmer's Guide,
Ca 1 i forn ia, 1975.

Anon., Forth Programmer's Technical Manual,
Inc., Manhattan Beach, California, 1975.

Forth,

3. Ewing, Martin S., The Cal.tem Forth Manual, First
Edition, Owens Valley Radio Observatory, California

4.

Institute of Technology, Pasadena, California,
1974.

Ewing, Martin S., and Hammond, H.
Programming System, Proceedings
Equipment Computer Users Society,
477 - 482.

Wayne, jh~ Forth
of the Digital
Nov., 1974, pp

5. Hollis, ~an M., 36 Foot Te~escope Computer Sustem

6.

Manual, National Radio Astronomy Observatory,
Charlottesvill~, Virginia, Computer Division
Internal Report No. 18, 1975.

James,
Dobb's

John S.,
Journal

FORTH
of

Orthodontia. No. 25, ~,

Dr.
&

ror Microcomputers,
Computer Calisthenics
Issue 5, pp. 21-27, 1978.

7. Miedaner, Terrell, AST-Ol and AST-01X Definitions,
Memorandum to the Astronomy Forth Users Group, Kitt
Peak National Observatory. Tucson, Arizona, 1977.

8. Moore, C. H., and Rather, E. D., The Forth Program
·Por Spectral Line Observing, Proc. I. E. E. E., 61, 9,
p. 1346, Sept.. 1973.

FORTH BIBLIOGRAPHY. Page E-2

9. Moore, C. H. I

i"'li n i-c amp ut.~1
Supplement, 1.~.'

Forth:
Astronomy

pp 497 - 51,1,

Way
and

1974.

to Program §..

Astrophysics

10. Rather, E. D., Moore, C. H., and Hollis, Jan M. #

Basic Principles of For~ Language ~ Aoplied to ~
PDP-11 Co~puter, National Radio Astronomy
Observatory, Charlottesville, Virginia, Computer
Division Internal Report No. 17, 1974.

11. Sachs, Jonathan, An Introduction to Stoic,
Technical Report BMEC TR001, Harvard-MIT Program in
Health Sciences and Technology, Biomedical
Engineering Center for Clinical Instrumentation,
June, 1976.

12. Sinclair, W. S., For~ ~ Stack Oriented Language,
Interface Age, September, 1976.

13. Sinclair, W. S., The FORTH
Systems, Proc. ACM '76, pp.

Approach to Operating
233-240, October, 1976.

14. Stein, P. I The FORTH Dimension: ~ini Language Has
Many Faces, Computer Decisions, November, p. 10,
197'5.

	001
	002
	003
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	D-11
	E-01
	E-02

