
inted in U.S. America

Burroughs

B 6700

MASTER CONTROL PROGRAM

INFORMATION MANUAL

11-70 5000086

LIST OF EFFECTIVE PAGES
NOTE: Insert latest changed page;
dispose of superseded pages.

TOTAL NUMBER OF PAGES IN THIS MANUAL IS 212 CONSISTING OF THE FOJ;..LOWING:

Page No. Issue Page No.

TITLE
LIST OF EFFECTIVE PAG.ES
CONTENTS.

ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL

ILLUSTRATIONS
1 thru 204

COPYRIGHT @ 1970 BURROUGHS CORPORATION

Burroughs Corporation believes the program described in this
manual to be accurate and reliable, and much care has been
taken in its preparation. However, the Corporation cannot
accept any responsibility, financial or otherwise, for any con­
sequences arising out of the use of this material. The infor­
mation contained herein is subject to change. Revisions may
be issued to advise of such changes and/or additions.

Issue

•

1 .

2.

B6700 MASTER CONTROL PROGRAM

TABLE OF CONTENTS
INTRODUCTION
1.1. FUNCTION OF THE MCP

1. 1. 1. INTEGRATIVE ACTION OF THE MCP ..
1.1.2. RATE OF PROCESSING AND THE MCP.

1.2. THE MCP AND ESPOL ..
MACHINE-HCP INTERACTION ..

2.1. SYSTEM INITIALIZATION AND INITIALIZATION FUNCTION
2.1.1. DATE FUNCTION.
2. 1. 2.

2. 1. 3.

2. 1.4.

2. 1. 5.

2. 1. 6.

SCREENS FUNCTION .. .
OVERLAY FUNCTION .. .
DIRECTORY FUNCTION ..
LOAD FUNCTION ..•
TERMINAL FUNCTION .

2.1.7. OPTION FUNCTION.
2.2. HARDWARE INTERRUPTS ..

2. 2. 1.

2.2.2.
INTRODUCTION ...
CONTROL AND NORMAL STATE.

2.2.3. HARDWARE INTERRUPTS AND STACK STRUCTURE ..
2.2.3.1. SYLLABLE DEPENDENT INTERRUPTS ...
2.2.3.2. ALARM INTERRUPTS ...
2.2.3.3. EXTERNAL INTERRUPTS .

2.3. STORAGE CONTROL .•........
2.3.1. DYNAMIC STORAGE ALLOCATION.
2.3.2. ADDRESS SPACE CONTROL ...

2.4.

2. 3.2. 1.
2.3.2.2.
2.~.2.3:

2.3.2.4.
2.3.2.5.

PRIMARY CORE CONTROL ROUTINES
OVERLAY ROUTINES.
OVERLAY DISK CONTROL ROUTINES ..
GETSPACE FAILURE MECHANISM.
PROGRAM INTRINSICS ..

SYSTEM RECONFIGURATION
3. MULTIPROCESSING

3.1. RE-ENTRANT OBJECT PROGRAMS.
3. 1 . 1 . INTRODUCTION. .
3. 1 . 2. SEGMENTATION. .
3.1.3. RE-ENTRANT CODE

PAGE
PAGE

3

3
PAGE 3
PAGE 3
PAGE 4
PAGE 7
PAGE 7
PAGE 7
PAGE 8
PAGE 8

PAGE 9
PAGE 9

PAGE 10
PAGE 10
PAGE 13
PAGE 13
PAGE 13
PAGE 14
PAGE 17
PAGE 18
PAGE 20
PAGE
PAGE
PAGE

23
23
23

PAGE 26
PAGE 28
PAGE 30
PAGE 31
PAGE 31
PAGE 38
PAGE 41
PAGE 41
PAGE 41
PAGE 42
PAGE 43

4.

3.2.

B6700 ·MASTER CONTROL PROGRAM

COMPILATION . . PAGE
. . PAGE

PAGE
3. 2. 1.

3.2.2.
3.2.3.
3.2.4.
3.2.5.

INTRODUCTION
RECOGNITION OF A COMPILER BY THE MCP ..
COMMUNICATION BETWEEN A COMPILER AND THE MCP .. PAGE
CONSTRUCTION OF COMPILER OBJECT CODE FILES ... PAGE
SCHEDULING INFORMATION ...

3.3. PROCESS HANDLING
. PAGE
. PAGE

. PAGE

47
47
47
47
47
48
49
49
52
54
56
57
59
59
60
63

3.4.

3.5.
3.6.
3.7.

3.3. 1. "CONTROL CARD" PROCEDURE ..
3.3.2.
3.3.3.
3.3.4.
3.3.5.

PROCESS INITIATION .. .
PROCESS EXECUTION
PRIORITY CONSIDERATIONS
PROCESS TERMINATION ...

TA SK I NG
3. 4. 1.

3.4.2.
3.4.3.

TASKING IMPLEMENTATION.
TASK ATTRIBUTES
TASK VARIABLES ..

MULTIPROGRAMMING.
PARALLEL PROCESS I NG
PROCESS TO PROCESS COMMUNICATION.

. . PAGE
. . . PAGE;

PAGE
. . PAGE

. . . PAGE
. . PAGE

PAGE
. PAGE

. . . PAGE 64
. . . . PAGE 66

. . . PAGE 67
FILE HANDLING PAGE 75

75
76
76
77
78
78
78

4.1. INTRODUCTION. PAGE
4.2. FILE LABEL FORMAT FOR PERIPHERAL UNITS. PAGE

4.2.1. CARD FILES. • . .•..... PAGE
4.2.2. PRINTER FILES PAGE
4.2.3.
4.2.4.
4.2.5.

CARD-PUNCH. . .
PAPER TAPE. .
UNLABELED TAPE FILES ..

4.2.6 .. LABELED TAPE-FILES ...
4.2.7. DISK FILE STRUCTURE ..

4.2.7.1. DISK FILE AREA ..
4.2.7.1 .1. FILE HEADER
4.2.7.1.2. DISK FILE RECORDS.

4.2.7.2. DISK DIRECTORY

. . . PAGE

. . . PAGE
PAGE
PAGE 79

. PAGE 84
. . . PAGE 84
. . . PAGE 86

. . PAGE
. . . PAGE

87
88

4.3. PERIPHERAL UNIT AND SYMBOLIC FILE ASSIGNMENT. . . PAGE 92
. PAGE 92 4.3.1. MCP PROCEDURE "STATUS". . ..

4.4. FILE AND CONTROL BLOCKS PAGE 94

4. 4. 1 •

4.4.2.

86700 MASTER CONTROL PROGRAM

PROCESS PARAMETER BLOCK CPPB>
LABEL EQUATION BLOCK CLEB>.

4.4.3. FILE INFORMATION BLOCK CFIB>
4.5. FILE OPEN

4.5.1. STEPS IN OPENING A FILE
4.5.2. THE RECORD POINTER.

4.6. FILE CLOSE
4.6.1. TYPES OF FILE CLOSE
4.6.2. FILE CLOSE ERRORS

4.7. DISK FILE SECURITY.
4.7.1. CLASS A FILES.
4.7.2. CLASS B FILES
4.7.3. CLASS C FILES
4.7.4. RELATIONSHIP BETWEEN THE SECURITY CLASSES

5. INPUT/OUTPUT.
5.1. MCP l/O PROCEDURES

5.2.
5.3.

5.1.1.

5. 1 .2.
5.1.3.
5.1.4.
5.1 .5.
5.1 .6.
5.1.7.

5. 1.8.
5.1.9.

5.1.10.

PERIPHERALINITIALIZE.
STATUS
READALABEL ..
WAITIO ..
DISKWAIT.
DISKIO. .
IOREQUEST .
STARTIO ..
INITIATEIO.

IOFINISH .
5.1.11. FINDINPUT AND FINDOUTPUT

DIRECT 110 . .

BUFFERED I/O.
5.3.1.
5.3.2.
5.3.3.
5.3.4.
5.3r5•

LOGICAL RECORD AND PHYSICAL RECORD.
BLOCK I NG.
MULTIPLE BUFFERS
RANDOM RECORD ACCESS.
SEEK. .

6. UTILITY FUNCTIONS .
6.1. LOAD CONTROL.

PAGE 96
PAGE 96
PAGE 96

PAGE 100
PAGE 1 00
PAGE
PAGE

1 0 1
103

PAGE 103
PAGE 103
PAGE 105

PAGE 105

PAGE 1 o::
PAGE lOE

PAGE 1 OE

PAGE 1 OE

PAGE 1 OE

PAGE 1 OE

PAGE 1 OE

PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE
PAGE

1 OE

1 OE

1m
1 o~

1 o~
1 1 :
1 }L

111
PAGE 11!
PAGE 11 !
PAGE 11'
PAGE 11!

PAGE 12
PAGE 12
PAGE 12,
PAGE 12
PAGE 14
PAGE 14

6.1.1.

6. 1 .2.

6. 1. 3.

6. 1.4.

6. 1. 5.

86700 ~ASTER CONTROL PROGRAM

INTRODUCTION
SYSTEM/LOADCONTROL
PSEUDO CARD DECKS ON DISK .
ERROR CHECKING IN SYSTEM/LOADCONTROL.
PSEUDO CARD READERS

6.1.6. ERROR HANDLING IN THE PSEUDO CARD DECK.
. 6.2. PRINTER AND PUNCH BACKUP ...

6. 2. 1.

6.2.2.
INTRODUCTION
SPECIAL FORMS

6.2.3. CLOSING A BACKUP FILE ON DISK
6.2.4. PRINTER BACKUP SPO INPUT MESSAGES

6.3. LIBRARY MAINTENANCE
6.4. SYSTEM LOGS

6. 4. 1. THE SYSTEM LOG.
6.4.1.1. SYSTEM LOG ENTRIES ..
6.4.1.2. SYSTEM LOG RELEASE ...
6.4.1.3. SYSTEM LOG RETRIEVAL ..
6.4.1.4. OPERATOR INPUT

6.4.2. MAINTENANCE LOG
6.5. LIST DIRECTORY

6.5.1. PARTIAL DIRECTORY INFORMATION.
6.6. INTRINSIC FUNCTIONS
6.7. CARD/LINE

'PPENDIX A - OPERATOR-MCP COMMUNICATIONS ..
A-1.
A-2.

DISPLAY OF STATUS
MESSAGES

A-3. CONTROL CARDS.
~PPENDIX B - SYSTEM LOG FORMATS .

8-1. SYSTEM LOG
8-2. MAINTENANCE LOG

•

PAGE 142
PAGE 142
PAGE 143
PAGE 144
PAGE 144
PAGE 145
PAGE 146
PAGE 146
PAGE 147
PAGE 148
PAGE 148
PAGE 153
PAGE 156
PAGE 156
PAGE 156
PAGE 157
PAGE 158
PAGE 159
PAGE 159
PAGE 160
PAGE 160
PAGE 162
PAGE 163
PAGE 165
PAGE 165
PAGE 170
PAGE 185
PAGE 196
PAGE 196
PAGE 203

..

ILLUSTRATIONS -------------

FIGURE F2-1. ESPOL CODE FILE 12
FIGURE F2-2. STACK PRIOR TO INTERRUPT PROCEDURE ENTRY 16
FIGURE F2-3. STACK FOLLOWING INTERRUPT PROCEDURE ENTRY . . 16
FIGURE F2-4. DEPENDENCY CHART FOR STORAGE CONTROL . . . 25
FIGURE F2-5. DYNAMIC ARRAYS 33
FIGURE F2-6. EXPANSION OF AIT ENTRIES INTO DOPE VECTORS 34

AND AFTER TWO CALLS ON PRESENCEBIT
FIGURE F2-7. MEMORY LINKS 35
FIGURE F2-8. GOTOSOLVER ACTION 37
FIGURE F3-1. 86700 REENTRANT PROGRAM STACK STRUCTURE . 44/45

FIGURE F3-2. MCP USE OF QUEUE ALGORITHMS FOR READYQ, 51
SHEETQ, TERMQ

FIGURE F3-3. STACK WAITING IN READYQ, ABOUT TO CALL . 53
USER, USERS OUTER BLOCK

FIGURE F3-4. EXAMPLE 68
FIGURE F3-5. EVENT INTERRUPT QUEUE, SINGLE PROCESS 70
FIGURE F3-6 .. EVENT INTERRUPT QUEUE, MULTIPLE PROCESS . . . 70
FIGURE F3-7. EVENT QUEUES 73
FIGURE F4-l. B6700 USASI FILE HEADERS . . . 82/83

FIGURE F4-2. 86700 FILE DIRECTORY 85
FIGURE F4-3. FILE DIRECTORY ORGANIZATION 90/91

FIGURE F4-4. PPB, LES, FIB FORMAT . . . 95
FIGURE F4-5. FILE/STACK RELATION 98
FIGURE F4-6. .JOB AND FILE ASSOCIATION 99
FIGURE F5-l. WAITCHANNELQUE EXPLANATION 1 1 0
FIGURE F5-2. 110 CONTROL SYSTEM FUNCTIONAL BLOCK DIAGRAM . . 1 12
FIGURE F5-3. MCP I 10 QUEUE 1 18
FIGURE F5-4. INTRINSIC CALLS 120
FIGURE F5-5. DETAIL OF 1/0 INTRINSIC CALLS . 124
FIGURE F5-6. STARTIOCUJ FLOW 125
FIGURE F5-7. WAITIO GENERAL FLOW . . 126
FIGURE F5-8. WAITIO FLOW 127
FIGURE F5-9. IOREQUESTCIOCBJ FLOW . 128
FIGURE F5-10. NEW IO 129

•

FIGURE F5- l 1 . IOFINISH GENERAL FLOW 130

FIGURE F5-12. IOFINISH FLOW (1) 131

FIGURE F5-13. IOFINISH FLOW (2 l • 132

FIGURE F5-14. IOFINISH FLOW (3) • 133

FIGURE F5-15. IOERROR GENERAL FLOW • 134

FIGURE F5-16. IOERRORCRD> FLOW (1) 135

FIGURE F5-17. IOERROR<RD> FLOW (2) • 136

FIGURE F5-18. IOERROR<RD> FLOW (3) • 137

FIGURE F5-19. IOERROR<RD> FLOW (4) 138

FIGURE F5-20. IOERRORCRD> FLOW (5) 139

86700 'MASTER CONTROL PROGRAM
PAGE

PREFACE

THIS DOCUMENT DESCRIBES THE FUNCTION AND STRUCTURE OF THE B6700 MASTER
CONTROL PROGRAM CMCPl. SECTIONS 2 AND 3 DESCRIBE CONTROL FUNCTIONS
WHILE SECTIONS 4 AND 5 ARE MORE CONCERNED WITH INPUT AND OUTPUT.
SECTION 6 DESCRIBES A NUMBER OF UTILITY FUNCTIONS PROVIDED AS PART OF
THE B6700 SYSTEM SOFTWARE FOR THE CONVENIENCE OF THE USER.

THE READER SHOULD HAVE SOME ACQUAINTANCE WITH THE B6700 MACHINE HARDWARE
AND THE B6700 ESPOL LANGUAGE.

86700 MASTER CONTROL PROGRAM
PAGE 2

SECTION 1

INTRODUCTION

PAGE 3
86700 MASTER CONTROL PROGRAM

1 . INTRODUCTION

1. 1. FUNCTION OF THE MCP

THE PRIMARY FUNCTION OF THE B6700 MASTER CONTROL PROGRAM IS TO INCREASE
THE EFFICIENCY OF THE B6700 INFORMATION PROCESSING SYSTEM. BY
INTEGRATING USERS OBJECT PROGRAMS WITH THE SOFTWARE-COMPATIBLE B6700
HARDWARE SYSTEM AND HIGH SPEED DISK, THE MCP OPTIMIZES THE PRODUCTIVITY
OF THE B6700 INFORMATION PROCESSING SYSTEM. THE MCP IS, THEREFORE, AN
ESSENTIAL PART OF THE PROCESSING ENVIRONMENT OF THE B6700 SYSTEM.

INTEGRATIVE ACTION OF THE MCP

THE INTEGRATIVE ACTION OF THE B6700 MCP IS ACHIEVED IN THREE WAYS:

1. BY ITS CAPABILITY OF COORDINATING THE EXECUTION OF MANY PROGRAMS
OR JOBS IN THE PROCESSOR OR PROCESSORS.

2.

3.

1. 1.2.

BY. ITS CAPABILITY OF CONTROLLING BOTH INPUT AND OUTPUT SO AS TO
MAKE OPTIMAL USE OF THE RELATIVELY SLOW PERIPHERAL DEVICES.

BY ITS CAPABILITY OF TAKING EXECUTIVE ACTION TO MINIMIZE THE
ADVERSE AFFECTS OF SYSTEM DEGRAD~TION.

RATE OF PROCESSING AND THE MCP

THE OVERALL RATE AT WHICH JOBS CAN BE PROCESSED IS INCREASED IN THE
FOLLOWING THREE WAYS:

1. BY INCREASING THE SPEED OF EXECUTION OF INDIVIDUAL USER PROGRAMS.
THIS CAN BE ACHIEVED BY THE USE OF A COMBINATION OF SEVERAL
FACILITIES, AS FOLLOWS:

A. PARALLEL PROCESSING WITH THE INTRODUCTION OF A SECOND

PAGE 4 ·
B6700 MASTER CONTROL PROGRAM

PROCESSOR.

B. MULTIPROGRAMMING - THE RUNNING OF SEVERAL JOBS CONCURRENTLY.
THE MCP MAINTAINS A LIST OF JOBS READY TO RUN ORDERED BY
PRIORITY. WHEN A RUNNING JOB MUST FOR EXAMPLE WAIT FOR AN
INPUT OR OUTPUT OPERATION TO BE COMPLETED THE MCP WILL START
UP THE NEXT JOB IN THE READY LIST, AND RESTART THE ORIGINAL
JOB WHEN THE I/O OPERATION HAS BEEN COMPLETED AND NO JOBS OF
HIGHER PRIORITY ARE IN THE READY LIST.

C. RE-ENTRANT CODE WHEREBY A SINGLE COPY OF A ROUTINE IN
MEMORY CAN BE SHARED BY SEVERAL PROGRAMS.

D. TASKING WHEREBY FAMILIES OF TASKS ARE PROCESSED IN A
COORDINATED MANNER.

2. BY INCREASING THE SPEED OF DATA HANDLING. FOR THIS PURPOSE TWO
FACILITIES ARE PROVIDED IN THE UTILITY SECTION OF THE MCP .

3.

A . LOAOCONTROL
DISK OR TAPE.
TO DIFFERENT

•
THIS ENABLES CARO INPUT TO BE TRANSFERRED TO

THE CARD IMAGE FILES SO FORMED ARE ASSIGNED
PSEUDO CARO READERS WHICH ARE THEN TREATED BY

THE MCP AS IF THEY WERE REAL PHYSICAL CARO READERS.

B. PRINTER ANO PUNCH BACKUP - THIS ENABLES OUTPUT TO BE PLACED
ON TAPE OR DISK AND THEN PRINTED OR PUNCHED OUT AT A LATER,
MORE CONVENIENT TIME.

BY INCREASING
ENGLISH-LIKE
ASSIGNMENT OF

THE EASE OF OPERATING THE MACHINE. SIMPLE
OPERATOR ATTENTION ANO ERROR MESSAGES, AUTOMATIC

LABELED FILES TO JOBS WITHOUT OPERATOR
INTERVENTION, A SIMPLIFIED CONTROL CARO LANGUAGE AND OTHER
FEATURES HELP INCREASE THROUGHPUT ON THE B6700 SYSTEM.

1.2. THE MCP ANO ESPOL

PAGE 5
86700· MASTER CONTROL PROGRAM

THE 86700 MASTER CONTROL PROGRAM IS WRITTEN IN THE 86700 ESPOL LANGUAGE.
86700 ESPOL IS AN EXTENSION OF 86700 ALGOL AND IS DESCRIBED IN THE 86700
ESPOL INFORMATION MANUAL.

.._.

86700 MASTER CONTROL PROGRAM
PAGE 6.

SECTION2

MACHINE - MCP INTERACTION

PAGE 7
86700' MASTER CONTROL PROGRAM

2. MACHINE-MCP INTERACTION

2. 1. SYSTEM INITIALIZATION ANO INITIALIZATION FUNCTION

THE LOADER FUNCTION IS USED TO LOAD THE MCP CODE FILE FROM TAPE OR DISK
TO DISK ADDRESS ZERO. FROM THIS ADDRESS THE HARDWARE "DISK LOAD SELECT''
FUNCTION CAN PLACE THE MCP IN CONTROL OF THE SYSTEM.

SYNTAX:

<SYSTEM INITIALIZATION FUNCTION> : := <DATE FUNCTION> I

<SCREENS FUNCTION> I <OPTION FUNCTION> I

<OVERLAY FUNCTION> I <DIRECTORY FUNCTION> I

<LOAD FUNCTION> I <TERMINAL FUNCTION>

SEMANTICS:

1. THE SYSTEM INITIALIZATION FUNCTIONS ARE PUNCHED IN EBCDIC ON CARD~

IN FREE FORMAT.

2. SELECTED CARDS ARE PLACED AT THE END OF THE SYSTEM/UTILITY FILE DEC~
'ti

3. THE LOAD FUNCTION IS CONTAINED IN SYSTEM/UTILITY.

2Ll .1. DATE.FUNCTION

SYNTAX:

<DATE FUNCTION> : := DATE <MONTH> <SLASH> <DAY> <SLASH> <YEAR>
<MONTH> : := <DIGIT> <DIGIT> I < DIGIT>
<DAY> : := <DIGIT> <DIGIT> I <DIGIT>
<YEAR> : := <DIGIT> <DIGIT> I <DIGIT>

SEMANTICS

86700· MASTER CONTROL PROGRAM

THE YEAR PART OF THE DATE IS THE YEAR MODULO 100.

EXAMPLE:

DATE 8114/70

2.1.2. SCREENS FUNCTION

SYNTAX:

<SCREENS FUNCTIONS> ::=SCREENS : <CHANNEL DESIGNATE LIST>
<CHANNEL DESIGNATE LIST> ::=<CHANNEL DESIGNATE> I

<CHANNEL DESIGNATE LIST> : <CHANNEL DESIGNATE>
<CHANNEL DESIGNATE> ::=CHANNEL <CHANNEL NO.> ON <CONN LIST>

<DISPLAY LIST>
<CONN LIST> ::=<CONN NO.> I <CONN LIST>, <CONN NO.>
<DISPLAY LIST>::= <DISPLAY ID> I <DISPLAY LIST>, <DISPLAY ID>
<DISPLAY ID> ::=MIX I LP I CR I CP I MT I DK I SC
<CONN NO> : := ~DECIMAL INTEGER BETWEEN I AND MAXIMUM NUMBER OF

GIVEN DISPLAY UNIT~

SEMANTICS:

1. CHANNEL NUMBER REFERS TO A PSEUDO CHANNEL.

PAGE 8

2. THE CONN NUMBER IS A UNIT DESIGNATE FOR A SUPERVISORY CONSOLE.

3. THE DISPLAY LIST IS A LIST OF IDENTIFIERS.

EXAMPLE:

SCREENS : CHANNEL 1 ON 1 MIX

B6700 MASTER CONTROL PROGRAM

2.1 .3. OVERLAY FUNCTION

SYNTAX:

OVERLAY FUNCTION> ::= OLAYROW <ROW SIZE>
<ROW SIZE> · ·= <INTEGER>

SEMANTICS:

PAGE 9

1. ROW SIZE SPECIFIES THE NUMBER OF SEGMENTS TO BE PLACED IN TH
INITIAL ROW OF THE MCP OVERLAY FILE.

2. THE INCLUSION OF AN OVERLAY CARD WILL FORCE A COLD START. A COL
START REMOVES ALL DISK DIRECTORY INFORMATION. NOTE: THE RESIDEN
MCP STILL HAS ACCESS TO ITSELF.

EXAMPLE:

OLAYROW a.+00

2.1.4. DIRECTORY FUNCTION

SYNTAX:

<DIRECTORY FUNCTION> · ·= <DIRECTORY LOCATION> I <DIRECTORY ROW>
<DIRECTORY LOCATION> ::= DIRECTORYLOC <ELECTRONIC UNIT NO.>:

<SEGMENT NO.>
<DIRECTORY ROW> : := DIRECTORYROW <ROW SIZE>

SEMANTICS:

1. THE DIRECTORYLOC CARD WILL FORCE A COLD START.

86700. MASTER CONTROL PROGRAM

2.1.5. LOAD FUNCTION

SYNTAX:

<LOAD FUNCTION> : := <LOAD TAPE> I <LOAD DISK>
<LOAD TAPE> · ·= LOAD <FILE NAME> FROM <TAPE LABEL>
<LOAD DISK> : := LOAD <~ILE NAME> DISK

EXAMPLES:

LOAD SYSTEM/MCP FROM SYSTEM
LOAD SYSTEM/MCP DISK

2.1.6. TE"RMINAL FUNCTION

SYNTAX:

<TERMINAL FUNCTION> ::=STOP/*

SEMANTICS:

PAGE . 10.

1 • THE STOP
IGNORED

CARO CAUSES ANY CARDS FOLLOWING IT TO BE FLUSHED ANO
UNTIL AN El~D CARD IS ENCOUNTERED. CARDS WI TH THE FUNCTIONS

2.

REQUIRED ARE PLACED BEFORE THE STOP CARD AND THE REMAINDER AFTER IT.
IN THIS WAY THE INTEGRITY OF THE DECK OF CARDS CAN BE MAINTAINED.

THE ASTERISK FUNCTION
DEVICE CCARD OR SPOl.

* TRANSFERS CONTROL TO THE OTHER PERIPHERAL
SCANNING WILL BE RESUMED WHERE IT LEFT OFF, J.

E., JUST BEYOND THE * WHEN CONTROL IS RETURNED.

2. 1.7. OPTION FUNCTION

SYNTAX:

B6700 MASTER CONTROL PROGRAM

<OPTION FUNCTION> ::=<SETTING> <OPTION WORD>
<SETTING> : := <SET> I <RESET>
<OPTION WORD> : := <OPTIONING> I <OPTION PAIR>
<OPTIONING> : := <OPEN> I <RET> I <TERMINATE> I <SEGMENT> I <ALL>
<OPTION PAIR> : := <OPTION> <DIGIT> <DIGIT> I <OPTION> <DIGIT>

SEMANTICS:

1. <OPEN> WHEN SET RETURNS A FILE OPEN MESSAGE ON THE SPO.

PAGE 11

2. <RET> WHEN SET RETURNS A
RINGS ARE NOT TO BE PURGED.
OCCURRED.

MESSAGE ON THE SPO IF TAPES WITH WRITE
E.G.~ THE EXPIRATION DATE HAS NOT YET

3. <TERMINATE> WHEN SET GIVES SINGLE PROGRAM DUMPS. WHEN TERMINATE IS
RESET A FULL CORE DUMP IS OBTAINED ON PROGRAM ABORT. NOTE: AFTER A
COLD START TERMINATE IS SET AUTOMATICALLY.

4. IF <SEGMENT> IS SET THE HCP WILL SEGMENT LARGE ARRAYS. IF IT IS
RESET NO SEGMENTATION WILL OCCUR.

5. <ALL> ACTIVATES ALL THE OPTIONS WHEN SET.

6. THE <OPTION> FUNCTION ENABLES AN OPTION TO BE SPECIFIED BY THE
NUMBER FOLLOWING IT. THE NUMBER SHOULD BE BETWEEN 0 AND ~7.

EXAMPLE:

SET TERMINATE

8670ri MASTER CONTROL PROGRAM PAGE 12

ESPOL CODE FILE ON DISK, BEFORE TRANSFER TO MEMORY:

SEGMENT LENGTH PCW TO MEMORY SA
MSCW DESCRIPTOR OF MCP INTERRUPT ARRAY PROC

FOR SAVE1 CODE CODE FILE PROCEDURE DESCRIPTOR c~
.~~RE .~~~.~ I hH ··~~OF l DE DATA CODE MCP

WORD#: 0 2 3 4 5 ...

RESIDENT MCP IMMEDIATELY AFTER
-"

IRW
P2 ~ MSCW TO Pi

\.
WORD3 l

SEGMENT DISK ACOR. OF PCW TO MEMORY s
MSCW DESCRIPTOR MCP INFO INTERRUPT ARRAY PROC

FOR SAVE 1 CODE
TABL.£ * PROCEDURE DESCRIPTOR c

' WORD#:O 2 3 4 8191

OF CODE FILE TO MEMORY:

* (LATER IT WILL BE THE STACK VECTOR OESCRIPT~)

FIGURE F2- I. ESPOL CODE FILE DURING INITIALIZATION OF MCP

86700.MASTER CONTROL PROGRAM
PAGE 13

2.2. HARDWARE INTERRUPTS

2.2.1. INTRODUCTION

THE INTERRUPT HANDLING MECHANISM OF THE MCP DEALS WITH TWO CLASSES OF
INTERRUPTS: HARDWARE INTERRUPTS AND SOFTWARE INTERRUPTS. THE HARDWARE
INTERRUPTS ARE GENERATED AUTOMATICALLY BY THE B6700 SYSTEM AND ARE
HANDLED BY THE MCP INTERRUPT PROCEDURE. SOFTWARE INTERRUPTS ARE
PROGRAMMATICALLY DEFINED FOR USE BY THE MCP AND OBJECT PROGRAM PROCESSES.
SOFTWARE INTERRUPTS ALLOW PROCESSES TO COMMUNICATE WITH EACH OTHER AND
WITH THE MCP.

THE B6700 PROCESSOR HARDWARE INTERRUPT SYSTEM IS THE PRIMARY INTERFACE
BETWEEN THE MCP AND THE HARDWARE. BECAUSE OF THE IMPORTANCE OF THIS
INTERFACE, THE RELEVANT FEATURES OF THE B6700 PROCESSOR WILL BE

DESCRIBED ALONG WITH THE DISCUSSION OF INTERRUPT HANDLING.

AN INTERRUPT IS A MEANS OF DISCONTINUING A PROCESS SUBJECT TO THE
OCCURRENCE OF CERTAIN CONDITIONS. IN ORDER TO FULLY UNDERSTAND THE
OPERATION OF B6700 INTERRUPTS~ AN UNDERSTANDING OF THE CONDITION
"CONTROL STATE" IS REQUIRED.

2.2.2. CONTROL AND NORMAL STATE.

THE B6700 PROCESSOR MAY OPERATE IN ONE OF TWO DISTINCT STATES: NORMAL
STATE OR CONTROL STATE. THE PRIMARY DIFFERENCE BETWEEN NORMAL STATE AND
CONTROL STATE IS THAT EXTERNAL INTERRUPTS ARE DISABLED WHILE A PROCESSOR
IS IN CONTROL STATE. ALSO, THERE ARE CERTAIN OPERATORS, SUCH AS SOME
FORMS OF "SCNO" <SCAN OUTl WHICH CAN ONLY BE EXECUTED BY A PROCESSOR IN
CONTROL STATE.

A PROCESSOR IN NORMAL STATE MAY ENTER CONTROL STATE BY EXECUTING A
"DEX I" l DI SABLE EXTERNAL INTERRUPTS l INSTRUCT I ON OR BY ENTER I NG OR
EXITING TO A CONTROL STATE PROCEDURE. RECIPROCALLY, A PROCESSOR IN

86700.MASTER CONTROL PROGRAM
PAGE . 14

CONTROL STATE MAY ENTER NORMAL STATE BY EITHER EXECUTING AN "EEXI"
CENABLE EXTERNAL INTERRUPTS> INSTRUCTION OR BY ENTERING OR EXITING TO A
NORMAL STATE PROCEDURE.

!T SHOULD BE NOTED THAT WHILE IN CONTROL STATE, A PROCESSOR CAN
SELECTIVELY MASK OUT ANY OR ALL MPX CI/O MULTIPLEXOR> INTERRUPTS BEFORE
EXECUTING AN EEXI. THE RESULT IS A PROCESSOR IN NORMAL STATE WHICH DOES
NOT RECEIVE THE MASKED MPX INTERRUPTS.

2.2.3. HARDWARE INTERRUPTS AND STACK STRUCTURE~

WHEN AN INTERRUPT CONDITION OCCURS, THE INTERRUPTED PROCESSOR MARKS THE
STACK, AND INSERTS THREE WORDS IN THE TOP OF THE STACK. THESE THREE
WORDS ARE FIRST THE IRW CINDIRECT REFERENCE WORD> POINTING TO DCOJ+3,
FOLLOWED BY TWO INTERRUPT PARAMETERS, Pl AND P2, WHICH CONTAIN
INFORMATION INDICATING THE NATURE OF THE INTERRUPT CONDITION. IT IS
EXPECTED THAT DCOJ+3 WILL CONTAIN A PCW CPROGRAM CONTROL WORD> POINTING
TO THE MCP HARDWARE INTERRUPT PROCEDURE: HOWEVER, AN IRW OR IRW CHAIN
POINTING TO A PCW IS A LEGITIMATE CONDITION. THE PROCEDURE POINTED TO
BY THE PCW IS NOW ENTERED AND Pl AND P2 ARE PASSED TO IT AS PARAMETERS.
WHEN THE PROCESSOR ENTERS THE MCP HARDWARE INTERRUPT PROCEDURE, IT
ENTERS CONTROL STATE SO THAT EXTERNAL INTERRUPTS ARE DISABLED. THIS IS
ACCOMPLISHED BY GENERATING THE INTERRUPT PCW WITH THE CONTROL BIT ON.
UPON ENTRY TO THE HARDWARE INTERRUPT PROCEDURE, THE PARAMETER Pl IS
ANALYZED TO DETERMINE THE TYPE OF INTERRUPT WHICH OCCURRED. FOR SOME
INTERRUPTS, SUCH AS PRESENCE-BIT INTERRUPTS, P2 CONTAINS ADDITIONAL
INFORMATION TO BE USED BY THE INTERRUPT PROCEDURE.

THE ACTION TO BE TAKEN FOR EACH KIND OF INTERRUPT IS DESCRIBED IN THE
FOLLOWING SECTIONS. THE DESCRIPTION COVERS THE THREE CLASSES OF
HARDWARE INTERRUPTS:

1. SYLLABLE DEPENDENT INTERRUPTS.
2. ALARM INTERRUPTS.
3. EXTERNAL INTERRUPTS.

PAGE 15
86700' MASTER CONTROL PROGRAM

THE STACK STRUCTURE PRIOR TO CALLING THE INTERRUPT PROCEDURE IS SHOWN IN
FIGURE F2-2.

IF THE PROCESSING OF THE INTERRUPT IS EXPECTED TO BE TIME CONSUMING, E.G.
AN I/O ERROR, AN INDEPENDENT PROCESS IS ACTIVATED TO DO IT, THEREBY
QUICKLY FREEING THE "MAIN" PROCESS FOR FURTHER EXECUTION.

IN ALL CASES, TOWARDS THE END OF HARDWARE INTERRUPT PROCESSING THE MCP
PROCEDURE GEORGE IS CALLED.

BEFORE EXITING BACK TO THE INTERRUPTED PROCESS, GEORGE PERFORMS THE
PROCEDURES ASSOCIATED WITH ANY SOFTWARE INTERRUPTS FOR THE CURRENT STACK
THAT ARE NAMED IN THE SOFTWARE INTERRUPT QUEUE, PROVIDED THOSE
INTERRUPTS ARE STILL ENABLED. lF THEY ARE NOT ENABLED, THE REQUESTS FOR
THEIR PROCEDURES ARE MERELY DELETED.

AFTER. ENTERING THE INTERRUPT PROCEDURE, THE PROGRAM BASE REGISTER IS
POINTING AT THE INTERRUPT PROCEDURE, PIR AND PSR ARE POINTING AT THE
INTERRUPT PROCEDURE ENTRY POINT AND THE RETURN CONTROL WORD FOR THE
INTERRUPT PROCEDURES EXIT IS POINTING BACK TO THE OBJECT PROGRAMS CODE,
AS SHOWN IN FIGURE F2-3.

INTERRUPT

HANDLING

PROCEDURE

PAGE 16
86700 MASTER CONTROL PROGRAM

l+---­

P2

Pl

IRW - D[0]+3

MKS

SD r - -.--------1
I
L_

PCW
i-------4

-,
I
I
I
I
I
I
I
I
I

INTERRUPTED __ PIR, PSR

OBJECT

PROGRAM 1111--PBR

---' D[O] + 3

--o[o] _____ _.

FIGURE F2-2. STACK PRIOR TO INTERRUPT PROCEDURE ENTRY

INTERRUPT

HANDLING

PROCEDURE PIR, PSR

PBR

Pl

P2

RCW --
MKS

v v

.___ ____ .. -D[o]

INTERRUPTED

OBJECT

PROGRAM

FIGURE F 2-3. STACK FOLLOWING INTERRUPT PROCEDURE ENTRY

~-

B6700.MASTER CONTROL PROGRAM
PAGE . 17

2.2.3.1. SYLLABLE DEPENDENT INTERRUPTS

SYLLABLE DEPENDENT INTERRUPTS ARE DETECTED BY THE PROCESSOR OPERATOR
LOGIC. THERE ARE EIGHT TYPES OF SYLLABLE DEPENDENT INTERRUPTS:

Cll ARITHMETIC ERROR:

THIS GROUP OF INTERRUPTS INCLUDES THE DIVIDE-BY-ZERO, EXPONENT OVERFLOW,
EXPONENT UNDERFLOW, INVALID INDEX, AND INTEGER OVERFLOW INTERRUPTS.
NORMAL MCP ACTION IN RESPONSE TO THIS GROUP OF INTERRUPTS IS TO
TERMINATE THE PROGRAM WHICH INCURRED THE INTERRUPT. MEANS ARE AVAILABLE
TO ALLOW A USER PROGRAM TO OVERRIDE THIS ACTION AND RETAIN CONTROL.

C2> PRESENCE BIT:

THIS INTERRUPT OCCURS WHEN THE PROCESSOR ACCESSES A DATA DESCRIPTOR OR
SEGMENT DESCRIPTOR WITH THE ''PRESENCE BIT" OFF, INDICATING THAT WHATEVER
THE DESCRIPTOR REFERENCES IS NOT PRESENT IN MEMORY. ON DETECTING A
PRESENCE BIT INTERRUPT THE PROCEDURE "PRESENCEBIT" IS CALLED BY THE
INTERRUPT PROCEDURE CSEE SECTION 2-3>.

C3l MEMORY PROTECT:

THIS INTERRUPT OCCURS WHEN THE PROCESSOR ATTEMPTS TO WRITE IN A MEMORY
LOCATION THAT CURRENTLY HAS THE MEMORY PROTECT BIT OF THE TAG-FIELD ON.
IN RESPONSE TO THIS INTERRUPT, THE MCP WILL TERMINATE THE PROGRAM WHICH
GENERATED THE INTERRUPT.

C4l BOTTOM OF STACK:

THIS INTERRUPT INDICATES THAT THE MARK STACK CONTROL WORD AT EXIT TIME
TRIED TO POINT BELOW THE BOTTOM OF THE STACK. THIS INTERRUPT INDICATES
A HARDWARE OR SOFTWARE ERROR. IN RESPONSE TO THIS INTERRUPT, THE MCP
WILL TERMINATE THE PROGRAM WHICH GENERATED THE INTERRUPT.

PAGE. 18
86700' MASTER CONTROL.PROGRAM

C5l SEQUENCE ERROR:

THIS INTERRUPT INDICATES THAT AN INDIRECT REFERENCE HAS ENCOUNTERED AN
INVALID CONDITION OR REFERENCE SEQUENCE CE.G. THE "F" REGISTER NOT
POINTING TO A MSCWl. THIS INTERRUPT INDICATES A HARDWARE OR SYSTEMS
SOFTWARE ERROR. IN RESPONSE TO THIS INTERRUPT, THE MCP WILL TERMINATE
THE PROGRAM WHICH GENERATED THE INTERRUPT.

C6l SEGMENTED ARRAY:

THE OCCURRENCE OF THIS INTERRUPT INDICATES THAT THE MCP HAS SEGMENTED AN
ARRAY ROW WHEN ALLOCATING STORAGE FOR IT AND HAS JUST ATTEMPTED TO INDEX
BEYOND THE END OF THE CURRENT SEGMENT. THE MCP INTERRUPT PROCEDURE
MAKES THE NEXT SEGMENT PRESENT AND CONTINUES EXECUTING THE PROCESS.

C7l PROGRAMMED OPERATOR:

TH IS INTERRUPT I ND I CA TE.S THAT THE CURRENT OR ACT I VE ST ACK HAS A TTEMPTEO
TO EXECUTE AN OPERATOR CODE WHICH IS NOT CURRENTLY ASSIGNED. IT ALLOWS
THE MCP TO SIMULATE THE OPERATOR PROGRAMMATICALLY, IF DESIRED.
CURRENTLY, THE PROCESS IS TERMINATED.

C8l INVALID OPERAND:

THIS INTERRUPT OCCURS
OPERATOR ON DATA WHICH

WHEN
IS

TERMINATION OF THE PROGRAM.

2.2.3.2. ALARM INTERRUPTS

THE PROCESSOR ATTEMPTS TO EXECUTE A VALID
INVALID FOR THAT OPERATOR. IT RESULTS IN

THESE INTERRUPT CONDITIONS ARE NOT NORMALLY ANTICIPATED BY THE PROCESSOR
OPERATOR LOGIC. THEY SERVE TO INFORM THE PROCESSOR OF SOME DETRIMENTAL
CHANGE IN ENVIRONMENT AND CAN RESULT FROM HARDWARE FAILURE AS WELL AS
PROGRAMMING ERRORS. THEY ALL RESULT IN TERMINATION OF THE PROCESS
INVOLVED. THERE ARE SEVEN AS FOLLOWS:

PAGE 19
86700 MASTER CONTROL PROGRAM

Cl> LOOP:

THIS INTERRUPT OCCURS WHEN THE PROCESSOR HAS EXPENDED AT LEAST TWO
SECONDS IN THE EXECUTION OF ONE OPERATOR.

C2> MEMORY PARITY:

THIS INTERRUPT INDICATES A FAULTY READ FROM MEMORY.

C3> SCAN BUS PARITY:

THIS INTERRUPT INDICATES FAULTY RECEPTION OF DATA FROM THE SCAN BUS.

C4) STACK UNDERFLOW:

THIS INTERRUPT OCCURS WHEN THE S REGISTER CONTAINS A VALUE EQUAL TO OR
LESS THAN THAT CONTAINED IN THE CURRENT F REGISTER. THIS WOULD HAVE THE
EFFECT OF THE PROCESSOR ATTEMPTING TO HAVE ACCESS BELOW THE CURRENT
STACK.

C5l INVALID ADDRESS:

THIS INTERRUPT INDICATES THAT THE PROCESSOR ATTEMPTED TO ADDRESS A
MEMORY ADDRESS WHICH IS NOT AVAILABLE TO THE SYSTEM. THE MEMORY MODULE
MAY NOT EXIST OR IT MAY BE INOPERATIVE.

C6l INVALID PROG~AM WORD:

THIS INTERRUPT INDICATED THAT THE PROCESSOR HAS ENCOUNTERED A WORD WHICH
IS SUPPOSED TO BE A PROGRAM INSTRUCTION WORD BUT IS IN FACT NOT.

17> STACK OVERFLOW:

THIS INTERRUPT OCCURS WHEN THE PROCESS STACK HAS EXCEEDED ITS ORIGINAL
MEMORY SPACE
THE PROGRAM.

ALLOCATION. PRESENTLY, THIS RESULTS IN A TERMINATION OF
IN THE FUTURE, HOWEVER, IT IS EXPECTED THAT THE HARDWARE

86700'MASTER CONTROL PROGRAM
PAGE 20

INTERRUPT PROCEDURE WILL FIND MORE SPACE FOR THE STACK. MOVE THE STACK
TO THE NEW SPACE AND RESUME EXECUTION OF THE PROCESS.

2.2.3.3. EXTERNAL INTERRUPTS

EXTERNAL INTERRUPTS
ANTICIPATED BY THE

ARE LIKE THE ALARM INTERRUPTS IN THAT THEY ARE NOT
OPERATOR LOGIC. HOWEVER. THEY DO NOT NORMALLY

REQUIRE IMMEDIATE ACTION AND DO NOT NECESSARILY RESULT IN TERMINATION OF
THE PROGRAM. AS MENTIONED ABOVE. NONE OF THE EXTERNAL INTERRUPTS CAN
INTERRUPT A PROCESSOR IN CONTROL STATE EXCEPT FOR THE STACK OVERFLOW
INTERRUPT. THERE ARE THREE EXTERNAL INTERRUPTS TYPES:

Cll INTERVAL TIMER:

THIS INTERRUPT OCCURS
TIMER FOR A PROCESSOR.
OCCUR. THIS INTERRUPT

AFTER THE PERIOD OF TIME "SET" ON THE INTERVAL
IF THE TIMER IS "RESET". AN INTERRUPT WILL NOT
IS USED BY THE MCP TO DISTRIBUTE PROCESSOR

EXECUTION TIME AMONG THE PROCESSES ACCORDING TO THEI~ CURRENT PRIORITIES.

C2l PROCESSOR TO PROCESSOR:

THIS INTERRUPT OCCURS WHEN ONE PROCESSOR EXECUTES THE "HEYU" OPERATOR.
WHICH ENABLES ONE PROCESSOR TO INTERRUPT A SECOND PROCESSOR EXCEPT IF IT
IS RUNNING IN CONTROL STATE. IF A PROCESSOR IS IN CONTROL STATE. THE
INTERRUPT IS HELD lN ABEYANCE UNTIL IT ATTEMPTS TO RESUME NORMAL STATE
PROCESSING.

C 3 .) MPX:

THIS INTERRUPT GROUP INCLUDES I/O FINISH, MULTILINE CONTROL CMLCl, GCA,
EXTERNAL MCP AND CHANGE OF PERIPHERAL UNIT STATUS INTERRUPTS. THESE
INTERRUPTS OCCUR WHEN A MULTIPLEXOR WISHES TO COMMUNICATE WITH A
PROCESSOR. THEY ARE HANDLED IN VARIOUS WAYS DEPENDING ON THE SPECIFIC
TYPE.

A. WHEN AN I/O FINISH INTERRUPT OCCURS THE MCP INTERRUPT HANDLING

86700 MASTER CONTROL PROGRAM
PAGE 21

PROCEDURE CALLS THE I/O FI~JISH PROCEDURE, WHICH CHECKS FOR ERRORS
WHICH MAY HAVE OCCURRED. IF NO ERROR IS FOUND, I/O FINISH INITIATES
A NEW I/O CIF THE I/O REQUEST QUEUES ARE NOT EMPTYl. THERE ARE TWO
QUEUE STRUCTURES RELATED TO THE I/O OPERATIONS: THE WAITCHANNELQUES,
ONE FOR EACH MULTIPLEXOR AND THE UNITOUES, ONE FOR EACH UNIT. WHEN
THE I/O FINISH PROCEDURE INITIATES ANOTHER I/O, IT FIRST CHECKS THE
WAITCHANNELQUE OF THE MULTIPLEXOR IT HAS JUST FINISHED WITH AND
INITIATES THE FIRST I/O REQUEST IN THAT QUEUE. IT THEN CHECKS THE
UNJTQUE FOR THE UNIT IT HAS JUST USED, REMOVES THE TOP ENTRY FROM
THAT QUEUE AND INSERTS IT IN THE WAITCHANNELQUE.

IN ORDER TO PREVENT CONFUSION, THE WAITCHANNELQUES ARE NOT ALLOWED
TO CONTAIN MORE THAN ONE I/O REQUEST FOR ANY GIVEN UNIT. IF AN I/O
REQUEST OCCURS FOR A UNIT THAT IS ALREADY IN A WAITCHANNELQUE CFOR
ANY MULTIPLEXOR> THEN THE REQUEST IS ENTERED IN THE APPROPRIATE
UNITQUE.

B. THE MLC CMULTILINE CONTROLl INTERRUPTS INDICATE THAT SOMETHING LIKE
A DATA COMMUNICATIONS SYSTEM WISHES TO COMMUNICATE TO THE PROCESSOR
THROUGH A WORD INTERFACE OF THE MULTIPLEXOR. THE WAY THIS INTERRUPT
IS HANDLED DEPENDS ON THE NATURE OF THE DEVICE WHICH IS ATTEMPTING
TO COMMUNICATE TO THE PROCESSOR. AT PRESENT THE PROCESSOR IS
CAPABLE OF DISTINGUISHING FOUR DIFFERENT MLC INTERRUPTS, SINCE THERE
CAN BE FOUR MULTILINE CONTROLS. HOWEVER, TH£ SIGNIFICANCE OF THE
VARIOUS MLC INTERRUPTS HAS NOT BEEN DEFINED AND WILL PROBABLY VARY
DEPENDING ON THE PARTICULAR TYPE OF INSTALLATION.

C. GCA !GENERAL CONTROL ADAPTERl INTERRUPTS INDICATE THAT SOME SORT OF
SPECIAL CONTROL DEVICE CAN ANALOG DEVICE, A PLOTTER, OR SOME MACHINE
THAT THE COMPUTER IS CONTROLLING> WISHES TO COMMUNICATE TO THE
PROCESSOR. SINCE THERE IS ONLY ONE GCA INTERRUPT, IT IS CLEAR THAT
ONLY ONE SUCH DEVICE CAN BE HANDLED AT A TIME. IT IS ALSO EVIDENT
THAT THE HANDLING OF THIS INTERRUPT IS DEPENDENT ON THE NATURE OF
THE DEVICE IN QUESTION.

D. WHEN A MULTIPLEXOR IS ATTACHED TO THE WORD INTERFACE OF ONE OF THE

PAGE 22
86700' MASTER CONTROL PROGRAM

SYSTEM MULTIPLEXORS, IT BECOMES NECESSARY TO HANDLE INTERRUPTS FROM
THE "EXTERNAL" MULTIPLEXOR. TH IS IS THE FUNCTION OF THE EXTERNAL
MPX INTERRUPT, WHICH INDICATES THAT THE PROCESSOR MUST FIRST
INTERROGATE THE EXTERNAL MULTIPLEXOR TO DETERMINE THE NATURE OF THE
MPX INTERRUPT ..

E. A CHANGE OF PERIPHERAL STATUS INTERRUPT INDICATES THAT A DEVICE HAS
JUST CHANGED STATE. THE SYSTEM DETERMINES WHAT THIS DEVICE IS AND
THEN TAKES THE APPROPRIATE ACTION E.G., CHANGE OF STATUS ON THE SPO
CAUSES THE MCP TO INITIATE A READ REQUEST.

B6700 .MASTER CONTROL PROGRAM
PAGE 23

2.3. STORAGE CONTROL.

2.3.1. DYNAMIC STORAGE ALLOCATION.

THE B6700 MCP PERFORMS DYNAMIC STORAGE ALLOCATION FOR ALL SYSTEM STORAGE
MEDIA: MAIN MEMORY, MAGNETIC DISK AND SYSTEM LIBRARY MAGNETIC TAPE. THE
MCP CONTROLS ALLOCATION AND DEALLOCATION OF ALL SYSTEM MEMORY,
CONSIDERING THE DIFFERENT SYSTEM STORAGE MEDIA AS A HIERARCHY OF MEMORY.

THE MCP DYNAMICALLY ALLOCATES THE USE OF MAIN MEMORY AS A RESOURCE AMONG
THE CURRENT PROCESSES. IF A PROCESS NEEDS MORE MEMORY THAN IS CURRENTLY
AVAILABLE, THE MCP WILL SELECT A SUITABLE IN-USE AREA, OVERLAY THE
CONTENTS TO DISK, AND THEN ASSIGN THAT AREA TO THE PROCESS.

IN ADDITION TO ALLOCATING MAIN MEMORY, THE MCP ALLOCATES DISK AREAS. IF
A PROCESS OR THE MCP REQUIRES MORE DISK AREA THAN IS CURRENTLY
AVAILABLE, THE MCP WILL SELECT THE OLDEST DISK FILES WHICH ARE CONTAINED
IN A SUITABLE AREA AND PROCEED TO AUTOMATICALLY CREATE A SYSTEM LIBRARY
TAPE CONTAINING THE FILES WHICH ARE TO BE OVERLAYED. WHEN THE AREA HAS
BEEN CLEARED, THE MCP WILL AD~UST THE DISK DIRECTORY INFORMATION TO SHOW
THAT THE OVERLAYED FILES RESIDE ON SYSTEM LIBRARY TAPE. AND THEN
REALLOCATE THE AREA TO THE PROCESS REQUIRING IT.

IN as.DER TO BE ABLE TO RECALL THE FILES WHICH ARE LOCATED ON SYSTEM
LIBRARY TAPES, THE MCP REQUIRES VOLUME SERIAL NUMBERS FOR THE TAPES.
THE VOLUME.· SERIAL NUMBER IS USED FOR HCP-OPERATOR COMMUNICATION IN
DENOTING WHICH LIBRARY TAPE TO LOAD FOR FUTURE RECALLS OF THE FILES.

2.3.2. ADDRESS SPACE CONTROL

THESE ROUTINES BREAK NATURALLY INTO FIVE GROUPS SHOWN ON THE DEPENDENCY
CHART (FIGURE F2-4).

I. PRIMARY CORE CONTROL ROUTINES WHICH OPERATE THROUGH MEMORY LINKS.

86700·MASTER CONTROL PROGRAM
PAGE 24

II. OVERLAY ROUTINES WHICH MOVE INFORMATION FROM CORE TO DISK. ANO CORE
}O CORE FREEING THE CORE FOR RE-USE.

III. OVERLAY DISK CONTROL ROUTINES WHICH STORE INFORMATION CONCERNING
WHICH DISK AREAS HAVE BEEN OVERLAYEO.

IV. FAILURE ACTION ROUTINES WHICH HANDLE CONFLICTING CLAIMS FOR THE
CONTROL OF MEMORY LINKS AND DEMANDS FOR SPACE THAT CANNOT CURRENTLY
BE MET.

V. PROGRAM INTRINSICS WHICH ARE PROVIDED FOR THE MAIN CORE CONTROL
ROUTINES TO SATISFY THE THE REQUIREMENT OF BOTH USERS AND MCP FOR
ARRAYS IN AN ALGOL ENVIRONMENT OF NESTED BLOCKS.

THE FOLLOWING SECTIONS DESCRIBE THE FUNCTION IN GREATER DETAIL.

SPWTIT

DAMMIT

QMYSTACK

DELINKASfACK

STIRUPSPACE

LOOKFOR­
SOMETHJNG

I
J_

86700.MASTER CONTROL PROGRAM

MAKE PRESENT
-ANDSAVE

SEAR CHAND
-DESTROY

TERMINATE

ARRAYOEC

r

I I

I

TURNOLAYKEY I I

OTHER MCP

ROUTINE

l

FOR<ET­

DCH: l/ECTCR

CONSOLODATE
-ANDOROCR

EMPTY­

~AMETERQUEUE

l:l.OCKEXIT

INTERRUPT
-HANDLER

GETUSERDISK

FIGURE F2-4. DEPENDENCY CHART FOR STORAGE CONTROL

PAGE

Gorosa.YER

FORGET-

0"1:'.RLAYDISK

m

ASSIGNOVER
-LAYDISK

25

86700'MASTER CONTROL PROGRAM
PAGE - 26 _

2.3.2.1. PRIMARY CORE CONTROL ROUTINES

MEMORY LINKS ARE CONTROL WORDS EMBRACING DISCRETE ASSIGNED AREAS OF CORE
AND LINKING THEM INTO LISTS ACCORDING TO THEIR CURRENT USE. THE LEFT­
OFF LIST LINKS IN-USE AREAS CWHICH MAY BE "SAVE" OR "OVERLAYABLE"l IN
CHRONOLOGICAL ORDtR OF ALLOCATION. THE AVAILABLE LIST LINKS AVAILABLE
AREAS BY SIZE STARTING AT CONTIGUOUS LOW ADDRESSES IN CORE.

PAGE 27
B6700 'MASTER CONTROL PROGRAM

"GETSPACE" IS CALLED BY OTHER MCP ROUTINES STATING SIZE NEEDED,
OVERLAYABILITY, REQUESTING STACK NUMBER. GETSPACE COMPARES THE REQUIRED
SIZE WITH THE LARGEST AREA IN EACH HALF OF THE AVAILABLE LIST CCORRECT
TYPE FIRST>. AND IF EITHER IS LARGE ENOUGH DOES A LINKED LIST LOOKUP
CLLLU> ON THAT HALF TO FIND THE SMALLEST AREA LARGE ENOUGH. THIS IS
REMOVED FROM THE LI ST US I NG "A VA I LREMOVE" . IF NEITHER IS LARGE ENOUGH,
GETSPACE CALLS ''TROUBLE~ WHICH TAKES EACH ENTRY IN THE LEFT-OFF CIN-USEJ
LIST, OLDEST FIRST, AND COUNTS ALL SPACE PHYSICALLY BELOW IT UNTIL A
"SAVE'' AREA IS ENCOUNTERED. ANYTIME ENOUGH CONTIGUOUS MEMORY IS FOUND,
TROUBLE CLAIMS IT BY CALLING AVAILREMOVE FOR THE AVAILABLE COMPONENTS,
AND OVERLAY TO COPY TO DISK OR CORE CSEE SECTION 2.3.2.2.i THEN
FORGETSPACE <WITH A NEGATIVE ARGUMENT TO MERELY REMOVE FROM LEFT-OFF
LIST> FOR THE IN-USE ONES. IF TROUBLE FAILS TO FIND ADEQUATE SPACE, IT
RETURNS A NEGATIVE ANSWER.

ONCE SUFFICIENT SPACE HAS BEEN OBTAINED, GETSPACE CALLS ALLOCATE
<ANOTHER LOCAL PROCEDURE> TO MAKE UP IN-USE LINKS AND TO ENTER THE AREA
INTO THE MOST RECENTLY ALLOCATED END OF THE LEFT-OFF LIST, RETURNING ANY
EXCESS SPACE TO THE AVAILABLE LIST.

FORGETSPACE REMOVES A NAMED AREA FROM THE LEFT-OFF LIST. IF THE
ARGUMENT IS NEGATIVE. THE CALLER IS THE PROCEDURE TROUBLE AND NO FURTHER
ACTION IS NEEDED, OTHERWISE IT CALLS CONSOLIDATEANDORDER TO COMBINE
AFFECTED AREA
AVAILREMOVEJ,

WITH ANY ADJACENT
TO ADD THE RESULT

AVAILABLE AREAS
TO THE AVAILABLE

COBTAINED USING
LIST CUSING

AVAILREMOVE> ANO THEN TO ADD THE RESULT TO THE AVAILABLE LIST CUSING
ORDER l.

MAKEPRESENTANDSAVE, GIVEN A DESCRIPTOR, ENSURES THAT THE AREA IS PRESENT
AND MARKED "SAVE". THE SOLUTION TO THE ORIGINAL OVERLAYABILITY BEING
REMEMBERED IS TO CALL TURNOVERLAYKEY WHICH CHANGES THE AREA TO
OVERLAYABLE PROVIDED THAT FIRSTLY IT ONCE EXISTED, AND SECONDLY THERE IS
STILL A MOTHER DESCRIPTOR FOR IT. GETSPACE ALWAYS ASSIGNS "SAVE" AREAS,
WITH
BEEN

THE ACTUAL OVERLAYABILITY REMEMBERED AS IF MAKEPRESENTANDSAVE HAD
CALLED. THIS ALLOWS THE CALLER TO SET INITIAL VALUES FOR ITS NEW

PAGE 28
B670U MASTER CONTROL PROGRAM

AREA WITHOUT INTERRUPTION, AFTER WHICH IT CAN USE TURNOVERLAYKEY IF
NECESSARY.

SEARCHANDDESTROY <USED BY TERMINATEl SEARCHES A STACK AND CALLS
FORGETSPACE FOR THE AREA DESCRIBED BY ANY PRESENT MOTHER DESCRIPTOR THAT
IT FINDS.

"AREAMANAGER" HAS ABSOLUTE TOP SYSTEM PR I OR I TY. IT ENSURES THAT THE
SYSTEM ALWAYS HAS SUFFICIENT AREA TO RUN ON. "AREAMANAGER" ALLOCATES
AND DEALLOCATES AREAS USING "GETAREA'' AND "FORGETAREA" RESPECTIVELY.

"GETAREA'' PERFORMS TWO FUNCTIONS: THE FIRST IS TO HANDLE SMALL AREAS
WHERE THE OVERHEAD PENALTY FOR USING MEMORY LINKS WOULD BE TOO HIGH.
SECONDLY "GETAREA" GUARANTEES TO THE SYSTEM THAT AREA WILL BE AVAILABLE
WHEN OVERLAY IS FORBIDDEN.

"FORGETAREA" RETURNS THE AREA TO THE POOL WHICH IS MAINTAINED BY
"AREAMANAGER".

2.3.2.2. OVERLAY ROUTINES

WHEN OVERLAY IS CALLED BY TROUBLE TO WRITE THE CONTENTS OF SOME CORE
AREA TO DISK OR CORE, IT MUST ALSO LOOK FOR AND MODIFY ANY COPIES OF THE
DESCRIPTOR FOR THE AREA. SINCE IT MUST INTERRUPT ALL OTHER PROCESSORS,
IN CASE THEY ARE USING THE AREA IT IS GOING TO OVERLAY, IT ARRANGES FOR
THEM TO HELP WITH THE SEARCHING.

IT DOES THIS BY SETTING A GLOBAL PROCESSOR-ID-RELATED FLAG AND CAUSING A
"HEYU" INTERRUPT. THE · OTHER PROCESS·ORS C WHEN THEY GET INTO THE
INTERRUPT-HANDLERl RESPOND TO THE SET GLOBAL PROCESSOR-ID-RELATED FLAG
BY THEIR OWN FLAGS AND THEN LOOPING UNTIL THE FLAGS ARE CLEARED AGAIN.
THE GLOBAL PROCESSOR MEANWHILE, LOOPS UNTIL ALL THE FLAGS ARE SET,
THEN CLEARS THEM.

AT THIS POINT
STACKSEARCH; THE

CUNLESS A CODE AREA IS BEING DEALT WITHl ALL CALL
EXCEPTION IS NECESSARY BECAUSE SEGMENT DESCRIPTORS DO

PAGE 29
B6700·MASTER CONTROL PROGRAM

NOT HAVE COPIES. STACKS ARE SEQUENTIALLY SELECTED AND SEARCHED FOR
COPIES OF THE SIMULTANEOUS MULTIPLE ACCESS AND UPDATE OF THE STACK
NUMBER COUNTER, SO EACH STACK IS SEARCHED ONLY ONCE. AS EACH PROCESSOR
DISCOVERS THAT THERE ARE NO MOVE STACKS, IT SETS ITS FLAG, AND WAITS
UNTIL ALL THE FLAGS ARE SET. THUS THEY ALL EXIT TOGETHER. tTHE OTHER
PROCESSORS NOW RETURN TO THEIR INTERRUPTED ACTIVITIES>.

THE PROCESSOR tCONTINUING IN OVERLAY> NOW DOES THE DISK I/O AND ON A
SINGLE-PROCESSOR SYSTEM WAITS (ALLOWING POSSIBLE SWITCH TO ANOTHER
STACKl BUT ON A MULTIPLE-PROCESSOR SYSTEM LOOPS WITH INTERRUPTS ENABLED.
WHEN THE I/O IS SUCCESSFULLY COMPLETED, IT EXITS.

B6700.MASTER CONTROL PROGRAM
PAGE . 30

2.3.2.3. OVERLAY DISK CONTROL ROUTINES.

EACH STACK CONTAINS A DESCRIPTOR FOR A STANDARD DISK HEADER WHICH
CONTAINS ALL THE OVERLAY DISK ALLOCATION FOR THAT STACK. TO FACILITATE
TH£ DEALLOCATION OF OVERLAY DISK WHEN DESCRIPTORS ARE ABANDONED DURING
BLOCK EXIT, CS[E SECTION 2.3.2.5.> EACH ROW OF DISK CONTAINS OVERLAY
AREAS FOR THE DESCRIPTORS OF JUST ONE BLOCK. BELOW EACH GENUINE MSCW
CSEPARATING THE PARAMETERS AND LOCAL VARIABLES FOR THE PREVIOUS BLOCK
FROM THE INTERMEDIATE RESULTS ACCUMULATED BEFORE THIS ENTRY OCCURRED> IS
A WORD WITH TAG= 6 AND [47:11 = 1. THE WORD BELOW THE MSCW FOR A GIVEN
BLOCK CONTAINS THE HEAD OF A CHAIN CONNECTING THE HEADER WORDS OF THE
ROWS USED BY THAT BLOCK, AND A NOTE OF HOW FULL THE LATEST ROW IS.
THERE IS ALSO A CHAIN OF DEALLOCATED ROWS, WHOSE HEAD CNEXTAVAIL> IS IN
WORD 9 OF THE HEADER.

FORGETQVERLAYDISK, CALLED BY BLOCKEXIT, LINKS THE ROW WORDCSl ALLOCATED
TO THE SUBJECT BLOCK INTO THE DEALLOCATED CHAIN.

WHEN "TROUBLE" NOTICES AN "OVERLAYABLE" CORE AREA, WHICH DOES NOT YET
HAVE AN OVERLAY DISK ADDRESS, IT CALLS ASSIGNOLAYDISK, WHICH CHAINS FROM
THE MEMORY LINK TO THE DESCRIPTOR, MASKSEARCHES DOWN TO THE OLAYDISKINFO
CTAG = 6> WORD, AND ASSIGNS DISK FROM THE LATEST ROW IF THERE IS ENOUGH
LEFT. IF THERE IS NOT, A NEW ROW IS OBTAINED FROM THE DEALLOCATED
CHAIN, MARKING NEXTAVAIL: = -1 IF THE CHAIN IS NOW EMPTY. WHEN
ASSIGNOLAYDISK SUBSEQUENTLY ENCOUNTERS THIS, TROUBLE IS TOLD TO MARK THE
AREA "SAVE" TEMPORARILY, AND THE AREA IS ADDED TO THE SYSTEM OLAYDISKQ.

OLLAYSCOUT IS RUN AS AN INDEPENDENT RUNNER TO ALLOCATE NEW DISK SPACE TO
OVERLAY FILES.

PAGE 31
86700' MASTER CONTROL PROGRAM

2.3.2.4. GETSPACE FAILURE MECHANISM

IF A
ELSE
QUEUE

STACK MUST WAIT FOR SOMETHING. AND NOT BE ACTIVATED UNTIL NOTHING
COF HIGHER PRIORITYl WANTS IT. IT CALLS QUEUEMYSTACK. NAMING A

HEAD INTO WHICH IT WILL BE LINKED. A STACK LOCATION AVAILABLE FOR
USE AS A LINK CACTUALLY THE THREE SUBSEQUENT LOCATIONS MUST BE FREE TOO,
BECAUSE
IT INTO
CALLED.
EVENT.

THEY ARE GOING TO BE USEDl. A SORT KEY CPRIORITYl FOR ENTERING
THE QUEUE. AND AN EVENT FOR LATER USE BY DELINKASTACK IS ALSO
IT DELINKS THE TOP ENTRY FROM THE NAMED QUEUE. AND CAUSES ITS

THESE TWO ROUTINES ARE ACTUALLY QUITE GENERALIZED. BUT ARE CURRENTLY
ONLY USED FOR SPACEQ. A QUEUE OF STACKS REQUIRING CONTROL OF SPACELOCK
WHICH IS A WORD USED TO PREVENT SIMULTANEOUS MANIPULATION OF THE MEMORY
LINKS.

2.3.2.5. PROGRAM INTRINSICS.

TO FACILITATE RELOCATION OF CODE AND DATA, DESCRIPTORS CONTAINING A BASE
CADDRESSJ AND LENGTH ARE USED TO DEFINE CORE AREAS. A "MOM" DESCRIPTOR
DEFINES THE ENTIRE AREA: ELEMENTS CWORDS/CHARACTERSl ARE ACCESSED BY
COPYING THE DESCRIPTOR TO THE STACK INDEXING IT WITH A SUBSCRIPTS VALUE,
AND FINALLY USING THE INDEXED COPY WITH A FETCH OR STORE OPERATIC~.

WHEN AN ATTEMPT IS MADE TO READ INTO DATA WHOSE PRESENCE BIT IS ZERO, A
"PRESENCE BIT" INTERRUPT IS GENERATED BY THE HARDWARE. THE SOFTWARE
MAKES THE DATA PRESENT. AND OPERATION IS RESUMED.

WHEN AN AREA IS MADE PRESENT. ALL THE COPIES ARE NOT ADJUSTED TO REFLECT
THIS BUT IT IS NECESSARY TO KNOW WHEN ANOTHER COPY IS OBTAINED SO AS NOT
TO DO THE OVERLAY AGAIN. THUS WHEN THE HARDWARE COPIES AN ABSENT
ORIGINAL C''MOTHER"l DESCRIPTOR, IT CHANGES THE ADDRESS TO POINT TO THE
MOTHER.
ADDRESS

ANO TURNS ON A
IS NOT CHANGED.

"COPY BIT". IF THE MOTHER IS PRESENT, THE
THE COPY BIT IS TURNED ON. NOTE THAT WHEN AN

PAGE . 32
B6700.MASTER CONTROL PROGRAM

AREA IS MOVED TO DISK, COPIES MADE WHILE THE MOTHER WAS PRESENT MUST BE
SEARCHED FOR: THIS TEDIOUS TASK IS PERFORMED USING THE MASKED SEARCH FOR
EQUAL CSRCHJ OPERATOR TO LOOK FOR THE CORRECT ADDRESS FIELD.

CIJ PRESENCEBIT ROUTINE AND DESCRIPTOR WITH SPECIAL MEANINGS

THE ACTION REQUIRED OF PRESENCEBIT DEPENDS UPON THE KIND OF ABSENT
DESCRIPTOR ENCOUNTERED, ALTHOUGH A NEW PRESENT COPY MUST ALWAYS BE
CONSTRUCTED ANO RETURNED.

CA> FOR AN ABSENT COPY OF A MOTHER ALREADY MADE PRESENT, NOTHING
ELSE IS REQUIRED.

CBJ FOR A CODE SEGMENT DESCRIPTOR, GETSPACE MUST BE ASKED FOR AN
"OVERLAYABLE" TYPE CORE AREA OF SUFFICIENT LENGTH, AND A DISK
READ PERFORMED FROM A CODE FILE.

C2J ARRAY INFORMATION TABLE

ALL COMPILERS USE THE SAME MECHANISM FOR HANDLING MULTIDIMENSIONAL. ANO/
OR SEGMENTED AND/OR DYNAMIC ARRAYS. WHEN AN ARRAY IS DECLARED,
INFORMATION IS PASSED TO AN MCP PROCEDURE CONCERNING THE NUMBER OF
DIMENSIONS, SIZE OF EACH DIMENSION, LOWER BOUNDS IF OWN, TYPE OF ARRAY,
AND LOCATION OF MOM DESCRIPTOR IN THE STACK. THE PROCEDURE RECORDS THIS
INFORMATION IN THE ARRAY INFORMATION TABLE CAITJ OR OWN ARRAY TABLE
COATJ BOTH BEING LINKED INTO THE OC2J STACK FOR THAT ~OB. THE MOM
DESCRIPTOR NO~ CONTAINS AN INDEX INTO THE AIT OR OAT.

AT PRESENCE BIT TIME IT IS NOTED THAT THE MOM DESCRIPTOR CONTAINS AN
INDEX INTO THE AIT AND THE FOLLOWING ACTION TAKES PLACE: FIRST AN AREA
OF SAVE MEMORY IS OBTAINED WHOSE SIZE EQUALS THAT CONTAINED IN THE
LENGTH FIELD OF THE NON-PRESENT MOM, SECOND THIS AREA IS FILLED WITH THE
WORD FROM THE AIT POINTED TO BY THE MOM. THIS MAY BE A DESCRIPTOR
CONTAINING AN INDEX INTO THE AIT; SUBSEQUENT PRESENCE BIT ACTION WILL
CAUSE THE ABOVE PROCEDURE TO BE REPEATED.

PAGE 33
B6700"MASTER CONTROL PROGRAM

EXAMPLE:

DECLARATIONS:

A C4,3,8J

AT BLOCK ENTRY TIME THIS WILL BE SET UP AS FOLLOWS :

A

USING ACO,O,OJ := 1 AS AN EXAMPLE TO CAUSE PRESENCE BIT ACTION,

THE FOLLOWING THREE STEPS WILL OCCUR:

LET P = PRESENT

1) A P 4

AIT 3 8

2) A p 4

3 3 3

8 8 8 2nd DOPEVECTOR

3) A p 4

3 3 3

8 8

FIGURE F 2-5. DYNAMIC ARRAYS

1

0
1

0

0

0

0

0
~

0

l

0

1

l

()

1

l

0

0

0

0
0

l.]

1

0

0

0

1

0

0

0

0

0

0

.1 0
t.o-.-&-

86700.MASTER CONTROL PROGRAM
PAGE 34

T
0 ~ AIT-

FIRST 0 0
~ ~ fNDEXF

II ABSENT" MOM FOR A

0 DEMENSION ~
0 R' a l '¥

SECOND DIMENSION:
AIT [A J

••

NEGATIVE SIGN

' t I

FINAL DIMENSION AIT [A+IJ

t

0 !

0 r ADDRESS
0

0

0
i

0 • ~A~ESS
0

DOPE VECTOR FOR A [I,*,* "J

0

0 __,.. • .• ,.,p_ "" ' .. _........., __ ~ ~~··· -.-.. "

0
t ZEROS DOPE VECTOR FOR A [1, 1, * J

0
a ! lL]

"IGURE F2-6. EXPANSION OF AIT ENTRIES INTO DOPE VECTORS AND AFTER TWO CALLS

ON PRESENCEBlT

PAGE 35
86700 MASTER CONTROL PROGRAM

O IN USE

1 ID

1

..--
1

t-- USAGE
1

1--

~ 0

{'1

0

1 6

1

IN USE

LENGTH

ADDRESS

OF

AV

DESCRIPTOR

FRONT LINK

(NEXT) LO

AV
=

BACKLINK

DISK

ADDRESS

IN-USE

LENGTH

6 -SPACE NOT CONSOLIDATED

0

1

1

r--

x

AVAILABLE LINKS

AVAILABLE ADDRESS

LENGTH NEXT
AV AVAILABLE

~ LINK TO PREVIOUS
0 AVAILABLE AREA

1--
0

0

1

1 Al/_
= 1 ·

AVAILABLE

LENGTH

LINKA

AV-AVAILABLE

LINKS

B = 1 IF IN OVERLAY DISK QUEUE. DISK ADDRESS-

AFTER BLIND MOVE FROM INITIALIZED DES<::RIP-

TOR (SEE PRESENCE-BIT WRITE-BIT IN STORAGE

CONTROL FOR FUNNY SETTINGS)

LINKZ

0- SET BY GETSPACE IF OVERLAY POSSIBLE

(QOUTED BY CALLER). LOCK= I IF CALLER ALLONS

OVERLAY- THEN HE SElS FROM 0 BY CALLING

TURNOVERLAYKEY. IN-USE LENGTH - CAN BE USED

FOR LINKING DISK OVERLAY Q BECAUSE ENTRIES

ALL. SAVE - SO TROUBLE NEVER TRIES TO

LINK BACK PAST THEM.

AVA I LA

X- OVERLAY BIT OF PREVIOUS AREA.

AVA I LB

AVAILZ

FIGURE F2-7. MEMORY LINKS

B6700-~ASTER CONTROL PROGRAM
PAGE . 36

<3> BLOCKEXIT. BLOCKSEARCH, AND FORGETDOPEVECTORS

• CACL ON BLOCKEXIT IS COMPILED PRECEDING EXIT FROM A BLOCK OR PROCEDURE
N WHICH ARRAYS, FILES, OR OTHER LANGUAGE ELEMENTS REQUIRING MEMORY

I

1REAS HAVE BEEN DECLARED:

lLOCKSEARCH, USING THE MASKED SEARCH FOR EQUAL OPERATOR, SCANS BETWEEN
'HE GIVEN TOP AND BOTTOM ADDRESSES FOR ALL OCCURRENCES OF £47:21 = 2.
'HESE MAY BE:

<Al TAG 5: THESE COULD BE PRESENT MOM DATA DESCRIPTORS, FOR WHICH
FORGETDOPEVECTORS IS CALLED, OR FIB DESCRIPTORS, FOR WHICH CLOSE
IS EMPLOYED, OR

 TAG7: SOFTWARE INTERRUPTS WHICH ARE SUITABLE DELINKED FROM
RESPECTIVE QUEUES.

<C> TAG6: BLOCKCONTROLWORDS, FOR WHICH OVERLAYDISK IS RETURNED TO
THE FILE AND THE CRITICAL BLOCK COUNT IS CHECKED.

'ORGETDOPEVECTORS RECURSIVELY RETURNS DOPE VECTOR SPACE.

C4l GOTOSOLVER

"GO TO'' WHICH LEAVES THE CURRENT LEXICOGRAPHICAL LEVEL IS COMPILED AS
CALL ON THIS ROUTINE, PASSING AS A PARAMETER AN SIRW WITH OR WITHOUT

"AG> ZEROl TO A PCW CDESCRIBING THE POINT IN THE CODE TO WHICH WE WISH
ro GOl PREVIOUSLY
~ETURNING. SHOWN

GENERATED IN THE STACK AT THE LEVEL TO WHICH WE ARE
BELOW IS THE STACK <A> ~UST AFTER ENTERING, AND CB>

JUST BEFORE LEAVING GOTOSOLVER.

~
Y SIRW(A) ~

RCW

s

3 MSCW

ROUTINE •
> SAYS

GO TO A

3 RCW

3 MSCW

OTHER RCW

~ MSCW 1S ~

3 RCW

3 MSCW •
ROUTINE

~ WHICH ~

CONTAINS A

L6 8 OVLY INFO

7 PCW (A)

3 RCW

3 MSCW

86700 MASTER CONTROL PROGRAM

BLOCKSEARCH IS CALLED FOR
THIS SECTION OF STACK.

MSCW (INCLUDING OF LINK)
CONSTRUCTED HERE. ____ _

RCW TO A BUILT HERE FROM
PCW.

D(I)~

EXIT IS PERFORMED TAKING US TO A

PAGE 37

0 SIRW(A) 1--s

3 RCW I-----____,
~ MSCW ~
~ 1--------1~'

3 RCW

3 MSCW
.._,, ..._

L'"

6 8 OVLY INFO

<- .~

7 PCW (A)

,;. >
3 RCW

3 MSCW ~ .,.

(A) (8)

FIGURE F2-8. GOTOSQVER ACTION

•

PAGE 38.
B6700 MASTER CONTROL PROGRAM.

2.4. SYSTEM RECONFIGURATION

IN THE EVENT
MAINTENANCE,

THAT A
THE SYSTEM

HARDWARE MODULE FAILS OR MUST BE SHUT DOWN FOR
MUST BE RECONFIGURED TO ELIMINATE THE MODULE

WHICH IS NO LONGER AVAILABLE TO THE SYSTEM. THE ABILITY TO RECONFIGURE
THE SYSTEM EASILY AND EFFICIENTLY IS DESIGNED INTO THE B6700, SO THAT
THE LOSS OF A PARTICULAR KEY MODULE WILL NOT BE CATASTROPHIC TO THE

~SYSTEM UNLESS THAT MODULE IS UNIQUE. FOR EXAMPLE, THE FAILURE OF ONE
t>PR~{SSOR IN A TWO PROCESSOR SYSTEM WOULD CAUSE A DEGRADATION OF SYSTEM

PERFORMANCE, BUT THE SYSTEM WOULD STILL BE OPERABLE. IN THE B6700
SYSTEM, THERE ARE VERY FEW SYSTEM MODIFICATIONS WHICH ARE NOT HANDLED
AUTOMATICALLY BY THE MCP, AND THERE ARE EVEN FEWER WHICH CANNOT BE
HANDLED WITH THE AID OF A "HALT-LOAD".

THE BASIC CRITERION FOR BEING ABLE TO SHUT DOWN OR DISCONNECT A UNIT IS
WHETHER IT IS CURRENTLY IN USE BY SOME PROCESS. IF, FOR EXAMPLE, A
MEMORY MODULE IS SHUT DOWN, THE INFORMATION CURRENTLY STORED IN THAT
MODULE IS INACCESSIBLE. SUCH A SITUATION WOULD ALMOST CERTAINLY LEAD TO
AN INVALID ADDRESS. HOWEVER, IF A UNIT NOT CURRENTLY IN USE <SUCH AS A
MAGNETIC TAPE DEVICE> IS SHUT DOWN, THE SYSTEM·wILL CONTINUE TO FUNCTION
AS IF NOTHING HAS HAPPENED. IT WILL BE POSSIBLE TO ISSUE A COMMAND TO
THE MCP INDICATING THAT A PARTICULAR UNIT IS TO BE SHUT DOWN, AND THAT
THE MCP WILL RESPOND BY REARRANGING THE SYSTEM TO AVOID THE USE OF THE
UNIT, AT WHICH TIME IT WILL INDICATE THAT THE UNIT HAS BEEN DETACHED
FROM THE SYSTEM.

THERE ARE, HOWEVER, CERTAIN MAJOR HARDWARE MODIFICATIONS TO THE SYSTEM
WHICH WILL REQUIRE MODIFICATION OF THE MCP. THIS IS DUE TO THE FACT
THAT HANDLING OF DCP CDATACOM PROCESSOR> INTERRUPTS AND THE GCA !GENERAL
CONTROL ADAPTER> INTERRUPTS IS CONTINGENT ON THE NATURE OF THE DEVICE
INVOLVED. IF, FOR INSTANCE, A DATACOM SYSTEM OR A SUBSTANTIALLY
DIFFERENT DATACOM SYSTEM IS TO BE ADDED, IT WILL BE NECESSARY TO ALTER
THE MCP.
PLOTTER OR
NATURE OF

IT ALSO MEANS THAT
ANALOG INTERPRETER,

THE GCA INTERRUPT.

BEFORE CONNECTING A DEVICE SUCH AS A
IT WILL BE NECESSARY TO SPECIFY THE

IN OTHER WORDS, IT WILL BE NECESSARY TO

PAGE . 39
86700 ~ASTER CONTROL PROGRAM

SPECIFY HOW THE MCP IS TO HANDLE GCA INTERRUPTS BY CHANGING THE MCP.
EXCEPT FOR THESE TWO CONTINGENCIES, RECONFIGURATION OF THE SYSTEM WILL
NOT REQUIRE MODIFICATION OF THE MCP.

••

86700. t1ASTER CONTROL PROGRAM
PAGE: "iO .

SECTION 3

MULTIPROCESSING

PAGE 1.; 1
B6700 MASTER CONTROL PROGRAM

3. MULTIPROCESSING

THE NORMAL MODE OF OPERATION OF THE 86700 MASTER CONTROL PROGRAM ASSUMES
THE EXISTENCE OF MULTIPLE JOBS OR "PROCESSES" RUNNING CONCURRENTLY. THE
OBJECT OF RUNNING PROCESSES CONCURRENTLY CMULTIPROCESSING OPERATION> IS
TO MAXIMIZE THE UTILIZATION OF THE B6700 SYSTEM RESOURCES, THEREBY
INCREASING THE THROUGHPUT OF JOBS.

IN ORDER TO OBTAIN THE GREATEST THROUGHPUT OF JOBS IN A MULTIPROCESSING
ENVIRONMENT, IT IS ESSENTIAL TO MINIMIZE THE AMOUNT OF MCP OVERHEAD
REQUIRED TO EXECUTE THE JOBS CURRENTLY IN PROGRESS. IN ORDER TO
MINIMIZE OVERHEAD, THE B6700 MCP CONTROLS STORAGE ALLOCATION FOR EACH
PROCESS ACCORDING TO ITS CURRENT REQUIREMENTS. BY BRINGING PROGRAM
SEGMENTS INTO MEMORY ONLY WHEN THEY ARE NEEDED, MEMORY IS ASSIGNED IN AN
EFFICIENT MANNER. IN THE EVENT THAI SEVERAL PROCESSES REQUIRED MORE
MEMORY THAN IS CURRENTLY AVAILABLE, THE MCP RE-ALLOCATES MEMORY FOR EACH
JOB AS REQUIRED AND THE LEAST-USED SEGMENTS WHICH ARE PRESENT IN MEMORY
ARE OVERLAYED. DATA SEGM~NTS WHICH ARE OVERLAYED MUST BE WRITTEN ON THE
DISK, SINCE THE DATA MAY HAVE BEEN MODIFIED WHILE IT WAS IN MEMORY.
PROGRAM SEGMENTS AND READ-ONLY DATA SEGMENTS WHICH ARE OVERLAYEO NEED
NOT BE SAVED, SINCE THE ORIGINAL COPY OF THE SEGMENT IS STILL PRESENT ON
THE DISK.

3.1. RE-ENTRANT OBJECT PROGRAMS

3.1 .1. INTRODUCTION

OBJECT PROGRAMS RESIDE ON THE DISK WHERE THEY ARE REFERENCED AS CODE
FILE BY THE MCP THROUGH THE DISK DIRECTORY. THE REFERENCE WILL BE THE
CONSEQUENCE OF EITHER AN "EXECUTE" REQUEST OR THE "GO" PART OF A
"COMPILE AND GO". IN EITHER CASE, THE CODE FILE WILL HAVE BEEN
CONSTRUCTED BY A COMPILER.

THE MAIN FUNCTION OF A COMPILER IS TO CONVERT SYMBOLIC SOURCE STATEMENTS
INTO OBJECT MACHINE LANGUAGE CODE. EFFICIENT UTILIZATION OF MEMORY IN A

B6700'MASTER CONTROL PROGRAM
PAGE. 42

MULTIPROGRAMMING ENVIRONMENT REQUIRES THAT OBJECT CODE FILES BE
SEGMENTED, SO THAT DURING EXECUTION OF AN OBJECT PROGRAM THE ONLY
PORTION OF THE CODE FILE REQUIRED TO BE RESIDENT IN CORE IS THAT SEGMENT
CURRENTLY BEING PROCESSED. SEGMENTATION OF THE OBJECT CODE FILE IS AN
ADDITIONAL FUNCTION OF THE COMPILER.

3.1.2. SEGMENTATION

THE DESIGN OF THE
VARIABLE, DEPENDING
PROGRAM SEGMENTATION

WHERE EACH

B6700 ENABLES THE LENGTH OF A PROGRAM SEGMENT TO BE
ON THE PROGRAM LOGIC AND LANGUAGE USED. ALGOL

IS BASED ON THE BLOCK STRUCTURE OF THE SOURCE
BLOCK IS COMPILED INTO A CODE SEGMENT. COBOL PROGRAM,

PROGRAMS ARE SEGMENTED BY SECTION, UNLESS SPECIFIED OTHERWISE BY THE
PROGRAMMER. FORTRAN PROGRAMS ARE SEGMENTED BY PROGRAM UNIT CSUB-ROUTINE
OR MAIN PROGRAM), ANO IF NECESSARY, THESE UNITS ARE FURTHER SEGMENTED TO
OPTIMIZE SEGMENT SIZE. S.EGMENTATION OF FORTRAN PROGRAMS MAY ALSO BE
EFFECTED BY PROGRAMMER OPTION.

THE CODE FILE CONSISTS OF A NUMBER OF VARIABLE-LENGTH RECORDS, THE FIRST
RECORD IN THE FILE IS ONE DISk SEGMENT 30 WORDS IN LENGTH. IT CONTAINS
LINKAGE AND OBJECT PROGRAM INFORMATION FOR USE BY THE MCP AT JOB
INITIATION. FOLLOWING THIS RECORD ARE THE PROGRAM SEGMENTS, FOR ALL BUT
THE "OUTER-MOST" SEGMENT OF THE PROGRAM. ADDITIONAL RECORDS CONTAIN
CODE RELATED TO FORMATS, LISTS, AND OTHER COMPILER-GENERATED DATA. ALSO
INCLUDED IS COMPILE TIME INFORMATION FOR PROGRAM INPUT-OUTPUT FILES.

THE FINAL RECORDS IN THE
PREVIOUSLY WRITTEN LOGICAL

CODE FILE IS A DIRECTORY REFERENCING ALL
RECORDS. "EACH ENTRY IN THIS RECORD IS ONE

WORD IN LENGTH AND CONTAINS THE RELATIVE RECORD ADDRESS AND THE SIZE
CWORDS> OF THE RECORD IT REFERENCES. THESE WORDS ARE CALLED AS SEGMENT
DESCRIPTORS, AND THE RECORD IS CALLED THE SEGMENT DICTIONARY.

THE SEGMENT DICTIONARY IS READ INTO CORE BY THE MCP AT JOB INITIATION.
IN CONJUNCTION WITH DISPLAY REGISTER DCl>, THE SEGMENT DICTIONARY IS
USED
CODE

TO REFERENCE
SEGMENTS ARE

THE OBJECT CODE SEGMENTS WITHIN THE CODE FILE. THE
READ INTO CORE BY THE MCP AS A CONSEQUENCE OF

B6700 .MASTER CONTROL PROGRAM
PAGE 43

PRESENCEBIT INTERRUPTS INCURRED BY THE SEGMENT DESCRIPTOR FOR THE CODE
SEGMENT. THE FREQUENCY AND ORDER IN WHICH THE CODE SEGMENTS ARE
PROCESSED IS DETERMINED BY THE DYNAMIC FLOW OF THE OBJECT PROGRAM.

3.1.3. RE-ENTRANT CODE

RE-ENTRANT CODE IS COMMON OBJECT CODE WHICH CAN BE EXECUTED BY MORE THAN
ONE PROCESS AT A SAME TIME.

FOR THIS TO BE POSSIBLE NO MODIFICATION OF OBJECT COD~ CAN BE ALLOWED
DURING EXECUTION. SINCE EACH PROCESS ON THE B6700 SYSTEM IS ASSIGNED A
SEPARATE MEMORY AREA AS A PUSH DOWN STACK AND HIGHER LEVEL LANGUAGES DO
NOT GENERATE SELF-MODIFYING CODE, BOTH OBJECT PROGRAMS AND MCP ROUTINES
ARE RE-ENTRANT. OBJECT CODE WORDS ARE ALSO MEMORY PROTECTED BY THE
"TAG" BITS ASSOCIATED WITH EACH WORD IN MEMORY SO THAT ANY ATTEMPT TO
MODIFY CODE WORDS IN MEMORY CAUSES A "MEMORY PROTECTION'' INTERRUPT.

THE ASSIGNED STACKS CONTAIN TEMPORARY RESULTS, SIMPLE VARIABLE VALUES,
DATA ARRAY DESCRIPTORS, AND PROGRAM CONTROL ,INFORMATION. FOR THE
RELATIVE LOCATION IN THE SEGMENT DICTIONARY OF THE OBJECT CODE. CSEE
FIGURE 3-1>.

86700. MASTER CONTROL PROGRAM
PAGE 44

LEGEND

D[IJ DISPLAY REGISTERS (I= 0 THRU 31,
I INDICATES LEX LEVEL l

D.A. - DI SK ADDRESS

D.D. ~DATA DESCRIPTOR

OF DEL TA FIELD, STACK HISTORY LINKAGE

DIS P ~ DISPLACEMENT ADDRESSING ENVIROMENT
LINKAGE

MSCW - MARK STACK CONTROL WORD

P \ PROCESSOR NO. I

P2 PROCESSOR NO• 2

PCW PROGRAM C'ONTROL WORD

RCW - RETURN CONTROL WORD

S.D.- SEGMENT DESCRIPTOR

BOSR- BASE OF STACK REGISTER

----~ PCW REFERENCE_ TO A SEGMENT DESCRIPTOR

NOTE - THE FOLLOWING ALGOL PROGRAM WAS
ASSUMED:

LEX. LEVEL 2 --,
OUTER
BLOCK

1st COPY:

BLOCK STRUCTURE
OF PROGRAMS

rROCEDURE A

fPRoCEDURE B

I I [""'"""' ,

rOCEOURE D

~ROCEDURE E

~ROCEDURE F

PROCEDURE CALLS 8 1 B l':ALLS C, C CALLS D,

CALLS E, AND E CALLS F

2nd COPY:

PROCEDURE A CALLS B, B CALLS C (C HAS NOT YET

CALLED D }

MCP STACK

GLOB A l.S ANO SEGMENT

DICTIONARY

PCW- INTERRUPT PROCEDURE

0 D - STACK VECTOR

RCW

MSCW

PROCESS STACK

CONTROL

PARAMETERS

MSCW

TOSCW/PROCESSOR ID NO

OBJECT PROGRAM CODE
PROCEDURE "o""E" a "F"

OBJECT PROGRAM CODE

PROCEDURE "c"

OBJECT PROGRAM CODE

PROCEDURE "B"

OBJECT PROGRAM CODE _
PROCEDURE "A",.__ ____ ____,

OBJECT PROGRAM CODE
OUTER BLOCK

,___o_D_-_s_T_A_C_~# N-~~-~

BO~

WORKING STORAGE
PROCEDURE" "c"

44/45

J: PROC." F" WORKING STORAGE l-.

RCW
~l;;M~scCiw;----------i-,._~o~[~5~]~1~P~1l1

~ PROC. "E" WORKING STORAGE D DF
RCW

Dl,2.E-,l--M-S_C_W __________ ---4

1-----------·~.r-·--ft PROC . o" WORKING s 1Uf<Avt if
r--- - --I PCW-PROCEDURE "£'' --1
t--------1 PCW-PROCEOURE "F''

PROC "o" PARAMETERS

RCW

MSCW * PROC "c" WORKING STORAGE ifo
PROC. "c" PARAMETERS

DF

D [4] I P!l

-------------< OF

RC:W

MSCW

WORK I NG STORAGE
PROCEDURE "B"

D (5] (P2)

!--------,

1----------------
R CW

RCW

D~ MSCW

PROC "B" WORKING STORAGE t
r- - - - - -1,_P_c_w_-_P_R_O_C_E_D_U_R_E_" c_" --

P ROC, "B" PARAMETERS ---1

RCW

OF

I

I I Oi("fil:':~i-M""S""C""W""--------~---,
I) r PROC "A" WORKING STORAGE ~

WORKING STORAGE
PROCEDURE "A"

RCW

MSCW

OUTER BLOCK

GLOBAL VARIABLES

1---- ---, I I r-1- -- PCW-PROCEDURE "B"

~---1 -- PCW-PROCEDURE "D"

PROC. "A" PARAMETERS

RCW

~ MSCW

1-----~ :I E._ I r-- - PCW-PROCEDURE "A"

I J DI SP OUTER BLOCK

DF

~ D[3] IP!l

DF

,___R_c_w _________ _. D 121 ,,, 2! 11 l GLOBAL VARIABLES

MSCW I RCW
I 1 I I L.,..j--M-S_C_W _________ k D [2] Ip 1)

PROCESS STACK
CONTROL PARAMETERS

MSCW

TOSCW/PROCESSOR !ONO

PROCESS STACK - 2nd COPY

OF PROGRAM

SEGMENT DICTIONARY

i""'ll-----'--1_..._1~1-'----'--'-'I- _
i

I

I
I
I
I

I
I
I
I
I
I

I

I. I
I 1 I

'---l_s_.D_._P_R_o_c_s_. _"_o _" _·_·E_"_s_"_F_" _...,~- - - T ~ i_J
'-----i S.D. PROC. "c" i- - -- -1-r' _ _J I

STACK VECTOR
S.D. PROC."B" i----1- ____ ..J :

'-------1>--S-.D-.-PR_O_C_. -.. -A-,, -----11-- - - I. - - - - - - - _J

+3

+2

+I f--D_._D_._-__ s_T_A_C_K ___ #_4 __ ~~ -

~~D~·~D~·----~S~T~A~C~K__::#_::.3 __ _,j~
D. D. - STACK # 2 ~ I -

!-------------~ D. D. - STACK # \

D. D - STACK # 0

D [OJ I PROCESSORS 18 2 !

"""''"~ 1_
lb----------------1-l__J

BO R

DISP

SEG. DES, OUTER BLOCK
DISP

RCW J
,__M_sc_w ________ _;i;;;;;;z:.:,:--=,--D [I] I P2) * PROCESS STACK

CONTROL

PARAMETERS

MSCW

TOSCW/PROCESSOR ID NO.

D [I] I Pl l

PROCESS STACK

CONTROL

PARAMETERS

MSCW J.-.J

DF

'-------------------------~8-9.:~S~RI-------------< TOSCW/ PROCESSOR ID NO

PROCESS STACK - l st COPY

OF PROGRAM

86700 REENTRANT

STRUCTURE

FIGURE F 3-1.

PROGRAM STACK

PAGE 45
86700·MASTER CONTROL PROGRAM

B6700 ·MASTER CONTROL PROGRAM
PAGE · 46

CODE SEGMENTS FOR ALL PROGRAMS ACCESSING A COMMON CODE FILE ARE MADE RE­
ENTRANT BY USING THE SAME SEGMENT DICTIONARY FOR ALL SUCH PROGRAMS.
THIS ALSO ENSURES THAT ONLY ONE COPY OF A SEGMENT WILL BE PRESENT IN
MEMORY.

A PROGRAM CONTROL WORD IS BUILT WHEN A PROCEDURE IS DECLARED ANO IS USED
DURING PROCEDURE ENTRY. IT CONTAINS THE FOLLOWING INFORMATION:

1. THE LOCATION IN THE SEGMENT DICTIONARY OF THE OBJECT CODE
SEGMENT DESCRIPTOR.

2. THE PROCEDURE ENTRY POINT REFERENCES BOTH THE WORD INDEX
RELATIVE TO THE BEGINNING OF THE CODE SEGMENT, ANO THE SYLLABLE
INDEX RELATIVE TO THE BEGINNING OF THE ENTRY POINT WORD.

THE RUNNING COUNT ANO LINK WORD IN THE SEGMENT DICTIONARY INDICATES THE
NUMBER OF PROCESSES ACCESSING THE SEGMENT DICTIONARY. WHENEVER THIS
COUNT REACHES ZERO THE MEMORY SPACE FOR THE SEGMENT DICTIONARY AND ALL
REMAINING CODE SEGMENTS ARE DE-ALLOCATED.

THIS REENTRANT CAPABILITY IS ALSO EXTENDED TO INCLUDE DATA WHICH DOES
NOT CHANGE IN VALUE SUCH AS LITERAL STRINGS ANO OTHER TYPES OF READ-ONLY
DATA. THIS IS ACCOMPLISHED BY PLACING THEIR ASSOCIATED DESCRIPTORS IN
THE SEGMENT DICTIONARY.

PAGE 47
B6700' MASTER CONTROL PROGRAM

3.2. COMPILATION

3.2.1. INTRODUCTION

A COMPILER
STATEMENTS
OUTPUT OF
COMPILATION

IS A SPECIAL PURPOSE COMPUTER PROGRAM WHICH ACCEPTS SOURCE
IN THE LANGUAGE FOR WHICH THE COMPILER IS WRITTEN. THE
A COMPILER IS A UISK FILE WHICH CONSISTS OF OBJECT CODE. A

REQUIRES CERTAIN FUNCTIONS TO BE PERFORMED BY THE COMPILER
AND THE MCP, WHICH INVOLVES:

1. COMMUNICATION BETWEEN A COMPILER AND THE MCP.

2. CONSTRUCTION OF A STANDARD OBJECT CODE FILE BY A COMPILER.

3.2.2. RECOGNITION OF A COMPILER BY THE MCP

A COMPILE CARD IS A REQUEST TO THE MCP TO SCHEDULE A PARTICULAR COMPILER
FOR EXECUTION AND PROVIDE SPECIAL HANDLING FOR THIS PROGRAM. THE
SCHEDULE ENTRY FOR
ASSOCIATED WITH THE
COMPILE TO LIBRARY>.

THIS EXECUTION WILL ALSO REFLECT THE OPTION
COMPILATION !COMPILE AND GO, COMPILE FOR SYNTAX,

3.2.3. COMMUNICATION BETWEEN A COMPILER AND THE MCP

EACH COMPILER IS A REAL PROCEDURE WITH ONE FORMAL PARAMETER, A ONE
DIMENSIONAL ARRAY. THIS ARRAY IS CREATED ANO INITIALIZED BY THE MCP.
IT CONTAINS INFORMATION DERIVED FROM THE CONTROL CARDS USED TO REQUEST
THE COMPILATION. THE FIRST PART OF TH~ ARRAY WILL BE USED BY THE
COMPILER IN CONSTRUCTING SEGMENT ZERO OF THE CODE FILE. THIS
INFORMATION IS FOLLOWED BY ANY FILE PARAMETER INFORMATION SUPPLIED.

3.2.4. CONSTRUCTION OF COMPILER OBJECT CODE FILES

IF THE SOURCE FILE CONTAINS NO SYNTAX ERRORS, AND THE COMPILATION IS NOT

B6700.MASTER CONTROL PROGRAM
PAGE 48.

FOR SYNTAX ONLY, THE COMPILER WRITES THE OBJECT CODE TO DISK AND CLOSES
THIS FILE WITH LOCK, THROUGH THE MCP. THE MCP RECOGNIZES THE CALLING
PROGRAM AS A COMPILER, AND IF COMPILATION REQUEST SPECIFIED "GO'' THE
OBJECT CODE FILE IS IMMEDIATELY SCHEDULED FOR EXECUTION. IF THE
COMPILATION REQUEST SPECIFIED ''LIBRARY" THEN THE FILE HEADER IS ENTERED
IN THE DISK DIRECTORY~ MAKING THE CODE FILE PERMANENT.

3.2.5. SCHEDULING INFORMATION

IN ADDITION TO
RESPONSIBLE FOR
INFORMATION, IN
ESTIMATE, STACK

GENERATING THE OBJECT CODE FILE, THE COMPILERS ARE
SUPPLYING SCHEDULING INFORMATION TO THE MCP. THIS
THE FIRST RECORD OF THE CODE FILE, INCLUDES THE CORE
SIZE, AND POINTERS INTO THE CODE FILE FOR LOCATING THE

SEGMENT DICTIONARY, THE FILE PARAMETER BLOCK, AND THE FIRST EXECUTABLE
CODE SEGMENT. IF PROGRAM PARAMETER CARDS HAD BEEN INCLUDED WITH THE
COMPILE REQUEST. THESE CHANGES WILL BE IN EFFECT FOR ALL SUBSEQUENT
EXECUTIONS OF THE OBJECT CODE FILE, UNLESS OVERRIDDEN BY PROGRAM CARDS
IN THE EXECUTE REQUEST.

PAGE 49
86700'MASTER CONTROL PROGRAM

3.3. PROCESS HANDLING

3. 3. 1. "CONTROL CARD" PROCEDURE

THE "STATUS" PROCEDURE OF THE MCP PERIODICALLY USES THE "SCAN-IN
PERIPHERAL STATUS" COMMAND TO DETERMINE THE STATUS OF THE PERIPHERAL
UNITS. "STATUS", UPON RECOGNIZING THAT THE DEVICE IS "READY", READS THE
FIRST RECORD AND CREATES AN INDEPENDENT PROCESS CALLED ''CONTROLCARD."

"CONTROLCARD" CREATES AN I/O CONTROL BLOCK CONTAINING A REFERENCE TO A
PARTICULAR DEVICE THAT IS "READY". THE RECORDS ARE THEN READ UNTIL A
"DATA", "END", "BCL" OR ANOTHER "EXECUTE" OR "COMPILE" IS OBTAINED.

"CONTROLCARD" INTERPRETS THE INFORMATION CONTAINED IN THE RECORD AND IF
THE JOB IN THE DEVICE IS A PROGRAM EXECUTION, IT READS SEGMENT ZERO, THE
FIRST SEGMENT OF THE CODE FILE BUILT BY THE COMPILER, WHICH CONTAINS:

1. ESTIMATED AMOUNT OF MAIN MEMORY REQUIRED SY THE PROCESS.

2 . PR I OR I TY .

3. MAXIMUM PROCESSTIME.

4. MAXIMUM l/O TIME.

5. FILE PARAMETER BLOCK SIZE AND LOCATION.

6. THE WORKING STORAGE STACK SIZE.

7. SIZE AND LOCATION OF THE SEGMENT DICTIONARY.

WHEN A TERMINAL CONTROL
INFORMATION CONTAINED IN
PARAMETER CARDS AND FILE
TERMINATES ITSELF.

CARD IS READ, "CONTROLCARO" MERGES THE
SEGMENT ZERO WITH THE INFORMATION IN THE

CARDS TO MAKE A SHEET QUEUE; FINALLY IT

B6700'MASTER CONTROL PROGRAM
PAGE 50

THE SHEET QUEUE IS A LINKED LIST OF PROCESSES WHICH ARE SCHEDULED TO BE
EXECUTED AS SOON AS SUFFICIENT SYSTEM RESOURCES, SUCH AS MEMORY, ARE
AVAILABLE. EACH ENTRY IN THE S~EET QUEUE IS IN THE FORM OF A PARTIALLY
BUILT PROCESS ST~CK.

MCP PROCEll.JRES

THAT USE QUEUE

ALGrnlTHMS:

HOLD,

WAIT

WHAT­

DOIDO

CAUSE

QUEUE DECLARATIONS
SHOWING ALGORITHM

NAMES:

1-------1
I READYQ I
I USING LOCKED !

REARANGE -

MOVEFROMSHEET

MOVE TO NEXT

-INREADYQ

EMPTY IS REAL

(M[NAME (WRONG­

TYPEREADYQ­

HEAD)]) =O

INSERT

INSERTING

KEY:

86700 MASTER CONTROL PROGRAM
PAGE

,-----
1 (R)

I
I

____ .J

LOCK
SfEET

MCP PROCEEUlES THAT

USE QLEUE ALGrnlTHMS:

STACKQREARANGE

(S)

NEXT

PROCESS
(R) E~EMOVEJ

-1 (T)

(R) ,-- -

I
I

(R) -

VECTOR INSERT

QUEUE DECLARATIONS

SI-OWING ALGORITHM

NAMES! ,-----,
I SHEETQ 1

1USNG LOCK I

L-- REARANGE

MCP PROCEDIBES THAT
USE QELE ALGORITHMS:

l-s~~:;~~E~J

r£XTINDEX -+---' .----] '""' -t;,::,
,----- - --,
I TERMlt~ATE I -[I USING LOCKED I

REMOVE

INSERTING
TERMINATE

~OTHER

I (R)
I

(R) (SJ
~------~(T)

INSERT INQUEUE

-- _ _J

GETIRS

(R), (S), (Tl INDICATE MANIPULATION OF READYO, SHEETQ, TERMQ, RESPECTIVELY.

- NDICATES CALLS ON ALGORITHMS - - - +INDICATES POSSIBLE CALLS, NOT INVOKED

FIGURE F3-2. MCP USE OF QUEUE ALGORITMS FOR READYQ, SHEETQ, TERMQ

51

B67oo· MASTER CONTROL PROGRAM
PAGE. 52

3.3.2. PROCESS INITIATION

WHEN A JOB IS FIRST INTRODUCED INTO THE SYSTEM AN ENTRY FOR THAT JOB IS
MADE IN A QUEUE CALLED THE SHEET QUEUE BY THE MCP CONTROL CARD ROUTINE.
AFTER THE CONTROL CARD ROUTINE COMPLETES ITS TASKS, THE ENTRY WILL BE
EXAMINED BY A PROCEDURE CALLED SELECTION. SELECTION IS CALLED WHENEVER
SOMETHING NEW APPEARS IN THE SHEET QUEUE OR WHENEVER A JOB IS TERMINATED.

SELECTION CHECKS CORE ESTIMATES OF JOBS RUNNING <ADJUSTED FOR
REENTRANCY> AGAINST THE RESOURCES AVAILABLE. IF SUFFICIENT RESOURCES
ARE CURRENTLY FREE, A PROCESS CALLFD INITIATE WILL BE STARTED TO CREATE
A PROCESS STACK CANO, IF NECESSARY A SEGMENT DICTIONARY> OUT OF THE
SHEET ENTRY AND CODE FILE AND LINKS THIS NEW STACK INTO THE READY QUEUE.

THE ROUTINE RUN HAS A SPECIAL SIGNIFICANCE, BEING THE ULTIMATE
"OUTERBLOCK" FOR EVERY STACK. WHEN A STACK IS CONSTRUCTED, SOME CONTROL
~OROS ARE "FORGED'' TO GIVE THE .APPEARANCE THAT RUN WAS INTERRUPTED JUST
BEFORE EXECUTING ITS FIRST SYLLABLE. THESE CONTROL WORDS PROVIDE AN
SIRW TO THE PCW FOR CTYPICALLY> A JOB OUTER BLOCK: RUN INHERITS THIS AS
A. "PARAMETER", WHICH IT THEN PROCEEDS TO CALL, CAUSING ENTRY TO THE JOB.
THIS PCW MUST BE IN THE USERS SEGMENT DICTIONARY, CAUSING DCll TO POINT
THERE ON ENTRY, THUS MAKING THE SEGMENT DICTIONARY VISIBLE FOR FURTHER
JSE. IF THE JOB IS AN MCP PROCEDURE OPERATING AS AN INDEPENDENTRUNNER,
THE PCW WILL BE IN THE OCOJ STACK.

RCW (RUN)

MSCW

PARAMETER

SIRW

DUMMY RCW

MSCW

TOSCW

(A)

IRW

MSCW

RCW

PROCESSOR ID

(B)

86700. MASTER CONTROL PROGRAM PAGE 5

s
F

D[I]

OUTER
PCW

BLOCK

DUMMY RCW

USER SEGMENT

DCTIONARY

USER

GLOBALS

RCW (RUN)

MSCW

.___i-:S:...:..I R:...:..W:..:__ __ -1

DUMMY RCW

PROCESSOR

(c)

D[2]

FIGURE F3-3. STACK WAITING IN READYQ, ABOUT TO CALL USER, USER1S OUTER BLOCK

B6700 MASTER CONTROL PROGR~M
PAGE·· 54

3.3.3. PROCESS EXECUTION

AS SOON AS CONTROL IS TRANSFERRED TO THE NEW PROCESS. A "PRESENCEBIT"
INTERRUPT MAY OCCUR BECAUSE THE OUTER BLOCK CODE SEGMENT IS NOT PRESENT
IN M~IN MEMORY. THE PRESENCEBIT PROCEDURE OF THE MCP IS ENTERED AND THE
FOLLOWING ACTIONS OCCUR IN ORDER TO MAKE THE SEGMENT PRESENT:

1. THE PRESENCEBIT PROCEDURE CALLS THE GETSPACE PROCEDURE TO
ALLOCATE AN AREA IN MAIN MEMORY FOR THE CODE SEGMENT.

2. WHEN AN AREA HAS BEEN ALLOCATED FOR THE SEGMENT. PRESENCEBIT
CALLS "DISKIO". THE DISK INPUT/OUTPUT PROCEDURE. AND WAITS ON AN
EVENT WHICH INDICATES THAT THE SEGMENT HAS BEEN READ IN.

3. "DI SK I 0" LINKS THE REQUEST INTO I I 0 QUEUE. WHEN THE I I 0 REQUEST
COMES TO THE HEAD OF THE QUEUE, THE DISK I/O IS PERFORMED. AT
THE COMPLETION OF THE DISK I/0, THE EVENT IS CAUSED, THEREBY
NOTIFYING PRESENCEBIT THAT THE SEGMENT IS NOW AVAILABLE.

4. PRESENCEBIT MARKS THE SEGMENT DESCRIPTOR PRESENT AND EXITS BACK
TO THE PROCESS AT THE POINT OF INTERRUPTION.

AS THE PROCESS RUNS. ADDITIONAL SEGMENTS OF PROGRAM CODE AND DATA WILL
BE REQUIREp. THE PROCESS STACK CONTAINS THE STORAGE LOCATIONS FOR
SIMPLE VARIABLES AND ARRAY DATA DESCRIPTORS, BUT PROGRAM CODE SEGMENTS
AND ARRAY ROWS ARE ASSIGNED THEIR OWN AREAS OF MEMORY. THE ASSIGNMENT
OF SEPARATE MEMORY AREAS FOR CODE SEGMENTS AND ARRAY ROWS ALLOWS
SEGMENTS AND DATA TO BE ABSENT FROM MAIN MEMORY UNTIL THEY ARE ACTUALLY
NEEDED. IN THE B6700 SYSTEM. A REFERENCE TO DATA OR CODE CTHROUGH A
DATA DESCRIPTOR OR A SEGMENT DESCRIPTOR> CAUSES THE PROCESSOR TO CHECK
THE "PRESENCE" BIT. BIT NUMBER 47. IN THE DESCRIPTOR.

IF THE PRESENCE BIT IS OFF. AN INTERRUPT OCCURS WHICH TRANSFERS CONTROL
TO THE PRESENCEBIT PROCEDURE IN THE MCP, PASSING THE NON-PRESENT
DESCRIPTOR AS A PARAMETER. THE PRESENCEBIT PROCEDURE READS THE ADDRESS

B6700 'MASTER CONTROL PROGRAM
PAGE 55.

FIELD OF THE DESCRIPTOR CTHE ADDRESS FIELD CONTAINS THE DISK ADDRESS OF
THE DATA OR SEGMENT FOR NON-PRESENT DESCRIPTORSl. THEN PRESENCEBIT
CALLS "GETSPACE" TO ALLOCATE A MEMORY AREA OF THE SIZE SPECIFIED IN THE
DESCRIPTOR. GETSPACE RETURNS THE MEMORY ADDRESS OF THE AREA IT HAS
ALLOCATED AND PRESENCEBIT CAUSES THE INFORMATION TO BE READ FROM DISK
INTO MEMORY.

WHEN THE DISK READ IS FINISHED, PRESENCEBIT STORES THE MEMORY ADDRESS OF
THE INFORMATION INTO THE ADDRESS FIELD OF THE DESCRIPTOR, TURNS THE
PRESENCE BIT ON AND UPDATES THE DESCRIPTOR IN THE PROCESS STACK.
PRESENCEBIT THEN RETURNS CONTROL BACK TO THE PROCESS WHICH WAS
INTERRUPTED ANO THE PROCESS HAS ACCESS AGAIN TO THE INFORMATION. NOW
THE INFORMATION IS PRESENT IN MEMORY, WHICH IS INDICATED BY THE PRESENCE
BIT BEING "ON". THE INFORMATION IS OBTAINED AND THE PROCESS EXECUTION
CONTINUES IN THE NORMAL MANNER.

FOR PURPOSES OF DISCUSSION, ASSUME THAT THE PROCESS EXPECTS TO READ A
DATA FILE WITH THE SYMBOLIC NAME "INCARD'' AND THAT A CARD FILE TITLED
"INCARD" HAS BEEN RECOGNIZED BY THE CONTROL CARD ROUTINE AND THE TITLE
ENTERED IN THE MCP "UNIT'' TABLE. WHEN THE PROCESS FIRST PERFORMS A READ
OPERATION ON THE SYMBOLIC FILE "INCARD'', THE PROCESS FILE INFORMATION

·BLOCK CFIBl IS ACCESSED. A BIT IN THE FIB INDICATES THAT THE FILE HAS
NOT BEEN OPENED CI.E. ·THE LABEL EQUATION BLOCK CLEB> HAS NOT BEEN
INITIALIZED>. THE "FILE OPEN" ACTION CONSISTS OF FINDING THE PROPER
FILE ON SOME PHYSICAL UNIT, PROVIDING A MEMORY I/O AREA FOR THE RECORDS
OF THE FILE AND ASSIGNING THE UNIT TO THE PROCESS WHICH IS OPENING THE
FILE. IN ORDER TO FIND THE PROPER FILE, THE PROCESS PARAMETER BLOCK
CPPB> MUST BE USED TO DETERMINE IF THE NAME OF THE FI~E HAS BEEN EQUATED
TO SOME NAME OTHER THAN THE SYMBOLIC NAME DEFINED IN THE SOURCE PROGRAM.
SEE SECTION 4.4 FOR MORE DETAILS.

SINCE THE
NAME, THE
INCARD, IS

SYMBOLIC FILE NAMED "INCARD'' IS NOT LABEL-EQUATED TO ANOTHER
SEARCH OF THE PPB IS UNSUCCESSFUL, AND THE SYMBOLIC NAME,

EXPECTED TO BE THE "TITLE'' NAME OF THE FILE TO BE ASSIGNED.
IN ORDER TO FIND THE PHYSICAL UNIT CONTAINING THE FILE TITLED ''INCARD",
THE "UNITINFO" TABLE IS SEARCHED AND THE PHYSICAL UNIT ASSOCIATED WITH

PAGE 56 ·
B6700 MASTER CONTROL PROGRAM

THE TITLE "INCARD" CA CARD READER IN THIS INSTANCE) IS ASSIGNED TO THE
PROCESS. THE CARD READER IS MARKED AS BEING IN USE IN THE UNIT TABLE
AND MEMORY IS ALLOCATED FOR THE REQUIRED NUMBER OF BUFFERS.

WHEN THE JOB
WHICH CANNOT
GEORGE, THAT
MESSAGES AND

OR INDEPENDENT RUNNER IS FINISHED, IT EXITS BACK TO RUN,
ITSELF EXIT C THERE IS NOWHERE TO GO) . INSTEAD IT CALLS
WILL ABANDON THE STACK. RUN ALSO FIXES BOJ AND EOJ
RECOGNIZES THE SPECIAL REQUIREMENTS OF COMPILERS, HANDLES

SPECIAL TERMINATION TASKS AND DELINKS TASKS FROM THE PARENT STACK.

3.3.4. PRIORITY CONSIDERATIONS

THE PROCESSOR ALLOCATION ALGORITHM FOR THE B6700 IS DESIGNED TO ATTAIN
MAXIMUM THROUGH-PUT FOR A JOB MIX. THIS IS ATTAINED BY THE MINIMIZATION
OF INTER-JOB INTERFERENCE AND MCP OVERHEAD INVOLVED IN PROCESS SWITCHING.

THE BASIC STRATEGY USED IS TO ALWAYS RUN THE JOB FROM THE READYQ WHICH
HAS THE HIGHEST PRIORITY. THIS SCHEME HAS ONE DISADVANTAGE IN THAT
GIVEN TWO
OSCILLATION
OTHERS MAIN

JOBS OF EQUAL PRIORITY, A SWAPPING SITUATION COULD CAUSE AN
TO DEVELOP SO THAT EACH JOB WAS REQUIRED TO OVERLAY THE

STORAGE IN ORDER TO OBTAIN ROOM TO RUN. IT COULD ALSO
HAPPEN THAT A JOB WHICH WAS PROCESSOR BOUND COULD DOMINATE ONE WHICH WAS
PRIMARILY WAITING FOR I/O COMPLETIONS, THUS GETTING LESS THAN OPTIMUM
USE FROM THE 110 SUBSYSTEM. THE ALGORITHM USED HAS THEREFORE BEEN
DESIGNED SO THAT NO TWO JOBS CAN HAVE EXACTLY THE SAME PRIORITY, AND
THAT PROCESSOR BOUND JOBS WILL TEND TO THE BACKGROUND WHEN THERE ARE I/O
BOUND JOBS AT THE SAME PRIORITY LEVEL. IN NO WAY CAN THE SYSTEM
ADJUSTMENTS OF PRIORITY CAUSE A JOB TO ADVANCE OR RECEDE TO A PRIORITY
LEVEL DIFFERENT FROM THE USER SPECIFIED PRIORITY NUMBER.

WHEREAS THIS SCHEME WILL CAUSE THE B6700 TO RUN AT MAXIMUM THROUGH-PUT,
CONCERNS EXTERNAL TO THE OPERATING SYSTEM MAY MAKE OTHER PRIORITY
MANIPULATIONS DESIRABLE. THERE ARE TWO KINDS OF PRIORITY MANIPULATIONS
WHICH ARE APPROPRIATE TO BE CONSIDERED. PRIORITY IS OFTEN A FUNCTION OF
OTHER ASPECTS OF A JOB SUCH AS ITS PROCESSOR AND I!O TIME ESTIMATES, ITS
CORE ESTIMATE, ETC. WHEN THIS IS THE CASE, THE APPROPRIATE PRIORITY

PAGE 57
B6706 MASTER CONTROL PROGRAM

SHOULD BE DETERMINED PRIOR TO SCHEDULING THE JOB. SINCE SCHEDULE
ENTRIES ARE ALL ESTABLISHED BY THE ROUTINE SCHEDULE. AND ALL PROGRAM
PARAMETER CARD INFORMATION IS AVAILABLE AT THAT TIME. AN APPROPRIATE
USER DEFINED ALGORITHM CAN EASILY BE INSERTED TO COMPUTE THE PRIORITY
FOR ALL JOBS INTRODUCED TO THE SYSTEM. THIS CHANGE IS RECOMMENDED
WHEREVER SUCH AN ALGORITHM CAN BE DEFINED SINCE IT CAN IMPROVE SYSTEM
PERFORMANCE AT INSIGNIFICANT COST. IT IS SOMETIMES DESIRABLE TO ALTER
THE PRIORITIES OF JOBS WHICH ARE RUNNING BASED ON SOME PERFORMANCE
CRITERION. THE DRAW BACK TO THIS IS THAT THE DECISION PROCESS REQUIRES
SOME DEGREE OF SYSTEM OVERHEAD. AND UNLESS THE ORIGINAL PRIORITIES WERE
IN IMPROPER RELATIONS. REARRANGEMENT OF RUNNING PRIORITIES WILL USUALLY
DECREASE SYSTEM THROUGHPUT. THE MOST CONVENIENT MEANS OF DYNAMICALLY
ADJUSTING PRIORITIES IS TO PERIODICALLY EXAMINE THE MIX AND COMPUTE NEW
PRIORITIES. THE CALENDAR MECHANISM IS BEST SUITED FOR PERIODIC
FUNCTIONS. THE ROUTINES GEORGE AND POST MANIPULATE THE CALENDAR. AND
NSECOND IS AN EXAMPLE OF A PERIODICALLY RUN INDEPENDENT-RUNNER.

BURROUGHS CAN SUPPLY MORE DETAILED INFORMATION FOR THOSE DESIRING TO
IMPLEMENT PRIORITY SCHEMES AS DESCRIBED; BUT BECAUSE OF THE INSTALLATION
DEPENDENT CONSIDERATIONS REQUIRED. BURROUGHS HAS NO PLANS FOR INCLUDING
SUCH SCHEMES IN THE STANDARD OPERATING SYSTEM.

3.3.5. PROCESS TERMINATION

TERMINATE IS A PROCEDURE FOR WINDING UP STACKS AND RECOVERING THE SYSTEM
RESOURCES ALLOCATED TO THEM. IT MUST BE AN INDEPENDENT-RUNNER BECAUSE
WHEN IT ENDS. THE SUBJECT STACK NO LONGER EXISTS. BUT TERMINATE IS
REQUIRED TO BE CONTINUOUSLY PRESENT. IT TERMINATES ALL STACKS AS THEY
ARE LINKED INTO A QUEUE CALLEO "MORGUE" . WHEN MORGUE IS EMPTY.
TERMINATE WAITS ON AN EVENT CALLEO ''DEATH", GEORGE LINKS STACKS INTO THE
MORGUE ANO THEN CALLS DEATH.

WHEN A PROCESS EXECUTION IS TERMINATED, THE FOLLOWING ACTIONS OCCUR:

1. ANY OUTSTANDING l/O REQUESTS ARE COMPLETED <IF POSSIBLE). ANY
"OPEN" FILES ARE CLOSED, THE UNITS RELEASED ANO THE BUFFER AREAS

PAGE 58
B6700·MASTER CONTROL PROGRAM

ARE RETURNED TO THE AVAILABLE MEMORY TABLE.

2. ALL OVERLAYABLE DISK AREAS ALLOCATED TO THE PROCESS ARE RETURNED
TO THE AVAILABLE DISK TABLE.

3. ALL PROCESS OBJECT CODE AND DATA ARRAY AREAS OF MAIN MEMORY ARE
RETURNED TO THE AVAILABLE MEMORY TABLE.

4. AN EOJ ENTRY IS MADE IN THE SYSTEM LOG FOR THE PROCESS.

5. THE PROCESS STACKS ARE LINKED INTO THE "TERMINATE'' autuE.

PAGE . 59
B6700.MASTER CONTROL PROGRAM

3.4. TASKING

3.4.l. TASKING IMPLEMENTATION

THE B6700 MCP PROVIDES FACILITIES FOR CREATING AND CONTROLLING FAMILIES
OF TASKS.
PARAMETERS
WILL BE
TASKS.

THESE TASKS MAY COMMUNICATE AMONG THEMSELVES THROUGH
AND BY HAVING AN ACCESS TO COMMON DATA AREAS. SUCH A FAMILY

CALLED A TASK FAMILY, AND INDIVIDUAL MEMBERS WILL BE CALLED

THE PRINCIPLE MEANS OF CONTROL AND COORDINATION WITHIN A FAMILY IS BY
.USE OF A UNIQUE DATA TYPE CALLED A TASK VARIABLE.

EACH TASK CONSISTS OF ONE ACTIVE STACK, AND EACH STACK HAS ASSOCIATED
WITH IT ONE TASK VARIABLE.IN THE CASE OF TASKS STARTED BY CONTROL CARD
AND INDEPENDENT TASKS THE TASK VARIABLE IS NOT A DECLARED ITEM, IN ALL
OTHER TASKS STARTED BY ANOTHER TASK IT IS AN EXPLICITLY DECLARED ITEM.
IT SHOULD BE NOTED HOWEVER, THAT INDEPENDENT TASKS ARE NOT MEMBERS OF
THE FAMILY THAT STARTS THEM, ANO THEIR TASK VARIABLES ARE COPIES OF WHAT
IS USED TO START THEM.

ALL TASKS HAVING DECLARED TASK VARIABLES WILL BE REFERRED TO AS SUBTASKS
ALL SUBIASKS ARE CREATED BY THE INTRINSIC "DELIVERY", BUT SINCE DELIVERY
MUST BE PASSED A VARIABLE NUMBER OF PARAMETERS CBECAUSE THE SUBTASK MAY
HAVE ANY NUMBER OF PARAMETERS> IT CALLS THE PROCEDURE DOCTOR TO PROCESS
THE INTRINSIC DELIVERY.

DELIVERY IS CAPABLE OF CREATING DIFFERENT TYPES OF TASKS. THESE
DIFFERENT TYPES ARE DESCRIBED AS:

IA
!AC
DA

DEPENDENT

NO
NO
YES

SYNCHRONOUS

NO
NO
NO

COMPILER

NO
YES
NO

DAC
OS
DSC

YES
YES
YES

B670G MASTER CONTROL PROGRAM

NO
YES
YES

YES
NO
YES

PAGE 60

DEPENDENT MEANS THEY WILL BE A MEMBER OF THE CALLERS TASK FAMILY.
SYNCHRONOUS MEANS THEY WILL RUN AS A COROUTINE. AND COMPILER MEANS THAT
THE SYSTEM WILL RECOGNIZE CODE FILES GENERATED BY THEM.

EACH SUB-TASK HAS ASSOCIATED WITH IT A CRITICAL BLOCK. THIS IS THE
HIGHEST ADDRESSING LEVEL THAT SOME ANCESTOR MAY NOT EXIT FROM WITHOUT
RELEASING SOMETHING THAT THIS TASK HAS AN ACCESS INTO. IT MAY BE THE
TASK VARIABLE, A CALL BY NAME PARAMETER, A PCW <POSSIBLY ITS OWNl, OR
VARIABLES GLOBAL TO ITSELF. TASKS ARE LINKED INTO FAMILIES BY MEANS OF
THE FAMILY LINKED WORD WITHIN THE STACK OF EACH TASK

3.4.2. TASK ATTRIBUTES. ------ ------------

NUMBER NAME ------
0 NAME
r STACKNO
2 COREESTIMATE
3 DECLAREDPRIORITY
4 MAXPROCTIME
5 MAXIOTIME
6 TARGETT I HE
7 STACKSIZE
8 PREFIX
9 TASKVALUE
10 HISTORY
11 TYPE
12 STATUS
13 PROCESSTIME
14 PROCESSIOTIME
15 STARTT I ME
16 EXCEPT I ONT ASK

TYPE

POINTER
REAL
REAL
REAL
REAL
REAL
REAL
REAL
POINTER
REAL
REAL
TYPE
REAL
REAL
REAL
REAL

. TASK

CLASS -----
0

l
0

0

0

0

0

0

0

2
1
1

2
l
1
1

2

CC EQV

CORE
PRIORITY
PROCESS
IO
TARGETT I HE
STACK

PAGE 61
B6700 MASTER CONTROL PROGRAM

17 LOCKED BOOLEAN 2
18 STOPPOINT REAL l

19 PARTNER TASK 2
20 STATION REAL 0
21 EXCEPTIONEVENT EVENT l

CLASSES 0: READ OR WRITE, BUT THE VALUE AT PROCESS INITIATION IS SAVED
BY THE SYSTEM FOR USE THROUGHOUT PROCESS EXECUTION

1: READ ONLY

2: READ OR WRITE

NAME: THE NAME ATTRIBUTE IS REFERENCED IN THE SAME MANNER AS THE
TITLE ATTRIBUTE OF A FILE. IT IS USED ONLY WHEN INITIATING AN
EXTERNAL PROCEDURE, IN WHICH CASE IT IS THE FILE NAME OF TH(
CODE FILE TO BE USED AS THAT PROCEDURE.

STACKNO: STACKNO IS ZERO FOR A TASK VARIABLE THAT HAS NEVER BEEN THE
TASK VARIABLE OF AN ACTIVE PROCESS • THE STACK NUMBER FOR AN
ACTIVE PROCESS AND THE NEGATIVE OF THE STACKNO FOR TERMINATED
PROCESSES.

COREESTIMATE: CORE REQUIREMENT USED FOR SCHEDULING BY THE SYSTEM.

DECLAREDPRIORITY: PRIORITY USED FOR SCHEDULING BY THE SYSTEM.

MAXPROCTIME: PROCESS TIME LIMIT FOR THE PROCESS.

MAXIOTIME: IO TIME LIMIT FOR THE PROCESS.

TARGETTIME: THE TARGET TIME FOR PROGRAM COMPLETION OF THE PROCESS,
THIS IS USED IN SCHEDULING.

STACKSIZE: REQUIRED STACK SIZE FOR THE PROCESS.

B6700.MASTER CONTROL PROGRAM
PAGE 62

PREFIX: FILE PREFIX FOR THE PROCESS. CTHIS IS NOT CURRENTLY BEING
USED BY THE FILE HANDLING SYSTEM>.

TASKVALUE: PROVIDE SOLELY· FOR USE BY THE PROGRAMMER AS A POSSIBLE
MEANS OF COMMUNICATION AMONG PROCESSES.

HISTORY: THIS WILL PROVIDE THE REASON FOR TERMINATION OF TERMINATED
PROCESSES. THE VALUES HAVE NOT BEEN SPECIFIED.

TYPE: TYPE
AD
SD
I
ADC
soc
IC

OF PROCESS.
0
1

2
4

5
6

ASYNCHRONOUS DEPENDENT NON-COMPILER
SYNCHRONOUS DEPENDENT NON-COMPILER
INDEPENDENT NON-COMPILER
ASYNCHRONOUS DEPENDENT COMPILER
SYNCHRONOUS DEPENDENT COMPILER
INDEPENDENT COMPILER

STATUS: CURRENT STATUS OF THE PROCESS,
0: NOT BEEN USED.
1: SCHEDULED.
2: ACTIVE.
3: SUSPENDED.

-1: EOJ TERMINATED

PROCESSTIME: ACCUMULATED PROCESSOR TIME FOR THE PROCESS.

PROCESSIOTIME: ACCUMULATED 1/0 TIME FOR THE PROCESS.

STARTTIME: THE TIME AT WHICH THE PROCESS WAS STARTED.

EXCEPTIONTASK: THIS ATTRIBUTE SPECIFIES WHAT PROCESS IS TO BE
NOTIFIED OF CHANGES OF STATUS OF A PROCESS.

LOCKED: PROVIDED FOR USE BY THE PROGRAMMER. SETTING THIS TO TRUE,
LOCKS THE ATTRIBUTE. IF IT IS ALREADY LOCKED, THE LOCKING
PROCESS IS SUSPENDED UNTIL SOME OTHER PROCESS UNLOCKS IT.

NOTES

PAGE 63
B6700 MASTER CONTROL PROGRAM

STOPPOINT: STOPPOINT
ADDRESS OF THE

IS SET TO CONTAIN THE SEGMENT AND RELATIVE
LAST ARITHMETIC FAULT OCCURRED IN THE PROCESS.

IT IS ALSO SET UPON TERMINATION OR SUSPENSION

PARTNER: THE PARTNER ATTRIBUTE SPECIFIES WHAT THE CONTROL WILL PASS

TO WHEN A SPECIFIED TASK VARIABLE IS EXECUTED.

STATION: RESERVED FOR DATACOM USAGE.

EXCEPTIONEVENT: THE EXCEPTIONEVENT FOR
WHENEVER ANY PROCESS HAVING THIS
UNDERGOES A CHANGE IN STATUS.

A TASK WILL BE CAUSED
TASK AS ITS EXCEPTIONTASK

ANYTIME A PROCESS STARTS ANOTHER PROCESS, THE "STARTER" PROCESS WILL
BECOME THE EXCEPTIONTASK OF THE "STARTED" PROCESS UNLESS AN
EXCEPTIONTASK HAS BEEN EXPLICITLY STORED. THE SAME THING OCCURS FOR
PARTNER IF THE ''STARTED" PROCESS IS SYNCHRONOUS.

A REFERENCE TO EXCEPTIONEVENT IS VALID ONLY IF THE TASK IS ITS OWN OR
THAT OF ONE OF ITS DIRECT ANCESTORS.

3.4.3. TASK VARIABLES

THESE TASK VARIABLES ARE ASSIGNED TO TASKS BY PROGRAMMER AND THEY CAN
INTERRUPT OTHER TASKS.

CRITICAL BLOCK- BLOCK IN STACK OF PARENT WHICH IS HIGHEST BLOCK
NUMBER WHICH ONLY OFFSPRING HAS REFERENCE TO. EXITING FROM THE
CRITICAL BLOCK IS A TERMINAL ERROR. EXCEPTION EVENT: THE EXCEPTION
EVENT IN THE STACK OF THE EXCEPTION TASK IS CAUSED EVERY TIME THE
STATUS OF A PROCESS CHANGES.

B6700"MASTER CONTROL PROGRAM
PAGE 6~.

3.5. MULTIPROGRAMMING

MULTIPROGRAMMING OPERATION ON A .COMPUTER SYSTEM REQUIRES THE ABILITY TO
INTERLEAVE EXECUTION OF PROCESSES. THIS MEANS THAT A PROCESSOR IS NOT
EXCLUSIVELY ALLOCATED TO A PROCESS FOR THE ENTIRE EXECUTION OF THAT
PROCESS. MULTIPROGRAMMING ON THE B6700 SYSTEM IS IMPLEMENTED BY
QUEUEING PROCESSES IN THE "READYQ" QUEUE AND ALLOCATING COR
REALLOCATING> PROCESSORS TO THE PROCESSES WITH THE HIGHEST PRIORITY.

SINCE A. PROCESSOR IS NOT ALLOCATED EXCLUSIVELY TO A PROCESS, THE PROCESS
MUST CONTAIN ALL OF THE INFORMATION NECESSARY TO DESCRIBE ITS STATUS
WHEN IT IS NOT BEING EXECUTED BY A PROCESSOR. THIS IS ACCOMPLISHED BY
CREATING A SEPARATE "STACK" FOR EACH PROCESS THAT IS TO BE EXECUTED AND
PERFORMING A MOVE STACK CMVST> INSTRUCTION.

THE HARDWARE MVST INSTRUCTION COPIES S, F, LL ETC. REGISTER SETTING
INTO WORD ZERO FOR THE CURRENT STACK, CHANGES THE SNR CSTACK NO.l
REGISTER AS INDICATED BY THE B REGISTER, AND RESETS THE S, F, LL ETC.
FROM WORD ZERO OF THE NEW STACK, REPLACING THAT WORD BY THE PROCESSOR ID.
NO. CWHEN WORD ZERO CONTAINS THESE REGISTER SETTINGS, IT IS KNOWN AS A
"TOP OF STACK CONTROL WORD" SINCE IT DESCRIBES THE TOP OF THE STACK.>

THE MVST INSTRUCTION IS CONTAINED IN "GEORGE" INSIDE ANOTHER PROCEDURE
CALLED KEEPITMOVEING.

A STACK CAN HAVE TWELVE STATES:

PRENATEL
QUIESCENT
FOETAL
DELIVERY
ALIVE
TIRED
ASLEEP
LOOSE

·STACK NOT IN USE =AN AVAILABLE STACK NUMBER>
IN USE <BUT NOT AS A PROCESSSTACK>
STACK IN SHEET QUEUE
OUT OF SHEET BUT NOT YET INITIATED
CAPABLE OF RUNNING
WAITING ON EVENT
HOLD LOOP <WAITING FOR SOFTWARE INTERRUPT>
STACK IS A COROUTINE THAT EXECUTED A VISIT STATEMENT
<MOVED PROCEDURE OVER TO ANOTHER STACK>

ABANDONED
DISEASED
DEAD
UNEMPLOYED

B6700.MASTER CONTROL PROGRAM

TERMINATES COROUTINES
PROCESSING IS TERMINATED
BEING LINKED TO MORGUE
GEORGE FIRES ITSELt UP

PAGE 65

A PROCESS IS "ACTIVE'' WHEN IT IS BEING EXECUTED BY A PROCESSOR. AN
ACTIVE PROCESS MAY BE MADE "INACTIVE" BY THE MCP IF A HIGHER PRIORITY
PROCESS NEEDS A PROCESSOR. AN ACTIVE PROCESS MAY CAUSE ITSELF TO BE
"SUSPENDED" BY EXECUTING A WAIT OR HOLD OR BY REQUESTING AN 1/0

OPERATION WHICH RESULTS IN A WAIT ON THE "l/O COMPLETE" EVENT.

WHEN AN ACTIVE PROCESS IS MADE INACTIVE BY THE MCP, IT IS PLACED IN THE
READYQ. THE READYQ CONTAINS ONLY THOSE PROCESSES THAT ARE "READY TO
RUN" AND ARE WAITING FOR A PROCESSOR.

IF AN ACTIVE PROCESS SUSPENDS ITSELF, THE SUBSEQUENT ACTION OF THE MCP
DEPENDS UPON THE TYPES OF QUEUES WITH WHICH THE PROCESS IS ASSOCIATED.
IF THE SUSPENDED PROCESS IS LINKED TO AN EVENT WAIT QUEUE, THE PROCESS
WILL GET PUT INTO THE READYQ WHEN THAT EVENT IS CAUSED.

IF A PROCESS IS LINKED INTO A SOFTWARE INTERRUPT QUEUE CEVENT INTERRUPT
QUEUE>, THE PROCESS WILL BE MOVED TO THE READYQ UPON THE OCCURRENCE OF
THE EVENT IF IT IS SUSPENDED OR IT WILL BE INTERRUPTED IF IT IS ACTIVE.

IF A SUSPENDED PROCESS IS NOT LINKED INTO AN EVENT QUEUE OR THE READYQ,
IT CAN NOT BE REACTIVATED. FOR EXAMPLE, WHEN A PROCESS IS TERMINATED.
THE PROCESS IS SUSPENDED, ANY QUEUE ENTRIES ARE DELINKED AND THE PROCESS
IS LINKED INTO THE TERMINATE QUEUE.

B670d MASTER CONTROL PROGRAM

3.6. PARALLEL PROCESSING

PAGE 66

PARALLEL PROCESSING CAN OCCUR ON B6700 SYSTEMS WHICH HAVE DUAL
THAT MULTIPLE PROCESSORS ARE AVAILABLE DOES NOT PROCESSORS. THE FACT

PRECLUDE THE
PROCESSES MAY
THE SYSTEM.

MULTIPROGRAMMING OF PROCESSES. IT MERELY MEANS THAT
BE EXECUTED SIMULTANEOUSLY TO INCREASE THE THROUGHPUT OF

THE STRUCTURE OF THE MCP IS SUCH THAT PROCESSORS ARE CONSIDERED A
RESOURCE TO BE ALLOCATED LIKE OTHER SYSTEM RESOURCES. THEREFORE, THE
ONLY ADDITIONAL REQUIREMENTS FOR PARALLEL PROCESSING ARE THE INCLUSION
OF SOME ADDITIONAL MCP "LOCK" VARIABLES TO PREVENT SIMULTANEOUS
EXECUTION OF EXCLUSIVE MCP FUNCTIONS. FOR INSTANCE, IT WOULD NOT BE
DESIRABLE TO HAVE TWO PROCESSORS SIMULTANEOUSLY TRYING TO MAKE AN ABSENT
PROGRAM SEGMENT PRESENT IN MEMORY. THIS CIRCUMSTANCE IS PREVENTED BY AN
MCP "LOCK" WHICH IS SET AND TESTED BY THE PRESENCE BIT PROCEDURE. THE
FIRST PROCESSOR ENTERING PRESENCE BIT LOCKS ALL OTHERS OUT UNTIL IT IS
SAFE FOR THEM TO ENTER THE PROCEDURE.

86700 MASTER CONTROL PROGRAM

3.7. PROCESS TO PROCESS COMMUNICATION

SOF1WARE INTERRUPTS AND EVENTS

PAGE 67

SOFTWARE INTERRUPTS ARE PROGRAMMATICALLY DEFINED FOR USE BY THE MCP AND
080ECT PROGRAM PROCESSES TO ALLOW PROCESSES TO COMMUNICATE WITH EACH
OTHER AND WITH THE MCP.

SOFTWARE INTERRUPTS ALLOW A . PROCESS EITHER TO STOP RUNNING CTHEREBY
RELEASING THE PROCESSOR> UNTIL A SPECIFIED EVENT OCCURS OR TO RUN AND BE
INTERRUPTED IF AN EVENT OCCURS. A SOFTWARE INTERRUPT OCCURS WHEN A
PROCESS IS INTERRUPTED BY THE DIRECT ACTION OF SOME OTHER PROCESS. IN
THE FOLLOWING DISCUSSION THE IMPLEMENTATION OF THIS CONCEPT WILL BE
DEVELOPED ~S IT RELATES TO THE OVEUES, THE STACK STRUCTURE AND THE MCP
ROUTINES THAT CONCERN THEMSELVES WITH SOFTWARE INTERRUPTS.

A PROCESS CAN BE INTERRUPTED IF IT HAS AN INTERRUPT DECLARATION WITHIN
ITS SCOPE.

IF A BLOCK HAVING AN INTERRUPT DECLARATION IS EXECUTED, A STUFFED
INDIRECT REFERENCE WORD AND A PROGRAM CONTROL WORD ARE PLACED IN THE
STACK. THIS INTERRUPT DECLARATION MUST OCCUR WITHIN THE SCOPE OF ITS
ASSOCIATED EVENT DECLARATION, AS SHOWN IN FIGURE F3-4.

EXAMPLE: EVENT EVNT;

86700'MASTER CONTROL PROGRAM

EXAMPLE

EVENT EVNT;

PROCEDURE A;

INTERRUPT II: ON EVNT, (.smTEMEN°D;

ENAELE (I I);

*
PROCEDURE B;

INTERRUPT I2; ON EVNT, ~TATEMENl);

ENABLE (I2);
*HOLD;

PROCEDURE C;

*WAIT (EVNT);

I PROCEDURE D;

~WAIT (EVNT);

I PROCEDURE E;

LCAUSE (EVNT);

FIGURE ·F3-4. EXAMPLE

PAGE · 68

PAGE 69
B6700 MASTER CONTROL PROGRAM

AN EVENT DECLARATION RESERVES TWO WORDS IN THE STACK AND DEFINES THE
IDENTIFIER OF A QUANTITY WHICH MAY BE USED TO RECORD AN OCCURRENCE. THE
STACK CONTAINING THE INTERRUPT DECLARATION IS LINKED INTO THE EVENT
INTERRUPT
BLOCK IS
INTERRUPT

QUEUE BY THE EVENT DECLARATION AS SHOWN IN FIGURE F3-5. IF A
EXECUTED IN A SECOND PROCESS AND IF THE BLOCK CONTAINS AN
DECLARATION FOR THE SAME EVENT, THEN ITS STACK IS LINKED INTO

THE EVENT INTERRUPT QUEUE AS SHOWN IN FIGURE F3-6. PROCESSES RUNNING IN
STACK FOUR ANO STACK TWO WILL CONTINUE TO RUN UNTIL THE EVENT OCCURS,
WHEN THE EVENT IS CAUSED, ALL OF THE PROCESSES IN THE INTERRUPT QUEUE
FOR THAT EVENT ARE INTERRUPTED. IF A PROCESS CAUSES THE OCCURRENCE OF
AN EVENT, THE MCP SCANS THE EVENT INTERRUPT QUEUE. AS THE MCP SCANS THE
EVENT INTERRUPT QUEUE, IT WILL CHECK TO SEE IF THE INTERRUPT HAS BEEN
ENABLED.

EXAMPLE: ENABLE <12>;

THE ENABLING OF AN INTERRUPT TURNS ON THE SOFTWARE INTERRUPT ENABLE BIT
<BIT 46> OF THE PROGRAM CONTROL WORD OF THE TWO WORD INTERRUPT
DECLARATION MENTIONED PREVIOUSLY. IF AN INTERRUPT IS NOT ENABLED AND
THE EVENT IS CAUSED, NO ACTION IS TAKEN BY THE MCP ON THAT INTERRUPT AND
IT LOOKS AT THE NEXT INTERRUPT IN THE QUEUE.

86700 'MASTER CONTROL PROGRAM

PROCESS
STACK
N0.4

"1" ,,,

PCW INTERRUPT 12: ON EVNT, A•A+I;

SIRW

PAGE 70

----.... --~---EVENT EVNT;

MSCW 0(2]

MSCW o[o]

FIGURE F3-5. EVENT INTERRUPT QUEUE, SINGLE PROCESS

PROCESS
STACK
N0.2

--- INTERRUPT
. :Cl: ON EVNT,

L__j'B-8+4;

~0[2]

PROCESS
STACK
N0.4

NTERRUPT :c2: N EVNT, A-A+I;

~-0[2]
VENT EVNT;

~D[O]

FIGURE F3-6. EVENT INTERRUPT QUEUE, MULTIPLE PROCESS

PAGE 71
B6700.MASTER CONTROL PROGRAM

IF INTERRUPTS ARE ENABLED FOR THAT STACK, THE MCP MAKES AN ENTRY IN THE
SOFTWARE INTERRUPT QUEUE. IF THE STACK IS ACTIVE, I.E. ANOTHER
PROCESSOR IS WORKING IN THE STACK, THE MCP WILL INTERRUPT THAT PROCESSOR
WITH A PROCESSOR TO PROCESSOR INTERRUPT.

THE MCP NEXT FORCES A TRANSFER OF CONTROL TO THE STATEMENT RELATED TO
THE INTERRUPT DECLARATION. UPON COMPLETION OF THIS STATEMENT, THE
PROCESS WILL RETURN TO ITS PREVIOUS POINT OF CONTROL UNLESS A TRANSFER
OF CONTROL IS SPECIFIED IN THE INTERRUPT STATEMENT. IN THIS CASE, THE
PROCESS WILL NOT RETURN THE POINT OF CONTROL BEFORE THE INTERRUPT, BUT
WILL TRANSFER CONTROL AS SPECIFIED IN THE INTERRUPT STATEMENT.

AS THE MCP SCANS THE EVENT INTERRUPT QUEUE FINDING ENABLED INTERRUPTS IN
INACTIVE STACKS IT MAKES AN ENTRY IN THE SOFTWARE INTERRUPT QUEUE DOING
NOTHING WITH THAT STACK UNTIL IT BECOMES ACTIVE. IMMEDIATELY AFTER
MAKING THE STACK ACTIVE, THE MCP CHECKS THE SOFTWARE INTERRUPT QUEUE TO
SEE IF THERE IS AN INTERRUPT POINTING TO THAT STACK. IF AN INTERRUPT IS
FOUND, THE MCP FORCES A TRANSFER OF CONTROL TO THE STATEMENT REFERRED TO
BY THE INTERRUPT DECLARATION. UPON COMPLETION OF THE STATEMENT. CONTROL
IS TRANSFERRED AS DESCRIBED ABOVE.

IT IS POSSIBLE FOR A PROCEDURE TO BE ENTERED, GET LINKED INTO THE EVENT
INTERRUPTQUEUE AND THEN EITHER EXIT FROM THE PROCEDURE WITHOUT ENABLING
THE INTERRUPT OR EXIT FROM THE PROCEDURE BEFORE THE EVENT IS CAUSED. IN
EITHER CASE THIS INTERRUPT IS UNLINKED FROM THE EVENT INTERRUPT QUEUE

IF A PROCESS ENABLED A SOFTWARE INTERRUPT, IT IS SOMETIMES DESIRABLE TO
SUSPEND FURTHER PROCESSING OF THE CODE UNTIL AN ENABLED SOFTWARE
INTERRUPT OCCURS. THIS SUSPENSION CAN BE BROUGHT ABOUT BY USING THE
HOLD STATEMENT.

EXAMPLE: ENABLE Cl2>;

•

86700 MASTER CONTROL PROGRAM

ENABLE l13>;

HOLD;

WHERE HOLD IS A PROCEDURE CALL ON THE PROCEDURE GEORGE.

PAGE 72

WHEN AN EVENT IS CAUSED AND THE RELATED INTERRUPT STATEMENT EXECUTED
CONTROL WILL PASS TO THE STATEMENT FOLLOWING THE HOLD.

A PROCESS CAN ALSO BE SUSPENDED BY THE EXECUTION OF A WAIT STATEMENT.

EXAMPLE: WAIT CEVNT>;

THE PARAMETER OF A WAIT STATEMENT IS AN EVENT WHOSE SCOPE INCLUDES THE
BLOCK IN WHICH THE WAIT RESIDES. UPON EXECUTION OF WAIT, THE STACK OF
THAT PROCESS IS LINKED TO THE EVENT DECLARATION FOLLOWING AN EVENT WAIT
QUEUE AS SHOWN IN FIGURE F3-11.

STACKS ARE REMOVED FROM THE WAIT QUEUE WHEN ANOTHER PROCESS EXECUTES A
CAUSE STATEMENT.

EXAMPLE: C4USE <EVNT>:

STACKS REMOVED FROM THE WAIT QUEUE ARE LINKED INTO THE READY QUEUE. THE
STACKS SHOWN IN FIGURE F3-ll REPRESENT THE EVENT INTERRUPT QUEUE AND THE
WAIT QUEUE AT A POINT IN TIME WHEN THE PROCEDURES ARE AT A PLACE IN
THEIR CODE STRING INDICATED BY THE ASTERISK C*> AS SHOWN IN FIGURE F3-7.
PROCEDURE A IS RUNNING IN PROCESS STACK FOUR, PROCEDURE B IN STACK TWO,
PROCEDURE C IN STACK TWENTY, AND PROCEDURE D IN STACK SEVEN. BOTH
QUEUES ARE LINKED TO THE EVENT DECLARATION IN THE DCOl STACK.

86700 MASTER CONTROL PROGRAM

EVENT INTERRUPT QUEUE

PROCESS
STACK
N0.2

PROCESS
STACK
N0.4

M-0 [2] IMSCW ~ D [2]

EVENT WAIT QUEUE

PROCESS PROCESS
STACK STACK

PAGE 73

~~
~0[2]~0[2]

MSCW MSCW
TOSCW TOS W

VENT: EVNT;

~o[o]

FIGURE F3-7. EVENT QUEUES

86700. MAST(R CONTROL PROGRAM
PAGE . 74

SECTION 4

FILE HANDLING

B6700 MASTER CONTROL PROGRAM
PAGE 75

4. FILE HANDLING

4.1. INTRODUCTION

SINCE THE B6700 COMPILERS ALLOW THE USE OF SYMBOLIC FILES, THE HCP MUST
BE ABLE TO RECOGNIZE THE PHYSICAL FILES PRESENT ON THE PERIPHERAL UNITS
AND ASSIGN THE UNITS TO A SYMBOLIC PROCESS FILE. THE FILE CONTROL
FUNCTIONS OF THE MCP CONSIST OF RECOGNIZING THE EXISTENCE OF A FILE ON A
PERIPHERAL UNIT AND ASSIGNING THE PERIPHERAL UNIT TO THE APPROPRIATE

PROCESS.

TO RECOGNIZE ANO ASSIGN A FILE, INFORMATION ABOUT THE PHYSICAL FILE IS
RECORDED IN THE UINFO TABLE AND THE UNIT TABLE.

THE UINFO TABLE, OR LABEL TABLE, CONTAINS DESCRIPTORS THAT POINT TO
LABEL INFORMATION, AND IS INDEXED BY UNIT NUMBER <OR LOGICAL UNIT NUMBER
IF LOGICAL UNIT NUMBERS ARE UNIQUE). IT IS MAINTAINED BY THE PROCEDURES
READALABEL AND CONTROLCARD.

THERE ARE TWO TYPES OF PHYSICAL FILES RECOGNIZED BY THE 86700 SYSTEM.
LABELED FILES AND UNLABELED FILES.

LABELED FILES ARE THOSE FILES WHICH CONTAIN A LABEL RECORD COR RECORDS>
AS THE FIRST RECORD OF A FILE. SINCE THE LABEL RECORD CONTAINS A FILE
LABEL NAME, THE MCP CAN RECOGNIZE THE EXISTENCE OF A LABELED FILE ANO
ASSOCIATE THE APPROPRIATE PERIPHERAL UNIT WITH A SYMBOLIC PROCESS FILE.
NO OPERATOR ASSOCIATION OF 008 AND PERIPHERAL UNITS IS REQUIRED.

UNLABELED FILES, HOWEVER, MUST BE ASSIGNED BY THE OPERATOR AT THE TIME
THAT A PROCESS REQUIRES ACCESS TO THE FILE.

PAGE 76
B6700 MASTER CONTROL PROGRAM

4.2. FILE LABEL FORMAT FOR PERIPHERAL UNITS

THE FORMAT
DESCRIBED

OF FILE LABELS FOR VARIOUS TYPES OF PERIPHERAL UNITS ARE
IN THE FOLLOWING SECTIONS. THE PHYSICAL FILE NAMING SYSTEM

USED ALLOWS FILE NAMES TO BE FORMED FROM A SEQUENCE OF FILE IDENTIFIERS
SEPARATED BY SLASHES. A FILE IDENTIFIER IS DELIMITED BY A BLANK OR A
SLASH AND MAY BE OF ANY LENGTH, BUT ONLY THE FIRST 17 CHARACTERS ARE
USED IF THE IDENTIFIER EXCEEDS 17 CHARACTERS IN LENGTH.

THE FOLLOWING ARE EXAMPLES OF FILE NAMES:

A
8/C

D/E/F
G/H/J/J

WHERE A, C, F AND J ARE FILE IDENTIFIERS,
B, E AND I ARE VOLUME IDENTIFIERS AND
D, H AND G ARE FILE DIRECTORY IDENTIFIERS.

NOTE: TWO FILE NAMES SUCH AS A/8 ANO A/8/C CANNOT BE USED ON THE
SYSTEM SINCE A/8 WOULD INDICATE BOTH A FILE ANO A DIRECTORY.

THE ORGANIZATION OF FILES IS DEPENDENT ON THE 1/0 DEVICES HOLDING THE
FILE, EACH OF WHICH IS DISCUSSED INDIVIDUALLY.

4.2. l. CARD FILES

THE FORMAT OF CARO FILES IS AS FOLLOWS:

LABEL CARD
CDATA DECK>
END CARD

THE FORMAT OF THIS LABEL CARD IS:

B6700.MASTER CONTROL PROGRAM

<I> DATA <FILE NAME> . <ANY COMMENT>
OR
<I> BCL <FILE NAME>. <ANY COMMENTS>
OR
<I> BINARY <FILE NAME>.
<ANY COMMENT>

AN EXAMPLE OF A LABEL CARD IS:

<I> DATA CARD

THE FORMAT OF AN END CARD IS:

<I> END <ANY COMMENT>

PAGE 77 .

THE <I> REPRESENTS AN INVALID CHARACTER AND MUST BE IN COLUMN 1. DATA
INDICATES THE <DATA DECK> IS PUNCHED USING THE EBCDIC CB BITl CHARACTER
SET. "BCL" INDICATES THE DATA DECK .JS PUNCHED USING THE BCL C6 BIT>
CHARACTER SET.
IS FREE FIELD.

EXCEPT FOR THE INVALID CHARACTER IN COLUMN 1, THE CARD

4.2.2. PRINTER FILES

UPON OPENING A LABELED PRINTER FILE, THE OPERATING SYSTEM WILL:

SKIP TO TOP OF PAGE,
WRITE THE HEADER LABEL RECORDCSl AND
SKIP TO TOP OF PAGE.

UPON CLOSING A LABELED PRINTER FILE, THE OPERATING SYSTEM WILL:

SKIP TO TOP OF PAGE,
WRITE A TRAILER LABEL RECORD AND
SKIP TO TOP OF PAGE.

HEADER AND TRAILER LABELS ARE IN STANDARD USASI FORMAT.

B6700"MASTER CONTROL PROGRAM

4.2.3. CARO-PUNCH

THE FORMAT OF A CARD DECK PRODUCED AT THE CARD PUNCH IS:

LABEL RECORD
COATA DECK>
LABEL RECORD

THE FORMAT OF THE LABEL RECORD IS:

<I> <MODE> <FILE NAME>

<MODE> ::= BCL/BJNARY/DATA

AN EXAMPLE OF A LABEL RECORD IS:

BINARY DECKA

THE ENDING RECORD OF A CARD PUNCH FILE HAS THE FORM

<I> END <FILE-NAME>

PAGE 78.

FOR BCL AND EBCDIC FILE OR A BURROUGHS BINARY END C"BEND") CARD FOR
BINARY FILES.

4.2.4. PAPER TAPE ------ ----- ~---

PAPER TAPE FILES ARE ALWAYS CONSIDERED UNLABELED. FOR HANDLING OF
UNLABELED FILES, SEE UNLABELED TAPE.

4.2.5. UNLABELED TAPE FILES

UNLABELED TAPE FILES ARE THOSE WHICH DO NOT HAVE ANY WAY OF BEING SELF­
IDENTIF IED. THE SYSTEM ASSUMES FOR INPUT OR GENERATES FOR OUTPUT THE

PAGE 79
B6700 MASTER CONTROL PROGRAM

FOLLOWING DATA FORMATS:

SINGLE FILE VOLUMES
MULTI-FILE VOLUMES

WHERE * DENOTES A TAPE MARK.

<DATA> **
<DATA> * <DATA>*--------*<DATA>**

THE SOURCE LANGUAGES CAN SPECIFY THAT INPUT AND OUTPUT FILES ARE TO BE
UNLABELED. TO PRODUCE MULTI-FILE VOLUMES THE SOURCE PROGRAM MUST CLOSE
WITH NO REWIND, THEN OPEN OUTPUT WITH NO REWIND FOR EACH DATA SET ON THE
VOLUME <CLOSE WITH NO REWIND PRODUCES A TAPE MARK). WHEN A SINGLE FILE
VOLUME OR MULTI-FILE VOLUME IS CLOSED COMPLETELY, THE SYSTEM PRODUCES
THE DOUBLE TAPE MARK· AT THE END. WHEN, IN THE PROCESS OF CREATING THE
FILE, AND WHEN PHYSICAL END OF TAPE IS ENCOUNTERED, THE OPERATING SYSTEM
WRITES THE DOUBLE TAPE MARK AND ASSIGNS ANOTHER TAPE.

WHEN AN UNLABELED FJLE IS REQUESTED FOR INPUt AND NO "UNIT" CONTROL
STATEMENT HAS BEEN SEEN, THE OPERATOR IS NOTIFIED BY A " <MIX> NO FILE
<FILE NAME> " MESSAGE. THE OPERATOR MUST MOUNT THE FILE AND ENTER THE
<MIX> UL <UNIT DESIGNATE> MESSAGE. IF A "UNIT" CONTROL STATEMENT WAS
SPECIFIED, THE SPECIFIED UNIT WILL BE ASSIGNED TO THE FILE. IF A TAPE
MARK IS ENCOUNTERED, THE OBJECT PROGRAM IS NOTIFIED VIA AN END-OF-FILE
CONDITION. TO READ THE DATA SET FOLLOWING A SINGLE TAPE MARK, THE
OBJECT CODE MUST CLOSE NO REWIND, THEN OPEN INPUT.

4.2.6. LABELED TAPE-FILES

THE OPERATING SYSTEM WILL RECOGNIZE TWO LABELING CONVENTIONS FOR TAPE
INPUT FILES: THE B5500 LABEL RECORD AND THE PROPOSED USASI STANDARD TAPE
LABEL.

THE SYSTEM WILL PRODUCE ONLY THE USASI LABEL FORMAT FOR LABELED OUTPUT
TAPES. THE FORMAT OF THE VARIOUS RECORDS OF THE USASI LABEL IS SHOWN IN
THE USASI LABEL FORMAT.

THE USER CAN SPECIFY THE CREATION OF SINGLE FILE VOLUMES OR MULTIFILE

B6700. MASTER CONTROL PROGRAM
PAGE 80

VOLUMES. IN ADDITION, ·THE OPERATING SYSTEM WILL, FOR EITHER OF THE
ABOVE CASES, DO VOLUME SWITCHING WHEN THE DATA BEING WRITTEN EXCEEDS THE
CAPACITY OF A VOLUME. IT WILL ALSO DO AUTOMATIC VOLUME SWITCHING ON
INPUT WHEN REQUIRED. THE TAPE FORMAT IS SHOWN AS FOLLOWS <NOTE - "*"

DENOTES TAPE MARK>:

SINGLE FILE - SINGLE VOLUME
VOLI HORI HDR2

MULTI - VOLUME FILE
VOLI HORI HOR2
VOLl HORI HOR2

MULTI - FILE VOLUME
VOLI HORI HOR2
HORI HOR2 *

*

*
*

*
FILE

MULTI - FILE MULTI VOLUME
VOLI HORI HDR2 *
HORI HDR2 * FIRST
VOLl HORI HDR2 *
VOLl HORI HOR2 *
HORI HDR2 * FILE

DATA * EOFI EOF2 **

FIRST VOLUME DATA * EOVI **
LAST VOLUME DATA * EOFI EOF2 **

FILE I * EOFl EOF2 *
2 * EOFI EOF2 **

FILE I * EOFI EOF2 *
PART FILE 2 * EOVI **

PART OF FILE 2 * EOVI **
REMAINDER FILE 2 * EOFl EOF2 *

3 * EOFl EOF2 **

USER HEADER LABELS MAY APPEAR IMMEDIATELY AFTER CHDR2l AND USERS TRAILER
LABELS MAY APPEAR AFTER EITHER CEOF2l OR CEOVIl.

TO CREATE OR READ MULTI-FILE VOLUMES, THE USER MUST SPECIFY THE SAME
VOLUME NAME FOR ALL THE FILES IN THE SET. ONLY ONE FILE IN THE SET CAN
BE OPENED AT A TIME. TO CREATE A MULTI-FILE VOLUME, THE USER MUST CLOSE
NO-REWIND, THE CURRENT FILE IN THE SET, AND USE OPEN OUTPUT NO-REWIND
FOR THE NEXT FILE IN THE SET.

TO HANDLE INPUT, THE OPERATING SYSTEM WILL GIVE BACK TO THE OBJECT CODE
AN CEND-OF-FILEl CONDITION WHEN AN CEOFl LABEL IS ENCOUNTERED. THE USER
THEN MUST CLOSE NO-REWIND ON THE CURRENT FILE AND OPEN INPUT NO-REWIND

PAGE 81
B6700 'MASTER CONTROL PROGRAM

ON THE NEXT COR SOME OTHERJ FILE IN THE SET.

THE CEOVl LABEL, WHEN ENCOUNTERED ON INPUT, IS THE SENTINEL BY WHICH THE
OPERATING SYSTEM CAN DETECT WHEN VOLUME SWITCHING IS REQUIRED. THIS IS
DONE BY LOCATING THE NEXT VOLUME OR REQUESTING THE OPERATOR TO LOAD A
VOLUME WHICH HAS THE SAME VOLUME NAME AS THE CURRENT VOLUME AND HAS A
FILE SECTION NUMBER CIN HDRl> ONE GREATER THAN THE CURRENT VOLUME.

IT IS INTENDED THAT THE VOLUME SERIAL NUMBER IN THE VOLl LABEL IS USED
AS A PHYSICAL LOCATION NUMBER. WHEN AN EMPTY REEL OF TAPE IS PRESENTED
TO THE SYSTEM, THE OPERATOR MUST INDICATE THE TAPE IS AVAILABLE FOR
OUTPUT AND WHAT VOLUME SERIAL NUMBER IS TO BE ASSOCIATED WITH THE TAPE
BY ENTERING: PG <UNIT DESIGNATE> <VOLUME SERIAL NUMBER> THIS WILL CAUSE
A SCRATCH LABEL CONTAINING THE VOLUME SERIAL NUMBER, TO BE WRITTEN ON
THIS TAPE. LATER, WHEN FILE CONTROL ASSIGNS AN OUTPUT FILE TO THE UNIT
CONTAINING A SCRATCH LABEL, THE VOLUME SERIAL NUMBER IS READ AND PLACED
IN VOLl
SPECIFIED

LABEL OF THE VOLUME BEING CREATED. IF THE USER HAS ALSO
A FILE NAME CONTAINING ONE OR MORE DIRECTORY IDENTIFIERS, THE

HIERARCHICAL STRUCTURE FOR THE VOLUME AND THE VOLUME SERIAL NUMBER IS
ENTERED INTO THE DIRECTORY. LATER, IF THE FILE IS REQUESTED FOR INPUT,
THE OPERATOR CAN BE NOTIFIED AS TO THE PHYSICAL LOCATION OF THE VOLUME
CONTAINING THE FILE,· IF IT IS NOT ALREADY MOUNTED ON A TAPE DRIVE.

VOLUME SERIAL NUMBER ZERO COJ CAN BE USED FOR TAPES GENERATED ON THE
SYSTEM, BUT WHICH ARE TO BE USED ELSEWHERE. FOR THIS REASON, VOLUME
SERIAL NUMBER COl CANNOT BE USED FOR TAPES WHICH ARE TO BE CONTROLLED
THROUGH THE DIRECTORY.

PAGE 82
86700 MASTER CONTROL PROGRAM

VOLUME
'HEADER
LABEL

FIRST
FILE
HEADER

I

5

"VOL t"

5

"HOR i"

54 55
)

BLOCK

COUNT
j

i ~
ACCESSIBILITY

II 12 29 31 32

VOLUME FILE SET ID R F E
SERIAL "57"
NUMBER (MULTIPLE FILE ID) (SPACES)

1vsN 1MFID 1svN

1

11011 IF NONE
"xo" F~ 17 FOR SCRATCH
"BACKUP I FOR BACKUP

ACCESSIBILITY
(NOT IMPLEMENTED FIRST RELEASE)

22

SET IDENTIFIER

28

FILE

YIW
TAPE TYPE

0 - SCRATCH
I - USER

SECTION
FILE IDENTIFIER

(FIRST 6 CHARACTERS
NUMBER

OF FILE SET ID)
(RELATIVE REEL

NUMBER)

1 1
URLNMBR

61 68 74 80

RECORD R F E
COUNT 11"586700 11

(SPACES)

~
(NOT IMPLEMENTED FIRST RELEASE)

38

OWNER

(NOT IMPLEMENTED FIRST RELEASE)

32

2 - BACKUP
3 - LIBRARY

FILE SEQUENCE
NUMBER

(WITHIN SET)

1
USQNCNMBR

4 - LOAD CONTROL
5 - SYSTEM

36 40

GENERATION GENERATION
NUMBER VERSION

t f
UGNRTN

82/83

0 .,
R F E

I (SPACES)
·1·

42 48 !l•

CREATION EXPIRATION ?
DATE DATE

(BYYDDD) (BYYDDD) J

' 1

SECOND
FILE
HEADER ...

• ________ _.._5 6-------------~";_...;...;..;.;..;..;.;...... ____ ~1~6 17-L.1_8 l.,...&.92_0,...._2_· ___________ 26 ----------1~3-l-----------...... 36 3_7 __ __.._3~9 40----------------------------~!--l--~5-3 ____ __, o· BLOCK LENGTH RECORD MINIMUM OFFSET .1. TO SIZE OF R F E
"HOR 2• IN EXT. FORM LENGTH RECORD SIZE Fl~LD SIZE FIELD

~~~MUM) IN EXT. FORM UNITS LENGTH (SPACES) 
(MAXIMUM) 

f I l J T f T I ~BUNITS- BLOCKING UNITS 1 
UBL URL UMRL USZOFF 11C!H I .Y.Qfl - OFFSET TO DATA 

~ UTAPENO-TAPE # 
..llBf - RECORD FORMAT UPRTCTD - PROTECTED USYSID _SYSTEM # (6 IF PROTECTED) 

F-FIXED LENGTH UFORM - EXTERNAL FORM 
D-VARIABLE LENGTH IN 

DECIMAL IN FIRST 4 CHRS. 
0- UNSPECIFIED (WORDS) 
3-BCL 

V-VARIABLE LENGTH IN 
BINARY IN FIRST 2 CHRS. 

U-UNDEFINED 

4-EBCDIC 
UPRTY - PARITY 

0 - ALPHA (EVEN) 
I -BINARY (ODD) 

I ·VARIABLE LENGTH IN RECORD 
AT FIXED LOCATION 

USNTNL - SENTINEL 

L-LINKS 
UDNSTY - DENSITY 

FIRST END-OF-FILE LABEL - SAME AS FIRST FILE HEADER EXCEPT 
FOR FIRST 4 CHRS - II EOFl II 

0 - 800 2 - 200 
I - 556 3 - 1600 

SECOND END-OF-FILE LABEL- SAME AS SECOND FILE HEADER EXCEPT 
FOR FIRST 4 CHRS - 11 EOF 2" 

USERS 
HEADER 
LABEL 

I ·UHL. 

USZUNITS - SIZE UNITS 

4 5 

I n I USERS PORTION 
c1.f nf:9~ 

END-OF-VOLUME LABEL - SAME AS FIRST END-OF-FILE LABEL EXCEPT 
FOR FIRST 4 CHARACTERS - "EOVl" USERS TRAILER LABEL- SAME AS USERS HEADER LABEL EXCEPT FOR FIRST 3 CHRS - 11 UTL11 

FIGURE F4-I. 86700 USASI FILE HEADERS 

80 



86700.MASTER CONTROL PROGRAM 
PAGE 83 



86700·MASTER CONTROL PROGRAM 
PAGE 84 

4.2.7. DISK FILE STRUCTURE 

4.2.7.1. DISK FILE AREA 

EACH DISK ADDRESS REFERENCES A DISK SEGMENT. WHICH IS AN AREA OF DISK, 
CONTAINING ROOM FOR 30 WORDS OF INFORMATION. A DISK FILE CONSISTS OF A 
FILE HEADER AND A NUMBER OF AREAS. WHICH ARE NOT NECESSARILY CONTIGUOUS 
WITH EACH OTHER. EACH DISK AREA IS AN UNINTERRUPTED SEQUENCE OF 
SEGMENTS AND ALL OF THE AREAS FOR A GIVEN FILE HAVE THE SAME SIZE. A 
FILE HEADER IS AN UNINTERRUPTED SEQUENCE OF DISK SEGMENTS OF VAR,IABLE 
LENGTH DEPENDING UPON THE NUMBER OF AREAS USED BY THE FILE. CSEE FIGURE 
F4-2>. 



86700 MASTER CONTROL PROGRAM 
PAGE 85 

TO ANOTHER NAME WITH 
SAME SCRAMBLE MODULES 

SUCCESSOR PREDECESSOR FIRST 
AVAILABLE RECORD RECORD 

I 
I I 
L--1------- ----., 

.~. I 

NAME 

RECORD 
NUMBER 
OF THIS 
RECORD 

I 
L SUCCESSOR 

RECORD 
PREDECESSOR FIRST 

RECORD AVAILABLE 
NAME 

DIRECTORY HEADER 

INFO HEADER 
WORD ADDRESS 

IDENTIFIER 
IN FILENAME 
(STANDARDFORM) 

RECORD 
NUMBER 
OF THIS 
RECORD 

INFO HEADER IDENTIFIER 
IN f1LEN4ME 

(STANDARDFORM) 
WORD ADDRESS 

FILE 
HEADER 

T 

DATA IN ROW I 

DATA IN ROW N J 
ROW I 

ROW N 

FIGURE F4-2. 86700 FILE DIRECTORY 



B6700 MASTER CONTROL PROGRAM 
PAGE 86. 

4.2.7.1.1. FILE HEADER 
-----~---- ------

THE FILE HEADER CONSISTS OF A VARIABLE NUMBER OR WORDS, DEPENDING ON THE 
NUMBER OF AREAS ASSIGNED TO THE FILE. THE FIRST TEN WORDS CONTAIN THE 
FOLLOWING INFORMATION: 

WORD 0 CONTAINS THE CORE INDEX OR CORE INDEX. THE DISK ADDRESS IS -1 IF 
THERE ARE NO CURRENT USERS OF THE FILE. IF THERE ARE USERS, THE INDEX 
FIELD POINTS TO THE COPY OF THE HEADER IN MAIN MEMORY. 

WORD 1 CONTAINS AN UPDATE BIT THAT IS TRUE IF THE FILE IS UPDATED, ANO 
FIELDS FOR THE NUMBER OF PROCESSORS LOOKING AT THE HEADER, FILE TYPE 
CPROGRAM, DIRECTORY ... }, SIZE CIN WORDS> OF THE HEADER, CLASS OF 
SECURITY, SIZE CIN WORDS> OF THE SECURITY INFORMATION IN THE HEADER, 
DISK FILE SPEED AND LOGICAL MODE CSUCH AS EBCDIC, DOUBLE, ETC.>. 

WORD 2 CONTAINS INFORMATION ABOUT FILE ORGANIZATION AND RECORD TYPE, ANO 
INDICATES WHETHER OR NOT THE FILE IS PACKED, TEMPORARY, PROTECTED, 
CRUNCHED OR EXCLUSIVE USE IS REQUESTED. 

WORD 3 GIVES THE BLOCK SIZE, ANO MAXIMUM ANO MINIMUM RECORD SIZE OF THE 
FILE. 

WORD 4 CONTAINS THE ENO OF FILE COUNT - THE RELATIVE NUMBER OF THE LAST 
LOGICAL RECORD IN THE FILE. THE COUNT IS -1 WHEN THE FILE IS EMPTY. 

WORD 5 CONTAINS ROW INFORMATION THE NUMBER OF ROWS FOR WHICH ROW 
ADDRESS WORDS ARE ASSIGNED, TH5 SIZE CIN SEGMENTS> OF EACH ROW, ANO THE 
HEADER FORMAT. ROW ADDRESS WORDS CONTAIN VOLUME TYPE, VOLUME OR EV UNIT 
AND BLOCK ADDRESS AT BLOCK NUMBER. 

WORD 6 CONTAINS NAME QUALIFICATION INFORMATION, INCLUDING THE SAVE 
FACTOR, CREATION DATE, USASI GENERATION NUMBER, AND MAXIMUM NUMBER OF 
GENERATIONS. 



86700' MASTER CONTROL PROGRAM 
PAGE 87 

WORD 7 CONTAINS THE DATE THE FILE WAS LAST USED. 

WORD 8 IS USED FOR VARIOUS PURPOSES DEPENDING ON THE FILE KIND. FOR 
DIRECTORIES, IT IS A SCRAMBLE MODULUS. FOR CODE FILES, IT IS THE STACK 
NUMBER FOR THE D[ 1 l STACK WHEN A COPY OF THE PROGRAM IS RUNNING. FOR 
PSEUDO READER DECKS, IT IS THE DECK NUMBER. 

WORD 9 IS THE NEXT AVAILABLE RECORD NUMBER IN A DIRECTORY. 

WORDS 10 - 14 ARE CURRENTLY UNUSED. 

STARTING WITH WORD 15 THERE IS A WORD FOR EACH DISK AREA ASSIGNED TO THE 
FILE. THE WORD CONTAINS THE ABSOLUTE DISK ADDRESS OF THE FIRST SEGMENT 
OF THE 
HCP> THE 
CHANGE. 

AREA. IF THE AREA HAS NOT YET BEEN ACCESSED CALLOCATED BY THE 
DISK ADDRESS IS ZERO. NOTE: FILE HEADER FORMAT IS SUBJECT TO 

4.2.7.1.2. DISK FILE RECORDS 

THE RECORDS IN THE FILE ARE ADDRESSED RE~ATIVE TO THE BEGINNING OF THE 
FILE, WHERE 0 IS THE FIRST RECORD AND M IS THE LAST RECORD IN THE FILE. 
ASSUMING THAT THERE ARE 1000 RECORDS PER AREA AND RECORD 2345 IS 
REQUESTED, THE DISK AREA REQUIRED IS AREA NUMBER 2 C2345 DIV lOOOJ. 
KNOWING 
OBTAINED 
SEGMENT 

THE DISK AREA NUMBER, THE INITIAL DISK ADDRESS OF THIS AREA IS 
FROM THE APPROPRIATE ADDRESS CARDS. THE DISK ADDRESS OF THE 

CONTAINING THE BEGINNING OF THE RECORD IS THEN COMPUTED BY 
ADDING THE AREA INITIAL ADDRESS TO C2345 MOD lOOO>xK, WHERE K=CCTHE 
NUMBER OF WORDS PER LOGICAL RECORD +29> DIV 30>, THE NUMBER OF SEGMENTS 
REQUIRED FOR A SINGLE RECORD. 



PAGE 88 
B6700·MASTER CONTROL PROGRAM 

4.2 .. 7.2. DISK DIRECTORY 

ALL FILES ON THE B6700 SYSTEM ARE REFERRED TO BY AN "ACTUAL FILE NAME" 
OR LABEL1 THE ACTUAL FILE NAME IS A SEQUENCE OF IDENTIFIERS SEPARATED 
BY THE SYMBOL"/". EACH IDENTIFIER MAY BE OF ARBITRARY LENGTH, BUT IF 
THE IDENTIFIER IS LONGER THAN 17 CHARACTERS ONLY THE FIRST 17 WILL BE 
USED. ANY NUMBER OF IDENTIFIERS UP TO 14 MAY BE USED TO CONSTRUCT A 
FILE NAME. 

CORRESPONDINGLY, THE DISK DIRECTORY IS REALLY A COLLECTION OF FILES 
ORGANIZED AS A TREE STRUCTURE. SUCH A FILE WILL BE REFERRED TO AS A 
DIRECTORY. THE DIRECTORY AT THE ORIGIN OF THE TREE STRUCTURE WILL BE 
REFERRED TO AS THE MASTER DIRECTORY. THE DIRECTORY BODY IS COMPOSED OF 
RECORDS WHICH ARE 90 WORDS C3 SEGMENTS> LONG. EACH RECORD CONTAINS A 
LIST OF ENTRIES AND A LINK TO ANOTHER RECORD IN THE SAME DIRECTORY. 
EACH ENTRY IN A GIVEN RECORD HAS SEVERAL PARTS WHICH ARE DISCUSSED BELOW. 

THE IDENTIFIER PART CONTAINS AN IDENTIFIER WHICH IS SEVENTEEN 
CHARACTERS IN LENGTH. 

THE ADDRESS PART CONTAINS THE ADDRESS OF THE HEADER OF A FILE WHICH 
MAY OR MAY NOT BE ANOTHER DIRECTORY. 

THE FILE TYPE PART INDICATES THE NATURE OF "THE FILE TO WHICH THE 
ADDRESS PART POINTS. 

THE VOLUME NUMBER IS USED TO SPECIFY WHICH TAPE IS NEEDED IF THE 
FILE HAS BEEN DUMPED TO TAPE. 

IN ORDER TO REFERENCE A DISK FILE BY MEANS OF THE ACTUAL FILE NAME, EACH 
IDENTIFIER IS USED TO FIND A DIRECTORY WHICH IS REACHED THROUGH THE 
PRECEDING IDENTIFIERS. A DIRECTORY HEADER CONTAINS THE INFORMATION AS 
TO HOW THE DIRECTORY IS TO BE INDEXED. THE MAIN DIRECTORY WILL BE 
INDEXED BY SCRAMBLING THE IDENTIFIER. OTHER DIRECTORIES WILL BE INDEXED 
OR SEARCHED, DEPENDING ON THE SIZE OF THE DIRECTORY AT THAT LEVEL. 



B6700' MASTER CONTROL PROGRAM 
PAGE 89 

IF A DIRECTORY IS SCRAMBLED, THE DIRECTORY RECORD WILL BE INDEXED AND 
THEN SEARCHED FOR A MATCHING IDENTIFIER. 

IF THE END OF THE RECORD IS FOUND, THE LINK INDICATES THE NEXT RECORD TO 
BE SEARCHED. IF A MATCH IS FOUND, THE ADDRESS PART OF THE ENTRY WILL 
SPECIFY THE LOCATION OF THE FILE WHICH IS TO BE SEARCHED NEXT. IF THIS 
FILE IS A DIRECTORY, THEN ANOTHER LABEL MAY EXPECTED. IF, HOWEVER, THE 
FILE IS NOT A DIRECTORY FILE, THE LOCATION IS THE DISK ADDRESS OF THE 
HEADER OF THE FILE BEING REFERENCED. 



86700'MASTER CONTROL PROGRAM 
PAGE 90 



FIRST 

ROW---. 

NO OF 

RECS LON 1q 

_Q_ I 2 3 4 5 6 7 8 9 10 II 12 13 

CORE INDEX HEADERINFO HEADER FIB TANK- EOF RUN NAMEQUAL- ACCESS MISC- NEXT COUNT RFE RFE RFE 

DISK ADD ONE TWO DATA2 COUNT INFO I Fl CATION INFO USES AVAIL EMPTY 

INFO REC SCRAMBLE 

LINKS 

N.B- IF AREAS GREATER THAN 15 THEN AN 

FILE HEADER FOR DIRECTORY (30 WORDS) 
ADDI\ IONAL 30 WORD SEGMENT IS GOTTEN 

DIRECTORY NAME ENTRY (5 WDS DIRECTffiY NAME ENTRY (5 WORDS 

_a_ j_ 2 3 I' 

SUCCESSOR PREDECESSO.R FIRST RECORD DIRECTORY FILE DIRE ~TORY 

RECORD RECORD AVAIL NUMBER ENTRY HOR llLE 

BLOCK OF THIS INFO ADD 

INDEX RECORD WO 

0 I 2 3 

DIRECTORY RECORD (90 WORDS) 

FILE 

HEACER I.._ 
~ 

_)_ 

ENTRY 

NAME 

4 

£__ 
I 

DIRECTORY ENTRY FILE HEADER DIRE~TORY 
INFO WORD ADD 

I 

'-...... I 
I 
I 
I 
I 

I 
__:_ 

0 I 2 

__.._ 

FILE HEADER ( ( 
MAY BE EITHER ANOTHER DIRECTORY ~ 

I 
OR DATA 

IF PROGRAM 

OR DATA 
I 

I IF DIRECTORY 
I 

FILE HEADER MAY BE 

EITHER ANOTHER DIRECTORY 

OR DATA 

L_. FIRST ROW OF CODE 

OR ~TA INFO 

ENTRY 

3 

. 

90/91 

14 15 16 17 18 19-29 

RFE FIRST SECOND THIRD FOURTH SECURITY AS 

ROW ROW ROW ROW NEEDED INF.O 

ADD ADD ADD ADD 

• 
DIRECTORY NAME ENTRY 

J\.. 

l ( ~ 

" FILE NAME DIRECTORY FILE ETC ... 
I 

CHARACTER ENTRY HEADER 

fl CNT = 47:8 INFO ADD 

WO 

4 0 I 



PAGE 91 
86700' MASTER CONTROL PROGRAM 



B6700. MASTER CONTROL PROGRAM 
PAGE 92 

4.3. PERIPHERAL UNIT AND SYMBOLIC FILE ASSIGNMENT 

THE MCP AUTOMATICALLY ASSIGNS PERIPHERAL I/O UNITS TO SYMBOLIC FILES 
WHENEVER POSSIBLE, IN ORDER TO MINIMIZE THE AMOUNT OF OPERATOR ATTENTION 
WHICH IS REQUIRED BY EACH PROCESS. 

INPUT FILES REQUESTED BY A PROCESS CAUSE THE MCP TO SEARCH ITS TABLES 
FOR THE APPROPRIATE PERIPHERAL UNIT WHICH CONTAINS THE FIL£ REQUESTED. 
IF THE FILE NAMES SPECIFIED BY THE PROCESS IS FOUND ON A PARTICULAR 
UNIT, THAT UNIT IS MARKED "IN USE'' AND ASSIGNED TO THE PROCESS. IN THE 
CASE OF A DISK FILE. THE FILE HEADER IS MARKED ''IN USE" INCREASING THE 
"USER" COUNT BY ONE, AND THE INDEX OF THE HEADER IS PASSED TO THE 
PROCESS. 

OUTPUT FILES REQUESTED BY A PROCESS ARE AUTOMATICALLY ASSIGNED BY THE 
MCP IF A SUITABLE UNIT EXISTS FOR THE FILE. IN THE CASE OF DISK FILES, 
IF THE FILE IS NOT PRE-EXISTENT ON THE DISK, AND THE REQUIRED DISK SPACE 
IS ALLOCATED FOR THE FILE, A ROW AT A TIME 

4.3.1. MCP PROCEDURE "STATUS" 

''STATUS" IS CONCERNED WITH THE CURRENT STATUS OF PERIPHERALS. "STATUS" 
USES THE "SCAN-IN'' OPERATOR ·TO FIND OUT WHETHER A UNIT IS READY OR NOT, 
AND TO COMPARE THE CURRENT STATE WITH THE FORMER STATE OF THE UNIT: 

1. IF A UNIT GOES NOT READY, THE CHANGE IS NOTED IN THE UNIT TABLE. 
IF THE UNIT IS ASSIGNED, THERE IS A "NOT READY'' MESSAGE. 

2. IF A UNIT GOES READY, THE UNIT TABLE ENTRY IS MARKED. 

A. IF A UNIT GOES READY AND IS NOT ASSIGNED, A CHECK IS MADE TO 
SEE WHETHER IT SHOULD BE SAVED, LOCKED, AND/OR PURGED. 
DEPENDING ON UNIT TYPE: 



PAGE 93 
B67oo· MASTER CONTROL PROGRAM 

C 1 ) IF A CARD 
CONTROL CARD 

READER, IT 
IS CALLED. 

IS MARKED AS SCRATCH, AND 
TO PROCESS THE RECORD AS 

DESCRIBED BY THE AREA DESCRIPTOR OF THE IOCB AND READS 
ADDITIONAL RECORDS UNTIL A "BCL", "DATA", OR "END" IS 
ENCOUNTERED. 

( 2) IF A MAGNET I c TAPE' II READALABEL II Is CALLED' II READALABEL" 
READS VARIOUS MAGNETIC TAPES AND STUFFS THE INFORMATION 
THEY CONTAIN INTO THE LABEL TABLE. ALL ENTRY ACTION IS 
ACCOMPLISHED THROUGH THE "IO ERROR" PROCEDURE. 
UNEXPECTED IO ERROR IS ONLY CALLED FOR MEMORY ERRORS. A 
PARITY CONDITION CAUSES THE UNIT TO BE MARKED AS NOT­
READY AND SAVED. 

B. IF THE UNIT IS ASSIGNED, "STARTIOn IS CALLED. "STARTIO" 
FIRST CHECKS FOR CHANNEL IF THE UNIT IS IN A USABLE STATE. 
IF THE CHANNEL IS NOT AVAILABLE, IT INSERTS THE ENTRY INTO 
THE WAITCHANNELQUEUE. OTHERWISE IT CALLS "INITIATEIO". 
"INITIATEIO" INITIATES IO AND INITIALIZES IO FOR THE USER. 
IT.ALSO CHECKS FOR THE UNIT TYPE AND UPDATES THE TRANSACTION 
COUNTER APPROPRIATELY. 

FOR SERIAL TAPE THE "NSECOND" PROCEDURE MAINTAINS THE STATUS FOR THE 
UNIT. THUS, FOR EACH FILE MARKED AS LABELED AND INPUT, "STATUS" OBTAINS 
THE FILE LABEL<S> FROM THE FILE LABEL RECORDS AND SAVES lT IN A LABEL 
TABLE. THIS LABEL TABLE IS USED AT FILE OPEN TIME TO ASSOCIATE INPUT 
FI LE NAMES WI TH THE 'ACTUAL HARDWARE DEV I CE UPON WHICH THE FI LE IS 
MOUNTED. 



B6700· MASTER CONTROL PROGRAM 

4.4. FILE AND CONTROL BLOCKS 

PAGE 94 

THE RELATIONSHIP BETWEEN A FILE NAME AND A FILE LABEL CAN BE ESTABLISHED 
BY SOURCE LANGUAGE STATEMENTS AT COMPILE TIME OR LABEL EQUATION CARDS AT 
RUN TIME. IN ADDITION, CERTAIN MCP MESSAGES CAN ASSOCIATE A FILE WITH A 
PROCESS USING A LABEL EQUATION BLOCK CLEBl AND A F.ILE INFORMATION BLOCK 
CFIBl GENERATED BY THE COMPILERS. THE LOGICAL ASSOCIATION OF THE FILE 
NAME AND FILE LABEL IS MADE UTILIZING THE PROCESS PARAMETER BLOCK CPPB>. 

CSEE FIGURE F4-4l. 



ALLOCATED 
FOR FILE 

BY COMPILER 

FOR COBOL 
CN..Y 

STACK 
"STATE" 

INFO 

-0 
RECORD POINTER t-
FIB DESCRIPTOR 

~ -;... 

RCW 

MSCW -o[z) 

,.;.. .. , 

86700. MASTER CONTROL PROGRAM 
PAGE 

FIB WORD# 

FIB SIZE 

J 
0 

RECORD STATUS I 

FILE STATUS 2 

BLOCK SIZE INFO 3 
REQUIRED 

RECORD SIZE INFO 4 FOR < 
"SIMPLE" BUFFER SIZE INFO 5 

1/0 
HARDWARE INFO 6 

1/0 AREA DESCRIPTOR 
(TOP AREA) 7 

LEB DESCRIPTOR 8 

r-;::{ 1/0 AREA] 

_t 
DATA ,. 

[ 1/0 AREA 1 DATA 

. . 
f 110 AREAT DATA 

(l/O AREA AND DATA MAY 
NOT BE CONTIGUOUS FOR 
"SIMPLE 1/0") 

LEB 

BASIC CONTROL .... DATA 

GENERATION #, 
VERSION, REEL # 

SERIAL # (FOR 

J 
J 

J 

WORD 
# 

0 

LABEL TABLE) < PPB DESCRIPTOR 1--
BUFFER DESCRIPTOR SAVE FACTORi 

2 
9 

I~ ,J, 
WORDS OR 

CREATION DATE 

OPTIONAL CHARACTERS LEFT 
10 DISK INFO (DIRECTION I 

MSCW (REQUIRED F~~ 
BLOCK OR 

SPEED, ACCESS TYPE, 
"NORMAL" 1/0 II # OF AREAS, TOSCW PAGE COUNT AREA SIZE) 

3 

~ 
PPB RECORD OR r OPEN TIME 

LINE COUNT 12 U' 4 OR 5 

LENGTH OF PPB DEPENDING ON < OPTIONAL POINTER 
LABEL ATTRIBUTES 13 WHETHER TO FILE NAME 

INTERNAL FILE OPTIONAL FILE 
(INTERNAL NAME) 

NAME NAME IS PRESENi;._ 

4 

5 

FILE PARAMETERS FILE TYPE, # OF 

(SAME FORMAT BUFFERS, MAX. RECORD 
AS LEB) SIZE, BLOCK SIZE 

U+ I 

INTERNAL MIN. RECORD SIZE U+2 
FILE NAME FILE "TITLE" . OR LABEL NAME . ·--.-....--

FIGURE F 4-4. PPB, LEB, FIB, FORMAT 

95 



PAGE · 96 
B67oo· MASTER CONTROL PROGRAM 

4.4.l. PROCESS PARAMETER BLOCK CPPB> 

THE PPB IS A ONE DIMENSIONAL ARRAY CREATED AND MAINTAINED BY THE HCP 
CONTROL CARD ROUTINE FOR A~L FILES WHICH HAVE BEEN LABEL-EQUATED IN A 
PROCESS. THE PPB CONTAINS ALL OF THE LABEL EQUATION AND FILE ATTRIBUTE 
INFORMATION FOR THE FILES BELONGING TO A PROCESS. 

A LABEL EQUATION CARD IN THE FORM: 

<I> FILE <SYMBOLIC FILE NAME> = <FILE LABEL> <FILE ATTRIBUTES> 

IS NORMALLY USED TO ASSOCIATE A FILE LABEL COR ACTUAL FILE NAME> WITH A 
SYMBOLIC FILE NAME. THIS CARD FOLLOWS THE COMPILE CARD OR THE EXECUTE 
CARD. WHEN ~HE HCP CONTROL CARD ROUTINE SEES LABEL EQUATION CARDS. IT 
SAVES THE INFORMATION IN THE PPB. THIS INFORMATION IS USED LATER TO 
MODIFY FILE.LESS AND FIBS WHEN THE FILES ARE FIRST OPENED. 

4.4.2~ LABEL EQUATION BLOCK CLEB> 

A "LABEL EQUATION BLOCK" IS CREATED BY THE COMPILER AND MAINTAINED BY 
THE 1/0 INTRINSIC FUNCTIONS FOR EACH FILE IN A PROCESS. 

THE LABEL EQUATION BLOCK CONTAINS THE CURRENT LABEL EQUATION AND FILE 
ATTRIBUTE INFORMATION FOR EACH FILE IN A PROCESS. BOTH THE LEB AND FIB 
ARE REFERRED TO BY A DESCRIPTOR IN THE WORKING STACK, WHICH ALLOWS THE 
DYNAMIC SPECIFICATION OF FILE ATTRIBUTES TO BE IMPLEMENTED IN AN 
EFFICIENT HANNER. 

4.4.3. FILE INFORMATION BLOCK CFIB> 

A FILE INFORMATION BLOCK IS ALSO CREATED BY THE COMPILERS FOR EACH 
PROGRAM AND MAINTAINED BY THE I/O INTRINSIC FUNCTIONS FOR EACH FILE USED 
BY THE PROGRAM. 



86700· MASTER CONTROL PROGRAM 
PAGE 97 

THE FIB CONTAINS THE CURRENT STATUS OF A FILE, THE PROGRAMMERS 
DESCRIPTION OF DATA IN THE FILE, FILE ATTRIBUTES, DISK ATTRIBUTES AND 
PRINTER ATTRIBUTES. 



86700 MASTER CONTROL PROGRAM 
PAGE 98 

PROGRAMS STACK 

RECORD POINTER IOCB LINK IOCW ATA 

FIB ADDRESS 

USERS LABEL ADDRESS 
IOCB LINK IOCW DATA 

I 

'lt COBOL ONLY 
I 
I 

THER BUFFERS 
I 
I 

IOCB LINK IOCW ATA 

BUFFER FILE NAME FILE LABEL 

DESC LEB 

FIB 

USER LABEL I : USERS LABEL N 

(COBOL ONLY) 

FIGURE F4-5. FILE/STACK RELATION 



FILE 

NAME 
LIST 

FIB 

86700 ~ASTER CONTROL PROGRAM 

JOB ASSOCIATION (PRODUCED BY COMPILER EXECUTE CARDS) 

PPB 

INTERNAL ...a.I FIX ED LENGTH OPTIONAL ... 

NAMES . ATTRIBUTES INTERNAL NAMES -., 

FILE ASSOCIATION (FOR EACH INCARNATION) 

LEB 

ATTRIBUTES INTERNAL 

NAMES 

VARIABLE 

EXTERNAL NAMES 

EXTERNAL 

NAMES 

SYSTEM ( MCP) UIN FO OR DISK DI RECTORY 

ATTRIBUTES ? 
EXTERNAL 

NAME 

OPEN: A) FILLS EXTERNAL 
LEB 

FROM INTERNAL VIA FILE NAME LIST AND PPB. 
LEB 

B) SCANS UINFO OR DISK DIRECTORY FOR MATCH WITH LEB 

FIGURE F4-6. JOB AND FILE ASSOCIATION 

PAGE 99 



86700 ~ASTER CONTROL PROGRAM 
PAGE 100 

4.5. FILE OPEN 

4.5.1. STEPS IN OPENING A FILE 

1. THE FIRST FUNCTION PERFORMED BY THE OPERATING SYSTEM WHEN REQUESTED 
TO OPEN A FILE IS TO MAP THE FILE NAMES AND FILE ATTRIBUTES FROM 
LABEL EQUATION CARDS INTO THE FIB AND PPB. THIS ALLOWS ASSOCIATION 
OF A FILE NAME WITH A FILE LABEL. THE <FILE ATTRIBUTES> PART OF THE 
LABEL EQUATION CARD. ALLOWS ALTERING THE SOURCE LANGUAGE DESCRIPTION 
OF A FILE ATTRIBUTES IN A WAY THAT SUCH THINGS AS FILE BLOCKING, 
OUTPUT FILE DEVICE. ETC. CAN BE MODIFIED AT EXECUTE TIME WITHOUT 
RE-COMPILING THE SOURCE LANGUAGE. FOR EXAMPLE, A PROGRAM WRITTEN TO 
PRODUCE ITS OUTPUT ON CARD-PUNCH CAN BE LABEL-EQUATED TO PRODUCE ITS 
OUTPUT ON A LINE-PRINTER OR A BLOCKED MAGNETIC TAPE WITHOUT RE­
COMPILING. 

2. THE SECOND STEP IN OPENING A FILE IS TO ASSIGN A DEVICE TO THE FILE. 
THE ACTION TAKEN DEPENDS UPON THE TYPE OF FILE: 

A. IF THE FILE IS "OUTPUT" AND IS NOT A DISK FILE, LOCATE A DEVICE 
OF THE CORRECT TYPE MARKED "AVAILABLE" AND "OUTPUT", DETERMINE 
ITS UNIT DESIGNATION, WRITE LABEL RECORDS AND USERS LABEL 
RECORDS AND, FOR COBOL PROGRAMS. EXECUTE USER "USE" ROUTINES. IF 
ANY. 

B. IF THE FI LE IS "OUTPUT" AND A NEW DI SK FI LE, GENERA TE A FI LE 
HEADER IN MEMORY AND ASSIGN ACTUAL DISK SPACE FOR THE FIRST DISK 
AREA. 

C. IF THE FILE IS A "PRE-EXISTENT FILE ON DISK" CINPUT OR OUTPUT), 
LOCATE FILE IN FILE DIRECTORY, READ ITS DISK HEADER INTO MAIN 
MEMORY AND CHECK THE ATTRIBUTES SPECIFIED IN FIB AGAINST 
ATTRIBUTES SPECIFIED IN THE FILE HEADER. IF THE ATTRIBUTES ARE 



B6700.MASTER CONTROL PROGRAM 

INCOMPATIBLE, TERMINATE THE PROCESS. 

PAGE 101 

D. IF THE FILE IS ''INPUT" AND NOT A DISK FILE, LOCATE THE FILE IN 
THE LABEL TABLE WHICH ALSO INDICATES THE UNIT DESIGNATION AND 
READ THE FILE LABELS ANO USERS LABELS CEXECUTING APPROPRIATE 
USERS "USE'' ROUTINES). COMPARE FILE ATTRIBUTES IN FIB WITH FILE 
ATTRIBUTES IN THE FILE LABEL. IF THE ATTRIBUTES ARE NOT 
COMPATIBLE, TERMINATE THE PROGRAM. 

3. THE THIRD STEP IS TO ALLOCATE MEMORY SPACE FOR THE BUFFERS. 

4. THE FOURTH STEP IS TO CONSTRUCT I/O CONTROL WORDS AND "IOAREA" 
CONTROL AREAS CSEE IOAREA - IIO BUFFER LAYOUT BELOW>. 

5. LASTLY, FOR ALL INPUT FILES ANO BLOCKED OUTPUT FILES ON PRE-EXISTENT 
DISK FILES, THE BUFFERS ARE PRELOADED WITH DATA. 

4.5.2. THE RECORD POINTER 

ASSOCIATED WITH EACH FILE IS A RECORD POINTER. ALL DATA IS ACCESSED BY 
A PROGRAM THROUGH THE RECORD POINTER. THIS POINTER CONTAINS A BASE AND 
A MAXIMUM RECORD SIZE. THE VARIOUS LANGUAGES CAN SPECIFY RECORDS OF 
VARIABLE SIZE AND A MAXIMUM RECORD SIZE. ALSO SOME LANGUAGES DEPEND 
UPO~ THE PR-OGRAM TO ESTABLISH THE RECORD SIZE. CERTAIN HARDWARE CHECKS 
WILL CAUSE PROGRAM TERMINATION IF THE PROGRAM ESTABLISHES A RECORD SIZE 
EXCEEDING ITS $PECIFIED MAXIMUM RECORD SIZE. THIS ESTABLISHES ONE LEVEL 
OF SYSTEM INTEGRITY, I.E., A PROGRAM CANNOT ALTER OR DESTROY DATA 
OUTSIDE OF THE PROGRAM DATA AREA LIMIT. 

EACH 1/0 STATEMENT MAKES A RECORD AVAILABLE TO A PROGRAM ALTERING THE 
BASE FIELD OF THE RECORD POINTER. IN THE CASE OF BLOCKED RECORDS AND 
ALSO ANOTHER RECORD IN THE BLOCK EXISTS, THEN THE NEXT RECORD CAN BE 
OBTAINED BY INCREMENTING THE POINTER BASE BY THE SIZE OF THE PREVIOUS 
RECORD. IN THE CASE WHERE ALL LOGICAL RECORDS IN A BLOCK HAVE BEEN 
PROCESSED THE BASE CAN BE SET TO EITHER THE NEXT BUFFER, IF MULTIPLE 
BUFFERS ARE SPECIFIED, OR THE FRONT OF THE BUFFER, IF ONLY ONE BUFFER IS 



86700.MASTER CONTROL PROGRAM 
PAGE 102. 

SPECIFIED. 

ANYTIME THE RECORD POINTER IS SET <RATHER THAN INDEXED>, THE ADDRESS OF 
THE I/O CONTROL AREA "IOAREA" IS PASSED TO THE MCP WHICH ACTIVATES AN 
ACTUAL 1/0 OPERATION ON THAT BUFFER. AT . THE SAME TIME, THE EVENT 
ASSOCIATED WITH THE BUFFER TO WHICH THE RECORD POINTER HAS BEEN SET, IS 
CHECKED. 

THE BUFFER EVENT SERVES TO INTERLOCK THE BUFFER WITH THE PROGRAM SUCH 
THAT THE PROGRAM CANNOT REFERENCE A BUFFER WHICH HAS AN I/O IN PROGRESS 
ON IT. WHEN A BUFFER IS PASSED TO THE MCP, ITS EVENT IS SET TO THE 
STATE "NOT HAPPENED". UPON COMPLETION OF THE I/O FOR THAT BUFFER, THE 
MCP ROUTINE, IOFINISH, "CAUSES" THE EVENT TO HAPPEN. PRIOR TO RETURNING 
TO THE PROGRAM AFTER SETTING THE RECORD POINTER TO A BUFFER, ITS EVENT 
IS CHECKED FOR THE STATE "HAPPENED". IF THE EVENT HAS NOT "HAPPENED", 
THEN A WAIT <EVENT> IS EXECUTED. THIS WILL CAUSE THE PROGRAM TO BE 
MOVED FROM THE READY 
SUSPENDED AND ANOTHER 

QUEUE TO THE WAIT QUEUE, I.E., THE PROGRAM IS 
PROGRAM IN THE READY QUEUE IS STARTED. LATER, 

WHEN IOFINISH "CAUSES" THE EVENT TO HAPPEN, ALL OF THE PROCESSES WAITING 
ON THAT 
PROCESSES 

EVENT 
WILL 

READY QUEUE. 

ARE 
BE 

MOVED FROM THE WAIT QUEUE TO THE READY QUEUE. THE 
RE-ACTIVATED ACCORDING TO THEIR PRIORITIES IN THE 



B6700 1'1ASTER CONTROL PROGRAM 
PAGE 103 

4.6. FILE CLOSE 

4.6.1. TYPES OF FILE CLOSE 

THERE ARE 10 TYPES OF FILE CLOSE: 

l. CLOSE BUT DO NOT RELEASE UNIT 

2. RELEASE UNIT 

3. PURGE UNIT 

4. DO NOT REWIND UNIT 

5. ENTER TEMPORARY DISK FILE INTO DISK DIRECTORY 

6. COMPRESS <CRUNCH> DISK FILE 

7. CLOSE HERE - USED WHEN CHANGING .FROM INPUT TO OUTPUT. THE TAPE 
HEAD IS POSITIONED IN FRONT OF THE CURRENT BLOCKS. 

8. CLOSE * <ASTERISK> - USED FOR POSITIONING IN MULTI - FILE AN[ 
FILE - SET CASES. 

9. SUSPEND CUSED WHEN PROGRAM IS SUSPENDED> 

10. BLOCK.EXIT 

4.6.2. FILE CLOSE ERRORS 

FILE CLOSE ERRORS INCLUDE:. 

1. FILE NOT OPEN 

2. IRRECOVERABLE 1/0 ERROR DURING CLOSE PROCESSING 

t .. 



PAGE 1 G'i 
86700.MASTER CONTROL PROGRAM 

3. RECORD COUNT ERROR 

4. BLOCK COUNT ERROR 



PAGE 105 
B6700 MASTER CONTROL PROGRAM 

4.7. DISK FILE SECURITY 

ALL DISK FILES ARE DIVIDED INTO THREE MAIN SECURITY CLASSES. EACH OF 
THESE CLASSES WILL BE DISCUSSED BRIEFLY IN THE FOLLOWING PARAGRAPHS. 

4.7.1. CLASS A FILES 

ACCESS TO CLASS A FILES IS CONTROLLED BY THE MCP AT FILE-OPEN TIME. THE 
FACTORS GOVERNING ACCESS TO A FILE ARE THE USER CLASS AND SECURITY CLASS 
OF THE USER DESIRING ACCESS, THE TYPE OF ACCESS DESIRED BY THE USER, AND 
THE FILE TYPE OF THE FILE WHICH THE USER DESIRES TO ACCESS. EACH SYSTEM 
USER WILL HAVE A USER ID AND HIS USER CLASS AND SECURITY CLASS WILL BE 
ASSOCIATED TO THIS ID BY MEANS OF A SPECIAL FILE. FROM THE POINT OF 
VIEW OF FILE SECURITY THERE ARE FOUR TYPES OF FILE ACCESS WHICH A USER 
MAY REQUEST: READ ONLY, READ/WRITE, LIBRARY MAINTENANCE AND SECURITY 
MAINTENANCE. THE FILE TYPE INDICATES WHETHER ACCESS TO THE FILE IS 
RESTRICTED AND IF SO HOW. IF ACCESS IS RESTRICTED THEN THERE WILL BE A 
CLASS OF PRIVILEGED USERS WHICH MAY BE DETERMINED ON THE BASIS OF USER 
CLASS, SECURITY CLASS, OR BOTH OF THESE. A NON-PRIVILEGED USER IS NOT 
NECESSARILY DENIED ALL ACCESS TO THE FILE; HE MAY, FOR EXAMPLE. BE 
ALLOWED READONLY ACCESS TO A FILE WHICH ONLY PRIVILEGED USERS MAY ALTER. 
ON THE OTHER HAND, A NON-PRIVILEGED USER MIGHT BE DENIED ALL ACCESS TO A 
FILE WHICH PRIVILEGED USERS HAVE RANDOM ACCESS TO. 

4.7.2. CLASS 8 FILES 

ACCESS TO CLASS B FILES IS CONTROLLED BY A SPECIFIED PROCEDURE AT FILE-
TIME. OPEN 

THE FILE 
THIS PROCEDURE WILL HAVE BEEN SPECIFIED BY THE CREATOR OF 

ANO ITS IDENTIFICATION WILL BE CONTAINED IN THE FILE HEADER. 
WHEN A USER ATTEMPTS TO ACCESS THE FILE THE MCP WILL CALL THIS PROCEDURE 
PASSING HIS USER CLASS, SECURITY CLASS, AND USER ID AS WELL AS THE TYPE 
OF ACCESS DESIRED. THE PROCEDURE WILL THEN DETERMINE THE VALIDITY OF 
THE REQUEST. SUCH A PROCEDURE COULD BE USED, FOR EXAMPLE, TO ALLOW 
ACCESS TO A FILE ONLY AT SPECIFIC TIME OF THE DAY OR TO ALLOW SPECIFIC 
TYPES OF ACCESS AT SPECIFIC TIMES OF DAY BY SPECIFIC PEOPLE. 



B6700 MASTER CONTROL PROGRAM 
PAGE 106 

4.7.3. CLASS C FILES -----
ACCESS TO CLASS C FILES IS CONTROLLED BY A SPECIFIC PROCEDURE NOT AT 
FILE-OPEN TIME, BUT RATHER AT THE RECORD LEVEL. THIS PROCEDURE WILL 
~AVE BEEN SPECIFIED BY THE CREATOR OF THE FILE AND ITS IDENTIFICATION 
WlLL BE CONTAINED IN THE FILE HEADER. WHEN A USER ATTEMPTS TO ACCESS A 
RECORD IN THE FILE THE MCP WILL CALL THIS PROCEDURE PASSING HIS USER 
CLASS, SECURITY CLASS, THE RECORD; AND USER ID AS WELL AS THE TYPE OF 
ACCESS DESIRED. THE PROCEDURE WILL THEN DETERMINE THE VALIDITY OF THE 
REQUEST. SUCH A PROCEDURE COULD BE USED, FOR EXAMPLE, TO RESTRICT 
ACCESS TO CERTAIN RECORDS IN THE FILE OR TO RESTRICT THE MANNER IN WHICH 
THESE RECORDS ARE ACCESSED OR MASK CERTAIN PORTIONS OF THE RECORD. 

4.7.4. RELATIONSHIP BETWEEN THE SECURITY CLASSES 

IT SHOULD BE CLEAR THAT CLASS C SECURITY IS STRONGER THAT CLASS B IN THE 
SENSE THAT THE EFFECT OF CLASS B SECURITY CAN BE ACHIEVED BY AN 
APPROPRIATE CLASS C SECURITY PROCEDURE. IT IS ALSO CLEAR THAT A CLASS B 
FILE CAN BE MADE TO LOOK LIKE A CLASS A FILE. HOWEVER, IN EACH OF THESE 
INSTANCES, ACCESS TO THE FILE WOULD BE SLOWED BY THE IMPOSITION OF 
UNNECESSARY SECURITY. FINALLY, IT SHOULD BE NOTED THAT A FILE MAY BE AT 
ONCE TYPE A, TYPE B, AND TYPE C OR ANY COMBINATION OF THESE THREE, 
SIMPLY BY IMPOSING VARIOUS CLASSES OF SECURITY AT THE DIFFERENT LEVELS 
OF THE DISK DIRECTORY STRUCTURE. 



PAGE 107 
86700 MASTER CONTROL PROGRAM 

SECTION 5 

INPUT/OUTPUT 



86700 MASTER CONTROL PROGRAM 

5. INPUT/OUTPUT 

5.1. MCP J/O PROCEDURES 

PAGE 108 

THE MCP COORDINATES INPUT/OUTPUT OPERATIONS FOR ALL JOBS AND PERIPHERAL 
DEVICES ON THE B6700 SYSTEM. WHAT FOLLOWS IS A DETAILED DISCUSSION OF 
MCP PROCEDURES CONCERNED WITH INPUT/OUTPUT CPROCEDURE NAMES ARE SET OFF 
BY QUOTATION MARKS>. 
ARE SUBJECT TO CHANGE. 

THE NAMES AND RELATIONSHIPS OF THESE PROCEDURES 

5. l .1. PERIPHERALINITIALIZE 

"PERIPHERALINIT~ALIZE'' SETS UP THE UNIT TABLE AND THE TABLE WHICH 
CONTAINS THE UNIT NUMBER FOR EACH UNIT TYPE. AFTER 
"PERIPHERALINITIALIZE" HAS SET UP THE TABLES, IT INITIATES A REWIND ON 
TAPES AND STARTS "STATUS". 

5. 1 . 2. STATUS 

"STATUS'' MATCHES THE CURRENT UNIT STATUS WITH THE OLD STATUS BY CHECKING 
THE 8 STATUS VECTORS, USING BOTH THE SCNI CSCAN INl OPERATOR AND THE 
INTERROGATE PERIPHERAL STATUS WORD. THREE RECORDS OF USASI LABELS ARE 
READ EACH TIME THE UNIT GOES READY; AT WHICH TIME, "READALABEL" IS 
CALLED AS AN INDEPENDENT RUNNER. 

5.1.3. READALABEL 

"READALABEL" READS THE VARIOUS TAPE LABELS AND STUFFS THE INFORMATION 
THEY CONTAIN INTO 
THROUGH "IOERROR". 

THE LABEL TABLE. ALL RETRY ACTION IS ACCOMPLISHED 
"UNEXPECTED I OERROR" I 0 ERROR IS ONLY CALLED FOR 

MEMORY ERROR. A PARITY CONDITION CAUSES THE UNIT TO BE MASKED AS NOT­
READY AND SAVED. THEN EITHER "WAITIO" OR "DISKWAIT" BUILDS ANO IOCB AND 
CALLS "IOREQUEST", WHICH LINKS THE IOCB INTO IOQUEUE. 



PAGE 109 
B6700 "MASTER CONTROL PROGRAM 

5.1.4. WAITIO 

"WAITIO" PASSES "IOREQUEST" A LOCAL EVENT ON WHICH IT WAITS. IF THERE 
ARE NO ERRORS OTHER THAN THOSE ACCOUNTED FOR BY THE IOERROR MASK THEN 
"WAITIO" RETURNS THE 
"UNEXPECTEDIOERROR". 

RESULT DESCRIPTOR, OTHERWISE IT CALLS 
THERE ARE THREE PARAMETERS PASSED TO "WAITIO": 

IOERRORMASK, USER. 
THE CALLER TO DO 

AND AREA. IOERRORMASK IS AN ERROR MASK PROVIDED BY 
ITS OWN ERROR-HANDLING. THE BUFFERLENGTH FIELD OF 

IOERRORMASK HAS A MASK WH!CH DETERMINES UNEXPECTED I/O ERROR. 

5.1.5. DISKWAIT 

"DISKWAIT" CALLS "DIS~IO" WHICH PASSES PARAMETERS CORE, INDEX, SIZE. 
DISK, MASK ANO AN .EVENT TO BE CAUSED ON 1/0 COMPLETE AND WAITS ON THE 
EVENT. THE PARAMETER CORE IS THE ARRAY DESCRIPTOR FOR THE CORE AREA. 
THIS AREA MUST BE NON-OVERLAYABLE C"OISKWAIT" GUARANTEES THIS>. THE 
PARAMETER INDEX IS THE STARTING INDEX FOR THE CORE AREA DESCRIPTOR. 
WHILE THE PARAMETER SIZE IS THE NUMBER OF WORDS TO TRANSFER. DISK IS 
THE SOFTWARE DISK ADDRESS. MASK IS THE MASK OF THE STANDARD 1/0 CONTROL 
WORD. 

5.1.6. OISKIO 

"OISKIO" CONVERTS THE SOFTWARE DISK ADDRESS INTO HARDWARE DISK ADDRESS 
ANO MAKES UP AN IOCW. IT ALSO MAKES UP THE AREA DESCRIPTOR ANO INSERTS 
IT INTO THE IOCB. IT THEN CALLS "IOREQUEST". 

5.1.7. IOREOUEST 

"IOREQUEST" 
ONE ENTRY 
OTHERWISE, 

QUEUES UP THE I/O IN THE 1/0 QUEUE. IF THERE IS MORE THAN 
IN THE QUEUE, "IOREQUEST" RETURNS TO THE REQUESTING PROCESS. 
"IOREQUEST" CALLS "STARTIO". "IOREQUEST" IS PASSED AN IOCB, 

A DESCRIPTOR POINTING TO THE ENTRY BLOCK FOR THE I/O QUEUE. 



IOREQUEST 

86700.MASTER CONTROL PROGRAH 

WAITCHANNELQUE . (ONE FER MPX) 

THIS MAY CONTAIN UP TO ONE ENTRY FOR EACH UNIT, 

PROVIDED THAT UNIT IS NOT 11 IN PROCESS OF DOING 1/0 ". 

THE REQUEST REMAIN LINKED INTO THE IOQUE #UNITS. 

.---I 
,_....., 

@ ~ 
.---< 

..... 
t+ l 

., ~ 
l 

I I 

MPX 

T T 

Ch 1 

~ 1 l :i 

I.Qt 1 Unit 2 Unit 3 Unit 4 

AT 1/0 COMPLETE "A" WILL BE INITIATED. 

11 811 LINKED TO WAITCHANNELQUE. 

FIGURE F5-I. \\AITCHANNELQUE EXA..ANATION 

1 
Ch2 

1 

IOQUE 4 

WAITQ 1 

(only 1mpx) 

PAGE 110 



PAGE 111 
B6700 'MASTER CONTROL PROGRAM 

AS PREVIOUSLY STATED, EITHER "WAITIO" OR "DISKWAIT" INITIATES 110 BY 
PASSING THE ADDRESS OF AN l/O AREA TO THE MCP PROCEDURE ''IOREQUEST". 
THE PRIMARY PURPOSE OF ''IOREQUEST" IS TO QUICKLY SET UP AN !/O REQUEST 
AND RETURN TO THE CALLING PROGRAM. TO SET UP AN I/O REQUEST, SEVERAL 
THINGS MUST BE CONSIDERED: 

1. FIRST, SINCE "IOREQUEST" IS HANDLING I/O OPERATIONS ON ALL 
BUFFERS OF ALL PROGRAMS IN THE MIX, EACH I/O MUST BE ASSOCIATED 
WITH A PARTICULAR BUFFER OF A PARTICULAR PROGRAM. 

2. A SECOND CONSIDERATION IS THAT ''IOREQUEST" MUST SET UP AN I/O 
OPERATION AND RETURN TO THE CALLER, EVEN IF THE I/O REQUEST IS 
ON A DEVICE THAT CANNOT BE INITIATED. THE DEVICE MAY ALREADY BE 
IN USE BY A PRIOR REQUEST OR ALL MULTIPLEXOR CHANNELS MAY BE 
BUSY PERFORMING I/O OPERATIONS ON OTHER DEVICES. THIS ALSO 
IMPLIES THE SET-UP MUST INCLUDE THE CAPABILITY OF LATER SENDING 
THE REQUEST TO THE MULTIPLEXOR WHEN THE DEVICE DOES BECOME 
AVAILABLE. 

3. FINALLY, THE SET-UP MUST ALSO INCLUDE THE ABILITY TO INTERLOCK 
THE I/O BUFFER AND LATER, WHEN THE I/O OPERATION IS COMPLETE, 
UNLOCK THE BUFFER. THIS INTERLOCKING MUST BE TRANSPARENT TO THE 
PROGRAMMER; IN ADDITION IT MUST ALLOW THE PROGRAM TO RUN UNTIL 
THE PROGRAM ATTEMPTS TO PROCESS DATA IN A BUFFER FOR WHICH AN I/ 
0 REQUEST HAS BEEN MADE, BUT IS NOT YET COMPLETED. THE MCF 
UTILIZES A QUEUE FOR EACH UNIT IN THE HANDLING OF AN I/C 
REQUEST, AS SHOWN IN FIGURE F5-2, THE MCP I/O QUEUE. 



A __ "/' 

C--) 

D--) 

I 

PAGE 112 
86700.MASTER CONTROL PROGRAM 

11 LIST- DIRECTED" INTRINSIC: 

FORMAT INT WITH ITS LOCALS: 

INEDIT, OUTEDIT, DIGS 

GETLIST, SKI POVER, 

GETPHRASE, COJNT, CROAK, 

AND ITS INTERFACE: 

GET BUFFER 

11 NORMAL 11 PROGRAM INTRINSICS: 

LOGICALRECORD, SEEK CLOSE, 

OPEN, ATTRIBUTEHANDLER, 

ATTRIBUTEHANDLER. 

11 DIRECT 10 PROGRAM INTRINSICS: 

OBTAIN CB, REFERENCECB, 

FIXCB, WAITCB, FREECB. 

11 INTERFACE 11 ROUTINES: 

WAITON, INPUTREELSWITCH 

RELEASE, OJTPUTREELSWITCH. 

"vo" INTRINSICS THAT 

WAITIO, DISKWAIT 

11 1/011 INTRINSlCS THAT DON 1 T: 

IOREQUEST, 

FIGURE F5-2. 

THE MCP 1S SYSTEM OF 1/0 ROUTINES 

IS CODED IN 11LAYERS'. 1 CALLS MAY BE 

MADE ON IT AT LEVELS A THRU D. 

11SERVICE11 ROUTINES: 

CHECK RECORDSIZE, GETFPB 

HDISKADDRESS, RECONFIGURE, 

PARAMETER SEARCH, GETLEB, 

EVENTl\UMBER, FORGETEVENT, 

SETUPTANK, FORGETTANK, 

SETUPRECPTR, CALCRECSZ, 

FlNDOUTPUT, FINDINPUT, 

WRITEALABEL 

FILE ORIENTED 

"SERVICE" ROJTINES: 

STARTIO, INIATEIO, DISKIO, 

IOFINISH, NEWIO, IOERROR 

I 

I 
PERIPHERAL ORIENTED 

I 

i 
1/0 CONTROL SYSTEM FUNCTIONAL BLOCK DIAGRAM 



PAGE 113 
B6700 'MASTER CONTROL PROGRAM 

EACH DEVICE IN THE SYSTEM CEACH READER, TAPE, DISK ELECTRONICS UNIT, ETC.J 
HAS A UNIQUE UNIT NUMBER AND A UNIQUE 1/0 QUEUE. 

THE "IOREQUEST" FUNCTIONS ARE AS FOLLOWS: 

1. THE 1/0 AREA IS LINKED INTO THE l/O QUEUE BY EXECUTING THE 
"INSERT" ALGORITHM OF THE 1/0 QUEUE. IF THERE IS MORE THAN ONE 
ENTRY IN 
PROCESS. 

THE QUEUE, "IOREQUEST" RETURNS TO 
OTHERWISE "IOREQUEST" CALLS STARTIO". 

THE REQUESTING 
"STARTIO" MAKES 

UP A UNITWORD, WHICH SPECIFIES THE UNIT AND MULTIPLEXOR, AND THE 
HARDWARE INSTRUCTION WHICH INTERROGATES FOR I/O PATH TO BE 
EXECUTED. 

2. IF A PATH Cl/O CHANNELl IS AVAILABLE, THEN "STARTIO" CALLS 
"INITIATEIO" WHICH CAUSES THE MULTIPLEXOR TO START TRANSFERRING 
INFORMATION. ''INITIATEIO" ALSO RECORDS THE INITIATE TIME WHICH 
THE "IOFINISH" ROUTINE WILL USE TO CALCULATE 1/0 TIME FOR THE 
PROCESS. CONTROL 15 RETURNED TO THE PROCESS REQUESTING 1/0 

ACTION. 

3. IF A PATH IS NOT AVAILABLE, THEN THE UNITWORD IS ENTERED INTO 
THE WAITCHANNEL QUEUE AS SHOWN IN FIGURE F4-7. CONTROL IS 
RETURNED TO THE PROCESS REQUESTING 1/0 ACTION. THE MULTIPLEXOR, 
AFTER OBTAINING AN I/O REQUEST VIA A PROCESSOR "INITIATE 1/0" 

INSTRUCTION, PROCEEDS TO HANDLE THE REQUEST INDEPENDENTLY OF THE 
PROCESSOR. IN THE PROCESS OF DOING THE I/O, THE MULTIPLEXOR 
BUILDS A RESULT DESCRIPTOR. UPON COMPLETION OF THE 1/0 

OPERATION, IT GENERATES AN 1/0 FINISH INTERRUPT TO THE PROCESSOR 
THE MCP ROUTINE "IOFINISH" IS ACTIVATED BY THIS INTERRUPT. 

5. 1.8. STARTIO 

"STARTIO" FIRST CHECKS THE CHANNEL FOR AVAILABILITY IF THE UNIT IS IN A 
USABLE STATE. IF THE CHANNEL IS AVAILABLE, IT CALLS ''INITIATEIO", 
OTHERWISE IT INSERTS THE ENTRY INTO THE WAITCHANNEL QUEUE TO WAIT FOR AN 



B6700. MASTER CONTROL PROGRAM 
PAGE 114 

AVAILABLE CHANNEL. 

5.1.9. INITIATEIO 

"INITIATEIO" INITIATES I/0, INITIALIZES I/O TIME FOR THE USER, CHECKS 
FOR THE UNIT TYPE AND UPDATES THE TRANSACTION COUNTER APPROPRIATELY. 
PARAMETERS PASSED TO "INITIATEIO" ARE AREADESC, A DESCRIPTOR POINTING TO 
THE· IOCW WHICH PRECEDES CNONOVERLAYABLE) 1/0 AREA, UNITWORD, A CONTROL 
WORD FOR THE UNIT ON WHICH 1/0 IS TO BE INITIATED AND USERIDNO, A USER 
IDENTIFICATION NUMBER FOR BOOKKEEPING. 

5.1.10. IOFINISH 

"IOFINISH" READS A RESULT DESCRIPTOR FOR A SPECIFIED MULTIPLEXOR AND 
DOES ALL THE ERROR CHECKING. IF NO ERROR lS FOUND, IT FIRES UP NEW I/O 
AND INSERTS THE l/O REQUEST FOR THE UNIT ON WHICH THE I/O WAS FINISHED 
INTO A WAITCHANNELQUE. IF NO UNIT IS WAITING FOR A CHANNEL, IT REMOVES 
THE FINISHED I/O ENTRY FROM THE UNIT QUEUE AND, IF THE QUEUE IS NOT 
EMPTY, 
BITS 

THEN CALLS "STARTIO". IF AN ERROR IS FOUND; IT SETS APPROPRIATE 
IN THE UN IT. TABLE. IF THERE IS A DI SK ERROR, IT WI LL TRY 10 TI MES 

TO RECOVER FROM THE ERROR. FOR OTHER ERRORS, IT CALLS PROCESS "IOERROR". 
IT KEEPS TRACK OF I/O TIME AND FOR ERROR FREE OPERATION, IT GIVES THE 
WORD COUNT FOR A READ OPERATION. 

THE FIRST OPERATION OF ''IOFINISH" IS TO EXECUTE THE INSTRUCTION "READ 
RESULT DESCRIPTOR" FOR THE INTERRUPTING MULTIPLEXOR. THIS INSTRUCTION 
TRANSFERS 
STACK IN 

THE RESULT DESCRIPTOR FROM THE MULTIPLEXOR TO THE TOP OF THE 
THE PROCESSOR AT THE SAME TIME, IT CLEARS THE INTERRUPT 

MECHANISM IN THE MULTIPLEXOR SO THAT IT BECOMES CAPABLE OF GENERATING 
ANOTHER I/O COMPLETE FOR SOME OTHER DEVICE. THE RESULT DESCRIPTOR HAS 
THREE FIELDS OF CONCERN: THE UNIT NUMBER, ERROR BIT AND ERROR FIELD. 
THE ERROR BIT IS OFF IF NO ERRORS WERE DETECTED. IF THE BIT IS ON, THEN 
THE RESULT 
ERROR FIELD. 

DESCRIPTOR Is PASSED TO II I OERROR II • " I OERROR II ANALYZES THE 
THE ERROR FIELD DENOTES SUCH ERRORS AS END OF PAGE, END OF 

FILE, PARITY, NOT READY, ETC. DEPENDING ON THE TYPE OF ERROR, ''IOERROR" 



PAGE 115 
86700 "MASTER CONTROL PROGRAM 

WILL TAKE APPROPRIATE ACTION. 

ASSUMING ''IOERROR" CORRECTED THE ERROR, OR THERE WAS NO ERROR, 
"IOFINISH" CONTINUES AS FOLLOWS: 

1. THE 1/0 JUST COMPLETED IS REMOVED FROM THE I/O QUEUE. 

2. IF THE WAITCHANNELQUEUE IS NOT EMPTY "NEWIO'' IS CALLED TO 
INITIATE AN I/O OPERATION ON THE FIRST UNIT WAITING IN THE QUEUE 
TH IS I /0 QUEUE IS THEN CHECKED TO SEE IF IT IS EMPTY. IF IT IS 
NOT EMPTY, THEN THE NEXT 1/0 OPERATION REQUESTED IS PLACED IN 
THE WAITCHANNEL QUEUE. 

3. IF THE WAITCHANNEL QUEUE IS EMPTY, "STARTIO" IS CALLED TO 
INITIATE THE NEXT 110 OPERATION IN THE 1/0 QUEUE FOR THIS UNIT. 

4. THE USER 1/0 TIME IS RECORDED IN THE SYSTEM LOG. 

5. THE 1/0 FINISH EVENT IS "CAUSED" WHICH MOVES THE PROCESS IN THE 
EVENTS "WAIT" QUEUE INTO THE READY QUEUE. 

SINCE "IOFINISH" WAS ACTIVATED BY AN INTERRUPT RATHER THAN BEING CALLED, 
THE EXIT FROM "IOFINISH'' IS DONE BY BRANCHING TO A ROUTINE WHICH WILL 
ACTIVATE THE PROCESS OR PROGRAM WHICH IS IN THE TOP OF THE READY QUEUE. 

5.1.11. FINDINPUT AND FINDOUTPUT 

THE PROCEDURES "FINDINPUT" AND "FINDOUTPUT" FIND THE UNIT INPUT OR 
OUTPUT RESPECTIVELY FOR THE FILE UNDER CONSIDERATION, BY SEARCHING THE 
UNIT TABLE, DISK DIRECTORY AND LINE AND TERMINAL FILE. NOTE: 
TRANSLATION FOR THE MULTIPLEXOR DOES NOT WORK ON A BINARY TAPE FILE, SO 
IT IS ADVISABLE TO HAVE EBCDIC TAPE FILES. 

5.2. DIRECT I/O 



B6700·MASTER CONTROL PROGRAM 
PAGE 116 

DIRECT I/O FACILITATES THE MAXIMUM OVERLAPPING OF USER "I/O TIME• AND 
"PROCESSOR TIME", PERMITS WORKING DIRECTLY OUT OF BU~FERS, AND ALLOWS 
THE SPECIFICATION OF CERTAIN UNUSUAL FILE ATTRIBUTES. 

THE CHARACTERISTICS OF DIRECT 1/0 ARE: 

1. THE USER EXPLICITLY PROVIDES HIS OWN BUFFERS IN THE FORM OF AN 
ARRAY "CROSS-SECTION" CSOME PORTION OF AN ARRAY ROW>. 

2. ALL RECORDS ARE HANDLED AS UNBLOCKED. 

3. CONTROL IS RETURNED TO THE USER BEFORE THE "l/O COMPLETE" EVENT 
OCCURS. 

4. THE USER MAY PROVIDE HIS OWN BUFFER EVENT<S>. 

5. A POOL OF 1/0 CONTROL BLOCKS CIOCBl IS MAINTAINED BY THE SYSTEM 
FOR THE USER. 

6. THE USER MUST "FREE" AN IOCB BEFORE IT CAN BE USED IN ANY 
FURTHER 1/0 ACTION. 

7. CERTAIN "PRIVILEGED" ATtRIBUTES, SUCH AS "FILE DENSITY" CAN BE 
CHANGED WHILE THE FILE IS OPEN. 



B6700 MASTER CONTROL PROGRAM 
PAGE 117 

5.3. BUFFERED 1/0 

USER I/O USES MCP PROVIDED INTRINSICS FOR FORMATTING, DECOMPOSITION INTO 
LISTS, AND BLOCKING. 

AT FILE OPEN TIME, THE LABEL EQUATION INFORMATION IS CHECKED FOR 
CONSISTENCY. IF THE BIT IN THE FIB THAT MARKS THE FIRST OPENING OF A 
FILE IN A BLOCK IS NOT ON, IT IS NECESSARY TO PROCESS LABEL EQUATION 
INFORMATION. TO DO THIS, THE PPB LOOKS IN THE PROCESS STACK FOR 
INFORMATION AND MAPS THAT INFORMATION INTO THE FIB. AFTER THE FILE IS 
OPENED, "SRTUPTANK" SETS UP THE BUFFERS AND LINKS THEM TOGETHER AND 
BUILDS THE IOAREA <IOCB +LINKS+ BUFFER>. 

THE AUTOMATIC TRANSFER OF. "LOGICAL" RECORDS BETWEEN A FILE AND PROCESS 
NEEDS BOTH INFORMATION ABOUT RECORD SIZE, BLOCK SIZE AND BLOCKING, AS 
WELL AS THE FUNCTIONING OF SERIAL 1/0 AND RANDOM 1/0 .. 



86700.MASTER CONTROL PROGRAM 
PAGE 118 

FIRSTIO l • u 
,...- ~MISC AREA 

EVENT PRVSIO NEXTIO IOCW f+-DATA DESC 
R 

(EMPTY) T 
TO OTHER BUFFERS 

~ .__ 
l 

r _L 9 .. u 
~ MISC AREA EVENT PRVSIO NEXTIO IOCW 14--DATA 

~ R 
·oESC 

::r• 
I 

.._ I 
LASTIO l I 

J I I "l 
u LI'! MISC 

AREA EVENT PRVSIO NEXTIO IOCW !+-DATA 
DESC --

(EMPTY) 

IOCB BUFFERS 

FIGURE F5-3. MCP 1/0 QUEUE 



PAGE 119 
B6700 ·MASTER CONTROL PROGRAM 

5.3.1. LOGICAL RECORD AND PHYSICAL RECORD 

A LOGICAL RECORD CONSISTS OF THE INFORMATION WHICH THE PROCESS 
REFERENCES WITH ONE READ OR WRITE STATEMENT. THE SIZE OF A LOGICAL 
RECORD DOES NOT IN GENERAL COINCIDE WITH THE SIZE OF THE PHYSICAL RECORD 
OR "BLOCK" ACCESSED BY THE HARDWARE 1/0 OPERATIONS. 

THE BLOCK SIZE IS THE SIZE OF A SET OF DATA THAT CAN BE PROCESSED BY THE 
HARDWARE ON EACH ACTUAL HARDWARE I/O OPERATION. THE LIMITING FACTOR IN 
SIZE OF A BLOCK IS DEPENDENT ON EACH HARDWARE DEVICE. FOR EXAMPLE: CARD 
READERS ARE FIXED AT 80 CHARACTERS PER BLOCK, TAPE IS VARIABLE IN 
INCREMENTS OF 1 TO 16,767 WORDS AND DISK BLOCK SIZE IS VARIABLE IN 
INCREMENTS OF 30 WORD SEGMENTS. WHEN A PHYSICAL RECORD CONTAINS MORE 
THAN ONE LOGICAL RECORD; THE FILE IS REFERRED TO AS A "BLOCKED" FILE. 



DISKWAIT 
EVENT 

DISK 10 CONVERT 
ADDRESS 

WHATDOIDO 

INTERRUPT 

86700. MASTER CONTROL PROGRAM 

IOREQUEST 

LINK IOAREA 

STANDARD 
CALLS FROM 
DISJOINT 
ROUTINES 

WAITIO 
EVENT 

INTO UNITQUE OR I 

STARTIO TO 

PAGE 120 

LOGICALRECORD 

USERS 

INITIATEIO t-----
ACTUAL 1/0 

STATUS INDEPEN­
DENT RUNNER 

FORK 

READALABEL 

WAITCHANNELQUE OR 

IOFINISH 

FIGURE F5-4. INTRINSIC CALLS 

NEWI 0 FIRE UP 
NEXT 1/0 



PAGE 121 
B670o· MASTER CONTROL PROGRAM 

5.3.2. BLOCKING 

FILES MAY BE BLOCKED IN ORDER TO CONSERVE STORAGE SPACE IN THE FILE 
MEDIA OR TO INCREASE THE RATE OF PROCESSING THE DATA BY REDUCING THE 
NUMBER OF FILE ACCESSES REQUIRED. 

WHEN A PROCESS HAS ACCESS TO A FILE A PHYSICAL RECORD IS WRITTEN EITHER 
FROM 
AREA 

OR 
FOR 

READ TO A MEMORY AREA. THIS MEMORY AREA IS CALLED A "BUFFER" 
THE FILE. THE BUFFER AREA PROVIDES THE INTERFACE BETWEEN THE 

DEVICE AND THE SOURCE LANGUAGE I/O STATEMENTS. THERE MUST 
ONE MEMORY AREA USED AS A BUFFER FOR EACH FILE. IF THE FILE 

HARDWARE 
ALWAYS BE 
IS BLOCKED. THE HARDWARE MUST PROCESS ONE BLOCK OF DATA ON EACH 1/0 

THEREFORE THE MEMORY AREA SHOULD BE AT LEAST AS LARGE AS ONE OPERATION; 
BLOCK. THE MCP MAINTAINS A RECORD POINTER INTO A BUFFER USED FOR A 
BLOCKED FILE. THIS POINTER IS USED BY THE PROCESS TO ACCESS THE CURRENT 
LOGICAL RECORD. SUPPLYING ONE RECORD AT A TIME FROM THE BLOCK TO THE 
PROGRAM. IF THE NEXT RECORD REQUIRED IS NOT ALREADY PRESENT IN A 
BUFFER. THEN THE MCP AUTOMATICALLY PERFORMS THE REQUIRED 1/0 OPERATION. 

THE MCP 
EMPTY FOR 
TIME THAT 
COMPLETED. 

ATTEMPTS TO KEEP ALL INPUT BUFFERS FULL AND ALL OUTPUT BUFFERS 
EACH PROCESS. 
A PROCESS IS 

5.3.3. MULTIPLE BUFFERS 

REGARDLESS OF STATUS. THEREBY MINIMIZING THE 
SUSPENDED WAITING FOR AN 110 OPERATION TO BE 

THE USE OF MORE THAN ONE BUFFER ALSO CAN BE USED TO INCREASE PROCESSING 
SPEED OF DATA. SINCE MULTIPLE BUFFERS ALLOW I/O TO BE PERFORMED ON ONE 
BUFFER AT THE SAME TIME A LOGICAL RECORD IS BEING ACCESSED IN ANOTHER 
BUFFER. 

THE ORIGINAL PURPOSE OF MULTIPLE BUFFERS WAS TO INCREASE SYSTEM 
EFFICIENCY BY OVERLAPPING I/O OPERATIONS WITH PROCESSOR COMPUTATIONS. 
SINCE MULTIPROCESSING ALLOWS OVERLAP OF 1/0 OPERATIONS AND PROCESSOR 



B6700"MASTER CONTROL PROGRAM 
PAGE 122. 

COMPUTATIONS BETWEEN DIFFERENT PROCESSES. MUCH OF THE ORIGINAL NEED FOR 
MULTIPLE BUFFERS WOULD SEEM TO BE OBVIATED. 

IN THE B6700 SYSTEM. HOWEVER. THE EXISTENCE OF PARALLEL 1/0 MULTIPLEXOR 
CHANNELS ALLOWS MULTIPLE BUFFERS TO STILL BE EFFECTIVE IN INCREASING 
THROUGHPUT FOR PROCESSES WHICH REQUIRE GROUPS OF PHYSICAL RECORDS AT A 
TIME. SINCE THE MCP PERFORMS ALL OBJECT PROGRAM 1/0 ACTION. A PROCESS 
WITH MULTIPLE BUFFERS ALLOCATED FOR A FILE ALLOWS THE MCP TO PERFORM 1/0 
OPERATIONS INDEPENDENT OF THE STATUS OF THE PROCESS. 

THE .DETERMINATION OF THE NUMBER OF BUFFERS REQUIRED FOR EFFICIENT 
EXECUTION OF A PROCESS DEPENDS UPON MANY FACTORS. THESE FACTORS 
INCLUDE: THE TYPE OF FILES BEING USED. THE PARTICULAR HARDWARE 
CONFIGURATION BEING. USED. THE PROCESSING CHARACTERISTICS OF THE PROCESS, 
THE MEMORY REQUIREMENT OF THE PROCESS AND THE MIX OF PROCESSES WHICH ARE 
TYPICALLY MULTIPROCESSEO. 

PARTICULAR NOTE SHOULD BE MADE OF THE FACT THAT THE USE OF EXCESSIVELY 
LARGE BUFFERS OR AN EXCESSIVE NUMBER OF BUFFERS ~OR PROCESSES CAN CAUSE 
UNNECESSARY OVERLAYS OF PROGRAM SEGMENTS AND DATA. THIS, IN TURN, WILL 
RESULT IN REDUCED SYSTEM THROUGHPUT AND POOR SYSTEM PERFORMANCE . 

. 
5.3.4. RANDOM RECORD ACCESS 

SINCE ACTUAL J/O OPERATIONS MAY INVOLVE BLOCKS OF RECORDS, WHEN A READ 
OR UPDATE IS REQUIRED ON A RECORD, THE ENTIRE BLOCK CONTAINING THE 
RECORD MUST BE READ. IF THE 1/0 ACTION IS A "RANDOM" ACTION, WHICH MAY 
BE SPECIFIED FOR FILES SUCH AS DISK FILES, THE RECORD REQUIRED MAY HAVE 
BEEN INCLUDED IN A 
THEREFORE, IN ORDER 

BLOCK OF RECORDS WHICH WAS PREVIOUSLY ACCESSED. 
TO ELIMINATE UNNECESSARY I/O ACTIONS.THE MCP 

REMEMBERS WHICH LOGICAL RECORDS ARE CURRENTLY HELD IN EACH BUFFER. WHEN 
A REQUEST IS MADE FOR A PARTICULAR RECORD, THE BUFFERS ARE FIRST CHECKED 
TO DETERMINE WHETHER THE RECORD ALREADY EXISTS IN THE BUFFER. IF IT IS, 
THEN THE RECORD POINTER IS SET TO POINT AT IT AND CONTROL RETURNS TO THE 
OBJECT PROGRAM IMMEDIATELY. IF THE RECORD IS NOT ALREADY IN THE BUFFER, 
THEN THE MCP MUST BE CALLED TO LOAD THE BLOCK CONTAINING THE RECORD, THE 



PAGE 123 
B6700.MASTER CONTROL PROGRAM 

PROGRAM MUST BE SUSPENDED UNTIL THE RECORD IS LOADED, THEN THE RECORD 
POINTER IS SET TO POINT AT IT. 

5.3.5. SEEK 

THE SEEK FUNCTION CAN BE ACTIVATED BY THE SOURCE LANGUAGE. ASSOCIATED 
WITH THE SEEK IS A RECORD ADDRESS. SEEK HAS TWO PURPOSES DEPENDING ON 
WHETHER 
SERVES 

OR NOT THE FILE IS SERIAL OR RANDOM. SEEK ON SEQUENTIAL FILES 
TO RESET THE FILE TO START SEQUENTIAL PROCESSING AT THE RECORD 

INDICATED IN THE SEEK STATEMENT. FOR EXAMPLE: THE FIRST 1/0 STATEMENT 
AFTER A "SEEK CRECORD N)'' WOULD ~AKE RECORD N AVAILABLE TO THE PROGRAM. 
THE RECORD 
SEEK THAT IS. 

BEING PROCESSED PRIOR TO THE SEEK IS NOT DISTURBED BY THE 
ITS STILL AVAILABLE. 

THE SEEK STATEMENT ON RANDOM ACCESS IS INTENDED TO CAUSE THE SYSTEM TO 
PRELOCATE 
RECORD. 
ALREADY 

THE 
THE 

EXISTS 

NEXT 
SEEK 

IN 

RECORD WHILE THE PROGRAM IS PROCESSING THE CURRENT 
FIRST EXAMINES THE BUFFERS TO SEE IF THE RECORD 
A BUFFER. IF THE RECORD IS IN A BUFFER, CONTROL IS 

RETURNED TO THE PROGRAM. 

IF THE RECORD IS NOT IN A BUFFER AND THERE IS ONLY ONE BUFFER, THEN 
CONTROL IS RETURNED TO THE PROGRAM. IT SHOULD BE NOTED THAT THE USE OF 
"SEEK'' ON FILES WITH ONLY ONE BUFFER CAUSES UNNECESSARY MCP OVERHEAD ANO 
SHOULD BE AVOIDED. IF THERE ARE MULTIPLE BUFFERS, THEN THE MCP MAY BE 
CALLED TO LOAD THE BLOCK CONTAINING THAT RECORD, DEPENDING UPON THE 
NUMBER OF BUFFERS THAT HAVE PREVIOUSLY BEEN SOUGHT. ASSUMING THE RECORD 
POINTER IS POINTING AT BUFFER NUMBER 1, THEN CONSECUTIVE READ SEEKS ARE 
ALTERNATED THROUGH BUFFERS 2 THROUGH N. 

I 



IO REQUEST 

LINK 'IQ AREA 
INTO UNIQUE 

MORE THAN 
~E IN UNITQUE ? 

START 10 

CONSTRUCT 
UNIT WORD 

TRY FOR 
10 PATH 

AVAIL '"-'-NGJ~=E-----. 

86700 MASTER CONTROL PROGRAM 

TRUE 

10 ERROR 

10 FINISH 

ERROR? 

FALSE 

WAIT CHANNEL­
QUE EMPTY? 

FALSE TRUE 

10 UNITQUE 
EMPTY? 

INITIATE 10 
FOR FIRST 
UNIT 

MOVE ~E RE­
QUEST TO WAIT 
CHANNEL Q 

INITIATE 10; 
RECORD 
STARTING 
TIME 

PUT INTO WAIT 

FIGURE FS-5. DETAIL OF 1/0 INTRINSIC CALLS 

PAGE 12"+ 

TR 

FREE 
COMPLETING 
USER 



86700 .MASTER CONTROL PROGRAM 

STARTIO U 

IOQUE (u] EMPTY 

TRUE FA 

AVAILABLE PATH 
TO UNIT 

TRUE 

lNITIATEIO 

INDICATE UNIT 

IN PROCESS 

UPDATE 

UNIT (U] 

FALSE 

MAKE EN1RY FOR 
UNIT IN WAITCHANNEL 

QUE; INDICATE UNIT 
AWAITING CHANNEL 

FIGURE F5-6. STARTIO(U) FLOW 

PAGE . 125 



86700"MASTER CONTROL PROGRAM 

FALSE 

EVENT CAUSED WAIT UPON 

BY IOFINISH EVENT 

UNEXPECTED 
10 ERRORS 

FORGETAREA 

RETURN RESULT 

DESCRIPTOR 

UNEXPIOERROR 

WAIT 10 

IOREQUEST 

MAKE ENTRY 
IN IOQUE 

ONE ENTRY 
IN IOQUE 

TRUE 

STARTIO 

PATH TO 
UNIT 

FALSE 

PUT ENTRY 
FOR UNIT IN 

WAITCHANNELQJ 

AGURE F5-7. WAITIO GENERAL FLOW 

PAGE 126 

TRUE 

INITIATEIO 



86700.MASTER CONTROL PROGRAM 

WAITIO 

SAVE AREA FOR 

VO·, BUILD IOC B 

IOREQUEST 

WAIT UPON 

EVENT IN IOCB 

TRUE 

UNEXPECTED 

ERROR 

ERROR IN 
RESULT 
DESCRIPTOR 

FALSE 

FORGETAREA 

TURNOVERLAYKEY 

(INDICATE AREA 

UNEXPIOERROR OVERLAYABLE AND 
AVAILABLE); RETUR 
RESULT DESCRIPTOR 
TO CALLER. 

FIGURE F5-8. WAITIO FLOW 

PAGE 127 



86700' MASTER CONTROL PROGRAM 

IORC:QUEST( IOCB) 

VALID UNIT 

LINK IOCB TO PUT ERROR INDICATORS 
IN IOCB; CAUSE END OF IOQUE 

EVENT IN IOCB 

TRUE FALSE 

STARTIO 

FIGURE F5-9. IOREQUEST(IOCB) FLOW 

PAGE 128 



86700·MASTER CONTROL PROGRAM 

FALSE 

NEW 10 

PICK OUT FIRST 

UNIT IN APPRO­
PRIATE WAITCHAN 
NELQ E 

PATH AVAILABL 

TO THIS UNIT 

TRUE 

TOO MANY 
TRIES FOR 
THIS UNIT 

INITIATE 10 

FALSE TRUE UPDATE UNIT TABLE 
ENTRY 

TRUE 

'-----~ 

PRODUCE ERROR 
MESSAGE; UPDATE 
UNIT TABLE ENTRY 

DELINK FROM 
WAITCHANN ELQUE 

UPDATE 
l.1'11T U 

WAS PATH A/AILABLE 
TO UNIT 

FALSE 

ANOTHER UNIT 

FALSE 

FIGURE F5- IO. NEWIO 

TRUE 

PAGE . 129 



86700. MASTER CONTROL PROGRAM 

IOFINISH 

PRESENT OR 

PAST ERRORS 

FALSE 

EMPTY 
WAITCHANNELQ 

TRUE FALSE 

TRUE 

DISK 
FILES 

TRlE 

PRESENT 
ERRORS 

FALSE TRUE 

ANOTHER ENTRY 
IN IOQUE 

PAST 
ERRORS 

TRUE 

STARTIO 

FALSE NEWIO 

IOQlE NOr . EMPT 
AND NO PREVIOJ 
ERRORS 

FALSE 

PUT ENTRY IN 
WAITCHANNELQ 

FOR U IT 

TRUE FALSE TRUE 

RETRY FROM 
THIS PROCEDJR E 

EMPTY 
WAITCHANNELQ 

L_ __ _..uF::u....u.E....__j TRUE 

FALSE 

RETRY 
10 TIMES 

TRUE FALSE 

FIRST TIME 

ERROR 

FALSE TRUE L._._.;.:_:: ___ ___, 

STORE RESULT DE 
CRIPTOR IN IOCB; 

C AUSE EVENT IN 

IOCB 

IOERROR 
(INDEPENCENT 

RUNNER) 

FIGURE F5-ll. IOFINISH ·GENERAL FLOW 

START 10 

PAGE 130 



TRUE 

END OF 

PAGE 

TRUE 

PAPER MOTION 

SUPPRESSED 

FALSE 

BUILD IOCW 
TO SKIP Al\PER 

TRUE 

86700.MASTER CONTROL PROGRAM 

IOFINI SH 

OBTAIN RESULT 

DESCRIPTOR 

FROM MPX 

LINE 

PRINTER 

FA S 

MAGNETIC 

TAPE 

PAGE 131 

CARD 

READER 

REWINDING 

TRUE FALSE 

END OF FILE 

A 

FALSE 

PRESENT OR 
PAST ERRORS 

TRUE FALSE FALSE TRUE 

REMOVE ENTRY 
FROM IOQUE [UJ· 
UPDATE UNIT 
TABLE ENTRY 

EMPTY WAITCHANNELQUE 
FOR THIS MPX 

FALSE 

DISK FILE 

FALSE 

~ 
PREVIOUS 

TRUE 

ON THIS UNIT 

FIGURE F 5-12. IOFINISH FLOW ( i) 

TRUE 

MARK UNIT 
NOT READY 

FALSE 

TRUE' 

E 



86700 .MASTER CONTROL PROGRAM 

INDICATE UNIT 

NOT BUSY 

IS WAITCHANNELQUE 

EMPTY FOR THIS M 

FALSE 

DELINK FINISHED 
110 OPERATION 
FROM IOQUE U 

IS IOQUE U EMPTY 

TRUE FALSE 

MARK UNIT AS 
NOT 1/0 BUSY 

F 

IOFINISH 

ERROR COUNT I 0 

ERRORCOUNT:=ERRORCOUNT +1; 
INDICATE UNIT ERROR 

IS WAITCHANNELQ FOR 

THIS MPX EMPTY ? 

TRUE FALSE 

ERRORS ON PREVIOUS UNIT 

IS IOQUE U EMPTY 

PUT ENTRY FOR UNIT IN 

WAIT CHANNELQUE AND 

ERRORCOUN T : = 1 ; 
INDICATE RETRY 
IN OPERJHION 

PUT ERRORCOUNT IN 

UNIT TABLE ENTRY 

_ __i___--=--=--=-© 
UPDATE UNIT U 1 

F 

MARK AS AWAITING A CHANNEL 

FIGURE F5-13. IOFINISH FLOW (2) 

PAGE 132 



867QO·MASTER CONTROL PROGRAM 

FALSE 

RECORD 10 TIME; DE­
LINK FROM IOQUE IF 

NECESSARY; UPDATE 

UNIT U; COMPUTE WORD 

COUNT FOR READ 

OPERATION 

FIRST TIME 
ERROR 

TRUE 

INDICATE IF 10 10 ERROR INDEPENDENT RUNNER 

OPERATION SUCESSFUL 

STORE RESULT 

DESCRIPTOR IN IOCB; 

CAUSE EVENT OF 10 

FIGURE F5-14. IOFI NISH FLOW (3) 

PAGE 133 



86700 ·MASTER CONTROL PROGRAM 

FALSE 

NOT READY 

FALSE TRUE 

TAPE PARITY BUILD 
MESSAGE 

FALSE TRUE 

AND BUILD 

APPROPRIATE 

MESSAGES 

A 
STORE RESULT 
DESCRIPTOR 

IN IOCB; 

START 10 

10 ERROR 

EXAMINE 

RESULT 

DESCRIPTOR 

UNIT 
BUSY 

TRUE 

UNIT NOW 
READY 

ADDITIONAL 
ERRORS 

TRUE 

TRUE 

START 10 

FALSE 

RETRY 20 
TIMES 

FALSE 

FIGURE F5-15. IOERROR GENERAL FLOW 

PAGE 131.f 



FALSE 

INVALID 

ADDRESS 

FALSE TRUE 

IOMEMORY 
PARITY 

BUILD 

MESSAGE 

BUILD 
MESSAGE 

PAGE 13~ 
86700.MASTER CONTROL PROGRAM 

FALSE 

READY 

IOERROR ( RD ) 

EXAMINE RE­
SULT DES­
CRIPTOR 

UNIT BUSY 

TRUE 

READ CHECK 
ON CARD~ 

FALSE 

INDICATE UNIT 
NOT READY S 
GENERATE A 
MESSAGE 

TRUE 

BUILD MESSAGE ; STORE 
IOCB EVENT, INTROD 

NEW EVENT(E) ASSOCI­
ATED WITH IOERROR 

STARTIO 

WAIT(E) 

RESET(E) 

ADD ONE 

TO COUNT 

RESTORE 

ORIGINAL EVENT 
IN IOCB 

TRUE 

COUNT ~20 

FALSE 
NEW ERRORS 

B 

RESTORE 
ORIGINAL 
EVENT IN 

LOG THE 
ERROR 

FIGURE F5-16. IOERROR(RD) FLON (I) 



86700· MASTER CONTROL PROGRAM 

10 ERROR 

DISK FILE 

TRUE 

EU. 

NOT READY 

READ ERROR 

MEMORY BUILD 

BUILD 
MESSAGE 

ACCESS ERROR MESSAGE 

6.U. NOT 

READY 

FALSE TRUE 

TIME OUT BUILD 
MESSAGE 

FALSE 

WRITE LOCK 

BUILD 
MESSAGE 

FIGURE F5-17. IOERROR(RD) FLOW (2) 

PAGE 136 



FALSE 

PAPER TAPE 

PUNCH 

TRUE 

illW TAPE 

FALSE 

FALSE 

PRINTER 

INCOMPLETE 

RECORD 

BUILD 

MESSAGE 

TRUE 

86700·MASTER CONTROL PROGRAM 

10 ERROR 

PAPER TAPE 

READER 

PRINT 

CHECK 

TRUE 

BEGINING OR EN 

OF TAPE 

FALS 

INCOMPLETE 
RECORD 

FALSE 

READ PARITY 

FALSE TRUE FALSE TRUE 

BUILD 
MESSAGE 

BIT TRANSFER BUILD MEM ACCESS RETRY 
ERROR MESSAGE ERROR PROCEDURE 

FIGURE F5-18. 

BUILD 
MESSAGE 

IOERROR(RD) FL0Wt'3) 

BUILD 
MESSAGE 

PAGE 13' 



PAGE 138 
86700·MASTER CONTROL PROGRAM 

CARD 
READER 

FALSE 

CARD 
PUNCH 

MAGNETIC 
TAPE 

BUILD 
MESSAGE 

TRUE 

PUNCH 

CHECK 

MEM ACCESS 

ERROR 

BUILD MESSAGE·, 
PUT INDICATOR 
IN IOCB 

BUILD 

MESSAGE 

BUILD 
MESSAGE 

END OF 
FILE 

TRUE 

READ 
CHECK 

l 

FALSE 

INVALID 

CHARACTER 

MEM ACCESS 

ERROR 

PUT INDICATOR IN 
IOCB; DELINK FRO 

IOQUE U 

T 

TRUE 

BUILD 

MESSAGE 

BUILD 

MESSAGE 

BUILD 
MESSAGE 

FIGURE F5-19. IOERROR( RD) FLOW (4) 



86700 MASTER CONTROL PROGRAM 

10 

SHORT 
RECORD 

TRUE FALSE 

BUILD 
MESSAGE 

FALSE 

SIX FEET BLANK 

TAPE OR MISSED 

TRUE 

TAPE REFLECTOR 
HIT 

TRUE 

PARITY 

!INDICATE IN. IOCB; NO~ WRl~E 
~LO MESSAGE RING 

LONG 
RECORD 

TRUE 

~-·· FALSE ~i 

REWINDING ~ IMllCATE IN IOC~ 
BUILD MESSAG:: 

-~ 

1 

F!GURE F5-20. IOERROR(RI) FLOW (5) 

BUILD 
MESSAGE 

PAGE 139 



10 ERROR 

STORE RESULT 

DESCRIPTOR 

IN IOCB 

END OF FILE 

FALSE 

DELINK FROM 
IOQUE 

INDICATE 10 
FINISHED IN 

lOCB 

TRUE 

86700 MASTER CONTROL PROGRAM 

10 ERROR 

CAUSE EVENT 

IN IOCB 

-------<H 

UPDATE UNIT U 

START 10 

-----------< I 

INDICATE ERROR 
RECOVERY NOT IN 

PROCESS IN IOCB 

FIGURE F5-20 CONTINUED 

PAGE 11.+0 



PAGE 141 
86700 MASTER CONTROL PROGRAM 

SECTION 6 

UTILITY FUNCTIONS 



B6700·MASTER CONTROL PROGRAM 

6. UTILITY FUNCTIONS 

PAGE 142 

A NUMBER OF UTILITY FUNCTIONS ARE PROVIDED AS PART OF THE B6700 SYSTEM 
SOFTWARE FOR THE CONVENIENCE OF THE USER. THESE FUNCTIONS ARE 
INCORPORATED IN THE MCP IN DIFFERING DEGREES. THEY ALLOW THE USER TO 
USE RELATIVELY SLOW PERIPHERAL DEVICES AT THEIR MAXIMUM RATED SPEEDS 
CLOAD CONTROL AND PRINTER AND PUNCH BACKUP>, TRANSFER FILES TO AND FROM 
LIBRARY TAPES AND DISK CLIBRARY MAINTENANCE>, DISPLAY AND MAINTAIN A 
HISTORY 
CONTENTS 
ON DISK 
LANGUAGE 
LI NE l . 

OF JOBS RUN ON THE SYSTEM CSYSTEM LOGS>, INTERROGATE THE 
OF THE DISK DIRECTORY TO FIND WHICH FILES ARE CURRENTLY STORED 
CL I ST DIRECTORY>, USE COMMON INTRINSIC FUNCTIONS IN SOURCE 
PROGRAMS CINTRINSICS>, AND LIST OR DUPLICATE CARD DECKS <CARD/ 

EACH OF THE FUNCTIONS IS DISCUSSED BELOW. 

6.1. LOAD CONTROL 

THE MCP LOAD CONTROL FACILITY PROVIDES A MEANS WHEREBY CARD DECK 
INFORMATION, INCLUDING SYSTEM CONTROL CARD INFORMATION, CAN BE PLACED ON 
THE DISK IN THE FORM OF A PSEUDO CARD FILE ANO THEN USED AS THOUGH IT 
WERE BEING READ DIRECTLY FROM A CARD READER. 

6. l . 1 . INTRODUCTION 

WHEN OPERATING A SYSTEM IN A MULTIPROGRAMMING ENVIRONMENT, THERE ARE 
FREQUENTLY A LARGE NUMBER OF I/O OPERATIONS OCCURRING AT THE SAME TIME. 
THUS THE TOTAL THROUGHPUT OF THE SYSTEM IS OFTEN LIMITED BY ITS ABILITY 
TO PASS INFORMATION THROUGH ITS SLOWER PERIPHERAL DEVICES SUCH AS CARD 
READERS, CARO PUNCHES, AND LINE PRINTERS. THE LOAD CONTROL FACILITY IS 
PROVIDED IN ORDER TO MINIMIZE THIS LIMITATION WITH RESPECT TO CARD 
READERS BY KEEPING ALL CARD READERS OPERATING AT THEIR MAXIMUM SPEED, 
AND BY SIMULATING THE EXISTENCE OF ADDITIONAL CARD READERS. 

THIS IS ACCOMPLISHED THROUGH THE USE OF PSEUDO CARD READERS, PSEUDO CARO 
DECKS, AND THE MCP PROCESS SYSTEM/LOADCONTROL. 



PAGE 143 
86700. MASTER CONTROL PROGRAM 

6.1 .2. SYSTEM/LOAOCONTROL 

THE PRIMARY FUNCTION OF SYSTEM/LOAOCONTROL IS TO READ A CARO DECK FILE. 
CALLED A CONTROL DECk. ANO WRITE IT ONTO DISK AS ONE OR MORE "PSEUDO 
CARD DECKS'' SO THAT THESE "PSEUDO DECKS" MAY SUBSEQUENTLY BE AVAILABLE 
TO THE SYSTEM AS INPUT FROM ''PSEUDO CARD READERS". THE SECONDARY 
FUNCTION OF SYSTEM/l_OADCONTROL IS TO COPY THE CONTROLDECK FILE ONTO A 
CONTROLDECK TAPE. 

THE INPUT CONTROLDECK FILE IS EITHER A CARD DECK OR A CARD IMAGE TAPE 
FILE. IF THE INPUT FILE IS A TAPE FILE IT MUST BE FORMATTED IN 15 WORD 
RECORDS. BLOCKED 14 RECORDS PER BLOCK. THE LAST RECORD ON THE 
CONTROLDECK FILE MUST BE A CONTROL CARD CONTAINING 

"INVALID CHARACTER ENO CONTROL". 

THE SYSTEM/LOAOCONTROL PROCESS MAY BE CALLED OUT EITHER BY A KEYBOARD 
INPUT MESSAGE OR CONTROL CARDS. 

IF SYSTEM/LOADCONTROL PROCESS MAY BE CALLED OUT TO PLACE A CONTROL DECK 
ON THE DISK. EITHER THE KEYBOARD INPUT MESSAGE "LOOK" OR A CONTROL CARO 
CONTAINING "INVALID CHARACTER EXECUTE SYSTEM/LOAOCONTROL" MAY BE USED. 

SYSTEM/LOAOCONTROL TERMINATES AFTER IT HAS FINISHED PROCESSING THE "? 

END CONTROL" CARD. 

6.1.3. PSEUDO CARD DECKS ON DISK 

WHEN THE SYSTEM/LOADCONTROL PROGRAM READS A CONTROLDECK FILE. IT 
NORMALLY PLACES IT ON DISK AS ONE OR MORE PSEUDO CARD DECKS. THE NUMBER 
OF PSEUDO DECKS CREATED DEPENDS UPON THE NUMBER OF END CARDS LOCATED 
WITHIN THE CONTROLDECK. THAT IS, EACH TIME AN END CARD IS ENCOUNTERED, 
IT IS TAKEN TO DENOTE THE END OF A DECK; CREATION OF ANOTHER PSEUDO DECK 
IS THEN INITIATED AND AS EACH NEW PSEUDO DECK IS CREATED, IT IS GIVEN AN 
IDENTIFICATION OF THE FORM #(INTEGER>. 



B6700 ·MASTER CONTROL PROGRAM 
PAGE 144 

IT SHOULD BE NOTED THAT WHAT IS REFERRED TO AS A PSEUDO DECK IS 
ANALOGOUS TO A SINGLE CONTINUOUS DECK THAT WOULD BE PLACED IN A CARD . . 
READER. THEREFORE, IF A PSEUDO.DECK CONTAINS MORE THAN ONE FILE, EACH 
FILE FOLLOWING THE FIRST WILL BE RECOGNIZED ONLY WHEN THE FILE PRECEDING 
IT HAS BEEN PASSED. ALSO NOTE THAT THERE IS NO SET LIMIT TO THE NUMBER 
OF CARDS THAT MAY BE CONTAINED IN A CONTROL DECK FILE. 

6.1.4. ERROR CHECKING IN SYSTEM/LOAOCONTROL 

IF A PARITY ERROR IS ENCOUNTERED IN A CONTROL DECK FILE BEING READ FROM 
MAGNETIC TAPE, THE REMAINDER OF THAT PSEUDO DECK IS SKIPPED AND THE 
PSEUDO DECK CONTAINING THE PARITY IS COMPLETELY IGNORED. 

6.1.5. PSEUDO CARD READERS 

THE MCP WILL ACCEPT CONTROL CARDS AND DATA CARDS FROM A DISK FILE WHICH 
HAS BEEN ASSIGNED TO A PSEUDO CARO READER JUST AS IT WOULD FROM A CARD 
READER. AN MCP PROCESS, SYSTEM/LOAOCONTROL, IS USED TO LOAD THE SYSTEM 
CONTROL DECKS TO DISK.. THE MCP THEN ASSIGNS THESE CONTROLDECKS TO 
PSEUDO CARO READERS AS THE PSEUDO READERS BECOME AVAILABLE. 

TO MAKE USE OF PSEUDO CARO DECKS, THE MCP CONTAINS LOGIC WHICH CAN, IN 
EFFECT, SUPPLY THE SYSTEM WITH A NUMBER OF PSEUDO CARD READERS. THESE 
PSEUDO CARO READERS, IN MANY WAYS, APPEAR TO BE MUCH LIKE PHYSICAL 
PERIPHERAL UNJTS. THAT IS, SYSTEM MESSAGES ARE TYPED FOR THE PSEUDO 
CARO READERS AS THOUGH THEY WERE CARD READERS, AND KEYBOARD INPUT 
MESSAGES CAN REFERENCE THE PSEUDO CARD READERS. THE PSEUDO CARD READERS 
ARE IDENTIFIED BY SPECIFYING "CD UNIT NUMBER" AS SHOWN BELOW: 

COi 
CD2 
C03 



PAGE 145 
B6700 ·MASTER CONTROL PROGRAM 

CD NN 

AT HALT-LOAD TIME, ALL PSEUDO CARD READERS ARE TURNED OFF. THE SYSTEM 
OPERATOR MAY CAUSE THESE READERS TO BE TURNED ON THROUGH THE USE OF AN 
"RN" KEYBOARD INPUT MESSAGE. WHEN AN "RN <DIGIT>" MESSAGE IS INITIALLY 
ENTERED AND THE <DIGIT> IS NOT EQUAL TO ZERO, THE MCP AUTOMATICALLY 
SEARCHES FOR PSEUDO CARD DECKS TO SATISFY THE NEED OF THE SPECIFIED 
NUMBER OF PSEUDO CARD READERS. THEREAFTER, AS LONG AS PSEUDO CARD 
READERS ARE ON, AND PSEUDO CARD DECKS ARE AVAILABLE, THE MCP WILL KEEP 
THE PSEUDO READERS LOADED. 

IF THE SYSTEM OPERATOR WISHES TO TURN OFF PSEUDO CARD READERS, HE NEED 
ONLY TYPE IN AN "RN" MESSAGE THAT SPECIFIES THE NUMBER OF PSEUDO CARD 
READERS HE WANTS LEFT ON. THE MCP WILL THEN TURN OFF A SUFFICIENT 
NUMBER OF READERS TO MEET THESE REQUIREMENTS AS SOON AS THE READERS 
COMPLETE PROCESSING THEIR CURRENT DECK. 

IF, FOR ANY REASON, IT IS DESIRED TO REMOVE A DECK FROM A PSEUDO CARD 
READER CE.G., A CARD FILE NEVER OPENED ·BY A PROGRAM THAT WAS 
DISCONTINUED> THE REMOVAL CAN BE ACCOMPLISHED BY ENTERING AN "ED" 
CELIMINATE DECKJ KEYBOARD INPUT MESSAGE. THE SYNTAX OF THE "ED'' MESSAGE 
IS TO BE SPECIFIED. 

6.1.6. ERROR HANDLING IN THE PSEUDO CARD DECK 

WHILE A PSEUDO CARD DECK IS BEING READ, AN ERROR IS DETECTED IN A 
CONTROL CARD OR PROGRAM-PARAMETER CARD, THE MCP WILL REMOVE THE DECK IN 
WHICH THE ERRONEOUS CARD APPEARS AND WILL CONTINUE TO THE NEXT AVAILABLE 
PSEUDO DECK. 



B6700.MASTER CONTROL PROGRAM 
PAGE l "+6 . 

6.2. PRINTER AND PUNCH BACKUP 

6 . 2. 1 . INTRODUCTION 

TO KEEP SYSTEM THROUGHPUT AT A MAXIMUM, IT IS DESIRABLE THAT SLOWER 
PERIPHERALS SUCH AS LINE PRINTERS AND CARD PUNCHES BE KEPT WORKING AT 
THEIR MAXIMUM RATED PERFORMANCE WITH A MINIMUM OF OVERHEAD TO THE SYSTEM. 
THIS IS ACCOMPLISHED ON THE B6700 BY SIMULATING PRINTERS AND PUNCHES 
WITH DISK FILES OR MAGNETIC TAPE UNITS. THUS, INFORMATION WHICH IS 
INTENDED TO BE OUTPUT TO A PRINTER OR PUNCH MAY BE ROUTED TO A DISK OR 
TAPE BACKUP FILE. WHEN THE BACKUP FILE IS CLOSED AND THE APPROPRIATE 
OUTPUT DEVICE IS AVAILABLE THE BACKUP FILE CAN THEN BE PRINTED OR 
PUNCHED. 

A BACKUP-FILE ON TAPE IS LABELED "BACKUPT"/NNNN. BACKUP TAPES MAY BE 
WRITTEN AS MULTI-REEL Fl~ES ANO MULTI-FILE REELS. BACKUP FILES ON DISK 
ARE NAMED "BO"/NNNNNN, WHERE NNNNNN IS THE SYSTEM ASSIGNED FILE NUMBER. 

BACKUP FILES ARE VARIABLE LENGTH RECORD, FIXED BLOCK FILES. EACH RECORD 
ON A BACKUP FILE IS COMPOSED OF TWO CONTROL WORDS FOLLOWED BY N WORDS OF 
DATA, N GREATER THAN OR EQUAL TO ZERO. 

THE FIRST WORD OF CONTROL INFORMATION IS A COPY OF THE IOCW Cl/O CONTROL 
WOROl WHICH WOULD HAVE BEEN USED HAO THE RECORD BEEN WRITTEN DIRECTLY TO 
PRINTER/PUNCH. RATHER THAN TO BACKUP. THIS CONTROL WORD IS FORMATTED AS 
A STANDARD IOCW AND IS USED IN DETERMINING THJNGS SUCH AS THE INTERNAL 
MODE OF THE DATA TO BE OUTPUT. 

THE SECOND CONTROL 
CARRIAGE CONTROL. 
WORDS CONTAINS THE 
DATA PLUS 2>. 

WORD IS A 
THE LENGTH 

UNIT FEATURE WORD USED PRIMARILY FOR 
FIELD CBITS 39:20> OF THE UNIT FEATURE 

LENGTH OF THE RECORD IN WORDS <NUMBER OF·WORDS OF 

THE HCP 
PROGRAM 

WILL BUILD A BACKUP FILE WHEN SPECIFIED BY MCP SYSTEM OPTIONS, 
FILE ATTRIBUTES, OR THE SYSTEM OPERATOR. BACKUP FILES ARE 



PAGE 147 
B6700·MASTER CONTROL PROGRAM 

PRINTED/PUNCHED BY THE SYSTEM/BACKUP PROGRAM EITHER UPON COMMAND BY THE 
SYSTEM OPERATOR OR, IF THE AUTOPRINT OPTION IS SET, AUTOMATICALLY WHEN 
THE APPROPRIATE DEVICE BECOMES AVAILABLE. 

THE SELECTION OF A PHYSICAL UNIT FOR A BACKUP FILE IS DETERMINED AS 
FOLLOWS. IF THE FILE MAY GO TO TAPE, AN EXISTING PRINTER BACKUP TAPE 
CPBT> FILE IS USED, IF ONE IS AVAILABLE. OTHERWISE, IF A SCRATCH TAPE 
IS AVAILABLE, A NEW PBT IS CREATED AND USED. 

IF A UNIT IS NOT FOUND FOR THE FILE, A MESSAGE IS DISPLAYED TO INFORM 
. THE OPERATOR. IF A UNIT OF THE SPECIFIED TYPE IS MADE AVAILABLE, IT IS 
USED. OTHERWISE THE OPERATOR MAY REPLY WITH AN "OU" MESSAGE TO ASSIGN A 
DIFFERENT TYPE OF OUTPUT UNIT, SUCH AS A PB DISK FILE, A PRINTER, OR A 
CARD PUNCH. 

6.2.2. SPECIAL FORMS 

IF THE "SPECIAL FORMS'' FEATURE IS DESIRED ON A PRINT FILE OPENED AS A 
PRINTER BACKUP FILE, ANY SPECIAL FORMS REQUIREMENT IS DEFERRED UNTIL THE 
BACKUP FILE IS PRINTED. IF THE PRINT FILE IS OPENED ON A PRINTER, THE 
FOLLOWING OPERATIONS ARE PERFORMED: 

1. THE OPERATOR IS INFORMED THAT SPECIAL FORMS ARE REQUIRED BY THE 
MESSAGE 

"# <UNIT> FM RQD---" 

OR BY A SPECIAL PROGRAM-GENERATED MESSAGE. 

2. THE OPERATOR MAY THEN 

A. LOAD THE FORMS ONTO THAT UNIT AND KEY IN THE MESSAGE 

"<MIX> FM <UNIT>" 

OR 



6.2.3. 

B6700 .MASTER CONTROL PROGRAM 
PAGE 148 

B. KEY IN THE MESSAGE 

"<MIX> OUMT• 

OR THE MESSAGE 

"<MIX> OUDK" 

TO FORCE THE CHOSEN PRINTER TO BE RELEASED TO OPEN A BACKUP 
FILE. 

WHEN A BACKUP FILE IS PRINTED WHICH REQUIRED SPECIAL FORMS THE 
FOLLOWING MESSAGE WILL BE TYPED: 

"#FM RQD <UNIT> FOR <MFID>l<FID> OF <PROGRAM NAME>" 

THE OPERATOR MAY RESPOND TO THIS MESSAGE WITH AN "OK", "WY", OR 
"OS" MESSAGE. 

CLOSING A BACKUP FILE ON DISK 

IF THE SYSTEM OPTION AUTO-PRINT IS SET WHEN A BACKUP FILE ON DISK IS 
CLOSED, IT IS SCHEDULED TO BE PRINTED. IF AUTO-PRINT IS NOT SET, A 
MESSAGE IS TYPED TO INFORM THE OPERATOR THAT A BACKUP DISK <BO> FILE 
EXISTS AND MAY BE OUTPUT BY THE MESSAGE "PBD XXXX". WHEN AN OUTPUT FILE 
IS PRINTED FROM A BO FILE AN ENTRY IS MADE INTO THE LOG CONTAINING THE 
HEADER CARD INFORMATION OF THE PROGRAM. 

6.2.4. PRINTER BACKUP SPO INPUT MESSAGES 

SYNTAX: 

<PB MESSAGE> : := ?PB <INPUT DESIGNATOR> <OPTIONAL OUTPUT DESIGNATOR> 
<KEY DECLARATION> <PB OPTION PART> 
<INPUT DESIGNATOR>::= MT <INTEGER>ID<INTEGER> 
<OPTIONAL OUTPUT DESIGNATOR> ::= <EMPTY>ILP<INTEGER>ICP<INTEGER> 
<PB OPTION PART: :=<GENERAL OPTIONS>t<PB OPTION PART>,<GENERAL 



B6700· MASTER CONTROL PROGRAM 

OPTIONS>! 
<PB OPTION PART> <ASSOCIATIVE OPTIONS> 

<GENERAL OPTIONS> : := <EMPTY>ISAVE/COPIES=<INTEGER> 

PAGE 149 

<ASSOCIATIVE OPTIONS>: :=<EMPTY>IRANGE<LITERAL><SPACER><LITERAL>I 
EQUAL <LITERAL>l<RECORD NUMBER OPTION> 

<RECORD NUMBER OPTION> : := RECORD>INTEGER>IRECORD>INTEGER><SPACER> 
<INTEGER> 

<SPACER> : := <BLANK>l<SPACE> <BLANK> 

<QT MESSAGE> <MIX INDEX> QT <ASSOCIATIVE OPTIONS> 

<CO MESSAGE> · ·= <MIX INDEX> CO <ASSOCIATIVE OPTIONS> 

<OU MESSAGE> · ·= <MIX INDEX> OU <FILE OUTPUT DESIGNATOR> I 

<KEY DECLARATION> 
<FILE OUTPUT DESIGNATOR> ::='TO BE SPECIFIED ELSEWHERE~ 
<KEY DECLARATION> : := <EMPTY>IKEY 
<KEY SPECIFIER> : := ALGOL/COBOL/FORTRAN/ 

<KEY START COLUMN> <SPACER> <KEY LENGTH> 
<KEY START COLUMN> ::=<INTEGER> 
<KEY LENGTH> : := <INTEGER> 

EXAMPLES: ---------
? 

? 

? 

? 

? 

PB 
PB 
PB 
PB 
PB 

QT 

MTS 
D2 LP 2 
MTl SAVE COPIES = 10 RECORD 1000 2000 
D25 CPl SAVE RANGE "1Q765A8" "GG654" 
MT5 EQUAL "ERROR" 

QT RANGE 500 999999 

3CO EQUAL 10342700 
2CO RECORD 1000 

OU MTl 
OU DK KEY ALGOL 



PAGE 150 
B6700·MASTER CONTROL PROGRAM 

1 OU MT5 KEY 2 6 

SEMANTICS: 

1. THE <PB MESSAGE> IS USED TO INITIATE THE PROCESS OF OUTPUTTING A 
BACKUP FILE TO THE LINE PRINTER OR CARD PUNCH. 

THE <INPUT DESIGNATOR> SPECIFIES THE TAPE UNIT OR DISK FILE ON 
WHICH THE BACKUP FILE IS STORED. 

THE <OPTIONAL OUTPUT 
PRINTING OR PUNCHING 
PUNCH UNIT. 

DESIGNATOR> MAY BE USED TO SPECIFY THE 
OF A BACKUP FILE ON A SPECIFIC PRINTER OR 

THE "SAVE" OPTION ALLOWS THE USER TO SPECIFY THAT HIS BACKUP TAPE 
OR DISK FILE IS TO BE SAVED INSTEAD OF PURGED ONCE IT HAS BEEN 
OUTPUT. 

THE "COPIES" OPTION ALLOWS THE USER TO SPECIFY HOW MANY COPIES OF 
THE BACKUP FILE HE WANTS TO HAVE PRINTED OR PUNCHED. 

THE <ASSOCIATIVE OPTIONS> ENABLES THE USER TO SELECTIVELY OUTPUT A 
BACKUP FILE BY RECORD NUMBER OR BY A KEY. THE KEY MAY BE SPECIFIED . . 

AT THE TIME THE BACKUP FILE IS CREATED OR WHEN THE PB MESSAGE IS 
INPUT, AND IS EITHER A STANDARD COMPILER SEQUENCE NUMBER FIELD OR 
ANY SINGLE SET OF CONTIGUOUS CHARACTERS WITHIN THE BACKUP RECORD. 

THE "RANGE <LITERAL> <LITERAL>" OPTION WILL CAUSE THE KEY FIELD OF 
EACH RECORD ON THE BACKUP FILE TO BE COMPARED TO THE TWO LITERALS 
SPECIFIED IN THE RANGE INPUT MESSAGE. IF THE KEY LIES WITHIN THE 
RANGE SPECIFIED. I.E., FIRST LITERAL~ KEY~ SECOND LITERAL, THE 
RECORD WILL BE OUTPUT. OTHERWISE, THAT RECORD WILL BE SKIPPED ANO 
THE NEXT RECORD ON THE OUTPUT FILE WILL BE TESTED. 

THE "EQUAL <LITERAL>" OPTION WILL CAUSE THE KEY FIELD OF EACH 
RECORD ON THE BACKUP FILE TO COMPARE WITH THE LITERAL SPECIFIED IN 



2. 

86700 ·MASTER CONTROL PROGRAM 
PAGE 151 

THE EQUAL OPTION. IF THE COMPARISON IS EQUAL THE RECORD IS OUTPUT; 
OTHERWISE, IT IS SKIPPED. 

THE <RECORD NUMBER OPTION> ENABLES THE USER TO SELECTIVELY OUTPUT 
THE BACKUP FILE BY DESIGNATING A SPECIFIC RECORD NUMBER OR RANGE OF 
RECORD NUMBERS. THE INTEGERS SPECIFIED IN THE <RECORD NUMBER 
OPTION> CORRESPOND TO THE LOCATIONS OF SPECIFIC RECORDS WITHIN THE 
FILE. FOR EXAMPLE, RECORD I WOULD CAUSE THE ITH RECORD ON THE 
BACKUP FILE TO BE OUTPUT; RECORD I - ~ WOULD CAUSE ALL RECORDS FROM 
THE ITH RECORD THROUGH THE ~TH RECORD INCLUSIVE TO BE OUTPUT. 

THE <QT MESSAGE> IS USED TO 
OUTPUTTING A BACKUP FILE. THE 

TERMINATE A 
QT MESSAGE 

CURRENT PROCESS OF 
MAY BE USED WITHOUT 

. . 
SPECIFYING ASSOCIATIVE OPTIONS. 

IF THE QT MESSAGE IS USED WITHOUT SPECIFYING ASSOCIATIVE OPTIONS, 
THEN THE 
SKIPPED. 

REMAINDER OF 
IF THE FILE 

THE BACKUP FILE CURRENTLY BEING OUTPUT IS 
WHICH WAS AFFECTED BY THE QT MESSAGE WAS 

CONTAINED ON A MULTI-FILE BACKUP TAPE, THEN THE NEXT BACKUP FILE ON 
TAPE IS 
SPECIFIED 

OUTPUT UNDER CONTROL OF THE SAME GENERAL OPTIONS AS WERE 
FOR THE PREVIOUS FILE. THE ASSOCIATE OPTIONS ARE RESET. 

IF THE FILE WHICH WAS AFFECTED BY THE QT MESSAGE WAS A DISK BACKUP 
FILE OR THE LAST· OR ONLY FILE ON A BACKUP TAPE, THEN THE OUTPUT 
PROCESS IS TERMINATED. 

IF THE QT MESSAGE IS USED WITH ASSOCIATIVE OPTIONS, THEN THE FILE 
CURRENTLY.BEING OUTPUT IS SKIPPED ANO THE NEXT FILE ON A MULTI-FILE 
BACKUP TYPE IS OUTPUT UNDER CONTROL OF THE ASSOCIATIVE OPTIONS 
SPECIFIED IN THE QT MESSAGE. 

3. THE <CO MESSAGE> IS USED TO CHANGE THE ASSOCIATIVE OPTIONS WHICH 
CONTROL 
PROCESS 

THE OUTPUT OF A 
OF OUTPUTTING THE 

BACKUP FILE CURRENTLY IN PROCESS. THE 
BACKUP FILE IS ALTERED SO THAT THE 

REMAINDER OF 
ASSOCIATIVE 

THE BACKUP FILE IS OUTPUT UNDER CONTROL OF THE 
OPTIONS SPECIFIED IN THE CO MESSAGE. IF NO ASSOCIATIVE 



B67QO·MASTER CONTROL PROGRAM 
PAGE 152 

OPTIONS ARE SPECIFIED ALL OPTIONS ARE RESET AND EVERY RECORD IS 
OUTPUT. 

4. THE <OU BACKUP> FORM OF THE OU MESSAGE IS USED TO SPECIFY THAT A 
LINE PRINTER OR CARD PUNCH OUTPUT FILE IS TO BE WRITTEN TO A BACKUP 
FILE. 

THE BACKUP <FILE OUTPUT DESIGNATOR> IS USED TO SPECIFY THAT THE 
BACKUP FILE BE WRITTEN TO A SPECIFIC TAPE UNIT OR TO DISK. 

THE <KEY DECLARATION> SPECIFIES A SET OF CONTIGUOUS CHARACTERS IN 
EACH OUTPUT RECORD WHICH MAY BE USED AS THE KEY FILED FOR 
SUBSEQUENTLY OUTPUTTING THE FILE UNDER CONTROL OF ASSOCIATIVE 
OPTIONS. 

THE <KEY SPECIFIER> IS EITHER A STANDARD COMPILER NAME OR THE 
STARTING LOCATION AND LENGTH OF THE KEY FIELD IN THE OUTPUT RECORD. 
IF A STANDARD COMPILER NAME IS SPECIFIED, THEN THE SEQUENCE NUMBER 
FIELD FOR THAT PARTICULAR COMPILER LANGUAGE IS USED AS THE KEY 
FIELD. 



PAGE 153 
B6700 ·MASTER CONTROL PROGRAM 

6.3. LIBRARY MAINTENANCE 

THE MCP 
UTILITY 

PROVIDES A 
OPERATIONS. 

LIBRARY MAINTENANCE PROCESS 
THIS PROCESS IS INITIATED 

TO PERFORM LIBRARY 
EITHER FROM THE 

SUPERVISORY DISPLAY UNIT OR FROM A SYSTEM CONTROL CARD. OPTIONS 
PROVIDED INCLUDE COPY STATEMENTS AND MOVE STATEMENTS. 

6.3.1. COPY AND MOVE STATEMENTS 

THE COPY AND MOVE STATEMENTS ALLOW THE USER TO TRANSFER FILES TO ANO 
FROM LIBRARY TAPES AND DISK STORAGE. THE COPY STATEMENT MAKES A COPY OF 
THE SPECIFIED FILE; THE MOVE STATEMENT MAKES A COPY OF THE SPECIFIED 
FILE AND CIF THE ORIGINAL IS A DISK FILEl DESTROYS THE ORIGINAL FILE. 
IF THE SOURCE FILE IS A TAPE FILE COPY AND MOVE OPERATIONS ARE 
IDENTICAL, THAT IS, THE SOURCE FILE IS COPIED BUT NOT DESTROYED. 

SYNTAX: 

<COPY AND MOVE STATEMENT> : := <INVALID CHARACTER> <STATEMENT VERB> 
<STATEMENT LIST>; ENO 

<STATEMENT VERB> ::=COPY I MOVE 
<STATEMENT LIST> ::=<STATEMENT PART> I <SOURCE LIST> I 

<STATEMENT PART>, <STATEMENT LIST> 
<STATEMENT PART> ::=<SOURCE LIST> <DESTINATION LIST> I 

<SOURCE LIST>, <FILE LIST> <DESTINATION LIST> 
<SOURCE LIST> : := <FILE LIST> FROM <SOURCE> I 

<SOURCE LlST>, <FILE LIST> FROM <SOURCE> 
<FILE LIST> : := <FILE NAME> I <FILE LIST>, <FILE NAME> 
<DESTINATION LIST> ::=TO <DESTINATION> I 

<DESTINATION LIST>, <DESTINATION> 
<FILE NAME> ::=<IDENTIFIER> I <FILE NAME> <SLASH> <IDENTIFIER> 
<SOURCE> : := <DESTINATION> : :=DISK!< IDENTIFIER> 

SEMANTICS: 



PAGE 154 
B6700·MASTER CONTROL PROGRAM 

1. <SLASH> STANDS FOR THE SYMBOL"/". 

2. <IDENTIFIER> IS UNDERSTOOD TO CONSIST OF AT MOST 17 CHARACTERS. 

3. <FILENAME> CONSISTS OF AT MOST 14 <IDENTIFIER>S. 

4. <DESTINATION LIST> MAY CONTAIN AT MOST 46 <DESTINATION>S. 

5. AT MOST 1000 FILES WILL BE COPIED TO ANY LIBRARY TAPE. 

6. <INVALID CHARACTER> IS A "?" FOR SPO INPUT; FOR CONTROL CARQ INPUT 
IT IS AN INVALID PUNCHED CHARACTER. 

THE SYNTAX IS DESIGNED TO ALLOW A DEFAULT SPECIFICATION OF DISK AS THE 
<SOURCE> OR <DESTINATION> WHEREVER THIS IS POSSIBLE. 

EXAMPLES: 

1 • ? COPY A,B,C TO SYS;ENO 

IS THE SAME AS 

? COPY A,8,C FROM DISK TO SYS;END 

2. ? COPY A,8,C FROM SYS;END 

IS THE SAME AS. 

? COPY A,B,C FROM DISK TO SYS;END 

3. ? COPY A,B.C FROM SYS TO SYS, TO SYS, TO SYS2;END 

WILL CREATE THREE LIBRARY TAPES CALLED SYS,SYS,AND SYS2 EACH HAVING THE 
FILES A ,B,AND C ON I T . THIS IS DONE SIMULTANEOUSLY, I.E. ' EACH RECORD 
IS COPIED TO EACH DESTINATION BEFORE GOING TO THE NEXT RECORD. 



B6700·MASTER CONTROL PROGRAM 
PAGE 155 

4. ? COPY A,B, FROM SYS,D/F,G FROM TP TO NEW;ENO 

WILL CREATE A LIBRARY TAPE CALLED NEW HAVING THE FILE A,B,D/F,AND G ON 
IT. THIS IS NOT DONE VIA DISK. 

5. ? COPY A,B,C FROM SYS TO DISK,E/F,G TO SYS2;ENO 

THE FILES 
ON DISK. 

E/F AND G IN THE SECOND PART OF THIS STATEMENT WILL BE FOUND 
THESE EXAMPLES DO NOT EXHAUST ALL POSSIBLITIES. 



PAGE 156 
B6700·MASTER CONTROL PROGRAM 

6.4. SYSTEM LOGS 

THE MCP MAINTAINS A HISTORY 
INFORMATION IS CONTAINED IN 

OF USER PROGRAM AND MCP ACTIVITY; THIS 
THREE SEPARATE LOGS: THE SYSTEM LOG, THE 

MAINTENANCE LOG, AND THE DATA COMM LOG. THE SYSTEM LOG CONTAINS 
INFORMATION REGARDING THE HISTORY OF INDIVIDUAL JOBS THAT ARE RUN ON THE 
SYSTEM, 
ITSELF. 

AS WELL AS INFORMATION REGA~DING THE OPERATION OF THE SYSTEM 
THE MAINTENANCE LOG CONTAINS INFORMATION REGARDING ERRORS 

DETECTED DURING THE OPERATION 
DESCRIPTOR ERRORS, ETC. THE 

OF THE SYSTEM, SUCH AS PARITY ERRORS, 
CONTENTS OF THE DATA COMM LOG ARE TO BE 

DEFINED. 

6.4.l. THE SYSTEM LOG 

THE SYSTEM LOG CONTAINS INFORMATION REGARDING NORMAL OPERATION OF THE 
SYSTEM. INFORMATION REGARDING ERRORS COTHER THAN SECURITY ERRORSl IS 
STORED IN THE MAINTENANCE LOG. THE INFORMATION CONTAINED IN THE SYSTEM 
LOG CAN BE DIVIDED INTO THREE MAIN CATEGORIES: JOB-ORIENTED ENTRIES, 
PERIPHERAL-ORIENTED ENTRIES AND MISCELLANEOUS ENTRIES. 

JOB-ORIENTED ENTRIES CONTAIN INFORMATION REGARDING THE HISTORY OF 
INDIVIDUAL JOBS THAT HAVE . BEEN RUN ON THE SYSTEM .. THIS INFORMATION 
INCLUDES SUCH THINGS AS CONTROL 
INFORMATION, BOJ INFORMATION, EOJ 

CARD INFORMATION, SCHEDULING 
INFORMATION, OPERATOR RESPONSES, 

PRIORITY CHANGES, ANO ABORT INFORMATION. 

PERIPHERAL-ORIENTED 
CLOSINGS, AS WELL 

ENTRIES INCLUDE 
AS POINTERS TO 

CONTAINED IN THE MAINTENANCE LOG. 

INFORMATION ON FILE OPENINGS AND 
IIO ERROR IN~ORMATION WHICH IS 

MISCELLANEOUS ENTRIES CONTAIN INFORMATION REGARDING SYSTEM OPERATION, 
SUCH AS HALT/LOAD INFORMATION, TIME/DATE CHANGES, SYSTEM OVERHEAD 
INFORMATION, AND OPERATOR INPUT MESSAGES. 

6.4.1.1. SYSTEM LOG ENTRIES 



PAGE 157 
B6700 ·MASTER CONTROL PROGRAM 

DETAILED INFORMATION REGARDING SYSTEM LOG ENTRIES IS PROVIDED IN 
APPENDIX B. 

6.4.1.2. SYSTEM LOG RELEASE. 

THE SYSTEM OPERATOR IS INFORMED OF THE SIZE OF THE SYSTEM LOG BY THE 
FOLLOWING MESSAGE: 

"LOG <INTEGER>% FULL" 

THIS MESSAGE IS FIRST GIVEN WHEN THE LOG BECOMES 5 PERCENT FULL, THEN IS 
GIVEN WITH EACH 5 PERCENT INCREASE IN LOG SIZE UNTIL THE LOG BECOMES 95 
PERCENT 
LOG IS 

FULL. WHEN THE SYSTEM LOG BECOMES 95 PERCENT FULL A NEW SYSTEM 
AUTOMATICALLY INITIATED, AND THE OPERATOR IS INFORMED WITH THE 

FOLLOWING MESSAGE: 

"LOG 95% FULL-AUTOMATIC LR" 

THE OPERATOR IS ALSO ABLE TO CREATE AN EMPTY SYSTEM LOG BY MEANS OF THE 
"LR" MESSAGE. IN EITHER CASE, THE "LR" MESSAGE CAUSES THE CURRENT LOG 
TO BE NAMED 

LOG I <LOG SERIAL NUMBER> 

(WHERE LOG SERIAL NUMBER IS AN INTEGER BETWEEN 0 AND 999999J, AND CAUSES 
ANOTHER SYSTEM LOG FILE TO BE CREATED. ALL ENSUING LOG ENTRIES WILL BE 
STORED IN THE NEW SYSTEM LOG. THE RENAMED LOG CAN BE REMOVED FROM THE 
SYSTEM WHEN DESIRED. 

THE SYSTEM OPERATOR IS KEPT INFORMED OF THE SIZE OF THE SYSTEM LOG BY 
THE ''LOG <INTEGER> % FULL" MESSAGE WHICH IS GIVEN AT EVERY 5 PERCENT. 
THE OPERATOR IS ABLE TO CREATE AN EMPTY SYSTEM LOG BY MEANS OF THE "LR" 
MESSAGE. WHEN "LR'' rs RECEIVED BY THE SYSTEM, THE CURRENT LOG IS NAMED 
LOGl<TODAYSDATE>l<LOG SERIAL NO.> CWHERE <LOG SERIAL NO.> IS AN 
INTEGER CBETWEEN 0 AND 999999J AND ANOTHER SYSTEM LOG FILE IS CREATED. 



PAGE 158 
B6700 MASTER CONTROL PROGRAM 

ALL ENSUING LOG ENTRIES WILL BE STORED IN THE NEW SYSTEM LOG ANO THE 
RENAMED LOG CAN BE REMOVED FROM THE SYSTEM IF DESIRED. 

IF THE SYSTEM LOB.BECOMES 95% FULL, ANO "LR" IS AUTOMATICAL~Y INITIATED 
WITH THE FOLLOWING MESSAGE: "LOG 95% FULL-AUTOMATIC LR" 

6.~.1.3. SYSTEM LOG RETRIEVAL 

THREE BASIC OPTIONS ARE AVAILABLE FOR RETRIEVING INFORMATION FROM THE 
SYSTEM LOG, THEY ARE RETRIEVAL OF SPECIFIED ENTRY TYPES, RETRIEVAL OF 
JOBS, AND RETRIEVAL OF FILES. THE INFORMATION IS RETRIEVED BY USING THE 
SPO MESSAGE: 

LOG <RANGE> <REQUEST LIST> 

SYNTAX FOR SPO INPUT MESSAGES: 

<RANGE>::= <TIME>l<OATE>l<OATE>TO<OATE>l<TIME><DATE><TO<TIME><DATE> 
"I" <LOGIO> I <NULL> 

<LOG ID> ::=<INTEGER> 
<TIME>::= <MILITARY TIME NOTATION> 
<DATE>::~ <MONTH> "/" <DAY> "/" <YEAR> 
<REQUEST LIST> : := <REQUEST>l<REQUEST LIST>, <REQUEST> 
<REQUEST> ::=<JOB TYPE LIST> I <MISC TYPE LIST> I 

<JOB TYPE LIST> JOB <ID> I FILE <ID> I <NULL> 
<JOB TYPE LIST> : := <JOB TYPE>l<JOB TYPE LIST> <JOB TYPE> 
<JOB TYPE> : :~ CC/SCHD/BOJ/PRIORITY/INPUT~RSVP/EOJ/ABORT/IOl<NULL> 
<MISC TYPE LIST> ::=<MISC TYPE> I <MISC TYPE LIST> <MISC TYPE> 
<MISC TYPE> ::= HL/TD/OVHO/SECURITY 
<ID> ::=<JOB ID> I <FILE ID> I <MIX INDEX> 

EXAMPLES: 

LOG 
LOG JOB 

<RETRIEVES ALL ENTRIES.>. 
<RETRIEVES ALL JOBS.) 



B670G MASTER CONTROL PROGRAM 
PAGE 159 

LOG FILE CRETRIEVES ALL FILES -- SAME AS LOG IO.> 
LOG/5 CRETRIEVES ALL ENTRIES IN FILE LOG/000005.l 
LOG/5 JOB A/B CRETRIEVES ALL ENTRIES OF JOB A/BIN FILE LOG/000005.l 
LOG 1100 JOB A/B CRETRIEVES ALL ENTRIES OF JOB A/B FROM 1100 HOURS TO 

PRESENT.> 
LOG 1200 5111/70 TO 1700 5/11/70 JOB A/8 

LOG FILE CID 

LOG IO JOB A/8 

LOG OVHD SECURITY. CC JOB A/B, I/O JOB X/Y 
LOG OVHD SECURITY, CCJOB A/B. OPEN ERROR CLOSE JOBX/Y 

A NULL RANGE WILL INCLUDE ENTRIES OF THE MOST RECENT FOUR HOURS. 

6.4.1.4. OPERATOR INPUT 

THE KEYED INPUT MNE~ONIC "LC" WILL CAUSE ANY FOLLOWING CHARACTERS CUP TO 
A MAXIMUM OF 801 TO BE ENTERED INTO THE SYSTEM LOG AS A COMMENT. 

6.4.2. MAINTENANCE LOG. 

THE MAINTENANCE 
DURING SYSTEM 

LOG CONTAINS INFORMATION REGARDING ERRORS DETECTED 
INFORMATION. THE ERROR TYPES REPORTED ARE DESCRIPTOR 

ERRORS, INVALID MEMORY ADDRESS ERRORS, I/O MEMORY PARITY ADDRESS ERRORS. 
MEMORY PROTECT ERRORS, PARITY ERRORS. AND WRITE LOCKOUT ERRORS. IN 
ADDITION TO THE ERROR TYPE, INFORMATION CONTAINED IN THE MAINTENANCE LOG 
INCLUDES SUCH ITEMS AS THE DATE. TIME. UNIT NUMBER AND TYPE, LOCATION OF 
RECORD, I/O CONTROL WORD AND SO FORTH. THE FORMAT OF THE MAINTENANCE 
LOG IS DESCRIBED IN DETAIL IN APPENDIX B. 



B67GO MASTER CONTROL PROGRAM 
PAGE 160 

6.5. LIST DIRECTORY 

THE PROGRAM LIST/DIRECTORY CAN BE CALLED OUT EITHER BY USE OF THE "DIR" 
MESSAGE OR BY THE FOLLOWING RUN CARO: 

II ?RUN LIST/DIRECTORY; ENO." 

THIS PROGRAM WILL PRODUCE A LISTING OF ALL FILES WHICH ARE STORED ON 
DISK. THE PROGRAM HAS AN OPTION KNOWN AS THE "MAP" OPTION. IF LIST/ 
DIRECTORY IS COMPILED WITH THIS OPTION SET, THEN IN ADDITION TO THE LIST 
OF FILES THE PROGRAM WILL ALSO PROVIDE THE DISK ADDRESS AND SIZES OF 
DISK AREAS IN USE BY EACH FILE, A LIST OF AREAS CSORTED BY ADORESSl 
WHICH CAN 8E MADE AVAILABLE BY THE REMOVAL OF ONE FILE, AND A MAPPING OF 
DISK CHECKERBOARDING. 

LIST/DIRECTORY IS RELEASED WITH THE "MAP" 
RECOMPILED WITH THE OPTION RESET IF DESIRED. 
MORE RAPIDLY IF THE "MAP" OPTION IS RESET. 

6.5.1. PARTIAL DIRECTORY INFORMATION. 

OPTION SET, BUT CAN BE 
NOTE: THE PROGRAM WILL RUN 

THE "PD" CPRINT DIRECTORY> SPO MESSAGE ALLOWS THE USER TO SELECTIVELY 
DISPLAY ON THE SPO THE NAMES OF FILES CONTAINED IN THE DISK DIRECTORY. 
THIS MESSAGE HAS THE FOLLOWING FORM: 

"PD <FILE SET SPECIFIER>" 

WHERE <FILE SET SPECIFIER> : := <FILE LABEL> I <FILE LABEL> <SLASH> = IF 
A FULL FILE NAME IS SPECIFIED WITHOUT AN EQUAL SIGN THEN THE DISK 
DIRECTORY WILL BE SE.ARCHED AND A MESSAGE DISPLAYED ON THE SPO STATING 
WHETHER OR NOT THE FILE IS PRESENT. IF A PARTIAL FILE NAME IS SPECIFIED 
WITH AN EQUAL SIGN, THEN A LIST OF ALL DISK FILES BEGINNING WITH THE 
PARTIAL FILE NAME WILL BE DISPLAYED. IF NO FILE IS FOUND THE MESSAGE 
"NULL" WILL 3E DISPLAYED. 

EXAMPLES: 



PD CARD/LINE 
PD SYSTEM/ = 

86700 MASTER CONTROL PROGRAM 
PAGE 161 



B670tr MASTER CONTROL PROGRAM 

6.6. INTRINSIC FUNCTIONS 

PAGE 162 

IN A MULTIPROCESSING SYSTEM, THE INCLUSION OF COMMON INTRINSIC FUNCTIONS 
IN EACH PROGRAM CAUSES MULTIPLE COPIES OF THE FUNCTIONS TO BE PRESENT IN 
MAIN MEMORY. IN ORDER TO MAKE MORE EFFECTIVE USE OF MAIN MEMORY, THE 
LOCATION OF THE CODE FILE FOR THESE ROUTINES IS KNOWN TO THE OPERATING 
SYSTEM AND IS ACCESSIBLE TO ALL USER PROGRAMS AS INTRINSIC FUNCTIONS. 

SINCE ALL 
LANGUAGES, 
COMPILERS. 

PROGRAMS IN THE B6700 SYSTEM ARE WRITTEN IN HIGH-LEVEL 
THE USE OF INTRINSIC FUNCTIONS IS IMPLEMENTED BY THE 

EACH COMPILER RECOGNIZES THE NAMES OF THOSE INTRINSICS THAT 
ARE ALLOWABLE IN 
SOURCE LANGUAGE 
PROCEDURE. EACH 

EACH LANGUAGE. AN INTRINSIC NAME WHICH OCCURS IN A 
STATEMENT IS PROCESSED BY A COMPILER AS A PRE-COMPILED 

COMPILER IS RESPONSIBLE FOR VERIFYING THAT ACTUAL 
PARAMETERS AGREE WITH THE FORMAL PARAMETERS SPECIFIED FOR EACH INTRINSIC. 

FOR EACH INTRINSIC REQUIRED BY THE OBJECT PROGRAM THE COMPILER EMITS A 
"STUFFED'' INDIRECT REFERENCE WORD CSIRWJ WHICH POINTS TO THE APPROPRIATE 
PROGRAM CONTROL WORD CPCWJ IN THE DC-OJ CMCPJ STACK. 

THE PCW FOR AN INTRINSIC CONTAINS A 14 BIT SEGMENT DESCRIPTOR INDEX 
CSDil . FIELD. WHJCH REFERS TO THE DCOJ CMCPJ STACK. THE LOW-ORDER 13 
BITS OF THE INDEX FIELD LOCATES THE SEGMENT DESCRIPTOR WITHIN THE DCDl 
STACK. THIS DESCRIPTOR CONTAINS THE MEMORY/DISK ADDRESS FOR THE 
REQUIRED INTRINSIC CODE. SINCE THE DCOJ STACK IS GLOBAL TO THE TOTAL 
ADDRESSING ENVIRONMENT, ANY SEGMENT DESCRIPTOR IN THIS STACK IS 
ACCESSIBLE FROM ANY PROGRAM WHICH REFERENCES A PCW CONTAINING A SDI 
REFERENCING 0[0]. BECAUSE THERE IS A SINGLE SEGMENT DESCRIPTOR IN THE D 
COJ STACK FOR EACH INTRINSIC, ONLY ONE COPY OF THE OBJECT CODE IS 
PRESENT IN MEMORY. THUS THE INTRINSICS ARE RE-ENTRANT. 



PAGE 163 
B6700· MASTER CONTROL PROGRAM 

6.7. CARD/LINE 

CARD/LINE LISTS BCL AND EBCDIC DATA AND PUNCHES BCL, BCL, EBCDIC AND 
BINARY DATA, BY LABEL EQUATING THE OUTPUT FILE ''LINE" TO THE CARD PUNCH. 
INPUT SHOULD BE OF THE FORM: 

FIRST CARD: 

? RUN CARD/LINE 
OR 

? EXECUTE CARD/LINE 

SECOND CARD: 

? BCL CARD CCARDS PUNCHED IN BCLl 
OR 

DATA CARD CCARDS EBCDIC> ? PUNCHED IN 
OR 

BINARY) ? BINARY CARD CCARDS PUNCHED IN 

<CARDS TO BE LISTED> 

LAST CARD: -----

? END CBCL AND EBCDIC DATA> 
OR 

"BEND CARD" CBINARY DATA> 

THE LABEL EQUATION CARD TO PUNCH THE OUTPUT SHOULD BE THE SECOND CARD IN 
THE DECK AND HAVE THE FOLLOWING FORM: 

? FILE LINE = LINE PUNCH 

A "BEND CARD" CB I NARY END CARD l HAS THE LETTERS "BEND" WRITTEN IN 
PUNCHSCRIPT ACROSS THE CARD. 



PAGE 164 
8670a MASTER CONTROL PROGRAM 

APPENDIX A 

OPERATOR-MCP COMMUNICATIONS 



PAGE 165 
B6700 MASTER CONTROL PROGRAM 

APPENDIX A - OPERATOR-HCP COMMUNICATIONS 

COMMUNICATION WITH THE MCP IS ACCOMPLISHED WITH A COMBINATION OF DISPLAY 
UNITS CCRT DEVICESl, CONTROL UNITS CDISPLAY UNITS WITH ASSOCIATED 
KEYBOARDSl AND CONTROL CARDS CSPECIAL RECORDS RECOGNIZED BY THE MCPl. 
THE FOLLOWING DISCUSSION IS BASED ON A SYSTEM WITH ONE CONTROL UNIT ANO 
ONE DISPLAY UNIT, ALTHOUGH A SYSTEM MAY HAVE ANY COMBINATION FROM A 
MINIMUM OF ONE DISPLAY UNIT TO A MAXIMUM OF THIRTY DISPLAY AND CONTROL 
UNITS COMBINED. 

A-1. DISPLAY OF STATUS 

THE STATUS OF THE SYSTEM AND OF THE PROCESSES IN PROGRESS IS PRESENTED 
ON THE DISPLAY UNITS. VARIOUS TABLES MAY BE CALLED FOR DISPLAY BY 
ENTERING THE APPROPRIATE KEYBOARD INPUT MESSAGES. IN ADDITION, SPECIFIC 
QUESTIONS REQUIRING SHORT ANSWERS MAY BE ENTERED FROM THE KEYBOARD. 
THESE QUESTIONS AND ANSWERS ARE DISPLAYED AS THEY OCCUR. THE DISPLAY 
TASLES ARE DESCRIBED BELOW. 

MIX TABLE 

THE MIX TABLE IS DISPLAYED CONTINUOUSLY EXCEPT FOR BRIEF PERIODS 
WHEN IT IS REPLACED BY ANOTHER.TABLE. EACH JOB BEING EXECUTED HAS 
AN ENTRY, THE CONTENTS OF WHICH DEPEND ON WHETHER THE JOB IS ACTIVE 
OR SUSPENDED. IT IS CALLED OUT BY THE "MIX" INPUT MESSAGE. 

ACTIVE ENTRY 

IF A JOB IS BEING EXECUTED NORMALLY OR WAS TERMINATED BETWEEN 
THE TWO MOST RECENT UPDATES, ITS ENTRY CONTAINS THE FOLLOWING 
INFORMATION: 

MI = <MIX INDEX> 
C= COMPILER NAME IF COMPILE JOB 
JOB = <JOB NAME> 
P = <PRIORITY> 



B670a MASTER CONTROL PROGRAM 

S = STATUS 
BOJ = BEGINNING OF JOB 
EOJ = ENO OF JOB 
OS-ED = DISCONTINUED 
<EMPTY> = RUNNING 

A TYPICAL ACTIVE ENTRY IS AS FOLLOWS: 

MI C JOB P . ------- ------ ------------ -
s 

0013 ALGOL CHECK/WRITER•5* BOJ 

SUSPENDED ENTRY 

PAGE 166 

IF A JOB IS SUSPENDED FOR ANY REASON ITS MIX ENTRY CHANGES FROM 
ACTIVE TO SUSPENDED ANO CONTAINS THE FOLLOWING INFORMATION: 

MI = <MIX INDEX> 
P = <PRIORITY> 
REASON = AN OUTPUT MESSAGE GIVING THE REASON FOR SUSPENSION 
ACTION = ABBREVIATION FOR ONE OR MORE INPUT MESSAGES 

REQUIRED TO REACTIVATE PROCESSING. 



B6700'MASTER CONTROL PROGRAM 
PAGE 167 

A TYPICAL SUSPENDED ENTRY IS AS FOLLOWS: 

MI P REASON ACTION . ------ - ------------------- ----------- . . . . . 
: 0013@5:NO FILE= MASTER/FILE:OF,UL,IL,DS : . . . . 

SCHEDULE TABLE 

FOLLOWING ENTRY OF THE INPUT MESSAGE "SCH" AT THE CONTROL UNIT, THE 
SCHEDULE TABLE WILL REPLACE THE MIX TABLE FOR A PERIOD OF TIME, THE 
LENGTH OF WHICH DEPENDS UPON THE NUMBER OF ENTRIES. THE ENTRY FOR 
A JOB IN THE SCHEDULE CONTAINS THE FOLLOWING INFORMATION: 

SI = SCHEDULE INDEX THIS WILL BECOME THE <MIX INDEX> UPON 
ENTRY INTO THE MIX. 

JOB = <JOB NAME> 
P = <PRIORITY> 
C = COMPILER NAME IF COMPILE JOB 

CR = CORE REQUIRED <TENTHS OF PERCENT OF USABLE CORE> 
ST = TIME IN MINUTES SINCE ENTRY INTO SCHEDULE 

A TYPICAL SCHEDULE TABLE ENTRY IS AS FOLLOWS: 

: 
: SI c JOB P CR ST 
: 
: 
: 0013 CORP/PAYCH@5:62.5,5.7 ,. 



B6700 MASTER CONTROL PROGRAM 

PERIPHERAL UNIT TABLE 

PAGE 168 

THIS TABLE IS CALLED WITH THE INPUT MESSAGE "PER <UNIT MNEMONIC>" 
AND HAS AN ENTRY FOR EACH PERIPHERAL UNIT IN THE SYSTEM. AN ENTRY 
CONTAINS THE MINIMUM INFORMATION NECESSARY FOR DETERMINATION OF THE 
STATUS AND CONTENT OF A GIVEN UNIT. 

A TYPICAL PERIPHERAL UNIT TABLE ENTRY IN RESPONSE TO THE "PERMT" 
MESSAGE IS AS FOLLOWS: 

UNIT STATUS 

Sl~~~ MT 4 
MT 5 

LABEL TABL£ 

RW/L UNLABELLED 
SCRATCH 
RW/~ UNb-AE~LLED 
~~SU~~/~~ ~EADALABEL 

THIS TABLE IS CALLED WITH THE INPUT MESSAGE "OL <UNIT MNEMONIC>" 
AND CONTAINS AN ENTRY FOR EACH I/O UNIT OF THE DESIGNATED TYPE 
WHICH IS ON LINE. IF NO UNITS OF THE DESIGNATED TYPE ARE ON LINE 
THE OUTPUT MESSAGE "NULL <UNIT MNEMONIC> TABLE" WILL APPEAR. 

A TYPICAL LABEL TABLE ENTRY IS AS FOLLOWS: 

------------------------------------------------~---------------

UNIT FILEIO STATUS JOB ID 

CROO 1 I NVEN/RECVO IN USE BY I NVEN/UPOATE 

DISK DIRECTORY TABLE 

THIS TABLE IS CALLEO WITH THE "PO <FILE SET SPECIFIER>" INPUT 
MESSAGE. IT CONTAINS ALL FILE NAMES IN THE DISK DIRECTORY WHICH 
ARE IN THE SET SPECIFIED BY THE INPUT MESSAGE. IF THE SPECIFIED 



PAGE 169 
B6700 MASTER CONTROL PROGRAM 

SET IS EMPTY THE OUTPUT MESSAGE ''NULL" WILL APPEAR. 

A TYPICAL DIRECTORY TABLE IN RESPONSE TO THE INPUT MESSAGE "PD 
SYSTEM/=" IS: 

SYSTEM 
ALGOL CPROG>, COBOL CPROGl, 
FORTRAN CPROGl 

FOR A COMPLETE LISTING ON THE PRINTER OF ALL FILES STORED ON DISK 
USE THE "DIR" INPUT MESSAGE. 



B6700· MASTER CONTROL PROGRAM 
PAGE 170 

JOB TABLE 

THIS TABLE IS CALLED WITH THE "JOB" INPUT MESSAGE SPECIFYING ANY 
JOB IN THE MIX. IT CONTAINS DETAILED INFORMATION ABOUT THE JOB AS 
FOLLOWS: 

1. MIX TABLE ENTRY 
2. LISTING OF CONTROL CARDS 
3. CORRELATION OF PHYSICAL UNITS WITH <FILE NAME>S 
4. ASSOCIATED PROCESSES C <MIX INDEX> SUFFIXES > 

A TYPICAL JOB TABLE IS A FOLLOWS: 

A-2. MESSAGES 

THE OPERATOR 
INPUT/OUTPUT 

13.097=CORPO/PAYCH:5: :R,184,3.2 
EXECUTE CORPORATIONX/PAYCHECKWRITER.FOR 
WEEK ENDING 1-3-69 
FILE CARD=HOURLY 
FILE DISK=PAYROLLINFO/HOURLY 
FILE NEWDISK=PAYROLLINFO/HOURLY/UPOATED 
FILE LINE=LINE PRINT OR BACKUP 
CDOlO=CARO 
LP002=LINE 
.1 •. 2 •. 2.1 •. 3 

COMMUNICATES DIRECTLY WITH THE HCP THROUGH THE USE OF 
MESSAGES. ALL INPUT MESSAGES AND CERTAIN OUTPUT MESSAGES 

ARE DISPLAYED AS THEY OCCUR IF A DISPLAY UNIT IS AVAILABLE. OTHERWISE 
THEY WILL APPEAR ONLY IN THE SYSTEM LOG. 

INPUT MESSAGES 

INFORMATION MAY BE SUPPLIED TO THE MCP THROUGH THE USE OF INPUT 



PAGE 171 
B6700 MASTER CONTROL PROGRAM 

MESSAGES ENTERED IN FREE FIELD FORMAT AT THE CONTROL UNIT KEYBOARD. 
THESE MESSAGES ARE NOT INTENDED TO PROVIDE DETAILED INFORMATION 
ABOUT INDIVIDUAL PROGRAMS, E.G., THE SETTINGS FOR REGISTERS OR THE 
CONTENTS FOR MEMORY LOCATIONS. 

TO ENTER A MESSAGE THE OPERATOR MUST FIRST DEPRESS THE LOCKEY. 
AFTER 
XMIT 
UPON 

KEYING IN THE MESSAGE, HE MUST DEPRESS THE ETX KEY THEN THE 
KEY. IF THE MESSAGE IS NOT RECOGNIZABLE THE MCP WILL NOT ACT 
IT EXCEPT TO GI VE AN " I NV KBO" C I NV AL ID KEYBOARD l OUTPUT 

MESSAGE. 

THE INPUT MESSAGES APPEAR BELOW WITH THEIR REQUIRED SPELLING. 
FOLLOWING EACH MESSAGE IS A BRIEF DESCRIPTION OF ITS PURPOSE AND 
EFFECT. MESSAGES WHICH MAY RESULT IN THE DISPLAY OF A TABLE HAVE 
THREE LETTER MNEMONICS. 

<MIX INDEX> AX 

THIS MESSAGE IS ENTERED IN RESPONSE TO A "<MIX INDEX> ACCEPT" 
COBOL OUTPUT MESSAGE. 

? <CONTROL STATEMENT LIST>;ENO 

WHERE 
<CONTROL STATEMENT LIST> : := <CONTROL STATEMENT> I 

<CONTROL STATEMENT LIST>; <CONTROL STATEMENT> 

ANY CONTROL STATEMENT ALLOWED ON A CONTROL CARD MAY BE ENTERED. 
MULTIPLE CONTROL STATEMENTS MAY BE ENTERED ON A LINE BY 
SEPARATING THEM WITH SEMICOLONS. THE LAST CONTROL STATEMENT 
MUST BE AN END STATEMENT. 

CL <UNIT MNEMONIC> 

ALL EXCEPTION FLAGS 
UNIT WILL BE RESET 
PSEUDO CARD READER, 
CNOTE: CLEARING OF A 

MA I NT A I NED BY. THE MCP FOR THE SPECIF I ED 
C CLEARED l . IF THE SPECIFIED UNIT IS A 
THE DECK IT CONTAINS WILL BE ELIMINATED. 

UNIT ASSIGNED TO A JOB WILL RESULT IN 



B6700' MASTER CONTROL PROGRAM 

IMMEDIATE DISCONTINUATION OF THE JOB.> 

PAGE 172 

CM <FILE NAME> 

THE RUNNING MCP WILL BE CHANGED TO THE MCP SPECIFIED BY <FILE 
NAME>. FILE NAME SHOULD BE THE NAME OF THE NEW MCP CODE FILE. 
THE MESSAGE "MCP CHANGE PENDl~G" WILL BE DISPLAYED. THE CHANGE 
WILL THEN OCCUR AUTOMATICALLY WHEN MIX COUNTS EQUALS ZERO. 

<MIX INDEX> CO <ASSOCIATIVE OPTIONS> 

DIR 

THE "CO" CCHANGE OPTIONS) MESSAGE IS USED TO CHANGE THE 
ASSOCIATIVE OPTIONS WHICH CONTROL THE OUTPUTTING OF A BACKUP 
FILE CURRENTLY IN PROCESS. FOR A MORE COMPLETE DISCUSSION SEE 
SECTION 6.2 CPRINTER AND PUNCH BACKUP) OF THIS DOCUMENT. 

THE PROGRAM "LIST/DIRECTORY" WILL BE ENTERED INTO THE MIX AND A 
LISTING OF FILES STORED ON DISK PRODUCED AT THE PRINTER. 

<MIX INDEX> OS 

THE SPECIFIED PROGRAM WILL BE DISCONTINUED. 

DR <INTEGER>/ <INTEGER> I <INTEGER> 

THE DATE USED BY THE MCP WILL BE RESET TO THAT SPECIFIED. THE 
THREE <INTEGER>S ARE MONTH <1 TO 121, DAY <1 TO 31>, AND YEAR 
C 0 TO 99) ,, RESPECTIVELY. 

<MIX INDEX> FM <UNIT MNEMONIC> 

THIS MESSAGE MUST BE ENTERED IN RESPONSE TO A "FM RQD" MESSAGE. 
THE <UNIT MNEMON.IC> SPECIFIES THE UNIT TO BE USED FOR THE 
SUBJECT FILE. 

<MIX INDEX> FR 

THIS MESSAGE SPECIFIES THAT THE INPUT REEL, THE READING OF 



B6700· MASTER CONTROL PROGRAM 
PAGE 173 

WHICH WAS JUST COMPLETED, WAS THE FINAL REEL OF AN UNLABELED 
FILE. 

<MIX INDEX> IL <UNIT MNEMONIC> 

THIS MESSAGE IS ENTERED IN RESPONSE TO A "NO FILE" MESSAGE AND 
SPECIFIES THE UNIT ON WHICH THE REQUIRED INPUT FILE IS LOCATED. 
THE FILE MAY BE EITHER LABELED OR UNLABELED. 

<MIX INDEX> .JOB 

THE JOB TABLE FOR THE SPECIFIED JOB WILL BE DISPLAYED ON THE 
UNIT WHERE THIS MESSAGE IS ENTERED. 

LC <COMMENT> 

LO DK 
LO MT 

THE "LC" CLOG COMMENT) MESSAGE CAUSES ANY OPERA TOR-ENTERED 
<COMMENT> TO BE ENTERED INTO THE SYSTEM/LOG. 

OR 

THE "SYSTEM/LOADCONTROL" PROGRAM WILL SEARCH FOR A TAPE OR CARD 
FILE WITH A <FILE LABEL> OF "CONTROLDECK". IF FOUND, THE FILE 

WILL BE PLACED ON DISK AS A PSEUDO CARD DECK FOR DK, OR ON 
MAGNETIC TAPE FOR MT. 

LOG <RANGE> <REQUEST LIST> 

LR 

THIS MESSAGE WILL SELECTIVELY RETRIEVE INFORMATION FROM THE 
SYSTEM/LOG AND LIST IT ON THE PRINTER. FOR A MORE COMPLETE 
DISCUSSION SEE SECTION 6.4 (SYSTEM LOGSl OF THIS DOCUMENT. 

THE "LR" (LOG RELEASE l MESSAGE CAUSES THE CURRENT SYSTEM/LOG TO 
BE RENAMED AND SAVED AND ANOTHER SYSTEM/LOG FILE TO BE CREATED. 
SEE SECTION 6.4 !SYSTEM LOGS> FOR A MORE COMPLETE DISCUSSION. 



PAGE 174 
B670a MASTER CONTROL PROGRAM 

MIX OR 
MIX SC <INTEGER> 

NEXT 

THE MIX TABLE WILL BE DISPLAYED ON THE SPECIFIED DISPLAY UNIT. 
IF NO DISPLAY UNIT IS SPECIFIED, THE ONE AT WHICH THE MESSAGE 
IS ENTERED WILL BE ASSUMED. 

THIS MESSAGE CAUSES THE 
DISPLAYED. SPO DISPLAY 
FULL SCREEN IS "PAGED". 
DISPLAYED. 

NEXT "PAGE" OF SPO OUTPUT TO BE 
INFORMATION REQUIRING MORE THAN ONE 

NORMALLY ONLY THE FIRST PAGE IS 

<MIX INDEX> OF 

THIS MESSAGE MAY BE ENTERED IN RESPONSE TO A "NO FILE" MESSAGE 
IF THE FILE IS AN OPTIONAL FILE. THE SPECIFIED PROGRAM WILL 
THEN PROCEED WITHOUT IT BY TAKING "END OF FILE" ACTION ON THE 
SPECIFIED FILE.-

<MIX INDEX> OK 

THE MCP WILL REACTIVATE A JOB WHICH WAS SUSPENDED BECAUSE OF AN 
OPERATOR "ST" CSUSPEND TEMPORARILY) MESSAGE. 

OL <UNIT MNEMONIC> 

THE LABEL TABLE WILL BE DISPLAYED ON THE UNIT WHERE THIS 
MESSAGE IS ENTERED. 

<MIX INDEX> OT <DELTA> 

THE CONTENTS OF THE STACK CELL GIVEN BY <DELTA> OF THE JOB 
INDICATED BY <MIX INDEX> WILL BE DISPLAYED. <DELTA> IS SOME 
INTEGER FROM TWO TO THE NUMBER OF DECLARED VARIABLES IN THE 
PROGRAMS OUTER BLOCK. 

<MIX INDEX> OU <OUTPUT CODE> 



PAGE 175 
B670G MASTER CONTROL PROGRAM 

THIS MESSAGE MAY BE ENTERED IN RESPONSE TO AN OUTPUT MESSAGE 
REQUESTING A LINE PRINTER OR PRINTER BACKUP TAPE. THE <OUTPUT 
CODE> MAY BE <EMPTY> OR ONE OF THE FOLLOWING TWO LETTER CODES: 
LP= LINE PRINTER, MT= MAGNETIC TAPE CPRINTER BACKUP TAPEl, DK 
= DISK CPRINTER BACKUP DISK>. THE SUBJECT LINE PRINTER FILE 
MUST BE PRODUCED ON THE SPECIFIED UNIT. IF THE <OUTPUT CODE> 
IS <EMPTY> EITHER LP OR MT MAY BE USED. 

PD <FILE SET SPECIFIER> 

WHERE 
<FILE SET SPECIFIER> ::= <F1LE LABEL> I <FILE LABEL> <SLASH>= 

THE PD CPRINT DIRECTORYl SPO MESSAGE ALLOWS THE USER TO DISPLAY 
SELECTIVELY ON THE SPO THE NAMES OF FILES IN THE DISK DIRECTORY 

<FILE SET SPECIFIER> IS A PARTIAL OR FULL FILE NAME. IF A FULL 
FILE NAME IS SPECIFIED WITHOUT AN EQUAL SIGN THEN THE DISK 
DIRECTORY WILL BE SEARCHED AND A MESSAGE DISPLAYED ON THE SPO 
STATING WHETHER THE FILE IS PRESENT. IF A PARTIAL FILE NAME IS 
GIVEN WITH AN EQUAL SIGN THEN" A LIST OF ALL DISK FILES 
BEGINNING WITH THE PARTIAL FILE NAME WILL BE DISPLAYED. IF NO 
FILE IS FOUND THE MESSAGE "NULL" WILL BE DISPLAYED. 

EXAMPLES: 
PD CARD/LINE 
PD SYSTEM/= 

FOR A COMPLETE LISTING OF THE DIRECTORY ON THE PRINTER USE THE 
"DIR,; INPUT MESSAGE. 

PER <UNIT TYPE MNEMONIC> 

WHERE: 
<UNIT TYPE MNEMONIC> : := <UNIT MNEMONIC> I CD I CP I CR I 

LP I MT I MTX I PP I PR I SP 

THE SPECIFIED PERIPHERAL TABLE WILL BE DISPLAYED ON THE UNIT 
WHERE THIS MESSAGE IS ENTERED. 



B6700·MASTER CONTROL PROGRAM 
PAGE 176 · 

<MIX INDEX> PR = <PRIORITY> 

THE <PRIORITY> OF THE SPECIFIED JOB IN THE MIX OR SCHEDULE WILL 
BE SET TO <PRIORITY>. 

<MIX INDEX> QT <ASSOCIATIVE OPTIONS> 

RD = 

THE ''QT" CQUITl MESSAGE IS USED TO TERMINATE THE PRINTING OF A 
BACKUP FILE. FOR A DISCUSSION OF <ASSOCIATIVE OPTIONS> SEE 
SECTION 6.2 CPRINTER ANO PUNCH BACKUPl OF THIS DOCUMENT. 

RD <DECK LIST> 

WHERE: 
<DECK LIST> : := <DECK NUMBER> I <DECK LIST>,<DECK NUMBER> 
<DECK NUMBER> ::=#(INTEGER> 

THE SP~CIFIED PSEUDO CARD DECKS WILL BE REMOVED FROM DISK. IF 
THE FORM "RD =" IS USED, ALL PSEUDO CARD DECKS WILL BE REMOVED. 

<MIX INDEX> RM 

RN 

THIS MESSAGE MAY BE USED IN RESPONSE TO A "DUP LIBRARY" OUTPUT 
MESSAGE. THE DISK FILE WITH THE LABEL SPECIFIED IN THE "DUP 
LIBRARY" MESSAGE WILL BE REMOVED. 

OR 
RN <INTEGER> 

THE <INTEGER> SPECIFIES THE NUMBER OF PSEUDO CARD READERS TO BE 
USED. AT "HALT-LOAD" TIME THE NUMBER SPECIFIED IS ZERO. IF 
THIS MESSAGE REQUIRES THAT PSEUDO READERS BE TURNED OFF, THE 
MCP WILL COMPLETE THE HANDLING OF PSEUDO CARD DECKS IN PROCESS, 
IF ANY. BEFORE BEING TURNED OFF. IF NO <INTEGER> IS INCLUDED. 
THE CURRENT NUMBER OF PSEUDO CARD READERS WILL BE DISPLAYED. 

RO -- CSEE SO> 



PAGE 177 
B67oo· MASTER CONTROL PROGRAM 

RW <UNIT MNEMONIC> 

A REWIND AND LOCK ACTION WILL BE PERFORMED ON THE FILE ON THE 
SPECIFIED MAGNETIC TAPE UNIT. IF THE UNIT IS IN USE THE ACTION 
WILL BE PERFORMED UPON THE RELEASE OF THE FILE. 

RY <UNIT MNEMONIC> 

SCH 

THE SPECIFIED UNIT WILL BE MADE READY FOR USE IF IT IS IN 
"REMOTE" STATUS AND IS NOT IN USE. 

OR 
SCH SC <INTEGER> 

so 
RO 
TO 

THE SCHEDULE TABLE WILL BE DISPLAYED ON THE SPECIFIED DISPLAY 
UNIT. IF NO DISPLAY UNIT IS SPECIFIED, THE ONE AT WHICH THE 
MESSAGE IS ENTERED WILL BE ASSUMED. 

<OPTION SPECIFIER> OR 
OR <OPTION SPECIFIER> 

<OPTION SPECIFIER> 

WHERE 
<OPTION SPECIFIER> : := OPEN I RET I TERMINATE I SEGMENT I <EMPTY> 

THE SPECIFIED 
RESPECTIVELY. 

OPTION WILL BE SET, RESET, OR TYPED (DISPLAYEDl 
THE OPTIONS AND MNEMONICS ARE TO BE SPECIFIED. 

THE OPTION SPECIFIERS MAY BE <EMPTY> WHICH CAUSES ALL OPTIONS 
TO BE SET, RESET OR TYPED. 

AT PRESENT FOUR OPTIONS ARE AVAILABLE. WITH "OPEN" SET, FILE 
OPEN MESSAGES ARE DISPLAYED ON THE SPO. WITH "RETAIN" SET, 
TAPES WITH EXPIRED "SAVE" FACTORS AND WRITE RINGS ARE 
AUTOMATICALLY PURGED; OTHERWISE A "RETAIN" MESSAGE FOR THE TAPE 
IS DI SPLA YEO. WITH "TERM I NATE" SET, ABNORMAL .JOB TERMINATIONS 
WILL RESULT IN AN ATTEMPTED PROGRAM DUMP RATHER THAN A FULL 
MEMORY DUMP. WITH "SEGMENT" SET, ONE-DIMENSIONAL ARRAYS WILL 
BE DIVIDED INTO 256-WORD SEGMENTS. 



86700' MASTER CONTROL PROGRAM 
PAGE 178 

SN MT <UNIT NUMBER> <SERIAL NUMBER> 

THE TAPE ON THE SPECIFIED MAGNETIC TAPE UNIT WILL BE PURGED IF 
THE TAPE UNIT IS IN READY, NOT IN USE AND IF THE TAPE HAS A 
WRITE RING. 

<MIX INDEX> ST 

THE SPECIFIED JOB WILL BE SUSPENDED TEMPORARILY. IT MAY BE 
REACTIVATED WITH AN "OK" MESSAGE. 

SV <UNIT MNEMONIC> 

THE SPECIFIED UNIT WILL BE MADE INACCESSIBLE AS SOON AS IT IS 
NOT IN USE. IT MAY BE MADE ACCESSIBLE WI TH AN "RY" MESSAGE OR 
A "HALT-LOAD" OPERATION. THE MESSAGE "<UNIT MNEMONIC> TO BE 
SAVED" OR "<UNIT· MNEMONIC> SAVED" WILL BE DISPLAYED AS 
APPROPRIATE. 

<MI X INDEX> TI 

THE FOLLOWING OUTPUT MESSAGE WILL BE DISPLAYED: 

<MIX INDEX> : <PROCESSOR TIME> IN FOR <ELAPSED TIME> 

WHERE <PROCESSOR TIME> IS THE PROCESSOR TIME USED AND <ELAPSED 
TIME> IS THE ELAPSED TIME SINCE THE JOB ENTERED THE MIX. BOTH 
ARE GIVEN IN MINUTES AND TENTHS OF MINUTES. 

TO CSEE SO> 

TR <INTEGER> 

THE TIME WILL BE RESET TO THAT SPECIFIED BY THE <INTEGER> WHICH 
MUST BE FOU~ <DIGIT>S. THE FIRST TWO <DIGIT>S SPECIFY THE HOUR 
CO TO 23l AND THE LAST TWO SPECIFY THE MINUTE CO TO 59). 

<MIX INDEX> UL <UNIT MNEMONIC> 

THIS MESSAGE MAY BE USED IN RESPONSE TO A "NO FILE" MESSAGE IN 



WO 

WM 

WT 

PAGE 179 
B6700 "MASTER CONTROL PROGRAM 

ORDER TO DESIGNATE THE UNIT ON WHICH AN UNLABELED FILE IS 
LOCATED. THE SUBJECT FILE MAY BE EITHER LABELED OR UNLABELED. 
ALL RECORDS INCLUDING THE LABEL IF ANY WILL BE READ AS DATA. 
CTHIS MESSAGE DIFFERS FROM THE "IL" MESSAGE IN THAT WITH THE 
"IL" MESSAGE THE LABEL IS NOT READ AS DATA.) 

THE MCP 
SYSTEM. 

WILL DISPLAY THE BATE CURRENTLY BEING USED BY THE 
THE DATE IS GIVEN IN THE FORMAT MM/OD/YY. 

THE MCP WILL DISPLAY THE MODIFICATION LEVEL AND PATCH REVISION 
NUMBER IN THE FORM: 

86700 MCP LEVEL XX.PPP 

THE MCP WILL DISPLAY THE TIME OF DAY AT THE TIME THE MESSAGE 
WAS ENTERED. THE TIME IS GIVEN IN HOURS AND MINUTES BASED ON A 
24 HOUR CLOCK. 

OUTPUT MESSAGES 

OUTPUT MESSAGES WHICH APPEAR ONLY AS ANSWERS TO DIRECT QUESTIONS 
WILL BE DESCRIBED WITH THE CORRESPONDING INPUT MESSAGE. THE 
REMAINDER OF THE OUTPUT MESSAGES APPEAR BELOW AS THEY ARE DISPLAYED. 
FOLLOWING EACH MESSAGE IS A BRIEF DESCRIPTION OF ITS MEANING AND 
ANY REQUIRED OPERATOR RESPONSE. 

<MIX INDEX> ACCEPT 

AN OBJECT PROGRAM EXECUTED AN "ACCEPT" STATEMENT. AN "AX" 
INPUT MESSAGE IS REQUIRED. 

<MIX INDEX> <FUNCTION NAME> <INVALID ARG> <PARAMETER VALUE> 



<TERMINAL REFERENCE> 

AN INVALID 
ENCOUNTERED. 
DISPLAYED TO 

PAGE 180 
B6700 MASTER CONTROL PROGRAM 

ARGUMENT TO A MATHEMATICAL INTRINSIC FUNCTION WAS 
THE PROGRAM IS IERMINATED AND THE MESSAGE IS 
THE OPERATOR. IN ADDITION, THE MESSAGE IS 

RECORDED IN THE SYSTEM LOG. IF A PRINTER FILE WAS OPEN AT THE 
TIME THE ERROR OCCURRED. THE MESSAGE IS ALSO WRITTEN ON THE 
PRINTER FILE. THE FOLLOWING INTRINSIC FUNCTIONS MAY GENERATE 
AN INVALID ARGUMENT MESSAGE: 

LNGAMMA COT AN ERF 
LOG CSIN EXP 
LN CSQRT GAMMA 
ARCOS CTOD RTOO 
ARSIN CTOP RTOP 
ARCTAN ·DARCTAN RANDOM 
ARCTAN2 OARCTAN2 SIN 
CABS ocos SINH 
ccos DELTA 
COIV OEXP SQRT 
CEXP DLOG TAN 
CLN DLN TANH 
CMUL DSIN TIME 
cos DSQRT 

COSH DTOD 

lNOTE: KX"TOP MEANS X RAISED TO AN INTEGRAL OR REAL POWER?. 

<FILE LABEL> CHANGED TO <FILE LABEL> 

THE MCP HAS PERFORMED AN OPERATION SPECIFIED IN A "CHANGE" 
CONTROL STATEMENT. 

DECK <INTEGER> REMOVED 

THE SPECIFIED CONTROL DECK WAS REMOVED FROM DISK BECAUSE OF 
COMPLETION OF THE JOB OR AN INPUT MESSAGE. 

<MIX INDEX> DIV BY ZERO <TERMINAL REFERENCE> 



B6700 MASTER CONTROL PROGRAM 
PAGE 181 

AN OBJECT PROGRAM ATTEMPTED A DIVIDE OPERATION USING A ZERO 
DIVISOR. 

<FILE LABEL> COPIED 

THE MCP HAS PERFORMED THE OPERATION SPECIFIED IN A "COPY" 
CONTROL STATEMENT. 

<MIX INDEX> DUP FIL <FILE LABEL> 

THE OBJECT PROGRAM ATTEMPTED TO ACCESS AN INPUT FILE BUT THE 
MCP FOUND MORE THAN ONE FILE WITH THE SPECIFIED <FILE LABEL>. 
THE CONDITION CAN BE CORRECTED BY MAKING ONLY ONE OF THE FILES 
AVAILABLE, THEN ENTERING A "<MIX INDEX> OK" MESSAGE OR BY 
ENTERING A <MIX INDEX> "IL" OR <MIX INDEX> "UL". 

<MIX INDEX> DUP LIBRARY <FILE LABEL> 

AN ATTEMPT WAS MADE TO ENTER A FILE IN THE DISK LIBRARY WHEN 
ITS <FILE LABEL> WAS IDENTICAL TO A <FILE LABEL> ALREADY IN THE 
DISK DIRECTORY. THE CONDITION MAY BE CORRECTED BY USING A 
"CHANGE" OR "REMOVE" CONTROL STATEMENT FOLLOWED BY A <MIX 
INDEX> OK MESSAGE OR BY ENTERING A <MIX INDEX> RM MESSAGE. 

<MIX INDEX> EXPON OVERFLOW <TERMINAL REFERENCE> 

AN OBJECT PROGRAM PERFORMED AN OPERATION WHICH CAUSED AN 
EXPONENT OVERFLOW TO OCCUR. 

<MIX INDEX> INTGR OVERFLOW <TERMINAL REFERENCE> 

AN OBJECT PROGRAM PERFORMED AN OPERATION WHICH CAUSED AN 
INTEGER OVERFLOW TO OCCUR. 

<MIX INDEX> INV ADDRESS <TERMINAL REFERENCE> 

AN OBJECT PROGRAM PERFORMED AN OPERATION WHICH ADDRESSED A NON­
EXISTENT MEMORY LOCATION. 



B67oo· MASTER CONTROL PROGRAM 

<MIX INDEX> INVALID INDEX <TERMINAL REFERENCES> 

PAGE 182 

AN OBJECT PROGRAM ATTEMPTED TO INDEX OUT OF THE RANGE OF AN 
ARRAY BEING REFERENCED .. 

<MIX INDEX> <UNIT MNEMONIC> INVALID CHR. IN COL. <INTEGER> 

AN <INVALID CHARACTER> HAS APPEARED IN A POSITION OTHER THAN 
CHARACTER POSITION 1 OF A RECORD. THE <INTEGER> IS THE COLUMN 
NUMBER. 

INV KBD ~TYPED-IN INFORMATION~ 

THE HCP WAS NOT ABLE TO RECOGNIZE A MESSAGE ENTERED FROM THE 
KEYBOARD. 

<UNIT MNEMONIC> I/O INV ADDRESS 

AN INVALID ADDRESS OCCURRED WHEN DATA WAS TO BE TRANSFERRED 
BETWEEN AN I/O CHANNEL AND PRIMARY MEMORY. THE HCP RECOGNIZES 
THE ERROR CONDITION AND, IF POSSIBLE, RECTIFIES THE ERRORS. 
THE PRIMARY PURPOSE OF THIS MESSAGE IS TO DRAW ATTENTION TO A 
CONDITION WHICH COULD DENOTE A HARDWARE FAILURE. 

<UNIT MNEMONIC> I/O HEM PAR 

A PARITY ERROR OCCURRED WHEN DATA WAS TO BE TRANSFERRED BETWEEN 
AN I/O CHANNEL AND PRIMARY MEMORY. THE MCP RECOGNIZES TH~ 
ERROR CONDITION ANO, IF POSSIBLE, RECTIFIES THE ERRORS. THE 
PRIMARY PURPOSE OF THIS MESSAGE IS TO DRAW ATTENTION TO A 
CONDITION WHICH COULD DENOTE A HARDWARE FAILURE. 

<FILE LABEL> COPIED 

THE MCP HAS PERFORMED THE OPERATION SPECIFIED IN A "LOAD" 
CONTROL STATEMENT. 

<UNIT MNEMONIC> LP BACKUP 

A PRINTER BACKUP TAPE IS ON LINE. IF THE TAPE IS TO BE 



B6700' MASTER CONTROL PROGRAM 
PAGE 183 

PRINTED, A PB MESSAGE MUST BE ENTERED. 

<UNIT MNEMONIC> NEW PBT 

A NEW PRINTER BACKUP TAPE WAS OPENED. 

<MIX INDEX> NO FILE <FILE LABEL> 

A PROGRAM NEEDS AN INPUT FILE WHICH IS APPARENTLY UNAVAILABLE. 
IF THE FILE IS LABELED IT MUST BE MADE AVAILABLE. IF THE FILE 
IS NOT LABELED, AN "UL" MESSAGE IS REQUIRED. IF IT IS AN 
OPTIONAL FILE, AN "OF" MESSAGE IS REQUIRED. IF A PROGRAM HAS 
READ THE FINAL VOLUME OF A MULTI-VOLUME UNLABELED FILE, A "FR" 
MESSAGE IS REQUIRED. 

<MIX INDEX> NO MEM 

THE MCP WAS UNABLE TO OBTAIN REQUIRED PRIMARY MEMORY. <MIX 
INDEX> OK OR OS IS REQUIRED. 

<FILE LABEL> NOT COPIED -- NOT ON <TAPE OR DISK> 

LIBRARY MAINTENANCE COULD NOT LOCATE A FILE IT WAS TOLD TO COPY. 

<PROGRAM ID> NOT IN DIRECTORY 

AN "EXECUTE", "RUN" OR "COMPILE" STATEMENT REFERENCED A PROGRAM 
WHICH WAS NOT IN THE DISK DIRECTORY. 

<MIX INDEX> <UNIT MNEMONIC> NOT READY 

AN I/O OPERATION WAS ATTEMPTED ON A UNIT THAT WAS "NOT READY". 

<MIX INDEX> OPERATOR STOPPED 

THE SPECIFIED 
MESSAGE. AN 

00B WAS SUSPENDED IN RESPONSE TO AN ST INPUT 
"OK" MESSAGE IS REQUIRED TO CONTINUE PROCESSING. 

<MIX INDEX> <PROGRAM ID> OS-ED <TERMINAL REFERENCE> 



86700 MASTER CONTROL PROGRAM 
PAGE 184 

THE SPECIFIED JOB WAS DISCONTlNUED IN RESPONSE TO A "OS" INPUT 
MESSAGE. 

<UNIT MNEMONIC> SCRATCH 

A TAPE WAS PURGED BY AN INPUT MESSAGE OR A PROGRAM. 

<MIX INDEX> <UNIT MNEMONIC> PRINT CHECK 

A PRINT CHECK ERROR OCCURRED DURING PRINTING OF A LINE ON A 
LINE PRINTER. PROCESSING CONTINUES NORMALLY. 

<MIX INDEX> <UNIT MNEMONIC> PUNCH CHECK 

AN IRRECOVERABLE PUNCH CHECK ERROR OCCURRED DURING THE PUNCHING 
OF A CARD WHICH REQUIRES OPERATOR ATTENTION TO THE PUNCH UNIT. 
PROCESSING CONTINUES NORMALLY. 

<MIX INDEX> <UNIT MNEMONIC> READ CHECK 

A READ CHECK ERROR OCCURRED ON A CARD READER. THE LAST CARD 
READ MUST BE RE-READ, IF THE SECOND CARO ALSO FAILS, THE CARO 
HOLE PUNCHES MAY BE OFF OR THE CARO READER MAY NEED SERVICING. 

<FILE LABEL> REMOVED 

AN OPERATION SPECIFIED IN A "REMOVE" CONTROL STATEMENT HAS BEEN 
COMPLETED. 

<MIX INDEX> <FILE LABEL> REQUIRES <UNIT MNEMONIC> 

A JOB REQUIRES A PERIPHERAL DEVICE AND NONE WAS AVAILABLE. 

<UNIT MNEMONIC> RW/L 

A TAPE HAS BEEN REWOUND ANO LOCKED. 

<MIX INDEX> STACK OVERFLOW <TERMINAL REFERENCE> 

THE OPERATIONS PERFORMED BY AN OBJECT PROGRAM HAVE CAUSED ITS 



PAGE 185 
B67oo· MASTER CONTROL PROGRAM 

STACK TO OVERFLOW ITS LIMIT, AND THE MCP WAS UNABLE TO EXTEND 
IT. 

<MIX INDEX> <UNIT MNEMONIC> WRITE LOCK-OUT 

A PROGRAM ATTEMPTED TO WRITE ON A MAGNETIC TAPE WITH NO WRITE 
RING, OR A DISK WHICH HAS BEEN LOCKED OUT WITH HARDWARE LOCKOUT 
SWITCHES. 

A-3. CONTROL CARDS 

INFORMATION MAY BE PASSED TO THE MCP THROUGH THE USE OF PUNCHED CARDS 
CALLED CONTROL CARDS. CONTROL CARDS ARE DISTINGUISHED FROM OTHER CARDS 
BY AN <INVALID CHARACTER> IN COLUMN 1. CONTROL INFO~MATION CWITH OR 
WITHOUT <COMMENT>Sl IS PUNCHED IN COLUMNS 2 - 80. THE FORMAT FOR THIS 
INFORMATION IS FREE FIELD. ALL IDENTIFIERS AND CONSTANTS ARE TERMINATED 
BY A SPECIAL CHARACTER C<SPACE>, 11 , 11 , ETC. l. IF A PERIOD APPEARS IN A 
CONTROL CARO, ALL OF THE INFORMATION FOLLOWING IT ON THE SAME CARO IS 
CONSIDERED TO BE COMMENTARY AND IS IGNORED BY THE MCP. 

NORMALLY, BUT 
STATEMENT. IF 
CONTROL CARD, 

NOT NECESSARILY, ONE CONTROL CARD CONTAINS ONE CONTROL 
TWO OR MORE CONTROL STATEMENTS ARE PUNCHED ON A SINGLE 

THEY MUST BE SEPARATED BY SEMICOLONS. THE <INVALID 
CHARACTER> IS NOT REQUIRED OR ALLOWED FOLLOWING A SEMICOLON. 

IF A CONTROL STATEMENT CANNOT BE CONTAINED ON ONE CONTROL CARO, THE 
STATEMENT MAY BE CONTINUED BY THE INSERTION OF A HYPHEN ON ALL BUT THE 
LAST CARO CAN <IDENTIFIER> MAY NOT BE DIVIDED BY A HYPHEN>. ONLY THE 
FIRST CARO OF SUCH A GROUP MAY CONTAIN AN <INVALID CHARACTER>. 

CONTROL STATEMENTS MAY ALSO BE ENTERED AT THE SUPERVISORY CONSOLE. CSEE 
INPUT MESSAGES> 

THE FOLLOWING PARAGRAPHS DESCRIBE THE FORMAT AND FUNCTION OF EACH 
CONTROL STATEMENT ACCEPTED BY THE MCP. 

COMPILE STATEMENT 



86700 MASTER CONTROL PROGRAM 
PAGE 186 

<INVALID CHARACTER> COMPILE <PROGRAM NAME> <COMMENT> <COMPiLER NAME> 
<COMMENT> <DISPOSAL> <COMMENT> 

WHERE: 
<DISPOSAL>::= <EMPTY> I LIBRARY I SYNTAX 

THE COMPILE STATEMENT DESIGNATES THE COMPILER TO BE USED AND THE 
TYPE OF COMPILE RUN TO BE MADE. THIS MUST BE THE FIRST CONTROL 
STATEMENT IN A COMPILATION JOB. 

1. COMPILE AND EXECUTE C<DISPOSAL> = <EMPTY>l AFTER AN ERROR FREE 
COMPILATION THE COMPILED PROGRAM IS SCHEDULED FOR EXECUTION BUT 
THE <PROGRAM NAME> IS NOT ENTERED IN THE DISK DIRECTORY. THE 
DISK SPACE USED BY THE PROGRAM IS RELEASED AFTER THE EXECUTION 
IS TERMINATED. 

2. COMPILE FOR LIBRARY (<DISPOSAL> = LIBRARY) THE OBJECT CODE FROM 
AN ERROR FREE COMPILATION IS LEFT ON DISK AND THE <PROGRAM NAME> 
IS ENTERED IN THE DISK DIRECTORY. THE COMPILED PROGRAM IS NOT 
EXECUTED. 

3. COMPILE FOR SYNTAX CHECK C<DISPOSAL> = SYNTAXl THE COMPILED 
PROGRAM IS NOT EXECUTED AND THE <PROGRAM NAME> IS NOT ENTERED IN 
THE DISK DIRECTORY. THE DISK SPACE USED BY THE PROGRAM IS 
RELEASED UPON COMPLETION OF COMPILATION. 

EXAMPLES: 

? COMPILE A/B WITH ALGOL 
? COMPILE CID COBOL LIBRARY 
? COMPILE E/F WITH FORTRAN FOR SYNTAX 

EXECUTE STATEMENT OR RUN STATEMENT 

'.INVALID CHARACTER> EXECUTE <PROGRAM NAME> <COMMENT> 



PAGE 187 
86700 MASTER CONTROL PROGRAM 

<INVALID CHARACTER> RUN <PROGRAM NAME> <COMMENT> 

THE DESIGNATED PROGRAM IS CALLED FROM THE DISK AND EXECUTED. THIS 
MUST BE THE FIRST CONTROL STATEMENT IN A JOB NOT REQUIRING 
COMPILATION. 

EXAMPLES: 

? EXECUTE SYSTEM/LOADCONTROL 
? RUN INVENTORY/UPDATE 



B6700· MASTER CONTROL PROGRAM 

COPY AND MOVE STATEMENTS 

<INVALID CHARACTER> <STATEMENT VERB> <STATEMENT LIST> 

WHERE: 

<STATEMENT VERB> ::=COPY/MOVE 
<STATEMENT LIST> : := <STATEMENT PART> I <SOURCE LIST> I 

<STATEMENT PART>, <STATEMENT LIST> 
<STATEMENT PART : := <SOURCE LIST> <DESTINATION LIST> I 

<SOURCE LIST>, <FILE LIST> <DESTINATION LIST> 
<SOURCE LIST> : := <FILE LIST> FROM <SOURCE> I 

<SOURCE LIST>, <FILE LIST> FROM <SOURCE> 
<FILE LIST> : := <FILE NAME> I <FILE LIST>, <FILE NAME> 
<DESTINATION LIST> ::=TO <DESTINATION> I 

<FILE NAME> ::=<IDENTIFIER> I <FILE NAME> <SLASH> <IDENTIFIER> 
<SOURCE> ::=<DESTINATION> ::=DISK I <IDENTIFIER> 

PAGE 188 

THE COPY AND MOVE STATEMENTS ALLOW THE USER TO TRANSFER FILES TO AND 
FROM LIBRARY TAPES AND DISK STORAGE. THE COPY STATEMENT MAKES A COPY OF 
THE SPECIFIED FILE; THE MOVE STATEMENT MAKES A COPY OF THE SPECIFIED 
FILE AND CIF THE ORIGINAL IS A DISK FILE) DESTROYS THE ORIGINAL FILE. 
IF THE SOURCE FILE IS A TAPE FILE COPY AND MOVE OPERATIONS ARE 
IDENTICAL. THAT IS, THE SOURCE FILE IS COPIED BUT NOT DESTROYED. 

EXAMPLES: 

? COPY SYSTEM/ALGOL, SYSTEM/COBOL FROM SYSTEM; END 
? MOVE DISK/FILE TO FIRSTTAPE, TO SECONDTAPE; END 

CHANGE STATEMENT 

<INVALID CHARACTER> CHANGE <CHANGE LIST> 



B6700 MASTER CONTROL PROGRAM 
PAGE 189 

WHERE: 
<CHANGE LIST> : := <CHANGE ELEMENT> I 

<CHANGE LIST>,<CHANGE ELEMENT> 
<CHANGE ELEMENT> <FILE LABEL>TO<FILE LABEL> 

THE FILE SPECIFIED BY THE FIRST <FILE LABEL> IN THE <CHANGE 
ELEMENT> IS RELABELED USING THE SECOND <FILE LABEL>. 

EXAMPLE: 

? CHANGE OLD/NAME TO NEW/NAME;END 

REMOVE STATEMENT 

<INVALID CHARACTER> REMOVE <FILE LABEL> 

THE FILE 
DIRECTORY 

SPECIFIED BY <FILE LABEL> WILL BE REMOVED FROM THE DISK 
AND THE SPACE IT OCCUPIES MADE AVAILABLE AS SOON AS THE 

FILE IS NOT IN USE. 

EXAMPLE: 

? REMOVE OLD/FILE; END 

DATA STATEMENT 

<INVALID CHARACTER> DATA <FILE LABEL> 

THE INFORMATION ON ALL CARDS AFTER THIS CONTROL STATEMENT UNTIL 
ANOTHER CONTROL CARD WILL BE DESIGNATED AS DATA AND WILL BE PLACED 
IN A FILE CALLED <FILE LABEL>. THIS <FILE LABEL> MUST BE THE SAME 
AS THE <FILE NAME> USED IN THE PROGRAM OR MUST BE LABEL EQUATED TO 
IT. THE DATA STATEMENT MUST BE THE LAST CONTROL STATEMENT BEFORE 
THE ACTUAL DATA. 



B6700 MASTER CONTROL PROGRAM 
PAGE 190 

BCL STATEMENT 

<INVALID CHARACTER> BCL <FILE LABEL> 

SAME AS ABOVE EXCEPT THE FOLLOWING CARDS CONTAIN BCL DATA. 

BINARY STATEMENT 

<INVALID CHARACTER> BINARY <FILE LABEL> 

SAME AS ABOVE EXCEPT THE FOLLOWING CARDS CONTAIN BINARY DATA. 
NOTE: BINARY DATA DECKS ARE TERMINATED WITH A ''BEND" CBINARY END> 
CARD RATHER THAN A NORMAL "END'' CARD. A "BEND" CARD HAS THE 
LETTERS "BEND'' WRITTEN IN PUNCHSCRIPT ACROSS THE CARD. 

END STATEMENT 

<INVALID CHARACTER> END 

THIS STATEMENT DESIGNATES END-OF-FILE INFORMATION FOR A PARTICULAR 
PROGRAM AND IS REQUIRED WHENEVER A PROGRAM IS TERMINATED FOR ANY 
REASON WHILE IT HAS CARD INFORMATION YET TO BE READ. CONSEQUENTLY, 
IF AN END STATEMENT APPEARS IT MUST BE THE LAST CARD IN A DECK 
PERTAINING TO A PROGRAM. HOWEVER, AN END STATEMENT IS NOT 
NECESSARY TO DENOTE THE END OF A DATA FILE. AN ATTEMPT TO READ ANY 
CONTROL ~ARO AS DATA WILL CAUSE AN END-OF-FILE NOTIFICATION, HENCE, 
IF A PROGRAM REQUIRES MORE THAN ONE CARD FILE, THE END OF ONE FILE 
WILL BE DENOTED BY THE DATA STATEMENT FOR THE NEXT. 

PROCESS TIME STATEMENT 

<INVALID CHARACTER> <OPTIONAL COMPILER NAME> PROCESS 
<COMMENT> <INTEGER> 



PAGE 191 
B6700 MASTER CONTROL PROGRAM 

THIS STATEMENT SPECIFIES THE MAXIMUM PROCESS TIME IN SECONDS FOR 
THE OBJECT PROGRAM OR THE COMPILER. IF THE PROCESS TIME EXCEEDS 
THAT SPECIFIED, THE JOB WILL BE TERMINATED. 

IO TIME STATEMENT 

<INVALID CHARACTER> <OPTIONAL COMPILER NAME> IO <COMMENT> <INTEGER> 

THIS STATEMENT SPECIFIES THE MAXIMUM IO TIME IN MINUTES FOR THE 
OBJECT PROGRAM OR THE COMPILER. IF THE IO TIME EXCEEDS THAT 
SPECIFIED THE JOB WILL BE TERMINATED. 

STACK SIZE STATEMENT 

<INVALID CHARACTER> <OPTIONAL COMPILER NAME> STACK <COMMENT> <INTEGER> 

THIS STATEMENT SPECIFIES THE NUMBER OF WORDS TO BE ASSIGNED IN 
PRIMARY MEMORY FOR THE WORKING STACK OF THE COMPILER OR OBJECT 
PROGRAM. IF NO STACK SIZE STATEMENT APPEARS, THE WORKING STACK 
SIZE WILL BE 512 WORDS. 

PRIORITY STATEMENT 

<INVALID CHARACTER> <OPTIONAL COMPILER NAME> PRIORITY 
<COMMENT> <INTEGER> 

THIS STATEMENT 
COMPILATION OR 

SPECIFIES THE PRIORITY TO 
AN OBJECT PROGRAM EXECUTION. 

BE ASSIGNED TO A 
PRIORITIES MAY RANGE 

FROM 0 TO MM WHERE 0 IS THE LOWEST PRIORITY AND MM <MIX MAX> IS THE 
HIGHEST PRIORITY. UNLESS OTHERWISE SPECIFIED A PRIORITY OF MM/2 
WILL BE ASSUMED. FOR A "COMPILE AND EXECUTE'' JOB. A PRIORITY 
ASSIGNED TO THE COMPILATION WILL ALSO APPLY TO THE EXECUTION UNLESS 
A SPECIFIC <PRIORITY> IS ASSIGNED WITH A CONTROL STATEMENT FOR THE 
EXECUTION OF THE PROCESS. 



B6700 MASTER CONTROL PROGRAM 

FILE CLABEL EQUATION> STATEMENT 

<INVALID CHARACTER> <OPTIONAL COMPILER NAME> FILE 
<FILE NAME> = <FILE LABEL> 

PAGE 192 

THE FILE STATEMENT IS USED TO ASSOCIATE THE <FILE NAME> USED IN THE 
PROGRAM WITH A PARTICULAR DATA FILE FOR EXECUTION. 

DEVICE OPTION : := <BACKUP OPTION>! 
<INPUT DEVlCE OPTION> I 

<OUTPUT DEVICE MEMORY OPTION>! 
<BACKUP OPTION> <OUTPUT DEVICE MEMORY OPTION>! 
<EMPTY> 

BACKUP OPTION : := <BACK>l<BACKUP>l<BACK UP>l<EMPTY> 

INPUT DEVICE OPTION : := <PAGE READER>l<READER> 
<EMPTY> 

OUTPUT DEVICE MEMORY OPTION ::= <DISK>l<DISPLAY>l<PAPER PUNCH>! 
<PRINTER>l<PUNCH> 

EXAMPLES: 

? FILE A = B 

<OUTPUT DEVICE MEMORY OPTION> OR 
<EMPTY> 

? FILE PRINT = PRINT BACKUP DISK 
? ALGOL FILE TAPE = SYMBOL/X/ALGOL 

COMMON STATEMENT 

TO BE SPECIFIED 

IO UNIT STATEMENT 



PAGE· 193 
B6700 MASTER CONTROL PROGRAM 

<INVALID CHARACTER> UNIT <UNIT MNEMONIC> <COMMENT> <FILE LABEL> <RDC> 

THIS STATEMENT ASSOCIATES A <FILE LABEL> WITH A PARTICULAR IO UNIT. 
IT MAY BE USED WHEN AN INPUT FILE DOES NOT HAVE A LABEL AND 
OPERATOR INTERVENTION IS NOT DESIRED. 

CORE REQUIRED STATEMENT 

<INVALID CHARACTER> <OPTIONAL COMPILER NAME> CORE <COMMENT> <INTEGER> 

THE STATEMENT INFORMS THE MCP OF THE CORE REQUIREMENT, IN WORDS, OF 
THE PROGRAM. IT WILL OVERRIDE THE ESTIMATE MADE BY THE COMPILER. 

SAVE STATEMENT 

<INVALIQ CHARACTER> SAVE <COMMENT> <INTEGER> <COMMENT> 

THIS STATEMENT SPECIFIES THE NUMBER OF DAYS FROM LAST ACCESS FOR 
WHICH A PROGRAM IS TO BE SAVED IN THE DISK LIBRARY. 

PRINTER BACKUP STATEMENT 

<INVALID CHARACTER> PB <INPUT DESIGNATOR> 
<OPTIONAL OUTPUT DESIGNATOR> <KEY DECLARATION> <PB OPTION PART> 

WHERE: 

<INPUT DESIGNATOR> : :=MT <INTEGER> I D <INTEGER> 
<OPTIONAL OUTPUT DESIGNATOR> : := <EMPTY> I LP <INTEGER> I CP <INTEGER> 
<PB OPTION PART> : := <GENERAL OPTIONS> I <PB OPTION PART>, 

<GENERAL OPTIONS> I <PB OPTION PART> <ASSOCIATIVE OPTIONS> 
<GENERAL OPTIONS> : := <EMPTY> I SAVE I COPIES= <INTEGER> 
<ASSOCIATIVE OPTIONS> : := <EMPTY> I RANGE <LITERAL> <SPACER> 

<LITERAL> I EQUAL <LITERAL> I <RECORD NUMBER OPTION> 



B6700 MASTER CONTROL PROGRAM 

<RECORD NUMBER OPTION> : :=RECORD <INTEGER> I RECORD <INTEGER>. 
<SPACER> <INTEGER> 

<SPACER> : := <BLANK> I <SPACE> <BLANK> 

PAGE 194 

THIS STATEMENT CAUSES PRINTER BACKUP FILES ON TAPE OR DISK TO BE 
PRINTED. FOR A DISCUSSION OF THE OPTIONS AVAILABLE SEE THE PRINTER 
BACKUP PART OF SECTION 6 OF THIS DOCUMENT. 

EXAMPLES: 

? PB MT6; END 
? PB MTl SAVE COPIES = 10 RECORD 1000 2000; END. 
? PB D25 CPl SAVE RANGE "1Q765AB" "GG654"; END 



86700 MASTER CONTROL PROGRAM 
PAGE 195 

APPENDIX B 

SYSTEM LOG FORMATS 



B6700 MASTER CONTROL PROGRAM 

APPENDIX B - SYSTEM LOG FORMATS 

PAGE 196 

THE FORMAT OF THE SYSTEM LOGS JS PROVIDED FOR THE CONVENIENCE OF USERS 
WISHING TO WRITE LOG-ANALYSIS AND BILLING PROGRAMS. 

THERE ARE THREE LOGS: THE SYSTEM LOG. MAINTENANCE LOG AND DATA 
COMMUNICATIONS LOG. THE FORMAT OF THE DATACOM LOG IS TO BE SPECIFIED. 

NOTE: THE FORMAT OF THE LOGS IS SUBJECT TO CHANGE. 

B-1. SYSTEM LOG 

EACH PHYSICAL BLOCK OF THIS LOG CONTAINS 30 WORDS. DIVIDED INTO FIVE 6-
WORD RECORDS. EACH ENTRY TYPE HAS AT LEAST ONE FIXED 6-WORD RECORD; IN 
ADDITION, IT MAY HAVE A VARIABLE NUMBER OF 6-WORD RECORDS WITH THE 
NUMBER OF RECORDS BEING CONSTANT FOR MOST ENTRY TYPES CSEE TABLE B-ll. 

RECORDS--EACH 6 WORDS IN LENGTH. EACH ENTRY TYPE HAS AT LEAST ONE FIXED 
6-WORD RECORD; IN ADDITION, IT MAY HAVE A VARIABLE NUMBER OF 6-WORD 
RECORDS WITH THE NUMBER OF RECORDS BEING CONSTANT FOR MOST ENTRY TYPES 
CSEE TABLE 1>. 

MISCELLANEOUS 
ENTRIES 

SYSTEM LOG ENTRY TYPES 

ENTRY 

HALT/LOAD 
TIME/DATE CHANGE 
SYSTEM OVERHEAD 
OPERATOR INPUT 
MESSAGE 

SECURITY ERROR 

TYPE CODE 

0-255 
0 
1 

2 

3 

16 

# OF RECORDS-ENTRY 

2 
1 

2 

2-4 DEPENDING ON USE 
SIZE C14 WORDS OR 
LESS> 
2 



JOB-ORIENTED 
ENTRIES 

PERIPHERAL­
ORIENTED ENTRIES 

86700 MASTER CONTROL PROGRAM 

ENTRY 

CONTROL CARD 

SCHEDULED 

80.J 

PRIORITY CHANGE 
OPERATOR RSVP 
ABORTS 
EO.J 

FILE OPEN 

I 10 ERROR 

FILE CLOSE 

TYPE CODE 

256-767 
256 

257 

258 

272 
273 
289 
288 

512-1023 
512 

513 

544 

PAGE 197 

# OF RECORDS-ENTRY '--...-----------

2-4 DEPENDING ON SIZE 
OF CC . C 1 4 WORDS 
OR LESS> 
2 OR MORE DEPENDING 
ON LENGTH OF JOB 
IDENTIFIER C43 WORDS 
OR LESS> 
2 lIF NO SCHEDULE 
ENTRY FOR THIS JOB 
THEN 2 OR MORE DE­
PENDING ON LENGTH OF 
.JOB IDENTIFIER> 
1 

3 
3 
3 

2 OR MORE DEPENDING 
ON LENGTH OF .JOB 
IDENTIFIER l43 WORDS 
OR LESS> 

2 

2 

WORD 0 AND WORD 1 ARE THE DATE AND TIME RESPECTIVELY. LOG ENTRIES ARE 
BACKWARDS-LINKED IN SEVERAL LISTS TO FACILITATE RETRIEVAL. CFOR 
EXAMPLE, ALL EO.J ENTRIES ARE LINKED, ALL ENTRIES PERTAINING TO A 
PARTICULAR .JOB ARE LINKEDl. THUS, ALL LINKS ARE CONTAINED IN THE LAST 
RECORD OF EACH ENTRY AND THE ENTRY TYPE CODE IS THE LAST WORD OF THE 
LAST RECORD OF EACH ENTRY REGARDLESS OF THE LENGTH OF THE ENTRY. EVERY 



PAGE 198 
B6700 MASTER CONTROL PROGRAM 

LINK CONTAINS TWO PARTS: THE LOG SERIAL NUMBER CSEE LOG RELEASE>, AND 
THE ZERO-RELATIVE ADDRESS OF THE LAST RECORD OF THE ENTRY TO WHICH THE 
LINK POINTS. A ZERO-LINK INDICATES THE TERMINUS OF THE LIST. THE LINKS 
FOR THE "SAME-ENTRY-TYPE" LIST ARE ALWAYS THE NEXT TO LAST WORD OF THE 
LAST RECORD OF EACH ENTRY. 

THE FOLLOWING tABLE LISTS THE VARIABLE PARTS OF ENTRY FORMATS. 

HALT/LOAD 

TIME/DATE 
CHANGE 

SYSTEM 
OVERHEAD 

WORD 

2 

3 
4 

5 

5 

5 
5 
6-9 

10 

1 1 

2 
3 

4 

5 

2 

3 
4 

5 
6 
7 

FIELD CONTENTS 

SYSTEM NUMBER CINITIAL ENTRY ONLY) 
MCP LEVEL 
MCP OPTIONS INCLUDED 

47:4 CPU CONFIGURATION 
43:4 MPXR CONFIGURATION 
39:8 DCP CONFIGURATION 
31:32 MEMORY MODULE CONFIGURATION 

RESERVED 

LINK TO PREVIOUS HALT/LOAD 
23:24 ENTRY TYPE 
47:24 ENTRY LENGTHS IN RECORD 

NEW DATE 
NEW TIME 

LINK TO PREVIOUS TIME/DATE CHANGE 
23:24 ENTRY TYPE 
47:24 ENTRY LENGTH IN RECORDS 

AVAILABLE CORE 
SAVE CORE USAGE 
OVERLAY CORE USAGE 
OVERLAY DISK SPACE USAGE 
OVERLAY TIME 
PROCESSOR TIME 



OPERATOR 
INPUT 

SECURITY 
ERROR 

PAGE 199 
B6700 MASTER CONTROL PROGRAM 

WORD 
8 

9 
10 
1 1 

2 
LAST WORD-2 

LAST WORD-1 
LAST WORD 

2 

3 
4 

5 
6-8 
9 

10 

1 1 

FIELD CONTENTS 
1/0 TIME 
RESERVED 
LINK TO PREVIOUS SYSTEM OVERHEAD ENTRY 

23:24 ENTRY TYPE 
47:24 ENTRY LENGTH IN RECORDS 

47:24 
23:24 

INPUT Cl4 OR LESS WORDSl 
LINK TO PREVIOUS ENTRY THIS 
JOB CIF APPLICABLEl 
LINK TO PREVIOUS OPERATOR INPUT 
NUMBER OF RECORDS THIS ENTRY 
ENTRY TYPE 

INFILTRATOR CJOB ID. IF APPLICABLE. 
OR USER ID. l 
PASSWORD USED 
METHOD OF ATTEMPTED ACCESS 
TERMINAL ADDRESS OF ACCESSOR 
RESERVED 
LINK TO PREVIOUS ENTRY THIS JOB CIF 
APPLICABLEl 
LINK TO PREVIOUS ENTRY THIS TYPE 

23:24 ENTRY TYPE 
47:24 ENTRY LENGTH IN RECORDS 

CONTROL CARD 2 CONTROL CARD INFO Cl4 WORDS OR LESSl 

SCHEDULE 

LAST WORD-3 47:24 
23:24 

PRIORITY 
MIXID 
LINK TO PREVIOUS ENTRY THIS JOB 
LINK TO PREVIOUS CC ENTRY 

LAST WORD-2 
LAST WORD-1 
LAST WORD 
LAST WORD 

47:24 NUMBER OF RECORDS THIS ENTRY 
23:24 ENTRY TYPE 

2 JOB ID. C43 WORDS OR LESS> 
LAST WORD-3 47:24 PRIORITY 



·PAGE 200 
B6700 MASTER CONTROL PROGRAM 

WORD FIELD CONTENTS ----- --------
23:24 MIX ID 

LAST WORD-2 LINK TO PREVIOUS ENTRY THIS JOB 
LAST WORD-1 LINK TO PREVIOUS ENTRY THIS TYPE 
LAST WORD 47:24 NUMBER OF RECORDS THIS ENTRY 

23:24 ENTRY TYPE 

BOJ 2 .JOB ID . CONLY IF NO SCHEDULE ENTRY 
EXISTS FOR THIS .JOB> 

LAST WORD-3 47:24 PRIORITY 
23:24 MIX ID 

LAST WORD-2 LINK TO PREVIOUS ENTRY THIS .JOB 
LAST WORD-1 LINK TO PREVIOUS ENTRY THIS TYPE 
LAST WORD 47:24 NUMBER OF RECORDS THIS ENTRY 

23:24 ENTRY TYPE 

PRIORITY 
CHANGE 2 47:24 NEW PRIORITY 

2 23:24 MIX ID 
3 LINK TO PREVIOUS ENTRY THIS JOB 
4 LINK TO PREVIOUS ENTRY THIS TYPE 

5 23:24 ENTRY TYPE 
47:24 ENTRY LENGTH IN RECORDS 

OPERATOR 
RSVP 2 AVAILABLE CORE 

3 OVERHEAD SAVE CORE USAGE 
4 OVERHEAD OVERLAY CORE USAGE 
5 OVERHEAD OVERLAY DISK SPACE 
6 OVERHEAD OVERLAY TIME 
7 OVERHEAD PROCESSOR TIME 

8 OVERHEAD I/O TIME 
9 ATTENTION TYPE 
10 RESPONSE TYPE 
11-13 RESERVED 
14 23:24 MIX ID 
15 LINK TO PREVIOUS ENTRY THIS JOB 



EOJ 

ABORT 

WORD 
16 

17 

2 

3 
4 

5 

6 

7 

8 
9-12 
13 

14 

15 

16 
17 

2 
3 

4 

5 
6 

7 

8 
9 

PAGE 201 
B6700 MASTER CONTROL PROGRAM 

FIELD CONTENTS 
LINK TO PREVIOUS ENTRY THIS TYPE 

23:24 ENTRY TYPE 
47:24 ENTRY LENGTH IN RECORDS 

47:24 
23:24 

AVAILABLE CORE 
SAVE CORE USAGE 
OVERLAY CORE USAGE 
OVERLAY DISK SPACE USAGE 
OVERLAY TIME 
PROCESSOR TIME 

1/0 TIME 
RESERVED 
LINK TO ENTRY CONTAINING JOB ID. 
<SCHEDULE OR BOJ ENTRY> 
PRIORITY 
MIXID 
LINK TO PREVIOUS ENTRY THIS JOB 
LINK TO PREVIOUS ENTRY THIS TYPE 

23:24 ENTRY TYPE 
74:24 ENTRY LENGTH IN RECORDS 

AVAILABLE CORE 
SAVE CORE 
OVERLAY CORE 
OVERLAY DISK 
OVERLAYTIME 
PROCEDURETIME 

l/O TIME 
13:14 SEGMENT ABORTION OCCURRED 
32:13 WORD ABORTION OCCURRED 
35:3 SYLLABLE ABORTION OCCURRED 

10 ABORT REASON. C3 WORDS OR LESS 

13 

DEPENDING ON CAUSE OF ABORTION> 
LINK TO ENTRY CONTAINING JOB IO. 
CSCHEDULE OR BOJ ENTRY> 



FILE 
OPEN 

I 10 ERROR 

FILE CLOSE 

PAGE 202 
B6700 MASTER CONTROL PROGRAM 

WORD 
14 

15 
16 

17 

2 

3 
4 

5 
6-8 
LAST WORD-3 
LAST WORD-2 
LAST WORD-I 
LAST WORD 

2 

3 

4-7 
8 
9 

10 

1 1 

2 

3 

4-6 

FIELD CONTENTS 
47:24 PRIORITY 
23:24 MIX ID 

LINK TO PREVIOUS ENTRY THIS JOB 
LINK TO PREVIOUS ENTRY THIS TYPE 

23:24 ENTRY TYPE 
47:24 ENTRY LENGTHS IN RECORDS 

47: 1 I IF STACK TYPE 
UNIT MNEMONIC OR DISK FILE TYPE 
PHYSICAL SERIAL OR DISK PACK NO. 

47:6 NUMBER OF BUFFERS 
37:19 MAXIMUM BLOCK SIZE IN WORDS 
18:19 MAXIMUM BLOCK SIZE IN WORDS 

FILE ID. C43 WORDS OR LESS> 
RESERVED 

47:24 
23:24 

47:8 
39:8 

LINK TO PREVIOUS ENTRY THIS UNIT 
LINK TO PREVIOUS ENTRY THIS JOB 
LINK TO PREVIOUS ENTRY TYPE 
NUMBER OF RECORDS.THIS ENTRY 
ENTRY TYPE 

POINTER TO CORRESPONDING ENTRY 
IN MAINTENANCE LOG 
UNIT NUMBER 
UNIT TYPE 
RESERVED 
LINK TO PREVIOUS ENTRY THIS FILE 
LINK TO PREVIOUS ENTRY THIS UNIT 
LINK TO PREVIOUS ENTRY THIS TYPE 
ENTRY TYPE 

TRANSACTION COUNT 

IIO TIME <INCLUDES 
DISK SPACE IF APPLICABLE> 
RESERVED 



• 
PAGE 203 

B6700 MASTER CONTROL PROGRAM 

WORD FIELD CONTENTS ----- --------
7 LINK TO FILE OPEN THIS FILE 
8 LINK TO PREVIOUS ENTRY THIS FILE 
9 LINK TO PREVIOUS ENTRY THIS 008 

10 LINK TO PREVIOUS ENTRY THIS TYPE 
1 1 ENTRY TYPE 

B-2. MAINTENANCE LOG -----------

EACH PHYSICAL BLOCK OF THIS LOG CONTAINS 30 WORDS, DIVIDED INTO TWO 15-
WORD RECORDS. EACH ENTRY CONSISTS OF AT LEAST ONE RECORD, AND IN 
ADDITION, DEPENDING ON THE TYPE OF ERROR, ENOUGH RECORDS TO ADEQUATELY 
CONTAIN DATA WHICH HAS BEEN TRANSFERRED OR IS TO BE TRANSFERRED. THE 
FORMAT OF THE MAINTENANCE LOG IS SHOWN IN TABLE R2-1. THIS LOG HAS A 
30-WORD PHYSICAL BLOCK DIVIDED INTO TWO 15-WORD RECORDS. EACH ENTRY 
CONSISTS OF AT LEAST 1 RECORD AND IN ADDITION, DEPENDING ON ERROR TYPE, 
ENOUGH RECORDS TO ADEQUATELY CONTAIN DATA TRANSFERRED OR TO BE 
TRANSFERRED. 

WORD 

0 

2 

3 

4 

5 

6 
7 

8 

9 

1 0 

1 1 

12 

FIELD 

7:8 
17:3 

39:20 
19:20 

39:20 

CONTENTS 

DATE 
TIME 
ERROR TYPE 
UNIT NUMBER 
UNIT TYPE 
FRAME SIZE 
DENSITY 
TRANSACTION COUNT 
RETRIES (IF APPLICABLE) 
REEL NO. OR ROW CIF DISKl 
BLOCK NUMBER IN REEL OR ROW 
RECORD NUMBER WITH IN BLOCK 
RESULT DESCRIPTOR 
IOCW 
NUMBER OF SUCCEEDING RECORDS 



B6700 MASTER CONTROL PROGRAM 
PAGE 204 

WORD 

13 

14 

FIELD CONTENTS ----- -------- ' 

19:20 

CONTAINING DATA TO BE 
TRANSFERRED 
NUMBER OF SUCCEEDING RECORDS 
CONTAINING DATA TRANSFERRED. 
POINTER TO CORRESPONDING ENTRY 
SYSTEM LOG 
RESERVED 

THE ENTRIES ARE BACKWARDS LINKED BY UNIT 

ERROR TYPES ARE: 

0 - DESCRIPTOR ERROR 
1 - INVALID MEMORY ADDRESS 
2 - IIO MEMORY PARITYDRESS 
3 - MEMORY PROTECT ERRORS 
4 - PARITY 
5 - WRITE LOCKOUT 

• 


