
An Introduction
To Burroughs
B 6800 Systems

Burroughs believes that the information described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However, no responsibility, financial
or otherwise, is accepted for any consequences arising out of
the use of this material. The information contained herein is
subject to change. Revisions may be issued to advise of such
changes and/or additions.

Copyright © 1978 Burroughs Corporation, Detroit, Michigan 48232

CONTENTS

SYSTEM ARCHITECTURE

History of Electronic Computer Systems... 1
Characteristics of B 7000/B 6000 Architecture 2
Benefits of B 7000/B 6000 Architecture... 4
The Importance of Architecture.. 5

B 6800 HARDWARE.. 7

B 6800 System Organization... 7
Central Processor Concepts .. 8
Input/Output Processor Concepts (I OP) 9
Peripheral Configurations .. 10
Main Memory Characteristics... 10
Global™Memory Concepts.. 11
Global™Memory Characteristics... 12

SYSTEM SOFTWARE... 13

Basic Concepts.. 13
Operating System Concepts.. 13

SYSTEM OPERATION... 15

Operator Communications.. 15
MultiprogrammingNirtual Memory.. 16
Swapping Technique.. 17
Batching Technique .. 18
System Log 18
Job and Task Control... 18
Work Flow Language... 20
File Storage Control 23
Library Maintenance... 24
Access Control.. 25
System Initialization 26
Recovery Aspects... 26

DATA MANAGEMENT.. 29

Overview.. 29
MCP Logical 1/0 Facilities... 29
Evolution of Data Base Approach 30
Data Base Software (OMS II)... 31
MCP Disk Allocation... 32

DATA COMMUNICATIONS .. 35

Survey of Data Communications Uses.. 35
Data Communications Hardware.. 35
B 6800 Data Communications Hardware... 35
Data Communications Software Overview.. 37
Network Definition Language (NDL)... 38
Message Control Systems (MCS) ... 39
Highlights of Burroughs Generalized Message Control System .. 39
Application Program Considerations.. 43

SYSTEM ARCHITECTURE

History of Electronic Computer Systems

The first electronic computer, the ENIAC (Elec­
tronic Numerical Integrator And Calculator),
was built in 1944 at the University of Pennsyl­
vania by John Mauchly and J. Presper Eckert. It
consisted of a "processor" which accepted a
sequence of instructions (the program) and
data (operands) from external devices and pro­
duced the results of calculations (output) which
were recorded on an external device.

---- INSTRUCTIONS

!+----DATA

PROCESSOR

_,..OUTPUT

This machine was capable of "reading" and
executing one instruction at a time.

In 1946, John von Neumann, professor of
mathematics at the Princeton Institute for Ad­
vanced Study, conceived the stored program
computer. In a paper titled "Preliminary Dis­
cussion of the Logical Design of an Electronic
Computing Instrument" he set forth a number
of principles which have influenced the design
of every computer built since that time. The
central concepts which have endured are:

a. Instructions and data are stored together
in a homogeneous storage medium, and
are indistinguishable;

b. Instruction modification during execu­
tion;

c. The program instruction counter, a regis­
ter which contains the address of the
memory location of the next instruction
to be executed. The counter is automati­
cally incremented with each instruction
fetch.

:
I

STORAGE

PROCESSOR I (INSTRUCTIONS

I AND DATA)

l

,--- INSTRUCTIONS

!'+-------i___ DATA

>-----... OUTPUT

The first computer to employ von Neumann's
ideas was completed at Princeton in 1952.

1

Nearly all commercially produced computers
since that time have been designed according
to these principles and are said to possess "von
Neumann architecture." Index registers and
base registers have been added to the proces­
sor to facilitate indirect addressing and pro­
gram looping and branching.

Von Neumann machines are characteristically
well-suited for executing one program at a
time. Developments in the early 1960s enabled
them to concurrently operate on a number of
programs or tasks. This is called multiprog­
ramming. Although the processor still executes
only one instruction at a time, several tasks can
be stored in its memory at the same time.

In 1961 Burroughs introduced the B 5000, a
revolutionary computer system which has
permanently altered industry ideas of how a
general purpose computer system should be
structured. The B 5000 was the first computer
system designed to automate both coding and
operation.

Coding - all programming, including sys­
tem software, was done in
higher-level languages; no as­
semblers were used.

Operation-system operation was managed
by a comprehensive software
system called the Master Con­
trol Program (MCP).

These accomplishments were made possible
by introducing a number of new concepts
which were radically different from what had
become conventional architecture. Although
the B 5000 retained the von Neumann concept
of a stored program computer, certain internal
structures and indirect addressing
mechanisms were utilized to make code distin­
guishable from data and to eliminate the pro­
gram instruction counter and the requirement
for modifying code during execution. The re­
sult was the first multiprogramming, multipro­
cessing computer system.

This same architecture has been carried for­
ward by Burroughs Corporation through two
successive generations of products including
the B 6700, B 7700, B 6800 and B 7800 systems.
What might be termed technological inertia has

apparently prevented other manufacturers
from converting from the conventional van
Neumann architecture. However, many of the
features introduced by the B 5000, such as
operating system software, multiprogramming
and virtual memory have subsequently been
adopted by all other systems. There is one
basic difference, however, between Burroughs
B 7000/B 6000 series and conventional sys­
tems. Conventional systems have to adopt
capabilities which are inconsistent with their
basic architecture. The B 7000/B 6000 series ar­
chitecture was designed to provide them.

Characteristics of B 7000/B 6000 Architecture

The architecture of these systems is the result
of a composite of structures which are mutually
reinforcing. Collectively they yield a number of
distinguishing features.

Compiler-oriented hardware - Internal
machine operators designed by programmers
provide the functions specifically needed for
efficient execution of programs written in
higher-level languages. The use of a machine
language assembler is excluded.

Comprehensive operating system software -
The Master Control Program (MCP) provides
management of all systems resources and job
tasks automatically.

Automatic program segmentation - Higher­
level language compilers automatically divide
the program object code into variable length
segments (as opposed to the fixed-size pages
of other systems) based on the logical structure
of the program. This assures that the memory
requirement for executing the program will be
minimized to only that amount necessary to
contain the program segment(s) needed at any
time during the course of the program execu­
tion history. Data arrays are treated similarly.

Descriptors - Individual words of information
are used for locating program and data seg­
ments either in main memory or secondary
memory (on disk). A descriptor is a pointer with
three principle components: an address, a
word count, and a presence-bit.

The address portion of the descriptor is the
absolute address of the location of the first
word of the segment. If the presence-bit is
"on," the segment is present and the address
refers to the main memory location of its be-

2

ginning word. If the presence-bit is "off," the
segment is non-present and the address points
to the beginning location on disk.

Presence-Bit Mechanism- The presence-bit in
a descriptor indicates whether the segment
pointed to is present in main memory or must
be fetched from disk. If the presence-bit is "on"
when the descriptor is referenced, the
hardware interprets the address portion of the
descriptor to be the absolute address of the
main memory location of the first word of the
segment, and accesses that location directly. If
the presence-bit is "off," a present-bit interrupt
occurs which causes the system to automati­
cally fetch the segment from its location on disk
pointed to by the address portion of the de­
scriptor and place it in available space in mem­
ory. When this occurs, the system also updates
the descriptor contents, both to indicate the
segment is now present and to define its loca­
tion. This allows code and data to be located
anywhere in memory at any time to facilitate
efficient memory management.

The word count portion of the descriptor pro­
vides the length of the descriptor in terms of
memory words. This permits the segment
length to vary with the logical structure of the
program. This is in contrast with the rigid con­
straints imposed by fixed-size pages. Also, the
program instruction counter of the conven­
tional systems is, in part, replaced by an index­
ing mechanism which compares its present
value with the word count in the descriptor. A
hardware interrupt occurs when they become
equal causing the next segment to be refer­
enced.

Stack Mechanism* - The best known feature
of B 7000/B 6000 architecture is the "stack." It
has become its single, most distinctive charac­
teristic when contrasted with the architecture
of conventional systems. The stack is a set of
sequential locations in memory that is tem­
porarily assigned to a task or process for the
duration of its execution. These locations serve
as temporary storage for local variables, de­
scriptors, and information pertaining to the

*The profound nature of the stack and all its
implications to system operation are too ex­
tensive to cover here. A rigorous treatment of
the subject is available in "Computer System
Organization" by Elliott I. Organick, Academic
Press, 1973, New York and London, Library of
Congress Catalog Card Number 72-8834.

task execution. They also serve as an extension
to two top-of-stack registers in the processor.
The stack mechanism is activated by the use of
an address-length register in the processor
called the stack counter. This register contains
the absolute address of the last referenced lo­
cation in the stack. The address is automatically
incremented by one each time an entry is made
into the stack, and decremented each time in­
formation is removed. The operation of the
stack is therefore last-in first-out. All entries to
and exits from the stack are made through the
top-of-stack registers.

IA

I TOP-OF-STACK
REGISTERS INSTRUCTIONS

I B
AND
DATA

STACK COUNTER
STACK

Through the use of Polish notation, which de­
fines specific rules for the sequence in which
operators and operands occur, the last-in,
first-out stack mechanism significantly reduces
the number of memory accesses necessary to
execute a task.

Interrupts -The system control function is in­
voked through an extensive hierarchy of
hardware and software interrupts. This permits
asynchronous operation of the various
hardware modules. The hardware modules
are, in turn, managed by the Master Control
Program as a set of resources to be applied
against an array of executable tasks upon de­
mand. One of the most important functions of
the stack is to store and restore processor state
information in a fast and well-ordered manner.
This permits the processor to be interrupted
whenever it is beneficial to do so, without in­
curring excessive overhead. For this reason,
B 7000/B 6000 architecture is uniquely well­
suited for user requirements that are charac­
teristically interrupt driven; on-line, high­
volume transaction processing; simple multip­
rogramming batch; and time sharing environ­
ments.

Polish Notation - This method of notation was
created to simplify the rules for algebraic
evaluation. When applied to algebraic state­
ments, grouping symbols and rules of operator
precedence are not required. This allows a
statement to be expressed in terms of
operators and operands only, with the se-

3

quence of their appearance determining the
order of execution. Thus the expression

(X + Y) x (U + V/W) + Z

becomes

XV + VW/U + x Z +

which, when interpreted from left to right, per­
forms each operator in succession on the im­
mediately preceding pair of operands (or re­
sults from prior operation). Using this notation
in conjunction with the stack mechanism elimi­
nates the need for the use of the fetch and store
commands normally required for temporary
storage of intermediate results in the evalua­
tion of expressions.

Word Tags - Each word of information stored
in memory is appended with a "tag" consisting
of three binary digits. The tag uniquely iden­
tifies the word contents to the hardware. Words
may contain program code, date, or descrip­
tors. In this departure from conventional ar­
chitecture, instructions are distinguishable
from data. This permits the treatment of
selected information as being "read-only."
Program code, for example, is therefore un­
modifiable while data, stored in the same
memory medium must be modifiable. Notice
that memory protection is provided automati­
cally as a consequence of this construct. The
major benefit of unmodifiable code is that mul­
tiple user tasks can execute concurrently while
sharing a single copy of the code file in mem­
ory. This is called re-entrancy.

Zero-Address Instructions-Conventional sys­
tems operate on instructions which consist of
an operator and one, two, or three addresses
which specify the location of operands.
B 7000/B 6000 machine instructions contain no • addresses. In most cases, operands become
available in the top-of-stack registers automati­
cally by virtue of the way in which strings are
evaluated. In those cases where a value or an
address must be fetched into the stack, an ad­
dress couple is used. An address couple con­
sists of a number which specifies th~ lexicog­
raphic level (for example a nest level in a pro­
cedure or subroutine reference) within the
stack, and an index value.

These jointly determine the absolute address of
the location in question. The combined storage
requirement for both instruction and address

couple is less than that needed to store the
actual address. This and the absence of addres­
ses appended to operators results in significant
program code compaction. Therefore, much
less memory is used for storing code and fewer
memory accesses are made to store and fetch
code during execution. This results in more ef­
ficient operation.

Benefits of B 7000/B 6000 Architecture

The economic trade-off between embedding
certain well-defined control functions in
hardware constructs versus giving the respon­
sibility for system control to software should be
apparent. The cost of the former is the one-time
expense of implementing it; the cost of the
latter is the expense of system overhead every
time the control function is executed. The cost
in this case continues to accrue for as long as
the system is in use. The B 7000/B 6000 con­
cepts stress the former. Other benefits which
relate more directly to system operation and
the original purpose of the computer system,
problem solving, are many. Among these, cer­
tain notable ones which were introduced by the
Burroughs B 5000, and carried forth to the
B 7000/B 6000 series are mentioned as follows:

Virtual Memory - The combined effect of au­
tomatic program segmentation, variable­
length segments, descriptors, and the
presence-bit mechanism. A program (data in­
cluded) far exceeding the size of physical
memory on the system may be written, com­
piled and executed with no further attention
given to it than to the smallest program. The
programmer is in no way constrained by mem­
ory size, but instead, views the memory to be
virtually unlimited.

Re-Entrancy Program code on a
B 7000/B 6000 machine is not modified during
execution. The system preserves the content of
a code file in memory so that instructions may
be fetched by multiple user tasks without con­
flict.

The stack mechanism and the use of descrip­
tors for referencing the code in memory pro­
vide the means by which the code file can be
shared among tasks. This reduces the memory
requirement when multiple users execute a
particular program or language compiler con­
currently.

Configuration-Independent Software - The
Master Control Program is a code file which is

4

executed along with other programs in the mix.
The MCP maintains data files which reflect the
presence and status of all the system re­
sources, e.g., processors, memory, periph­
erals, 1/0 paths. It also maintains files to
monitor all tasks active and waiting. The MCP
code file is, therefore, independent of the
hardware configuration. Differences in config­
uration are, therefore, represented by data
elements in the MCP's tables. By the same prin­
ci pie, all user programs are hardware­
independent. Hence, a configuration can have
resources added or removed without any effect
to software. No re-compilation is ever required.

Automatic Resource Allocation - The MCP
uses its resource tables to manage the use of
system resources. By matching the demands of
the job stream with resource availability, the
MCP controls the operation of the system to
assure maximum utilization of system re­
sources, thereby maxim 1zing system
throughput and responsiveness.

Process Switching - The use of the stack
mechanism to store processor state informa­
tion when an interrupt occurs provides the
means by which productive use of the proces­
sor is maximized. There are many reasons for
interrupting the processor which relate to sys­
tem productivity. One example is a task or pro­
cess interrupting itself because it requires a
data file from disk before continuing. Instead of
having the processor wait for the completion of
the necessary 1/0, its current state is stored in
the stack and the processor is switched to
another process which is waiting for execution.
Later, when that 1/0 is completed, the processor
can return to the interrupted process, restore
itself to its state at the time of the interrupt, and
resume execution at that point. By making the
process switching mechanism extremely fast,
the MCP can assure maximum utilization of the
processor and, therefore, maximize
throughput. Conventional systems must exe­
cute a complicated and time consuming proce­
dure to switch processes, and hence lose pro­
ductive time in overhead or in a wait state.

Asynchronous Processes- Through the use of
multiple levels of stacks and a mechanism
which permits one process to start additional
process stacks, the system is able to have asyn­
chronous processes operating concurrently. In
this way, when a large volume of similar ac­
tivities are to be handled, as in the case of

transaction processing applications, a multi­
plicity of processes can be initiated to handle
them. For example, when each transaction re­
quires 1/0 activity, the presence of a number of
asynchronous processes guarantees that the
processor will always find at least one process
available for execution. It will, therefore, have
to spend no time in a wait state. The fast pro­
cess switching mechanism, in this case,
maximizes processor productivity. In addition,
re-entrant programming allows all the asyn­
chronous processes to be executing out of a
common code file, minimizing the requirement
for memory space.

The Importance of Architecture

Many economies have been realized in the im­
plementation of B 7000/B 6000 architecture.
These translate into greater dollar savings and

5

increased productivity and responsiveness for
the user. These systems offer a range of fea­
tures and capabilities which provide the user
with the opportunity to formulate fresh solu­
tions to problems; solutions which relate more
directly to the problems themselves ratherthan
to the requirements of the computer system.
The B 6800 and B 7800 systems were designed
with the guiding philosophy that computers
should be tools for their users.

It is crucial to note that during the entire history
of computers, hardware costs have gone down
and will continue to do so. During the same
time, application software development and
maintenance costs have been rising, and will
continue to do so. In the future, the most sig­
nificant concern of users of conventional sys­
tems as compared to users of Burroughs sys­
tems will be the cost of getting the job done.

B 6800 HARDWARE

B 6800 System Organization

The basic structure of the B 6800 system con­
sists of a Central Processing Unit (CPU) and
Memory.

MEMORY CPU

The CPU is comprised of the Central Processor
(CP), the Input/Output Processor (IOP) and a
Memory Control (MC).

CPU

--------.--8 ~,\ CP

IOP

MEMORY

PERIPHERALS

The CP executes program instructions. The IOP
transfers data between peripherals and mem­
ory. The Memory Control manages the transfer
of information between memory and the CPU.

The Memory Control also provides an interface
to memory for external devices such as the
Data Communications Processor (DCP) and/or
the Reader Sorter Processor (RSP).

CPU

~ fil f--- -, CP

MEMORY

H /+;

1

IOP

'----'
MC

'---- DCP

7

Up to four DCPs or other external devices can
be connected to the Memory Control.

The Memory Control provides up to five access
paths to memory which are shared by two re­
questor paths, A and B.

-..., CP

\

IOP

Four of the access paths can be connected to a
maximum of eight memory modules; each
module contains 393K bytes.

MC

These memory modules can be added to a sys­
tem as needed to provide a maximum total of
three million bytes of memory. This is called
Main Memory.

In addition to Main Memory, a second hierar­
chy of memory has been introduced on the
B 6800. It is called Global™ Memory. Global™
Memory can be connected to the fifth access
path of the Memory Control.

MAIN
MEMORY

(3MBI

GLOBAL
MEMORY

MC

Global™ Memory forms the basis for a new
concept in multiprocessor systems. By utilizing
Global™ Memory, up to four B 6800 systems
can share a common memory subsystem.

Global™ Memory consists of one to four
786K-byte modules for a maximum total of
three million bytes.

A single-processor system can have up to three
million bytes of main memory and three million
bytes of Global™ Memory; a dual-processor
system can have up to six million bytes of main
memory and three million bytes of Global™
Memory. The maximum combined total mem­
ory for a 4 x B 6800 multiprocessor system is
fifteen million bytes.

8

Processors
1
2
3
4

Maximum
Main

Memorv
3MB
6MB
9MB

12MB

Maximum
Global™

Memorv
3MB
3MB
3MB
3MB

Central Processor Concepts

Total
Memorv

6MB
9MB

12MB
15MB

Architecture-The B 6800 Central Processor is
a stack machine. Its instructions are expressed
in 8-bit syllables and range from 1 to 12 sylla­
bles in length. The CP fetches, stores, and oper­
ates on 52-bit words, consisting of 48 data bits,
3 tag bits for control purposes and 1 parity bit.

BIT NO. 51 50-48 47- -0

1 p I TAG I DATA PORTION

The data portion is used to store program in­
structions, operands, descriptors and a variety
of control words.

Program instructions are placed into an instruc­
tion register for execution. Look-ahead logic
fetches the next required word of code from
memory and places it into a look-ahead regis­
ter; overlapping instruction fetches with in­
struction executions. Shifting of the contents of
the look-ahead register to the instruction regis­
ter is done automatically.

LOOK·AHEAD REGISTER

PROGRAM
INSTRUCTIONS

MEMORY

INSTRUCTION REGISTER

All operations in the CP are performed on the
contents of two top-of-stack registers, A and B.
These registers are capable of handling both
single-precision and double-precision
operands. Operand fetches from memory are
placed into the A register.· While this is done,
the contents of the A register are shifted
automatically into the B register. Similarly, if
the B register contains information, its contents
are automatically stored into the next word of
memory on the top ofthe "stack." This is called
a stack "pushdown."

STACK
COUNTER

A

STACK

DATA

MEMORY

The memory address size is 20 bits, allowing
the CP (and IOP) to access an address space of
more than six million bytes. A special 20-bit
register in the CP called the stack counter regis­
ter (S register) contains the address of the top
word of the stack. When a stack pushdown
occurs, the address in the S register is in­
cremented by one, and the contents of the B
register are stored in the memory location iden­
tified by that address. In this way, the stack
grows through sequential locations.

If an operator requiring two operands is to be
executed next, and only one top-of-stack regis­
ter is occupied, the top-of-stack word ad­
dressed by the S register is fetched into the B
register and the S register contents are de­
cremented by one. Execution of the operator
then occurs. This process is called a stack
"pop-up." It takes place automatically and is
the reverse of a stack pushdown. The
pushdown and pop-up are stored and fetched
without using store and fetch commands. The
stack grows and contracts during the course of
the job execution. The utilization of memory as
an extension of the top-of-stack registers gives
the processor an elastic boundary which al­
ways fits the requirements of the currently
executing task.

Input/Output Processor Concepts (IOP)

The IOP handles all transfers of information
between peripherals and memory. The
peripherals include card readers, line printers,
magnetic tape units, disk-pack units and head­
per-track disk.

9

The IOP accesses memory on the same path
used by the Central Processor. The IOP can
coordinate up to twenty concurrent 1/0 trans­
fers through twenty channels.

MEMORY

20 1/0 CHANNELS

Each 1/0 channel is buffered; it connects to a
Peripheral Control (PC) which manages access
to peripheral devices. The PC also is buffered.

3 1 oro eccm I.._.---·,&-- PERIPHERALS

1/0 CHANNEL

Information is transferred between the 1/0 Buf­
fer and the Peripheral Control along a one-byte
or two-byte parallel bus, depending on whether
the peripheral is a low-speed (e.g., line printer)
or high-speed (e.g., magnetic tape) device. A
Peripheral Control is serviced by the 1/0 Proces­
sor at rates up to a maximum 2.2 million bytes
per second.

Information is transferred between the 1/0 Buf­
fer and Memory in full-word accesses (i.e., 6
bytes/access) at the speed of memory.

The 1/0 Processor may have up to eight 1/0
Channels each with 256-byte buffers, and 12 1/0
Channels each with 512-byte buffers. An 1/0
Buffer is filled one-half at a time. While one half
is being filled, the other half can be emptied.

~,~,,,;--:I ~· .. !--·. •+-1-B
__j 1/0 BUFFER

This allows the access to the peripheral to pro­
ceed independently of 1/0 Processor access to
memory. It also allows the access to memory to
be made in burst mode, thereby reducing
memory contention.

All 1/0 transfers are initiated by the Central Pro­
cessor through an interrupt to the IOP. The CP
interrogates the IOP for an available path to the
required peripheral unit. If no path is presently
available, the MCP places the 1/0 request in a
queue to await path availability. When the path
is available, the CP passes an 1/0 descriptor to
the IOP. The 1/0 descriptor (six bytes) contains
the information necessary to direct the IOP to
perform the 1/0 as required. When completed,
the IOP interrupts the CP and passes a result
descriptor to it which identifies the 1/0 and its
status.

Peripheral Configurations

All peripherals are accessed through a
Peripheral Control (PC) which provides the in­
terface to the 1/0 bus, buffering of the
peripheral unit (in some cases), and access con­
trol to the peripheral unit(s).

Low-speed peripherals (card readers and
punches, paper tape readers and punches,
printers) each have their own PC.

There is one path to each unit in this category.
Each peripheral has a unique number, e.g.,
CR12, LP28. Numbers are 0-255; therefore a
maximum of 256 peripheral units may be con­
nected to the IOP.

High-speed peripherals (fixed-head disk, disk
pack, magnetic tape) can have multiple paths
and use an "exchange" (e.g., a 2 x 8 tape ex­
change).

10

In this diagram, 1/0 operations can be taking
place in any two of the eight units simultane­
ously. If a third 1/0 is attempted, the IOP would
return a "no path" message to the CP and the
MCP would queue the operation until a path
became available.

In the case of the multiprocessor B 6800, high­
speed peripherals can be attached to two or
more IOPs via a peripheral exchange.

1/0 BUS

With this arrangement, there is a path to any
one of the eight MTs (or other high-speed
peripherals) through either of the IOPs. This
provides increased throughput as well as path
redundancy.

Main Memory Characteristics

The B 6800 Main Memory is word addressable.
One word contains 48 binary digits (six bytes)
of information, one parity bit and three tag bits
which identify the word content (data code for
internal security). A word of information is
passed to the Central Processor or 1/0 Proces­
sor in one read access.

An 8-bit error correction code is appended to
each word in memory. This is used by the
Memory Control to correct 1-bit errors if they
occur during memory accesses.

BIT NO. 51 50-48 47- -0 7- -0

I'--p__J.l_TA_G_J._l ___ D_AT_AP_O_RT_IDN _____ I I COR~gg; 1oN I

Two-bit errors will be detected and recorded.

Main memory is available in 393K-or786K-byte
increments (modules) which can be added to
the system at any time to accommodate in­
creased memory requirements on the part of
the user.

Two Main Memory modules can be interleaved
in a way that accesses made to sequential loca­
tions will alternate between the two modules.

This is done by having odd addresses in one
module and even addresses in the other. The
result is that memory cycles of the two modules
can overlap, allowing the next sequential loca­
tion to be accessed in one module while the
other module is completing its memory cycle
for the previous access.

Simultaneous accesses into memory modules
on different paths to the Memory Control can
be made by the CPU (Central Processor/IOP)
and a Data Communications Processor or other
external device.

GLOBAL
MEMORY

DCP

CP/IOP

The Memory Control acts as a 2 x 5 exchange,
allowing any two of the five memory paths to
be active at the same time. Simultaneous re­
quests forthe same path will be resolved by the
Memory Control.

Global™ Memory Concepts

The B 6800 implementation of Global™ Mem­
ory provides three different approaches which
demonstrate its organizational versatility.
These approaches provide for a multiprocessor
mode, a shared resource mode and an inde­
pendent mode.

MUL Tl PROCESSOR MODE

A multiprocessor system is controlled by one
Master Control Program (MCP) and presents a
single system image to users, operators, and
programmers. In this mode, the system is
analogous to the B 7700/B 6700 multiprocessor
systems.

In the multiprocessor mode, the information
residing in Global™ Memory is the code and
the tables that must be utilized by all proces­
sors. Examples of items which must reside in
Global™ Memory are: MCP code; unit tables;
data base stacks; and buffers for Global data
bases. Items which will reside in main memory
include: data arrays; user stacks; user code;

11

local 1/0 buffers; data base stacks; and buffers
for local data bases.

Job queue attributes allow users to specify that
a job must be run on a specific B 6800 system.
This enables installations to bias individual
processors to a particular type of work in order
to reduce interference between non­
compatible applications. Inter-Program Com­
munication (IPC) based programs can run in
Global™ Memory so that independent mod­
ules can be initiated on separate systems.

SHARED-RESOURCE MODE

Shared-resource B 6800 systems are totally in­
dependent. They use Global™ Memory for
passing messages from one system to another
and as a memory extension for each B 6800
system.

No peripherals are physically shared by sys­
tems in this mode. However, peripherals can be
switched from one system to another by using
the peripheral configuration panel. Files on one
system may be logically accessed from other
sy$tems via inter-system messages. In this
mode, Global™ Memory need only contain
message queues which allow a system to re­
quest and receive data from another system.

Each B 6800 system in the shared resource
mode has its own MCP. Each MCP initiates
special processes which control the message
queues in Global™ Memory. Systems may
communicate with each other in this manner.
Programs may access files on other systems by
opening a file which has an attribute. The attri­
bute indicates on which system the file resides.
The MCP will establish communication with the
system that owns the file and set up message
queues in Global™ Memory for the transfer of
data. When a program accesses a record, the
MCP will communicate the request to the sys­
tem that can access the information. The sys­
tem controlling the file will perform the 1/0 into
a buffer or message area in Global™ Memory.
Upon completion of the 1/0, the MCP will be
notified and it will link the buffer to the request­
ing program which can then move the informa­
tion to a work area.

Additional facilities are available while opera­
ting in shared-resource mode. These facilities
allow: initiation of tasks on other processors;
communication between processes in different
systems via queues that are accessible by more

than one system; and determination of the
status of other systems.

INDEPENDENT MODE

The independent systems approach permits
completely autonomous systems to be easily
configured with varying amounts of memory,
without departing from the simplicity of sep­
arate systems.

In independent mode each system has its own
copy of the MCP and its own piece of Global™
Memory. Sharing of files and peripherals is
prohibited in this mode.

Independent mode is particularly useful when
it is essential to isolate operating environ­
ments.

It is also possible to run in Global™ Memory
with all three modes active at once. The diag­
ram depicts four processor systems running
two processors in the multiprocessor mode,
one running in shared-resource mode and one
running in independent mode.

A AB BA

(MULTIPROCESSOR)
(SHARED

RESOURCE)

c

(INDEPENDENT)

12

Global™ Memory clearly provides a degree of
flexibility in system configuration unavailable
with other architectures.

Global TM Memory Characteristics

The Global™ Memory Subsystem consists of a
Global™ Memory Control (GMC) and Global™
Memory Modules (GMM). The Global™ Mem­
ory Control has the following characteristics:

• Permits up to four processors to access a
common memory area and controls the
read/write access by each processor to
user-defined logical partitions of mem­
ory;

Has up to four asynchronous requestor
ports which provide connection for up to
four B 6800/B 6700 systems;

Has an average access time of 900
nanoseconds;

Has up to four memory port adapters
which provide for the connection of up to
four memory modules which are identical
in size, with either two- or four-way inter­
leaving.

SYSTEM SOFTWARE

Basic Concepts

The B 6800 systems are programmed exclu­
sively in higher-level languages. No assembler
language is provided. Users may therefore
concentrate on the problem and its solution
with few if any, hardware-related constraints.
This provides several benefits:

Effectiveness; problems are solved in
minimum time.

• Efficiency; maximum use is made of the
hardware.

• Problem Solving; by concentrating on the
problem at the problem level, the data pro­
cessing department becomes more effec­
tive.

The hardware/software system is designed for
maximum job throughput. Solutions to prob­
lems therefore make efficient use of the
hardware. This is made possible by software­
and hardware-supported functions.

• Multiprogramming
• Multiprocessing
• Virtual Memory
• Global™ Memory

The exclusive use of higher-level languages re­
quires fast compilers. All compilers (not only
B 6800) work on the stack principle when com­
piling higher-level language statements. The
B 6800 compilers rely on hardware rather than
software to perform stack manipulations.
Hence they provide unusually high compilation
speeds for machines of this class. Typical fig­
ures are 7,000 card-images/minute for compil­
ing programs.

All System Software is written in ALGOL or a
superset of ALGOL:

• ALGOL-60 with extension for 1/0, bits and
characters. All compilers are written in AL­
GOL.

• The operating system is written in ESPOL
(Executive Systems Problem-Oriented Lan­
guage), a high-level ALGOL-like language.

13

Object code files are stored on fixed disk or disk
pack and fetched into memory to be executed.
There are no "object decks" except the special
case of the "loader deck" for system initializa­
tion. Object code cannot be modified so the
same problem can be executing two or more
times concurrently without risk of change to the
object code. Object code is protected by
hardware from modification by use of tag bits.

Operating System Concepts

The operating system is called the MCP (Master
Control Program). It is compiled in ESPOL and
the code file resides on fixed disk or disk pack.

Conventional systems usually require a special
operating system for each configuration. Thus
the operating system is configuration depen­
dent.

The B 6800 MCP interrogates the system
hardware to determine the configuration. The
MCP then maintains tables of information
which reflect the current status of each
hardware resource, updating its tables with
each change of status. This is done for main­
frame resources and peripherals. Con­
sequently, no system generation is ever re­
quired. The MCP automatically adapts to
changes in the environment.

The MCP consists of many routines which
handle such things as initiation of all 1/0 opera­
tions, memory management and resource allo­
cation. Only a small part of the code (and the
tables) to handle these and other functions re­
sides in memory; the rest resides in the MCP
code file on fixed disk or disk pack, and is
fetched into memory only as needed.

There are no fixed partitions in memory. Each
program will occupy only as much memory as
it needs for efficient execution, constrained by
other concurrent demands on memory. Logical
1/0 routines are called by a user's program from
the MCP code file when required. The resident
part of the MCP will, itself, call in routines from
the MCP code file when needed (e.g., to read a

tape label when a tape is mounted on a drive).
Therefore, parts of the MCP will be executed by
users' programs while other parts will be
operating independently.

The MCP code file contains five modules:

CONTROLLER

WFL COMPILER

MCP JOB FORMATTER

SORT

MAINTENANCE

14

The CONTROLLER is the interface between the
operator and the outside world. The WFL (Work
Flow Language) COMPILER accepts jobs and
creates job streams in ready-to-run format on
disk. The JOB-FORMATTER is a print module
used to print job output. The SORT is a disk/
tape/memory sort, bound into the MCP.
MAINTENANCE is an on-line testing package
for engineers. The MCP module in the diagram
represents all housekeeping and utility
routines such as memory management.

SYSTEM OPERATION

Operator Communications

The console operator has a large repertoire of
English-type commands to control and deter­
~ine the status of the system, peripheral de­
vices, and program execution. In addition
there is a comprehensive set of commands that
are directive or informative. All system com­
mands are easily recalled or referenced
mnemonics.

For example:
"SP" (Show Print Queue)
By entering the SP message on the super­
visor console, a list of all jobs in the au­
tomatic output queue waiting for a line
printer will be displayed.

"PC" (Print Configuration)
A "PC" entry will display the system con­
figuration while a "UA" (Unit Available)
will cause a particular peripheral unit, pre­
viously made unavailable, to become
available to the system.

By use of the "ADM" system message the con­
sole operator has the ability to set-up the con­
sole in "AUTOMATIC DISPLAY MODE." The
operator may logically divide the console sc­
reen into areas on which will be displayed a
variety of information reflecting the current
status of the system at regular intervals.

For example:

ADM (ACTIVE 9, WAITING 5, COMPLETED
6,MESSAGES)DELAY10

T~e above entry will display on the super­
visor console active tasks (jobs) on the first
nine lines, jobs or tasks waiting to be run
will be displayed on the next five lines and
the last six completed tasks will be dis­
played on the next six lines, with the entire
screen updated every 10 seconds. The re­
mainder of the screen will display system
messages to the operator. If the informa­
tion to display exceeds the screen space
allocated, the excess will be displayed after
a brief delay.

15

The Automatic Display feature can be
started, stopped or changed at any time to
suit the needs of the installation. In addi­
tion, multiple pages, each with varying
formats, can be displayed each with its
own time delay before refreshing the
screen with the next page.

There is an "event" option to refresh the screen
only when the status of one of the requested
items changes but no sooner than a specified
delay value.

For example:

ADM EVENT MESSAGE, PER MT DELAY 5

This entry will update the screen when
either a new message is generated by the
system or the status of the magnetic tape
subsystem changes, with a minimum
delay of 5 seconds before the screen is
updated.

The console operator may also interrogate
many other system features such as memory
usage, peripheral status, and current job struc­
ture and then either display them in the ADM or
call out the information on request.

Note: In the case of two or more console
screens, any screen may display any
choice of information (including
"NONE").

In the Work Flow Language there is a feature
that provides a block of instructions for the
operator. At any stage in the life of the program
during execution, the operator may interrogate
the job for instructions as what to do next.

For Example:

"IF NO FILE MSG APPEARS, ABORT THE
JOB"

This feature can be used in conjunction with
"JOB RUN SHEETS" or may eliminate the need
for run sheets altogether.

MultiprogrammingNirtual Memory

Virtual memory and multiprogramming are in­
corporated as an inherent part of the design of
the B 6800 system. In systems without these
features, programs have to be written to fit
within the limits of available main memory.

PROGRAM MEMORY

D-fJ
In other systems with slightly more sophistica­
tion a partitioned approach is used:

PROGRAM PROGRAM
=2 "' MEMORY

The partitioned approach can be improved by
dividing the program into a number of equal­
length "pages" so that the number of pages
necessary at any given time during its execu­
tion will fit into the partition allotted to that
program:

PROGRAMS MEMORY

e--=
In the preceding example, the program divided
into four pages may have any three of the
pages in memory at one time. The missing
page is stored on another media such as disk
pack.

Paging can be used to increase the number of
programs in the mix (jobs in main memory at
the same time). For example, if programs A, B,
and C all use only one page at a time, they can
all be active (in main memory and running) at
the same time:

PROGRAMS MEMORY

c

The preceding approach makes better use of
the system resources, at the expense of an in­
crease in total execution time for each pro­
gram. The additional execution time is due to
the system overhead incurred in overlaying
pages.

The B 6800 MCP dispenses with partitioning
and fixed-length paging. Since the logical
structure of programs cannot be efficiently
constrained to a fixed page size, code is divided
into variable-length "segments." Each seg­
ment is allocated space in main memory
wherever space large enough can be found.

In the case of the B 6800, an executing program
or task has "descriptors" in its working area
(stack) pointing to each segment of code or
data. Each descriptor is marked according to
whether the segment is present in memory or
absent (stored on disk) by setting a "presence­
bit" in the descriptor. If sufficient space is not
available in memory for the segment, space is
made available by overlaying into space al­
ready in use. Data segments are written back to
disk and then marked absent in the appropriate
descriptor. Code and read-only data cannot be
modified, so these segments are not written to
disk. Only the descriptor is changed.

On partitioned memory systems, the "memory
requirements" of a program can be easily de­
termined; the program is the size of the parti­
tion. Similarly, the program will use exactly
that amount of memory (some memory will be
wasted). On paged systems the memory used
by a running program will be the number of
page locations allocated to that program. With
the B 6800 virtual memory, the actual memory
used by a running program is determined by
the total demands of all the running programs
in the system. With only one program in the
mix, the program will use as much memory as
is needed (it can logically use more than the
real memory available on the system; some
segments will always be on disk). With addi­
tional programs in the mix, each program may
be constrained automatically to use less mem­
ory. Hence, the "overlay rate" may increase
and each program's execution time may in­
crease slightly. By this method, it is possible to
maximize the use of the system resources, and
consequently, the total system throughput. Be­
cause program segmentation and overlay are
handled automatically by the system without
any effort on the part of the programmer, this is

16

said to be a "virtual memory" system. It per­
mits both program and data to exceed many
times the physical memory size.

If the system is allowed to continue indiscrimi­
nately adding jobs to the mix, the overlay rate
will increase to produce unacceptable over­
head. At some point as the number of jobs in
the mix increases the overlay rate begins to
increase rapidly.

OVRE:TLtY L J

_J=-.- THRASHING

JOBS IN THE MIX

When a rapid increase in overlaying occurs and
more time is spent overlaying than executing
jobs, the system is said to be "thrashing" or
"overlay bound." Thrashing occurs if the
memory available for the mix is so restricted
that an insufficient number of segments are
present in memory at a given time. Each seg­
ment request results in an overlay call.

There are three approaches to avoid thrashing:

Restrict the number of jobs in the mix by
scheduling;

Design programs to use a smaller amount
of memory at any one time, i.e., have a
smaller "working set," and do not pass
control from one segment to another and
back again unnecessarily (this occurs with
paging systems);

• Add additional main memory.

On the B 6800 system, one can use the MIX­
LIMIT message to restrict the number of jobs in
the mix. The MCP will then schedule jobs as
long as the available memory is greater than
the memory estimated (by the compiler at
compilation time) to run the program.

The B 6800 MCP will suspend the lowest prior­
ity job in the mix in order to accommodate a job
whose working set expands during its execu­
tion, i.e., its demands on memory increase.
This action will be taken only if the available
memory becomes less than a specified
amount. This mechanism brings the number of
jobs, n, below the thrashing point, n0 :

17

OVERLAY
RATE

JOBS IN THE MIX

To make more memory available, the user can
either add more memory to the system or de-
1 iberately overlay memory before it is re­
quested. The desirable overlay rate will depend
on the mix and is ideally at a rate just low
enough to avoid thrashing.

OVERLAY{L_ RATE
FOR

PROGRAM P

°''""""' L
MEMORY IN USE BY PROGRAM P

Treating the above diagram as applicable to the
whole system (an assumption only), over­
layable memory for each program is deliber­
ately overlayed to reach the "overlay goal."
This overlay goal is a run-time parameter
specified by the operator. Also, because the
shape of the curve is different for different
programs, the overlay goal can be set for indi­
vidual programs.

Note: The job-suspension and overlay goal
methods of control are optior.ai. With­
out either method, thrashing can be
avoided by scheduling jobs and by
regulating the MIXLIMIT to the job
queues.

Swapping Technique

Some programs, especially in a data communi­
cations environment, are "burst-oriented." An
example is a conversational program, which
may take 30 seconds to wait for a reply to be
typed into a remote terminal. During thattime it
is not necessary for any part of the program to
be in memory (including save memory, such as
stacks and 1/0 buffers). It is, therefore, rolled out
to disk, and then rolled in again only when
required, i.e., when the data communications
1/0 operation is completed. Rolling in again
may require the rolling out of another program;
hence, the term "swap-mode" program.

To implement swap-mode efficiently, some or
all of the memory area for one swappable pro­
gram must be in one area called SWAPSPACE.

This place is then written to a fixed place on disk
(called SWAPDISK, this is not virtual memory
nor OVERLAYDISK), in one physical 1/0 opera­
tion. The program can use virtual memory but
obtains main memory only within the allocated
SWAPSPACE. The size of SWAPSPACE is
specified by each particular installation.

IN USE DATA MEMORY AREAS
FOR PROGRAM P

MEMORY

MEMORY AREAS FOR
SWAPPABLE PROGRAM P

DISK

Swappable jobs (or tasks) can be so designated
in the job deck (Work Flow Language State­
ments) and in the queue to which the job is
assigned. The primary application of this fea­
ture is in time sharing.

Batching Technique

One area of possible inefficiency is the start-up
and end-of-job overhead for short (execution
time) programs. The combination of start-up
and end-of-job could easily exceed the execu­
tion time. By combining consecutively run
programs into a single program, the overhead
is more acceptable.

The automatic re-entrant feature of the B 6800
system reduces the start-up and end-of-job
times for batch processing by requiring only
one copy of the program in memory. For
example, when more than one FORTRAN pro­
gram is being compiled in the same MIX, only
one copy of the FORTRAN compiler will be in
memory, thus saving not only start-up and
end-of-job time, but also memory.

System Log

The B 6800 MCP has the facility for maintaining
a "JOBLOG" for each job executed. In addition,
a "SUMLOG" (SUMMARYLOG) may also be

18

maintained. All information pertaining to the
execution of jobs such as times, files opened
and closed, messages displayed, etc., may be
written in either or both logs.

JOBLOG information may be obtained by en­
tering one of the following messages via the
operator console:

• "HARDCOPY" intercepts messages to and
from the console and writes a copy to a
disk file. This file may be obtained upon
request.

• "REMOTESPO" (Remote Supervisory
Print Out) can be specified for one or more
data communications terminals where
operator information can be received and
entered. This can also be a CRT device.

• A user may also designate his own hard
copy SPO (Supervisory Print Out) pro­
grams rather than use the above
Burroughs supplied programs.

The SUMLOG is used primarily for program
and job debugging. The log is especially useful
for the display of messages if incorrect results
are obtained. It also displays the abort point in
the event of program failure. The SUMLOG
may be printed in time order or selected types
of entry (e.g., messages) using the Burroughs
loganalysis program.

The SUM LOG is used for billing and accounting
as well. Job times can be extracted and bills
produced by using the Burroughs furnished
logger program. Details of the SUM LOG file are
made available so that customized billing/
accounting programs may be written.

Job and Task Control

CONVENTIONAL PARTITIONING

Using this method, the physical machine is di­
vided into fixed partitions. Each partition has
only one "stream" or queue for jobs and the
jobs are constrained to use only those re­
sources allocated to that particular partition.
The multiprogramming factor is usually the
number of partitions.

j2t
01 02 03

B 6800 APPROACH

Jobs are batched into "job queues" or streams
depending on their logical characteristics or
class of service required, e.g.,

• Small jobs, fast turnaround
• Larger jobs, slower turnaround
• Very large jobs, overnight turnaround
• "Cafeteria" type service, almost instant

turnaround
• Jobs with no operator interference
• Jobs with operator interference, e.g., tape

handling, cards, etc.

Jobs from these queues will be released into
the system and the necessary resources allo­
cated by the MCP on demand.

J~~,1
01 Q2 03

A job is a collection of related tasks and the data
for those tasks.

A queue is a collection of jobs of the same class.

The Work Flow Language (WFL) compiler will
compile a job and then create a job file on disk
containing machine instructions as to what
tasks are to run in which order, and the action to
take on errors.

19

HEADER J=i
DATA INFO.

] DATA

DATA INFO.

DATA JOB FILE

MACHINE CODE I-
FOR JOB

JOB "STACK" t""--

IMPLEMENTATION

With the B 6800, we can ignore all classes of
service and submit all jobs to the system in one
(default) queue. Alternately, a typical work-flow
management strategy would be:

Queue for small jobs, high MIXLIMIT,
fast turnaround, low limit on resources,
high charge for jobs using this queue.

Queue for large jobs, low MIXLIMIT,
slow turnaround, no limit on resources,
lower charge rate for jobs using this
queue.

The MCP will allocate resources so that
(for example) one large job and several
small jobs can be sharing the system, but
a second large job will have to wait for
the first large job to complete, hence a
slower turnaround.

MIXLIMITs may be changed dynami­
cally to meet changing demands or fluc­
tuations in the work flow of the installa­
tion.

QUEUE PRIORITIES

Associated with each queue can be a default
priority (0-99, with 99 running the fastest) and.a
priority limit. If the job priority is not specified, a
default priority will be assigned. If the job prior­
ity is greater than the appropriate queue limit
priority, that job will not be inserted in any
queue. Jobs are linked into the queue in priority
order, within one priority in first-come first­
served order. The operator can rearrange the
order of jobs in a queue if required. For exam­
ple, consider a queue with default priority= 70,
limit priority = 80, and jobs arriving in this
order (where J(X) means job name J with prior­
ity X, J means job name J with no declared
priority):

J 1 (75), J2, J3, J4(72), J5(81), J6, J7(78),
J8(68).

The order of jobs in the queue will be:

J7(78), J1 (75), J4(72), J2(70), J3(70), J6(70),
J8(68).

J5 will not be placed in this queue since its
priority limit is higher than the queue priority
limit.

OTHER QUEUE ATTRIBUTES

Job queues can be created or deleted at run­
time but are normally set up as installation
standards. The following is a list of attributes
that may be set up as installation standards:

PRIORITY;
MIXLIMIT;
IOTIME, Limit for each job;
PROCESSTIME, Limit for each job;
LINES, Limit on number printed for each
job;
CARDS, Limit on number punched for
each job;
FAMILY, Disk or disk-pack family name
alternates;
TURNAROUND, An approximate time
interval before the next job in that queue
is selected to run;
SUBSPACES, Memory allocation alter­
nate.

Multiprogramming has been implemented by
both hardware and software. The MCP keeps
tables of the current "mix." One job in the mix
is denoted by a "stack" or chunk of memory
serving as a working-area for that job. If a pro­
cessor is doing data manipulation with one
stack, it will keep the stack number (assigned by
software) in its registers. If control needs to be
relinquished (e.g., the program requests an 1/0
operation), the processor will execute a
"movestack" instruction to the job waiting in
the "ready queue" with the highest priority. For
example, take jobs J1 (40), J2(50), J3(45) - all
ready to run. A processor is executing in the
stack for J1. J1 requires an 1/0 operation for
which it must wait, and relinquishes control.

The processor will then turn to the stack for J2.
When the 1/0 operation for J1 is complete, J1 is
put in the "ready queue" but will not get a
processor until job J3 has a turn.

20

The "ready" queue is based upon priority
which demands that higher priority jobs be
processed before lower priority jobs in the
queue.

Work Flow Language (WFL)

The Work Flow Language is a higher-level lan­
guage in which jobs are written. It is designed
especially to control jobs and the flow of tasks
within jobs. There are no macros or
"catalogued procedures" to be found in WFL.
Rather, one writes subroutines and uses them
in the job deck. WFL statements are English­
like; they can be preceded by declarations of
common card files and subroutines. The job
deck is compiled by the WFL compiler to create
a code file on disk (the "job file") together with
embedded card data.

OVERALL STRUCTURE

The first card of a WFL deck has an invalid
EBCDIC card-code (conventionally a 1-2-3
multi-punch) in column one. The remainder of
the first and all following cards is free-format,
with statements separated by semi-colons. (An
invalid punch in column one acts as a semi­
colon.) An invalid punch is flagged by the
hardware as a question mark, thereby provid­
ing easy recognition of control cards.

Let's look at an example: run two programs Pl
and P2; P1 has card input INP, P2 has card input
CRDS (the invalid character is represented by a
"?"):

? JOB FRED;
BEGIN % ANYTHING AFTER A "%" IS A
COMMENT
RUN P1;
DATAINP

{data deck}
? % END OF FILE FOR INP
RUN P2; DATA CRDS

{data deck}
? END JOB

Global card decks are accessible to all tasks
within the job (e.g., programs P3 and P4 both
read a card deck called CARD):

? JOB FRED;
BEGIN
DATA CARD

{global card deck}
? RUN P3;
RUN P4;
? END JOB

Task identifiers are used to control job flow. In
the following example, the task identifier is T:

? JOB FRED TREE/STRUCTURED/TITLE;
BEGIN
RUN DOIT [T];
IF TIS ABORTED THEN RUN CLEANIT;
? END JOB
? JOB FRED;
BEGIN
RUN DOIT [T];
IF TIS ABORTED THEN
BEGIN

WAIT ("CAN I RUN CLEANIT?," OK);
RUN CLEANIT;

END;
? END JOB

The task identifier is established by the execu­
tion (or attempted execution) of the task
"DOIT."

Note that the wait statement contains a mes­
sage for the system operator. The job will be
suspended until the operator enters an "OK"
message. Alternatively the operator may enter
a "DS" (discontinue processing) in which case
the task and job will be aborted.

WFL provides for error recovery from program
faults (e.g., divide-by-zero, irrecoverable 1/0 er­
ror):

? JOB FRED;
BEGIN
ON FAULT,

BEGIN
DISPLAY "FAULT OCCURRED.";
RUN CLEANIT;
GO XIT;

END;
RUN DOIT;
XIT;
? END JOB

21

One of the most significant features of WFL is
the ability to easily handle asynchronous pro­
cessing. Asynchronous processing can be de­
picted as follows:

~-c __ ~-~1.___E_••
Upon completion of task A, asynchronous tasks
B and C are spawned. Here is how the WFL
would be written to handle such a sequence:

? JOB FRED;
BEGIN

RUN A;
PROCESS C [TSKJ;
RUN B;
RUND;
WAIT (TSK);
RUNE;

? END JOB

Notice that we have used a new verb, PRO­
CESS. PROCESS and RUN are equivalent in
that both cause execution to occur. The RUN
verb, however, constrains the system to wait
until the completion of the task; the PROCESS
verb does not.

WFL also provides for error recovery from halt/
load restarts.

? JOB FRED;
BEGIN;

L_ ___ _j

ON RESTART, GO TO L;
RUN A;
PROCESS C [ASYNCT];
RUN B;
WAIT (ASYNCT);
L;

IF FILE X/Y IS PRESENT THEN RUN D;
? END JOB

In this case the presence of the file X/Y implies
that the job was executing task D when the
halt/load occurred.

As was mentioned earlier, WFL provides a sub­
routine capability. Let's examine how this
might be used.

D

A 0 B 0 C _l
0
J ~

In this job stream task Q is to be run ~hree
separate ti mes. Here is the WFL forthisstream:

? JOB FRED;
BEGIN
SUBROUTINE Q;

BEGIN
IF FILE X/Y ISNT PRESENT THEN

ABORT;
RUN CHECK/PROF;

END;
RUN A;
Q;
RUN B;
Q;
RUN C;
PROCESS Q;
RUND;
? END JOB

Note that one calls a subroutine merely by
mentioning its name.

One-task jobs have a simpler syntax. Instead
of:

? JOB FRED;
BEGIN
RUN PROG/FIVE;
? END JOB

it could be:

? RUN PROG/FIVE;
? END

or even:

? RUN PROG/FIVE; END

Furthermore, if commands are entered at the
operator's console, one can drop the "?,"the
";"and the "END."

RUN PROG/FIVE

PROGRAM EXECUTION

There are many optional control cards for
specifying task attributes, for example:

VALUE - The program can pick this up;
OPTION - Various bits, e.g., for program

dumps;

PRIORITY -May be set from 0-99 unless in­
compatible with job queue;

PROCESSTIME -Establishes a limit for CPU
time, e.g., abort if program
gets into interminable
loop;

IOTIME - Establishes a limit for 1/0 chan­
nel activity.

Example:

RUN THISPROGRAM;
VALUE= 52;

22

PRINTLIMIT = 4000;
OPTION = FAULT, DSED;
PROCESSTIME = 60;

In this case the value "52" is passed to the
program; the lines printed will be limited to
4000; on a fault of any type, the job will be
discontinued; and processor time will be li­
mited to 60 seconds.

Control cards for specifying file attributes are
called "file cards." For example, programs P1
and P2 are to read the same global card deck
called CARD, but P2 expects the card file to be
called DRAC:

? JOB FRED;
BEGIN
DATA CARD

{global card deck}
?
RUN P1;
RUN P2; FILE DRAC (TITLE = CARD);
? END JOB

Note that multiple attributes can be expressed
in a file statement. Other file attributes availa­
ble include:

FILE F (TITLE = JIM);
FILE F =JIM;
FILE F (TITLE = (USERB) JIM);
FILE F (KIND = TAPE, TITLE = JIM);
FILE F (KIND = TAPE, BLOCKSIZE = 300);
FILE F (KIND = PACK,

PACKNAME = MYPACK);
FILE F (KIND = PACK, CYLINDERMODE);
FILE F (CYLINDERMODE, SINGLEPACK);
FILE F (PROTECTED, KIND = PETAPE);
FILE F (KIND = TAPE, UNITNO = 186);
FILE F (KIND = TAPE, SERIALNO = 2001);
FILE PRNT (KIND = BACKUP TAPE,
FORMMESSAGE = "2-PART");

Here is one more example:

? RUN PROG/22;
VALUE= 1;
FILE F = BLOGGS;
? END

File Storage Control

Files normally reside on head-per-track disk,
disk packs or magnetic tape. At any one time a
limited number of disk packs or tapes will be
mounted and their contents will be available to
the system.

File control therefore consists of:

Allocating files to disk packs
Allocating files to tapes
Allocating files to head-per-track disk
units
A means of copying files from one media
to another (library maintenance)

To implement file control, the "family" concept
is used. A "family" is an "aggregation of mass
storage." A family may be assigned to a job
queue so that only that family need be resident
for jobs from. that queue. When the queue
structure is changed, the packs (for example)
can be changed.

VOLUME FAMILIES

With disk packs the family consists of the base
pack and continuation packs, bearing the same
name; for head-per-track disk, the family is all
storage control units of the same label ("disk");
for tape, the family is all physical reels in one
multi-reel file. As an example let us consider
disk packs. Each disk pack is assigned a name:

serial no. 1; FRED; base pack
serial no. 2; FRED; continuation pack; base

pack = 1
serial no. 3; FRED; continuation pack; base

pack= 1
serial no. 4; JIM; base pack
serial no. 5; PACK; base pack
serial no. 6; PACK; continuation pack; base

pack= 5

In this example, there are three families:

FRED (serial numbers 1, 2, 3)
JIM (serial number 4)
PACK (serial numbers 5, 6)

23

Disk packs 5 and 6 are called "system resource
packs" with a "packname" of PACK.

Thus, files can reside on a disk family (e.g.,
FAMILY= DISK), a disk-pack family (e.g., FAM­
ILY = PACK, or FAMILY = FRED), or a tape
family (e.g., FAMILY= TPE217, where TPE217
is the name in the tape label).

New disk packs can be mounted on the disk­
pack drives and labelled to put them in the
required disk-pack family by means by a
software input message. The label is physically
written on the first sectors of the disk pack.

MAGNETIC TAPE FILES

In the following diagrams"*" represents a tape
mark. When the MCP encounters a tape mark
on reading the tape it forces end-of-file action in
itself or the application program.

The format of a single file, single-reel tape file
named FRED would appear as follows:

VOL 1 ... (zero for ID)
HDR1 ... FRED
HDR2
*
data
*
EOF1
EOF2
*
*

When loading tape, the MCP positions the tape
after the first tape mark, after verifying the
labels. Note: Burroughs uses standard USASI
labels.

The format of a multifile, single-reel tape file
containing files called FRED/ONE and FRED/
TWO would be:

VOL1 ... FRED
HDR1 ... ONE
HDR2
*
data
*
EOF1 ... ONE
EOF2
*
HDR1 ... TWO
HDR2
*
data
*
EOF1 ... TWO
EOF2
*
*

The MCP reads the label and positions the tape
after the first tape mark. If the user opens a tape
file called FRED/ONE, the MCP will search the
peripheral tables to find a tape unit containing a
volume called FRED. That unit is then assigned
to the program for the duration of the program.
If the user opens a tape file called FRED/TWO,
the MCP will find the volume FRED, search up
the tape for file FRED/TWO and position the
tape after the 4th tape mark (in this case) ready
for the program to read the first data record.

The format of a single-file, multi-reel tape file
called JIM would be:

VOL1 VOL1
HDR1 ... JIM, reel = 1 HDR1 ... JIM, reel = 2
HDR2 HDR2
* *
data data
* *
EOV1 EOF1

EOF2 *
* *

*
Both reels are members of the family called
JIM. If a program opens a tape file called JIM
specifying reel 2, ("family index" = 2), only the
second reel need be mounted.

New tapes may be given a serial number and
then become a "scratch" tape. The VOL 1 tape
label has a pattern recognized by the MCP. By
purging a "labelled" tape, the tape also be­
comes a scratch tape.

DISK FILE NAMING CONVENTIONS

Files can reside in different families and have
the same name, e.g.,

FRED ON DISK
FRED ON PACK
FRED ON MYPACK

The first file is located on head-per-track disk;
the second on a system resource pack; the third
on a disk-pack family named MYPACK. Dupli­
cate file names within a family are not allowed.
The file name and family uniquely identify a
file; more than one file of the same name, even
if different generations, is not allowed. Names
do not have to be a single identifier; up to 14
identifiers can be used, each containing up to
17 charac.ters. This gives a "tree structure."

~
A C X

A/B /\ J •
A/Z B z
C/D/E ~ y

X/Y E

~

In this case, all the files in the "directory" A (viz.,
A/Band A/Z) can be referred to as Al=. A private
directory of files can belong to a user (defined
as a usercode). The usercode is g'iven in
parentheses. For example, if a user USERA
owns files X and YfZ, and a user USERB owns
files X/B and Q, the set of files would be:

(USERAI X
(USERA) Y/Z
(USERB) X/B
(USERB) Q

QR (USERA) = AND(USERB) =

-~ (USERA) (USE RB)

/\ /\
x v i. a

i !
z

Library Maintenance

For backup purposes, files or groups (direc­
tories) of files on disk can be copied to tape,
creating a "library tape." The library tape is a
standard multi-file tape (possibly also multi­
reel) with the first file being a tape directory
containing the mimes of the files on the library
tape. Actual tape file names are standardized
by the MCP. Library maintenance is not
automatic but is initiated whenever convenient
for backup purposes.

Example:

COPY A/= FROM DISK TO TPE217

The Library tape format is:

24

VOL 1 ... TPE217
HDR1 ... FILEOOO
HDR2
*
tape directory with list A/B, A/Z
*
EOF1 ... FILEOOO
EOF2
*
HDR1 ... FILE001
HDR2
*
data of file A/B
*
EOF1 ... FILE001
EOF2
*
HDR1 ... FILE002
HOR
*
data of file A/Z
*
EOF1 ... FILE002
EOF2
*
*

The "COPY A/Z FROM TPE217 TO DISK" will
cause the MCP to search the tape directory, find
TPE217/FILE002 and then copy it to disk into a
file called A/Z.

Note: The library maintenance function will
copy files to and from any library tape
family, disk-pack family or head-per­
track disk family:

The volume library is a compile-time MCP op­
tion to create a catalog and volume library. If
used, disk, disk pack or tape volumes will be
entered in a library (disk file maintained by
MCP), even if the tape, etc., is not mounted. One
can add all scratch tapes to a family called
"scratch"; then if a cataloged scratch tape is
mounted and used as an output tape, that tape
is deleted from the scratch volume and entered
in a new volume family. A utility
(LISTVOLUMELIB) will print this volume lib­
rary; a subset of the volume library is a tape
library.

If the file cataloging option is set, files can be
resident in the catalog but not physically resi­
dent in the system (not mounted). For instance,
one can COPY & BACKUP files from head-per­
track disk to a library tape (or disk pack) then
remove the files on head-per-track disk. If a
program subsequently tries to open that file, a
"NO FILE" message will be displayed with the
serial number of the library tape (or disk pack)
on which the file can be found. Similarly, if the
file first exists on a library tape (e.g., from
another installation) one may COPY &
CATALOG the file from the library tape to
head-per-track disk (or disk pack).

The normal mode of operation on a B 6800 sys­
tem is to spool print files to temporary backup
storage. This procedure releases memory and
other system resources, giving greater utiliza­
tion of the total system. The MCP automatically
prints all spooled files as the printer becomes
available. Upon printing, files are purged.
Spooled files are printed in sequence either by
mix-number or smallest first, selectable by an
operator option.

25

Access Control

Control of access is an MCP function. A user
provides a "usercode" and optionally a
"password." Usercodes are created by a utility
called SYSTEM/MAKEUSER which itself is run
under a "privileged usercode."

MAKEUSER builds a mini-data base called
USERDATA file. To start, one may run
MAKEUSER without a privileged usercode if
the USERDATA file is absent. Having made a
privileged usercode one can then run
MAKEUSER and disable the MU (MAKEUSER)
and PU (Privileged User) messages.

Each job deck may have a usercode associated
with it. This can be optionally enforceable. The
user must supply the password if there is one,
and may change the password to prohibit ac­
cess by others using his usercode.

Disk file security can be applied to all files,
whether in a usercode directory or not, but is
most useful in a usercode environment. The
owner of the file (or a privileged user) may
make the file read-only, write-only, read­
write-allowed, or secured. Additionally, the
owner can make the file "private" (access only
by a job running under the owner's usercode),
"CLASSA" (access by any other usercode, sub­
ject to read/write restrictions) or "CLASSB"
(guarded by another, private file called the
"guardfile"). For CLASSB security, a separate
guardfile lists valid usercodes and the mode in
which the access is allowed.

Examples:

a. Stop access to the ESPOL compiler:
SECURITY SYSTEM/ESPOL CLASSA
SECURED

b. User USERA wishes the file F to be read
by USERS, read and written by USERC,
but access denied to all others:

SECURITY (USERA) F CLASSB G
Where G is a guardfile stating
DEFAULT= NO
USERCODE USERS = RO, USERC = RW

If a job supplies an invalid usercode or
password, the WFL compiler will not compile
the job deck - it will give a syntax error and
hence the job cannot run.

Note: The use of usercodes is entirely op­
tional, an installation management de­
cision.

System Initialization

There are three distinct types of initialization
available on the B 6800. They arethe Cold Start,
the Cool Start and the Halt/Load. Each has a
special function.

The Cold Start is used when the system is first
installed. It assumes that nothing is on the sys­
tem. The Cold Start requires:

MCP object file on a library tape,
System loader object deck.

By setting the "card load select" button on the
console and then pressing the "load" button,
the hardware will execute a hardwired series of
bootstrap instructions to read a card into mem­
ory and then transfer control to the machine
coded instructions. This loaded bootstrap
program reads in an object deck (about 50
cards produced by the ESPOL compiler) and
then transfers control to this program. This
program, known as the utility loader (UTIL­
LOADER), reads a parameter card containing a
tape name and a file name. UTILLOADER then
searches the system to find which units are
tape units and reads the tape labels. On finding
a matching file name, itthen determines·if it is a
library tape and if so, searches the directory on
the tape. Finding the designated file, it loads the
program LOADER into memory and transfers
control to the program. (UTILLOADER also can
load other ESPOL programs used for testing
and maintenance.)

The LOADER program can perform many func­
tions, the most important of which is loading
the MCP from disk, tape, or disk pack. Its func­
tions are specified by parameter cards.

After loading the MCP, the LOADER program
initializes a disk directory and loads the primary
initialized portion of the MCP into memory.
Then it transfers control to this new program,
i.e., the MCP. The MCP then begins its own
initialization.

A Cold Start forces loss of any files on the disk
family where the MCP is loaded.

MCP CODE FILE ON TAPE

DISK

The Cool Start operation on the B 6800 reloads
the MCP code file on disk but leaves the remain­
ing files intact. Bootstrap information, includ­
ing the address of the MCP code file, is con­
tained in the lowest address disk segment.

~~:~~~~~~ODE SEGMENTJj]S ~ MCP CODE FILE

~ ON DISK

~

~C:~~g~~EGMENTS BOOTSTRAP FILES ON '?ISK

If the MCP code file becomes corrupted or
overwritten, the same loader deck can reload
the MCP from tape to disk, and if necessary,
move the location of the code file on disk. A
Cool Start can load a new MCP code file from
disk by specifying the name of the file without
disturbing the disk directory.

A Cool Start from disk can be done through the
MCP by a CM (change MCP) message. In both
cases, the MCP performs the initialization
routine. No disk files are lost during this proce­
dure; only MCP reinitialization of memory ta­
bles occurs. It is often used just to change
MCPs.

The Halt/Load is the most common initializa­
tion, accomplished by:

a. Pressing the HALT button on the console.
b. Pressing the LOAD button, with the "card

load select" button off.

26

The hardware reads the bootstrap segment at
the lowest disk address, fetches the current
MCP code file and the MCP reinitializes its ta­
bles. This process takes only seconds to per­
form. All of Main Memory is tested in the pro­
cess, and any modules failing the test are de­
leted by the MCP from the configuration.

Recovery Aspects

HALT/LOAD RECOVERY

All tasks are aborted during a Halt/Load condi­
tion and memory is reinitialized. Jobs and job
queues reside on disk and therefore are still
present. By default the job is restarted at the
last point where no task was running. Let us
examine a job/task structure which is inter­
rupted by a Halt/Load.

c

',\:!'·• A
B ~j ~ o

H

•
'.

If a Halt/Load occurred when tasks E and F were
running, the job would be restarted at the point
when B had finished. A single-task job would be
restarted.

A task can determine if it has been restarted and
take appropriate action. WFL features allow this
automatic restart to be overridden, e.g., to
"start again from beginning" or "go to the
end," or "reload files."

An MCP run-time option, AUTORECOVERY,
when reset will set the MIXLIMIT of all queues
to 0, and inhibit automatic printing of spooled
files and restart of data communications.

Normally a task will be restarted from the be­
ginning. Checkpoints may be taken, however,
with checkpoint files residing on disk or disk
pack. If a checkpoint file exists for a task, the
task may be restarted from that checkpoint.
Checkpoint files can either accumulate (many
files) or can overwrite (purge) the previous file.

An output file (tape or disk) created by a task is
normally lost if a Halt/Load occurs during the
task execution. The program can make such
files "protected." For an output tape file, a
tape-mark is written before rewinding after the
Halt/Load, so end-of-file can be found.

COLD START RECOVERY

The major implication of a Cold Start is the loss
of the disk file directory. Prior to a Cold Start,
the following steps should be performed:

• Copy off files to a library tape from the
Halt/Load unit;

• Cold Start or remove files;
• Copy back files from the library tape.

Where fixed locations for files are desired, the
installation can use Installation Allocated Disk
(IAD). IAD allows users to reserve particular
physical locations of disk. The MCP will not
allocate any space in these areas.

27

Standard system software can be used to con­
struct a file "header" giving a pointer to the IAD
area. All disk files have "headers" which are
normally constructed by the MCP. This IAD
header becomes part of the normal file direc­
tory so that the file can be read, written, or
copied to another storage medium.

IAD areas can be allocated/deallocated at run
time by RESERVE/RETURN software function,
specifying the physical location. For RESERVE,
all files in the required area are copied to avail­
able disk elsewhere.

1/0 RECOVERY

The MCP normally handles all 1/0 errors asyn­
chronously. It will initiate a separate stack (pro­
cess) to handle retries, thus freeing itself to
continue handling normal events. Tape parity
retry involves backing the tape and retrying a
total of eighteen times; head-per-track disk re­
tries occur ten times; disk pack is retried by the
controller three times - if all three are unsuc­
cessful, the MCP will re-issue the 1/0 operation
up to ten times to the controller. In all cases, the
program is informed only if all retries are un­
successfu I.

When a program does not provide for 1/0 errors
and the condition arises, the task will be
aborted with an error indicating the 1/0 state­
ment which failed. A program can recover from
errors by using, for example, a "declarative
section" (in COBOL).

Bad segments of disk can be removed from the
MCP available disk table by the XD message.
The XD message creates a file called BADDISK
of the bad segments, preventing further use
until an engineer can investigate the problem.

The MCP will maintain duplicate files if re­
quested by the user (e.g., if file FRED is to be
duplicated, the MCP will keep the files FRED/01
and FRED/02). The program deals strictly with a
file named FRED. If an 1/0 error occurs on one
copy, the MCP will access the other copy.

Critical system files can be duplicated, e.g., the
MCP code file, the disk file directory (a list of
headers) and the disk file access structure. As
an example, we may store the MCP code file
duplicates on separate families, say disk packs
A and B.

~~
MEMORY BOOTSTRAP

During normal operation the system uses the
MCP code file on A. Code moves from A into

28

memory and the bootstrap for a Halt/Load
points to A. If disk pack A fails, however, the
bootstrap is altered to Halt/Load to disk pack B;
the system automatically uses the MCP code
file on B. Using the same principle, one can
duplicate the directory and the access structure
on the same families.

DATA MANAGEMENT

Overview

A typical program may be required to do
numerous READs, WRITEs, SEEKs, OPENs,
CLOSEs, STARTs, REWRITEs, and DELETEs on
a file of information. The program, in fact, per­
forms none of these physical 1/0 operations.
Rather, the program makes requests of the
MCP to perform each of these functions. The
MCP will assign the "logical file" as seen in the
program, to the "physical file" existing on the
head-per-track disk, disk pack or tape.

The MCP will automatically allocate space on
random .access devices, and support buffering
and blocking. It provides full support for files
which are organized sequentially (as in a tape
environment); for files which are organized in a
random manner (records are accessed by their
relative position within the file); and for files
organized with an index (records are accessed
by the value of a key within the record).

The system also supports a comprehensive
Data Management System (DMS II), which pro­
vides multiple access methods and data rela­
tionships.

MCP Logical 1/0 Facilities

READs, WRITEs, and SEEKs can be performed
with or without an actual key or record key.

When a READ is performed without an actual
key or record key, the first READ will position
the file at the first record. Subsequent READs
get the next physical records. When the end­
of-file is encountered the MCP will notify the
program and the AT END branch is taken. READ:I; ~~~g !

: ~
• 7

8
9

EOF 10

A program which initiates a READ is suspended
by the MCP until the logical 1/0 (transfer of one
logical record from the buffer to the user pro­
gram record area) is complete.

Similarly, a WRITE without an actual key or a
record key will write the file serially (sequen­
tially).

29

WRITE
WRITE
WRITE

READs performed with an actual key or a record
key will retrieve the record specified by the ac­
tual key or the record key. When the key
specifies a record which does not exist in the
file, an INVALID KEY condition results.

READ 9
READ 5
READ 7
READ 1
READ 10

INVALID READ 100

"'-1------1 190

11
I----< 12

A READ will wait for the completion of physical
1/0 (i.e., an implied SEEK) when required. Since
multiple buffers are permitted, the MCP will
attempt to make the record available from a
buffer. Suppose a file has five buffers and re­
cords 1, 30, 90, 50, 15 are accessed by the first
five READs. If the sixth READ accesses any one
of these five records then no physical 1/0 takes
place.

A SEEK or START will fetch the logical record
but allow processing to continue. A subsequent
READ will actually get the record into the
program-area (this technique is used to speed
up the program by overlapping 1/0 and proces­
sing):

WITHOUT SEEKS

READ (Record 1)
WAIT
PROCESS (Record 1)
READ (Record 2)
WAIT
PROCESS (Record 2)
READ (Record 3)
WAIT
PROCESS (Record 3)
READ (Record 4)
WAIT
PROCESS (Record 4)
READ (Record 5)
WAIT
PROCESS (Record 5)

WITH SEEKS

READ (Record 1)
SEEK
PROCESS (Record 1)
READ (Record 2)
SEEK (Record 3)
PROCESS (Record 2)
READ (Record 3)
SEEK (Record 4)
PROCESS (Record 3)
READ (Record 4)
SEEK (Record 5)
PROCESS (Record 4)
READ (Record 5)
SEEK (Record 6)
PROCESS (Record 5)

Notice that the SEEKs permit far smoother
execution. Without them the program must be
suspended during each READ; with them, pro­
cessing continues.

A WRITE with actual key or record key will write
to the required record.

:::;~; .,,.__--t====::j
WRITE 7
WRITE 6

1------1 ~

1------1 i"o
~-~"

Note that the file would contain seven records
but records 1, 3 and 4 would not be valid. A
subsequent serial read would get end-of-file
action trying to read record 8 but would have
read all seven records.

BUFFERING

Buffering is a technique used to increase
throughput; the default is 2 buffers (1 alternate
area).

f---- ~
,__ __ 7

f----:
,__ __ 10

RECORD AREA PROGRAM FILE g

By using buffering, three serial READs would
provide records 3 and 4 in the buffers. Buffering
results in "physical 1/0" (file-to-buffer) taking
place before "logical 1/0" (buffer-to-record
area). This is especially useful when doing ran­
dom SEEKs. A SEEK gets the record into the
buffer, and the READ gets the record from the
buffer into the record area. For instance SEEK 9,
READ 9, SEEK 5 would produce the following
results:

>---------< 7 '----'-===--', ,,,.1---__, !
PROGRAM FILE 10

BLOCKING

Blocking is a technique used to decrease physi­
cal 1/0 time; each physical 1/0 reads a block of
logical records. This is especially useful for
READing or WRITEing serial (sequential) files.

30

1 2
BUFF.~

3 4

L 5 l 6 I-
-i 5 6

[3 I . J 7 8 BUFF.-m 9 10

RECORD 4 11 12
AREA

13 14

\ /
FILE 15 16

PROGRAM

In this example, each pair of serial READs in­
volves only one physical 1/0. The BLOCK in this
case contains two records.

Variable-length records are especially useful
for tape. For example, records40to100 charac­
ters long with a maximum block length of 200
characters would appear on the tape as fol­
lows:

BLOCK 1 100 RECORDS 1·2

BLOCK 2 90 RECORDS 3·5

BLOCK 3 BO RECORDS 6·8

BLOCK 4 50 50 RECORDS9·12

BLOCK 5 40 40 RECORDS lJ.15

BLOCK 6 100 RECORDS 16· 17

There are various ways of specifying length of
record:

• By using the first 4 bytes in the record in
character format;

• By using the first 2 bytes in the record in
binary value;

• By externally specifying via "file attri­
butes" elsewhere in the record.

Evolution of Data Base Approach

Data Management has been an integral part of
data processing from the time of the first com­
mercially available computers. Data Manage­
ment at first was punched card management,
as all files were stored on the 80-column card.
As technology progressed, Data Management
gradually shifted from punch orientation to
magnetic tape and finally to disk. By the late
1960s, Data Management systems were avail­
able to handle very large, randomly accessible
files on an application-by-application basis.

Today's Data Management Systems manage
data bases which are independent of applica-

tions. They not only provide a variety of ways to
link information but also automatically main­
tain sets and subsets of the information. The
effect has been to make application program­
ming easier.

Data Base Software (OMS II)

OMS II is one of the most sophisticated Data
Management Systems available today. It is
noted for its high performance and ease of use.

In OMS II, specifications of file structures and
data layouts are defined using DASDL {Data
And Structure Definition Language). Here is an
example of how a simple {single-file) data base
would be specified. Manipulation of the data
base is accomplished by providing extensions
to the "host language" {COBOL, PU1, and AL­
GOL).

cosoL ~ P0L~I:
~~-,--'L __ A_L_G_O_Lj

AUN·TIME MCPLINK

~

FILE ORGANIZATION AND ACCESS METHODS

Serial File - In a serial file, data is read from
beginning to end. Information {symbolic keys)
can be maintained in order {ordered list) or in
no particular order {unordered list). For unor­
dered lists, a sequential search is made to lo­
cate data. For an ordered list, a binary search or
other search method could be used to locate
data.

Direct File - In a direct file, the data records
contain an actual key or record key. The ke~

. states the physical location in the file in which
the record is to be placed {the symbolic key is
the actual key or record key, i.e., the logical
record number in the file).

RECORD 1 1- BACH

RECORD 2 2-BEETHOVEN

RECORD 3 3-LIGET1

RECORD 4 4-HANDEL

RECORD 5 5-MAHLER

31

Random File- In a random file, a symbolic key
{e.g., a surname or social security number) is
converted via an algorithm to a numerical value
which serves as an address for the record in
question.

Index Sequential File - In an index sequential
file, the symbolic key is searched for in a set of
index tables. There is a coarse table to getto the
required fine table. Symbolic keys are stored
sequentially in the fine tables. Fine table entries
point to the actual record.

(FINE)

Index Random File - In an index random file
the symbolic key is converted to an index table
number. The table is searched to find the loca­
tion of the record associated with the symbolic
keys.

DATA SETS AND SETS

OMS II supports both data sets and sets. A data
set is the collection of data that is stored and is
to be accessed.

A set is a file containing the access tables. There
may be several sets relating to one data set for
different access methods; each set is one phys­
ical file.

Tilere may be links from data sets to sets or
other data sets. Embedded sets {chains) and
embedded data sets may also be used.

DATA SET (1

1SETl12r DATA SET !21

(NAMES)

(ADDRESS!

Data is stored in a data set and in a set, accord­
ing to allocation principles discussed in the
next Section.

HOST LANGUAGE FEATURES

The COBOL, ALGOL and PU1 languages for the
B 6800 have been extended to allow data base
access. Some examples of the COBOL syntax
are:

FIND FIRST
FIND NEXT
FIND LAST
FIND PRIOR
FIND KEY = "HASTINGS"
CREATE
STORE
DELETE
ASSIGN - to put link to another set
LOCK/FREE - to avoid contention if about to
update a record in a multiprogramming or
transaction-oriented environment.

(The FIND verb may specify which set, i.e.,
which access structure, to use.)

AUDIT AND RECOVERY

DMS II provides extensive audit and recovery
capabilities. Auditing is achieved by requesting
the system to audit the data base and specifi­
cally to maintain an audit trail; recovery is
achieved through the invocation of declared
restart information (called the RESTART DATA
SET) and the audit trail. Both facilities are in­
strumented through the DASDL language;
both facilities are entirely optional.

The audit trail consists of a trail of changes to
the data base data files and index tables, along
with various control records. The audit is writ­
ten to tape, disk, or disk pack. The audit trail is
used as the input to the various forms of data
base recovery.

The RESTART DATA SET holds program restart
information. During the recovery process, the
recovery routines store program restart infor­
mation (based on the contents of the audit trail)
into the RESTART DATA SET. Since the RE­
START DATA SET is part of the data base, user
programs can conveniently retrieve sufficient
information from this data set to reinitialize
themselves after completion of the recovery
process.

MCP Disk Allocation

On the B 6800 system, head-per-track disk and
disk pack are physically divided into 180-byte
sectors. The hardware performs READs and
WRITEs a segment at a time.

Example: An unblocked file with 90-byte re­
cords wastes 50% of storage.

SECTOR 1 SECTOR 2 SECTOR 3

WRITE RECORD 1 ~ ![] I I I

WRITE RECORD 2 ~'§! fil>~ I

but a blocked file with 90-byte records, 2
records/block uses all storage.

SECTOR 1 SECTOR 2 SECTOR 3

~:t::~>ifil~ I =r=
Under program control, the MCP will divide the
physical file into "rows" or "areas." For exam­
ple, a file of 10,000 records may be divided into
20 rows of 500 records each. The "file header"
(maintained on disk by the MCP and pointed to
by the disk file directory), contains a pointer to
each allocated row of the file.

1~1~111111;11111

-soo-- -sao-

If 600 records are written serially, one row will
be completely filled and the second row will
contain 100 out of a possible 500 records as
follows:

Note: Space has been reserved on disk or disk
pack for only 1,000 of the requested
10,000 records. The file may be ex­
panded at a later time to the full 10,000
records. If required, the MCP will au­
tomatically provide space for addi­
tional records beyond the 10,000.

32

Space is allocated for a row of a file only when
access is attempted for a record within that
row. Until that time, the space remains availa­
ble for use.

Each row of a file is a separate area of storage.
By default the MCP will spread these rows

among all members of the family. For example,
in the case of a disk-pack file with a Base Pack
and two Continuation Packs, rows will be as­
signed as follows:

Records 1-500, row 1, family index 1 (BP)
Records 501-1,000, row 2, family index 2
(CP1)
Records 1,001-1,500, row 3, family index 3
(CP2)
Records 1,501-2,000, row 4, family index 1
(BP),
Etc.

To access record 1,200 (row 3) on Continuation
Pack 2, one needs to mount BP and CP2 only,
because the file header is stored on the BP. This
can be overridden by the "singlepack" file at-

tribute, which causes all areas to be allocated
on one disk pack.

Within an individual storage unit (single pack,
or one subsystem of head-per-track disk), areas
are allocated in the smallest available space
large enough to contain the request. Available
space tables are maintained by the MCP for
each disk family.

The actual locations of files are not known or
required by the user.

Disk-pack files can be allocated in "cylinder
mode." In this case each file row is contained
within a cylinder boundary. If row size:<:::: cylin­
der size, then the whole row can be read with­
out any arm movement.

33

DATA COMMUNICATIONS

Survey of Data Communications Uses

There are a variety of reasons why data com­
munications may be required on computer sys­
tems today. These include:

Data Collection - For gathering information
which was formerly key-punched. This infor­
mation can be batched or input intermittently.
Preliminary editing is often done at terminals.

Message Switching-The text of a message is
routed through the central system from one
terminal to another. Note that the central sys­
tem must resolve contention between input
from and output to the same terminal (e.g., if
terminal is sending information, then the out­
put message must be queued).

Transaction Processing-A transaction from a
terminal is received, the text of the message is
analyzed, the data base is accessed and/or up­
dated, a response message is composed, and
the response is sent to the originating terminal.

Time Sharing - Originally used with teletype­
like terminals but most recently with increas­
ingly intelligent terminals. In the time sharing
environments, source programs are created
using a text-editing facility and compiled using
interpretive or interactive compilers.

Remove Job Entry (RJE) - Jobs entered on a
smaller remote computer are executed on a
larger host computer.

Response times are important and vary with
the application. Very fast response with file up­
dating is called "real time;" changes are made
quickly enough to affect the environment.

Data Communications Hardware

CONVENTIONAL APPROACHES

Depending upon the sophistication of the sys­
tem, there are three conventional approaches
to data communications hardware implemen­
tation.

35

1. Single-Line Controls (SLC) which con­
nect to the mainframe. They take bits
from one line (telephone, TELEX®, etc.)
and pass on acharactertothe mainframe
(CPU or 1/0 function).

CPU
CHARACTER SLC ~-BIT _ __, DATA SET

~- COMMUNICATIONS LINE

The CPU must take time to process each
character in this arrangement.

2. Multi-Line Controls (MLC) which connect
to the mainframe. The MLC must have
logic to identify the characters from
different lines, sort out start/stop bits,
generate parity bits, etc. The CPU sorts
out the characters into words.

CPU

COMMUNICATIONS LINES

There are usually a limited number of lines into
a MLC (normally 64).

3. Front-End Processors (FEP) which as­
semble characters into words, are pro­
grammable (usually in assembler), and
have their own memory.

CPU
WORD

COMMUNICATIONS LINES

B 6800 Data Communications Hardware

In the flow of information from a terminal to the
central system, the Data Comm Subsystem
components handle progressively larger units
of information. When information is sent from
a terminal to the central system, the terminal
transmits discrete bits representing a charac­
ter.

For phone-line transmission, the bits are fed
into a data set (modem), transformed into a

modulated bit-serial stream, and then transmit­
ted over a telephone line. The modulated bit
stream is then received by another data set
where it is re-transformed into the original dis­
crete bit pattern and connected to the Adapter
Cluster through an appropriate Line Adapter.
For direct-connect stations, the line is con­
nected to the Line Adapter.

The Line Adapter matches the electrical charac­
teristics of the line or data set to those of the
Adapter Cluster.

The Adapter Cluster accumulates a single
character, notifies the Data Communications
Processor (DCP) that the character is available,
and transmits the character to the DCP upon
request.

The DCP examines the control characters as­
sociated with each transmission to relate the
transmission text to its proper message area in
main memory. It accumulates the characters of
the text into words and dispatches each word
into the appropriate Main Memory area. The
DCP may also check parity and perform charac­
ter translation, for example, from ASCII to
EBCDIC codes. The reverse is done for outgo­
ing messages.

The DCP can also interface directly with the
CPU for control instructions. The DCP READs
and WRITEs information to the Main Memory
via the Memory Control.

Each Single-Processor B 6800 can handle up to
4 DCPs. Each DCP can accommodate up to 16
Adapter Clusters, to each of which may be at­
tached a maximum of 16 Line Adapters. Thus, a
Single-Processor B 6800 could have as many as
1,024 lines attached, with multiple terminals on
each line.

B 6800 AUTONOMOUS DATA COMMUNICATIONS
HARDWARE

The B 6800 can be configured to allow data
communications to operate with varying de-

grees of autonomy from the main frame. This
enhanced configuration includes Front-End
Controls, a large dedicated (393K-byte) Data
Comm Memory, and direct access to a 23 ms
head-per-track disk subsystem shared with the
main system.

36

The autonomous feature accepts a bit stream
from the line adapter, performs message-level
accumulation (multiple words as contrasted
with single word), translation, editing,· and
transmits the complete message block to Main
Memory and system disk when appropriate.

MAIN

MEMORY

--------------...,
I DATA COMM TO-DISK CONTROL 1
I BASIC ADAPTER CLUSTER Ill ~~
I OCP ONTROL .---.R-OA-08-AN-O C-ON_TR_Ol--+-'-1 DATA SET -z_
I MEMORY TO MEMORY CONTROL

I l MESSAGE

I .AUTON OM DUSI I DATA COMM

I BLOCK~~:~:;AGES I L':: _____________ J

Autonomous data comm supports a capability
to:

a. Inform currently active stations of a
"down" main system;

b. Inform new dial-up stations of a "down"
main system;

c. Suspend data comm in an orderly fash­
ion during a "down" main system situa­
tion;

d. Preserve the integrity of messages in
progress at the time of system failure;

e. Resume normal data comm operations
at a subsequent Halt/Load;

f. Time-stamp incoming messages by the
DCP;

g. Handle message tanking;
h. Audit incoming messages;
i. Continue output of previously tanked

messages on disk throughout the dura­
tion of the failure;

j. Continue to accept input from stations
which, in normal operation, are desig­
nated as being audited and/or in data col­
lection (file) mode and which have no re­
quirement for interaction with the main
system.

DATA COMMUNICATIONS

The Adapter Clusters and Basic Controls may
be cross-coupled to two DCPs. Each DCP is di­
rected to service only a designated subset of
the clusters connected to it. In the event one
DCP should fail, the other DCP can be pro-

grammatically directed to service up to 16 clus­
ters. This allows one DCP to back-up the other in
the event of a malfunction.

A cluster mask in each DCP, configured by DCP
software, regulates control of up to 16 adapter
clusters.

ADAPTER
t:::---------j CLUSTER

'A'

ADAPTER

f---------1 CLUSTER
'B'

NETWORK CONFIGURATIONS

16

16

The following diagrams represent a sampling
of the possible network configurations. In the
diagrams:

C = Central Computer
T =Terminal
D = Data Set

Direct connect lines. No data sets.

Leased Line. Using data sets but not using the
dial-up line-switching system.

Switched network. Using data sets and the
dial-up telephone systems.

Multi-drop lines. Connecting multiple termi­
nals to one physical line. Each terminal has a
unique address.

37

Line concentrator.

The line from the central computer to the con­
centrator could be leased or switched. Lines
from the concentrator to terminals could be
direct-connect or switched lines (e.g., local
telephone only).

When multiple terminals are dropped on a line,
the system asks if the terminal has a message in
its buffer (terminal is POLLED). The terminal
responds with an ACK or NAK, or sends a mes­
sage. The system asks if the terminal is in a
state to receive a message (terminal is
SELECTED). The terminal responds with an
ACK or NAK. These or similar conversations are
called "line disciplines."

PROTOCOLS

The B 6800 data communications system sup­
ports every major protocol including:

Asynch;
Synch;
Bi-Synch;
BDLC/SDLC.

Data Comm Software Overview

Data communications software for the B 6800
consists of three functionally and physically
separate entities:

NOL (Network Definition Language) to
program the DCP for physical line handl­
ing.

MCS (Message Control System) to
handle internal distribution of mes­
sages.

The application program to take action
based on the actual message text.

MESSAGE FLOW

Messages are handled in characters by the
DCP. The DCP assembles characters into words
and adds a "message header" for the terminal
originating the message. The DCP queues
messages into main memory. The DCC (Data
Communications Controller, a part of the MCP)
examines the messages in the queue. It inserts
a pointer to the message in the appropriate
queue for the MCS servicing that terminal. The
MCS analyzes the header and may decide to
pass the message on to an application pro­
gram. Here is a diagram of what goes on:

APPLICATION
PROGRAM

~;;;M~M-;R~ l
~ REQUEST -Q ~c-----._r------,
I I
: REQUEST·OL-'11-~.___,
L _____ J RESPONSE

There are times when it may not be necessary
to have the MCS handle the message. In these
cases the MCS is bypassed. Such MCSs are
termed "non-participating."

APPLICATION
PROGRAM

~-DCC
L'::J IMCPI

Network Definition Language (NOL)

Network Definition Language for the 8 6800 is a
descriptive language used by data communica­
tions programmers to specify the characteris­
tics of a network. When compiled the resultant
program -

• provides DCP code for the various line dis­
ciplines required for different types of
terminals (contention devices, polled de­
vices, slow poll, fast poll, etc.);

• describes the physical network: the lines
into the computer; how they are con­
nected; what the line characteristics are;
(direct connect, data set connect, speed,
auto dial-out, etc.); what stations are con­
nected to each line.

Note the difference between a logical "station"
and a physical "terminal." Application pro­
grams and MCSs tend to refer to stations while
DCP/NDL talks to terminals. Each station de­
clared in NDL has a physical address associated
with it. It also has a description of its physical
connection, an assigned address, and a logical
address (Logical Station Number). These are all
assigned by the NDL compiler.

38

NDL programs are organized into sections -

• the CONTROL section allocates the use of
a logical line to the stations assigned to
that line.

• the REQUEST section contains control in­
structions for each type of terminal (e.g.,
read-request-for-TD 800, write-request­
for-TD 800, poll-request-for-TD 800,
select-request-for-TD 800). It tells the DCP
how to deal with special characters (e.g.,
SOH, start-of-header; ETX, end-of-text),
how to check parity, and what actions to
take.

• the MODEM section defines data set types
for each type of line (e.g., synchronous/
asynchronous, transmit-delay, etc.).

• the TERMINAL section defines terminal
types (e.g., buffer size, screen/no screen,
odd/even parity, ICTDELAY (inter­
character-transmit delay). It also defines
what data set is associated with the termi­
nals.

• the STATION section defines each of the
"ports" into the data comm system (e.g.,
station name, terminal type, input/output
enabled, name of controlling MCS, control
character) for messages from this station
to its MCS.

• the LINE section defines each line, physi­
cal location (DCP/cluster/adapter) and lists
each station on the line.

• the DCP section lists the DCPs and the
amount of local memory for each.

• the FILE section associates station(s) with
file names for use by application prog­
rams.

Example:

FILE F1 = A1, A2, A3, 81, C1, C2.
FILE F2 = A3, 81 I C2.
FILE F3 = C1.

(Stations A3, 81, and C2 constitute the "family"
of file F2.)

The NDL compiler produces the DCP code file
and a Network Information File (NIF).

NOL NOL
PROGRAM COMPILER

Several sets of NIF/DCPCODE can exist in the
disk file directory under different prefixes (e.g.,
A/NIF, A/DCPCODE, B/NIF, B/DCPCODE) but
only one set can be operational at a time. These
can be exchanged without affecting main
memory or any non-data comm programs.

The Message Control System (MCS)

MCSs are designed to provide many aspects of
control. Among these are the ability to:

• Control the stations attached to it (as de­
clared in NOL);
Make a station ready/not ready to com­
municate;

• Accept input from a station;
• Assign or deny a station access to a file;
• Switch messages;

Reconfigure the network in event of
failures.

Burroughs supplies several MCSs for the
B 6800 to handle many common data comm
environments.

CAN DE (Command AND Edit) is the time shar­
ing MCS. It includes the ability to create disk
files, edit them, compile programs and execute
them.

RJE (Remote Job Entry) provides the ability to
submit input files (e.g., card decks) to the cen­
tral system and receive printed output from the
central system for remotely originated jobs.

DIAG NOSTICMCS is provided for trouble­
shooting data comm lines/models or DCPs. It is
used especially in conjunction with a hardware
device called a OLM (Data Line Monitor).

LINE TO BE MONITORED

OCP CLUSTER PATCH

OLM

GEMCOS (GEneralized Message COntrol Sys­
tem) is a program product designed to rapidly
provide users with a Message Control System
(MCS) that is tailored to meet the specific re­
quirements of a given installation. The MCS is
transaction oriented, and provides users with

39

the flexibility to meet a board range of
throughput and processing requirements.
G EMCOS anticipates and provides for a
dynamic operating environment. Flexibility
and efficiency are the key words for this pro­
duct. A major consideration from the user
viewpoint is that the GEMCOS product is also
relatively simple to learn, install, and interface.

Highlights of Burroughs Generalized Message
Control System

• Transaction Control Language
• Access Control
• Message Routing
• Message Formatting
• Message Paging
• User Program Reentrancy
• Recovery, Including Synchronization with

Data Base Rollback
Network Control

• Administrative Message Switching
• Retransmission of Output, Upon Request

An MCS provides the data communications
user with a viable interface between the Data
Communications Processor (DCP) and the
application programs that are to process trans­
actions associated with remote terminals. The
DCP is pictured as the heart of the data com­
munications system in that it controls line dis­
ciplines and physical network 1/0. The MCS is
envisioned as the brain of the data communica­
tions system in that it provides the intelligence
necessary for objective decision making re­
garding the disposition of messages once they
have been assembled. The MCS and DCPswork
together to provide overall control of the data
communications system. As a result, a user's
application programs can be designed, and in
fact implemented, independent of the
network/terminal environment in which they
will operate. Burroughs B 7800/B 6800 GEM­
COS accommodates change in order to protect
user investment in application programs.

GEMCOS MAIN FEATURES

Transaction Control Language

The various environments under which the
MCS operates dictated that Burroughs develop
a simple method which would allow users to
describe requirements unique to their specific
environment. The MCS must then adapt to
meet those requirements. Both the require­
ments and the environment are expected to be

dynamic. The method chosen to allow this
description is the Transaction Control Lan­
guage (TCL).

The user utilizes TCL to provide information
such as message routing criteria, and certain
MCS options selected. In addition, TCL is used
to describe: access-control requirements;
message formatting and paging criteria;
dynamic load control criteria for user pro­
grams; the types of recovery selected for user
programs.

The language is of free-form structure, utilizing
key words to describe both the environment
and the requirements of the data communica­
tions user. The result of a TCL compilation is the
generation of a set of customized tables. The
MCS code which interprets those tables is
modular in structure. The GEMCOS design is
totally compatible with the virtual memory
concept.

As a by-product, the TCL compiler optionally
provides users with a hard-copy record of their
data communications system description.

Access Control

Access Control is optionally available on a
station-by-station basis. If Access Control is de­
clared to be in effect for a given station, the
legitimate users of that station can be specified.
Additionally, a valid sign-on procedure at the
station is required to gain access to the system.
Specific limitations can be described as to
which transactions are to be allowed for the
particular user signing on at the station. Addi­
tionally, a mechanism is provided which allows
a user-written program to participate in evalua­
tion of sign-ons prior to access being granted.

Routing

Many types of message routing are provided
by the MCS. Messages can be routed from sta­
tion to station(s), station to user program, user
program to station(s), user program to broad­
cast lists, Batch Transaction Processor to user
programs, and user program to Batch Transac­
tion Processor. In instances where a message is
to be routed to a station and the station is out of
service, a chain of alternate stations can be
specified in TCL.

Station-to-station(s) messages are considered
to be Administrative Messages which flow

through the system, are audited and delivered
to the specified destination stations.

Routing for station-to-user program transac­
tions is normally determined by examination of
the message key (defined in TCL) which is con­
tained within the message. An option also
exists for a station to attach itself to a user
program. When a station is attached to a user
program, message keys are not examined by
the MCS.

User programs can address output to specific
stations on a station-by-station basis. User
programs can also address output to Areas. A
label is associated with a list of stations in TCL.
This list is considered to be an "Area." The
output message will be broadcast to all stations
listed for the Area. A rotary list can also be
associated with an Output Area. The output
message will be delivered to the station within
a rotary list that has the shortest queue at re­
quest time. The Area feature allows users to
make final determination of output distribution
after programs have been written. This means
that user programs can be written without
knowledge of the network with which they will
interact. Association of Area labels and lists
occurs at TCL generation time.

A Batch Transaction Processor is a special type
of user-written program which can read a tape,
disk, or card file and route transactions to user
programs via the MCS queues. A user program
processing a transaction in this mode is then
expected to issue a response to the Batch
Transaction Processor to indicate completion.
This mechanism allows for concurrent batch/
on-line updating of the same data fields within
a data base and still allows synchronized data
base recovery. In addition, this mechanism
provides the ability to more closely control the
batch-transaction throughput rate.

40

Formatting

Formatting of messages, independent of user
programs, is provided as an option via a special
subset of the Transaction Control Language.
The Formatting feature of GEMCOS can pro­
vide the application programmer with true de­
vice independence. A user writing an applica­
tion is not required to know hardware control
codes or buffer capacity for the various termi­
nals on the network. Rather, the application
programmer can deal with data strings at the
point of MCS interface. A user independently

describes in TCL the formatting to be per­
formed by the MCS on those data strings.

The MCS retrieves format descriptions, based
upon both the message-identification key and
the device class of the station involved and
applies the format to the data. This allows tre­
mendous flexibility at the stations, transparent
to the application programmer. For example,
the application program can tell the MCS to
output a given message to two stations on the
same network. If those two stations are de­
scribed as being in different device classes, the
resulting output can be drastically different
based upon two different format descriptions
provided in TCL. Different formats imply that
such data field characteristics as length, sequ­
ence, form information, and whether certain
fields are required or optional, can vary from
station to station. Conversely, two different sta­
tions can supply input for the same type of
transaction under different formats, and the
data will arrive at the application program in a
standard format. In fact, in cases where each
input field from a terminal is delimited by a
unique key, the sequence of data entry can vary
from transaction to transaction at the same sta­
tion, even though the same type of transaction
is being repetitively performed. Such activity
will be transparent to the application program
under the Formatting feature of GEMCOS.

Some of the other capabilities provided under
Formatting include:

Forms retrieval
Format modification without compilation
of or interruption to application programs.
Paging of both input and output, including
forms.
Numeric field verification.

• Variable-length fields, with zero/space fill
and right/left justification.

The Formatting feature of GEMCOS provides
the user with the ability to have flexibility out on
the network, and at the same time device inde­
pendence at the application program level.

Paging

Paging means that a string of characters con­
stituting a single logical message must be
physically segmented because the buffer
capacity of the terminal involved has been ex­
ceeded. In effect, the MCS will act as an exten­
sion to that terminal's buffer capacity. Multiple

41

types of terminals, each having a different buf­
fer capacity, can be utilized for the same multi­
page transaction. The physical segmentation
for each type will vary based upon buffer capac­
ity. This variation is transparent to the applica­
tion program involved.

Input, Display, and Update paging are pro­
vided:

Input paging allows a terminal operator to
enter a logical transaction into the system
in a series of transmissions. That operator
has the option to review pages and make
corrections prior to releasing the transac­
tion for processing.
Display paging allows an application
program to direct an output message to a
terminal, where the message exceeds that
terminal's buffer size. The MCS will de­
liverthe first page automatically. Succeed­
ing output transmissions are based upon
terminal operator request. Browsing is
permitted in both the forward and back­
ward directions. The operator may ter­
minate or return to the start of the transac­
tion at any time.
Update paging is a combination of Display
and Input paging. An application program
provides data to the terminal operator in
the form of an output message. The ter­
minal operator is permitted to review an
output page and either change the unpro­
tected data or leave it the same. The
operator is then normally expected to re­
turn the page to the MCS. The MCS will
then provide the operator with another
page to work on, until the operator indi­
cates that the transaction is to be released
for processing. Browsing is permitted in
both directions.

Reentrancy

Parallel processing of a wide variety of transac­
tions is considered to be the normal mode
throughout the total system. Parallel proces­
sing by a single application program of multi­
ple transactions is readily available through the
Reentrancy feature of GEMCOS, and can be
totally transparent to the application pro­
grammer. Reentrancy implies that at any point
in time multiple executions of the same prog­
ram code can be in process for separate trans­
actions. In addition, physical executions of any
program can be concurrent on multiple­
processor systems. Only one copy of the
machine code is present in reentrant mode.

Based upon user specification, the MCS will
dynamically initiate new executions of user
programs as dictated by run-time transaction
loads. Conversely, as volumes drop, the MCS
will initiate termination procedures for user
programs. The purpose of the Reentrancy fea­
ture is to provide the user with the ability to
dynamically adapt to changing network de­
mands, in order that response times can be
minimized through parallel processing.

Recovery

The B 7800/B 6800 GEMCOS program product
provides a range of recovery capabilities within
the Transaction Control Language. The user
has the flexibility to analyze application­
oriented needs and then, on a program-by­
program basis, select the recovery options re­
quired.

Recovery is invoked when some failure has oc­
cured which interrupts normal processing of
transactions and which requires corrective ac­
tion. The reestablishment of normal processing
is considered to be the result of the recovery
process.

It is desirable to free user programmers from
recovery concerns to the maximum extent pos­
sible, since recovery solutions are often ex­
tremely complex. Burroughs accepts responsi­
bility for playing a major role in assisting the
user during the actual recovery process. The
goal of GEMCOS is to make the recovery pro­
cess transparent to application programs. In
return, the user is expected to follow several
straightforward programming conventions for
normal processing. These conventions vary
slightly, based upon the level of recovery re­
quired.

The MCS will automatically generate an audit
trail of input/output transaction images to disk
or disk pack. Generation of this audit trail is
transparent to the application program.

The audit trail provides protection for message
queues. It is the MCSs responsibility to reestab­
lish transaction queues during the recovery
process.

Recovery capabilities range from a rather con­
ventional checkpoint/restart technique to an
automatic transaction-queue, application
program, and data base rollback-and­
synchronization scheme. Once again, the em­
phasis is on providing users with the flexibility

42

to easily adapt in order to effectively meet a
broad range of on-line data processing re­
quirements. B 7800/B 6800 GEMCOS is
continuous-processing oriented.

Network Control

In order to dynamically affect certain levels of
control over the data communications proces­
sing environment, the user has the capability to
identify certain Network Control Stations. Such
stations are privileged in that they may partici­
pate in various network management-oriented
transactions. The MCS notifies these stations of
various exception conditions as they occur.
Network Control Stations are permitted to
make various inquiries to the MCS. In addition,
these stations may dynamically alter a subset
of the Transaction Control Language features.
Included within the scope of a Network Control
Station is the ability to notify the MCS that the
on-line network is being physically recon­
figured. The system takes appropriate action
such that only those stations experiencing re­
configuration need be temporarily out of ser­
vice.

ADDITIONAL GEMCOS FEATURES

• A variety of statistical information con­
cerning stations, programs, and the MCS
is available to the user in a real time mode.
In addition to real time accessable statis­
tics, a set of files is provided containing
input and output messages. Using these
files the user can obtain statistics concern­
ing peak-load conditions, network utiliza­
tion and response times. This allows fine
tuning of a system following initial im­
plementation.

• Retransmission of output upon request.
This feature can be useful in the event of
paper jam or tears at a terminal.

• The system as a whole detects, diagnoses,
and recovers from a variety of error situa­
tions.

• A Line Analyzer software module is con­
tained within the MCS. This module is de­
signed to work in conjunction with a
hardware component to troubleshoot
various terminal/line/data set/adapter­
oriented problems.
Network Control Stations can monitor
transmissions to/from stations on the
network transparent to the network.

• The capabilityto pass user programs fixed
data relating to input stations and/or the
particular transaction type is provided.

• User programs can be described as PER­
MANENT or TEMPORARY. This descrip­
tion determines whether a program will
normally terminate when there are no
input transactions queued for it for some
user-defined period of time. Describing a
program as PERMANENT does not mean
that the code segments of that program
will permanently reside in main memory.

• An interface is provided for generalized,
user-written routines.

• Administrative Message Switching is
permitted between stations on the net­
work.
Routing headers for computer-to­
computer transmission are provided for.

• User programs must be written in higher­
level languages. Assembler code is not
used on the B 7800/B 6800. The MCS is
capable of interfacing combinations of
COBOL, PL/1, and ALGOL.

• A special GEl\i'ICOS subsystem assists
users in analyzing their basic system de­
sign prior to implementation. It allows
transactions to actually be transmitted
across lines, flow through the MCS to user
programs, and result in data base access
and response generation. The user can
measure actual data movement capacity
under varying structural environments.

Application Program Considerations

Since the communications software is totally
contained within the three functionally sepa­
rate modules (NDL, DCC, MCS), the application
program is not concerned with communica­
tions. To wit:

• A non-data comm program reads a logical
record from a card reader and writes a
logical record to a line printer;

• A non-data comm program reads a logical
record from a disk file and writes a logical
record back to a disk file;

• A non-data comm program reads a logical
record from a disk file with an actual key
and writes back to the disk file with a
different actual key;

• A data comm program uses a "remote
file" like a random access disk file;

• The application does a "WRITE" to a file,
giving the logical record. The DCC/DCP
does a physical write including start bits,
stop bits, etc., using information as to
which physical terminal is attached to the
file. All this is masked from the application

43

program;
• The application does a "READ" from a file

to get the logical record (i.e., message
text). The DCC/DCP does a physical read
from the terminal attached to the file.
Again, this is masked from the application
program;

• For a multi-station file, as declared in NDL,
the application can write to any station in
the file.

Let's take an example of FILE F2 with a family of
stations = A3, 81, C2. The "relative station
number" (RSN) for these stations in this file is
A3:1, 81 :2, C2:3. The application can write to
one particular station by specifying RSN in the
actual key. By specifying RSN = 0, the applica­
tion can do a "broadcast write" to all stations in
the file.

When the application does a read from the file,
it may wish to know which station submitted
the message. The application can find out by
interrogating the LASTSTATION file attribute
(maintained by the DCC):

Write to file F2, RSN = 3, msg. goes to C2 only.
Write to file F2, RSN = 0, msgs. go to A3, 81, C2
only.

The application can find other information
about the file via file attributes (and about the
station via file attributes specifying RSN),
e.g.,

FAMILY - Can read or add new station to
file family

TITLE - Station name

WIDTH - Of buffer in the physical termi­
nal

TIMELIMIT -Can set this on a read, so the
application can take action if
no input is received within a
certain time

SCREEN - Denotes whether or not the
terminal is a screen device

The MCS is informed when a remote file is
opened by an application program. At that
point it can either assign the station(s) (to the

file) as declared in NDL or it can deny the as­
signment. In this event the application would
take end-of-file action.

The MCS may intercept each message and pass
it on (e.g., for logging orfor a trail for recovery),
or it may relinquish any responsibility for it.

If a file assignment is allowed and the MCS
decides to be non-participating, messages then
bypass the MCS. The MCS will become in­
volved only when end-of-file action is taken by
a convention established between the applica­
tion program and the terminal users, or the
application closes the file.

APPLICATION
PROGRAM
~
~ J~

All error messages for a given station go to its
controlling MCS, as do control messages (e.g.,
messages with the first character = NDL­
supplied "control character"). For example, if
CONTROL CHARACTER = "?",then the MCS
can specify several messages to itself. For
example, "?WRU" (who are you) might give an
identifying response, while all other messages
transmitted from the terminal go to an as­
signed file (e.g., terminal input).

For example, a sample terminal session might
appear as follows:

44

ONE (TERMINAL INPUT)
TWO (APPLICATION RESPONSE)
?WRU (TERMINAL INPUT)
#I AM CANOE (output) (MCS RESPONSE)
THREE (TERMINAL INPUT)
END (convention for end-of-file)

Note that a station can be attached to only
one controlling MCS at a time.

• Also note that with a non-participating
MCS, a station can be attached to many
output files but to only one input file
(otherwise, to which file would input be
sent?). The MCS can also, for multiple
output files, postpone assignment or
could request the terminal operator to ac­
cept output or not.

• The MCS can also have multiple applica­
tions reading the same file (station).

• When no file assignment exists, all mes­
sages go to the MCS.

APPLICATION
PROGRAM 1

APPLICATION !+-~~-,..,_--
PROGRAM 2

APPLICATION
PROGRAM 3

OUTPUT

~

In a typical B 6800 one is likely to find several
MCSs running simultaneously.

Burroughs ID

1110384 July 1978

