
Burroughs

86500
Information Processing Systems
ESPOL REFERENCE MANUAL

Burroughs

B 6500

INFORMATION PROCESSING SYSTEM

ES POL

Printed in U.S. America

REFERENCE MANUAL

Burroughs Corporation
Detroit, Michigan 48232

$3.00

1-70 1042744

COPYRIGHT© 1970 BURROUGHS CORPORATION

Burroughs Corporation believes the program described in this
manual to be accurate and reliable, and much care has been
taken in its preparation. However, the Corporation cannot
accept any responsibility, financial or otherwise, for any con­
sequences arising out of the use of this material. The infor­
mation contained herein is subject to change. Revisions may
be issued to advise of such changes and/or additions.

Correspondence reguding this document should be forwarded using the Remarks F onn at
the back of the manual, or may be addressed directly to Systems Documentation, Sales
Technical Services, Burroughs Corporation, 6071 Second Avenue, Detroit, Michigan 48232.

SECTION

1

2

J

4

5

TABLE OF CONTENTS

TITLE

INTRODUCTION.

SYNTAX CONVENTIONS.

General.

Metalinguistic symbols .

Metalinguistic Formulas.

Metalinguistic Terms .

Character Set.

BASIC SYMBOLS • .

General.

BASIC COMPONENTS.

General.

Identifiers.

Numbers.

Strings.

GENERAL COMPONENTS.

General.

Variables.

Items.

Value Designator .

Event Designators.

EXPRESSIONS .

General.

Arithmetic Expressions .

Boolean Expressions.

Reference Expressions.

Designational Expression •

Relations.

Pointer Expressions.

Array Expressions.

Word Expressions • .

PAGE

vi

1-1

1-1

1-1

1-1

1-2

1-J

2-1

2-1

J-1
J-1
J-1
J-2
J-J

4-1

4-1

4-1

4-J

4-4

4-4

5-1

5-1

5-1

5-6

5-9
5-10

5-11

5-11

5-lJ
5-15

iii

SECTION

6

7

8

9

INDEX.

iv

TABLE OF CONTENTS (cont)

TITLE

PROGRAMS, BLOCKS, AND COMPOUND STATEMENTS.

General .

STATEMENTS .

General .

Basic Statements.

Procedure Statements and Function
Designators .

Iteration .

Assignment Statements •

String Statements .

DECLARATIONS .

General .

Type Declarations .

Label Declarations.

Array Declarations.

Field and Layout Declarations .

Queue and Queue Array Declarations.

Procedure Declarations.

Define Declarations and Invocations .

Event and Event Array Declarations.

Interrupt Declarations.

Picture Declarations.

Value Array Declarations.

Monitor Declarations.

INTRINSICS .

General .

PAGE

. 6-1

. 6-1

. 7-1

. 7-1

. 7-2

. 7-4

. 7-6

. 7-7

. 7-10

. 8-1

. 8-1

. 8-2

., 8-5

. 8-6

. 8-9

. 8-11

. 8-15

. 8-19

. 8-22

. 8-23

. 8-24

. 8-28

. 8-29

. 9-1

. 9-1

. one

NOTE

The various elements of ESPOL are dis­

scussed in paragraphs labeled Syntax,

Semantics, and Pragmatics, immediately

following each pertinent subject head­

ing. To avoid needless repetition,

these subordinate headings have been

omitted from the Table of Contents.

v

INTRODUCTION

The B 6500 Executive System Problem Oriented Language (ESPOL) is

provided primarily for the purpose of writing the B 6500 Master

Control Program.

This document is intended to be a reference manual. Its purpose

is to describe exactly the structure of the language. Therefore,

the manual is directed toward an audience somewhat conversant in

the language, rather than the uninitiated. The use of this docu­

ment presupposes knowledge of B 6500 Extended ALGOL and the

operational characters of the B 6500.

vi

GENERAL.

SECTION l

SYNTAX CONVENTIONS

This section provides a formal discussion of the method used to

define ESPOL. The method is rigorous so that the language might

be as free from ambiguity as possible.

METALINGUISTIC SYMBOLS.

A metalanguage is a language used to describe other languages. A

metalinguistic symbol is a symbol used in a metalanguage to define

the syntax of a language. The following metalinguistic symbols

are used in this manual:

a. () Left and right broken brackets are used to contain one

or more characters representing a metalinguistic variable

whose value is given by a metalinguistic formula.

b. The symbol .. -.. - means "is defined as." It separates

the metalinguistic variable on the left of a metalinguis­

tic formula from the definition of the metalinguistic

variable.

c. I The symbol I means "or." It separates alternate defi­

nitions of a metalinguistic variable.

d. {} Braces are used to enclose English language definitions

when it is impossible or impractical to use a metalinguis­

tic formula.

METALINGUISTIC FORMULAS.

Metalinguistic symbols are used in forming a metalinguistic formula.

A metalinguistic formula is a rule which produces an allowable

sequence of characters and/or symbols. The formulas are used to

define the syntax of the ESPOL language. The entire set of such

formulas developed in this manual defines the B 6500 ESPOL language.

1-1

Any mark or symbol in a metalinguistic formula, which is not one of

the metalinguistic symbols, denotes itself. The juxtaposition of

metalinguistic variables and/or symbols in a metalinguistic formula

denotes juxtaposition of those elements in the construct indicated.

An example of a metalinguistic formula is:

(identifier) ::=(letter) (identifier) (letter) I
(identifier) (digit)

This metalinguistic formula is read: an identifier is defined as

a letter, or an identifier followed by a letter, or an identifier

followed by a digit.

The metalinguistic formula given above defines a recursive relation-

ship by which a construct called an identifier may be formed. That

is, evaluation of the formula shows that an identifier begins with

a letter. The letter may stand alone, or may be followed by any

mixture of letters and digits.

METALINGUISTIC TERMS.

The following terms are used frequently in this manual:

1-2

a. Syntax - the systematic arrangement of words.

b. Semantics - the meaning of a word or arrangements of words.

c. Value - an ordered set of numbers (special case - a single

number), or an ordered set of logical values (special case

- a single logical value).

d. Entity -
(in this

etc.)

e. Quantity

a thing that has real and individual existence

manual, variables, arrays, procedures, labels,

- an entity which assumes arithmetic values.

f. Process - an algorithm in some· state of execution.

g. Scope - the scope of an entity is the block in which the

entity is declared. All entities must be declared before

they are referenced in any manner with the exception of

labels used under certain circumstances.

h. Recursive - circular usage.

CHARACTER SET.

The character set used in the B 6500 ESPOL language is

defined as follows:

SYNTAX.

(letter) ::=A I BI C I D l E I FI GI HI I I J l KI LI M

N 0 I p l Q l R l s I T I u l v I w l x l y I z

<digit > : : = 0 1

(special character)

2 3

.. -.. - .
< >Isl >I

$

4 I s

, I c
= I ~ I +-

6 7

J I <
l % I

8 9

) + l - l I I
& I * I # I @ I

(string character) ::=(letter)

(single space)

(digit) I (special character)

(string bracket character) •• - 1f .. -

(single space) ::= {one horizontal blank position}

(space) ::=(single space) (space) (single space)

(invalid character) ::=?

(character) ::=(string character)

I (invalid character)

(string bracket character)

SEMANTICS.

The Burroughs Common Language (BCL) character set consists of 64

characters: letters, digits, special characters, the space, the

string bracket character, and the invalid character.

The invalid character is not used in the language. It may be used,

however, as a character in an output string.

1-3

GENERAL.

SECTION 2

BASIC SYMBOLS

A symbol is a mark or a contiguous set of marks that represents an

object, quality, process, quantity, etc. Basic symbols are symbols

whose meaning is given as absolute within the context of the ESPOL

language.

SYNTAX.

The syntax for (basic symbol) is:

(basic symbol) : : = (letter) I (digit) I (logical value) I
(delimiter) I (empty)

(logical value) : : = TRUE I FALSE

(empty) ::={a null string of characters}

(delimiter) ::= (operator) I (separator) I (bracket) I
(declarator) I (specificator)

(operator) ::=(arithmetic operator) I (relational operator)

(logical operator) I (sequential operator) I
(concatenate operator) I (replacement operator)

(arithmetic operator) ::= + I - I * I / DIV MODI MULX

(relational operator) ::= < < =

(logical operator) ::= EQV I IMP I OR

> > I I I

AND I NOT

IS

(sequential operator) ::=GO I TO I IF I THEN I ELSE I FOR I
DO I CASE

(concatenate operator) ::= &

(replacement operator) •• - +­.. - := l -*

2-1

(separator) : : = ' I ! @ I
l WHILE I COMMENT IN

(space) I STEP

IS I NULL I OF

(space) : := (single space) l (space) (single space)

(single space) ::={one horizontal blank position}

(bracket) : : = (I) l [I] I " I BEGIN I END I #

UNTIL

BY

(declarator) ::=OWN I BOOLEAN I INTEGER I REAL I ARRAY I
LABEL I FORWARD I PROCEDURE I FIELD I LAYOUT I QUEUE

I DEFINE I EVENT l POINTER I DOUBLE I REFERENCE!

PICTURE I USING I SAVE I MONITOR I ON I WORD

(specificator) ::=VALUE

SEMANTICS.

Only upper-case letters are permitted. Individual letters do not

have individual meanings.

An important function of delimiters is to separate the various

entities that make up a program. Delimiters have a fixed meaning.

If this meaning is not obvious, it is given at the appropriate

place in this manual.

A space must separate any of the following:

a. Multicharacter Delimiter.

b. Logical Value.

c. Identifier.

d. Unsigned Number.

The phrase "reserved words" is used in this manual to denote the

set of single-word delimiters. Other than noted above, the use of

the space is discretionary.

2-2

GENERAL.

SYNTAX.

SECTION J

BASIC COMPONENTS

The syntax for (basic component) is:

(basic component) ::=(identifier) (number) (string)

SEMANTICS.

Basic components are the most primitive structures of the ESPOL

language.

IDENTIFIERS.

SYNTAX.

(identifier) ::=(letter) I (identifier) (letter) I
(identifier) (digit)

Examples:

x
A5
ID

Xl

G76DJ

NOTHINGTODO

ARITHMETICMEAN

SEMATICS.

Identifiers have no absolute meaning. They are used to name labels,

variables, arrays, procedures, etc.

A reserved word may not be used as an identifier.

The maximum permissable identifier length is to be spe8ified.

No space may appear within an identifier.

J-1

The same identifier cannot be used to denote two different entities

simultaneously.

NUMBERS.

SYNTAX

The syntax for (number) is:

(number) ::=(sign) (unsigned number)

(unsigned number) ::=(decimal number) (exponent part) I
(decimal number) I (octal number)

(decimal number) ::=(unsigned integer) (decimal fraction) I
(unsigned integer) I (decimal fraction)

(integer) ::=(sign) (unsigned integer)

(sign) ::=(empty) + I -
(unsigned integer) (digit) I (unsigned integer) (digit)

(exponent part) ::=@(integer) I @@(integer)

(decimal fraction) ::=. (unsigned integer)

(octal number) ::=@(octal constant)

(octal constant) ::=(octal digit) I (octal constant) (octal

digit)

(octal digit) ::= 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7

Examples:

3-2

Unsigned numbers:

1354.543

@67

1354.54@68

1.23@73

27

l@-43

Decimal numbers:

3.14

37

.57

1354

.546

1354.543

Integers:

+546

-62256

+l

-565
23

Unsigned integers:

5
69

8

73

SEMANTICS.

Exponent parts:

@68

@-46

@+54

@-8

@727

@+63

Decimal Fractions:

.5

.69

.7

.29

Numbers may be of two types: INTEGER or REAL. Integers are of type

INTEGER; all other numbers are of type REAL (explicitly or implici­

tly -- by default).

The range of permissable real or integer values is to be specified.

The exponent part is a scale factor expressed as an integeral power

of 10.

No space may appear within an unsigned number.

An exponent part with a double @@ signifies an extended precision

value.

An octal number cannot have more than 16 octal digits.

STRINGS.

SYNTAX.

The syntax for (string) is:

(string) ::=(simple string) (simple string) (string)

(simple string) ::=(numeric string) (alpha string)

(numeric string) ::=(binary code) 11 (binary string) 11

(qua ternary code) 11 (quaternary string) 11 I
(octal code) 11 (octal string) " I (hexadecimal code)

" (hexadecimal string) "

(alpha string) ::= (BCL code) 11 (BCL string) 11 I (ASCII code)

"(ASCII string) 11 I (EBCDIC code) " (EBCDIC string)"

J-J

J-4

(binary code) ::= 1 I 10

lJo I 140 I 160

12 I lJ I 14 I 16 I 17 I 18 I 120 I
170 I 180

(quaternary code) ::= 2

(octal code) ::= 3 I JO

20 I 24 I 26 I 28 I 240 I 260 I 280

J6 I 360

(hexadecimal code)::= 4 I 4o I 48 I 480

(BCL code) ::= 6 I 60 I (empty)

(ASCII code) ::= 7 I 70

(EBCDIC code) ::= 8 I 80

(binary string) ::=(binary character) I (binary string)

(binary character)

(binary character) ::= 0 I 1

(quaternary string) ::=(quaternary character) I
(quaternary string) (quaternary character)

(quaternary character) ::= 0 I 1 I 2 3

(octal string) ::=(octal character)

(octal character)

(octal string)

(octal character) ::= 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7

(hexadecimal string) ::=(hexadecimal character) I
(hexadecimal string) (hexadecimal character)

(hexadecimal character) ::= 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I

9 I A I B I c I D I E I F

(ASCII string) ::= (BCL string)

(EBCDIC string) ::= (BCL string)

(BCL string) ::=" I (BCL character) I (BCL string)

(BCL character)

(BCL character) ::=(string character)

SEMANTICS.

Strings may consist of:

a. l-bit characters (binary).

b. 2-bit characters (quaternary) .

c. J-bit characters (octal).

d. 4-bit characters (hexadecimal).

e. 6-bit characters (BCL).

f. 7-bit characters (ASCII, in 8-bit format).

g. 8-bit characters (EBCDIC).

The string code determines the interpretation of the characters

between the quotes. It specifies the character set, and if the

string has fewer than 48 bits, the justification of the string

within the word which contains it. The first digit specifies

the character set in which the source string is written. The

next non-zero digit specifies the character size of the internal

string created by the compiler. If no second size is specified,

it is the same as the initial size. A trailing zero indicates

that the string is left-justified within a word if it contains

fewer than 48 bits.

justified.

If no zero is present, the string is right-

An empty string code is treated as a code of 6 (right-justified

BCL string).

An ASCII or EBCDIC code may be used only with characters from the

BCL character set. The compiler produces (internally) a string of

8-bit characters which represent the same graphics as the given

BCL characters. For characters which are not in the BCL character

set, the string must be written as a hexadecimal string, where each

pair of hexadecimal characters represents the internal code of one

ASCII or EBCDIC character.

The quote character may appear only at the beginning of a simple

string. Strings with internal quotes must be broken into separate

simple strings by the use of three quotes in succession. The last

two quotes must be contiguous.

J-5

The maximum permissible length of a string depends upon the context

in which the string is used. Pointer operations (Replace and String

Compare), FILL statements, and list elements which consist of only

a string may be represented by strings up to 256 48-bit words in

length.

Strings used as operands in expressions are limited to a length of

48 bits.

When a string is formed from simple strings of different character

sizes, the following applies:

J-6

a. The justification specified by each string code after the

first is ignored.

b. Every character in a string is aligned at a character

boundary appropriate for that character's size. This may

result in zero bits being inserted between simple strings.

For example, 6"8" 4 11 8" produces 001000 001000. Note that

two bits are inserted between the simple strings so that

the 4"8" falls on a 4-bit character boundary. However,

8"8" 4"8" requires no such alignment.

c. When it is necessary for the compiler to know the length

(in characters) of a string and the character size (e.g.

Replace and String Compare), the character size is the

maximum character size of all the simple strings and the

length is the smallest number of characters (of the max­

imum character size) required to contain all the bits of

the string.

GENERAL.

SYNTAX.

SECTION 4

GENERAL COMPONENTS

The syntax for (general component) is:

(general component) ::=(variable) I (item) I (value designator)

SEMANTICS.

General components are constituents of expressions. In principle,

general components are less complex structures than expressions.

Because the syntactic definition of general components contains

expressions, the definition of expressions and general components

is recursive.

VARIABLES.

SYNTAX.

The syntax for (variable) is:

(variable) ::=(simple variable)

(simple variable) ::=(identifier)

(subscripted variable)

(subscripted variable) ::=(array identifier) [(subscript list)]

(array identifier) ::=(identifier)

(subscript list) ::=(subscript) I (subscript list), (subscript)

(subscript) ::=(arithmetic expression)

Examples:

Simple Variables:

A

ABSOLUTE

ABS2

EPSILON

4-1

DELTA

Al7

ALPHA INFO

BETA4

Q

Subscripted Variables:

A[5]

QTY[Q+7,VxN,Z]

Q[7,2]

A[5]

A[ITH]

KRONECKER[ITH+2,JTH-ITH]

MAXQ [IF BETA=JO THEN -2 ELSE K+2]

Subscript Lists:

7,2

QV,9

IF J THEN 1 ELSE P*Q+S

ITH

ITH + 2, JTH - ITH

IF BETA=JO THEN-2 ELSE K+2

SEMANTICS.

A simple variable is an identifier used to reference some quantity.

A subscripted variable is an array identifier and a subscript list.

The array identifier refers tu a set of values. An array identifier

and a subscript list refers to a single value or a subset of values.

The total number of subscripts in a subscript list must equal the

number of dimensions given in the array declaration.

Each subscript expresf.ion in a subscript list is evaluated from left­

to-ri.ght.

4-2

If, upon evaluation, a subscript expression yields a value of type

REAL, it is rounded automatically as follows:

integral subscript value = ENTIER (value of subscript

expression + 0.5)

If the value of a subscript falls outside the bounds declared for

that dimension, there is an INVALID INDEX error termination of

the program.

ITEMS.

SYNTAX.

The syntax for (item) is:

(item) ::=(item identifier) (reference part)

(item identifier) ::=(identifier)

(reference part) : := (empty) I [(subscript)]

@ ((reference expression))

Examples:

PANDORA@(IF MI*l>MI*2 THEN ZGLOT - F(A) ELSE REFERENCE (B))

NIKE@(NULL)

NERC@(ITEMNEXT- REFERENCE (LOGUN))

AGAM@(NEXTIN)

FIRSTGO @ WAITCHANELQUE[CHANELNUMBER]

NONCHAL@(FORCENT)

FAOWST@{REFERENCE (A[2,l]))

GEHRTA@(F(A+B))

OHNO@(CASE (z-z+l) OF (Al; B2; BJ; c4; D9));

SEMANTICS.

An (item) provides a means to refer to a particular element of a

queue entry.

The (item identifier) behaves like a subscript to the (reference part).

4-J

The reference part should point to an area which has the form of

an entry in the appropriate queue.

a. A reference part of empty points to the same entry as the

reference name of the queue.

b. A reference part of [(subscript)] may only be used with

an item identifier declared in a queue array declaration.

It points to the same entry as (reference name) [(sub­

script)].

VALUE DESIGNATOR.

SYNTAX.

The syntax for (value designator) is:

(value designator) ::=(value array identifier) [(subscript

list)]

SEMANTICS.

A value designator references a particular element of a value array.

EVENT DESIGNATORS.

SYNTAX.

The syntax for (event designator) is:

(event designator) ::=(event identifier) (event item)

(event array identif~er) [(subscript list)]

(event array item) [(subscript list)]

(event item) ::=(item)

(event array item) ::=(item)

SEMANTICS.

An event designator designates an event quantity.

The item identifier of an item used as an event item must be

specified as an event.

4-4

The item identifier of an item used as an event array item must be

specified as an event array.

Exarnp.les:

Event Designators:

El

E4[2]

Simple Event Designators:

E2
XERXES

Subscripted Event Designators:

E4[2]
ZEUS[2,J]

4-.5

GENERAL.

SYNTAX.

SECTION 5

EXPRESSIONS

The syntax for (expression) is:

(expression) ::=(arithmetic expression) I (Boolean expression)

I (reference expression) I (pointer expression)

(word expression) I (array expression)

SEMANTICS.

An expression is a structure used to obtain a value or values. Ex­

pressions are constituents of statements.

ARITHMETIC EXPRESSIONS.

SYNTAX.

The syntax for (arithmetic expression) is as follows:

(arithmetic expression) ::=(simple arithmetic expression)

(arithmetic assignment) (word expression)

(IF clause) (arithmetic expression) ELSE

(arithmetic expression)

(simple arithmetic expression) ::=(simple arithmetic

expression) (adding operator) (term) I (sign) (term)

(arithmetic assignment) ::=(arithmetic variable)

(replacement operator) (arithmetic expression)

(adding operator) ::= + I -
(term) ::=(primary) I (term) (multiplying operator) (factor)

(factor) ::=(primary) I (primary)** (integer)1

(multiplying operator) ::= * I / I DIV I MOD I MULX

(primary) ::=(base) & (layout) I (unsigned number)

(field designator) I (field operand)

1. The exponentiation operator ** is defined for

integer-constant exponents only.

5-1

(base) ::=(primary)

(field designator) ::=(field operand) , (field identifier)

(array primary) , (field identifier)

(field operand) ::=(variable) I (function designator)

(value designator) I (arithmetic item) I
((expression)) I (case head) ((expression

list))

(arithmetic item) ::=(item)

(layout) ::=(layout identifier) ((field value list))

(field value list) ::=(field value) I (field value list) ,

(field value)

(field value) ::=(empty) I (expression) I *
(expression list) ::=(expression list) , (expression)

(expression)

(arithmetic variable) ::=(variable)

Examples.

5-2

Arithmetic Expressions:

3

+3
Q

Q-V

HO - (IF GONE THEN 2 ELSE Z/J)

IF JOY THEN X ELSE 4+Q

W*U-Q(s+cu)

IF Q>O THEN S+J*Q/A ELSE Z*S+J*Q

IF A<O THEN U+V ELSE IF A*B> 17 THEN u/v ELSE IF K~Y

THEN v/u

0.57@12*A[N*(N-l)/2,0)

Q*V*2

P MOD 2

A[2, SIZ*2 DIV QUANT] - FI BOOEX THEN Q-Q+l ELSE 4

Simple Arithmetic Expressions:

Q+V

Q-V

-Q

3

+3

Q

P MOD 2

Y*3

4*R DIV S

A[I]-B[J]+5.3

Terms:

Q

Q MOD V

7.394@-8

SUM

W[I+2,8]

2*(X+Y)

Y*3

Q MOD V DIV 2

Primaries:

7
J.K

J

Q &, R

VARINAME & LOOK (6, IF BOOEXP THEN Q-Q+l ELSE 2, AN[3,5])

2 & SEET (X-F(A+B), 12, VO) & NAW (27, TRUE)

@-72

7
O&CONCAT ()

Q

5-3

Field Designators:

SIGNIFY (X) . Z

VARINAME.FIELDNAME

FUNC (A ,TRUE) • F6

(X-ARITHEXP(27)+Q MOD 2).F711

Field Operands:

CASE x-x+l OF (v, +27*F(z,7),ARY[2,BOOQ])

Q

TALLYHO(TFX)

(Q+R*Z-T)

Layouts:

CHAS (Q+R*6, F(A))

GOT(ZYGLOT,7)

SEMANTICS.

An arithmetic expression defines a numeric value.

A variable, value designator, or function designator used as a pri­

mary in an arithmetic expression must be of an arithmetic type:

INTEGER, REAL, or DOUBLE.

Each expression in a field value list or expression list used in an

arithmetic expression must be of an arithmetic type.

The value of an arithmetic expression may be expressed in single or

extended precision.

5-4

a. The precision is extended if any variable, function des­

ignator, or number is of type DOUBLE.

b. The precision of a case expression value is the precision

of the first expression of its expression list. If neces­

sary, the other expressions of the expression list are

adjusted to conform.

c. The precision of the value of a conditional arithmetic

expression is the precision of the arithmetic expression

preceding the ELSE.

d. Extended precision values may not be used in a field desig­

nator or as a base.

The operator DIV denotes integer division.

y DIV z = SIGN(Y/Z)xENTIER(ABS(Y/z))

The operator MOD denotes remainder division.

y MOD z = y - {zx(SIGN(Y/Z)xENTIER(ABS(X/Z))))

The exponentiation operator, **, is defined for integer-constant

exponents only.

The sequence in which operations are performed is determined by the

precedence of the operators. The order of precedence of operators

is:

a. First: **

b. Second: *,/,MOD, DIV, MDLX

C. Third: +,-

When operators are of the same order of precedence, the sequence of

operation is determined by the left-to-right order of appearance of

the operators.

An expression between parentheses is evaluated by itself and this

value is used in subsequent calculations. That is, the normal order

of precedence of operators can be overridden by the judicious place­

ment of parantheses. Therefore, the desired order of execution with­

in an expression can always be arranged by the appropriate position­

ing of parentheses.

No two operators may be adjacent.

An empty field causes the initial field as specified by the field

value part in the declaration, to be assigned to the field. A field

value of * causes the field to be ignored. If no initial value is

specified, then (empty) is equivalent to *·

5-5

BOOLEAN EXPRESSIONS.

SYNTAX.

The syntax for (Boolean expression) is as follows:

5-6

(Boolean expression) ::=(Boolean assignment) I (simple

Boolean expression) I (word expression) (IF clause)

(Boolean expression) ELSE (Boolean expression)

(Boolean assignment) ::=(Boolean variable) (replacement

operator) (Boolean expression)

(simple Boolean expression) ::=(simple Boolean expression)

EQV (implication) I (implication)

(implication) ::=(implication) IMP (Boolean term) I (Boolean

term)

(Boolean term) ::=(Boolean term) OR (Boolean factor) l
(Boolean factor)

(Boolean factor) ::=(Boolean factor) AND (Boolean secondary)

I (Boolean secondary)

(Boolean secondary)

primary)

(Boolean primary) l NOT (Boolean

(Boolean primary) : := (logical value) I (relation) I (Boolean

item) I (Boolean field operand) I (Boolean field

designator) I (Boolean primary) & (Boolean layout) I
(value designator)

(Boolean item) ::=(item)

(Boolean field designator) .. - (Boolean field operand).

(field identifier)

(Boolean field operand) ::= ((Boolean expression)) I (Boolean

variable) I
(Boolean function designator) I
(case head) ((Boolean expression list))

(Boolean expression list)::= (Boolean expression) j

(Boolean expression list) , (Boolean expression)

(Boolean layout) ::=(layout)

(Boolean variable) ::=(variable)

(Boolean function designator) ::=(function designator)

Examples:

Boolean Expressions:

BOOLE - A EQV B[J,l]

TRUE OR FALSE

IF K<l THEN S>W ELSE L<C

Simple Boolean Expressions:

UGO EQV IGO

NOT SO

WEGO OR REGO EQV IGO EQV UGO

Implications:

ITISRAINING IMP GROUNDISWET

BOOVAR AND THIS IMP TOMOR[l,2]

THIS IMP THAT IMP THOSE

NOT SO

Boolean Terms:

(B>C) OR (D>E)

BOOV AND BOON OR BOOK

A[l,2] AND BVAR OR (NOT THT) OR YEST

NOT SO

Boolean Factors:

BOOV AND BOON

NOT (J>2) AND TRUD

A[J+l,Z-3] AND VARB AND NEXTM

NOT SO

5-7

Boolean Secondaries:

TRUE

NOT SO

Boolean Primaries:

FALSE

X>Y

(NOT so)
BOOVAR.F2

TRUE & CONGLOM (TRUE,FALSE,Z+lO,TRUE)

Boolean Field Designators:

BARK.LEFTMOST

FRNT.FORTYON

Boolean Field Operands:

(IF K>l THEN v<2 ELSE (v2-DYNAM))

BOOLVARB

BOOFUNC(Q>V)

CASE ZYGLOT OF (TRUE, NOT SO, ETCETERA<Q)

SEMANTICS.

A Boolean expression defines a logical value. A variable, value

designator, or function designator used as a Boolean primary must

be of type Boolean. The sequence in which operations are performed

is determined by the precedence of the operators. The order of

precedence is:

a. First: Arithmetic expressions

b. Second: Relations

c. Third: NOT

d. Fourth: AND

e. Fifth: OR

f. Sixth: IMP

g. Seventh: EQV

5-8

REFERENCE EXPRESSIONS.

SYNTAX.

The syntax for (reference expression) is:

(reference expression) ::=NULL j (reference assignment) I
(IF clause) (reference expression) ELSE (reference

expression) (reference designator) (entry

expression) I (reference item) I REFERENCE

{(variable)) I (function designator) j (word

expression) j {(reference expression)) I (case head)

{(reference expression list))

(entry expression) ::=(queue name) {(actual item list))

(queue name) ::=(queue identifier) (queue array identifier)

(actual item list) ::=(actual parameter list)

(reference assignment) ::=(reference designator) -

(reference expression)

(queue designator) ::=(queue identifier) (queue array

identifier) [(arithmetic expression)]

(reference designator) ::=(reference identifier) (reference

name) j (reference array name) [(subscript)]

(reference identifier) ::=(identifier)

(reference array name) ::=(array identifier) (reference name)

(reference item) ::=(item)

(reference expression list) ::=(reference expression) I
(reference expression list) , (reference expression)

Examples:

Reference Expressions:

IF A > B THEN NEXTONE - LASTONE ELSE NULL

NULL

NESTONE - LASTONE

NEXT ONE

QUEUP (LOCAT,SIZEX)

5-9

ARY[2,3]

REFERENCE (BOOVARB)

REFFUNC(ARRAY[2,7])

CASE Q[V-7+ATT[NUM]] OF (FIRSTONE, NEXTONE, LASTONE)

Entry Expression:

QUNM (HERE,THERE,EVY)

Queue Designators:

QUNM

DYNAM[3]

SEMANTICS.

A reference expression points to some object or location. In

particular, NULL points to nothing.

A reference name used as a reference array name must belong to

a queue array.

An entry expression causes the creation of an entity having the

format of an entry in the named queue or queue array. A pointer

to this potential entry is returned as a reference expression.

The REFERENCE transfer function generates a reference expression

pointing to a variable.

DESIGNATIONAL EXPRESSION.

SYNTAX.

The syntax for designational expression is:

(designational expression) ::=(label identifier)

SEMANTICS.

A designation expression defines a label.

5-10

RELATIONS.

SYNTAX.

The syntax for (relation) is:

(relation) ::=(arithmetic relation) I (reference relation) I
(string relation) I (pointer relation)

(arithmetic relation) ::=(arithmetic expression)

(arithmetic relational) (arithmetic expression)

(arithmetic relational) ::=(relational operator) I IS

(reference relation) ::=(reference expression) (reference

relational) (reference expression)

(reference relational) ::==I ~

(string relation) ::=(pointer expression) (relational operator)

(pointer expression) FOR (arithmetic expression)

(pointer relation) ::=(pointer expression) (reference

relational) (pointer expression)

SEMANTICS.

Relations define the manner in which the various relational

operators are used with the various expression types.

The IS operator compares all the bits (including tag bits) of two

B 6500 words.

is TRUE.

If they all are equal, the result of the comparison

POINTER EXPRESSIONS.

SYNTAX.

The syntax for (pointer expression) is:

(pointer expression) ::=(simple pointer expression) j

(if clause) (pointer expression) ELSE (pointer

expression)

5-11

5-12

(simple pointer expression) ::=(pointer primary) (skip)

I (pointer assignment) I (word array row) I
(subscripted word variables)

(pointer primary) ::=(pointer identifier) ((pointer

expression)) I (case head) ((pointer expression

list)) I (pointer designator)

(skip) ::=(empty) (adding operator) (primary)

(pointer identifier) .. - (identifier) .. -

(pointer designator) .. - POINTER ((pointer parameters)) .. -

(pointer parameters) .. - (array part) I (array part), .. -
(character size)

(character size) ::= 4 I 6 s I *

(array part) ::=(array row)

(array identifier)

(subscripted variable) I

(subscripted word variable) ::=(subscripted variable)

(array row) ::=(array identifier) [(row designator)]

(row designator) ::= * I (row) , *

(word array row) ::=(array row)

(row) ::=(arithmetic expression) I (row), (arithmetic

expression)

(pointer expression list) ::=(pointer expression) j

(pointer expression list), (pointer expression)

(pointer assignment) ::=(pointer variable) (replacement

operator) (pointer expression)

(pointer variable) ::=(variable)

SEMANTICS.

A pointer expression defines a character position within an array

row. An identifier used as a pointer primary must be of type

pointer. If a pointer expression is enclosed in parentheses, it is

evaluated first and its value used as a primary.

If skip is not empty, the pointer value is adjusted by L characters

to the right or left, where Lis the absolute value of the arith-

metic expression. If the adding operator is +, skipping is to the

right. If the operator is -, skipping is to the left.

A pointer designator may be used to create a pointer value which

references a specific character position in an array. The pointer

designator has two forms:

a. POINTER (A,L) - yields a pointer value "pointing" to A.

A is an array identifier which may either by subscripted

or unsubscripted. Lis A character length in bits (4, 6,

or 8).

b. POINTER (A) - same as pointer (A,6).

c. POINTER (A,*) - yields a pointer with a size field equal

to A.[42:J].

A pointer may be initialized either by a pointer assignment or by

appearing as an update pointer in a SCAN or REPLACE statement or a

string comparison.

ARRAY EXPRESSIONS.

SYNTAX.

The syntax for (array expression) is as follows:

(array expression) ::=(array assignment) I (array primary) I
(IF clause) (array expression) ELSE (array expression)

(array primary) ::=(array designator)

I (array primary) & (layout)

((array expression))

(word expression)

5-13

(array designator) ::=(array identifier) (subarray designator)

(array variable) ::=(simple variable) I (array item)

(subarray designator) ::=(empty) I [(subscript part)

(subarray part) J

(subscript part) ::=(empty) I (subscript list) ,

(subarray part) ::= * I (subarray part) ,*

(array assignment) ::=(array designator) (replacement

operator) (array expression)

(array item) ::=(item)

Examples:

5-14

Array Expressions:

IF BOOVAR THEN ARRVAR [2,J,*] ELSE A2SJ - AlSJ

A2S2-AJSJ

ARVR[J,*]

Array Primaries:

QVAR [J,*]

(A2S2-AJSJ)

QVAR [2,*] & C2S

Array Designators:

NEXT

NXTON[2,J,*]

Array Variables:

DELTA

ARRAYNAME @ ARRAYDECQUE

Subarray Designators:

[*]
[2,*]

SEMANTICS.

An array designator references a data descriptor. In fact, an array

designator is ESPOL for data descriptor. An array assignment ini­

tializes or changes the values of the various fields in the corre­

sponding data descriptor.

WORD EXPRESSIONS.

SYNTAX.

The syntax for (word expression) is:

(word expression) ::=(word assignment) (word variable)

(word item) (IF clause) (word expression) ELSE

(word expression) I WORD {(most expressions))

(function designator) I (case head) (word expression

list) I {(word expression))

(word va ria b 1 e) : : = (va ri ab 1 e)

(word item) ::=(item)

(most expressions) ::=(arithmetic expression)

expression)

expression)

(reference expression)

(word expression list) ::=(word expression)

list), (word expression)

(Boolean

(array

(word expression

(word assignment) ::=(word variable) (replacement operator)

(expression)

SEMANTICS.

A word expression defines a word value. Word values are regarded

as a 48-bit field with no type significance. A word transfer

function behaves in much the same manner as the REAL and Boolean

transfer functions, i.e., it suppresses syntax checking which would

otherwise be invoked.

5-15

PRAGMA.TICS.

A word variable is accessed via a LODT. However, no such action

must be expected for the expression associated with the word

transfer function - the code applicable to the expression is com­

piled. There is no guarantee that a correctly compiled word ex­

pression produces valid B 6500 code.

5-16

GENERAL.

SYNTAX.

SECTION 6

PROGRAMS, BLOCKS, AND COMPOUND STATEMENTS

The syntax for (program) is as follows:

(program) ::=(block) . (space)

(block) ::=(block head) ; (compound tail)

(compound statement) ::=BEGIN (compound tail)

(block head) ::=BEGIN (declaration) I (block head)

(declaration)

(compound tail) ::=(statement) END I (statement)

tail)

Examples:

Program:

BEGIN REAL V; v-v+l;END.

Block:

BEGIN REAL Q; Q-Q+l;END

BEGIN

INTEGER I,K; REAL W;

FOR I-1 STEP 1 UNTIL M DO

FOR K-I+l STEP 1 UNTIL M DO

BEGIN

W-A[I ,K];

A[I ,K}-A[K ,I];

A[K,I]-W

END

END

(compound

6-1

Compound statement:

BEGIN x-o;FOR Y-1 STEP 1 UNTIL N DO x-x+A[Y];

IF X>Q THEN GO TO STOP ELSE IF X>W-2 THEN GO TO W;

AW-ST-X+BOB

END

BEGIN v-v+l END

BEGIN Q-Q+l;V-V+l END

BEGIN END

Block Head:

BEGIN REAL V

BEGIN REAL V; BOOLEAN Q

Compound Tail:

V-V+l END

Q+-Q+l;V+-Q+V END

SEMANTICS.

Every block automatically introduces a new level of nomenclature.

That is, any identifier occurring within the block may, through an

appropriate declaration, be declared LOCAL to the block. The mean­

ing of LOCAL is:

a. The entity represented by the identifier inside the

block is not recognized by the identifier outside the

block.

b. Conversely, any entity represented by the identifier

outside the block is not recognized by that identifier

inside the block.

An identifier occurring within a block and not declared within that

block is global to the block. This means the identifier represents

the same entity inside the block and in the level (or levels) out­

side it, up to and including the leve·1 at which it is declared.

6-2

The general design of an ESPOL program is similar to that of an

ALGOL program.

The remarks in two previous paragraphs above specifically do not

apply where the entity is an interrupt declaration.

6-1

GENERAL.

SYNTAX.

SECTION 7
STATEMENTS

The syntax for (statement) is as follows:

(statement) ::=(conditional statement) I (unconditional

statement)

(conditional statement) ::=<label) : (conditional statement)

(IF clause) (unconditional statement) ELSE (condi­

tional statement) I (IF clause) (statement) I
(conditional iteration)

(unconditional statement) ::=(label) : (unconditional

statement) I (block) I (compound statement) I
(basic statement) (IF clause) (unconditional

statement) ELSE (unconditional statement)

(label) ::=(label identifier)

(IF clause) ::=IF (Boolean expression) THEN

Examples:

Statements:

IF X>B THEN X-X+l ELSE GO TO B2

X-A+B

Conditional Statements:

B2:IF x>o THEN N-N+l

IF TRUE THEN V:Q-N+M ELSE IF NOT 800 THEN Q:=M/N

IF B-F(A) THEN GO TO START

WHILE TRUE DO IF X-Q+M>2 THEN GO TO L6

Unconditional Statements:

LBL: GO TO NEXT

7-1

IF z>x THEN GO TO FLAS ELSE GO SCND

BEGIN Y-X+l;Z-Y+2 END

BEGIN REAL X; LABEL Q; IF Z>P THEN GO TO Q ELSE x-Fc(c);

Q:END

LBL:

IF Clause:

IF B>A THEN

IF GATE[l,2] AND GATE[l,J] THEN

SEMANTICS.

Statements are the units of operation of the language. The defini­

tion of statement is recursive because statements may be grouped in

compound statements and blocks. A conditional statement causes

certain statements to be executed or skipped depending upon the

value produced by a Boolean expression.

BASIC STATEMENTS.

SYNTAX.

The syntax for (basic statement) is as follows:

7-2

(basic statement) ::=(go to statement) I (procedure statement)

I (unconditional iteration) I (assignment statement)

I (dummy statement) (case statement) I (string

transfer statement)

(go to statement) ::=GO (to part) (designational expression)

GO (to part) (case head) ((designational expression

list))

(to part) ::=(empty) I TO

(designational expression list) ::=(designational expression)

(designational expression list) , (designationa~

expression)

(dummy statement) ::=(empty)

(case statement) ::=(case head) (compound statement)

(case head) ::=CASE (arithmetic expression) OF

Examples:

GO TO Statements:

GO TO START

GO NEXT

GO TO CASE ARITHEXP-1 OF (LABELl, NEXT, EXIT, START)

Dummy Statements:

Ll:

EXIT: NEXT:

CASE Statements:

CASE v OF BEGIN x-x+l;Z-Z+l END

CASE Head:

CASE Z-Q*V-B MOD 7 OF

SEMANTICS.

The GO TO statement transfers control to the label which is the

value of the designational expression or the designational expres­

sion list.

In the case statement, the arithmetic expression in the case head

is evaluated and is used to select one of the statements in the

compound statement following the case head. The selected state­

ment and only the selected statement is executed.

The statements in the compound statement are numbered starting

with zero, and the arithmetic expression in the case head is

interpreted as the number of the statement to be executed. Dummy

statements should be used to arrange convenient numbering of the

statements.

7-J

PROCEDURE STATEMENTS AND FUNCTION DESIGNATORS.

SYNTAX.

The syntax for (procedure statement) is:

(procedure statement) ::=(procedure identifier) (actual

parameter part)

(function designator) ::=(function identifier) (actual

parameter part)

(function identifier) ::=(procedure identifier)

(actual parameter part) ::=(empty) ((actual parameter list))

(actual parameter list) ::=(actual parameter) I (actual para­

meter list) (parameter delimiter) (actual parameter)

(actual parameter) ::=(expression) I (procedure identifier) I
(event designator)

(parameter delimiter) ::=)" {any sequence of letters, including

spaces} 11 (/,

Examples:

7-4

Procedure Statements:

ALGORITHM12J (A+2)

ALGORITHM546 (A+2)"AVERAGE PLUS TWO" (CALCRULE)

GETESPDISK

Function Designators:

J(A,B+2,Q[I,L])

GASVOL(K) "TEMPERATURE" (T) "PRESSURE" (P)

RANDOMNO

Actual Parameter Parts:

(A,B+2,Q[I,J])

(A+2)

(K) "TEMPERATURE" (T) "PRES SURE" (P)

Actual Parameters:

A+2

A

CHECKOUT

A[2]

Event Designators:

El

XERXES

ZEUS[2,J]

Parameter Delimiters:

)"TEMPERATURE"(

SEMANTICS.

A procedure statement causes a previously defined procedure to be

executed.

A function designator returns a value. However, when a function

designator is used as a procedure statement, this value is lost.

The actual parameter list of the procedure statement must have the

same number of entries as the formal parameter list of the procedure

declaration heading.

Formal and actual parameters must correspond in type and kind of

quantities. The correspondence is obtained by taking the entries

of these two lists in the same order.

7-5

ITERATION.

SYNTAX.

The syntax for (unconditional iteration) is:

(unconditional iteration) ::=(do statement) I (iteration

clause) (unconditional statement)

(conditional iteration) ::=<iteration clause) (conditional

statement)

(do statement) ::=DO (statement) UNTIL (Boolean expression)

(iteration clause) ::=(while part) DO I (for clause) DO I
(thru clause) DO

(while part) ::=WHILE (Boolean expression)

(thru clause) ::= THRU (arithmetic expression)

(for clause) ::=FOR (controlled variable) (replacement

operator) (for part)

(controlled variable) ::=(simple variable) I (subscripted

variable)

(for part) ::=(initial part) (step part) (final part)

(initial part) ::=(arithmetic expression)

(step part) ::=STEP (arithmetic expression) I BY (arithmetic

expression)

(final part) ::=UNTIL (arithmetic expression) I (while part)

Examples:

7-6

Iteration Clauses:

FOR V-Q STEP l UNTIL 90 DO

WHILE A>B DO

FOR FIRST - BY l UNTIL LAST DO

While Parts:

WHILE NOT A~ C EQV GATE [1,2]

WHILE TRUE

For Clauses:

FOR ATLST - J-2 STEP A - Q - J-K UNTIL F(A)

Controlled variables:

ATLST

v[2,3]

For Parts:

x-2 STEP x-Y+FUNC(A)UNTIL x-Y MOD 9

Initial Parts:

P MOD 2

+J
Q

Step Parts:

STEP IF B = 0 THEN X ELSE Y+2

BY 29

Final Parts:

UNTIL X-7
WHILE B>8

SEMANTICS.

The iteration clause provides the means of forming loops in a

program. If BY (arithmetic expression) is used instead of STEP

(arithmetic expression), the loop will be constructed using the

Step and Branch operator to optimize execution time.

7-7

ASSIGNMENT STATEMENTS.

SYNTAX.

The syntax for (assignment statement) is:

(assignment statement) ::=(arithmetic assignment statement)

(Boolean assignment statement) I (queue assignment)

(word assignment) I (reference assignment) I (pointer

assignment) I (array assignment statement)

(arithmetic assignment statement) ::=(arithmetic assignment)

(arithmetic field assignment)

(arithmetic field assignment) ::=(arithmetic variable) .

(field identifier) (replacement operator)

(arithmetic expression)

(Boolean assignment statement) ::=(Boolean assignment) I
(Boolean field assignment)

(Boolean field assignment) ::=(Boolean variable) . (field

identifier) (replacement operator) (Boolean

expression)

(queue assignment) ::=(queue designator) (replacement operator

(reference expression)

(array assignment statement) ::=(array assignment) I (array

field assignment)

(array field assignment) ::=(array designator) • (field

identifier) (replacement operator) (arithmetic

expression)

Examples:

7-8

Arithmetic Assignment Statements:

V+-BxQ-R

JOY.BOY+- V+-Q

Arithmetic Assignments:

ALTRO +- N+l

s[v,K+2]:=J-FUNC(Q=2)

Arithmetic Field Assignments:

IOQUEUE,ERR +- 6

v[7].LNK := QUED-GONEx7

Boolean Assignment Statements:

RDY+-TRUE

PARTWAY.NXT +- B AND GONE> 6

Queue Assignments:

QUED +- QUEB(HERE,THERE,EVYWHR)

Array Assignment:

NEXT-IF A[l,2]AND B[Q,J] THEN VARY[2,*] ELSE A25J+-A2J4

SEMANTICS.

The assignment statement causes the expression to the right of the

replacement operator to be evaluated. The value is assigned (trans­

ferred) to the variable or field on the left.

A queue assignment causes the entry denoted by the value of the

reference expression to be made available to the insertion part of

the designated queue, and this insertion part to be executed.

PRAGMATICS.

(word assignment)s invoke OVRD action.

There is no guarantee that a correctly compiled WORD ASSIGNMENT

produces valid B 6500 code.

7-9

STRING STATEMENTS.

SYNTAX.

The syntax for (string transfer statement) is:

7-10

(string transfer statement) ::=REPLACE (destination) BY

(source list)

(string scan statement) ::=SCAN (source) (scan part)

(destination) ::=(update pointer) (pointer expression)

(source list) ::=(source part) I (source part) , (source list)

(source) ::=(pointer source) I (arithmetic source)

(scan part) ::=(scan count) (condition) I (condition)

(source part) ::=(source) (transfer part) I (string)

(transfer part) (arithmetic source) (arithmetic

transfer part) I (string)

(transfer part) ::=(scan count) (condition) I (condition)

(final count) (units) I WITH (picture designator)

(final count) WITH (translate table)

(arithmetic transfer part) ::=(digit count)

(correct count) (condition)

(correct count)

(scan count) ::=FOR (update count) (arithmetic expression)

(final count) ::=FOR (arithmetic expression)

(digit count) ::=FOR (arithmetic expression) DIGITS

(correct count) ::=(scan count) CORRECTLY

(pointer source) ::=(update pointer) (pointer expression)

(arithmetic source) ::=(update variable) (arithmetic

expression)

(condition) ::=WHILE (relational operator) (arithmetic

expression) UNTIL (relational operator) (arithmetic

expression) WHILE IN (table) I UNTIL IN (table)

(table) ::=(array row) (subscripted variable)

(translate table) ::=(table)

(picture designator) ::=(picture identifier) (repeat parameters)

(repeat parameters) ::=(empty) I ((unsigned integer list))

(unsigned integer list) ::=(arithmetic expression) I
(arithmetic expression) , (unsigned integer list)

(update pointer) ::=(empty) I (pointer identifier)

(update variable) ::=(empty) I (simple variable)

(update count) ::=(empty) I (simple variable)

(units) ::=(empty) I WORDS I OVERWRITE

SEMANTICS.

A (string transfer statement) tranfers information from the source

to the destination. The unit of information is either words or

characters, and the number of units transferred is specified by a

count or determined by a condition. If the unit of information is

words, then both the source and the destination are right-adjusted

to a word boundary before the transfer begins.

A (string scan statement) scans the information in the source.

Characters are the unit of information: also, a condition must be

present. The number of characters scanned may be determined by

the count or the condition.

Characters are the default unit for the transfer statement. For

example, WORDS and OVERWRITE both mean units of one word. In

addition, OVERWRITE ignores memory protection on the destination.

7-11

At the end of a scan or transfer the following updated information

is available:

a. The destination update pointer, points to the next position

to be filled. If the unit of transfer is words, it points

to the left-most character of the next word to be filled.

b. The source update pointer, points to the next unit which

is scanned or transferred. If the unit is a word, the

update pointer points to the left-most character of the

word.

c. For scans and transfers an arithmetic source is thought

of as being circular, with the high-order and low-order

ends contiguous. The source update variable returns the

original expression rotated in such a way that the next

character used is in the high-order position.

d. Each time a unit of information is scanned or transferred,

the original count, as given by an arithmetic expression,

is decremented by 1. This continues until the count

reaches zero, if no condition is imposed. If a condition

is imposed, the count may not reach zero, and the update

count returns the value of the count at the end of the

transfer. The reserved-word TOGGLE is true, iff the

update count is zero.

The (digit count) converts the source arithmetic expression into an

integer in decimal form. The designated number of low-order

decimal digits is transferred to the destination and the source

update variable returns the original expression DIV the designated

power of 10.

The (correct count) rotates the source arithmetic expression so

that the appropriate number of low-order characters appear in the

high-order of the source. After this rotation a normal transfer

occurs. If for example, one character were to be transferred

7-12

correctly, the low-order character would be moved to the high­

order position before the transfer occurr~d. Since transfers work

from left-to-right, this has the effect of' allowing the transfer

of right-justified characters in an arithmetic expression.

Scans and transfers always work from left-to-right on destination,

source, and arithmetic source.

digit count.

Exceptions are correct count and

The (translate table) works as follows:

a. Each source character is used to find an 8-bit translation

character in an array row. The high-order part of this

character is discarded to make it fit the destination

·character set. It is then stored in the destination.

b. The 8-bit translation character is found in the following

way. The low-order 2-bits of the source character are

used as the character index and the remaining high-order

bits are used as the word index. The word index is used

as a subscript to the array row, or it is added to Lhe

right-most subscript of the subscripted variable. In the

resulting word-character number (2 + (character index))

is the translation character. As usual, the characters

are numbered left-to-right, so that the translation

character is one of the four low-order 8-bit characters

in the word.

The WHILE (relation operator) form of condition causes termination

of the SCAN or TRANSFER when the source character ceases to have

the designated relation to the low-order character of the condition

arithmetic expression. The character which causes termination of

the SCAN or TRANSFER is not scanned or transferred. Thus the

source update pointer or update variable is pointing to this

character.

The UNTIL (relational operator) form of condition causes termina­

tion of the SCAN or TRANSFER when the source character has the

7-13

designated relation to the low-order character of the condition

arithmetic expression. The character which causes termination

of the scan or transfer is not scanned or transferred.

The conditions involving the table construct use the bits of the

source character to find a test bit in an array row. The char-

acter is in the table iff the test bit is on. The test bit is

found in the following way. The low-order 5 bits of the source

character (4 bits if the source character has only four) are used

as the bit index, and the remaining bits, if any, are used as the

array row, or it is added to the right-most subscript of the sub­

scripted variable. In the resulting word-bit number (Jl - (bit

index)) is the test bit. As usual, bits are numbered right-to­

left, so that the test bit is one of the low-order 32 bits in

the word.

If the source is a string, the string is transferred to the des­

tination under the control of a count. If the count, C, is not

greater than the string length, L, then C characters are copied

into the destination. If the count, C, is greater than the

length, L, and the string is more than 48 bits long, the behav­

ior is unpredictable. If C is greater than L, and the string is

shorter than 48 bits, then the string is concatenated with itself

until the count is exausted. For example, 8 "ABCD" for 10

transfers "ABCDABABCD", not "ABCDABCDAB".

7-14

GENERAL.

SYNTAX.

SECTION 8

DECLARATIONS

The syntax for (declaration) is as follows:

(declaration) ::=(type declaration) J (label declaration)

(array declaration) I (field declaration) j

(layout declaration) I (queue declaration) J

(queue array declaration) j (procedure declaration)

(define declaration) I (event declaration) j

(event array declaration) j (picture declaration)

(value array declaration) j (monitor declaration)

(interrupt declaration)

SEMANTICS.

Declarations define certain properties of entities and relate these

entities with identifiers.

The entities dealt with in the ESPOL language are:

a. Variables.

b. Labels.

c . Procedures.

d. Fields.

e. Strings.

f. Texts.

Every identifier has a "scope." The scope of the identifier is

usually the block in which it is declared. The exceptions are:

a. Formal symbols in a define declaration whose scope is

the defines.

b. Formal parameters in a procedure declaration whose scope

is the procedure declaration.

c. Invisible formal items in a queue declaration whose scope

is the queue declaration.
8-1

An identi:fier is said to be "local" to the block in which it is

declared. That is, the entity represented by the identi:fier in-

side the block is not recognized by the identi:fier outside the

block. Conversely, any entity represented by the identi:fier out­

side the block is not recognized by that identi:fier inside the block.

An identi:fier is said to be "global" to a block i:f:

a. It is not declared in the block.

b. It is declared in an exterior block.

Entry into a block must be through the BEGIN. When the block is

entered, all identi:fiers declared :for the block assume the signi:f­

icance implied by the nature o:f the declarations given, in the

order o:f their appearance in the block head.

Exit :from a block may be through the END or by a GO TO statement.

At the time o:f exit :from the block, all identi:fiers which are de­

clared :for the block lose their signi:ficance.

Some identi:fiers may be declared with the declarator OWN. This

declarator causes the identi:fied quantity to retain its value(s)

:from one exit in a block to the next entry into that block.

An identi:fier may not be declared to represent more than one entity

in a single block head, :formal symbol list, :formal parameter list,

or :formal item list.

TYPE DECLARATIONS.

SYNTAX.

The syntax :for (type declaration) is as :follows:

8-2

(type declaration) ::=(type) (type list) I OWN (type)

(type list)

(type) ::=REAL INTEGER I BOOLEAN I DOUBLE I REFERENCE I
POINTER I WORD

(type list) :;=(type part) I (type list) , (type part)

(type part) ::=(identifier) (address part) j (identifier)

(replacement operator) (initial value)

(address part) ::=(empty) = (address)

(address) ::=(identifier) (address couple) (identifier)

(adding operator) (unsigned integer)

(address couple) ::={(level) (displacement))

(level) ::=(unsigned integer) j - (unsigned integer)

(displacement) : := (empty) j , (unsigned integer)

(initial value) ::=(expression)

Examples:

Type Declaration:

OWN REAL V,Q;

OWN INTEGER B,A;

INTEGER Q - 1, R, S=T,V=(J,4);

Type List:

Q

C:::::W

GENERAL=(l,2),Fl2T-5,Z=(J)

Type Part:

ZER0-1

QUOTE= (J,4)

TERIF=GRT

8-J

Address:

ZQW

(J,4)

Initial Value:

3
IF B THEN XxQ ELSE BOD+NOTHING

SEMANTICS.

A type declaraticm defines the type of value of each type identi­

fier.

A type declaration may also either assign the address of the ident­

ifier, or assign the initial value of the identifier, or specify

that the identifier has the OWN property.

An address which is an identifier assigns the type identifier to the

same location as the identifier. The identifier must have been de­

clared previously, and must identify a quantity having a stack ad­

dress.

An empty address part results in the assignment of an address couple

by the compiler.

An address couple is an addressing level and a displacement from

the base of that level. The addressing level may range from 0 to

Jl.

A negative integer used as a level directs the compiler to determine

the level referenced by subtracting the integer from the level of

the block being compiled.

An empty displacement directs the compiler to use the next available

displacement for the level indicated. The range of displacement

depends upon the value of level:

8-4

Level Displacement Range

0 ,1•....... 0-8191

2,3 •••••••••••••••••••••••••••••• 0-4095

4-7 0-2047

8-15 ••••••••••••••••••••.••.••••• 0-1023

16-31 .•••••••••••••••••••••••••••• 0-511

The specified level must be less than or equal to the current level.

It is possible for two or more identifiers to have the same address

couple (directed by the programmer). It is the responsibility of

the programmer to see that the antecedents of an address couple,

used as an address part, are correct.

An initial value expression assigns the value that the identifier

has upon entering the block in which the type declaration appears.

The expression is evaluated upon each entry to the block. All

initial value expressions are evaluated in the order in which they

appear. An initial value expression must be of the same type as the

declaration. If an initial value is not specified for any type

identifier, the initial value of that identifier is not defined.

The OWN property action is essentially the same as that which would

occur if the programmer were to specify an address couple referenc­

ing the zero level with an empty displacement.

LABEL DECLARATIONS.

SYNTAX.

The syntax for (label declaration) is:

(label declaration) ::=LABEL (label list)

(label list) ::=(label identifier) I (label list) , (label

identifier)

(label identifier) ::=(identifier)

8-5

Examples:

Label Declarations:

LABEL FOG;

LABEL L7,L8;

Label List:

START,EXIT,LOOP

NEXT

SEMANTICS.

A declared label declaration defines each identifier in its label

list as a label identifier.

A label identifier must appear in a label declaration in the head of

the block in which it is used to label a statement.

A label identifier need not be declared if its first appearance in

the block labels a statement, or if its first appearance in the

block is in a GO TO statement and there is no non-local label with

the same identifier previously appearing.

ARRAY DECLARATIONS.

SYNTAX.

The syntax for (array declaration) is as follows:

8-6

(array declaration) ::=(array kind) ARRAY (array list)

(array kind) ::=(empty)

or own type)

(local or own type) I SAVE (local

(local or own type) ::=(array type) I OWN (array type)

(array list) ::=(array segment) (array list) , (array

segment) I (initialized array) I (array list) ,

(initialized array)

(array segment) ::=(array identifier) (address part) [(bound

list)] j (array identifier) (address part) , (array

segment)

(bound list) ::=(bound) j (bound list) , (bound)

(bound) ::=(upper bound) I *

(upper bound) ::=(arithmetic expression)

(initialized array) ::=(array identifier) (replacement

operator) ((constant))

(array type) ::=(empty) I REAL INTEGER I BOOLEAN I
REFERENCE I WORD l EVENT

Examples:

Array Declarations:

OWN REAL ARRAY AZ, BZ = (J,4), CZ [27]

ARRAY BZ[lO]

Array Lists:

AZ,BZ=(J,4),cz[27]

PQ,RQ[Jl]

PC[l5],RC[Jl]

Array Segments:

c7c=(-2,5),c8c=,c7c,c9c=(4)[*]

c27[1022]

Bound Lists:

1,56

7

8-7

Bounds:

27

*
IF A THEN 1 ELSE Q-7

SE"MANTICS.

An array declaration defines one or several identifiers to represent

arrays of subscripted variables and gives:

a. The dimension of the array.

b. The bounds of the subscripts.

c. The types of the variables.

The value of an array identifier is a data descriptor representing

the ordered set of values of the corresponding array of subscript­

ed variables.

An empty array kind means a default declaration of REAL.

The location specified by the address part must contain a data des­

criptor or an Indirect Reference Word pointing to a data descriptor.

The bound list gives the maximum value of each subscript, taken in

order from left-to-right.

A bound of * means that the programmer is responsible for the allo­

cation of the space for the array.

Expressions used as bounds are evaluated once, from left-to-right,

upon entrance into the block. These expressions can depend only on

variables and procedures which are non-local to the block for which

the array declaration is valid or which are local and have initial

value parts. Arrays declared in the outermost block must use con-

stant or * bounds.

Dynamic OWN arrays are not permitted.

A bound of * may not appear to the left of an expression used as a

bound in the same bound list.

8-8

When an array segment includes non-empty address parts, a bound of*

must be used.

FIELD AND LAYOUT DECLARATIONS.

SYNTAX.

The syntax for (field declaration) is as follows:

(field declaration) ::=FIELD (field part list)

(layout declaration) ::=.LAYOUT (layout part list)

(field part list) ::=(field part) J (field part list) , (field

part)

(layout part list) ::=(layout part) I (layout part list) ,

(layout part)

(layout part) ::=(layout identifier) ((layout item list))

(layout item list) ::=(layout item) j (layout item list) ,

(layout item)

(layout item) ::=(layout field) (field value part)

(field value part) ::=(empty)

(unsigned integer)

(replacement operator)

(layout field) ::=(field part) I (field) I (field identifier)

(field part) ::=(field identifier)= (field) I TAG

(field identifier) ::=(identifier)

(field) ::=(arithmetic expression)

(layout identifier) ::=(identifier)

Examples:

Field Declarations:

FIELD Al = J:l, AZ = B:l

FIELD QUIZ = 20:21

(arithmetic. expression)

8-9

Layout Declarations:

LAYOUT C2S (7:6 - 5, QA = B:6 - 92, QUITE) ,C3S (4:2 ·-3)

LAYOUT LOOK (6:42 - 9,QA = BxQ-R:2)

Field Part Lists:

Al= 2:3 'A2 = B:A, A3 = c-F(Q):IF TROL THEN QxZ ELSE

P-Q/R

Bl=B:6

SEMANTICS.

A field declaration defines each identifier in its field part list

as a field identifier and specifies the field.

A layout declaration identifies each identifier in its layout part

list as a layout identifier and specifies a layout item list. A

layout item list is composed of one or more fields, referred to as

layout items. A layout item may be:

a. A previously declared field identifier.

b. An unidentified field.

c. A field part.

A layout item may specify a default value for the field. If no de-

fault value is given and no value is assigned, the field is ignored.

The expressions in the field designation are evaluated whenever

the field identifier or layout identifier is used. Where the field

or layout identifier appears, the expressions are compiled by tex­

tual replacement.

The basic B 6500 word consists of 51 bits:

8-10

a. Bits 50, 49, and 48 are referred to as tag bits. These tag

bits cannot be addressed directly, however, they may be

addressed by the reserved field identifier TAG.

b. The balance of the B 6500 word is referred to as the in­

formation field. The information field is address 47-0,

that is, left-to-right where 47 is the bit on the far left

and 0 is the bit on the far right.

TAG is an intrinsic field. It is equivalent to the field 5l:J,

except that the latter is not explicitly permitted.

QUEUE AND QUEUE ARRAY DECLARATIONS.

SYNTEX.

The syntax for (queue declaration) is as follows:

(queue declaration) ::=QUEUE (queue head) (queue body)

(queue array declaration) ::=QUEUE ARRAY (queue array head)

[(index bound)] (queue body)

(queue head) ::=(queue identifier) (reference name part)

(queue array head) ::=(queue array identifier) (reference

name part)

(index bound) ::=(arithmetic expression)

(reference name part) ::=(empty) l : (second name) (address

part)

(reference name) ::=(identifier)

(queue body) ::=(entry description) ; (algorithm part)

(entry description) ::={(entry item list));

(value part); (specification part)

(entry item list) ::=(item list) (invisible item list)

(item list) ::=(item identifier) l (item list) (parameter

delimiter) (item identifier)

(invisible item list) ::=(item list)

(algorithm part) ::=(empty) j USING (algorithm list)

(algorithm list) ::=(algorithm) j (algorithm) : (algorithm list)

8-11

(algorithm) ::=(boolean algorithm identifier) IF (Boolean

expression) I (reference algorithm identifier) IS

(reference expression) I TO (algorithm identifier) ,

(statement) (lock specification) I (integer algorithm

identifier) = (arithmetic expression)

(lock specification) ::=LOCKED I LOCKED (queue name)

(queue identifier) ::=(identifier)

(queue array identifier) ::=(identifier)

(reference algorithm identifier) ::=ALLOCATE I NEXT I LASTj

FIRST I PRIOR

(algorithm identifier) ::=INSERT I REMOVE I DELINK I (identi­

fier)

(Boolean algorithm identifier) ::=EMPTY I FULL

(integer algorithm identifier) ::=POPULATION

SEMANTICS.

A queue is an ordered list of entries. Each entry has the form of

an array row with one word for each item identifier in the entry

item list.

A queue array is an array of queues. The index bound designates

the number of queues involved, and is a strict upper bound for the

queue array subscripts.

The entry item list is in effect a declaration for each of the

item identifiers appearing in it. Those item identifiers appearing

in the invisible item list are understood to b~ local to the queue

declaration, and may not be referenced excep~ in the queue body.

The remaining item identifiers are local to the block in which the

queue is declared.

8-12

In creating an entry expression, the elements in the actual item

list must be in a one-to-one correspondence with the item identi­

fiers in the item list of the entry description for the queue in

question. The invisible item identifiers do not have correspondlng

actual parameters.

The reference name of a queue points to a specific entry in the

queue. The exact position of this entry in the queue is deter­

mined by the queue algorithms. Similarly, the reference name of

a queue array points to an array of entries, one for each queue

of the queue array.

The reserved word ENTRY is local to the queue body. It is used to

refer to the entry which is currently being placed in, or removed

from the queue. Also, for the queue array declarations there is

the reserved word INDEX which is local to the queue body. INDEX

is the current subscript to the queue array.

The ALLOCATE algorithm is invoked whenever it is necessary to

allocate space for an entry or an entry expression. If no ALLOCATE

algorithm is given, then no entry expression using the queue name

may be used.

The INSERT algorithm is used to insert new entries in the queue.

It is called each time a queue assignment is used. Thus, no queue

assignment may be used for a queue which has no INSERT algorithm.

The queue algorithms used by a queue are local to the block in

which the queue is declared. In an explicit call on a queue algo­

rithm, the actual parameter list has the following general format:

(queue name) , (reference expression) , (aritlunetic expression).

The queue name parameter must always be present. The reference

expression is not required for all algorithms, and when used is

passed to ENTRY in the queue body. The arithmetic expression is

only required for queue arrays, and even then, it may not be neces­

sary. The arithmetic expression is passed to INDEX in the queue

body of the queue array declaration. The following table should

be helpful.

8-13

ALGORITHM REFERENCE INTEGER

REMOVE NO YES

INSERT YES YES

DE LINK YES YES

ALLOCATE NO NO

NEXT NO YES

LAST NO YES

FIRST NO YES

PRIOR YES YES

EMPTY NO YES

FULL NO YES

POPULATION NO YES

ALL OTHERS YES YES

EXAMPLE:

8-14

REFERENCE LASTREADY;

QUEUE READYLIST:FIRSTREADY(STKNR,PRIORITY:NEXTREADY,PREADY);

VALUE NEXTREADY,PREADY,STKNR,PRIORITY;

INTEGER STKNR,PRIORITY;

REFERENCE NEXTREADY,PREADY;

USING

TO INSERT, IF LASTREADY=NULL

EADY@(LASTREADY-FIRSTREADY-ENTRY)-PREADY-NULL

ELSE IF PRIORITY@ENTRY > PRIORITY@(PREADY@(ENTRY)-LASTREADY)

THEN

NEXTREADY@(NEXTREADY@(LASTREADY)-LASTREADY-ENTRY)-NULL

ELSE IF PRIORITY@ENTRY < PRIORITY THEN COMMENT GOES AT HEAD;

PREADY@(PREADY@(NEXTREADY@(ENTRY)-FIRSTREADY(-FIRST­

READY-ENTRY)-NULL

ELSE

BEGIN

WHILE PRIORITY@ENTRY<PRIORITY@PREADY@ENTRY DO

PREADY@(ENTRY)-PREADY@(PREADY@(ENTRY));

NEXTREADY@(ENTRY)-NEXTREADY@PREADY@ENTRY;

NEXTREADY@(PREADY@ENTRY)-PREADY@(NEXTREADY@ENTRY)­

ENTRY

END:

EMPTY IF FIRSTREADY=NULL:

TO REMOVE,

IF ENTRY=FIRSTREADY THEN

IF FIRSTREADY=LASTREADY THEN FIRSTREADY-LASTREADY-NULL

ELSE PREADY@(FIRSTREADY-NEXTREADY)-NULL

ELSE IF ENTRY=LASTREADY THEN

NEXTREADY@(LASTREADY-PREADY@ENTRY)-NULL

ELSE PREADY@(NEXTREADY@(PREADY@ENTRY)-NEXTREADY@ENTRY)

-PREADY@ENTRY;

PROCEDURE DECLARATIONS.

SYNTAX.

The syntax for (procedure declaration) is as follows:

(procedure declaration) ::= (save part) (procedure type)

PROCEDURE (procedure heading) (procedure body)

(save part) ::=(empty) I SAVE I SAVE 1

(procedure type) ::=(empty) j (type)

(procedure heading) ::=(procedure identifier) (address part)

(formal parameter part);

(procedure identifier) ::=(identifier)

(formal parameter part) ::=(empty) j ((formal parameter list));

(value part) (specification part)

(formal parameter list) ::=(formal parameter list)

(parameter delimiter) (formal pararemter) J (formal

parameter)

(formal parameter) ::=(identifier)

(value part) ::=(empty) I VALUE (identifier list)

8-15

(specification part) ::=(specification part)

I (specification)

(specification)

(specification) ::=(specifier) (identifier list) I
(array specification)

(array specification) ::=(array type) ARRAY

(array specifier list)

(array specifier list) ::=(array specifier list), (array

specifier) I (array specifier)

(bound specifier) ::= * I (bound specifier) , *

(specifier) ::=(type) I (procedure type) PROCEDURE I QUEUE I
EVENT I PICTURE

(procedure body) ::=(statement) I FORWARD I EXTERNAL

(identifier list) ::=(identifier) I (identifier list) ,

(identifier)

(array specifier) ::=(array identifier list) [(bound

specifier) J

(array identifier list) ::=(array identifier) I (array

identifier list), (array identifier)

Examples:

8-16

Procedure Declaration:

PROCEDURE FAKE;X-X+l

PROCEDURE NEXT(A}; VALUE A; REAL A; X-A+l

PROCEDURE NEXT(A}; VALUE A; REAL A; FORWARD

Procedure Heading:

COMMUNE= INTRIN (A}; REAL A;

Formal Parameter Part:

(A,B,C); VALUE A; REAL A,B,C;

(ABSTRACT,DEGENERATE); VALUE ABSTRACT; REAL ABSTRACT;

PROCEDURE DEGENERATE;

Formal Parameter List:

A,B,C

X)"VALUE OF EXPRESSION X PLUS 2 "(CALCRULE

Value Part:

VALUE x,y,z

Specification Part:

INTEGER N; ARRAY A,B,C,Xl,X2[*];ALPHA ARRAY XJ[*];

Specification:

INTEGER N,O,P,Q

PROCEDURE MIN,MAX,FIX

QUEUE X,Y,Z

EVENT A,B,C

QUEUE ARRAY FRED [*]

Array Specification:

REAL ARRAY GYM [*,*]

BOOLEAN ARRAY WADSUP [*,*,*] ,CUMON[*,*]

Array Specifier List:

GIGL[*]

HERE[*],THERE[*,*,*,*]

Array Specifier:

x1,x2,xJ[*]

8-17

Procedure Body:

SEMANTICS.

BEGIN I-X+QxR;V-I+RAY(Q);END SAMPLE

FORWARD

A procedure declaration defines the procedure identifier as the

name of a procedure.

The prescriptions stated above for the use of address part apply to

the use with procedure declarations. Also, the address specified

must be that of a Program Control Word or an Indirect Reference Word

pointing to a Program Control Word.

The value part specifies which formal parameters are to be called

by value. When a formal parameter is called by value, the formal

parameter is set to the value of the corresponding actual parameter.

Thereaf'ter, the formal parameter is handled as a variable that is

local to the procedure body. That is, any change of value of the

variable cannot ramify outside the procedure body.

Only arithmetic, Boolean, pointer, and reference expressions may be

given as actual parameters to be called by value. These expressions

are evaluated once, before entry into the procedure body.

Formal parameters not in the value part are called by name (an ex­

ception is the event formal parameter discussed below). This means

that wherever a formal parameter (called by name) appears in the

procedure body, the formal parameter is replaced by the actual para-

meter. The meaning of "replaced by 11 is discussed below for each

possible type of actual parameter.

Event formal parameters are called by reference (not in any way con­

nected with the ESPOL reference type). Call by reference differs

from call by name in that when the actual parameter is subscripted

variable, the referenced array element is determined at the time of

call. It is this array element which is accessed at each appearance

of the formal parameter within the procedure body.

8-18

Every formal parameter must appear in the specification part.

An * must appear in a bound specifier for each dimension of the

array.

Procedures may be called recursively.

In certain situations where procedures are called recursively, it is

necessary to call a procedure that has not been declared. The

declarator FORWARD is used for this circumstance. That is, there is

first an appropriate procedure declaration with the procedure body

replaced by FORWARD, then the call on the procedure, and later a

complete procedure declaration.

A save part of SAVE indicates that the code for the procedure

currently being declared is to be in the same segment as the block

in which it is declared. In other words, the compiler can not

create a new segment for the procedure.

A save part of SAVE 1 indicates that the procedure being declared is

an INITIALIZATION procedure. The code for the procedure is at the

end of the initial block of information which is loaded by the

hardware. There will be three words of information between the

SAVE 1 code and the rest of the initial block to facilitate reloca­

tion of the area after initialization is complete.

DEFINE DECLARATIONS AND INVOCATIONS.

SYNTAX.

The syntax for (define declaration) is:

(define declaration) ::=DEFINE (definition list)

(definition list) ::=(definition)

(definition)

(definition list),

(definition) ::=(defined identifier) (formal symbol part)=

(text) #

(defined identifier) .. - (identifier)

8-19

<formal symbol part) ::=<empty) I ((formal symbol list))

(formal symbol list) ::=(formal symbol) I (formal symbol list)

,<formal symbol)

<formal symbol) ::=<identifier)

<text) ::={any sequence of valid symbols not including#}

(invocation) ::=<defined identifier) (actual text part)

(actual text part) : := <empty) I ((closed text list)) I
[<closed text list)]

<closed text list) ::=(closed text) I (closed text list) ,

(closed text)

(closed text) ::={an actual text not containing unmatched

bracketing symbols or unbracketed commas}

Examples:

8-20

Define Declaration:

DEFINE FORI = FOR I-1 STEP 1 UNTIL#,ADDUP = AxB+C/D#

Definition List:

MOVER = - #

SPLIT = GO TO#,FOOL(GRANTED, MAYBE) = IF GRANTED THEN MAYBE#

Definition:

GRANTED (ARITHEXP) = ARITHEXP > NOTSO #

Formal Symbol List:

IDENTIFIERONE, TWO

ONLY

Text:

(
PROCEDURE

ANY ID

IF A THEN GO TO SOUTH ELSE BEGIN x-zxQ; GO TO NORTH END EG;

Invucation:

GUARANTY (X-Y+l)

Actual Text Part:

(ERGO)

[X-l;GO TO L;]

SEMANTICS.

The define declaration assigns the meaning of the defined identi­

fiers. An invucation causes the replacement of the invocation by

the text associated with defined identifier. If the definition of

a defined identifier included any formal symbols, any appearance of

these symbols in the text of the definition (but not in a string or

comment) is replaced by the corresponding actual texts.

The word COMMENT is recognized in a text. It and all characters up

to and including the next semicolon are deleted from the text. No

text may include an incomplete comment.

In a closed text list, the closed texts are separated by commas, and

the closed text list is terminated by a right parenthesis or bracket.

In a closed text, a comma may appear only between matching bracketing

symbols. No unmatched (unpaired) bracketing may appear.

The scope of a formal symbol is the text of the definition in which

the formal symbol appears.

Bracketing symbols are [J, (), and the group consisting of:

DEFINE = #

8-21

EVENT AND EVENT ARRAY DECLARATIONS.

SYNTAX.

The syntax for (event declaration) is:

(event declaration) ::=EVENT (event list)

(event list) ::=(event identifier) (address part) I
(event list) , (event identifier) (address part)

(event identifier) ::=(identifier)

(event array declaration) ::=EVENT ARRAY (event segment list)

(event segment list) ::=(event segment) I (event segment list)

, (event segment)

(event segment) ::=(event array list) [(bound list)]

(event array list) ::=(event array identifier) (address part)

I (event array list), (event array identifier)

(address part)

(event array identifier) ::=(identifier)

Examples:

Event Declaration:

Event El,E2 = (J,4)

Event Array Declaration:

EVENT ARRAY EJ(NONCE),E4[7J],E5(-2)[6]

SEMANTICS.

An event declaration defines the identifier of a quantity which may

be used to record an occurrence. An event array declaration defines

the identifier of an array of these quantities. The quantities are

used to report an occurrence to an asynchronous process.

8-22

INTERRUPT DECLARATIONS.

SYNTAX.

The syntax for (interrupt declaration) is:

(interrupt declaration) ::=INTERRUPT (interrupt list)

(interrupt list) ::=(interrupt segment) I (interrupt list)

,(interrupt segment)

(interrupt segment) ::=(interrupt identifier) (on part)

(interrupt identifier) ::=(identifier)

(on part) ::=ON (event designator), (interrupt statement)

(interrupt statement) ::=(statement)

Examples:

INTERRUPT Il: ON El ,A-A+B,

I2: ON EVNT, GO TO LBL;

SEMAN'l'1-CS.

Interrupt declarations provide a means of forcing a process to de­

part from its current point of control and execute the statement

associated with the interrupt declaration.

If the process is inactive at the time of the causation of the

event, more than one interrupt statement may be pending when the

process is reactivated. In this case, the interrupt statements

are processed in the chronological order of the causation of their

associated events before return is made to the reactivation point.

An interrupt must be enabled via the ENABLE intrinsic before it

can have any effect. The DISABLE intrinsic renders the associated

interrupt(s) ineffective.

8-23

The scope of an interrupt declaration does not follow the usual ALGOL

conventions and is defined as follows:

a. Within any block, two interrupt declarations may not re­

ference the same event entity except when a block is an

independent process.

b. In all other respects, the interrupt declaration conforms

to the rule of scope related in section 5.

PRAGMATICS.

The problems of scope arise from implementation difficulties. If one

is allowed to redefine the action required of a particular process

{stack) upon the causation of a particular event,· then the stack may

be required to carry a great deal of information necessary for cor­

rect redefinition. The rule is this--only one interrupt action per

event per stack.

PICTURE DECLARATIONS.

SYNTAX.

The syntax for (picture declaration) is as follows:

8-24

<picture declaration) ::=(save or own) PICTURE (picture

part list)

<save or own) ::=SAVE OWN

<picture part list) ::=(picture part) I (picture part list) ,

(picture part)

(picture part) ::=(picture identifier) ((picture))

(picture identifier) ::=(identifier)

(picture) ::=(picture symbol) I (picture) (picture symbol)

(picture symbol) : := "(hexadecimal string)" I "(BCL string)"

,
11 (ASCII string)" I "(EBCDIC string)" I

(picture character) (repeat part) I
(control character) I (introduction) I

(skip character) (repeat part) I
(single picture character)

(repeat part) : := (empty) ((unsigned integer)) I (*)

(control character) ::= 4 6- I 7 I s I

(skip character) ::=<I >

(introduction) ::=(introduction code) (new character)

(introduction code) ::= B I PI NI C I U I N

(new character) ::=(string character) "

(single picture character) .. - J I .. - s

(picture character) ::=A I 9 I XI Z I EI I I S I DI FI Q

SEMANTICS.

The PICTURE declaration provides a construct for generalized charac­

ter editing. The following editing operations may be performed:

a. Unconditional character moves.

b. Move characters with leading zero editing.

c. Mov~ characters with leading zero editing and floating

character insertion.

d. Move characters with conditional character insertion.

e. Move characters with unconditional character insertion.

f. Move numeric part of characters only.

g. Skip source characters {forward and reverse).

h. Skip destination characters forward.

i. Insert overpunch sign on the previous character.

8-25

A picture consists of a named string of editing symbols which are

enclosed in parentheses. The picture editing symbols listed below

may be combined in any order to perform a wide range of editing

functions. OWN pictures produce in-line code.

If the repeat part is empty, it is assumed to be equal to one. If

the repeat part is of the form(*), an unsigned integer value is

expected from an edit repeat list in a string statement.

The following output characters are assumed for the introduction

codes. Another character may be substituted for the assumed char-

acter by the use of the introduction phrase, as defined in the

syntax.

The

8-26

Output
Character

Space(blank)

+

$

Introduction
Code

B

c
N

M

p

u

Normal
Use

Replacement of leading zeros.

Conditional insert characters.

Unconditional insert character.

Character insertion if minus.

Character insertion if plus.

Floating character insertion.

control characters shown below cause the following action:

a. 4 - set the default character size of inserted characters

and strings to 4 bits.

b. 6 - set the default character size of inserted characters

and strings to 6 bits.

c. 7 - set the default character size of inserted characters

and strings to 7 bits.

d. 8 - set the default character size of inserted characters

and strings to 8 bits.

e. . re-initiates leading zero replacement • .

Quoted strings are inserted unconditionally in the destination

string. The control characters 4,6,7,8 tell the compiler what

character set to expect. BCL is the default character set.

The single picture characters perform the following action:

a. J - if a move with a float (E or F) has not inserted a

float character, terminate the float and insert the U

character, otherwise perform no operation.

b. S - insert a single P character if the sign is plus,

otherwise insert a single M character.

The picture characters listed below perform the following action:

a. A - move the number of characters specified by the repeat

field.

b. 9 - move the numeric part only of the number of characters

specified by the repeat field.

c. E - move the numeric pari only for the number of charac­

ters specified by the repeat field. Suppress leading

zeros by substituting the B character. If the sign is

plus, insert a P character in front of the first non­

zero number. Otherwise, insert an M character. End the

float action.

d. F - perform a move numeric with leading zeros replaced by

the B character. Insert a U character in front of the

first non-zero number. End the float action.

e. D - if an E or F float has not ended, insert the B charac-

ter. Otherwise, insert the C character.

f. Q - back up the number of characters indicated by the re­

peat part and insert a sign overpunch.

g. R - if an E or F float has not ended, insert the P charac-

ter. Otherwise, insert the M character.

8-27

h. I - insert the N character unconditionally.

i. X - skip the destination pointer forward by the number of

characters specified in the repeat field and replace any

leading zeros with the B character.

The picture skip characters perform the following action:

a. < - skip the source pointer backward by the number of

characters specified in the repeat field.

b. > - skip the source pointer forward by the number of

characters specified in the repeat field.

VALUE ARRAY DECLARATIONS.

SYNTAX.

The syntax for (value array declarations) is:

(value array declaration) ::=(array save part) (value type)

VALUE ARRAY (value array part list)

(array save part) ::=SAVE I (empty)

(value type) ::=REAL INTEGER I DOUBLE I BOOLEAN

{value array part list) ::=(value array identifier) -

((constant list))

(value array identifier) ::=(identifier)

(constant list) ::=(constant) I (constant list) , (constant)

(constant) ::=(unsigned integer) ((constant list)) I (number)

j (logical value) I (string)

Examples:

SAVE BOOLEAN VALUE ARRAY DISPLAYOPT-(TRUE, FALSE, FALSE, TRUE,

FALSE)

SEMANTICS.

The value array declaration defines a 1-dimensional array of values.

8-28

MONITOR DECLARATIONS.

SYNTAX.

The syntax for (monitor declaration) is:

(monitor declaration) ::=MONITOR (procedure identifier)

((monitor list))

(monitor list) ::=(monitored item) I (monitor list)

(monitored item)

(monitored item) ::=(simple variable)

SEMANTICS.

Within the scope of a monitor declaration, the procedure identified

in the monitor declaration is executed whenever a value is to be

assigned (via the assignment statement) to a monitored item. The

procedure must have the same type as the item and must return the

value to be assigned to the item. The procedure may only have two

parameters. The parameters must be specified as value. The first

parameter corresponds to the first eight characters of the identi­

~ier of the monitored item. The second parameter corresponds to the

value of the expression.

8-29

GENERAL.

SYNTAX.

SECTION 9

INTRINSICS

The syntax for (intrinsic) is as follows:

(intrinsic) ::=(array intrinsic) I (procedure intrinsic) j
(function intrinsic)

(function intrinsic) ::=(arithmetic intrinsic) I (Boolean

intrinsic)

(array intrinsic) ::=MEMORY I M I STACK I WORDSTACK I
STACKVECTOR I REGISTERS

(procedure intrinsic) ::=EXIT I ALLOW DISALLOW I PAUSE l
HEYOU I HALT I RETURN I TIMER MOVESTACK I SCANOUT

IIO I MASKSEARCH I LISTLOOKUP BUZZ I BUZZCONTROL l
WAIT l CAUSE I SET I RESET I FREE I DISABLE I ENABLE I
HOLD I STOREITEM

{arithmetic intrinsic) ::=NAME I SECONDWORD I MYSELF I BINARY

JOIN I ENTER ONES I FIRSTONE I ABS I NAKS I DECIMAI

I SCANIN I SET I RESET I READLOCK I SIZE I XSIGN

(Boolean intrinsic) ::=TOGGLE

BUSY I HAPPENED I FIX

SEMANTICS.

OVERFLOW I LOCK I UNLOCK

AVAILABLE

The (array intrinsic) has the following significance:

a. MEMORY and M are equivalent. They are 1-dimensional arrays

referencing memory.

b~ STACK is a 2-dimensional array. As used by the MCP stack,

[m,n] refers to the nth word in stack number m. WORDSTACK

if equivalent to STACK, except that it is a word array.

9-1

c. STACKVECTOR is a 1-dimensional array. As used by the MCP,

STACKVECTOR references a particular row of STACK.

d. REGISTERS is a 1-dimensional array which references the

various machine registers. For example, REGISTERS [34] is

the current setting of the PIR.

The following intrinsics generate simple operators in the code

string which may or may not return a value.

Intrinsic Operator

MYSELF WHOI

ALLOW EEXI

DISALLOW DEXL

PAUSE IDLE

HEY OU HEYU

XSIGN SXSN

TOGGLE RTFF

OVERFLOW ROFF

STOP HALT

RETURN(n) RETN

ENTIER(n) NTIA

9-2

Result

The number of the processor

which is running.

Enable external interrupts.

Disable external interrupts.

Idle.

Interrupt other processors.

Set external-sign flip-flop

equal to sign of top of stack

and return the value of the

top of stack.

Return value of true-false

flip-flop.

Return value of overflow

flip-flop.

Halt.

Exit and return the value n

as a result.

Round the absolute value of n

down to an integer, return the

result with proper sign.

Intrinsic

ONES(n)

FIRSTONE(n)

AES(n)

NAES(n)

SCANIN(n)

TIMER(n)

MOVESTACK(n)

DECIMAL(n)

EINARY(n)

SCANOUT(n,m)

Operator

CEON

LOG2

ESET

ERST

SCNI

SINT

MVST

SCRF

ICVD

SCNO

IIO(a,m) SCNO

SET(v,m) DEST

RESET(v,m) DERS

READLOCK(v,m) RDLK

Result

Return number of non-zero bits

in n.

Return number of most signifi­

cant non-zero bit in n.

Return absolute value of n.

Return negative absolute value

of n.

Get the information indicated

by n and leave it in top of

stack.

Set interval timer to value n.

Transfer control to stack

number n.

Convert binary representation

of n to decimal representation.

Convert decimal representation

of n to binary representation.

n indicates the type of scanout

and m is the value scanned.

Initiate I/O using unit speci­

fied by m and array row a.

Set bit number m in variable v.

Reset bit number m in variable v.

Interchange value of variable v

and memory address m.

9-3

Intrinsic

JOIN(n,m)

LISTLOOKUP
(n,r,m)

MASKSEARCH
(n,r,m)

Operator

JOIN

LLLU

SRCH

Result

Make a double operand whose

first word is n and whose

second is m.

Search the linked list start-

ing at word n of the array row

r until an entry greater than

m is found.

Search the array row r for an

entry equal to n in all bits

not masked by m.

The following intrinsics are not guaranteed to produce simple in­

line code.

9-4

a. LOCK(m) and BUSY(m) are true iff the entity m was previ­

ously LOCKed; UNLOCK(m) is TRUE iff m was previously UN-

LOCK:ed. LOCK leaves m LOCKed. UNLOCKed leaves it UNLOCK-

ed, and each may be used as a procedure intrinsic, in which

case the value returned by them is ignored.

BUZZ(m) and BUZZCONTROL(m) cause the current process to

suspend operation until the entity m is UNLOCKed by some

other process. The variable m is LOCKed and the process

allowed to continue.

It is guaranteed that if more than one process attempts to

LOCK or BUZZ an entity previously UNLOCKed, only one pro­

cess can succeed.

The variable m must be a variable or a queue designator.

If the entity m is a queue designator, the LOCKed algo­

rithm must have been specified for m.

b. WAIT(e) deactivates the current process until the event e

is CAUSEd. CAUSE(e) sets the event e to HAPPENED, acti-

vates processes waiting one, and interrupts processes

which have interrupt declarations referencing e.

SET{e) and RESET{e) set the event e to HAPPENED and not

HAPPENED respectively.

FIX{e) and FREE(e) make e not available and available

respectively. FIX(e) returns the value of the previous

state of availability.

HAPPENED(e) is TRUE if e has happened and AVAILABLE{e) is

TRUE iff e is available.

c. ENABLE{int) and DISABLE(int) cause the interrupt int to

be enabled and disabled respectively.

HOLD causes the current process to be deactivated. A

process deactivated by a HOLD is reactivated only if an

event is caused which corresponds to some interrupt de­

clared by the process.

d. SECONDWORD(ent), where ent is an event or a double pre­

cision operand, returns to the second word of ent.

e. STOREITEM{fitm,aitm) passes the actual item aitm to the

formal item fitm.

f. NAME{var) returns the address of the variable var.

9-5

INDEX

METALINGUISTIC VARIABLES

The syntactical definition of each ESPOL metalinguistic variable

is found in the pages indicated.

(actual item list) 5-9

(actual parameter) 7-4

(actual parameter list) 7-4

(actual parameter part) 7-4

(actual text part) 8-20

(adding operator) 5-1

(address) 8-3

(address couple) 8-3

(address part) 8-3

(algorithm) 8-12

(algorithm identifier) 8-12

(algorithm list) 8-11

(algorithm part) 8-11

(alpha string) 3-4

(arithmetic assignment) 5-1

(arithmetic assignment

statement) 7-8

(arithmetic expression) 5-1

(arithmetic field assignment) 7-8

(arithmetic intrinsic) 9-1

(arithmetic item) 5-2

(arithmetic operator) 2-1

(arithmetic relation) 5-11

(arithmetic relational) 5-11

(arithmetic source) 7-11

(arithmetic transfer part) 7-10

(arithmetic variable) 5-2

(array assignment) 5-14

(array assignment statement) 7-8

(array declaration) 8-6

(array designator) 5-14

(array expression) 5-13

one

(array field assignment) 7-8

(array identifier) 4-1

(array identifier list) 8-16

(array intrinsic) 9-1

(array item) 5-14

(array kind) 8-6

(array list) 8-6

(array part) 5-12

(array primary) 5-13

(array row) 5-12

(array save part) 8-28

(array segment) 8-7

(array specification)

(array specifier) 8-16

(array specifier list)

(array type) 8-7

(array variable) 5-14

(ASCII code) 3-4

(ASCII string) 3-4

(assignment statement)

(base) 5-2

(basic component) 3-1

(basic statement) 7-2

(basic symbol) 2-1

(BCL character) 3-4

(BCL code) 3-4

(BCL string) 3-4

(binary character) J-4
(binary code) 3-4

(binary string) 3-4

(block) 6-1

8-16

8-16

7-8

INDEX (cont)

METALINGUISTIC VARIABLES

(block head) 6-1

(Boolean algorithm identifier)

8-12

(Boolean assignment) 5-6
(Boolean assignment statement)

7-8

(Boolean expression) 5-6
(Boolean expression list) 5-7
(Boolean factor) 5-6
(Boolean field assignment) 7-8

(Boolean field designator) 5-6

(Boolean field operand) 5-6
(Boolean function designator) 5-7
(Boolean intrinsic) 9-1

(Boolean item) 5-6

(Boolean layout) 5-(
(Boolean primary) 5-6
(Boolean secondary) 5-6

(Boolean term) 5-6
(Boolean variable) 5-7
(bound) 8-7

(bound list) 8-7

(bound specifier) 8-16

(bracket) 2-2

(case head) 7-3
(case statement) 7-3
(character) 1-3

(character size) 5-12

(closed text) 8-20

(closed text list) 8-20

(compound statement) 6-1

(compound tail) 6-1

two

(concatenate operator) 2-1

(condition) 7-11

(conditional iteration) 7-6
(conditional statement) 7-1

(constant) 8-28

(constant list) 8-28

(control character) 8-25

(controlled variable) 7-6
(correct count) 7-10

(decimal fraction) 3-2

(decimal number) 3-2

(declaration) 8-1

(declarator) 2-2

(define declaration) 8-19

(defined identifier) 8-19

(definition) 8-19

(definition list) 8-19

(delimiter) 2-1

(designational expression)

5-10

(designational expression

list) 7-2

(destination) 7-10

(digit) 1-3

(digit count) 7-10

(displacement) 8-3

(do statement) 7-6
(dummy statement) 7-2

(EBCDIC code) 3-4
(EBCDIC string) 3-4
(empty) 2-1

(entry description) 8-11

INDEX (cont)

METALINGUISTIC VARIABLES

(empty expression) 5-9

(entry item list) 8-11

(event array declaration)

(event array identifier)

(event array item) 4-4
(event array list) 8-22

(event declaration) 8-22

(event designator) 4-4
(event identifier) 8-22

(event item) 4-4
(event list) 8-22

(event segment) 8-22

(event segment list) 8-22

(exponent part) 3-2

(expression) 5-1

(expression list) 5-2

(factor) 5-1

(field) 8-9

(field declaration) 8-9

(field designator) 5-2

(field identifier) 8-9

(field operand) 5-2

(field part) 8-9

(field part list) 8-9

(field ~alue) 5-2

(field value list) 5-2

(field value part) 8-9

(final count) 7-10

(final part) 7-6
(for clause) 7-6
(for part) 7-6

8-22

8-22

(formal parameter) 8-15

(formal parameter list) 8-15

(formal parameter part) 8-15

(formal symbol) 8-20

(formal symbol list) 8-20

(formal symbol part) 8-20

(function designator) 7-4
(function identifier) 7-4
(function intrinsic) 9-1

(general component) 4-1
(go to statement) 7-2

(hexadecimal character) 3-4
(hexadecimal code) 3-4
(hexadecimal string) 3-4

(identifier) 1-2, 3-1

(identifier list) 8-16

(IF clause) 7-1

(implication) 5-6

(index bound) 8-11

(initial part) 7-6
(initial value) 8-3

(initialized array) 8-7
(integer) 3-2

(integer algorithm identifier)

8-12

(internal name part) 8-11

(interrupt declaration) 8-23

(interrupt identifier) 8-23

(interrupt list) 8-23

(interrupt segment) 8-23

(interrupt statement) 8-23

(intrinsic) 9-1

(introduction) 8-25

(introduction code) 8-25

three

INDEX (cont)

METALINGUISTIC VARIABLES

(invalid character) 1-J

(invisible item list) 8-11

(invocation) 8-20

(item) 4-J
(item identifier) 4-J
(item list) 8-11

(iteration clause) 7-6

(label) 7-1

(label declaration) 8-5

(label identifier) 8-5

(label list) 8-5

(layout) 5-2

(layout declaration) 8-9

(layout field) 8-9

(layout identifier) 8-9

(layout item) 8-9

(layout item list) 8-9

(layout part) 8-9

(layout part list) 8-9

(letter) 1-J

(level) 8-J

(local or own type) 8-6

(lock specification) 8-12

(logical operator) 2-1

(logical value) 2-1

(monitor declaration) 8-28

(monitor list) 8-28

(monitored item) 8-28

(most expressions) 5-15

(multiplying operator) 5-1

(new character) 8-25

(nwnber) J-2

(nwneric string) J-J

four

(octal character) J-4
(octal code) J-4
(octal constant) J-2

(octal digit) J-2

(octal nwnber) J-2

(octal string) J-4
(on part) 8-23

(operator) 2-1

(parameter delimiter) 7-4

(picture) 8-24

(picture character) 8-25

(picture declaration) 8-24

(picture designator) 7-11

(picture identifier) 8-24

(picture part) 8-24

(picture part list) 8-24

(picture symbol) 8-24

(pointer assignment) 5-12

(pointer designator) 5-12

(pointer expression) 5-11

(pointer expression list)

(pointer identifier) 5-12

(pointer parameters) 5-12

(pointer primary) 5-12

(pointer relation) 5-11

(pointer source) 7-10

(pointer variable) 5-12

(primary) 5-1

5-12

(procedure body) 8-16

(procedure declaration) 8-15

(procedure heading) 8-15

(procedure identifier) 8-15

(procedure intrinsic) 9-1

INDEX (cont)

METALINGUISTIC VARIABLES

(procedure statement) 7-4

(procedure type) 8-15

(program) 6-1

(quaternary character) J-4
(quaternary code) J-4
(quaternary string) J-4
(queue array declaration) 8-11

(queue array head) 8-11

(queue array identifier) 8-12

(queue assignment) 7-8

(queue body) 8-11

(queue declaration) 8-11

(queue designator) 5-9

(queue head) 8-11

(queue identifier) 8-12

(queue name) 5-9

(reference algorithm identifier)

8-12

(reference array name) 5-9

(reference assignment) 5-9

(reference designator) 5-9

(reference expression) 5-9

(reference expression list)

(reference identifier) 5-9

(reference item) 5-9

(reference part) 4-J
(reference relation) 5-11

(reference relational) 5-11

(relation) 5-11

(relational operator) 2-1

(repeat parameters) 7-11

(repeat part) 8-25

5-9

(replacement operator) 2-1

(row) 5-12

(row designator) 5-12

(save or own) 8-24

(save part) 8-15

(scan count) 7-10

(scan part) 7-10

(second name) 8-11

(separator) 2-1

(sequential operator) 2-1

(sign) J-2

(simple arithmetic expression)

5-1

(simple Boolean expression)

5-6

(simple pointer expression)

5-12

(simple string) 3-3

(simple variable) 4-1

(single picture character) 8-25

(single space) 1-J, 2-2

(skip) 5-12

(skip character) 8-25

(source) 7-10

(source list) 7-10

(source part) 7-10

(space) 1-J, 2-2

(special character) 1-J

(specification) 8-16

(specification part) 8-16

(specificator) 2-2

(specifier) 8-16

f'ive

INDEX (cont)

METALINGUISTIC VARIABLES

(statement) 7-1

(step part) 7-6

(string) J-3

(string bracket character) 1-J

(string character) 1-J

(string relation) 5-11

(string scan statement) 7-10

(string transfer statement) 7-10

(subarray designator) 5-14

(subarray part) 5-14

(subscript) 4-1

(subscript list) 4-1

(subscript part) 5-14

(subscripted variable) 4-1

(subscripted word variable)

(table) 7-11

(term) 5-1

(text) 8-20

(thru clause) 7-6

(to part) 7-2

(transfer part) 7-10

(translate table) 7-11

(type) 8-2

(type declaration) 8-2

(type identifier) 8-J
(type identifier list) 8-J
(type list) 8-J
(type part) 8-J

5-12

(unconditional iteration) 7-6

(unconditional statement) 7-1

(units) 7-11

(unsigned integer) J-2

(unsigned integer list) 7-11

(unsigned number) J-2

(update count) 7-11

(update pointer) 7-11

(update variable) 7-11

(upper bound) 8-7

(value array declaration) 8-28

(value array identifier) 8-28

(value array part list) 8-28

(value designator) 4-4

(value part) 8-15

(value type) 8-28

(variable) 4-1

(while part) 7-6

(word array row) 5-12

(word assignment) 5-15

(word expression) 5-15

(word expression list) 5-15

(word item) 5-15

(word variable) 5-15

six

Cl>
c

~ --')
' C)
c
0
0
L..

0
Cl> -

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS

REMARKS FORM

TITLE: ___________ _

CHECK TYPE OF SUGGESTION:

0ADDITION 0DELETION 0REVISION

FORM: _____ ~
DATE:

0ERROR

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:

FROM: NAME DATE _____ _

TITLE
COMPANY __________ _

ADDRESS

STAPLE

FOLD DOWN SECOND FOLD DOWN

·---..-.---------------------~---·

attn: Sales Technical Services
Systems Documentation

BUSINESS REPLY MAIL
First Class Permit No. 817, Detroit, Mich. 48232

Burroughs Corporation
6071 Second Avenue
Detroit, Michigan 48232

~--·
FOLD UP FIRST FOLD UP

	000
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	4-01
	4-02
	4-03
	4-04
	4-05
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	6-01
	6-02
	6-03
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	8-07
	8-08
	8-09
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	8-17
	8-18
	8-19
	8-20
	8-21
	8-22
	8-23
	8-24
	8-25
	8-26
	8-27
	8-28
	8-29
	9-01
	9-02
	9-03
	9-04
	9-05
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	replyA
	replyB
	xBack

