
Reprinted from:
Proceedings of
Fourth Australian
Computer Conference

Adelaide, South Australia
August JI-15th, 1969

Process Handling
on Burroughs B6500

By J. C. CLEARY

Proceedings of Fourth Australian Computer Conference
Adelaide, South Australia, 1969

Process Handling on Burroughs B6500
By J. G. Cleary
Burroughs Corporation, Pasadena, California, U.S.A.

ABSTRACT: The approach to process handling embodied in 86500 hardware and software
design and implementation is discussed in this paper. Hardware features neces.ury to the
understanding of the approach are first described. Some aspects of the language ESPOL-an
extended ALGOL language used for writing the 86500 Executive System-are presented. The
representation of active and inactive processes by active and inactive stacks is discussed.
Implementation of process interlocking facilities is described. Some aspects of 86500 core
protection are discussed. There follows a description of the usage and implementation of events
and the concept of "software interrupt" is introduced and discussed. Finally, it is claimed that
the paper demonstrates how the basic 86500 design philosophy has assisted in the implemen­
tation of process handling. The emphasis throughout the paper is on description of a working
system, rather than theoretical discussion.

KEY WORDS AND PHRASES: Process, processor, multiprogramming, multiprocessing,
dynamic relocation, dependent process, active process, Algol, event, state vector, tree, locking,
queue.
COMPUTING REVIEWS CATEGORIES: 4.20, 4.21, 4.22, 4.31, 4.32, 6.20, 6.21.

INTRODUCTION
The B6500 is designed for the multiprogramming/multi­
processing environment where the process, rather than the job
or program, is considered as the basic processing unit.

This paper describes how the B6500 system controls the
running of independent and dependent processes. An intuitive
understanding of the meaning of the term "process" is assumed
(but see Dahm, Gerbstadt and Pacelli, 1967; Dennis and Van
Horn, 1966; Lampson, 1968).

SYSTEM ORGANISATION
The division of the B6500 system into hardware and software
components was dictated by economic rather than technical
considerations. Thus, the distinction between hardware and
software functions is considered relatively unimportant, and
will be noted only in this section.

The B6500 has been discussed elsewhere (Hauck and Dent,
1968; Hillegas, 1968) and only those details considered neces­
sary to the understanding of the current subject are discussed
here.

Hardware/Software Integration
The B6500 hardware has been designed to operate under the

control of an executive program (MCP or Master Control
Program), and to be programmed only in higher level lan­
guages (e.g. ALGOL, COBOL and FORTRAN)-there is no
assembler. Thus, machine design must facilitate the implemen­
tation of fast compilers producing efficient machine code.

The command structure of the B6500 is Polish string and the
instructions manipulate the contents of a stack. The stack not
only facilitates the execution of Polish code, but also provides
an efficient means of handling recursion.

Efficient compiling techniques typically produce a Polish
string, usually as the first of two or more steps in the transla­
tion of source code to machine language; they also seem
naturally biased towards the use of recursive procedures (Ran­
dall and Russel, 1964). Hence, one-pass compilation of
efficient code is possible.

lnstructiom and Word Formats
The machine instruction is called an operator and is variable,

in length-in 8 bit increments or "Syllables"-from 8 bits, for
the more frequently used instructions, to 96 bits.

Data and Control words are 51 bits long. The tag, in the
first three bits, identifies the various types as shown in Figure
1. The remaining 48 bits are data or control information.

DATA WORDS

I 000 I I EXPONENT MANTISSA I ~~N~i~~iN

1

1 I I DOUBLE

I 010 I EXPONENT I MANTISSA (MS) I 6~~~~~i~
I I I 1ST. WORD

I OIOEXPONENT(MS) I MANTISSA (LS) l 6~~~~~iN I
DOUBLE

I I .. 12 ND. WORD
l+-6 BITS-•o!o•----39 BITS----<-~·

DESCRIPTOR WORDS

I .. _10_1_,l._P_.l....__~ __ L_E_N_G_TH __ l __ A_DD_R_E_s_s _ __.l ~:~~RIPTORIODl
I I

I ~II Ip I LENGTH I ADDRESS I SEGMENT ._ _ _,I--'..__-~------'""-------' DESCRIPTOR(SD)

l...--2DB1Ts •I• 20B1Ts---l

SPECIAL CONTROL WORDS

I 011 I STACK NO.

111 STACK NO.

DISPLACEMENT

PROGRAM
SYLLABLE INDEX

I I
I I

MARK STACK
OF CONTROL I WORD (MSCW)

ADDRESS PROGRAM

COUPLE CONTROL
WORD(PCW)

011 PROGRAM ADDRESS ~~1¥~~L
"----+--'----......_.;;.SY.;.;L:::L::..A;.;:;B.=LE::.....;l.;.;N.;:;.DEX:::;.;..~,..1....;C:..:Oc::U.:...PL=E:.....i WORD (RCW)

I I
I I I

INDIRECT
001 I ADDRESS I REFERENCE

'-· --i·--'·-------------'·-'C:.:O:..:Uc:..P.=LE::....i. WORD IIRW)

.---r-r' -----.------,.......1.-------. STUFFED I 001 I STACK NO. l DISPLACEMENT l l DELTA l kNE~~~JcE
--~,---.......,.1--.-----1'-'""1----' WORD(IRWS)

~-~,~--~~-'--------'--~--~TOPOFSTACK I 011 I STrfEs I I OS . I OF I CONTROL
• WORD (TOSCW)

• l.-10B1+s~-1sB1rs .1.1 l
--l 4BITS 1-~ZOBITS 14BITS

Fig. I. B6500 Word Formats.

Stack Organisation
Each process is assigned memory for a stack in which are

stored local variables, references to program procedures, data

231

arrays and current process status. When the process is acti­
vated, four high speed registers (A, X, B and Y) are estab­
lished as the top of stack locations and register S points to the
location of the last w.ord placed in the stack memory area (See
Figure 2). Registers X and Y may be regarded as double pre­
cision extensions of registers A and B and will not be consid­
ered further.

The stack operates as a last in, first out storage area. Thus,
an operand is stored into register A with consequent pushdowns
into register B and into the memory location pointed at by
register S. Similarly, extraction of data is from register A with
consequent pop-ups from B and the location referenced by S.
The contents of S are incremented by one on a push-down and
decremented on a pop-up.

Operators typically manipulate the A and B registers with
consequent increase or decrease in stack size. The necessary
push-downs and pop-ups are automatically handled by pro­
cessor hardware. The Base of Stack (BOS) and Stack Limit
(SL) registers define the boundaries of the process stack
memory-the process is interrupted if S is set to the value of
BOS or SL.

,-----------,
I TOP OF STACK REGISTERS . I

IN/OUTPUT
A

PATH OF I
DATA

TO STACK I B s

I I
L _ _____ _ __ _J

STACK AREA
ASSIGNED

TO PROGRAM

STACK AREA
CURRENTLY

IN USE

WORD nix

TOS WORD

~A~I M I T REGIS~
- - I SL I

,... --w=o=R-D--n--1~---1 ---tl BOS I I
~- L ___ _J

- STACK -
MEMORY

AREA

Fig. 2. Top of Stack and Stack Bounds Registers.

Addressing
Data is addressed via the Data Descriptor (DD), the Indirect

Reference Word (IRW) and the Stuffed Indirect Reference
Word (IRWS); code is accessed via the Segment Descriptor
(SD). See Figure 1.

The Address Couple in an IRW specifies a level and a dis­
placement-denoted for convenience as (level, displacement)
or (11, 6). The level corresponds to the lexicographic level at
which the referenced item is declared. Figure 4 shows how the
stack is built up for the simple Algol program given in Figure
3. Note that the start of each level within the stack is marked
by a Display Register (Randall and Russel, 1964) of which
there are 32, corresponding to the 32 possible levels of
nomenclature. Thus, Vl, V2 and V3 are addressed by IRW's
having the address couples (2, 2), (2, 3) and (3, 2) respectively.

232

----------LEXICOGRAPHICAL LEVEL "2" BEGIN

REALV I;
REAL V2;
PROCEDURE A;

BEGIN ---­

REAL V3;
PROCEDURE B;

B;
END,

-BEGIN --

V3-3;
VI -V3;

ENO;

ii•2, 8=2
U=2, 8•3
ii=2, 8·4

·LEXICOGRAPHICAL LEVEL "3"

ii= 3, 8= 2

Ji: 3, 8= 3

·LEXICOGRAPHICAL LEVEL"4"

PROCEDURE C; ii= 2, 8. 5

--------LEXICOGRAPHICAL LEVEL"3" BEGIN

C;
IENO;

REALV4;

PROCEDURE O;

O;
-ENO;

-BEGIN -
REAL V5;
V4-4 ·
V5-5;
A;
V2 -V4;

·ENO;

£.t = 3, 8· 2
l i =3, 8. 3

·LEXICOGRAPHICAL LEVEL "4"
£1=4,8=2

Fig. 3. Algol Program with Lexicographical Structure
Indicated.

When a procedure is entered or exited, the "addressing
environment" may change and hence the Display Registers may
have to be reset-e.g. the address couple (3, 2) references V3
or V 4 depending upon whether procedure A or C is executing.
The Mark Stack Control Word (MSCW) and Return Control
Word (RCW) contain information, on the lexicographic struc­
ture and dynamic history of the process, which is used in set­
ting the Display Registers for the current addressing environ­
ment; however, a detailed discussion of this subject is beyond
the scope of this paper (see Hauck and Dent, 1968).

It is sometimes necessary to access information outside the
addressing environment of a procedure-Le. in Algol terms,
formal parameters must be referenced. Also referencing across
stacks which are dynamically relocatable, is sometimes desira­
ble. The IRWS (see Figure 1) locates a stack via its Stack
Number, a MSyW is found at a distance above the bottom of
stack given by 't,he displacement field; the referenced item is
found at a distance above the MSCW given by the delta field.

The Data Descriptor references arrays and the Segment
Descriptor, code segments. In general, the address field-an
absolute address-points to the starting memory (P = 1) or
disk (P = 0) location of the information; an attempt to access
information referenced by a Descriptor with P = 0 causes a
"presence bit" interrupt and the consequent reading of the
information from the disk. All addressing within the array or
segment is relative to the base address and any relative address
exceeding the value of the length field causes an "invalid
index" interrupt.

A procedure declaration generates, within the stack, a Pro­
gram Control Word (PCW-e.g. PCW-A in Figure 4). The
address couple field of the PCW (see Figure 1) points to a
Segment Descriptor which in turn points to the code segment
for the procedure. The starting relative address of the proce­
dure is contained in the Program Syllable Index field of the
PCW. A call on the procedure generates an IRW or IRWS
pointing to the PCW and thus, the relevant code is entered (see
Figure 5).

The Stack Tree
An active process is represented by an active stack-i.e. a

stack referenced by the S, BOS and SL registers of some pro­
cessor. Stacks are used also to represent inactive processes and
for other specialised purposes.

s

F

DISPLAY
REGISTERS

I D31 l
D6

D5

D4

D3

D2

DI

DO

MSCW ==--==
Fig. 4. Display Registers Indicating Current Addressing

Environment.

SD

PROCESS STACK AREA

..-------- - -----+--- 118

LEVEL-0 OR LEVEL - 1
~ STACK AREA

Dll

PCW PROG.SYL. ADDRESS

I

INDEX COUPLE _

1

} DELTA

MSCW~------.

~ 1 } DISP.

LsosR

PROGRAM CO DE SEGMENT

ENTR Y PO INT
IN CO DE

START OF SEGMENT

Fig. 5. Call on a Procedure. IRWS-+PCW-+SD-+Code Area.

The simple Stack Tree-or Cactus Stack-where each job
gives rise to a single process is shown in Figure 6a. The stack
trunk-the level-zero stack-contains operating system global
variables. For each job a level-one stack, containing all Seg­
ment Descriptors, is required. Where two or more jobs involve
activation of the same code, a common level-one stack is used
--all code is non-modifiable and thus re-entrant. However,
jobs involving different code require creation of new level-one
stacks. Finally, each process (in this case each job) is repre­
sented by a level-two stack, linked via display registers to the
level-one and level-zero stacks. The level-zero and level-one
stacks are inactive; the level-two stacks may be active--e.g.
Stack Number Two--or inactive.

As each stack is created by the operating system, a data des­
criptor-the Stack Descriptor-referencing its allocated space,
is entered into an array called the Stack Vector. A stack is
considered as having a Stack Number-merely the relative
position of its Stack Descriptor within the Stack Vector. The
Stack Vector itself is referenced by the Stack Vector Descrip­
tor, maintained in a reserved position of the level-zero stack.
All references to stacks are made through the Stack Number
and thus, through a Stack Descriptor no different from any
other Data Descriptor-it is because of this that stacks are
overlayable and dynamically relocatable.

A process may create other processes. Figure 6b illustrates
the case where process L has created process M and process M
has created process N. Process L and M are inactive and pro­
cess N is active. Note that process N has available not only
information in its own stack, but also global information in the
process M, process L, level-one and level-zero stacks. On the
B6500 the establishment of an independent process is equiv­
alent to a procedure call, except that the procedure has an
independent existence-i.e. has a separate stack.

STACJS
_ VECTOR -

OOn

'DD5

llt! 'I
0 03

Dll2

DO I

ODO

[}03

002
C!D I

STACK
_ NO.n -

1 MSCW 1 1·~~:1 - I
~

MSCW

,.-----~PROC. ID

STACK
"'TRUNK.,.

DD -STACK

SEGMENT
DESCRIPTORS

pzj
- - D~f[J,~~OR SD
~ MSCW

-TOSCW"' ~

(ol

DISPLAY
REGISTERS

R
D~

D4

03
02
DI

DO

DISf'l.l\Y

L!~~J"...---,1~
D

0()

(b)

Fig. 6. (a) The Stack Tree: (b) Stack Tree with Dependent
Processes.

233

The System Programming Language
The language ESPOL (Executive System Programming

Oriented Language) is used exclusively for writing the MCP.
ESPOL is an extension of Algol and is itself written in the
standard B6500 Extended Algol.

It is beyond the scope of this paper to include a formal
definition of the language. ESPOL facilities are introduced as
needed in the following sections; however, the following fea­
tures are worth noting briefly:

1. String handling facilities.
2. Memory protection overwrite facilities. Certain operations

--e.g. storing into a Control Word-will usually cause a
fault interrupt. These fault interrupts can be by-passed
by the hardware. ESPOL code can selectively invoke or
ignore the memory protection facilities.

3. Field modifications. Fields in words, any number of bits
in length, may be modified or transferred to fields in
other words.

4. Equivalence facilities. The same memory location may be
accessed by several different identifiers of several different
types.

5. Event handling.
6. Macro definition. An identifier may take on the value of

a string of text. The appearance of the identifier any­
where in a program is equivalent to the appearance of
the related text. A macro may be parameterised-i.e.
actual parameters may be supplied with the macro iden­
tifier and will replace formal parameters in the related
text.

7. Intrinsics or primitives. The appearance of an intrinsic is
semantically equivalent to a procedure call; however, the
procedure "declaration" is implicit-Le. it is understood
by the compiler.

It will be obvious that ESPOL is not intended for use by
applications programmers; it is used exclusively for writing the
operating system.

PROCF.SS ACTIVATION AND DEACTIVATION
The primary objective is to maximise throughput. The B6500
may have more than one central processor and it is desirable
that each processor be assigned to a process at all times. It is
desirable, also, that the overhead represented in process switch­
ing should be minimised.

A process may change from the active to the inactive st£tte
when it can no longer continue--e.g. when it is waiting on 1/0
--or when it is preempted by a process of higher priority. The
stack associated with the inactive process is entered either into
a "Wait Queue", behind a particular event or, on preemption,
into the "Ready Queue". A process newly presented to the
system is made to look as if it has been preempted and entered
into the Ready Queue.

The Wait Queues are described in the section on events.
Processes (or more precisely stacks) in the Wait Queues
eventually move to the Ready Queue when the events on which
they are waiting are caused. The structure of the Ready Queue
is shown in Figure 7a where the inactive process represented by
stack # 500 currently has the highest, and that represented by
stack #20 has the lowest priority. The queue is linked through
the second word in the stack; the forward and backward links
facilitate rapid insertion and deletion of entries.

The "Ready Queue Head" consists of one word containing
the first and last Stack Numbers as shown. All the linkages are,
of course, indirect; the Stack Descriptor being accessed by
indexing the Stack Vector Descriptor by the Stack Number in
the link.

Entries in the Ready Queue are maintained in priority order.
Priority is determined dynamically-it includes among other
things, the time that the process has been in the queue-and it
is guaranteed that no process will remain inactive indefinitely.
The queue is re-arranged from time to time in order to reflect
the changing dynamic priorities (this is the subject of another
paper yet to be published). When a processor becomes avail­
able, the process at the head of the Ready Queue is activated.

Active and Inactive Stacks
The mechanism whereby a process goes from the active

through the inactive and back to the active state is best under­
stood by considering preemption at interrupt time.

234

READY QUEUE HEAD (1 WORD)

l F IRST ENTRY

±
LAST ENTRY

500 20

STACK STACK STACK STACK
- #500 - - # 2 1 - - # 102 - - #20 -

~ o I 21 - 500I 102 - 21 I 20 - 10 2I o f_.J
TOSCW TOSCW TOSCW TOSCW

(a)

FIRST WORD OF SOME EVENT

COUNTjFIRST ENTRY l LAST ENTRY IH
l 15 l 902 l

STACK STACK STACK
- #15 - - #205 - - #902 -

~ o I2o5 15 J902 205j_ 0 I-
TOSCW TOSCW TOSCW

(b)

Fig. 7. (a) The Ready Queue; (b) An Event Wait Queue.

When a process-or more precisely, the processor assigned
to a process--is interrupted, the hardware forces entry into an
interrupt procedure. After the processing of the interrupt, the
process stack is as shown in Figure Sa.

At this point, the interrupt routine checks to see if there is a
process in the Ready Queue with higher current priority than
the interrupted process; if so, the following occurs:

1. The active process--called hereafter "process A"-is
linked into the Ready Queue.

2. The interrupt procedure executes a "Move Stack" opera­
tor. This one instruction does the following:

(a) Stores pointers to the processor's S and F registers
in the first word of process A's stack (see Figure
Sb). The F register marks the topmost MSCW in
the stack. The first word in the stack, which pre­
viously was a single precision operand containing
the processor ID (a number 0 through 7), is now
a Top of Stack Control Word (TOSCW) and is so
tagged.

The status of various processor flip-flops neces­
sary to restore process A to the active state is also
stored in the TOSCW.

(b) The S and F registers and some processor flip­
flops are set from the TOSCW for the process­
"Process B"-at the head of the Ready Queue.
Process B is de-linked from the Ready Queue.
The Stack Descriptor, obtained via the Stack
Number, for process B is used in setting the BOS
and SL processor registers.

(c) The TOSCW in process B's stack is changed to a
single precision operand containing the processor
ID. Process A is now inactive and process B is
active and . assigned the processor previously occu­
pied by process A.

3. Note that process B was previously rendered inactive in
precisely the same manner as described for process A
above and its stack is now as shown in Figure Sa.

The stack for process B is now active; however, the proces­
sor is still executing code associated with the interruption of
process A. To recreate process B's environment at the point of
its interruption, the interrupt routine issues an Exit operator
which does the following:

(a) Recreates process B's addressing environment. As men­
tioned earlier, the MSCW's in process B's stack are used
in resetting the Display Registers. Register F points to
the topmost MSCW and all the MSCW's are linked one
to another (see Hauck and Dent, 196S).

01 -

SL REGISTER

STACK SPACE FOR I S REGISTER
INTERRUPT
PROCEDURE

F REGISTER

RCW

STACK SPACE FOR ' STACK SPACE FOR I
- INTERRUPTED -

PROCEDURE
- INTERRUPTED -

PROCEDURE

RCW RCW

~ MSCW MSCW

R,C W RCW

On FIRST MSCW FIRST MSCW - I (STACK IN STACK

PROCESS l PROCESS
INFORMATION - INFORMATION -

AREA AREA

0
RE".ADY UE;UE

U IKAGE

PR OCESSOR ID TOSCW 5

BOS REGISTER

(•) (b)

Fig. 8. (a) Active Stack; (b) Inactive Stack.

(b) Uses the topmost RCW to return control to process B's
interruption point. The segment Address Couple and ·
Program Syllable Index for the interruption point of
process B's code were stored in the RCW (see Figure 1
-note, an RCW is very similar to a PCW) by hard­
ware at the time of interruption.

Note that a swap of processes between a processor and the
Ready Queue; between the active and inactive states, is the
essential point of the mechanism described above. Note also,
that most of the work is performed by two operators--Move
Stack (MVST) and EXIT. MVST is invoked in ESPOL via an
intrinsic, the EXIT operator is invoked by the normal Algol
procedure exit mechanism.

The Stack as the Process State Vector
A process' private information is carried entirely within its

stack, thus, one may speak of a process as being represented by
its stack-i.e. its level-n stack where n> 1.

The stack, thus corresponds to what has been called the
Process State Vector (or Process State Word-see Dennis,
1965; Dennis and Van Hom, 1966; Lampson, 1968). If one is
to have processes which can be interrupted and deactivated,
then one must ensure that, on reactivation, a process will con­
tinue as if never interrupted. Process state information is
carried in the stack as follows:

(a) Control information necessary to restore the operating
environment is held in Control Words (MSCW's,
RCW's and the TOSCW).

(b) Information on dependencies with other processes is
contained partly in Control Words and partly in the
Process Information Area (see Figure 8).

(c) Information generated or modified by the process or
pointers to such information (e.g. Data Descriptors in
the case of arrays) is contained wholly within the pro­
cess stack.

(d) Logging and accounting data are held in the Process
Information Area.

DEPENDENT AND INDEPENDENT PROCESSES
Consider the program, written in extended Algol, shown in
Figure 9a. Suppose the program initially is represented by a

process active on processor 0. The statement "PROCESS A"
causes procedure A to start executing as a separate process. If
processor 1 is assigned to the new process--called hereafter
"PROCESS A''-the Stack Tree, immediately after the initial
process--"PROCESS B"---enters procedure B is shown, with
the Stack Vector omitted, in Figure 9b.

.----BEGIN ---------LEXICOGRAPHIC LEVEL 2
REAL VI ;
PROCEDURE A;

[

BEGIN ---------LEXICOGRAPHIC LEVEL 3

RfAL V2;

END;
PROCEDURE B;

[

BEGIN ---------LEXICOG.RAPHIC LEVEL 3

RSAL V3;

END;
PROCESS A ;

~;
'----END ;

PROCESSOR 0
REGISTERS

I SL.a I

[So

I l
-

(a)

LEVEL-2
STACK

(PROCESS B)

1r ~STAtK J.
SPACE
p 0-

roi~~e
·~

fl)CW

f-1 MSCW

I PROCESSORO - DISPLAY - -
REGISTERS PCW-B SEGMENT pq DESCRIPTORS PCW-A

V I

!lCW

PROCESSOR I
REGISTERS

I SL. , I

LEVEL-3
STACK

(PROCESS A)

-
S1 J---1 STACK

SPACE
PRO-

F, }--, CEDUREA

v:z
(BOSR1 RCW

.-!-- MSCW

_ PROCEss_
INFO.
AREA I MSCW 1._ l 03 µ. MSCW I- PROCESSOR I

DISPLAY 02. I PROCESS REGISTERS T STACK J ~ D I
INFO. ~ TRUNK i- DO l AREA j

(MSCW ~
.0'3 I-.L l

0 '-' D2.

Il l
DO

(b)

Fig. 9. (a) Program for Process Activation; (b) Multi
processor Stack Tree.

Figure 9b illustrates how process activations are identical to
procedure calls except that a new stack is established. It there­
fore follows that all the rules of scope inherent in Algol block
structure apply equally to nested procedures and nested pro­
cesses; e.g. Vl, declared in process B is global to process A.
These relationships are established by the Display Registers of
the two processors-D2 for both processors points to the same
MSCW in the level two stack and therefore Vl in both stacks
is accessed by the address couple (2, 2). Note also, that
level-one and level-zero are common to both processes.

If procedure A were declared somewhat differently, parame­
ters could be passed to process A by a statement such as:
PROCESS A (parameter 1, parameter 2 .••). Such parameters
would be accessed by Stuffed Indirect Reference Words as
described above.

When process B exits, the PCW associated with procedure A
is destroyed in the usual Algol block---exit fashion, hence pro­
cess A will be terminated-it no longer has a creator, nor does
it have a code segment. It should be noted that exit from the
block where a process is called will not nece~ar~y terminate
that process---e.g. if procedure B were to contatn the state­
ment: "PROCESS A", then a further level-three stack corres­
ponding to a new process--say process A'-would be created;
however, process A' would not be terminated when procedure
B exited: It should be further noted that termination of process
A has no effect on the running of process B.

235

It is not always desirable that processes should destroy
themselves. It may be that a creator process will synchronise
itself with created processes and will determine when those
dependent processes are to be terminated. Such sychronisation
is usually achieved by using events. The syntax for the usage of
events in extended Algol differs little from that described for
ESPOL in a later section and the reader is referred to that sec­
tion in order to determine how the following program gives
rise to the Stack Tree shown in Figure 6b.

BEGIN

END.

EVENT El;
PROCEDURE M;

BEGIN

HOLD;
END;

PROCEDURE N;
BEGIN

END;
PROCESS M;
PROCESS N;

WAIT (El);

CAUSE (El);

For convenience, the outer block code may be regarded as
being associated with process L. Figure 6b represents the situa­
tion when process L has reached the WAIT (El) statement
and process M has reached the HOLD statement. After
CAUSE (El) is reached, process N is terminated, however,
process L--which was waiting on event El, but has now been
re-activated, may do some cleaning up before allowing itself
and process M (which is suspended in a HOLD condition) to
be terminated.

The Process Information Area of each stack contains links
--Stack Numbers--to dependent processes. These links are to
the "father", the "eldest son", the "older brother" and the
"younger brother" processes (see Figure 10). It is stressed that
the dynamic tree of a process family is dependent upon the
sequence of process activations and not upon the location of
PCW's (procedure declarations) associated with processes.
Thus, the dynamic tree in Figure 10 may have been set up by
a program such as:

BEGIN

236

REAL Vl;
PROCEDURE ONE;

BEGIN
PROCESS TWO;

END;
PROCEDURE TWO;

BEGIN

END;

PROCESS THREE;
PROCESS FOUR;
PROCESS FIVE;

PROCEDURE THREE; BEGIN ••• END;
PROCEDURE FOUR; BEGIN • END;
PROCEDURE FIVE; BEGIN ••• END;

PROCESS ONE;
END.

Such linkages are essential if a process is to control its
created processes. For example, a process may cause the termi­
nation of any or all of the processes it has initiated (via syn­
tactical structures not important to this discussion). These links
are also necessary when an operator requires the system to ter­
minate a process and all its successors.

(a) (b)

LEGEND ®A PROCESS WITH REFERENCE NUMBER n.

---. ELDEST SON LINKAGE

- FATHER LINKAGE

---- YOUNGER BROTHER LINKAGE
········-OLDER BROTHER LINKAGE

Fig. JO. Process Activation Links. (a) Dynamic Tree of Pro­
cess Family; (b) Process Family Linkage.

The emphasis in this section has been upon the manipulation
of processes in the extended Algol language. However, ail
compilers-ALGOL, FORTRAN and COBOL at present-PU
and others in the future-are themselves written in extended
Algol; hence, the asynchronous and synchronous, dependent
and independent process facilities required by these various
languages will be available.

WCKING
Different processes may access the same resources--code seg­
ments, files, queues, core storage, etc. It is sometimes necessary,
when one process is manipulating a particular resource, that
other processes should be prevented access-the resource is
said to be locked. One may consider two types of lock-though
the distinction is probably not important--one where a section
of re-entrant code is locked, thus preventing execution of that
code by more than one process, and the other where individual
resources are locked. In either case, the lock must be global to
all processes accessing it.

Locking Facilities in ESPOL
Locking facilities are implemented in ESPOL by the Lock

Intrinsics: LOCK (<Lock Entity>), UNLOCK (<Lock
Entity>), BUSY (<Lock Entity>), BUZZ (<Lock
Entity>).

The Lock Entity may be a simple variable or a subscripted
variable.

LOCK, UNLOCK and BUSY are type BOOLEAN intrinsics
and return the value TRUE, as follows:

1. LOCK and BUSY -if the entity was previously locked,
2. UNLOCK-if the entity was previously uulocked.
LOCK leaves the entity locked, UNLOCK leaves the entity

unlocked. For example, consider the following ESPOL code
section:

IF LOCK (X) THEN GO TO SOMELABEL;
MANIPULATERESOURCEl;
MANIPULATERESOURCE2;
UNLOCK (X);

X-which has been declared as a global REAL--is here used
as a lock on the code (shown as two procedure calls) up to
UNLOCK (X). If Xis not previously locked, then LOCK (X)
locks it and the program proceeds, otherwise the code starting
at SOMELABEL is executed. Note that UNLOCK can be used
as an untyped procedure (as can also LOCK though this is not
illustrated).

The code:
IF BUSY (X) THEN GO TO SOMELABEL;
MANIPULATERESOURCEl;
MANIPULATERESOURCE2;

might be used by a process which can access a resource-in
this case, the code-providing some privileged process has not
locked out all other processes. BUSY does not lock the
resource.

It is often the case that a process can not continue until it
can access a resource which is locked by some other process; it
must, therefore, suspend operation until the lock is released. It
may wait on an event e.g.:

IF LOCK (SOMELOCK) THEN WAIT (SOMEEVENT);
as explained below, this causes the process to go inactive until
the event is caused; a new process is activated and the proces­
sor does not idle. However, for those cases where there is a
probability that the processor time involved in activation and
deactivation of a process will exceed the time elapsing before
the locked resource becomes available, a facility for allowing a
process to spin or "buzz" is required, e.g.:

BUZZLABEL: IF LOCK (READYQ) THEN GO
BUZZLABEL;

So long as READYQ is locked, the process will not proceed;
when READYQ is unlocked-by some other process, LOCK
(READYQ) immediately relocks it and returns the answer
TRUE and hence, the process continues. Precisely the same
effect is achieved by:

BUZZ (READYQ);
A process encountering this statement will not continue until

READYQ is unlocked, at which point it will relock READYQ
and continue. It is guaranteed that if several processes are
buzzing READYQ "simultaneously" only one will go through
the lock and the others will spin until the one in control of
READYQ executes the statement UNLOCK(READYQ), at
which point another spinning process will go through the lock.

It is often difficult to decide whether to use WAIT or BUZZ
in a particular case. However, it appears that both facilities are
indispensable (though this contention may be disputed-see
Lampson, 1968).

The Read With Lock Operator
The statement:

SPIN: IF LOCK (X) THEN GO SPIN;
does the following in machine code:

1. Loads a pointer to X (an IRW) into the A register and
an operand with value 1 into the B register.

2. Executes a "Read With Lock" (RDLK) instruction which
swaps the contents of the word pointed at by the A
register with the contents of the B register. Thus, X is
now 1.

3. Checks the B register. If it is a 1 (i.e. if X was pre­
viously 1) the statement is repeated, otherwise the next
statement is executed.

X is considered locked when it has the value 1 and unlocked
when it has the value 0. If the testing of the value of X and
the setting of the value of X to 1 were two distinct operations,
it would be possible for two or more separate processes to pick
up X simultaneously, to find it unlocked, to lock it and then to
proceed-this is precisely the situation to be avoided. RDLK
ensures, because of the swap (which takes only one memory
cycle) that only one process, out of any number "simulta­
neously" executing RDLK, will find X unlocked.

CORE PROTECTION
Memory protection is insured as follows:

1. All programming-including software systems program­
ming-is performed in higher level-Compiler-lan­
guages. The programmer has very little control over
machine code.

2. The use of Descriptors prevents access to core areas out­
side those assigned to a process.

3. Each word of core has three tag bits (see Figure 1).
Using these control bits, single precision data, double
precision data. Descriptors and Control Words are

distinguished by the hardware and any attempted
incorrect usage (e.g. accessing a Control Word as data)
causes an interrupt.

4. Parity checking on information transfer.

EVENTS
Events are quantities which record occurrences. Typically, one
process will note the occurrence-will "cause" the event-and
one or more other processes will take appropriate action.

In ESPOL, event identifiers are declared in much the same
manner as real, integer or boolean identifiers, e.g.:

EVENT El, E2, ... EN;
One may also declare event arrays--they are not however

important to this discussion. Event identifiers have normal
ESPOL scope and one may speak of local, global and formal
events.

Events are made use of in ESPOL by means of the Event
Intrinsics:

CAUSE (<Event Designator>), WAIT (<Event
Designator>),

RESET (<Event Designator>), HAPPENED (<Event
Designator>).

For example, consider an 1/0 request by an applications
program. Such a request generates a call on an MCP procedure
which contains the following code:

BEGIN
EVENT E;

RESET (E);
IOREQUEST (PARAMETER 1, PARAMETER 2,
... E);

WAIT (E);

END;
The IOREQUEST procedure puts a pointer-an IRWS-to

the event into a queue associated with the particular 1/0 unit
referenced. The WAIT statement suspends the process--sends it
to sleep. At some time in the future, another process will be
interrupted when the particular 1/0 is complete. The hardware
will force entry into the interrupt routine which will look at
the queue associated with the unit causing the interrupt. The
pointer to the event will be accessed and the interrupt proce­
dure will execute the statement: CAUSE (PE) where PE is the
event pointer. This will cause the process which initially made
the 1/0 request to wake-up. Note the two processes involved
-one issues the 1/0 request and goes to sleep, the other notes
(via an interrupt) that the 1/0 is complete and causes the first
to wake up.

Any number of processes may wait on a particular event;
they will all be awakened when that event is caused.

CAUSE sets the state of an event to "happened", RESET to
"not happened''. The boolean intrinsic HAPPENED tests this
state-it is TRUE if the event has happened, FALSE if it has
not happened. HAPPENED is not particularly useful; the
statement:

IF NOT HAPPENED (E) THEN WAIT (E);
saves a little time when E has happened, however, the WAIT
mechanism itself would recognise this happened state-it would
not send the process to sleep-and hence, the above statement
is equivalent to:

WAIT (E);
It should be noted that once an event has occurred-has

been caused-it has theoretically happened for all time. How­
ever, it is not feasible to assign a different identifier to each
expected event and the same identifier will be used to note
many occurrences (in the example above, E will be used in
many 1/0 requests); hence, the necessity for RESET.

Software Interrupts
The Software Interrupt in ESPOL provides for the interrup­

tion of a process when a particular event is caused. Software
interrupts are declared via the Interrupt Declaration whose
syntax, in Backus-Naur form, is given below:

<Interrupt Declaration>:: = INTERRUPT <Interrupt
List>

237

<Interrupt List>:: = <Interrupt Segment> I <Interrupt
List>, <Interrupt Segment> .

<Interrupt Segment>: : = <Interrupt ldentdler>: <On
Part>

<On Part>:: = ON <Event Designator>, <Interrupt
Statement>

<Interrupt Statement>:: = <Statement>

Consider the following code:
BEGIN
INTERRUPT TIMER: ON CLOCKTICK, IF CONDITION

THEN BEGIN HANDLE­
CONDffiON; DISABLE (TIMER)
END;

ENABLE(TIMER);

END;
CLOCKTICK is a global event (whose declaration is not
shown here) which is caused at fixed time intervals-the int~r­
val timer interrupt is used for this purpose. All processes Wlth
enabled Software Interrupts referencing CLOCKTICK are
interrupted when it is caused. In the example, the process
checks, at each CLOCKTICK that the CONDITION (a proce­
dure or macro identifier) has occurred. If it has, the procedure
HANDLECONDITION is called and the interrupt is disabled
-further CWCKTICKS will not cause interruption. Otherwise
the process resumes at its point of interruption and will be
interrupted by the next CLOCKTICK. A Software Interrupt
does not become active until referenced by an ENABLE
intrinsic.

Complex Sleeps
Statements such as: WAIT (El AND E2); WAIT (E3 OR

E4) sometimes known as "complex sleeps", are not allowed in
F.sPOL. However, consider the following code (where El-E4
are considered to have been declared globally):

BEGIN

Ll:
END;

INTERRUPT 11: ON E3, DISABLE (11, 12),
12: ON E4, DISABLE (11, 12);

WAIT (El); WAIT (E2); COMMENT WAIT
(El AND E2);

ENABLE (11, I2); HOLD; COMMENT WAIT
(E3 OR E4);

Two consecutive WAIT statements are the obvious way to
handle the "AND" condition.

HOLD sends the process to sleep unconditionally and it will
be awakened only when a Software Interrupt is dir~~ed at it.
Should either E3 or E4 be caused (the "OR" cond1tron), the
process will wake up and immediately disable 11 and I2 thus
preventing further Software Interrupts. The process will resume
at the statement labeled Ll.

Implementation of Events and Software Interrupts
An event takes two words in a stack-it is a double precision

operand so far as the hardware is concerned. The format of
the first word is shown in Figure 7b where three processes are
all waiting on the same event. The processes have been entered
into the event's Wait Queue via WAIT intrinsic call. The
CAUSE intrinsic will de-link the three process stacks from the
event's Wait Queue and link them into the Ready Queue-that
is it will "wake up" the processes associated with the stacks.
E~entually the processes will be activated when their stacks
reach the head of the Ready Queue. A process may be present
in either a Wait Queue or the Ready Queue, but not both. The
one-bit field "H"-the happened bit-is set by CAUSE.

The second word of an event is essentially a Stuffed Indirect
Reference Word (however, it has the "double precision" tag)
pointing to the first process stack in an "Interrupt Queue" (see
Figure 11) . An interrupt declaration generates two words in
the stack-a PCW referencing code for the Interrupt Statement
and an IRWS pointing to the next process stack in the Inter­
rupt Queue. ENABLE sets and DISABLE resets a bit-the
"Enable State Bit"-in the PCW. A process stack may be
linked into any number of Interrupt Queues.

238

FIRST WORD OF EVENT

COUNT FIRST ENTRY LAST ENTRY H

3

SECOND WORD OF EVENT

STACK NO.

STACK# N

0 0 0 IRWS

INTERRUPT PCW
STATEMENT

1-1~}83
MSCW

I r

O.ISP.

t:i I

STACK# M

DEUA
8

STACK# L

M f::!.2 82 IRWS
INTERRUPT PCW

N !::J.
3

8
3

IRWS STATEMENT

INTERRUPT PCW }

STATEMENT . l=f
- + I 1·"· t==t~:· - -1· l::!.1

I I J
2 I I

Fig. 11. Event Interrupt Queue with Three Entries.

A CAUSE (E) intrinsic call searches the Interrupt Queue
for E, using the count field in the first word of E to determine
the number of entries. The first stack in the queue is located
via the second word in E and each subsequent stack is located
via the IRWS in its predecessor. For each process stack the
following occurs:

1. If the Enable State Bit is off, the interrupt is not
applicable and the next stack is accessed.

2. Otherwise the IRWS from the predecessor stack is
entered, together with the process Stack Number, into the
"Interrupt Statement Queue".

3. The processor handling the CAUSE statement interrupts
all other processors by executing the privileged operator
"HEYOU". Thus, the process represented by the process
stack in question is interrupted if it is active. The hard­
ware interrupt procedure-which recognises the "Proces­
sor to Processor Interrupt" generated by HEYOU-picks
up the IRWS from the Interrupt Statement Queue and
causes entry into the code associated with the . Interrupt
Statement. Eventually, the interrupted process will return,
both from the Interrupt Statement and the hardware
interrupt procedure, to its point of interruption. The
whole sequence is very similar to the handling of hard­
ware interrupts-hence, the use of the term "Software
Interrupt".

The above applies when the process to be interrupted is
active; however, an inactive process cannot be interrupted by
the operator HEYOU; moreover, during its deactivated period,
more than one Software Interrupt may be directed at such a
process. Thus, when a process is re-activated, one or. more
entries in the Interrupt Statement Queue, placed there as m (2)
above, may indicate one or more outstanding Interrupt State­
ments and the process will execute all such statements before
resuming at the point where it was deactivated.

The Intrinsic HOLD
HOLD unconditionally deactivates a process. During a

CAUSE action, a process encountered in an Interrupt Queue,
which is in the HOLD condition, is entered into the Ready
Queue.

CONCLUSION
B6500 system design is based no certain basic beliefs, among
them:

1. The desirability of the integration of hardware and soft­
ware design.

2. The utility of compiler languages in the writing of pro­
gramming systems.

3. The utility of the stack machine in systems implementa­
tion and-

4. The relevance of Algol block structure to systems imple­
mentation.

This paper has attempted to demonstrate how this design
philosophy has assisted in the implementation of process hand­
ling in an available commercial system.

ACKNOWLEDGEMENTS
Many people have contributed, over a number of years, to the
design of B6500 syst~ms. _Amo?B ~~e people. directly.concerned
with the work descnbed m this paper, special mention should
be made of: B. A. Creech, B. A. Dent: E. A. Hauck, B. M.
Miyakusu, W. C. Price, D. L. Kunker and R. Patel of Bur­
roughs Corporation; R. S. Barton and D. M. Dahm, Consul­
tants. Certain figures were reproduced from the paper by
Hauck and Dent (1968) and thanks is due to these authors and
to the Thompson Book Company for permission to use the
diagrams.

REFERENCES
DAHM, D. M., GERBSTADT, F. H. AND PACELLI, M. M. (1967):

"A System Organization for Resource Allocation", Comm. Assoc.
Comp. Mach., Vol. 10, No. 12, p. 772.

DENNIS, J. B. (1965): "Segmentation and the Design of Multi­
programmed Computer Systems", Journal Assoc. Comp. Mach., Vol.
12, No. 4, p. 589.

DENNIS, J.B. AND VAN HORN, E. C. S1966): "Programming Semantics
for Multiprogrammed Computations' , Comm. Assoc. Comp. Mach.,
Vol. 9, No. 3, p. 143.

HAUCK E. A. AND DENT, B. A. (1968): "Burroughs B6500/B7500
Stack Mechanism", Proceedings 1968 Spring Joint Computer Con­
ference, p. 245. Thompson Book Company, Inc., Washington, D.C.

HILLEGAS J. &. (1968): "Auerbach on Computer Technology:
Burroughs Dares to Differ", Data Processing Magazine, July, 1968,
issue, p. 40.

LAMPSON, B. W. (1968): "A Scheduling Philosophy for Multi­
processing Systems", Comm. Assoc. Comp. Mach., Vol. 11, No. 5,
p. 347.

RANDALL, B. AND RUSSEL, L. J. (1964): "ALGOL 60 Implemen­
tation". A.P.I.C. Studies in Data Processing, No. 5, Academic Press,
Inc., London, New York.

239

~~m Wherever Thttre's •
Business There's Burroughs

1051281 Printed in U. S. America

