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ABSTRACT: The approach to process handling embodied in 86500 hardware and software 
design and implementation is discussed in this paper. Hardware features neces.ury to the 
understanding of the approach are first described. Some aspects of the language ESPOL-an 
extended ALGOL language used for writing the 86500 Executive System-are presented. The 
representation of active and inactive processes by active and inactive stacks is discussed. 
Implementation of process interlocking facilities is described. Some aspects of 86500 core 
protection are discussed. There follows a description of the usage and implementation of events 
and the concept of "software interrupt" is introduced and discussed. Finally, it is claimed that 
the paper demonstrates how the basic 86500 design philosophy has assisted in the implemen­
tation of process handling. The emphasis throughout the paper is on description of a working 
system, rather than theoretical discussion. 
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INTRODUCTION 
The B6500 is designed for the multiprogramming/multi­
processing environment where the process, rather than the job 
or program, is considered as the basic processing unit. 

This paper describes how the B6500 system controls the 
running of independent and dependent processes. An intuitive 
understanding of the meaning of the term "process" is assumed 
(but see Dahm, Gerbstadt and Pacelli, 1967; Dennis and Van 
Horn, 1966; Lampson, 1968). 

SYSTEM ORGANISATION 
The division of the B6500 system into hardware and software 
components was dictated by economic rather than technical 
considerations. Thus, the distinction between hardware and 
software functions is considered relatively unimportant, and 
will be noted only in this section. 

The B6500 has been discussed elsewhere (Hauck and Dent, 
1968; Hillegas, 1968) and only those details considered neces­
sary to the understanding of the current subject are discussed 
here. 

Hardware/Software Integration 
The B6500 hardware has been designed to operate under the 

control of an executive program (MCP or Master Control 
Program), and to be programmed only in higher level lan­
guages (e.g. ALGOL, COBOL and FORTRAN)-there is no 
assembler. Thus, machine design must facilitate the implemen­
tation of fast compilers producing efficient machine code. 

The command structure of the B6500 is Polish string and the 
instructions manipulate the contents of a stack. The stack not 
only facilitates the execution of Polish code, but also provides 
an efficient means of handling recursion. 

Efficient compiling techniques typically produce a Polish 
string, usually as the first of two or more steps in the transla­
tion of source code to machine language; they also seem 
naturally biased towards the use of recursive procedures (Ran­
dall and Russel, 1964). Hence, one-pass compilation of 
efficient code is possible. 

lnstructiom and Word Formats 
The machine instruction is called an operator and is variable, 

in length-in 8 bit increments or "Syllables"-from 8 bits, for 
the more frequently used instructions, to 96 bits. 

Data and Control words are 51 bits long. The tag, in the 
first three bits, identifies the various types as shown in Figure 
1. The remaining 48 bits are data or control information. 

DATA WORDS 

I 000 I I EXPONENT MANTISSA I ~~N~i~~iN 

1

1 I I DOUBLE 

I 010 I EXPONENT I MANTISSA (MS) I 6~~~~~i~ 
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MARK STACK 
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ADDRESS PROGRAM 
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--l 4BITS 1-~ZOBITS 14BITS 

Fig. I. B6500 Word Formats. 

Stack Organisation 
Each process is assigned memory for a stack in which are 

stored local variables, references to program procedures, data 
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arrays and current process status. When the process is acti­
vated, four high speed registers (A, X, B and Y) are estab­
lished as the top of stack locations and register S points to the 
location of the last w.ord placed in the stack memory area (See 
Figure 2). Registers X and Y may be regarded as double pre­
cision extensions of registers A and B and will not be consid­
ered further. 

The stack operates as a last in, first out storage area. Thus, 
an operand is stored into register A with consequent pushdowns 
into register B and into the memory location pointed at by 
register S. Similarly, extraction of data is from register A with 
consequent pop-ups from B and the location referenced by S. 
The contents of S are incremented by one on a push-down and 
decremented on a pop-up. 

Operators typically manipulate the A and B registers with 
consequent increase or decrease in stack size. The necessary 
push-downs and pop-ups are automatically handled by pro­
cessor hardware. The Base of Stack (BOS) and Stack Limit 
(SL) registers define the boundaries of the process stack 
memory-the process is interrupted if S is set to the value of 
BOS or SL. 

,-----------, 
I TOP OF STACK REGISTERS . I 

IN/OUTPUT 
A 

PATH OF I 
DATA 

TO STACK I B s 

I I 
L _ _____ _ __ _J 

STACK AREA 
ASSIGNED 

TO PROGRAM 

STACK AREA 
CURRENTLY 

IN USE 

WORD nix 

TOS WORD 

~A~I M I T REGIS~ 
- - I SL I 

,... --w=o=R-D--n--1~---1 ---tl BOS I I 
~- L ___ _J 

- STACK -
MEMORY 

AREA 

Fig. 2. Top of Stack and Stack Bounds Registers. 

Addressing 
Data is addressed via the Data Descriptor (DD), the Indirect 

Reference Word (IRW) and the Stuffed Indirect Reference 
Word (IRWS); code is accessed via the Segment Descriptor 
(SD). See Figure 1. 

The Address Couple in an IRW specifies a level and a dis­
placement-denoted for convenience as (level, displacement) 
or (11, 6). The level corresponds to the lexicographic level at 
which the referenced item is declared. Figure 4 shows how the 
stack is built up for the simple Algol program given in Figure 
3. Note that the start of each level within the stack is marked 
by a Display Register (Randall and Russel, 1964) of which 
there are 32, corresponding to the 32 possible levels of 
nomenclature. Thus, Vl, V2 and V3 are addressed by IRW's 
having the address couples (2, 2), (2, 3) and (3, 2) respectively. 
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----------LEXICOGRAPHICAL LEVEL "2" BEGIN 

REALV I; 
REAL V2; 
PROCEDURE A; 

BEGIN ---­

REAL V3; 
PROCEDURE B; 

B; 
END, 

-BEGIN --

V3-3; 
VI -V3; 

ENO; 

ii•2, 8=2 
U=2, 8•3 
ii=2, 8·4 

·LEXICOGRAPHICAL LEVEL "3" 

ii= 3, 8= 2 

Ji: 3, 8= 3 

·LEXICOGRAPHICAL LEVEL"4" 

PROCEDURE C; ii= 2, 8. 5 

--------LEXICOGRAPHICAL LEVEL"3" BEGIN 

C; 
IENO; 

REALV4; 

PROCEDURE O; 

O; 
-ENO; 

-BEGIN -
REAL V5; 
V4-4 · 
V5-5; 
A; 
V2 -V4; 

·ENO; 

£.t = 3, 8· 2 
l i =3, 8. 3 

·LEXICOGRAPHICAL LEVEL "4" 
£1=4,8=2 

Fig. 3. Algol Program with Lexicographical Structure 
Indicated. 

When a procedure is entered or exited, the "addressing 
environment" may change and hence the Display Registers may 
have to be reset-e.g. the address couple (3, 2) references V3 
or V 4 depending upon whether procedure A or C is executing. 
The Mark Stack Control Word (MSCW) and Return Control 
Word (RCW) contain information, on the lexicographic struc­
ture and dynamic history of the process, which is used in set­
ting the Display Registers for the current addressing environ­
ment; however, a detailed discussion of this subject is beyond 
the scope of this paper (see Hauck and Dent, 1968). 

It is sometimes necessary to access information outside the 
addressing environment of a procedure-Le. in Algol terms, 
formal parameters must be referenced. Also referencing across 
stacks which are dynamically relocatable, is sometimes desira­
ble. The IRWS (see Figure 1) locates a stack via its Stack 
Number, a MSyW is found at a distance above the bottom of 
stack given by 't,he displacement field; the referenced item is 
found at a distance above the MSCW given by the delta field. 

The Data Descriptor references arrays and the Segment 
Descriptor, code segments. In general, the address field-an 
absolute address-points to the starting memory (P = 1) or 
disk (P = 0) location of the information; an attempt to access 
information referenced by a Descriptor with P = 0 causes a 
"presence bit" interrupt and the consequent reading of the 
information from the disk. All addressing within the array or 
segment is relative to the base address and any relative address 
exceeding the value of the length field causes an "invalid 
index" interrupt. 

A procedure declaration generates, within the stack, a Pro­
gram Control Word (PCW-e.g. PCW-A in Figure 4). The 
address couple field of the PCW (see Figure 1) points to a 
Segment Descriptor which in turn points to the code segment 
for the procedure. The starting relative address of the proce­
dure is contained in the Program Syllable Index field of the 
PCW. A call on the procedure generates an IRW or IRWS 
pointing to the PCW and thus, the relevant code is entered (see 
Figure 5). 

The Stack Tree 
An active process is represented by an active stack-i.e. a 

stack referenced by the S, BOS and SL registers of some pro­
cessor. Stacks are used also to represent inactive processes and 
for other specialised purposes. 
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Fig. 5. Call on a Procedure. IRWS-+PCW-+SD-+Code Area. 

The simple Stack Tree-or Cactus Stack-where each job 
gives rise to a single process is shown in Figure 6a. The stack 
trunk-the level-zero stack-contains operating system global 
variables. For each job a level-one stack, containing all Seg­
ment Descriptors, is required. Where two or more jobs involve 
activation of the same code, a common level-one stack is used 
--all code is non-modifiable and thus re-entrant. However, 
jobs involving different code require creation of new level-one 
stacks. Finally, each process (in this case each job) is repre­
sented by a level-two stack, linked via display registers to the 
level-one and level-zero stacks. The level-zero and level-one 
stacks are inactive; the level-two stacks may be active--e.g. 
Stack Number Two--or inactive. 

As each stack is created by the operating system, a data des­
criptor-the Stack Descriptor-referencing its allocated space, 
is entered into an array called the Stack Vector. A stack is 
considered as having a Stack Number-merely the relative 
position of its Stack Descriptor within the Stack Vector. The 
Stack Vector itself is referenced by the Stack Vector Descrip­
tor, maintained in a reserved position of the level-zero stack. 
All references to stacks are made through the Stack Number 
and thus, through a Stack Descriptor no different from any 
other Data Descriptor-it is because of this that stacks are 
overlayable and dynamically relocatable. 

A process may create other processes. Figure 6b illustrates 
the case where process L has created process M and process M 
has created process N. Process L and M are inactive and pro­
cess N is active. Note that process N has available not only 
information in its own stack, but also global information in the 
process M, process L, level-one and level-zero stacks. On the 
B6500 the establishment of an independent process is equiv­
alent to a procedure call, except that the procedure has an 
independent existence-i.e. has a separate stack. 

STACJS 
_ VECTOR -

OOn 

'DD5 

llt! 'I 
0 03 

Dll2 

DO I 

ODO 

[}03 
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C!D I 

STACK 
_ NO.n -

1 MSCW 1 1·~~:1 - I 
~ 

MSCW 

,.-----~PROC. ID 

STACK 
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D4 
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02 
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DO 
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Fig. 6. (a) The Stack Tree: (b) Stack Tree with Dependent 
Processes. 
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The System Programming Language 
The language ESPOL (Executive System Programming 

Oriented Language) is used exclusively for writing the MCP. 
ESPOL is an extension of Algol and is itself written in the 
standard B6500 Extended Algol. 

It is beyond the scope of this paper to include a formal 
definition of the language. ESPOL facilities are introduced as 
needed in the following sections; however, the following fea­
tures are worth noting briefly: 

1. String handling facilities. 
2. Memory protection overwrite facilities. Certain operations 

--e.g. storing into a Control Word-will usually cause a 
fault interrupt. These fault interrupts can be by-passed 
by the hardware. ESPOL code can selectively invoke or 
ignore the memory protection facilities. 

3. Field modifications. Fields in words, any number of bits 
in length, may be modified or transferred to fields in 
other words. 

4. Equivalence facilities. The same memory location may be 
accessed by several different identifiers of several different 
types. 

5. Event handling. 
6. Macro definition. An identifier may take on the value of 

a string of text. The appearance of the identifier any­
where in a program is equivalent to the appearance of 
the related text. A macro may be parameterised-i.e. 
actual parameters may be supplied with the macro iden­
tifier and will replace formal parameters in the related 
text. 

7. Intrinsics or primitives. The appearance of an intrinsic is 
semantically equivalent to a procedure call; however, the 
procedure "declaration" is implicit-Le. it is understood 
by the compiler. 

It will be obvious that ESPOL is not intended for use by 
applications programmers; it is used exclusively for writing the 
operating system. 

PROCF.SS ACTIVATION AND DEACTIVATION 
The primary objective is to maximise throughput. The B6500 
may have more than one central processor and it is desirable 
that each processor be assigned to a process at all times. It is 
desirable, also, that the overhead represented in process switch­
ing should be minimised. 

A process may change from the active to the inactive st£tte 
when it can no longer continue--e.g. when it is waiting on 1/0 
--or when it is preempted by a process of higher priority. The 
stack associated with the inactive process is entered either into 
a "Wait Queue", behind a particular event or, on preemption, 
into the "Ready Queue". A process newly presented to the 
system is made to look as if it has been preempted and entered 
into the Ready Queue. 

The Wait Queues are described in the section on events. 
Processes (or more precisely stacks) in the Wait Queues 
eventually move to the Ready Queue when the events on which 
they are waiting are caused. The structure of the Ready Queue 
is shown in Figure 7a where the inactive process represented by 
stack # 500 currently has the highest, and that represented by 
stack #20 has the lowest priority. The queue is linked through 
the second word in the stack; the forward and backward links 
facilitate rapid insertion and deletion of entries. 

The "Ready Queue Head" consists of one word containing 
the first and last Stack Numbers as shown. All the linkages are, 
of course, indirect; the Stack Descriptor being accessed by 
indexing the Stack Vector Descriptor by the Stack Number in 
the link. 

Entries in the Ready Queue are maintained in priority order. 
Priority is determined dynamically-it includes among other 
things, the time that the process has been in the queue-and it 
is guaranteed that no process will remain inactive indefinitely. 
The queue is re-arranged from time to time in order to reflect 
the changing dynamic priorities (this is the subject of another 
paper yet to be published). When a processor becomes avail­
able, the process at the head of the Ready Queue is activated. 

Active and Inactive Stacks 
The mechanism whereby a process goes from the active 

through the inactive and back to the active state is best under­
stood by considering preemption at interrupt time. 
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READY QUEUE HEAD (1 WORD) 

l F IRST ENTRY 

± 
LAST ENTRY 

500 20 

STACK STACK STACK STACK 
- #500 - - # 2 1 - - # 102 - - #20 -

~ o I 21 - 500I 102 - 21 I 20 - 10 2I o f_.J 
TOSCW TOSCW TOSCW TOSCW 

(a) 

FIRST WORD OF SOME EVENT 

COUNTjFIRST ENTRY l LAST ENTRY IH 
l 15 l 902 l 

STACK STACK STACK 
- #15 - - #205 - - #902 -

~ o I2o5 15 J902 205j_ 0 I-
TOSCW TOSCW TOSCW 

(b) 

Fig. 7. (a) The Ready Queue; (b) An Event Wait Queue. 

When a process-or more precisely, the processor assigned 
to a process--is interrupted, the hardware forces entry into an 
interrupt procedure. After the processing of the interrupt, the 
process stack is as shown in Figure Sa. 

At this point, the interrupt routine checks to see if there is a 
process in the Ready Queue with higher current priority than 
the interrupted process; if so, the following occurs: 

1. The active process--called hereafter "process A"-is 
linked into the Ready Queue. 

2. The interrupt procedure executes a "Move Stack" opera­
tor. This one instruction does the following: 

(a) Stores pointers to the processor's S and F registers 
in the first word of process A's stack (see Figure 
Sb). The F register marks the topmost MSCW in 
the stack. The first word in the stack, which pre­
viously was a single precision operand containing 
the processor ID (a number 0 through 7), is now 
a Top of Stack Control Word (TOSCW) and is so 
tagged. 

The status of various processor flip-flops neces­
sary to restore process A to the active state is also 
stored in the TOSCW. 

(b) The S and F registers and some processor flip­
flops are set from the TOSCW for the process­
"Process B"-at the head of the Ready Queue. 
Process B is de-linked from the Ready Queue. 
The Stack Descriptor, obtained via the Stack 
Number, for process B is used in setting the BOS 
and SL processor registers. 

(c) The TOSCW in process B's stack is changed to a 
single precision operand containing the processor 
ID. Process A is now inactive and process B is 
active and . assigned the processor previously occu­
pied by process A. 

3. Note that process B was previously rendered inactive in 
precisely the same manner as described for process A 
above and its stack is now as shown in Figure Sa. 

The stack for process B is now active; however, the proces­
sor is still executing code associated with the interruption of 
process A. To recreate process B's environment at the point of 
its interruption, the interrupt routine issues an Exit operator 
which does the following: 

(a) Recreates process B's addressing environment. As men­
tioned earlier, the MSCW's in process B's stack are used 
in resetting the Display Registers. Register F points to 
the topmost MSCW and all the MSCW's are linked one 
to another (see Hauck and Dent, 196S). 
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Fig. 8. (a) Active Stack; (b) Inactive Stack. 

(b) Uses the topmost RCW to return control to process B's 
interruption point. The segment Address Couple and · 
Program Syllable Index for the interruption point of 
process B's code were stored in the RCW (see Figure 1 
-note, an RCW is very similar to a PCW) by hard­
ware at the time of interruption. 

Note that a swap of processes between a processor and the 
Ready Queue; between the active and inactive states, is the 
essential point of the mechanism described above. Note also, 
that most of the work is performed by two operators--Move 
Stack (MVST) and EXIT. MVST is invoked in ESPOL via an 
intrinsic, the EXIT operator is invoked by the normal Algol 
procedure exit mechanism. 

The Stack as the Process State Vector 
A process' private information is carried entirely within its 

stack, thus, one may speak of a process as being represented by 
its stack-i.e. its level-n stack where n> 1. 

The stack, thus corresponds to what has been called the 
Process State Vector (or Process State Word-see Dennis, 
1965; Dennis and Van Hom, 1966; Lampson, 1968). If one is 
to have processes which can be interrupted and deactivated, 
then one must ensure that, on reactivation, a process will con­
tinue as if never interrupted. Process state information is 
carried in the stack as follows: 

(a) Control information necessary to restore the operating 
environment is held in Control Words (MSCW's, 
RCW's and the TOSCW). 

(b) Information on dependencies with other processes is 
contained partly in Control Words and partly in the 
Process Information Area (see Figure 8). 

(c) Information generated or modified by the process or 
pointers to such information (e.g. Data Descriptors in 
the case of arrays) is contained wholly within the pro­
cess stack. 

(d) Logging and accounting data are held in the Process 
Information Area. 

DEPENDENT AND INDEPENDENT PROCESSES 
Consider the program, written in extended Algol, shown in 
Figure 9a. Suppose the program initially is represented by a 

process active on processor 0. The statement "PROCESS A" 
causes procedure A to start executing as a separate process. If 
processor 1 is assigned to the new process--called hereafter 
"PROCESS A''-the Stack Tree, immediately after the initial 
process--"PROCESS B"---enters procedure B is shown, with 
the Stack Vector omitted, in Figure 9b. 

.----BEGIN ---------LEXICOGRAPHIC LEVEL 2 
REAL VI ; 
PROCEDURE A; 

[

BEGIN ---------LEXICOGRAPHIC LEVEL 3 

RfAL V2; 

END; 
PROCEDURE B; 

[

BEGIN ---------LEXICOG.RAPHIC LEVEL 3 

RSAL V3; 

END; 
PROCESS A ; 

~; 
'----END ; 

PROCESSOR 0 
REGISTERS 

I SL.a I 

[ So 

I l 
-

(a) 

LEVEL-2 
STACK 

(PROCESS B) 

1r ~STAtK J. 
SPACE 
p 0-

roi~~e 
·~ 

fl)CW 

f-1 MSCW 

I PROCESSORO - DISPLAY - -
REGISTERS PCW-B SEGMENT pq DESCRIPTORS PCW-A 

V I 

!lCW 

PROCESSOR I 
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I SL. , I 
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STACK 

(PROCESS A) 

-
S1 J---1 STACK 

SPACE 
PRO-

F, }--, CEDUREA 

v:z 
( BOSR1 RCW 

.-!-- MSCW 

_ PROCEss_ 
INFO. 
AREA I MSCW 1._ l 03 µ. MSCW I- PROCESSOR I 

DISPLAY 02. I PROCESS REGISTERS T STACK J ~ D I 
INFO. ~ TRUNK i- DO l AREA j 

( MSCW ~ 
.0'3 I-.L l 

0 '-' D2. 

Il l 
DO 

(b) 

Fig. 9. (a) Program for Process Activation; (b) Multi 
processor Stack Tree. 

Figure 9b illustrates how process activations are identical to 
procedure calls except that a new stack is established. It there­
fore follows that all the rules of scope inherent in Algol block 
structure apply equally to nested procedures and nested pro­
cesses; e.g. Vl, declared in process B is global to process A. 
These relationships are established by the Display Registers of 
the two processors-D2 for both processors points to the same 
MSCW in the level two stack and therefore Vl in both stacks 
is accessed by the address couple (2, 2). Note also, that 
level-one and level-zero are common to both processes. 

If procedure A were declared somewhat differently, parame­
ters could be passed to process A by a statement such as: 
PROCESS A (parameter 1, parameter 2 .•• ). Such parameters 
would be accessed by Stuffed Indirect Reference Words as 
described above. 

When process B exits, the PCW associated with procedure A 
is destroyed in the usual Algol block---exit fashion, hence pro­
cess A will be terminated-it no longer has a creator, nor does 
it have a code segment. It should be noted that exit from the 
block where a process is called will not nece~ar~y terminate 
that process---e.g. if procedure B were to contatn the state­
ment: "PROCESS A", then a further level-three stack corres­
ponding to a new process--say process A'-would be created; 
however, process A' would not be terminated when procedure 
B exited: It should be further noted that termination of process 
A has no effect on the running of process B. 
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It is not always desirable that processes should destroy 
themselves. It may be that a creator process will synchronise 
itself with created processes and will determine when those 
dependent processes are to be terminated. Such sychronisation 
is usually achieved by using events. The syntax for the usage of 
events in extended Algol differs little from that described for 
ESPOL in a later section and the reader is referred to that sec­
tion in order to determine how the following program gives 
rise to the Stack Tree shown in Figure 6b. 

BEGIN 

END. 

EVENT El; 
PROCEDURE M; 

BEGIN 

HOLD; 
END; 

PROCEDURE N; 
BEGIN 

END; 
PROCESS M; 
PROCESS N; 

WAIT (El); 

CAUSE (El); 

For convenience, the outer block code may be regarded as 
being associated with process L. Figure 6b represents the situa­
tion when process L has reached the WAIT (El) statement 
and process M has reached the HOLD statement. After 
CAUSE (El) is reached, process N is terminated, however, 
process L--which was waiting on event El, but has now been 
re-activated, may do some cleaning up before allowing itself 
and process M (which is suspended in a HOLD condition) to 
be terminated. 

The Process Information Area of each stack contains links 
--Stack Numbers--to dependent processes. These links are to 
the "father", the "eldest son", the "older brother" and the 
"younger brother" processes (see Figure 10). It is stressed that 
the dynamic tree of a process family is dependent upon the 
sequence of process activations and not upon the location of 
PCW's (procedure declarations) associated with processes. 
Thus, the dynamic tree in Figure 10 may have been set up by 
a program such as: 

BEGIN 
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REAL Vl; 
PROCEDURE ONE; 

BEGIN 
PROCESS TWO; 

END; 
PROCEDURE TWO; 

BEGIN 

END; 

PROCESS THREE; 
PROCESS FOUR; 
PROCESS FIVE; 

PROCEDURE THREE; BEGIN ••• END; 
PROCEDURE FOUR; BEGIN • END; 
PROCEDURE FIVE; BEGIN ••• END; 

PROCESS ONE; 
END. 

Such linkages are essential if a process is to control its 
created processes. For example, a process may cause the termi­
nation of any or all of the processes it has initiated (via syn­
tactical structures not important to this discussion). These links 
are also necessary when an operator requires the system to ter­
minate a process and all its successors. 

(a) (b) 

LEGEND ®A PROCESS WITH REFERENCE NUMBER n. 

---. ELDEST SON LINKAGE 

- FATHER LINKAGE 

---- YOUNGER BROTHER LINKAGE 
········-OLDER BROTHER LINKAGE 

Fig. JO. Process Activation Links. (a) Dynamic Tree of Pro­
cess Family; (b) Process Family Linkage. 

The emphasis in this section has been upon the manipulation 
of processes in the extended Algol language. However, ail 
compilers-ALGOL, FORTRAN and COBOL at present-PU 
and others in the future-are themselves written in extended 
Algol; hence, the asynchronous and synchronous, dependent 
and independent process facilities required by these various 
languages will be available. 

WCKING 
Different processes may access the same resources--code seg­
ments, files, queues, core storage, etc. It is sometimes necessary, 
when one process is manipulating a particular resource, that 
other processes should be prevented access-the resource is 
said to be locked. One may consider two types of lock-though 
the distinction is probably not important--one where a section 
of re-entrant code is locked, thus preventing execution of that 
code by more than one process, and the other where individual 
resources are locked. In either case, the lock must be global to 
all processes accessing it. 

Locking Facilities in ESPOL 
Locking facilities are implemented in ESPOL by the Lock 

Intrinsics: LOCK (<Lock Entity>), UNLOCK (<Lock 
Entity>), BUSY (<Lock Entity>), BUZZ (<Lock 
Entity>). 

The Lock Entity may be a simple variable or a subscripted 
variable. 

LOCK, UNLOCK and BUSY are type BOOLEAN intrinsics 
and return the value TRUE, as follows: 

1. LOCK and BUSY -if the entity was previously locked, 
2. UNLOCK-if the entity was previously uulocked. 
LOCK leaves the entity locked, UNLOCK leaves the entity 

unlocked. For example, consider the following ESPOL code 
section: 

IF LOCK (X) THEN GO TO SOMELABEL; 
MANIPULATERESOURCEl; 
MANIPULATERESOURCE2; 
UNLOCK (X); 

X-which has been declared as a global REAL--is here used 
as a lock on the code (shown as two procedure calls) up to 
UNLOCK (X). If Xis not previously locked, then LOCK (X) 
locks it and the program proceeds, otherwise the code starting 
at SOMELABEL is executed. Note that UNLOCK can be used 
as an untyped procedure (as can also LOCK though this is not 
illustrated). 



The code: 
IF BUSY (X) THEN GO TO SOMELABEL; 
MANIPULATERESOURCEl; 
MANIPULATERESOURCE2; 

might be used by a process which can access a resource-in 
this case, the code-providing some privileged process has not 
locked out all other processes. BUSY does not lock the 
resource. 

It is often the case that a process can not continue until it 
can access a resource which is locked by some other process; it 
must, therefore, suspend operation until the lock is released. It 
may wait on an event e.g.: 

IF LOCK (SOMELOCK) THEN WAIT (SOMEEVENT); 
as explained below, this causes the process to go inactive until 
the event is caused; a new process is activated and the proces­
sor does not idle. However, for those cases where there is a 
probability that the processor time involved in activation and 
deactivation of a process will exceed the time elapsing before 
the locked resource becomes available, a facility for allowing a 
process to spin or "buzz" is required, e.g.: 

BUZZLABEL: IF LOCK (READYQ) THEN GO 
BUZZLABEL; 

So long as READYQ is locked, the process will not proceed; 
when READYQ is unlocked-by some other process, LOCK 
(READYQ) immediately relocks it and returns the answer 
TRUE and hence, the process continues. Precisely the same 
effect is achieved by: 

BUZZ (READYQ); 
A process encountering this statement will not continue until 

READYQ is unlocked, at which point it will relock READYQ 
and continue. It is guaranteed that if several processes are 
buzzing READYQ "simultaneously" only one will go through 
the lock and the others will spin until the one in control of 
READYQ executes the statement UNLOCK(READYQ), at 
which point another spinning process will go through the lock. 

It is often difficult to decide whether to use WAIT or BUZZ 
in a particular case. However, it appears that both facilities are 
indispensable (though this contention may be disputed-see 
Lampson, 1968). 

The Read With Lock Operator 
The statement: 

SPIN: IF LOCK (X) THEN GO SPIN; 
does the following in machine code: 

1. Loads a pointer to X (an IRW) into the A register and 
an operand with value 1 into the B register. 

2. Executes a "Read With Lock" (RDLK) instruction which 
swaps the contents of the word pointed at by the A 
register with the contents of the B register. Thus, X is 
now 1. 

3. Checks the B register. If it is a 1 (i.e. if X was pre­
viously 1 ) the statement is repeated, otherwise the next 
statement is executed. 

X is considered locked when it has the value 1 and unlocked 
when it has the value 0. If the testing of the value of X and 
the setting of the value of X to 1 were two distinct operations, 
it would be possible for two or more separate processes to pick 
up X simultaneously, to find it unlocked, to lock it and then to 
proceed-this is precisely the situation to be avoided. RDLK 
ensures, because of the swap (which takes only one memory 
cycle) that only one process, out of any number "simulta­
neously" executing RDLK, will find X unlocked. 

CORE PROTECTION 
Memory protection is insured as follows: 

1. All programming-including software systems program­
ming-is performed in higher level-Compiler-lan­
guages. The programmer has very little control over 
machine code. 

2. The use of Descriptors prevents access to core areas out­
side those assigned to a process. 

3. Each word of core has three tag bits (see Figure 1). 
Using these control bits, single precision data, double 
precision data. Descriptors and Control Words are 

distinguished by the hardware and any attempted 
incorrect usage (e.g. accessing a Control Word as data) 
causes an interrupt. 

4. Parity checking on information transfer. 

EVENTS 
Events are quantities which record occurrences. Typically, one 
process will note the occurrence-will "cause" the event-and 
one or more other processes will take appropriate action. 

In ESPOL, event identifiers are declared in much the same 
manner as real, integer or boolean identifiers, e.g.: 

EVENT El, E2, ... EN; 
One may also declare event arrays--they are not however 

important to this discussion. Event identifiers have normal 
ESPOL scope and one may speak of local, global and formal 
events. 

Events are made use of in ESPOL by means of the Event 
Intrinsics: 

CAUSE (<Event Designator>), WAIT (<Event 
Designator>), 

RESET (<Event Designator>), HAPPENED (<Event 
Designator>). 

For example, consider an 1/0 request by an applications 
program. Such a request generates a call on an MCP procedure 
which contains the following code: 

BEGIN 
EVENT E; 

RESET (E); 
IOREQUEST (PARAMETER 1, PARAMETER 2, 
... E); 

WAIT (E); 

END; 
The IOREQUEST procedure puts a pointer-an IRWS-to 

the event into a queue associated with the particular 1/0 unit 
referenced. The WAIT statement suspends the process--sends it 
to sleep. At some time in the future, another process will be 
interrupted when the particular 1/0 is complete. The hardware 
will force entry into the interrupt routine which will look at 
the queue associated with the unit causing the interrupt. The 
pointer to the event will be accessed and the interrupt proce­
dure will execute the statement: CAUSE (PE) where PE is the 
event pointer. This will cause the process which initially made 
the 1/0 request to wake-up. Note the two processes involved 
-one issues the 1/0 request and goes to sleep, the other notes 
(via an interrupt) that the 1/0 is complete and causes the first 
to wake up. 

Any number of processes may wait on a particular event; 
they will all be awakened when that event is caused. 

CAUSE sets the state of an event to "happened", RESET to 
"not happened''. The boolean intrinsic HAPPENED tests this 
state-it is TRUE if the event has happened, FALSE if it has 
not happened. HAPPENED is not particularly useful; the 
statement: 

IF NOT HAPPENED (E) THEN WAIT (E); 
saves a little time when E has happened, however, the WAIT 
mechanism itself would recognise this happened state-it would 
not send the process to sleep-and hence, the above statement 
is equivalent to: 

WAIT (E); 
It should be noted that once an event has occurred-has 

been caused-it has theoretically happened for all time. How­
ever, it is not feasible to assign a different identifier to each 
expected event and the same identifier will be used to note 
many occurrences (in the example above, E will be used in 
many 1/0 requests); hence, the necessity for RESET. 

Software Interrupts 
The Software Interrupt in ESPOL provides for the interrup­

tion of a process when a particular event is caused. Software 
interrupts are declared via the Interrupt Declaration whose 
syntax, in Backus-Naur form, is given below: 

<Interrupt Declaration>:: = INTERRUPT <Interrupt 
List> 
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<Interrupt List>:: = <Interrupt Segment> I <Interrupt 
List>, <Interrupt Segment> . 

<Interrupt Segment>: : = <Interrupt ldentdler>: <On 
Part> 

<On Part>:: = ON <Event Designator>, <Interrupt 
Statement> 

<Interrupt Statement>:: = <Statement> 

Consider the following code: 
BEGIN 
INTERRUPT TIMER: ON CLOCKTICK, IF CONDITION 

THEN BEGIN HANDLE­
CONDffiON; DISABLE (TIMER) 
END; 

ENABLE(TIMER); 

END; 
CLOCKTICK is a global event (whose declaration is not 
shown here) which is caused at fixed time intervals-the int~r­
val timer interrupt is used for this purpose. All processes Wlth 
enabled Software Interrupts referencing CLOCKTICK are 
interrupted when it is caused. In the example, the process 
checks, at each CLOCKTICK that the CONDITION (a proce­
dure or macro identifier) has occurred. If it has, the procedure 
HANDLECONDITION is called and the interrupt is disabled 
-further CWCKTICKS will not cause interruption. Otherwise 
the process resumes at its point of interruption and will be 
interrupted by the next CLOCKTICK. A Software Interrupt 
does not become active until referenced by an ENABLE 
intrinsic. 

Complex Sleeps 
Statements such as: WAIT (El AND E2); WAIT (E3 OR 

E4) sometimes known as "complex sleeps", are not allowed in 
F.sPOL. However, consider the following code (where El-E4 
are considered to have been declared globally): 

BEGIN 

Ll: 
END; 

INTERRUPT 11: ON E3, DISABLE (11, 12), 
12: ON E4, DISABLE (11, 12); 

WAIT (El); WAIT (E2); COMMENT WAIT 
(El AND E2); 

ENABLE (11, I2); HOLD; COMMENT WAIT 
(E3 OR E4); 

Two consecutive WAIT statements are the obvious way to 
handle the "AND" condition. 

HOLD sends the process to sleep unconditionally and it will 
be awakened only when a Software Interrupt is dir~~ed at it. 
Should either E3 or E4 be caused (the "OR" cond1tron), the 
process will wake up and immediately disable 11 and I2 thus 
preventing further Software Interrupts. The process will resume 
at the statement labeled Ll. 

Implementation of Events and Software Interrupts 
An event takes two words in a stack-it is a double precision 

operand so far as the hardware is concerned. The format of 
the first word is shown in Figure 7b where three processes are 
all waiting on the same event. The processes have been entered 
into the event's Wait Queue via WAIT intrinsic call. The 
CAUSE intrinsic will de-link the three process stacks from the 
event's Wait Queue and link them into the Ready Queue-that 
is it will "wake up" the processes associated with the stacks. 
E~entually the processes will be activated when their stacks 
reach the head of the Ready Queue. A process may be present 
in either a Wait Queue or the Ready Queue, but not both. The 
one-bit field "H"-the happened bit-is set by CAUSE. 

The second word of an event is essentially a Stuffed Indirect 
Reference Word (however, it has the "double precision" tag) 
pointing to the first process stack in an "Interrupt Queue" (see 
Figure 11 ) . An interrupt declaration generates two words in 
the stack-a PCW referencing code for the Interrupt Statement 
and an IRWS pointing to the next process stack in the Inter­
rupt Queue. ENABLE sets and DISABLE resets a bit-the 
"Enable State Bit"-in the PCW. A process stack may be 
linked into any number of Interrupt Queues. 
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FIRST WORD OF EVENT 

COUNT FIRST ENTRY LAST ENTRY H 

3 

SECOND WORD OF EVENT 

STACK NO. 

STACK# N 

0 0 0 IRWS 

INTERRUPT PCW 
STATEMENT 

1-1~}83 
MSCW 

I r 

O.ISP. 

t:i I 

STACK# M 

DEUA 
8 

STACK# L 

M f::!.2 82 IRWS 
INTERRUPT PCW 

N !::J.
3 

8
3 

IRWS STATEMENT 

INTERRUPT PCW } 

STATEMENT . l=f 
- + I 1·"· t==t~:· - -1· l::!.1 

I I J 
2 I I 

Fig. 11. Event Interrupt Queue with Three Entries. 

A CAUSE (E) intrinsic call searches the Interrupt Queue 
for E, using the count field in the first word of E to determine 
the number of entries. The first stack in the queue is located 
via the second word in E and each subsequent stack is located 
via the IRWS in its predecessor. For each process stack the 
following occurs: 

1. If the Enable State Bit is off, the interrupt is not 
applicable and the next stack is accessed. 

2. Otherwise the IRWS from the predecessor stack is 
entered, together with the process Stack Number, into the 
"Interrupt Statement Queue". 

3. The processor handling the CAUSE statement interrupts 
all other processors by executing the privileged operator 
"HEYOU". Thus, the process represented by the process 
stack in question is interrupted if it is active. The hard­
ware interrupt procedure-which recognises the "Proces­
sor to Processor Interrupt" generated by HEYOU-picks 
up the IRWS from the Interrupt Statement Queue and 
causes entry into the code associated with the . Interrupt 
Statement. Eventually, the interrupted process will return, 
both from the Interrupt Statement and the hardware 
interrupt procedure, to its point of interruption. The 
whole sequence is very similar to the handling of hard­
ware interrupts-hence, the use of the term "Software 
Interrupt". 

The above applies when the process to be interrupted is 
active; however, an inactive process cannot be interrupted by 
the operator HEYOU; moreover, during its deactivated period, 
more than one Software Interrupt may be directed at such a 
process. Thus, when a process is re-activated, one or. more 
entries in the Interrupt Statement Queue, placed there as m (2) 
above, may indicate one or more outstanding Interrupt State­
ments and the process will execute all such statements before 
resuming at the point where it was deactivated. 

The Intrinsic HOLD 
HOLD unconditionally deactivates a process. During a 

CAUSE action, a process encountered in an Interrupt Queue, 
which is in the HOLD condition, is entered into the Ready 
Queue. 

CONCLUSION 
B6500 system design is based no certain basic beliefs, among 
them: 

1. The desirability of the integration of hardware and soft­
ware design. 



2. The utility of compiler languages in the writing of pro­
gramming systems. 

3. The utility of the stack machine in systems implementa­
tion and-

4. The relevance of Algol block structure to systems imple­
mentation. 

This paper has attempted to demonstrate how this design 
philosophy has assisted in the implementation of process hand­
ling in an available commercial system. 
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