
Printed In U.S. America

B.urroughs
86500

MASTER CONTROL PROGRAM

REFERENCE MANUAL

Burroughs Corporation
Detroit, Michigan 48232

$4.00

8-69 1042447

COPYRIGHT0 1969 BURROUGHS CORPORATION

Burroughs Corporation believes the program described in this
manual to be accurate and reliable, and much care has been
taken in its preparation. However, the Corporation cannot
accept any responsibility, financial or otherwise, for any con­
sequences arising out of the use of this material. The infor­
mation contained herein is subject to change. Revisions may
be issued to advise of such changes and/or additions.

Correspondence regarding this document should be forwarded using the Remarks Fonn at
the back of the manual, or may be addressed directly to Systems Documentation, Sales
Technical Services, Burroughs Corporation, 6071 Second Avenue, Detroit, Michigan 48232.

SECTION

l

2

3

TABLE OF CONTENTS

TITLE

INTRODUCTION.

SYSTEM INITIALIZATION •

General .

Cold Start.

Cool Start.

Load.

Option Cards.

Stop Card .

End Card.

I/O OPERATIONS.

General •

Symbolic Files.

File Assignment •

File Parameter Block (FPB).

Label Equation Block (LEE).

File Information Block (FIB).

Object Program I/O.

Pseudo Units.

Pseudo Card Readers

Pseudo Card Punches

Pseudo Printers •

SUPERVISORY AND CONTROL FUNCTIONS .

General .

Process Scheduling.

Process Initiation.

Process Execution .

Process Termination .

Logical Processors.

Re-Entrant Code •

Overlay •

Effect Of Multiple Buffers.

Dynamic Storage Allocation.

PAGE

ix

l-l

l-l

• l-2

l-2

l-2

l-2

• l-2

l-2

2-l

2-l

2-l

2-l

2-2

2-2

2-2

2-3

2-3

2-4

2-4

2-4

. 3-l

. 3-1

3-l

. 3-2

. 3-2

. J-4

3-4

. 3-5

. 3-6

. J-8

3-9

iii

SECTION

4

iv

TABLE OF CONTENTS (cont)

TITLE PAGE

MCP FUNCTIONS • •

Storage Control

Main Memory . . • • • •

Memory Links .••••••.••

. . 4-1

. . 4-1

4-1

. 4-1

In-Use Links. .

Available Links .

Memory Allocation • •

Memory De-Allocation.

Overlay Of Memory

Disk. • . •

Disk Overlay.

Operator-MCP Communications

Display Of Status • .

Mix Table • • .

. 4-1

. 4-2

. 4-J

. 4-4

. 4-4

. 4-5

. . 4-5

. 4-5

. . 4-5

" 4-6
Active Entry. . • • • • • . o 4-6
Suspended Entry • • • • • • • • o 4-7
Schedule Table. • . • • ff 4-7
Peripheral Unit Table • • • . . • • .. 4-8

Label Table • • • • • • . 4-8

Disk Directory Table. . . 4-9

Job Table • • • • • • • • 4-10

Control Cards •

COMPILE Statement •

EXECUTE Statement or
RUN Statement ••

REMOVE Statement.

DUMP Statement. •

. • 4- lO

• • 4-11

• 4-12

. • • • • • 4-12

• • • • • • • 4-12

LOAD Statement. • •••• • • 4-12

CHANGE Statement. • • • ••• • • 4-12

. 4-lJ DATA Statement ••

DATABCL Statement • •

ENDBCL Statement •••

. . . . 4-lJ

• 4-lJ

END Statement •••••••••••• 4-1.3

PROCESS Time Statement. • •••• 4-14

IO Time Statement • • •• . 4-14

SECTION

4 (cont)

TABLE OF CONTENTS (cont}

TITLE

STACK Size Statement

PRIORITY Statement .•

FILE (Label Equation)
Statement • . • •

PAGE

. 4-14
. . 4-15

4-15
COMMENT Statement . • • • • • • • . • 4-15
I/O Unit Statement. • • • • • • • 4-15
CORE Required Statement •

SAVE Statement. . •.

Messages ••••.••
Output Messages •

. 4-16

. 4-16

. 4-16
. . 4-16

Input Messages. • • • • • 4-26
Separately Compiled Procedures •••••••• 4-33

Binding • • . • • . • • • • • . • 4-33
Compile-Time Binding. • • • • • • • • 4-33
Explicit Binding .•••••••.•• 4-34
Execution-Time Elnding. • • • •

Disk Library •••••••••••

Disk File Structure •

. . . 4-34
4-36

. . 4-36 . . .
Disk Directory. • • . .

Process Scheduling Algorithm •••

Multiprogramming Considerations •

Multiprogramming. • • • ••

Parallel Processing • . • • • • •

The Structure Of Object Programs ••

Re- entrant Code • • ·• •

Compiler/MCP Interface •••

Intrinsic Function.

4-38
4-39

. 4-44
4-44

. . 4-45
. . . 4-45

. . 4-47
4-48
4-50

Interrupts ••
Hardware Interrupts • • • .

Syllable Dependent Interrupts • •

. . 4-51
. 4-53

. • . . 4-54
Arithmetic Error Interrupts ••

Presence-Bit. •

Memory Protect ••

Bottom Of' Stack

.

.
.

. 4-54

. 4-54

. 4-55

. 4-55

v

SECTION

4 (con't)

vi

TABLE OF CONTENTS (cont)

TITLE

Sequence Error.

Segmented Array .

Programmed Operator • .

Invalid Operator. • . . . •.

Alarm Interrupts ..

Loop. • • • .

Memory Parity •.

MPX Parity •••..

Stack Underflow •

Invalid Address

Invalid Program Word.

External Interrupts •

Interval Timer. .

Stack Overflow.

Processor To Processor.

MPX . . .

Software Interrupts And Events •.

File Control•.

File Recognition.

Card Files. . •

Printer Files • .

Card Punch.

Paper Tape .•.•••.

Unlabeled Tape Files .•

Labeled Tape Files ..•••.

First End-of-File Label • . • •

Second End-of-File Label ••.

End Of Volume Label . •

User's Header Labels.

User's Trailer Labels .

File Assignment . . •

PAGE

. . 4-55

. . 4-55

. 4-56

. 4-56

. 4-56

. . 4-56

4-56

4-56

. . 4-56

. . . . 4-56

. 4-56

4-56

. . 4-57

4-57

. . 4-57

. • 4-57

. . 4-58

. . 4-64

. . 4-64

. 4-65

4-66

• 4-66

. . 4-67

. . 4-67

. . 4-68

. . 4-70

. • 4-71

. • 4-71

. . . 4-71

File Parameter Block (FPB) •.•..

Label Equation Block (LEE).

. 4-71

. 4-73

. 4-75

. 4-75

• 4-76 File Information Block (FIB) ••

SECTION

4 (cont)

TABLE OF CONTENTS (cont)

TITLE

File Open . . • • • •

Object Program I/O.

Record Size

Block Size. .

Blocking. • • •

Buffering • .

. . .

PAGE

. . . 4-76
. . 4-78

. 4-78

. 4-78
. . . 4-78

. .
Serial I/O. •

Random I/O. •

.
. . 4-78

4-79
4-79

. 4-79

. 4-80
MCP • • • • . .

Random Record Access.

Seek. •
MCP I/O

. 4-81

. 4-82

. 4-85 Utility Operations.

Load Control.

Loading A Control Deck
File Onto Disk. • •

. . 4-85

4-85
Card Reader Control
Deck File • • . • • • 4-85
Magnetic Tape Control
Deck File . • . •

Pseudo Deck On Disk • • •

Error Check In LDCNTRL/DISK • •

Pseudo Card Readers .

Error Handling In The Pseudo
Card Deck. • • • • • • •

Print Backup. • •

File Opening Action •

Skip Option
Special Forms .

Closing A Print File On Disk.

Library Maintenance

Remove Option •

Dump Option •

Load Option •

Unload Option •

Change Option

. . .

. . 4-86
. 4-86
. 4-87

4-87

• 4-88
. • ,. . 4- 88

. . 4-89
. 4-90
. 4-90

. . 4-91
. 4-91
. 4-91
. 4-91

. . 4-92

. . 4-92
. 4-92

vii

SECTION

4 (cont)

5

TABLE OF CONTENTS {cont)

TITLE

Exchange Option

Print Option. • •

Display Option.

PAGE

. 4-92

. . . . 4-92
. . 4-92

System Log. . • • • • • • • • • • 4-92
(number)/LOG. • • . • • . . • • . 4-93

System Reconfiguration. . • . • • • • 4-95

DATA COMMUNICATIONS • . 5-l
General • • 5-l
Data Communications Software System . . . 5-l

APPENDIX A - DEFINITIONS. n A-1

FIGURE

3-l

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10
5-1

NUMBER

4-1
4-2
4-3
4-4
4-5

viii

LIST OF ILLUSTRATIONS

TITLE PAGE

B 6500 Re-Entrant Program Stack Structure . • • • 3-7
B 6500 Ready to Run Queue . . . • . • . • • • 4-42
Stack Prior to Interrupt Procedure Entry. • • 4-54
Stack Following Interrupt Procedure Entry • • 4-54
Interrupt Declaration Example • • • • • • • . • . 4-59
EVENT INTERRUPT Queue, Single Process •••••• 4-60
EVENT INTERRUPT Queue, Multiple Process . 4-61
Event Queues. • . . • • . • • • • • • 4-63
Normal State I/O. . . • • • • . • • • . • 4-80
MCP I/O Queue . • • . • • • • • • . . • . . • 4-83
MCP Wait Queue. • . . • • • • • • 4-84
Data Communications Software System .

LIST OF TABLES

TITLE

Volume Header Label Format.

First File Header Label Format .•.

Second File Header Label Format •

User's Header Label Format .•.

System Log Message Type Codes • •

. . 5-2

PAGE

. 4-68

. 4-69

. 4-70

. 4-71

. 4-94

INTRODUCTION

In the early days of computer programming, each program was expected

to perform its own input/output operations. With the advent of

symbolic assembly languages, it became apparent that independent

input/output routines for programs were time consuming to write and

normally required the same functions. This led to the development

of operating systems with input/output routines to simplify the

programming task and avoid unnecessary duplication of efforts.

Eventually, it was realized that the relatively slow I/O operations

could be made to occur in parallel with computation and thereby

reduce the time required to complete a given job. This resulted in

the incorporation of buffered I/O routines in the operating system

for both assembly languages and the higher level "problem oriented"

languages.

Even with buffered I/O, the Central Processing Unit of most com­

puters still spent a significant percentage of. time waiting for an

I/O operation to be completed in order to continue processing data.

Rather elaborate attempts were made by programmers to overlap the

processing of data with the I/O operations. Many times, however,

due to the nature of the data processing application, complete

utilization of the computer was still an unrealizable goal.

At about the same time, computers were becoming fast enough (and

expensive enough) to cause concern over the amount of idle time

required for the operator to load programs and complete the set up

required to run the next job. Consequently, automatic program

loading routines began to appear as part of operating systems in

order to decrease the idle time between jobs.

As various alternatives to the problem of system utilization were

considered, it was realized that programs being executed in serial

fashion did not really require all of the program to be in main

memory all of the time. If it were possible to share memory space,

ix

then more than one program could be ready to run at a given time.

This would allow greater utilization of the computer system since

the Central Processing Unit would be computing on one job while

another job was waiting for the completion of an I/O operation.

This mode of operation is referred to as multiprogramming. A logical

extension of the principle of multiprogramming was to add a second

CPU which would allow simultaneous execution of jobs. This results

in considering processors, memory, I/O channels, and peripheral I/O

units as resources to be allocated among the programs which are

being executed. This philosphy was implemented in the operating

system and design of the B 5000 computer. Later, on the B 5500, the

implementation of re-entrant programs allowed program code segments

to be shared between different executions of the same prGgram. The

B 6500 Master Control Program (MCP), like its B 5500 predecessor,

is designed to perform automatic resource allocation and multiproces-

sing as the normal mode of operation. In addition, the B 6500 MCP

features automatic storage control which automatically performs in­

formation transfers between main memory, disk, and library tape.

The B 6500 MCP provides the interface between object programs and

the B 6500 System. The design specifications for the B 6500 MCP

include the following:

Multiprocessing as the normal mode of operation.

Re-entrant object program code.

Parallel execution of independent obj.ect program sections.

Dynamic storage allocation.

Independent compilation of procedures and subroutines.

Multidimensional tree structured· disk directory.

Exclusion of assembly language programming.

The normal mode of operation of the B 6500 MCP assumes the existence

of multiple jobs or "processes" running concurrently. The object

of running processes concurrently (multiprocessing operation) is to

maximize the utilization of the B 6500 System resources, thereby

increasing the throughput of jobs.

x

In order to obtain the greatest throughput of jobs in a multiproces­

sing environment, it is essential to minimize the amount of MCP

overhead required to execute the jobs currently in pro·gress. In

order to minimize overhead, the B 6500 MCP controls storage alloca­

tion for each process according to its current requirements.

By bringing program segments into memory only when they are needed,

memory is assigned in an efficient manner. In the event that

several processes require more memory than is currently available,

the MCP reallocates memory for each job as required and the least­

used segments which are present in memory are overlayed. Data

segments which are overlayed must be written on the disk since the

data may have been modified while it was in memory. Program segments

and read-only data segments which are overlayed need not be saved,

since the original copy of the segment is still present on the disk.

The primary purpose of this document is to provide a description of

the operational characteristics of the B 6500 MCP. However, because

of the B 6500 hardware-software interrelationship, a description of

the MCP can proceed only under the assumption that the reader is at

least basically familiar with the operational characteristics of

the B 6500 System. It may also be helpful, but not necessary, for

the reader to be familiar with the problem-oriented languages of the

B 6500.

xi

GENERAL.

SECTION l

SYSTEM INITIALIZATION

The B 6500 MCP is designed as an integral part of the B 6500 System.

Since the B 6500 System is intended to serve a wide range of instal­

lations and users, provisions have been made to adapt the operation

of the MCP to the particular requirements of those installations.

This has been accomplished by incorporating different options in the

MCP which may be changed either by specification at the time of

system initialization or by operator key-in messages.

In order to place the MCP in control of the system, the MCP must be

loaded onto disk, and the option list must be initialized on the

disk. These functions are performed by an initialization program

called INITIALIZER. The hardware DISK LOAD SELECT function expects

the MCP code file to be located at disk address zero. Therefore,

INITIALIZER is used to load the MCP code file from tape {or else­

where) onto disk, beginning at disk address zero. In addition, the

MCP option list is written or revised on disk as indicated by

INITIALIZER data cards.

The basic functions of INITIALIZER are:

a. Loading the MCP to disk address zero from tape or disk.

b. Writing or revising the MCP option list on disk.

c. Specifying the status of the disk directory to the MCP.

These functions may be specified individually or in various combina­

tions by the data cards which INITIALIZER reads. At the conclusion

of initialization, the first 8192 words of the MCP are read from

disk address zero into main memory, and control of the system is

transferred to the MCP.

The data cards for INITIALIZER specify the type of initialization to

be performed. The INITIALIZER functions are selected by the follow­

ing four types of data cards:

l-l

a. Cold start.

b. Cool start.

c. Load from tape or disk.

d. Set or reset options.

COLD START.

The COLD START card causes the MCP to create an empty disk directory

when initialization is complete.

COOL START.

A COOL START card causes the MCP to retain the disk directory which

currently exists. If neither cold start nor cool start are speci-

fied, cool start is assumed.

LOAD.

The LOAD card causes an MCP code file to be read onto the disk be­

ginning at disk address zero. The LOAD card specifies either tape

or disk as the source unit.

OPTION CARDS.

Two types of option cards are permitted, set options and reset

options. If all options are to be set, the SET card reads SET ALL.

If all options are to be reset, the RESET card reads RESET ALL.

Individual options may be set or reset in addition to or instead of

a universal specification. If a universal specification is not

made, any option which is not specified remains unchanged from its

previous setting. If no previous setting exists, which would be

the case if no valid MCP option list exists on the disk, any un­

specified options will be reset.

STOP CARD.

The STOP card indicates that INITIALIZER has read all of the valid

option specification cards. Any cards encountered between the

STOP card and the END card are ignored.

END CARD.

The END card signifies the physical end of the INITIALIZER data

deck. INITIALIZER flushes all cards following a STOP card through

the card reader until the reader is empty or until an END card is

found.

1-2

GENERAL.

SECTION 2

I/O OPERATIONS

All input/output operations on the B 6500 System are performed by

the MCP. Certain information must be made available by the compilers

in order for the MCP to perform I/O operations. This information

is:

a. Symbolic file name.

b. Actual file name {label name).

c. File medium {card, tape, disk, paper tape, etc.).

d. Access type {serial or random).

e. File mode {alpha, binary, etc.).

f. Buffer size.

g. Number of buffers.

h. Logical record size.

The actual file name is the label name which is associated with the

unit which contains the file, or the label name in the disk file

header. The actual file name will be identical to the symbolic file

name unless specified otherwise.

SYMBOLIC FILES.

FILE ASSIGNMENT.

The MCP automatically assigns peripheral units to symbolic files

whenever possible in order to minimize the amount of operator atten­

tion required by each process.

Input files requested by a process cause the MCP to search its tables

for the appropriate peripheral unit which contains the file requested.

If the file name specified by the process is found on a particular

unit, that unit is marked "in use" and assign~d to the process.

In the case of a disk file, the file header is marked in use by in­

creasing the user count by one, and the address of the file on disk

is passed to the process.

2-l

Output files requested by a process are automatically assigned by

the MCP if a suitable unit exists for the file. In the case of disk

files, a disk file directory entry is made and the required disk

space is allocated for the file.

In order to allow specification of actual file names for a file,

the following tables are necessary:

a. A File Parameter Block.

b. A Label Equation Block.

c. A File Information Block.

FILE PARAMETER BLOCK (FPB).

A File Parameter Block is created by the control card routine of the

MCP for all files in a process. A File Parameter Block contains the

symbolic file name and any compilations or execution-time label

equation information specified for this process.

LABEL EQUATION BLOCK (LEB).

The Label Equation Block is created by the compiler and maintained

by the I/O intrinsic functions for each file in a process. The

Label Equation Block contains the current label equation and other

file attribute information for a particular .file, including any

programmatic specification of file attributes.

FILE INFORMATION BLOCK (FIB).

A File Information Block is also created by the compiler and main­

tained by the ~/O intrinsic functions for each file in a p~ogram.

A File Information Block contains frequently used information con­

cerning the status of the file (and its attributes) such as the

type of access required, type of unit assigned, physical unit being

used, and other attributes which vary depending upon the particular

type of unit assigned. Incorporation of the file attributes in the

FIB and LEB allows modification of file specifications such as

buffer size and blocking factors, at program execution time, without

re-compilation of the program.

2-2

OBJECT PROGRAM I/O.

Object program I/O operations on the B 6500 System involve the

automatic transfer of logical records between a file and a process.

A logical record consists of the information which the process

references with one Read or Write statement. The size of a logical

record does not necessarily coincide with the size of the physical

record or block accessed by the hardware I/O operations. When a

physical record contains more than one logical record, the file is

referred to as a blocked file.

Files may be blocked in order to conserve storage space in the file

media, or to increase the rate of processing the data by reducing

the number of file accesses required.

When a file is accessed by a process, a physical record is written

from or read to a memory area. This memory area is called a "buffer"

area for the file. If the file is blocked, the MCP maintains a

record pointer into the buffer. This pointer is used by the process

to access the current logical record. If the next record is not

already present in a buffer, then the MCP automatically performs the

required I/O operation.

The MCP attempts to keep all input buffers full and all output

buffers empty for each process, regardless of status, thereby minimi­

zing the time that a process is suspended waiting for an I/O opera­

tion to be completed.

PSEUDO UNITS.

When operating a system in a multiprogramming environment, there are

frequently a large number of I/O operations occurring at the same

time. If these I/O operations are concerned with card decks and

printer files, the number of card readers, card punches, and printers

available to the system can be, and frequently is, the limiting

factor for system throughput.

In order to minimize this type of limitation, the B 6500 MCP can

simulate the existence of additional card readers and line printers

2-3

with disk files. These disk files are referred to as "pseudo card

readers" and "pseudo printers" in the following paragraphs.

PSEUDO CARD READERS.

The MCP will accept control cards and data cards from a disk or tape

file which has been assigned to a pseudo card reader just as it

would ~rom a card reader. A ~eparate program, Load Control, is used

to load the system control decks to disk or tape. The MCP then

assigns these control decks to pseudo card readers as the pseudo

readers become available.

PSEUDO CARD PUNCHES.

The MCP will create a tape or disk "punch" file in lieu of a card

punch when specified by the system options, the program file attri­

butes, or the system operator. The punch file may be punched by

the Punch Backup Program when a card punch is available.

PSEUDO PRINTERS.

A pseudo printer is a disk or tape file which contains special forms

information for the file, and printer carriage control information

for each print line. The MCP will build a pseudo printer file when

specified by the MCP system options, the program file attributes,

or the system operator. The pseudo printer file may be printed on

a line printer by the Print Backup Program when a printer is avail­

able.

2-4

SECTION 3

SUPERVISORY AND CONTROL FUNCTIONS

GENERAL.

A convenient method of describing the supervisory and control func­

tions of the MCP is to first consider the initiation of a single job

or process. The functions which apply to multiprocessing will then

be discussed by assumi~g the several processes are running concur­

rently.

PROCESS SCHEDULING.

When a card deck is placed in the card reader and the START button

is pressed, the status of the card reader changes from Not Ready to

Ready. The STATUS procedure of the MCP periodically uses the Scan­

In Peripheral Status command to determine the status of the peri-

pheral units. STATUS, upon recognizing that the card reader is now

Ready, reads the first record and creates an independent process

which calls CONTROLCARD, the control card procedure.

CONTROLCARD interprets the information contained in the record and

determines that the job in the card reader is a program execution.

An entry into the SHEET Queue is made by CONTROLCARD to schedule

the process.

The SHEET Queue is a linked list of processes which are scheduled to

be executed as soon as sufficient system resources, such as memory~

are available. Each entry in the SHEET Queue is a partially built

process stack. The information contained ·in the stack includes

information concerning the following:

a. Estimated amount of main memory required by the process.

b. Priority.

c. Time of entry into the schedule.

d. Size and location of code segments.

e. Parameter block size and location.

f. Working storage stack size.

g. Size and location of the segment dictionary.

h. Size and location of the process stack information.

J-1

CONTROLCARD then reads the next record to determine if any file

names are to be modified for this particular job or process. If

the card obtained is a FILE (label equation) card, the label infor­

mation is stored in the File Parameter Block of the process. The

scanning of control cards continues until a terminal control card

{such as a DATA, LABEL, or END card) is found, or until a card is

found which is not a system control card. If anything other than

a control card is encountered before a terminal control card is

found, an error message is sent to the operator and all subsequent

cards are ignored until the next END control card.

When a terminal control card is found, the CONTROLCARD process

handles the control card and then terminates itself.

PROCESS INITIATION.

When SELECTION determines that sufficient system resources exist to

allow another process into the mix, an independent runner process

called RUN is started. The independent runner unhooks the SHEET

Queue stack and makes the segment dictionary present in main memory.

RUN enters the beginning of job (BOJ) time into the system log and

the level 1 display register, D[l], is set to point at the segment

dictionary. Then RUN makes the first segment of the process present

and points the level 2 display register, D[2], at it. Finally, RUN

links itself into the TERMINATE queue and transfers control of the

process in which it was running to the process it initiated.

PROCESS EXECUTION.

As soon as control is transferred to the new process, a PRESENCEBIT

interrupt occurs because the outer block code segment is not present

in main memory. The PRESENCEBIT procedure of the MCP is entered and

the following actions occur in order to make the segment present:

3-2

a. The PRESENCEBIT procedure calls the GETSPACE procedure to

allocate an area in main memory for the code segment.

b. When an area is made available, PRESENCEBIT calls DISKIO,

the disk input/output procedure, and waits on an event which

indicates that the segment has been read in.

c. DISKIO links the request into I/O queue. When the I/O

request comes to the head of the queue, the disk I/O is

performed. At the completion of the disk I/O, the event

is caused, thereby notifying PRESENCEBIT that the segment

is now available.

PRESENCEBIT marks the segment descriptor present and exits back to

the process at the point of interruption.

As the process runs, additional segments of program code and data

will be required. The process stack contains the storage locations

for simple variables and array data descriptors, but program code

segments and array rows are assigned their own areas of memory. The

assigning of separate memory areas for code segments and array rows

allows segments and data to be absent from main memory until they

are actually needed. In the B 6500 System, a reference to data or

code through a data descriptor or a segment descriptor causes the

processor to check the presence bit, bit number 47, in the descriptor.

If the presence bit is OFF, an interrupt occurs which transfers

control to the PRESENCEBIT procedure in the MCP, passing the non­

present descriptor as a parameter. The PRESENCEBIT procedure reads

the address f~eld of the descriptor, which contains the disk address

of the data or segment, for non-present descriptors. Then PRESENCEBIT

calls GETSPACE to allocate a memory area of the size specified in

the descriptor. GETSPACE returns the memory address of the area it

has allocated and PRESENCEBIT causes the information to be read from

disk into memory. When the disk read is finished, PRESENCEBIT

stores the memory address of the information into the address field

of the descriptor, turns the presence bit ON, and updates the

descriptor in the process stack. PRESENCEBIT then returns control

back to the process which was interrupted, and the process resumes

execution. Now the information is present in memory, which is indi­

cated by the presence bit being ON, and the information is accessed

by the process in the normal .manner.
3-3

For purposes of discussion, assume that the process expects to read

a data file named INCARD. When the process performs a read operation

on the file INCARD, the File Information Block (FIB) is accessed. A

bit in the FIB indicates that the Label Equation Block (LEE) has not

been initialized. The symbolic file name in the LEE is used to

search the File Parameter Block (FPB) symbolic name list. Since no

label equation of INCARD was made, no file named INCARD is found.

Therefore, the symbolic name is used as the actual file name and the

label table is searched to find the unit containing the file INCARD.

Upon finding the unit, the card reader in this case, it is marked as

being in use in the unit table. Memory is allocated for the required

number of buffers, and the unit is assigned to the process.

PROCESS TERMINATION.

When a process execution is terminated, the following actions occur:

a. Any outstanding I/O requests are completed, if possible.

Any OPEN files are closed, the units released, and the

buffer areas are returned to the available memory table.

b. All overlayable disk areas allocated to the process are

returned to the available disk table.

c. All process object code and data array areas of main memory

are returned to the available memory table.

d. An EOJ entry is made in the system log for the process.

e. The process stacks are linked in~o the TERMINATE Queue.

If a TERMINATE independent runner is currently running, it is in­

formed of the fact that another process has been introduced into the

TERMINATE Queue. If TERMINATE is not running, the MCP initiates a

TERMINATE independent runner.

LOGICAL PROCESSORS.

In order to discuss multiprocessing more concisely, it is advantageous

to introduce the concept of a logical processor. A logical processor

3-4

is defined as a set of system resources which contain all of the

information required by a physical processor to execute a process.

Therefore, multiprocessing may be thought of as the establishment

of a queue of logical processors which share the physical processors

available to the system. As a result, the physical processors become

a reso~rce to be shared by processes in the same way that main

memory, disk, and I/O channels are shared.

On the B 6500 System, the logical processor concept is implemented

by assigning a stack for each process. The stack is a contiguous

area of memory which is an extension of the processor stack registers.

The stack provides storage for program variables and data references.

In addition, the stack contains information pertaining to the dynamic

history of the process.

locations for:

The process stack provides the storage

a. Simple variables (single or double-precision operands).

b. Indirect Reference Words which refer to arrays, variables,

and procedures that are not locally declared.

c. Data descriptors which reference data arrays.

d. Program Control Words which refer to procedures or sub­

routines.

The dynamic history of the process is automatically recorded in the

process stack by the hardware. The dynamic history is stored by

linking the Mark Stack Control Words for each lexicographic level

of the process.

RE-ENTRANT CODE.

The term "re-entrant code" is used to refer to object program in­

struction segments which may be executed by more than one process

at the same time. A necessary condition for re-entrant code is that

it is not modified during execution. Since each process on the

B 6500 System has a stack for data storage, and since the object

program code is not modified by execution, all object programs on

3-5

the B 6500 are re-entrant. Figure J-1 shows the stack structure

for two copies of the same ALGOL program being executed concurrently

by two processors. The declaration of a procedure causes a program

control word to be created in the stack at execution time.

The Program Control Word is used for procedure entry and exit. It

contains the following information:

a. The relative location in the segment dictionary of the

object code segment descriptor.

b. The procedure entry point references:

1) The word index relative to the beginning of the code

segment.

2) The syllable index relative to the beginning of the

entry point word.

If an object program is being executed by more than one logical

processor, the user count in the lower part of the segment dictionary

is counted up to represent the number of users, and the additional

stacks are linked together. Since there is only one segment diction-

ary for a given program, the code segments are automatically shared

among the various logical processors which are executing the program.

OVERLAY.

Even with the .ability to share object program segments, there are

times when all of the processes which are currently active require

more main memory than is available to the system. When such a

condition arises, it becomes necessary to remove some of the program

and/or data segments from main memory. This action occurs only when

a process accesses an absent program segment or data array row and

there is no available area which is large enough to accommodate the

absent information.

When the absent segment or data descriptor is accessed, a presence

bit interrupt occurs, and control is transferred to the PRESENCEBIT

procedure. The PRESENCEBIT procedure calls GETSPACE to allocate an

J-6

Y.!!fil!2.
D (1) - DISPLAY 11£61 ST£11$ (I • 0 THllU st)

O.A.- DISIC -SS
O.O. - DATA DE:SClllPTOll

Of - DELTA FIELD, STACK HISTOllY LINKAllf:

OISI' - DISft.ACOIOIT -SS- EllVl-DT
LINKAGE

llSC1l - - SUCK COlllllOI.. WONI

pt - l'llOCf:SSOll llD. 1

1'2 - l'llOCf:SSOll NO• 2

- - -- COllTllOL Do
--·T\lllll~-S.Q.- 9£- QOCllll'TOll

---- l'CW llU'f:llUICt TO A SEGllENT DESCllll'TOll

NOTE - 1'.HE FOLLCJWIH ALGOL - WlS -= aoac STllUCTUllt OF-
~~3 4 5

I PllOCEDUllt A

re..=.:,
OUT£11
ILOCK

lit COPY:

PllOCEDUllE

2nd COPY:

r
l'llOCEDUllE 0

~E-EE

~CE-E f

CALLS I, I CALLS C, C CALLSD,
CALLS E, AllD E CALLS F

PROCEDURE A CALLS B, I CALLS C (C HAS NOT YET

CALLED D)

O&IECT - CODE
PllOCEllUllE "o""f" a "F"

L..

Ol.IECT -All COOE
PllOeEDUllt: "c"

-
09.IKT l'llOlllAll CODE
l'llOCEDUllt •a•

Ol.IECT l'llQ9Ull coot
llCl'ITllCllAllD- l'llOc:E1IUM "A.

OICTIDllAllT

L-

I
Ol.IECT ...,.... COllE
OUTEll ILOCIC

S'IM:IC VECTOll

L. D. 0. - STACIC #:S

D.O. - STACK II t
D. D. - STACK# l

o.o. - STACK VECTOll O.D. ... STACK II 0

PCW -INTEllllUPT PllOCEDURE 3
2

llCW I

o~ llSCW -.._ 0 (O] (PROCESSORS I 8 2 I

~

DIµ_
..

r----
__ ...;

i------ ---
~

-1111 ITOllME
~ "r!' .. - ~[5') (P2l °',!!:.. lllCW

" -••llOIUllll 1------, r--- ---l'llOCEIUIE •••
I
I - - I

lllCW ..Jl.(~P2l I DI.II!:
I ...

=::,:~ 1-----, Ir-1---

~-- ---- ~ lllCW ~
OUTEll llLOCIC 1------ ---~1-~ ~ ll.OaAL -ILES I

I - ~ r new -
l'llOCQS STACK i .. LL

1
_

COllTllOI.. -AllET£llS

~·-
acw
TilP OF STACK CW

l'llOCESS STACK-2M COPY
OFF- I

I
I
I

9£1111ENT DIC1-AllT I
I

L--. &.D.l'llOCS. •o• "E" • .,.. ~---;--::r
L---. S.D. l'llOC. "c" f---+t _.J

L..---- SJ). l'llOC. .,. J---:t ____ ..J

&.D.l'llOC."A" l---- -------~
"-- SEI. DES. OUT£11 ILOCIC

DISP a OF ,___ J llCW ,___ DISP a OF
lo--

llSCW Ei::::--D [I] (PZI

+ .. O[l) (pl)

USEll COUNT 9 LINK
""!'."

CODE FILENAME
OIStlADOllESS

CODE FILE DISK
ADDRESS

FlllST X (ENTRY POINT)

SU. DICT, ID - llSCW

I
TOP Of STACK CW

Figure 3-1. B 6500 Re-Entrant Program Stack Structure

l'llOC,, ..,,. l'AllAllETEllS

llCW

llSCW

~ "E" NllAllETtJIS
llCW

llSCW

PCW-PllOCEDUllE "t'
l'CW-PllOCEDUllE "f"

PllOC "D" NllAllET£llS

llCW

llllSC1ll

l'llOC. "c" NllAllETERS

llCW

llSCW

PCW-PllOCEDUllE "c"
PllOC. "a" MllAllETEllS -llSCW

l'CW·l'llDCEDUllE y
l'CW-PllOCEDlllE "D"
l'llOC. "A• PAllAllETERS

llCW

llSCW

PCw-l'llOCEOURE "A"

OUTER llUICll
GLoeAL '411.111AILES

llCW

lil9CW
RIEPl..Y EVbT

llSOllTCOUllT

Ell- COUllT

PllOCESS FAllll..Y L lllK

OVERLAY FILE
DI SK ADDRESS

OAT DESCRIPTOR

!/O TlllE

MTCOURSE

DYNAMIC PlllORITY

EXTERNAL INFO
DISK ADDRESS

SEP. COllPL 'N INFO

PllOCESSOll TlllE

AIT DESCRJPTOll

TlllE WAITING (URI
TR-TIME SINCE LEAVING

READY Q

PROCESS ID

TlllE ENTERED

JOB REFERENCE

TAllGET TlllE

RE· ENTRANT L I lllC

CORE HISTORY

CORE HISTORY

NATURE OF PROCESS c-
FPB DESCRIPTOR

llAXlllUll 1/0 TlllE

MAX. PROCESSOR TlllE

PRIORITY

DYNAll. CORE EST.

MSCW

TOP OF STACK CW

PROCESS STACl(-ht COPY
OF PROGRAM

0(5) (Pt)

OF

t--' ..
OF

0[4] IP!)

ij.
OF

l'4" ..
OF

i-'

~

OF

0[3) (Pl)

..
OF

~ D[Z] (Pl)

area for the absent segment. GETSPACE first tries to locate an

available area. If no available area is large enough, GETSPACE

starts with oldest overlayable area in memory and determines if it,

along with any adjacent available areas, is large enough to satisfy

the request.

If the area is large enough, the in-use area is overlaid by the

OVERLAY procedure and GETSPACE returns the address of the required

area to PRESENCEBIT. If the area located is not large enough,

GETSPACE looks at the area which preceeds the current area being

investigated. GETSPACE includes that area if it is either available

or in-uBe but overlayable.

This process continues until the size of the area is sufficient to

satisfy the request or a non-overlayable area is encountered.

the area located is of sufficient size to satisfy the request,

GETSPACE calls OVERLAY for each overlayable area.

Once

If the area is too small when a non-overlayable area is encountered,

GETSPACE locates the next oldest overlayable area which has not been

encountered, and attempts to find enough area again, as described

above.

Whenever OVERLAY is called by GETSPACE, it must determine what type

of information is contained in the area of memory before it knows

what action to take. If the area contains a program segment or

read-only data, the only action required is to store the disk address

of the program or data segment, which is in the second word of the

memory link, into the descriptor. If the area contains data, it may

have been modified after it was brought in from the disk. Therefore,

the data must be written out to disk before the area can be made

available.

EFFECT OF MULTIPLE BUFFERS.

Originally, multiple buffers were used to increase system efficiency

by overlapping I/O operations with processor computations. Since

3-8

multiprocessing allows overlap of I/O operations and processor

computations between different processes, much of the original need

for multiple buffers would seem to be obviated.

In the B 6500 System, however, the existence of synchronous I/O

multiplexor channels allows multiple buffers to still be effective

in increasing throughput for processes which require groups of

physical records at a time. Since the MCP performs all object

program I/O action, a process with multiple buffers allocated for a

file allows the MCP to perform I/O operations independent of the

status of the process.

The determination of the number of buffers required for efficient

execution of a process depends upon many factors.

include:

a. The type of files being used.

These factors

b. The particular hardware configuration being used.

c. The processing characteristics of the process.

d. The memory requirements of the process.

e. The mix of processes which are typically multiprocessed.

Particular note should be made of the fact that the use of exces­

sively large buffers or an excessive number of buffers for processes

can cause unnecessary overlays of program. This, in turn, will

result in reduced system throughput and poor system performance.

DYNAMIC STORAGE ALLOCATION.

The B 6500 MCP performs dynamic storage allocation for all system

storage media: Main memory, magnetic disk, and system library

magnetic tape. As a result of considering the different system

storage media as a hierarchy of memory, the MCP controls allocation

and deallocation of all system memory, regardless of the type.

The MCP dynamically allocates the use of main memory as a resource

among the current processes. If a process needs more memory than

that which is currently available, the MCP will select a suitable

contiguous area and overlay any in-use areas in order to make room

for the process.
3-9

In addition to allocating main memory, the MCP also allocates disk

areas. If a process or the MCP requires more disk area than is

currently available, the MCP will select the oldest disk files which

are contained in a suitable area and proceed to automatically create

a system library tape containing the files which are to be overlayed.

When the area has been cleared, the MCP will adjust the disk direc­

tory information to show that the overlayed files reside on system

library tape, and then reallocate the area to the process requiring

it.

In order to be able to recall the files which are located on system

library tapes, the MCP requests volume serial numbers for the tapes.

The vulume serial number is used for MCP/operator communication in

denoting which library tape to load for future recalls of the files.

3-10

STORAGE CONTROL.

MAIN MEMORY.

SECTION 4
MCP FUNCTIONS

The two visible memory allocation procedures are GETSPACE and

FORGETSPACE. Available memory links are an ordered threaded list

with the order based on:

a. The overlayability of the area that physically precedes the

available area in memory.

b. The size of the available area.

In allocating an area of memory, the two arguments that are used are

the overlayability of the desired area and the required size. These

arguments and the ordering of the available list tend to keep non­

overlayable and overlayable memory in separate continguous areas of

memory. This is especially true when an area of the desired size is

in the available list.

MEMORY LINKS.

Main memory links consist of in-use links and available links, each

of which contain sufficient information for a single hardware opera­

tor to find the next link, and all succeeding links.

IN-USE LINKS. In-use links consist of at least four words that

contain:

a. Word 1:

1) Stack number of the requesting process (10 bits).

2) Available bit (1 bit).

3) Back-link {length of area - 17 bits).

4) Left-off link (points to last previously allocated

in-use area - 20 bits).

4-1

b. Word 2:

l) Disk address code (20 bits).

2) Address type (BOS relativ~ or Abs. - l bit).

3) Address of MOM (20 bits).

4) Usage (data, program, separately compiled procedure,

etc. - 7 bits).

c. Word J: Reserved (normally used for I-0 control word -

48 bits).

d. Word n:

l) Unused number of words in in-use area (Delta - 6 bits).

2) Left-off pointer (points to next allocated in-use area -

20 bits).

J) Overlayable bit (l bit).

4) Available bit (1 bit).

5) Front-link (length of area - 17 bits).

6) Reserved (3 bits).

Words l and 2 are assigned within the area at addresses that are

closest to zero. Word n is assigned to the last word of the area

so that the back-link is self-relative and points to word n, and

the front-link points to word l.

AVAILABLE LINKS. Available links are three words long and consist

of:

a. Word 1:

1) Previous area overlayability bit (l bit).

2) Reserved area (6 bits).

4-2

3) Available bit (l bit).

4) Back-link {length of area - 20 bits).

5) Link to next available area {20 bits).

b. Word 2. Link to last available area (20 bits).

c. Word n:

l) Available bit (l bit).

2) Front-link {length of area - 20 bits).

Comments under in-use links pertaining to words l and n are applic­

able to available links.

MEMORY ALLOCATION.

Memory allocation is done by the GETSPACE procedure. Parameters are

supplied to GETSPACE so that an adequate-sized continguous area of

memory may be reserved for a particular stack number. The storage

may be allocated at the front or rear of an adequately sized area

and marked as overlayable or non-overlayable.

When an in-use area is allocated, it is linked to the previously

allocated in-use area by the left-off link and pointer fields in

the memory links. These fields comprise the LEFT-OFF LIST. A

reference word pointing to the oldest entry in the LEFT-OFF LIST

allows the chronological history of in-use memory areas to be deter­

mined.

If sufficient memory is not available, an effort may or may not be

made to overlay adjacent areas of memory until an adequate sized

contiguous memory area is available to satisfy the current request.

If the area found is larger than the required size, the unused

portion is made available by linking it into the available list.

This is accomplished by GETSPACE who calls FORGETSPACE, passing a

negative address as a parameter. If sufficient memory cannot be

made available, the request may be put in the WAIT or SPACEQUEUE

until the request can be satisfied. In the case of an unsatisfied

request, an appropriate operator communication may be generated.

4-3

MEMORY DE-ALLOCATION.

Memory de-allocation is done by the FORGETSPACE procedure. The para­

meter to FORGETSPACE is the absolute memory address of an area that

is to be returned to the available list.

Adjacent available areas are consolidated into a single contiguous

area. An available area may be that portion of an in-use area

(DELTA) that was too small to be returned to the available list.

The available list is ordered with an argument that consists of:

a. Overlayability of the area that immediately and physically

precedes the area being made available.

b. The size of the area.

This results in the available list being ordered by size within

overlayability.

The ordering of the available list allows GETSPACE to find an area

of the correct type with a minimum amount of searching.

OVERLAY OF MEMORY.

When there is insufficient available memory to satisfy a particular

request, the overlay mechanism is invoked. The left-off list is

searched, starting at the overlayable area that has been allocated

for the longest period of time.

If this area, combined with any adjacent available area, is adequate

to satisfy the request, it is overlaid. Otherwise, allocated areas

with lower starting addresses are considered until one of the

following occurs:

a. The request is satisfied.

b. A non-overlayable area is encountered.

If the request is not satisfied, the next oldest overlayable area is

obtained, and the left-off list is searched as described above. This

4-4

process is repeated until the left-off list has been exhausted. If

at this time the request has not been satisfied, a N'"'o Memory condi­

tion exists.

DISK.

DISK OVERLAY.

On some systems, especially those with a large number of system

files, situations may arise where more disk space is required than

is currently available. In such a situation, the MCP will find or

request a system scratch tape and unload the oldest access date files

onto the system library tape until sufficient space is available.

The MCP will then record the appropriate v-0lume and reel number into

the directory for each file. Subsequently, if one of. the absent

files is required, the system will automatically reload the file

from the system tape.

OPERATOR-MCP COMMUNICATIONS.

Communication with the MCP is accomplished with a combination of

display units (CRT devices), control units (display units with

associated keyboards), and control cards (special cards recognized

by the MCP). The following discussion is based on a system with one

control unit and one display unit, although a system may have any

combination from a minimum of one display unit to a maximum of

thirty display and control units combined.

Terms enclosed in the character pair () are defined either immedi­

ately after use, or in appendix A.

DISPLAY OF STATUS.

The status of the system and of the processes in progress is pre­

sented on the display units. Various tables may be called for

display by entering the appropriate keyboard input messages. In

addition, specific ·questions requiring short answers may be entered

in the keyboard. These questions and answers are displayed as they

occur. The display tables are described below.

4-5

MIX TABLE. The MIX table is displayed continuously except for

brief periods when it is replaced by another table. Each job being

executed has an entry, the contents of which depend on whether the

job is active or suspended.

ACTIVE ENTRY. If a job is being executed normally or was terminated

between the two most recent updates, its entry contains the following

information:

a. MI - mix index.

b. Job - the first five characters of each of the first three

levels of the (job name).

c. P - priority.

d. c - compiler code:

l) A - ALGOL.

2) c - COBOL.

3) E - ESPOL.

4) F - FORTRAN.

5) Blank - not a compilation.

e. s - status:

l) B - Beginning-of-Job.

2) R - Running.

3) E - End-of-Job.

4) D - Discontinued.

f. CU - core used (tenths of percent of usable core).

g. PT - processor time used as of last update in minutes.

A typical active entry is as follows:

MI Job P C S CU ~

lJ.09J=LITTL/BADGE/OPTI0:5:A:R:llJ,l.6

4-6

SUSPENDED ENTRY. If a job is srispended for any reason, its mix

entry changes from active to suspended and contains the following

information:

a. MI - mix index.

b. P - priority.

c. Reason - an output message giving the reason for suspension.

d. Action - abbreviation for one or more input messages

required to reactivate processing.

A typical suspended entry is as follows:

MI P Reason Action

13.093:5:NO FILE=VOLID/FILID:OF,UL,IL,DS

SCHEDULE TABLE. Following the entry of the input message SCH at the

control unit, the schedule table will replace the mix table for a

period of time, the length of which depends upon the number of

entries. The entry for a job in the schedule contains the following

information:

a. SI - schedule index. This will become the mix index upon

entry into the mix.

b. Job - job name.

c. P - priority.

d. C - compiler code (see mix table).

e. S - status:

1) S - scheduled.

2) M - entered mix between two most recent updates.

f. CR - core required (tenths of percent of usable core).

g. ST - time in minutes since entry into schedule.

4-7

A typical schedule table entry is as follows:

SI Job P C S CR ST

lJ.097=CORPO/PAYCH:5: :s,192,5.7

PERIPHERAL UNIT TABLE. This table is called with the input message

PER, and has an entry for each peripheral unit in the system. An

entry contains the minimum information necessary for determination

of the status and content of a given unit as follows:

a. Unit - unit mnemonic.

b. s - status:

l) I - In use by,.

2) L - Labeled.

3) N - Not Ready.

4) s - Scratch.

5) u - Unlabeled.

c. MI - mix index of job using this unit.

d. File - file label of file associated with this unit.

e. RDC - RDC of tape reel on this unit.

A typical peripheral unit table entry is as follows:

Unit S File RDC

MT002:L:CHECK/DEPOS:J,69002,l

LABEL TABLE. This table is called with the input message OL and

contains an entry for each I/O unit of the designated type which is

on line. If no units of the designated type are on line, the output

message NULL (unit mnemonic) TABLE will appear. An entry may contain

extensive information about the status and content of the specified

unit, possibly including a complete listing of the label part of the

file associated with the unit. An appropriate subset of the follow­

in~ information will be included:

4-8

a. Unit - unit mnemonic.

b. s - status:

1) I - In use by.

2) L - Labeled.

J) N - Not Ready.

4) s - Scratch.

5) u - Unlabeled.

c. MI - mix index of job using this unit.

d. JOB - job ID of job using this unit.

e. FILE - file label of file associated with this unit.

f. RDC - RDC for the file associated with this unit.

g. LBLINFO - other label information to be specified.

A typical label table entry is as follows:

Unit S MI File RDC

CD002:I:lJ,027:INVEN/RECVD:2,69002,l

DISK DIRECTORY TABLE. This table is called with the DIR input

message. It displays all file labels in the disk directory which

are contained in the set specified by the input message. If the

specified set is empty, the output message NULL (file set specifier)

will appear.

A typical directory table in response to the input message DIR DIRI

DIRIDl/=" is:

DIRIDl?

VOLID1/FILID2,DIRID2/VOLIDJ/FILID4

VOLID2/FILID1,DIRIDJ/VOLID7/FILID5

VOLID2/FILID2,VOLID1/FILID1

4-9

JOB TABLE. This table is called with the JOB input message specify-

ing any job in the mix.

job as follows:

It contains detailed information about the

a. Mix table entry.

b. Listing of control cards.

c. Correlation of physical units with file names.

d. Associated processes ((mix index) SUFFIXES).

A typical job table is as follows:

1J.097=CORPO/PAYCH:5: :R,184,J.2

EXECUTE CORPORATIONX/PAYCHECKWRITER.FOR

WEE~ ENDING l-J-69

FILE CARD=HOURLY

FILE DISK=PAYROLLINFO/HOURLY

FILE NEWDISK=PAYROLLINFO/HOURLY/UPDATED

FILE LINE=LINE PRINT OR BACKUP

CDOlO=CARD

LP002=LINE

.1,.2,.2.1,.3

CONTROL CARDS.

Information may be passed to the MCP through the use of punched cards

called control cards. These cards are made distinguishable from

other cards by an invalid character in column l. Control information ·

and comments are punched in columns 2-80. The format for this infor­

mation is free field with the exception that the proper order must

be maintained. All metalinguistic variables and constants must be

separated by a space. If a period appears in a control card, the

information following it is ignored by the MCP.

Normally, but not necessarily, one control card contains one control

statement. Two or more control statements may be punched on a

single control card provided they are separated by semicolons. No

invalid character is required or accepted following a semicolon.

4-10

A control statement may be punched on more than one control card by

terminating all but the last card with a hyphen, provided an iden-

tifier is not divided. Only the first card of such a group may

contain an invalid character.

Control statements may also be entered at the control unit (see

input messages).

The following paragraphs describe the format and ~unction of each

control statement accepted by the MCP.

COMPILE STATEMENT. The COMPILE statement must contain the following

information:

(invalid character) COMPILE (program name) (comment) (compiler

name) (comment) (disposal) (comment)

where:

(disposal)::= (empty) I LIBRARY SYNTAX

The COMPILE statement designates the compiler to be used and the

type of compile run to be made. This must be the first control

statement in a compilation job. The three forms are:

a. COMPILE AND EXECUTE ((disposal) - (empty)).

After an error-free compilation, the compiled program is

scheduled for -execution but the program name is not entered in

the disk directory. The disk space used by the program is

released after the execution is terminated.

b. COMPILE FOR LIBRARY ((disposal) - library).

The object code from an error-free compilation is left on

disk and the program name is entered in the disk directory.

The compiled program is not executed.

c. COMPILE FOR SYNTAX CHECK ((disposal) - SYNTAX).

The compiled program is not executed and the program name is

not entered in the disk directory. The disk space used by the

program is released upon completion of compilation.
4-11

EXECUTE STATEMENT OR RUN STATEMENT. The EXECUTE or RUN statement

must contain the following information:

(invalid character) EXECUTE (program name) (comment)

(invalid character) RUN (program name) (comment)

The designated library program is called from the disk and executed.

This must be the first control statement in a job not requiring com­

pilation.

,REMOVE STATEMENT. The REMOVE statement is of the form:

(invalid character) REMOVE (file set list)

The specified file labels are removed from the disk directory and

the associated disk space is released.

DUMP STATEMENT. The DUMP statement is of the form:

(invalid character) DUMP TO (volume id) (file set list)

A library tape will be generated containing the files in the file

set list. The (volume id) is the library tape name.

LOAD STATEMENT. The LOAD statement format is:

(invalid character) LOAD FROM (volume id) (file set list)

The files with the specified file labels from a library tape with

the specified v-0lume ID will be written on disk and their file labels

will be entered in the disk directory.

CHANGE STATEMENT. The CHANGE statement format is:

(invalid character) CHANGE (change list)

where:

4-12

(change list) ::=(change element) I
(change list),(change element)

(change element) ::=(file label) TO (file label)

The file specified by the first file label in the change element is

relabeled using the second file label.

DATA STATEMENT. The DATA statement must contain the following in­

formation:

(invalid character) DATA (file label)

The information on all cards following this control statement, and

until another control card is encountered, will be designated as

data and be placed in a file called (file label). This file label

must be the same as the file name used in the program, or must be

label equated to it. The DATA statement must be the last control

statement before the actual data.

DATABCL STATEMENT. The format of the DATABCL statement is:

(invalid character) DATABCL (file label)

The information on all cards following this control statement is

treated as above except the cards following contain BCL data. BCL

data must be followed by an ENDBCL control card.

ENDBCL STATEMENT. The ENDBCL statement format is:

(invalid character) ENDBCL

This statement signals the end of BCL data and must follow each

BCL data deck. It does not designate End-of-File action.

END STATEMENT. The END statement format is:

(invalid character) END

This statement designates End-of-File information for a particular

program and is required whenever a program is terminated for any

reason while it has card information yet to be read. Consequently,

if an END statement appears, it must be the last card in a deck

4-lJ

pertaining to a program. However, an END statement is not necessary

to denote the end of a data file. An attempt to read any control

card as data will cause an End-of-File notification. Therefore, if

a program requires more than one card file, the end of one file will

be denoted by the DATA statement for the next.

PROCESS TIME STATEMENT. The PROCESS time statement must contain

the following information:

(invalid character) (optional compiler name) PROCESS

(comment) (integer)

This statement specifies the maximum process time in seconds for the

object program or the compiler. If the process time exceeds that

specified, the job will be terminated.

IO TIME STATEMENT. The IO time statement must contain the following

information:

(invalid character) (optional· compiler name) IO (comment)

(integer)

This statement specifies the maximum I/O time in minutes for the

object program or the compiler. If the I/O time exceeds that speci­

fied, the job will be terminated.

STACK SIZE STATEMENT. The STACK size statement must contain the

following information:

(invalid character) (optional compiler name) STACK (comment)

(integer)

This statement specifies the number of words to be assigned in

primary memory for the working stack of the compiler or object

program. If no STACK size statement appears, the working stack

size will be 512 words.

4-14

PRIORITY STATEMENT. The PRIORITY statement format is:

(invalid character) (optional compiler name) PRIORITY

(comment) (integer)

This statement specifies the prior'ity to be assigned to a compilation

or an object program execution. Priorities may range from 0 to mm

where 0 is the lowest priority and mm is the highest priority.

Unless otherwise specified, a priority of mm/2 will be assumed. For

a COMPILE AND EXECUTE job, a priority assigned to the compilation

will also apply to the execution unless a specific priority is

assigned with a control statement at execution time.

FILE (LABEL EQUATION) STATEMENT. The FILE statement, often referred

to as the label equation statement, must contain the following infor­

mation:

(invalid character) (optional compiler name) FILE

(file name) = (file label) (options)

The FILE statement is used to associate the file name used in the

program with a partioular data file for execution. The FILE state­

ment may also be used to specify various options for input/output

files as follows:

(options) to be specified.

COMMENT STATEMENT.

To be specified.

I/O UNIT STATEMENT. The I/O unit statement format is:

(invalid character) UNIT (unit mnemonic) (comment) (file label)

This statement associates a file label with a particular I/O unit.

It may be used when an input file does not have a label and operator

intervention is not required.

4-15

CORE REQUIRED STATEMENT. The CORE required statement format is:

(invalid character) (optional compiler name) CORE (comment)

(integer)

This statement allows the operator or programmer to override the

compiler's estimate of the amount of core storage, in words, required

for efficient execution of the program.

SAVE STATEMENT. The SAVE statement must contain the following

information:

(invalid character) SAVE (comment) (integer) (comment)

This statement specifies the number of days from last access for

which a program is to be saved in the disk library.

MESSAGES.

The operator communicates directly with the MCP through the use of

input/output messages. All input messages and certain output

messages are displayed as they occur. They will also appear in the

system log.

OUTPUT MESSAGES. Output messages which appear only as answers to

direct questions will be described with the corresponding input

message. The remainder of the output messages appear below as they

are displayed. Following each message is a brief description of

its meaning and any required operator response.

There are four types of output messages as follows:

4-16

a. Messages giving information but requiring no operator

action. In the following description, these messages

contain no prefix.

b. Messages which require operator action appear as suspended

entries in the MIX display. In the following description,

these messages are prefixed with the # character.

c. Messages which signal discontinuation of' the program prior

to EOJ. In the following description, these messages are

prefixed with the - character. These messages will normally

appear only in the system log.

d. Messages which relate to the Breakout and Restart facility.

In the following description these messages are prefixed

with the -- character pair.

(mix index) ACCEPT

An object program executed an ACCEPT statement. A (mix index) AX

input message is required.

- ARG .GT, MAX F

To be specified.

BAD LIBRARY TAPE

A library tape has irrecoverable parity errors and cannot be loaded.

(unit mnemonic) BUSY

An I/O operation was attempted on the specified unit, and the unit

was apparently busy.

(file label) CHANGED TO (file label)

The MCP has performed an operation specified in a CHANGE control

statement.

#CONTROL CARD ERROR (unit mnemonic) {information from control card}

The MCP expected to read control information from the designated

I/O unit but has found the information to be in error.

CP RQD (file label) (rdc) : (job name).

A program needs a card punch and none is available.

(unit mnemonic) / (I/O operation) DA = (integer); # SEG = (integer);

RTRY = (integer); # TRNS = (integer)

Retries had to be made on the disk file. The I/O operation is an

R if it was on a Read, W if on a Write. The integer appearing after

4-17

DA is the disk address, the integer appearing after SEG is the number

of segments read or written, the integer after RTRY is the number of

retries necessary, and the integer after TRNS is the number of disk

transactions since the last Halt-Load operation.

- DATA STMT ERR.

To be specified.

DECK (integer) REMOVED.

The specified control deck was removed from disk because of either

job completion or an input message.

DISK FAILURE - (unit mnemonic).

An error occurred on disk access. If this message is not followed by

by a ... #RTRY= ... message, then a Halt-Load operation must be

performed.

DISK PARITY ON LIBRARY MAINTENANCE.

Library maintenance was not completed successfully.

- DIV BY ZERO (job name), (terminal reference)

An object program attempted a divide operation using a zero divisor.

DIV BY ZERO BRANCH (job name) , (terminal reference)

A divide by zero occurred, but a programmatic recovery feature was

used.

(file label) DUMPED

The MCP has performed the operation that was specified in a DUMP

control statement.

DUP FIL (file label) (rdc) : (job name) (file list)

The object program attempted to access an input file but the MCP

found more than one file with the specified file label. The condi­

tion can be corrected by making only one of the files available,

then entering either a (mix index) OK, a (mix index) IL, or a

(mix index) UL message.

4-18

DUP LIBRARY (file label) : (job name)

An attempt was made to enter a file in the disk library when its

file label was identical to a file label already in the disk direc­

tory. The condition may be corrected by using a CHANGE or REMOVE

control statement followed by a (mix index) OK message, or by enter­

ing a (mix index) RM message.

--END OF REEL (unit mnemonic). BREAKOUT IN PROCESS WILL BE RESTARTED
ON NEW REEL.

End-of-Tape has been reached on a BREAKOUT tape. The BREAKOUT will

be restarted on a new reel.

- EOF NO LABEL (file label) : (job name) , (terminal reference)

The end of an input file was reached with no specification as to

action to be taken.

- EOT NO LABEL (file label) : (job name) , (terminal reference)

An object program has reached the end of the designated files

declared areas, as on disk.

(file label) EXPIRED

This message refers to files on disk at Halt-Load time for which

the SAVE period has expired.

- EXPON OVRFLW (job name) , (terminal reference)

An object program performed an operation which caused an exponent

overflow to occur.

EXPON OVRFLW BRANCH (job name) , (terminal reference)

An exponent overflow occurred, but a programmatic recovery feature

was used.

FACTOR = X, CORE AVAIL = Y, CORE IN USE = Z

This is the response to a TF input message.

(unit mnemonic) (I/O operation) FAILURE - D (integer)

One of the following errors persisted after 10 retries:

4-19

(integer) = 19 - parity error between I/O control and core

or disk file control.

(integer) = 20 - parity error on transfer from disk.

- FILE UNOPENED (job name) , (terminal reference)

An object program attempted to write a file that has not been

opened.

FM RQD (file label) (rdc) : (job name)

A program is ready to open a file for which the FROM option has

appeared on a Label Equation card. An FM input message is required

to continue processing.

-FRMT ERROR

To be specified.

- INTGR OVRFLW (job name) , (terminal reference)

An object program performed an operation which caused an integer

overflow to occur.

INTGR OVRFLW BRANCH (job name) , (terminal reference)

An integer overflow occurred but a programmatic recovery feature

was used.

- INVALD ADRSS (job name) , (terminal reference)

An object program performed an operation which addressed a non­

existent memory location.

INVALD ADRSS

An invalid address occurred in control state and it could not be

associated with a particular program in the mix. A Halt-Load

operation may be required.

- INVALID EOJ (job name) , (terminal reference)

A COBOL or FORTRAN program attempted to execute the END statement,

or a sequence error occurred.

4-20

- INVALD INDEX (job name) , (terminal reference)

An object program attempted to index out of the range of an array

being referenced.

INVALD INDEX BRANCH (job name) , (terminal reference)

An invalid index occurred but a programmatic recovery feature was

used.

(unit mnemonic) INV CHR IN COL (integer)

An invalid character has appeared in a position other than column 1

of a control card. The integer is the column number.

INV KBD {typed-in information}

The MCP was not able to recognize a message entered from the key­

board.

(~nit mnemonic) I/O INV ADDR

An invalid address occurred when data was to be transferred between

an I/O channel and primary memory. The MCP recognizes the error

condition and, if possible, rectifies the errors. The primary

purpose of this message is to draw attention to a condition which

could denote a hardware failure.

(unit mnemonic) I/O MEM PAR

A parity error occurred when data was to be transferred between an

I/O channel and primary memory. The MCP recognizes the error condi­

tion and, if possible, rectifies the errors. The primary purpose

of this message is to draw attention to a condition which cduld

denote a hardware failure.

(file label) LIBRARY MAINTENANCE IGNORED

The MCP was not able to perform the library maintenance operation

specified in a control card.

- LIST SIZE ERR

To be specified.

4-21

(file label) LOADED

The MCP has performed the operation specified in a LOAD control

statement.

LP BACKUP ON (unit mnemonic)

A printer backup tape is on line.

a PB message must be entered.

If the tape is to be printed,

LP, PET MT RQD (file label) (rdc) : (job name)

A program needs a line printer or a printer backup tape, and neither

is available. The situation will be remedied if a line printer,

backup tape, or scratch tape becomes available. An OU message may

be entered if desired.

LP RQD (file label) (rdc) : (job name)

A program needs a line printer and none is available. The condition

will be remedied when a line printer becomes available, or it may be

changed with an OU message.

MT RQD (file label) (rdc) : (job name)

A program needs a scratch tape for a tape file.

- NEGATIVE BASE XTOI

To be specified.

- NEGTV ARGMENT LN (program name) , (terminal reference)

A program attempted to pass a negative argument to the LN intrinsic.

- NEGTV ARGMNT SQRT (program) , (terminal reference)

A program attempted to pass a negative argument to the SQRT intrinsic.

NEW PET ON (unit mnemonic)

A new printer backup tape was opened.

- NMLST ERR

To be specified.

NO DISK AVAIL

A disk area was required, but sufficient disk space was not avail­

able.

4-22

NO FILE (file label) (rdc) : (job name)

A program needs an input file which is apparently unavailable. If

the file is labeled, it must be made available. If the file is not

labeled, an IL message is required. If it is a COBOL optional file,

an OF message is required. If a COBOL program has read the final

volume of a multi-volume unlabeled file, an FR message is required.

NO FILE (vol id) / FILEOOO

An attempt was made to load files from a library tape which was not

available to the system.

NO FILE ON DISK (file label) : (job name)

A program needs a file it expected to find on disk. The file must

be made available, and then an OK message must be entered.

(mix index) NO MEM

The MCP was unable to obtain required primary memory. Subsequent

periodic attempts are made while other processing continues. If an

area is obtained, the OK MEM message appears. If the mix index

equals O, the memory required was for the MCP and a Halt-Load opera­

tion is required.

(file label) NOT IN DIRECTORY

A control statement referenced a file which was not in the disk

directory.

(file label) NOT LOADED (NOT ON TAPE)

A LOAD control statement referenced a file which was not in the disk

directory.

(file label) NOT LOADED (NOT ON TAPE)

A LOAD control statement referenced a file which was not on the

specified library tape.

(unit mnemonic) NOT READY

An I/O operation was attempted on a unit that was Not Ready.

4-23

(unit mnemonic) NOT READY EU

An I/O operation was attempted on a disk file electronics unit that

was Not Ready.

(mix index) OK MEM

The condition indicated by a NO MEM message no longer exists.

OPRTR ST-ED (job name)

The specified job was suspended in response to an ST input message.

An OK message is required to continue processing.

- OPRTR DS-ED (job name) , (t~rminal reference)

The specified job was discontinued in response to a DS input message.

PARITY ON (unit mnemonic)

The MCP received an irrecoverable parity condition while reading

the label or scanning down a multi-file volume.

- PAR NO LABEL (file label) : (job name) , (terminal reference)

An irrecoverable parity occurred on the designated file, and no

programmatic recovery facility was specified.

PET MT RQD (file label) (rdc) : (job name)

A program needs a scratch tape for a printer backup file. The con-

dition will be remedied when a scratch tape is made available, or may

be changed with an OU input message.

(unit mnemonic) PG-ED

A tape was purged by an input message or a program.

(unit mnemonic) PRINT CHECK

A print check error occurred during printing of a line on a line

printer. Processing continues normally.

PP RQD (file label) (rdc) : (job name)

A program needs a paper tape punch, and none is available.

4-24

(unit mnemonic) PUNCH CHECK

A punch check error occurred during the punching or a card.

sing continues normally.

(unit mnemonic) READ CHECK

Proces-

A read check error occurred on a card reader. The last card in the

stacker must be reproduced, if necessary, and run through again.

#READ ERROR FOR {control card information}

A read error, probably irrecoverable parity, occurred during the

reading of a control deck for the disk. The control card which is

printed denotes the deck which will be deleted. The decks that

follow will be loaded normally.

(file label) REMOVED

An operation specified in a REMOVE control statement has been

completed.

(unit mnemonic) RW/L

A tape has been rewound and locked.

- SELECT ERROR (file label) : (job name) , (terminal reference)

An object program attempted to perform an invalid operation on the

designated file, e.g., rewind a card reader.

- STACK OVERFLOW (job name) , (terminal reference)

The operations performed by an object program have caused its stack

to overflow its limit, and the MCP was unable to extend it.

TILT

B 6500 MCP LEVEL (level number) , (patch number)

A Halt-Load operation is required.

- TYPE ERR

To be specified.

4-25

UNEXP IO ERR

The MOP encountered an unexplained I/O error that coult not be

directly assobiated with a particular program. A Halt-Load opera­

tion is required.

- UNEXP IO ERR (job name) , (terminal reference)

The MOP encountered an unexplained I/O error associated with the

specified job.

- (unit mnemonic) WRITE LOCK

A program attempted to write on a magnetic tape with no write ring,

or on a disk f'ile which has been locked out by a lockout switch.

- (unit mnemonic) WR PARITY

An irrecoverable parity error occurred on the designated unit.

ZIP ERROR

To be specified.

- ZERO ARGMNT LN (program name) , (terminal reference)

The designated program attempted to pass an argument of' zero to the

LN intrinsic.

INPUT MESSAGES. Information may be supplied to the MOP through the

use of' input messages entered in f'ree-f'ield f'ormat at the control

unit keyboard. These messages are not intended to provide detailed

information about individual programs, e.g., the settings f'or

registers or the contents f'or memory locations.

To enter a message, the operator must f'irst depress the LOCAL key

then the STX key. Af'ter keying in the message, he must depress the

ETX key, then the HOME key, and then the TRANSMIT key. If' the

message is not recognizable, the MOP will not. act upon it except to

give an INV KBD output message.

The input messages appear below with their required spelling.

Following each message is a brief' description of' its purpose and

ef'f'ect. Messages which may result in the display of' a table have

three letter mnemonics.

4-26

(mix index) AX (program name)

This message is entered in re~ponse to a program name ACCEPT output

message.

? (control statement)

Any control statement allowed on a control card may be entered.

Multiple control statements may be entered on a line by separating

them with semicolons. The last control statement must be an END

statement.·

CL (unit mnemonic)

All exception flags maintained by the MCP for the specified unit

will be reset (cleared). If the specified unit is a pseudo card

reader, the deck it contains will be eliminated.

DIR =
or

NOTE

Clearing of a unit assigned to a job will re­

sult in immediate discontinuation of the job.

DIR (file set specifier)

The disk directory table will be displayed on the unit where the

message is entered. If the form DIR= is used, the entire disk direc-

tory will be displayed.

(mix index) DS

The specified program will be discontinued.

DR (integer) / (interger) / (integer)

The date used by the MCP will be reset to the one specified. The

three integers are month (1 to 12), day (1 to Jl), and year {o to 99),

respectively.

(mix index) ES

The specified job in the schedule will be eliminated.

EXP=
or
EXP (file set specifier)

4-27

All expired disk file labels belonging to the specified set will be

listed.

(mix index) FM (unit mnemonic)

This message must be entered in response to a FM RQD message. The

unit mnemonic specifies the unit to be used for the subject file.

(mix index) FR

This message specifies that the input reel, the reading of which

was just completed, was the final reel of an unlabeled file.

(mix index) IL (unit mnemonic)

This message is entered in response to a NO FILE message, and speci­

fies the unit on which the required input file is located. The file

may be either labeled or unlabeled.

(mix index) JOB

The Job Table for the specified job will be displayed on the unit

where this message is entered.

LD DK
or
LT MT

The LDCNTRL/DISK Program will search for a tape or card file with a

lile label of CONTROL/DECK. If found, the file will be placed on

disk as a pseudo card deck for DK, or on magnetic tape for MT.

MIX
or
MIX SC (integer)

The MIX table wdll be displayed on the specified display uni~.

If no display unit is specified, the one at which the message is

entered will be assumed.

(mix index) OF

This message may be entered in response to a NO FILE message if the

file is a COBOL optional file. The specified program will then pro­

ceed without it.

4-28

(mix index) OK

The MCP will reactiviate a job which was suspended because of- "the

condition designated by either a DUP LIBRARY, NO USER DISK, NO FILE

ON DISK, or OPTR ST-ED output message.

OL (unit mnemonic)

The Label Table will be displayed on the unit where this message is

entered.

(mix index) OU (output code)

This message may be entered in response to either a LP RQD, LP PET

MT RQD, or PET MT RQD output message. The output code may be emp­

ty, or may contain one of the following two letter codes: LP = line

printer, MT= magnetic tape {printer backup tape), DK= disk {prin­

ter backup disk). The subject line printer file must be produced

on the specified unit. If the output code is empty, either LP or

MT may be used.

PB (unit mnemonic)
or
PB (pbd number)

The printer backup file on the specified unit will be printed. If

a specified tape is not a printer backup tape, the message NOT

PRINTER BACKUP TAPE will be displayed. The pbd number is the int­

eger part of a PED output message.

PCD

The MCP will display the name and first card image of each pseudo

card deck on disk. If there are no pseudo card decks on disk, the

message NO DECKS ON DISK will be displayed.

PER
or
PER (unit type mnemonic)

where:

(unit type mnemonic) ::=(unit mnemonic) I CD I CP I CR

LP I MT I MTX I pp I PR I SP

4-29

The specified peripheral table will be displayed on the unit where

this message is entered. If no unit type is specified, all perip­

heral units will be displayed.

PG (unit mnemonic)

The tape on the specified magnetic tape unit will be purged if the

unit 1s Ready, in Write Status, and not in use.

(mix index) PR = (priority)

The priority of the specified job in the mix or schedule will be

set to (priority).

RD =
or
RD (deck list)

where:

(deck list) ::=(deck number)

(deck number) ::=#(integer)

(deck list), (deck number)

The specified pseudo card decks will be removed from disk. If the

form RD = is used, all pseudo card decks will be removed.

(mix index) RM

This message may be used in response to a DUP LIBRARY output mess­

age. The disk file with the label specified in the DUP LIBRARY

message will be removed.

RN
or
RN (integer)

The integer specifies the number of pseudo card readers to be used.

The number specified at Halt-Load time is zero. If this message

requires that pseudo readers be turned off, they will complete the

handling of pseudo card decks in process, if any, before being

turned off. If no integer is included, the current number of pseudo

card readers will be displayed.

RO -- (see SO)

4-JO

RW (unit mnemonic)

A rewind and lock action will be performed on the file on the spec-

ified magnetic tape unit. If the unit is in use, the action will

be performed upon completion of the operation being performed.

RY (unit mnemonic)

The specified unit will be made ready for use if it is in Remote

status and is not in use.

SCH
or
SCH SC (integer)

The schedule table will be displayed on the specified display unit.

If no display unit is specified, the one at which the message is

entered will be assumed.

so (option specifier)
or
RO (option specifier)
or
TO (option specifier)

The

The

specified option will

options and mnemonics

be set, reset, or displayed respectively.

are to be specified.

SF (decimal number)

where:

(decimal number) ::=(integer) I (decimal fraction)

(integer) (decimal fraction)

(decimal fraction) ::=(integer)

The multiprocessing factor will be set to the decimal number. The

multiprocessing factor is normally 1.00, but may be set to any

number from 0 to 100.

(mix index) ST

The specified job will suspended temporarily.

vated with an OK message.

It may be reacti-

4-31

SV (unit mnemonic)

The specified unit will be made inaccessible as soon as it is not

in use. It may be made accessible with an RY message or a Halt­

Load operation. The message (unit mnemonic) TO BE SAVED or (unit

mnemonic) SAVED will be displayed, as appropriate.

TF

The multiprocessing factor will be displayed {see output messages).

(mix index) TI

The following output message will be displayed:

(mix index) : (processor time) IN FOR (elapsed time)

where processor time is the time used and elapsed time is the time

since the job entered the mix. Both are given in minutes and tenths

of minutes.

TO -- (see so)

TR (integer)

The time will be reset to that specified by the integer which must

be four digits. The first two digits specify the hour (o to 23),

and the last two specify the minute (o to 59).

(mix index)UL(unit mnemonic)

This message may be used in response to a NO FILE mes·sage in order

to designate the unit on which an unlabeled file is located. The

subject file may be either labeled or unlabeled. All records inclu­

ding the label·, if any, will be read as data. (This message differs

from the IL message in that with the IL message the label is not

read as DATA.)

WD

The MCP will display the date currently being used by the system.

The date is given in the format MM/DD/YY.

4-32

WT

The MCP will display the time of day at the time the message was

entered. The time is given in hours and minutes based on a 2.4

hour clock.

(mix index) XS

The specified job in the schedule will be entered into the mix re­

gardless of how full the mix is, and how inefficiently it will run.

SEPARATELY COMPILED PROCEDURES.

BINDING.

The B 6500 compilers are designed to allow separate compilation

of program units, where a program unit is a logical subdivision of

a program such as a FORTRAN subroutine or an ALGOL procedure. A

program is a collection of any number of program units. For a

program to function, it is necessary that its program units be tied

together. This tieing together is called binding and is performed

by the binder on object code files. The binding of code files can

occur in three different ways:

a. Requesting a compiler to bind external program units at

compile time.

b. Explicitly requesting the binder to bind two or more com­

piled program units.

c. Implicit binding at run-time (presence-bit binding).

COMPILE-TIME BINDING. This method of binding can be used when

compiling a program unit that calls upon, or is called by, a prev­

vously compiled program unit. .To illustrate this type of binding,

assume that there resides in the library the object code file Y/A

for a FORTRAN source subroutine named ALPHA. A FORTRAN main prog­

ram that calls ALPHA is to be compiled to library. At this time,

the main program may be compiled to library with or without binding

a subroutine for ALPHA.

4-33

If compile-time binding is desired, compiler control cards would

specify the object code file, Y/A for example, to be used for

subroutine ALPHA. After successful compilation, the binder will

bind the two program units forming one complete program. The file

Y/A still remains in the library and is available to be bound with

other program units. If compile-time binding is not performed, the

main program will be compiled to library with the reference to

subroutine ALPHA marked as unbound.

EXPLICIT BINDING. The binder program can be initiated by instruct­

ing the MCP to do so with the proper MCP control information. Data

submitted to the binder will direct it to perform the binding op­

eration on the specified code filer. For example, assume that the.

main program unit in the previous example has been compiled to

library without binding its subprogram. The main program's code

file was compiled to the library using the identific.ation X/MAIN.

The main program calls on subroutine ALPHA which is on disk as Y/A.

The binder is executed to bind X/MAIN with Y/A for ALPHA. The re­

sult is a complete program capable of being execute~. Both program

units are still available on the disk to be bound to other separate­

ly compiled program units. Improper data to the binder, such as a

file being specified which is not object code or a file being spec­

ified which is not on the disk, will yield an error message.

EXECUTION-TIME BINDING. The third method of binding will occur if

a program is submitted for execution with one or more of its separ­

ately compiled program units unbound. When the program attempts to

call the unbound program units, the MCP will perform automatic run­

time binding. This method of binding does not generate permanent

binding of program units. However, once a program unit is called

and bound, it remains bound until the completion of this execution.

When the execution terminates, no bound version of the complete

program will remain on disk. Only the unbound program units that

existed before the execution are retained.

4-34

Execution-time binding occurs when a process references a separate­

ly compiled program unit which has not been bound to the program.

Since program unit object code files on the disk are referenced by

their disk library file names, the program unit names may be label-

equated to their corresponding object code file name. If no label-

equation action is specified, all but the last part of the main

program file name becomes a library specifier to be used in locating

object code files by default.

For the following example, assume that:

a. The main program, X/MAIN, has been compiled with three

program units (ALPHA, BETA, and GAMMA) specified as exter­

nally compiled.

b. BETA is label-equated to BETA/GREEK.

c. ALPHA and GAMMA are not label equated to a file specifier.

d. An object code file named X/ALPHA exists on disk.

e. No object code file named X/GAMMA exists on disk.

The first execution of a reference to BETA will cause execution­

time binding of BETA/GREEK to the program X/MAIN. Then BETA (BETA/

GREEK) is entered and execution is continued.

The execution of a reference to ALPHA will cause the library direc­

tory X to be searched for X/ALPHA. When X/ALPHA is found, the code

file is bound to the program X/MAIN, entry to ALPHA occurs, and

execution is continued. Further executions of references to ALPHA

or BETA cause normal procedure of suoroutine entry action, provided

that the level at which ALPHA and BETA are declared is not exited.

Finally, the execution of X/MAIN is completed and the MCP performs

its normal End-of-Job termination functions. Note that even though

the object code file for GAMMA did not even exist in the system,

4-J5

the program X/MAIN was still executable. If the program unit GAMMA

has been accessed, a system message notifying the operator of the

NO PROGRAM ROUTINE condition would have been generated.

Execution-time binding is less efficient than compile-time or exp­

licit binding and, consequently, should not be the normal mode of

operation on frequently run programs.

DISK LIBRARY.

DISK FILE STRUCTURE.

Each disk address references a disk segment which is an area of

disk containing room for JO words of information. A disk file con­

sists of a file header and a number of areas which are not necess­

arily contiguous with each other. Each disk area is an uninterrup­

ted sequence of segments, and all of the areas for a given file

have the same size. A file header is an uninterrupted sequence of

disk segments of variable length depending upon the number of areas

used by the file. The header contains various information~ as

given below:

4-J6

a. The interlock field is used to solve disputes which may

arise in accessing the file. It is set or checked when­

ever a requestor attempts to access the file.

b. The disk address field of the file header contains a zero

if there are no current users of the file. If there are

users, then a copy of the header resides in main memory and

the address field of the file header points to the copy.

c. The vulume serial number contains either the vulume serial

number of the library tape containing the latest copy of

the file, or the disk address of the area if it· is on the

disk.

d. The update code indicates whether or not this file has been

altered since it was loaded onto disk.

e. The open count indicates the number of users currently

accessing this file.

f. The file type indicates whether the file contains data,

object program, object subroutine, etc.

g. The security code defines the class of users for which

this file may be accessed.

h. The data format specifies the structure of the data with­

in the file. A user, 'if he specifies a format, is not

allowed access to the file if his format is incompatible

with this format. If the user's format is compatible,

or if the user does not specify a format, he is allowed

access. The MCP will automatically unblock the data

into records as required.

i. NUMROWS is the current number of disk areas in use by

the file.

j. AREASIZE is the number of logical records per area.

k. EOF count is the relative number of the last logical

record in the file. The count is -1 when the file is

empty.

1. SAVEFACTOR is the number of days the file is to be

saved on disk from the· date of last access.

m. CREATION DATE is the date on which the file was created.

n. LAST ACCESS DATE is the date on which the file was last

used. The MCP may use the information in this field to

automatically select a file, or set of files, to be

dumped to a library tape in the event that an overlay

of disk files is required.

4-37

o. Disk residence time is used by the log routine to

determine how much disk a file used, and how long it

was used. The date is entered in the system log and

is available to the user for accounting purposes.

p. The area address fields are a set of fields which contain

the initial disk address of each area in use by the file.

If an area is not allocated, the corresponding address

field will contain a zero.

The records in the file are addressed relative to the beginning

of the file, where 0 is the first record and n is the last record

in the file. Assuming that there are 1000 records per area and

record 2345 is requested, the disk area required is area number

2 (2345 divided by 1000). Know~ng the disk area number, the

initial disk address of this area is obtained from the appropri­

ate address field. The disk address of the segment containing

the beginning of the record is then computed by adding the area

init~al address to (2345 modulo lOOO)xK, where K= (the number of

words per logical record +29) divided by JO), the number of seg­

ments required for a single record.

DISK DIRECTORY.

All files on the B 6500 System are referred to by an actual file

name or label. The actual file name is a sequence of identifiers

separated by a /. Each identifier may be of arbitrary length,

but if the identifier is longer than ~7 characters, only the first

17 will be used. Any number of identifiers may be used to con­

struct a file name.

Correspondingly, the disk directory is really a collection of

files organized as a tree structure. Such a file will be re-

ferred to as a directory. The directory at the origin of the

tree structure will be referred to as the master directory. The

directory body is composed of records which are 90 words (three

segments) long. Each record contains a list of entries and ends

4-38

with a link to another record in the same directory. Each entry

in a given record has several parts which are as follows:

a. The identifier part contains an identifier which is 17

characters in length.

b. The address part contains the address 'Of the header of

a file which may or may not be another directory.

c. The file type part indicates the nature of the file to

which the address part points.

d. The volume number is used to specify which tape is needed

if the file has been dumped to tape.

In order to reference a disk file by means of the actual file

name, each identifier is used to find a directory which is reached

through the preceding identifiers. A directory header contains

the information as to how the directory is to be indexed. The

main directory will be indexed by scrambling the identifier.

Other directories will be indexed or searched, depending on the

size of the directory at that level.

If a directory is scrambled, the directory record will be indexed

and then searched for a matching identifier.

If the end of the record is found, the link indicat~s the next

record to be searched. If a match is found, the address part of

the entry will specify the location of the file which is to be

searched next. If this file is a directory, then another label

is expected. If, however, the file is not a directory file, the

location is the disk address of the header of the file being

referenced.

PROCESS SCHEDULING ALGORITHM.

The B 6500 MCP incorporates a dynamic scheduling algorithm. A

programmer-defined priority may be assigµed to any job that is to

4-39

be executed by the system. If no priority is specified, a default

priority value will be assigned by the M __ CP. When a job is first

introduced into the system, an entry for that job is made in a

queue called the SHEETQUE by the MCP control card routine. After

the control card routine completes its tasks, the entry is moved

from the SHEETQUE to a queue called the READYQ.

The READYQ is divided into two parts, an active part and a passive

part. At the time that the job is moved from the SHEETQUE to the

READYQ, the resources that are required for efficient execution of

the job are checked against the resources that are avilable to

the system and are not currently in use. If sufficient resources

are not currently available, then the job is placed in the passive

part of the READYQ and temporarily assigned a priority of zero.

If sufficient resources are currently available, then the job is

placed in the active part of the READYQ.

The active and passive parts of the READYQ are ordered according

to priority. The calculation of the priorities is performed in a

well isolated section of the MCP. Thus, the user may easily modify

the priority algorithms that are supplied for the active and pas­

sive parts of the READYQ to suit his own needs.

A typical scheduling a.lgorithm that would be satisfactory for both

the active and passive parts of the READYQ may be described as

follows.

A default value of approximately 25 jobs (mm) in the active por­

tion of the READYQ is assumed by the MCP. The value mm may be

changed at each installation with an appropriate message to the

MCP. The value for mm may be viewed by the MCP as the maximum

number of jobs that it will allow in the active portion of the

READYQ at any one time. If the MCP detects that the system is

being overloaded, either by noting an excessive number of over­

lays or some other undesirable condition, the MCP may reduce the

v·alue of' mm.

4-40

When an interrupt occurs, the MCP compares the priority of the job

that was running at the time of the interrupt with the priority

of the job that was at the top of the READYQ. If the job that

was running at the time of the interrupt has a priority whfch-_is

greater than or equal to the job at the top of the READYQ, then

the MCP returns to the job that was running at ·the time of the

interrupt. If the priority of the job at the top of the READYQ

is greater than the priority of the job that was running at the

time of the interrupt, then the MCP will insert the job that was

running at the time of the interrupt into the proper section of

the READYQ. It then removes the job that was at the top of the

READYQ and proceeds to execute it.

The active portion of the READYQ is periodically rearranged accord­

ing to a priority algorithm. A default rearrange factor causes the

active portion of the READYQ to be rearranged approximately once

every second. Each installation may override this default with

a message to the MCP stating that the queue is to be rearranged

once every n milliseconds, or once every n interrupts.

Only jobs that are actually ready to run appear in the READYQ.

When a job is waiting for some event to happen, such as I/O buffer

to be filled, it will not be entered in the READYQ. It will be

entered into some other queue in the system. When the event occurs

upon which the job was waiting, the job will be moved from that

queue to the READYQ. When a job in the active portion of the

READYQ terminates, the MCP normally rearranges the passive por­

tion according to a priority algorithm and moves the job at the

top of the passive portion to the bottom of the active portion.

Priority for the active and passive parts could be determined by

the formula shown in figure 4-1.

The first term in the priority equation is AlxD. This priority

equation is composed of the summation of six coefficients and

eight different factors. The first of these factors is the

4-41

MM ACTIVE

PASSIVE

PRIORITY • Al x D D-DECLARED PRIORITY

+ A2 x TR TR - TIME IN READY QUEUE

+ A3 x TE TE - ELAPSED TIME

+ A4 x TW/(TP+I) TP - PROCESSOR TIME
TW - TOTAL WAIT TIME (TE - TP)

+ A5 x c C - CORE USAGE

+ A6 x 1/(TT -CT) TT - TARGET TIME
CT - CURRENT TIME

Figure 4-1. B 6500 Ready to Run Queue

priority declared (D) by the user, thus giving the user control

over the scheduling algorithm. The second term in the equation in­

volves the TR factor. It is a function of the time since the most

recent entry was made. This factor may be included to ensure that

a job does not become permanently entrenched at the bottom of the

READYQ.

The third term in the equation is the TE factor. It is the time

elapsed since the job was first entered into the passive part.

In an effort to decrease turn around time, this factor may be in­

cluded so that the longer the job has been in the system the

higher its priority will become.

The fourth factor in the equation is TW. TW is the total wait

time which is the total amount of time this job has spent waiting

in some queue in the system. This factor may be included to ensure

that each entry progresses to the top of the READYQ at some point

in time.

4-42

The fifth factor in the equation is TP. This represents the

total amount of processor time that has been assigned to this job.

The priority algorithm may include this factor to ensure that a

processor-bound job does not utilize all of the available processor

time.

The sixth factor in the equation is C. This represents the amount

of core storage currently in use. Initially, C is produced as an

estimate by the compilers. This core estimate is based on the

total segment size, the size of the segment dictionary, the number

of buffers, the size of the buffers, and the amount of array. stor­

age required. This estimate may be changed by a control card.

After the job has moved from the pass~ve to the active portion of

the READYQ, the C factor is changed by the MCP to indicate the

amount of core that the job is actually using. It is generally

felt that smaller jobs should be given top priority so that they

will clear the system. Thus, the coefficient AS will have a de­

fault value which is negative. A default is provided for each of

the coefficients Al through A6. Any of these coefficients may be

changed at the user's installation through the use of a suitable

message to the MCP. Any one of the factors could be eliminated

from consideration by setting the appropriate coefficient to zero.

The next factor in this equation is the difference between a target

time and the current time. Thus, priority for a job could in­

crease exponentially as the target time is approached.

This discussion is not intended to dictate the scheduling algorithm

that one may select for an installation. It is only an example of

the type of algorithm that may be incorporated. All of the factors

discussed here, and many more, are maintained by the MCP for each

job. This information is necessary to perform functions such as

logging and storage allocation, so no penalty is being paid for

the benefit of the scheduling algorithm. The user is free to use

or ignore whichever factors he chooses.

4-43

MULTIPROGRAMMING CONSIDERATIONS.

Multiprocessing on the B 6500 System consists of having more thari

one job or "process" running at a given time. This is accomplished

exclusively by multiprogramming (interleaved execution) on a

single processor system and by a combination of multiprogramming

and parallel processing on a multiple processor system.

MULTIPROGRAMMING.

Multiprogramming operation on a computer system requires, ;the

ability to interleav~ execution of processes. This mean~ that a

processor is not exclusively allocated to a process for the entire

execution of that process. Multiprogramming on the B 6500 System

is implemented by queuing processes in the READYQ Queue, and allo­

cating (or reallocating) processors to the processes ~ith the

highest priority.

Since a processor is not allocated exclusively to a process, the

process must contain all of the information necessary to describe

its status when it is not being executed by a processor. This is

accomplished by creating a separate "stack" for each process that

is to be executed.

A process may have one of the three following states:

a. Active.

b. Inactive.

c. Suspe"nded.

A process is active when it is being executed by a processor. An

active process may be made inactive by the MCP if a higher priority

process needs a processor. An active process may cause itself to

be suspended by executing a WAIT or HOLD, or by requesting an I/O

operation which results in a WAIT on the I/O complete event.

If an active process is made inactive by the MCP, it is placed in

the READYQ. The READYQ contains only those processes that are

"ready to run" and are waiting only for a processor.

4-44

If an active process suspends itself, the subsequent action of

the MCP depends upon the types of queues with which the process

is associated. If the suspended process is linked to an event

wait queue, the process will get put into the READYQ when that

event is caused.

If a process is linked into a software interrupt queue (event

interrupt queue), the process will be moved to the READYQ upon

the occurance of the event if it is suspended, or it will be in­

terrupted if it is active.

If a suspended process is not linked into an event queue or the

READYQ, it can not be reactivated. For example, when a process is

terminated, the process is suspended, any queue entries are de­

linked, and the process is linked into the terminate queue.

PARALLEL PROCESSING.

Parallel processing occurs on B 6_500 Systems which have more than

one processor. The -fact that multiple processors are available

does not preclude the multiprogramming of processes. It merely

means that processes may be executed simultaneously to increase

the throughput of the system.

The structure of the· MCP is such that processors are considered

a resource to be allocated like other system resources. Therefore,

the only additional requirements for parallel processing are the

inclusion of some additional MCP LOCK variables to prevent simul­

taneous execution of exclusive MCP functions. For instance, it

would not be desirable to have two processors simultaneously

trying to make an absent program segment present in memory. This

circumstance is prevented by an MCP LOCK which is set and tested

by the presence bit procedure. The first processor entering

presence bit locks all others out until it is safe for them to

enter the procedure.

THE STRUCTURE OF OBJECT PROGRAMS.

Object programs reside on the disk where they are referenced as

4-45

code files by the MCP through the disk directory. The reference

will be the result of either an EXECUTE request or the GO part

of a COMPILE AND GO. In either case, the code file will have

been constructed by a compiler or the binder program.

The main function of a compiler is to convert symbolic source

statements into object machine language code. However, efficient

utilization of memory in a multiprogramming environment requires

that object code files be segmented so that during execution of

an object program the only portion of the code file resident in

core is that segment currently being processed. Segmentation of

the object code file is an additional function of the compiler.

The length of a program segment is variable, depending on the

program logic and language used. ALGOL program segmentation is

based on the block structure of the source program, where each

block is compiled into a code segment. COBOL programs are seg­

mented by section level, unless specified otherwise by the pro­

grammer. FORTRAN program segmentation is by program unit (sub­

routine or main program) level and, if necessary, these units

are further segmented to optimum segment size. Segmentation of

FORTRAN programs may also be effected by programmer option.

The code file consists of a number of variable-length records,

each record being some multiple of 30-word disk segments. The

first record in the file is one disk segment in length. It con­

tains linkage and object program information for use by the MCP

at job initiation. Following this record is a group of logical

records where each is a program segment, for all but the outer­

most segment of the program. Additional logical records contain

code related to formats, lists, and other compiler-generated

data. Also included is compile time information for program

input/output files.

The object code for the programs outer-most segment follows next.

Since compilation is in most cases one pass, the outer-most seg­

ment, which encloses the entire program, cannot be written onto

4-46

disk until compilation is completed.

The final logical record in the code file contains a directory

referencing all previously written logical records. Each entry

in this record is one word in length and contains the relative

record address and the size (in words) of the logical record it

references. These words are defined as segment descriptors.

When the logical record of segment descriptors is read into core

by the MCP at job initiation time, it is referred to as the seg-

ment dictionary. In conjunction with display register Dl, the

segment dictionary becomes the basis for accessing the object code

segments within the code file. The code segments are read into

core by the MCP as a result of presence bit interrupts incurred

by accessing the segment descriptor for the code segment. The

frequency and order in which the code segments are processed is

determined by the dynamic flow of the object program.

RE-ENTRANT CODE.

Re-entrant code is common object code which may be accessed by

several programs in a multi-processing environment. Implementa­

tion of this concept requires that object code must not be modified

during its execution. In the B 6500 System, this requirement is

met by separating working storage and object code, and by program­

ming in higher level languages which do not generate self-modifying

code.

Working storage is assigned a separate memory area as a push-down

stack which is unique for each process in the mix. These stacks

contain temporary results, simple variable values, data array

descriptors, and program control information. Object code seg­

ments are referenced by segment descriptors located in a segment

dictionary.

In addition to software protection of object code, the B 6500

System provides hardware code protection• Object code words are

also memory protected by the tag bits asso.ciated with each word

4-47

in memory. Any attempt to programmatically modify code words

in memory causes a memory protection interrupt which results in

termination of the process attempting to modify the code. Since

object code segments are referenced through a segment dictionary,

the code segments for all programs accessing a common code "file

are made re-entrant by linking these programs to one common seg­

ment dictionary. This also ensures that only one copy of a re­

quired code segment will be present in memory.

Identification of re-entrant code users is effected by creating a

word in the base of a segment dictionary which points to a link

word in the working stack of the first associated process. This

link word will, in turn, point to a link word in the working stack

of a second concurrent or parallel common process, and so on.

The stack pointer word in the segment dictionary also contains a

count of current and latent users of a common segment dictionary.

The current user count defines the number of process stacks linked

together through a common segment dictionary. The latent user

count defines the number of processes which have accessed the

segment dictionary, but which are not currently using it. These

processes have not terminated and may return to the current user

list. When all users have terminated, the memory space for the

segment dictionary and all remaining code segments is de-allocated.

This re-entrant capability is also extended to include data which

does not chan~e in value such as literal strings and read-on1y

data. This is accomplished by placing their associated descriptors

in the segment dictionary.

COMPILER/MCP INTERFACE.

A compiler is a special purpose computer program which accepts, as

input, source statements in the language for which the compiler was

written. The output of a compiler is a file on disk consisting of

object code.

4-48

A compilation followed by immediate execution of the resultant

object code is referred to as a Compile and Go. Implementation

of this type of operation requires certain functions to be per­

formed by the compiler and the MCP which involves:

a. Recognition of a compiler by the MCP.

b. Communication between the compiler and the MCP.

c. Construction of a standard object code file by the com­

piler.

A compile card is a request to the MCP to schedule a particular

compiler for execution and provide special handling for this pro­

gram. The schedule entry for this execution will also reflect

the option associated with the compilation (Compile and Go, Com­

pile for Syntax, Compile to Library). The schedule entry for a

Compile and Go execution is appended with a skeleton schedule

representing the GO part.

A word· in the working stack of the compiler is used for communica­

tion between the compiler and MCP. This stack location corresponds

to the first symbolic declaration in the source language or the

compiler, thus this common word is known to both the compiler and

the MCP. The compile code (GO, SYNTAX, LIBRARY) is stored in this

word by the MCP as a compiler enters the job mix. This code value

may direct the compiler to suppress code generation if the compil-

ation is for syntax only. During compilation of the source lan-

guage, the common word also accumulates the count of syntax errors.

If the source file contains no syntax errors and the compilation

is not for syntax only, the compiler writes the object code to

disk and closes this file with lock, through the MCP. The MCP

recognizes the calling program as a compiler and, if the code

value in the common word specified GO, the object code file header

is written to scratch disk and this disk address is stored in the

common word. Otherwise, the code value specified LIBRARY and the

file header is entered in the disk directory, making the code file

permanent.

4-49

When compilation terminates, the MCP again recognizes that the

calling program was a compiler and, if the common word specified

GO, the skeleton entry is updated from the first record of the

code file and entered into the schedule. If the common word value

indicates the occurrence of syntax errors, the skeleton schedule

entry. is discarded, thus suppressing the GO part.

In addition to generating the object code file, the compilers

are responsible for supplying scheduling information to the MCP.

This information, in the first record of the code file, includes

the core estimate, stack size, and pointers into the code file

for locating the segment dictionary, the file parameter block,

and the first executable code segment. A compilation to the

library may require the MCP to modify this information if program

parameter cards had been included with the compile request. These

changes will be in effect for all subsequent executions of the

object code file.

INTRINSIC FUNCTION.

Historically, the programmer was responsible for writing an entire

program, including those parts which performed input/output opera­

tions and arithmetic function calculations. Later, as it became

apparent that a large amount of programming effort was being spent

writing similar functions for different programs, one set of stan­

dard routines to perform these operations were written for all

users. The required routines were included in each program and

became a part of the program object code file.

In a multiprocessing system, the inclusion of these common func­

tions in each program causes multiple copies of the functions to

be present in main memory. In order to make more effective use

of main memory, the code for these routines is included in the

operating system and is accessible, as intrinsic functions, to

all user programs.

Since all programs in the B 6500 system are written in high-level

languages, the use of intrinsic functions is implemented by the

compilers.

4-50

Each compiler recognizes the names of those intrinsics that are

allowable in each language. An intrinsic name which occurs in a

source language statement is processed by a compiler as a pre-

compiled procedure. Each compiler is responsible for verifying

that actual parameters agree with the formal parameters specified

for each intrinsic.

For each intrinsic required by the object program, the compiler

emits a Make Program Control Word (MPCW) syllable into the object

program outer block code segment. When the object program is run,

each MPCW syllable is executed as part of the code which initial­

izes the programs D[2] stack. Execution of the MPCW instruction

causes a program control word (PCW) to be generated. This PCW is

stored in a stack location within the D[2] addressing environment

which makes it addressable from any level within the program.

The PCW for an intrinsic contains a lexicographic level field of

zero which refers to the base of the D[o] (MCP) stack. The index

field locates the segment descriptor within the n[o] stack. This

descriptor contains the memory/disk address for the required in­

trinsic code. Since the D[o] stack is global to the total address­

ing environment, any segment descriptor in this stack is accessible

from any program which references a PCW containing a lexicographic

level field of zero. Because there is a single segment descriptor

in the D[o] stack for each intrinsic, only one copy of the object

code is present in memory. Thus the intrinsics are re-entrant.

The intrinsics are written in an ALGOL-like language and compiled

as a set of disjoint procedures into a single code file. This

file is bound into the MCP code file by the binder program. As

a result of the binding process, the intrinsics are included as

procedures in the MCP, and therefore are accessible through the

n[o] stack.

INTERRUPTS.

The interrupt handling mechanism of the MCP deals with two classes

4-51

of interrupts, hardware interrupts and software interrupts. The

hardware interrupts are generated automatically by the B 6500

System and are handled by the MCP interrupt procedure. Software

interrupts are programmatically defined for use by the MCP and

object program processes. Software interrupts allow processes to

communicate with each other and with the MCP·

The B 6500 processor interrupt system is the primary interface

between the MCP and the hardware. Because of the importance of

this interface, the relevant features of the B 6500 processor will

be described along with the discussion of interrupt handiing.

An interrupt is a means of discontinuing a process subject to the

occurrence of certain conditions. In order to fully understand the

operation of B 6500 interrupts, an understanding of the concept of

control state is required.

A given processor may operate in one of two distinct states: norm­

al state or control state. The primary difference between normal

state and control state is that external interrupts are disabled

while a processor is in control state. Also, there are certain

operators, such as some forms of Scan Out (SCNO) which can only

be executed by a processor in control state.

A processor in normal state may enter control state by executing

a Disable External Interrupts (DEXI) instruction, or by entering

or exiting to a control state procedure. Similarly, a processor

in control state may enter normal state by either executing an

Enable External Interrupts (EEXI) instruction, or by entering or

exiting to a normal state procedure.

It should be noted that while in control state, a processor can

selectively mask out any or all I/O multiplexor (MPX) interrupts

before executing an EEXI. The result is a processor in normal

state which does not receive the masked MPX interrupts.

4-52

HARDWARE INTERRUPTS.

When an interrupt condition occurs in a processor, the processor

enters control state, marks the stack, and inserts three words in

the top of the stack. These three words are the Indirect Refer­

ence Word (IRW) pointing to D[O]+J, followed by two interrupt para­

meters, Pl and P2, which contain information indicating the nature

of the interrupt condition. D[0]+3 should contain a Program

Control Word (PCW) pointing to the MCP hardware interrupt proced­

ure. However, an IRW or IRW chain pointing to a PCW is a legiti­

mate condition. At this point·, the processor enters the procedure

pointed to by the PCW passing Pl and P2 as parameters. When the

processor enters the MCP hardware interrupt procedure, it also

enters control state. This is accomplished by generating the

interrupt procedure PCW with the control bit on.

Upon entry to the hardware interrupt procedure, the parameter Pl

is analyzed to determine the type of interrupt which occurred.

For some interrupts, such as presence bit interrupts, P2 contains

additional information to be used by the interrupt procedure.

The action to be taken for each interrupt is described in the

following paragraphs. The description covers the following three

classes of hardware interrupts:

a. Syllable dependent interrupts.

b. Alarm interrupts.

c. External interrupts.

The stack structure prior to calling the interrupt procedure is

shown in figure 4-2.

After entering the interrupt procedure, the program base register

is pointing at the interrupt procedure, PIR and PSR are pointing

at the interrupt procedure entry point, and the Return Control Word

for the interrupt procedure's exit is pointing back to the object

programs code as shown in figure 4-J.

4-53

P2
Pl

IRW - 0 [o]+3 ---,
INTERRUPTED

OBJECT

PROGRAM

PIR,PSR

,..i...
... ~

INTERRUPT 1------.=.::=
HANDLING :

PROCEDURE I
I
I
~--

MKS

so

PCW

BPR

;.-
·.,-

-- .J 0[0]+3

-- o [o]

Figure 4-2. Stack Prior to Interrupt Procedure Entry

INTERRUPT

HANDLING

PROCEDURE
,IJ

Pl

P2

RCW

MKS

INTERRUPTED

__.., OBJECT ...
PROGRAM

'4-

Figure 4-J. Stack Following Interrupt Procedure Entry

SYLLABLE DEPENDENT INTERRUPTS.

These interrupts are detected by the processor operator logic.

ARITHMETIC ERROR INTERRUPTS. This group includes the divide-by-

zero, exponent overflow and underflow, invalid index, and integer

overflow interrupts. Termination of the program will occur unless

programmatic control of the interrupt is specified.

PRESENCE-BIT. This interrupt occurs when the processor accesses

a data descriptor or segment descriptor wi·th the presence-bit off,

indicating that whatever the descriptor references is not present

in memory. Upon detecting a presence bit interrupt, the presence

bit procedure PRESENCEBIT is called by the interrupt procedure.

It is clearly not desirable that two processes attempt to make the

same segment or data present since this would ultimately require

that the descriptor point to more than one location in memory.

Consequently, PRESENCEBIT is equipped with a lock which assures

that only one process will be executing it at a time.

4-54

However, this does not entirely solve the problem. In order to

make the absent object present, PRESENCEBIT must initiate at least

one I/O. While it is waiting for the I/O to be completed, PRES­

ENCEBIT is not being executed. Therefore, it is desirable for

PRESENCEBIT to "unlock" the presence bit lock while waiting for

the I/O. However, doing this would make it possible for another

process to attempt to make the same object present. This diffi­

culty is overcome by putting a separate "lock" on the descriptor.

Any process now attempting to make present the object pointed to

by this descriptor will know that another process is already making

it present and will wait for the descriptor to be "unlocked" before

executing PRESENCEBIT.

If PRESENCEBIT finds that the original descriptor referenced by

some copy is in fact present, it simply makes the copy present

by inserting the memory address in the address field and turning

on the presence bit.

MEMORY PROTECT. This interrupt occurs when the processor attempts

to write in a memory location that currently has the memory protect

bit of the tag field on. This bit indicates to the hardware that

this word does not want to be written on. This interrupt results

in a termination of the program.

BOTTOM OF STACK. This interrupt indicates that the processor tried

to exit from the bottom of the stack. It.results in a termination

of the program.

SEQUENCE ERROR. This interrupt occurs when the processor receives

data or instructions out of sequence. It results in a termination

of the program.

SEGMENTED ARRAY. The occurrence of this interrupt indicates that

the MCP has segmented an array row when storing it and has just

attempted to index beyond the end of the current segment. The

interrupt procedure must now replace the current segment by the

proper segment, if one exists, and continue executing the process.

4-55

PROGRAMMED OPERATOR. This interrupt indicates that the current or

active stack has attempted to execute an operator code which is not

currently assigned. It allows the MCP to simulate the operator

programmatically.

INVALID OPERATOR. This interrupt occurs when the processor at­

tempts to execute a valid operator on data which is invalid for

that operator. It results in termination of the program.

ALARM INTERRUPTS.

These interrupt conditions are not normally anticipated by the pro­

cessor operator logic. They serve to inform the processor of some

detrimental change in environment and can result from hardware fail­

ure as well as programming errors. They all result in termination

of the program.

LOOP. This interrupt occurs when the processor has spent two

seconds in the execution of one operator.

MEMORY PARITY. This interrupt indicates a faulty Read from Memorye

MPX PARITY. This interrupt indicates faulty reception of data from

a multiplexor.

STACK UNDERFLOW. This interrupt occurs when the processor tries to

delete through the base of the current stack.

INVALID ADDRESS. This interrupt indicates that the processo~ at­

tempted to address a memory address which is not available to the

system. The memory module may not exist or it may be inope~ative.

INVALID PROGRAM WORD. This interrupt indicated that the processor

has encountered a word which is supposed to be a program instruc­

tion word, but it isn't.

EXTERNAL INTERRUPTS.

These interrupt conditions are like the alarm interrupts in that

they are not anticipated by the operator logic. However, they do

not normally require immediate action and do not necessarily result

in termination of the program. As mentioned above, none of the

external interrupts can interrupt a processor in control state.
4-56

INTERVAL TIMER. This interrupt occurs at regular· intervals of

time when the interval.timer for the processor has been set. If

the timer is reset, it will no l6nger occur. It is intended for

the use of the MCP in distributing MPX. interrupts evenly among the

processors.

STACK OVERFLOW. This interrupt occurs when the process stack has

exceeded the estimated limitations. At present, this results in

a termination of the program. In the future, however, it is ex­

pected that the hardware interrupt procedure will find more space

for the stack, link things together, and restart the program. It

will also have to modify the program estimate of stack size, and

should inform the programmer that the stack estimate was too small.

,,/

PROCESSOR TO PROCESSOR. This interrupt occurs when one processor

executes the HEYU operator which enables one processor to inter-
/

vupt all other processors except those running in control state.

If a processor is in control state, the interrupt is held in abey­

ance until it resumes normal state processing.

MPX. This interrupt group includes I/O Finish, MLCl, MLC2, MLCJ,

MLC4, GCA, and external MPX interrupts. These interrupts occur

when a .multiplexor wishes to communicat.e wi~h a processor. They

are handled in various ways depending on the specific type.

When an I/O Finish interrupt occurs, the hardware interrupt pro­

cedure calls the I/b Finish procedure which checks for errors

which may have occurred. If no error is found, I/O finish initi­

ates a new I/O. There are two queue structures related to the I/O

operations: the 'WAITCHANNELQUES, one for each I/O channel, and

the UNITQUES, one for each unit. When the I/O finish procedure

has decided that it should initiate another I/O, it first checks

the WAITCHANNELQUE £or the channel· it has just finished with and

initiates .the first I/O request in that queue. It then checks the

UNITQUE for the unit it just used, removes the .top entry from that

queue, and inserts it in the WAITCHANNELQUE.

4-57

In order to prevent confusion, the WAITCHANNELQUE is not allowed

to contain more than one I/O request for any given unit. If an

I/O request occurs for a unit that is already in a WAITCHANNELQUE

(for any channel), then the request is entered in the appropriate

UNITQUE.

The Multiline Control (MLC) interrupts indicate that something

like a data communications system wishes to communicate with the

processor through a word interface of the multiplexor. The way

this interrupt is handled depends on the nature of the device

which is attempting to communicate with the processor.

GCA interrupts indicate that some sort of special control device

(an analog device, a plotter, or some machine that the computer

is controlling) wishes to communicate with the processor. Since

there is only one GCA interrupt, it is clear that only one such

device can be handled at a time. It is also evident that the

handling of this interrupt is dependent on the nature of the de­

vice in.question.

When a multiplexor is attached to the word interface of one of

the system multiplexors, it becomes necessary to handle interrupts

from the "external" multiplexor. This is the function of the ex­

ternal MPX interrupt which indicates that the processor must first

interrogate the external multiplexor to determine the nature of

the MPX interrupt.

SOFTWARE INTERRUPTS AND EVENTS.

Software interrupts allow a process to stop running (thereby re­

leasing the processor) until a specified event occurs, or continue

running and be interrupted if the event occurs. A software inter­

rupt occurs when a process is interrupted by the direct action

of some other process. In the following discussion, the imple­

mentation of this concept will be developed as it relates to the

queues, the stack structure, and the MCP routines that concern

themselves with software interrupts.

4-58

A process can be interrupted if it has an interrupt declaration

within its scope.

Example:

INTERRUPT 12 : ON EVNT, A - A + l;

When ~process enters a block having ~n interrupt declaration, a

Stuffed Indirect Reference Word and a Program Control Word are

placed in the stack. This interrupt declaration must occur within

the scope of its ·associated event declaration, as shown in figure

4-4.

*

EVENT EVNT;

PROCEDURE A;

INTERRUPT :ti: ON EVNT, (STATEMENT);

ENABLE CC I);

PROCEDURE B1

INTERRUPT J:2; ON EVNT, (STATEMENT);

ENABLE (J:-2);.
*HOLDi

E
PROCEDURE C;

WAIT (EVNT);

I PROCEDURE D;

l:_wAIT (EVNT);

[

PROCEDURE E;

CAUSE (EVNT);

Figure 4-4. Interrupt Declaration Example

4-59

Example:

EVENT EVNT;

An event declaration reserves two words in the stack and def'ines

the identif'ier of a quantity which may be used to record an occur­

rence. The stack containing the interrupt declaration is linked

into the EVENT INTERRUPT Queue by the event declaration as shown

in figure 4-.5.

PROCESS
STACK
N0.4

.,,.. .,I"'

..,i, "" M--o[o]
Figure 4-.5. EVENT INTERRUPT Queue, Single Process

If a second process enters a block containing an interrupt declara­

tion for the same event, then its stack is linked into the event

interrupt queue as shown in figure 4-6.

The process in stack number 4 and stack number 2 will continue to

run until the event occurs. When the event is caused, all of the

process in the INTERRUPT Queue for that event are interrupted.

The occurence of an event is invoked with the cause statement.

Example:

CAUSE (EVNT) ;

If a process causes the occurence of an event, the MCP scans the

EVENT INTERRUPT Queue. As the MCP scans the EVENT INTERRUPT Queue,

it will check to see if the interrupt has been enabled.

4-60

PROCESS
STACK
N0.2

t-----1 INTERRUPT
:ti: ON EVNT,

'L_jB-8+4;

~0[2]

PROCESS
STACK
N0.4

NTERRUPT. :I : ON EVNT, A-A+I;

~-DOO
VENT EVNT;

M--D[O]
Figure 4-6. EVENT INTERRUPT Queue, Multiple Process

Example:

ENABLE (I2);

The enabling of an interrupt turns on the software interrupt en­

able bit (bit 46) o~ the Program Control Word of the two-word

interrupt declaration mentioned previously. If an interrupt is

not enabled and the event is caused, no action is taken by the

MCP on that process, and it looks at the next process stack in

the queue.

If interrupts are enabled in the next stack, the MCP makes an

entry in the SOFTWARE INTERRUPT Queue. This queue is ordered

by stack number. If the stack is active, i.e., another processor

is working in the stack, the MCP will interrupt that processor

with a pro9essor to processor interrupt.

\

Next, the MCP forces a transfer of control to the statement re-

lated to the interrupt declaration. Upon completion of this state­

ment, the process will return to its previous point of control

unless a transfer of control is specified in the interrupt state-

ment. In this case, the process will not return the point of

4-61

control before the interrupt, but will transfer control as spec­

.ified in the interrupt statement.

As the MCP scans the EVENT INTERRUPT Queue finding enabled inter­

rupts in inactive stacks, it makes an entry in the SOFTWARE IN­

TERRUPT Queue doing nothing with that stack until it becomes

active. Immediately after making the stack active, the MCP checks

the SOFTWARE INTERRUPT Queue to see if there is an interrupt point-

ing t9 that stack. If an interrupt is found, the MCP forces a

transfer of control to statement referred to by the interrupt de­

claration. Upon completion of the statement, control is trans­

ferred as described previously.

It is possible for a procedure to be entered, get linked into the

EVENT INTERRUPT Queue, and either exit the procedure without en­

abling the interrupt or exit the procedure before the event is

caused. In either case, this stack is delinked from the queue.

Having enabled a software interrupt, it is sometimes desirable to

suspend further processing of the code until an enabled software

interrupt occurs. This action is invoked with the HOLD statement.

Example:

ENABLE (12) ;

HOLD;

When the event is caused and the related interrupt statement ex­

ecuted, control will pass to the statement followin~ the HOLD.

A process can be intentionally suspended with the execution of a

WAIT statement.

Example:

WAIT (EVNT) ;

The parameter of a WAIT statement is an event whose scope includes

the block in which the WAIT resides. Upon execution of WAIT, the

stack of that process is linked to the event declaration following

an EVENT WAIT queue as shown in figure 4-7.

4-62

Stacks are removed from the WAIT queue when another process executes

a CAUSE statement.

Example:

CAUSE (EVNT);

Stacks removed from the WAIT queue are linked into the READY Queue.

The stacks shown in figure 4-7 represent the EVENT INTERRUPT Queue

and the WAIT Queue at a point in time when the procedures are at

a place in their code string indicated by the asterisk (*) as·shown

in figure 4-2. Procedure A is running in process stack number 4,
procedure Bin stack number 2, procedure C in stack number 20,

and procedure D in stack number 7. Both queues are linked to the

event declaration in the D[O] stack.

EVENT INTERRUPT QUEUE

PROCESS
TACK
N0.2

PROCESS
STACK
N0.4

~0[2] ~0[2]
EVENT WAIT QUEUE

PROCESS PROCESS

~~
~0[2]~0[2]

MSCW
TOS W

Figure 4-7. Event Queues

4-63

If the CAUSE statement in procedure E is executed at this point

in time, stacks 20 and 7 are linked into the READY Queue and re­

moved from the WAIT Queue. Pointers to the interrupt statements

in stacks numbers 2 and 4 are entered into the SOFTWARE INTERRUPT

Queue.

FILE CONTROL.

Since the B 6500 compilers allow the use of symbolic files, the

MCP must be able to recognize the physical files present on the

peripheral units and assign the units to ~ symbolic process file.

The file control functions of the MCP consist of recognizing the

existence of a file on a peripheral unit and assigning the peri­

pheral unit to the appropriate process.

FILE RECOGNITION.

There are two types of physical files recognized by the B 6500

System, labeled files and unlabeled files.

Labeled files are those files which contain a label record (or

records) as the first record(s) of a file. Since the label record

contains a file label name, the MCP can recognize the existence of

a labeled file and associate the appropriate peripheral unit with

a symbolic process file.

Unlabeled files, however, must be assigned by the operator at the

time that a process requires access to the file.

The format of ~ile labels for various types of peripheral units
I

are described in the following paragraphs. The physical file

naming system used allows file names to be formed by a sequence

of file identifiers separated by slashes. A file identifier is

delimited by a blank or a slash (/) and may be of any length, but

only the first 17 characters are used if the identifier exceeds

17 characters in length~

The following are examples of file names:

4-64

A

B/C

D/E/F

G/H/I/J

where:

a. A, C, F, and J are file identifiers.

b. B, E, and I are v-0lume identifiers.

c. D, H, and G are file directory identifiers.

The organization of files is dependent on the I/O devices holding

the file, each of which is discussed individually.

CARD FILES.

The format of card files is as follows:

LABEL CARD

(data deck)

END CARD

The format of the label card is:

(i) DATA (file name) . (any comment)

or

(i) DATABCL (file name) . (any comment)

The i represents an invalid character and must be in column 1.

DATA indicates the data deck is punched using the EBCDIC (8 bit)

character set. DATABCL indicates the data deck is punched using

the BCL (6 bit) character set. Except for the invalid character

in column 1, the card is free-field.

Example:

(i) DATA DATACARD

The format of the end card is:

(i) END (any comment)

4-65

PRINTER FILES.

Upon opening a labeled printer file, the operating system will:

a. Skip to the top of the page.

b. Write a header label record(s).

c. Skip to the top of the page.

Upon closing a labeled printer file, the operating system will:

a. Skip to the top of the page.

b. Write a trailer label record.

c. Skip to the top of the page.

Header and trailer label record formats are identical. The format

is:

LABEL (file name) (program name) (comment field)

The comment field from the EXECUTE or COMPILE card used to execute
. '

or compile the program is saved and copied into the printer label.

This aids the computer operator in locating the owne~ of printer

listing. For example, the card EXECUTE MATRIX/INVERT JOHN J. JONES

was used to put in execution a program which generated a printer

file output. The printer label record would look like:

LABEL OUTPUT MATRIX/INVERT . JOHN J. JONES.

CARD PUNCH.

The format of a card deck produced in the card punch is:

LABEL RECORD

(data deck)

LABEL RECORD

The format of the label record is:

LABEL (file name)

-
Example:

LABEL PUNCH/DECK

4-66

PAPER TAPE.

Paper tape files are always considered as unlabeled. For handling

of unlabeled files, see unlabeled tape below.

UNLABELED TAPE FILES.

Unlabeled tape files are those which do not have any way of being

self-identified. The system assumes for input or generates for

output the following data formats:

a. Single file volumes (data) **
b. Multi-file volumes (data) *--------* data **)

where * denotes a tape mark.

The source languages can specify that input and output files are

to be unlabeled. To produce multi-file v~lumes, the source pro­

gram must close with no rewind, then open output with no rewind

for each file on the volume (close with no rewind produces a tape

mark). "When a single file volume or multi-file volume is closed

completely, the system produces the double tape mark at· the end.

When, in the process of creating the file, and when physical End­

of-Tape is encountered, the operating system writes the double tape

mark, rewinds the file, and assigns another tape.

When an unlabeled file is requested for input and no UNIT control

statement has been seen, the operator is notified by a (mix) NO

FILE (file name) message. The operator must mount the file and

enter the (mix) UL (unit designate) message. If a UNIT control

statement was specified, the specified unit will be assigned to

the file. If a single tape mark is ehcountered, the object program

is notified via an End-of-File condition. To read the file follow­

ing a single tape mark, the object code must close with no rewind,

then open input with no rewind. When the operating system en­

counters a double tape mark, it will automatically close the file

and inform the operator via the NO FILE message to load another

reel of the file. (The operating system has no way to determine

if a file is a single or multi-volume file.) In response to the

NO FILE message, the operator can either mount the file and UL it

4-67

in, or enter the message (mix) FR. I£ the FR (£inal or only reel)

is entered, the object code is given an End-0£-File condition.

LABELED TAPE FILES.

The operating system will recognize two labeling conventions £or

tape input £iles, the B 5500 label record and the proposed USASI

Standard Tape Label £or In£ormation Interchange (USASI).

The system will only produce the USASI label £ormat £or labeled

output tapes. The £ormats 0£ the various records 0£ the proposed

USASI label are shown in tables 4-1 through 4-3.

Field

1

2

3

4

5

6

7
8

9
10

4-68

Name

Type

Number

VSN

ACS

VOLN

OPl

RFE

Owner

RFE

LSL

Table 4-1

Volume Header Label Format

Starting
Character

1

4

5

11

12

29

32

38

52
80

Character
Length Description

3 Must be VOL.

1

6

1

17

3

6

14

28

1

Must be 1.

Volume serial number. Used
to indicate physical stor­
age location.

For vulume security. Blank
means unlimited access.

Volume identi£ier.

Reserved £or operat'ing sys­
tem.

Reserved £or expanision.

Identi£ies £ile owner.

Reserved £or expansion.

Always 1.

Field

1

2

3
4

5

6

7

8

9

10

11

Name

Type

Number

FID

Set ID

FSN

FSEQ

GEM

GV

CDATE

EDATE

ACS

12 Block

13

14

15

Count

Record
Count

System ID

RFE

Table 4-2

First File Header Label Format

Starting
Character

1

4

5
22

28

32

36

40
42

48

54

55

61
68

74

Character
Length Description

3 Must be HDR.

1 Must be 1.

17 File name.

6 Last six characters of vul­
ume name.

4

4

4

2

6

6

1

6

7
6

7

File section number. 1 for
first vulume of file, 2 for
second file in vulume, etc.

File sequence number. 1
for first file in vulume, 2
for second file in vulume,
etc.

Generation number. l for
first copy, 2 for second
copy, etc.

Generation version.

Creation date in form
bYYDDD.

Expiration date in form
bYYDDD.

For file security. Blank
means unlimited access.

Always O.

Always O.

Always bB6500

Reserved for expansion.

4-69

Table 4-3

Second File Header Label Format

Starting Character
Field Name Character Length Description

1 Type 1 3 Must be HDR.

2 4 1 Must be 2.

3 RF 5 1 Record format:

F - fixed size records.

D - first four characters
of record are the record
size in decimal.

v - first four characters
of record are the record
size in binary.

u - unknown.

L - links.

I - internal.

F - FORTRAN links.

4 Block
size 6 5 Maximum block size.

5 Record
size 11 5 Maximum record size.

6 Density 16 1 Density:
0 - 200.
2 - 800.
3 - 1600.

7 VSF 17 l 0 - if first volume of file,
else 1.

8 Mode 18 l 0 - alpha (standard), l -
binary (non-standard).

9 OPI 19 32 Reserved for operating sys-
tern.

10 OFS 51 2 Size of system control field
in front of each record.

ll RFE 53 28 Reserved for expansion.

FIRST END-OF-FILE LABEL.

This is identical to the first file header label except that:

4-70

a. Field 1 must be EOF.

b. Field 12 contains the number of blocks of this file on the

volume.

c. Field 13 contains the number of records of this file in

this volume.

SECOND END-OF-FILE LABEL.

This is identical to second file header label except that field 1

must be EOF.

END OF VOLUME LABEL.

This is identical to the first End-of-File label except field 1

must be EOV.

USER'S HEADER LABELS.

The optional user's header label format is provided in table 4-4.

Table 4-4
User's Header Label Format

Starting Character
Field Name Character Length Description

1 Type 1 3 Must be UHL.

2 Number 4 1 Must be 1 through 9.

3 Use 5 76 User's portion.

USER'S TRAILER LABELS.

This is identical to user's header label except field 1 must be UTL.

The user can specify the creation of single file volumes or multi-

file volumes. In addition, the operating system will, for either

of the above cases, do volume switching when the data being written

exceeds the capacity of a vulume. It will also do automatic volume

switching on input when required. The tape format is shown as

follows (*denotes tape mark):

a. Single file, single vulume:

VOLl HDRl HDR2 * DATA * EOFl EOF2

4-71

b. Multi-volume file:

VOLl HDRl HDR2 * first volume data * EOVl **
VOLl HDRl HDR2 * last volume data * EOFl EOF2

c. Multi-file volume:

VOLl HDRl HDR2 * file 1 * EOFl EOF2 *
HDRl HDR2 * file 2 * EOFl * EOF2 **

d. Multi-file, multi-volume:

VOLl HDRl HDR2 * file 1 * EOFl EOF2 *
HDRl HDR2 * first part file 2 * EOVl **
VOLl HDRl HDR2 * part of file 2 * EOVl **
VOLl HDRl HDR2 * remainder file 2 * EOFl EOF2

HDRl HDR2 * File 3 * EOFl EOF2 **

User header labels may appear immediately after HDR2, and users

trailer labels may appear after either EOF2 or EOVl.

To create or read multi-file volumes, the user must specify the

same volume name for all the files in the set. Only one file in

**

*

the set can be opened at a time. To create a multi-file v-0lume,

the user must CLOSE NO-REWIND, the current file in the set, and use

OPEN OUTPUT NO-REWIND for the next file in the set.

To handle input, the operating system will give back to th~ object

code an END-OF-FILE condition when an EOF label is encountered.
I

The user then must CLOSE NO-REWIND on the current file, and OPEN

INPUT NO-REWIND on the next (or some other) file in the set.

The EOV label, when encountered on input, is the sentinel by which

the operating system can detect when volume switching is required.

This is done by locating the next volume or requesting the operator

to load a volume which has the same volume name as the current

volume, and has a file section number (in HDRl) one greater than

the current volume.

4-72

As stated previously, a user can specify the creation of a single

file volume by specifying only a file identifier, or the creation

of multifile volume by specifying both a v~lume identifier and a

file identifer. In addition, the user may specify one or more

directory identifiers. This will cause the operating system to

keep track of the physical location of the file in the file direc­

tory.

It is intended that the volume serial number in the VOLl label be

used as a physical location number. When an empty reel of tape

is presented to the system, the operator must indicate that the

tape is available for output, and what volume serial number is

to be associated with the tape by entering PG (unit designate)

(volume serial number). This will cause a scratch label contain­

ing the volume serial number to be written on this tape. Later,

when file control assigns an output file to the unit containing a

scratch label, the volume serial number is read and placed in VOLl

label of the volume being created. If the user has also specified

a file name containing one or more directory identifiers, the hier­

archical structure for the volume and the volume serial number is

entered into the directory. Later, if the file is requested for

input, the operator can be notified as to the physical location

of the volume containing the file, ii it is not already mounted

on a tape drive.

Volume serial number 0 (zero) can be used for tapes generated on

the system, but which are to be used elsewhere. For this reason,

volume serial number 0 cannot be used for tapes which are to be

controlled through the directory.

FILE ASSIGNMENT.

In order to assign peripheral I/O devices to symbolic process

files, the MCP must know the status of the peripheral devices.

Therefore, a pheripheral directory is maintained by the MCP STATUS

procedure which keeps track of all I/O devices other than disk.

A hardware-software interface causes STATUS to be called periodi~

cally to determine whether any peripheral I/O device changes its

local/remote state.

4-73

When STATUS detects that a device has gone into local, the peri­

pheral directory entry for that device is marked Not Available.

When the MCP looks for a unit upon which to assign or locate a

file, those which are Not Available are ignored.

Several things occur when STATUS detects a device going from local

to remote. First, STATUS marks the unit Available. Then it will

try to determine if the unit is to be an input or output device

and mark it accordingly. The action taken depends upon the type

of unit.

Output only devices (card punch, paper punch) are marked as output.

If the device is a card reader, the first card is read. The MCP

CONTROLCARD routine is called, passing the unit designation of

the card reader. CONTROLCARD checks to see if the first record

contains systems control information (i.e., a control card). If

so, the card reader is marked In Use and CONTROLCARD performs

the appropriate actions until a LABEL Control statement is en­

countered. Then, the file name is saved and the card reader is

marked Available and labeled as input.

If the device is a magnetic tape, the first record is read. If

the record is not a valid label, then the unit is marked as Avail­

able, Unlabeled, and Input. If the record read is a label, then

the label is checked. In addition, the unit is interrogated for

a write ring. If the unit has a write ring and a scratch label,

the unit is marked Available, Labeled, and Output. If the unit

has a scratch label and no write ring, the operator is notified

(a scratch label is created in response to a purge tape message),

and the unit marked Not Available. If the unit does not have a

write ring and has a valid label, or it has a write ring and a

valid label and the expiration date in the label is greater.than

the current date, the unit is marked as Available, Labeled, and

Input. If the unit has a write ring and a valid label, and the

expiration date is less than the current date, the unit is marked

as Available to be purged.

4-74

For each file marked as Labeled and Input, STATUS obtains the file

label from the file label records and saves it in a LABEL table.

This LABEL table is used at file-open time to associate input file

names with the actual hardware device upon which the file is

mounted.

The relationship between a file name and a file label can be

established by source language statements at compile time, or

Label Equation cards at run time. In addition, certain MCP mes­

sages can associate a file with a process. To do the association,

the compilers generate a Label Equation Block {LEE) and a File

Information Block (FIB). The logical association of the file name

and file label is made utilizing the FPB.

FILE PARAMETER BLOCK (FPB). The FPB is a 2-dimensional array which

is created and maintained by the MCP CONTROLCARD routine. The FPB

is an array in the form (file name) = (file label). The compilers

create one for each f~le. In the absence of any label equation

statements in the source language, the compiler will enter the file

name in both sides in the FPB, thus, if the file name and the file

label are identical, further label equation is not needed.

A Label Equation card in the form:

(i) FILE (symbolic file name) = (actual file label) (file

attributes)

is normally used to associate a file label {or actual file name)

with a symbolic file name. This card appears immediately following

the COMPILE card or the EXECUTE card. When the MCP routine CONTROL-

CARD routine sees Label Equation cards, it saves the information

in the FPB. This information is used later to modify file FPB

and FIB entries when the file is first opened.

LABEL EQUATION BLOCK (LEE). The Label Equation Block contains

the current label equation and file attributes information for

each file in process. Both the LEE and FIB are referred to by a

descriptor in the working stack which allows the dynamic specifica­

tion of file attributes to be implemented in an efficient manner.

4-75

FILE INFORMATION BLOCK (FIB). An FIB is created by each compiler

for each file in a process. The usage of the FIB is indica~ed by

the following definitions of its contents.

a. The STATUS field reflects the current status of a file,

i.e., opened input, closed, rewound, at End-of-File, etc.

b. The R FORMAT contains the programmers description of data

in the file, i.e., record size, blocking, etc.

c. The file attributes are:

d.

e.

1) Output media type.

2) Optional file indicator.

J) Standard or non-standard indicator.

4) Access indicator (serial, random).

5) Record count and block count (number of records or

blocks from beginning of file).

6) Designated unit and type of unit.

The disk attributes are:

1) Pointer to file header.

2) Area size.

3) Number of areas.

The printer attributes are:

1) Line count.

2) Line limit (page size).

J) Page count.

FILE OPEN.

The first function performed by the operating system when requested

to open a file is to map the file names and file attributes from

Label Equation cards into the FIB and FPB. This allows association

of a file name with a file label. The file attributes part of the

label equation card allows altering the source language description

of a file's attributes in a way that such things as file blocking,

output file device, etc., can be modified at execute time without
4-76

recompiling the source language. For example, a program written

to produce its output on the card punch can be label-equated to

produce its output on a line printer or a blocked magnetic tape

without recompiling.

The second step in opening a file is to assign a device to the

file. The action taken depends upon the following types of files.

a. If it is an output file and is not a disk file, locate

a device of the correct type marked Available and Output,

determine its unit designation, write label records and

user label records, and execute user USE routines, if any.

b. If it is an output file and a new disk file, generate a

file header in memory and assign actual disk space for

the first disk area.

c. If the file is a pre-existent file on disk (input or out­

put), locate the file in the file directory, read its disk

header into main memory, and check the attributes speci­

fied in the FIB against attributes specified in the file

header. If the attributes are incompatible, terminate

the process.

d. If it is an input file and not a disk file, locate the

file in the label table which al.so indicates the unit

designation, and read the file labels and users labels

(executing appropriate users USE routines). Compare

the file attributes in the FIB with the file attributes

in the file label. If the attributes are not compatible,

terminate the program.

The last steps in assigning a file to a program are:

a. Allocate memory space for the buffers.

b. Construct I/O control words and IOAREA control areas.

c. For all input files and blocked output files on pre-exist­

ant disk files, preload the buffers with data.

4-77

OBJECT PROGRAM I/O.

Object program input/output operations on the B 6500 System in­

volves the automatic transfer of records between a file and a

process. The concepts of concern to object program I/O are record

size, bLock size, blocking, serial I/O, and random I/O. Each is

described below.

RECORD SIZE.

The record size is the size of that set of data processed by each

I/O statement in the source language.

BLOCK SIZE.

The block size is the size of a set of data that can be processed

by the hardware on each actual hardware I/O operation. The limit­

ing factor in size of a block is dependent on each hardware device.

For example, card readers are fixed at 80 characters per block,

tape is variable in increments of 1 to 16,767 words, and disk block

size is variable in increments of JO word segments.

BLOCKING.

Blocking invulves the capability of specifying one or more records

per block. That is, one hardware I/O operation will transfer one

or more logical records. The purpose of blocking data is to con­

serve storage space and to increase processing speed.

BUFFERING.

Buffering involves the use of one or more buffers (memory areas)

which provides the interface between the hardware device and the

source language I/O statements. There must always be at least one

memory area to be used as a buffer for each file. The hardware

must process one block of data on each I/O operation. Therefore,

the memory area should be at least as large as one block. The

records must then be supplied one at a time from the block to

the program. The use of more than one buffer can also be used to

increase the processing speed of data since multiple buffers allow

I/O to be performed on one buffer at the same time that a logical

record is being processed in another buffer.

4-78

SERIAL I/O.

Serial I/O operations require the system to supply the next record

in sequence to the program on each I/O operation. All I/O devices

on the system are capable of serial I/O operations.

RANDOM I/O.

Random I/O operations are allowed only on disk files. This concept

invulves supplying a specified record to the program. All records

on disk are stored sequentially and are addressed 0 through n,

where 0 is the first record of the file and n is the last record

in the file.

MCP.

Associated with each file is a record pointer (see figure 4-8).
All data is accessed by a program through the record pointer. This

pointer contains a base and a maximum record size. The various

languages can specify records of variable size and a maximum record

size. Also, some languages depend upon the program to establish

the record size. Certain hardware checks will cause program term-

ination if the program establishes a record size exceeding its

specified maximum record size. This establishes one level of

system integrity, i.e., a program cannot alter or destroy data

outside of the program data area limit.

Each I/O statement makes a record available to a program altering

the base field of the record pointer. In the case of blocked

records and another record in the block exists, then the next

record can be obtained by incrementing the pointer base by the

size of the previous record. In the case where all logical records

in a block have been processed, the base can be set to either the

next buffer, if multiple buffers are specified, or the front of the

buffer if only one buffer is specified.

Any time the record pointer is set (rather than indexed), the

address of the I/O control area IOAREA is passed to the MCP which

activates an actual I/O operation on that buffer. At the same

time, the event associated with the buffer to which the record

pointer has been set is checked.

4-79

PROGRAMS STACK

RECORD POINTER
IOCB LINK IOCW ATA

FIB ADDRESS
IOCB LINK DATA

USERS LABEL ADDRESS
I
I

*COBOL ONLY I
THER.

1
BUFFERS

IOCB LINK IOCW ATA

FILE NAME FILE LABEL

FPS

FIB

USER LABEL I USERS LABEL N

(COBOL ONLY)

Figure 4-8. Normal State I/O

The buffer event serves to interlock the buffer with the program

such that the program cannot reference a buffer which has an I/0

in progress on it. When a buffer is passed to the MCP, its event

is set to the state Not Happened~ Upon completion of the I/O for

that buffer, the MCP routine IOCOMPLETE sets the event to a state

Happened. Prior to returning to the program after setting the

record pointer .to a buffer, its event is checked for the Happened

state.

ecuted.

If the event has not Happened, then a WAIT event is ex­

This will cause the program to be moved from the READY

Queue to the WAIT Queue, i.e., the program is suspended and another

program in the READY Queue is started. Later, when IOFINISH

causes the event to Happen, all of the processes waiting on that

event are moved from the WAIT Queue to the READY Queue. The pro-

cesses will be re-activated according to their priorities in the

READY queue .

RANDOM RECORD ACCESS.

Since actual I/O operations may involve blocks of records when a

read or update is required on a record, the entire block containing

4-80

the record must be read. If the I/O action is a random action

which may be specified for files such as disk files, the record

required may have been included in a block of records which was

previously accessed. Therefore, in order to eliminate unnecessary

I/O actions, the MCP remembers which logical records are currently

held in each buffer. When a request is made for a particular

record, the buffers are first checked to determine whether the

record already exists in the buffer. If it is, then the record

pointer is set to point at it and control returns to the object

program immediately. If the record is not already in the buffer,

then the MCP must be called to load the block containing the re­

cord, the program must be suspended until the record is loaded,

and then the record pointer is set to point at it.

SEEK.

The SEEK function can be activated by the source language. Assoc­

iated with the SEEK is a record address. SEEK has two purposes

depending on whether or not the file is serial or random. SEEK

on sequential files serves to reset the file to start sequent~al

processing at the record indicated in the SEEK statement. For

example, the first I/O statement after a SEEK RECORD n would make

record n available to the program. The record being processed

prior to the SEEK is not disturbed by the SEEK. That is, it is

still available.

The SEEK statement on random access is intended to cause the sys­

tem to prelocate the next record while the program is processing

the current record. The SEEK firs~ examines the buffers to see

if the record already exists in a buffer. If the record is in a

buffer, control is returned to the program.

If the record is not in a buffer and there is only one buffer,

then control is returned to the program. It should be noted that

the use of SEEK on files with only one buffer causes unnecessary

MCP overhead and should be avoided. If there are multiple buffers,

then the MCP may be called to load the block containing that re-

cord. Assuming the record pointer is pointing at buffer number l,

4-81

then consecutive READ SEEKs are alternated through buffers 2

through n.

MCP I/O.

As previously stated, I/O control requests actual I/O by passing

the address of an I/O area to the MCP procedure IOREQUEST. The

primary purpose of IOREQUEST is to quickly set up an I/O request

and return to the calling program. To set up an I/O request,

several -things must be considered.

First, since IOREQUEST is handling I/O operations on all buffers

of all programs in the mix, each I/O must be associated with a

particular buffer of a particular program.

A second consideration is that IOREQUEST must set up an I/O opera­

tion and return to the caller, even if the I/O request is on a

device that cannot be initiated. The device may already be in use

by a prior request, or all multiplexor channels may be busy per­

forming I/O operations on other devices. This also ~mplies the

setrip must include the capability of later sending the request to

the multiplexor when the device does become available.

Finally, the setup must also include the ability to interlock the

I/O buffer and later, when the I/O operation is complete, unlock

the buffer. This interlocking must be transparent to the pro-

grammer. In addition, it must allow the program to run and be

stopped only when the program attempts to process data in a buffer

for which an I/O request has been made, but is not yet completed.

The MCP utilizes the two queues in the handling of an I/O request,

as shown in figure 4-9.

Each device in the system (each reader, tape, disk electronics

unit, etc.) has a unique unit number and a unique I/O Queue.

The IOREQUEST functions are as follows:

4-82

a. The I/O area IOAREA is linked into the I/O Queue. If

there is more than one entry in the queue, IOREQUEST

FIRSTIO

LASTIO

MISC

MISC

MISC

AREA
DESC

AREA
DESC

AREA
DESC

EVENT

EVENT

EVENT

NEXTIO PRVSIO

(EMPTY)

NEXT IO PRVS:CO

NEXTIO PRVSIO

(EMPTY)

J:OCB BUFFERS

LINK IOCW DATA---...

TO OTHER BUFFERS

LINK :cocw DATA---.

LINK IOCW DATA--~

Figure 4-9. MCP I/O Queue

returns to the requesting process. Otherwise, IOREQUEST

calls STARTIO. STARTIO makes up the UNITWORD which speci-

fies the unit and multiplexor, and the hardware instruc­

tion which interrogates for an I/O path is executed. If

a path (I/O channel) is available, then STARTIO calls

INITIATEIO which causes the multiplexor to start trans-

ferring the information. INITIATEIO also records the

initiate time which the IOFINISH routine uses to calculate

I/O time for the process. Control is then returned to the

process requesting I/O action.

b. If a path is not available, then the UNITWORD is entered

into the WAITCHANNEL Queue as shown in figure 4-10. Con-

trol is then returned to the process requesting process.

The multiplexor, after obtaining an I/O request via a processor

Initiate I/O instruction, proceeds to handle the request completely

independent of the processor. In the process of doing the I/O,

the multiplexor builds a result descriptor. Upon completion of the

I/O operation, it generates an IOFINISH interrupt to the processor.

The MCP routine IOFINISH is activated upon this interrupt.

4-83

WAITQUEUEHEAD IOCB NEXIO PRVSIO

(EMPTY)

IOCB NEXIO PRVSJ:O

y(OTHER BUFFERS WAITING FOR J:O).

I
I

·I WAITOUEUETAIL IOCB NEXJ:O PRVSJ:O

(EMPTY)

Figure 4-10. MCP Wait Queue

The first operation of IOFINISH is to execute the instruction Read

Result Descriptor for the multiplexor. This instruction transfers

the result descriptor from the multiplexor to the top of the stack

in the processor. At the same time, it clears the interrupt mech­

anism in the multiplexor so that it becomes capable of generating

another IOFINISH for some other device.

The result descriptor has three fields of concern: the unit num-

ber, error bit, and error field. The error bit is off if no errors

were detected. If the bit is on, then the result descriptor is

passed to the IOERROR. IOERROR analyzes the error field which

denotes such errors as End-of-Page, End-of-File, Parity, Not Ready,

etc. Depending on the type of error, IOERROR will take appropriate

action.

Assuming IOERROR corrected the error, or there was no error,

IOFINISH continues as follows:

4-84

a. The I/O just completed is removed from the I/O Queue.

Since the result descriptor has the unit number in it,

FIRSTIO (unitnum) points at the I/O to be removed from

the IOQUEUE.

b. If the WAITCHANNEL Queue is not empty, NEWIO is called

to initiate an I/O operation on the first unit waiting

in the queue. This I/O Queue is then checked to see if

it is empty. If it is not empty, then the next I/O opera­

tion requested is placed in the WAITCHANNEL Queue.

c. If the WAITCHANNEL Queue is empty, the STARTIO is called

to initiate the next I/O operation in the I/O Queue for

this unit.

d. The user I/O time is recorded in the system log.

e. The I/O finish event is CAUSEd which causes the process

in the events WAIT Queue to be moved into the READY Queue.

Since IOFINISH was activated by an interrupt rather than being

called, the exit from IOFINISH is done by branching to a routine

which will activate the process or program which is in the top of

the READY Queue.

UTILITY OPERATIONS.

LOAD CONTROL.

The MCP provides a means whereby card deck information, including

system control information, can be placed on the disk in the form

of a "pseudo card file," and then used as though it were in a card

reader. The three major parts of the load control system are the

LDCNTRL/DISK Program, pseudo card readers, and pseudo card decks.

The LDCNTRL/DISK Program can place either a magnetic tape file or

a card file on the disk, and copy a file onto magnetic tape.

LOADING A CONTROL DECK FILE ONTO DISK. The primary function of the

program LDCNTRL/DISK is to read a file with the multiple file iden­

tification CONTROL, and the file identification DECK, and to place

that file on disk or a magnetic tape.

The normal mode of operation for LDCNTRL/DISK is to locate a card

or tape file labeled CONTROL/DECK and place that file on disk as

one or more pseudo card decks.

CARD READER CONTROL DECK FILE. If a control deck file is to be

read from a card reader, the file must be preceded by a label card

4-85

to identify it. Also, the last card in the control deck must be

an END CONTROL card containing the following:

(invalid character) END CONTROL

MAGNETIC TAPE CONTROL DECK FILE. If a control deck file is to be

copied from magnetic tape onto disk, the tape must be properly

labeled and, as is the case with a control deck from a card reader,

the last card image on the tape file must be an END CONTROL card.

In addition to these requirements, the tape file must be properly

formatted so that system control cards (i.e., system control state­

ment and program-parameter statement cards) can be recognized.

Specifically, the tape must have the following characteristics:

a. Each record containing a question ma~k card must

be nine words in length.

b. Each record containing a card which is not a

question mark card must be 10 words in length.

PSEUDO DECK ON DISK.

When the LDCNTRL/DISK program reads a control deck file, it places

it on disk as one or more pseudo card decks. The number of pseudo

decks created depends upon the number of END cards located within

the control deck. That is, each time an END card is encountered,

it is taken to denote the end of a deck. Creation of another

pseudo deck is then initiated and, as each new pseudo deck is

created, it is given an identification of the form #(integer).

It should be noted that what is referred to as a pseudo deck is

analogous to a single continuous deck that would be placed in a

card reader. Therefore, if a pseud0 deck contains more than one

file, each file following the first will be recognized only when

the file preceding it has been passed. Also note that there is

no set limit to the number of cards that may be contained in a

control deck file.

Due to each pseudo card deck that is placed on disk, the deck is

4-86

linked to the previous deck, forming a queue waiting to be used

by a pseudo card reader. Because of the queue feature, the RD

keyboard input message must be used to remove pseudo decks from the

disk.

The secondary function of the LDCNTRL/DISK system is to read a file

labeled control deck, delimited by an END CONTROL card, and to copy

it onto magnetic tape. If the control deck being copied is a card

file, the file will be copied onto tape in the required format

specified above. If the control deck being copied is a magnetic

tape file, a tape copy is performed.

The LDCNTRL/DISK may be called out either by a keyboard input

message or control cards.

If LDCNTRL/DISK is used to place a control deck on the disk, either

the keyboard input message LDDK or a control card containing (in­

valid character) EXECUTE LDCNTRL/DISK may be used.

If LDCNTRL/DISK is used to copy a control deck. onto tape, either

the keyboard input message LDMT or a control card containing (in­

valid character) EXECUTE LDCNTRL/DISK; COMMON = l may be used.

ERROR CHECK IN LDCNTRL/DISK.

If a parity error is encountered in a control deck file being read

from magnetic tape, the remainder of that file is skipped and the

file containing the parity is completely ignored.

PSEUDO CARD READERS.

To make use of pseudo card decks, the MCP contains logic which can,

in effect, supply the system with up to 32 pseudo card readers.

These pseudo card readers, in many ways, appear to be much like

physical peripheral units. That is, system messages are typed for

the pseudo card readers as though they were actual card readers,

and keyboard input messages can reference the pseudo card readers.

The pseudo card readers are identified by specifying CD (unit

number) as shown below:

4-87

CDl

CD2

CDJ

CDJ2

All pseudo card readers are turned off at Halt-Load time. The

system operator may cause these readers to be turned on through

the use of an RN keyboard input message. When an RN (digit)

message is initially entered and the digit is not equal to zero,

the MCP automatically searches for pseudo card decks to satisfy

the need of the specified number of pseudo card readers. There-

after, as long as pseudo card readers are on and pseudo card decks

are available, the MCP will keep the readers full.

If the system operator wishes to turn off pseudo card readers, he

need only type in an RN message that specifies the number of pseudo

card readers he wants left on. The MCP will then turn off a suffi-

cient number of readers to meet these requirements as soon as the

readers complete processing their current decks.

If, for any reason, it is desirable to remove a deck from a pseudo

card reader (e.g., a card file never opened by a program that was

discontinued), the removal can be accomplished by entering an ED

keyboard input message.

ERROR HANDLING IN THE PSEUDO CARD DECK.

If a pseudo card deck is being read and an error is detected in a

control card or Program Parameter card, the MCP will remove the

deck in which the erroneous card appears and will continue to the

next available pseudo deck.

PRINT BACKUP.

Due to the relatively high cost of printers, some means is desirable

to ensure that the printer is kept working at its maximum rated

4-88

performance. This goal may be accomplished by simulating printers

with disk files or magnetic tape units. On the B 6500 System, in­

formation which is intended to be written on a printer may be

routed to a disk file or tape called a printer backup (PB) file.

When the PB file is closed and a printer is free, the PB file may

be printed at the maximum rated speed for the printer.

There is one control record per print file containing the file

identification, the name of the program creating the print file,

a copy of the first nine words of the header card, a special forms

flag, and recycle option flag. This record is the first record of

the print file and is the first record of the block on the PB file.

A control record is always the first record of a block. The re-

mainder of the block is composed of data records. Each data record

contains the output record created by the program followed by a

control word. The control word contains the carriage control in­

formation developed from the original I/O descriptor.

A printer backup file on tape has the name PBTMCP/xxxx BACK-UP. It

may contain more than one printer file and may span more than one

reel. Additional disk areas are allocated as required. The name

of a print backup disk (PED) file is PBD/xxxxnnnrrr, where xxxx

are the first four letters of the program creating the file, nnn

is a serial number (in EBCDIC) corresponding to the print file,

and r~r is the serial number of the backtip file within the print

file. Thus, each print file may be composed of more than one phys­

ical backup file on disk, all with the same nnn part.

FILE OPENING ACTION. If the file control card has recycle options,

the auto-print option will bypass the print file because the user

wishes to make multi-copies of his output, but doesn't want to

create a backup tape. The number of copies required by the user

may be generated in the following manner. Assume that five copies

of output are required. The operator types in PBxxxx5, where xxxx

is the identification number of the file and integer 5 is the

number of times the file is to be repeated before the print file

is removed. The printer backup routine will use the maxumum number

4-89

of printers available to get the five copies he requires.

SKIP OPTION.

The PB system also has a skip option feature.

are specified as follows:

a. PBxxxx SKIP n =(key).

b. PBxxxx SKIP n.

The skip options

The first option skips the first part of the document and only

starts printing when it finds the key starting in print column n.

The second option skips n lines of output.

When a printer backup file is opened, a bit is set which notifies

the MCP that this file is in use. Subsequent to Halt-Load time,

the MCP will attempt to reopen the file, but will not be able to

because the In Use bit is on. At this point, the MCP will communi­

cate to the display that it needs a new PB command to continue the

job. It may be desirable to use a skip option feature.

The selection of a physical unit for a printer backup file is

determined in the following manner. If the file may go to tape,

an existing printer backup tape (PBT) file is used, if one is

available. Otherwise, if a scratch tape is available, a new PBT

is created and used.

If a unit is not found for the file, a message is displayed to

inform the operator. If a unit of the specified type is made

available, it is used. Otherwise, the operator may reply with an

OU message to assign a different type of output unit such as a PB

disk file, a printer, or a card punch.

SPECIAL FORMS. If the special forms feature is desired on a print

file opened as a printer backup file, any special forms requirement

is deferred until the backup file is printed. If the print file

is opened on a printer, the operator is informed that special forms

are required by the message# (unit) FM RQD----, or a special pro-

gram generated message. The operator may then:

4-90

a. Load the forms onto that unit and key in (mix) FM (unit).

b. Key in (mix) OUMT or (mix) OUDK to force the chosen

printer to be released to open a backup file. When a

backup is printed which required special forms, the

message #FM RQD (unit) FOR (mfid)/(fid) OF (program name)

will be displayed to which the operator may reply with

an OK, WY, or DS message.

CLOSING A PRINT FILE ON DISK. If the system option auto-print is

set when a print file on disk is closed, it is scheduled to be

printed unless it is a recycle option file. If auto-print is not

set, a message is typed to inform the operator that a PED exists

and may be printed by the message PED xxxx. When an output file

is printed from a PB file, an entry is made into the log containing

the header card information of the program.

LIBRARY MAINTENANCE.

The MCP provides a library maintenance process, LIBMAIN/DISK, to

perform disk library utility operations. The LIBMAIN/DISK process

is initiated either from the supervisory display unit or from a

system control card. Some options available are REMOVE, DUMP,

LOAD, UNLOAD, CHANGE, EXCHANGE, PRINT, and DISPLAY.

REMOVE OPTION. This option causes the specified file(s) to be

removed from the disk directory and causes the disk space used by

the file(s) to be made available for other use. The MCP files,

SYSTEM/LOG and DIRECTORY/DISK, may not be removed by this option.

To specify what files are to be removed, file lists and/or multiple

file names may be used. A multiple file name specifies one or more

files that are to be removed.

DUMP OPTION. This option causes a copy of the specified disk

files to be copied onto a magnetic tape. The file information

written on the magnetic tape forms a multi-file library tape.

The dump option facility does not remove the file from the disk

4-91

directory. The MCP files such as SYSTEM/LOG and DIRECTORY/DISK

cannot be copied.

To specify what files are to be copied, file lists and/or multiple

file names may be used. A multiple file name specifies one or more

files are to be copied.

LOAD OPTION. This option loads the specified files from library

tape to disk and makes the appropriate changes in the disk direc­

tory. At the completion of the load operation, the tape is re­

wound and locked.

UNLOAD OPTION. This option dumps the specified files onto a

library tape. At the successful completion of the dump, the disk

directory entries are modified to show that the files are no longer

on disk and the disk space is returned to the available list.

CHANGE OPTION. This option is used to change the names of files

which are on disk.

EXCHANGE OPTION. This option is used to exchange two file names

of program files and/or data files which are on disk.

PRINT OPTION. The use of this option causes the MCP to write

various information about a given file onto a line printer. Such

information as hierarchical order, media, volume number, etc., is

written for each file specified.

DISPLAY OPTION. The use of this option causes the MCP to display

the specified file names and related directory information on a

display unit.

SYSTEM LOG.

The MCP provides a log maintenance function which maintains a log

or history of user program activity and time usage. The log, as

compiled from the LOG SHEET Queue, is saved on the disk by the MCP.

The log information for a process run on a B 6500 System is written

in a file on user disk. The log file occupies one area on disk,

4-92

and has the file name SYSTEM/LOG.

The SYSTEM/LOG file consists of 10-word logical records blocked

three to a physical record. Word 0 is used to identify the message

which appears in words 1-9. For the last record in the file, bit

47 of word 0 is set to 1 and the rest of the record is left empty.

The system operator is kept informed of the size of the SYSTEM/LOG

by the LOG (percentage) % FULL message which is printed in 5 per

cent increments. The operator can create an empty SYSTEM/LOG wit~

the LN message. When LN is typed, the name of the current SYSTEM/

LOG is changed to (number) LOG, and a new file named SYSTEM/LOG

is created. All ensuing display messages will be stored in the

new SYSTEM/LOG and the (number) LOG file can be processed later.

(number)/LOG. (number) has 7 digits to identify the log informa-

tion, where digits 0-l contain the month, digits 2-3 contain the

date, and digits 4-6 are the serial number of log to link each log

file together. The first file is number 001, the second 002, etc.

If SYSTEM/LOG becomes 95 per cent full, an LN is automatically

initiated with the following message: LOG 95% FULL (AUTO LN).

Table 4-5 provides a listing of the various system log message

type codes.

The formats of the various messages are listed below:

The BOJ message:

(program specifier)/(user code) = (mix index) BOJ (time of day)

The EOJ message:

(program specifier)/(user code) =(mix index), PST= (time) EOJ

where the time is processor time. DS-ED, ES-ED, etc., may appear

instead of EOJ.

PBEOJ message:

PRNPBT FOR (program specifier), PST= (time), IOT =(time); EOJ

where PST is the processor time and IOT is the I/O time.

4-93

Code

0

1

2

3
4

5
6

7
8

9
10

11

12

13

14

15
16

17
18

19

20

Table 4-5

System Log Message Type Codes

Message Type

A message not applicable to logging.

A message typed in from the display.

BOJ message.

EOJ message.

PBEOJ message (printer backup End-of-Job).

File open message.

File close message.

Halt.

EOJ statistics.

File close statistics.

On message, indicates a successful log-in.

Off message.

Charge message.

Disk charge message.

Date message.

Time message.

Operator RSVP message.

ST-ED message.

Reserved for expansion.

Reserved for expansion.

Reserved for expansion.

File close message:

(unit mnemonic) REL (data file designator) (rdc) = (job

specifier)

System initialization message:

B 6500 MCP LEVEL (change level)

EOJ statistics have three words:

a. Word l contains the processor time in 60ths of a second.

b. Word 2 contains the I/O time in 60ths of a second.

4-94

c. Word 3 contains the number of words of core used.

File close statistics have five words:

a. Word l contains the multiple file identification.

b. Word 2 contains the file identification.

c. Word 3 contains the reel number and date.

d .. Word 4 contains the cycle, number of errors, and the unit.

e. Word 5 contains the length of time the file was opened.

HALT message:

HALT (date) AT (time)

DATE message:

DATE IS (day of week), (month)/ (day)/ (year)

TIME message:

TIME IS (time of day)

Operator RSVP message:

FOR (user code) ON/OK (date) AT (time)

ST-ED message:

FOR (user code) ST/OK (date) AT (time).

SYSTEM RECONFIGURATION.

In the event that a hardware module fails or must be shut down for

maintenance, the system must be reconfigured to eliminate the

module which is no longer available to the system. The ability to

reconfigure the system easily and efficiently is designed into the

B 6500 so that the loss of a particular key module will not be

catastrophic to the system unless that module is unique. For ex­

ample, the failure of one processor on a two processor system

would cause a degradation of system performance, but the system

would still be operable. In the B 6500 system, there are very few

system modifications which are not handled automatically by the

MCP, and there are even fewer which cannot be handled with the aid

of a Halt-Load.

4-95

The basic criterion for being able to shut down or disconnect a

unit is whether it is currently in use by some process. If, for

example, a memory module is shut down, it is clear that the inform­

ation which is currently stored in that module is now inaccessible.

Such a situation would almost certainly lead to an invalid address.

However, if a unit which is not cur~ently in use, such as a mag­

netic tape drive, is shut down, the system will continue to func~

tion as if nothing has happened. It is possible to issue a command

to the MCP indicating that a particular unit is to be shut down,

and that the MCP will respond by rearranging the system to av-0id

the use of the unit, at which point it will indicate that the unit

has been detached from the system.

There are, however, certain major hardware modifications to the

system which will require modification of the MCP. This is due

to the fact that handling of DCP (Data Communication Processor)

interrupts and the GCA (general control adapter) interrupts is

contingent on the nature of the device involved. If, for instance,

·a data communication system or a substantially different data com­

munication system is to be added, it will be necessary to alter the

MCP. It also means that before connecting a device such as a

plotter or analog interpreter, it will be necessary to specify the

nature of the GCA interrupt. In other words, it will be necessary

to specify how the MCP is to handle GCA interrupts by changing

the MCP. Except for these two contingencies, however, reconfigura­

tion of the system will not require modification of the MCP.

4-96

GENERAL.

SECTION 5

DATA COMMUNICATIONS

The Data Communications Processor (DCP) is a peripheral control

device intended to cope with the routine problems and functions of

a multiterminal data communications network.

In the B 6500, no terminal device directly interfaces with the cen­

tral system. Instead, the sequence is: terminal device (teletype,

for instance), communications line, line adapter.

This is followed by the adapter clusters, the DCP, then to multi­

plexor, and into the main memory.

Each adapter cluster can service 16 lines. Each DCP can service

16 adapter clusters. Each multiplexor can service four DCP's.

Thus a two multiplexor B 6500 can service 2048 lines. More lines

may be handled by chaining multiplexors. By chaining multiplexors,

the maximum number of lines is limited only by the main memory

access time.

The DCP contains a resident local instruction memory and logic for

over JO different hardware instructions. The resident program

executes entirely in the DCP logic and does not require attention

from the MCP for its operation. It controls the clusters and func-

tions to modify and concatenate the adapter output into a form

suitable for transmission to the central processors.

The adapter cluster controls all transmissions to and from the

terminals connected to its lines. In effect, it determines what

information is to go on each line, and when it is to be transmitted

or received.

DATA COMMUNICATIONS SOFTWARE SYSTEM.

The B 6500 data communication software system is shown in the

figure 5-l. Bl.ock number l represents the data communications

processor (DCP) line control procedures. A DCP Program Generator

5-1

B6500 MAIN SYSTEM

r---~ 1 NORMAL STATE PROGRAMS 1
,-----------C-ONTROL-STl"i"rMcP-------~

PERTINENT MCP FUNCTIONS

INTRINSIC

COMMUNICATION
SUBSYSTEM

DATA COM
OBJECT

JOBS
(BLOCK 7)

--- PROCEDURES EBCDIC
(BLOCK 6) BCL, .. ' DAT ACOM

110
CONTROLLER

(BLOCK 3)

DCP MCP PROCESSOR DATA
......,=-:..z.i INTERFACE EBCDIC LINE CONTROL,,."""""'....____, LINES

REMOTE

HANDLERS --­
(BLOCK 5)

SPECIAL
FUNCTIONS

8
MCP

INTERFACE
(BLOCK 4)

I
I
I
I
I

(BLOCK 2) PROCEDURES
(BLOCK I)

L---------------------------~
I

L _____ - - --------... - ---------------------- -------------- __ J

Figure 5-1. Data Communications Software System

will be provided for the purpose of producing a DCP program. This

program is developed by combining selected elements from a modular

set of sub-units that are provided by Burroughs.

It is the user's responsibility to convey to the Program Generator

the types of devices to be attached to his installation's DCP. The

user must also provide the form of the messages that are to be

transmitted. By making use of the above information, the DCP pro-

gram can be generated.

Depending upon the particular application and kind of devices on

the line, the DCP program may send acknowledgements and negative

acknowledgements (ACK's and NAK's) for messages successfully or

unsuccessfully received. They 'also perform code translation and

handle general line maintenance. Other functions may include

5-2

horizontal and vertical parity checking, and making use of redun­

dancy for the purpose of reconstructing lost information.

Block number 2 represents the interface function. This function

is partially developed from the DCP Program Generator sub-units

and partially coded in the Executive System Programming Oriented

Language (ESPOL). ESPOL is a high-level language which is used to

program the B 6500 MCP. The two major functions handled by the

interface routines are the maintenance of the DCP INITIATE Queues

and the DCP COMPLETE Queue.

The DCP INITIATE Queues are a communication link between the MCP

and the DCP program. When an object program requests an I/O opera­

tion to be performed, the MCP queues the request according to unit

number or DCP number. Thus, there is an INITIATE Queue for each

DCP.

Each time the MCP adds an element to an INITIATE Queue, it checks

to see if the queue was previously empty. If it was empty, the

MCP performs a Scan Out command indicating that DCP attention is

required. The DCP recognizes that the queue is now active and

starts emptying the queue as rapidly as possible. Emptying the

queue simply means pulling each queue entry off the INITIATE Queue,

and placing it on the end of a queue that exists for each line

number. Each time a line becomes free, the DCP initiates an I/O

operation for the top item in the queue for that line.

A new entry is made in the DCP COMPLETE Queue each time a message

h~s been assembled by the DCP. If the COMPLETE Queue was empty

w~en the current complete was placed in the queue, a signal is

given notifying the MCP that the queue is now active.

Block number 3 depicts the Data Communication Controller which is

an ESPOL Program that is the central switching unit for the entire

DCP software subsystem. Some of the functions that may be performed

are the linking of messages to the proper program, the combination

of a set of buffers into one interlaced buffer, and the tanking of

messages on disk.

5-3

Block number 4 depicts special functions which are built into the

MCP for the benefit of remote handlers. These special functions

are coded in ESPOL. The two classes of special functions are

supplying of information and execution of unusual tasks. The num­

ber of jobs in the mix, the number of multiplexors on the system,

the number of data communications processors, and the size of core

memory are other types of information that may be supplied.

Block number 5 depicts the functions performed by remote handlers.

Remote handlers may perform scheduling, error detection, and re­

construction of lost information through the use of redundancy.

The user can code the remote handlers to suit the requirements of

his installation.

Block number 6 depicts the intrinsic procedures which are coded in

ES POL. Intrinsic procedures provide the link between user's object

programs and the Data Communications I/O Controller procedures of

the MCP. Normal READ and WRITE statements in the user's object

jobs generate code which calls the intrinsic procedures.

Block number 7 depicts the user's object jobs. The object jobs

are coded by the user in any one of the languages provided by

Burroughs.

5-4

APPENDIX A

DEFINITIONS

Several terms which are used in the discussion of the MCP are

defined below. Semantics following syntax are enclosed in paren­

theses and begin on a new line. Where semantics are used to

describe syntax, they are enclosed with the character pair{}.

Logical OR is represented by a vertical line Cl).

(letter) ::=A I BI C I D I EI F I G H I I I J I KI LI M I N I

0 I p I Q I R I s I T I u I v I w I x I y I z
(digit) ::= o I l I 2 I J I 4 I 5 I 6 I 1 I s I 9

(integer) ::=(digit) I (integer) (digit)

(space) ::={one or more blank card columns or equivalent}

(special character) : : = [I • I $ I @ I] I ' I - I (I
: I +I &I> l<I "I %1 =I >I *I I

(character) ::=(letter) (digit) I (special character)

(reserved character) : := - I . I = I ' I ;

(invalid character) ::={any card code which .does not represent a

character}

(identifier) ::=(letter) I (identifier) (letter) I (identifier)

(digit) (Only 17 characters of an identifier will be used

by the MCP.)

(reserved word) ::=ALGOL I ALPHA I BACKUP I CHANGE I COBOL I

COMMON I COMPILE I CORE I DATA I DISK I DISPLAY I DUMP

END I ESPOL I EXECUTE I EXTERNAL I FILE I FORM I FORTRAN

FREE I IO I LIBRARY I LOAD I MINIMUM I PAPER I PRINT I

PRIORITY I PROCESS I PROTECT I PUBLIC I PUNCH I RANDOM I

READER I RELEASE I REMOTE I REMOVE I RUN I SAVE I SERIAL

SPECIAL I STACK I SYNTAX I TAPE I TAPE7 ·I TAPE9 I UNIT I

UNLABELED I UPDATE I USE I USER

(comment) ::={any series of characters excluding reserved charact­

ers, reserved words, and spaces}

(optional compiler name) ::=(empty) I (compiler name)

(This is used to designate whether a control statement

refers to the compiler or the object program. If empty,

A-1

it refers to the object program.)

(compiler name) ::=ALGOL I COBOL I ESPOL I FORTRAN

(program name) ::=(identifier) I (program name) I (identifier)

(If a program is entered into the library, the program

name becomes the file label for the file in which the

program is stores.}

(job name) ::=(program name)

(Normally a program name is used as the job name.)

(mix index) ::=(integer) I (mix index).(digit)

(The integer contains the hour of the day and serial

number. The .digit indicates that this is a process in­

itiated by the job represented by the integer.)

(file label) ::=(file id) I (vol id) I (file id) I
(directory id)l(vol id)l(file id)

(file name) ::=(identifier)

(This is an identifier by which a program refers to a file.

The file name is commonly label equated to a file label

or another file name.}

(directory id) ::=(identifier) I (directory id)I (identifier)

(Used to form the hierarchical levels of the disk direc­

tory. }

(vol id) ::=(identifier)

(The vol id designates a particular volume. For a tape

file, it refers to a tape reel.)

(file id) ::=(identifier)

(The file id designates a particular file in a volume.)

(priority) ::=(integer)

(The slowest priority is mm and the fastest is o.)
(unit mnemonic) ::=(letter) (letter) (integer)

The unit mnemonics recognize by the MCP are listed below:

MT(integer) .. - magnetic tape unit (integer) .. -
CR(integer) .. - card reader (integer) .. -
LP(integer) .. - line printer (integer) .. -
CF(integer) .. - card punch (integer) .. -
SC(integer) .. ~ supervisory console (integer) .. """-

A-2

CD(integer)

PP(integer)

.. -.. -

.. -.. -
pseudo card reader (integer)

paper tape punch (integer)

PR(integer) ::=paper tape reader (integer)

(file list) ::=(file label) I (file list),(file label)

(file set list) ::=(file set specifier) I
(file set list),(file set specifier)

(file set specifier) ::=(file label) I (file label) I =

(The character = represents any identifier, hence A/=

specifies the set of all file labels whose first level

is A.)

(rdc) ::=(empty) I (reel) I (reel),(ctate) I (reel),(date),(cycle)

(reel) ::={an integer of up to four digits}

(The reel is the file section number in a USASI label.)

(date) ::={a five digit integer}

(The first two digits specify the year, and the last

three digits specify the day of the year.)

(cycle) ::={an integer of one or two digits}

(terminal reference) ::= S =(integer), A= (integer)

(s represents the segment number, and A the relative

address within the segment of the last non-intrinsic

syllable that was executed.)

A-3

	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	04-57
	04-58
	04-59
	04-60
	04-61
	04-62
	04-63
	04-64
	04-65
	04-66
	04-67
	04-68
	04-69
	04-70
	04-71
	04-72
	04-73
	04-74
	04-75
	04-76
	04-77
	04-78
	04-79
	04-80
	04-81
	04-82
	04-83
	04-84
	04-85
	04-86
	04-87
	04-88
	04-89
	04-90
	04-91
	04-92
	04-93
	04-94
	04-95
	04-96
	05-01
	05-02
	05-03
	05-04
	A-1
	A-2
	A-3
	A-4

