
Burroughs

Technical
Information
Paper

DATE: May 28, 1981 Origin: F. Trout
D. Meyer
MSC West PRODUCT: Medium Systems DMS II

SUBJECT: Implementation Considerations

The attached document on DMS II contributed by Fred Trout

and Dan Meyer of MSC West is an informative guide to

implementing DMS II on a Medium System. Our thanks to

Messrs. Meyer and Trout for their contribution.

Copyright© 1981 Burroughs Corporation, Detroit, Michigan 48232

TO: BMG Communications Code RD

Printed in U.S.A. 1114238-016

B2000/B3000/B4000 DMSII

IMPLEMENTATIONS CONSIDERATIONS

Prepared at MSC-West by
the DMSII Support Group
Fred Trout & Dan Meyer

Apri 1 14, 1981

Copyright C 1981 Burroughs Corporation, Detroit, Michigan 48232

TABLE OF CONTENTS

DBMS MOTIVATIONS •••.•..•..
MEMORY AND PROCESSOR CONSIDERATIONS

DBP Memory Requirements .•.•..
BIND OPTIONS and Their Effect
User Specified Parameters .

Processor Requirements • •
OPERATIONAL CONSIDERATIONS. • . ••••

Initial DASDL Backup ••••.
Update DASDL . . • • • •
Reorganize DASDL . • • •
DMSII Database Backup Procedures

DASDL CONSIDERATIONS ..•.•.••
Documentation Requirements . •
Control and Dollar Sign Cards.
Options and Parameters .•...
Audit Trail Specifications ...
DASDL Construct Compatibility.

General Attributes .••
Data Set/Set Attributes
Audit Trail Attributes.

PROGRAMMING CONSIDERATIONS ..
Use of COBOL Library Files
Exception Handling .•.••••.
Getting Around DEADLOCK. . . . • .
Aborting Transactions .•.••
Partial Database Invocation ••
Non-OMS files. • . •
Restartable Programs . • •.

Restart Logic .•...
Transaction Processors ..

DESIGNING A DATABASE. . . . • .
Data Models ...•.•.•....•

The Hierarchical Approach •
The Network Approach ••
The Flat Approach . . •
The Relational Approach ...•••••

Normalization ••.•••
Functional Dependence •
Second Normal Form.
Third Normal Form .
Fourth Normal Form.
Why NORMALIZE Data? .

DATABASE USER VIEWS
BIBLIOGRAPHY ••••
APPENDIX A - NORMALIZATION EXAMPLE.
APPENDIX B - RESTART EXAMPLE. • • .

1
3
3
4
5
9

11
11
11
12
13
17
17
18
18
19
20
20
20
20
21
21
22
23
23
24
24
25
27
29
31
31
31
32
33
34
36
37
39
40
41
42
45
47
49
57

INTRODUCTION

This paper is developed with three general topics. The first, DMS
MOTIVATIONS, is a discussion on why an organization should implement a
Data Base Management System and the attitudes and procedures required
for a sucessful beginning. The second considers implememtation and
optimization, and is oriented towards Medium Systems. These four
sections are identified by CONSIDERATIONS in the title. The third topic
deals with DBMS design and data relationship methodology.

The development of a Database Management System can have a greater
effect upon a user environment than any other software product. A fully
developed system is likely to encompass all of the critical information
flow and automated decision-making for a whole company. Due to its
generative nature, much of the effectiveness of the system lies within
the control of the user. The Burroughs Envirnmental Software tool,
i.e., DMSII, is used to develop a user tool, i.e., the Database
Management System. The design and usage of both tools should be
coordinated and controled by one administration to produce the most
effective tool(s) for the specific site environment.

This control is established in the user function of the Data Base
Administrator. It is the DBA who must acquire expertise in the specific
applications and usage of data, database design technologies, and DMSII
features and capabilities. The DBA must then develop specific knowledge
of how these interrelated criteria apply to the requirements and
resources of the organization.

The second section of this paper addresses some of the pragmatics of
this latter function. The manuals provide complete documentation on the
features, syntax, and physical structures of the DMSII components. This
section discusses the "why, what, and how much", and in some cases,
gives specific advice in the form of "COOKBOOK" suggestions. This
advice is separated via COOKBOOK-KOOBKOOC pairs from the other
discussion, and it should not be taken as absolute. There are many
site-dependent exceptions and alternatives, but most should apply to the
"medium", "mainline", or "undertrained" user. A suggestion would be to
use the cookbook until a better understanding is acquired.

Much of the discussion is relevant to Burroughs Large and Small Systems
DMSII also, and some is relevant to DBMS systems in general, but little
distinction is made in the text as it would increase the complexity of
the discussion.

The bibliography was included, not for reasons of proof o~ reference,
but as suggested cover-to-cover reading.

TIP //1114238-016

1

DBMS MOTIVATIONS

The decision to implement a Database Management System is the most
critical decision facing Medium Systems users in the 1980s. The effect
of such a powerful software tool is likely to reach far beyond the
current scope of data processing departments. The disciplines required
to implement it and the hardware and software changes required to take
advantage of its capabilities will be felt from the board room to the
lowest level end-user. Although the data processing department is
likely to assume technical leadership, a decision of this magnitude
should become a company commitment rather than a departmental
alternative.

Recognizing that Data Management is still low on the technology curve is
an important input to the decision of how and how much of the company's
resources are to be committed. The industry in the recent past (and in
the foreseeable future) has been inundated by publications on the
philosophies and technologies of Data Management. From the available
information, the decision makers should make themselves aware of the
possible alternatives and choose a design strategy that is both flexible
and expandable. Another important function at this level is to define
short and long range goals that are consistent with the company's
resources and the capability of the selected software tools.

The Database Management System should be viewed from the perspective
that it is doing something FOR rather than TO the organization.

The motivation to implement a Database Management System should be
derived from the perception that there is a COMPELLING need to improve
the control and productivity of the company's data resources and
personnel.

Once the control of data resources is accomplished, the users can expect
data that is common, current, secure, and reliable. From this position,
the increase in the productivity can be realized. The data can take on
additional responsibilities in algorithmic business decisions;
information, heretofore unavailable, is easily derived and presented;
and programming responses to changing environments become flexible and
timely.

Some users might acquire an application package which uses DBMS. The
data organization and usage design are defined by the product, however,
there are many site-dependent operational and optimization
considerations to be implemented. These require the same disciplines
and attitudes mentioned above since the application lives within the
DBMS environment. A user might feel pressured into converting from
older software to the newer software just to keep current with something
called ''the state of the art''. Or it may be that the current compilers,
i.e., COBOL-74 and RPG, support only an advanced DBMS that motivates the
conversion.

In order to provide the proper attitude to take advantage of the
concepts and capabilities of a Database Management System, a larger
perspective, with a strategy that simply includes the conversion as a
step, is the concept that should be developed.

TI~ #1114238-016

2

Any data management system that is available today is expensive in the
consumption of hardware resources. It also requires a shift of human
resources from production and maintenance technologies to design and
analysis technologies. End-users may be required to re-think their
requirements and usage of data. Operational procedures become more
rigorous and disciplined.

So why DBMS? It should be because the bottom-line rewards of responsive
programming and a flexible, reliable database which contains
coordinated, current information has a value. And that value has been
determined to outweigh the cost of available alternatives and the
resources required. The prudent user should develop techniques to take
full advantage of the DBMS capabilities. The justification, to some,
may be simply to provide increased control and productivity of their
programming and data resources. To others, the DBMS becomes the
life-blood of the company's competitive existence.

There is a sequence of functions that should be performed before
implementation. They include developing a broad perspective and a
proper attitude, becoming informed and trained in DMS technologies,
analyzing the company's data resources and usage, providing a
comprehensive strategy, and finally, developing the systems and database
design.

Proper performance of these functions allows the development of a
Database Management System which answers the challenge of the '80s.

TIP #1114238-016

3

MEMORY AND PROCESSOR CONSIDERATIONS

DBP Memory Requirements

The memory resources consumed by the Database Program (DBP) are very
much site and usage dependent. The major factors are the BIND option,
the number of structures, the size and number of buffers, and the number
of current users. All of these factors, including the site's hardware
resources and the usage requirements are dependent upon each other.
They are all determined by the user, therefore the criteria used to
determine their values must include the effect upon the other factors.
The MCP extension module, DMS2, and its tables (12-15 KB) and the user
programs (Transaction Processors) plus the DBP make up the memory
requirements of a DMSII system.

COOKBOOK
A little-to-average DMSII system will require 200 KB; an
average-to-big system will require 400 KB.

KOOBKOOC

The following diagram is for the purpose of naming general areas of the
DBP and examples of their contents. It is not intended to show actual
locations in the code file or memory. For example, some of the CODE
PART in the DASDL DEFINED ICM is actually located in the USER FUNCTION
or SUBFUNCTION ROUTINES. However, the GLOBALS are at low addresses and
the DYNAMIC AREA is at high addresses.

TIP #1114238-016

4

+------------------------------------+
GLOBALS

Function interface area, Pointer
tables, List heads, Working store,
etc.

+==·=================================+
GENERAL OVERLAY AREA

Used by all sizes of DBP
+=======•============================+

DASDL DEFINED ICM

DATA PART
Structure tables, Defined database
parameters

CODE PART
Req. items, Verify, Select, etc.

+============================c=======+
GLOBAL ROUTINES

Dispatcher, Locking, Searches,
Buffer control, Read/Write, etc.

SUBFUNCTION ROUTINES
II
Specific selection, Specific eval­
uation and analysis, etc.

USER FUNCTION ROUTINES

II BIND SMALL
II overlay area
II
II

% BIND SMALL
% % and MEDIUM
% Open, Close, Read, Create, Store, % overlay area
% Free, etc. %
+===m==========•==========•==========+

DYNAMIC AREA (HEAP)

Task tables, Current record and
path tables, Temporary working
store, User stacks, Buffer control
and buffers.

+------------------------------------+
Figure 1.1 - DBP Memory Layout

BIND OPTIONS and Their Effect

Binding SMALL will cause the function and subfunctions routines to be
overlayed. The cost in extra I/Os is highly dependent upon the usage
and the number of users, however, an average range is 4-8 overlays per
database access. Bind SMALL can be effective for single-function
applications, e.g., inquiry only, or perhaps for certain testing
procedures.

TIP 111114238-016

5

Binding MEDIUM will cause only the function routines to be overlayed.
Each new (different) function request will cause one overlay to bring in
the basic code. Multiple users using different functions may cause
additional overlays per function. An average cost of two overlays might
be expected.

Binding LARGE overlays only seldom used routines: open, close, errors,
SP message, etc.

From a BIND LARGE, MEDIUM will reduce the memory requirement about 50
KB, SMALL, about 75 KB. An example of a simple (10 structures) database
on the ASR 6.5 release is: SMALL-75 KB, MEDIUM-100 KB, LARGE-150 KB.

COOKBOOK
Bind SMALL for early design and testing, bind LARGE for final
tests, efficiency evaluation, and production. Stabilize the
production environment, then bind MEDIUM and evaluate the
effect.

KOOBKOOC

User Specified Parameters

User definitions (DASDL) have little effect on the size of GLOBALS,
however, they have a great effect on the size of the ICM included in the
DBP. Each structure adds about 0.5 KB. REQUIRED items can be expensive
in both memory and processor; INITIALVALUES are not. VERIFY and SELECT
code is put into the functional routines, their effect on memory
requirements is therefore felt more with LARGE binds. Use of the
structure types, RANDOM, UNORDERED, ORDERED, will also increase DBP
size. They are implemented in separate modules which have no effect
unless specified. Use of RANDOM will cost 5 KB on all binds.

COOKBOOK
Use REQUIRED, VERIFY, and SELECT only
especially REQUIRED. Evaluate the
non-standard structure types and limit
optimization-orjented design deviations.

KOOBKOOC

where
total
their

necessary,
effect of
usage to

The STACKSIZE parameter specifies the size of the DBP's dynamic area at
initialization. It was implemented to avoid multiple requests for more
memory as a database was opened. The general case being that many
physical files and their required buffers, work areas control blocks,
etc. would quickly consume the default 20 KD, and as the DBP gets
memory in 5 KD (minimum) increments, the initialization may cause
several minutes of processing to bring up a large database.

COOKBOOK
Empirically determine from a typical initialization of the
database a reasonable value for STACKSIZE, i.e., memory in
use after initial opens minus the value of memory required
(DC message) plus 20 KD. This figure may need to be revised
by evaluating the tradeoffs between higher memory usage after
open and the possible delays due to additional memory
requests(stop/go) for the non-typical cases.

KOOBKOOC·

TIP #1114238-016

6

The ALLOWEDCORE parameter was implemented to limit or at least slow the
memory consumption by the DBP as additional users or usage required more
and more buffers. When the dynamic area used by the DBP is greater than
the value specified for ALLOWEDCORE, requests for additional buffer
space for a structure will cause a search for idle buffers in other
structure's buffer pools. If a buffer of adequate size is found, it is
deallocated and the request for space is unconditionally resubmitted.
The procedures to reduce DBP memory are invoked more often when running
above ALLOWEDCORE. The cost of running the DBP above ALLOWEDCORE is
very usage dependent. It could range from small amounts of processor
time to significant processor and I/O thrashing.

The dynamic area used by each additional user for task tables, current
record and path pointers, etc. is approx. 0.5 KB. While a user is
active in the DBP for a function request an additional 1.0 to 2.5 KB is
required for that function's stack.

COOKBOOK
Empirically determine a reasonable value for the dynamic area
used by the typical environment and add a safety factor.
---OR---
Start with a high value and reduce it until it hurts.
---REMEMBER---
ALLOWEDCORE can be SET or CHANGED by the SP message.
However, operational bottlenecks or degradation caused by low
values should be critically analyzed by the DBA for
alternative solutions and specific instructions developed for
the operator.

KOOBKOOC

The BUFFERS parameter is very critical to memory consumption. Most of
the space in the dynamic area is used by buffers and buffer controls.
The DBP assigns buffers to a structure, i.e., a buffer pool per
structure. Buffers are allocated as needed until the larger of
"buffer-limit" or the number of buffers required. Buffer-limit is
calculated from the (# of SYSTEM buffers specified) plus (the # of
USER buffers specified times the# of users). The DBP will allocate
additional buffers above buffer-limit if all the current buffers are in
use by an internal function request. The buffers will be deallocated
back to buffer-limit on each close.

COOKBOOK
The criteria needed to properly fine tune the BUFFER
parameters are highly dependent on the individual site's
resources, requirements and usage. They would require a
thorough analysis of a stable environment by qualified
personnel. Fortunately, some·rather simple generalizations
can be applied which effectively develop a reasonable buffer
environment.

FOR DATA SETS: 0 (system) + 1 PER USER.

Exceptions:

A low activity online application with many users
will keep rarely used buffers allocated, therefore
use: X (system) + 0 PER USER where X starts at
average number of users and is reduced until it

TIP #1114238-016

hurts. This empirical optimization allows the users
to share a small pool of buffers as their contention
will not significantly affect performance.

During a data set load the system buffers may be
increased to a rather high number to decrease the

' . number of forced aud1t I/Os. This technique is more
significant on random loads.

FOR SETS : 1 (system) + 1 PER USER.

KOOBKOOC

Exceptions:

A set known to have only a root table, e.g., embedded
index or reference with small population, could use 0
+ 1 PER USER.

A set known to have just split to a higher level
could keep the root and high coarse tables in memory
by using: 3 + 1 PER USER.

Low activity usage with many users may want to share
buffers as described for data sets: X + 0 PER USER.

NOTE: only SYSTEM buffer specification may be SET or CHANGEd via
SP message.

7

The BLOCKSIZE parameter, in particular, is one whose value is determined
by evaluating several inter-dependent criteria. A OMS block consists of
BLOCKSIZE records plus a Block Control Information part (BCI). The BC!
for an average Standard Data Set adds aprox. 40 bytes to the size of the
block. Therefore low blocking factors would cause a higher percentage
DMS overhead for physical data space.

Physical blocks must begin on a disk sector boundary, therefore, wasted
space at the end of the last sector of a block may be a consideration.

The minimum size of a DMS block is (100 + BC!) bytes in order to contain
the structure's header information and BC! in the first file block.

High blocking factors cause excessive I/O path usage when processing the
records randomly or when the data file is sequentially scrambled, but
they are quite efficient for sequential access of the Data Set or keyed
access when the Data Set remains organized in key sequence.

Disk space and I/O path are usually not the most critical resource;
memory usage, processor and access time are more often the determinant.
Large blocks will, of course, read into large buffers in memory. For
each buffer, additional space is required for the Buffer Control
Structure (BCS), another 80 digits. This total is multiplied by the PER
USER parameter of the Buffers attribute and factored again by the number
of users. Adding on the SYSTEM buffers and considering all the opened
physical structures, the grand total can be a very large amount of
memory.

TIP #1114238-016

8

COOKBOOK
Consider smaller BLOCKSIZE values unless major usage is
sequential to a stable data file or direct data file access.

KOOBKOOC

Although many of the same considerations are valid for the TABLESIZE
parameter, the overriding criterion is normally the number of tables
accessed to find the pointer to the data file in the fine table. There
are formulas (DMSII USERS MANUAL) to describe the number of entries
required to absolutely insure enough space to contain a maximum
population (P) at a specified maximum number of accesses (N). These may
work well when the file is stable and near maximum population. However,
since it uses worse case criteria, it tends to give large TABLESIZE
values. Large values may not be necessary when the "maximum" population
is a rather arbitrarily high value or a tradeoff between disk access and
memory space is considered.

COOKBOOK
Given reasonable values of (P) and (N), calculate the
TABLESIZE. Calculate the size of the DMS block and consider
adjustment for disk sector "fit" or physical data overhead.
Determine the average memory used by the set's buffers. If
TABLESIZE is still reasonable, intuitively load the set,
considering LOADFACTOR effects. LOADFACTOR of 50% will give
maximum actual average entries per table (aprox. 75l) on a
random load. LOADFACTOR should be 99l for sequential loads.
Remember LOADFACTOR can be easily changed after load via a
DASDL UPDATE. Determine the number of tables produced and
consider the number of empty entries. Through the AREALENGTH
and AREAS parameters, increase the physical file size to a
large safety factor which will make the number of levels the
variable on unexpected high populations. The DBA should be
monitoring these levels in time for a reasonable
reorganization.

A technique to reduce memory for the case of many users and a
stable data file population is to reduce TABLESIZE to a value
that allows the set to split to one access (level) more than
designed, filling the two highest level coarse tables.
Keeping the root and coarse in memory via SYSTEM BUFFERS = 3
specification may reduce the total memory required without
increasing the number of I/Os for the extra level.

Sequentially processed sets can afford to have many levels
since the physical accesses for subsequent tables will be
linked at the fine table level.

KOOBKOOC

The RESTART DATA SET is a special case for several parameters. If the
average number of users and the size of the
reasonable, then a TABLESIZE and BLOCKSIZE = avg.
BUFFERS 1 + 0 will keep the restart data records
memory buffers which reduces I/O at end-transaction.

TIP #1114238-016

restart record is
of users and

and index table in

9

Processor Requirements

Substantial processor and memory resources are consumed by DMSII, or any
OMS system. DMSII is, however, doing copious database management
functions for the users. Recognizing and utilizing the advantages of a
OMS system is the key to appreciating that resource cost. Developed
above are the techniques to utilize and limit memory consumption; much
less can be done to limit processor consumption.

The reduction of processor requirements is mainly up to the software
developers, and over the several releases of DMSII they have done an
admirable job of increasing the overall efficiency of the product. One
side effect of these significant enhancements is experience doesn't help
when trying to find some values for actual processor usage any
knowledge gained on one release cannot be transferred to the next.
Available is only empirical testing which, by definition, measures only
one instance of the inter-dependent criteria of design, data, usage,
optimization techniques, and actual physical resources.

A point to remember for performance testing and database design is DMSII
and the DBP are themselves designed to an environment of multiple users.
From the basic design to specific features, the priorities have been
slanted towards multi-threading users in order to provide the maximum
system response rather than a single user or application response.
Benchmarking, at best a dubious activity, applied to OMS could result in
very misleading performance comparisons. Single application, single
design, and single user comparisons are likely to show all of the
advantages of a comparitive system and none of the flexibility and
design features of DMSII.

Assuming this discussion is not complete without, at least, some numbers
on processor performance, the following caveats must be stated. Total
processor usage is, of course, highly dependent on activity. Other
dependencies include the database design (structure type and number of
structures); the user data characteristics (size, type, and number of
keys, record and block sizes); the access sequence (random, sequential,
serial); and the DMSII features used (audit adds less than 207. when
updating, checksum adds under li. for sequential - 2-Si. more for ramdom,
required, verify, remaps, etc.). It's not clear, with all the variables
and exceptions, whether or not the following statement has significance,
but some generalization seems imperative.

During the period of the processing day when a very active DMSII system,
i.e., batch-sequential with constant OMS requests outstanding, the
processor utilization on ASR 6.5 may approach half of a B4800,
three-quarters of a B29/38/4700, and all ·of a B2800. lt must be
remembered that additional functions normally not handled by user
software such as data integrity and audit are handled by DMSII and do
require processor time. No attempt has been made here to quantify the
utilization differences between DMSII and conventional environments.

COOKBOOK
The DBP's processor priority can be lowered to reduce its
effect on the mix.

TIP #1114238-016

10

Certain features, designs, and usage may be avoided to
provide optimum paths for DBP processing.

KOOBKOOC

TIP #1114238-016

11

OPERATIONAL CONSIDERATIONS

Initial DASDL Backup

The initial DASDL is a compile without UPDATE or REORGANIZE set. It
will produce the uninitialized database structure files plus the CoNtrol
File (CNF), and statistics file (001). The database files consist of
file headers only - no areas are assigned. The compile also produces
the DBP and corresponding ICM and DDF. These files and the source that
created them should be backed up on a secure media before any user opens
are performed on the database. There is also relevant documentation to
be produced at this time which reports much of the physical state of the
system and may be required for documentation of FTRs and other analysis
situations. The output from DMSDAP, DMSCTL, DDFLIS, and the DASDL
listing with the $ LISTBIND option should be saved on some reproducible
media and coordinated with the other compiler output.

COOKBOOK
Compile (LIST$ LIST LISTBIND set, listing file-equated to
backup and named).

Run DMSDAP (ALL), DMSCTL, and DDFLIS (reports to backup).

Move all the files to a similar media if necessary.

Save it all on a secure media.
KOOBKOOC

Update DASDL

The UPDATE function of the DASDL compiler produces a new DBP, ICM, and
xxxOOl(statistics) as output files. Also, any new structures defined in
the DASDL will cause their uninitialized physical files to be created.
The compile will require and then update the current control file (CNF)
and the Data Definition File (DDF) will be required and recreated.
Since old structure files are not touched there is no pressing need to
back them up, but it is probably a good idea - please include the audit
trail. The previous control file must be saved in case bad things
happen during or in the update. Changes to the Audit Trail parameters
may have special considerations - check the Users Manual for details.
New DMSCTL and DDFLIS reports should be created, DMSDAP (new structures)
report if necessary also, and all the new stuff coordinated and saved.

TIP #1114238-016

12

COOKBOOK
Save files (control file required).

Compile as above.

Run DMSCTL and DDFLIS, DMSDAP if necessary.

Coordinate and save the whole works as the (new) basic
backup. The old structure files are not absolutely
necessary, but any new structures are.

KOOBKOOC

Reorganize DASDL

The REORGANIZE function requires two operational procedures. The first
is a DASDL compile, the second is an IR command with a REORGANIZE
parameter. The compile will produce two new DBPs and their
corresponding ICMs; xxxREO will be named in the IR command, the other
will replace the previous DBP. A new statistics file and any new
structure files (headers only) are also created. The compiler will
require the old DDF and create a new DDF. The control file will be
required, updated, and marked "reorganize required". The only function
allowed to the database in this state is an IR REORGANIZE command. If
any REORGANIZE procedures, set balance or data set garbage collect,
become commonly used, the DASDL compile with GENERATE statements must be
re-executed, i.e., the xxxREO DBP must use a control file marked
"reorganize required".

Since recovery "across" a REORGANIZE is severely limited (see USERS
MANUAL for details), a full database save is recommended before the
DASDL compile. A save of the control file and new structure headers
after the compile will allow the IR to be reprocessed if it does not
complete successfully. When the IR completes, the documentation
utilities should be run and their reports saved with a another full
database dump.

For a very large database or very limited effect REORGANIZE, some
shortcuts in the dumping(save) of database files may be possible.
Saving just the audit trails from a previous dump to the reorganize will
at least allow the reconstruction of the database to the point of
discontinuity. Failures during IR would simply cause another DASDL
REORGANIZE compile from a reloaded database if the save before IR was
ignored. The minimum dump after IR must include all affected
structures, control and statistics, DDF, DBP, ICM, and the new
documentation.

TIP 1/1114238-016

COOKBOOK
Save the database.

Run the DASDL REORGANIZE.

Save the new structures and control file.

IR xxxREO REORGANIZE.

Run the required documentation utilities. Optional if just
garbage collecting.

Save all affected files.
KOOBKOOC

DMSII Database Backup Procedures

13

Backup terminology requires some clarification. Backing up, saving, and
dumping can all refer to the procedure of producing another copy for the
purpose of recovering from failures, or preserving a reliable or
reproducible state. This is commonly accomplished via the DUMP and LOAD
(file maintenance) features of the Operating System. However, the same
function could be accomplished with other methods.

The reliability of any required recovery is, of course, dependent upon
the reliability and accessibility of the copy. A prudent user would
maximize these characteristics. The COMPARE, CHECK, SYCOPV, Multiple
dumps, etc., features can provide enhanced reliability.

The integrity of the data, index, control, and audit files are as
important to the copy as they are to the live versions. Copying files
with less than perfect integrity produces a false sense of security with
regard to the ability to recover. Audit files should always be verified
via DMSAUD (VERIFY parameter) before they are saved. Audit files should
be copied again to a different media than the other database files.
Remember current audit files will be applied to previous dumps for
Reconstruct and Rebuild recovery. The integrity of the structures can
be verified with DMSDAP, however, this utility may be too time consuming
for large databases. Most users will write a series of FIND NEXT <DATA
SET>, FIND NEXT VIA routines to insure each data set record and pointer
is "touched" and verified before being saved. Even these procedures may
be too costly for some sites. Then, some subset of the verify routines
could be run before each dump such that, over a period of time, all the
data would be verified. Certainly, before old dumps and audit trails
are purged, some strong verification measures are in order.

Audit trails require some special consideration for they are critical to
all types of. DBMS recovery. The DBP will open the audit trail on the
first OPEN UPDATE function request, and it will remain open until all
users, both updaters and inquirers, have closed. Saving the current
audit trail must be done outside this environment. The audit file name
found in the control file is opened I/O, and if it is not found on pack,
the name is changed and opened O/I. The only other times the file name
changes are: a full file condition (closed, name change, re-opened),

TIP #1114238-016

14

haltload, rebuild, and reconstruct. Otherwise, the current file will be
used beginning at the next block beyond that which recorded the previous
close, i.e., DBP EOJ. If a full audit file causes a file change, that
fact is recorded in the audit trail and a double control point (all
buffers flushed) taken so recovery is likely to ne~d only one audit
file. However, since some user(s) could be in transaction state when
full file occurs, several transactions could be recorded in the new
audit file before a quiet point(sync) is reached. Failures before the
sync will require the previous audit file for recovery (only case).

When the ability to recover is absolutely dependent on the audit, then
small audit files may be specified giving the opportunity to save them
to a secure media more often. Typically, the current audit file 1s
removed or changed after a full database dump to allow the DBP name
change to help coordinate dumps and audit trails.

Each site's Data Base Administrator (DBA) has a significant
responsibility to develop operational procedures and coordinated DASDL
specifications to provide the proper level of recovery warranted by the
system's requirements and capabilities. These procedures might range
from simple dumps and operator actions to a complex application of
executive programs which control the process. If the system's
requirements demand a Belt-and-suspenders approach (levels above
prudent), then the verifies, dumps, filename changes, histories and
catalogs, etc. would likely be more than an operator could handle.
Database recovery is not the time to introduce further errors,
indecision, or panic.

The DBA must recognize each type of failure (there are several) and
possible mistakes (there are many) and provide a recovery or foolproof
procedure. The DBA should analyze the cost of providing levels of
integrity and recovery and measure them against the cost of not
recovering or recoveries of greater scope. The criteria and resultant
solutions are site and system dependent and must be addressed at that
level, but they must be addressed during design phase as well as
implementation and operational phases. These procedures should be
carefully conceived, well-documented, and automated where possible.
Control decks, WFL program, executive programs, or a whole application
could be developed for this purpose.

Another recovery technique outside the specific scope of DMSII is the
capability to reintroduce update transactions. It is simply a case of
extending the designed criteria used in abort and halt/load recovery
which requires re-introducing transactions from the last syncpoint
(restart record). The audit trail 1s not capable of guaranteeing
database integrity to the exact point of failure. A disastrous loss of
an audit trail or backup dump could be recovered from some reconstructed
reliable state and the subsequent transactions. A GEMCOS (or any MCS)
audit file is an example of this technique.

TIP #1114238-016

COOKBOOK
Carefully consider all the ramifications of your recovery
requirements and capabilities.

Plan not only for failures but for mistakes and disasters
also.

Know the limitations of your recovery procedures.

Always verify the audit trail before securing the backup.

Develop a plan to verify the database structure files before
securing the backup, at least before purging the capability
to reconstruct.

Thoroughly test, even practice, recovery procedures.
Disasters are commonly caused by errors during recovery.

Develop intimate knowledge of the control file and audit
trail.

KOOBKOOC

TIP #1114238-016

15

17

DASDL CONSIDERATIONS

Documentation Requirements

Without going into the justification and details of this database
development procedural steps, consider the following:

Data and usage analysis
Data and usage organization
User view design
Database design
Database design optimization
Design implementation
Implementation optimization

The criteria and decisions developed in the last two steps, design
implementation and implementation optimization, are productive areas for
DASDL documentation. Design implementation refers to taking a database
design and implementing it in Medium Systems DMSII - why a structure
type was chosen, why certain options and parameters were specified or
excluded, what were the criteria used for determining file size,
blocking, table size, etc. Implementation optimization refers to more
site specific decisions: media specifications; processor/memory/disk
tradeoffs as they affected structure type, sizes, or physical
attributes; audit trail attributes; and compatibility considerations.

Liberal use of % comments, indentation, and standardized formatting
helps the understanding of the database design and reduces the chance of
errors during DASDL maintenance. It is especially helpful when the
DASDL is required for external analysis (FTRs, audits, consultations,
etc.). In addition to the design criteria above, the DASDL
documentation should include usage and access characteristics of each
structure: random or sequential access, high or low activity, batch or
online, stable or cyclic file size, response requirements, etc ••
Understanding is also improved when the physical attributes are included
next to the structure definition.

There is a point where extensive documentation interferes with the
overall readability. In this case, the documentation may need to be
grouped or pulled out to a coordinated document.

COOKBOOK
Document EVERYTHING except data items; they should be
described in earlier phases.

KOOBKOOC

TIP #1114238-016

18

Control and Dollar Sign Cards

COOKBOOK
Since the database files and programs will be identified
internally by the first three characters of the database name
and the DBP will be named by the first six characters, naming
the database xxxDBP may lessen the confusion for the
operators.

The DASDL compiler files should be label-equated to a naming
system which will help, not only the identification, but the
coordination of source(s) and listings. Listings should go
to backup to provide for reproduction. A bind listing will
be required for documentation of DBP problem analysis.

Use SET for all $ options.

SET LIST$ LIST LISTBIND SEQCHECK.

SET BIND <size>.

Save some sequence numbers for other $ options.

On original or significant updates, SET CHECKCOBOL.

SET PAGE for each data set and document an overview of its
characteristics and relationships.

Include the physical
radically indent (or
listing.

KOOBKOOC

Options and Parameters

attributes
"out dent")

with
for

the structure and
ease of scanning the

The STATISTICS option is inexpensive and quite valuable throughout the
life of a system. In the early phases, the obvious use is to determine
the operational characteristics for debugging and optimization. Later
they can be used to measure the effects of environment or resource
changes. But even in a stable environment, the OBA reviews of the
statistics can spot variances which may point to potential problems and
increase the reaction time and effect of the solution.

The KEYCOMPARE option is also inexpensive and should be considered
mandatory. For any design which includes MANUAL SUBSETS, it will catch
programming errors in delete/remove logic. For any index structure, it
will catch system errors such as a bad record pointer.

The AUDIT capability is one of the major features of a Database
Management System. The designs where AUDIT would not be specified are
rare and of limited scope. Remember the AUDIT option cannot be UPDATED
or REORGANIZED for good reasons, one of which is recovery should be a
major consideration in the original design.

TIP //1114238-016

19

The ALLOWEDCORE and STACKSIZE parameters are discussed in the section on
memory requirements.

The SYNCPOINT parameter determines the number of completed transaction
states allowed before a quiet point (no user in transaction state) is
forced. The effect of a quiet point is that recovery can only complete
at these times when no transactions were in progress. For low activity
or few users, quiet points will be recorded naturally, and therefore,
the value of SYNCPOINT is not likely to force a quiet point. In a
highly active system, the SYNCPOINT value will approximate the maximum
number of completed transactions backed out during recovery. A
syncpoint record is written to the audit trail at all quiet points,
however, at forced syncpoints the audit buffer is forced to the disk.
Very low values for SYNCPOINT may cause unnecessary audit writes. The
range of 10-50 seem reasonable values for SYNCPOINT. The value of
SYNCPOINT is also used to calculate the number of completed transaction
states before a CONTROLPOINT is forced.

The CONTROLPOINT parameter, specified by a number of SYNCPOINTS,
determines the amount of audit trail processing required for halt/load
type recovery. This recovery algorithm includes recovering partial
transactions to a quiet point, then going back two control points in the
audit trail, and applying after-images to the quiet point. But since
this processing happens on rare recoveries, it is not the major criteria
for the determination of the (SYNCPOINT * CONTROLPOINT) value. More
important is the processing which occurs during the forced control
point. The DBP will flush (write to disk) all changed buffers which
were not flushed on the previous control point. With a stable, active
system this may be half of the total buffers, which could cause
unnecessary I/Os if the value is small. It seems quite reasonable to
specify a CONTROLPOINT to give a large total value (hundreds).

Audit Trail Specifications

COOKBOOK
The FAM.ILYNAM.E attribute should specify a pack that is
different from the database structures. The loss of both the
database and the audit trail due to a pack failure means the
last reliable database is on the previous dump and no DMSII
recovery is possible.

The BLOCKSIZE attribute should be sized to a sector boundary,
remembering that the compiler will add 30 bytes to the value
for DMSII control information. This will prevent any wasted
disk space. Also consider there are three audit buffers in
memory, two for ping-pong and one for the header block, so
large values must be factored by three. A value of 1770
semms reasonable for most systems.

The AREALENGTH attribute should be specified in BLOCKS for
better understanding and compatibility. Smaller areas and
more areas will generally result in less and easier disk
allocation.

TIP #1114238-016

20

The UPDATE-EOF attribute determines the maximum number of
blocks that will be searched to find the "real" end of the
audit trail during recovery. A large value (hundreds) is
reasonable. An extra I/O for the audit header will happen
every UPDATE-EOF count of full audit block writes.

KOOBKOOC

DASDL Construct Compatibility

DASDL is source code compatible throughout the DMSII product line, but
there exist varying degrees of compatibility. As long as
non-architectual terms are used, e.g., BLOCKS and RECORDS, the time
required to make DASDL source modifications may include only the time to
perform a few REPLACE statements with CANOE. The following table shows
the limits or terminology that should be used for compatibility reasons
when describing physical attributes.

General Attributes

* AREAS should be a maximum of 100.

* The FAMILYNAME id should be a maximum of six (6) characters in
length.

* Specify CHECKSUM (only) for each structure.

* Declare buffers as: BUFFERS = <x> + <y> PER USER.

Data Set/Set Attributes

* Declare block size as: BLOCKSIZE = <x> RECORDS or ENTRIES.
(On Large Systems, a SETs block size is determined via the
TABLESIZE attribute.)

* Define the AREALENGTH in BLOCKS: AREALENGTH = <x> BLOCKS. (On
Large Systems, the length of an area for a SET is declared in
ENTRIES.)

* Specify total file size via blocks-per-area and
than MAXRECORDS or MAXENTRIES. This is
technique even when compatibility is not an
defaults and know your file specifications).

areas rather
the suggested
issue (avoid

Audit Trail Attributes

* Define blocksize as: BLOCKSIZE <x> BYTES. (On Large
Systems, BYTES will need to be replaced by <y> WORDS.)

TIP #1114238-016

21

PROGRAMMING CONSIDERATIONS

The coding of DMSII applications can be a trivial task if
techniques are observed. In this section of this paper,
don'ts are presented, along with an in-depth discussion on
a restartable program.

some proper
some do' s and
how to write

Use of COBOL Library Files

Although one of the major features of DMSII is the ease of programming
via DMS extentions in the host language, this tool must be used with
consideration to possible negative effects. The inquiry program cannot
affect the integrity of the database, but it can produce high activity
in the DBP by coding constructs which cause full file searches, i.e.,
partial minor key selections. A couple of these requests will bring the
DBP to its knees. An updating program, on the other hand, has a greater
responsibility towards maintaining the (logical) integrity of the
database. A broader knowledge of the database is required for record
and relationship maintenance. More importantly, the disciplines of
transaction state, audit, recovery, restart, locking, and deadlock must
be well understood by the update programmer.

The Data Base Administrator can maintain control of database access by
the adoption of programming standards and the development of library
routines. In the larger DP shops this may require a DBA staff of
specialists who could develop a totally user-soft interface to the
database. The same techniques could be developed in any sized shop, but
the scope of the interface may be limited by personnel resources or
usage requirements. In any case, database reliability remains a
function of knowledge, and it seems prudent to concentrate rather than
spread this requirement.

Some added benefits accrue to the practitioners of this concept. A
level of "softness" between the application programmer and the database
allows the DBA to even greater freedom to make extensive changes to the
physical and logical database design without affecting the application
procedures in a program. Only the libraries need to be changed. Also
the concentration of DMS logic and procedures make the conversion to new
or advanced software technologies.

COOKBOOK
Development of programming standards by the DBA should be
considered mandantory.

It is highly recommended to incorporate all DMSII constructs
in COBOL libraries.

Create a standard error handling procedure in library form.
It will help standardize operation~ in error situations. It
also allows the DBA to determine what errors are to be
considered fatal, and maintain documentation and recovery
procedures.

TIP #1114238-016

22

Create a library of all routines required for restarting a
program.

KOOBKOOC

Exception Handling

There are several methods to consider when designing exception handling
routines. Should in-line coded routines be used or should the DBA write
a standard error routine to be incorporated into each program? Should a
USE procedure be defined to handle all exceptions or an error procedure
be performed from the ON EXCEPTION... construct? Mixtures of these
techniques would also be a viable possibility. The chosen technique may
have a definite impact on implementation time-frames and standardization
of error handling. Standard, well documented error messages may also
eliminate many unrecoverable situations caused by undertrained
operators.

COBOL-74 ANSI standards require that the statement following ON
EXCEPTION must be an imperative statement. Because IF ••• ELSE is not
allowed, a common procedure for in-line error handling is to perform a
dummy routine that does nothing but return to the statement after the
DMS verb. When this is done, interrogate DMSTATUS(DMERROR) first so the
code is executed only when an exception occurs.

Another consideration may be the convertibility of the software. All
three systems return a mnemonic describing the error in the DMSTATUS
register, e.g., NOTFOUND, DATAERROR. On the Medium Systems, a numeric
value for the mnemonic is also returned in DMSTATUS via DMCATEGORY.
Both Large and Medium Systems break each category into subcategories and
return the more definitive field DMERRORTYPE, plus the number of the
structure where the error was encountered, DMSTRUCTURE. All errors are
referenced as entities of the DMSTATUS register, e.g., DMSTATUS(INUSE),
DMSTATUS(DMSTRUCTURE).

Another problem that may be encountered in transporting software from
one system to another is the lack of the USE ON DMERROR procedure in the
DECLARATIVES section of a COBOL program on Small Systems. The DMSII
extensions in BlOOO COBOL require the ON EXCEPTION ••• constructs if OMS
exceptions are to be interrogated. On all systems the program will fail
if the MCP cannot determine where to reinstate the program when an
exception is encountered, i.e., the lack of a USE procedure AND ON
EXCEPTION ••• construct.

TIP #1114238-016

COOKBOOK
To allow programs to be transportable to 81000 systems, do
not use the USE routine. Write an exception routine for each
system to be performed when ON EXCEPTION is encountered.

In Appendix B the ON EXCEPTION clause is not used. When an
exception occurs, the USE procedure is entered where ALL
DMSTATUS register conditions are interrogated and the
DMSTATUS register values are moved to display fields in
working storage. Upon returning from the USE procedure, the
DMSTATUS register is interrogated for error conditions that
may apply to the particular situation and handled
appropriately. Any errors that should not have been
encountered but were, cause the displayable fields to be
displayed followed by a program abort (stack overflow). When
the program dump is printed, it may be determined, via the
stack, where the program was before it entered the fatal
loop. This is an easy method to code, easily understood, and
only wastes milliseconds to execute the nested IF statement;
yet it provides sufficient documentation when irrecoverable
errors occur.

KOOBKOOC

Getting Around DEADLOCK

COOKBOOK
Unless you like coding complex deadlock recovery procedrues,
establish a sequential procedure for locking records, i.e., a
specific order. If all programs MODIFY data sets in the same
order, DEADLOCK conditions will be eliminated except for SYNC
situations. END-TRANSACTION ••• SYNC may cause deadlocks if
MODIFYs are requested in transaction state; therefore,
perform ALL locking of records outside of transaction state.

KOOBKOOC

Aborting Transactions

23

In the course of processing a transaction it may be determined that the
transaction cannot finish. When this happens any previous database
updates within the transaction must be backed out. The best method used
for backing out a transaction is to kill the program while in
transaction state (DS/DP). After the program is DSed or dumped, ABORT
recovery will kick in and back out transactions to the last quiet point.

TIP #1114238-016

24

COOKBOOK
The easiest way to cause a program to be DSed, on a Medium
System, is to perform a procedure which performs itself, thus
blowing the stack (see PROGRAM-FATAL in Appendix B). This
allows a non-normal EOJ to be logged and and an operator
controlled dump, otherwise, a STOP RUN will do. A CLOSE in
transaction will just give back a OMS error.

KOOBKOOC

Partial Database Invocation

In the non-database environment, programs have always opened only the
files they required. For the same obvious reasons, this technique
should be incorporated into the database environment. Memory and
processor requirements may be substantially decreased if the programmer
is quite precise in his requests to access the database.

One method to develop restricted structure invocation is specifying the
required data sets via 01 levels under the DB statement. For inquiry
only, the USING clause will invoke only the specified sets. Using
LOGICAL DATABASES is not recommended for limiting structure invocation,
al though that is, in fact, the likely effect. The design purpose of
LOGICAL DATABASES is to group structures for more global reasons, e.g.,
security or application, rather than precise program access.

Another~ but perhaps uncommon, method can be used when the program
changes its access characteristics, i.e., UPDATE to INQUIRY or from one
set of structures to a different set. By specifying multiple DB
statements with the precise Ols and USING clauses, then closing one DB
and opening another will keep the program and its database requirements
in tune. Only one DB may be opened at a given time.

Non-OMS files

Programs accessing the database for inquiry have no unusual problems
with non-OMS files. Since an inquiry program does not modify the
database, it is not affected by another program's abort, and the program
normally starts from the beginning on a halt/load.

Programs which are updating the database and using input (transaction)
files or producing output files (e.g., printer), have repositioning
problems when any type of database recovery occurs. These programs must
develop the capability to match the position of the non-DMS files to the
position of the last recovered transaction currently recorded in the
database.

A transaction identification or counter can be maintained in the restart
record for the input file and the file positioned to that point.
However, the MCP's filing system cannot guarantee that an output buffer
has been physically captured on the media.

TIP #1114238-016

25

Some applications may be able to solve
two-pass (update then search-report) or
this solution is not realistic for most

this problem by developing a
two-program technique. However,
applications.

The alternative solution is to develop a user application which allows
the output to be recorded in a general purpose, "blackboard", data set
that will be synchronized with a recovered database. Each record would
contain an identification of the owner and a search and output program
retrieves the data.

It should be obvious that combining update and output in a DBMS
environment is an expensive procedure, and therefore, its use and effect
and the site-dependent solution should-be carefully considered during
the design phase.

Restartable Programs

If an application is to update an audited database,
restart capabilities. Without them, there is
auditing. Refer to the DMSII Users Manual (Section
version (11/80)) for a complete discussion on Audit

it MUST incorporate
really no
11 of the

sense in
ASR 6.4

and Recovery.

When designing restart capabilities it is important to remember the
design and purpose of the restart data set: the existence of a restart
record indicates the reprocessing of input transactions is required and
data has been saved in in the restart data record sufficient to recreate
the program's state and transaction sequence at some previous point. A
restart record may thus be required in two situations: at BOJ and upon
encountering an ABORT exception. In both cases, the program must obtain
its restart record to determine if reprocessing is required.

The DMSII recovery mechanism will ALWAYS recover the database to the
last quiet point (see the section on DASDL considerations for a
discussion on quiet points and the recovery process), no matter what
type of recovery was required. Thus, the technique used to reestablish
the appropriate input transaction record is the only difference between
BOJ restart and ABORT exception restart.

A few important items worth noting in the design of restart procedures
are:

1) An ABORT exception must be handled on all BEGIN-TRANSACTION,
END-TRANSACTION, and CLOSE operations.

2) After opening the database, the program's restart data set
record should be locked (MODIFYed). On a NOTFOUND exception,
one must be CREATEd. There must exist a unique restart record
for each updating program.

3) The implementation of the restart data set is different
between systems. On Small and Medium Systems the restart data
set is treated as a STANDARD DATA SET. When BEGIN or
END-TRANSACTION AUDIT is specified or left to default, the
program's restart record is logically stored and audited. On
Large Systems the restart record is audited, ONLY. In all

TIP #1114238-016

26

implementations, after an ABORT or HALT/LOAD recovery, there
will be a restart record for all programs that had been
updating the database.

4) There are two situations when a restart record may not be
available after a system halt or program abort: before a
create restart data set transaction, and after a delete
restart record transaction. These windows may never be
totally closed, but their sizes may be made sufficiently small
to where they may be considered closed.

There are many ways to attempt to eliminate these windows,
some are better than others. The solution chosen will
determine the amount of operator intervention required. One
such method is described in the following COOKBOOK diagram.

COOKBOOK
BOJ window:

Immediately open the database.

MODIFY/LOCK or CREATE the restart record.

BEGIN-TRANSACTION NO-AUDIT
Handle the ABORT exception.

<restart data set>.

Record database open results in the restart data set.

END-TRANSACTION AUDIT <restart data set> SYNC. Handle
the ABORT exception. If an abort has occurred in
this phase go back and re-MODIFY the restart record.

Perform all other required housekeeping duties, e.g.,
initializing any WORKING-STORAGE fields, opening of
files, etc.

BEGIN-TRANSACTION NO-AUDIT <restart data set>. Handle
the ABORT exception.

Record housekeeping results in the restart record.

END-TRANSACTION AUDIT <restart data set> SYNC. Handle
the ABORT exception.

EOJ window:

BEGIN-TRANSACTION NO-AUDIT <restart data set>. Handle
ABORT exception.

DELETE <restart data set>.

END-TRANSACTION NO-AUDIT <restart data set> SYNC.
Handle ABORT exception.

CLOSE <database> and handle ABORT exception.
encountering an ABORT, re-attempt the CLOSE.

TIP #1114238-016

Upon

Perform all totals processing, miscellaneous file
closing, etc.

STOP RUN
KOOBKOOC

Restart Logic

27

One of the most common excuses for not writing restartable programs is
not knowing where to start and how to finish. To answer these
questions, an example of a batch restartable program (it could also be a
transaction processor that doesn't use GEMCOS synchronized recovery) has
been included with various comments included. Following structured
programming techniques has been found to lend itself well to the restart
process. See Appendix B for the restart example.

The steps below show the basic logic required to update an audited
database.

A) Open database.

B) Lock the restart record. If one is found PERFORM restart
routine (step N), else create one, open transaction files, and
perform other miscellaneous housekeeping activity.

C) Read next transaction

D) If end of file on transaction file PERFORM end-of-job routine
(st,ep 0). If the flag indicating an ABORT occurred in (0) go
back to (C).

E) Lock records that require updating.

F) If DEADLOCK is encountered go back to (E).

G) Move input data to appropriate data set work areas.

H) BEGIN-TRANSACTION NO-AUDIT. On an exception condition PERFORM
a dummy paragraph that will bring control back immediately.

I) If DEADLOCK is encountered on BTR go back to (E).

J) If ABORT is encountered on BTR, PERFORM the ABORT routine
(step M) and go back to (C).

K) Update database (STOREs, DELETEs, etc.). If at any time
during this phase it is determined that this transaction
cannot complete and must be backed out, PERFORM a routine to
kill the program.

L) END-TRANSACTION AUDIT and go back to (C).

TIP #1114238-016

28

M) ABORT ROUTINE -- for handling ABORT exception. Need to get
prepared to perform RESTART routine.

a) relock the restart record.

b) close any input transaction files for repositioning.

c) PERFORM the restart routine (step N).

d) EXIT.

N) RESTART ROUTINE for repositioning input files and
rebuilding working storage to a backed up state from
information stored in the restart record.

a) open the input transaction files and reposition. The
mainline logic will read the NEXT record. This
routine must read the last record processed.

b) rebuild working storage to this backed up state using
information retrieved from the restart record.

c) EXIT.

0) END-OF-JOB ROUTINE -- for deleting the restart record, closing
database, and miscellaneous end of job processing. This is
performed to allow returning to the mainline if an ABORT is
encountered.

a) BEGIN-TRANSACTION NO-AUDIT.

b) If an ABORT is encountered, PERFORM the ABORT routine
(step M) set a flag to indicate to the mainline step D
that an abort occurred in the end of job routine. G
to step (i).

c) DELETE <restart data set>.

d) END-TRANSACTION NO-AUDIT SYNC (note: no-audit will not
store the restart record).

e) If an ABORT is
(step N) and
step D that an
routine. Go to

encountered, PERFORM the ABORT routine
set a flag to indicate to the mainline
abort occurred in the end of job
step (i).

f) CLOSE the database. If ABORT exception retry the
close until successful.

g) perform totals processing and miscellaneous file
closings.

TIP 1/1114238-016

29

h) STOP RUN.

i) EXIT.

Transaction Processors

Coding restart capabilities into a transaction processor or an on-line
data comm program may be slightly more difficult than coding them into a
batch program. Several decisions must be made during the design phase:

1) Will the program handle more than one terminal at a time? If
it is, then a terminal table must be maintained to provide
information about the sequence of transactions the operator is
in.

2) What is ONE transaction? Is a transaction a series of screens
or is it just one screen? If it is a series of screens, will
there be one DMSII transaction per series or one DMSII
transaction per screen? Coding the restart procedure is very
dependent on this decision. If there is an ABORT after the
fifth screen of a series, how much information should the
operator be required to reenter, the entire series or just the
screens were backed out. The amount of information that must
be retained in the restart data set will vary drastically.

3) Will GEMCOS synchronized recovery be implemented?
problems are trivial if it is.

4) Will transaction based routing be used?

The above

5) Will the GEMCOS screen format capabilities be implemented?

And the list goes on and on. For ease of implementation, steps 3-5
above eliminate a lot of headaches. The operator will probably not be
required to reenter anything if synchronized recovery is used.
Transaction base routing through GEMCOS allows the programmers to code
and test one routine at a time. He also doesn't really need to be
concerned with what the screen looks like, just the order of the input
data being sent by GEMCOS.

On the other hand, when using GEMCOS as above, required key fields must
be carried from one screen to the next during a series of screens for
purposes of relocking the correct records, e.g., a customer number,
invoice number, vendor number, employee number, etc. There will be no
gua~antee that the same operator will enter all the screens required in
a series before another operator enters a transaction.

COOKBOOK
When designing a new software package, using all the features
of GEMCOS can drastically decrease the implementation time of
an online system.

If a conversion of an existing online system is required,
GEMCOS may still eliminate many necessary changes required to
incorporate DMSII restart into the programs.

TIP #1114238-016

30

Use the single screen transaction approach. It is a much
less confusing technique besides lending itself well to the
GEMCOS/MCS environment.

KOOBKOOC

TIP //1114238-016

31

DESIGNING A DATABASE

Designing a simple, efficient, well-documented database may possibly be
the single most important phase in the implementation of a new
application system. If the database is properly designed, it will make
the design, coding and testing of the application programs much easier
and also allow for future changes in the data requirements to have
minimum effect on the software.

Data Models

DMSII is often described as a hierarchical data management system. This
is not necessarily true. DMSII provides the database designer with the
tools required to follow one Qf four design methodologies: hierarchical,
network, flat, or relational.

The following sections discuss each of the four approaches to database
design. The first three approaches exhibit maintenance anomalies, or
situations where attempts to make minor data value changes can be at
least cumbersome if not impossible.

In the accompanying diagrams, the rectangles represent data sets and the
connecting arrows indicate a physical relationship between two data
sets.

The Hierarchical Approach

A hierarchical approach designed database is a tree-structured series of
data sets. The root (master, parent, ancestor, etc.) may be described
as common format data records which include in their description varying
occurrences of other data records. Each of these branches (slave,
child, descendant, etc.) are considered to be EMBEDDED within the root
data set record. Each branch may in turn. have its own branches. Each
level of the hierarchy is maintained in a data set. The branch data
sets are implemented as a series of incongruous blocks belonging to
parent records in the ancestor data set. The only means of accessing a
record in an embedded data set is through its ancestor data set record.

In the past, this technique was the typical method for implementing
databases. Below is one method of representing the embedded data set
relationshipsw

TIP #1114238-016

32

+-----------+

A

+-----------+

+--<<-->--+--<-->>--+

+-----------+ +-----------+
Al A2

+-----------+ +-----------+

Figure 1 - Hierarchical Tree Data Relationships

It is inherent to the hierarchical model that a record may not exist in
or be retrieved from data set Al or A2 unles.s a master record exists in
data set A. This is the major drawback in the hierarchical approach:
processing of only the embedded records is extremely difficult because
it must be done through the master data set. Insert, delete, and update
anomalies are abundant in this design. This approach also introduces
unnecessary complications for the user with respect to programming and
inquiry. There are true hierarchical structures in the real world and
for these cases, the hierarchical model describes them nicely, but too
often it is used when a hierarchy does not exist.

Another disadvantage to the hierarchical approach is that it uses
physical record pointers which may be corrupted by circumstances out of
the control of the user. This corruption could spell doom for a user
who must reconstruct relationships involving "orphan" records. This
problem is compounded when it involves highly populated data sets.

Data redundancy is another disadvantage of the hierarchical approach.
An embedded record owned by multiple masters must be duplicated for each
master, e.g., nuts and bolts in a parts database. As a result, there
are many maintenance anomalies associated with this approach, e.g.,
changing the attributes of the nuts and bolts requires accessing every
master plus finding and making the necessary changes to the nuts and
bolts. In an attempt to solve these problems, the network approach to
data modeling was developed.

The Network Approach

A network approach designed database consists of disjoint data sets
where physical pointers are used to indicate the data relationships.
The master (owner) may be described as common format data records which
include in their description varying occurrences of reference pointers
to data records in other disjoint data sets. The pointers to the detail
(member) records are considered to be embedded in the master record.
Any number of master records from different data sets may make reference
to an individual detail record. A detail record may also be a master
record.

TIP #1114238-016

33

By allowing all data sets to exist on the disjoint level, the problem of
accessing subordinate records in the hierarchical approach no longer
exists. All data sets may be accessed directly. The embedded
relationship is still maintained through the use of MANUAL SUBSETs, thus
preserving the embedded qualities of the hierarchy.

The diagram below depicts a bi-directional relationship between two
disjoint data sets. The arrows are manual subsets embedded in the
disjoint data sets to indicate the owner-member relation.

+-----------+ Al +-----------+
---<----->>---

A B
---<<----->---

+-----------+ Bl +-----------+
Figure 2 - Linked Network Data Relationships

Because the data sets are disjoint, B may be directly accessed by itself
but in order to find individual member records for a record "n" in A,
data set Al must be traversed after retrieving "n". This is one of the
basic problems with the network approach.

The network approach allows the modeling of "n to m" relationships
easier than the hierarchical approach and allows any record to have
multiple superiors instead of just one. But this adds unnecessary
complexity to the entire situation. Records may be accessed
concurrently from many different directions within a single user program
which may (and at times, does) produce unpredictable results. Even
though many of the insertion, deletion, and update anomalies that
existed in the hierarchical model have been eliminated, new problems
have been introduced to the deletion process.

A similar problem exists with the network design as was found to exist
in the hierarchical approach, i.e., the occurrences of pointer
corruption and the irrecoverability from severe situations.

The Flat Approach

When designing a database using the flat approach, only disjoint data
sets are used to develop data relationships, i.e., no embedded data sets
and no embedded manual subsets. The relationships are indicated by
maintaining a method of identifying the master or owner record, usually
its key, in the referenced record(s) and incorporating it in the primary
accessing key. Additional disjoint data sets containing symbolic keys
may be created for maintaining bi-directional "n to m" relationships
("cross reference" data sets). The diagrams below represent how both
relationships described above may be depicted in a flat database.

+-----------+ +----------+ +----------+
k-a: k-a: k-a:

A Al A2

+-----------+ +----------+ +----------+
Figure 3 - Flat Version of Hierarchical Tree

TIP #1114238-016

34

+-----------+ +-----------+
k-a: k-b:

A B

+-----------+ +-----------+
Al-Bl

+---------+
k-a k-b

+---------+
Figure 4 - Flat Version of Network Links

Note: "k-a" and "k-b" are the key attributes of data sets A and B
respectively.

Of the three approaches discussed so far, the flat design is the most
acceptable design methodology. The flat design approach eliminates the
problem of uncorrectable pointers by replacing inter-structure
relationships with symbolic pointers (keys). It also helps simplify
many of the complexities that may be created by using the network
approach. But update anomalies still exist; therefore, it is still not
the total solution.

The Relational Approach

The current trend in database design is to implement a data management
system using the relational approach. This approach provides the
database designer with a simple but precise method for logically
describing a database. The foundation of the relational data model is
the RELATION or a collection of data. A relation may be thought of as a
fixed format file or a two-dimensional table. In the terminology of the
relational approach, each record in the file or row in the table is
referred to as a TUPLE and each field in the file or column in the table
is known as an ATTRIBUTE. Tuples are often referred to as n-TUPLES,
indicating "n" columns or attributes in the table.

There are a few other terms that are often used in discussions of
relational databases. One of these, DOMAIN, is similar to attribute but
there is a significant difference; a domain is a pool or set of values,
an attribute is the use of a domain. In some situations a domain may be
used a number of times within a relation, e.g., in a bill of materials
explosion there is a domain of part numbers used as two distinct fields:
part number and component part number. Part 10 is made up of parts 25
and 30 which in turn are made up of 51, 52 and 53, and 61 and 62
respectively, which are made up of •... , etc.

The DEGREE of a relation is the number of domains that
relation, i.e., basically the number of columns in
relation of degree 5 would contain 5 data items.

make up
the table.

the
A

The CARDINALITY of a relation is the number of tuples that exist in the
relation. The cardinality of a file would be the number of records in
that file.

TIP /11114238-016

35

Relational terminology relates fairly well to DMSII terminology. The
following table correlates the different terms.

RELATIONAL DMSII
-----------------+--------------

relation DATA SET
tuple record
attribute DATA ITEM
domain
degree

cardinality

range in VERIFY clause
number of DATA ITEMs

in a record
current population

Figure 5 - Relational Terminology vs. DMSII Terminology

DMSII terminology will be used instead of the
terminology to help the DMSII database designer
understanding in how to use the relational approach to
However, every time a DMSII term appears in the text,
relational term may be substituted for a more accurate

normal relational
achieve a Qetter
database design.
the corresponding
description.

It should be understood that a DMSII database developed using this
method lS NOT a relational database. It will have some of the
beneficial characteristics of a relational database, but it will be
lacking in a few important areas.

The following diagram presents the tabular view of a relation or data
set. It will be used throughout this discussion for example purposes.
There are "m" tuples (cardinality "m") made up "n" attributes a(l) thru
a (n).

Or, in DMSII, there are "m" records (population "m") made of "n" data
items, a(l) thru a(n) in the data set RELATION.

RELATION:

t
u
p
1
e
s

attributes
a (1) • • • • • • • a (n)

t(l) +-----+-----------+-------+---+------+

t(m) +-----+-----------+-------+---+------+
Figure 6 - Tabular View of a Relation

There are several characteristics of the relational model that set it
apart from the other methods of modeling data.

1) A flat database is created.

2) The data must be normalized to at least first normal form.

TIP #1114238-016

36

3) A more precise user view of the physical database is defined.

4) It allows relational
operations.

algebra and relational calculus

5) It supports the use of a relational query language.

Note: items 4 and S above may be addressed in future DMS software
products.

A flat database may be developed into a relational model because the
data may be normalized to one of the lower levels of normalization,
generally first normal form. But it must be pointed out that not every
flat database is a relational database because of items 2 thru S above.

Normalization

Only data sets are permitted in a relational model which satisfy the
following condftion:

* Every value in the relation -- i.e., each attribute
each tuple is atomic or nondecomposable. (Date:2)

value in

In other words, at every row-column position in the table there exists
one and only one value, never a set of values. An example of an
unnormalized data set and a normalized data set may help point this out.

BEFORE

+----+----------+
I PQ I

II/ +----+-----+
I Pl/ I QTY I

+•=••+••••+=••••+
il pl 300

p2 200
p4 100
p6 100

----+----+-----
i2 pl 300

p2 100

----+----+-----
i3 p3 200

----+----+-----
i 4 p2 100

p4 300
p6 400

+----+----+-----+

+----+----+-----+
AFTER I I// I P// I QTY I

+=•=•+=•••+=·--=+
il pl 300
il p2 200
il p4 100
il p6 100
i2 pl 300
i2 p2 100
i3 p3 200
i4 p2 100
i4 p4 300
i4 p6 400

+----+----+-----+

Figure 7 - An Example of Normalization

TIP 1/1114238-016

A COBOL record layout of these two data sets would look like this:

01 BEFORE.
03 If!
03 PQ OCCURS 4 TIMES.

05 Pf/
05 QTY

01 AFTER.
03 If/
03 Pff
03 QTY

Figure 8 - COBOL Record Layout of Normalized Data Set

37

In the definition of normalization above, it says that each data item
value is in its simplest form. The data set BEFORE consists of two
items, If! (invoice number) and PQ (part and quantity). But, PQ is not
in its simplest form; it may be broken down into Pf! and QTY. Once this
has been accomplished, as in AFTER, the data set becomes normalized and
could be included in a relational model.

This definition of normalization basically gives us what is known as
FIRST NORMAL FORM (lNF) of normalization. Within this normalized data
set various data items may possibly be used to uniquely identify each
record from which one key is chosen to be the PRIMARY KEY. It should be
noted that in some data sets, a single item may not uniquely identify
each record, as in the above example. In these situations multiple
items may be grouped together as the primary key, with the most
significant field being the MAJOR KEY, and all secondary fields
designated as MINOR KEYS.

Functional Dependence

Before proceeding with the rest of the reduction
important to introduce the notion of FUNCTIONAL
definition of functional dependence may look like this:

'1' Given a relation R, we say that attribute
functionally dependent on attribute x of R if and
X-value in R has associated with it precisely one
at any one time.

process, it
DEPENDENCE.

y of R lS

only if each
Y-value in R

is
A

In other words, if there are multiple records in the data set with the
same value for item X, then each of those records must maintain the same
value for item Y. The following example, using SSN (social security
number) and NAME may help make this point.

+-------------+--------+
SSN NAME

+=============+========+
121-56-7216
382-17-8723
653-83-1926
221-32-5418
482-19-6262
653-83-1926
300-93-2854

George
Pete
Susan
George
Jeff
Susan
Jeff

+-------------+--~-----+

Figure 9 - Functional Dependence Table

TIP fllll4238-016

38

In figure 9 we n~tice that NAME is functionally dependent on SSN. For a
given SSN-value "653-83-1926", the associated NAME-value MUST be
"Susan". SSN is NOT functionally dependent on NAME because for a given
value of NAME, say "Jeff", we may not have the same SSN-value.

The idea of functional dependence may be extended to cover the situation
where there is a COMPOSITE .attribute (group item). Looking back on
figure 7, we see'that I# and P# are a group item, IP. Then QTY is
functionally dependent on IP, i.e., for a given IP there may exist one
and only one QTY.

Taking the idea of functional dependence a step further, we will define
FULL FUNCTIONAL DEPENDENCE to mean:

* Attribute Y is fully functionally dependent on X if it is
functionally dependent on X and NOT functionally dependent on
any subset of the attributes of X (X must be composite).

Using figure 7 once again with the composite attribute IP, we see that
QTY is fully functionally dependent on IP because it is not functionally
dependent on If! or Pf/. For a given !#-value "il" there are several
values of QTY and for a given P//-value "p6" we find different QTY values
(100 and 400). (In this example, I# is a subset of IP, as is P#.)

Let's take a look at another example involving five items in a data set:
C# (customer #), P# (part#), QTY (quantity), WHSE# (warehouse#), and
CITY. Figure 10 is a functional dependency diagram for this data set.

+--------+

+-----+
I QTY I

+----+ I +------+
I C# 1--------> I CITY I
+----+\I +------+

\ I
<------ \ v

+-----+ +----+ \ +-------+
I P# I \---> I WHSE# I
+----+ +-------+

+--------+

Figure 10 Functional Dependencies in lNF

The data item pointed to by an arrow is functionally dependent on the
item pointing to it (QTY is functionally dependent on CP, WHSE# and CITY
are functionally dependent on C#, WHSE# is functionally dep~ndent on
CITY).

TIP #1114238-016

39

+----+-------+--------+----+-----+
FIRST I C# I WHSE# I CITY I P# I QTY I

+====+=======+========+====+=====+
Cl 2 London Pl 300
Cl 2 London P2 200
Cl 2 London P4 200
Cl 2 London P6 100
C2 1 Paris Pl 300
C2 1 Paris P2 400
C3 2 London P2 200
C4 3 Athens P2 200
C4 3 Athens P4 300
C4 3 Athens P6 400

+----+-------+--------+----+-----+

Fig~re 11 - Tabular Form of lNF

In figure 11, we see a first normal form of the data set.
item in each record is non-decomposable.

Each data

Second Normal Form

With the definition of functional dependency in mind, the next step in
normalization is to break the first normal form relation into data sets
where the data items are dependent on the key. This provides a more
precise definition of the data relationships and helps eliminate some of
the problems encountered with maintaining a first normal form relation.
In the data set FIRST, for example, to change the CITY for customer Cl
would be quite cumbersome. Every Cl record would have to be accessed to
make the modifications.

The next phase of normalization is called SECOND NORMAL FORM which may
be defined as follows:

* the relation must be in first normal form, and

* every non-key attribute is FULLY DEPENDENT on the primary key.

Using the example in figures 10 and 11, let's look at what second normal
form does to the data set. WHSE# and CITY are both fully dependent on
C# and neither is the primary key. At the same time, QTY is fully
dependent on the group item CP. If we break the relation FIRST into two
data sets, we will achieve second normal form.

+--------+ +--------+
/---> CITY +----+

+----+/ +--------+ I Cf! I
I Cf/ I I +----+ +-----+
+----+\ v ----> I QTY I

\ +-------+ +----+ +-----+
\--> I WHSEf/ I I Pf/ I

+-------+ +----+
+--------+

Figure 12 - Functional Dependencies in Relation SECOND

TIP {/1114238-016

40

Since QTY has nothing to do with the CITY or WHSE# of a record it should
not be maintained in the same data set. The tabular representation
would look like this.

+----+-------+--------+ +----+----+-----+
SECOND C/I I WHSE// I CITY CP C/I I P// I QTY

----+-·==--=+=-·=·-·= --=-+••=•+•=·--
Cl 2 London Cl Pl 300
C2 1 Paris Cl P2 200
C3 2 London Cl P4 200
C4 3 Athens Cl P6 100

+----+-------+--------+ C2 Pl 300
C2 P2 400
C3 P2 200
C4 P2 200
C4 P4 300
C4 P6 400

+----+----+-----+
Figure 13 - Tabular Form of Relations SECOND and CP

Now that the data set is in second normal form, it becomes apparent that
it is much easier to handle the update problems we had in the data set
FIRST, i.e., changing CITY values for a particular C#. But there are
still problems with updating the WHSE# of a CITY. Since WHSE# is
functionally dependent on CITY (figure 10 and 12), there are more
redundancies we may eliminate.

Third Normal Form

Now that we have a relation in second normal form, let's take it a step
further to what is known as THIRD NORMAL FORM (3NF). Third normal form
will reduce the redundancies that were existent in second normal form.
A relation in third normal form must satisfy the following conditions:

*
*

it must be in second normal form, and

every attribute or data item in the
dependent on ONLY the key.

relation must be fully

The goal of normalization is to achieve third normal form definitions of
all data. Once this has been accomplished, the database features
several preferred properties:

1) there is a logical, organized approach to the grouping of
data,

2) provides more discipline in data accessing methods,

3) eliminates creation, deletion, and update anomalies found in
the other methods of defining data relationships,

Now let's normalize the example in figures 10 through 13 into third
normal form. Since WHSE# is dependent on both C# and CITY, we must
break this data set down so that, as the definition states, each data
item is fully dependent on only the key. Note that the data set CP is

TIP #1114238-016

41

already in third normal form. The item QTY is fully functionally
dependent on the composite key CP.

+----+ +------+ +------+ +-------+
I C# 1------> I CITY I I CITY 1----> I WHSE# I
+----+ +------+ +------+ +-------+

Figure 14 - Functional Dependencies in 3NF

+----+--------+ +--------+-------+
cc I C# I CITY cw CITY I WHSE# I

+==s=+===a••=c+ +====•~•=+=•••=s•+

Cl London Athens 3
C2 Paris London 2
C3 London Paris 1
C4 Athens +--------+-------+

+----+--------+

Figure 15 - Tabular Representation of 3NF

Fourth Normal Form

At this point all the data relationships have been reduced to fully
functional dependencies. For all practical purposes this is as far as
one needs to proceed with the normalization process. But there exists
one data relationship, when in third normal form, that still includes
update anomalies. For this relationship we develop the idea of
functional dependence one step further and define the notion of MUTUAL
INDEPENDENCE.

* Two attributes are mutually independent if neither is
functionally dependent on the other (composite attributes are
allowed).

Although this type of situation is often difficult to find in the real
world, it does exist. In an education environment for instance, one
course is taught by multiple instructors, and each of those instructors
may teach multiple courses. Since neither attribute is dependent on the
other, then they are mutually independent.

From this example, another idea may be presented, that of MULTIVALUED
DEPENDENCE. Even though a given course does not identify a single
teacher, it does have a well-defined SET of teachers, so we may say that
course multi-determines teacher.

To incorporate this idea into the normalization process, we address a
fourth level of normalization, FOURTH NORMAL FORM. A relation is in
fourth normal form when:

*

*

it is in third normal form, and

if and only if, for all time, each tuple of R consists of a
primary key value that identifies some entity, together with a
set of mutually independent attribute values that describe
that entity in some way.

TIP #1114238-016

42

OR

if and only if, whenever there exists a multivalued dependency
in relation R, say of attribute B on A, then all attributes of
R are also functionally dependent on A.

In a few cases, fourth normal form may be required to eliminate the
update anomalies that may be found to exist in some relations even
though they are in third normal form. But for the most part, it would
be enough to know that it exists, and that someday, further steps in the
normalization procedures may exist.

Why NORMALIZE Data?

Normalization of data can be a time consuming function that appears to
do nothing but increase the number of structures required in a database,
which in turn increases the number of I/O's required to obtain any
information. To some extent this is true, but the normalization process
is an invaluable tool in determining the real data requirements of the
corporate structure. These are some of the disadvantages of the
normalization process when its used to design a DMSII database. Every
time a new data set is used to indicate functional dependencies, at
least one additional index structure will also be required to allow
random and sequential processing of the relation.

Another side affect of the normalization process is the number of data
items that must be used in defining key fields. As the number of key
attributes increases, so does the use of generalized selection
expressions in the application software. The use of generalized
selection may degrade the software dramatically if used improperly.
When used correctly, it provides the user with an efficient means of
accessing related data from disjoint structures.

In a single database-user environment a database designed with the
relational approach may not be as efficient as a database designed with
one of the other methodologies. Even in the multiprogramming
environment, the efficiency may not match up to alternate designed
databases.

The normalization process should be used by everyone when a new database
is being designed. The ultimate goal should be a normalized database in
third normal form. Then, due to optimization requirements for certain
structures, the designer may regress to flat or network approaches. Or
the DBA may decide to "denormalize" the data back to second or first
normal forms.

A beneficial side effect of the normalization process is the ease with
which an application system using a normalized database may be converted
from one system to another. The database is not as dependent on the
system software implementation of DMSII. Commonly, only standard
structures are used (STANDARD DATA SETS and INDEX SEQUENTIAL SPANNING
SETS) all on the disjoint level.

TIP {/1114238-016

43

In a normalized database, data relationships are more e~sily understood
from a programmer's view point. This may be extremely important to a
programming staff with many different application systems to maintain.

Another important benefit from the relational approach is the
recoverability from catastrophic situations that the normal DMSII
recovery mechanism cannot handle. The reorganization facilities of
DMSII can reconstruct disjoint structures easier than embedded
structures. Certain errors in embedded structures are impossible to
recover from, and for the most part, the chances for a quick recovery
range from impractical to impossible.

TIP #1114238-016

45

DATABASE USER VIEWS

Within the organizational structure of a corporation, there exist a
multitude of departments, e.g., payroll, purchasing, upper management,
etc. Each department views the company's data resources from a
different vantage point. The payroll department could care less about
the company's inventory, whereas, the buyers require up-to-date records
of what's in stock, but have no interest in who's working how many
hours. But for the data processing department to maintain separate
databases for each department would be impossible, besides defeating one
of the major purposes of implementing a data management system. It may
be more practical for the data processing department to design and
maintain one corporate database. But it is undesirable to allow
everyone access to the entire database. Provisions must be made in the
database design to provide each department with access to only the
information they require.

Providing a users view of the database is accomplished by the inclusion
of logical databases in the database definition. A logical database
could be considered as a definition of a logically related portion of
the physical database. A logical database may be the physical database
itself. It may consist of only those structures and items that are
needed for specific departments. For example, a physical database may
contain all the financial data (accounts receivable, accounts payable,
etc.) with logical databases defined for each function, e.g., AR
database, AP database, GL database, etc.

To implement logical databases in DMSII, any combination of physical
structures and remapped (user view, subschema) data sets may be used.
The logical databases are then invoked by application programs.

Several important features are thus made available to the user. DMSII
security is implemented through the use of logical databases. A
usercode is given either update or inquiry capabilities for a particular
logical database, thus limiting the individual to accessing only the
data items defined in the remapped data sets that are included in that
logical database.

Another benefit realized is program and/or data independence. This
feature becomes important to the data processing department when it
becomes necessary to add data items to an already existing database.
The version consistency checks in DMSII require database programs to be
recompiled when one or more of their invoked structures have been
changed in a reorganization. The reason for this is fairly clear cut:
the program's view of the database must be consistent with the format of
the stored data.

Making use of logical databases may drastically increase the
productivity of a data processing staff. The amount of time required to
set them up is minimal and should be done upon completion of the
database design. In addition, literally no extra processor time is
required. The advantages of logical databases outweigh the
disadvantages by leaps and bounds.

TIP #1114238-016

BIBLIOGRAPHY

1) Mart in, James; Principles
Prentice-Hall, Inc.; 1976;

of Database Management;

2) Date, C.J.; An Introduction to Database Systems, Second
Edition; Addison-Wesley Publishing Company, 1977

3) Martin, James; Computer Database Organization; Prentice-Hall,
Inc.; 1977; Chapters 13-16

4) Tsichritzis, D.C., and Lochovsky, F.H.; "Designing the
Database"; DATAMATION, August 1978; pp. 147-151

5) Barnhardt, Robert S.; "Implementing Relational Data Bases";
DATAMATION, October 1980; pp. 161-172

6) Merritt, Wendell C.; "The Responsibilities of the Data
Administrator"; BURROUGHS Technical Information
#1096088-001, July 15, 1976

TIP #1114238-016

Base
Paper

47

49

APPENDIX A - NORMALIZATION EXAMPLE

In the B4000/B3000/B2000 DMSII Users Manual, form 1108925, is an example
of a simple Student Record Database. The purpose of this example is
two-fold: 1) to show a normalized database and 2) to provide an example
of how to code a DASDL source to make it easily readable and documented.
It should be used in that manner ONLY.

It is important to note that the values specified for AREAS, AREALENGTH,
and BLOCKSIZE are not necessarily the most efficient values that could
be supplied. They are provided for example purposes only to show that
they should be supplied and not allowed to default with MAXRECORDS
specified.

%?CMP TSTDBP WITH DASDL LIBRARY
%?FILE CARD = STSTDB OSK
%?FILE LINE = LTSTDB
%
$ SET LIST$ LIST LISTBIND SEQCHECK
$ SET BIND LARGE
$ SET CHECKCOBOL
%
OPTIONS (AUDIT SET, KEYCOMPARE SET, STATISTICS SET);
PARAMETERS

(
SYNCPOINT = 10 TRANSACTIONS,
CONTROLPOINT = 50 SYNCPOINTS,
ALLOWEDCORE = 200000,
STACKSIZE = 50000

) ;
AUDIT TRAIL

(
AREAS
AREALENGTH
BLOCKSIZE
FAMILYNAME
UPDATE-EOF
CHECKSUM

) ;
$ SET PAGE

= 100,
= 100 BLOCKS,
= 1770 BYTES,

AUDPCK,
100 BLOCKS,

= SET

TIP //1114238-016

50

%===%
% STUDENT MAINTAINS STUDENT INFORMATION. IT HAS THREE %
% SPANNING SETS, ALL INDEX SEQUENTIAL. MATRIC-NUM IS A %
% UNIQUE IDENTIFIER (PRIMARY KEY). %
%======c••==~==================c=========================•%

STUDENT
(
ST-HATRIC-NUM
ST-SUR-NAME
ST-FIRST-NAME
ST-INITIALS
ST-ADDRESS-I
ST-ADDRESS-2
ST-CITY
ST-STATE
ST-ZIPCODE
ST-DATE-OF-BIRTH

(
ST-DOB-DAY
ST-DOB-MONTH
ST-DOB-YEAR

) ;
ST-YEAR-OF-ENTRY
ST-AGE-AT-ENTRY
ST-LAST-SCHOOL
ST-CURRENT-STATUS
ST-DEGREE-TYPE

) '

STANDARD DATA SET

NUMBER (7);
ALPHA (20);
ALPHA (15);
ALPHA (4);
ALPHA (25);
ALPHA (25);
ALPHA (20);
ALPHA (2);
ALPHA (5);
GROUP

NUMBER (2);
NUMBER (2);
NUMBER (2);

NUMBER (4);
NUMBER (2);
ALPHA (60);
ALPHA (15);
NUMBER (1);

100,
100 BLOCKS,

4 RECORDS,
DBPACK,
SET,

AREAS
AREALENGTH =

BLOCKSIZE =
FAMILYNAME
CHECKSUM
BUFFERS = 0 + 1 PER USER;

% THE MAXIMUM POPULATION OF STUDENT WILL BE 40000 RECORDS

NAME-ENQ SET OF STUDENT
KEY ST-SUR-NAME DUPLICATES,

MATRIC-NUM-ENQ
KEY ST-MATRIC-NUM,

AREAS
AREALENGTH =
BLOCKSIZE =

80,
100 BLOCKS,
50 ENTRIES,

% DON'T WANT BLOCKS TOO
% LARGE. KEY SIZE 20 BYTES
99, % SEQUENTIAL LOAD LOADFACTOR =

FAMILYNAME
CHECKSUM
BUFFERS

DB PACK,
= SET,
= 1 + 1 PER USER;

SET OF STUDENT

AREAS = 20,
AREALENGTH = 20 BLOCKS,
BLOCKSIZE = 100 ENTRIES,
LOADFACTOR = 51, % RANDOM LOAD
FAMILYNAME = DBPACK,
CHECKSUM SET,
BUFFERS 1 + 1 PER USER;

TIP #1114238-016

i.
COHORT-ENQ SET OF STUDENT

KEY ST-YEAR-OF-ENTRY DUPLICATES,

i.

AREAS s 40,
AREALENGTH = 10 BLOCKS,
BLOCKSIZE = 100 ENTRIES,
LOADFACTOR = 51,
FAMILYNAME = DBPACK,
CHECKSUM = SET,
BUFFERS = 1 + 1 PER USER;

i. THE ABOVE BLOCKING FACTORS WILL ALL PROVIDE A MAXIMUM
i. NUMBER OF ENTRIES AT 40000.
i.
$ SET PAGE

TIP #1114238-016

51

52

%===%
% YEAR-INFO MAINTAINS INFORMATION FOR A STUDENT TO RELATE i.
% WHAT SEMESTERS THE STUDENT WAS ENROLLED IN CLASSES. i.
i. THERE ARE MULTIPLE RECORDS FOR EACH YI-MATRIC-NUM WITH %
% CALENDAR-YEAR UNIQUELY IDENTIFYING EACH RECORD WITHIN %
% A SERIES OF STUDENT RECORDS. %
i.======•================a============================~====i.

YEAR-INFO
(

%

YI-MATRIC-NUM
YI-CALENDAR-YEAR
YI-YEAR-OF-COURSE
YI-STUDENT-STATUS

) '

STANDARD DATA SET

NUMBER (7);
NUMBER (4);
NUMBER (1);
ALPHA (10);

AREAS 10,
AREALENGTH = 10 BLOCKS,
BLOCKSIZE = 17 RECORDS,
FAMILYNAME = DBPACK,
CHECKSUM = SET,
BUFFERS = 0 + 1 PER USER;

i. MAXIMUM NUMBER OF YEAR-INFO RECORDS ALLOWED IS 17000.
i.
CAL-YEAR-ENQ SET OF YEAR-INFO

KEY (YI-MATRIC-NUM, YI-CALENDAR-YEAR),
AREAS 34,
AREALENGTH = 4 BLOCKS,
BLOCKSIZE 125 ENTRIES,
LOADFACTOR 99, % SEQUENTIAL LOAD
FAMILYNAME = DBPACK,
CHECKSUM = SET,
BUFFERS = 1 + 1 PER USER;

TIP #1114238-016

i.======-=====·-===·======-·=====·=========================4

i. CLASS MAINTAINS THE BASIC INFORMATION REQUIRED TO i.
i. IDENTIFY A CLASS. CL-CODE-NUM IS THE PRIMARY KEY. i.
i.====~·=================================m==•=====•========i.

CLASS
(

i.

CL-CODE-NUM
CL-TITLE
CL-PARENT-DEPT

) .

STANDARD DATA SET

ALPHA (6);
ALPHA (30);
ALPHA (30);

AREAS 100,
AREALENGTH = 100 BLOCKS,
BLOCKSIZE = 5 RECORDS,
FAMILYNAME = DBPACK,
CHECKSUM =SET,
BUFFERS = 0 + 1 PER USER;

i. MAXIMUM NUMBER OF CLASS RECORDS ALLOWED IS 5000

CLASS-CODE-ENQ
KEY CL-CODE-NUM,

SET OF CLASS

AREAS 5,
AREALENGTH = 100 BLOCKS,
BLOCKSIZE = 100 ENTRIES,

53

LOADFACTOR s 99, %SEQUENTIAL LOAD
FAMILYNAME • DBPACK,
CHECKSUM = SET,
BUFFERS = 1 + 1 PER USER;

i.
CLASS-TITLE-ENQ SET OF CLASS

KEY CL-TITLE DUPLICATES,

7. SET PAGE

AREAS = 100,
AREALENGTH = 10 BLOCKS,
BLOCKSIZE = 50 ENTRIES,
LOADFACTOR = 51, i. RANDOM LOAD
FAMILYNAME = DBPACK,
CHECKSUM = SET,
BUFFERS = 1 + 1 PER USER;

TIP #1114238-016

54

%=========·====================·==========================%
% STUDNT-CLASS-XREF MAINTAINS THE RELATIONSHIP BETWEEN %
% A STUDENT AND WHICH CLASSES HE IS TAKING. CLASS-TAKEN %
% WILL PROVIDE IN SEQUENTIAL ORDER FOR A STUDENT WHICH %
% CLASSES HE IS TAKING IN THAT CALENDAR-YEAR. IT ALSO %
% PROVIDES THE GRADES THE STUDENT RECEIVED IN THAT CLASS. %
% TAKEN-BY PROVIDES CLASS ROSTERS WITHIN A CALENDAR-YEAR. %
%===•==============•z=========••s==•=•=•m=================4

STUDNT-CLASS-XREF

%

(
SCX-MATRIC-NUM
sex-CALENDAR-YEAR
SCX-CL-CODE-NUM
sex-EXAM-MARKS

(
SCX-MARK-1
SCX-MARK-2
SCX-MARK-3
SCX-MARK-4

) ;

) '

STANDARD DATA SET

NUMBER (7);
NUMBER (4);
ALPHA (6);
GROUP

NUMBER (3) ;
NUMBER (3) ;
NUMBER (3);
NUMBER (3);

AREAS = 100,
AREALENGTH = 100 BLOCKS,
BLOCKSIZE = 17 RECORDS,
FAMILYNAME = DBPACK,
CHECKSUM = SET,
BUFFERS = 0 + 1 PER USER;

% MAXIMUM NUMBER OF XREF RECORDS ALLOWED IS 170000.
%
CLASS-TAKEN SET OF STUDNT-CLASS-XREF

KEY (SCX-MATRIC-NUM,
sex-CALENDAR-YEAR,
SCX-CL-CODE-NUM),

%
TAKEN-BY

KEY (SCX-CL-CODE-NUM,
SCX-MATRIC-NUM.),

$ SET PAGE

AREAS
AREALENGTH =
BLOCKSIZE =

100,
17 BLOCKS,

100 ENTRIES ,
50, % RANDOM LOAD LOADFACTOR

FAMILYNAME
CHECKSUM
BUFFERS

= DBPACK,
= SET,
= 1 + 1 PER USER;

SET OF STUDNT-CLASS-XREF

AREAS
AREALENGTH =

BLOCKSIZE =
LOADFACTOR =

17'
100 BLOCKS,
100 ENTRIES,
51, % RANDOM LOAD
DBPACK, FAMILYNAME

CHECKSUM.
BUFFERS

= SET,
= 1 + 1 PER USER;

TIP #1114238-016

I. THE RESTART DATA SET. IT PROVIDES ROOM FOR TWO SETS OF I.
I. WORKING STORAGE TOTALS. WHEN MORE ARE NEEDED THEY MAY i.
I. BE REORGANIZED INTO THE DATASET. IT ALSO PROVIDES FOR Ai.
I. TEN DIGIT TRANSACTION COUNT FOR BATCH PROGRAMS. I.

RESTARTER
(
RS-RESTART-ID
RS-TRAN-COUNT
RS-TOTALS-1
RS-TOTALS-2

) '

RESTART DATA SET

ALPHA(lO);
NUMBER (10);
ALPHA(50); I.NEED MORE THAN
ALPHA (50) ; I. II " "

AREAS = 10,
AREALENGTH = 2 BLOCKS,
BLOCKSIZE = 10 RECORDS,

18 DIGITS
II II

I. AVG/MAX NUMBER OF USERS
FAMILYNAHE = DBPACK,
CHECKSUM = SET,
BUFFERS = 1 + 0 PER USER;

I. EVERY PROGRAM IN MEMORY

I. MAXIMUM NUMBER OF RESTART RECORDS ALLOWED IS 200
I.
RESTARTSET

KEY IS RS-RESTART-ID,
SET OF RESTARTER

AREAS • 3,
AREALENGTH = 1 BLOCKS,
BLOCKSIZE • 50 ENTRIES,
LOADFACTOR = 51,
FAMILYNAHE = DBPACK,
CHECKSUM = SET,
BUFFERS = 1 + 0 PER USER;

TIP #1114238-016

55

57

APPENDIX B - RESTART EXAMPLE

000600 IDENTIFICATION DIVISION.
000700 PROGRAM-ID. RESTARTABLE PROGRAM EXAMPLE.
0 0 0800 >'< ,., ,., ,., ,.,,.,;, >'t >'< *'" ,., >'< ,., * * ,., * * * *"' >'< * >'< >'< ,., ,., >'< * * * ,., * ,., >'< * >'< * >'< >'< * * * >'< ,., **"'* >'t >'< * >'< 1'* ,., ,.,, .. >'< * *
000900* This program is an example of a restartable DMSII batch *
001000* program. It uses a working storage area to redefine the *
001100* restart record. It PERFORMS most routines which allows *
001200* it to restart rather easily no matter when the ABORT *
001300* exception occurred. *
001400**
001500 ENVIRONMENT DIVISION.
001600 INPUT-OUTPUT SECTION.
001700 FILE-CONTROL.
001800 SELECT TRAN-IN ASSIGN TO DISKPACK.
001900 DATA DIVISION.
002000 FILE SECTION.
002100 FD TRAN-IN
002200 RECORD CONTAINS 90 CHARACTERS
002300 BLOCK CONTAINS 20 RECORDS.
002400 01 TRAN-IN-RECORD.
002500 03 TI-KEY
002600 03 TI-ALPHA
002700 03 TI-MISC
002800 03 FILLER
002900 DATA-BASE SECTION.
003000 DB LOGICALDB OF MSTIPDB ALL.

PIC 9(6).
PIC X (10).
PIC X(50).
PIC X(24).

003100'°'01 RESTARTER (SET RESTART-SET KEY RS-KEY).
003200* 02 RS-ID PIC X(6).
003300'°' 02 RS-TRAN-CNT PIC 9 (8) COMP.
003400"' 02 RS-WRK-STORAGE PIC X(lOO).
003500*01 OTHER-OS (SET OTHERSET KEY OD-KEY).
003600>'< 02 OD-KEY PIC 9 (6) COMP.
003700* 02 OD-ALPHA PIC X(lO).
003800* 02 OD-MISC PIC X(50).
003900 WORKING-STORAGE SECTION.
004000 77 WS-RESTART-ID
004100 77 WS-EOF-IN-FILE
004200 88 EOF-IN-FILE
004300 77 WS-TIME-TO-STOP

PIC X(6) VALUE "RESTA}l".

004400 88 TIME-TO-STOP
004500 77 WS-MISC-COUNTER
004600 77 WS-RECORDS-READ
004700 01 OMS-EXCEPTION-INFO.
004800 03 OMX-MNEMONIC
004900 03 OMX-CATEGORY
005000 03 DMX-ERRORTYPE
005100 03 OMX-STRUCTURE
005200'°'

PIC 9 COMP VALUE 0.
VALUE 1.
PIC 9
VALUE 1.

COMP

PIC 9(8) COMP.

VALUE 0.

PIC Z(7)9 DISPLAY.

PIC X(15).
PIC Z9 DISPLAY.
PIC Z9 DISPLAY.
PIC ZZZZZ9 DISPLAY.

005300'°' ----< Miscellaneous Working Storage Areas >----

TIP #1114238-016

58

005600 PROCEDURE DIVISION.
005700 DECLARATIVES.
005800 OMS-ERROR-SECTION SECTION 99.
005900 USE ON DMERROR.
006000 OMS-EXCEPTION.
006100
006200
006300
006400
006500
006600
006700
006800
006900
007000
007100
007200
007300
007400
007500
007600
007700
007800
007900
008000
008100
008200
008300
008400
008500
008600
008700
008800
008900
009000
009100
009200
009300
009400
009500
009600
009700
009800

IF NOT DMSTATUS(DMERROR)
DISPLAY "WHAT ARE WE DOING IN OMS-EXCEPTION"

ELSE
MOVE DMSTATUS(DMCATEGORY)
MOVE DMSTATUS(DMERRORTYPE)
MOVE DMSTATUS(DMSTRUCTURE)
IF DMSTATUS(NOTFOUND)

TO OMX-CATEGORY
TO DMX-ERRORTYPE
TO OMX-STRUCTURE

MOVE "NOT FOUND" TO OMX-MNEMONIC
ELSE IF DMSTATUS(AUDITERROR)

MOVE "AUDIT ERROR" TO OMX-MNEMONIC
ELSE IF DMSTATUS(ABORT)

MOVE "ABORT" TO OMX-MNEMONIC
ELSE IF DMSTATUS(DATAERROR)

MOVE "DATA ERROR" TO OMX-MNEMONIC
ELSE IF DMSTATUS(DEADLOCK)

MOVE "DEAD LOCK" TO OMX-MNEMONIC
ELSE IF DMSTATUS(DUPLICATES)

MOVE "DUPLICATES" TO OMX-MNEMONIC
ELSE IF DMSTATUS(INUSE)

MOVE "IN USE" TO OMX-MNEMONIC
ELSE IF DMSTATUS(IOERROR)

MOVE "I/O ERROR" TO OMX-MNEMONIC
ELSE IF DMSTATUS(LIMITERROR)

MOVE "LIMIT ERROR" TO OMX-MNEMONIC
ELSE IF DMSTATUS(NORECORD)

MOVE "NO RECORD" TO OMX-MNEMONIC
ELSE IF DMSTATUS(NOTLOCKED)

MOVE "NOT LOCKED" TO OMX-MNEMONIC
ELSE IF DMSTATUS(OPENERROR)

MOVE "OPEN ERROR" TO OMX-MNEMONIC
ELSE IF DMSTATUS(READONLY)

MOVE "READ ONLY" TO OMX-MNEMONIC
ELSE IF DMSTATUS(SYSTEMERROR)

MOVE "SYSTEM ERROR" TO OMX-MNEMONIC
ELSE IF DMSTATUS(VERSIONERROR)

MOVE "VERSION ERROR" TO OMX-MNEMONIC
ELSE DISPLAY "UNKNOWN DMS EXCEPTION - DUMP DBP".

END DECLARATIVES.

TIP #1114238-016

010100 MAIN-PROGRAM-SECTION SECTION.
010200 HOUSEKEEPING.
010300
010400
010500
010600
010700
010800
010900
011000*
011100*
011200*
011300*
011400*
011500*
011600*
011700
011800
011900
012000
012100
012200
012300
012400
012500
012600
012700
012800*
012900*
013000''r
013100*

OPEN UPDATE LOGICALDB.
IF DMSTATUS(DMERROR)

DISPLAY "DMSTATUS -
DISPLAY "CATEGORY -
DISPLAY "SUB CATEGORY -
DISPLAY "STRUCTURE II -
STOP RUN.

", OMX-MNEMONIC
", OMX-CATEGORY
", OMX-ERRORTYPE
", OMX-STRUCTURE

----< check to see if the program needs restarting
----< by locking the restart record. if NOTFOUND,
----< a restart is not required. in this example,
----< all other exceptions are FATAL. if a restart
----< record is found, PERFORM a restart.

MODIFY RESTART-SET AT RS-ID = WS-RESTART-ID.
IF DMSTATUS(DMERROR)

IF DMSTATUS(NOTFOUND)
PERFORM 8000-NO-RESTART

ELSE
PERFORM OMX-FATAL

ELSE
PERFORM 8000-RESTART.

PERFORM MAIN-LINE THRU MAIN-LINE-EXIT
UNTIL TIME-TO-STOP.

STOP RUN.
----< notice the database is not closed here. it
----< done in EOJ-PROCESSING, which is PERFORMed
----< MAIN-LINE. when the database is properly
----< closed, TIME-TO-STOP is set.

TIP //1114238-016

is
by

59

>----
>----
>----
>----
>----

>----
>----
>----
>----

60

013400 MAIN-LINE.
013500 PERFORM READ-TRAN-IN.
013600 IF EOF-IN-FILE
013700 PERFORM EOJ-PROCESSING THRU EOJ-PROCESSING-EXIT
013800 GO TO MAIN-LINE-EXIT.
013900 LOCK-ALL-RECORDS.
014000 MODIFY OTHERSET AT OD-KEY = TI-KEY.
014100* ----< lock ALL records outside transaction state. >----
014200* ----< if any records need CREATEing also do it here.>----
014300* ----< in this example: check for DEADLOCK and >----
014400* ----< NOTFOUND conditions treating all other errors >----
014500* ----< as FATAL exceptions. >----
014600 IF DMSTATUS(DMERROR)
014700 IF DMSTATUS(DEADLOCK)
014800 GO TO LOCK-ALL-RECORDS
014900 ELSE
015000 IF DMSTATUS(NOTFOUND)
015100 CREATE OTHER-OS
015200 ELSE
015300 PERFORM OMX-FATAL.
015400*
015500* ----< move input transaction to data sets >----
015600*
015700 ADD 1 TO RS-TRAN-CNT.
015800 BEGIN-TRANSACTION NO-AUDIT RESTARTER.
015900* ----< check for ABORT exception. in this example, >----
016000* ----< all other· BTR errors will be FATAL. >----
016100 IF DMSTATUS(DMERROR)
016200 IF DMSTATUS(ABORT)
016300 PERFORM 8000-ABORT
016400 GO TO MAIN-LINE-EXIT
016500 ELSE
016600 PERFORM OMX-FATAL.
016700 STORE OTHER-OS.
016800* ----< perform all database updates (STOREs DELETEs>----
016900* ----< for this example, all STORE errors are FATAL. >----
017000 IF DMSTATUS(DMERROR)
017100 PERFORM OMX-FATAL.
017200 END-TRANSACTION AUDIT RESTARTER.
017300* ----< for this example, ETR errors except ABORT are >----
017350* ----< FATAL. >----
017400 IF DMSTATUS(DMERROR)
017410 IF DMSTATUS(ABORT)
017420 PERFORM 8000-ABORT
017430 GO TO MAIN-LINE-EXIT
017440 ELSE
017500 PERFORM OMX-FATAL.
017600 MAIN-LINE-EXIT.
017700 EXIT.

TIP {/1114238-016

61

018000 EOJ-PROCESSING.
018100,.C
018200,.<
018300*
0184001'

018500'~
018600*
018700*
018800*
018900*
019000*
019100
019200*
019300*
019400
019500
019600
019700
019800
019900
020000
020100*
020200
020300
020400
020500*
020600'~

020700
020800
020900
021000
021100
021200

----<
----<
----<
----<
----<

this procedure is PERFORMed to allow an easy >---­
return in the mainline procedure. the mainline>---­
is exited when WS-TIME-TO-STOP • 1. this flag>---­
will be set after the database is closed. if >---­
an ABORT is encountered during the DELETE of >----

----< the restart record, it is not set and we >----
----< return to mainline and continue processing >----
----< at the point we repositioned to. >----

BEGIN-TRANSACTION NO-AUDIT RESTARTER.
----< check for ABORT exception. in this example,
----< all other BTR errors will be FATAL.
IF DMSTATUS(DMERROR)

IF DMSTATUS(ABORT)
PERFORM 8000-ABORT
GO TO EOJ-PROCESSING-EXIT

ELSE
PERFORM OMX-FATAL.

DELETE RESTARTER.

>---­
>----

----< for this example, all DELETE errors are FATAL >---­
IF DMSTATUS(DMERROR)

PERFORM OMX-FATAL.
END-TRANSACTION NO-AUDIT RESTARTER SYNC.
----< check for ABORT exception. in this example,
----< all other ETR errors will be FATAL.
IF DMSTATBS(DMERROR)

IF DMSTATUS(ABORT)
PERFORM 8000-ABORT
GO TO EOJ-PROCESSING-EXIT

ELSE
PERFORM OMX-FATAL.

>---­
>----

021300 DB-CLOSE.
021400 CLOSE LOGICALDB.
021500*
021600*
021700*
021800*
021900*
022000*
022100
022200
022300
022400
022500

----<
----<
----<
----<

check for ABORT exception and reattempt the
close. there can be no restart because we've
already deleted the restart record. for this
example, all other CLOSE errors are FATAL.

IF DMSTATUS(DMERROR)
IF DMSTATUS(ABORT)

GO TO DB-CLOSE
ELSE

PERFORM OMX-FATAL
022600 ELSE
022700 MOVE 1 TO WS-TIME-TO-STOP.
022800 CLOSE TRAN-IN RELEASE.
022900 EOJ-PROCESSING-EXIT.
023000 EXIT.

TIP #1114238-016

>---­
>---­
>---­
>----

62

023300 8000-NO-RESTART.
CREATE RESTARTER.
MOVE WS-RESTART-ID TO RS-ID.
MOVE 0 TO RS-TRAN-CNT.
MOVE SPACES TO RS-WRK-STORAGE.
BEGIN-TRANSACTION NO-AUDIT RESTARTER.

023400
023500
023600
023700
023800
023900*
024000*
024100*
024200
024300
024400
024500
024600
024700
024800*
024850*
024900
024910
024920
024930
024940
025000
025100
025200*
025300*
025400*

----< check for ABORT exception and reattempt the >----
----< CREATE. for this example all other errors are>----
----< treated as FATAL. >----
IF DMSTATUS(DMERROR)

IF DMSTATUS(ABORT)
GO TO 8000-NO-RESTART

ELSE
PERFORM DMX-FATAL.

END-TRANSACTION AUDIT RESTARTER.
----< for this example all ETR errors except ABORT >----
----< are FATAL. >----
IF DMSTATUS(DMERROR)

IF DMSTATUS(ABORT)
PERFORM 8000-ABORT
GO TO MAIN-LINE-EXIT

ELSE
PERFORM OMX-FATAL.

OPEN INPUT TRAN-IN.

----< finish setting up working storage

025600 8000-RESTART.
025700 DISPLAY "PROGRAM RESTARTING AT BOJ".
025800 OPEN INPUT TRAN-IN.
025900 PERFORM 8000-REPOSITION.

>----

026000*===·=·=·========••=======-=·=======·-===--====·=---=·=-==--==
026100 8000-ABORT.
026200 MOVE RS-TRAN-CNT TO WS-RECORDS-READ.
026300 DISPLAY "DATABASE ABORT ON TRANSACTION II II ,WS-RECORDS-READ.
026400 CLOSE TRAN-IN.
026500 OPEN INPUT TRAN-IN.
026600 MODIFY RESTART-SET AT RS-ID = WS-RESTART-ID.
026700 IF DMSTATUS(DMERROR)
026800 DISPLAY "DMX on MODIFY in ABORT RECOVERY processing"
026900 PERFORM OMX-FATAL.
027000 PERFORM 8000-REPOSITION.
027100*====-================================•=========·=·=-======~=-

027200 8000-REPOSITION.
027300 MOVE RS-TRAN-CNT TO WS-RECORDS-READ.
027400 DISPLAY "RESTARTING AFTER TRAN II II' WS-RECORDS-READ.
027500 PERFORM READ-TRAN-IN
027600 VARYING WS-MISC-COUNTER FROM 0 BY 1
027700 UNTIL WS-MISC-COUNTER = RS-TRAN-CNT OR EOF'"'"IN-FILE.
027800 IF EOF-IN-FILE
027900 DISPLAY "Unexpected EOF on TR!-N-IN during REPOSITION"
028000 PERFORM PROGRAM-FATAL.
028100 DISPLAY "REPOSITION COMPLETE".
028200*
028300* ----< reconstruct working storage >----

TIP #1114238-016

028600 READ-TRAN-IN.
028700 READ TRAN-IN AT END MOVE 1 TO WS-EOF-IN-FILE.
028800 OMX-COMEBACK.
028900 EXIT.
029000 OMX-FATAL.
029100 DISPLAY
029200 DISPLAY
029300 DISPLAY
029400 DISPLAY
029500 PERFORM

"DMSTATUS -
"CATEGORY -
"SUB CATEGORY -
"STRUCTURE II -
PROGRAM-FATAL.

", OMX-MNEMONIC.
", OMX-CATEGORY.
", DMX-ERRORTYPE.
", OMX-STRUCTURE.

029600* ----< the finite loop to blow the stack
029700 PROGRAM-FATAL.
029800 PERFORM PROGRAM-FATAL.
029900 END-OF-JOB.

TIP #1114238-016

63

>----

